4,288 research outputs found

    Qualitative Spatial Reasoning about Relative Orientation --- A Question of Consistency ---

    Get PDF
    Abstract. After the emergence of Allen s Interval Algebra Qualitative Spatial Reasoning has evolved into a fruitful field of research in artificial intelligence with possible applications in geographic information systems (GIS) and robot navigation Qualitative Spatial Reasoning abstracts from the detailed metric description of space using rich mathematical theories and restricts its language to a finite, often rather small, set of relations that fulfill certain properties. This approach is often deemed to be cognitively adequate . A major question in qualitative spatial reasoning is whether a description of a spatial situation given as a constraint network is consistent. The problem becomes a hard one since the domain of space (often R2 ) is infinite. In contrast many of the interesting problems for constraint satisfaction have a finite domain on which backtracking methods can be used. But because of the infinity of its domains these methods are generally not applicable to Qualitative Spatial Reasoning. Anyhow the method of path consistency or rather its generalization algebraic closure turned out to be helpful to a certain degree for many qualitative spatial calculi. The problem regarding this method is that it depends on the existence of a composition table, and calculating this table is not an easy task. For example the dipole calculus (operating on oriented dipoles) DRAf has 72 base relations and binary composition, hence its composition table has 5184 entries. Finding all these entries by hand is a hard, long and error-prone task. Finding them using a computer is also not easy, since the semantics of DRAf in the Euclidean Plane, its natural domain, rely on non-linear inequalities. This is not a special problem of the DRAf calculus. In fact, all calculi dealing with relative orientation share the property of having semantics based on non-linear inequalities in the Euclidean plane. This not only makes it hard to find a composition table, it also makes it particularly hard to decide consistency for these calculi. As shown in [79] algebraic closure is always just an approximation to consistency for these calculi, but it is the only method that works fast. Methods like Gröbner reasoning can decide consistency for these calculi but only for small constraint networks. Still finding a composition table for DRAf is a fruitful task, since we can use it analyze the properties of composition based reasoning for such a calculus and it is a starting point for the investigation of the quality of the approximation of consistency for this calculus. We utilize a new approach for calculating the composition table for DRAf using condensed semantics, i.e. the domain of the calculus is compressed in such a way that only finitely many possible configurations need to be investigated. In fact, only the configurations need to be investigated that turn out to represent special characteristics for the placement of three lines in the plane. This method turns out to be highly efficient for calculating the composition table of the calculus. Another method of obtaining a composition table is borrowing it via a suitable morphism. Hence, we investigate morphisms between qualitative spatial calculi. Having the composition table is not the end but rather the beginning of the problem. With that table we can compute algebraically closed refinements of constraint networks, but how meaningful is this process? We know that all constraint networks for which such a refinement does not exist are inconsistent, but what about the rest? In fact, they may be consistent or not. If they are all consistent, then we can be happy, since algebraic closure would decide consistency for the calculus at hand. We investigate LR, DRAf and DRAfp and show that for all these calculi algebraic closure does not decide consistency. In fact, for the LR calculus algebraic closure is an extremely bad approximation of consistency. For this calculus we introduce a new method for the approximation of consistency based on triangles, that performs far better than algebraic closure. A major weak spot of the field of Qualitative Spatial Reasoning is the area of applications. It is hard to refute the accusation of qualitative spatial calculi having only few applications so far. As a step into the direction of scrutinizing the applicability of these calculi, we examine the performance of DRA and OPRA in the issue of describing and navigating street networks based on local observations. Especially for OPRA we investigate a factorization of the base relations that is deemed cognitively adequate . Whenever possible we use real-world data in these investigations obtained from OpenStreetMap

    Linear stability in networks of pulse-coupled neurons

    Full text link
    In a first step towards the comprehension of neural activity, one should focus on the stability of the various dynamical states. Even the characterization of idealized regimes, such as a perfectly periodic spiking activity, reveals unexpected difficulties. In this paper we discuss a general approach to linear stability of pulse-coupled neural networks for generic phase-response curves and post-synaptic response functions. In particular, we present: (i) a mean-field approach developed under the hypothesis of an infinite network and small synaptic conductances; (ii) a "microscopic" approach which applies to finite but large networks. As a result, we find that no matter how large is a neural network, its response to most of the perturbations depends on the system size. There exists, however, also a second class of perturbations, whose evolution typically covers an increasingly wide range of time scales. The analysis of perfectly regular, asynchronous, states reveals that their stability depends crucially on the smoothness of both the phase-response curve and the transmitted post-synaptic pulse. The general validity of this scenarion is confirmed by numerical simulations of systems that are not amenable to a perturbative approach.Comment: 13 pages, 7 figures, submitted to Frontiers in Computational Neuroscienc

    Collective Singleton-Based Consistency for Qualitative Constraint Networks

    Get PDF
    Partial singleton closure under weak composition, or partial singleton (weak) path-consistency for short, is essential for approximating satisfiability of qualitative constraints networks. Briefly put, partial singleton path-consistency ensures that each base relation of each of the constraints of a qualitative constraint network can define a singleton relation in the corresponding partial closure of that network under weak composition, or in its corresponding partially (weak) path-consistent subnetwork for short. In particular, partial singleton path-consistency has been shown to play a crucial role in tackling the minimal labeling problem of a qualitative constraint network, which is the problem of finding the strongest implied constraints of that network. In this paper, we propose a stronger local consistency that couples partial singleton path-consistency with the idea of collectively deleting certain unfeasible base relations by exploiting singleton checks. We then propose an efficient algorithm for enforcing this consistency that, given a qualitative constraint network, performs fewer constraint checks than the respective algorithm for enforcing partial singleton path-consistency in that network. We formally prove certain properties of our new local consistency, and motivate its usefulness through demonstrative examples and a preliminary experimental evaluation with qualitative constraint networks of Interval Algebra

    Queue-Based Random-Access Algorithms: Fluid Limits and Stability Issues

    Get PDF
    We use fluid limits to explore the (in)stability properties of wireless networks with queue-based random-access algorithms. Queue-based random-access schemes are simple and inherently distributed in nature, yet provide the capability to match the optimal throughput performance of centralized scheduling mechanisms in a wide range of scenarios. Unfortunately, the type of activation rules for which throughput optimality has been established, may result in excessive queue lengths and delays. The use of more aggressive/persistent access schemes can improve the delay performance, but does not offer any universal maximum-stability guarantees. In order to gain qualitative insight and investigate the (in)stability properties of more aggressive/persistent activation rules, we examine fluid limits where the dynamics are scaled in space and time. In some situations, the fluid limits have smooth deterministic features and maximum stability is maintained, while in other scenarios they exhibit random oscillatory characteristics, giving rise to major technical challenges. In the latter regime, more aggressive access schemes continue to provide maximum stability in some networks, but may cause instability in others. Simulation experiments are conducted to illustrate and validate the analytical results

    Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects

    Get PDF
    Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from multiple calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. We consider two different interpretations of the RCC8 algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation. In both interpretations, we show that reasoning with topological and directional information is decidable and remains in NP. Our computational complexity results unveil the significant differences between RA and CDC, and that between weak and strong RCC8 models. Take the combination of basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA constraints

    Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects

    Get PDF
    Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from multiple calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning, the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. We consider two different interpretations of the RCC8 algebra, one uses a weak connectedness relation, the other uses a strong connectedness relation. In both interpretations, we show that reasoning with topological and directional information is decidable and remains in NP. Our computational complexity results unveil the significant differences between RA and CDC, and that between weak and strong RCC8 models. Take the combination of basic RCC8 and basic CDC constraints as an example: we show that the consistency problem is in P only when we use the strong RCC8 algebra and explicitly know the corresponding basic RA constraints

    Decay properties of spectral projectors with applications to electronic structure

    Full text link
    Motivated by applications in quantum chemistry and solid state physics, we apply general results from approximation theory and matrix analysis to the study of the decay properties of spectral projectors associated with large and sparse Hermitian matrices. Our theory leads to a rigorous proof of the exponential off-diagonal decay ("nearsightedness") for the density matrix of gapped systems at zero electronic temperature in both orthogonal and non-orthogonal representations, thus providing a firm theoretical basis for the possibility of linear scaling methods in electronic structure calculations for non-metallic systems. We further discuss the case of density matrices for metallic systems at positive electronic temperature. A few other possible applications are also discussed.Comment: 63 pages, 13 figure

    An accurate analysis for guaranteed performance of multiprocessor streaming applications

    Get PDF
    Already for more than a decade, consumer electronic devices have been available for entertainment, educational, or telecommunication tasks based on multimedia streaming applications, i.e., applications that process streams of audio and video samples in digital form. Multimedia capabilities are expected to become more and more commonplace in portable devices. This leads to challenges with respect to cost efficiency and quality. This thesis contributes models and analysis techniques for improving the cost efficiency, and therefore also the quality, of multimedia devices. Portable consumer electronic devices should feature flexible functionality on the one hand and low power consumption on the other hand. Those two requirements are conflicting. Therefore, we focus on a class of hardware that represents a good trade-off between those two requirements, namely on domain-specific multiprocessor systems-on-chip (MP-SoC). Our research work contributes to dynamic (i.e., run-time) optimization of MP-SoC system metrics. The central question in this area is how to ensure that real-time constraints are satisfied and the metric of interest such as perceived multimedia quality or power consumption is optimized. In these cases, we speak of quality-of-service (QoS) and power management, respectively. In this thesis, we pursue real-time constraint satisfaction that is guaranteed by the system by construction and proven mainly based on analytical reasoning. That approach is often taken in real-time systems to ensure reliable performance. Therefore the performance analysis has to be conservative, i.e. it has to use pessimistic assumptions on the unknown conditions that can negatively influence the system performance. We adopt this hypothesis as the foundation of this work. Therefore, the subject of this thesis is the analysis of guaranteed performance for multimedia applications running on multiprocessors. It is very important to note that our conservative approach is essentially different from considering only the worst-case state of the system. Unlike the worst-case approach, our approach is dynamic, i.e. it makes use of run-time characteristics of the input data and the environment of the application. The main purpose of our performance analysis method is to guide the run-time optimization. Typically, a resource or quality manager predicts the execution time, i.e., the time it takes the system to process a certain number of input data samples. When the execution times get smaller, due to dependency of the execution time on the input data, the manager can switch the control parameter for the metric of interest such that the metric improves but the system gets slower. For power optimization, that means switching to a low-power mode. If execution times grow, the manager can set parameters so that the system gets faster. For QoS management, for example, the application can be switched to a different quality mode with some degradation in perceived quality. The real-time constraints are then never violated and the metrics of interest are kept as good as possible. Unfortunately, maintaining system metrics such as power and quality at the optimal level contradicts with our main requirement, i.e., providing performance guarantees, because for this one has to give up some quality or power consumption. Therefore, the performance analysis approach developed in this thesis is not only conservative, but also accurate, so that the optimization of the metric of interest does not suffer too much from conservativity. This is not trivial to realize when two factors are combined: parallel execution on multiple processors and dynamic variation of the data-dependent execution delays. We achieve the goal of conservative and accurate performance estimation for an important class of multiprocessor platforms and multimedia applications. Our performance analysis technique is realizable in practice in QoS or power management setups. We consider a generic MP-SoC platform that runs a dynamic set of applications, each application possibly using multiple processors. We assume that the applications are independent, although it is possible to relax this requirement in the future. To support real-time constraints, we require that the platform can provide guaranteed computation, communication and memory budgets for applications. Following important trends in system-on-chip communication, we support both global buses and networks-on-chip. We represent every application as a homogeneous synchronous dataflow (HSDF) graph, where the application tasks are modeled as graph nodes, called actors. We allow dynamic datadependent actor execution delays, which makes HSDF graphs very useful to express modern streaming applications. Our reason to consider HSDF graphs is that they provide a good basic foundation for analytical performance estimation. In this setup, this thesis provides three major contributions: 1. Given an application mapped to an MP-SoC platform, given the performance guarantees for the individual computation units (the processors) and the communication unit (the network-on-chip), and given constant actor execution delays, we derive the throughput and the execution time of the system as a whole. 2. Given a mapped application and platform performance guarantees as in the previous item, we extend our approach for constant actor execution delays to dynamic datadependent actor delays. 3. We propose a global implementation trajectory that starts from the application specification and goes through design-time and run-time phases. It uses an extension of the HSDF model of computation to reflect the design decisions made along the trajectory. We present our model and trajectory not only to put the first two contributions into the right context, but also to present our vision on different parts of the trajectory, to make a complete and consistent story. Our first contribution uses the idea of so-called IPC (inter-processor communication) graphs known from the literature, whereby a single model of computation (i.e., HSDF graphs) are used to model not only the computation units, but also the communication unit (the global bus or the network-on-chip) and the FIFO (first-in-first-out) buffers that form a ‘glue’ between the computation and communication units. We were the first to propose HSDF graph structures for modeling bounded FIFO buffers and guaranteed throughput network connections for the network-on-chip communication in MP-SoCs. As a result, our HSDF models enable the formalization of the on-chip FIFO buffer capacity minimization problem under a throughput constraint as a graph-theoretic problem. Using HSDF graphs to formalize that problem helps to find the performance bottlenecks in a given solution to this problem and to improve this solution. To demonstrate this, we use the JPEG decoder application case study. Also, we show that, assuming constant – worst-case for the given JPEG image – actor delays, we can predict execution times of JPEG decoding on two processors with an accuracy of 21%. Our second contribution is based on an extension of the scenario approach. This approach is based on the observation that the dynamic behavior of an application is typically composed of a limited number of sub-behaviors, i.e., scenarios, that have similar resource requirements, i.e., similar actor execution delays in the context of this thesis. The previous work on scenarios treats only single-processor applications or multiprocessor applications that do not exploit all the flexibility of the HSDF model of computation. We develop new scenario-based techniques in the context of HSDF graphs, to derive the timing overlap between different scenarios, which is very important to achieve good accuracy for general HSDF graphs executing on multiprocessors. We exploit this idea in an application case study – the MPEG-4 arbitrarily-shaped video decoder, and demonstrate execution time prediction with an average accuracy of 11%. To the best of our knowledge, for the given setup, no other existing performance technique can provide a comparable accuracy and at the same time performance guarantees
    • …
    corecore