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Abstract

An Accurate Analysis for Guaranteed Performance of Multiprocessor
Streaming Applications

Already for more than a decade, consumer electroleicices have been available for
entertainment, educational, or telecommunicatioskdabased onmultimedia streaming
applications i.e., applications that process streams of aadib video samples in digital form.
Multimedia capabilities are expected to become neme more commonplace in portable
devices. This leads to challenges with respect dst @fficiency and quality. This thesis
contributes models and analysis techniques forawipg the cost efficiency, and therefore also
the quality, of multimedia devices.

Portable consumer electronic devices should fedtargble functionality on the one hand
and low power consumption on the other hand. Thiwee requirements are conflicting.
Therefore, we focus on a class of hardware thaesgmts a good trade-off between those two
requirements, namely on domain-specificultiprocessor systems-on-chip (MP-So@ur
research work contributes ttynamic (i.e., run-time) optimizatioof MP-SoC system metrics.
The central question in this area is how to enthae real-time constraints are satisfied and the
metric of interest such as perceived multimedialityuar power consumption is optimized. In
these cases, we speak of quality-of-service (Qo&)pawer management, respectively.

In this thesis, we pursue real-time constraintséattion that igguaranteedby the system by
construction and proven mainly based on analytieasoning. That approach is often taken in
real-time systems to ensure reliable performanberéfore the performance analysis has to be
conservative i.e. it has to use pessimistic assumptions onuthienown conditions that can
negatively influence the system performance. Wepaittos hypothesis as the foundation of this
work. Therefore, the subject of this thesis is Hrlysis of guaranteed performancéor
multimedia applications running on multiprocessors.

It is very important to note that our conservatagproach is essentially different from
considering only the worst-case state of the systemlike the worst-case approach, our
approach isdynamic i.e. it makes use of run-time characteristicsth@d input data and the
environment of the application.

The main purpose of our performance analysis meihdool guide the run-time optimization.
Typically, a resource or quality manager predit&sdxecution timei.e., the time it takes the
system to process a certain number of input dateles. When the execution times get smaller,
due to dependency of the execution time on thetidpta, the manager can switch the control
parameter for the metric of interest such thattleg¢ric improves but the system gets slower. For
power optimization, that means switching to a loswpr mode. If execution times grow, the
manager can set parameters so that the systenfiagads. For QoS management, for example,
the application can be switched to a different ifpahode with some degradation in perceived
guality. The real-time constraints are then nevelated and the metrics of interest are kept as
good as possible.

Unfortunately, maintaining system metrics such awgr and quality at the optimal level
contradicts with our main requirement, i.e., pravidperformance guarantees, because for this
one has to give up some quality or power consumpfitherefore, the performance analysis
approach developed in this thesis is not only omadige, but alsoaccurate so that the
optimization of the metric of interest does notfesutoo much from conservativity. This is not
trivial to realize when two factors are combinedrgllel execution on multiple processors and
dynamic variation of the data-dependent executelays. We achieve the goal of conservative
and accurate performance estimation for an impbrtéass of multiprocessor platforms and
multimedia applications. Our performance analys@hhique is realizable in practice in QoS or
power management setups.

We consider a generic MP-SoC platform that runsymaadhic set of applications, each
application possibly using multiple processors. &8sume that the applications are independent,
although it is possible to relax this requirementhie future. To support real-time constraints, we



require that the platform can provide guaranteeshpmdation, communication and memory
budgets for applications. Following important trenish system-on-chip communication, we
support both global buses anetworks-on-chip

We represent every application as a homogeneoushsymus dataflow (HSDF) graph,

where the application tasks are modeled as graghsaealled actors. We allow dynamic data-
dependent actor execution delays, which makes H&Rphs very useful to express modern
streaming applications. Our reason to consider H§Ephs is that they provide a good basic
foundation for analytical performance estimation.

In this setup, this thesis provides three majottrioumions:

1. Given an application mapped to an MP-SoC platfajiven the performance guarantees
for the individual computation units (the proces$3and the communication unit (the
network-on-chip), and given constant actor executlelays, we derive the throughput
and the execution time of the system as a whole.

2. Given a mapped application and platform performaguearantees as in the previous
item, we extend our approach for constant actocwi@n delays to dynamic data-
dependent actor delays.

3. We propose a global implementation trajectory tlsédrts from the application
specification and goes through design-time andtime-phases. It uses an extension of
the HSDF model of computation to reflect the desagtisions made along the
trajectory. We present our model and trajectory ooty to put the first two
contributions into the right context, but also t@gent our vision on different parts of
the trajectory, to make a complete and consisteny.s

Ouir first contribution uses the idea of so-calle@€ (inter-processor communicatiogyaphs
known from the literature, whereby a single modet@mputation (i.e., HSDF graphs) are used
to model not only the computation units, but als® tommunication unit (the global bus or the
network-on-chip) and the FIFO (first-in-first-outjuffers that form a ‘glue’ between the
computation and communication units. We were thst fo propose HSDF graph structures for
modeling bounded FIFO buffers and guaranteed thmowty network connections for the
network-on-chip communication in MP-SoCs. As a lesaur HSDF models enable the
formalization of the on-chip FIFO buffer capacityinimization problem under a throughput
constraint as a graph-theoretic problem. Using H§E#phs to formalize that problem helps to
find the performance bottlenecks in a given sotutmthis problem and to improve this solution.
To demonstrate this, we use the JPEG decoder appficcase study. Also, we show that,
assuming constant — worst-case for the given JPB&e — actor delays, we can predict
execution times of JPEG decoding on two processithsan accuracy of 21%.

Our second contribution is based on an extensigdhedcenario approachThis approach is
based on the observation that the dynamic beha¥ian application is typically composed of a
limited number of sub-behaviors, i.e., scenaribgt thave similar resource requirements, i.e.,
similar actor execution delays in the context @ thesis. The previous work on scenarios treats
only single-processor applications or multiprocesapplications that do not exploit all the
flexibility of the HSDF model of computation. Wewd#op new scenario-based techniques in the
context of HSDF graphs, to derive the timing overtetween different scenarios, which is very
important to achieve good accuracy for general H§E#phs executing on multiprocessors. We
exploit this idea in an application case studye-MPEG-4 arbitrarily-shaped video decoder, and
demonstrate execution time prediction with an ayeraccuracy of 11%. To the best of our
knowledge, for the given setup, no other existirgyffgrmance technique can provide a
comparable accuracy and at the same time perfoerguerantees.
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1 Introduction

This thesis concerns with the design of digitalteyss embedded in consumer electronics
products, e.g. mobile phones, pocket computersjtdticuses omultimedia embedded systems
i.e., the tiny computer systems that are built ithose devices and that perform various video
and audio processing tasks.

The design objective is to create an embedded my#tat has low cost and low power
consumption. The increasing hardware design effothe deep-submicron VLSI (very large
scale integration) technologies as well as thescostmasks dictate the requirement that the
existing designs be reused as much as possible.Clini be achieved using a platform, i.e., an
available hardware design that can be programmedhi® required functionality. Then the
system is implemented just by programming the piaif

One important issue here is the fact that the pimogning should ensure that the embedded
system meets itseal-time constraintsspecifying the timing properties expected by tlseru
When the programming is done in a traditional tigatmaware way and the platform is chosen
using intuitive rule-of-thumb methods, most likehe design will not satisfy the constraints at
all or it will be characterized by unreliable tirgirbehavior or it will be too power-hungry.
Taking the timing behavior into account as an #ftarght and trying to adjust it for real-time
constraint satisfaction may result in multiple desiterations, involving laborious re-design of
the software. Timing is currently one of the masiiting factors in the software code generation
for embedded systems, as pointed out by EdwardriLgd].

We consider it important to make the programmingiexaby using an implementation
trajectory that is oriented towards real-time comst satisfaction and automates the necessary
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steps to reach that goal. In the ideal case, tlsesy should become timing-correct by
construction. In reality, one can expect a sigaificreduction in the number of design iterations.
The performance analysis formalism proposed inttigsis provides unambiguous guidelines for
creating an automated timing-aware implementati@jedtory, which contributes to easier
programming.

Another important issue, especially for portableickes, is to ensure low power consumption.
Therefore, the platforms should include sub-cistitned for a specific class of computations
that are characteristic to a limited but still i@aasbly large subset of applications, called an
application domainWe choose for such domain-specific platforms aglice our scope to the
multimedia streamingapplication domain, covering various video and iau@rocessing
applications.

What kind of platform to choose? We target our itsido themultiprocessor systems-on-chip
— MP-SoC i.e., platforms having multiple processor cor@saosingle chip. We motivate this
choice later in this chapter.

Unfortunately it is not easy to exploit the mulopessor parallelism, especially when
imposing the real-time constraints. This difficultgs to be addressed by a design methodology,
having three main ingredients, namely, applicatiomain analysis, appropriate platform
architecture design and the mapping of the apjicatto the platform.

However, in addition to parallelism, another fadtmat complicates the embedded multimedia
system design is the dynamic data-dependent execdglays of the application tasks, which
can be treated efficiently gdaptation i.e., the dynamic adjustment of the controlla®jetem
settings to the current computation workload. Onatribution of this thesis is an analytical
framework for on-the-fly performance evaluationtbé running system. A tough problem that
we address is predicting the throughput of an appbn that is mapped to several processors
under the conditions of variable computation wosklo In addition to that, our work also
contributes to the design methodology, in termsugport for on-chip communication channels
implemented using networks-on-chip (NoC), whichmsimportant new trend for MP-SoCs.

Because we bind our performance analysis approach dertain design methodology, we
describe this methodology in the first part of tbisapter. Sections 1.1, 1.2, and 1.3 study the
three major ingredients of a design methodology-lmnene — namely, the application-domain
analysis, the multiprocessor platform architectanel the mapping of the applications to the
multiprocessor.

In the rest of the chapter, we zoom into the ca@blems addressed by this thesis — i.e.
dealing with the dynamic timing behavior of streagiapplications running in MP-SoCs. Also,
we analyze related work and summarize our coniohatand the structure of the thesis.

1.1 Application Domain Analysis
1.1.1 Run-time Combinations of Applications

An important trend in modern consumer electronidimeystems is that they are becoming
more interactive, providing user interfaces witke thossibility to open, rearrange and close
different video/audio presentations, telecommurocatsessions, etc. Interactive systems are
characterized by multiple possible combinationsuath activities, also known ase cases
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Figure 1.1A use case in a multi-window TV system

For example, Figure 1.1 describes an interactil@vigon system where the user can open
multiple windows with video or teletext. The padiar use case shown in the figure combines
two video windows and one teletext window. The chag of the use case can be split into three
parts corresponding to each window, and we say ttin@e correspondingpplications are
currently active in the system. Each video applicatontinually executes a chain of tasks
processing video data streams. The teletext apiplic@xecutes another chain of tasks. Due to
the user actions like opening and closing the wivelor due to the environment, the number of
applications, their structure as shown in the diagrand the basic settings (e.g. resolution or
color depth) may change at run time. This corredpdn switching between different use cases.
For more use-case examples, see e.g. [67].

In general, we associate applicationwith an activity that is started and stopped attime
by events originating from user actions or the emunent. A media streaming application can
be split into a few tasks and represented bgs& graph modeling the communication between
the tasks. Task graphs of different applicatiores @mbined together to form one use case. In
Figure 1.1, the graphs of different applicationse anighlighted using different color
combinations.

Different applications may belong to different tgpe.g., the video sample rate conversion
application and teletext application, and for eaueractive system one can make a list of
different types of applications that can be invdlve the system. Also some applications can be
in different modes that can be switched due touther actions, e.g., a video window may have
color depth settings, and when it is in front diestwindows it may be switched to high-quality
mode.

Which particular combinations of applications offelient types and in different modes will
be activated at run time is not predictable at gfesime, and the number of possible
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combinations can be exponential in the number pésyand modes. In practice, the number of
use cases of interactive systems can reach a fenated even a few thousands.

1.1.2 Synchronization, Pre-scheduling and Shared Nisory

For the task graphs of multimedia streaming apftioa, we make one important assumption
on the way the tasks communicate with each otherag¢ume that the data are exchanged using
a set of point-to-point channels where the datmmsmunicated in one directiofi;st-in-first-out
(FIFO). The channel examples are shown as arrowgyume 1.1.

Restricting ourselves to FIFO communication is mpartant choice. Let us make a short
overview, to position this choice in a more gene@itext. The most general way to represent
inter-task communication isshared memorynodel. Unlike FIFO, it allows any order of writes
and reads of the communicated data. Two major mdsth® ensure correct order of reads and
writes are synchronization and pre-scheduling. ¥véesign methodology uses a certain
combination of those two methods.

Synchronizatiormeans that, prior to read/write, a task checksc@stain conditions set by
other tasks. To ensure real-time constraint satisfa, this method requires performance
analysis, e.g. the one proposed in this thd&is-schedulingmeans putting restrictions on the
order in which different concurrent tasks are exeduwhich can go as far as creating a detailed
schedule with prescribed starting times for eveisktexecution. The pre-scheduling makes it
easier to analyze the timing properties of theesysand thus reduces the need for performance
analysis.

For the multimedia streaming applications impleradnbn programmable processors, it is
crucial to use synchronization, for efficiency r@as. A major reason why we chose FIFO
communication is that it is an efficient way foskasynchronization. Another major reason is
that FIFO is a wide-spread communication methodtifier multimedia streaming application
domain. For the topic of this thesis, it is impottdo note that the assumption that the
communicated data is organized in queues (i.e. Rifnories) is a typical prerequisite for
applying most known performance analysis formalisims parallel computer systems. For
example, this assumption is necessary for all ftisms we discuss later on in the related work
section.

In practice, FIFO communication is not the only gibke communication scheme in the
multimedia streaming application domain. The ontlewhich the data is read and written can
follow a different pattern, e.g. a matrix can lmstfiwritten row-by-row and then read column-by
column. Worse still, the order can be unpredictablg. the video movie players typically use
so-called motion compensation, which can read ohataany various orders, depending on the
direction in which video objects move in the givaovie. Therefore, certain task graph models
for embedded systems support such forms of comratioig for an overview and generalization
see e.g. the book by F. Thoen and F. Catthoor [95].

Nevertheless, for the reasons mentioned earlierstifansist on restricting ourselves to the
task graphs with FIFO communication. We assume tti@tother forms of communication are
handled by pre-scheduling and can be avoided irtable graph without loss of generality, by
abstraction. For example, if some tasks use a fn@@dFIFO communication pattern, then one
construct a fixed schedule for them and encapsthat® into one task, whose delay is equal to
the length of the schedule. Note that this meaatsdabr methodology may suffer from some loss
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of efficiency for the applications that extensiveise shared memory communication with non-
FIFO communication patterns.

Encapsulation of shared memory accesses into $pasks, dedicated for that purpose, is a
universal abstraction to model shared memory coniratiaon in a task graph. Such tasks would
represent the tasks executed by memory controllergssing shared memory on behalf of other
tasks. For example, the task graph in Figure 14 the such tasks, denoted as ‘mem’. In
general, more elaborate modeling of shared mensoppssible, using special task subgraphs, as
proposed e.g. by Sander Stuijk in [85].

1.1.3 Real-time Constraints

Real-time constraints are imposed on most streaaypdjcations, which can be described in
terms of throughput and latency. T#eoughputis the rate of consuming the data at the input
and of producing the data items at the output. Tiency is the time interval between
consumption at the input and production at the wtutp

One can classify applications by their real-timastoaints.

Hard real-time (HRT)applications must always maintain certain throughgmd/or latency.
Usually, only safety-critical applications are colesed as such, but in our definition this class
also includes certain entertainment applicatiorth Wigh quality expectations — where the user
would not tolerate even smallest visible or audildeifacts’ in the multimedia contents.
Examples are high-definition television and honeater

Soft real-time (SRT)applications may sometimes fail to maintain thequneed
throughput/latency, but they try to keep the effeictheir misbehavior limited. This keeps the
user still satisfied with the results. An exammecapturing and displaying simple videos in a
digital photo camera.

Best-effortapplications do not guarantee any concrete thiouiglatency, but they try to be as
fast as possible, so that the user feels comfartalith them. An example is downloading a
photo album from Internet. In fact, best-effort bqations are not real-time.

In this thesis, under ‘applications’ we will usyalunderstand soft or hard real-time
applications. We also make another important assommn the real-time constraints. We
assume that the input and output data are orgamzewhrse-grain data chunks, usually referred
to as frames, consisting of fine-grain samplededabkens An execution rurof the application
task graph should consume one input data framegeotiice one output frame. We assume that
the timing constraints are specified in terms adimes on the production of the output frames.

Under this assumption, the throughput is definethasrate of processing the tokens and the
latency is equal to the timing length of the exawmutrun, i.e. to the total time required to
consume the input frame plus some propagation d&lays, the latency is approximately equal
to the frame size divided by throughput. Therefareder our assumptions, the latency is directly
related to throughput. Throughout this thesis, s termexecution timdor latency, and see the
problem of execution time calculation as equivaterthe throughput calculation.

We must admit that our assumption can be harmfuti® latency-critical applications that do
not cluster the data tokens into frames, e.g. sandio applications. An important way to
alleviate this assumption would be to support tipt and output task graph ports characterized

! Sometimes, applications for which an occasionalation of timing requirements is highly undesigablt not
catastrophic are referred to as firm real-time.



6 Introduction

DSPO DSP1 DSPm
Shared Data

Imst. Memony Int. Memory L LR J Inst. Mamaony Memory

Drata Memaory Data Mermaory Drata Memony A
h
¥
Quad Data Bus (D:sta & Address Buses)
[ [
/0 Bus Global Bus
b= |nterface Unit Interface  [*4==—""
Quad Instruction Bus (Instruction & Address Buses)
3 [ [ [}
1 b b ¥
GPPO GPP1 e GPFn Shared Instruction

Cache Memary

GPP — general-purpose processor
DSP — processor specialized for digital signal pssing
I/0 — chip input/output

Figure 1.2Cradle Technologies multiprocessor DSP: ‘Quad’ ikeckure

by periodic patterns of data token consumption pratiuction. We believe that our analysis
approach can be extended to support periodic pattat the input/output ports, and it is an
important subject for future work.

1.2 Platform Architecture
1.2.1 Platform: Domain-specific MP-SoC

The VLSI technology development is the driving foroehind integrating more and more
functionality in the new product generations of iimer electronic devices. The technology
already allows putting multiple processor cores @nsingle die, organizing them as a
multiprocessor system-on-chip (MP-SoC). One offtis#t MP-SoC architectures studied in the
literature is MIT RAW [92]. Examples available ohet market are platforms like Cradle
Technologies Quad [17], illustrated in Figure INXP’s Nexperia™ [70], and many others.
Recently, Intel demonstrated a chip containing @@@ssor cores [96] in 65 nm technology.

In 130 nm technology, a MIPS R3000 processor witthes occupies around 3 frand one
can estimate that, in the year 2012 (with 45 nrhrietogy), the same processing core will shrink
to less than 0.5 mMmWith a chip area size of 100 mnthis will allow over 200 MIPS cores
placed on a single die. However, not the area atiter the power consumption will be the
limiting factor for such an integration. One cartragolate the dynamic power consumption of
the MIPS core in 2012 to be around 25 mW. Withnaitition of 1W for a single chip, this
would reduce the number of cores from the 200 corestioned above to only 40 cores. Worse
still, in addition to the dynamic power, the stateakage) power will probably limit this number
even further. Note that the abovementioned 80-ted chip is reported to consume 98 W [96],
which is a power consumption that is affordable darexperimental general-purpose computer
chip but not for an embedded system.

Therefore, domain-specific MP-SoCs employ not agéperal-purpose processors like MIPS,
but also application-domain specific processorscipized for a limited subset of functions. As
mentioned before, specialization leads to a corside decrease in the power consumption, and
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it can be very efficiently exploited in a multipessor environment, where one can forward each
function to the processor that is specialized fogspecially if the platform is properly aligned t
the application domain.

An MP-SoC platform architecture includes not onlgogessors, but also memories and
interconnection infrastructure, which consistsfof,example, buses and bus bridges, as one can
also see in the Quad architecture in Figure 1.2hénrest of this section, we consider the basic
memory and interconnect properties, and then weritesthe platform’s programming model,
which characterizes the platform as a whole.

1.2.2 Memory: from Centralized to Distributed

To benefit from the increasing number of on-chipgassors, the overall architecture should
be decentralized. Only then the power consumpttayssmanageable and the performance
scales up as new processors are added on the bgme ¢

We illustrate this in Figure 1.3(a). This exam@eéorrowed from a presentation of Hugo De
Man [58]. It depicts the topology of a platform laitecture with four processors and a large
memory located on chip. Assume that this pictutates to an old VLSI technology and the
energy consumption per cycle constitutes 8 energig.UAssume also that when we step to the
current technology the chip area allows us to aseethe number of processors by a factor of 4,
see Figure 1.3(b). One would expect that the eneamsumption would be multiplied by a
factor much less than 4, because as the VLSI téogypadvances the dynamic energy per
processor decreases. However, we see that insteahérgy has increased by a factor of 5 [58].

The reason for this is as follows. The accesséarte memories contribute considerably to
the overall energy consumption. This energy costkiy grows even further if one adds
memory ports for independent accesses, which ie dothis example to avoid memory conflicts
between processors and thus to guarantee perfoensaatability.
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To reduce the energy and keep the performancebsitglait is required to split the global
on-chip memory into smallefocal memoriesaccessed by only a very limited number of
processors, e.g., two adjacent elements as showhigure 1.3(c). The figure mentions a
tremendous decrease in the energy consumptionastinas 1 energy unit per cycle [58].

In the remainder, we assume each processor haslamb@mory for its instructions and data,
like the DSP processors in Figure 1.2.

1.2.3 Interconnect: Network-on-chip

For fast communication across the chip, systemshim-employ a global interconnect. Quite
often this interconnect is a bus, connecting adl firocessors and memories together in a
centralized way. However, a single bus is not $dalan the number of elements, because
processors compete with each other and have to famitheir turn. When the number of
processors increases, the waiting time also inesad so does the energy consumption due to
the increase of capacitive load of the bus.

Due to those problems, it is widely recognized tighg only a single bus for communication
is not appropriate for high-performance media plats. Therefore, also for the global
interconnect one should rather go for distributgzbtogies, e.g. multiple bus segments joined by
bus-to-bus bridges. For example, in the Quad achite, Figure 1.2, we see a two-bus
computer architecture that can be connected tmbaglbus, which, in turn, can connect the
given Quad to other Quads.

From this point on, we use the nametwork-on-chip— or NoC — referring to any
interconnection network with a distributed topology

Note that the choice we made — in Section 1.1.2f foousing on only FIFO form of
communication and abstracting from other forms ommunication offered by the shared
memory model, also impacts our abstraction of @svark-on-chip. Throughout this thesis, we
see the on-chip network simply as a homogeneousumebeing used to setup peer-to-peer
FIFO channels between two processors. This makesditwork topology irrelevant for us,
whereas network topologies can be exploited tociefitly implement shared memory
hierarchies and efficient communication betweeffed#int processors in that context. Efficient
organization of memory hierarchies is important énbedded system design [13]. Explicit
support of memory hierarchies is a subject forreitwork.

1.2.4 Programming Model: Reconfigurable Streaming

A programming model describes how the programmes she platform. We refer to our
programming model as reconfigurable streaming (RS).

The RS model has two levels. At the first level, iwgoduce the platforntonfiguration
implementing a single use case of the system. &bersl level is responsible for switching from
one use case to another as applications are stamtedtopped at run time. This level is called
reconfiguration

Let us first consider the configuration level, whiconsiders a single use case, characterized
by a concrete combination of running applicatiofise active system functionality at this level
stays unchanged.

A configuration consists of

1) distribution of the use-case functionality betwé®s processors,
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Figure 1.4Reconfigurable streaming

2) organization of communication between the procesaming a set of peer-to-peer

channels going through the network-on-chip.

Figure 1.4(a) shows an example of a configuratie. see that different program codes are
distributed between different processors and timtbmmunication channels are set-up between
different sources and destinations.

Reconfiguration involves setting up/tearing dowre tbhannels and reprogramming the
processors. For example, Figure 1.4(b) shows alidom the configuration in Figure 1.4(a) to
another configuration, whereby some processorpiggramming codes that are different from
the previous configuration and the communicatiomneiels are changed. In a distributed
platform, a reconfiguration can take a considerabtee, and then it should be done only
occasionally. In our chosen application domaihappens, first of all, when the system switches
from one use case to another one, e.g., when aapphcation starts or when an active
application adapts to the changing user requiresnent

The scheme of operation of the platform can be sglb three major phases repeating after
some time intervals:

1. deciding upon a new configuration, mapping
2. (re-)configuring,
3. static streaming until the next special event ftbmuser or an application.

For practical examples of reconfigurable streanaind possible implementation strategies see
e.g. [67] and [35].

In this thesis, we do not model reconfiguration. \W&sume that the reconfiguration is
relatively rare, and that it does not happen dutimg time intervals where critical loops of
applications are active. However, because recorgtgn is a very important tool for efficient
use of the hardware resources, such a topic agmgpitation and modeling of reconfiguration is
an important subject for future work.
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Figure 1.5Mapping of tasks to processors

note that the bandwidth is reserved at a certdinwor& path therefore, if two channel paths
do not share any components, the sum of the redéamdwidth can be more than 100%

1.3 Mapping and Timing Verification
1.3.1 Mapping Problem

Phase 1 in the platform operation scheme definesieab deciding upon a configuration — is
a combinatorial problem. This problem is referredas themappingproblem It considers a
system use case as a collection of task graph$ieofattive applications, e.g., such as in
Figure 1.1. Given a use case and the platformpthpping involves allocation of processors to
the use case and assignment of tasks to the povses®l specification of the set of channels for
communication between tasks. Figure 1.5 shows ampbe, where four tasks are assigned to
four processors and two channels serve for comratiait between the tasks.

The resulting configuration should satisfy the +#t&ale constraints of HRT (hard real-time)
applications, and, up to some level of certainfy SRT (soft real-time) applications as well.
Therefore, it is the ultimate goal of mapping tglement the applications such that it is possible
to verify not only their functionality, but alsodlreal-time constraint satisfaction. The latter
makes the mapping problem complex.

To solve it, the design methodology should offggoaithms for timing-constrained mapping
of applications to the platform. The mapping proble/ith real-time constraints is at least as
complex as checking whether a given mapping soluatisfies those constraints. The latter is
referred to asiming verification

Note that, in a perfect design methodology, thennverification should not be necessary in
any foreseen situation (where for HRT applicatiany possible situation should be foreseen)
because timing constraints in such a perfect metbggt should be satisfied by construction.
However, in any case, timing verification shouldpossible.

1.3.2 Reservation-based Approach

A major challenge for timing verification is resoarsharing. The basic resources of the
platform are the processors, memories and the metorochip. Tasks may share the same
processor. The channels share the network-on-ltkepthe two channels in Figure 1.4(a).
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Each resource has a limited capacity. A procesaarperform only a limited number of
operations per second. Memories have limited size network components have limited
bandwidth. Each application utilizes the resour@pacities to a certain extent. If two
applications share the capacity of a processor petavork component, the applications may
delay each other, especially if the aggregatedzatibn of the resource in question is close to
100%. For example, in Figure 1.5, tasksand T, may belong to one application that shares
some network resources with the application witk$ds andT,. These applications may delay
each other even though those applications areimnaily unrelated.

The system designer cannot avoid resource shandghah collective utilization of the
resources, because to produce a competitive pratigtequired to get the highest performance
out of the available hardware. Thus, if no measarestaken in the platform, non-functional
timing dependencies between applications will bsmmon. As a consequence, every running
application will be dependent on all other runnimgplications, and the combination of all
running applications will have to be subject toitigiverification. Timing verification under the
condition of processor resource sharing is usuafigrred to as schedulability analysig0].

Unfortunately, it is problematic to use a schediligbanalysis method in our application
domain. Because of multiple functional and non-fioral dependencies between the tasks, it is
only feasible to perform the analysis at desigretiffherefore, to support any possible use case
of the designed system, one should analyze alifdessin-time combinations of applications in
a use case, but we have already pointed out teatumber of combinations grows exponentially
as the systems get upgraded with new functionality.

To avoid this difficulty, we rather choose for tleservation-based approacihe main idea
is to reserve part of the capacity of the resourcealled abudget— for each application at run
time. Budgets are reserved in terms of capacitythef processors, network-on-chip and
memories. Under these conditions, each resourcavbshtowards the application as an
independent resource, as if there was no resobareng. This way, one can perform the timing
verification of each application independently tfier applications.

Therefore, we speak ¢iiming composabilitymeaning that relevant performance metrics of
each application are invariant in any compositioh tle given application with other
applications. The concept of timing composabilgywell-known in real-time systems and is
explained, among other, in the work of Hermann Knp47]. Timing composability drastically
simplifies the complexity of timing verification,ebause one considers different applications
separately, and not in combination with othersw&ssee in the next section, it also simplifies
the mapping problem.

Of course, these benefits of our approach comecattain price. Timing composability is an
implementation restriction that may lead to lossedficiency, especially for very dynamic
applications [48]. An alternative to timing compb#iy is schedulability analysis, carried out at
run time. Although advanced schedulability analysshniques for MP-SoC systems are
proposed by K. Richtest alin [80], they are not directly suitable for beiaged at run time. The
assessment of possible run-time schedulabilityyarstechniques is a subject for future work.
The work of Akash Kumaet al[48] is an interesting example of work in thatediion.

Note that a potential threat for the reservatioselolaapproach is brought about by run-time
variations in operating conditions (e.g. tempetand supply voltage). Those variations may

2 For the single-processor case, the most famousgieeof schedulability analysis is rate-monotomialgsis [54]



12 Introduction

appl 1 appl 2

intra-appl. mapping | | | .

timing verification

resource budget
subnetwork v

multi-appl. mapping

platform configuration
data

Figure 1.6 Two-stage mapping

require the operating frequency of the processmiset adjusted at run-time. Nevertheless, we
ignore this problem without loss of generality. Theint is that we mainly focus on the
performance analysis carried out at run time,ateahe moment when the operating frequencies
are known and can be taken into account in perfocm&alculations immediately. Handling this
problem in a broader scope — e.g. in mapping amdbitiorm design — is outside the scope of this
thesis and is a subject for future work.

1.3.3 Two-stage Mapping

As a result of the timing composability, the magpproblem can be naturally split into two
stages: intra-application mapping and multi-appiccamapping, as illustrated in Figure 1.6.

At the intra-application mappingtage, for each application, budgets are resatwddferent
processor, memory and communication resources.pFacessors, this is done in terms of
processor cycle budgetnd for the network in terms of tlmmmunication bandwidth~or
example, in the example in Figure 1.5, we resef#é Bf the clock cycles of processor | for task
T1, 25% of the clock cycles of processor IV for tdskand 10% of the maximum bandwidth for
the channel fronT; to To.

A task-graph diagram, like the one shown in Figufe consisting of tasks joined by
channels, whereby each task and channel is andabgtex resource budget value, is called a
resource budget subnetwonkieaning a logical part of the multiprocessor meknwon-chip that
operates independently due to resource reservawashown in Figure 1.6, a resource budget
subnetwork is generated by the intra-applicatioppiteg stage.

Note that, given all the resource reservationsesource budget subnetwork is basically
enough to reason about the application timing. Tthestiming verification can be done already
after the first mapping stage.

The second stage of mappingnsilti-application mappingFor the applications that must run
on the platform, this stage fits the resource budgbenetworks on the physical platform. The
outcome of this stage is the low-level configumataata that can be loaded into the platform to
set up a new configuration.

One disadvantage of the two-phase approach istheatintra-application mapping stage
restricts the freedom of possible solutions thatloa exploited by the multi-application mapping
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stage. Another disadvantage is that it relies am timing composability and thus can be
inefficient for very dynamic applications.

At the same time, the two-stage approach has twofitant advantages.

First, for many applications, the system desigraar perform the intra-application mapping
and timing verification at design time. (The mupplication stage still has to be performed at
run time.) This is possible because no run-timeakedge about the other applications running
on the platform is required for that purpose.

Second, if an application of the same type is iggrted in the run-time combination multiple
times, one can reuse the given resource budgeesubrk for every application instance.

1.4 Towards Run-time Performance Analysis

In the previous sections, we provided a generatectrfor this thesis by sketching the general
design methodology framework. Now, within this @it we are turning our attention to the

main topic of this thesis, namely, the run-timefgenance analysis. We start the discussion of
this topic by introducing the main challenge adseeisusing the run-time performance analysis —
i.e., coping with dynamic resource utilization.

1.4.1 Sources of Dynamic Resource Utilization

In general, a streaming system can be charactebgedynamically changing levels of
required utilization of the resources. The probliat arises from this fact is to ensure that the
required utilization of any resource by any applara does not go above the application’s
resource budget, because otherwise the real-tim&reints will be violated.

We refer to the dynamic variation of the resourddization as dynamism One can
distinguish two sources of dynamism:

1 starting new applications, stopping the active mpfibns and adapting the active
applications to the changing user requirementsieirenment;

2 input data dependency of the processing times.

The first source of dynamism has to do with switghbetween system use cases. This form
of dynamism is dealt with at the multi-applicati@vel. The second source of dynamism refers
to the data dependency of the processing timessKsinside the applications. We see this
phenomenon, first of all, in the applications thatolve data compression, like MP3 audio and
MPEG-4 video, because they need to process ditfaenbers of input data bits within the time
intervals of the same length. This form of dynamisrdealt with, for as much as possible, at the
intra-application level, but if necessary the maftplication level is also involved.
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Figure 1.7: An arbitrarily-shaped video object in MPEG-4 deicg

Let us give a slightly more detailed example of¢keond source of dynamism. The MPEG-4
standard supports arbitrarily shaped video objectthe video screen. As shown in the example
in Figure 1.7, a video object is a variable-sizeatm of so-called macroblocks (MBs). Every
macroblock is a fixed-size (16x16) matrix of pixél®., dot elements of the picture). As it is
illustrated in Figure 1.7, the macroblocks can baddd into three different types, namely
opaque blocks that are fully contained in the dbjeansparent blocks that are fully outside the
object, and boundary blocks. Because the objettape and size, encoded in the input data
stream, may change quickly, the number of procesgdes needed for processing blocks over
time may change as well. However, the real-timestamts typically require the object to be
refreshed at a constant rate. Thus, within requéaiods of time different numbers of processing
cycles needs to be spent on data processing amegherce utilization changes.

1.4.2 Three Degrees of Freedom to Cope with Dynamis

In the presence of dynamism, classical mapping,ningaan optimized binding of fixed
functionality to fixed resources, is not sufficiedto ensure meeting the real-time constraints
under the conditions of dynamic workload, one caplat several degrees of freedom. Three
most important of them correspond to the threeeidignts of the design methodology:

1. For the applications, the freedom is to scale tlsmal/audio quality up and down,
referred to as quality-of-service (QoS) management.

2. For the platform, it is to scale the speed (andefiloee the energy usage) of the
resources up and down, called dynamic voltage/dimziuency scaling.

3. For the mapping, it is the redistribution of thesaoarce budgets between different
applications, often referred to as renegotiation.

The choice of the degrees of freedam be used depends on the possibilities offerethby
application algorithm and/or the platform.

3 An example of the other degrees of freedom ischinig between different algorithms implementing shene
functionality, allowing to trade off speed for memo
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1.4.3 Adaptation Framework to Handle Data Dependenc

The second source of dynamism, the data dependahpyocessing times, is potentially
responsible for much more frequent changes in éseurce utilization than the first source of
dynamism, concerning the starting and stopping piflieations. Therefore, when possible, it
should be handled at the intra-application level\oid frequent reconfiguration of the system.

The applications, the mapping and/or the platfomecdchto be enhanced with the ability to
adjust themselves to the input data characterisgpsesenting the resource requirements of
processing. We refer to the run-time activity tradjusts the application/implementation
parameters to the workload variationsadaptation.

The adaptation can be seen as solving an optimizagiroblem with constraints on
performance. Figure 1.8 shows a typical exampleaoframework that implements such
optimization. The figure introduces an optimizatagent that can exploit the available degrees
of freedom — i.e. quality, speed/energy and resolmedgets — to adjust the settings of the
optimization object — typically, an application. i¥hshould be done such that the real-time
constraints, i.e., constraints on performance nageand the optimization objective is reached —
e.g., high quality, low energy and low requestesbuece budget. In Figure 1.8(a), the objective
is denoted a$(x), wherex is a vector of control parameters of the optimaratobject. As
Figure 1.8(a) shows, the optimization agent reguagrediction of the circumstances under
which the optimization object is going to operdaly then it can take a proper decision and set
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X in the best way. Figure 1.8(b) provides detailshow the decision is taken by expanding the
internal contents of the optimization agent.

An optimization agent consists of aptimization unitthat generates candidate solutions and
a performance analysis unitesponsible for evaluation of those solutions.illistrate the role
of the performance analysis, we use an analogy aiifplane control. One can estimate the
future position of an airplane after tim@jiven such input characteristics as current locat]
speedv and acceleratioa. The future position can be approximated by apglyntegration owv
anda, and we get + vt + at’/2 for the position at timefrom now. This is a relevant metric that
can be used to adjust the airplane control set8aogh that airspace congestion is avoided.

In a similar way, the performance analysis predictsperformance metrigsrelevant for the
real-time constraints given the data complexityrabgeristics. For streaming applications, we
mentioned that the relevant metric is throughpubrmally, some short-term variations of
throughput can be tolerated, especially if the outig buffered in the memory buffer and
particularly in case of soft real-time constrairitas more important that the long-term average
throughput, calculated using integration of finaigrtime intervals, stays within the constraint.

The performance analysis is more than timing \aatfon. It not only derives the relevant
performance metrics, but also givgsidelinesfor the adaptation. If the current mapping choice
does not satisfy the real-time constraints, thelgines show which part of the implementation
is a bottleneck and should be modified, and it akows the direction for the necessary
modification. By analogy to non-linear programmimnghere the objective function derivative
may be used as an optimization guideline, in Fidué¢b), we denote the performance analysis
guidelines asdp/0x, although in reality our performance analysis apph may also give
guidelines for discrete control parameters, such &0 buffer memory capacity. In case the
constraints are satisfied, the guidelines can helpstimate the extent to which the current
control parameter settings can be relaxed, e.gmpoove the visual quality or to save power,
without a risk to violate the constraints. Based tbe received performance metrics and
guidelines, the optimization unit may generate & nandidate solution to be analyzed, or it may
decide to adapt the settings of the optimizatiojeatb Hereby, one needs to ensure that the
algorithm does not run in an endless loop or atalloptimum.

Note that in the diagram in Figure 1.8(b) the gatien of candidate solutionsy, is done
from scratch, separately from the performance a@malyThis approach is typical and quite
universal. However, in some cases it is possiblanfarove the efficiency of this approach by
integrating the solution generation and the pertorce analysis.

The performance analysis is the main topic of thesis. At the same time, the optimization
algorithm issues such as candidate solution geoeraind stopping criterion are beyond our
scope. Although the performance analysis can asased for the design-time optimization, we
mostly focus on using it to handle the dynamism tlmelata-dependencies, which is done
through run-time optimization, or adaptation.
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Figure 1.9 Adaptation (run-time optimization) examples

Figure 1.9 shows four examples of adaptation cemsilin practice. We present them here
because they are possible contexts in which odoeance analysis techniques can be applied.
Each of them exploits one of the three degreeseeiom introduced in the previous subsection.

Figures 1.9(a) and 1.9(b) show the adaptation base@®oS management, which we call
quality adaptation In related work, hierarchical control is proposetiere two levels are
distinguished [71]: local management (intra-appica management) and global management
(multi-application). At the intra-application levalne can introduce an optimization agent called
a local manager (Figure 1.9(a)) which fine-tunesdhality settings of an application, whereas at
the coarse level the quality is set by the globahager that oversees all the applications.

Figure 1.9(c) shows the case where the optimizailgect is not only the application itself,
but a stack consisting of the application and thdeulying scheduler responsible for resource
sharing. The optimization agent assigns differesgource budgets to different applications,
depending on their workloads. This is only possdiléhe global control level, because changing
the budget of one application affects the budgétstleer applications. We refer to this case as
budget adaptation
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Finally, Figure 1.9(d) present®wer consumption adaptatipwhere dynamic voltage scaling
is exploited with the objective to minimize the samed energy. Because changing the
frequency of a processor may affect multiple appians, this kind of adaptation is also
performed at the global (multi-application) level.

In all of the presented examples, it is meaningfudonsider building performance analysis of
some kind into the optimization agent. In the fallog section, we take a closer look at the
performance analysis.

1.4.4 The Required Profile for the Performance Analsis

In this subsection, we make a ‘wish list' of thefpemance analysis properties required for
our design methodology and identify major apprdpriaeans to achieve them.

a) Guaranteed performance = conservative and, prefigradccurate

To ensure good performance, one needs to be gbassmistic side when estimating it,
because if an embedded application too often failseet the real-time constraints, then it can
become useless. Thus, our performance analysiddsipoovide conservativeestimates of the
performance metrics, e.g., a lower bound on theutimput. On the other side, being too
pessimistic on performance can result in paying liagh a price in terms of higher energy
consumption and lower visual quality. Therefores ilesirable that the estimates are sufficiently
accurate The required level of accuracy is determined tade-off between the analysis
overhead and the loss in the adaptation objecsueh as quality or energyk(x), due to
analysis error, which is often caused by analysssnism. To avoid a high price for pessimism,
for SRT applications, we relax the conservativigguirement — by assuming the performance
analysis may also give results that are pessimigtic a sufficiently high probability. In this
case, we speak ofveak conservativitywhereas a 100% guarantee is referred tstrit
conservativity The latter is a required for HRT applications.

In the case when the required conservativity amtii@acy levels are both achieved, we speak
of guaranteed performancéNe set it as a goal, but we must admit that fyaig both
requirements is not always achievable in practiverefore, we also accept situations where only
conservativity is present, but the error is beytima limits when the estimations can be called
tight.

b) Wide dynamic range and still not too far effrun-time

We need our approach to scale up to a wide dynaamge of data-dependent processing
times. To put it informally, the adaptation shotld truly dynamic. However, the wider the
dynamic range, the greater the uncertainty aboetpirformance metrics of applications at
design time.

Therefore, at least part of our performance anslgisould be performed at run time, because
then the performance analysis can make use ofimm-information about the application
workload expected in the near future based on ima-tcharacteristics of input data. This
reduces the uncertainty and improves the accuracy.

c) Appropriate Model: Multiprocessor parallelism andH© communication

Performance analysis should be based on appropmatiels. There are manpodels of
computationthat can capture the behavior of computer appdicat An important class of such
models explicitly captures the parallel activitidmks between them and formal rules for
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interaction through the links. In that class, twwa@cteristic and well-established models are
Communicating Sequential Processes (CSP) [37] atuh Rrocess Networks (KPN) [43].

The parallel activities can be characterized bylifeéme (e.g. continuous or temporary) and
their nature, i.e., whether they are processorunsbns, function calls or programs. We require
support of multiprocessor parallelism, whereby savprograms continuously run on different
processors and interact with one another. Both @BPKPN are suitable models to represent
multiprocessor parallelism.

As for the links and interactions between the paowg, different models may have different
assumptions. In CSP, processes interact througlalted channels by defining synchronization
points at which a process waits until another pgecaso reaches a particular synchronization
point. In KPN, the programs communicate streamdaté to each other through the channels in
a FIFO order. For this reason, KPN is very welltaie in practice for modeling streaming
applications [45]. Therefore, we prefer a modet thtinsically supports FIFO channels and has
a direct relation to KPN instead of CSP.

As already explained in Section 1.1.2, there angomtant reasons why we restrict ourselves
to FIFO communication, and the other communicaionemes are handled by pre-scheduling
and encapsulation of the communicating sub-tasiderthe tasks of the task graph.

d) Analytical; preferably, algebraic

We prefer an analytical performance analysis apgrodhis means that we prefer to start
from facts that one can rely upon (axioms) andoja\alogical reasoning to arrive at the relevant
results, the throughput estimation, in our casehis case, one can rely upon the results and, in
the case of errors, one can quickly trace them batke wrong original assumptions.

We want even more. Because, as we have seen bferend result should be computed at
run time, we prefer that it can be expressed afgedlty, i.e., as an application of a well-defined
sequence of limited-complexity operations to a wiellined combination of arguments. An
example of an algebraic expression is the mentianguession for prediction of the future
position of an airplane + vt + at¥/2. In the next section, we see examples for tieow of SoC
design.

In case of streaming and multiprocessor platforthe, axioms would specify the timing
properties of ‘microscopic’ low-level fine-grain emations carried out on small elements of a
stream and primitive network-on-chip transactiohs the end result, we should obtain a coarse-
grain ‘macroscopic’ property, namely, the throughptithe application. This brings us to the
final point.

e) Covering long execution runs

The streaming applications are typically charazestiby long loops that produce a long
sequence of stream data elements without intecmpt®\pplying a brute-force approach by
taking into account every stream element is nottgral. We want our approach to scale up to
any duration of uninterrupted execution.

1.5 Analysis of Related Work
1.5.1 From Static to Dynamic Optimization

In Figures 1.8 and 1.9, we introduced frameworksojatimization of energy consumption,
resource requirements and quality. Such framewodss be divided into two major classes:
static whereby the input data characteristics are cahstad can be computed or estimated at
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design time, andynami¢ whereby the end results of the performance aisafye continually
updated in correspondence to the run-time changdisei input data characteristics. The static
approaches can provide a foundation for the dynamés.

Static approaches typically obtain worst-casefbase or statistical (e.g., average case)
performance metrics either analytically or empiklicaeither using a specification of input data
properties or a sample set of input sequencesic Stptimization frameworks are applied not
only to program existing multiprocessor platforrbat also in hardware/software (HW/SW) co-
design.

For example, Mladen Bereka@wet al [9] propose a HW/SW co-design approach to anadyre
implementation of a particular video decoding aitlpon. They evaluate the resource utilization
using the linear formulaC(i) #(i), whereF(i) is the average frequency of tasandC(i) is the
number of clock cycles to perform the task. If tegource utilization is too high, this technique
provides guidelines on which task has the highestribution and on how much effort should be
put to decreas€(i) by enhancement of hardware resources.

Although in [9] the platform contains two processaommunicating with each other, their
analysis was focused on only one of them, perfogntire most computation-intensive tasks;
thus they ignored various subtle effects comingmfranultiprocessor parallelism and
communication, e.g., processor stalling when wgifior data from another processor. But in
general we cannot ignore those effects. We dis¢hesrelevant research work on static
performance analysis for multiprocessors in the saksection.

In the research on run-time power consumption ad@pt a popular approach is to
extrapolate the performance metrics from those aredsin the previous history. However, this
work rests on the assumption that the performaretieca change rather smoothly in time. This
approach does not satisfy our wish for the perforceaanalysis to scale to wide dynamic ranges
of processing time variation, and the assumptioriois example, not valid for many MPEG-4
streams with arbitrary-shape video objects.

Another popular direction in dynamic performancalgsis can be seen as an extension of the
static formula=C(i) (i) to the case where the task execution frequemigi@decome run-time
parameters provided as the input of the performaredysis. Such an approach is used in
quality-of-service adaptation of 3D-graphics apgiicns, e.g., as described by G. Bonte#atal
in [10]. A very similar approach for a streaminghgation has been proposed by A.C. Bawer
al in [6]. Also the detailed workload prediction mbdier video decoding applications proposed
by Yicheng Huanget alin [41] can be represented algebraically withdabevementioned linear
expression. An advantage of thaigebraic approachis the intrinsic support for arbitrarily long
execution runs. A major disadvantage of the worklBj, [6], and [41] is the lack of support for
multiprocessor parallelism and communication.

All the examples given so far that allow for dynamiassume sequential execution. In the
approaches surveyed in the next subsection thesdpps assumed: no dynamism and parallel
execution. Note that allowing dynamism and pariaitelin combination is a tough problem even
for a standalone performance analysis, considepadt g&rom the rest of the optimization
framework.

One approach for the dynamic adaptation of enemysemption in multiprocessors is
proposed by Peng Yareg alin [99]. We explain their key idea for dealing withe dynamism
combined with parallelism below, but first explaire limitations of their work for the problems
addressed in this thesis. [99] is somewhat biasedntrol applications, because it assumes that
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the set of possible execution paths is limited, imwae in arbitrarily long execution runs of
streaming applications the set of alternative etteoupaths can be arbitrarily large. In a later
continuation of [99], Zhe Mat al[55] adapt the approach to long execution runeepyesenting
an execution run of a streaming application asrcat@nation of limited-size segments, i.e. pre-
calculated schedules. Unfortunately, this approasbumes that the segments are executed
sequentially, one after another. This assumptiofl waiways lead to severe processor
underutilization if the segments are to be pipalinlot supporting pipelining is a serious
limitation for streaming applications. To prevemiderutilization due to sequential execution of
different schedules, in [56] they propose timinteifeaving between the schedules. However,
the method of [56] cannot be directly applied te #&xecution-run segments of [55], as they do
not support dependencies between the segment87]nthey consider a run-time scheduling
approach that supports dependencies. For the strgapplications, their work would result in a
fine-grain level of control, i.e. making a contdwcision for every segment, instead of handling a
long execution run as one unit. Therefore, for lexgcution runs, they would potentially find
more optimal run-time adaptation decisions at thst of potentially larger run-time overhead.
Up-to-date, we are not aware of any scheduling atkettihat could take the inter-segment
dependencies into account without analyzing evegyrent in the whole execution run.

Nevertheless, [99] and [55] have introduced an i@ way for dealing with dynamism
combined with parallelism. In that work, the setfiernative application execution paths is split
into subsets with similar resource requirementsoséhsubsets are callestenarios Each
scenario is considered separately using statienogdtion at design time. At run time, different
combinations of the static scheduling solutions acévated, using the run-time knowledge
about which particular alternative execution pattaken at every segment of the execution run.

An important idea of this method is that one cgmresent a dynamic system behavior by a
discrete set of alternative static sub-behaviotss Thakes the combination of dynamism and
parallelism tractable for performance analysis useparation between those two issues.

Suppose that we have indeed separated dynamisipaaalielism. Then we still have to deal
with parallel applications, now being static. Inethext subsection, we consider a class of
candidate static performance analysis methodstrabe applied for this case.

1.5.2 Steady-state Performance Analysis

The related work knows a few mathematical formatishat can be used to analyze long runs
of applications having static characteristics atrficroscopic level of granularity — which is, in
our design methodology, the level of primitive tagnd network transactions. What all those
formalisms have in common is that their long-runr@croscopic performance metrics converge
to a certain state of equilibrium, th&teady state and become static (stationary). Those
formalisms are of big interest for us because gupport long execution runs in multiprocessors,
taking the parallelism and interactions into acaoun

It is important to mention that the steady-statecexion phase is preceded by a temporary
transientphase. To extend a steady-state model to a dynawie! with multiple steady states,
it is important that the transient phase can béyaed as well.

To analyze and optimize the programming of audigeashing applications on
multiprocessors, IPC (interprocessor communication) graphsave been proposed by
N. Bambha, S. Bhattacharyya and others in [5]. @ waphs are instances of th@mogeneous
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dataflow graph(HSDF) model of computation, which can be seea sgecial restrictive case of
KPN. These graphs assume constant task procegsieg &nd a specific way of multiprocessor
communication through the system bus [83]. By chmap$iSDF model of computation, these
graphs severely restrict the allowed communicapooperties of tasks, thus sacrificing the
expressive power, but getting the ability to eviduhe performance analytically in return. The
analysis formalism for this kind of computationabdel is max-plus algebra [4], which can be
used to prove that IPC graphs have static avetagaghput in the steady state. This throughput
metric can be derived analytically from the HSDRagir. Also the transient behavior of HSDF
graphs is formally defined. We come back to theedets in the next subsection.

In [80], K. Richter, M. Jersak, and R. Ernst propaghedulability analysisfor timing
verification of combinations of multiprocessor apations. This approach requires the
knowledge of the static worst-case and best-caderpence metrics of the application tasks.
That work analyzes the worst-case timing behavidhe system in the steady-state. As for the
transient behavior, no formal reasoning is provid&tle approach does not use resource
reservation which can potentially lead to a bgttecessor usage than approaches using resource
reservations per application as we propose, butisasissed before, the complexity of taking all
interactions into account would make run-time perfance analysis problematic.

The formal modeling language POOSL can be seemasdal of computation with dynamic
processing times of the system components, seeBau. Theelen’s PhD Thesis [93]. The
mathematical formalism applied for reasoning alibattiming properties is Markov chains; for
dataflow graphs it has been applied e.g. by Bagelnet al in [94]. Also this formalism
requires the components to have some static piepeHere each processing time should have
well-defined statistical moments (like the matheo@texpectation and the standard deviation).
However, in case of data-dependent streaming alits, where input data characteristics can
change in an unpredictable way, it is not stramfwfrd to find the conditions when an
application possesses such a property, even inogippation. To avoid this issue, we leave
evaluation of this approach to future work. Similamarks can be made about other stochastic
formalisms, like stochastic event graphs [4, §7, 8]

1.5.3 Conclusions on Related Work and Goal Formulain

From the analysis of the related work, we draw tbéowing conclusions. To support
arbitrarily long execution runs on multiprocessgstems, we can use steady-state performance
analysis approaches. To cope with dynamic behavier,should be able to model it as a
combination of several steady-state behaviors. Bscthis involves transitions from one steady
state to another, the transient phases shouldkba tato account.

HSDF/IPC graphs have a formalism for both transamt steady-state behavior and have a
previous history of being used in the context oéating applications. Moreover, they form a
special case of KPN and inherit from them the sdppd FIFO communication (see
Section 1.4.4). For these reasons, we choose I @ui approach on HSDF graphs.

This implies that we accept the HSDF-graph resbmst on the communication properties of
tasks. Nevertheless, in the next chapter, we explase restrictions and argue that reasonable
workarounds are often possible. We also argue tespite these restrictions, our work is still
applicable for a large class of streaming appliceti
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Although our HSDF models reflect dynamic behaviae. ( data-dependent processing times),
we do not model reconfigurations, i.e. changes frmme configuration to another one. Our
models assume that the mappingtistic see e.g. Figure 1.5. This is a valid assumptiban
reconfigurations are rare, i.e. when they do nauoavhen the applications are actively busy
with computations. Nevertheless, because our asadyproach iglynamic we believe that in
future we can extend this approach to support #atjteconfigurations as well.

1.6 Contributions and Organization of this Thesis

In this thesis, we consider a generic distributeimory multiprocessor platform and
streaming applications. These applications comdisasks communicating through FIFO (first-
in-first-out) channels. To run an application, dvaes to perform mapping of the application onto
the multiprocessor, i.e., distribute the tasks leenw the processors and organize the
communication between them.

Multiple applications can start and stop at ruretitneing executed in parallel to one another.
Each application usually has real-time constraiatgliring it to maintain a certain throughput.
To make it possible for the applications to coriifyimeet those constraints independently of
other applications, we assume resource reservapensapplication. This means that each
application gets capacity budgets on differentueses of the platform.

Within the context sketched above, this thesis ridauies to the solution of the performance
analysis problem. The primary task of the analisisming verification, i.e., checking whether
an application can meet its real-time constraiAtspositive or negative answer depends, in
general, on the mapping and, which is very impdrtan the data content being processed by the
application.

Our main contribution to the multiprocessor perfanoe analysis is twofold. First, we
develop new timing models for applications mappatb metwork-on-chip platforms. Second,
for these models, we develop conservative analyshniques to calculate important
performance metrics related to application throughphese techniques show promising results
in terms of accuracy for a highly dynamic applicative use as a case study. In the remainder of
this section, we explain the main ideas of our bution and the way we present them in the
structure of this thesis.

Our performance analysis techniques apply for lonmterrupted execution runs of highly
dynamic applications on a multiprocessor systemcdwer the long execution runs, we use a
model of computation that supports multiprocessamaltelism and can be characterized by a
steady-state behavior. The chosen model of compuatast HSDF/IPC graphs. To support highly
dynamic applications, we propose to characterieentby multiple transitions between different
steady-state behaviors of IPC graphs. In Chapte2introduce the basics of IPC graphs, and
their main properties. We discuss the performanadyais for those graphs and extend that
model such that different steady-state behaviors lwa characterized. We also explain the
practical use of the extended model in the cordgéguality adaptation.

In the past, IPC graphs have been used only witisteat processing times of graph nodes
and only for multiprocessors with bus communicatiwhereas our distributed-memory platform
assumes interconnection networks with distribuggmbkogies. Therefore, we dedicate Chapter 3
to the details of IPC graph construction, whereleyexplain a generic method to model variable
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processing times of the graph nodes and introdoselmmethods to represent the network-on-
chip communication in IPC graphs.

Having constructed an IPC graph, one can use itonty to calculate the application’s
throughput, but also to improve the mapping sofutiAn IPC graph exposes subtle
dependencies of the throughput on the implemematetails. In Chapter 3, we show that the
performance analysis can be used to select theositee FIFO buffers such that the required
throughput can be met.

Chapter 4 first studies the theory behind the stestate behavior of HSDF graphs with
constant processing times, including some aspéws did not get much attention in the
literature. Then, in Chapter 5, we turn our attamtio the case with dynamic task processing
times. There, we develop our novel concept of tteoms between steady-state behaviors of IPC
graphs in detail. This gives us a method to acelyatstimate the throughput of a dynamic
application and to provide guidelines for optimiaat also in the context of dynamic
applications. As a result, we describe a throughglated characteristic in the forEC(i) £(i),
traditionally used for dynamic performance analysee previous section). However, in our
case, to cope with parallelism, the meaningC@) and F(i) in this formula are different from
their meaning in the context of sequential executio

Chapter 6 revisits the MPEG-4 shape-decoding exaitipstrated in Figure 1.7. We consider
a reasonable mapping of this application onto atiprotessor platform and apply our
performance analysis techniques to predict its imgryperformance under the conditions of a
varying video object shape. We demonstrate theaofiseur techniques in a working quality
adaptation manager that satisfies the descriptiows in Figure 1.9(a).

Chapter 7 summarizes the thesis and discussesiaigéor future work.









2 A Strategy for Implementation and Analysis

In Chapter 1, we sketched a system implementatigmoach that we argued to be relevant
and important in advanced multimedia system defigrconsumer electronics products. That
approach consists of two-stage mapping and run-tahgptation endowed with performance
analysis. The latter is meant, in particular, toveeas an instrument to deal with high data-
dependent workload variations. In this chapter,share our point of view on how the ideas
raised in Chapter 1 can be realized, with an irdento create a background for presenting the
modeling and performance analysis techniques sftti@sis. The multimedia system design with
on-chip multiprocessors is to a large extent amagsearch area due to their novelty, physical
design challenges and extra degrees of freedomodinted to overcome those challenges.
Therefore, we often have to refer to the work ontiratip multiprocessors, which have a lot in
common with on-chip multiprocessors.

We start this chapter by introducing the behavimd anplementation of a generic streaming
application, in order to answer the question: wdatve analyze? Afterwards, Section 2.2 gives
an introduction into the existing performance asialyechniques that we use as a foundation to
build our approach. We also explain how it conti@suto the previous work. In Section 2.3, we
discuss the adaptation techniques where the peafarenanalysis of this thesis can be applied.

This chapter raises several relevant implementadimh analysis issues that are to a certain
extent answered in the rest of this thesis.
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2.1 The Object for Performance Analysis:
Behavior and Implementation of a Streaming Application

2.1.1 The Scope of Modeling: the Loop of Interestrel HSDF graphs

Design methods for embedded systems commonly asauceetain model of computation;
for a detailed study of the models that are relef@nmultiprocessor mapping see e.g. the book
of F. Thoen and F. Catthoor [95]. The models reftee properties of the application that are of
interest for the system designer.

The streaming applications are most of the timelwved in a repetitive execution of a finite
set of functions applied on the data items comnognfthe input data streams. Therefore, it is
often implicitly assumed that the application caméaa loop that is mainly responsible for the
processing of the application. The design efforeaed at meeting the real-time constraints at
optimal cost, is focused on that loop. In this thiewe refer to that loop as thep of interest

The model of computation that we choose for thapls the model ofynchronous dataflow
(SDF) graphs [52], also known as the multi-rateaddw (MRDF) model of computation. It is
widely used in the context of multiprocessors, @g[83], [49], and [90]. Figure 2.1 gives an
example of an SDF graph. The nodes of the SDF gueplealledactors they represent the tasks
of the application. Each actor executes repetififet an indefinite number of times. Every actor
execution takes certain time, which we call #iotor delay Before and after the execution, each
actor receives and sends portions of informati@nincoming and outgoing graph edges from
and to other actors. The elementary portions obrinftion exchanged via edges are called
tokens

The main property that distinguishes the SDF méeh other dataflow models is that each
actor consumes and produces a fixed number of sogen execution per input and per output,
called consumption rateand production rate respectively. For example, as annotated in
Figure 2.1, actor A has a production rate of thokens per execution at the edge going to actor
B, and actor B has a consumption rate of one tgegrexecution at that edge. As a result, each
actor is expected to execute at a fixed rate wegpect to one another, e.g., actor B should
execute three times more often than actor A. Far tbason, SDF graphs are used to represent
the streaming applications characterized by a séked execution rates, e.g., in video image
processing.
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Nevertheless, we do not restrict ourselves to sytications; in this thesis, we also support,
to a large extent, applications with variable raggh as MPEG-4 arbitrarily shaped video. In
order to do that we have to overcome the limitatiohthe SDF model that normally lead to their
usage only in the context of fixed-rate applicasion

The main limitation of the conventional SDF modekhat it does not allow data-dependent
conditional execution of actors and conditional cwmication between them. It also does not
allow conditional changes in the structure of thepd itself. The key idea we use to deal with
the applications with data-dependent conditionddaveéor is to bring the conditional behavior
into a different level of data granularity than tbeel represented by the SDF graph.

Firstly, we allow the whole graph to execute a akle number of times per given time
interval. Hereby, we support applications like MBPEG-4 application introduced in Chapter 1.
Recall that, in that application, the number ofckl per video frame can change dynamically
from one frame to another. In our implementatiame execution of all SDF actors processes one
block. Hereby, the SDF graph does not need to mih@etiependency of the frame decoding on
the number of blocks per frame, because the framseahhigher data granularity level than the
data processed by the SDF graph.

Secondly, we hide part of the conditional behainside the actors. We assume that the actor
execution delays may change in a wide dynamic rahlgereby, when the specified application
algorithm requires an actor to be skipped, we chahg algorithm such that the actor is still
executed but takes zero delay to execute. We tefsuch zero-delay executions as ‘empty’
executions.

Note that this changes the original timing behawabthe algorithm essentially, because the
‘empty’ actor executions are essentially differérdam the conditionally skipped ones. The
difference is that an ‘empty’ actor execution alsads and writes ‘empty tokens’. An ‘empty’
execution can be blocked, waiting for empty inpakteins, thus slowing down the execution of
the graph, whereas those tokens are not reallyreghjfor the application algorithm to proceed.

Thus, hiding the conditional behavior inside théoex may change the properties of the
algorithm such that the system performance becommgse. Nevertheless, by giving up some
performance, we buy the predictability of the tiginehavior of the system. If the performance
penalty is not too large, the ability to analyze timing behavior is likely to outweigh this
disadvantage, especially for real-time applications

In this thesis,general SDF graphs serve only for the initial compact espntation of the
application. In our methodology, we mainly use hatass of SDF graphskemogeneous SDF
(HSDF) graphs, also referred to as single-rate flata (SRDF). An HSDF graph has an extra
requirement that an actor may consume and prodoleame token per input and output per
execution.

Therefore, at the very beginning of our implemeatatrajectory, we translate the SDF of the
application into an HSDF graph. Figure 2.1 showsample of such a translation. Because in
the original SDF model, actor B has to executeipletthe rate of actor A, in the resultant HSDF
graph, this is represented by three actor instariBes ‘B, and ‘B;’. For any practical SDF
graph, one can compute the relative execution rates translate the SDF graph into an
equivalent HSDF graph. For the computation of thative execution rates, see e.g., Thomas
Parks’ PhD Thesis [73, §2.3] and for the transtatitgorithm see e.g. [32].

Being modeled as an HSDF graph, the loop of interesst satisfy certain assumptions. We
assume that thkody of the loomf interest consists of a fixed set of actors. Tdup executes
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multiple iterations whereby in eadhop iterationeach actor executes a fixed number of times.
We also assume that each actor can communicateaéind amount of datper execution.

We put a restriction that the loop of interestlas, not nested, which, although limiting the
direct applicability of our approach, still keepsiseful as an approach solving a difficult part of
a more general problem. Indeed, one could buildtagm of our technique a more general
hierarchical approach for nested loops. That tepleiwould apply our technique recursively
bottom-up, from the lowest level of loop nestinghe higher levels, whereby a lower-level loop
would be presented to a higher-level loop as aoraghose execution delay is calculated using
the loop execution time calculation method thatpeepose in this thesis. However, exploring
such an extension of our performance analysis appr subject of future work.

Another quite essential assumption we take is thattiming of the loop of interest is
autonomousi.e., its actors can only be blocked waiting édner actors of the same loop, but
they never block on external inputs and outputshefloop. Of course, in practice, streaming
applications do have external inputs and outpu@)(to exchange the data streams with each
other and the environment. In fact, it should behtecally possible to extend our approach at
least to the case where a loop communicates wéhother loops and the environrment using
periodic communication patterns, but we leave dystin the impact of the external I/O on the
loop’s performance for future work. In this thesi® assume that at any moment of time there is
enough external input data and enough externaksjproutput data in the external 1/0O ports, so
that the timing of the external /0O does not hamg anpact on the performance of the loop
execution. Under this assumption, the loop of edercan be considered autonomous and no
external I/O ports need to be modeled explicitlyefiefore, we do not model them in this thesis.

We call a semantically defined set of subsequenp literations doop execution runThe
duration of the execution run is called tlwwp execution timeBecause in a multiprocessor
platform both data parallelism and pipelining cae hpplied to achieve the required
performance, the loop execution time is approxityadelinear function of the number of loop
iterations in the execution run. Hereby, the lintator of the linear function depends on the
throughput of the HSDF graph (in terms of the ageraumber of loop iterations per second).
The constant component of such a linear functiamisnally referred to as ‘latency’. However,
due to the fact that we do not enforce any perieditedule on the dataflow graph execution, the
problem of finding the constant component in the@vamentioned linear function becomes
much less trivial than traditional calculation atdncy of the given periodic schedule. For that
reason, we give the constant component of the ¢wectime a different name; we refer to it as
‘lateness’.

For calculating the execution time for a loop wethnstant actor delays, findingtenessand
throughputis a central performance analysis problem. Foc#leulation of throughput, efficient
algorithms are available [19], [23]. Unfortunatedys we see later in the thesis, we cannot say the
same about the lateness. For variable actor exectitnes, the expression characterizing the
loop execution time is not as simple as just aalifeinction on the number of loop iterations.
The basics for our characterization method willfieoduced in the end of this chapter.

2.1.2 The implementation-enhanced HSDF model and éhmplementation trajectory

The SDF model of computation — and mainly its HS&ffiant — is used throughout our
implementation trajectory. We often refer to thabdel just as the SDF/HSDF graph. We
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enhance the HSDF model with implementation inforamatequired for our methodology and
call it theimplementation-enhanced HSDF maoddbwever, the functional and timing behavior
of the model is identical to the behavior of theibalSDF model widely used in the literature.

Definition: An implementation-enhanced HSDF modelis a tupleGPQ <G, T,PQ > where

G is an HSDF graphT is the set oftiming modes and PQ is the implementation process
network ¢

Thus, T andPQ are enhancement components of our model, intratllater in this section.
They are data structures organically connectetiédotasic HSDF modés, carrying necessary
information for the implementation trajectory.

At design time, the enhanced model is used simedtasly as a design database and a timing
model for the given application. It undergoes tfamsations, following a trajectory from
specification to executable. Together with the exalole, the design flow issues a timing model
of the executable, used at run time for adaptatide.call it thelPC mode) or IPC' graph. The
IPC model is central to this thesis. It gives théoimation needed for run-time performance
analysis of the application executable.

Figure 2.2 shows our implementation trajectory, alhconstructs the IPC model and the
executable at design time and employs them atime. tThe trajectory consists of four parts,
marked with Roman numbers. Parts | and Il constitbe design flow and parts Il and 1V
constitute theun-time management

In this subsection, we give an overview of the et&yry, at the same time giving the
definitions of the basic features of the implem&ataenhanced HSDF model. These definitions
are used in this thesis to explain our timing mimdeénd performance analysis approach.

We start from the beginning of the design flow (tog part of Figure 2.2). First, the
application designer provides the task graph aS@R model. To construct a task graph, the
application designer first divides the body of thep of interest intacomputation actorsthus
making the task-level parallelism explicit. Theastconstitute the nodes of the task graph. Each
actor has amactor body which is a programming routine that implementsfilnctionality of the
actor. Having divided the loop body into actorse tpplication designer joins the actors by
edges to specify the data dependencies betweeactbes. For each edge, a production and
consumption rate is specified. The actors joine@dyes that are annotated with production and
consumption rates constitute an SDF graph.

Definition: The task graph is the SDF graph that is provided by the applicatesigner as a
specification of the application’s loop of interest

As discussed in the previous section and showngar€ 2.2, our implementation trajectory
translates the task graph from SDF form into an HRguivalent. We call the result of the
translation thecomputation graphwhich is the first instance of the implementaterhanced
HSDF used in the design flow.

Definition: The computation graph is the implementation-enhanced HSDF moG&Qcomp
that is obtained as the result of converting tis& waph into its HSDF equivalent and enhancing
the resulting HSDF grap@ with enhancement componeitandPQ. ¢

* Recall that ‘IPC’ stands for interprocessor comiuation and this name comes from previous workRa@ |
graphs.
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Below we define the basic HSDF graph and the erdrapat components, motivating them and
explaining how they are obtained in the beginnihthe design flow.

Definition: An HSDF graph,G <V,E,m>, is a directed graph, wheke¢ is the set of actors,
which are the graph node¥. has two subsetsvV =V___+V where V, is the set of

comp comm ! comp
computation actors and, is the set of communication actor&.is the set of edges, ant—

or themarking— gives a non-negative number of initial tokenseach edge; for example, the
IPC graph shown in Figure 2.2 has three edgesam¢hinitial token shown as black dots. On the
given edge, the actor at the input side of the edgealled theproducer of the edge. For
example, in the computation graph in Figure 2.20rad; is the producer for one of the edges.
The actor at the output side of the edge is caledonsumerFor example, in the computation
graph in Figure 2.2, actor B is the consumer of édgess

This definition is general and holds at any poihtree design flow. As for the computation
graph, it contains only the computation actorscommunication actors are present in the model
at the start of the design flow. Therefore, we waite:

G isacomputatio graph=V =V

comp

Definition: The set of timing modes T . Timing modesare data structures defining the actor
delays for all actors in the HSDF graph. Differ¢imiing modes provide different levels of
accuracy of actor delay modeling, to be used fdiedint purposes in the implementation
trajectory.¢

As shown in Figure 2.2, the timing modes are olet@difrom Part | of the implementation
trajectory — the application preparation.

Definition. Part I: Application Preparation The application preparationcharacterizes the
timing behavior of the computation actor on thegessor architectures available in the target
platform. It tries different implementations of fdifent actors on different processor architectures
and measures the corresponding actor delays, ysiofijing or worst-case execution time
analysis tools. The results are stored in the dedégabase in the form of timing modé&sg¢

The application preparation and the timing modesmaore rigorously defined and explained
in Sections 3.1-3.3 of the next chapter.

Now the turn comes to describe the last but notehst component of our model — namely
the implementation process netwoRQ. In our approach, every HSDF graph that models the
loop of interest is accompanied by the implemeotainformation telling how the computation
actors are to be bound to processors and how taecdemmunication between the actors is to be
organized.

Theimplementation process netwdeka graph structure that is used as the intermbediage
for binding the HSDF actors to the processors ef tdrget platform. It groups together the
computation actors that share the same processandime. It also groups parts of the HSDF
graph that model the communication between multiptgors through the same network
connection. The computation actor groups are calfedessesind the groups of communication
actors and edges are callgtinnels Also, on the per-process and per-channel bassdésign
flow specifies theaesource budgetsAs discussed in Chapter 1, the resource budgatze the
reservation-based approach, which makes it pos&iblas to handle the dynamic sets of real-
time applications. Assigning the resource budgetsctor groups rather than to individual actors
decreases the overhead of budgeting.
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B>
whereP is the set oprocesseswhich bundle computation actors in ordered suh$gtis the set

of channels between the proces$eandQ are nodes and edges of a directed mult@;aphich
reflects the structure of the process netwafk, . ,.q, is the set that, for each computation actor

Definition: The HSDF implementation process networkPQ, is a tuple< P, Q,V ;s pody:

gives theactor body inherited from the task graph (recall that itthe specification of the
computation actor in a programming languadge)s thebudget descriptgrwhich specifies the
resource budgeting for each process and cha#nel.

For the computation graph, the process networkesgmts an initial naive implementation,
serving as the starting point for the mapping. &ach actor, this implementation allocates 100%
budget of a processor, and each edge gets ondtardapacity channel. Therefore, in the
computation graph, there is one-to-one corresparaértween the actors and the processes, as
well as between the edges and the channels. Ailsobudgets assigned to the processes and
channels of the computation are either maximahfnite.

Let * » ' denote one-to-one correspondence (bijection)nvae can write:
GPQ isacomputatio graph=
VoP, EsQ, B=B

Part 1l of the implementation trajectory, i.e., thdra-application mapping flow, applies
transformations t&PQ. The goal of the mapping is to minimize the cdsts, the number of
processors and channels to be used, the compugattbnommunication budgets) while meeting
the throughput constraints. Many existing multigesor mapping techniques fit in the iterative
approach illustrated in Figure 2.2. This approacsimilar to the adaptation, which we described
before in Figure 1.8. There is an optimization uhat selects the best solution based on the
performance estimation of different solutions and tbe guidelines from the performance
analysis. In contrast to the adaptation, in additm the search for optimatalar settings, like
budgets, the mapping flow also brings some stratttianges into the model; for example, it
adds communication actors into the graph. Thereforghe figure, we use notatiolGPQ’
instead of X' for the optimized variable. Because the optimaafproblem is complex, it is split
into a few sub-problems that are solved one aft@treer. The mapping also differs from the
adaptation problem in the sense that the mappieg dot have the run-time predictions of the
input data complexity characteristics, but it usetimates of the typical values of those
characteristics that are supposed to hold for thelevapplication run. The intra-application
mapping flow is described in more detail in Sei8®b and 3.6.

After the mapping flow, the design is ready to bsued in the form of an executable. As
shown in Figure 2.2, the fin@PQ-model is split into two parts: the IPC model ahd tesource
budget subnetwork.

maximal

Definition: The IPC model or IPC graph is obtained from the graph and the timing modes of
the final implementation-enhanced HSDF model. TRE igraph includes two components of
that model: grapis and set of timing modéek.¢

For the completeness of illustration, Figure 2.@vehan example of an IPC graph, which can
be obtained starting from the computation graphwshan the same figure. However, we
postpone a detailed discussion of IPC graphs latét in this chapter. IPC models are proposed
in this thesis as timing models for run-time periance analysis and adaptation of

® In a directed multigraph, more than one edge omtyvo nodes in the same direction.
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multiprocessor streaming applications. Therefardsigure 2.2, the IPC graph is fed to part Il of
our implementation trajectory.

Definition: The resource budget subnetworkis the implementation process network obtained
at the end of the design flow. It represents thecaetable as seen by the target platform. This
resource budget subnetwork has a graph structiven) gy the processes joined by chanwrels.

As shown in Figure 2.2, the resource budget subor&tus used by the multi-application
mapping module, Part Il of the implementation eécpry. When an instance of the given
application is being started on the platform, gigss the processes and channels of the resource
budget subnetwork to the physical resources. Thii-application mapper finds the physical
processors for the processes and physical routethéochannels. In some sense, it can be
compared to placement and routing in logic synthesito the application loader in operating
systems. We use term ‘subnetwork’, to suggest thale context of the global on-chip network,
each application operates in separate virtual suwmk, being independent of the other
subnetworks due to resource reservation.

Part IV of the implementation trajectory (see F@Qar2) is the run-time adaptation manager.
The functionality of that manager has been coneién detail in Chapter 1, see Figure 1.1. It
can be responsible for run-time adaptation of aptibn’s power consumption or quality of
service. Those tasks are very similar in the sefisiee optimization problems being solved, and
in this thesis we restrict our reasoning to theliyuaf-service adaptation.

After the applications have been loaded into thetfptm and concrete physical resources
have been allocated to concrete applications)-time schedulingcomes into play. It
complements the functionality of the run-time maragnt, but we do not include it as a part of
the implementation trajectory. The reason is tihat tun-time scheduling is not involved in
taking any optimization decisions; it only realizbe decisions already taken in the trajectory. In
particular, the run-time scheduling manages theirsthaf the platform resources such that the
processes and channels definitely receive as mtaargs of the physical resources as specified in
their resource budgets. Note that the run-time dwlivey is distributed, every processor has a
local scheduler and also the network componentardigrated by local arbiters.

Given the implementation trajectory and the runetistheduling environment discussed in
this subsection, it is the purpose of this thesishow how the implementation-enhanced HSDF
model can serve for efficient performance analgislesign time and at run time. The basic
eventsfor our performance analysis are the starting/detigqn events of the actor executions.
Based on those events one can completely chamsetdre execution of the loop of interest
without going too deeply into details. For the msp of the performance analysis, our
implementation-enhanced HSDF model should adequdside into account the following
features of the modeled application:

* the ordering of the events, determined by the eéhasplementation paradigm,
* the delays between events, determined by the ohasetime scheduling mechanisms.

Therefore, in the following subsections, we showe timportant facts about our
implementation paradigm and the run-time scheduling
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(a) a process network (b) the isomorphic HSDF graph

Q - process: the computation entity of the impleragan
- > communication channel: the communication e
» FIFO data communication

» potentially — across the network-on-chip

> - state channel

* ensures a correct cyclic order for the local dategssing

* enforces all actors on the cyclic path to be mapgpete same proces:
¢ does not copy information, it stays at the samatlon

O D - the “first’ channel, preceding the first actortive state consistency order

Figure 2.3Implementation process network

2.1.3 The Implementation Process Network

The core of the implementation process networkésgrocesses and the channels, which are
entities that implement the application.

The processes are connected to the channels eniligb the computation actors contained
inside them. Each actor has a body. The actor badi® segments of software code that program
the functional behavior. The computation actor bedipecify inputs and outputs through which
they are connected to the incoming and outgoingnreéla. Hereby, the processes, in which the
actors are contained, are also connected to thenelea An example of a process network is
shown in Figure 2.3(a).

Recall that for the computation graph holds thahgarocess contains just one actor and each
channel contains just one edge. Given that, énisugh to have the process network to derive
the rest of the implementation-enhanced HSDF maddet. computation grap6 can be easily
derived from its process network, becaB§gandG are isomorphic; one can find an example in
Figure 2.3(b). However, during the mapping flowe tbriginal processes are bundled together,
forming more complex processes, and the same happethe channels. For that reason, the
isomorphism betweeRQ andG is not present anymore. Then, the process neteamkbe seen
as a coarse-grain view on the structure of the H§@ph. To be more precise, for each channel
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g 0Q, achannel macraGQ(q)is defined, which is a substructfiref G , consisting of edges
and communication actors,_ ., modeling the channel behavior. Similarly, for legocess,
p, 0P, aprocess macrdGP(p) is defined, which is a substructure Gf consisting of edges
and computation actorg, modeling the behavior of the process.

comp’

To summarize the general correspondence betwegmrdlcess network and the HSDF graph
within the implementation-enhanced HSDF model at paint of the mapping flow, we can
write:

P~ {GP(p)},

Q - {GQ(q)} 2.1)
JGP(p) O [JGQ(q) =G

P Q

Let us first consider the channels. The purpos@®ithannels is to carry the application data
structures that have a longer lifetime than a siragtor execution. We classify such data as
communication inputs, communication outputs antesta

The communication inputs/output®ntain information that can potentially be comiated
between different processors. Typically, it is onlgrth paying the communication overhead if
the sender actor and the receiver actor are capélerecutingconcurrently For example, at a
certain point in the MPEG video-decoding algorithen,new 8x8 element DCTblock is
extracted. It can be sent to an IDGitor and that actor can start processing it coantly with
extraction of the next DCT block, because, in oreproceed with the extraction there is no
need to wait for the results of the IDCT. Therefoiteis worth specifying DCT blocks as
communication input of the IDCT actor. Another maghat can justify the costs of the data
communication between two actors is knowledge ttmetre are two different processor
architecture types, each implementing one of thmmanicating actors much more efficiently
than the other.

The communication data is transferred betweendt@rsibycommunication channel®

comm !
which form a subset o. For example, the process network in Figure 2.8@)tains two
communication channels. It is important to notet ttee communication channels are FIFO
(first-in-first-out) channels, i.e., the communication outputs conneitead channel (also called
channel producers) should send the informationha same order as the order in which the
communication inputs (also called channel consupmec®ive them.

By analogy to processes, which perform the compmtaby repeatedly executing the
computation actors, we say that the communicati@moels continually execute communication
transfers assigned to them.cdmmunication transfeis an activity of passing one data token
from a communication output of one actor to a comitation input of another actor. As an
activity running on-chip, a communication trangierery similar to a computation actor, in the
sense that it also operates on the data tokengskunction is just copying the application data
as it propagates through the communication netwhidte that as long as a communication
channel is not mapped to the network, its commuioisaransfers are empty activities. This is

® Note that we call it a ‘substructure’ not a ‘sufygin’, because, a channel macro can consist, fongbea of simply
one edge, whereas a subgraph should be a grapéeby i

" Small piece of video image represented in a Fodoenain using Discrete (Fourier) Cosine Transform

8 Inverse Discrete Cosine Transform
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the case when all actors joined by a channel apgpathto the same processor, because no data
copying is required in that case.

Definition: A communication channel q,,, iS a channel that can be mapped to the network-
on-chip. It is defined as a tuplem, TQ >, where m is the number of initial tokens — or
marking— and TQ is a set ofcommunication transferthat are continually repeated by the
channel. The transfers are defined as triple@®(0.,m) ={(vprodj ,vwnsj,zj)}, whereby thg-th

theconsumer actow and

rodj consj

communication transfer is defined by theoducer actorv,
data token sizez;. Any channel in the computation graph has only onedypcer and one

consumer, and it continually repeats only one feangn the mapping flow, some channels may
be bundled together, forming channels with multiptensfers. All the producer actors of a
communication channel should belong to the samegss The same requirement holds for all
the consumer actors. Data tokens propagate thritxegbommunication channel in a FIFO order,
which means multiple communication transfers capdrding at any moment of time and they
complete in the same order as the order in whieh starte

In contrast to the communication inputs and outpthe actorstate refers to the data
structures that, although being exchanged betweendtors, are kefrcally within the memory
system of one processor. A guideline for an apfdioadesigner to identify a data structure as
the state is the case when the data dependenc@sséma cyclic order in which the actor
executions should access that data structure. tRatdt can be executions of the same actor or
different actors. A good example is the dependdrased on parsing the input bitstream in the
video/audio decoding algorithms. Each parsing dperaneeds to wait for the result of the
previous operation to know the location where dgtl start further parsing.

In the case of cyclic dependency, the actors @matiior) can only execute sequentially. Then,
especially when the actors are best fit for theespnocessor architecture, there would be hardly
any reason for spreading the actor executions leetweultiple processors, so the data structure
as well as the actors can be kept local.

In the process network of the computation graph,attors sharing the same state are joined
by a special kind of channels — the state chan@Qgls,, which form the complementary subset
of Q, thusQ =Q,.. * Q.mm- The state channels representing one state farycle path. One

channel in the sequence is marked aditeechannel. It is defined as the channel precediag th
first actor in the order imposed by the state. @aa see an example of state channels in
Figure 2.3(a).

Definition: A state channel q,. is identified by a triplet(m,v

orod It enforces the

V

cons) "

mapping flow to assign both the producgy,, and the consumey

ons [0 the same processor.
This channel is associated with the state data tstes in the processor’s local memory.
Together with the other state channels, it enfoecegclic order of execution, which we call the
state consistency ordefFor the channel marking of a state channel, it holds thatJ{01} . If
m=1 then the channel is the first channel in the cziasicy ordes.

So far we have mentioned only one guideline to tifiethe state data structures. The scope
of the state is, however, broader than the algwithcyclic ordering. In general, it is also
possible that some actors can execute concurrarily their communication does not follow a
FIFO pattern, which is the only pattern suitable thee communication channels as defined in
our model. The FIFO pattern, for example, can loéated in the case when actors load and store
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data at random positions in a table that survives actor execution. If it can take an arbitrary
number of iterations of the loop of interest beftire data stored at the given table entry by one
actor execution will be loaded by another one therrIFO pattern can be established. To follow
our approach, what one should do in such a casedsnsider the mentioned table as the state.
This is possible if there exists a cyclic orderofghe actor executions that ensures consistency
of accesses to the table. In that case, the designemodel this ordering using state channels.

Having discussed in detail the elements of the @m@ntation process network that are
responsible for communication, let us turn to theEments responsible for computation. As for
the processes, it is the best to introduce thethencontext of run-time scheduling and we do
that in the next subsection. In the rest of thisssgtion, we introduce the computation actor
bodies, which are building blocks for the processes

Definition: A computation actor body, for simplicity also identified by the corresponding
computation actor vV is defined as a tuple APA AT, Al AO AS_ .. >, where

APA —is the actor processing algorithi®AT — is the temporary data structures of the algorjth
Al and AO are the sets of communication inputs and commtioitaoutputs and

comm comm

AS

identified by specifying one of the communicatiohannels and, within that channel, a
communication transfer where the given actor isatvesumer/producer. A state is identified by
specifying a pair of state channels for which tb®ais the producer and the consumeer.

We have used the term ‘actor body’ to stress thereace to the implementation of an actor
and to suggest that the body contains the acfAf?A From this point on, as we already have
done before a few times, we always refer to the mdation actor body just as computation
actor, or just an actor.

For each actor, the run-time scheduling should war@ which inputs, outputs and states
belong to that actor and whi&PA should be run for it. Prior to starting an actee&ution, the
run-time scheduling must ensure that:

comp? comm? comm? state

is the set of state data structures.cémmunication inputcommunication outpuis

state

1) there is at least one data token available&@t eeammunication input;
2) there is space for storing one data token availat the communication outputs;
3) the state consistency order is respected.

This way, the computation actor can run from theyepoint until the exit point without any
blocking, which could happen otherwise due to syoeization on communication inputs and
outputs. Note that when saying ‘there is a datand¢dpace’ and ‘available’ we implied ‘present
in the local memory of the processor where theracias’.

A computation actor satisfying the abovementioregirement is seen asady for firingat
the given moment of time (traditionally, the stagtiof actor execution is called ‘firing’). The
reason we put this requirement is fundamental: in@se to exclude the delays due to other
activities from the total delay of the actor. Thésa way to separate different issues, by putting
external timing factors outside the actor delagéal with them separately. We only include into
the computation actor the timing factors that hveo with processing carried out by the actor
itself. Note that this is different from the clasdi real-time scheduling, where a task can be
blocked when accessing a shared resource.

Doing the synchronization on the communication cleds before the beginning of the actor
execution is natural for HSDF models, and as werséfee next subsection, it is reflected in our



40 2 A Strategy for Implementation and Analysis

HSDF graphs based on what we call fiveng procedureof HSDF actors. However, these
assumptions might seem to be somewhat restriativa general parallel software routine, which
may contain synchronization inside its body. Newelgss, such a routine can be converted into
data flow actors either by splitting them into diént actors at every synchronization point or by
moving the synchronization earlier, to the begigrih the routine.

Note also that, here, we implicitly made an assionpthat all the actor instruction code and
the actor data fit into the local memory of thegassor and thus no caching is required. Caching
could result in unpredictable actor delay. Dealmth limitations of the processor local memory
size is a fundamental issue that is outside thennsaope of this thesis. To justify our
assumption, we take a hypothesis that, due toiriieet size of the loop of interest, most of the
actor code and data can be handled with priority lsewve a special place in the local memory,
reserved before the application starts. Anotherothgsis is that if there are still local data
structures that pose problems in fitting them te lical memory, then they can be located in
remote memories and accessed using FIFO data coication, explicitly modeled in the
implementation process network. Such modeling wapgsed by Sander Stuigt alin [85] and
further elaborated in [90].

2.1.4 Run-time Scheduling, Processes and their Bueks

Both the computation actors and the communicatiansfers have to be scheduled on their
resources. In this section, we focus on the sclivaglolf the computation actors, postponing the
explanation of communication scheduling until Set8.4, where we introduce the necessary
details about the architecture of the network-oip.ch

In streaming applications, the same set of comjautadctors is executed repetitively. For
such applications, [83, 84] proposes the followtassification of the multiprocessor run-time
scheduling methods:

» fully static,

e static order,

e  static assignment,
o fully dynamic.

In a fully static method, every processor has adiget of computation actors and the starting
times of every execution of every actor are fixad aredefined. In static order scheduling, only
the cyclic order in which the actors execute igdixper processor, but their starting times are
determined dynamically; they start as soon as theirin the order comes and the input data is
available. In static assignment scheduling, thegassent of actors to processors is fixed but the
actors assigned to a given processor may be satkdulany order and preemption may be
allowed. The computation actor to be scheduledratime is chosen by a criterion that should at
least give every ready actor a fair chance to eeecihus static assignment supports
concurrency between actors assigned to the sanuegwor, and its advantage over the static
order case is due to the fact that it avoids theason where a ready actor should wait for a non-
ready actor just because the non-ready actor cemdier in the static actor order assigned to
this processor. Finally, in a fully dynamic methaolde set of computation actors assigned to a
processor may change at run time.
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Recall that the reconfigurable streaming prograngmmrodel, which we have assumed — see
Figure 1.4 — does not change the assignment of gt@tipn actors to processors within one
configuration. Although at the reconfiguration psinthe assignment can be changed, this
happens relatively rarely; we leave the reconfijonaand the fully dynamic scheduling beyond
the scope of this thesis. Also the fully staticioptis clearly of no or little use for us because w
support applications with dynamic data-dependeatetion delays.

Therefore, the choice that remains is betweencstatier and static assignment. We support a
combination of both. We apply static-order schedyhwithin processes and static-assignment
scheduling between processes. Hereby, because waotlamix the actors of different
applications in one process, we ensure that nor asdenposed between the actors of different
applications, so that the applications can run aoeatly with respect to each other.

Now the time has come to give a more concrete Spaton of the term ‘process’.

Definition. A process p[0Pis defined by a tuple< VP,vp >, where the first element, denoted
VP(p), is asubset of computation actors of the given implemgon-enhanced modé€bPQ
and vp(p) is an ordered sequence of elementd/I(p). That sequence is either empty (if no
ordering has been enforced yet for the given p)cesit orders all the elements P (p):

vp(p) = {vp(P)}y {VP(P)}2,---{VP(P)}ve) » Where{vp(p)}; OVP(p) ¢

Note that there is a clear similarity between acpss and a state consistency order: both
impose a cyclic order on a subset of actors. Howdle basic difference between them is that
the states aramplementation constraint€oming from the specification of the applicatiamd
the processes ammplementation entities.e. they reflect choices made for the implemeora
When the intra-application mapping flow forms presmes consisting of multiple actors, it
ensures that the process ordering is compatible tivé state consistency ordering.

To schedule multiple processes at the same pracessassume each processor hscal
scheduler that implements the static assignment schedulidglocal scheduler can be
implemented as a software real-time kernel, ingeleg different tasks on a general-purpose
processor, or as a hardware wrapper, interleavifigreint data streams passing through the
same function hardwired in a domain-specific preoes

Let us compare the static-ordering and static-agsémt scheduling by taking two extremes.
If just one process runs on a processor, thenishmure static ordering. If there are multiple
processes containing one computation actor ea@n this is pure static assignment. The
advantage of the pure static assignment is maximomeurrency, which is potentially better for
the system performance if the context switchingrbead due to different processes of (possibly)
different applications that running in parallelnsnaged efficiently. The disadvantages of the
static assignment scheduling are context switcbireghead and concurrent resource sharing.

Recall from Chapter 1, that due to concurrent resousharing, non-functional timing
dependencies may arise between the tasks of diffapplications, posing difficulties for
performance analysis. To avoid that problem, wad#etto use resource budgeting. Therefore,
we support only a certain class of static assigrirseheduling methods, which we chlidget
provision methodsUsing those methods, we can provide guarantegdrpgnce, although the
price that we pay for that is the risk that ourfpenance estimations may sometimes be very
pessimistic.

In our scheduling approach, budgets are assignedppess. Suppose that a certain
subsequence of processor instructions in propassest processor clock cycles. Suppose that
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budgetB, is the number of the processor cycles per seceamjrzed to procegs In the ideal
case, when the processor load is infinitely divesilthis would mean that the execution of that
sequence would take timé=t/Bp . In practice, the schedulers can only provide sqomanta of

time to the processes, and therefore the valukonfly comes in some neighborhood of the ideal
value, such that:

t/B,-q,<d<t/B_ +q, (2.2)

where q, and qp are positive constants, depending on the scheglatiethod and its settings. It
is important to stress thd, q,, and (jp are fully controllable settings, independent omvho

much the multiprocessor system is loaded by apmica at any given point of time. This
enables us to reason about the performance ofeliffepplications independently, which is an
important requirement set in Chapter 1. For coregere performance analysis, one can use
t/Bp +Qp as estimate ofl . (This is true because, as explained below, améwork is free of

scheduling anomalies.)

We say that a computation actoresabled for firingwhen that actor’s turn in the process
comes and it becomes ready. If an actor of propessest processor cycles, one can use
Equality (2.2) to provide bounds on the time in&drigetween the moment of time the actor is
enabled and the moment of time the actor finishes.

There are different scheduling methods that camrensudget provision. Clifford Mercet
al [59], in effect, introduce budget provisioning forultimedia applications and propose a
correspondent modification of classical rate-monetdRM) scheduling. In that work, the
processes are presented to the scheduler as tasis& womputation time is proportional to the
budget assigned to the processes. Orlando Moetigh[64] propose a simple practical budget
provisioning scheme based on round robin (RR) sdiegl As for this thesis, we assume
TDMA (time division multiple access) scheduling, il e.g. is the same as the TDMA
scheduling assumed by Sander Stuijk in [88] and.[90hen compared to RM, TDMA is
simpler, because it offers fewer fine-tuning seiinand, compared to RR, TDMA works better
than RR when actors have highly dynamic data-degandkelays. The point is that, unlike RR, it
can preempt the actors and thus it avoids thaathar delay growth in one process considerably
delays another process. We give more informatiotherlTDMA scheduling in Section 3.1.3.

The multiprocessor-scheduling framework introduded this section has an important
property: it isfree from scheduling anomalie® scheduling anomaly (see e.g. [80]) is a
phenomenon that may occur in multiprocessor schmglullt manifests itself when faster
execution of some tasks results in later completwdbnsome other tasks. The absence of
anomalies is favorable for ensuring a guaranteextesy performance and it is proven in
Section 2.2.4, where we show that our overall paerémce metrics increase monotonically when
the actors execute faster.



2.2 The HSDF Grpah: Timing Behavior and Performandenalysis 43

2.2 The HSDF Graph: Timing Behavior and Performance Analysis

In this section, we focus on the HSDF gra@h,from an implementation-enhanced HSDF
model GPQ. The HSDF graph models the behavior of the apiptins loop of interest. As
suggested by Formulae (2.1), it can be partitianemmultiple parts, each modeling a process or
a channel within one single model of computation.

For the HSDF graph model of computation, there texes sound theoretical basis for
performance analysis. In the following subsectiong describe the timing behavior, the
structure and the relevant performance analysiscsp

2.2.1 The Basics of HSDF Timing Behavior

Figure 2.4 shows two HSDF graph examples. Recal the basic elements of HSDF are
actorsvdV and edge®[E, whereEOV xV .

By default, the graph edges represent the commtimicaf data between actors, and we call
them data edgesHowever, dataflow graphs also know edges intredut restrict the actor
execution order, osequence edgeBlote that both edge types have the same behandrwe
distinguish between them only for convenience.dntrast to the channels, the edges cannot be
seen as implementation entities; they are primibstractions used to model the behavior of the
channels and processes.

Every edgee = (vi, vj) can potentially transport any number of tokemsrfractorv; to actory,,
and can contaimitial tokenswhich are present on the edges at start time. Ribedlwe call the
number of initial tokens on an edge the edgeial marking, usually denotedn or m(e). The
edges are directed, and the actor at the sourem efdge is called the edgeoducer and the
actor at the sink of the edge is called the edgesumer For convenience of explanation of the
token order and timing, we assume that the edgdupers annotate the produced tokens with
order labelsusing the series of integers: 0, 1, 2, 3,... pratluction times e.g. ‘1 ms’, ‘2 ms’,

‘3 ms’ etc (the production times are not necesgagjuidistant). The tokens appear on the edges
at the times corresponding to their production §mié an edge containg initial tokens, we
assume that their order labels afie -2, ...,—mand their production time labels are all 0.

Now we are going to explain the behavior of the HSi2tors. Hereby, it may seem that there
is too little visible correspondence between thieaveor of the computation actors, as explained
earlier in this chapter, and their HSDF prototypest that correspondence is clarified in the
following subsections.

To explain how actors consume/produce tokens anirpe computations, we assume that
each actor has its own execution coumteoriginally initialized to 0. The actor behavicarcbe
described using two procedures: the firing procedwhich initiates the actor executions, and
the execution procedure.

Thefiring procedureconsists of four steps:

1) at each input, wait until the production time o token with labeh —m, wherem is the
initial marking of the corresponding input edge;

2) start another execution procedure, whereby theutioergets index;

3) annotate the input tokens obtained from step bleenscapturedat executiom;
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actor execution delay

(the related IPGyaph work
assumes constant delays,
this thesis provides sor
support for dynamic delays)

— - data edg
——> - sequence ed

® - initial token

- computation actor
- communication actor

(b) IPC graph, modeling an implementation in a multggssor platform

Figure 2.4HSDF graphs of a produceonsumer examg

4) incrementn by 1 and return to step 1)

Here only step 1) may take some time, steps 2an8)4) are immediate. Note that step 3)
only initiates an execution procedure, but doeswmait until it completes. Multiple execution
procedures can be initiated in parallel.

Theexecution proceduref actorvk — also referred to simply ator execution- takes index
nas argument. It also consists of four steps:

1) wait for timed (v, n) , whered (v, n) is defined as the function that models the delay
the actor execution;

2) consume the tokens captured at executiaome token at each input;

3) produce one token at each output, annotating allntew tokens with labet and the
current time;

4) terminate.

Note that, according to this definition, actorstpose the consumption of the captured input
tokens until the end of the given execution, whbeaytalso produce output tokens. In the
beginning of execution, the input tokens are oohptured. Every token is captured only once,



2.2 The HSDF Grpah: Timing Behavior and Performandenalysis 45

to be used by only one actor execution. After beiagtured, the token continues to exist until
the execution consumes it, in the end of executAdthough the moment of time when the

tokens are consumed is not important for the tiniagavior of this model of computation, our
assumption that the token is consumed in the entleoExecution procedure is in line with the
behavior of actor implementations and is conveniesmien we explain the modeling of

occupation of the memory buffers.

In the execution procedure, we have introduced tionda (v, n), which for every actow
defines a sequence of delay values in subsequetugans. We call that function trector
execution delayln our implementation-enhanced HSDF models, tteradelay is determined
by one of the timing modes from the set of timingdasT. Different timing modes are used for
different purposes in our implementation trajectoffpe timing modes are introduced in more
detail in Section 3.1.

As for the edges, they do not have any delay, Aeddkens produced on an edge become
immediately visible to the consumer’s firing prooeel

In HSDF models, a key notion is the notion ofitmation. HSDF iterations are labeled with
the same index as actor executions. Iteraticda set of actor executions that all have theesam
indexn. We call a semantically defined set of subseqtSiDF iterations aexecution run

The reader can probably already see an analogyebetthe properties of HSDF graphs and
the properties of the loop of interest. Indeed,HIDF model also contains a fixed set of actors
that are executed unconditionally, once per iteratWe did not introduce any external inputs
and outputs for HSDF models, because, just likddbp of interest, they are assumed to execute
autonomously. The terms ‘iteration’ and ‘execution’ have the same meaning for the loop of
interest and the HSDF model.

Here we should put an important remark that, urtileeHSDF actors, the actor bodies, which
implement the computation actors, do not label tihieens with the labels representing their
order. The FIFO property of the communication cl@sirensures the proper order of data
production and consumption. We will see later iis tection that in the important subclass of
HSDF graphs, used for the performance analysissdimee FIFO property holds for the edges,
and no ordering labels are really necessary fotdkens.

Note that from this definition of HSDF actors weesthat the actors are not allowed to
synchronize with each other using a general shareahory model, but all the synchronization
should be organized using the edges, thus implyiad=IFO order of event handling. We do not
support any synchronization schemes that cannohddeled using dataflow edges. Any non-
FIFO forms of communication happening inside theplof interest should be handled by pre-
scheduling and hidden from the HSDF model by abstna.

HSDF models are used in our work to model bothciraputation and communication parts
of the application, both before the mapping anérathe mapping, as we see in the next two
subsections.

2.2.2 Computation Graph

We use the term ‘computation graph’ not only fag tmplementation-enhanced mod&PQ
prior to mapping, but also for the basic HSDF gr&pltontained in that model. In the latter
meaning, the computation graph is an HSDF graphdkpresses the behavior of the loop of
interest prior to mapping, when there is no progesassignment, no budgets and no
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communication through the network. It represents tomputation actors and the data/state
dependencies between them that follow from the iegipdn algorithm implemented in the
process networkQ.

In the computation graph, the data edges reprélsertommunication channels, the sequence
edges represent the state channels and the computators represent the processes. The data
edges get the same initial markingas the communication channels. A sequence edge get
markingm= 1 if it models the first channel in a state dstecy order, and otherwise it gets
marking m= 0. A cyclic path (cycle) containing only one tiai token forces the actors to
execute sequentially in a cyclic order. The comipemagraph contains only the computation
actors, and no communication actors.

For example, Figure 2.4(a) shows a simple compmnaraph with three actors, namely, two
‘producers’ ('R’ and ‘P,’) and one ‘consumer’ (C). In each iteration, fiesich producer must
produce a data token and then the consumer mayexaad consume the data tokens. The
consumer has a sequence edge that indicates tealsf@endency of the current execution on the
previous execution.

As already mentioned earlier in this chapter, thzaiapplication mapping flow can be
reflected by a sequence of transformations of t&®H graph, starting from the computation
graph and finishing by the IPC graph. In Chaptew8, consider a mapping flow that can be
appropriate for our generic multiprocessor netwamnkehip platform and the construction of the
correspondent IPC graph. Now we introduce IPC ggaphing the original work summarized in
the book by S. Sriram and S. Bhattacharyya [83}has illustration example, indicating the
concepts that we can immediately borrow from thoaitko

2.2.3 Modeling the Computation and Communication tgether: IPC Graph

Also the term ‘IPC graph’ has in our work a dualameg: a modelGPQ defined in the
previous section as well as the grdpltontained in it. In the latter meaning, an IPCpgrés an
HSDF graph that models the execution of the apftinaon a multiprocessor architecture [5],
[83 87]. In the multiprocessor platform assumed[Sh [83], the communication is realized
through a global bus and global memory, it suppootbudgeting and assumes only one process
per processor. However, in their work as well asun work, an IPC graph can be seen as the
result of a transformation of the computation graphereby extra edges and actors are added to
the original graph. The IPC graph actors must laweessential properties:

1) the delay of an actor executionimslependent of the starting time of the execuytand
indeed, as we described, in the implementation,didlay can be bounded from above by
expressiont/B + @, which, being invariant on the absolute startiimget could be used as a
model for HSDF actor delay, although for the TDMgheduling we use a tighter upper
bound (see Chapter 3);

2) the time for waiting until the actor gets reddy execution (the blocking time) is not part
of the actor execution delay; in the HSDF grapb, riadiness on the inputs is ensured by the
incoming data edges; the readiness on the stamsisred by the incoming sequence edges.
The incoming sequence edges also ensure the readinethe outputs, as it is shown below
for the bus-oriented IPC graphs of [5], [83].
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Three conditions are missing in the computationplgréo ensure that an execution of a
computation actor in the HSDF modelstarts, ideally, at the same time as when itsiarthe
process network running in the platform. Becausese¢hconditions are rooted not in the
application functionality, but in the implementatjave call them implementation conditions.

Remark. Implementation conditionsfor HSDF modeling:
1) the communication delays should be taken intmawt;

2) the actor should be ready also on the commuaitattputs(the communication resources
should be ready to accept the data being writtehd@utputs);

3) the actor should be enabled, i.e. its turn shoame to execute in its process.

These requirements are rooted not in the applicdtiactionality but in the implementation,
and they are taken into account in the IPC graph.us now take a look on how it is done in the
IPC graphs in the previous work, [83], explicitlgfthing the elements that are also re-used in
our work.

To take the first condition into account, in adaitito the computation actors, coming from
the computation graph, IPC graphs contaammunication actors

Definition. Communication actors vOV are actors modeling the delays of the

comm
communication transfersTQ between actors running on different processor§he
communication actors copy the data from one physmamory to another across the
communication networle

In the previous work, the communication actors aseite’ and ‘read’ actors — see
Figure 2.4(b). A ‘write’ actor copies one data tokeom the local memory of a processor to the
global memory. In the example, for each ‘write’ actthere is a corresponding ‘read’ actor,
which copies the data token from the global menorthe local memory of another processor.
These actors are annotated with appropriate delsatssfying the first of the above three
implementation conditions.

To satisfy the other two conditions, in the prewowork, for each processor and for the
global bus, a cycle is introduced in the graphnpgesimilar to the cycle enforcing the state
consistency order. We call those cycles, the ‘msagycles’ and the ‘bus cycle’. Recall that, to
introduce such a cycle, sequence edges are adaethengraph, whereby the actors are put in a
specific static order, and an initial token is gldmn the sequence edge at the input of the first
actor in the order.

The bus cycle includes all the communication actBgsordering them, this cycle eliminates
the bus conflicts between the bus transactionsndures that the output data tokens are written
to the global memory only when the global commutidceand memory resources are available.
This is in line with the second implementation ctind, and, in addition, this ensures that the
communication delays are also independent of the tvthen the communication actor starts.

For example, Figure 2.4(b) shows an IPC HSDF gragshthe example of Figure 2.4(a)
assuming a two-processor case, where the prodacersssigned to one processor and the
consumer is assigned to the other one. It includée actors \V; andW,), read actorsR; and
R;) and two data edges, derived from the computagj@aph, to pass data tokens from the

® The communication transfers between actors mafptite same processor do not involve any delaghepare
modeled only by edges.
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producers to the consumer. The graph contains asecycle Wi, R, Ws, R)*. Note that only
two sequence edges are introduced to enforce thkcogrder there, namely,R{,W,) and
(R2,W1). The other two sequence edges are not necesseryo the presence of the data edges.

In our work, we do not use the bus cycles, becausepropose IPC models for on-chip
networks. In Chapter 3, we model communication ae#nby a structur&sQ(q) (a channel
macro) that is much more complex than a cycle glisace edges.

In the previous work, a process cycle enforcesrdaran which actors execute on the given
processor. In this thesis, we assume that processeshare the same processor, but because the
processes get separate budgets, each process caubled by a separate cycle in gr&h

Definition. Process cycleGP(p) =<VP(p), E(p),m(p) > is a subgraph ofc that models

processp. Recall from the definition of process in Sectibh.4 thatvVP(p) is the set of actors

that belongs to process ordered according to the process order, detednime ordered
sequence of actongp(p). Therefore, if the process order is not emptg, skt of edgeg(p)

joins the actors in a path in the order definedséguencevp(p), in addition also including an

edge with marking 1 that joins the last actor te first actor in the order. If the process
ordervp(p) is empty, thenE(p )is also empty — that is the case for all processethe

computation graph, but it should not be the casariy process in the IPC graph.

In the example in Figure 2.4(b), there are two pssccycles, namelyP{, W, P,, W,)* and
(R1, Ry, ©)*. Note that if the computation graph containsruis that join actors that are finally
assigned to the same process, then, at the erfteahapping flow — in the IPC graph — the
processes enforce orderings that are consistehtallitthe data/state dependencies implied by
those channels. Therefore, those channels areesated and not present in the final process
network. For example, in Figure 2.4, cyck,(R;, C)* is consistent with the cycl€* of the
computation graph and therefore the channel f@no C is not present at the end of the
mapping flow and is not represented in the IPC lgtaypany edge.

Note that Figure 2.4 assumes constant actor deddysh is in line with the previous work on
throughput analysis of the IPC graphs. In thisig)asis our goal to also support variable actor
delays in performance analysis. A more detailedudision on this subject is postponed until
Section 2.2.6.

2.2.4 General IPC Graph: Restrictions and Propertis

There are two basic facts about IPC graphs thatentla&ir performance analysis far from
trivial. First, to mimic the behavior of the comptibn actors executed in a multiprocessor, IPC
graphs assume so-called self-timed execution, ptedein this thesis as default behavior of
HSDF actors. In self-timed execution, each act@cetes as soon as the actor firing procedure
sees input tokens with specific order labels, withaligning the starting time to any periodic
timing grid, as it is often the case in dataflowheduling. Second, we have seen that the
dependencies of actors in IPC graphs are cyclictuRately, there exist theoretical studies
concerning the timing properties of the self-tinee@cution of cyclicstatic-delayHSDF models,
where d(v,,n ) does not depend an Such HSDF graphs can be characterized by a sttaty

throughput that can be calculated using efficidgb@thms. The possibility to calculate the
throughput is, after all, a major reason why IP&ptns have been employed.

In this subsection, we consider the restrictiond properties of ‘general’ IPC graphs, where
d(v,,n) may depend on. These restrictions and properties are needecbtode basic facts for
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reasoning about IPC graphs, and they specify saatifes any IPC graph should possess, no
matter whether it is an instance of the IPC modeppsed in [83] or of the IPC model that we
introduce in Chapter 3. In the following subsectiowe describe the steady-state throughput
analysis results that we apply and complementisttiesis. We provide either intuitive proofs
or motivation of the mentioned facts, without giyiformal proofs.

Postulate: An IPC graph is a strongly connected lie FIFO graph:

1) a graph istrongly-connected the following holds: for any two actoxs andy; that belong
to the graph’s actor sat there exists a path in the graph from aatato v;; this property
follows from the fact that IPC graphs are builisabstructures containing cycles;

2) an HSDF graph iBve if any cycle contains at least one edge with a zem number of
initial tokens; liveness means that any actor i HSDF graph can eventually always fire
again [4 81]. We require this property to ensusg tRC graphs never deadlock;

3) an HSDF graph is frst-in-first-out (FIFO) graph if, when this graph executes, for any
edge of the graph, the tokens produced earlieima tlways have smaller order labels than
the tokens produced later in time; this properfiects the FIFO order of processing of the
stream elements by the computation actor bodiestenBIFO property of the communication

channels; it is a fundamental requirement for tiigzmance analysis of IPC graphs.

Note that an HSDF graph can be non-FIFO only ibechave dynamic execution delays.
This is true because the firing procedure ensuyeddfinition that each execution with index
n+ 1 starts no earlier in time than the executiothwdexn (the verb ‘wait’ in step 1 of this
procedure implies going forward in time). Becauaeheexecution annotates the produced tokens
with its index, a violation of the FIFO conditioart only happen if, for somg executiom + 1
completes earlier than executionbut we have just seen that executioh 1 could not have
started earlier. Thus, to finish earlier, executiorr 1 has to take less time to execute:
d(vi, n + 1) <d(vi, n). Therefore, all HSDF actors with static delayglatihe FIFO property.

So, for those IPC actors that have static execwtaay, there is no problem, but what about
actors with dynamic execution delay? Tokens camtake each other only when multiple actor
executions overlap in time. A sufficient condititimat excludes overlapped actor executions is
that there is a cycle in the graph that contairsdiven actor and has only one initial token.
Obviously, this property holds for all actors inethPC graphs discussed in the previous
subsection, because each actor in those graphsgseio a process cycle and every process cycle
has only one initial token. Thus, all actors ingbda@raphs hold a ‘license’ for having dynamic
delays and still being FIFO graphs.

In the following lemma, we summarize the discussiarthe FIFO property.

Lemma 2.1. (Sufficient condition for the FIFO propety) An HSDF graph is a FIFO graph if
any actor with dynamic actor execution delays istamed within at least one cycle that has only
one initial tokene

The FIFO property leads to a fundamental equalidy traditionally serves as a foundation for
reasoning about the timing behavior of HSDF graphs:

Lemma 2.2. (Evolution equation of a FIFO HSDF graph Consider an HSDF grapB that
possesses the FIFO property. kgin) denote the time when acter completes the execution
with indexn; let us definex(n) = 0 forn < 0. Consider actox;, and letvjay, Vi), ..., Vje) be the
list of the producers of all edgesi), vi) in graphG that have actow; as the consumer,
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p=1,...,P. Let my, denote the initial marking of those edges. In tbase, the relationship
between the completion times of actpand of all the producers of input tokens for thetbr is
as follows:

n=z0= >q(n)=gglag<(xj(p)(n—mp))+d(vi,n) (2.3)

Equality (2.3) is called thevolution equatiormf actorv;. ¢

Proof In a FIFO HSDF graph, the tokens being consumedrbgrbitrary actoy; at an arbitrary
input p have the following property: their production tispex; ,, (n—m,), are monotonically
non-decreasing inn. This means that their maximum, given in Equd&yB) is also

monotonically non-decreasing. Now we observe thatthree steps of the actor firing procedure

imply that, in every iteration, this procedure dtfes following:

1) it either waits for the moment of time given by tthrmaximum expression and starts
exactly at that moment,

2) or it initiates an execution immediately if thatxmaum expression gives an earlier time
than the current time.

However because the maximum expression is non-geiag and because, in the first iteration,
situation 1 is necessarily true, we see that sgdo& can never occur. Thus, we have proven that
the execution starting time exactly equals the maxn expression from Equality (2.3), so the
completion time is given in the right part of tleauality.+

Remark (FIFO property and validity of IPC graphs) The reason we discuss the FIFO
property is, first of all, the fact that the actorggeneral may have variable execution delays and,
in general, this can lead to out-of-order produttid tokens — i.e., the actors may violate the
FIFO property. However, the implementation entitbesng modeled by the IPC graphs —i.e. the
processes and channels — enforce the FIFO promdrtthe communication transfers by
construction. For example, as we will see in Sec8dl, in the point-to-point network-on-chip
connections used to implement the channels in #émergc platform assumed in this thesis, the
data packets cannot overtake each other and alavays in the same order as they depart. It is
for this reason that we postulated above that i@ graphs, which model the FIFO channels,
should themselves possess the FIFO property.

Remark (The longest path in the unfolded graph)Note that the evolution equation,
Equality (2.3), has the form of the Bellman’s eguag [50]for the longest path lengths in an
acyclic graph with weights equal to delaysThe nodes of that graph would correspond to actor
executions in different iterations. We call thaggh the unfolded graph and introduce it in
Chapter 3. In Chapter 5, we use the graph unfolthrgnalyze the transitions between different
steady states of the variable-delay HSDF graph.

Remark (General evolution equations)-or actors in more general HSDF graphs, which aray
may not possess the FIFO property, we can writeerg¢nevolution equations similar to
Equality (2.3), but we need to introduce extra ables ¥, giving the starting time of actor
execution. The equalities look as follows:

nz0=y(n) = ma){)’i (n_l)v"'ﬂf‘g(xj(p)(n_ mp))) (2.4)

nN20= x(n) =y, (n)+d(v,n) (2.5)
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whereby Equality (2.4) models the firing procedamned Equality (2.5) models the execution
procedure. However in practice one can expect IP&phs that satisfy the conditions of
Lemma 2.1, and thus we can avoid introducing exdréablese

We conclude this section with a fact that is alsndamental and that holds for any HSDF
model where actors behave according to the defmigiven in this thesis — i.e., where they use
the labels to process the incoming tokens in-oatelrfollow the self-timed execution method.

Lemma 2.3 (Monotonicity of HSDF graphs)If one would increase the execution delay
d(n,v;) of any actow; in any iteratiom or postpone a start or completion of an actor etea,

one would see that the completion times of all @cto iterationn and future iterations either
stay the same or increase. Consequently, if onddndrcrease the delay of events in the model,
the completion times can only stay the same oredeses

Remark (Monotonicity and independence of delays othe starting times) Monotonicity is a
consequence of independence of the actor execdétays d(v,,n ) of the actor starting times

‘y', which is implied by Equalities (2.4) and (2.8)ne can prove the monotonicity by observing
that operators ‘max’ and ‘plus’ involved in thosgualities are monotonically non-decreasing
functions on their arguments. This remark is im@ortecause, in practice, one can imagine that
the delay of executing some task on a hardwareuresaan depend on the initial state of that
resource. In our case, the resource budgeting enshiat each actor execution finishes within a
time interval whose length is independent of tlagtstg time.s
Remark (Monotonicity and absence of scheduling anoaties) The monotonicity property of
IPC graphs implies that the scheduling frameworkleded by an IPC graph is free of scheduling
anomalies; see the remark at the end of Sectiod.€.1

The monotonicity property is needed in practicetove that, in order to derive the worst-
case execution time of the loop of interest, one use the worst-case execution delays of the
actors as the static execution delay annotations.

2.2.5 Static-delay IPC Graphs: Steady-state Timingehavior

In this subsection we assume that the IPC modehefloop of interest has static (i.e.
constant) actor delays. We also use the fact thatRC graph is strongly-connected. The timing
behavior of a strongly-connected graph with cortstartor delays is, at least in the long run,
periodic and the execution time of the loop of iegt can be bounded from above by a simple
analytical expression. We refer to the first prayasperiodicityand we use the second property
(the analytically bounded execution time) as a vemportant ingredient of our performance
analysis approach. The periodicity property givesthethroughputof the graph. Due to the
monotonicity of HSDF graphs, if the static actotags are worst-case, then the average period,
the throughput and the execution time bound obtafrem analysis give conservative estimates
of those values.

Suppose an IPC graph is given. Let us consid@male cyclan the graph, i.e., a cyclic path
that does not include any actor more than once. Cjlode may contain both data edges and
sequence edges; in fact, the performance analyss dot distinguish between them. In the
remainder of this section, we refer to simple cyglest as cycles. Let us define thecle length
as the sum of execution delays of the actors ircyloée. Because the execution delays are static,
the cycle length is a constant value. Let us atamtthe number of initial tokens on the edges of
the cycle and call their total number ttyele depth
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We define thecycle mearas the cycle length divided by the cycle depthcygsle with the
maximum value of a cycle mean among all cycle®iengraph is called eitical cycle

The maximum cycle meafMCM) of the graph can be calculated in polynontiaie [19].
Intuitively, it signifies the average time distanary initial token in the critical cycle has to
travel, until it comes to the next starting positiof another initial token (or itself). If the same
would happen with every initial token in every aydf the graph, the graph would come into the
same state as where it started (a period is coetjleThe tokens of the critical cycle are the
‘slowest’ ones in this sense and, due to the fhat the graph is strongly connected, they
constrain the speed of the whole graph.

Now we formulate an important corollary of the cliaal theorem about the periodic behavior
of HSDF graphs, formulated e.g. as Theorem 3ih1f2]. In Chapter 4, we come back to the
theorem and formulate it in full detail, but here wnly pick up a weaker statement, which
nevertheless conveys the result that is most afsedl in practice.

Theorem 2.4 (Periodicity) Let G(V,E) be a live strongly-connected HSDF graph withistat
actor delays. Letd be the MCM of graplG. Let x(n) denote the completion time of the

execution of actoy; with indexn. Then, we have:

wmvjlim@:m 2.6)

¢

According to this theorem, the MCM is the averageetinterval between iteratiord graphG

in case the number of iterations on which the ayeiia evaluated is large enough. Henceforth,
we call it simply theaverage iteration intervalNote that the actual intervals between iterations
may vary, despite the fact that the actor execudelays are static.

Note that for more general dataflow graphs, SD& (nultirate dataflow), Theorem 2.4. does
not hold in general, but it is still possible tolatdate the average iteration interval by first
translating the graph into an HSDF graph and theoutating the MCM. However, for such
graphs, often in practice a different calculatioetinod for the average iteration interval appears
to be more runtime-efficient, i.e., state-spacel@gtion, as demonstrated in the work of Amir
Hossein Ghamarian [23], [22].

Now suppose that the amount of data in bytes prexdiby the loop of interest per iteration at
the external outputs is constant; let us deno#d) (Note that because we do not reflect the
external outputs in the graph, this value cannaldyéved from the graph but has to be annotated
by the designer.) Let us define theerage throughpu® of the loop of interest, in bytes per
second, as the ratio between the amount of daduped by the graph at the outputs and the
time interval within which they were produced, exsted for a long enough interval of
uninterrupted execution of the graph. Thus defiregrage throughput is inverse proportional to
the average iteration interval:

9:@ (2.7)

Definition (Execution time of N loop iterations) The execution timeof an execution run dfl
iterations, denoted\,, can be defined as the latest completion time nyf actor execution

within the firstN iterations of the HSDF graph executien.



2.2 The HSDF Grpah: Timing Behavior and Performandenalysis 53

4
v

Ny

SR
30
$
S
i 0
7 $
SR
0

10
(a) A cycle and the equivalent special cy (b) The balanced cycle with the
same/d andM
A=10, M =3, Ay = 30[[N/3] Ay =10(N

(a lower bound to the result in (a) )

Figure 2.5A special cycle and a balanced cycle

The following lemma gives an important relationshigtween the execution time and the
MCM value A:

Lemma 2.5 (A lower bound on the execution time df iterations) The execution time of any
live static-delay HSDF grapB that contains at least one cycle is bounded frelavb by:

Ay 2AIN (2.8)
whereA is the MCM of graplG. ¢

Proof Let us pick up a critical cycle in grajgh and transform the graph by removing all actors
and edges that do not belong to that cycle. Thisardy lead to a decrease in the valueAQf.

Let M be the depth of the remaining cycle; then the tlerog that cycle isiM. One can further
transform the remaining cycle such tiigf and/ stay invariant. Every edge with initial marking

m more than 1 is split inten edges with initial marking 1 and a new actor wdtlay zero in
between. Every chain of actors joined by edges watio initial marking is replaced by one actor
with the delay value equal to the sum of the delaythe chain. As a result, we obtain a cycle
with the number of actors equal ¥ whereM is the depth of the cycle, and where every edge
has one initial token. Let us call such as cycépecialcycle. An example of the conversion of a
cycle into the equivalent special cycle is showFigure 2.5(a).

One can show that for any number of iteratibinthe fastest cycle among all possible special
cycles with deptiM and lengthM is the cycle whose delay is evenly distributedMeen the

actors, i.e., where each actor has delailereby under the ‘fastest’ cycle for the givermtner
of iterationsN we understand the cycle with the smallest exenutioe A . We call a special

cycle with evenly distributed delay -balancedcycle. An example of a balanced cycle is shown
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in Figure 2.5(b). That balanced cycle has the damgth and depth as the cycle in Figure 2.5(a),
but it has an execution time that is never largmantthe execution time of the non-balanced
cycle. The general statement that the balancede agcthe fastest cycle is intuitive and not
difficult to prove, and we leave the proof to tieader. That statement also proves Formula (2.8),
because the execution time of the balanced cyaqual toiN.¢

Remark (The lower bound and availability of the intial tokens at time zero)The statement
that the balanced cycle is the fastest cycle faldvem the fact that in the definition of the
HSDF timing model all initial tokens are assumedb¢oavailable at time 0. Thus, if we allowed
arbitrary release times of the initial tokens ie tHSDF graph, we would have to generalize this
lower bound+

Now we know that the execution time grows at lesstfast asi [N . Can we bound that
growth from above? From Equality (2.6), it follovilsat LimwAN/N =A. From this fact and

Formula (2.8), we get the following result.

Lemma 2.6 (The bounds on the execution timé)ith the preconditions of Theorem 2.4, the
execution time oN iterations of grapl® is bounded as follows:

AIN<SA <(A+F,)[IN (2.9)
where d,, is a sequence that converges to Ml @ves to infinity ¢

Lemma 2.6 is a corollary of Theorem 2.4 and Lemnba [& the next subsection, we discuss
this result and its relationship to the rest of tthiesis.

2.2.6 Performance Analysis: Discussion, Objectivesd Related Work

Due to the fact stated by Theorem 2.4 and the vasen that streaming applications process
long sequences of data, the research on multipsoc@sapping of DSP applications has focused
on issues concerning the MCM of HSDF graphsAt the same time, the bounds on the graph
execution time, characterized Iy, , have hardly received any attention, apparently iseshey
are only significant for smalle\.

This situation, however, changes when we genertliedSP applications that have, more or
less, static actor delays to streaming applicat@regacterized by highly dynamic variations of
actor delays. Putting worst-case delay values @mplyilmg the static-delay analysis techniques
can yield in general too pessimistic performancaratieristics with arbitrarily large relative
error. Therefore, for the dynamic case, we cameethe static analysis by splitting the long
execution runs into multiple smaller ranges and enage of the approach known in calculus as
integration. For each of the smaller rangég,can have a significant impact, because according
to Lemma 2.6,0,, is non-negative, and thus ignoring it is likelyléad to error accumulation. In

Chapter 4, we consider the static-delay theory 8DH graphs in more detail, whereby we also
present our findings abouk, . In Chapter 5, we study the transitions betweeallemranges and

apply the integration principle. This way we getiegeaFormulae (2.9) and (2.7) such that, for
dynamic-delay HSDF graphs, we get analytical exgjoes having at least the same but
potentially much better accuracy than the case wieense (2.9) and (2.7) with static worst-case
execution times. And, just like the worst-case neates, our techniques also provide upper
bounds on the execution time and average iteratienval.
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Now, having mentioned some possibilities we arengdio employ, let us step back and
position them in terms of the related work on IP@pis and in terms of the goals set in
Chapter 1, Introduction; also let us be more spealbout the means we use to achieve the goals.

In [83, 87.6], a survey is done on the existingf@anance analysis approaches applicable to
dynamic-delay IPC models. The objective of the adered approaches was to find the average
iteration interval, but now for the dynamic-delagse. Let us denote k. Being an extension of
A for the dynamic-delay case, this performance méitais got considerable interest in research.
In the survey of [83], the authors conclude thadlyical approaches — all based on stochastic
models — capable of computidgcannot be used in practice due to the non-traetabinber of
states in thetate spaceemployed in those approaches.

Therefore, in [83], they also considered approxiamstor boundson A. Among those, the
following are the basic bounds:

whereGnax Gave andGnin are static-delay graphs where worst-case, avenagdest-case actor
delays are used instead of the real dynamic dely®f the inequalities, except for the least
trivial one, A = MCM(Gaye), follow from the monotonicity property. Inequalitn > MCM(Gaye)
deserves further attention, because it is courtetive and because it also says that, although a
naive ‘practical’ approximation of dynamic delaysthwaverage values cannot provide any
assurance of analysis accuracy, one can provettleads to optimistic performance estimates.
Note that the inequalities in (2.10) are only vakten the limit value\ exists and when the
number of iterations for which the average actdayieinG,y are evaluated is large enough.

For conservative analysis — which is the focuswftbesis — in the survey of [83 - §7.6], the
authors are particularly interested in the probtgrgiving anupperbound o\ which would be
accurate enough, because, as we already mentiosied,Gmax can lead to very poor accuracy.
However, in the survey the authors witness thangits to give such a bound fail in practice,
due to inaccuracy introduced when trying to appr@ate the huge number of possible states in
the state space of the variable-delay graph bylesnamputationally tractable models.

On one hand, the IPC analysis goals we set foretugs are closely related to calculating an
upper bound ov\. Based what we said in the beginning of this olapghe main goal of the
performance analysis technique is to calculatgl# tipper bound oh\, , i.e. the execution time

of N graph iterations. Let us denote the average iberamterval ofN iterations asA\, where
Ay =0y /N. Let us use notationi&N and /\N for the upper bounds o, and A

respectively. Thus our goal is to obteﬁmd , which is equivalent to obtaining a value ﬁ&n ,l.e.
/\N =AN/N. If the latter has a limit value foN - c then it is an upper bound @k This

shows the similarity between the goal of our perfance analysis and the goals of the other
researchers that are surveyed in [83 - §7.6].

On the other hand, there is also an essentialrdiftez between our goals and finding bounds
on /. Recall that our IPC models are primarily mearéoun-timemodels, using available run-
time a-priori informationon input data complexity characteristics to cal®laun-time
approximations of performance metrics — see Figueln this way, our work is different from
the related work surveyed in [83], which we see pase design-timeanalysis trying to
characterize the whole set of possible run-timeasibns that comply with a certain stochastic
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model. Since we can use run-time information, we a@eoid the problem of unmanageable state
spaces.

Fortunately, as mentioned in Chapter 1, in our cake availability of the run-time
information reduces the uncertainty about the mmetbehavior, and in this way we are in a
better situation to predict the performance thanptre design-time methods. We also involve a
state space in our model, but we can keep adjuitengtate definitions at run time, based on the
available run-time information. Instead of trying dversee an arbitrary infinite execution run
with a huge number of states, we oversee a patiinite one with a small state set adjusted at
run time, so we are better off. In general, that reason to believe that our approach can reach a
sufficient level of accuracy at low computationalechead. Our case study, presented in
Chapter 6, witnesses sufficient accuracy resultsmplementing a highly dynamic streaming
application.

2.3 A Mathematical Framework for Implementing Applications

In the previous sections, we explained how analysidels are constructed and used to obtain
performance metrics, which is only one of the twportant goals of performance analysis. In
this section, we look at the basics of the secaad, grnamely, providing optimization guidelines.
Recall that we have introduced the use of perfooaaanalysis both for run-time adaptation
(Figure 1.8) and for intra-application mapping (Hig2.2). In this section we focus on the
former. In particular, we refer to QoS adaptatibaecause that has been subject of our studies.
Nevertheless, we believe that our techniques ame mvaely applicable, because we have seen
evidence in the literature that adaptation of bislged of frequency/voltage (see Section 1.4.2)
— have much in common with QoS adaptation.

A considerable part of this section is dedicatedh®s notion of ‘parameters’, which has a
special meaning in this thesis and which is esskfdr run-time adaptation. Strongly coupled
with this notion is the notion of ‘parameter coeifints’, also explained in the next section.

2.3.1 Introduction to Parameters

The run-time characteristics of the input data efemred to at the end of the previous section,
are, in factcomplexity parametety or parameters. They are reflected in our impleatam-
enhanced HSDF model, being involved in some timimgdes in the set of modds We
introduce the parameters here, because this isriemgdfor understanding the practical use of
our modeling approach. We start by giving an exargdl a parametric performance analysis
model.

Example (Parametric performance analysis).A. Bavier et al [6] studied the run-time
prediction of MPEG-2 video frame decoding timesaosingle processor. Their prediction uses
extrapolation of the decoding time measured for phevious frames. However, they have
ascertained the fact that previously measured sadlene do not carry enough information, and
satisfactory predictions could only be obtained miising a priori run-time information about
three different block types (I, P, and B) in theeo frames. In their best prediction model, the
frame decoding time&qame are evaluated as a linear expression:

1 These parameters are related to the theory ofiigpcomplexity.
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Ne=a, LI +a, [P+ag (B (2.11)
wherel, P, B are parametersgiving the number of blocks of type ‘I, ‘P’ and B a frame,
provided at run time in the frame header. Charatter is used to denote thparameter
coefficients giving the processor cycle cost estimates fohddack type.

In [6], the authors show that the parameters captwost of the dynamic changes in the frame
decoding times. The parameters can change in aredicfable way; therefore, the information
about their values has to be provided in the frhemders. The values of parameter coefficients
do not change so much, and, depending on the desiceuracy, one can consider the
coefficients to be static or one can derive thesetaon extrapolation.

The parameters are variables dependent on thecafiph input data; they are specific for the
given application. They count the number of timestain conditions in the state of the
application algorithm repeat themselves when thautidata is processed according to the
application algorithm; the impact of the specifargmeter is given by the coefficient. Thus the
values of the parameters do not depend on the laaedarchitecture, but the values of the
coefficients do. In fact, we referred to the partarein Chapter 1 when we talked about the
representation of performance metrics by a linggrassion=C(i) £(i). In that context, th&(i)
are parameters and th§) are coefficients.

Including the parameter values into the input degaders involves certain overhead in the
number of bits, being undesirable, certainly falew coding applications, striving to achieve
good data compression. Nevertheless, we see thdMBEG-4 standard provides for inclusion of
a certain set of complexity parameters into theweittame headers as an optional extension [42].
A question arises: what is the motivation behingimpgthe overhead of parameters?

2.3.2 Parameters and QoS Adaptation

Before giving an answer to this question, let ussider the basics of QoS adaptation,
because it provides a motivation for applying the-time performance analysis proposed in this
thesis. Hereby, let us, first of all, bring intdeaition the fact that there are two basic kinds of
complexity parameters. We call thexative parameterandpassive parameterdhe active ones
are those that can be adjusted to scale the qadlipplication output, and the passive parameter
values are characteristics that cannot be changeplications having active parameters are
called scalable Among modern multimedia applications, 3D-graphaplications can be
distinguished for good scalability. There, an exkamgf an active parameter is the number of
triangles used to render a 3D object and an exaofphepassive parameter is the percentage of
the video screen occupied by the object, as showarpaper by J. Bormaes al [11].

Given a scalable application, the objective of Qal@ptation is to maximize an audio/visual
quality metric while meeting the real-time congitai— which means maintaining the required
minimum throughput. When we have hard real-time st@ints, the minimum throughput
constraint is rigid. Thus, one can think of a comalborial optimization problem, where an
expression of the forrBC(i) £(i) — which can be used to express the throughmitrvolved to
express the throughput constraint. In such a pnoplee active parameters are variati@sciive)
to be optimized and the passive paramet€irsssivg are values specified in the problem instance.
To complete the picture of a combinatorial optinica problem, one can imagine that the
objective — a quality metric — can also be expréssaerms of parameters; examples are given
in the works of J. Bormans [11] and N. Ngoc [69] fact, the QoS adaptation approach we have
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just depicted fits the general adaptation framewask have described in Chapter 1 using
Figure 1.8.

[25] and [41], in effect, present two representrariations of the adaptation framework of
Figure 1.8, which avoid the need in encoding tharier parameter values in the input data
frames. S. V. Gheorghitat al [25] automatically insert workload predictors irdource code,
which, as soon as the most influential conditidmainches in the execution run are taken, send
corresponding signals to the adaptation managearsd kignals imply that the parameters in the
current run can take values only in a certain Behitange, which is enough for the adaptation
manager to estimate the workload and adapt theabtpgrvoltage and the clock frequency.
Unfortunately, the usage of workload predictorsoidy possible to control execution runs
consisting of one iteration of the loop of interesst encoding of parameter data in the headers is
still necessary to control longer execution rung&ch€éng Huanget al [41] present aroffline
video decoding QoS adaptation framework that rumes decoding application on a high-
performance compute server such as a PC, in oamlexxtract the application’s workload
parameters, use them to estimate the workload ferein embedded system architecture and
then adapt the quality such that the workload it thystem does not violate a workload
constraint. Because in that approach the paramatersxtracted offline, they do not need to be
encoded in the input stream headers; but nevesthdlgs approach fits into the framework
shown in Figure 1.8. The approach of [41] demotssréhe usefulness of a-priori knowledge of
parameter values for workload estimation/ Howe\mgcause one cannot accompany every
embedded multimedia device with a compute servar wWould perform the quality adaptation
for that device, encoding the parameters in thetimata frame headers is a more acceptable
solution in general case.

The overhead of parameters in the input data heachr be justifiable in many practical
cases. We also believe that the parameter overteadbe efficiently controlled. For this, one
can reuse various techniques invented and wideptieap to encode the useful multimedia
content, video and audio. Advanced encoding of rpatars is, however, beyond the scope of
this thesis and is a subject for future work.

2.3.3 Parameters and HSDF Performance Analysis

The purpose of this subsection is to briefly shawhlSDF performance analysis is extended
based on the parameters defined in our paramatrilcg modes.

Our parametric timing models distinguish two levelshierarchy in the loop of interest: the
loop-level and the actor-level. Respectively, theapneters are also divided into two levels.

The loop-level parameters count the loop iteratibasing specific properties and their
coefficients provide the impact of those iterationBe upper bound on the loop execution time
we obtain in Chapter 5 has the form of a linearesgion, which can be seen as a generalization
of Equality (2.11):

Ay <agll g +a,ll,+... (2.12)

scl- s sc2 - "sc2

wherea,, are loop-level coefficients arigl; are loop-level parameters. The linear terms of this

i
expression are contributions of differestenarios(or, to be more precise, of different scenarios
and scenario transitions; these terms are intratiuceetail later in this thesis). The idea is that

the scenarios define the subsets of the loop iberst— based on certain application-specific
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properties — such that the iterations that belonipé same scenario have similar contribution to
the total execution time. The loop-level paramet@unt the number of iterations in the subset
of the scenario.

In the example application for which Equality (2.hhs been constructed, the loop of interest
processes one block of pixels per iteration andsgrexific property for grouping the iterations
into different scenarios is the type of the bloskdefined in the MPEG-2 standard. However, in
general, scenarios do not need to be bound to ksgification defined in the standard from
which the application is derived. We introduce soc@s in Chapter 5.

In fact, our work on scenarios can be classifieppa$ of scenario-based approach; a broad-
scope extensive overview on using that approaegmbedded system design can be found in the
paper of S.V. Gheorghitet al[29].

Note also that the method of A. Bavier [6] and atdamost of the other work on timing
models for adaptation, e.g. G. Bontempi’s work [I@§sume that the contributions of different
computations to the execution time add up togethhich is a valid assumption only when the
application has only one thread of execution. In @ase, there are multiple parallel threads of
execution — the processes. Because of that, weutentipe contribution of scenarios differently,
using IPC graph analysis. For example, a linearesgon that can already be written based on
Lemma 2.6 is the following:

Ay S (Ao T Ona) [N (2.13)
where 4_.,,9,.., are the MCM and the maximum,, of IPC graphGmax (see Equality (2.9)),

max?’ ~'max

with worst-case execution times. In this case,ahsronly one scenario that includes Ml
iterations of the loop of interest. Instead of @oenario, Chapter 5 proposes multiple scenarios
and explains the algorithms to find the loop-legeéfficients. The common property between
the coefficients defined there and coefficielyt, mentioned here is that they are also calculated
from the analysis of various paths through the ¢fe&ph.

Not only at the loop level, but also at a finerigréevel — the actor level — the execution
delays are data-dependent. Unlike the loop-levptassions, the actor-level expressions can be
non-linear functions on the parameters, and we @tippis case. Nevertheless, in Chapter 3 we
make an observation that under reasonable gerssairgtion, any actor execution delay can be
accuirately translated into linear form, and therefwe use linear expressions for illustration
purposes. In Chapter 3, we show that one can nvadigble actor execution delays in the form:

d(v,,n) = R(Ceo +Cps By +Cor Fp + oy V) (2.14)

where ¢, , are actor-level parameter§, , are constant coefficients ailis a stepwise-linear

function that takes into account the limited budgesigned to the process where aator
belongs. Note that, as we see in Chapter 3, fum&iocan be represented algebraically (i.e. using
a simple set of arithmetic and ‘ceiling’ operatipn&ind thus the whole right part of
Equality (2.14) is an algebraic expression. Refralin Section 1.4.4 that the use of algebraic
expressions is an important requirement for oufoperance analysis approach.

Whereas loop-level parametdgscount the iterations of the top-level loop of net&t, actor-
level parameterg, ., count the iterations of the lower-level loops,d&d inside the actors.

We conclude this subsection by an important remark.

Remark. The values of active parameters should beesprior to the loop execution run.
Recall that the active parameters are the paramébett can be set by the run-time QoS
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adaptation algorithm. We would like to stress tinabur approach it is not allowed to set them
during the loop execution run. Therefore, the QoS ademptatannot be part of functionality
included in the computation actors of the loopntéiest. The reason for that is the fact that QoS
adaptation algorithms typically set the active pzater values based on the current slack (the
time left until the deadline). If we included theo® adaptation, then the execution delays of
some actors would become dependent on their gjatitires, which would harm the validity of
our analysis techniques.

2.3.4 Implementation Trajectory

In this subsection, we reconsider the basic imptgat®n trajectory given in Section 2.1.2 —
see Figure 2.2 — now updating it by exposing the afsparameters. Here we still avoid most
details on the contents of the intra-applicatiod amlti-application mapping stages, postponing
them to the next chapter.

The purpose of this presentation is to give an\ger on how the parameters are supported
and applied in our design methodology. When reaspabout the use of the parameters in
practice, we tried to come up with a ‘recipe’ thatsimple but still general enough. For a
concrete and detailed example we refer the readasurtapplication case study in Chapter 6.

First, we discuss the variant of our methodology Joft real-time (SRT) applications, and
then we consider the differences for the hard tiesd- (HRT) case. For SRT, we follow a
philosophy similar to the one often followed in tHemain of QoS for consumer terminals:
design for average-case resource utilization aad#st-quality setting of active parameters and,
at run time, whenever the resource utilization galesve average, lower the quality as much as
necessary to avoid too many deadline misses. énviath that approach, when dealing with SRT
applications, our implementation trajectory usesrage actor delays to perform the mapping to
the platform. Strictly speaking, this is not exadthe same as targeting the average resource
utilization, because, as we learn from Formuladg.lusing the average actor delays is a
technique that tends to lead to optimistic estiomatiof the average performance and
consequently it also leads to underestimation ef rksource utilization. However, we do not
have any better generic approximation of the a\eragource utilization, as we said we can only
approximate it better at run time, and there are gemeral techniques available yet to
approximate it better at design time.

Below, a brief specification of the trajectory falls. Some terms used in the specification
have not been introduced yet; we indicate themguisalic font. The explanation comes after the
specification. Note that to be able to later extdnd specification to the hard real-time case, in
what follows, we use the words ‘typical’ and ‘typily’ instead of ‘average-case’.

Specification of an implementation trajectory.
I. Application preparation

1. Parameter identification (application designerjgtesime)
a.identify actor-level parametei§,,

b.identify the scenarios and loop-level parametggs

c.identify which parameters are passive and whiclaatiwe.
2. Actor-levelcharacterization(system designer, design-time)

- calculate the actor-level coefficients, .
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3. Typical timing and constraints evaluation (systessidner, design-time)
a.calculate the typical actor-level parameter valgigs.,., ,

C... and Equality (2.14),

c. calculate theypical required throughpuBequired
II. Intra-application mapping (system designer,igiegime)
1. Intra-application mapping of static-delay compwatgraph
- minimize the resource usage assuming typical aelays and a throughput
constraint of@equired
2. (optional) Preparation for loop-level charactetiaa
- find analytical expressions for loop-level coeféiotsa.; .

calw ?

b.calculate typical actor delays, basedqp

[ll. Multi-application mapping (system, run-time)
IV. Run-time QoS adaptation manager (applicatian;time)

1. retrievecharacteristic passive parameter valdfesm the frame header,
2. select the values for active parameters, basebeoadaptation algorithm,
3. use the parameter values to calcuthe actor delays for different scenarios, for
each scenarios applying Equality (2.14) ,
4. perform loop-level characterization
- from the obtained actor delays, calculate loopileeefficientsa,, either

based on the IPC graph analysis or using the pedpamnalytical
expressions (if available),
5. find an expression for an upper boundfn using Equality (2.12),

6. use the expression to verify that real-time comssaare met, and if the quality
metric is maximized stop the adaptation algorithrif not go back to Step €.

Let us consider the parameter identification firgt,, Part I.1. It is performed once for a big
class of target multiprocessor platforms that stiosUpport the given application. The
identification of parameters in Steps ‘a’ and ‘®’dssentially independent of the target platform
architecture. For the parameter identificationcbrlevel — Step ‘a’ — one can apply an existing
profiling-driven automated technique by S. V. Gigyhitaet al [28], [24]. However, they do not
provide a way to derive algebraic expressions tierdependency of actor execution delays on
the parameters, their method to estimate the execdelays are based on lookup tables, which
are accurate only for a limited range of parametdues. To really represent the actor-level
execution delays algebraically, e.g. as in Equ#it§4), one can do static control-flow analysis
of every actor, like the one we sketch in Chaptef2B], [24] also present an automated
technique for identifying scenarios and hence &wsadentifying the loop-level parameters —
Step ‘b’. We discuss Steps ‘a’ and ‘b’ in Secti@i® and 5.3 respectively. Note that along with
identifying the parameters, the application desigiiso selects the most significant parameters
to be encoded in the data headers. Distinguishietgvden passive and active parameters,
Step ‘c’; it should be done by the application dasr him- or herself, based on the knowledge
of the application algorithm.

In contrast to the first subpart, Part 1.2 targatconcrete multiprocessor platform, and
therefore it is the job of the system designersTubpart performsharacterization which we
define as ‘finding the parameter coefficients’. tPla2 calculates the coefficients at the actor-

! The algorithm can also be stopped if a time-oueéhed.
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level, i.e., for the actor execution delays. Int®er3.3, we discuss how well-known execution

delay analysis techniques such as linear regredsionthe execution delays measured in a
platform simulator, as proposed e.g. in [6], andsicase execution times, e.g. [53 - 83], can be
modified to obtain conservative coefficients, whishnecessary for conservative performance
analysis.

Part 1.3 is the last subpart of the applicationppration. It evaluates the possibilities and
requirements for the application under typical dbads, which are used to allocate the platform
resource budgets at design time. Step ‘a’ evaluhtegypical values of passive parameters. This
can be done experimentally, by measuring themtjgical’ sample input streams, e.g. Mladen
Berekovt et al [9] calculate the average values of parametershiergiven MPEG-4 ‘profile’,
i.e., for the given set of workload conditions defil in the MPEG-4 standard. As for the active
parameters, determining the typical values mealestigg the parameter settings that the QoS
manager will ‘typically’ use at run time. One way another, the application designer is in
control over those values because it is he/shedels@ns the QoS adaptation manager. Step ‘b’
combines the calculated typical parameter valuestha coefficients calculated for the given
target platform by actor-level characterization.té&Nthat knowing the typical parameter values
for the given application and the coefficients ttoe given platform, one can quickly evaluate the
typical actor delays even without profiling the givapplication with the platform’s profiling
tools. Finally, step ‘c’ evaluates the typical thghput requirements of the applicati®or many
streaming applications the throughput requiremanésfixed, but for some of them they may
change at run time. For example, in the MPEG-4tianty-shape decoder, the video frame can
grow or shrink, whereby the required number of kéoper second also changes. For such
application, the ‘typical’ requirements should haleated at this step.

The main task of Part Il is intra-application mappi We observe that most of the work on
design-time mapping is done for static delays,, d386], [49], [83], [66], [88], and [90].
Therefore, during the mapping, in Part 1.1, wetedzs the actor delays as static delays, i.e., the
typical delays calculated in Part I.3. Given the typical delagsthe beginning of the mapping
flow one can assume that each actor gets 100% bunlyethe fastest native processor
architecture that can execute the given actor. &hables the designer to immediately evaluate
whether the fastest possible implementation camsfgathe typical required throughput
constraint, and if it is the case, to continue éaxing the resource budget requirements in the
mapping flow.

In our implementation trajectory, the objective rmapping is to minimize the number of
resources (i.e., processors and channels) and dlgeitude of resource budgets (i.e., processor
cycle budgets and channel bandwidth budgets) utideperformance constraint (the required
typical throughput). An example of an intra-appiica mapping approach that considers similar
kinds of applications and platforms as assumetiisthesis is presented by Sander Stetjlal
in [88], [90].

To explain Step 2 in Part I, recall that our perfiance analysis uses an expression in the
form of Equality (2.12) to yield a conservativeiestte of Ay at run time. That expression uses
loop-level coefficientsa,,; .Recall also from the remark in Equality (2.13)ttmathis thesis we

define run-time algorithms to calculate the loopelecoefficients based on analysis of various
paths in the graph. One of those algorithms is MGCiMalysis. However, Amir
Hossein Ghamariagt al[22] propose automatic design-time derivation mdlgtical expressions
for a graph’s MCM,/, as a function of actor delays as unknown vargbldose expressions



2.3 A Mathematical Framework for Implementing Apjglations 63

can be used for quick and accurate MCM evaluattamiratime instead of performing run-time

MCM analysis. This is, in fact, in line with Stepii2 Part Il of our implementation trajectory.

At Step 2, the designer derives analytical expoessfor the loop-level coefficients as functions
on the actor delays that are known only at run tiMete that Step 2 of Part Il is optional,
because one can run our analysis algorithms aimen

Thus, [22] partially automates this step. Howewver, Chapter 5, we define also other
coefficients that we need for run-time estimatidn/y. For those coefficients, either these
automatic techniques have to be extended or thgrascan try to derive analytical expressions
manually, exercising his/her analytical skills. Foe IPC graph in our case study in Chapter 6,
we arrive at simple formulas for all loop-level ffog@ents in a 4-actor graph.

Part 1ll, the multi-application mapping, is not olved with parameters. It fits the resource
budget subnetwork (obtained from the intra-applcatmapping flow) into the available
unoccupied physical resources. Closely relateccsopre studied, for example, in the work of
Orlando Moreiraet al [65] Sander Stuijlet al [89], Srinivasan Muralet al [67], and Andreas
Hanssoret al[34].

In Part IV, we see an iterative adaptation procedwhich is in line with Figure 1.8, whereby
Steps 2 and 6 in Part IV represent the optimizatioit and the other steps represent the
performance analysis. To be able to estimate tleewion time, our method needs to calculate
special actor delay values that represent the defiarys in different scenarios. They are obtained
from the actor parameter values that are charattefor those scenarios and we refer to those
values agharacteristic parameter value$hose values are retrieved from the input datalées
at Step 1. Having calculated the actor delays ftierént scenarios at Step 3, our method fills
them in into the IPC graph and uses certain gragh-pnalysis algorithms (or the formulae
derived at Step 2 in Part Il) to calculate the lbeyel coefficients at Step 4. The loop-level
coefficients go into an expression that estimates Ibop execution timeA,, based on
Equality (2.12) .

In the ideal case, the QoS adaptation proceduréntanediately — without multiple iterations
— find the appropriate values for the active patanseusing the execution time expression. For
example, suppose that the expression for the @reciime gives:

A, <1001, +5(1,
and suppose that the header provides vhlwe40 and suppose thht, is an active parameter,
being at the same time the quality metric thattbalse maximized. Suppose that the real-time
constraint isA, < 500In that case, to meet the constraint and to entge maximum quality,
the manager can quickly solve this linear prograngngroblem and come up with vallg=20.
Note that although in gener&l, might be a non-linear function (if some activegraeters are
actor parameters), one can be sure that it withbeaotone on its arguments, which is favorable
for optimization.

In case of hard real-time (HRT) applications, oa@ ase the same trajectory, but the term
‘typical’ will mean in this case ‘worst-case’, sutliat one can always ensure that the deadlines
are automatically met for the typical active partanesetting. It is not necessary to involve a
QoS adaptation manager here, but one may choosgetone to maintain, whenever possible,
quality settings that are better than worst-casechSa QoS manager would always be
safeguarded by the possibility to resort to thesivoase setting.
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2.4 Summary and Notes

In this chapter, we have chosen and motivated dgipnutessor scheduling method and the
basic timing models for that method — IPC grapimabéing the application throughput analysis
for the given implementation. We have argued thaytcan be extended to support a network-
on-chip platform and data-dependent execution del@lgerefore, those models can constitute a
mathematical framework for run-time adaptation, mgkt possible to predict the performance
metrics and identify performance bottlenecks in ¢ireen implementation based on a-priori
characteristics of the dynamic computational waakl@vailable at run time. The details on how
the extended IPC graphs can be built are pres@mtée next chapter of the thesis.

Another major topic we studied is application dymamdue to data-dependent variations in
the execution delays. Under those conditions, wehwd analytically derive the performance
metrics that can be guaranteed by the system. Vgeradd that a closely related problem
addressed in the literature has proven to be toghtto solve analytically. Our hypothesis is that
the reason for that is an attemptglobally cover all possible run-time situations. Neverthsje
for the purposes of run-time QoS adaptation, weshdentified a possibility to exploit available
run-time information on the temporarilgcal run-time situations to derive local performance
metrics analytically. Later on in this thesis, ihapter 4, we build a necessary basis for that idea
and in Chapter 5 we work it out in detail. We vaile there more evidence that this problem is
challenging even under the current basic assungptibat the IPC graph is autonomous (no
inputs and outputs) and that there is no conditioommunication between the graph nodes.

In the end, we would like to mention our major @ of inspiration for the ideas explained
in this chapter and mention some related work. ditiginal idea of IPC graphs and throughput
analysis comes from the book of [83] and earligpgra by the same authors. The ideas on
providing bounds on the performance metrics of HSDédels and on processor scheduling
come from discussions in a multiprocessor networkship project at Philips Research Labs
Eindhoven (nowadays NXP Semiconductors), and ondind more on this subject in [31], [7],
[8], as well as in our own work [75]. We owe suclsubtlety as the FIFO property and other
general statements about the HSDF model to theafuedtal book of F. Baccebi al [4], but
Lemmas 2.5 and 2.6 are original for this text. Uagt not the least, the idea of characterization
of the resource requirements of streaming apptioatiusing HSDF models with parameter
expressions for actor delays comes from our cottgtimn with the video coding architectures
group at our university, see e.g. [72], [77]. A |icdtion of Clara Otero Pérez, Liesbeth Steffens
et al[71] and related whiteboard presentations fromattignors provided us a good introduction
into the domain of QoS management for streamingjcgions.

In this chapter, we implicitly touched upon an impat topic — the possibility to embed
models of multiple local schedulers of differensgarces (i.e., processors) into one single
dataflow ‘super-model’, such that the ‘super-modetiables the schedulability analysis that
takes into account not only the behavior of sepasahedulers but also the — possibly cyclic —
dependencies between them. This is, in effect, doneur implementation-aware HSDF,
whereby we model the run-time scheduling by usingcheduler-dependent actor delay
determined by the upper bound given in Equalit@)2Similar ideas were developed by Rob
Hoes in his Master Thesis [38]. Maarten Wiggsral [98] analyze the new possibilities opened
by such super-modeling for the run-time schedulingory in general and introduce more
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accurate and elaborate models for a certain gewtaas of local schedulers, whereby every
application task is represented bgair of actors as opposed to one actor, as in thissthes

A work that is closely related to our actor-levelrameter identification is presented by
Yicheng Huanget alin [41]. They study the decoding workload estimatfor different video
coding standards. The processing times are obtaisetd) lookup tables from data-dependent
conditions to either a constant number of clockeyor to a simple parameter function. This is
equivalent to introducing a separate Boolean pat@nier every condition and using as a linear
combination of those parameters and the lookupegallihey can achieve good accuracy — [39]
claims at most 2.7% average error for sequentiatugi@ on a single processor. They do not
model parallelism and communication, which would teguired for parallel execution on
multiple processors. We present such modeling igaks, as well as the details of actor-level
processing time modeling in the next chapter.






3 Design-Time Trajectory: IPC Model Construction

This chapter focuses on the design flow introducethe previous chapter. Recall that that
flow consists of the application preparation ane ithira-application mapping. The goal of the
flow is to generate a resource budget networktthmtally satisfies the timing requirements and
the IPC graph that can be used for performanceysisaln this chapter, we consider the design
flow mainly from the point of view of IPC graph cgiruction.

Sections 3.1-3.3 are dedicated to the applicati@pgration — or Part | of the trajectory.
Whereas, in Chapter 2, we considered the struciucemputation graphs, in those sections, we
fill in the delay values into that structure. Heyelve introduce the actor-level parameters and
coefficients in more detail. As for the scenariosl doop-level parameters, which are also
defined during the application preparation, we pose their detailed treatment until later —
Chapter 5.

In the implementation trajectory, the applicatioregaration is followed by the intra-
application mapping — or Part Il. Before considgrthe mapping flow in Section 3.5, we give
the necessary details on the multiprocessor aathi in Section 3.4. For the last design-time
step, Step II.2 — the derivation of analytical fates for the loop-level coefficients — we hardly
can provide a general methodology, but we givexamgple in Chapter 6.

In Section 3.6, we consider a few important missedous properties of IPC models.

The methodology presented in this chapter is a amatibn of different ideas, coming from
different sources, including some original idease Bummary on the literature sources and our
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own claims are for the most part postponed unél‘8Bummary and Notes’ section in the end of
this chapter.

3.1 Timing Modes
3.1.1 Timing Mode: Processing Times and Computatid@ommunication Delay Relations

In this subsection, we introduce the timing moaésich provide the actor delay values in the
implementation-enhanced HSDF model.

Before introducing the timing modes, we take a kgumok on how the actor delays are
computed in a timing mode and how the timing mdiiteis the global picture of performance
analysis. Recall that a computation actor in th€ KRodel starts at the moment when it is
enabled, i.e., when its turn comes to execute hednput tokens as well as the free places for
the output tokens are available. However, at thenard of time when an actor is enabled, rather
than executing the process that runs the giverr,attte processor may be busy with another
process, and afterwards it may keep switching betwerocesses. Nevertheless, recall from
Section 2.1 that the processor scheduler guaratitaethe computation actor will complete the
necessary processing in tidesuch that:

d<t/B+§ (3.1)

where t is the number of processor cycles required for gihecessing in the given actor
execution;B is processor cycle budget assigned to the prqmesanit of time;( is a constant
depending on the scheduling method and settings.

In Chapter 2, we did not yet detail the relatiortween the processing algorithm of the
computation actor and delay annotatid(vi, n). We only suggested that expressigiB +§
could be used as such, because it gives a conisenestimate of the delay and because it is
independent of the time when the computation astenabled.

In the latter statement, we implicity make a certhasic assumption that often holds by
default. We assume that valties stable under any possible starting conditi@arg] the real
execution on a processor will not take more cydlent. In fact, for conservative timing
analysis, we do not require thagives the exact number of processing cycles, wg naéd an
upper bound, preferably a tight one.

Postulate. (Actor processing time)There exists an upper bound on the number of sycle
required for an actor execution, which only depemwlshe contents of the input data streams of
the application. We call that bouadtor processing timalenoted (v, n). ¢

The processing time postulate is motivated andudsed in detail in the next subsection. In
an implementation-enhanced HSDF model, every timingle defines a method to estimate the
actor processing times and a relationship betweepitocessing timdsand the delayd.
Definition (Computation delay relation'®) The delay of a computation actor is related to the
processing time by equality:

Vk O Vcomp = d (Vk ’ n) = Rcomp(t (Vk ’ n)!vk) (32)

12 Although, in factRomp andR.omm defined later, are functions, | refer to thenrakations’, so that | can easily
distinguish them from the other functions.
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Figure 3.1 Timing modes and performance analysis

where V., is a set of HSDF computation actors, and functy,, is called thecomputation

delay relation and its value gives an upper bound on the cortipatactor delay for the given
processing time and the budget to which acjoiis assigned. We assume thBf,,,is a

monotonically increasing function dnFor any scheduling method, one can sekgf,, in the
form Ryomp(t, Vi) =t/B(v,) +4(v,), whereB(v) is the budget assigned to the process where
actorv is contained andj(v, J)s an additional factor that depends on the sdireglalgorithm

used by the processor where actqr is executing. Nevertheless, for TDMA schedulimgpich
we adopted in Chapter 2, there exists a tighteeuppund that cannot be expressed in that form,
and we introduce it in the last subsection of seistions

In fact, the postulate and the definition aboveegiss the timing mode components for the
computation actors. A timing mode also has comptsfor the communication actors. This is
illustrated in Figure 3.1. As shown in that figus@milar as in case of the computation actors, the
delay of communication actors is determined byahwunt of work they perform and by the
communication budgets.
Definition (Communication delay relation) The delay of a communication actor is related to
the data token sizes by equality:

Ve OV g = A (s 1) = Rigm(2(%), Vi) (33)

Function R, iS called thecommunication delay relatiorand its value gives an upper bound
on the communication actor delay for the given sipe ) of the data token transferred by the

communication actor and the budget of the chanwelwhich actor vy belongs. The
communication budgets are introduced later in¢hipter ¢
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Definition (Timing mode) A timing mode 7 O T of an implementation-enhanced HSDF model
<G,T,PQ>is a tuple <t,R,,,ZR,.,>, Wheret is a function,t(v,,n ) that defines the

processing times of computation actomR,,,, is a function, Romp(t,vk), that defines the
computation delay relationz is a function, z(v, ) that defines the sizes of the data tokens
transferred by the communication actors, &g, is a function,Rcomm(z,vk), that defines the
communication delay relation.

Recall that we assume that the sizes of the d&ensotransferred by the communication
channels are fixed. Because the channels get geathbandwidth budget, this means that the
communication delays are constant. Figure 3.1 atfléhat fact by showing that only the
computation delays depend on parameters.

An implementation-enhanced HSDF model has severahg modes, reflecting the actor
timing with different accuracies. Different timingodes are meant for different purposes and
situations. In each situation, only one timing madeactive. Which performance analysis
method is applied in the given situation dependsvhith timing mode is active. As shown in
Figure 3.1, given the actor delays and the streadfiHSDF grapl@, the mode-specific analysis
method should estimate performance characterigiosh as an upper bourr’fslN on the loop

iteration intervalA .

The timing modes can be split into static and dyicammodes. Static modes assume that the
processing times — and, consequently, the actaysde} are static. Recall that in the mapping
flow, we use a static-delay timing mode that assuthat the actors have typical delays. In
Figure 3.1, that mode is denotedz% In that mode, the loop iteration intervé,,, can

ical-static *
be efficiently approximated by its limit value fof — «, i.e. as the MCM of the graph,. A is
used as a constraint for the optimization stegh@mapping flow, considered in Section 3.5.

However, under conditions of dynamic computatiotage only the dynamic timing modes,
using run-time information about the parameter @ajican ensure good accuracy in the general
case. We introduce two dynamic timing modi#estailed dynamic modendmulti-scenario-delay
(MSD) dynamic mode

The detailed dynamic mode needs parameter vala¢slracterize each actor in every loop
iteration. In that case, every computation actds gesequence of accurate delay annotations,
d(v,,n), for the whole loop execution rum= 01,..,N —1. At design time, such information
could be used to perform a simulation of the graglcution with accurate timing. From the
simulation, one could obtain the loop executionetim,, and then/A\N is equal toA,/N.

However, similar computations at run time woulddive too much overhead. Nevertheless, we
use the detailed mode as a foundation to definemthiéi-scenario-delay mode and to evaluate
the accuracy of that mode experimentally. In féeg detailed mode is the key mode for the
identification of actor-level parameters, the fidgsign task of the implementation trajectory.
Therefore, this mode is central to Section 3.2.

Also in the multi-scenario-delay (MSD) mode, rumé parameter values are required that
characterize all the iterations in the loop exexutiun, but not in full detail. The purpose of the
MSD mode is to reduce the overhead of the detailede while still preserving good accuracy.
The MSD mode and the HSDF graph analysis in thater@we defined in Chapter 5.
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In the remaining two subsections of this sectioa,rewvisit the concept of processing time and
the computation delay relation, which are composiehany timing mode.

3.1.2 Processing Time

In this subsection, we revisit the concept of pssagg time in detail. In fact, the postulate
formulated in the previous subsection says thatshwild be able, for any given set of valid
input data streams, to derive beforehand a sequeihgearanteed processing times for each
actor in the computation graph.

This statement implies two underlying requiremerfgstly, it presumes that, all the
processing required to perform an actor executioamely, the computation of the data outputs
and the update of the internal state — constitatesequence of processor instructions that
depends only on the data inputs being consumdtkigiven actor execution and on the internal
state (which is, in general, predetermined by thetents of all data tokens consumed from the
input data edges before the actor execution bthalhactors that belong to the same process). In
practice, a violation of that rule is only possilean unlikely case when the actor contains a
loop with a conditional number of repetitions thatchosen based on the current time value
obtained from a timer or a random number generst@r cannot consider the values read from a
timer or a random number generator to be part tfranput or state, because that could make
the actor delays sensitive to the actor startingesi and the behavior of the other processes
running on the same processor. Fortunately, sutitlatgins are not typical in streaming
applications, which easily satisfy this assumptidherefore, we can speak of a deterministic,
even though data-dependent, sequence of procesgtardtions required for processing within
one actor execution for the given input data steedrat us call that sequence of instructions the
actor processing duty

Secondly, our postulate requires that the givecgssing duty take a tightly bounded number
of processor cycles. Violations of that rule campgen, first of all, due to ‘improper’ use of
instruction and data caches. The ‘improper’ useaghes, in our terms, means the possibility of
cache misses when the processor does the actoegsing duty. It is ‘improper’, because it
violates the basic requirement that, before theraatecution starts and during its lifetime, the
actor state must be fully available in the phys$yclcal part of the memory system (see Section
2.1). To avoid ‘improper’ use of caches, one cahegiavoid the use of caches in the loop of
interest at all (by mapping the actor state, irdtoms and input/output data to the local
scratchpad memories) or, in case the cache has adwasced control features, by instructing
the cache to pre-fetch the required data and tp itees long as it is needed.

In addition to caches, also conditional branch jteds can contribute to cycle count
variation of an actor processing duty. Whether faor is important depends on how many
conditional branch instructions are contained i@ #ttor instruction sequence and how much
their processor cycle usage can vary. If the asttsensitive’ to conditional branches, this poses
a threat to our processing time analysis technigespecially when, at the start of actor
execution, previously executed actors may influetiee predictor state or when it can be
disrupted by context switches. To avoid this, pssoe architectures could quickly save and
restore the status of the branch predictors, aed this possible to keep our assumption valid
even in the ‘sensitive’ situation simply by extemglithe definition of actor processing duty by
also including the initial state of the branch peceats. Now, not only the sequence of
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instructions but also the initial state of the lmfampredictors would predetermine the processing
time. One would only have to ensure that the faatt of our assumption still remains valid,

namely, that also the state of branch predictordeiermined only by the input data of the

process where the actor is contained, but nevéhdyther processes or by the starting time of
actor execution. This can be ensured by appropsawng and restoring of that state at the
context switches. In case the save/restore fadslinot available one can account for the worst-
case effect of the unknown state in the processing analysis, considered in the next two

subsections. In this case, one sacrifices thenégst of actor delay estimation for the sake of
conservativity.

Let us summarize the meaning of the two basic agans discussed in this subsection.
Both of them follow the same philosophy: they périné actor processing time to be influenced
only by the internal state and input data, whiah @mly determined by the actor’'s predecessors
in the computation graph. To ensure that procedssings are close to the real execution cycle
counts, one can involve the management of caclagtepad memory and the management of
the branch predictor units, thereby incurring derteosts. To avoid that cost, one can take
conservative assumptions about the behavior oh#éindware units. We can add to that that one
can choose to use different strategies for diffeestors. The HSDF analysis techniques of the
next two chapters help to determine which actoescaitical for the performance. Then one can
choose to pay the cost of tight processing timienasiton only for the critical actors.

3.1.3 Computation Delay Relation under TDMA Scheduihg

Recall from Section 2.1 that each processor ha®cal Ischeduler managing multiple
processes on a single processor. In this thesigdapt a time-division multiple access (TDMA)
scheduling for processes, where time is divided periods, and each period is split into several
time slots of possibly different size assignediftecent processes.

The computation delay of an actor includes the gssimg time and the time the actor
execution was initially postponed and subsequeptBempted by the scheduler. To have a
conservative model, our computation delay relatisee Equality (3.2)) assumes worst-case
delay of postponement and preemption. In caseeoTDMA scheduling, the computation delay
relation is given by:

o=t SR fiwmu)=D {TR

Bk

v, OV

comp’

—IQTTk _TBk) (3.4)

clockk
whereD is the processing time measured in absolute timimits (rather than in processor clock
cycles), F..« is the clock frequency of the processor to whiwh actor is mapped;;, is the
TDMA period of the processor’s local schedul&g, is the time slot reserved for the process
that contains actov, . The ‘ceiling’ part of the expression accountstfeg worst-case number of

time intervals when the given actor execution lbawait because the processor is busy with the
timing slots that are different from the timing tstaf the given actor andT;, - T;, @ives the

worst-case delay of one such interval.
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Note thatB, = F_ .. [Tz /T« 0ives the processor cycle budget, measured ik cpdes per
unit of time. Then, by using the property ttﬁzxﬂ< x+1 in Equality (3.4), after some algebraic
manipulations, we obtain:

A t 4
Vk |:|Vcomp’ t :t(Vk!n)v q :TTk _TBk = Iiomp(t(vk!ﬂ)vvk)sa +q (35)

This result proves that the TDMA scheduling is admt-provision scheduling method
according to our definition given in Section 2 tlalso proves that we use a tighter upper bound
on the real actor execution delay than the bourat i8 suggested by Equality (3.1).

3.2 The Identification of Actor-Level Parameters

In this section, we cover part of the first desigsk to be performed for a given application in
our implementation trajectory — the applicationpamation. According to the specification in
Section 2.3.4, this part of the design flow is mspble for expressing the dynamic data-
dependent execution times of the application asctions of parameters i.e. workload
characteristics of the application input data streaThese functions should be expressed in
algebraically, which is required in our performance analysisragph. In this section, we only
consider actor-level part of the application pregian, which characterizes the actor processing
times. This is the low-level part of the applicatipreparation. The study of the other essential
part of application preparation, working at thedleef the whole HSDF graph, is postponed until
Chapter 5.

A major part of actor-level application preparatisrthe detecting the actor-level parameters,
i.e. the parameters that determine the actor psowpsimes. Currently we are not aware of any
automated parameter identification techniques waild be able to not only detect the set of
parameters, but also give an algebraic expresdidheoprocessing time as a function of the
parameters. On one hand, the automated parametdtification method proposed by
S. V. Gheorghitat alin [28], [24] partly solves this problem, becaitsean automatically detect
a set of input data variables that determine thecg®sing time and thus can be used as
parameters. Unfortunately, on the other hand, Wk calculates the processing times from the
input variables by means of a performing a looku ilookup table, which is only suitable for
the cases where the set of possible values of @arameter is limited.

Therefore, instead of using the input variables,assume that the actor-level parameters are
(implicit) functions of the input variables that wd the number of executions of different
source-code sub-blocks and thus always have a-tddsgear contribution. Our algebraic
expression for the processing time is thus a limeanbination of parameters. In this section, we
propose and discuss a manual method to detectasticiilevel parameters. (Note that the linear
parameter functions to express execution timesfea exploited in the design and performance
analysis; the examples which we already discusséatdare [9] and [6].)

This section is organized as follows. In SectioB.B. we introduce the linear actor-level
parameter functions. Hereby we set and justifygmnal of identifying the actor-level parameters,
by arguing that they can be used universally forous streaming applications. Section 3.2.2 is
the core subsection of this section, discussing tmwefine suitable linear contributors to the
processing time of the given computation actorefiect, that section introduces our manual
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Figure 3.2Modeling a simple actor with parameter functions

parameter identification method. Note that for dioify we often use term ‘actor parameter’
instead of ‘actor-level parameter’.

The actor processing time expressions do not haveetlinear, as our analysis approach
works also for non-linear actor-level expressioh®wever, since our manual parameter
identification method detects linear contributansthis thesis we use linear actor-level models,
for illustation purposes.

3.2.1 Expressing the Processing Times as Actor Panater Functions

In modeling the actor processing time, we adopypothesis that it can be computed as a
linear function on data-dependent arguments witta-dalependent coefficients. We call that
function anactor parameter functionin this subsection, we argue that this hypothissiggeneral
enough to be widely used in practice. Howevert firs need to introduce the parameter function
in detail.

Suppose that the contents of the application irgitgams is given. Remember that the
computation actors can be implemented on procesgoddferent types. The actor parameter
function is a linear function on a set of variabl@sd it can be expressed as follows:

t(v,N) =Cy o +C £ (N) +C , [E,(N) +...+ C, o [£,(N) (3.6)

whereC, , 0< o < Q, are constant coefficients that depend on thegasor type chosen for

k,w?

actorvy and ¢,(n) are variables that depend on indeand on the input data streams. These

variables are calledctor complexity parameterslote that, typically, multiple actors may share
these parameters, which is why the parameters ualig (3.6) are not indexed with the actor
index.

A special case can be distinguished when all coeffts excepC, , are equal to zero. In that

case the parameter function has a constant valksording to the definition of the processing
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time, that value gives then an upper bound on theber of cycles required by the processing.
Such an upper bound is usually referred tovarst-case execution tinfgVCET) [53].

The derivation of WCET can be done for a broad sclef processor architectures and
application software. It is a broad research fial some major results are published e.g. in a
book by S. Maliket al [53]. The parameter function is a generalizatiAWWCET, namely, it
gives a conditional WCET value given that complexyiarameter values are known. Similar to
WCET, it can be derived based on the analysisefriternal structure of the actor code.

Example: Processing time: an actor with an ‘if opeator. Consider an actor that computes
expressionout(n) :|i(n) Eﬂ(n—1)|, wherei(n)is the sequence of numbers encoded in the input

data stream. Figure 3.2(a) shows a possible impi@atien of such an actor using a C-language-
like pseudocode. Figure 3.2(b) gives three altereatparameter functions for this
implementation. Functiort;is a WCET, and its sole coefficient covers the Itatack cycle
count of the whole actor body. Functityhas Boolean parametég| that takes value 1 only if
the condition in theif’-operator is satisfied. Its coefficier®, corresponds to the worst-case
cycle count contribution of the operator body. Nplied by ¢, it contributes to the total only
when the condition is true and the operator bodgxiscuted. Functiom, gives a more accurate
expression of the processing time in case the taxthre contains a branch predictor. It is taken
into account by an extra terng, [{,. Here C, stands for the cost of a wrong prediction. The
definition of paramete, assumes that the branch predictor expects théopiezondition to
repeat in the current execution of the operatothdfalgorithm of the branch predictor is indeed
as assumed in the definition of this parameten thioducing this parameter makes it possible
to select values for coefficientS; and C; that are smaller than for coefficien® and C,,
because the€;, and C; do not include the cost of a wrong predictioncése the given actor is
mapped to a processor having a different branctiger or none,C, should be set to 0 and
costs of the wrong prediction should be include@€jnandC .+

From the above example, we see that the applicdtgsigner can anticipate a certain type of
processor architecture and try to select the pasmneccordingly; however, once the set of
parameters are chosen, it should remain the sasmaitter to which processor type the actor is
mapped to. That is, in fact, what we mean when ayetsat the parameters are independent of
the processor hardware architecture.

Let us make a few claims about the generality edrapgarameter functions. First of all, they
aregeneral enough for a broad class of processor dettires Indeed, one can find the worst-
case contributions of different internal parts atle computation actor, such as the body of a
conditional operator or a loop. These contributioas serve as coefficients in Equality (3.6) and
can be obtained by applying standard WCET techsiqoendividual parts of each actor. Note
that Equality (3.6) may seem to restrict us to pigelined architecturé$ because iaddsthe
contributions of actor parts, whereas their executnay overlap in time. However, we have
performed multiple experiments on the computatietors of the JPEG and the MPEG-4
decoding applicatiori§ and we have observed that, for RISC architectuvbich are pipelined,
using the sum of the part contributions as paranfatetion leads to fairly accurate processing

13|n fact, virtually any modern processor architeetis pipelined.
4 A few more details on these experiments are meatidater in this section, but they are mainly regmbin
Chapter 6.
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time estimates, which can be explained by the pagiag large enough, making the timing
overlap between the parts negligible compared edithing lengths of the parts themselves. Of
course, in case when the overlap is consideraliteaced to the sizes of the actor parts, simply
adding the WCET contributions of each part may ldad quite pessimistic estimates.
Nevertheless, for such cases, we envision thatetluce the pessimism and improve the
accuracy, one can perform extra analysis to comixetminimum overlafbetween a given part
and any other part that may precede it during &or a&xecution. This minimum overlap can be
subtracted from the coefficient, and this makespdwameter function less pessimistic. We have
not experimented with this idea at the level ofividual actors, but we do use a similar idea at
the level of multiple actors, and we describe théanlying method in Chapter 5.

The second generality claim we make is that aalinpmarameter function igeneral enough
for any algorithmthat may be used in the application. To suppag ¢haim we observe that
algorithmic complexity theorgan represent the processing time of virtually algprithm as an
algebraic function on the input data charactesstit is, for example, well known that the
complexity of an efficient algorithm for sorting amnray of elements i®(N [log(N)), whereN
is the size of the array. Equivalently, one canindethe processing time of that algorithm as:
t=C,+C,[NIllog(N). Although this function is not linear, we cannséorm it into a linear

one by variable replacemeng, = NI[log(N . Not any function one can think of can be

translated into the form of Equality (3.6), butuitively, any complexity function can. Take for
example functionlog(N + C), whereC is an architecture-dependent constant. It is nssible

to translate it into an accurate linear form ofhétecture-independent variables, except by an
infinitely long Taylor expansion. Luckily, compléyi theory does not come up with such
‘'strange’ complexity functions, because it représehe results in formO(f), wheref is an
expression that does not include any architectepeeddent constants.

The guestion about the generality of linear expoesshas been raised in [91]. That article,
by the way, proposes linear expressions like Equédi6), but for the consumed energy, rather
than for the consumed clock cycles, which neveegeelboils down to the same reasoning as
ours. The author’s remark that it is not alwaysstble’ to obtain a linear expression, referring
to the ‘greatest common divisor’ (GCD) algorithm ascounterexample. We find it worth
studying that example and the meaning of ‘possibl¢heir sense to get a further insight into the
nature of actor complexity parameters.

Example: Processing time: GCD computation algorithmConsider the following algorithm:
Input : integern andk, wheren = k
Output : GCD(n, k)

repeat {
p < n;
n < k;
k — p mod n;
} until k=0;
Answer : n

The processing time of this algorithmtis C, +C, [£,, where ¢, is the number of iterations of
the ‘repeat until’ loop required to complete thenpmitations. Obviously¢, depends on the

input data, integer valugsandk. In case of the sorting algorithm, we had the sparameter
function, andé; could be expressed analytically, using a logaritirthe size of the input array.
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Now a question arises on whether also for the G@Drighm we can expresg, analytically.

We should admit that we are not aware of any sinag to do that. We can only give upper
bounds oné,, e.g.0+n, 1+k, 2+nmodk. Here each bound assumes that the loop, once it ha
started, executes at least a given number of ibeiat- the first operand of the addition — 0, 1, 2.
The second operand of the addition gives an obvigeer bound on the number of remaining
iterations, equal to the initial value of variabte before the remaining iterations begin.

In [91], only informal reasoning on this subjectpsovided, but it can be formalized as
follows. They consider it ‘possible’ to use a paeden function only if all the parameters can be
expressed as analytical functions of the input eld@sy Here ‘input elements’ are such
characteristics of the input data structure thatlwa computed in linear time, e.g. arfyn case
of an array sorting algorithm, amcandk in case of the GCD computation. Clearly, for théQs
example, using complexity parameters is ‘impossébeording to the definition of [91].

This example actually demonstrates the fact thatolmpute a complexity parameter for an
algorithm may require as much computational ressi@s the algorithm itself. For example,
although one does not have to execute the sortgmithm to compute its parametéy, to
compute ¢, accurately for the GCD algorithm one may have xecete the algorithm itself,

extending it with a so-callecounter variablethat counts the number of iterations of the ‘répea
until’ loop, as shown by highlighted lines in tHgaithm description below:

Example: Introducing a counter into the GCD algorithm.
Input : integern andk, wheren = k
Output : ¢ _of the GCD computation algorithm

n « N
k < k
Xxil « O;

repeat {
Xil « xil+l

} until k=0;

Answer: xil

Introducing the counters into the application aildpon and using the modified algorithm itself
to compute its complexity parameters is a fallbsslution that would always work. Therefore,
we do not require that the complexity parametershmcomputed ‘easily’ — in a constant time,
or in a linear time, or whatsoever. That is whakesaour actor parameter function general.

However, the run-time quality/energy optimizatioamagers, which are the ones that would
make use of our timing models, may not wait urié tapplication algorithm itself would
compute parameters because the managers have itoatesthe application performance
beforehand. Therefore, the parameters have to bgpuwed externally, without putting any
considerable load on the resources of the embehtétiprocessor system-on-chip. This can be
done by the external system that generates thd idgia streams, whereby the streams are
extended with headers containing pre-computed sadfi@ctor complexity parameters, such that
the managers can easily retrieve them. The pra@i@mples of such external systems are, of
course, the encoders of video input streams. Aagarve know from practice, one can say that,
in order to generate the parameters for the degaplications, the encoders do not need to run
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the decoding themselves, because the same parargtieally influence both the encoding and
decoding complexity. It is thus sufficient to enbarthe encoders with the counter variables and
to let the encoders provide their values basedoset counters.

Note that we do not encode parameter values fdr aetor execution, but rather encode a set
of parameter values that characterize the executioras a whole, without sacrificing too much
accuracy — the method is described in Chapter So,Abne can restrict the set of encoded
parameters to include only those parameters tleagssential, thus saving space in the headers
(whereby for the skipped parameters one will haveake conservative assumptions).

3.2.2 Constructing an Actor Parameter Function

The processing time of any computation actor can régresented in the form of
Equality (3.6). All actors share the same set capeeters{¢, } which we denot€. However,

each actorv, uses only a subset of s@t denotedQy, such that only parameters @ have
influence on the processing time of that actor.fliments C, , for the parameterg,, that do

not belong to seQy are zero for any processor architecture. We tQ\;rd.RJ Qy, and different

setsQyx may have common elements.
Thus, to construct a parameter function for a gigator v,, two tasks need to be

accomplished:
1) a proper subset of actor complexity parame@grshould be detected;

2) the coefficientsC, , should be computed for all suitable processor i@ctures

represented in the target multiprocessor platform.

Those two tasks are interrelated, but in this sttime we first focus on the first one and then
on the second one.

One way to specify the parametersQf is first introducing their counter variables intwe
source code of the actor, and then, when this leas llone for every actor,, determining

which parameters of different actors are identicabrder to save in the number of parameters.
Detecting the parameters of an actor and decidimtheir number is not trivial for automation,
and that subject deserves further investigationchvts out of the scope of this thesis. So far we
have used only a manual approach that partly retiefamiliarity with the application algorithm
and on empirical data.

The parameter identification method we apply irstthesis uses the so-callpdofiling
approach, measuring the processor clock cyclesuocoed by a running executable. Therefore
we require a preliminary version of the applicatexecutable to be built and executed on the
platform itself or on a sufficiently timing-accueaplatform simulator. Note that the timing-
accuracy requirement for a multiprocessor simulasorelatively easy to meet given our
assumption that the local memory system of evencgssor is free of cache misses and
bus/memory port conflicts at each actor execution.

The profiling infrastructure should support a plinfj interface for measuring the number of
processor cycles spent between any pair of useifigaebreakpoints in the source code of each
actor. In the infrastructure, it is favorable tsiga no more than one process to one processor,
thus avoiding the run-time scheduling. The pointhat, in the presence of scheduling, one
would have to separate the cycle counts of diffenrerocesses. Note that not having to
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implement the local processor schedulers and aerating system services may also greatly
simplify the prototyping infrastructure and favagl simulation speed.

Here we describe the parameter identification nebtiging a practical example: the variable
length decoding (VLD) actor of the JPEG video imdgeoding application presented by Erwin
de Kock in [46]. The input of that actor is theshieam containing the coded representation of
the image in the JPEG format and the starting joosin the bitstream for a 16x16 pixel matrix,
called a minimum coding unit (MCU). The bitstreagpresents an MCU using a combination of
the Huffman-tree coding and the run-length codieghtiques, as specified in the JPEG
standard. The VLD actor applies the Huffman and tbe-length decoding to obtain a
representation of the pixel matrices in the digcrebsine Fourier domain, ready for the
subsequent inverse Fourier cosine transformatiorbeocarried out by another actor. One
execution of the VLD actor processes one MCU.

The method that we use builds a timing model of ahtor internals by splitting the actor
control flow into parts called subroutines and kkcWe call that model thsubroutine call
graph (SCQG) it is similar to the call graphs used in profginFrom the control flow, only the
information relevant for the construction of theaagarameter function is preserved in an SCG.
Thus, to a large extent, the model ignores theramevhich different subroutines/blocks are
executed inside the actor; it only counts the nunolbéimes they are executed. Given our earlier
observation that the timing overlap between diffiérparts of the actor can be efficiently
accounted for or ignored, this is enough to cowstau parameter function that achieves the
desired level of accuracy.

Below we first give the summary of our method’saaithm and then explain it in more
detail.

Algorithm (Informal) : Detecting the complexity parameters for a given dor.
1. Build an initial SCG graph.
2. Determine actor parameters aradl count annotation§CCAs) for the subroutines.
3. For each non-visited subroutine in the SCG:
a. Build a control flow diagram, hiding superfluousaiés in blocks
b. Determine the CCAs for each edge in the diagram
c. Exclude the blocks with processing times showingsaderable variations and
insert them into the SCG as new subroutines
d. Based on the CCAs of the diagram nodes, computpatameter subfunction
4. Compute the actor parameter function as the swthdabthe parameter subfunctions.

To build an SCG at Step 1, one first has to idgnhie actor subroutines, which are modeled
as graph nodes. The directed edges of the SCG gmttify the relation ‘the source subroutine
calls the sink subroutine’. The subroutines mayidantical to procedure/function calls of the
source code or may correspond to the source capeesds that the designer wishes to separate
from one another because they correspond to diffestages in the application algorithm and it
is easier for the designer to analyze them sepwrdtee subroutines should not share any source
code lines with one another, and they should ctogather all the lines of the actor source code.
Figure 3.3 shows the subroutine call graph for example, the VLD actor. It contains four
subroutines, the VLD actor itself and the functidhat are called during the execution of that
actor.
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call count (CCA)

|1
T )
(vid ) épc = the number of AC symbols in the MCU;
,J@, MCU - the portion of input data processed per execuifon
/unpack blortk N the VLD actor;
\f ‘6 &, —  the total number of bits in the Huffman codes
AC contained in the MCU;
i+ \get symb0|> &aye — the total number of input stream byte boundaries
AC crossed when reading the MCU bit-by-bit;
‘\get blt &y it also holds that:
L [6:/8]< Govre <[&,/8]
BYTE where:
Cfetch byte/ & - the total number of bits in all codes of the MCU
(a) the SCG (b) relevant information about the VLD algorithm

Figure 3.3VLD example: subroutine call graph (SCG) and patemaefinition

The symbolic analytical annotations shown in tlyaife at the SCG edges are the call count
annotations — CCAs, introduced at Step 2. A CChdsafor the total number of calls to the
given subroutine per actor execution. If a subrmuis called from different subroutines, it has
several CCAs and several incoming SCG edges thme doom the calling subroutin€s In an
actor SCG, there is always one and only one suinmthat has a CCA that is not associated
with any incoming edge, and that is the subroutimeesponding to the actor itself, or the ‘top-
level’ subroutine. By definition, that CCA is set‘l’. In Figure 3.3, the ‘top-level’ subroutine is
VLD.

Being represented as symbolic expressions, the CLAdifferent from the call counts in
traditional profiling, because the profiling onlyopides the concrete values of data-dependent
call counts measured for the given input data samipl general, a CCA may constitute any
analytical expression involving the complexity pasders and algorithmic constants. Those
constants have concrete values, e.g. ‘1, ‘6’ a8din Figure 3.3, and they are architecture-
independent (as opposed to architecture-dependastants, which we denote using character
C, and use as the coefficients of parameter funs}ion

We see that specifying the CCAs is the core of pliameter identification method, because
it is here where the designer directly introdudesdctor parameters. A CCA is specified based
on examining the source code of the calling sulmeutind understanding the application
algorithm.

For example, in the VLD algorithm, each MCU corsisf 6 pixel blocks, and subroutine
‘unpack_block’ is called for each block, so it gefCA 6 — see Figure 3.3. The coded
representation of an MCU can be split into so-call@C’ and ‘AC’ symbols, there being 6 DC
symbols and a variable number of AC symbols per ME& each symbol, ‘unpack_block’ calls
two subroutines: ‘get_bits’ and ‘get_symbol’. THere, we assign to both subroutines a CCA
equal to é,. + 6§ where é,. is the total number of AC symbols in the given MCthe

definition of all parameters in this example carfdaend in Figure 3.3. They should be clear for

!5 Thus, if a subroutine can call itself recursivetygets a loop self-edge, for which it is both gmirce and the sink.
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(a) the subroutine and i B
cumulative CCA,
X= éAC + EH +6.

—

get_bits:
(Cl +C4) [(éAC +<CH +6) +Cz [(Eb _éBYTE) +C3 [Eb

(b) the control flow diagrar
(c) the parameter subfunction with CCAs
(conditional nodes ignored)

Figure 3.4The derivation of a parameter subfunction usingcthrol flow diagram

the readers familiar with the VLD algorithm, but ig not necessary to understand those
definitions in detail to follow the explanation tblis parameter identification example.

Before we turn to Step 3 of the parameter idemtifon method, let us comment on Step 2 for
the general case. The SCG example given in theefignly represents the ideal case, where the
designer is able to relate all the CCAs to a smetllof meaningful algorithmic variables — the
parameters — that have a clear definition in teohshe application algorithm. Hereby, the
purpose of the SCG graph is to provide an overaéthe actor source code such that it is easier
for a human designer to analyze it in a structwaa} and not to overlook important details.

In general, it may be the case that the actorridifigo is so complex that the designer is not
capable of finding all the relationships betweea @CAs and the algorithmic variables within
the available time. In that case, he/she may chts#roduce a new parameter for each CCA.
The price paid for simplification is possibly to@ny parameters?

Step 3 of the identification method builds — ingB8a — acontrol flow diagram(CFD) of the
subroutine to be analyzed. Figure 3.4 shows an pleamf the diagram for the ‘get bits’
subroutine of the VLD actor. The diagram considtblock nodes, denoted &%, conditional
nodes and successor subroutine nodes. The bloaksnod blocks, are different parts of the
subroutine that cover all the processing done bydiken subroutine excluding the processing
done by the successor subroutines, called fromgien subroutine. A block may have any
number of entry points, but it may have at most eri¢ point, so a given block node either
serves as predecessor to another node — like Rlpak the figure — or exits from the subroutine
— like blockC,4. Thus, a block node does not provide conditiomahbhes, which is the task of
the conditional nodes. A conditional node has astiéwo successors — the conditional branches,

' One can also try to use automated techniquesrfdiniy the source code variables that have the saiggact on
the processing time, e.g., the methods proposedatbstin Gheorghiteet d in [24], [28]. One can focus on the
analysis of only those parts of the source codergvtteose variables and the directly related vaemire involved
and express the CCAs in terms of those variables.
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and every time the control flow arrives at a condil node, the node decides which conditional
branch is taken.

Similarly to the edges of an SCG, the edges of B G&ve call count annotations (CCA),
which use parameters. A CCA shows the number aégimhen the block at the source of the
edge is followed by the block at the sink of thgedFor example, the edge fra@s to the
following conditional node has annotatidp. Every CFD must have one or a few entry and exit

edges. Arentry edgeof the diagram — in our example the edge that guesnodeC; — is an
edge that has no source node. Such an edge pmmtsdde where the subroutine can be entered.
Similarly, anexit edge- in our example the edge leaving n@e- is an edge through which the
subroutine can be finished.

Not only the edges, but — for convenience — alsortbdes may have CCA annotations —
giving the total number of times the block is execdu For example, the conditional nodes in
Figure 3.4 are annotated with CC&y. Note that the annotation of the nodes is supaufuif

there is annotation of the edges, because — ollyieutie CCA of a node is equal to the sum of
CCAs of its incoming edges.

The assignment of CCAs in a control flow diagramhich is the task of Step 3b — follows
the same guidelines as the assignment of CCAseostibroutines — in Step 2. However, in
addition, the designer can use the control flowgdien as extra help, because it imposes three
rules on the CCAfRulel says that the sum of CCAs of all entry edge$iefdiagram is equal to
the sum of the CCAs of all exit edges, which, imtus equal to the cumulative CCA of the
subroutine being analyzed. The latter can be détedrfrom the SCG graph as the sum total of
the CCAs of the incoming SCG edges. In Figure &&l denoted the CCA of the entry and exit
edges asx, and from Figure 3.3 we see that ¢, + ¢, +6. Rule2 says that the total CCA of

the edges to a successor subroutine node is enulaé tCCA of the edge between the current
subroutine and the successor subroutine in the §@@h. In Figure 3.4, we see that that this
rule applies to the incoming edge of node ‘fetchebyRule3 says that the CCA of any node is
equal to the sum of the CCAs of all incoming edged to the sum of the CCAs of its outgoing
edges. In our example, the last rule helps usnib tihe CCA of the edges whose CCA was not
yet known after applying the first two rules. Frahe knowledge of the actor algorithm, we
know that the loop inside the ‘get_bits’ subroutaecutes one iteration per bit. Therefore, we
annotate the conditional nodes of the loop with C§AUsing Rule 3 and the annotation of the
entry edge, we annotate the loop edge enteringdpeconditional node with CCA{, —X.
Because, the CCA of ‘fetch_byte’ &, we can immediately calculate the CCA of n@gie

At this point, it is obvious how to derive all toéher CCAs in this example.

If the reader is familiar with WCET analysis metBptie/she probably has noticed similarity
of our control flow diagram to the control flow gtabeing automatically built by WCET tools.
It is, in any case, useful here to give some commenthe WCET approach. WCET analysis
exposes so-calldolasic blockswhich are typically quite small (a few lines bktsource code in
a high-level language). The basic blocks are dptin one another by definition at every
conditional or Boolean operator exposing the la#tera conditional node in the control flow
graph. Hereby, it is more or less safe to assumieatbasic block typically consumes the same
number of processor cycles (exceptions are processtructions with data-dependent cycle
counts). As opposed to the basic blocks in cas®©ET analysis, in our case the designer may
choose to hide much bigger parts of the source owide the blocks, including conditional and
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Boolean operators. Hereby we take care that thmti@rs in the block processing time stay
insignificant and come back to this issue in onehef next sub-steps, but at this sub-step it is
definitely desirable to make the blocks as larg@@ssible, to only expose the major details of
the subroutine’s control flow. Apart from the desto keep the diagram manageable, we would
thus avoid introducing multiple insignificant actparameters, which might result from taking
into account all the fine-grain details of the @ohflow. Ignoring parameters with insignificant
impact on the processing time helps to reduce d¢nfpnance analysis overhead.

To explain Step 3c — i.e. the exclusion of blockthwariable processing times — we first
make a remark that a major hypothesis of the desdrmethod is that each block consumes a
constant number of the processor clock cycles et it is called. In such an ideal case, this
method would provide an ideally accurate paramitection; the higher the variations of the
block processing time, the higher the error. Theesfin Step 3c, for each block, we check the
magnitude of variations of its processing timeg] #re blocks with considerable variations are
turned into subroutines so that those blocks caspbeinto smaller blocks in the later iterations
of the algorithm. The corresponding block nodeghef diagram are changed into subroutine
nodes, and they get into the list of non-visitebreutines. Note that the described algorithm
finally converges because splitting of blocks carsamtinue indefinitely; in the worst case one
gets to the basic-block level of granularity, ahe basic blocks have stable processing times. To
decide whether the processing of a block is stableugh, one can, for example, measure its
processing times for a representative sequenagat data samples and build a histogram of the
measured processing times.

In the last sub-step of Step 3, we use the CCAshefdiagram nodes to find the total
contribution of the given subroutine to the actoogessing time excluding the contribution of
successor subroutines. We call it the parameteiusation of the subroutine. We also use the
term ‘exclusive’ for it, because it excludes theassors. Just as the CCAs, it is computed in
symbolic form, as the sum total of the contribusiasf all blocks and conditional nodes. For
every blockC, we use symbolC, to denote its processing time, which is assumetbeto

constant. The contribution of each block is itsgessing timeC times its CCA. The number of

the processor cycles consumed by a conditionakbhoay depend on which of its branches is
taken. The contribution of a conditional block imi$ a sum total of a few terms defined as the
branch’s cycle cost times the CCA of the branchteNat, if blocks are large enough, the

contribution of the conditional nodes is small camrgal to the contribution of the blocks, and

then the conditional nodes can be ignored, jusitiaglone in Figure 3.4.

In Step 4, when all subroutines have been visttegldesigner adds the subfunctions together
and obtains the final actor parameter function.rébyg, the designer has certain freedom in
deciding which variables will finally act as paraems, trying to arrive at an expression using as
few parameters as possible and still being accwabeigh. First of all, the designer may try to
group the variables that belong to the same CCéntoparameter, because those variables have
the same coefficient. Also, the designer has tackchbat the set of all parameter variables
extended by a non-zero constant forms a lineadgpendent set; the check can be performed
empirically or based on the knowledge of the athoni This condition can be violated e.g. when
one parameter is proportional to another one demiffrom another one by a constant. Such a
linear dependency is eliminated by replacing ongabée by a linear combination of other
variables plus a constant value. This way, thegiesi also ensures that all parameters are, in
fact, variables, such that no parameters have aonstalues for any input sequence. Such
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parameters should be excluded from the parametebyseeplacing them by their constant
values. It is also desirable to exclude approxilgdieear dependent parameters, i.e. such
parameters that stay in a relatively small neighbod to a linear combination of other
parameters.

Let us illustrate the reduction of the paramet¢tyean example. If the designer decides that
all variables in the subfunction in Figure 3.4(® to be parameters, then we obtain a set with 4
parameters. However, in that subfunction, pararaetgr and &, have the same coefficient, and
thus they can be grouped together into one paraedeal to expressiod,. +<, + .Also,
according to information in Figure 3.3, parametéfsand ;= have an approximately linear
relationship between one another, to stay condeevaine can replace term-&,,.c’ by its
upper bound- (&, —7)/8, because it holds th&£, - 7)/8<| &, /8] < &yre . Thus, the number of

parameters for that subfunction can be reduceddo t

Unfortunately, for the total VLD actor parameternétion, saving in the number of
parameters by grouping,. and &, does not work, because, as we see from Figuretg&3all
count of subroutine ‘get_symbol’ includes only ooé those parameters. Fortunately, the
expansion of the other subroutines into controlvfldiagrams does not yield extra parameters,
and finally we obtain an actor parameter functiotihthree parameters:

t(VVLD ! n) = CVLD 0 + CVLD,H |:EH(n) + CVLD,AC |:EAC(n) + CVLD,b |:Eb(n) (37)

The designer can express each actor coeffic@pt , as a simple algorithm-specific linear
function of the variousC,, i.e., the processor cycle costs of different kéoand conditional
nodes. For example, from Figure 3.4(c), it is obgithatC,,, , contains tern(C, +C,)[ 6This
fact is used in one of the methods for computirgabtor coefficients, presented in Section 3.3.

3.3 Calculating Actor Coefficients

Having obtained the symbolic expression, to firalthe construction of the parameter
function, one has to calculate the values of theffments for different processor architectures
represented in the target platform. Recall thateims of our design flow, we refer to this task as
actor-level characterizatian.e., the characterization of actor executioragel

In line with our requirements to the performancelgsis method, we strive to obtain
conservative estimates for the coefficients — ufigeemds. Nevertheless, we base our method on
the profiling approach, i.e., we use measuremehtiseoprocessing times obtained from running
an application executable with certain represerddtiput data sequences. That approach, being
to a large extent empirical, does not always yigider bounds that are reliable for 100% of the
actor executions. The advantage of this approadhoiwever, that it requires less sophisticated
design automation tools effort as, for example, WC&nalysis tools. We believe that our
profiling-based methods are suitable in for ourssymative performance analysis framework for
three reasons:

1) Our methods allow controlling the level of cal#ince to any desired level below 100%.

2) The transition from the detailed actor timingdado the multi-scenario delay mode — later
on in the implementation trajectory — increasesrttalel pessimism, thus compensating
for occasional lack of pessimism in the detailedimo
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3) The chosen application domain (i.e. multimediaaming) mostly includes soft real-time
applications, which can tolerate deadline miss#seiir probability is low enough.

We use two alternative actor-level characterizati@ihods:
1) direct measurement combined with control flovalgsis;
2) linear regression with consideration of conficeimtervals for the coefficients.

The direct measurement method is more laborious,itboan, in general, provide more
reliable results than the second method. In pdaticif one invests enough effort into the direct
measurement method, one can obtain values of cuefts that are 100% guaranteed to be
conservative; we say that in this case we haveirgddaa strictly conservative parameter
function The method is based on the measurement of tlgeddprocessing time of every block
C, and every conditional node in the control flowgtems of the actor subroutines. The effort
to ensure that the processing times measured ally tee worst-case times may range from
simply registering the longest time ever measuneahi arbitrarily chosen long input sequence to
artificially creating an input sequence where ttarsircase path conditions for the given block
really occur and using that sequence to directlpsuee the worst-case processing fim@&nce
we have measured the worst-case processing tiigesf all nodes, we can derive the actor

coefficients C, , using the relationship betwee@, and C,, described at the end of the

Section 3.2.2.

We applied this method to the VLD actor using tR&G executable presented in [46], which
we ran on the ARM7TDMI™ processor architecture gdime ARMulator™ simulator [3] and
assuming a single-cycle access to the local memfdhen measuring the costs of the blocks, we
have ensured that we obtain the delays of theiswwexecution paths (by making sure that the
worst-path conditions for every block occur in tie@presentative input stream). The results are
presented in Figure 3.5, where we see that the patameter function is indeed an upper bound,
still being very close to the real processing timeasurements.

The linear regression method with consideratiorcaffidence intervals yields actor-level
coefficient estimates that are upper bounds wiphadability close to 100%. Due to the fact that
the probability is still below 100%, we call suchparameter function aeakly conservative
parameter functionThe advantage of the linear regression methdlaaisit requires less routine
work to be done. For this method, one only needsetform processing time measurements for
whole actors rather than for separate code blookt&amed in the actors.

Note that linear regression is most often used Itaio linear coefficients that are
conservative with only a 50% probability. As expkinbelow, one can exploit so-called
confidence intervals, calculated during linear esgion as a by-product, to increase this
probability to any desired level below 100%.

In the rest of this section, we give a detailedlaxation of the use of linear regression and
the confidence intervals for a weakly conservapgeameter function.

Y In this extreme case, the direct measurement me#thmost ceases to be a ‘profiling-based’ methad] a
resembles the WCET method.
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We assume that the subset of parameters for eetay\g is known (having been derived e.qg.
using the method from the previous section). Weotketthat subset &Qy. Let &(n) denote a
column-vector whose first element is ‘1’ and thbestelements are parameters in Qgt i.e.

&, (n) =[L &(n), &(n),,....&, (M]", whereQ = Q4| andn is the actor execution index. (Here,
without loss of generality, we assume that the ipatarsé,, contained in se@y have indicesv

in the range 1.Qy.) Let ¢, denote the column-vector of the corresponding fanefts C, .
Then, using matrix algebra, we can rewrite EQug8t®) as an inner product of two vectors:

t(v,,n) :ék(n)T (€, (3.8)

The linear regression method for computing vecjorequires a sequence of valuespfn )
forn=0...N—1, whereN >Q . Let us consider how to obtain that sequenceantjme.

First of all, one needs to create a version of @&pplication executable instrumented with
parameter counters, as discussed in Section 3.8tlus call that version of the executable a

‘counter-instrumented’ version, as opposed to thgiral version — or the ‘normal’ version.
Secondly, one needs a sample of input data streatimenough data for at lealstiterations of

the loop of interest.
Performing a run of the counter-instrumented exadetwith the sample input data results in

N samples of parameter vecto&:(0),...§, (N — . Bor the linear regression method to work,
one has to ensure that the sequence is ‘rich enhough it must containQg + 1 linearly
independent vectors. This is possible only whenlittear dependency between the parameters
has been excluded, as described in the previousestibn. From our experiments with the
arbitrary-shaped video decoding application, desgctiin Chapter 6, we observed that, for
applications similar to that one, one is likelyhave a rich enough input data sequence if it

satisfies the following conditions:

1) N>Q,,
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2) all the possible video frame types and videakkypes are encountered in the stream.

All the samples of the parameters together forma#riry denoted= that characterizes

char k1

the given input stream:

e OF
Echar ‘ = {E.vk (1)} (39)
{ik (N - 1)}T

In addition to this matrix, the linear regressioathod also needs a column-vector of the actor
processing timest,, ., measured by the profiling tools of the targetfplan by running the

‘normal’ executable and feeding it with the samauinstream samples.

In the ideal case, our processing time model glweitquality (3.8) would exactly represent
the measured processing times. Then, whateverencugh input sequence one would use to
generateE, . , andt,,,, one would always obtain the same vector of fideaefficients,

char

Ciueal » DY SOIVINgG the system of linear equations witk , +1 variables:
E‘char k E[:idealk = tprof k (310)

In that casec,,,,, would be equal to the unique solution of that gystehich could be obtained

by first reducing the number of equations in Forn{8.10) toQ + 1 and then by applying the
standard techniques for solving a linear systerh wisquare matrix.
In general, the ideal fitc,,,,, does not exist, because in addition to the gotmameters

identified by the designer there can be other patara contributing to the variability of the
actor processing time. In that case, one can expatthe linear system given by Equality (3.10)
does not have any exact solutions; this is likelipe the case because the number of equations
is (much) larger than the number of variables. E¥ene is ‘lucky’ and an exact solution for the
givent, . still exists, for another sample sequence, theag be no exact solution. In general,

placing any vector of coefficients,,, in the left part of Equality (3.10) would lead some
mismatch at the right-hand part:

=t mismatchk (311)

Therefore, in general, it is only possible to oféeconservative solution, ensuring that the
mismatch is often or always positive. To arrivesath a solution using linear algebra, one can,
for example, think of the following approach. Onancextract from the set of measured
parameter vectors a number of subsets @i+ 1 linearly independent vectors. Solving the
system of equations given by Equality (3.10) focleaubset yields an exact solution for that
subset. Maximizing every coefficient from the obtd series of solutions yields coefficient
values, such that the longer the series of solstamnsidered the higher the probability that the
calculated coefficients are conservative. Howeteis approach has no theoretical basis that
would enable the concrete estimations of that gribiba

In contrast to that, the linear regression mettsosgtandard, well studied, and it can achieve
the required results. Nevertheless, we still preseme linear regression details in order to have
a convenient way of showing how we deviate from stendard usage of that method so that
conservative values of actor-level coefficients@v&ined.

:char k [Ctry k prof k te
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The ‘standard’ use of the linear regression mettaddulates solutiore, leading to the

ry —bestk
smallest sum of squares of the mismatch. The methotgputes it as a function:

— — 8
Ctry -bestk — 'linear_regessiorl (:‘char k ’tprof k) (3 12)1

‘Traditionally’, the linear regression method ingsl selectingc, as the preferred

ry —bestk

solution, but we do not follow that approach. Aseatly mentioned, the reason for that is that

Cuy-pest 1S NOt @ conservative solution; on the contrargnsures that the underestimation and

N
the overestimation are baIanceE{g }n =0. Instead, our method obtains a statistical

n=1

mismatchk

upper bound or,, such that the mismatch is more likely to be pasjtbut not ‘too far off’, to

keep the error of our linear model under control.

As we already mentioned, we use the confidencevial® of the coefficients to achieve this
goal. To explain the meaning of the confidenceriaks, we have to consider some basic facts
about the linear regression method. In fact, limegression assumes that the measured values
t,or are samples of a variable — lets denotg, it, — that is an exact linear combination of the

parameters, but the measurements of that variable contaiandam errore In order for

errork *
our following statements to hold, it is requiredtthhe setup must satisfy a few basic general
requirements. Let us assume, for the time beirag, ttrese requirements hold and come back to
them later.

According to the theoretical results on linear esgion,c « given by Equality (3.12)

try —best

also appears to be the optimal estimate of theficeafts of the exact linear combination,
denotedc,,,., . However the exact coefficients are unlikely tegsely coincide with the

optimal estimate; they are more likely to be loddtea certain neighborhood of, _,., - Linear
regression can estimate the boundaries of sucthin&igoodc,, _eqmink N Cyy _pesimaxk SUCH

that

1< p<Q+1 = PriC y sesminid p SAC exacsed p S{C ry-besimane} pf = Pecer  (3-13)

where P7 stands for probability and Opgees< 1 is a control setting, usual set to ‘0,95 in
practice. As we see in Equality (3.13)er cONtrols the degree of confidence in the assumpti
that the exact coefficients are within the spedifireeighborhood interval from the calculated
coefficients.

Interval [c Cuy -bestmaxk ) 1S Called aconfidence intervalThe best solution lies in the

try —bestmin k
center of the confidence interval:

Ciry —bestk = (Ctry —bestmaxk T Ciry ~bestmin k)/ 2 (3.14)
The bounds of the interval can be derived basdati@obtained measurements:

— o 20
Ctry -bestmaxk ~ 'linear_regessior2 (‘=‘char k ’tprof k? pcoef) (3 15)

18 = [RT TR rRT

1:Iinear_reguessionl(B’X) - (B EB) B X

9 Note that the literature on the linear regressiden uses the term ‘parameters’ for what we calefficients’ and
the term ‘variables’ for what we call ‘parameters’.

20 This formula just indicates thagy.,est max IS derived from the measured samples; the exagtuia can be found

in the special literature on the linear regressogic.
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which also gives possibility to comput®, .« USINg Equality (3.14), but we are more

interested in the upper bound.
Our method cho0ses,, _pesmak @S the preferred solution. The question arises luat wan be

said regarding the conservativity of this choice. We already mentioned, it is the matter of
‘probabilistic’ or weak conservativity, as we named it. From the fact tit distribution of
Coacik IS SYmmetrical and from Equality (3.13), it followisat the probability of one coefficient
being conservative is(l+ p_)/2=0975(assumingoc.er = 0,95). Using the basic properties of

probability values, we conclude from that that tpeobability that all coefficients are
simultaneously conservative is betwe@875-0,025[Q, and 0,975. Thus, to ensure that even in

the worst case that probability is high, one caspkhe number of parameters small, which can
be achieved by splitting the actor body into twomore components and performing the
regression for different components separately.ittpthis in mind, we observe that in our
experiments with the video decoder that no more thiae parameters were required. Thus, in
those experiments, one can be sure that the m@&stile actor parameter function is greater than
the result of the exact linear timing model wittolpability at least 75%. Note that one can
increase the level of assurance to any requireel,|®ecausef; ... gessoe IN Equality (3.15)

supports any probability threshold (pger< 1.
As already said, these theoretical calculations lexactly if certain assumptions about the
experimental setup hold. A major assumption is thatexact linear timing model, ., exists.

That assumption is supported by an observation rirattee previous section. Namely, we have
observed that, by splitting the blocks into conftolv nodes and introducing more parameters,
the designer approaches an exact linear model. h&notmajor assumption is that the
measurements are such that the mean valug, f is 0. In fact, this requirement boils down to

the requirement that one can define a probabiiggridution for ¢ This follows from the

errork *
fact that in our case the error is bounded in iefirmnge, because the measured processing times
are limited by the actor WCET and every actor patemis also bounded. Becausg,,, is
bounded, it has a finite mean value. If that vakudifferent from zero — i.e. if the error has a
systematic component — then one can redeffing, by subtracting the systematic component

from it and the new mean value gf, ,, will be equal to zero. The next assumption inlthear
regression method is that the error valags,, in theN experiments are mutually independent.

This requirement can be satisfied in practice dsvis. Instead of selecting thé samples for
the regression from the parameters/processing timessured fosubsequentlata items of the
input data stream — which are likely to be depehadenone another — one can first collect a
much larger set of samples, and th@amdomly select from those samples a subset Wth
samples.

If the abovementioned assumptions are satisfieah there is only one requirement left that is
sufficient to make the probability estimates giabove to holdstrictly. Namely, &, should

be distributed according to the normal probabiliigtribution law. This requirement is the
strongest one and requires a special discussion.

2L This observation is based on pessimistic mathealateasoning; in practice we have not encounteneyl
influence of splitting the actor into components tbe probability of overestimation; this questioashnot been
investigated in detail, although we have witnedbed splitting the actor into components can redheemismatch
of regression.
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Firstly, the normality of the distribution law is\ly a sufficient, but not a necessary condition
for such characteristics of the linear regressienttee confidence intervals to hold strictly.
Moreover, these characteristics are known to begsibagainst violation of the normality of the
distribution law.

Secondly, according to a well-known observation @fF. Gausg, in many physical
experimental setupsg is typically composed of multiple error contribtgothat are

errork
stochastically independent of each other thus fgatgs the so-called central limit theorem of
probability theory, which states that the more swdmntributors there are the closer the
distribution of € to the normal distribution. In our measuremertis, érror contributors are

errork
blocks that have variable processing times. If cae split the blocks into multiple groups such
that each group brings a contribution that is sastibally independent of the contributions of the
other groups, then Gauss’ observation is applicddéeall that the contribution of a block is its
CCA times its processing time. One can imaginet iththe algorithm of an actor is complex
enough, its implementation can contain blocks wh@$2As and processing times are not
directly related and are stochastically independé&ttthe same time, we must admit that,
especially for smaller actors, one cannot alwaydyaauss’ observation. For example, in the
VLD actor, the parameters (and consequently, CCalf)pugh being linearly independent are
clearly stochastically dependent, because, typictike greater the number of AC symbols in an
MCU, the more bits are required to encode it.

Whether we can fully rely on probability and comdicte interval estimates given by linear
regression, needs further study and is beyonddbpesof this thesis. Nevertheless, we believe
that in many cases the major theoretical resulisigark at least as good approximations. Linear
regression is very widely used in practice and cae find many literature references on the
subject, e.g. [14].

We finish the discussion of the described linegression-based method by a summary on
linear regression, looking at our statements movenfthe practical point of view and making
additional remarks.

For the linear timing models of the actors of stmeay applications, given that the measured
sequence of parameter vect&s,, , is ‘rich enough’ in the sense defined above, trethod

can calculate two statistical boundg _peqmin« @andc Vector €, _pesmaxk 1S ChOsen as

try —~bestmaxk *
the preferred solution for a weakly conservativéinestion of the real processing times;
therefore, in case linear regression is used, theegsing time model is defined as the model
obtained by putting those coefficients into Eqya(8.8):

(Vo) =& (M) By —pesimank (3.16)

The obtained modelt(v,,n ,)is weakly conservative in the following sensepsse that
texaci (N) are the values df(v,,n Yve would obtain if each block in the actors cohtimv had
constant processing time equal to the long-runameeof processing times they have in reality.
Then,

Q.= 01..9 = 75% < Pr{t, . (n) <t(v,n)} < 975% (3.17)
which means that we stay above the exact averagegowabability at least 75%.

22 Carl Friedrich Gauss (1777-1855) is a famous Garmathematician, whose work has made a major impact
many mathematical disciplines, but also on phyaitd on other sciences.
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The worst-case probability of 75% can be incredeeahy required level below 100% if one
increasesPcoerfrom its default value ‘0,95 to a higher valueotd that although the linear
regression method allows the actor-level paranfetestion to be non-conservative for a certain
(typically small) part of actor executions, we seepractice that this is at least partially
compensated by other ingredients of our performamzdysis method. In particular, when we
step from the detailed timing mode to multi-scemdiming mode (described in Chapter 5), this
makes our timing model more conservative. Also, whe integrate the actor execution delays
to calculate the loop execution time, we see thatléss probable non-conservative estimations
in a certain part of actor executions is compeimishyemore probable conservative estimations in
the other part.

Before we complete the description of the linegression method, we mention two quality
metrics for the linear model obtained using linesgression. The first metric gives an estimate
of therelative error of the coefficientsvhich we denote asr(c). It is given by:

{C try-besmaxk} p ~{C ty-bestmink} p (3.18)

err() = max
p=1.0, +1 {c ny—bestk} p

The second metric, the so-calledefficient of determinationR?, estimates how well the
terms of the obtained linear model account forweability of t(v,,n). For example R*=99%

would mean that the actor parameters account fé 80the variability of the processing time.
If R* is small, it would indicate that one should refthe model and add more parameters to it,
e.g. by doing a more detailed control flow analy3ise formula for calculatindgR?can be found

in the literature, e.g. [14].

We applied the linear regression method to comtheecoefficients of several actors in the
MPEG-4 arbitrary-shape video decoding applicatiamning on the ARM7TDMI-based
processor. We have experienced that this methadiresqconsiderably less manual effort than
the direct measurement of the coefficients andsggg@od results, although, as one can already
expect, the obtained models are not strictly cormdgie. We performed a few experiments,
where we checked the accuracy and the conseryafthie frequency of overestimation) of the
linear model obtained from a sample of one MPE@gusnce against a few other real MPEG-4
sequences. However, we postpone a detailed repdhieoresults until Chapter 6.

3.4 Generic Multiprocessor NoC Architecture
3.4.1 Background

As we have said before, the HSDF models we proposkis thesis co-model computation
and communication. In Section 2.2, we used relatd involving bus-based communication to
introduce IPC graphs. However, in this thesis, weume architectures withetwork-based
communication, which is the main topic of this sact

D. Culler et al [18 - 81] describe a general template for multessors. It consists of
multiple processing tilexconnected with each other by an interconnectiawaork. Each tile
contains a few processor cores and local memotiethe hardware architecture and the
operating conditions (clock frequency/supply votp@f all the tiles are identical, then the
multiprocessor ishomogeneoysotherwise it isheterogeneousThe processing tiles contain
communication buffer memories — referred to simgdyuffers.The buffers are accessed both
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P — processor

M — local general-purpose memory

PrM — local producer communication memory
CsM — local consumer communication memory

Note: M, PrM, CsM can be integrated into one phglsisemory but then it
might become too expensive in terms of area/powéate one large double-
ported memory. Alternatively, one single-ported roeyrcan be used with
appropriate arbitration between the processor laaddmmunication assist
making their memory access times independent.

Figure 3.6 Architecture template

by the local processor and the network. Each fike 4o small controller, calledcammunication
assist that performs buffer accesses on behalf of thever&. Many embedded MP-SoCs
implemented on silicon, e.g., Daytona [1], AxPe][8rophid (CPA) [84], Cradle [17] and
HIJDRA [8], [7], fit nicely into this general template.r&lle, Prophid and BDRA are
heterogeneous platforms, whereas AxPe and Daytenacanogeneous.

Among these architectures, Prophid andOfRA are the most interesting ones for us, because
they use a packet-switched communication network provide performance guarantees for
hard real-time tasks. Prophid contains applicatiomain-specific processors communicating
through a switch, based on a time-division multiglecess (TDMA) scheme, enabling
guaranteed-bandwidth communicationJBRA uses multiple switches, referred to rasiters
joined in a certain topology. In Prophid andJBRA, different tasks running on the
multiprocessor communicate with each other usiyge®onous message passing, meaning that
processors synchronize based on the availabilityatd in buffers. Message passing introduces
the buffer overflow issue, which is solved usingiad of end-to-endlow control We reuse
some ideas of the Prophid antBRA architectures in our architecture template.
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3.4.2 Architecture Template

The MP-NoC architecture template adopted in ourkw®ishown in Figure 3.6. We focus on
defining the issues important for the mapping flamd IPC graphs introduced in the rest of this
chapter.

The interconnection network in our template is twvieek-on-chip (NoC). Each processing tile
is ‘plugged’ into the network through a producerkliand a consumer link. The link names
illustrate that the processing tile produces datame link and consumes data on the other link.
The NoC offers unidirectional point-to-point contiens. The connections must provide
guaranteed bandwidth and a tightly bounded propayatelay. The connections must also
preserve the ordering of the communicated data.details of the NoC implementation (e.g. the
architecture of the network router) are not impatreand not exposed in this template.

An example of a NoC providing these properties BHAREAL [81], [30]. It uses the TDMA
scheme, for which efficient implementations of thetwork routers are possible. Note that
several other schemes ensuring guaranteed perfoemarcommunication networks exist in the
literature, but we are not aware of any of themitgbeen implemented so far in the context of
NoCs. The choice of the particular scheme doesnfloence the main idea and the structure of
the timing models we present in this chapter.

To keep the processing tile simple, we assume onky processing core (denoted ‘P’ in
Figure 3.6) per tile. In future work, our desigajéctory can be extended to support multiple
processors per tile. The local memory layout caostdinree blocks: the general-purpose memory
(‘M") for processor instructions and data, the proelr communication memory (PrM) and the
consumer communication memory (CsM). PrM and Cshehaorts for the processor and for the
communication assist.

Connectionsare the key logical elements for the implementatacd the communication
channels. Recall that the latter are the basic camwation entities of applications. The
communication channels that make use of the NoGrameaged by the communication assists.
Each channel connects two different processing tidad transfers data in one direction. A
communication channel is implemented bgraducer buffer adata connectionaflow-control
connectiorand aconsumer bufferThe buffers are located in the communication messqPriv
and CsM) at different sides of the channel. Evérgnmel pumps data from its producer buffer to
its consumer buffer through the data connectiorer{Exommunication assist can run multiple
channels concurrently. The example tile in Figu@ Bas three incoming and two outgoing
channels. (Note that, in the literature, the usafyjéerms ‘connection’ and ‘channel’ can be
different, even opposite to the usage adoptedisrthiesis.)

For our timing models to be valid, we require thlaé following memory accesses be
independent:

1) the processor and the communication assist sese¢s PrM and CsM,;
2) the communication assist accesses to PrM aktj Cs
3) the accesses initiated by different channelsutjin the same PrM/CsM port.

In this context, with ‘independence’ we mean that variation of the access time due to
contention (if any) is sufficiently small. Requirent 1) is achieved by using a dual-ported
communication memories and requirement 2) is aeldewy making sure that the
communication assist can access both those memsinadtaneously. Note that we do not
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necessarily demand that the memory layout be gxttedl same as in the figure, as long as the
independence requirements are satisfied. Require@eran be satisfied if an appropriate
arbitration scheme is used for the PrM/CsM porte Wélieve that this can be achieved at a
reasonable cost. Working out the details of suchadnitration scheme is a subject of future
work. Note that recent publications of Arno Mooneinal [61], [62] motivate the use of a
communication assist as mediator between a lo@degsor memory system and the on-chip-
network. They investigate a concrete arbitratidmesee for PrM and CsM accesses and show the
advantage of PrM memories for the multiprocessofop@mance due to the decoupling of local
memory systems of on-chip processors from the m&ka@n-chip communication medium.

The communication of a data token through a comopaiimn channel is realized as follows.
First, the processor at the producer side put&entinto the producer buffer, where it waits for
the tokens in front of it (in that buffer) to deparhen, the local communication assist transfers
the token into the producer link. Due to limitechbevidth of the data connection, this operation
takes a certain time to execute, which we calaasfer delay(d ). In the remainder, we

often use the wordransfer to refer to the activity of pushing the data tokieom the producer
buffer into the network. In that sense, we may &t the transfer delay is a delay of one
transfer. Note that the term ‘communication traristee introduced in Section 2.1 is more

extensive, because it also implicitly includes dineval of the data token in the consumer buffer.
The exact value ol depends on the NoC implementation. In an idealort

transfer.

transfer

dldead = Zioker! Beonn (3.19)

transfer

whereBconn is the bandwidth of the connection in bytes pa&oed andzgken is the size of the
token in bytes. Recall from Figure 3.1 that we calich a relationship between the
communication delays and the data token sizesdhenunication delay relation

In a real network, the transfer delay also inclutiesmedium access delay, which depends on
the scheduling mechanisms used in the network refive multiple data packets competing for
the same link. Because we deal with real-time appbns, we choose to restrict ourselves to
networks providingtiming guarantees i.e., supporting guaranteed upper bounds on the
communication delays. Just as in the case of tlecegsor scheduling, to ensure the
independence of the timing behavior between diffehannels of different applications, we
require that the data transfers in the network eotians be also scheduled using budget-
provision techniques. For those techniques, byoayaio Equality (3.1), we can write:

dtransfer = ZOken/ Bconn+ qconn (320)

whered,,,, is a worst-case degradation of connection delaypeoed to ideal delay.

Equality (3.20), although being true for any budgetvision network scheduling, is not
always the best way to express the transfer defaypractice, because, by analogy to
Equalities (3.4) and (3.5), tighter bounds can lmaioed by using knowledge about the
particular scheduling method involved.

For the practical examples on the computation ef dbmmunication delays, we use better
upper bounds that hold for theTAEREAL NoC of [81]. That NoC uses TDMA scheduling and
therefore an upper bound on the transfer deldy. . can be expressed in a way similar to

Equality (3.4):

sfer
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(3.21)

transfer

dUE) < D +|7 ‘| HTT/E _TBconn)

Bconn
whereZ is the size occupied by the token on a netwolilk Ihis the transfer delay that the token
would experience if it could use the whole link Bamdth without sharingiT, is the total

time that is dedicated to the transfers of the migennection per one TDMA period on every
link along the connection path. All three symbolghw'/’ in the subscript are network
constants, namely¥ .. . is the data granularity of the network (the sizgmmitive packets),
T,z is the TDMA periodB, .- IS the bandwidth of a network link, which is theximum

bandwidth one processing tile can use in one dinect

The essential idea for the upper bound on the feankelay in Formula (3.21) is to add the
delay that the token would experience if it coukk uhe whole network link B — with the
worst-case time the token has to wait for the TDBAts. Note that the formula f@ does not
include any packetization overhead (headers), lsectfue guaranteed-throughput connections
described in [81] do not need headers, becausedteepased on circuit-switching, where the
routes followed by the packets are pre-programnmethé network routers instead of being
derived from the packet headers.

For our examples, we assume that the router ru#A8GNHz (20% slower than the 500-MHz
clock reported in [81]), using the link bit-widtté bits (two times less than reported in [81]) and
the primitive packet size 6 bytes (also two timess). We also assume that one TDMA period
takes 768 router clock cycles (the same as reportgl]). The reason we scale down the router
performance is to achieve comparable computatiehcammunication delays in our examples,
where we use the ARM7 processor architecture.iflimportant network constants that we use
in practice are summarized in Table 3.1.

The transfer delay is not the only delay experidrimg a data token in the network. Between
the departure of a token from the producer buffet @s arrival at the consumer buffer there is
another activity taking place: the ‘tail’ of thetdaoken should propagate through the network.
The propagation delay is called thatency of the network connectiond(,,). In the

AETHEREAL network, every connection follows a fixed pathotilgh the network and the latency
is a constant proportional to the number of routdoag the connection path, ...

(/) —
dlatency - Irouters IjjROUTER—»‘E (322)

where d;o rer e IS the latency of one router, anotheTHEREAL network constant, equal to the

duration of three clock cycles of the network clo@kor readers familiar with the PTHEREAL
network, it is appropriate to mention that we acttofor the network interfaces as routers
because they are equivalent to the routers fronatkacy point of view.)

Summed withd the latency gives the total delay of a networkretion. The reason to

transfer?
separate the transfer delay from the latency idabethat the subsequent transfers on the given
connection can only execute sequentially one aftether, whereas propagation of subsequent
data tokens through the network is pipelined and t@ke place concurrently. Later in this
chapter, we take this difference into account i@ HSDF subgraphs that model the network
connections.
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Table 3.1Network constants used in this chapter
(2x smaller link and 20% slower clock w.r.t. [81])

Notation Meaning Value
Tie TDMA period of the network routers 1.9
Bk & Link bandwidth in one direction saf byte/s
drouter £ Latency per router 7.5ns
Z i Network data size granularity 6 bytes
Buin-ze Network bandwidth granularity 3.178° bytels

The other part of the network channel behavior thathave to consider here is tfiew
control mechanismwhich helps to avoid consumer-buffer overflow. foplement the flow
control, the communication assist at the produdee &eeps a (pessimistic) counter of the
number of free placesredity in the buffer at the consumer side. The dataridkansfers are
blocked when that counter reaches zero. The coustdecremented whenever a new token
departs into the network. Every time the processdhe receiving side frees one or more places
in the consumer buffer, it triggers a credit padkebe sent back to the sender through the flow-
control connection of the channel, and the crealinter is incremented accordingly.

Because the network connections provide a guardntpper bound on the communication
delay, we can bound the time interval it takes leetwthe moment when the consumer frees up
some space in the consumer buffer and the time weenredit counter is updated. We call the
upper bound on that time interval tbeedit delay and denote d It is important to note that

credit *
the credit information propagates through the ¢tredinnections that can be of the same type as
the data connections. However, to transfer theitsratlis more efficient to follow different rules
from those used for the data tokens. If at a aertedment of time, in a certain connection, there
is a credit waiting to depart into the network ambther credit is produced, the new credit does
not have to wait in a queue until the earlier tokkparts, it can just be added to the earlier
credit. Every network packet of the flow controhoection carries a value equal to the number
of tokens that were added to the credit duringtithe that the packet was waiting for departure.
Thus, subsequent credit transfers occur concuyreiti important conclusion from this is that
there is no need to split the credit delay intogfar delay and the latency.

In the AAHEREAL network, it would take at modt, . time for a credit to depart and exactly

d“® for a credit to propagate through the network biokn the consumer of the channel to

latency
the producer. Therefore,
déft)jit s TTﬁE + Irouters |]:lROUTER—/CE (323)
At the end of this subsection, we would like taadiuce one more network constaBf, . -

the bandwidth granularity or the indivisible unitlmandwidth in the ABHEREAL network. The
finite bandwidth granularity can be explained afofes. The TDMA period is divided into 256
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slots [81] and the time dedicated to a given cotioeds allocated in terms of integer number of
slots. ThereforeB = B .z ! 256.

min-/&

3.5 Intra-application Mapping: Computation Phase
3.5.1 The Goals of Studying the Mapping Flow in tls Thesis

In the previous sections, first steps were madeatdss the final goal of this chapter, the
construction of the IPC graphs, used for our rametiperformance analysis methodology, in
which the main contributions of this thesis resiteSections 3.1-3.3, we have characterized the
computation actor delays using the actor paranmfetsrtions, and this characterization is an
important part of our methodology, because we b$e ¢haracterization to model the actor
delays at design time and at run time. Finally,Saction 3.4, we described the platform
architecture that is supported by our IPC graphs.

To explain how the IPC graphs are constructedhis $ection and in the next section we
study the intra-application mapping flow. This fl@tvives to minimize the resource usage under
a minimum throughput constraint. It is importanstoess that, in this thesis, it is not our purpose
to propose or compare any mapping algorithms. Tam mpurpose of this study is to show how
the initial HSDF model of the application — i.eetkomputation graph — is being gradually
transformed by the mapping flow, through intermeglimodels, into the final model — i.e. the
IPC graph. Although we consider the mapping flopshby-step, we mainly focus evhatevery
step has to do and how that goal is reflectedeénintermediate HSDF model. The questimw
an optimal or efficient solution can be achievee\ary step is beyond the scope of this ti@sis
Although it is not our goal to give answers to thigestion, we also show that our HSDF models
are not only product of the mapping flow, but adsperformance analysis tool that the flow can
use to direct the mapping decisions towards atbgttality of results. The novel component here
is the usefulness of the HSDF modeling techniquesttie buffer capacity minimizatiorior
NoC-based platforms.

The paradigm of updating and analyzing the inteiatedgraph-theoretic model of a real
design object to support the design decisions eli-recognized paradigm in the field of
electronic design automation (EDA). The tools fagit synthesis and physical synthesis exploit
so-called timing graphs, which provide an intermagalitiming model of the digital logic design,
being updated in conjunction to the modificationad® in the design by the design flow and
being used to guide the decisions made in the fldwe. idea to use some sort of a ‘timing graph’
for the multiprocessor mapping of streaming appilices is less widely known, although it is
advocated and thoroughly researched, originall8} and [5]. In that original work, the focus
has been limited to bus-based multiprocessors.rbhatek extends the idea of using graph-
theoretic mapping analysis models to the netwodedamultiprocessors. Examples are our
publication [75], the work of Sander Stuijk, e.90], and Orlando Moreira, e.g. [65]. As already
mentioned, our contribution mainly lies in the larftapacity minimization for NoC platforms
and the HSDF-based modeling techniques that engdalph-theoretic formalization of that

% Note that the applicability of the performance naet proposed in this thesis does not depend oartbeer to the
question how to achieve optimal results at everppity step, because the analysis can be appliealgquell for
efficient and inefficient solutions.
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problem. This formalization results in the ability find bottlenecks in the given mapping
solution. This ability can be used to develop tigeaoptimization algorithms.

The study of the intra-application mapping flow spawo sections of this chapter, namely,
this section (Section 3.5) and the next one (Se@i6). By the end of the next section, it should
become clear how our IPC graphs are constructed], a&ter that, in the next chapters of this
thesis, we can proceed with the performance amabfsthe given IPC graph. A more detailed
analysis of related work is postponed until the ehthis chapter (Section 3.8).

3.5.2 The Structure of the Mapping Flow

We illustrate the trajectory taken by the applima HSDF model in the course of the intra-
application mapping flow by means of a hypotheteample flow, which we call thereferred
mapping flowWe base that flow on a mapping flow proposed bgyRLauwereingt alin [49],
because it was devised for a similar applicatiomaioa and for a similar type of multiprocessor
platforms. We refer to the latter flow as tiederence flow

Figure 3.7 shows an overview of both the referefftme and the preferred flow, the latter
being shown in the context of our overall implenagioin trajectory that we introduced in
Sections 2.1.2 and 2.3.4.

As we see from the figure, we split the preferreavfinto two sub-phases — the computation
phase (studied later in this section) and the comation phase (studied in Section 3.6). The
computation phasdocuses on the computation part of our implemana¢nhanced HSDF
model. It means that it primarily makes decisiobswt the computation actors and processes,
striving to minimize thgrocessingesource usage under the throughput constraimebyethe
minimization of the communication resource usagesé&en as a secondary goal. The
communication phastcuses purely on minimization of tlt®emmunicatiorresource usage in
the context given by the computation phase.

Recall that — as also shown in Figure 3.7 — aval leigher than the splitting into sub-phases,
our implementation trajectory divides the mappimgcess into two stages, namely, the intra-
application mapping stage and multi-application piag stage. This division constitutes a
considerable difference of the preferred mappiogs/ffrom the reference flow. As explained in
Chapter 1, the division into stages is also donesame related work and it is necessary to
support dynamic starting and stopping of differapplications in different combinations at run
time. In the context of the intra-application maqpistage, the division into stages means
postponing some optimization decisions that therezfce mapping flow would consider at once.
As explained below, some optimization decisions postponed until the multi-application
mapping stage, which is performed at run time. éligh, in general, dividing the optimization
solvers into several stages may lead to suboptiemllts due to phase coupling between the
stages, in our case, it is a necessary price fppating dynamic run-time combinations of
different applications.

As shown in Figure 3.7, the reference flow starighva preparatory step, the ‘resource
estimation’, which corresponds to Application Pmgp@an in our implementation trajectory,
because its main goal is the same, namely, thelagilen of typical actor delays. Therefore, the
figure reflects the correspondence between thosesteps in the different flows.

In the preferred mapping flow, after the ApplicatiBreparation, follows the first step of the
intra-application mapping — th@ocessing assignmerithe goal of the processing assignment is
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considered in Sections 3.2 and 3.3
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Figure 3.7 Overview of the mapping flows

to group the actors that go to the same procesiingf the NoC-based architecture, and then to
subdivide every such group into sub-groups of actibat go to the same process. We study the
processing assignment in Section 3.5.5.

The reference flow also has the processing assighstep; and it also groups the actors that
go to the same process together. However, unlietbferred mapping flow, the reference flow
also placesthe groups, i.e. assigns them to the physical gsms. In our trajectory, the
placement is postponed until the multi-applicatiapping stage, and we refer to it as tihe-
time placement see Figure 3.7. The term ‘placement’ in thisteenmeans selecting a free
processing tile in the sub-array of the processieg that have an equivalent type. Note that if
the multiprocessor platform is fully heterogeneceus.e., if any two processing tiles have
different types — then the placement is not needed.

In our preferred flow, the second step is dndering which orders the computation actors in
every process. The reason why we put this step diratedy after the processing assignment is to
ensure that the ordering comes before the commtimicgphase of the flow. This is a
prerequisite for us to be able to demonstrate Hefulness of our HSDF modeling techniques
proposed in Section 3.6 for the communication preas# in particular for the buffer capacity
minimization, as promised above.
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In general, whether the ordering should go befoeecommunication phase or the other way
around is an important decision when one developgpping flow, see e.g. discussion on this
subject in [13]. In the reference flow, the ordgristep is done after the buffer capacity
minimization — see Figure 3.7 — and in our preférfiew it is the other way around. Both
approaches are worth considering when one developapping flow, but it is beyond the scope
of this thesis to analyze and compare differentpmapapproaches. No matter which approach
is chosen, one can obtain in the end the IPC gtiagthmodels the results of the mapping and
that can be used for the run-time performance armslynd we use the preferred flow as an
example of how that can be done.

As we see in Figure 3.7, both flows perform somapstfor optimizing the communication
between the processors. Under the ‘routing’ in tieérence flow, one understands the
assignment of the computation graph edges to ttveonle channels, calculation of the required
network bandwidth, finding the physical routes tigh the communication network to realize
the communication channels and allocating commuicaesources on every network router
along the route to actualize the calculated physmaes (in the case of TDMA scheduling, this
means allocating the TDMA slots for the packetg thlhow the routes). In our implementation
trajectory, the calculation and actualization cé fhysical routes are postponed until the-
time routingstep in the multi-application mapping stage. As tlee assignment of the graph
edges to the network channels and the requiredamktbandwidth calculation, this is done in
the ‘communication assignment’ step, which is péthe communication phase of the preferred
mapping flow, studied in Section 3.6.

This completes our introduction into the structafehe mapping flow. In the remainder, we
first present some preliminaries for the mappimyvfland then visit the mapping steps one-by-
one in more detail.

3.5.3 Preliminaries: Virtual Tiles, Budget Descripbr, Local Channels and Network
Channels

Before describing the intra-application mappingMlave have to introduce the data structure
used by the flow to assign budgets to processeslnthels — namely, the budget descrif@or
That abstraction is based on a concept that is rirmpbfor our two-stage mapping approach —
thevirtual tile. Let us introduce the virtual tiles in this sulisat

At the intra-application mapping stage, the proessare not yet assigned fhysical
processing tiles, but they are rather grouped beganhto groups, called virtual tiles. Processes
belonging to the same virtual tile have to be mapgterun time to the same physical processing
tile. For example, in Figure 3.8, four processes stitown communicating via three channels.
Processesp,and p, have to be mapped to the same physical procebscguse they are
assigned to the same virtual tile. The same hdsdsfar processeg, and p, .
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Figure 3.8 Virtual tiles, processes, channels and resourcgétad

The reason to introduce virtual tiles is as followa the highly dynamic run-time
environments where the set of active applicatidrenges at run time, it is not efficient to bind
the processes of applications to the physical mressuat design time; it is much more efficient to
assign a physical processor at run time, baseti@processor availability at the moment when
the application starts. However, to assign buddetsthe processes and channels, some
information about the physical processing tile ttabe known at design time. This information
is encapsulated in the virtual tile. At run timbe tmulti-application mapping module decides
which physical tiles implement the virtual tiles.

A virtual tile tells, first of all, thgprocessor typewhich should be one of the types available
in the target platform. The type of a virtual tileay be for example an ‘application-specific
processor (ASIP) optimized for performing the deter Fourier transformations’, or a ‘RISC
processor of a certain architecture such as theSMRBO0O0™ or ARM7TDMI™ series’ (like
tile, in Figure 3.8), or ‘a DSP processor of a certashigecture, e.g. a representative of the
TMS320™ series’ (like tilez, in Figure 3.8), etc. If the target platform congionly one

processor of the type specified in the virtual, tileen assigning a process to that virtual tile
would mean an indirect assignment to the physicatgssor. However, if the target platform
contains multiple processors of the same type, #ssigning a process to a virtual tile of that
type would still leave the choice for a specificypical processor to the run-time multi-
application mapping module. In the extreme casaell iphysical processors have the same type
(in case of a homogeneous multiprocessor) thewiréial tiles must necessarily have that type
as well and the type information does not play antg in process-to-processor assignment.
Secondly, the virtual tile gives the numerical eswf thelocal run-time scheduler settings
that are expected from the physical processing HIeTDMA scheduling is used, then the
settings include only the TDMA perio@, , measured in seconds. For example, the run-time
scheduler settings for the tiles in Figure 3.8 Bre= 2msfor tile 7; andT; =3ms for tile 7, .

During the intra-application mapping flow, the vl tiles are treated as if they themselves
were the physical processing tiles. The processepmpcessing cycle budgets in terms of the
processor clock cycles of the virtual tiles. Reda Figure 3.1 that the process budget directly
influences the delays of the actors containedémptiocess. From the discussion in Section 3.1.3,
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it follows that in the case of TDMA scheduling, thedget and the TDMA period@, imply the
size of the timing slotT, and the latter can be used to calculate the adétay using

Equality (3.5). Thus it is the information aboué throcessing clock cycle budgets on the virtual
tiles that we referred to in Figure 3.1 as ‘budgétrmation’ and that is used in the computation
delay relation for the performance analysis. Fraw on, we use notatioP(p) for the budget
of proces®. In the example of Figure 3.8P(p,) =40 Mcycles/s

The process assignment to virtual tiles is impdrtert only for the computation budgets, but
also for the communication budgets. The processggraed to the same tile share the same local
memory system, so they do not need the on-chip aamuation network to communicate with
one another. A communication channel that joins psacesses belonging to the same tile is
called alocal communication channebuch a channel does not involve the communicatssist
and the producer/consumer buffers — the architacelements we have seen in Figure 3.6. It
uses one FIFO buffer directly accessible by bo#h phoducer and the consumer. The only
budgeting required for such channels is the buftgracity, denoted, .., measured in data
tokens. For example, in Figure 3.8 the channel &etwprocesseg, and p, is a local channel
because both processes are assigned to the samg .tiThat channel has a buffer capacity of
two tokens.

The communication channels whose producer and cosrsare assigned to different tiles use
the network-based communication infrastructure udised in the previous section. We refer to
those channels a®twork communication channelheir budgets include:

1) the producer buffer capacity, denot@g,, .. and measured in data tokens,
2) the consumer buffer capacity, deno@g ..., and also measured in data tokens,

3) and the network bandwidth for data communicatB®, in bytes per second.

To summarize what we have considered so far insthiisection, we can say that the resource
assignment and resource budgeting information asasiterized by the set of the virtual tiles, the
processing cycle budgets and by the communicatiodgéts, the latter including the
communication bandwidth and the buffer capacitil.this information is encapsulated in
budget descriptoB , as defined below.

Definition. A budget descriptor B of a given implementation-enhanced HSDF ma@éiQ is

a tuple < T, Ty e, Tochea Pr » BP: Qprogbufters Qeonsbutier: Qouers BQ >, Where T is a set of virtual tiles,
Type 1S @ function that for virtual tiler specifies its processor typé;., is a function that for
each 1 specifies the run-time scheduling settings for pihecessor contained im; P, is a
function that for each procegsspecifies the virtual tile that rups BP is a function that for
each procesp specifies its budget, in processor clock cyclessgeond;Q, . puerr Qeonsbutrers
that specify the
corresponding characteristics of the channel. Hocal channel, the producer/consumer buffer
capacities are defined as zero, because no sudbrdaire used in those channels, and their
bandwidth is defined as infinity, because the dgg#s from the producer to the consumer
instantly:

q isalocaIChanneb Qprod-buffer(q) = Qconsbuffer(q) =0 ' O < Qbuffer(q) < too ' BQ(q) =+,

Quuer @nd BQ are functions of the communication channglQ

comm
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Here, Q, ., Can also be set to infinity to model the situatidmen the buffer capacities are large

enough to ensure that the computation actors nd@eek due to full output channels. As for a
network channel, it does not have a buffer thaally connects the producers and consumers, so
the local buffer capacity is set to 0. The sizeghaf intermediate buffers and bandwidth are
either assigned a finite positive value or infinitp the latter case, the communication cost
through the network is being ignored. Therefore came write:
gis a network channeb
0 < Quroabufter(A) £ 00, 0<Qupneputrer(A) < +00, 0<BQ(Q) < +0, andQ, ., (q) = O

Recall from Section 2.1.2 that the budget desaripgoan element of a tuple defining the

implementation process networRQ =<P, Q,V, . 1.q,,B >. As it follows from the definition

given above, the role of the budget descriptoo igroup the processes i into the virtual tiles
and to set the budgets for the processd3 and for the communication channelsQg,.., 0 Q.

3.5.4 The Computation Graph and the Initial Performance Estimates

The mapping flow starts from the computation graRbcall that in the computation graph
there are only computation actors, and there im@to-one correspondence between each
process and an actor, each sequence edge andeacktainel, and each data edge and a
communication channel.

Figure 3.9 shows an example of the computation lgrap the JPEG image decoding
application, the same application from which we ktoactor ‘VLD' as an example for
determining the actor parameters in Section 3\&2.use that application as the main example
for the rest of this section. The purpose of thianaple is to demonstrate already in this section
that our methodology can be used for ‘real-lifedlgems.

One iteration of the loop of interest of the apgiion decodes one minimum coded unit
(MCU, 16x16 pixels). In any computation graph, toenmunication channels transfer one token
per iteration. In our example, all the communicatathannels assume the same data-token type,
an 88 pixelblock One MCU consists of six blocks correspondingiftecent positions within
the MCU in different color planes.

For clarity, the actors in Figure 3.9 are organizedcolumns and rows. The columns
correspond to processing stages and the rows pormrdsto the six blocks of an MCU. The
blocks undergo three processing stages: variabtggHedecoding (VLD), inverse discrete cosine
transform (IDCT), and scaling (SCALE), before thase fed into a color conversion stage
(COLOR). The VLD actor has a self-loop state chanhat is introduced there because each
new iteration of the VLD actor needs the previdigsation to complete in order to know the
position in the input bitstream where it can stéth the decoding.

In the computation graph, it is assumed that ewetgr/process gets 100% processor budget,
therefore each actor/process is assigned a sepatatd tile. The processor architecture type of
the tile is chosen such that the processor cacdilpiexecute the functionality of the given actor
with the least delay. Because 100% budgets arendivahe actors, the typical actor delay is
computed as the ratio between the typical actorcgssing time on the given processor
architecture and the processor clock frequencyuinapplication example, we assume that the
ARM7TDMI running at 133MHz is the only processoclhitecture type available in the target
platform (a homogeneous multiprocessor). We asstina¢ the application’s real time
constraints are not hard but soft so that the dgpidelays can be interpreted as ‘average’ delays
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Figure 3.9 Computation graph of the JPEG decoding application

(see Section 2.3). Therefore, for the VLD actor,hvael to obtain average values of each of the
three parameters of that actor and then use theagumlity (3.7). As a result, we obtained the
typical processing time of the VLD actor of 60 kijeles (visually, in Figure 3.5, this value is
also close to the average value). For the clocguigacy of 133 MHz, this yields a delay of
approximately 45@us, which we use as the delay value for that aea®shown in Figure 3.9. As
for the other actors in this computation graphoélthem have zero parameters, so their typical
processing times are equal to the correspondingr adefficientsC, ,, calculated using the

direct measurement approach described in SectBbriNate that for the IDCT actor, as for all

the other actors in Figure 3.9, we report the tesidr the ARM architecture, although some
embedded processor architectures can implemenb®€ operation much faster than the ARM

processor. If we had assumed in this example thatt an architecture type would have been
available in the target platform, we would havedudes IDCT delay of that architecture type in

the computation graph in Figure 3.9.

As for the communication costs, they are ignorethiatpoint of the mapping flow. Until the
final processing assignment of actors to the pseEesnd processes to the virtual tiles is done,
the communication resource requirements cannosti@ated accurately anyway. The preferred
intra-application mapping approach first focusesemsuring that the computation part of the
implementation meets the performance requiremends then it can accurately estimate the
computation resource requirements that should lebynthe communication infrastructure. This
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separation of computation and communication corgerseen as important for the future NoC-
centered multiprocessor on-chip architectures [31].

This enables the initial abstraction of the comrmoation channels by HSDF edges — the data
edges of the computation graph. In the computajiaph, all the communication channels are
assumed to have unlimited bandwidth and unlimiteffielb capacity. Because the edges in HSDF
graphs have no intrinsic delay and can carry ammiteld number of tokens, it is valid to
represent each communication channel just by ote etdge until the mapping flow starts the
communication assignment, whereby the communicdt@mdwidth and the buffer capacities are
determined.

The computation graph allows to obtain the bestoperance estimated, . , or the typical
throughput of any implementation of the given agggiion on the given target platform. Indeed,
in the computation graph, the computation actoes assigned the best possible processor
resources that the target platform can offer, \whlh assumption that the platform can provide a
separate physical tile for every computation acod communication costs are ignored. It only
makes sense to start the mapping flow if the besughput the platform can offef, ., is not

max?
less than the required throughp@l;, ... < 6,...- The difference(8,,,, = G.q.ea )caN be seen as a

slack that can be exploited by the intra-applicafiow to relax the high resource demands that
are assumed initially for the actors of the compotagraph. If the slack is negative, then either
the application QoS/performance requirements haeetdowngraded or the target platform has
to be upgraded.

We derived,,, from a throughput estimate that is useful forwele computation phase of
the mapping flow. The estimate is based on thécalitycle of the HSDF graph (i.e. the cycle
with the maximum cycle mean) and the critical pes;e.e. the process with the maximum total
actor execution delay).

Definition. Throughput estimate (for the computation phase of the mapping flow)
z(G)

ma{MCM(G),n’JD%x Zd(v)j

VOVP(p)

6(G) = (3.24)

whereMCM(G) is the maximum cycle mean of gra@n d(v) is the static actor delay assumed
in the typical delay timing mode, depending on phecessor typeVP(p) is the set of actors
assigned to procegs and z(G) is the (constant) amount of information the loopimkrest

communicates to the implicit external memory budfefBecause we do not explicitly model
external communicationz(G) is not present in our model, but it can be providsdan extra

annotation.»

In the computation graph, every process contaistsgoe actor, so the maximum total process
delay can be replaced by the maximum computatitor delay, and we get:

. : z(G)
G isacomputatimm graph 6_.=6(G)= { \ 3.25
p graph= 6., =6(G) maAMCM(G),mmexd(v)) (3.25)

Equality (3.25) can be proven to be an optimistice- maximal — throughput estimate as
follows. In the denominator, we have a lower boondhe typical iteration interval. The MCM
of graphG — where actors have typical (i.e. average) delay a lower bound on the typical
iteration interval, according to Formula (2.10).séAlany actor delay is a lower bound on the
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typical iteration interval, because, in the finalplementation, the subsequent executions of
every computation actor occur sequentially. Thus tenominator of the expression in
Equality (3.24) is the maximum of the lower boumalsthe iteration interval, thus being itself a
lower bound. In the final implementation, the grapannot execute faster, because the
transformations applied to the graph by the mapfiowg respect the actor dependencies defined
in the computation graph and because, the actonsotayet processor budgets that are larger
than the budgets assumed in the computation graph.

Note that often, when reasoning about the througlepustraint, instead of directly using
Bequired WE USE\alowed 1.€., the maximum allowed average iteration waeimplied from the
throughput constrainfajowed = Z(G)/ Bequired

In the example in Figure 3.9, we see tiéat, is one MCU per 67fs, or 1477 MCUs per

second. Now, let us assume tiéaf, ., is 1000 MCUs per second, or one MCU per 108(@i.e.

Nalowed = 1000ps). A single ARM processor cannot meet this recuoéet, because the sum of
the typical delays is 1823%s; therefore a multiprocessor is required. Thenogtition steps of
the mapping flow considered in the next subsectians needed for efficient use of a
multiprocessor platform. The final goal of the memgpis to issue an implementation process
network of efficient structure and with efficienidget descriptor. This implies that the purpose
is to generate a structure of the same type asrtbeshown in Figure 3.8 taking the computation
graph as the starting point.

3.5.5 Processing Assignment and Ordering

In this section we consider both steps of the cdatmn phase of the intra-application
mapping flow — the processing assignment and tderorg. In terms of our implementation-
enhanced HSDF model, those two steps finalizehall@lements related to the processes and
processing tiles, leaving everything related todbeymunication channels to be finalized later in
the mapping flow. At the start of the mapping floour model is configured for the maximum
usage of processors, but the steps describedsirstinisection strive to ensure that the processor
resource usage is reduced as much as possible, thbithroughput constraint — evaluated using
Equality (3.24) — is still satisfied.

For convenience, we present all the tasks to bee donthe processing assignment and
ordering steps as a sequence of five sub-stepsiexem a certain order, although in a real flow
these sub-steps can be done in a different ordém parallel. For us, it is only important to
mention all the optimization problems to be solsdhe flow and to show their relationship to
our HSDF-based model. We do not intend to desaihél mapping solution or to point to any
in the literature; we only justify our flow discusss by the fact that similar mapping problems
are discussed for the reference flow in [49] amd,the related work on mapping of the
applications to the multiprocessor systems on chuph as [90] and [66]. The only place where
we do claim new insights in the mapping flow is théfer capacity minimization; however, this
exception refers to the communication phase ofntapping flow, being described, in the next
section. In this section, we do not claim any naesilts, as our reasoning is to a large extent
comparable to the reasoning in [83]. An exampla afapping approach that proposes solutions
to some relevant optimization problems in the compon phase of the mapping flow is
presented by Sander Stugkalin [88], [90].

The sub-steps of the computation phase of our peefenapping flow are as follows:
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1) (partitioning into tiled DetermineT , i.e., the final set of virtual tiles and paditithe set
of actors between the tiles. Because at this ghatactors still correspond one-to-one to
the processes, this step, in fact, modifies thepmmapof the processes to the tiles, denoted
in our model as functio®, (p) (in the budget descriptor). Assign a processohigecture
type and run-time scheduling settings to everysirtile in setz; i.e. define finalTiy,d 7 )
andTsched 7) (in the budget descriptor).

2) (partitioning into processgdn every tile, lump the small one-actor processés larger
processes, thus effectively partitioning the sétaabors assigned to the same virtual tile
into subsets YP(p) (in the definition of the process) — containthg actors assigned to
the same processin the final implementation.

3) (the budget assignmgrissign a final budget to every process, i.e.ingefunctionBP(p)
(which is included in the budget descriptor).

4) (computation actor orderirjgFor the processes that contain more than one, ai#oide
on the ordering of the actors within the process., idefine functiorvp(p) (which is
included in our definition of a process).

The first sub-step — the partitioning of the actbesween the virtual tiles — has the largest
impact on the end result of the mapping. Therefitis,sub-step gets the most of our attention. It
decides how many processing tiles will be usedhgyapplication, which tiles execute which
actors, which processor architecture type eveeyhds (for heterogeneous target platforms) and
how the local scheduling is organized in every. fllkis step also indirectly decides which tiles
communicate with each other via the network, besa#uhere is a data edge between two actors
assigned to different tiles, then a network chamateded to implement that data edge.

The main rationale of this sub-step is to alloeedew virtual processing tiles as possible and
to distribute the actors between the allocatedgssiag tiles such that no tile gets a load that is
larger thamn\aiowed ({1 — O margid7)). Hered margi(7) is the — set by the designer — tile-specific
fraction of the processor clock cycles that is nes@ to compensate the scheduling overhead, for
the processor budget of the other applicationsfanthe idle processor cycles due to possible
inability of the later steps of the mapping flowfiod such a scheduling that every processor
resource is kept busy for 100% of the allocatedcgseor budget. Théoad of a virtual
processing tile is defined as the sum of the exacudelays of all actors assigned to the tile,
whereby for the load calculation we use the dethgs assume no run-time scheduling, i.e. the
delay is a ratio between the actor processing éintethe processor clock frequency. Note that in
a heterogeneous multiprocessor the contributiothéoload of a given actor depends on the
processor type assigned to the given virtual éileo at this sub-step.
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Figure 3.10An example of partitioning into tiles and processes

In our examples, we try to allocate no more tileant necessary to bring the maximum load
below the maximum allowed iteration interval and $implicity we assume th&margid7) IS
zero. We also try to spread the load as evenlyoasilple to maximize the load ‘slack’ of every
tile, i.e., maximize the difference betweBRiwes and the tile load. Figure 3.10(a) illustrates an
example partitioning of a simple three-actor comfioh graph into two tiles. The maximum
allowed iteration interval in this example is 2@n& units. In Figure 3.10(a), we assume a
homogeneous multiprocessor and a clock frequendyfgquency unit, so that the load has the
same numeric value as the processing times. OHyiomsthis example, at least two tiles are
needed to bring the maximum load below 20. We tiamtthe example graph into two tiles with
the load of 16 and 12.

Keeping the load below the maximum allowed iteratimterval is necessary for the
throughput constraint satisfaction. The reasorttat is the observation that, if we assume that
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if in the target architecture PrM/CsM memory modudee physically separate from the
general-purpose data memory (M) — see Figure &@r-the processing assignment should
insert ‘W’ and ‘R’ actors to implement the data ying;

Figure 3.11Insertion of ‘write’ (W) and read (R) actors at tile boundaries

the tiles correspond one-to-one to the procesBes,the load is equal to the second term in the
‘max’ expression in the denominator of the throughgalculation formula — Equality (3.24).
One can show that the load is still a good estimfthe second term even for multiple processes
per tile.

If the computation graph contains no multi-actocly paths, then the second term in the
denominator — and hence the load — is the onlyct¥e term in the denominator of
Equality (3.24). In the case where there are nadter cyclic paths, then the first thing to
observe is that some of those cycles may be seecatlate consistency cycles, i.e., those that
include only state consistency channels and no aamwation channels. The partitioning of
actors into tiles should see such cycles as inbiei®lements, as if they were actors whose load
is equal to the total load of the actors in theleythe reason for this is explained in
Section 2.1.3. If all the cycles are state cons@tecycles then the reasoning in terms of load is
enough to ensure the throughput constraint satisfadHowever, if there are cycles that include
communication channels, then the reasoning in tefnh@ad is not enough, because these cycles
may influence the application throughput via thRICM' term in the denominator in
Equality (3.24). However we skip the discussionhid case to stay focused on the main topic of
this section.

In our discussion of the partitioning into tilese Wwave to mention two special considerations
that should be taken into account in this sub-sfefhe flow. Both of these considerations refer
to the graph edges that cross the partition bor@ees for example the edges in Figure 3.10(a)).
The first consideration is the communication bamtiviimitation. Based on the token sizes of
the edges that come in and out of a processing dite can estimate minimum bandwidth
required from the network link that joins the givitle with the rest of the on-chip network in
both directions. The partitioning should ensurd tba each tile holds that this bandwidth does
not exceed the maximum bandwidth a network link aier physically.

The second consideration to be taken into accauthigl insertion of extra computation actors
that is necessary for certain kinds of hardwaraitecture of the processing tile, in particular for
the case where the local general-purpose memorygttendommunication memories, PrM and
CsM, are implemented in different physical memomydues (see Figure 3.6). In this case, the
data tokens that are sent through the network @iarfmave to be copied from the local memory
to PrM at the producer side and from CsM to thalleeemory at the consumer side. The extra
actors that should be introduced in the HSDF griagblement the data copying. Those actors
are inserted at the edges that cross the tiletiparthtoundaries, as illustrated in Figure 3.11. We
call those actorarrite actorsandread actors When executing a write actor, the processor sopie



110 3 Design-time Trajectory: IPC Model Construction

a data token from the general-purpose memory toPitMd memory. When executing a read
actor, the data goes from CsM memory to the geipengdose memory.

For implementing the JPEG decoding applicationoshticed in the previous section, we
assumed an architecture that requires data copyindrigure 3.12(a), we see back all the
computation actors from Figure 3.9 plus the datayitg actors. As shown in Figure 3.12(a), the
computation graph of the JPEG application is partéd into two tiles, which is just enough to
meet the throughput constraint (recall from abdwa bne tile would not be enough). Because
there are no multi-actor cycles in the computagecaph and because we assume a homogenous
multiprocessor architecture, reasoning in termsoafl is enough for the throughput constraint
satisfaction. The load is distributed roughly eyemtween the tiles: tile; has load 98%s and
tile 7, has load 934is (calculated as the sum of actor delays in thetioa). Note that we still

stay below the allowed maximum iteration intervdl 1000us, so both tiles have some
performance slack.

Note that we did not mention anything on the metiogly to assign the processor tym&p.e
and the scheduling settingSscheq to0 the ties. This is only necessary for heterogase
multiprocessors and for the case where the desigtesrtionally sets different clock frequencies
or different scheduling settings — e.g. differemMA periods — at different processors of the
target platform. In fact, we do not have any sugges on how our implementation-enhanced
HSDF model can help in making these decisions.

A simple solution for the second sub-step in ostr-i the partitioning of tiles into processes —
would be to always have one process per tile. Armathge of that solution is that all actors use
the maximum budget, equal to the processor cloeguency. When we introduce multiple
processes per tile, the processor clock cycle bdugges split between the processes and each
process enjoys only a portion of the budget. Camsetly, due to such budget splitting, the actor
delays get larger, and this can lead to througlepustraint violation. On the other hand, the
processes are concurrent and therefore the actoosieo process cannot delay the actors of
another process when waiting for the input tokdhse to this, in some cases, splitting into
processes can help to satisfy the throughput cnstrThis is demonstrated in the example
below.

Consider again the example in Figure 3.10(a), wheecomputation graph is partitioned into
two virtual tiles. To partition tiler; into processes, there are two options, namelgeeip use
one process, as illustrated in Figure 3.10(b)wor pirocesses, as shown in Figure 3.10(c).

To analyze the results of those two alternativeitgmis, we need to look ahead in the flow,
i.e., to do the budget assignment and the ordehmthe one-process case in Figure 3.10(b), the
process containing actors A and C can use the Xfia¥e clock cycles in tiler;. Therefore, no
budget assignment is needed in tite and the actor delays are equal to the processires

divided by the clock frequency. As for the orderisgb-step of the flow, the only feasible
ordering in this case is ‘first actor A and themoacC’. Recall from Section 2.2.3 that the actor
ordering in a process is modeled by extra edgesnifg a cycle; see the bottom part of
Figure 3.10(b). Due to extra graph paths introdudsd the process cycle, we see in
Figure 3.10(b) that the MCM of the graph is now tRBe units, which means a throughput
constraint violation.
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Figure 3.12Processing assignment results for the JPEG decaghipiication

In the two-process case, illustrated in Figure @)JCeach process gets only one half of the
budget, i.e., 0,5 frequency units. ConsequentligracA and C have higher delay values than in
the one-process case. Nevertheless, the througlpstraint is not violated, because the graph
MCM in this case is 16.

This example illustrates the purpose of the partitig of the virtual tiles into processes. The
partitioning into processes helps to avoid theoihtiction ofartificial cyclesduring the ordering
sub-steps later on in the flow. We call a cyclithpartificial, if is not present in the HSDF graph
before a certain sub-step of the mapping flow agid gntroduced there by the mentioned sub-
step (in this case — the ordering sub-step). Infei@.10(b), cycle (A,B,C)* is such a cycle.

On the other hand, our example also illustratesaddantage of multiple processes per tile —
the actor delays get larger. Another disadvantage,illustrated in the figure, is the context
switch overhead. Note that introducing multiple qgasses per tile is not always necessary,
because it is not always necessary to avoid thé&ceuit cycles. An artificial cycle is only
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harmful when its cycle mean (see Section 2.2.3Herdefinition of cycle mean) is close enough
to Naiowes @nd sometimes smart decisions in the orderingsgej can avoid the violation of the
throughput constraint due to artificial cycles.

This finishes our discussion on the partitionindilefs into processes. The flow sub-steps left
to be discussed in this subsection are the budigggranent and the ordering. In fact, we have
already mentioned the impact of those two sub-stepsur implementation-aware HSDF model,
but we provide some more remarks to finish thisctop

In every multi-process tile, the budget assignnspiits the processor clock frequency into
budgets of different processes assigned to thengile and the budget left free for the other
applications. For the formulation of the optiminatiproblem solved at this sub-step of the flow,
two contradictory objectives can be included. Oa #@ime hand, it is desirable to minimize the
resource usage, which means maximization of thgdtsdeft for the other applications. On the
other hand, it is desirable to maximize the perfmoe slack of every process and every cycle in
the graph, i.e. to maximize the difference betwAegRwes ON One side and the total execution
delay of every process and the cycle mean of ey&yh cycle on the other side. The purpose of
the latter objective is to increase the optimizatfceedom for the later steps of the mapping
flow. Which of the two objectives to choose depeadshow scarce the processor cycle budget
resources are at the given platform for the giveplieation domain (i.e. on how great the need
to share as much processor resources betweenediffapplications as possible) and on how
hard the optimization problems are for the latepstof the flow (and thus on how much slack
they need). The constraints for this optimizatioobtem should specify that the total budget at
every virtual tile should not exceed the procesdock frequency and that the slack of every
process and every graph cycle should be positive.

The ordering sub-step introduces process cyGlegy) into the HSDF graph (see definition
of the process cycles in Section 2.2.3). The opttion problem to be solved at this sub-step is
to find an ordering of actors for every processhstmat when the process cycles are introduced
to enforce the chosen orderings, no artificial eyggts a cycle mean that excefdgwed minus a
certain margin to be used by the later steps ofmgping flow (just as it is the case for the
previous sub-step, one may consider to includentfaigyin into the optimization objectives). The
requirement to keep the cycle means of all cyalgBcgently small also means that if actors
andvy are assigned to the same process — lets caliéepsoa, — and if there is an initial-token-
free path from actov, to actorv, in the computation graph, theg should be earlier thaw in
the orderingvp(pap). The reason is that if actep could be earlier tham, then process cycle
GP(pap) would introduce an initial-token-free path fromto v, and, because there is already a
path fromv, to v,, we would see an artificial cycle with zero initiakens and thus with an
infinite cycle mean. For example, in Figure 3.10({bwe chose ordering ‘first C and then A’,
then we would create an initial-token-free cyclC+A, B)*.

An objective that the ordering sub-step should peirsy a flow like our preferred flow is
minimizing of the estimated number of channelshe final implementation. We will explain
this objective later on in this section, when wasider the JPEG decoding application example.

The last thing that we mention about the orderig-step in general is that this is the first
sub-step in our preferred mapping flow that modifiee structure of the HSDF graph (except
that the partitioning into tiles may add ‘read’ dndlite’ actors in some cases). After creating the
process cyclesGP(pi), the ordering sub-step removes any previouslstexj intra-process
edges, i.e., the edges that join different actorsthe same process (whereby, in the
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implementation process network, it also removesititi@-process channels, i.e., the channels
that correspond to the intra-process edges). Tasorefor that is that in the presence of the
process cycles the intra-process edges are supesflas we will see in the JPEG example
below.

Coming back to our JPEG decoding application exampke observe that we still need to
apply the three last sub-steps of the computatiomppimg phase there. Recall from
Figure 3.12(a) that we have partitioned the contprtagraph into two tiles. In the partitioning
of tiles into processes, we choose to have onespsoger tile, and, as we will see later, this does
not lead to artificial cycles in this example. FiguB.12(b) shows the impact of the partitioning
into processes on the implementation process nkiwide see two processes, andp,, joined
by six channels that cross the partition boundaryigure 3.12(a). As already mentioned, at this
point of the flow, the process network also corganira-process channels, but they are removed
later by the ordering sub-step, and we do not sthewm in Figure 3.12(b).

For the budget assignment step, in this example,chh@se to follow the objective to
maximize the performance slack. Therefore, we ass@®% processor clock frequency to every
process (because they are assigned to differes) tihus not leaving any free processor budget
for the other applications at the two processileg tassigned to this application.

Now let us consider the last sub-step, i.e., thieng. Look at Figure 3.12(a), where a line
partitions the graph into two partitions. We hawvedecide upon the actor ordering in the left
partition and the right partition. Hereby we keep requirements in mind. The first requirement
is that in every process, the ordering should retsipe internal edges of the process that are free
from initial tokens, which means that the produadrsuch edges should be located earlier in the
ordering than the consumers. This requirement digd from the mentioned above requirement
about initial-token-free paths in the computatiomph. The second requirement is that the
‘write’ actors in proces®; should be ordered in the same order as the camesypy ‘read’
actors in procesp,. The purpose of this requirement is to ensure ttimtestimated number of
the network channels in the final implementatiomigsimal, i.e., equal to one. The point is that
if the producers of the inter-process channel&aeeuted in the same order as the corresponding
consumers then the communication assignment stepda in the flow can assign those inter-
process channels to the same channel.

These two requirements still leave multiple ordgrahoices open. We choose the ordering
for process as follows. Ignore for the time being all the astthat have delay 7,5, i.e., the
‘write’ actors. Inspect the remaining actors colubyacolumn from left to right, as they are
placed in the figure. In each column, consider tiem top to bottom. Use this ordering, and
for each actor insert its corresponding ‘write’ acimmediately behind it. One can see the
resulting ordering fop; in Figure 3.13 in process cyd&P(p,). (Ignore, for the time being, the
communication actors shown in Figure 3.13 in thetext of channel macrdsQ(qg;).)

In partition p;, we first consider only the ‘read’ actors columyrdolumn from left to right
and in each column from top to bottom. Note thargvread’ actor has a corresponding non-
‘read’ actor that directly consumes the token nemeiby the ‘read’ actor. Having ordered the
‘read’ actors in this way, for each ‘read’ actor wviesert its corresponding non-‘read’
immediately behind it. All the non-‘read’ actorsatido not have a corresponding ‘read’ actor are
placed in the end or the ordering, representedguaré 3.13 in process cyceP(p,).
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Figure 3.13The JPEG decoder HSDF graph after ordering and and
communication actor insertion
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As we see in Figure 3.13, in the HSDF graph, thdeng sub-step has replaced the intra-
process edges by the sequence edges of the poycéss. For example, in Figure 3.12(a), all the
data edges that are outgoing from actor VLD (therawith delay 450) are intra-process edges.
In Figure 3.13, we do not see any of those edgésalbthe actors that are consumers of those
data edges come later than the actor VLD in theqa® cycle. Therefore, keeping those data
edges would be unnecessary, as they would not &dmyempact on the performance analysis
anyway.

In the end of our discussion of the processinggassent and ordering, we would like to
stress again that the splitting of the computapart of the mapping flow into sub-steps is not
the only possible splitting and there is phase Lingpbetween these sub-steps, and thus the
order in which they are executed matters for thedityuof results. Thus, it might be favorable to
integrate these substeps into one optimizationlenopso that the problem solver can see the
whole design space of this part of the flow anzeti

This completes our discussion of the processingm@sent and the ordering mapping steps.
In the next section, we consider the mapping stbat follow later in the preferred mapping
flow.

3.6 The Communication Mapping Phase

3.6.1 Communication Assignment and Communication Aor Insertion

If we take a look back at the computation phasehef mapping flow, described in the
previous section, and ask ourselves what impadt riiegpping phase has on the final HSDF
graph — the IPC graph — then the answer would &ktliat phase defines how certain subgraphs
of the IPC graph will look like when the flow is ropleted. Those subgraphs are the process
cycles, GP(p, ). Recall from Section 2.1.3 that the HSDF graphoof implementation-

enhanced model can be decomposed into parts ecalletbs Every macro corresponds either to
a process or to a channel of the implementatiocgs® network. The process cycl&R(p; )

are, in fact, the process macros. The mapping ptas&dered in this section keeps the process
macros intact and only transforms the channel nsa€@(q; ), until they also reach the final

form. Compared to the final structure of the prgo@scros, consisting of just a single cycle, the
final structure of the channel macros is more cexypit depends on whether the channel is a
local channel, i.e., contained in a single tileaanetwork channel, joining two tiles together. In
this section, we introduce and explain the chanradros step-by-step. For the JPEG application
example, whose graph has almost attained the steudepicted in Figure 3.13 (except that the
communication actors already shown in that figueeyet to be inserted), we can now note that
the process macros we see in that figugd®(p,) and GP(p,), will be imported without
changes into the IPC graph of that application, re&e the edges in between, now representing
the six channels of the current process network,gaing to undergo certain transformations.
Communication actors and new edges are going tottzeluced into grapks, so that the model
adequately captures the mapping decisions takédreatommunication phase. The new channel
macros,GQ(q; ) are going to be built from the communication axtand the edges joining

either a computation actor to a communication actortwo communication actors, or two
computation actors belonging to different processes
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(a) original channel macro = an edge (b) new macro = a graph substructure
Figure 3.14Communication actor insertion

As shown in Figure 3.7, the first step of the comioation mapping phase is the
communication assignmentvhich is the main topic of this subsection. Tlkiep has the
following tasks:

1) communication actor insertion (for the netwohiagnels),
2) channel number minimization (for all channels),
3) bandwidth minimization (for the network chanpels

In the rest of this subsection we consider Taskt 13.the simplest task, and it is illustrated in
Figure 3.14. For every channel crossing the tilanoary, we change the channel macro such
that the data edge originally contained there jdaed by a graph structure consisting of two
actors and four edges, as shown in Figure 3.1%{i®.new channel macro contains a graph path
that joins the channel producer and the channedwuer; in Figure 3.14(b), that path goes from
left to right. The two new actors model the two gaments of the network connection delay —
recall them from Section 3.4. The first actor oa grath models the transfer dela,, ., and

the second actor models the network latenty, .. Therefore, the first actor is calledransfer

actor and the second one is callethi#ency actor

As for the initial tokens of the original data edgme can choose one of the two possible
implementations of communication channel, wherebthe channel macro the initial tokens are
placed either in front or at the back of the pafhis choice depends on the application
algorithm, i.e. on whether, at the start of theplexecution, the content of the initial tokens can
be implied by the consumer actor (e.g. all zerasyvieether it has to be pre-generated by the
producer actor before the start.

Originally, the transfer actor has a sequence daggejoins the actor with itself. Recall that,
unlike the network propagation activity, modeledtbg latency actors, the subsequent transfer
activities of the given network connection can ogecute sequentially, and that is exactly what
that edge is modeling.

We classify both newly introduced actors esmmunicationactors because, unlike the
computation actors, they are not executed by aoggssor; instead, they model the behavior of
the on-chip network. The results of the actor itigerfor the JPEG decoding example are shown
in Figure 3.13. Each of the six channels in thaaneple has attained a new channel macro
similar to the one in Figure 3.14(Db).

When new actors are inserted into the HSDF grapbuofimplementation-enhanced HSDF
model, their delays have to be defined based orbthugets (recall Figure 3.1). Recall from
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Equalities (3.19), (3.20) and (3.21) that the tfandelay depends on the token size. Because, in
this thesis, we restricted ourselves to static iasiges, not depending on the input data content,
the transfer delay does not depend on the actanpeters, thus keeping the same constant value
in every timing mode. The same holds for the layatwlay, assigned to the latency actor.

In the preferred mapping flow, during actor insmrtive assume that each network channel
gets the maximum network link bandwidth, indepettigeinom the other channels. Due to the
monotonicity of HSDF graphs, this means that waiaesthe best performance the model can
have with the given communication network archiieet Thus, similarly to the computation
phase, we start the communication phase with drlisiolution having the biggest chance to
satisfy the application throughput constraint thidt does not happen then either the computation
phase results have to be reconsidered or there fsasible solution at all. The initial solution
may use an unrealistic amount of the network badthyibut later on, at task 3), the bandwidth
assignment should be ‘relaxed’ such that the badgitiwiequirements get into the realistic scope
while the throughput constraint is still satisfied.

As for the latency, in general, it depends on tistadce between the physical processors to
which the virtual tiles are assigned at run timer @referred mapping flow assumes that the
latency values are much smaller than the computatobor delays, and therefore it assigns each
latency actor a constant delay that is computeddas the maximum possible distance between
the tiles in the given network-on-chip; after &kking conservative here does not imply being too
pessimistic, because as long as our assumptiors lib&l network latency does not have any
considerable impact on performance.

For the JPEG decoding example, we use the instatbe AHEREAL NoC that is described
in Section 3.4. The token size of every data edghis example is 128 bytes (or 64 pixels, every
pixel being a two-byte word). Assuming the highestnection bandwidtBeonn= B, . and
applying Equality (3.21) and taking the constarft3able 3.1, we ged, ., =165 ns. As for

the latency, it is reasonable to assume that alvimys possible to route a connection between
any two processing tiles on chip using up to 2Qemy thus, by applying Equality (3.22) and
Table 3.1, we obtaim,., =150 ns. The obtained numbers for the transfer catalythe latency
are assigned as actor delays to the graph shofxigume 3.13.

Task 1), considered so far, does not introduce aficial cycles into the HSDF graph,
except for the cycles due to the edges aroundahnefer actors. The cycle means of those cycles
must be smaller thafiyiowes Otherwise the mapping problem is doomed to fafinding a good
solution due to high communication delay of thetfplan. The communication actors may also
increase cycle means of the cycles that corresfmtite cycles present in the original graph, but
the corresponding increase in the cycle mean ntssto® non-dominating, for the same reason.

3.6.2 Minimization of the Number of Channels and Badwidth

The communication assignment task that followsradfte insertion of the transfer and latency
actors is the minimization of the number of chaankl the previous subsection, we denoted that
task as Task 2). That task comprises a combinatgpiamization problem, and the same holds
for Task 3), i.e., the minimization of the requiretannel bandwidth. Similarly as for the
previous mapping steps, since it is not our purptsepropose new solutions to the
communication assignment problems, we only giveief description for them and point out the
relationship between those problems and our imphéatien-enhanced HSDF model.
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In the channel number minimization problem, #tate channels and theommunication
channels are treated similarly, but separately tk®®end result, it does not matter which channel
type is considered first, so let us start by comsiy the communication channels. Recall, that
among those channels, we distinguish betweeroited channels staying within one tile, and
the network channe|goining two tiles. For the latter, also the bamdhv should be minimized —
Task 3). Having considered both minimization talskghe communication channels, we explain
a similar but simpler optimization problem for ttate channels in the end of this subsection.

Recall that every channel at this point of the flbas exactly one producer actor and one
consumer actor. We refer to such channelsimple channelsThe end result of the channel
number minimization is the merging of the simplamhels intacomplex channelsvhich have,
in terms of the definition given in Section 2.1a8Bfransfer seTQ with cardinality more than
one. The purpose of channel merging is the shasinthe FIFO buffers and the network
connections between multiple transfers. Lookingaahéor the JPEG decoding example, we can
mention that the channel number minimization rassitthe merging of all six simple channels
shown in Figure 3.12(b) into one complex channel.

Note that channel merging cannot introduce deadibék follows the compatibility rules
defined later in this subsection. Moreover, thegmay of local and state channels does not have
an impact on HSDF graph throughput, as it doeschahge the graph structure and delays. As
we will see later in this subsection, merging @& tiretwork channels can decrease the throughput
and thus it should be done with the throughput tairg in mind.

The preferred mapping flow splits the optimizatigemoblem of Task 2) into basic
subproblems working with different comparable pasfsthe HSDF model. The preferred
mapping flow considers different parts of the pesblseparately, in an arbitrary order. Due to
the possible coupling between the subproblemsptéferred approach may be suboptimal, but
finding exact solutions for mapping problems isdr&y the scope of this thesis. We only present
reasonable indications in order to demonstrateusefulness of our modeling techniques to
formulate the mapping problems and to guide themapation algorithms.

We define the basic channel number minimizatiorpsolilem by selecting a distinct ordered
pair of processegp,,p, having the property that there is more than onearcanication
channel going from procesp, to processp,. Those channels are candidates for merging.

Figure 3.15 shows an example of the problem instawbere there are six candidate channels.
The best would be to merge all those channelsoneéocomplex channel, but as mentioned in the
figure, for this problem instance, the minimum n@miof channels is three. Soon below, we
explain how a feasible solution should look likedat will become clear why in this example
the chosen solution is feasible and why it is isflel@ to further merge channels.
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.............. > a sequence edge path without initial tokens
------ ®--> asequence edge path containing one initial token

an optimal solution: three channe
channel I: merged 1 and 3
channel Il: merged 2, 4 and 5
channel lll: 6

Figure 3.15An instance of the channel number minimization pFob

Note that in this example the channels are |ahakefore, each channel is represented just by
an edge and does not have communication actors. &&b that there is an important difference
in the formulation of channel number minimizationolplem between the case where the
channels are local and the case where they areorethannels, because, merging the network
channels together creates new cycles in the HSDMphgrand thus can have impact on
performance. This peculiarity of the network chdnneerging is discussed later in this
subsection, and for now we focus on the compatjbdf different channels for merging, where
the rules for the local and network channels arelai.

The preferred flow distinguishes only those aciarprocessp, that are producers of the
channels going to process . Similarly, only those actors in procegg are considered that are
consumers of those channels. In genepaland p, may also contain other actors, but they are

not in the scope of the problem instance, and aok actors are omitted from Figure 3.15.

As already mentioned before, when forming compleanmels with multiple producers and
consumers, one should take the actor executiorr émtte account to ensure the proper FIFO
ordering of the communication transfers; namelg, ghoducers should produce the tokens in the
same order as the corresponding consumers consieme Eor example, in Figure 3.15, simple
channels ‘1’ and ‘2’ cannot be merged together bseaheir producers execute in the opposite
order to their consumers. When, like in this case,simple channels cannot be merged together
such that FIFO ordering of communication transfeas be ensured, we say that they are
incompatible If they can be merged together such that FIF@rimg can be satisfied then we
call themcompatible for example, so are channels ‘2’ and ‘4’ in Fig&:.15.
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(a) the patterns of compatible channels
more compatible channel patterns can be obtaigediBing the sam

number of initial tokens to both channels in onéhef patterns

(b) the patterns of incompatible channels

Note! The positions of initial tokens are esidrior each pattern!

Figure 3.16Visual detection of channel (in)compatibility
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Figure 3.16(a) illustrates a few examples of coilymtchannel pairs. The channels are
represented by corresponding graph edges in theFHBBph as it was before the insertion of
the communication actors in Task 1) — to keep libstration simpler for the network channels.
One can check all these patterns one-by-one fopathility by checking whether the first two
tokens produced can be consumed in the same mdbewy can be produced; with a reasonable
assumption that if an actor has multiple inputgiatg then one can adjust the order in which the
actor consumes/produces tokens at different inpuiisits to the order in which the tokens are
produced/consumed at the other side of the chaRoekxample, the producer of the bottom-left
pattern in Figure 3.16(a) can first produce a tokethe top edge and then to the bottom edge,
and thus the corresponding channels are compatiiée that because the production and
consumption order of the patterns repeats cydjicdie FIFO-compliance check for the first two
tokens produced in the complex channel is a negessal sufficient condition of the FIFO-
compliance of the whole HSDF execution run.

If a channel pair matches the pattern shown inafritbe examples of Figure 3.16(a), then the
corresponding two channels are compatible. ‘Maghapattern means that a pair of channels
has the same number of initial tokens as in theepatind the same ordering of the producers
and the consumers. For example, channel pair {4tdsh Figure 3.15 matches the top pattern in
the right column of Figure 3.16(a). Every pair tiaanels in Figure 3.13 — if one removes the
communication actors — matches the top pattermenléft column. Note that more patterns of
compatible channel pairs can be obtained from attem in Figure 3.16(a) by adding the same
number of initial tokens to both channels.

Figure 3.16(b) shows incompatible channel pattege can check them one-by-one for
violation of FIFO ordering. For example, it is edsysee that the first two tokens produced in the
top-left pattern will be consumed in the oppositden. In our example in Figure 3.15, channel
pair {3, 4} matches this pattern and therefore ¢htbwo channels cannot be merged together.
Note that the positions of the initial tokens assemtial in all patterns; for example, if one
removed initial tokens from the top-right pattem Rigure 3.16(a) and the top-left pattern in
Figure 3.16(b), then those two patterns would bexatantical.

Definition. (Compatible channels/data edgesYwo simple channels or two data edges that
represent simple channels in the HSDF model alecalompatible if they match one of the

patterns in Figure 3.16(a) either directly or aféeiding the same number of initial tokens to
every data edge.

One can show that our original criterion to distilpy compatible channels — i.e. the
compliance to FIFO ordering — and this explicitidgion are equivalent. This can be proven as
follows. First of all, all the patterns where thfatence in the number of initial tokens is two or
more are obviously incompatible (e.g. the top-rigiske Figure 3.16(b)). The reason for that is
that at start of the execution, the new tokens yred on the edge with the larger number of
tokens will have to wait until the new tokens a tither edge are consumed at least two times,
which obviously violates the FIFO order of prodoog and consumptions. All the patterns
where the difference is zero or one can be reducby removing the same number of initial
tokens at every data edge — either to one of ttterpa in Figure 3.16(a) or to one of the patterns
in Figure 3.16(b) (except the top-right patterns Aentioned before, one can check every
pattern one-by-one to verify whether the FIFO-oirtgcriterion is satisfied.

To solve the channel number minimization subprobfema given pair of processes, one
should split the set of simple channels into as &wossible subsets such that in every subset
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TR e

Figure 3.17A complex transfer cycle construction example

any two channels are compatible. For the problestaince in Figure 3.15 three such subsets
have been found; they are mentioned in the figler the JPEG decoding example in

Figure 3.13, all the channels are compatible, dn$ twve can merge them into one complex
channel.

Recall that it is not our goal to present any athar for mapping flow, so we do not discuss
algorithms for solving the channel number minimizatproblem. Instead, we continue the
discussion on the relationship between that prokdewh the HSDF model that represents the
current mapping decision.

Unlike the minimization of the number of local cinats, the minimization of the number of
network channels leads to transformations of th®H8raphG and thus it can have impact on
the throughput. The point is that when one decideserge a few simple network channels into
one complex channel one has to join the transflersaof those simple channels into one cycle,
similar to the process cycle. This cycle is cabetdansfer cycle The construction of a transfer
cycle is explained in the following definition.

Definition. (The transfer cycle of a complex netwdk channel: construction rules)Consider
the set of all transfer actors of the simple nekndrannels merged into one complex network
channel. Because the transfer actors are in on@docorrespondence with the communication
transfers, introduced in Section 2.1.3, we usestii®e notation for that set as for the set of
transfers,TQ. In the example given in Figure 3.1FQ ={ A, B, C, D, E }. Letms.nmin be the
minimum number of initial tokens per simple chanmdte that a set of simple channels can be
mutually compatible only if the maximum differenicethe number of initial tokens in the set is
one. Therefore, only simple channels with eitimer,, or (Ms.min + 1) can be present in the set (in
Figure 3.17, mgmin=1). Therefore, in general, sékQ can be split into two subsets:
TQ =TQ™ O TQ™, whereTQ™ is the set of transfer actors of the simple cle&with ms.min
initial tokens andTQm+1 is such a set for the simple channels with (i, + 1) initial tokens.
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Note that in general, the latter subset can beermpbur exampldQ™ ={D, E } and TQ™"*
={A, B, C}. To define the ordering of the traes$ in the transfer cycle, first we have to order
the elements in both subsets, thereby forming twlered sequences™ and tq™"* . Sequence
tq™ orders the transfer actors froh@™ in the order that is consistent with the orderirighe
corresponding producers. If any two transfers ltheesame producer, then one has to check the
ordering of the corresponding consumers to decjteuhe orderingAs for sequenceg™?, it
uses the same rules, but it orders the transfersafitomTQ™. For example, in s&tQ™** from
Figure 3.17, actors B and C have the same prodicgractor B has the earlier consumer;
therefore actor B precedes actor C. The resul@éngiences for our example atg” = (D, E)
andtg™?* = (A, B, C). Finally, the transfer cycle ordsrequal to the concatenation of the two
sequences, withg™"* coming in front. Let * denote the concatenation operation, then:

tq =tq™*°tq™ (3.26)
wheretq is the ordered sequence defining the transfeeayaer. In our example, we havg:=
(A,B,C,D,E).

Given the ordering, the transfer cycle is cons&ddh the same manner as a process cycle:
between every two subsequent actors a sequencesigeduced, without initial tokens, and
there is a sequence edge with one initial tokeng@@iom the last actor in the sequence to the
first one. The transfer cycle is introduced inte tH"SDF model to reflect the fact that the data
tokens coming from the producer buffer of the samtsvork channel can only enter the network
connection sequentially, one after another.

It is worthwhile to draw attention to the ‘unusupbsition of the initial token in the transfer
cycle in Figure 3.17 — in the ‘middle’ of the tréemscycle. Technically, this is the result of the
transfer cycle construction rule that we have josbduced. The rule places the initial token in
front of the first actor of sequeneg™™. Only if that sequence is empty (WhE® = TQ™), is
the initial token in the transfer cycle ‘aligneditivthe first producer.

As illustrated Figure 3.17, the HSDF model of a pten network channel can be split into
three parts: the producer buffer model, the transfgle and the consumer buffer model
(whereby the latter also includes the model of netwatency). The producer buffer model
consists of the data edges joining the producerga®cycle to the transfer cycle. The consumer
buffer model consists of the data edges and latemtgrs joining the transfer cycle to the
consumer process cycle.

Note that, it is not difficult to intuitively sedé correctness of the complex network channel
construction in Figure 3.17 in terms of token tfansordering. This can be done using the
following remark. First, in the consumer buffer natdet us, for explanation purposes, assume
that we remove the latency actors and merge therimg and outgoing edge of each such actor
into one edge. Then, for both buffer models, itdsothat one can enforce a series of actor
executions in such a way that all the data edgdblanbuffer model get the same number of
tokens, and afterwards it is possible to rearrahgeactors (preserving the graph structure) in
such a way that no data edges cross each othghambsition of the initial token in the cycle
that produces the data tokens corresponds to itired token of the cycle that consumes the data
tokens. For example, in Figure 3.17, for the preduzuffer model, if we enforce execution of
actors A, B, and C, then all the data edges wilehane initial token and the initial token of the
transfer cycle will move to edge (C, D), which @sponds to the initial position of the process
cycle producing the data tokens to the channghdrsame figure we see that we can shift actors
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A, B, C to the top of the figure, and D, E to thatbm, such that no data edges in the consumer
buffer model cross each other, whereas the indgledn position of the transfer cycle corresponds
to the initial token position the process cyclel® consumer process.

It is obvious that the transfer cycle can haverapact on the performance. In theory, it can
become a critical cycle, limiting the throughpuattthe application can provide. This can be the
case when the platform’s communication network a$ tnned well for the given application
domain and too slow or when the application hassually high communication requirements
(manifested in relatively large token sizes, cagysi@rge transfer delays). In that case, the
optimal solution for the channel number minimizatiproblem may not be the best choice.
However, in practice, we do not expect that a feansycle can become critical at this point of
the flow, because, as the reader may recall, sovrassume that each channel uses the
maximum bandwidth a network can provide for onegleinchannel, resulting in very small
transfer actor delays. What indeed can happereigptienomenon that the introduction of a long
transfer cycle can lead to an extension of an iegstritical cycle, whereby it changes its route
and uses some new edges introduced by the trarysfier

Note that the transfer cycle together with its imang and outgoing data edges and also with
the adjacent latency actors and their outgoing ddges — all those primitives together — now
constitute a new single channel macro, which isntlaero of a complex network channEbr
example, in Figure 3.17, all the actors and edgdsetween the producer process cycle and the
consumer process cycle constitute the macro of anredl performing five communication
transfers per loop iteration and containing eightidl data tokens in total. As for the local
channels, we can make a similar statement: aletlges that belonged to the simple channels
merged into a complex channel now constitute a deannel macro, which is thmacro of a
complex local channeFor example, in Figure 3.15, after the channeiging, edges 2, 4 and 5
together form a channel macro of a complex locahciel.

In the implementation process netwoRQ, the new channels — complex channels — come to
replace the simple channels that have been meiidezl.simple channels that have not been
merged stay untouched; they can be seen as ‘cohghlarnels containing just one transfer per
loop iteration.

All the communication channel macros that are presethe HSDF graph at this point of the
flow come as an input to the buffer capacity mimation step, which follows as the next step in
the mapping flow (see Figure 3.7) and which we m@ran the next two subsections.

Let us step back and recapitulate where we arehén description of the channel and
bandwidth minimization tasks. So far, we have cbmsd the basic subproblem of channel
number minimization for the communication channélew there are a few ‘smaller’ topics to
consider before we finish the description of thenomunication assignment and close this
subsection. Those topics are:

1) bandwidth minimization in the network channels,
2) state channel number minimization.

We consider these topics one-by-one in the remaioidihis subsection, and we start with the
bandwidth minimization. As already mentioned, inideal situation, at this point of the flow,
the transfer cycles should have no or very litthpact on the performance, because so far we
assume the highest network bandwidth values abdcédr the channels. To ensure that the
requested bandwidth can be provided in reality tmdlecrease the communication resource
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usage of the application, one should ‘relax’ thadveidth values assigned to the channels. This
is done by the bandwidth minimization task, the task in the communication assignment step.
The bandwidth budgets for all channels can be me@thusing a cost function like the average
or the maximum bandwidth per channel. The bandwidithimization leads to a delay increase
in the transfer cycles and other cycles that ireltiee transfer actors. Therefore, the ‘relaxation’
of the bandwidth values should be constrained sh@hnone of those cycles gets a cycle mean
higher thanA,0wes Also a set of constraints should be imposed #pecify the maximum
bandwidth the network can provide per tile per pict link and consumer link (see Figure 3.6).

The last (sub-)task of the communication assignnvemthave not discussed so far is the
minimization of the state channels. That task isnfdated and solved the same way as the local
channel number minimization. The state channelsiaract, very similar to the local channels,
the major difference being that the state charhelsot carry any data tokens; they only enforce
some actor executions to wait for the completionceftain other actor executions. For the
interested reader with a background in concurrgstesns, we mention that the inter-process
state channels can be implemented using semapha@pscial variables that can be ‘acquired’
and ‘released’ multiple times; those variablesiamglemented as counters whose increments and
decrements are atomic operations; trying to do nemeuires’ than ‘releases’ leads to blocking
until the semaphore is released by another proteske semaphore-based implementation, the
channel producers would release the semaphorepmrgaroduction and the channel consumers
would acquire it once per consumption.

In the JPEG example, the communication assignmiemt jpins all the transfer actors in
Figure 3.13 into one cycle (to see this transfaiesythe reader can look ahead in this chapter
and consider an IPC graph for this applicationigufe 3.23). The bandwidth minimization step
reduces the network bandwidth assigned to the @tdnom the maximum to the minimum
possible value in the ZHEREAL network, B, - = 3.125 Mbyte/s. Due to this change, all the
transfer actors (see Figure 3.13) acquire a deldyevof 42us, which does not affect the
throughput of the application in an adverse wagabee the total delay of the transfer cycle is 6
times 421s — i.e. 2521s — wheread\ajioweq iS 1000ps.

3.6.3 Modeling the FIFO Buffers of the Communicatio Channels

After the communication assignment, the intra-aggtion mapping is almost complete. The
implementation process network has almost readiedral form: the process network structure
has been finalized, the contents of the processdschannels have been defined in terms of
actors/transfers and their ordering, the budgets baen assigned to the processes and channels
in terms of the processor cycles per unit of timd ¢he communication bandwidth. The only
part of the implementation-enhanced HSDF model #télt has to be filled in by the intra-
application mapping flow is the capacities of th&® buffers in the channels. Recall from
Section 3.5.2 that the network channels are cheniaet by the capacities of the producer and
the consumer bufferQ Qeonshurier» @Nd the local channels are characterized bydbal |

buffer capacity Q, e -

Before we can describe the final step of the pretemapping flow, the buffer capacity
minimization, we define how we model the FIFO budfdnavingfinite buffer capacitiesand
multiple producers and/or consumers. That moddkegnique is, in fact, the main topic of this

prod-buffer?
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subsection. We spend extra attention on this tbpeause it comprises an important part of our
contribution. The modeling of finite-capacity FIFQuffers enables performance analysis of
streaming applications whose channels are possiayed by multiple producer and consumer
actors and are mapped to network-on-chip. In thet seibsection we use this modeling

technique to guide buffer-capacity minimization.

The simplest FIFO buffer models are HSDF graph eddéey can be used to model the
infinite-capacity FIFO buffers. The FIFO buffer af simple local channel with an infinite
capacity is represented by a single data edge. éssential that the producer of that edge be
enclosed in a cycle with one initial token, becatlsd ensures that the subsequent productions
do not overlap and do not overtake one another.cbheumer should also be enclosed in such a
cycle. For example, in Figure 3.15, we see six @alges, modeling the buffers of six simple
local channels. As for the simple network channealsnsider their channel macro in
Figure 3.14(b). The data edge that enters thefemogcle models the producer buffer. The two
data edges separated by the latency actor modebtiimer buffer, whereby the latency actor
represents the latency of the token arrival tocthresumer buffer.

After the channel merging, the FIFO buffers of ctempchannels are modeled by the
collection of edgeshat, before the merging, were used to model thigetsuof the simple
channels. For example, in Figure 3.17, the dat@®dygoing into actors A, B, C, D, E (entering
those actors from the left side in the figure) mdbde producer buffer of the underlying complex
channel. The latency actors and their adjacentsdgslel the consumer buffer and the latency
of data arrival into the consumer buffer. By angltog the channels, we give the namerhplex
buffers to the buffers having multiple consumers and/aitiple producers.

Buffer models that contain only edges going from gmoducers to the consumers represent
infinite capacitybuffers. In this subsection, we assume that aefibiiffer capacity is provided
and explain how one can model the buffers withdgiven finite capacity. As we will see later,
for that, we introduce special edges going in #neerse direction: from the consumers to the
producers.

In our explanation, we assume that we have an HAbD#el for an infinite-capacity complex
buffer, like the one shown in Figure 3.18(c). Weuse that now we would like to limit the
capacity of that buffer to a given finite capacigiue. Therefore, we study how to reflect the
limited capacity in the HSDF model. Note that fongenience, in this subsection, we often refer
to the HSDF models of a buffer simply as ‘buffdri. other words, we use the terms ‘(graph-
theoretic) buffer model’ and ‘buffer’ interchang&abThus, we refer to the infinite-capacity
complex buffer model amitial buffer or initial buffer model. We refer to the finiteacity
buffer model that is obtained from the initial berfasfinal bufferor final buffer model.

Let us take a step back and reconsider the irdfaafscity complex channels introduced in
the previous subsection. To be more precise, wengéder their buffers. We are going to show
that every initial buffer can be represented bynapte meta-model that expresses the essential
properties of the buffer in a simple and transpamanner. We call that meta-model the
prototypebuffer. As opposed to the initial buffer, which is, inngeal, a complex buffer, the
prototype buffer is always a simple buffer, i.e.has only one producer and consumer. For
example, an initial buffer and its prototype arewsh in Figures 3.18(c) and 3.18(a) respectively.
Soon we will explain and study that example in dleta

A prototype buffer has a simple structure and treists a clear relationship between any
valid initial buffer and its prototype. Note thaid relationship preserves the buffer capacity. The
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1) —e—{via (_Bj/./'

(c) initial buffer model

(b) unfolded prototype model (represents a complex infinite-capacity buffer)

Figure 3.18The graphs modeling a complex buffer

reason to introduce the prototype buffer is tha¢ oan easily create a variant of the prototype
buffer that has a finite buffer capacity. Then,ngsthe relationship between the prototype and
the complex buffer one can translate the finiteacéty variant into the complex-buffer form and
thus obtain the model of a complex buffer withraté buffer capacity.

First let us study the infinite-capacity buffersetim be the number of initial tokens in the
initial buffer andH be the number of simple channels merged into il buffer (or,
equivalently, the number of transfers in the compmleannel per loop iteration). For illustration
purposes, we use an example with the initial bufaringm = 8 andH = 5. The graph model of
the initial buffer is illustrated in Figure 3.18(cYisually, it may seem that the edges of that
buffer are incompatible (some edge pairs seem tonmatch the compatibility patterns in
Figure 3.16), but one should beware the ‘unusuaditpn of the initial token of the consumer
that explains the counterintuitive visual effect. Vierify visually that in reality all edge pairsear
compatible, one can pull the top consumer to thoboof the figure and then use the patterns of
Figure 3.16 again. However, we intentionally haleced all the consumers with the smallest
number of the initial tokens at the top of the fgwand, as a by-product, we see that no data
edges visually cross each other. It can be sholat, ane can place the consumers of any
complex buffer this way.

For clarity and simplicity, we are now making ampiontant assumption, namely, we assume
that all the transfers of the complex channel twitains the given complex buffer have the
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same data token size. Later on, we will show how to waive that assumptand keep the
model accurate.
Here we need to introduce the notion of the inltiaffer model more thoroughly.

Definition (Initial buffer model: equal token size case)The initial buffer model can be seen as
an extraction from the application’s HSDF grapht tnadels only the particular complex buffer.

It is a graph whose set of vertices is the setroflpcers and consumers and the set of edges
includes:

1) one data edge per one communication transfer fiee.priginal simple channel that was
merged into the channel);

2) one sequence edge per subpath of the process @uclgansfer cycle) joining two
subsequent buffer producers/consumers, wherebyse¢heence edge should have the
same number of initial tokens (either zero or awedhe corresponding subpath.

For example, the sequence edge between actors B8 amdrigure 3.18(c) may correspond to a
token-free chain of actors that come in the procedsring in between actors A and B and that
do not access the initial buffer and — for thasoea— do not appear in the buffer model.

Now let us consider the prototype buffer model. Thetotype buffer model built for the
initial buffer example in Figure 3.18(c) is shown Figure 3.18(a). A prototype buffer always
has a single producer, single consumer and justiateeedge. If all transfers of the initial buffer
have equal token sizes then the prototype bufferesathe same number of initial tokens as the
original buffer. In Figure 3.18(a), we see that thlé initial tokens, which were distributed
between different edges in the original graph rexa&tly collected on the same edge.

Let us now explain the relationship between theédsuhodels. The producer (or consumer)
of the prototype buffer represents all the prodsigeonsumers). One execution of the prototype
producer (consumer) corresponds to one productionsimption) to (from) the initial buffer. In
the example of Figure 3.18, executions 0 and 1 rotopype consumer Y corresponds to
executions 0 of consumers F and G. Executionsdugtr(H -1) of Y (recall thatH = 5) cover

the executions of consumers F, G, H, and E in leation 0. Note that E consumes two tokens,
and thus corresponds to two executions of Y. Exeest through (2H —-1) cover their

executions in loop iteration 1, and so forth.

In fact, this relationship is better explained bgans olunfoldingthe prototype graph.
Definition (Graph unfolding and folding with factor H) HSDF graphG' is called an
unfolded representatioof HSDF graphG with unfolding factoH if every actorv, in graphG
is in one-to-one relation with a distinct set ldfactors: v, [0], v, [1], ..., v,[H —1] in the
unfolded graphG'. Hereby the graph structure of an unfolded repitasien should imply a

certain relationship between its behavior and tlabior of graphG. To define that
relationship, we first extend the relation betwesst v,[j] and actorv by defining also a

correspondencédetween theexecutionsof v, [j] andv.. We define that any execution of
actorv,[ j] in G' corresponddo the executiom' [H + j of actorvy in G. Then the relationship
between the behaviors db' andG is defined by two requirements given below:

1) Every token produced and consumedsirshould be related to a unique token produced

and consumed iG'. Leta be the producer artulbe the consumer of a token@ Then
the producer inG' should be related ta, i.e. it should belong to sef0], a[1], ...,
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a[H-1]. The consumer " should be related tg i.e. it should belong to sbf0], b[1],
..., b[H-1].

2) The reverse statement to 1) should also hold, lansl the relation between tokensGn
and inG'should be a one-to-one.

3) The delays of actor executions @' are equal to the delays of the corresponding
executions irG: d(v,[j],n) =d(v,, n'[H + )

We say that grapl® is themain graph with respect to an unfolded representatitve Main
graph is obtained from its unfolded representalipfolding it backwith the folding factoH. ¢

For example, Figure 3.18(b) shows an unfolded seprtion of the prototype buffer model
in Figure 3.18(c) with unfolding factor 5. ActoriX related to actors {0]...X'[4] and actor Y
is related to actors"Y0]...Y' [4].

As follows from Lemma 3.3, given below, the grapifalding not only postulates a one-to-
one relation between an actor@and a set oH actors inG', but also implies a one-to-one
relation between an edge®and a set ofl edges inG'. Note also that Lemma 3.3 also implies
that all unfolded representations of a given grdphare isomorphic (i.e., have identical
structure); therefore, in the remainder, we spddkhe’ unfolded representation instead of ‘an’
unfolded representation. Note also thiatthe (un)folding factor, must be a positive integend
if H=1thenG’ is isomorphic tdG.

Remark (Similarity of the relationship between themain and unfolded graphs and the
relationship between the prototype and the initiabuffers) The definition given above can be
interpreted as follows: the executions with indaegf actorsv, [0], v, [1], ..., v,[H —1] in the
unfolded graphG' represent the executions with indexH to (n+1)[H —1 of actorv, in

graphG. Thus, hereby we see a similar relationship asrétetionship we have introduced
between the initial and the prototype graph.

For example, in Figure 3.18(b) we see that the Idatb prototype graph looks similar to the
initial graph, shown in Figure 3.18(c), althouglertn are differences, on which we will elaborate
later. ¢

In fact, due to property 3) in the definition, ghaun)folding keeps the timing behavior of the
HSDF graph essentially intact; the main graph a@sdunfolded representation have closely
related evolution equations, whereby one can beaimdd from the other by variable
replacement:

j=0.(H-) = xX(v[il,n)=x(v, n[H+]) (3.27)
where X'(...) are the starting time variables in graBh andx(...) are the variables of grajh

We have explained the correspondence between tioesauaf the prototype graph and its
unfolded representation. Now let us explain theraspondence between the edges of those
graphs.

Definition (Positions of the actors in the unfoldedgraph) From the previous definition, it
follows that any actor irG' can be identified as actef[j fdr some validk andj. We refer to

indexj as thepositionof actorv,[j 1

Lemma 3.3 (The characterization of the unfolded grph edges)Let G' be an unfolded
representation of grap® with unfolding factorH. Then every edge=(v,,v, I G isin a
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one-to-one correspondence with a distinct set géefie|}, j =0..(H -1) in G'. Those edges
are defined by:
j=0.(H-2),m=me) = € = (V.[j], Vi[(j +m)modH ]), (3.28.1)

PJ, if (j + mmodH)<H
j=0.(H-1), m=me = me)={ -1 (3.28.2)
L%Jﬂ, if (j + mmodH)=H

wherem(e) denotes the number of initial tokens on edge

This lemma can be summarized as follows. Firstlgays that every edge @& corresponds to
a set ofH edges inG'. For example, the edge from the producer to theswmer in
Figure 3.18(a) has resulted H edges in Figure 3.18(b), going from the produdershe
consumers. Secondly, this lemma says that the atenvioned set off edges can be split into
two subsets, the set witiminitial tokens per edge and the set witin, + id)tial tokens per

edge, where mS:LgJ. The first set has producers with smaller posg#ion

] :O...(H -m mod H —1). The second set takes the rest of the range dfilpesproducer

positions and may be empty. To give an exampleho$d two sets, in Figure 3.18(b), the set
consists of two edges with one initial token aneg¢hedge with two initial tokens.

We skip a rigorous proof of this lemma, becausestatement of this lemma becomes almost
straightforward when we make two remarks. The fieghark is that executiamof an actor irG
corresponds to the execution of the corresponding actor at positijoim G’ if n’ :\_n/ Hj and

j=nmodH. The second remark is that in gragh (respectively, also inG') any token
produced by execution (resp.n’) at any edge (resp.€) is consumed by executian+ m(e)
(resp.n"+m(e" ) of the consumer actor. Based on these two rememklsthe requirements 1)
and 2) from the graph unfolding definition, aftemse straightforward technical derivation one
can obtain Equalities (3.28).

Let us now make three important observations.

Firstly, based on the Lemma 3.3, one can showthigatlata edges of the unfolded prototype
buffer model are mutually compatible — for example already discussed that property for
Figure 3.18(b). So, in other words, byfolding a simple buffer one obtains a complexdsuf

Secondly, one can also show that the reverse stateisalso true for a quite general case.
Suppose that the buffer has oslynple producers/consumeise. produces/consumers that have
only one outgoing/incoming data edge in the givetal buffer — e.g. in Figure 3.18(c), actor C
is a simple producer and D is not, we call sucloractomplex producers/consumetset H be
the number of transfers in the initial buffer amd &ll transfers have equal data token sizes.
Under these assumptions, the structure of initiafifds can be shown to be an unfolded
representation of the prototype buffer, with analaihg factorH. In fact, this property follows
from the requirement, introduced in the previoudssation, which states that the simple
channels included into a given complex channel @mpatible In fact, this requirement
‘enforces’ that the edges of those simple chanfalew the pattern defined by Lemma 3.3.
Thus, if one folds back a complex buffer with simple p@eEts and consumers, one obtains a
simple buffer
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Thirdly, recall that in case all token sizes in thiéial buffer are the equal, then the prototype
buffer contains the same number of initial tokemas the initial buffer. Therefore, from the first
two observations, it follows that, for any positiveegerH, the prototype buffer has a unique
initial buffer with simple producers/consumers. Thaffer can be obtained by unfolding the
prototype buffer with factol.

Now we have all the important ingredients to givegeneral description of the relation
between the initial buffer and the prototype bufi@r the case where the transfers have equal
token sizes. We need to formulate that relatiorabse later on we use it to step from infinite-
capacity buffers models to the finite-capacity bufinodels.

Definition. (Relationship between the initial buffe and its prototype buffer: equal token-
size case)Consider an initial buffer with the number of treers H and the total amount of the
initial data tokensn. Suppose that all the transfers have an equakadleta size.

(From the initial buffer to the prototype buffer) First, the initial buffer is transformed to the
unfolded prototype buffefor example the buffer in Figure 3.18(c) is tf@nsed into the buffer

in Figure 3.18(b). The purpose is to split the ctamproducers and consumers into a few simple
ones, e.g. in Figure 3.18(c) producer D is spliblain actors X[3] and X [4]. When splitting

the complex producers/consumers, the set of seetgloupingsof producers/consumers is
recorded, where a grouping is the relation betweeractor in the initial buffer and a set of
corresponding actors in the unfolded prototype lgrdjne rules for splitting are introduced later
in this definition (for a preview, see Figure 3.18he obtained set of groupings can be used for
the reverse transformation. At the second step, traresforms the unfolded prototype buffer
model into the prototype buffer model by foldindpéck with the folding factat.

(From the prototype buffer to the initial buffer) First, the prototype buffer is unfolded with
the unfolding factoH, hereby obtaining the unfolded prototype buffdreil, one uses the set of
groupings to transform the unfolded prototype huiffiéo the initial buffer.

The transformations from the initial buffer to thefolded prototype buffer and back are
illustrated by four patterns in Figure 3.19. Let first consider the first two patterns, which
consider the case where the data edges attachecehaal number of initial tokens (zero in the
figure, but one can add any number of tokens toyedata edge).

In the first pattern, in Figure 3.19(a), we seedtaation where the initial buffer contains a
complex consumer B (respectively, complex prodécear the second pattern in Figure 3.19(b))
with multiple incoming edges coming from a set lofproducers { A, A, ..., AL} (resp.
multiple outgoing edges to consumers in Figure @J9In that case, in the unfolded prototype
graph, consumer B (resp., producer A) is split axtcordered set of consumers{ B, ..., B }
(resp., producers { A Az, ..., AL}), each consumer (resp., producer) being joingdib edge
with a distinct producer (resp., consumer). Theedrdy of the new set of actors should be in line
with the ordering at the other side of the bufferery such local transformation is recorded as an
element in the set of groupings, whergrauping defines an actor and a set of corresponding
split actors. For example, the grouping createdhaytransformation in Figure 3.19(a) is ( B,
{B1, By, ..., BL}).
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(d) L consumers and one producer: different ﬁ.l]mberiﬁﬁlimokens

T 2

initial buffer unfolded prototype buffi

Figure 3.19The relationship between initial and unfolded ptype buffer
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Figures 3.19(c) and 3.19(d) are generalizationigdifes 3.19(a) and 3.19(b), taking into account
the fact that part of compatible data edges maye lane extra initial token. In that case the
splitting of complex producers and consumers shoultke sure that the data edges with
different token sizes are compatible to each other.

If all groupings are available, the reverse tramsfion (from the split graph to the original
graph) is possible, and done by replacement of eathbf actors by one actor. For example, in
Figure 3.18(b), two groupings are involved: (EY{[3], Y'[4]}) and (D, {X'[3], X'[4]}). ¢

Note that the definition above is easily extendablehe situation where there are not only
edges going from the producers to the consumersfroen left to right in Figure 3.19) but also
in the reverse direction. We need such edges toostipot only infinite-capacity buffers but also
for finite-capacity buffers, which we introducedat To extend this definition, we can use the
same patterns as in Figure 3.19, but for converieoce has to flip every pattern horizontally,
preserving the structure of the graph.

Now we are ready to start the discussion on fioétpacity buffers. As mentioned before,
transforming the initial buffer to the prototypefteu gives us a convenient tool for doing that.

We are still considering the case where all tokeassin a complex buffer are the equal. In
this case, it is meaningful to specify the capaiitierms of the number of tokens.

Definition. (Modeling the buffer capacity using thebackward edges: equal token-size case)

Let b be the buffer capacity specified in the numbedatfa tokens that can fit in the given
buffer. Letm be the number of initial tokens in that buffer.efhit is an obvious requirement
that: b>m.

To model the limited capacity of a buffer, we figbtain the ‘usual’ (infinite-capacity)
prototype graph of that buffer. Then, we introdaceextra edge to the prototype graph. That
edge goes in the reverse direction: from the coesum the producer; we call that edge a
backward edgelt carries (b—m ) initial tokens?* After introducing the backward edge, the
prototype buffer is calledinal-prototype buffer because it acts as the prototype buffer model
final buffer model; recall that the latter is thedified version of the initial model where the
finite buffer capacity is taken into account.

Having obtained the final-prototype buffer, we skate it into the final buffer by first
unfolding it and then by grouping the actors thatch to be grouped; hereby we use the
groupings that have been created in the beginmihgn the initial was being translated into the
prototype graph.

The final buffer model models the complex buffethacapacityb tokens. The edges that
result from unfolding the backward edge are alskedabackward edges. They go from the
consumers to the producers. To distinguish theulletiata edges of the buffer (i.e. the edges
going from the producers to the consumers) we tefétemforward edgese

For example, consider the complex buffer modele@igure 3.18(c). If we decide to limit the
capacity of that buffer td = 10 tokens, then, taking into account that= , Ve have to
introduce a backward edge with 2 initial tokenstire prototype buffer, as illustrated in

4 Note that although this simple model only workslemassumption that the tokens are consumed atrttief
actor execution, it can be modified to support ¢hee where the tokens are consumed in the begimfiagtor
execution, by adding another actor (with zero delatp the consumer cycle of the prototype buffer
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(b) unfolded final-prototype buffer model (c) final buffer model

Figure 3.20Limiting the buffer capacity by introducing backwdaedges

Figure 3.20(a). After unfolding the final-prototypgraph, we get 5 backward edges (see
Figure 3.20(b)), which are inherited by the finaffer model (see Figure 3.20(c)).

Remark (The semantics of the backward edges: commigating the free slots for data
tokens from the consumers to the producers)rhe tokens carried by the backward edges can
be seen as free slots for the data tokens on thefd edges. At the start, there gbe-m freg
slots, so the backward edge of the prototype gtegshthat number of initial tokens. At each
execution, the producer of the final-prototype buffonsumes one free slot from the backward
edge and produces one token at the forward edg¢feeré are no free slots (the backward edge is
empty), then, in line with the definition of actbehavior, the producer blocks until a token
appears on the backward edge, which will signalttieaconsumer has released a free slot. In the
context of the HSDF graph, the producer actor betam the same way with respect to all
incoming edges; it does not ‘know’ that one of ith@oming edges is a backward edge. Note that
because the backward edges do not model the ocgrofimny real data, we choose to denote
them assequence edgem contrast to the forward edges, which are @alges. This serves for
better visual understanding of the graphs modedhedoufferse

So far, in this subsection we have studied the le¢glan-size case and answered the question
on how to translate the initial buffer model, madglan infinite-capacity buffer, to the final
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buffer model, representing a finite-capacity bufigsing the prototype graph as an intermediate
point of translation. To complete the descriptionfmite-capacity buffer modeling, we need to
answer two more guestions:

1) How to waive the requirement that the token size¢he communication transfers are
equal? We answer this question by using differegsr to construct the initial buffer
model for that kind of buffers.

2) How to re-include the final buffer model we havetadbed after limiting the buffer
capacity in the overall HSDF model of the applicatt Recall that we have extracted the
initial buffer model from the context of the apption’s total HSDF.

Definition (Initial model buffer for infinite-capac ity complex buffers: unequal token sizes)
For the case with unequal token sizes, the iritisfer model is in fact not a graph in the usual
meaning, but anultigraph i.e., an extension of the notion ‘graph’ by agb#ity to have more
than one edge between two vertices. The set oicesrand the set of sequence edges of the
extended original graph are defined the same wdprathe ‘usual’ initial buffer model in the
equal-token-size case. The set of data edgesvieva, defined differently. Leag be the greatest
common divisor of all token sizes in the channdlef every communication transfer belonging
to the given complex channel has a token kigewhereh is an integer. We represent the given
transfer byh data edges joining the producer and the consumer.

This way we reduce this case to a case where kem tsizes of all data edges are equal. Now
we can answer question 1) above by applying theesaites to the initial buffer model for this
case as we have defined so far in this subsedtwen we re-include the final buffer model into
the application HSDF graph, we remove multiple edgetween the same pair of actors, so that
the application’s HSDF graph remains to be a ugtegbh. Hereby, if different edges between a
given pair of actors have different numbers ofiahitokens, we remove the edges with more
initial tokens. We do that because the edges withenmitial tokens are less restrictive for the
timing behavior of the graph.

Figure 3.21(a) gives an extended example of imgoBinite capacity values to the buffers of
the communication channels, including an unequpciy case. In our example, changgl
contains two transfers with a token size of ond and one transfer with a token size of two
units. Channety; is local and thus it consists of one buffer, whigln this example a complex
buffer. Figure 3.21(b), among other things, shots initial buffer model for the buffer of
channelg;. We see that the transfer with the token sizeiswepresented by two edges between
the same pair of actors. In Figures 3.21(c) andL(8)2 the initial buffer undergoes the
transformations we defined in this section: splgtithe complex producers/consumers and
folding the graph with a factor equal to the numtiedata edges. Afterwards, we introduce the
backward edge into the prototype buffer model. #a buffer of channet;;, we arbitrarily
assume a capacity of five units, and every inittlen at the data edge and backward edge
models one capacity unit. Finally, we unfold theafiprototype buffer and group the actors
back. From the resulting modified extended graplkigure 3.21(e), we remove two superfluous
replicas of the same edge, and then we re-inchelentodified graph back into the HSDF model
in Figure 3.21(f).
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theinitial buffers ing, (coincide with the prototypbuffers)

A

C |———p E
the initial buffer forg, (multigraph)
(b) Initial buffer models, obtained from the HSDF dnap

every data edge, except for one, assumes token sizi

(a) An HSDF after channel merging
(

the final-prototype buffers fog, (capacity 2 and 1 unit)

E==0)

(c) The unfolded prototype and the prototype

buffers forg, the final-prototype buffer fog; and its unfolded version
(capacity 5 units)

(d) Introducing the backward edges

(c

(e) The final buffer forg,

(f) Final HSDF graph = IPC graph
Figure 3.21Introducing finite buffer capacity modeling inteet HSDF model
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When answering question 2), the simplest caseeidttifer of a local channel. In this case, we
just import the backward edges of the modified inaggraph in the application HSDF graph.
The same applies to tipeoducerbuffer of a network channel. Note that in thatecti®e original
graph sees the channel producers as producers hendransfer actors as consumers. In
Figure 3.21, we demonstrate it using a simple nétwebannel, with a simple producer buffer,
being modeled by a data edge from actor B to akctor

The only case of translation from infinite- to fecapacity model that is left to be studied in
this subsection is the case of the consumer bujbéénjng a transfer cycle to the channel
consumer cycle. Recall from Figure 3.17, that tatedges of that buffer are actually split into
two parts by the latency actors. When forming thgal buffer model of a consumer buffer, we
temporarily remove the latency actors; for examgés the original graph with actors T and F in
Figure 3.21(b). Having obtained the initial buffeodel, we perform the usual transformations to
obtain the final buffer model — see e.g. the tghripart of Figure 3.21(d)). When including the
final buffer into the HSDF model, we re-introdude tlatency actors back by splitting the data
edge again (e.g. see path-TL—F in Figure 3.21(f) ). It is important to note tlve¢ also need to
split the backward edges and introduce actorsat@tanalogous to the latency actors (e.g. see
actor L) — we call thoseredit actors for the reason explained below. Hereby, if theneeinitial
tokens at the backward edge, then we place thalitikens at the edge closest to the transfer
actor (e.g. edge (IT) in Figure 3.21(f)), as motivated below. Togethdth the transfer actors

and the latency actors, the credit actors fornms#ieof communication actors. They are all part of
the channel macreQ(q;) for the network channel.

In fact, the backward edgesf the consumer cyclmodel the flow control mechanisof the
communication network because they carry the inftion on the number of free slots available
from the network consumers to the transfer actoad push the data into the network at the
producer side of the channel. The tokens carriethbybackward edges are in fact the credits
that propagate through the flow control connectidhe credit actors have delay equal to the
upper bound given in Equality (3.23). Initially,edlit tokens are placed at the backward edge
closest to the transfer actor because at staneoéxecution, the channel is ‘aware’ of how many
free slots are available at the consumer side hod this information does not need to be
communicated through the network.

After importing the backward edges of all the ctelanthe application HSDF graph, in fact,
reaches a final form, which we call the IPC graRecall that it is the main purpose of this
chapter to explain how the IPC graphs for the netvam-chip are constructed, and at this point
we have reached that goal. Recall that we defi@edRaphs as HSDF graphs modeling the final
implementation process network in the end of tloevflwhere all budgets are set to realistic
finite values. From this, it follows that the IP@ghs are the HSDF graphs that model the finite
capacities of the communication buffers and thédimandwidths of the network channels.
Thus, they justify their name iater-processor communication grapha the graphs where the
inter-processor communication is (conservativelydeied with the highest accuracy that the
given mapping methodology can deliver.

In the remainder of this chapter, we explain thagesof the IPC graphs for buffer capacity
minimization — the last step of our preferred magpflow — and we also mention some
miscellaneous properties of the IPC graphs.
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Figure 3.22An IPC graph showing a feasible solution

3.6.4 Buffer Capacity Minimization Using IPC Graphs

In the previous subsection, we have seen thatdpaatties assigned to the buffers influence
the initial marking of the backward edges. For ¢henplex channels, they also influence which
consumer-producer pairs are joined by the backwdgeds. For example, if in Figure 3.21(d), we
increased the buffer capacity from 5 to 6, then fthal-prototype graph would get one more
initial token at the backward edge and when we ldrttwat graph the backward edges would be
(D, Ay, (&, C), (B, C), and (R, Ay). Therefore, the buffer capacity assignment stap dn
direct impact on the structure and the number ititirtokens at the edges of the IPC graph, and
thus in general it influences the MCM of the grapldl the throughput of the loop of interest.

If a critical cycle of an IPC graph contains atslieane backward edge, then a large enough
increase in the capacity of the corresponding buffdl always eliminate this critical cycle,
which can only either leave the maximum cycle mgachanged or lead to a favorable reduction
of that value (and thus to the favorable increagbe throughput).

Let us define &auffer capacity vectoas a vector of the buffer capacities of all bidfer
including Qo4 putrers Qeonswurrer OF @ll NEtwWoOrk channels an®, 4, of all local channels. A buffer

capacity vector is callef@asibleif at least one of the conditions below is satidfi

» the critical cycles of the corresponding IPC grdmve cycle meam that does not
exceed the required iteration interval< Aajowed

OR:

» there is a critical cycle in the corresponding IB€ph that does not include any
backward edge of any buffer.

A non-feasible IPC graph can be made feasible,nbyeasing the buffer capacities of the
buffers contributing to the critical cycle untilehmaximum cycle mean goes beldWiowed OF
some critical cycles appear that cannot be chahgeahy buffer capacity increase. For a feasible
solution as defined above, it holds that no inaesms any buffer capacity can provide the
necessary throughput improvement anymore.

The buffer minimization problencan be defined as a search for a feasible bufpadaity
vector that minimizes the sum of the capacitiealldbuffers.
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Thus, the IPC graphs proposed in this thesis erddflaing the buffer minimization problem
in the context of HSDF-modeled applications hawimgple or complex channels implemented
either in the local memory or using an on-chip retwith guaranteed bandwidth of point-to-
point connections.

In [68] it is shown that the minimization of buffeapacities in HSDF graphs is an NP-
complete problem, therefore we consider heurigtigr@aches. One can construct an interative
heuristic using the optimization scheme we explhimeFigure 1.8(b), with the analysis of IPC
graph used to generate guidelines for iterativerawgment of the solution candidate. As we
show in this subsection, the guidelines can be rg¢@@ based on the analysis of the critical
cycles in the graph.

Figure 3.22 gives an IPC graph, modeling a feagblation with minimum total capacity. It
considers three single-actor processes communicaianthree local channels with equal token
sizes. The optimal buffer capacities are 2 tokemgHe channel from A to B, 2 tokens for the
channel from B to C and 3 tokens for the chanm@hfA to C. We assume that, in this example,
Nalowed = 1.

All cycles in that IPC graph have a cycle mean asti. Thus, the given solution satisfies the
throughput constraint. Moreover, from the pointvadw of buffer capacity minimization it is a
feasible solution, because there is at least ode cg.g. (A)* that has a maximum cycle mean of
1 and does not include backward edges. Two otheh sycles are (B)* and (C)*. Thus
improving the throughput of this solution would vég an increase in the computation budgets
of those three actors.

This solution uses minimum total capacity, becaitideas the property that removing one
token from the capacity of any channel would leadrn increase of the MCM above the current
value 1. For example, removing 1 initial token fremge (C, A) would leave only two initial
tokens in cycle (C, A, B)*, leading to the cycle aneof 3/2 = 1,5, and removing 1 initial token
from edge (B, A) would leave only one initial tokencycle (A, B)*, leading to the cycle mean
of 2.

Now let us consider an example that uses a compétwork channel, namely our JPEG
decoding application example. The communicatiomokbof that example has two buffers: the
producer buffer and the consumer buffer. We deteena feasible buffer capacity vector by
gradually increasing the capacities and changieg®C graph respectively. This is repeated to
the point when iteration intervad does no longer change, wheteis computed analytically as
the MCM of the IPC graph.

Table 3.2 illustrates the results of this exerciBlee third column of the table shows, for
comparison purposes, the iteration intervals measured using a particular input data stream

fed to a multiprocessor simulator modeling two @ssDOrs communicating via a network
channel.A, is computed aé%, where A, is the time it took the multiprocessor to decode

the image andN is the total number of tokens in the sequence. r€kalts of the third column
considerably differ from the results of the middiE@umn because in that case the ‘VLD’ actor
has variable processing times, as shown in Figireahd thus it has also variable execution
delays. However, a mapping flow cannot make ussioh measurements because they can only
be made a posteriori at run time, whereas our pexfantra-application mapping flow needs a
priori estimates at design time, made using théc&pelay timing mode, in which all actors
have constant delays.
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Table 3.2Arriving at a feasible buffer capacity vector

The capacity vector, A 1S, measured
A, us
(Qprod-buffer’Qconsbuffer) for the ‘PHILIPS logo’ input sample
11 1140 1201
1,2 1035 1150
2,2 985 1116
2,3 no change 1093
3,3 1076
3.4 no change

From Table 3.2, we see that the typical-delay bgwedictions are more optimistic than the
measured iteration intervals, i.el,< A . This is, in fact, not necessarily the case for mput

data sequence, but it can happen. Thus, althowmépping flow assumes that the throughput
constraint is met with buffer capacity vector (2,8 reality, for the given input data stream, the
constraint is not satisfiedA, > Aaiowed, Which is 100Qus. Recall from the previous chapters

that it is not possible to avoid throughput conistraiolation unless one can afford to design for
the worst casg. Recall also that a remedy for this is run-timegétion. It is for the purpose to
support the run-time adaptation that, in the latepters, we develop the run-time performance
analysis that is based on the IPC graphs with bleriactor execution delay. Because our run-
time adaptation approach gives guaranteed perfarenastimates, one can expect that for this
input data sequence it would predict a throughpaomstraint violation and signal to the
adaptation manager about the need to e.g. incteasprocessor clock frequency and/or scale
down the quality of the output imaie

Figure 3.23 shows the IPC graph that correspondietsolution with capacity vector (1,1).
Compared to Figure 3.13, we see that the transfesrsa now reflect the channel number
minimization decision (the actors are joined intsiagle transfer cycle) and the bandwidth
minimization decision (the actors have delayp42 as calculated earlier). We also see the
backward edges and the credit actors. The credir adelay 2.1us is calculated using
Equality (3.23), where we again assume a maximumvork& path of 20 routers.

In Figure 3.23, we see that the critical cycle ubesbackward edges of the channel and the
actors of both processes. That critical cycle tesul entry ‘114Qus’ in the table. When we
increase the capacity of the consumer buffer ardhes capacity vector (1,2), the destinations of
the backward edges in the consumer buffer modEigare 3.23 shift by one actor lower and as
a result the critical cycle takes one ‘7.5 and @&’ actor less in the first process cycle, which
explains the decrease of the iteration intervalrdyyghly 105us — see entry ‘103@s’ in the
table.

%5 We tried to use the worst-case actor delay folthB actor and got such a large process cycle diglaprocess
p; that the conclusion was that satifying the thrqughconstraint in the worst-case is only possildengt much
faster processors.

% We demonstrate this approach in Chapter 6, usinglifferent application case study, where the adelny
variation is similar to this application
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This example demonstrates the fact that our mogléénhnique for finite-capacity channels
allows to obtain guidelines for improving a giveolwion when solving the buffer capacity
minimization problem under throughput constraifis.make a decision on how to improve the
current solution, one can calculate the criticalley of the IPC graph — which can be done using
polynomial algorithms ([19]). To improve the thrdymyt, one has to touch every critical cycle
by increasing the capacity of one of the buffer@sénbackward edge is contained in the cycle.
These guidelines can be used to develop iteratiffetbominimization algorithms.

In the related literature, [2] studies dataflow feufcapacity minimization, but does not take
the throughput constraint into account. In [33]6][8[87], [97] we can find a few alternative
approaches for solving this problem under the thinput constraint. All mentioned works
consider the SDF model of computation, which isengeneral than HSDF (see Section 2.1.1);
in fact the last two references consider cyclokstata-flow, which is even more general than
SDF. However, all these algorithms do not suppaftes space sharing between several simple
buffers, and thus they do not support complex caarTrying to extend these algorithms to
support complex channels or to develop a heuraédgorithm based on iterative breaking of the
backward edges in the critical cycles are intemgssubjects for future work.

3.7 The Properties of the Proposed IPC Graphs

3.7.1 Strong-connectedness, Liveness and the FIF@operty

In Section 2.2.4 we postulate the necessary rageinés an HSDF graph must satisfy to be an
IPC graph. Recall that our postulate says thaneme|PC graph:

1) is strongly-connected,
2) live, and
3) has the FIFO property.

Recall also that the IPC graphs of earlier relatedk, modeling bus-based architectures, can
be shown to satisfy all those properties. In thibsgction, we briefly show that also for the
proposed IPC graphs, modeling network-based anthites, these properties hold as well for a
quite general case.

Let us first assume that the original computatisapy fed to our mapping flow in the
beginning is connected. Then the implementatiocgss network is connected as well and stays
connected during the whole mapping flow. From tlemnectedness of the implementation
process network the strong-connectedness of thegi@h follows, because in an IPC graph
every process macro is a cycle and every channela@antains not only the data edges, which
go in the same direction as the channel, but dledackward edges, which go in the opposite
direction.

Only if the original graph is not connected, buhsists of several disconnected subgraphs,
may the IPC graph ever appear to be a disconngctgah. Nevertheless, in this case, due to the
reasons that we have just discussed, every comheotaponent of the IPC graph will by itself
be a strongly-connected graph that can be considedependently from the other components
as a separate IPC graph.

The liveness property means that any actor in tB®H graph can eventually always fire
again and implies the absence of deadlock, i.eabl®nce of a situation where no actor will
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eventually fire again. For HSDF graphs, livenes®dsivalent to the requirement that every
cyclic path contains at least one initial token;ading to a well-known property of so-called
event graphs [4 - 81]. In our implementation trégeg, the intra-application mapping flow
makes sure that that the MCM of the HSDF graplotdarger tham\aiowes and this implies that
every IPC graph cycle should contain at least oiteal token; otherwise the average iteration
interval would be infinite.

Recall that Lemma 2.1 in Section 2.2.4 states #matHSDF graph possesses the FIFO
property if all actors having dynamic executionaysl are enclosed within cycles having only
one initial token. In our IPC graphs, only compiaiatactors can have dynamic delays, but they
are all enclosed into the process cycles. In thet,only actors in our IPC graphs that are not
enclosed into such a cycle are the actors modéliegetwork latency. Those actors have static
delays even in the timing modes where the compmutadctor delays vary. The static delay of
those actors models the fact that the data tokemsat overtake each other as they propagate via
a network connection.

3.7.2 An Upper Bound on the Number of Initial Tokers in any Cycle

In this subsection, we give an upper boyndn the number of initial tokens of any simple

cycle (i.e. the cycle depth) of an IPC graph geteerdy our preferred mapping flow. We need
this result in Chapter 4 to bound the algorithmoenplexity which depends on the initial token
count.

The upper bound proposed in this subsection is s@hif all cycles contain at leagi.

tokens, no increase of the capacity of any bufter ead to throughput improvements. This
bound helps to limit the maximum ‘reasonable’ numiieinitial tokens on the backward edges,
and it is relevant only fomixed cyclesi.e., cycles containing the computation actorditférent
processes or computation actors and communicatimmsa Note that this definition includes the
artificial cycles, as defined in Section 3.5.5. #ié other cycles have only one initial token.

Let C be an arbitrary simple mixed cycle in IPC graphLet the depth of cycl€ be /.
The main question we have to answer now is howsue that cycl€ is not critical by setting
[ high enough. Let us represent the cycle meah as:

2a+2h
CM(C)=———, (3.29)
C

where g are the typical delays of all computation actard &ansfer actors i€, andb are the
typical delays of all latency and credit actor€in

Before we proceed in finding an approprigig, let us introduce a few notations. L&tand
b be the maximum computation/transfer and latenegitactor delay in grap8 respectively.
Also, letV.,andV,, be the number of process/transfer and latencyitaetbrs inC.

Because any computation and transfer actor belmngsycle with only one initial token, we
have MCM(G) =a. Therefore, we can ensure th& is not critical by the following

requirement:

a+yhs<i A, (3.30)



144 3 Design-time Trajectory: IPC Model Construction

which, in turn, can be ensured by:
V,, B+V, < ji. @&, (3.31)

Now we can distinguish two major cases.

In caseb <4, we can obtain a valid inequality by replaciﬁgby a in Formula (3.31). This
yields the following requirementii. =V, +V,, i.e. fi. =2V., whereV, is the total number of
actors in cycleC.

In caseb> a, we can make use of the observation that at maléiohthe actors in cycl€
are latency or credit actors because every latenayredit actor is joined to a process and a
transfer actor. Therefore, we can replakg andV,, by V./2 in Formula (3.31). Hereby, we

get:
b>a= [ch\%[(mﬁ/é) (3.32)

In both casegi. depends oV.. Now, to obtain an upper bound that does not d&jpenthe

number of actors in the cycle, we can use the ghten that any simple cycle contains at most
V actors, wheré/ is the total number of actors in the graph. Conmgirthe two major cases
together, replaciny. by V, and replacing inequality by equality we get thefiexpression for

the upper bound on the number of tokens:
= VE L+ maxg. b/3)) (3.33)

This formula can be motivated as follows. If themeounication network latency is
considerably higher than the computation delay,need larger buffers in order to ‘hide’ the
network latency and thus more initial tokens ateontuced in the IPC graphs. If, however, the
network latency is very small, only the computatsord transfer actors influence the throughput.
Then we need to put at most one token per one acich in the mixed cycle to avoid that that
cycle is critical.

Note that Formula (3.33) only limits the depth d&ietcycles where the mapping flow
introduces at least one initial token. It does Imoit the number of tokens that are inherited by
the IPC graph from the computation graph. Howewas, would consider it as an extremely
unlikely situation where computation graphs wouddheavily ‘saturated’ by initial tokens, such
that there are more initial tokens than actorqendraph. Only in that case could they make our
upper bound invalid. Assuming that such untypical anpractical saturation do not take place,
we conclude that Formula (3.33) holds for a quéregal case.

3.8 Notes

We conclude Chapter 3 by highlighting and summagzihe achievements of this chapter
and mentioning some important related work andsth@ces of inspiration without which this
chapter would never have been possible.

We place the main novelty claim of this chaptethia treatment of network communication
channels. The novel parts of this treatment arensamzed below:

1) Models for complex finite-capacity buffers, basedHSDF graph unfolding;



3.8Notes 145

2) Models for network-on-chip (NoC) channels, incluglithe transfer, latency and credit
actors, the transfer cycle and the bounded-caphuaifer models mentioned in 1).

These contributions were first presented in ourepdps]. The value of those contributions is
that they enable guaranteed throughput analysithéstreaming applications running on NoCs,
even when the network connections are shared btipteuprimitive channels of the application
that carry data tokens of different type. Contridmtl) is essential for minimizing the amount of
communication buffer memory, which is an importaost factor for systems-on-chip (SoC).
Contribution 2) enables extension of the bufferimimation problem formulation to the realm
of NoCs. Our contributions are described in SecBahand the supported hardware architectures
are described in Section 3.4. Section 3.5 puts aantributions in the overall context of
multiprocessor mapping techniques.

An important part of this chapter is the followirgjatively new idea. For the data-dependent
HSDF/SDF applications, it is useful to aid the magpflow with an application preparation
part, which precedes the mapping flow and detehts dctor-level parameters and their
coefficients for linear parameter functions modglithe actor delays. That idea is not our
contribution, but it comes due to the work of Milgastrnak, [72], with whom we worked in a
close cooperation.

In this chapter, the application preparation parsystematically described in Sections 3.1
through 3.3. Those sections contribute to the pres/related work by an original discussion of
linear parameter functions and by highlighting tees commonly known possibilities in this
field — the use of confidence intervals in the dingegression approach to generate linear
functions that are conservative from a probabdiptint of view.

Note that, for this thesis, the main importancehaf application preparation part lies not in
determining the typical actor delays for the magpflow but in our run-time performance
prediction method for dynamic-delay HSDF graphs. &d&scribe that method in Chapter 5 after
building the necessary basis for that in Chapter 4.

The first idea for the use of backward edges fodetiag buffer capacities is coming from the
discussion on strictly bounded Kahn process netsvodiscussed in the PhD thesis of
Thomas Parks, [73]. The formula for the delay inM® scheduling has been adopted from the
Master Thesis of Rob Hoes [38] and [8]. The examid-igure 3.10 and 3.22, explaining the
peculiarities of the different steps in the mappilogy have been borrowed from the discussions
in the ‘HIJDRA' research project for soft-real-time multiprocessweaming applications carried
out in Philips Research Laboratories Eindhoven @aays NXP Semiconductors).

In his Master Thesis [60] and in [63], Arno Moonamniroduces more elaborate dataflow
models for the network channels than our channerosa His models are based on the general
SDF model of computation, and they include more grém¥ and less pessimistic models of
network scheduling of data packets, using transfetes with multiple initial tokens. However,
those models reflect the events in the network ohbsnat fine-grain hardware-specific level of
granularity, i.e., at the level of network data de&rOn the contrary, our models work at the
application-specific level of granularity, whicHads us to model a block of data communicated
through the network channels as one single tokéweréfore, when the application uses data
blocks, our models are simpler and performance yaisalcomplexity is reduced. This is
particularly favorable for doing the performancelgsis at run time for variable actor delays.

The work of Arno Moonen, as well as our own, pr@ga way to represent the FIFO memory
buffers of the network channels using (H)SDF graphs already mentioned, provided an
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(H)SDF representation, several works propose tgeriéthms to minimize the required buffer

capacity, e.g. [2], [33], [86], [87], [97], but nerof them can handle complex FIFO buffers, i.e.
buffers shared by multiple producer-consumer agiars. For such cases, our modeling
approach enables finding bottlenecks in a problehti®n and thus can be potentially used in
iterative-improvement optimization algorithms.

Last but not the least, M. Coenenal [15] propose a FIFO buffer capacity calculation
method for TDMA-scheduled on-chip networks. Usirdg tdetails of the behavior of such
networks, it has a potential to produce more ogtimdfer capacity allocation than dataflow-
oriented network models, which are based on a rmbstract view of the scheduling. However,
this work would not fit well into our design methadgy for two reasons. First, it requires
allocating network hardware resources at desigre,timhereas, in order to provide enough
flexibility for dynamic run-time combinations ofreaming applications it is better to postpone
allocation of physical resources to run time. Seg¢adh assumes that the producers and the
consumers are ‘well-behaved’, in the sense that doenmunicate data at a constant rate. This
assumption works well e.g. for video processingihare blocks, which produce and consume
video data samples following a (multi-)periodic tpat. However, the software tasks in
applications like video/audio de-coding do not rsseeily satisfy this assumption.









4 Analysis of Static-delay HSDF Graphs

In the previous chapter we have described how anecceate an HSDF timing model of an
application executable running on a multiprocesSo€ with network-on-chip communication
that supports predictable timing. An important atege of this model is that it combines both
the computation and communication using the sansic aimitives, namely the actors, the
edges and the initial tokens. This opens up a pitisgito ignore in this chapter the details on
what is being modeled and rather to focus on thdahitself.

In this chapter, we consider the fundamentals aficstielay HSDF graphs, in order to
establish the facts that we use in the performanadysis approach proposed in this thesis.
Hereby, the major analysis goal is to obtain tiytl conservative bounds on the performance of
the multiprocessor system being modeled by thehgrap

In this and the following chapters, we use the tedgorithmic rule to refer to all the
algorithms contributing to the performance analysifie outcome of this chapter is the
algorithmic rule that calculates the conservativariads on the performance of the static-delay
graph. We refer to it as thmajor algorithmic rule for static-delay analysi$he major rule
consists of the smaller rules that are establistvedighout this chapter.

In the whole chapter, we assume that the HSDF gnapgfuestion satisfies the basic IPC
graph properties. Recall that those properties are:
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* strong-connectedness,
* liveness, and
* FIFO property.

Given those properties, we focus on the theoretesilts that lead to th@ain theorenon
the periodic timing behavior of an HSDF graph. Ttiegorem serves as a foundation for the
major algorithmic rule for static-delay analysis.vAry convenient mathematical apparatus for
expressing the main theorem and the supporting Esmismax-plus algebraThe theoretical
results of max-plus algebra are studied in muclaidét [4]. However this book studies a
different model of computation, namedyent graphs

Our major algorithmic rule re-uses certain evemiphr results such as max-plus algebra,
certain algorithms and the main theorem. Theretorege able to introduce the major algorithmic
rule unambiguously in the second part of this chgpin the first part of this chapter —
Sections 4.1 - 4.3 — we extend the results of p]bbilding a thorough connection between
HSDF graphs on one side and event graphs on tlee sitfe. This connection is not new, but, to
the best of our knowledge, never worked out in ghodetail in the literature. Once the
connection is clear, for consistency, we also reduce the main theorem.

In the second part of this chapter — Section 4vk-tise the main theorem to introduce a new
characteristic of the HSDF graph called ‘latenessienoted &' — which is important for our
performance analysis approach. Having introducedniain-theorem, the event-graph results
and ‘g, we are ready to present the major algorithmile,ruvhich is also done in the same
section. Section 4.5 summarizes this chapter andioms some related literature.

Note that so-calledtate-space exploratiois an approach to static-delay HSDF performance
analysis that is alternative to max-plus algebm ewent graphs. As shown by A.H. Ghamarian
et alin [23], using that approach, the main theorem lmaproven for more general graphs — i.e.
SDF graphs (i.e. multirate dataflow graphs) andstech graphs the performance analysis can be
done more efficiently than using a translation fr8RDF to event graphs. However, it is not yet
clear whether this advantage is still present wties technique is applied to HSDF graphs.
Although the analysis techniques of [23] are foduse the calculation of throughput, they have
some similarities with a technique we propose is thapter to calculate lateness. We discuss
these similarities in Section 4.5. In this chaptes, prefer using event graphs over state spaces,
because, as already mentioned, for the event geffibent performance analysis algorithms are
known to us, making a working set to construct mngor algorithmic rule. Construction of
similar algorithms using state space explorationglider to provide better support for general
SDF graphs is a subject for future work.

4.1 HSDF Graphs and Max-plus Algebra

In this section, we build a relation between HSD&phs and max-plus algebra. First, using
max-plus algebra, we give an overview of the bateps towards the main theorem. Then, we
make the first step in that direction by expressheggtiming behavior of the HSDF actors using
the max-plus algebra notations.
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Vi Vs,
a oo b

a, b are delays of actorg andyv,

(In this chapter, we do not distinguish between iwmmication and computati
actors and between the sequence and data edges.)

Figure 4.1‘Producer-consumer’ HSDF graph

4.1.1 Overview of the Steps towards the Main Theone

Our starting point is a formal description of anH¥Sgraph’s timing behavior. Suppose we
have an HSDF grapB(V, E, m) as defined in Chapter 2, wheveis the set of actorg; is the
set of edges anul — the edge marking — gives the number of initakens on each edge.

Suppose that grap@® satisfies the basic properties mentioned in thieduction to this
chapter. Recall from Chapter 2 that the timinghef HSDF graphs possessing the FIFO property
can be described using varialbeé , which, for each actov, , give the completion time of the
execution with index, n=0.We also refer tag (n s the time of theompletion eventf actor
v, in iterationn. For n<0, we assume, for convenience reasons, that akhblesx, (n ) take

value O.

Recall also that, to define the timing behavioraof HSDF graph, recurrent equations are
constructed, relating the future completion eveatthe past events. In Chapter 2, Lemma 2.2,
we introduced those equations asekielution equations

Consider, for example HSDF grapgh in Figure 4.1. Using Lemma 2.2, we can write the
following evolution equations for this graph:

X(n) =a+max(x(n-12),%(n-2)) (4.1)
% (n) =b+max( x(n) X(n-1))

The right-hand side of each equation is the suthe@factor delay and a ‘max’ operation. The
‘max’ operation, in effect, gives the earliest mamehen the actor can capture the input tokens
and start the execution in iteration The ‘max’ has one entry per incoming edge of ahtor.
The entry gives the time of the completion evemt throduces the required input token. The
index of this event equaisminus the number of initial tokens on the corresjiog edge.

In max-plus algebra, one can rewrite these equaagrfollows:

)= ald(xm-DOx,(n-2)= alx(n-YOalx,(n-2)

(4.2)
%= bOMXMIxM-)=  bOx(MObOx,n-1)

where in the middle part of Equality (4.2) we haeplaced ‘max’ by (1’ and ‘+' by ‘[1".
Operators f1” and ‘(0" are the scalar ‘addition’ and ‘multiplication’ epations in terms of
max-plus algebra. Just as for the ‘normal’ additeamd multiplication, the distributive law
appliestothemud(vOt)=ulOv O ult. We apply the distributive law to the middle pairt
Equality (4.2) to obtain the right-hand part.
Just as the ‘normal’ algebra, both the ‘additiond ahe ‘multiplication’ in max-plus algebra
have one neutral element, or an element that, wdenbined with any other element in
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‘addition’ or ‘multiplication’ does not change thatement. Thus, in the ‘normal’ algebra, the
neutral element for addition is 0, ‘zero’, and tieutral element for the multiplication is 1, or
‘unit’. In max-plus algebra, we also use the narzeso’ and ‘unit element’, but they have a
different numeric value.

‘Zero’ in max-plus algebra is denoted’*and its numeric value is . We see that for this
‘zero’ element and thed’ the neutral-element property holds{] € = max@,—) =u.

Similarly, the unit element in max-plus algebradsnoted €. By definition e=0. Thus,
ulle=u+0=u.

The scalar Equalities (4.2) can be re-written inrirdorm:

Bk ke i R

X, (N) b £ [x(n) e bl [x(n-2 e e|[x%(h-2)

where ‘normal’ matrix multiplicationCJrules apply, i.e. matrix vector-rows are multgadi with
vector-columns. However the role etalar operations [1and ‘+' are played by max-plus
operations f1’and ‘0". The reader can verify that by applying thoseesuio (4.3) we arrive at
the equalities in (4.2).

In this chapter we use the following mathematicatations. All algebraic expressions
involving matrices(including vectors seen as special cases of matrices) are max-fgabra
expressions. Thus, a matrix product, although dmhdi involves a linear combination of
matrix elements using’ ’and ‘00 °. A matrix addition, although denoted ‘+’, mearsraent-by-
element application of(1’ (maximization); for example ‘+’ in Equality (4.3efers to matrix
element-by-element maximization.

To express the periodic behavior of HSDF graphs) atalar-by-matrix product]‘is used
in this chapter, and it means element-by-elemeplicgiion of ‘1’ (addition). If, in a scalar-by-
matrix product, the scalar is in some powerthen the ‘power’ meand times application of
‘0’, being equivalent to ‘normal’ multiplication QY. Thus, in expressiora™ (A’ where ‘A’
is a matrix, ‘a"’ corresponds tead a...0 a (N times) and refers to ‘normal’ algebra’s:
“Nla’. Also, the division of a matrix by a scalar, €.é/a’, should be interpreted differently,
namely as element-wise subtraction. At the endisf subsection, we summarize our max-plus
notations in the form of a table.

The main rationale of using max-plus algebra in ocontext is that one can interpret the
iterations of the HSDF graph as applications of thatrix multiplication to the vector of
completion times of the HSDF actors. As shown i fdany matrix multiplication properties of
the ‘normal’ linear algebra have analogies in mlssglgebra. Therefore, one can re-apply the
powerful linear-algebra apparatus to explore tloperties of the HSDF graphs, which appear to
be ‘linear’ systems in the context of max-plus alge

In a compact form, Equality (4.3) can be rewritéesrfollows:

x(n) =A,[x(n)+A, Ix(n-D)+A,[x(n-2) (4.4)

where theA, are above matrices and thén—m are vectors of variableg (n—m .)

The main theorem, which we develop in the firstt pafr this chapter, requires that the
evolution equations should be representechimonic form

x'(n) =BIx'(n-1) (4.5)
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where x'(n) is an vector of variables which is, in generaffedent from the original vector of
variables,x(n) . The translation into canonic form is always pbkesiand one can compute the
new vector from the original one and vice versae bhasic idea is that any variable occurrences
of the formx(n—k) for k> 1 in the evolution equations (Equality (4.2)¢ aeplaced by a new
variable.

For example, in Equality (4.2), we do the followivayiable replacement:

xm=x), %M =x), x(n)=x(n-1)

Note that these replacements are defined for tdber values of, e.g. one can derive that
x5 (N) =x% (h—1) =x% (n—1). Using the variable replacement and substguhe first equality
into the second one in (4.2), the following equévdlcanonic-form system of can be obtained:

a ¢ a X (n) X (n-1)

B=|alOb b alb| = X,(N) |=B 0| x;(n—-1) (4.6)
E e ¢ X3 (N) X3 (N—1)

We have:

x'(n) =B™ X'(-1) 4.7)

B is calledthe canonic matrixof graphG . Thus, if the canonic matrix and the initial sfate
x'(-1), are known then one can compute the completioegiof any actor in any iteration

Recall that under our assumptions, the initialesiatsuch that all elements »f(— 4ye equal to

0, and this holds for any negative iteration index

For a certain class of HSDF graphs, the main tmedoe static actor delay executions implies
thatB" =AB"™, where scalad is a max-plus eigenvalue Bfand wheren is large enough. In
the context of max-plus algebra, the definitiontleé matrix eigenvalue is different from the
eigenvalue definition of the ‘normal’ algebra andll e given later. FromB" = A B"™?, it
follows that x(n)=A[x(n-1), which is equivalent tx, (n) =A 0 x, (n— ILfor all actorsw).

Because ‘multiplication’d in max-plus algebra means ‘normal’ addition, wadaode that, for
the class of HSDF graphs referred to above, ther @impletion times are strictly periodic with
periodA: x (n)=A+x,(n-1).

As we see later, faall static-delay HSDF graphs possessing the basigtBgh properties, a
generalized version of expressi@i = AB"™" applies, namelyB" =AY B"™", whereW is an
integer andn is large enough. This again means that the grapéfgvior is strictly periodic,
whereby the period spai¥ iterations and has duratiohlW (recall that that is how we should
interpret ‘A"’ in all expressions where matrices are involved).

If we divide the period, i.eA (W, by the number of iterations in the period, V¢, we get
the average iteration intervad’: Thus we see that!', introduced here as a max-plus matrix
eigenvalue, has the same meaning as in the previ@ers. In accordance to what we stated in
the previous chapters, the main theorem, studigbdisnchapter, states that the max-plus matrix
eigenvalue is computed as the maximum cycle meaheoHSDF graph. Therefore, thgeaph
cycles i.e. the cyclic paths in the graph, determine gh@ph’s long-run steady-state timing
behavior, which is, in fact, strictly periodic. Trieéore, the graph cycles play a central role is thi
chapter.

The summary of the max-plus algebra notations uséds chapter is given in Table 4.1.
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Table 4.1A summary of max-plus algebra notations

Notation contents Example Example meaning in ‘normhalgebra
Scalar operation™’ allb max(@, b)
Scalar operation’’ alb a+b
Max-plus ‘unit’ element € 0
Max-plus ‘zero’ element £ -
. a A+a
Scalar—t?y—rr?atrlx 1 E%b A1+b
multiplication c d+c

Scalar in poweN by
matrix multiplication

NOA+a NDRA+b
NMA+c NMQA+d

Matrix division by a
scalar

o

matrices

Multiplication of two a biyf g
c d|{|h i

max@+ f,b+h) max@+g,b+i)
maxc+ f,d+h) maxc+g,d+i)

Scalar expression with
‘normal’ operations

alb+cld

alb+cld

Table 4.2Table of variable contributions to the evolutioruations, initially containing

only default values (max-plus ‘zero’ element)

column 1 columi columnV
rowl| x(n) = £ £ £
rowi | x(n) = £ F3 £
rowV | X (n) = £ £ £

4.1.2 Evolution Equations of an HSDF Graph in Max-fus Algebra

In this section, we describe how to obtain the mdtrm of the HSDF evolution equations of
graphG, e.g. Equality (4.3), in general.

Let us consider a square table, wittrows and columns, whei¢ =|V| is the number of
actors in grapl. We define that table as follows. Every rawdf the table corresponds to the



4.1 HSDF Graphs and Max-plus Algebra 155

evolution equation for variables (n . )Every columnj corresponds to theontribution by
variables x;(n-m), m= 0,1,2,... to the evolution equations. Note that at most oh¢hose

variables can be a contributor to any given evofutquation, because there can be at most one
edge going from actov; to actory, .

Let us first initialize all entries of the tabletvic, as shown in Table 4.2.

Before we update the table, let us answer the iqumelsow thex; (n—m) variables contribute
to the evolution equation of variabbe (n). An evolution equation, as given by Lemma 2.2,
expresses variable(n as the maximum of a subset of variablg® —m) plus the delay of
actorv, . In max-plus algebra, we can write it as:

x (0 =d(v) 0 {0 x4 (- 16, 9)) (4.8)

where indexs enumerates the incoming edges in an arbitraryrpijdg s) identifies the producer
actor of the incoming edge with indexand 4(i,s) gives the number of initial tokens on that

edge.
In ‘normal’ algebra, multiplication distributes avéhe addition — i.ea(b+c) =ab+ac; as

notices before, the same holds for operations and ‘00’ of max-plus algebra, namely
al(bOc)=(alb)O(allc). Applying the distributive law to Equality (4.8ye conclude that

every edge(v,,v;) with indexs contributes the following term to the evolutionuaton of
variable x, (n }

d(v,) O X4 (n=u,s))
whereby the individual contributions are summedhgisnax-plus operator’.

Now let us update the table with the terms contebdby the edges. For each edge],,vi , )
we replace the element at row, columnj by a non¢ element, equal to the contribution of
edge(v;,v;), which isd(v;) 0 x;(n=m(, j)), wherem(i, j) is the number of initial tokens on
edge (v;,v; ) We insert the contribution of edde,,v, into the table rowi* column j’, as
shown in Table 4.3.

Eventually, the table contains as many norlements as the number of edges in gi@ph

Before we explain how to derive matrix-form equatidrom the table, consider the HSDF
graph example in Figure 4.2. The contributionsarfipletion-time variables for that example are
shown in Table 4.4. For example, elemeBtl'x,(n)’ in row 2 column 1 corresponds to edge

(v;,V,), whereby index ‘n’ or ‘n- 0’ shows that the edge carries 0 initial tokend emefficient

‘3’ shows that the consumer actor has delay 3. Efgrme’ in row 3 column 3 shows that no
edge joins actov, with itself.

Having constructed the table, it is straightforwanl derive the matrix-form evolution
equations. Hereby, for the matrices, we use theesamtations as in Equality (4.4):
A, ALA,,... In general, the system of evolution equations ba expressed in max-plus

algebra in the following form:
x(n) = A, [x(n)+A, Ix(n=-)+..+A,, [X(n—-M) (4.9)

whereM is the maximum number of initial tokens of any ediyG.



156 4 Analysis of Static-delay HSDF Graphs
Table 4.3Table of variable contributions: non-‘zero’ values
column 1 column columnV
rowl | x(n) =
rowi | x(n) = d(v,)Ox;(n=m(, j))
rowV | Xx.(n) =
Vi \Z)
3 3
) *—o
Va ® V3
1 1
Figure 4.2 An HSDF graph with 4 actors
Table 4.4Table of variable contributions for the exampld-igure 4.2
1 2 3 4
1 x(n = 30 x(n-1) 30 x,(n-2) £ 30x,(n-2)
2 | X(n) = 30 x,(n) 30x,(n-1 30%,(n—-2) £
3| %(n) = £ 10 x,(n) £ 10x,(n-1
4 1 X,(n) = 10 x,(n) £ 10 x,(N) £

It is straightforward to obtain the matricés, A,, A,,... from the table. All of them have the

same dimensions as the tabi&V. For matrixA,, consider all the table elements that have
variables with indexri’ or ‘n —0'. All the coefficients of those table elementsigto the same
positions ofVxV matrix Ag as they have in the table. All the other elemémtmatrix A get

value ‘¢’. For instance, based on the table example abwedave:

Similar rules holds for ang,, m=0,..M ; one just needs to pick the coefficients of vdeab

A, =

E £

3
£
1

[

P ™M M M

M M M M

having index h —m' instead of h —0'. For our example, we havd =2and:
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A, =

M M W M
M & M M
O S
M & M M
S ORI OV
M M W M
M M MW

Matrix Am is, in fact, the so-calleadjacency matrixvith respect to the maximum subgraph of
G that contains only edges withinitial tokens. An adjacency matrix of a graphirsgeneral, a
matrix that contains a non-zero element in r@amd columrj if and only if there is an edge from
thej-th node to the-th node of the graph.

We callAn, the adjacency matrix of orderwith respect to grap.

To be able to apply the evolution equations in ficador the derivation ok(n), one needs to
define theinitial conditions because the evolution equations are recurrerdateqs. Under the
assumption of Section 2.2.1 that all initial tokems available at time 0, we have:

X(-D) =x(-2)=...=x(-M) =e
where e is the vector of max-plus unit elemergs numerically equal to 0. Because these
particular initial conditions correspond to the sltaneous release of all initial tokens, we call
themsynchronous initial conditions

The evolution equations are different from the can@quations, given in Equality (4.5), in
two ways.

Firstly, the maximum order of adjacency matrices(4m9) is M, whereas the system of
canonic equations has order 1.

Secondly, the evolution equations are, in genaalconstructive, i.e., they cannot be directly
applied to compute(n) from x(n-1), x(n-2), etc., because, as we see in Equality (&@))
is present both in the left and the right sidehaf €quations. Max-plus algebra does not have an
analogy to the standard subtraction operationwHich would help to resolve this situation in
‘normal’ algebra.

To derive the canonic equations from the evolutguations, we first reduce the maximum
order of equations to 1 and then make them consteucThis is done through a series of
transformations presented in the next sectionoWdllg the same method as described in
[4 - 82], now considering HSDF graphs rather the@né graphs and filling in some details that
were skipped in [4 - 82].

4.2 Transformation into Canonic Form

In this section, we study the derivation of canataations and the accompanying theoretical
results about the canonic matrix, which are impurfar applying the main theorem given in
Section 4.3 in the context of HSDF graphs and, antipular, for the major algorithmic rule,
obtained at the end of this chapter.

4.2.1 Low-order Variant of Graph G

To reduce the maximum order of evolution equati@mg can transform gragh into graph
G' by splitting each edge with markimginto m edges with marking 1, inserting new actors in
between that have delay 0. We call the new HSDPplg@ thelow-order variant of graplG or
just low-order graph. For example, the low-ordexpir corresponding to the graph in Figure 4.2
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[ ]
<

Figure 4.3The low-order variant of the graph in Figure 4.2

is shown in Figure 4.3. For a low-order graph, 8wlution equations can be expressed as
follows:

X'(n) = A [X'(n) + AL [X'(n-1) (4.10)
with initial conditionsx'(-1)=e,
where
X'(n)= F(n)} (4.112)
X(n)

which means that it is a concatenation of the cetigoh time vector of the original grahwith
the vector of completion times of new actai@ . )

Example The evolution equations for the low-order grapbveh in Figure 4.3 look as follows:

(x| [e ¢ ¢ ¢ ¢ ¢ €] [x(n)] 3¢ ¢ ¢ 3 ¢ 3][x(n-D]
X5 (n) 3 ¢ ¢ ¢ ¢ ¢ | |%(N e 3 ¢ ¢ 3 | |%(n-1
X3 (N) el e ¢ ¢ ¢ &||%(n) e € e 1l e ¢ ¢||x0-1
X,(N)[=11 ¢ 1 £ ¢ ¢ ellxy(n)| + |e ¢ ¢ € ¢ ¢ |UX(-D|e
X (N) e € ¢ ¢ ¢ ¢ ¢&||%(n) e € ¢ ¢ ¢ € £||x(-)
Xg () e € ¢ ¢ ¢ ¢ &||%(N e € € ¢ ¢ ¢ ¢€||x-)
x;(N)| | € € € £ ¢ £ |X(n)] e ¢ £ € & ¢ &]|Xx(n-1)]

The adjacency matrices of gragh’', A, and Aj, are needed for the derivation of the
canonic-form evolution equations of gragh They can be constructed froB! using the same
rules for adjacency matrices as defined earli¢higisection.

Algorithmic Rule (Construction of low-order graph adjacency matricesA; and A’) Let K
be the number of actors in gragh’'. We would like to construct matrice&;, and A; of

sizeK xK represented as conventional 2-dimensional arrays.

The first passof the algorithm computes the sieof the matrices and initializes them with
elements ¢£’. We have:
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K=V+R-E,. (4.12)
whereK is the number of actors i@, V is the number of actors 18, R is the total number of
initial tokens inG, and E,., is the number of edges containing at least orneltoken.

The second passonstructs graplG’ by splitting the edges of grap® and introducing
auxiliary actors ifmis greater than 1.

The third pass creates the adjacency matrices of graph as described in the previous
subsection.

The complexity of the algorithm is dominated by thatrix initialization, and it amounts to

O(K?), whereK is defined by Equality (4.12).

Potentially, the complexity of this rule could bepenential in the size of the specification of
the original graphG. The point is that it is quadratic in the numbéiratial tokensm on any
edge inG, whereas to express this number in the specificatif G takes logfh) digits. In
practice, this means that adding just a few decdigits to the markinge.g. changing from 2 to
200 initial tokens, can lead to a big increasehm number of elements iA; and A}, up to a
factor of 1d in the given example.

Fortunately, one can anticipate that IPC graphs bel characterized by a polynomially
bounded number of initial tokens per edge. We tgh@wn in Section 3.7.2 that for practical
IPC graphs one can bound the number of initial hgkim any cycle by an expression that is
linear in the total number of actovs Obviously, the same upper bound applies to theimgm
of any edge ir. Therefore, for practical IPC graphsjs at mostO(VE ) and the complexity of

the algorithmic rule given above is at m@&V ’E* . )

4.2.2 From the Low-order Graph to the Canonic Form

To obtain the canonic form from the low-order graphe has to get rid of the dependency of
X'(n) on itself in Equality (4.10). This is done by agpb the following lemma.

Lemma 4.11f matrix A is an adjacency matrix of a graph that containgywes andK is the
number of nodes in the graph, then equakenA [x +b has is a unique solution which is given
by x=A" [b, whereA’ is defined by

A" =A + A+ + AR (4.13)

Here A° is a diagonal matrix with unit elements on thegdiaal:

e ¢ ¢

E € ¢

A° (4.14)

E £ €

Proof. See e.g. [4 - §3.2.3.3]

To apply this lemma to Equation (4.10), whefe= A, and b =A][x'(n-1), we should
check whether the lemma conditions hold. Recalt tAg is the adjacency matrix of the
maximum subgraph o’ that contains only edges without initial tokenkal subgraph cannot
be cyclic becaus& , and hencez’ as well, cannot contain a cycle without initiakéms. The
point is that we assume th&tis an IPC graph, and an IPC graph is live, so ftee of such
cycles.
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Thus from Equation (4.10) and Lemma 4.1 we obtaineguation, which is, in fact, a
canonic-form expression:
X'(n) =BIX'(n-1)
where
B=(A,) [A] (4.15)
is the canonic matrix for grap® .
Note that the canonic expression can be rewritseiollows:
x'(n) =B™ X'(-1) (4.16)
Thus, the timing behavior of an HSDF graph at dagation can be derived from the initial
conditions.
In the next subsection, based on Equality (4.1%),rewisit the construction of the canonic
matrix, giving more insight into the meaning of tmetrix multiplication expressiofA;)" (A},

which helps us to see an efficient algorithmic ride that purpose. There, we also derive the
canonic matrix for the example in Figure 4.2.

4.2.3 HSDF Graph Paths and Their Representation ithe Canonic Matrix

The canonic expression (4.5) is used to reasontdbeperiodicity and, consequently, about
the throughput of an HSDF gragh Recall from the previous chapters that it is ¢hiele with
maximum cycle meanthat determines the throughput, where the ‘cycleam is the ratio
between théengthof the cyclic path, i.e., its total delay, and tepthof the cyclic path, i.e., the
number of initial tokens on the cycle. In this sedigon, we highlight the relation between the
canonic matrixB on the one side and the paths through the lowrayteph G', on the other
side. This gives us an efficient algorithm to comepmnatrixB, which is based on a longest path
algorithm.

We start by defining an HSDF graph path and thé& patgth formally, and then we show
how one can calculate the canonic matrix efficientising the longest path calculation
algorithms.

Definition. (A path/cycle and its length and depth)A non-empty patlin an HSDF graph is an
ordered sequence of edges, whereby, for every tlieesjuent edges in the order, it holds that
the consumer of the first edge is the producerttier second edge. A non-empty path has a

source— which is the producer of the first edge — argkatination— which is the consumer of
the last edge. For example, in Figure 4.3, thergats ((v,,V,), (v,,V,), (V,,V,), (V,.,V,) ), whose

source isv, and destination is, .
The set of edges of aampty pathis empty. Nevertheless, an empty path has a sande

destination, which are always the same actor. Welsat any actor is joined to itself by such a
path.

A cycleis a non-empty path joining an actor to itself.
Thedepthof pathP, x(P), is the sum of initial markings of all edges e tpath.

Thelengthof pathP, denoted(P), is the sum of the delays of the consumer adbadl edges
in the pathe

Intuitively, the path length is a minimum time intal between the completion events of the
source actor and the destination actor.
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Having defined paths, let us come back to the rt@pit of this subsection — the relationship
between matriX8 and the paths in grap@'. First of all, let us consider matrigA;)", the first

multiplier in Equality (4.15). The meaning of thmgtrix is explained in the following lemma.
Lemma 4.2 In matrix (A})", the element in row and columnj of this matrix represents the
length of the longest path through gra@h from the source actgr(by actorj we mean actow;)
to the destination actorconsisting only of O-marking edges. We call sugiath a0-markpath.
Therefore, the entries in matrpd;)” can be filled by inserting at positionj* the length of

the longest 0-mark path from actoto actori containing any number of edges. If the path is
empty we inserte, which can happen only at the matrix diagonahdfpaths exist between the
actors, we insert’. ¢

Before giving a proof, we provide an example.
Example (Computation of matrix (A})") In Figure 4.3, there are only two 0-mark paths goin
from actorv, to actorv,. One of them consists of edgég,v, , (v,,v;), and (v;,v, ). The
other one consists of edgdv,v, . )The first path has a larger length, equal to
d(v,)+ d(v;) + d(v,)= 3 + 1 + 1 = 5. Therefore, the value of matrixnedat{(A})},, is 5.

Having computed all the elements of matfix;,)” in the same way, we obtain:

€ £

(AQ) = (4.17)

M M M OB~ W

M M ™ NP D ™
M ™M ™ = D ™ M
M ™M ™ (D ™M M

M ™M D M ™M M M
M D M ™M M M M
D ™M ™M ™M M M M

¢

Proof of Lemma 4.2.The lemma can be proven by showing thatkttie power of matrix(A})*

gives the lengths of all 0-mark paths that havecéyx& edges and then using the definition of
unary matrix operator **' (See Lemma 4.1), whictphgs the max-plus algebra matrix operation
‘+' —i.e. maximization of the individual elementsto all the interesting powers of matm,,
thereby finding the longest possible paths. Notd the powers accumulated {#\;)" are in

range 1K-1, which covers all possible numbers of edges path through an acyclic graph that
hask nodes.

The equality between the elements of kkidn power of matrixA;, and the longest O-mark
path length can be shown by mathematical inductBynEquality (4.14), it holds for power O,
because the paths with zero edges start and etite egame actor and have lengthwhich

corresponds to thes on the diagonal. For power 1, this propertydols from the definition of

the adjacency matrix, which contains the delayshef destination actors of the edges. Let us
assume that the property is proven for poweand let us prove it for powefk + JlLet's

consider the multiplication ofA})* by A}. Elementi,j’ of the resultant matrix is obtained by
applying operation[J’ — i.e. maximization — to all possible combinaﬂsi;o{mA’O)k}jyp O{AG} i
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for all p, whereby the first element in the combinatiorhis kength of the longest path from actor
j to actorp having exacthk edges and the second element is the length dbtigest path from
actorp to actori having exactly one edge. Therefore, the resubbpdration I’ contains the
length of the longest path containing exadty+1) edgesgede

When considering the product ¢A})" andA;, resulting in matrixB, now it is not difficult

to see the relation betwe@nand the low-order live grap8’' . The element in rowand column
j of matrixB represents the length of the longest of all thagphaving the following properties:

1) the path has actpas the source and aciaas the destination;
2) the path is not empty;

3) the first edge of the path has marking 1;

4) the rest of the edges, if any, have marking O.

We call such a path special pathIn a special path, the first edge is contributgdA; and
the rest are contributed t(y\’o)*. If no such path exists, matrix elemeinj”containse .

Example (Computation of matrix B) In Figure 4.3, there are two special paths fronoraétto
actor 4. The first path consists of eddes,v, , (W,Vv,), (v,,v;), and(v,,v, ). The second path
consists of edgeév,,v, and (v,,v,). The first path has a larger length, equal to l8r&fore
elemeny{B} ,, has value ‘8. The other elements in maixan be computed in the same way.

As a result, we obtain:

(4.18)

MM M &, 00O ~NO W
M ™ &, 00 NO W
M M &, Ol W™
M ™ & 00N O W

M & O 01 B WM™
M D ™M ™M M M M

D ™M ™ NN BEP ™ M

Every multiplication of matrices of siz&xK has complexityO(K® ) Therefore, direct
application of Equalities (4.13) and (4.15) to dera canonic matrix from the low-order graph
adjacency matricesd; and A!, by (K + 1) multiplications has complexit@(K* .)

Let us consider faster algorithms for this problemmich is, by the way, well-studied and
classical. It is not difficult to show that matr{a})" is theK-th power of matrix((A,)° + A} )
[16 - §25] explains arO(K® dogK Rlgorithm for computing th&-th matrix power, which is
faster thanO(K* ) However, [16] also shows that due to the relatiim between the max-plus

matrix powers and the path lengths, there existiasder algorithm. Rather then directly
computing the matrix powers, the fast algorithm pates longest 0-mark path lengths between
all pairs of actors in grap®’' . We mention that algorithm in the following rule.

Algorithmic Rule (Construction of the canonic matrix) To construct matriB, one can, as a
first step, compute(A})" via the Floyd-Warshall algorithm [16 - §25] to selthe all-pair
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longest path problem in the maximal subgrapiGbfcontaining all 0-mark edges. Then, one can
find the product of matricesA; and (A}) . The algorithmic complexity of both steps is

O(K?®) .4

4.2.4 The Canonic Graph and its Relation to the HSP Graph

The canonic equation, Equality (4.5), might sugdleat a canonic matrix, 1.8, itself could
be seen as a first-order adjacency matrix of an H§@ph. However, it is not true in general. In
an HSDF adjacency matrix, all the non-zero (r&gnelements of any row must be identical,
because they all contain the delay of actdihis property is not necessarily true for anyaraa
matrix. For instance, it does not hold for rows32and 4 of matriXB in the example given in
Equality (4.18).

Thus, in general case, for a given canonic matme cannot build a supplementary HSDF
graph such that matriB would be its adjacency matrix, although that woblkl useful for
characterization of that matrix. Nevertheless, heotgraph-theoretic model of the canonic
matrix has proven to be a very handy tool for cbemdzation and analysis of the canonic
equation. In this subsection, we build a so-calltadonic graph which serves these purposes
and which is a representative of a model of contmrtahat is different from HSDF. Below we
also establish an important relation between tin@c& graph and the original HSDF gra@h

Just as in the related work, [4 - §1-3], we use'#@wentgraph model of computation, which
can be seen as a modified version of the HSDF gmagudtel of computation. In the event graphs,
the graph nodes behave like actors. However, faplscity, without loss of generality, we
assume that the event graph nodes do not havesd@ayve may say that they have delay 0).
Instead, unlike HSDF graph edges, event graph edgdsave delay$ [4 - §2]. As this model
executes, after a token production on an edgeca@hsuming node can capture the token only
after the edge delay.

Definition. An event graphg is a tuple ¢, &, 14 &), where?/is the sebf nodesz OV X1 is the
set of (directed) edgeg(e)is a function defines an non-negative integer nunatbénitial tokens
at edger, andd(e) is function that gives a non-negative real nundefining the delay of edge
.

One can always translate an HSDF gr&oimto anequivalent event grapge, preserving the
same graph structure. One just has to change e8Birtdctor into an event graph node, shifting
the actor delay annotation to its incoming edges;the example in Figure 4.4(a).

Definition. The precedence graplj(A) of matrix A with dimensionsK xK is an event graph

with K nodes:v, ..., w , whose edgesy( ) correspond one-to-one to non-zero (non-
elements i\ )’ of A, getting the delay annotations(v;, u) = {A}i; and identical markings
M (v, u) =1.¢

Definition (Canonic graph). If B is the canonic matrix of HSDF gra@ then its precedence
graphg (B) is called thecanonic graphof HSDF graptG.+

27 Event graphs have two more features that we, herealo not need to use. Namely, they also allowtipiel
‘edges’ (in our terminology) between the same phinodes, and they also may allow nodes to haveydebut we
do not need and do not include this into our dééiniof event graphs.
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(a) Event graphge equivalent to the low-order HSDF graph in Figur@ 4

U I - event graph node, similar to an HSDF actor, bth welaye
(this drawing style is borrowed from Petri netglosely related model)

@ - the delay of an event graph edge

6
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(b) The canonic graply obtained for the HSDF graphs in Figures 4.2 and 4.3
This graph is the precedence graph of mdrir Equality (4.18)

Figure 4.4The equivalent event graph and its canonic graph
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The canonic graply (B) is the graph-theoretic model that we refer to i@ bBeginning of this
subsection. The structure of this model is, in galhejuite different from the structure of the
original HSDF graph. For instance, look at the eanagraph shown in Figure 4.4(b) and
compare it to the original HSDF graph in Figure. 4.2

For an event graph model, one can reuse the safinéide for path, cycle, path/cycle length
[(P) and path/cycle dept(P) as given in the previous subsection, with oneepion: it is the
delays of the edges themselves that contributdndoptith length, not the delays of the edge
consumers.

The whole purpose of obtaining the canonic grapto isse the theoretical results that apply
for such graphs. We start doing that in the nekiseation, but first we need to establish an
important relation between an HSDF graph and it®og& graph.

Lemma 4.3 (Canonic cycles and HSDF cyclekgt G be a live HSDF graph anglits canonic
graph. Then:
1) For any cycleC in G, there is cycle in ¢ such that(C) < 1(¢) and(C) = t(0).

2) For any cyclecin g, there is cycle€€ in G such that(C) =1(¢) and(C) = 4(C).+
Proof Instead of proving this lemma for cycl€sin G, we do that for the correspondent cycles
Ce in graphge that is equivalent to low-order gragh’ . In terms of the example we use in this
chapter, this means that we prove the relationbkiwwveen the cycles of the graphs shown in
Figure 4.4(a) and 4.4(b).

The replacement of grafh by graphge in the proof is justified as follows. Firstlgg has the
same structure as the low-order variant of gr@phe. graphG'. Moreover, the paths/cycles in
G' and Ge have identical lengths and depths. Secondly, tloergously exists a one-to-one
relationship between the cycles @' and the cycles i that preserves lengths and depths.
Therefore, such a one-to-one relationship exist&d@n graph§& andgg, and one graph can be
replaced by the other.

Before we start with the actual proof, we needlisevve a certain property of graghGraph
G contains an edgey(w) if and only if there is at least one non-empty pelough Ge from
nodey to nodey whose first edge has marking 1 and the other edgasy, have marking 0. By
analogy to the terminology of the previous subsegtiet us call such a pathspecial path The
delay of edge 4, 4) is equal to the length of the longest special datm ¢ to v. In the
remainder, we refer to this property of graphs thespecial property

The special property follows from the definition @fas the precedence graph of the canonic
matrix B, and the corresponding property of mattixhas been already shown in the previous
subsection. To give an example, edgs, ¢{») in Figure 4.4(b) corresponds to special path

(vs, 1), (v1, ) in Figure 4.4(a).
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Figure 4.5Transformation of the event graph into the cangnaph

Let us prove part 1) of the lemma. Lgtbe a cycle inge. That cycle can be split into special
paths®, @, ... &, whereP = 1(Ce) = 1. This can be done by splitting the sequencedgés in
cycle (e into subsequences, whereby every first edge ih sabsequence has an initial token
and the following edges, if any, do not have ihitikens. Now lets, be one of those paths. We
illustrate this path in Figure 4.5(a). Just ashat ffigure, let us denote the starting and finaleno
of this path asi1) andw). By the special property, graghmust contain an edgex), w) that
joins the starting and the final nodes. That edagerharking 1 and its delay should be at least the
length of pathz,: 4 (), ww) 2 1(B). We can find such edges ¢nfor all paths®, and all those
edges together form a cycle ¢ Let us denote this cycle We getl(C) 21(?) + I(®) +... +
(@) =I(Ce), whereagd () = t{Ce) =P.qed

For example, in graplge in Figure 4.4(a), consider cyclg: with edge sequenceu( v;),

(v, m), (w1, va). We have(Ce) = 4 andi(Ce) = 2. Cyclece can be split into two special path:
with edge ¢4, v7) and ® with edges 4, v1), (v1, va). In Figure 4.4(b) these two paths are
translated into two edgesu( v;) and (7, va), which form cyclec with a larger length and the
same depth(¢) = 8 andu(() = 2.

Let us prove part 2) of the lemma. Lebe a cycle consisting &f edges ing. By the special
property of graphy, each edgey 4) in € corresponds to at least one special ggtim Ge from
4 to v, wherebyd (y, u) =1(®,). All paths &, combined together make a cyafe. We have:
I(Ce) = 1(@) + (@) +... + (@) = 2d (4, w) =1(C), and £4C) = 14Ce) = P. qed

For example, in Figure 4.4(b), consider the cyclevith edge sequencexy( v;), (v7, v1), and
(v1, va). Edges {4, v7) and (7, v1) correspond to the same edges;in Edge ¢1, vs) corresponds
in Ge to the path with edge sequeneg 1), (vi, ), (v, v3), (v3, w). As a result, we obtain ige
a cycle that visits node twice. ¢

The last issue considered in this subsection issthee ofstrong connectednesgd/e study this
issue because, as mentioned in Chapter 2, thegsitonnectedness of an HSDF graph is
essential so that the behavior of that graph caaolrés steady state (i.e., eventually it becomes
periodic). The question we look at in this subgatis to which extent the strong connectedness
of HSDF graplG is preserved in its canonic gragh

To understand the concern about the preservatiostrohg connectedness, let us examine
how certain parts of grapge are represented in gragh Consider a special pathin Gg, see
Figure 4.5(a). Let the sequence of edges of galle (1), @), (k@) w@3)s - 1), ww),
wherelL is the total number of edges ¢ Then, in graplg, this path will be represented by a
tree ofL edges ), w@), (@) @), ---» () ), see Figure 4.5(b). This is due to the fact
that there exists at least one special path (axpwéf?) from ) to every other node i@
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Figure 4.6 An IPC graph with dangling nodes in the canonapyr

Thus, nodesxp), way -.., wq) are directly connected with each otherginand not anymore
directly connected ig;; which means that the strong connectedness ohgyap compromised.
This happens due to the nodesgnthat do not have any outgoing edges with initekens.
Those nodes end up in gragrasdangling nodesThey are ‘dangling’ in the sense that they do
not have any outgoing edges, they have only incgratges.

Our canonic graph example in Figure 4.4(b) doeshaot any dangling nodes. To illustrate
dangling nodes, we give an example in Figure A&igure 4.6(a), an IPC graph is shown that
models two processes communicating through a Idtahnel having a capacity of one token. In
Figure 4.6(b), we show the canonic graph of that ¢ffaph; we see there that nogeandv, are
dangling.

Remark (Dangling nodes and simplification of the caonic graph) One can simplify the
canonic system of equalities by excluding the \deés of the dangling nodes from the system
[4]. This simplification reduces the computationamplexity of the algorithmic rules applied to
the canonic graph later. However, this simplifioatistep is not essential and has certain
implications. Therefore, we skip it in this the®savoid overloading it with detaiks.

Coming back to the strong-connectedness issue, omelude that in general the canonic
graph is not strongly connected. Neverthelessetligeione essential property that the canonic
graph still inherits from its HSDF graph, namelyhas exactly one maximal strongly connected
subgraphrfi.s.c.9. For example, in Figure 4.6(b), the subgraph #utrby nodes, andw, is the
only m.s.c.s. of the given canonic graph. The uniqueness ofnttgc.s. is stated below as a
lemma.

Lemma 4.4 (Strong connectedness)et G be a live strongly-connected HSDF graph @nits
canonic graph. Then graghhas exactly one maximal strongly-connected sultg(amps.c.9. ¢

In other words, if all nodes of gragh can be clustered together into one strongly-coteakec
graph, then at least part of the nodeg;afan also be clustered such that the nodes otitsade
cluster are dangling nodes, which by definition re@nform another cluster. This generic
structure is illustrated in Figure 4.7(a).

Proof In this proof, we again represent graph G by graglFirst of all, it is straightforward to
show that the number aof.s.c.ss of graphg is at least one. We can make that statement becaus
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Figure 4.7 The generic structure of the canonic graph

Ge is a strongly connected graph, thus it contairieast one cycle and therefore, by Lemma 4.3,
graphg also contains at least one cycle and thus it hksat onen.s.c.s.

Let us prove the uniqueness of tme.s.c.s.in graph ¢ by contradiction. Consider
Figure 4.7(b). Suppose there are two distimcs.c.Ss in ¢, namely g and g;. Then each of
them must contain at least one cycle. Let edjé\[ belong to a cycle in subgragh Similarly,
let edge D, B) belong to a cycle in subgragh.

Becausege is a strongly connected graph, any pair of nodgsined in that graph by a path.
In this proof, we make use of the fact that in ¢rgp there exists a path frod to B, denoted
®ag, and also a path in the reverse direction, denaggdin Figure 4.7(b), we illustrate paths in
graphge by dashed arcs, in order to distinguish them fthenpaths in canonic gragh shown
as solid arcs.

By the special property of the canonic graph, e@@eA) corresponds to a special pagin
from C to Ain Ge. PathsPca and®ag combined together form patigs, whose first edge carries
one initial token due to the fact thata is special. For that reason, patfs can be split intd®
special subpath®,, @, ... &, whereP is the depth of patk-g. Those subpaths correspond to
edges ing; therefore canonic grapf too has a path fron® to A, and we illustrate this in
Figure 4.7 by a solid arc.

By a similar reasoning, we can show tBais connected t@. Therefore, we see that a node
in G is connected to a node iR, and vise versa; therefore the maximal stronglynected
subgraphs; and g, are equal, which contradicts the original assuompthat they are different.
gede

4.3 Main Theorem

In this section, we first state the main theoremmf which it directly follows that event graphs,
when their execution starts, after a certain nunadbeterations, by themselves reach a mode in
which they execute according to a periodic scheditle the period equal to the graph’s MCM
(see Section 2.2.5). Then we use the relationshigvden canonic event graphs and HSDF
graphs to prove a theorem stating that HSDF graphswve in the same way. In Section 4.4, we
use that Theorem to establish the major algorithlie for static-delay analysis, which plays an
important role in the performance analysis appraahis thesis.
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Theorem 4.5 (‘Main theorem’ — Cyclicity of matrix B). Suppose that the precedence grgph
of matrix B has exactly one maximum strongly connected sulbgragt A be the MCM of graph
G. Then there are integets= 0andW > 0 such that:

n=T= B™ ='B" (4.19)

where ‘A", like the rest of the expression, is written @rrhs of max-plus algebra, in normal
notation ‘A"’ equalsA [W.

Proof. This theorem follows from theorem 3.112 in [4].

Definition (Matrix cyclicity. (W, T)-cyclic matrix.) The property expressed by Formula (4.19)
is referred to as theyclicity of matrix B. Matrix B satisfying Formula (4.19) for some
T >0andW >0 is calledcyclic or, in particular, \,T)-cyclic ¢

Remark (The periodic behavior of strongly-connectedevent graphs).Consider an arbitrary
strongly-connected event graghwhose edges have positive static delays and coata initial
token each. Then, using Theorem 4.5, we can dtategtaphg is a precedence graph of some
(W, T)cyclic matrix B, for which Formula (4.19) applies.

Let vector x'(-1) give for every node irg the time when the initial token at every output
edge of that node is released at the start ofxkewtion. Then the completion times of the node
executions in graplg satisfy Equality (4.16).

Multiplying the left and right part of the equality Formula (4.19) byB [x'(-1), we get:

n>T= BOWH(-1)= "B (-1 (4.20)
Finally, applying Equality (4.16) to the left arfietright part of this equality, we obtain:
n>T= x'(n+W)=4" X'(n) (4.21)

Because, in max-plus algebra, multiplying a vedbyr expression A’ means adding
constantA [W to every element of the vector, Formula (4.21Yaict, states that, after the fifbt
iterations, the event graph is characterized byegogic execution schedule that spans
iterations of the graph and has a period equal [y .+

Definition (The periodic and transient power of a natrix) For a cyclic matrixB, we refer to
the minimuminteger values of positivé/ and non-negativ& such that Formula (4.19) holds as
the periodic powerand thetransient powenf matrix B accordinglys

Theorem 4.6 (Periodicity of HSDF graphs)Let G be a strongly connected live HSDF graph
with static delays that contaivsactors, and lek(n e the completion time vector &. Then

there are integer§ > 0 andW >0 such that:
n2T, KOLV]= x(n+W)=AIW+Xx(n) (4.22)

whered = MCM(G) and x, (n ) are the elements of(n) .¢

This theorem can be interpreted as follows: aftertime it takes the graph to go through the
transient phase (the fir$titerations), we can split the time axis into ineds of durationA [W ;
let us call them theperiods Within each period, every actor executdstimes, and the
completion times of those executions relative ®ghriod boundaries are exactly the same in all
periods. Thusi is the average interval between the subsequeruggas of each actor, which
means that it is the iteration interval of the givéSDF graph.
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Proof. Let G be the canonic graph of HSDF gra@hLet C be a cycle with the maximum cycle
mean in graplG (a critical cycle). Recall that theycle mearof cycle C is the ratiol(C)/(C).
From Lemma 4.3, part 1, it follows that there isyale C in graphg with at least the same cycle
mean. ThusMCM(g) 2 MCM(G).

On the other hand, for a critical cyafen graphg, we can find a cycl€ in G with the same
cycle mean, as follows from Lemma 4.3, part 2. TRMEM(G) =2 MCM(G). This relation
between the MCMs and the previously obtained mhaimply that they are equal. Let’s denote
their value asl.

By Lemma 4.4, graplg has only one m.s.c.s., thus by Theorem 4.4 thersamatrixB is
(W, T)-cyclic for some integer®/ andT and Equality (4.19) holds for (MCM). Let x'(n) be the
state vector of grapky, then Formula (4.21). Because, according to Equédityl), x(n) is a
sub-vector of vectox’'(n), Formula (4.21) is also correct if you replaxén) by x(n). After

such a replacement, Formula (4.21) becomes just®rform of scalar equality (4.22)ed ¢

Definition (A periodic depth of an HSDF graph)We refer toany positive integelV such that
Formula (4.22) holds asperiodic depthof an HSDF graph. It is the number of HSDF iteras
in a period+

Definition (The transient depth of an HSDF graph)We refer to thaninimumvalue T such
that Formula (4.22) holds as tlransient deptlof an HSDF graph. It is the number of HSDF
iterations between the start of the execution aeditst periods

Note that, unlike the transient and periodic powarsnatrix B, the transient and minimum
periodic depths of an HSDF graph depend on th&imgbnditions x'(-1). The powers of the
matrix give us an upper bound on the depths, beckosmula (4.22) always holds\i¥ and T
are the powers of the canonic matrix. However, H8DF graph depths might be smaller for
certain initial conditions. In fact, Theorem 3.28[#] implies that for quite general case there
exist initial conditions such tha¥/ =1 andT = 1.

4.4 The Lateness and the Major Algorithmic Rule for Static-delay
HSDF

4.4.1 The Upper Bound on the Execution Time and theateness

The periodicity result shown in Theorem 4.6 is inEment on the facts about the steady-
state behavior of the static-delay HSDF graph wmtconsidered in Section 2.2.5. Theorem 4.6
gives us a key to solve a major problem raisedhiapfer 2: finding a conservative bound on the
execution time of an HSDF graph for the fikstterations. Recall that, in Chapter 2, we come to
a conclusion that, for the static-delay case, tppeu bound is equal tol [N plus some
additional componentwhich is less significant for large. Nevertheless, that component cannot
be ignored if one wants to obtain conservative Itegor smallerN, and, most importantly, this
component takes into account ttransient phaseRecall from Section 1.5 that the transient
phase is an important factor for extending theicstélay analysis to the dynamic delay case.
Therefore, in this section, we consider the addé&l@omponent again.
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Figure 4.8Graphical illustration of lateness

Figure 4.8(a) illustrates the growth of the completime variablex, (n )or actory, in G as

characterized by Formula (4.22). In Figure 4.8¢&9,assumed that both the transient depth and
the minimum periodic depth are 2 iterations. Asoadhiown in the figure and implied from
Formula (4.22), for any actor,, the diagram of the actor completion time functiegp(n), has

an asymptote, which is a linear functionrowith slope equal tol . Let us express that function
asAln+o,, whereg, is a constant that only depends on which actoseVect. If we chooser

as the maximunei for all actors of the HSDF graph, then we can gimeipper boundon the
execution time oN graph iterations, which can be expressed &\ —1) + g, because the last
iteration has indexi= N -1.

Now let us establish that upper bound formally.

Definition (Execution time of static- or dynamic-déay HSDF) The execution time of the first
N iterations of a first-in-first-out (FIFO) HSDF gra with V actors and completion variables
X (n) is defined by:

Ay = max(x (N -1) (4.23)

Note that this definition applies for both statrdadynamic-delay HSDF. This definition is in
line with the informal definition given in Chapt2r where we define the execution time as the
latest completion of any actor execution in thetfld iterations. Note that we included only the
last iteration index — i.,en=N -1 — because the graph is a FIFO graph and henctheall
previous iterations complete earlier.

Lemma 4.7 (Lateness and an upper bound on HSDF exdion time) For the execution of a
live strongly connected static-delay HSDF gr&pwith V actors and any > 0 holds:

N20= A <A, (4.24)

where:
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A, =AON-)+0 (4.25)
ando is the HSDF graplatenessdefined by:
g=max max X (n-1)-Al(n-1) (4.26)

k=1V n=LT+W

whereT is the transient depth aMil is a periodic depth of HSD&, which have finite integer
values.¢

Proof For convenience, let us introduce the followingressiono, (n) = x (n-1)-Al(n- 1)
From the definition ofT andW, it follows that the infinite sequence, (T +1), o (T+2 ),...

repeats itself periodically evey entries. Therefore, the maximization over 1.T +W is
equivalent to the maximization over the entire mrig+c . After putting this range into
Equality (4.26) and substituting (4.26) into (4.2b¥ get:

A, =max PN =D+ maxo, ()=
= max AN -1+ rplaxxk(n—l)—/lmn—l))z
>max (AQN-1)+ x (N-1)-AQN-1))=

k=1V
=max (% /(N-D)=a,
ged ¢
Thus, we have refined the upper bound given in @map: A, =(A+&,)IN. In fact, we

now assume thaf, is equal to(c —A)/N .

Therefore, using the results of Section 2.2.5, H@DF graphs with synchronous initial
conditions, we can write:

AN < A, <AN-D+o (4.27)

Remark. (The upper bound on the execution time isight) From Equality (4.27), it follows
that the maximum difference between the upper baunmtithe real value of the execution time is
equal too —A. This means that the error Af; in estimating the execution time is bounded by a

constant, and therefore we say tﬁa,t is atight bound.¢

To calculate our upper bound on the graph execuboer needs to calculate two constants,
characterizing the HSDF graph as a whole, nam@atlerage iteration period, and the graph
latenessg . In this thesis, we use this upper bound as aezgatve estimate of the performance
of static-delay HSDF graphs. Therefore, we neegrtwide algorithmic rules to calculateand
o.

Efficient polynomial algorithms exist to compufle see a survey in [19]. For example, one
can compute it using Karp’s algorithm [44], haviegmplexity ©(K*®). Note that in [23] the
state-space exploration technigues have been exgetally shown to be more run-time efficient
than the graph analysis algorithms, when applietntoe general graphs — SDF (multi-rate)
graphs.

As for the lateness, to the best of our knowledgerelated work studies the derivation of any
characteristic of event or HSDF graphs that isteel#o it. We dedicate the next subsection to the
problem of calculatingr .



4.4 The Lateness and the Major Algorithmic Rule f&tatic-delay HSDF 173

4.4.2 The Algorithmic Rule to Calculate Lateness

Before we consider an exact algorithm, let us noen#éi polynomial algorithm to calculate a
lower bound on lateness.

Lemma 4.8 (A lower bound on the lateness)Ynder the synchronous initial conditions, the
graph latenessis larger or equal to the length of a longest sgqmath througlt.

Hereby a special path through an HSDF graph imddfin a similar way we defined before
for the event graphs; namely, the first edge irhsupath should contain some initial tokens and
the other edges (if any) should contain no initkens.¢

Proof Substitutingn =1 into Equality (4.26), we get:

o0 2 max X, (0)
k=1V

From the canonic equations, Equality (4.7), itdal$ that:

X (0) = miax( By;)

Now let us observe th8; is, by definition, equal to the longest specighpa the equivalent
graph. Using this observation and the inequaliigtablished in this proof it is easy to prove the
statement of the lemme.

One can calculate the lower bound by applying thymlogical sorting algorithm, e.g. see
[16], to the maximum acyclic subgraph @fthat does not contain initial tokens. Howevelis it
anupperbound that is necessary for a conservative estiméiereas a lower bound can be used
to evaluate how tight the upper bound is.

Example (A lower bound on the latenessh longest special path in Figure 4.2(\g, v1), (1,
Vo), (V2, V3), (3, V4) and the length of this path is 8. Therefore this graph holds thar= 8. ¢

Unlike the value of average periddwhich depends only on the structure and delayesabf
HSDF graphG, the value of latenesg also depends on the initial conditions. In the agrder
of this subsection, we study an exact algorithncatculate lateness, which takes the initial
conditions as an input. It computes not ooiybut alsoA, as a byproduct. It repeats the same
‘step’ until a stop criterion is satisfied. We indiée steps with symb®, N =1, 2, etc.

Algorithmic Rule (Calculation of gand A of graph G) Suppose that grap8', the low-order

variant of graphG, andB, the corresponding canonic matrix, are derivedxgdained earlier in
this chapter. At stefN, the algorithm calculates completion time vectd(N —1) of graph

G'recursively as the product of mati and vectorx'(N —2). Hereby, vectorx'(N -2) is
either derived at the previous stefNit> 1 or it is equal to the initial conditionsNf= 1.
Then the algorithm checks whethdrhas passed the end of the first period, i.e. wdreth

N =T +W +1, see Equality (4.26). Because the value§ aindW are not known in advance,
this is done as follows. At every step, after alitey x'(N -1 we compute thevector of

differencesy(N —1), whose elements are defined by expression: for iatgger n holds

Y (n) =x.(n) —x(n). Note that the choice of actoaf to be the reference actor is arbitrary.
Afterwards, the algorithm compareg(N —  Iith the difference vectors computed at the
previous stepsy(N - 2)y(N-2), y(N-3),...y(-). If there is ay(N -W - Dthat is equal
to y(N -1, then this means that a period= N -W -1.N - oRlengthW has been detected.
Afterwards, the algorithm computesas (X (N —1) - X (N -W —1))/W . Finally, to compute,
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the algorithm applies Formula (4.26), whereby theximization goes oven=1..N -1 instead
of 1.W + T (which is legal, because we show in a lemma bét@atN — 1 =W +T).

Let us determine the complexity of this algorithmAt the N-th step, one applies
Equality (4.5) to compute'(N —1) — which costsO(K?) of computation time — and performs
the comparison of the difference vectors. The campa can be done efficiently by keeping the
previous difference vectors in a max-heap — i.dat structure that efficiently implements a
sorted list (see [16 - 86]). To store vectors irmax-heap one needs to define comparison
between two vectors, which can be done e.g. ugixigdgraphic ordering (i.e. first compare the
first element of the two vectors, if they are eqtimdn compare the next two, etc.). The search
operation for an existing element as well as theefition of a new element in a max-heap
performsO(logN) comparisons of heap elements. Because the coitypt#xone comparison is
O(K), the total cost for searching an existing vedd@(K [logN) per each step of our algorithm.

In total,H steps are executeH;is defined by:

H=T+W+1 (4.28)
whereT andW are the transient and minimum periodic depthBI8DF graphG for the given
initial conditions.
Therefore the complexity of this algorithm@K? H + K [(H dogH) .+

The correctness of this algorithm follows from fb#owing lemma. It shows that the values
for W, T, andZ calculated by the above algorithmic rule satisfyrula (4.21). Having shown
this, we in fact show that the intervad=1.N -1 where the algorithmic rule applies the
maximization defined in Formula (4.26) is in faotarval n=1..T +W, whereT andW are
transient and periodic depths of the HSDF grapheasired by that formula.

Lemma 4.9 (Correctness of the calculation ofo and A) Let x'(n) satisfy equation
X'(n) =B[x'(n-1) for n>0. Let y(n) be defined ag/(n) =x'(n)/x(n) and A" be defined as
A =(x1(N - -x(N —W'—l))/W'. If there are some integed/' >0 and N >W' such that
Yy(N-)=y(N-W'-1), then Formula (4.21) applies, withw=W', A=A1" and
T=N-W-1.¢
Proof Let k> 0. Then, we have:
X'(N-1+k) =B* X'(N-1) =B* (N -1) (N -1) ={usingy(N -1) = y(N -W' 1)} =
=B [¥(N-W' -2) X (N -1) =B* [{x'(N -W' =1) / X,(N ~W' = 1)) X,(N -1) =
= (B* (N -W' =)™ = (1) (N -W' —1+k)

To summarize, iW' and N satisfy the lemma conditions, we have:
k20=Xx(N-1+Kk) = (A" X' (N -W' -1+Kk), (4.29)
which is equivalent to Formula (4.21) (when subsitiig n for T + k).

Example (Calculation of gand A) Let us compute the iteration interval and the lagsnof the
graph in Figure 4.2. For that purpose, we use m&rfrom Equality (4.18). We assume that
x'(-)=[e e ..]".From this follows:y(-1) =[e e ..] .
Step1 N=1)

X(0)=x(N-)=BX'(N-2)=BX'(-)=[ 36 78000]
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yO) =xX(N-1)/X(N-1)=[ 36 78000]"/3=[ 0345 -3-3-3]
Step2 N =2)

XM =xX(N-1)=BX'(N-2)=BX(0)=[ 6 910116 7 8]

y@) =y(N)=x(N-1)/x(N-1)=[ 6 910116 78]"/6=[ 034501 2]
Step 3N =3)

X(@2)=x'(N-1)=BX'(N-2)=BX'(1)=[ 1114 1516 9 10 11]"

y@2 =y(N)=xX(N-1)/x(N-1)=[ 11141516 91011]" /11=[ 03 4 5 -2 -1 0]"

Step 4 (N = 4)
X@)=x(N-1)=BX(N-2)=BX(2) =[ 14 17 18 19 14 15 16]"
y@) =y(N)=xX(N-1)/x(N-1)=[ 1417 181914 1516]" /14=[ 034501 2]

At this step, the value of(N —1) for the first time repeats a value calculatediegrhamely,
the one calculated at Step 2. Thus we have idedt#iperiod, anw/ = 2.
We have:
T=N-W-1=1
A=(X(N-1)-x(N-W-1))/W = 14-6)/2=4

To calculateg;, we can, folN = 1, 2, 3 (thus covering the transient phase bhaditst period),
calculate the difference between the loop executior A (obtained from Equality (4.23) and

expressionA[(N —-1). The graph lateness is equal to the maximum vedu&is difference for
N =1, 2, 3 (see Formula (4.26)).

ForN=1,A,=max(3 6, 7, 8 0, 0, 0)=8; A[(N-1)=0. The difference is 8.
ForN=2,A, =max(6, 9, 10, 11, 6, 7, 8)=11; A[(N —-1) =4. The difference is 7.
ForN =3, A, =max(@1, 14, 15 16, 9, 10, 11) =16 ; A[(N —1) =8. The difference is 8.
Therefore,oc=max( 8, 7, 8) = &

4.4.3 The Major Algorithmic Rule for Static-delay Analysis

Recall that the major goal of this chapter is teegh tight and conservative upper bound on
the performance of static-delay HSDF graphs. IrtiBeel.4.1, we have chosehl(N -1)+0 as
such a bound (foN iterations) in terms of the graph execution tiffieis bound uses thegandA
characteristics of the graph. In the previous sciiims® we have given an algorithm to calculate
them, but that algorithm starts from the pre-cated canonic matriX®. In this subsection, we
summarize the algorithmic rules used to obtaindh#saracteristics starting from scratch. Those
rules combined together constitute the major allgoric rule for static-delay analysis.

Algorithmic Rule (The major rule for static-delay analysis)
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1. Construct the adjacency matricd§ and A} of the low-order variant of grap®. Recall

that the complexity i<O(K?), whereK is the number of actors in the low-order graph, as
given by Equality (4.12).

2. From A, and A}, we obtain the canonic matriB =(A,)" [A]. Recall that the
complexity isO(K?®).

3. Computed and o using the algorithm described earlier in this gatisn. The complexity
is O(K?[H + K [H ogH).

Summing up the complexities of all parts togetlez, conclude that the total complexity is
O(K®+K?MH +K[H dogH) . ¢

The two major complexity parameters here are thasdH.

As for parameteK, as already mentioned in the discussion about IEgyd.12), although
this parameter includes the total number of iniiiddens in the graph, which is a numeric value
that can grow exponentially with the size of theDHSgraph specification, for IPC graphs this
parameter is polynomial.

As for parameteH, the sum of the transient depth and the minimunoge depth of the
HSDF graph, the situation is more complex. Redwlt those depth values depend on the initial
conditions and that they are bounded from abovthbyperiodic power and the transient power
of the canonic matrixB. Let us consider those upper bounds.

Let us first consider the periodic pow&¥, From Lemma 4.3, it follows that if all critical
cycles in the HSDF graph have the same dgpthen this also holds for all the critical cyclas
the canonic graph. From the results presented #gp17], it follows that, in that particular case,
W is equal tguw. For example, the graph in Figure 4.2 has only aiteal cycle ¢4, v2), (V2, V3),

(vs, Va), (V4, V1). It contains two initial tokens, and we have saerour example above, thel is
also equal to 2.

However, in the worst case, when different criticgtles of the HSDF graph have different
depths,W can be equal to thproduct of the critical cycle depths. This can lead toighh
overhead in the calculation @f using our algorithm. To avoid this situation, azen make a
conservative assumption that the delay of one @ftttors belonging to one of the critical cycles
is slightly higher than it is in reality (one cagseuKarp’s algorithm to find not only, but also a
critical cycle of the graph i©(K?® juntime). This will make the resultant estimatési@and o

slightly pessimistic, but it will ensuiM is limited by the depth of one of the critical B

Unfortunately, we are not aware of any general wetio limit the upper bound on the other
component oH, the transient powef. In [4 - §3.7] a small example of a 2x2 canonidnras
shown, whosd& can be made arbitrarily high by slightly changthg value of one of the matrix
entries. Using that example, our algorithm could gfeown to have at least exponential
complexity. Fortunately, the same example alsogsrithe good news that in some cases a slight
change in one of the delays in the graph can akscem significantly smaller, and therefore one
can sometimes use an approach to lifgimilar to the one we can use to lind but it is not
known how to limitT in general.

Nevertheless, in our experiments, we never face gheblem of high complexity of
calculation ofg. Some of these experiments are reported in Chéptanyway, this problem
deserves investigation in future work.
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4.5 Summary and Notes

In this chapter, we use the mathematical appawatusax-plus algebra and event graphs to
give an algorithm to calculate an upper bound am ¢lecution time of static-delay HSDF
graphs. The upper bound is tight in the senseitthas a constant maximum error.

In fact, an essential part of our major algorithmite that calculates the required upper bound
can be seen as doing a simulation of an HSDF gexgleution run and letting the simulation
continue until a periodic regime is detected. AiEmidea is exploited in [23] for performance
analysis of SDF graphs, however using a finiteestatchine model rather than event graphs.
We believe their work can also be adapted to cateutot onlyd but oas well.

In our publications, this approach was first bgiefiutlined in [75] and then thoroughly
described in [76]. In itself, this investigation time well-studied area of periodic behavior of the
HSDF graphs is not a significant contribution, hessagiving an upper bound on the execution
time of a periodic schedule is more or less trividévertheless, this investigation provides a
basis for our performance analysis method for tisHR graphs with dynamic actor delays, as
shown in the next chapter.






5 The Dynamic-Delay Analysis

5.1 Delay Quantization
5.1.1 Basic Idea

In Chapter 4, we have considered the timing bemhafielSDF graphs with static delays. The
objective of this chapter is to accurately chandmtethe conservative (i.e. maximal) execution
time for an execution run of an HSDF graph whoseradelaysd(v,,n )are not static, but rather
variables changing with. Note we still assume that basic IPC-graph progedre satisfied by
the HSDF graph — i.e. strong-connectedness, liweand FIFO order of the token transfers, we
only change our assumption about the actor deldysreby our purpose is to treat the data-
dependent behavior of the application.

We approach the problem as follows. First, we ihiice a set of quantization levels for actor
delays. We apply quantization ti(v,,n f9r all actors and obtain functiorﬁs(vk,n), which we

call quantized delay functions. Those are stepwWusetions that approximate but stay above
d(v,,n), so they constitute a conservative actor delay @hozhlled themulti-scenario delay

(MSD-) mode

The MSD mode of an HSDF graph is one of the tinmmgdes, as introduced in Chapter 3.
This particular mode can be described as a stamsition system with a scenario space, where
the states are calledcenarios HSDF evolution from iteration to iteration cormpesds to
transitions between the scenarios. For each aobar,scenario corresponds to one quantization
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level. Thus, as long as the HSDF graph stays inséme scenario, the actor delays are
approximated with static values, and thus thecstigiay theory applies.

We reuse the static-delay results to charactetiee HSDF graph behavior within each
scenario. The new part that we introduce here nsethod to analyze the timing properties of
transitionsbetween different scenarios. This method makeessible to derive a conservative
estimate of the execution time and throughput efHISDF graph with dynamic delays.

Recall that to handle the data-dependent execwt@ays, in this thesis we use so-called
parameters, which are variables counting the depewident number of times the application
executes the given calculation. Whereas, in Chahtere described the parameters determining
the execution delays at the actor level of gratiylathe MSD mode opens up a possibility to
define the parameters that determine the delatysedevel of the whole graph, which we call the
loop-level parametersUsing an MSD mode we can conservatively expreesidop execution
time — and hence also the throughput — in terniimeér functions on the loop-level parameters.

Because the MSD mode plays a central role in thépter, in the following subsections we
first introduce the MSD mode formally, and then watline the contents of the rest of this
chapter.

5.1.2 The Multi-scenario Delay (MSD) Timing Mode ofan HSDF Graph

Let us introduce actor delay quantization and sgéemausing Figure 5.1 for illustration
purposes. In that figure, we assume that the ghagshjust two actors; for each of them, the
figure shows the actor delay as function of iteraindexn. For a given execution run, the delay
functions are defined far = 0..N — 1, whereN is the total number of HSDF graph iterations in
the execution run. For better illustration, in Fig®.1 the delay functions, despite being discrete,
are shown as solid curves.

As we see in the figure, an MSD mode splits theatten axisn into execution intervatsl ,,

I, I3, etc. The number of iterations in one intervatadled theinterval depth denotedNy= |l
Thus, axisn is split as follows:I1 = [0..N;-1], 1> = [N;..N; + N, —1], etc. Note that the
splitting of axisn into intervalsl, has a similar purpose as the similar splittingaris x into
intervalsAx; in the definition of the integral in calculus; \eee going to characterize the whole
execution run by applying a summation over thervatks.

Remark (Relationship between scenarios and executiointervals). To each execution
interval I, the MSD mode assigns a certaitenariq identified by the scenario numbsxs(p),
wheres(p) is a positive integer. We say that intergbelongsto scenarics(p). The scenario
S(p) is said to bectivein intervall .

Every scenarig is distinguished by a unique vector of agjaantization levets

d, = (d, (%), (v,)....) +

For example, in Figure 5.1 we enumerate a few soEnadentically to the execution
intervals, i.es(1) = 1,5(2) = 2, ...,5(6) = 6, and we have:

d, = (20,20); d, =(40,30); d, =(60,30);d, =(80,10); ds = (40,15); d = (20,15);

Without loss of generality, we assume that any swbsequent execution intervéysandl .1

always belong to different scenarios, otherwisecam® merge them into one execution interval.
Therefore, the scenario transitions take placetgxatthe interval boundaries(p) # s(p+1) .
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Figure 5.1 Quantization of actor delays for a two-actor graph

Definition (Actor QD-function). The quantized-delay functioof the given actor is a stepwise
function that in each execution interval takes vh&ie equal to the quantization level of that
actor in that interval:

(i(vk ,n) = &S(vk) , if s=5(p) andn(l [,

Definition (Conservative MSD mode).An MSD mode beingonservativemeans that the QD-
functions of all actors have at least the same ihadm as the real actor delay:

&(vk,n) = d(v,,n), foranynd{0.. N — 1} and for all actore

For example, the MSD mode illustrated in Figure is.tonservative. In the remainder, we
consider by default only conservative MSD modes.

Different scenarios correspond to different exemutintervals, but not vise versa. For
example, in the MSD mode of Figure 5.1, we can geat, = (20,15) to (20,20) — as shown by

an arrow. In that case, we can consider 1 and thesame scenario. Thereby, we make the
given MSD mode less accurate, but still consereativ

In fact, for practical reasons, we would like thember of scenarios to be limited, such that
many execution intervals belong to the same scenharithe extreme case we have only one
scenario and only one interval covering the whitdeation axis. In that case, one can use the
worst-case actor delays as the quantization |eiviblad scenario. That is the simplest MSD mode
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one can construct for the given execution run. Hewefor highly dynamic data-dependent
applications, the accuracy of a worst-case modelbeaquite low due to high overestimation of
actor delays. The basic intention of an MSD mod®ikave an improved accuracy when the
number of scenarios is increased. In other wordsaghievescalability in accuracyi.e. one can
achieve the required accuracy by selecting thegsropmber of scenarios.

5.1.3 The Contribution of this Chapter

Recall that the whole purpose of the dynamic-deglaph performance analysis is being able
to predict the execution times (i.e. the total dorg of the execution runs using a-priori run-
time values of application parameters, charactegihe processing complexity of the input data.
In our approach, those parameters characterizeuttves of the delay functions of all the actors,
like the curves we have seen in Figure 5.1. Inroethod, the delay quantization realized by the
MSD mode helps us reduce the overhead of paramieyelstting them characterize the step-
wise QD functions instead of the delay functions.

In fact, our concept of MSD timing mode uses thenscio-based paradigm for the
characterization of the application behavior [42F], [99], [29]. This paradigm is based on the
observation that the dynamic behavior of an appboais typically composed of a limited
number of sub-behaviors, i.e., scenarios, that lsawélar resource requirements, i.e., similar
actor execution delays in the context of this the#in extensive overview on scenario-based
paradigm can be found in the paper of S. V. Gheatagt al[29].

A scenario-based performance analysis method estinthe execution time via ahgebraic
expressionn terms of scenario coefficients, i.e. the cdnitions of a scenario to the execution
time, and scenario parameters, typically varialgesnting the number of invocations of the
scenario. Scenario-based performance analysishhes basic tasks:

» the derivation of the algebraic expression forg¢kecution time,
» scenario identificationi.e. defining the set of scenarios and scenararpeters,
» characterizationi.e. calculating the scenario coefficients.

In this chapter we develop a scenario-based pedoce analysis method based on the MSD
timing mode, sketched in the previous section. Aplaned in Section 1.5.1, our method
introduces the support of certain essential stregrapplication features, which is, to the best of
our knowledge, not supported in other work on npudicessor scheduling, such as scenario-
based scheduling work of Zhe Maal [55], [56]. We discuss the closely related workniore
detail in the end of this chapter.

Because our analysis works at the level of theiepibn’s loop of interest, represented by
the HSDF graph, we say that those tasks are cawtiedt thdoop leve] and we speak dbop-
level coefficientsandloop-level parametersand also oloop-level characterizatiorandloop-
level identification The corresponding loop-level algebraic expressiam be represented as a
linear combination of the parameters and coeffisieas we already introduced in a generic form
in Section 2.3.3. Recall that the loop-level idkcdition is done in the beginning of our design
flow — because it does not depend on the mapping.ldop-level characterization is done partly
in the end of the flow and partly at run time (se flow overview in Section 2.3.4).

In Section 5.2, we present the derivation of thecexion time expression and loop-level
characterization. We assume that an MSD mode eéga@yr given, in terms of quantization levels
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and execution intervals. Under that assumption,amgly static-delay performance analysis to
every execution interval, and develop a new technique to analyze the boieslaf the
execution intervals, where the scenario transittake place. This helps us to obtain an algebraic
loop execution time estimate and to establishalgorithmic rule for dynamic-delay graphs
which calculates the loop-level coefficients. Pd®d that the MSD mode quantization levels are
defined and the loop-level parameter values arevknohis defines a complete method for run-
time estimation of the execution time. The pradticsage of this method is demonstrated by our
application study in the next chapter.

To be able to apply this method for a given appiica first one has to define an MSD mode
for any possible execution run. This is the taskladp-level identification, considered in
Section 5.3. Although the quantization levels ar@éneral data-dependent, we can still define
them at design time, usirgubspacesi.e. certain intervals of actor-level parametatues. In
Section 5.3, we introduce the scenario subspace®ie detail.

Finally, Section 5.4 summarizes and concludesdhépter. There we also discuss the closely
related publications of the other researchers disas®ur own publications.

Before we continue with the main topic, it is wavtkile to briefly discuss similarity between
our loop-level and actor-level timing models. Rédhat, in Chapter 3, we consider actor-level
linear parameter functions, similar to the loopeleexpression we derive in this chapter.
Compared to our loop-level analysis, the actordlewalysis may deal with much more complex
control flow that a plain loop. On the other hamdir actor-level analysis is restricted to
sequential execution, as opposed to the parall@MH§raph execution studied in this chapter.
Thus, it is interesting to notice that, in this pte, we show how the execution time of certain
class of parallel programs such as HSDF graphdeaxpressed in a similar linear form as the
processing time of sequential programs such assacto

5.2 Using an MSD Mode for Performance Analysis

5.2.1 Basic Execution Time Estimate as a Parametrleunction

Let us consider a loop of interest executing iferet 0..N —1 of an HSDF graph. In this
subsection, we give a algebraic loop execution tesgmate using a given MSD model. That
estimate does not yet take the scenario transifgwoperly into account. We call it tHeasic
expressiorior the execution time estimation.

The basic expression is considered here for twanmeasons: to reintroduce the concept of
the loop-level parametric function (which we intusgd in Chapter 2) and to use the basic
expression as foundation for obtaining our finale@xtion time expression, used in the
algorithmic analysis rule for dynamic-delay HSDjns.

In the basic expression, we assume that at theegi of every execution interval the HSDF
graph starts a new execution run and at the erdeoéxecution interval the HSDF graph stops
and waits until all actors finish the given exeontinterval before the next interval may start.
Because in reality the actors do not wait for &llev actors at the boundaries of the execution
intervals, the basic expression is pessimistics thiving us a conservative estimate of the loop
execution time.

In the basic expression, we use the results of €hdpto estimate the execution time of every
interval and then add the results.
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Definition. The instantaneous periadls and instantaneous lateness are the period and the
lateness of the HSDF graph with static delays etyutile levelsl of scenarics. ¢

According to the given MSD mode, let us split toep iteration interval into sub-intervals
with depth valuesN;, N,, ...,Np, ZszN. Then the basic expression is obtained by
summation of Equality (4.25) over all intervals:

Dnpasic= 2, s Np + (Osp) = A 5) ) (5.1)
pO[L.P]
whereA g and gy are instantaneous period and lateness in sces{pyio
For practical reasons, it is convenient to groupitttervals that belong to the same scenario
together and rewrite this summation respectivebfime Js as:

k= YN,

pO[L.Plis(p)=s
Thus,Js is the total number of loop iterations in scenariDefinelLs as:
Ls= {pOMLPlIs(p) =9,

Thus,Lsis the total number of execution intervals beloggio scenaria.

Grouping the terms of Equality (5.1) by scenarionbers, we obtain the basic expression the
execution time estimation:

ANbasic: Z (/‘3 LIs + (US_/‘S) ﬂs) (5.2)

S

In this algebraic expression, we see data-dependeammpters Jsand Ls) and constant
coefficients (based oAsand oz). They are, in fact, examples of the loop-level pararseded
loop-level coefficients that we referred to earlier in thisptba They satisfy the definition given
in Section 2.3.3, where we said that the loop-level paemhecount the number of loop
iterations that have certain properties and the coefficigints the contribution of those loop
iterations.

5.2.2 Scenario Transitions: Basic Considerations

In this subsection, we start an investigation of the scerteansitions taking place at the
boundaries of execution intervals. Eventually, this investigateads to an algorithm that
estimates the execution time with an essentially improvediracy compared to the basic
expression.

The transitions take place between the iterations afi8ieF graph. Therefore, inter-iteration
dependencies play an important role there. Those depeadesre reflected in the graph as
initial tokens.

Consider the HSDF graph in Figure 5.2 (a). It has thiers whose completion time
variables arex;, Xz, Xs. Consider an arbitrary execution intervah..[j — ], where j >n,
represented in Figure 5.2 (b) as a box with multiple inpotsoutputs.

The inputs of this box correspond to dependencies ocldtar executions within the box on
the iterations befora. Let us consider those dependencies one-by-one dagxample given in
Figure 5.2(a). Consider actoy. Its evolution equation depends rifn—-1) due to the initial
token on edgevg, v2). So, we label the first input of the boxx$n-1). Look at actow, and
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(c) Combining the execution range boxes together
R is the number of initial tokens in the graph

Figure 5.2 The framework for taking the scenario transitions intmaat in A N

consider its executiong(n) andxz(n+1). They both may fall within the interval of the Bpx
and they consume tokens produced by eveifts—2) andxs(n—-1) respectivel§ due to two
initial tokens on edgev4, v1). Therefore, we introduce two more inputs with the cwading
labels. Finally, the initial token on the self-edge wefintroduces a new box input labeled
x3(n—-1). Thus, we have two inputs labeled by the same egént-1), but we separate them
because they represent the dependencies of two diffemestimer actors, namely andvs. In
general, one initial token in a graph corresponds ®dependency at the box input. The same
can be said about the box outputs, where we can @macen by j in the labels (see
Figure 5.2(b)). We enumerate the initial tokens — anddéme box inputs and outputs as well —

L In fact,%(n + 1) only falls into this range, in cagen+1, and it does not in cafen+1. But considering all possible
dependencies makes our model conservative, becagseie will see later, taking any extra dependeinty
consideration can only make our execution timevegt more pessimistic.

%2 Those dependencies are there onhpid andn>1 respectively, but the same remark as befordemppere.
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in an arbitrary order by indexwith values 1R, whereR is the total number of the initial tokens
in the graph. For example, in Figure 5.2 @} 4.

Such an ‘execution interval box’ is similar to an act@cduse it consumes tokens at the
inputs and produces them at the outputs. However, ualkactor, a box does not have to
capture all input tokens simultaneously, neither doesvit @ simultaneously produce all output
tokens. The tokens are produced at the times definedhdylabels assigned to the box
dependencies.

Now suppose we have execution intervald,, 13,... Ip for the given execution run of the
loop of interest. Then we can introduce a separatddreeach interval and connect the boxes in
one chain, as shown in Figure 5.2 (c). According tosyrechronous initial conditions, we put
zeros at the box inputs of and calculate its outputs. This way, one can prdpathee results
through the chain frory to Ip.

To give a conservative estimate of the loop execution ﬁme we have to provide an upper

bound on the latest output bf. If there was always only one intervRl= 1, the answer would
be: Ag) L(N1 — 1) +0yq). For more intervals, we consider each pair of sulbsetgintervals -+,
Ip+1. The behavior of,.; depends on when the execution interval hoproduces a token at each
output. Ifl, produced all tokens simultaneously at a certain @yehen it would hold thalty.,
would complete all its iterations by tin@:1 = Qp + Asp+1) {Np+1) — 1) +05p+2). Then making a
conservative assumption that all output tokens of thelpaxare produced at tim@y.:, we
could apply similar reasoning and calcul@g, from Qp.1 , Qp+3 from Q.2 , etc.

However, this kind of calculation, would again yield thesibaexpression, (5.1). The
disadvantage of that calculation is that we assume thaixéoeitéon interval boxes produce all
output tokens simultaneously, in an actor-like mannegelmeral, tokens at different outputs can
be produced at different moments of time. As a coresgecp) when box, releases a token at
some outputs and still continues running, bgx may pick up a token at the corresponding
inputs and start running before interVgfinishes its execution. In other words, there tsrang
overlapbetween subsequent execution intervals.

An idea of how to conservatively estimate that overlap istifed in Figure 5.3. Two filled
parallelograms shown in the figure represent so-cdited shape®f two subsequent execution
intervals. The vertical axis corresponds to inde¢kat enumerates tHe dependencies between
the execution intervals. Thus, the vertical axis is discedtieough our drawings ignore this fact.
The horizontal axis corresponds to physical time. As shiovthe figure, a horizontal section of
a time shape is a time interval between two events: thie beggntb,, which corresponds to the
capturing of a token at box input and the end evem, corresponding to the production of a
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token at the box output In general, time shapes are not necessarily paralleisgnae drew
them like that for illustrative purposes.

Figure 5.3 shows how the time shapes are arrangedding to the assumptions of the basic
expression, (5.1). The main property of this arrareygnis that we can distinguish a reference
time pointQ where one can draw a vertical line through the laeis execution interval, and
the earliesb, in execution intervaly:1. In such an arrangement, there is a gap betweeimtbe
shapes. If we redrew these shapes in Figure 5tBdoareal HSDF execution, there would be no
gap at all. We implicitly introduced such a gap in tlsib execution time estimate. This was a
legal thing to do, because delaying the evéntsf 1., in @ monotone timing model like ours
leads to conservative results. In return, our basic exme was relatively simple.

We reduce the gap between the time shapes by shiftingo the left as far as we can such
that the shapes do not overlap each other. The shifsgtionoof the time shapk. is shown in
Figure 5.3 with dashed lines. The absence of ovettepseen the shapes implies that we can
shift the shape safely, i.e. without violating the depeai@snbetween the shapes, because all
possible dependencies are represented in the time sHdyesvay, the execution interval.,
does not ‘notice’ the shifting and its time shape remaitagin

We denote the shift distange Let us see how it can be calculated. For dependeniey
Ae be the position of,’s right border relative to the reference paihtLet Ab, be the relative
position oflp.1’s left border. From Figure 5.3, it is obvious that tishapel ;.1 can be shifted to
the left by at most:

y = min(Ag +Ab,) (5.3)

The value ofy has the meaning of time overlap between the time shapeauBe one can
overlap the time shapes by at 1843t, we call it theminimum overlagt the scenario transitian
It plays a key role in our execution time estimation fordiggamic-delay case. Just asnd g,

this characteristic can be derived by analyzing the ghathagh the HSDF graph, as presented in
the next subsection.

5.2.3 Minimum Overlap: Graph Analysis
The minimum overlap of a scenario transition dependthercurrent scenario and the next
scenario; let us denote the scenarios=agp)andt = s(p + 1. We calculate the overlap directly,

by applying Equality (5.3); therefore we need to calculag¢erelative positions of the time shape
bordersAb, and Ag, for eachr.

It is important to stress here that in this subsection wenrasshat the HSDF graph executes
with the actor delays defined by the quantized-delaytfonaﬁ(vk,n) , hot the functiond(v,,n )
that represents the actual actor delays. This means éhahéipe borderddb, and Ae, , and the
minimum overlap,y, are calculated in a conservative way — i.e. small eneugfth respect to
the quantized-delay execution. Note that when considghregactual execution delay, the
overlap between the execution intervals may be even mmeltier than thg/ that we obtain
here. This is still legitimate, because our final purpsese give an algorithmic rule to calculate

8 |n general, one can shift,, even further, but then it will ‘notice’ the chaniyethe initial conditions and its time
shape will deform.
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Figure 5.4 Transition analysis example for the HSDF in Figured.2(

the loop execution timeand our estimate, being obtained for the quantizéardexecution, is
still conservative for the actual-delay execution.

We have already explained the basic idea of the timeesbaglers using Figure 5.3. In this
subsection, to calculate the relative positions of the bee and Ae, , we give more rigorous
definitions of those values. Because they in fact remtethe time distances between certain
events, they correspond to the lengths of certain pattgh the HSDF graph. We show that by
first applying the so-callettimmed unfoldingo the HSDF graph and then doing a longest path
analysis on the result of the trimmed unfolding.

Let us first define and illustrate the trimmed unfolding arehtbxplain its use in our context.
The trimmed unfolding of HSDF graphs is based on thventional unfolding, defined in
Section 3.6.3.

Recall that the graph resulting from the conventional gragblding is called theinfolded
representationLet G' be the unfolded representation of graphandH the chosen unfolding
factor. Then every actov, in G is represented byl actors in the unfolded representation:
v [0], v, [1], ..., vi\[H —1]. Those actors are joined by edges according to the dafined in
Lemma 3.3. For example, the graph in Figure 3.1&bhe unfolded representation of the graph
in Figure 3.18 (a) with unfolding factét = 5.

The trimmed unfolded representatiocan be obtained from the ‘conventional’ unfolded
representation by removing all the edges containing lirtitieens. As a result we obtain an
acyclic graph where all edges have marking 0. Fampte, Figure 5.4(b) shows the trimmed
unfolded representation (with unfolding factor 4) of H@DF graph in Figure 5.2(a).

We give the nam#ransition graphto the trimmed unfolded representation of the HSDF graph
obtained for the purpose of analyzing the time shapendsuies Ab, and Ae . Comparing
Figures 5.4(a) and (b), we see that the transition gyaygs a detailed view of the dependencies
between boxes$, andl.:. The transition graph can be partitioned into two pahis,‘upper’
part, representing execution intervaland the ‘lower’ part, representing execution intetyal.
The upper part contains the nodes that model the actoutexes before the transition and the
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lower part models the actor executions after the transifibarefore, we refer to the cut-line that
partitions the graph as theansition line(a dashed line in Figure 5.4(b)).

Let M be the maximum number of initial tokens on any edgéhefHSDF graphG. The
output tokens of, can be produced up i iterations backwards from the transition, and the
box inputs ofl,+1 can be consumed up i iterations forwardS. Therefore, to capture all
possible dependencies, the transition graph has unfoldoigr H = 2M, covering the interval
n=j-M...j+M -1, wherej is the first execution index iflp.1. For our example in
Figure 5.2(a),M = 2, and therefore every acto is represented in the transition graph in
Figure 5.4(b) by four actors, [O]v,[1], Vv, [2], and v, [3] We use the trimmed unfolding

because we can ignore the dependencies of theeactoutions in the specified index interval on
the executions outside that interval, still being conservative.

Note that the transition graph construction implicitly asssinthatM > 0. However, this
property always holds for the graphs that satisfy baBi€ Iproperties, because strong-
connectedness and liveness imply that the HSDF graphinserdt least one cycle having at least
one initial token.

So far, we have introduced only te&ucture of the transition graph, but not yet thetor
delaysin that graph. We also need to specify them before weusa the transition graph to
calculateAe, , Ab,, andy

The delays in the transition graph have to be eitherl égube values of the quantized-delay
function a(vk,n) in the intervaln=j-M...j + M -1 or represent those values in a conservative

way. In fact, we do not fill exact values atvk,n) into the transition graph, because this would

require information on not only which pair of scenar®andt, is involved in the transition, but
also which scenarios come before scensieind which scenarios come after scenaviithin the
inspected interval of inder. That would complicate the use of the transition gragphttie
calculation of time shape borders, whereby conside@l#enead would be involved in terms of
the required input information. Therefore we choosébsiract from the detailed delay values by
rather using their conservative estimates.

Let us define the delays of the transition graph in a coatsee way. We denote them as
dyans(V[ T1) . Wherev,[ T ]is an actor in the transition graph ané 0..2M -1 is itsunfolding
index representing the loop iteration with index=j—M + f . Note that the transition line
separates the transition graph actors witk M from the actors withf > M . When assigning
the delay values tal,,,; we need to remember that we can only be sure thabdlpeiteration
with unfolding indexf =M -1 belongs to scenar®and iteratiorf = M belongs to scenarip
because the depths of intervijsandl ., are at least one. It is not known which scenarios are
active further than one iteration away from the transitio®, so we have to fill in conservative
values there. Remember that the goal of maljel, is the calculation of\e, and Ab, . For Ae,
and Ab,, ‘conservative’ means ‘small enough’. Therefore int ttase we fill in the minimal

guantization delay values from all scenarios. So, we have:
dtrans(vl'([ f]) =d. (Vk), f<M-1 or f>M (541)

2 |n case the depth of the randgsor .1 is less tharM, the number of actual dependencies between théesss
thanR, but filling this number always up ®in Equality (5.3) keeps the estimateyafonservative, because this can
make the value ofonly smaller (and thus more conservative)
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whered, (v, )= mqin(aq (Vi ))

dtrans(vL[M _1]) = &s(vk ) (542)
yans (Vi [M]) = d, (v, ) (5.4.3)

The notations used for actor delays in the example air€i§.4(b) refer to the values of
d,...(V.[ f]) complying with equalities (5.4), e.@. =d.(v), a, =d.(v,), a =d,(v).

Based on these delay values, let us calculate the tinpe ftwadersAb, and Ae, . First of all,
we observe that there is a one-to-one correspondetaeédn each edge crossing the transition
line and dependenay We call such edges tlelges of interesind show them in Figure 5.4(b)
using bold arrows. We index them with indeas well.

ValueAby is the ‘as soon as possible'sgp time when the consumer node of edds ready
to consume a token. Thasaptime is relative to the time when the lower part of dheph starts
its first actor execution. To calculate tlisaptime, we find the nodes in the lower part of the
graph that are the first to start, referring to them asalieces of interest;. A source of interest

is recognized by the property that it has solely edg@sterest as incoming edges. For example,
in Figure 5.4(b) the only source of interestUs = v;[2]. Theasaptime of a (consumer) node

v, [ f] in the lower part of the transition graph is equal to thgelstrdelay of a graph path from
any source of interest to nodg[ f , rjot including the delay of that node. For example atap
time of nodeV,[3] is a +hb +a,, and it is equal téb,, because/,[3] is the consumer of edge 2.

The right boundare can be calculated by the same line of reasoning, eittapive look at
the upper part of the graph, we calculate the ‘as laoasible’ alap) relative times, we use
sinks of interesY;, which have solely edges of interest as outgoing eatgkthe paths propagate
from the producer node of the edge of interest (not imetuds delay) to a sink of interest. In
our example, nod¥1= v;[1] is the only sink of interest and, for examge; is thealap time of
nodev,[1], which is equal tcc,.

Having calculated all relative time shape boundafes and Ab,, it is straightforward to
calculate the minimum overlap valug, using Equality (5.3). For the example in Figure 5.4, we
examined each edge of interest in Figure 5.4(b) and latdclalap value Ae, for its producer
andasapvalue Ab, for its consumer. Table 5.1 summarizes the results.

Table 5.1Asapandalap values for the transition graph in Figure 5.3

r From To Ag Ab,

1 Vo [] vi[2] Cs 0

2 V3[1] V2[3] 0 a+h+a
3 v5[0] Vo[2] Cs &

4 v3(1] V5[2] 0 a +h
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We see that table rows 2 and 3 cannot influence thémmim overlap in Equality (5.3)
because rows 4 and 1 have smaller sums of colubensand Ab, . The result of the minimum

overlap analysis is thug. = min(c,,a +1) .

In the next two subsections, we summarize the minimumagpvanalysis and update the loop
execution time estimate, which directly yields the algorithrale for the performance analysis
in the dynamic-delay case, being the major purposiei®tection.

5.2.4 Calculating the Minimum Overlap Values for aMulti-scenario-delay Mode

In the previous subsection, we have, in fact, propa@setethod to conservatively calculate
the minimum overlap between the execution intervals efgiken MSD mode in a way that is
independent of the positions of the intervals in the @tkaxc run and the depths of the intervals.
This is so, becausgonly depends on the value of delays filled into the transiji@ph and
those delays only depend on which pair of scenarigst— is being considered. To be more
precise, for a transition from scenasdoto scenariot, the asap valuesAb, depend only on
scenariot and thealap valuesAe, depend only on scenar® Therefore, as already mentioned,
the minimum overlap defined by Equality (5.3) depends onlyandt. Thus, it is valid to speak
of theminimum overlagbetween scenar®and scenarig denotedy,.

For a given MSD mode, one can rewrite Equality (&s3jollows:
er = min(Ae () + Ab, (1)) (5.5)

The fact that this estimate of the timing overlap depesrdg on the pair of subsequent
scenarios simplifies the performance analysis, becémusalculate all the overlaps between the
execution intervals in a given execution run, one onlydsde consider all pairs of scenarios
rather than all the transition points of that run. This lmawery beneficiary from the calculation
complexity point of view, especially if the execution runldag enough and the number of
scenarios is small.

To calculateasapandalap values in the given transition graph, one can apply a &rggh
calculation algorithm. Because the transition graph is agytie algorithm can be based on
topological sorting [16]. Because the number of edges actors in the transition graph is at
most 2ME and 2MV , the topological sorting algorithm complexity@§M(V+E)), whereV and
E are the number of actors and edges of the main H3&phgandV is the maximum number
of intial tokens on any edge of the HSDF gr&ah

Therefore, the total algorithmic complexity to calculatecatrlap values in the given multi-
scenario-delay timing mode of an HSDF grap®(S M(V+E) + $R), whereSis the number of
scenarios . This expression includes the complexifyrsifcalculating theasapandalap values
for all the scenarios and then applying Equality (5.5)efa@ry pair of scenarios. If required, one
can reduce this complexity by excluding the scenario gairsvhich transitions occur only
rarely or never at all and assuming that for such pairs is equal to 0 (which would lead to only

a limited loss of accuracy).

Note that a disadvantage of our current approach isasslplity of an estimate of the timing
overlap that is too conservative when the HSDF graphrhdsple sinks of interest, because of
the (implicit) assumption that all sinks of interest completé@ #wecutions simultaneously. We
consider an improvement of our technique for suchscase topic of future work.



192 5 The Dynamic-delay Analysis

5.2.5 The Algorithmic Rule for the Dynamic-delay Aralysis

To obtain our final version of the loop execution time esterfor a given MSD mode, we
subtract the overlaps of the transitions from the basicutiam time estimate, given by Equality
(5.2). As the result, we obtain:

A=Y (Al + (G=A) )= >y, Ky, (5.6)

(st)0S

whereS={1..S} is the set of scenario indice& ;is the number of transitions from scenasio
to scenaridt, and S is the set of distinct scenario pailS:= { (st)|1sst<S s# t}. Just as
J;and L, parameteK,, is a loop-level parameter, depending on the applicationt idpta,
obtained from the frame headers of the application. Ttvexewe can see tha ;is a loop-level
coefficient. Just as the other loop-level coefficiemtsand A, this coefficient is calculated by

applying an analysis algorithm to the HSDF graph.
ParametersL, depend on parametéfs, and therefore parametets do not need to be

provided explicitly. We have:

if sz s(1) => (i.e. ifsis not the scenario of the first interval)

L= > Kge (5.7.1)
gqOS\ {s}
if s=g(1) =>
L=1+ > Ky (5.7.2)
qisvs

At this point, we can formulate the algorithm for estimatimg loop execution time.
Algorithmic Rule (Dynamic-delay Analysis Rule)
Given:
» the set of delay vectors for each scenaﬁLo.: (&S(vl),c]s(vz),...);
» the scenario of the first interva1);

* loop-level parameter, and J.

Then, one can estimate the loop execution time as fallows
1. Use equalities (5.7.1) and (5.7.2) to obtain

2. Apply the major static-delay rule to calculate loepel coefficientso, and A, — see
Section 4.4.3.

3. Apply the minimum overlap calculation algorithm to caitelloop-level coefficienty, .
4. Apply Equality (5.6)
The algorithmic complexity of this rule is:

O[(K®+K2Hg +K HglogHs) + SM(V + E) + SR
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where Hg is the maximum value of parametdr in all scenarios of the given MSD mode;

parameterK andH are defined in Section 4.4.3 as the number of rowsgtrmns) in the
canonic matriX8 and the number of the lateness calculation algoritbratibns respectively.
Although, in theory, the obtained worst-case algorithmimmlexity may in some cases
indicate a large calculation overhead, in practice theheeel can often be kept limited. We
already discussed the overhead related to parantetarsiH (and thusdg) in Chapter 4. For

any IPC graph, parameteks (the maximum number of initial tokens on a single edgé)Ran
(the total number of initial tokens on the graph edges)polynomial in the number of vertices
in the graphy, because, as discussed in Section 3.7.2, the totalemurhinitial tokens in any
cycle of an IPC graph is, in the worst case, lineaVv.ilAs for the number of scenari&; it
depends on the construction of the MSD mode, discuss8dction 5.3, where we argue tigat
also can be limited in practice.

5.2.6 The Throughput of the Dynamic-delay HSDF Grap

Before we finish this section, let us use the obtained éxe&ctime estimate to give a
conservative estimate for th#aroughput an important performance metric for streaming
applications. Recall from Section 2.2.5 that, in generalH/8SDF graphs with dynamic delays,
one cannot give a practical way to derive a consee/ahroughput estimate for an infinite
HSDF execution run from the statistical characteristics oé&eeution delays of actors. In other
words, for streaming applications in general, it is annopblem to give an accurate lower
bound on the mathematical expected value of the throughpon the characteristics of the
probability distribution of the actor delays, whereby tadculation overhead to compute that
bound should be reasonable.

To contribute to the research in that direction, in thisseation, we give a conservative
throughput estimate under the assumption that the dynamaysdean be accurately
characterized by an MSD mode with known parameter sadne quantization delay levels.

Just as in Section 2.2.5, let us denote the numbewuipiub data bytes produced by the
application per HSDF iteration a&G). Then, for a finite execution run ™ iterations, the
throughput in bytes per second, denot(él;j,), is equal toz(G)IN/A, , where A is the

execution time. Using the conservative execution timémase given in Equality (5.6), we
obtain the following estimate of the throughput for adirxecution run:

N
Z/]s DJS +(Us _/‘s) D‘s
EBS

<éN> = 2(G) 3 (5.8)

D Ve K,

(st)dS

This estimate is conservative, i.e. the real throughpUtIimat<6A?N>.

We can extend this finite-execution-run expression to #s® ©f an infinite execution run
provided that the following characteristics of the actlaygs are known:
p,(s) = Lim J./N, i.e., the probability that the application runs in scerfatrio

p.(s)=lim L,/N, i.e., the probability that a transition occurs from scen's to another
N -

scenario.
P (st) = L'rjl, K. /N , i.e. the probability of a transition from scenasgto scenariot'.
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If these characteristics are known, then an lower boandthe long-run application
throughput is:

1
DA AS)+ (0, = A) Thu(8)~ D Ve, [Pc(S))

(st)0S

(5.9)

<é> = 2(G) O

This equality can be seen as a generalization of Equality i@ multiple scenarios. It gives
a fundamental relationship between the timing propertieshefindividual actors and the
performance of the whole graph. Unfortunately, in gdndrdoes not give a complete answer to
the problem of obtaining a practical long-run throughput estirfta streaming applications, due
to two main limitations:

1. This approach assumes that probabilpigs , p)(s), and p, (s,t ) exist (in the sense that
the mathematical limits defining them exist) and that theybeacalculated beforehand.

2. This approach can only be accurate if the MSD niimileg employed in the calculation is a
good approximation of the real actor delays. In genéra can only be true if the number
of scenarios is large enough, whereas the calculatorplexity grows quadraticaly in the
number of scenarios, which leads to an increase inalbalation overhead.

However, as we already stressed in Section 2.2.6m#ie focus of this thesis is a simpler
problem: to analyze the performance of finite executimms whose characteristics of interest
are provided a-priory, in the frame headers of thatimata streams. Thus, we assume that the
exact values of the probabilities (which, for finite ruae always defined) are provided a-priori,
hereby overcoming the first limitation mentioned abovesoAin many practical situations, we
can also overcome the second limitation because weotldhave to define the actor delay
quantization levels statically, but can do that dynamicallysedaon a-priori information;
therefore a working set of scenarios can be constantlatad at run time to only include a
limited number of scenarios needed for the current drahine determination of the working
scenario set is discussed in the next subsection.

5.3 Loop-level Identification of Scenarios
5.3.1 The Goals

In the previous section, we assumed that an MSD modee&dg defined. In this section, we
consider the problem of defining an MSD mode. This meaesifying the number of scenarios,
S and, giving an algorithm that calculates the quantizatioeiéeig(vk) and execution intervals

I, for the any possible application input data processedebgxécution run.

As we already mentioned earlier, in our design flow, the gtapaddresses this problem is
referred to as loop-level identification, which belongs ® Application Preparation part of the
flow. What is exactly meant under defining the scenariosttfe given application’s loop of
interest is explained later in this section. However, mfdly, we can interpret this step as
splitting the set of possible loop iteration behaviors intsstdhand identifying every subset as a
distinct scenari®. We also say that this step (indirectly) identifies all thapitevel parameters,
by giving each of them an application-specific meankag. example, the meaning of parameter
Js is that it counts the number of times a behavior irsstgoccurs in the execution run.
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In our work, the behavior of every scenario is defias a subspace of values of the actor-
level parametersé,. We refer to our scenario definition approach saenario subspace

approach Although having a way to define the scenario behawi@,do not have an own
algorithmic solution method for efficient identification aesarios. However, the research work
of S. V. Gheorghitaet al [28], [24], proposes an automated solution methaodHis problem
that can be adapted for our design flow, and we ar@ware of any alternative solutions. They
also develop a scenario subspace approach that isinelgr4o ours.

In Sections 5.3.2 — 5.3.4 we explain the main ided®tktenario subspace approach, which is
essential for the practical use of our performance aisalyork. Differently from [28], which is
designed for single-task (i.e. single-actor) applicatioms also discuss the issues relevant to
multi-task (i.e. multi-actor) applications. In Section 5.3we explain how the scenario
identification method of [28] can be adapted for our desigw. In Section 5.3.6, we make a
summary on how the scenarios are defined and usedirirrua-time performance analysis
framework.

5.3.2 Basic Issues

Before we explain the scenario subspace approachs IBtst discuss the basics of defining
an MSD timing mode of an HSDF graph. Instead of fiefermining the execution intervals and
then defining the quantization levels for them, as we diigare 5.1 for better illustration, we
specify the MSD mode the other way around. We introdbieescenarios and their quantization
levels first, and then, from the quantization levels,ekecution intervals can be determined. In
this way, the number of scenarios is determined direethjch makes it easier to ensure that the
model does not have too many scenarios, thus being ueghilactice. The number of scenarios
should be large enough to provide for enough perfocen@malysis accuracy and small enough
to keep the overhead of scenarios and scenario trandiitioitesd, (The overhead includes the
graph analysis for calculating the loop-level coefficieatsl bit overhead for encoding the
parameters in the frame headers.) In this section,re@de some hints on how to reach that
goal in many cases.

A simple quantization method is to enforce the quantizatiep for the delay of all actors to
be a constant value. By selecting the magnitude ofdbiastant, one can directly control the
guantization error. Unfortunately such an MSD mode wouylglyato only one particular
hardware architecture and scheduling, because it mliggysical time values of the delays. As
a consequence, to specify the values of loop-level pEasds and K, to be placed in the

frame headers of the input data stream, one would teaneasure all actor delays of the given
execution run for the given implementation and round tlupnio the predefined quantization
levels, this way identifying the scenarios and scenaricsititans. This would make the loop-
level parameters only valid for the given hardware archite and scheduling, making them
useless for the other implementations, which is not acceptabl

What also should be avoided is defining a separate sodnaeach possible combination of
the quantization levels. In this case, if we denote the rumibquantization levels per actor as
Q, then the number of scenarios would be express€as = , whereVparta.oep iS the number
of HSDF graph actors with data-dependent delays.ekample, having 5 levels in a 3-actor
graph would result in %= 125 scenarios, and® &°~ 1) = 15500 scenario transitions. Although
the loop-level coefficients could be calculated at desigs,tiime amount of calculations and the



196 5 The Dynamic-delay Analysis

3, 4é, +1 8, +3

Figure 5.5Mutually dependent actor delays: an ideal case

sheer number of coefficients could easily go beydmdpgractical limits. In the situation where

different actors have mutually independent delays, it is nesible to avoid the exponential

growth of the number of scenarios. Fortunately, in prtactive can expect that the delays of
different actors depend on each other because allctioesaare involved in processing of the
same stream of data. Our ‘scenario subspace’ approgies on the use of actor-level

parameters to make the dependency between the atags éeplicit.

5.3.3 The Advantage of Using the Actor Parameters iDelay Quantization

Let us consider a simple example illustrating how the det@l parametric functions can
expose the correlation between actor delays. We ilbesttaby considering the idealistic case
where different delays depend on the same paramaterxample is shown in Figure 5.5. There,
all actor delays are linear in the same paraméter- in practice that can be the case if each
actor consists of a loop that executgs iterations. Suppose that [@,_ . IS the interval of
possible values o€, . Introducing five quantization levels of), means splitting this interval

into five integer intervals: [Ga ], [Ea T, €l [Ea ¥1,E0s] [Eas 1, Em], [Ena +1,En man]-
Considering the evolution of paramet€r in different iterations, each time the parameter value

falls into a different interval, the MSD mode can roundp to the interval’s upper boundary,
and assign the result as the (quantized) actor dBegause all actors depend on the same
parameter, such a quantization leads to just 5 scenadb$y 125, as in the previous example.
This example might be a bit idealistic, but what can be expécteractice more often is that the
parameters of different actors are statistically comelaivhich also helps to reduce the number
of scenarios.

To give a practical example, the number of AC sympelsMCU — denoted,. — to a large
extent determines the execution delay of the VLD actahenJPEG application considered in
Chapter 3 (see Figures 3.9 and 3.3). At the same tfipecan also have a considerable impact
on the execution delays of the IDCT actors for a certapléamentation of the IDCT algorithm
in the actor body. In that case, the execution deddyéL.D and IDCT are correlated, which is
favorable for making the number of scenarios as sasgbossible.

5.3.4 Using the Actor Parameters to Define the MSBrode Scenarios

The scenario subspace approach defines the MSD naseel lon the actor parametefs, In

this way the resulting model is applicable to a wide ramighardware architectures and can
exploit the mutual correlation between the delays of diffeaetors.
In the scenario subspace approach, we quantize thepactmetersé,,, and, consequently,

the actor delays are also quantized, indirectly. Througlgul@tization levels of parameters the
scenarios are defined. Not all the actor parametersnaodved in the scenario definition, but
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only a subset of them. These parameters are caliedary parameters Those are, by
preference, parameters that have a considerable tropalce execution delays of several actors.

Before providing more in-depth definitions and exptara of the scenario subspace
approach, let us give an example. For the JPEG applicatiample mentioned in the previous
subsection, let us choogg. as the primary parameter. The range of possible values,. is
0..384. We can split that range into five sub-ranges, [, 6], [7, 24], [25, 48], [49, 96],
[97, 384], thus defining five scenarios, for this aggion 6= 0, 1, 2...). According to this
definition, the scenario of the application in every iteratiari the loop of interest is determined
by the sub-range in which parametgy. is located in that iteration.

The fact that the scenarios are defined in terms ofjtlaatization levels of actor parameters
makes the loop-level parameters, iJ.Ls, and K, independent of the hardware architecture.

Consequently, to compute the run-time values ofli,&.s and K, for the given execution run,
one can first instrument the application source code wighaittor parameter counters (as
explained in Chapter 3) and then perform the executiororua high-performance workstation,
this way getting the trace of all actor parameter valuélahrun. From that trace, one can find
the execution rangds of different scenarios and can calculate the valuds bf, andKg,. For

example, for the JPEG application, one can comjuter the given JPEG image as the number
of MCU blocks of that image for which,. lies in interval [7, 24] (as defined in our MSD mode
example given above).

In case there are multiple primary parameters, theasicsnare defined in terms of their
combination. For convenience, we put the primary parasietera vector,&qz,. The

multidimensional space of possible value<gf,, is split into subspaces, corresponding one-to-
one to scenarios.

Example (Scenario subspaces)Suppose there are two primary parameteis] [EYa])

&, 0[08]. We haveé..,, =(¢,.¢,)". Below we give an example of a possible division into
subspaces:

s=0if (0,0)" <&pr < @37,
s=1if 0,4 <&ppm < .97,
s=2if (2,07 <&pru < (28)7 ¢
Given the scenario definition in terms of subspacesafgriteratiom of the loop of interest
we can identify the scenar®to which it belongs. This is done by extracting the elémeh
Erriv 1IN iterationn from the trace of actor parameter values and therifgieig the subspace to
which the obtained,, belongs. Recall from Chapter 3 that the extraction ofr gEacameter

values can be done offline, when the input stream fraeaeldrs are being prepared for the
application. Therefore, any necessary information abowtdéearios, includings and K, can

be prepared offline and stored in the frame headers.

Let us answer the question why we define the scenaritsgms of subspaces and how that
helps us to keep the error of the MSD mode limited. NMIs® mode accuracy is limited because
it assumes that the actor delays are constant in everyrigcenierefore, to keep the error
limited, one has to define the scenarios such that tioe @elay variation within each scenario is
limited. The scenario subspace approach achieves thigibyg to keep the variation of all actor
parameters limited within each scenario. It is obvithag, in every scenario, the variation of all
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the primary parameters is limited because, by definitioa,primary parameters stay within the
scenario subspace. If the subspace is small enoughrrtdrecaused by variation of the primary
parameters is also small enough. To ensure small Bnsulgspaces, one has to make their
number large enough. Therefore, there is certadetddf between the number of scenarios and
the error of the MSD mode.

As for all the other actor parameters, which we satfondary parameter®ne can ensure
that also their contribution to the total error is limitedusing a proper way for classification of
the actor parameters as primary and secondary.

One has the most control over the quantization erroage all the parameters are classified
as primary parameters. However, the number of scengraws exponentially in the number of
primary parameters, and in practice one can expect thett pacameters should be classified as
secondary ones.

We can propose two rules of thumb for identificatios@fondary parameters.

Firstly, a parameter can be classified as secondary doitsribution to the actor delays is
comparatively small. Theontributionof an actor parameter to the delay of an actor atitfeng
target multiprocessor platform can be defined as the p&sameefficient multiplied by the
difference between the maximum and minimum parameteevé for every actor and every
representative target platform holds that the contributfathe given parameter is considerably
smaller than the contribution of some other parametees) the given parameter is a good
secondary parameter candidate. Such a parameter icgndomly a small contribution to the
quantization error.

Secondly, a parameter is a good secondary parameididate if it is statistically dependent
on one or a few primary parameters. In that case, limiliagzariation of the primary parameters
within a subspace leads to the phenomenon where then@@radependent on the primary
parameters stays with high probability within a certain lichitgerval. A typical example is the
number of bits used to encode the MCU block of a JRE&ge — denoted,, see Figure 3.3 —
which depends on the number of AC symbols per MC@KIg,. as sketched in the following

way. Almost all bits used to encode an MCU block of a@RmBage are dedicated to AC
symbols. For the JPEG images of a certain quality levelcanegive a narrow interval for the
most typical number of bits per AC symbol, e.g. from 42obits. Therefore, for most MCU
blocks with ¢,. lying in subinterval [25, 48], we can be sure tigt stays within interval
[4125,12[48] = [100, 576] with high probability.

We know two alternative methods to define the scenanasjely, a manual one and an
automatic one. The manual one first finds the primary patens (possibly, using the above
rules of thumb) and then splits the range of possiblesgadli each primary parameter into large
enough number of sub-ranges such that the distaneeedretthe quantization levels is small
enough and the required accuracy of the MSD modétared. An example of an automated
method is considered in the next subsection.

5.3.5 Applying an Automatic Scenario IdentificationTechnique

The automated scenario identification technique propose8. B Gheorghiteet al in [28]
consists of three major steps:

1. Identification of actor-level control variables.
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2. Scenario selection.
3. Scenario analysis.

The first step identifies the control variables of thioasource code that can have an impact
on the actor execution time. The actor-level control e are similar to our actor-level
parameters, but they do not necessarily contribute t@cke execution time linearly. In our
flow, we prefer actor-level parameters over actorilegentrol variables, because any
combination of parameter values can be translated into picicessing times using linear actor-
level parameter functions (see Section 3.2), wheregspg@form table lookup from the control
variables to the processing times and it may happen thre# sombinations are not available in
the table. Therefore, in our flow, we replace this stepbwtification of actor-level parameters,
i.e. actor-level identification, explained in Section 3.2.

Step 2, the scenario selection, is profiling-driven. Theegfib requires a training stream, i.e.
a representative input stream of application data usgdrterate the results. It also requires the
corresponding trace of actor processing times, measisied) profiling tools. Because their
work assumes single-actor applications, during the siceselection, we assume a single actor,
whose processing time is the sum of the processing tohedl actors. Based on the actor
processing time trace, the scenario selection step definéiple MSD modeandidatedor the
loop execution run that processes the training streasrylandidate is identified by a given set
of quantization levels and the corresponding set of i@ intervals generated for the training
stream. The scenario selection step produces MSD mauidates with various numbers of
quantization levels, trying to exploit the accuracy-ovedh#étade-off. When generating a
candidate with a given number of scenarios, it tries itmize the quantization error and the
number of scenario transitions.

An important task of Step 3, the scenario analysis, is toyimik every MSD mode
candidate, the primary parameters and subspaces ddrgrparameter values. As proposed and
automated in [28], the basic goal is to detect a setiwfapy parameters and the corresponding
subspaces of primary parameter vedgy,, such that the cardinality of this vector is minimized
and the value of this vector goes from one subspacedther at every boundary between two
execution intervals in the given MSD mode candidate.aAeesult, for every MSD mode
candidate, this scenario identification technique maps whatgation levels into subspaces of
the primary parameter values. Every subspace becordefinition of a scenario. Effectively,
this step translates every MSD mode candidates into argzerficandidate.

As explained in [28], another important task of Step 3denario set evaluationFor
evaluation, one needs to measure the impact of ditfegamario set candidates on the run-time
optimization goal, such as quality/resource budgets/enendpatever is intended for this
application. In a multiprocessor-oriented implementatiojedtary like ours, for evaluation, it is
recommended to run the design flow for several reptatee instances of the application-
domain specific platforms. In the end of every run ld design flow, for the given intra-
application mapping, one can run a simulation of the rue-@aptation manager, evaluating
the gain in the optimization goal for every candidate setefiaios. One has to weigh this gain
against the overhead in terms of the processor cidks consumed by the run-time adaptation
manager and the number of bits required to encodpat@neters in the frame headers.

In the end of this subsection, we can conclude thatdhsidered automation technique fits
well into our implementation trajectory, with some minor nfigdtions. In this context, the last
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important thing to mention is the fact that, unlike [28k do not assume static (conservative)
quantization levels for each scenario. As mentioned befod explained in the next subsection,
to ensure good accuracy and guaranteed performaveesalculate the quantization levels
dynamically, for every execution run of the loop of iett. We do this based on the run-time a-
priori actor-level parameter values calculated (and encadede frame headers) offline for
every scenario subspace, as explained in the neséstitn.

5.3.6 Scenario Subspaces and Run-time Execution TénfPrediction

Having explained the foundations of the scenario subspgpmach, in this subsection, we
define the MSD mode based on scenario subspaces: #ite we can explain how our
performance analysis method uses the scenarios ttpttesl loop execution times at run time.

Definition (A subspace-based MSD mode¥ an MSD mode where the scenarios are defined as
subspaces of the actor-level parameter values. The M&I2 is defined by:
1. the set of scenario subspaces;
2. given an execution run of the loop of interest, théhotketo determine to which scenario each
iterationn belongs;
3. given an execution run, the method to calculate thatmation levels of the actor delays.
Below we define these three notions one-by-one.

Definition (Scenario subspaces) et & prq denote the vector of primary parameters. The
subspacef scenarics can be specified by a predicate (i.e., a Boolean fomcti(&priv), Which
defines a subspace in the space of possible valuesctdréprim — Namely the subspace where
predicaterg evaluates to true.

For the predicates of the scenario set should hold:
a. s#t = rm&U0m=0, meaning that different subspaces do not qverla
b./mUO7mU07m0.. = hossile Wherergossineis the predicate specifying all possible values of

the primary parameters; this way the subspaces coeecdmplete space of values of
EPRIM-

For instance, in the scenario subspace example giviée jprevious subsection, the predicate
for s= 0 can be expressed as follows:

76 (Epriv) = (0,0)7 <&prm < (& 3"
Definition (The method to determine to which scendo iteration n belongs) Let & prim(n)
give the values of the primary actor parameters intitera of the given execution run. Due to
properties A and B in the definition of the scenario sabsp, there should be exactly one
predicaterz taking Boolean value 1, which identifies scenario which iteratiom belongs+
Definition (The method to calculate the quantizatio levels of actor delay9 The purpose of
this method is to give a quantization level of the delaywdry actorn in each scenaris,
denotedas(vk). To make the quantization levels conservative, for gmrameteré,, in each

scenarios we use the maximum value of that parameter encounteitih all iterations
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belonging to scenaris. We call that value theharacteristic parameter valuand denote it as

Ew, S

&, .= max €(n) |n=0.N-1, 7&Erm(N) = 1) (5.10)
Given the characteristic parameter values, we can ctdctie characteristic value of the
processing time of every actor, using the actor patarunction (see Section 3.2):

fs(vk) =Co +Cy, R;ls +Cy, DfZ,s +.+C g R;Q,s (5.11)

Finally, using the computation delay relation, we obtaingtmentization level of the actor delay
(see Section 3.1):

d. (V) = Romslfo ) i) (5.12)

This definition completes the formal definition of the multitsmeo timing mode of the
HSDF graph. We finish this subsection by summarizingé¢peesentation of the MSD mode in
the implementation trajectory for streaming applications adojpigtlis thesis. It consists of
three parts:

a. when designing the application, the application designer fadenthe loop-level scenarios
during the Application Preparation part of our implementatiajectory;

b. the application generating the input data stream (e.g. theo\@ncoder) fills the frame
headers with the loop-level parameter values — i.e. theaso of the first intervals(1),
the loop-level parameteds and K, (recall from Section 5.2.5 that can be derived from

K, ands(1)) — and characteristic actor parameter valuég 5 once per every frame;

c. at run time of the user application, the quality adaptatiamager decodek, K,, and

¢, s, and applies Equalities (5.11) and (5.12) to find thangjzation levels; finally, the

manager executes the algorithmic rule for dynamic-delajyais (see Section 5.2.5). Note
that the quantization levels cannot be pre-encoded ifniahne headers, because that would
make the input data stream dependent on the target harglaform and mapping.

Hereby, the major goal of performance analysis iseaeld — i.e. accurate prediction of the
important performance metrics for timely adaptation of quelitgrgy consumption/resource
budgets. In the next chapter we apply our performamadysis method in an application case
study.

5.4 Summary and Notes

This chapter introduces a performance analysis framelgading to an algorithmic rule for
predicting the data-dependent execution time of an applicdtased on run-time workload
characteristics given in the application headers. Iniitle the goals of this thesis, the estimates
provided by our framework are guaranteed, i.e. coas®e/and giving good expectations on the
achieved accuracy. Our framework is based on theratieg of contributions of multiple
execution intervals that are parts of the total exenutun. The contribution of intervals is
estimated in a conservative way, based on the techmicpposed in Chapter 4. The key idea of
this chapter is theninimum overlap analysiechnique. This technique does not follow a naive
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method of integration of contributions by a plain additimstead, it takes into account that, in
an HSDF graph, different relevant events of the givercwgi@n interval occur at different times.
This leads to tighter combination of contributions duringgnation than a plain addition could
give, which suggests a good accuracy improvementr special cases, indicated in the
description of this technique (i.e. multiple sinks in an HSJp&ph), this technique may require
some refinement in future work, to make the combinawbncontributions tighter. In our

implementation trajectory, the minimum overlap analysis camid to the loop-level

characterization, i.e. the run-time calculation of cosdfits of the loop-level parameter function.

Our framework requires only a limited a-priori informati@verhead in the application
header, because we define the execution intervals irs tefra set of so-called scenarios. Each
scenario is specified by a conservative assignment a@fctor delay level to every actor. The
overhead of our analysis framework depends on thebeu of scenarios, because for every
scenario our approach needs to know the values of cedeaameters and also for every scenario
transition it needs to know the number for transitions beivike given pair of scenarios. The
number of scenarios can be kept small using our scesidbgpace approach, described in
Section 5.3.

Our first publication on static-delay analysis and integna of execution intervals for
multiprocessor streaming applications is [77]. In [76B][ [79] we introduced the minimum
overlap technique and worked out the static-delay aisabf execution intervals in more detail.

As we mentioned in Section 1.5.1, among the related,vioe only closely comparable work
is the work of Zhe Mat al [55], [56]. In [55], they introduce an analogue of #SD mode for
a streaming application case study. Although the focubaifwork is run-time adaptation for
minimization of energy consumption, they also implicitly aosluce an accompanying run-time
performance analysis technique that has much in committnours. However, because their
static-delay analysis only supports limited-length executions, their execution intervals
include a constant number of loop iterations. Our analiettinique exploits steady-state
analysis of HSDF graphs, which allows it to be more flexiblecause it can extend every
interval until it encounters a scenario transition. This allowstauminimize the number of
execution intervals, which helps to reduce the posgil@eliction error introduced at interval
boundaries. Note also that [55] does not take into wadcthe timing overlap between the
execution intervals, which makes their technique inefficignen significant timing overlap is
present. Later on, in [56], they proposed ‘interlegviof different static schedules being
combined together on the same multiprocessor resoutneshat paper, they exploit —
independently — a similar idea as we do, namely, the shitiiegtatic schedules until the best
timing overlap is reached. However, their timing overlealculation does not support
dependencies between the schedules being combined twgetheto support streaming
application, it requires extensions.

In the next chapter, we support our claims on goodracy, low overhead and usefulness for
run-time adaptation by doing an application case study.









6 The Practical Use of Performance Analysis

In Chapter 1, we indicated that the practical use of etfiopnance analysis framework is to
provide optimization guidelines in two major areas:

a. mapping streaming applications to a multiprocessor platfor

b. dynamic adaptation of the application and implementatioanpeters to the application

workload.

Providing the performance analysis guidelines for nmapp point ‘a’ above — is described
and illustrated in Chapter 3, using a JPEG image decaslem application example. In this
chapter, we do a case-study supporting point ‘b’, aaduse an MPEG-4 decoding application
for that. Hereby, we show how the techniques describdthapters 3, 4 and 5 together can be
used in a practical quality adaptation framework.

In this case study, we investigate the costs and bertéfits the performance analysis
ultimately yields for the end user. For this purpose, westtacted a multiprocessor simulation
environment, modeling the hardware timing at the proecaasstruction level. This allows us to
evaluate the most important aspects without realization inretiiehardware and with reasonable
accuracy.

This chapter is organized as follows. Section 6.1 descthee case-study application and the
accompanying quality-adaptation manager. We explain Wiy latter needs accurate
performance analysis. Section 6.2 reports on the designgart of the performance analysis,
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involving the framework presented in Chapters 3-5. écti&n 6.3, we present the results of
dynamic execution-time prediction in terms of benefits amerhead. Section 6.4 summarizes
this chapter.

6.1 Application: an MPEG-4 Video Object Shape Decoder
6.1.1 Application Overview

As our application case study, we use the same applicatlample as the one briefly
introduced in Chapter 1, see Figure 1.7. This applicaperforms the shape decoding for an
arbitrary-shape video object, defined in the MPEG-4 stehd42], [12]. According to the
standard, a video presentation may consist of multimleovobjects that can be opened and
closed dynamically by the user or by a remote systerarefdre, in terms of this thesis, one
video object corresponds to one active application. rElseurce requirements per application
can considerably change at run time, because thetsljaa change in size and in shape.
MPEG-4 video objects are thus good representativéiseo$treaming applications with dynamic
workload.

In the MPEG-4 standard, the video frames are refewess video object planegVOPs).
The VOPs are grouped in so-callgaups of picture4GOPs). Every VOP in a GOP except the
first one, needs the previous VOP to be decoded liestause it uses the results of the decoding.
VOPs in different GOPs do not depend on each other.

Figure 6.1 shows the top-level functional diagram of wideo object decoding application.
The application contains a few core subroutines, sh@aovals. Those are GOP Decoder, VOP
Decoder, and QoS Manager. Some of those subroutinesircofunctionality that can be
distributed between a few processors. The application atspaifew peripheral modules such as
Timer, VOP Presenter, the input memory queue andutmibmemory queue, shown as boxes.

The application presents VOPs on the video screen ahstant rate, which is set by the
Timer module. The Timer signals the moments of time wihenpresentation of each video
frame should start. These equidistant time moments at \inécframes should be ready are the
deadlineghat should be met by the application. In our case stathging some deadlines is still
acceptable (although discouraged). Thus this applicatiora#t aeal-time(SRT) application.

As it is illustrated in Figure 1.7 in Chapter 1, each VIOR variable-size two-dimensional
array ofmacroblock§MBs). The macroblocks are 16x16 pixels each. For simpliwe assume
that every VOP in the output queue takes a fixed podiomemory, equal to the size of the
largest possible macroblock array for a VOP.
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Figure 6.1 MPEG-4 video object shape decoding application

As also illustrated in Figure 6.1, each VOP in the outpudue has a tag that indicates the
deadline of that VOP. The VOPs with earlier deadlinesiaréont in the queue. At each
deadline, the VOP Presenter looks in the queue forirgteMOP in the queue whose deadline is
not later than the current deadline. That VOP is seleagdtie next one to be presented. Ideally,
that would be the VOP whose deadline tag coincides witleuhent deadline, but it is possible
that that VOP was not decoded on time, and a later VO&ested. The selected VOP of choice
is kept in the queue at least until the next deadline. AI\WOPs in front of that VOP are
removed from the queue as they are no longer needed.

As illustrated in Figure 6.1, the whole application carséen as a nested loop. The top-level
loop is the GOP-decoding loop, containing the VOP-decoldiog, which, in turn, contains the
MB-decoding loop. The latter produces one MB per itenatibthe output, and it is expected to
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have produced all the MBs of the current VOP by thedtiee. Therefore, we identify the MB-
decoding loop as the loop of interest, which means tleatlivectly analyze the performance of
that loop at run time to see if the loop can meet its dezddlin

Recall that our performance analysis techniques oparater the assumption that the input
data of the loop of interest is always provided on timeur case study, this requirement means
that the input queue should be filled fast enough shiahthe loop of interest always finds the
required input data when it is needed. This requiremseeilistic because the input video data is
coded (compressed) and therefore it involves much Idsshipf and on-chip communication
traffic than the decoded (uncompressed) video stredhe autput.

A similar requirement holds for the output queue. The renment should consume the
output data of the loop of interest fast enough so thabtealways has the space to store the
output data. This requirement is satisfied automaticakbgabse, as explained later, the VOP
Decoder subroutine starts the MB-decoding loop only vithere is space enough for the whole
VOP.

Our case study covers only part of the VOP decodingepiige defined in the MPEG-4
standard. Each VOP consists of three color planesridagy the VOP texturé (the colored
image) and one plane with the VOshape (defining the contour of the image). All four planes
require that the input bitstream be parsed, but the texilaees also require some extra
processing (such as inverse guantization, inverse thscasine transform, etc). Parsing the
input bitstream and producing the shape plane can be iddependently from the texture
processing. Therefore, as also illustrated in Figurewel,put the texture processing into a
separate application and focus only on the bitstreasingaand shape decoding. We assume that
the texture decoding runs in the background fast eneaghat it does not influence the timing
of our case-study application. This requirement is réalisecause the texture-processing is
characterized by better-predictable performance andbeaimplemented efficiently on high-
performance domain-specific processors or hardyedr¢20].

Now let us consider the subroutine calledS Managerlt is the part of application that is
responsible for treating the situation when the computatimoakload grows dynamically to
such a high magnitude that not all the deadlines can ke Aseshown in Figure 6.1, QoS
Manager is called once per GOP with a request to gemnardecision. The Manager decides how
many VOPs of the current GOP are to be skipped disckoof computational resources. (Those
have to be the last VOPs in the GOP because of the deaendency of every VOP on the
previous VOP.) The algorithm used by the Manager israghmple, but it relies on a complex
performance analysis technique to predict the decodimestof the VOPs contained in the GOP.

Because the QoS Manager is the part where we applyuodime performance analysis
techniques, in the next two subsections, we describe thagddam more detail.

6.1.2 QoS Manager

The role of the QoS Manager subroutine can be claeds#is ‘local quality adaptation
manager’ as we define it in Chapter 1 (see Figure WW#)call the QoS Manager local because it
controls only one application. Recall that the role ofligquadaptation in general is to treat the
computational overload by scaling down some computationalplesity parameters of the
application such that the processor workload decre&=all that we refer to the application
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(being an instance of the quality optimization framewedee Figure 1.8(b) )

complexity parameters that can be scaled by the Managactias parameterswhereas the
parameters that cannot be scaled are callegabsivgparameters

Unfortunately, Macroblock Decoder subroutine has onbsp@& parameters. Although some
of those parameters are active in a broader corttexy, cannot be scaled by a local manager;
only the video encoder (i.e., the remote application thadycres the input data stream for this
application) can scale those parameters [12].

Therefore, our QoS Manager works at a higher level®idbp nesting, namely, at the level
of GOPs, where there is one active parameter — the nuphB&DPs to be skipped. Under the
resource overload conditions, our manager decideskip some VOPs in the GOP, thus
accepting some unavoidable loss in the quality of the vidatent presented to the user.

Figure 6.2 shows the basics of the Manager’'s implementai®nve illustrate in the figure,
the QoS Manager subroutine can be expanded into tmustines: the VOP Decoding-Time
Estimator and the VOP Skipping Controller. Those two autines correspond to two blocks in
Figure 1.8(b) in Chapter 1. The Decoding-Time Estimaots here as the ‘performance
analyzer and the Skipping Controller acts as the ‘optiti@maunit’ for optimizing the visual
guality. The Controller sets the number of VOPs to be skipNskipren trying to make it as
small as possible. The QoS Manager communichkgsrep back to the requestor as the
‘decision’ taken by the Manager. Note that, in our appiin case study, every VOP in GOP,
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except the first one, depends on the previous VOP hatkfore, it is thdast Nskppep VOPS in
a GOP that get skipped.

The Estimator provides the Controller with the execution &sténates for every VOP in the
current GOP. Using our notation for the execution time,derote the result of estimation as

AN [jvor], wherejvop = 1... Nyop is the VOP index anblyop is the number of VOPs in the GOP.

To obtain the estimates, the Estimator uses the algorithifécfou dynamic-delay analysis
introduced in Chapter 5.

The required input information for the dynamic-delay gsialis encoded in the VOP headers.
Recall from Section 5.3.6 that the inputs are the firshade identifier, s(1), loop-level
parameters Js, Ksi— and characteristic values of actor-level parameté’rgs.—

In this case study, the only part of the application whinsiag behavior is taken into account
in our models is the loop of interest. Thus we ignoee dblays of subroutines GOP Decoder,
VOP Decoder and QoS Manager. This can be justifiethbyfact that the delays of GOP/VOP
Decoder subroutines, which are responsible only fethmader parsing, are significantly smaller
than the VOP decoding times. As for the overhead ofdb8 Manager itself, it consists of the
Estimator overhead and the Controller overhead. Laterisnctiapter we see that, in this case
study, the most complex estimation work can be dondeatgn time, so that the run-time
overhead to caIcuIaﬁaN is negligible. If necessary, it is relatively straightfordvaéo take into

account the worst-case delay introduced by these stg®utines.

The Skipping Controller is also fast enough to be négtedecause it uses an algorithm
which is much less complex and computation-intensive tthen Estimator. The Skipping
Controller is the direct user of tk\éN[jvop] estimates generated by our run-time performance

analysis framework. We use it in this chapter to evaluaeirtipact of performance analysis
accuracy on the video quality. Therefore, in the nexsaction we focus on the Controller. As
for the Estimator, we describe it in Section 6.3, aftethave introduced the necessary details on
the design flow for this application in Section 6.2.

6.1.3 The Frame-skipping Algorithm

The skipping algorithm is illustrated in Figure 6.3(a). The ¥CGPe shown as indexed
rectangles, where indéX’ is an absolute VOP index, counting the VOPs from théenbégy of
the input video stream. Each GOP covers only a certaigerah indicesK, K+1, K+2,...,

K +jvop, ..., K+ Nyop— 1. The horizontal dimension of each rectangle showthénfigure
corresponds to the time span of VOP decoding, fromt#rérsgy time to the completion time.

The figure illustrates the generic structure of a GO first VOP in a GOP is called I-VOP,
the rest are called P-VOPs. (MPEG-4 coding also knawsalled B-VOPs, but we do not
support them is this case study.) An I-VOP is decddddpendently of the previous VOPs. On
the contrary, the decoding of a P-VOP depends onptheious VOP. Consequently, if the
Manager decides to skip a VOP, it has to skip all\Ml# s that come later in the same GOP.
Thus, as already mentioned, parameélekrpep Specifies thdast Nsgippep VOPS in the GOP
which are to be skipped.

The Skipping Controller estimates the VOP completion timewder to check them against
the grid of equidistantly placed deadlines to predictciWAfOPs will miss their deadlines. The
completion time estimates are calculated by adafi@,q jvor] to the estimated starting times —
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Figure 6.3 Skipping management for an example GOP with 5 VOPs

see Figure 6.3(a). Typically, the starting time of V@R is equal to the completion time of
VOP ‘jvop — 1’, but this rule has an exception due to a limited capadithe output queue, as
explained later.

In Figure 6.3(a), the grid of deadlines is shown usiragks on the time axis. We see that
VOPs K+1 andK+4 miss their deadlines, because their completion timesatge than the
deadlines.

Let us explain how the Skipping Controller makes the skigppiecision. At the tail of the
current GOP, the Controller identifies the longest sequeh&#Ps that miss their deadlines.
The Controller assigns this sequence to be skipped.rié e any VOPs in the middle of the
GOP that miss their deadlines, they are kept, so that thes\at follow them and do meet their
deadlines can be kept as well. For example, in Figu@)6.8nlyK + 4 is skipped because it is
in the tail.K + 1 is kept, becaud€ + 2 andK + 3 meet their deadlines.

Now let us come back to the estimation of the VOP istatimes. For the I-VOP (the first
VOP in the GOP,jyop = 1), the starting time is known. It is the current timeported by the
VOP Timer, which measures it directly and reports it toSkiping Controller. At the start of
every GOP, the Timer module reports the current posdtotie time axis with respect to the
deadline grid; for the example in Figure 6.3(a), the Timeuld report that the current time is in
front of the K — 1-th deadline and that the distance to the deadlir® kKnowing the exact
position at the time axis is important for the Skipping Corerdib build a realistic estimate of
which VOPs in the current GOP will meet their deadlines
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For jvor = 2, 3..., the starting times, are estimated recursivelt, for jyop = 2, then for
jvor = 3, etc. The estimated starting times dependgfjvor] and the number of VOPs that can

fit in the output queue — i.e. the output-queue capacity.

Let us first assume that the output queue has an infingactg. In that case, the GOP
Decoder never postpones decoding a VOP due toutheutput queue. Therefore, the starting
time of every P-VOP is equal to the completion time of tlexipus VOP.

In practice, the output-queue capacity is finite. Treeefthe Controller takes into account
the fact that, due to the full output queue, the GOP Dequui#pones starting a new VOP until
at least one place is freed in the queue by the Presdftmire 6.3(b) shows an example.
Suppose that the output queue capacity is 4 VOPs. Thentla# completion of VOK + 3, all
four places are filled, containing VORS K + 1, K + 2, K + 3. Since VOK is needed in the
decoding of VOPK + 1, the Presenter keeps V@Pin the queue until the next deadline,
deadlineK + 1. Only at deadlin& + 1, the Presenter removes V®Hrom the queue, and then
there is place foK + 4, and the decoding for that VOP starts. This isrtak® account by the
Controller when it estimates the starting times.

The Controller depends on the accuracy of[Nm jvor] estimates made by the Estimator. In

the next subsection, we show that accurate execution tiineaéens are very important for the
Controller to produce good results.

6.1.4 The Sensitivity of Visual Quality to the Accracy of the Performance Analysis

To evaluate the need for accurate VOP decoding time astimwe simulated our application
with the Skipping Controller enabled and with the Decodiimge Estimator temporarily
replaced by an artificial ‘oracle’ estimator, predictthg decoding times of all VOPs exactly and
adding a random error to them when producing the estingatin the random error generator,
we assumed that the relative prediction error is norndhfliributed, being conservative with a
probability of 95%. This model of prediction error refedhe fact that for soft-real-time
applications, our performance analysis technique can peopredictions that are not 100%-
guaranteed to be conservative. Allowing the results todoasionally non-conservative saves
analysis effort and contributes to better accuracy.

Note that the interval between the deadlines was choseh esmoaigh to create significant
computational overload, such that one could not avoid dngpgi least 20% of the VOPs. The
output queue capacity was set to three VOPs (the miniragmired for a smooth performance).

Figure 6.4 shows the dependency of the quality (as tleepege of VOPs presented to the
user) on the average VOP-decoding-time estimation.eflos dependency is obtained for one
of the sample video streams from our case study. It ditestrthat prediction errors may lead to
an unacceptable drop in quality, the reason for that ktbmigthe higher the overestimation the
more VOPs are skipped by the Skipping Controller.

In the next section, we apply our performance analysintques to this case study with the
purpose to achieve a small enough prediction error, ardlose to 100% guarantee of
conservative prediction results.
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Figure 6.4 The sensitivity of quality to the VOP decoding time estiomadéirror

6.2 Design-time Performance Analysis of the MPEG-4 Decoder
6.2.1 Overview and Recapitulation

In this section, we take the MPEG-4 shape decoder afiplicthrough the design flow
introduced in Chapter 2. We focus on the performanaé/sis aspects of the design flow.

Let us give a detailed overview of this section. In thgiro@ng, we specify two starting
points for the design flow: the description of the targsteay-on-chip platform (Section 6.2.2)
and the HSDF grap& with mapping constraints (Section 6.2.3). Recall that thplgnodes are
computation subroutines — actors. The mapping of g&aph the target platform is expressed in
terms of the implementation process netwd), which encloses the actors and the edges of
graphG into the processes and the channels, mapped to thespors and the communication
network.

Sections 6.2.4 and 6.2.5 describe Partl of our desigw, namely the Application
Preparation. This part identifies the application’s conmiptgrarameters, which are key aspects
for dealing with the data-dependency in our performamcalysis method. Recall that the
parameters are defined at two granularity levels: the d&tet (the finer granularity) and the
loop level (the coarser granularity).

The front-end of the Application Preparation is the ansilgé the application timing at the
actor level. Section 6.2.4 reports on the actor-level arsafpr our case study, based on the
methodology described in Sections 3.2 and 3.3. Fogitren application, we identify the actor-
level parameters — denotef,. The linear combination of actor-level parameters emustant

hardware-dependent coefficients models #iogor processing times.e. the processor cycle
counts of actor executions. The actor processing timeesharmain ingredients of thietailed
dynamic timing modewhich is our highest-accuracy actor timing model.tTiadel assumes
that for every loop iteratiom the values of all actor-level parameters, (n) — are known
exactly, so that the processing times can be accuratadylated for each iteration of every
actor.
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In Section 6.2.5, we transform the detailed timing mode &fess thorough actor timing
model, reducing the performance analysis overhead ab#ieof giving up some accuracy. This
timing model is referred to as thaulti-scenario delay (MSD) mod&he main idea of this mode
is to reduce the amount of information in the actor timiragieh by applying quantization to it.
Recall that the core of the MSD mode is a sedceinarios each scenario defining a quantization
level for the actor processing times and for all actwel parameters. Unlike the detailed mode,
the MSD mode requires only one set of actor-level patemvalues per scenarso- fw’S - and

not per loop iteratiom.

The MSD mode brings us closer to our goal, which is &bknthe run-time estimation of the
execution times. Recall that our performance analysthadeestimates the execution times as a
linear combination of loop-level parameters and loop-le@adfficients, where the loop-level
parameters count the frequency of different scenap@astneterss) and the transitions between
them (parameterks . As for the loop-level coefficients, they are determiladr in the design
flow.

The main result of the Application Preparation, is thus tHimitien of the actor and loop-
level parameters to be encoded in the VOP heaé’gyrss:\]s, Kst — see Figure 6.2.

Section 6.2.6 is refers to the first and major step of IPaf our design flow, i.e., the intra-
application mapping flow. Intra-application mapping is a ptax problem solved in multiple
mapping steps (see Figure 3.7). In our case study,taldbe mapping constraints, only the
processing and communication budget assignment stepsfato be done, which is the topic of
Section 6.2.6.

Section 6.2.7 considers the second step of Parténfioned in the flow overview in
Section 2.3.4). This step is optional and it is dedicaidahtling the analytical formulas for the
loop-level coefficients, to reduce the overhead of thedding Time Estimator.

After this step, the VOP Decoding Time Estimator is weellipped for the run-time
estimation of the VOP decoding times (see Figure 6.8¢. fEsults of the VOP decoding time
estimation are postponed until Section 6.3.

6.2.2 Target Platform

In this subsection we describe not only the target platfbuhalso the environment we used
to simulate it.

For this case study, the MPEG-4 application was writtentf &d then compiled and tested
for the ARM7TDMI processor architecture, which is a Rl€ore. To simulate the application,
we used the C++ programming environment and the ARMukitoulator provided by ARM
Ltd [3], modeling the system timing at the level of prooegsstructions.
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Figure 6.5 Target platform

(the number of PEs and MCs, and the topology apsexharbitrarily)
(every dynamically created application instance&pped to one PE and one MC)

We extended the ARMulator single-processor simulation renment to handle the
multiprocessor case. Our environment can run several A&bts in parallel together with a
simulation model of the AHEREAL on-chip network for the communication between thems. W
simulate the network as a set of abstract channels, atbarad by fixed bandwidth, latency,
input buffer capacity and output buffer capacity.

In this case study, we assume a multiprocessor consadtmdpx5 matrix of processing tiles,
as shown in Figure 6.5. Each processing tile is an ARDMI core running at 100MHz with a
certain amount of local memory, enough to accommodatms$ireiction code and the local data
of several computation actors. As explained below andtiited in Figure 6.5, the tile
processors may play one of the two possible functiomsstheir local memory architectures
differ respectively. Each processing tile is connected lmcal network router. All the routers
together make a 5x5 grid topology. Note, that in our imletation, every active MPEG-4
shape decoding application takes only two processing tileef®5; multiple such applications
can be running on different tiles of the platform if nql&ivideo objects are active in the video
presentation. Which two tiles are assigned to which agpic is decided by the run-time
mapping manager, which is outside the scope of this thesis

Some processors must have direct and fast access tgeant@emory storage. We call such
processorsnemory controllersNot every processor can afford to have a large lowhory
resource, and therefore the memory stores and redrigloeks of data on behalf of the other
processors. The other processors, capeacessing enginesuse comparatively small local
memories and run compute-intensive parts of the applicatith a highly localized range of
memory accesses (delegating the wide-range accessesteemory controllers). Typically, the
hardware architecture of a memory controller would bmoped for efficient transfers of data
blocks, handling multiple data transfers in parallel andopeiihg memory address calculations
efficiently. Also, typically a processing engine would be application-domain specific
processor, optimized for the given application domainweéier, due to limitations in our
experimental setup, we use the general-purpose ARM7 Tddbhiitecture for both the processing
engines as well as the memory controllers.
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Table 6.1Network constants used in this chapter

Notation Meaning Value
T TDMA period of the network routers 19&
Bk £ Link bandwidth in one direction 8- ‘ibyte/s
Arourer & Latency per router 0.73s
Z i Network data size granularity 6 bytes
Brin-& Network bandwidth granularity 31.25 -*tytels

Note that the described multiprocessor falls into the gerntengplate we described in
Section 3.4, and is similar to the multiprocessor netveorchip architectures described by
other researchers, e.g. by Sander Setijilin [88].

In Section 3.4, we referenced a sample set of realitex, feasible for modern
microelectronics technology) characteristics of theHAREAL on-chip network. In our case
study, we assume a network that is functionally the santerunning at 100 times lower clock
frequency, i.e., not 400MHz, but only 4 MHz. Therefaseme technological constants we use
for the AAHEREAL network (see Section 3.4) need to be scaled by a fattth0. Some of the
scaled values are given in Table 6.1.

Later on, in Section 6.2.6, we use this table to caleula¢ communication delays of our
case-study application. The purpose of scaling is t&enthe communication delays large
enough compared to the computation delays of the ARDMMI@100MHz architecture;
otherwise, the communication would be too much underutiliZddte also that, unlike
Section 3.4, where we assume ARM processor clockiémey of 133MHz, in the examples of
this chapter we assume a frequency of 100 MHz.

To program the multiprocessor using our methodologg, meeds the means to express the
processes and channels of the application, as well aptess the resource binding and resource
budgets of the processes and channels. For this purpeseed the YAPI C++ parallel-process
simulation library, which gives the basic infrastructure toresp the processes and channels
[45]. We extended YAPI with the following features:

- running the processes on different instances of fRigldlator;

- modeling the TDMA scheduling of different processes ensiime processor;

- modeling the guaranteed-bandwidtmTHEREAL network channels.

Using this infrastructure, we simulated the implementatimtess network of the MPEG-4
shape decoder application. This process network igideddn the next subsection.

6.2.3 IPC Graph and Implementation Process Network

In this subsection, we specify the HSDF gra@h — describing the parallelism and
synchronization inside the application — andithplementation process netwdPk, describing
the mapping constraints. In this case study, the mappingtraints impose a complete binding
of all computation actors to the processes and of &l tlansfers to the channels. Recall that, in
our design flow, every binding decision is reflected iapip G by transformations of the graph
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Figure 6.6 Implementation process network of the MB-decoding loop

structure. Having a complete binding means having tred §imucture of grapks, and we refer
to the final graph structure as the IPC graph (inter-m®o@mmunication graph). In this case
study, the final graph structure is already definethenbeginning of the design flow.

Let us first consider the implementation process netwoik, Recall that it defines a graph-
like structure whose nodes greocessesn setP, joined bychannelsin setQ. In addition,PQ
also specifies the process and channel resource budgetg a data structure calledbadget
descriptor denotedB. Just as for grapks, in this case study, the mapping constraints also
enforce a certain structure on process netw@kand a certain contents on budget descriptor

Recall from Section 3.5.3 that a budget descriptor specibmong others, the following
design decisions: the set of the virtual tiles,{7,, etc.}, the mapping of processes to the virtual
tiles, and the channel capacities (in bytes). For all tlsesengs, we also enforce certain
decisions as mapping constraints. The only settings thaimeto be decided by the mapping
flow are the budgets of the procesB#% (in processor cycles per second), the bandwidth of the
channelBQ (in bytes per second) and the scheduler settings (TPktAS) of the virtual tiles.

Figure 6.6 shows the structure of the process networkh@fMPEG-4 shape decoding
application. We see three processg%um, Pros, aNdpPsrore — Mapped to two virtual tiles #
and 7,. Recall that each virtual tile is characterized by itsessor type and TDMA period,

Each procesg executes a cyclic sequence of actors and is oniyeawfithin a certain TDMA
time slot, proportional to the budg&®R(p;).

The processes are joined by three channejg, 0, andqge,r. Note that each of them is a
network channel because it joins different virtual tiles. Rebat a network channedj is
characterized by the number of initial tokens in the charnelq), a set of data transfers
mapped to the channel, the producer and consumer bedfgacities —Qprod-butte(d) and
Qcons-bufief;), and the reserved network bandwidthBQ(q). The data transfers through the
channel are defined by triplets ‘producer actor, comsunactor, token size’ -
TQ (qJ ) = { (Vprodk !Vconsk ’ Zk) }
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The communication actors are marked with grey color

Figure 6.7 The IPC graph of the VL/S MB decoding loop (the loopntérest)

Let us consider the contents and the meaning ofrileepses and channels, at the same time
also referring to graple, the IPC graph of the MPEG-4 application. Graphreflects the
internal behavior of the processes and channels in thespanding subgraphs, callpdocess
macrosandchannel macrasGraphG is shown in Figure 6.7.

Let us start a detailed description by prooggss. In terms of the MPEG-4 shape decoding
algorithm, the role of this process is to parse theidlids from the input queue of the application
and to decode the shape information, MB by MB. Thia isompute-intensive process whose
range of memory accesses is limited to a relativelylsaddress space. Therefore, this process is
mapped to a virtual tile of type ‘processing engine’ (aot ‘memory controller’).For better
illustration of proces®yuan, We refer to its macro contained in the IPC gr&lm Figure 6.7.
That macro consists of a cyclic pathGncontaining actors;, Vo, Ve, andv;.

In the beginning of the process, act@rini initializes the decoding data structures to start
decoding a new MB. For the MB decoding purposes, tioree an MB from the previous VOP
— a reference MB — is needed. Because the decod&s d€ kept in a large memory module,
managed by a remote memory controller, propgss sends a request to procgss, running
on that controller. To send a request, agtpRegM\, produces a token to chanrg),, thus
acting as a channel producer. Note that in case no megeidB is needed, actes still has to
send a token through the channel, because in the H&iph, the actors communicate tokens at
every iteration. In the case when no reference MB iderkenve assume that actemproduces an
‘empty’ token containing no useful information, but havihg same size as the other tokens
communicated through this channel.

The token comes through the channel to the consumenad . If the token is non-empty, it
contains a motion vector (MV), i.e., the pair of relativorminates of the reference MB. The
corresponding data-transfer tripletTi€. = (V2, V4, Zw), Where the token size &, = 8 bytes
(two 32-bit words specifying horizontal and vertical positjori&,, is the only transfer in

channelgy, i.e., TQ(Qw) ={ TQw }.
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Processo runs on a memory controller tile, which has fast pajsaccess to the large
memory module where the output queue is containege—Fgure 6.6p..., IS represented in
graphG by one actorys, with a self-edge, i.e., an edge joining an actor wghlfit In every
execution, that actor consumes one token from chagpellf the token is non-empty, the
process uses the motion vector coordinates contairtbé tioken to locate the reference MB and
to fetch it from the one-but-last VOP in the output queuess from the previously decoded
VOP, see Figure 6.6. The fetched MB goes into cHagpeas a data token. If the incoming
token is empty, actov, also produces an empty token in changgl Channelgger is also
described by just one data transfer tripl@iQ(Qrer) = {TQwe} TQrer = (Va4, Ve, Zeer) and
Zer = 256 bytes (16x16 pixels of shape data).

After receiving the reference MB (or an empty token)1frgwe, procesuan decodes the
entropy-encoded information contained in the MB. This iagkerformed by actor, ‘DecMB.
Finally, the main process sends the decoded MB throbginnelq.,; back to the memory
controller, to the process callgglor= Channelqg.; is described by one transfer triplet:
TQ(Gour ) ={TQ our}, Where TQour = (V7, Vo, Zour) andz,,r = 256 bytes (16x16 pixels of shape
data).

Proces®s:ore — represented by acteg and a self-edge — picks the output MBs from channel
Jour and copies them to the correspondixgy) position inside the current VOP, see Figure 6.6.

Once all MBs of a VOP are decoded, the MB-decoding fatphes the current execution
and a new VOP is released in the output queue.

So far, we mostly focused on the processes; now letrn®tu attention to the channels. Two
important settings specified for the channels are timeber of initial tokensm (as specified by
the application designer) and buffer capaciti&,(as specified in the mapping constraints). As
we see below, these specifications are reflected ictiaanel macros of grapgh, according to
the methodology described in Section 3.6 (see Figurdsa®d 3.17).

Because every channel has just one data tram§eeach channel macro contains just one
transfer actor, shown in Figure 6.7 in gray color. Faneple, the transfer actor of channgl;
iS Vg, OUT

In addition to the transfer actors, the channel macrosdamrmally contain actors modeling
the network latency. However, for the given applicatiod target platform, the latencies can be
ignored. The reason is that they are much smaller tivartypical processing delay per data
token. It can be shown as follows. Recall that in theHEREAL network, the latency is
proportional to the number of the network routers on theor& path. The longest ‘reasonable’
path in a 5x5 grid topology includes at most 10 netwarlitars (the maximal Manhattan
distance). Based on Table 6.1 and Equality (3.22), égisal to 180.75 us = 7.5us. On the
other hand, according to the profiling performed onmacessor simulator, the minimum time
to copy one token (256 bytes) from chanmgl,; to the background memory using an
ARM7TDMI@100MHz is approximately 100@s. This is much larger than the maximal
latency. Therefore, for simplicity, the network latencyoas are not included into the channel
macros in our example.

As we know from Section 3.6.3, the producer and theswmer buffers of the network
channel are modeled by so-called forward and backedges. For the producer buffers, the
forward edges go from the channel producers to thefgamctors. For the consumer buffers,
they go from the transfer actors to the channel consurfibe backward edges go in the reverse
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direction. For example, the forward edges of charpel are {7, vs) and {s, vg) and the
backward edges ares( V) and s, 7).

The initial tokens of a channel, if any, are located atfthmeard edges of the producer
buffers. In this case study, when the MB-decoding Idapss the channels are initially empty:
m(qg;) = 0. Therefore, the forward edges are also frem fthe initial tokens.

The channel buffer capacitie®, g pufrer (d;  @NA Qeonspurer (d; ) (i-€., the numbers of tokens

that can fit in the producer and consumer queues ofhthanel) are modeled in the IPC graph
using the backward edges. In this case study, all tlangth buffers are so-called simple
channels; they have only one producer and consunherefore (also given the fact that these
channels do not have initial tokens), the following simpile applies: the number of initial
tokens at the backward edge is equal to the buffer tgpelten specified in tokens.

For channels),, andgss, We fix the capacities of the producer and the consumnéers to
one token. For channgh,;, we fix them to two tokens. As we see in Figure 6.7, ¢hisice is
reflected in the number of tokens on the backward edges.

Let us motivate the chosen capacities. Because prpggsSirst waits for a response to each
reference-MB request before it issues another reqnestwo requests can be pending at the
same time. Therefore, channejg, and g.,r only need one token place at the producer and
consumer buffers. For chanrmg),;, the situation is different, because procegsgs andpsrore
can run in parallel to each other and in parallel to tta transfers in channgl,;. To ensure
that this parallelism is possible, both producer and coasibuffers need a place for at least two
tokens. If the buffers could fit only one token eachpwcv; andvs would always execute
sequentially, and actoxg andvg as well.

In this and the previous subsection, we covered tpet ispecification for implementing our
case-study application. Hereby, we pre-constrained aidse mapping decisions. Therefore, in
the following subsections, we can put more emphasith@mperformance analysis aspects than
on the mapping aspects, as intended for this case study.

6.2.4 Detailed Actor Timing

In this subsection, for our case study, we report emthor-level parameter identification
(i.e., defining the parameters as functions of the inpiat) dandactor-level characterizatiofi.e.,
finding the contributions of the actor-level parameters écatttor processing times).

The goal of this section is, for every actor, to abt@itor parameter functions which closely
estimate the real actor processing times. The parafugtetions constitute the detailed timing
mode, which is the most accurate actor delay model immgeling approach. The parameter
functions give the linear relationship between the actocgssing timet (v, n) and the
parameters:

Q
t(vk ' n) = CK,O + ch,w Ew(n) (61)
w=1
where C, , are the actor-level coefficients arfg,(n aje the actor-level parameter values in

loop iterationn. Typically, each actovy is only influenced by a small sub€®t of parameters,
and only the parameters from that subset have noneamfiicients C, ,. Note that, for a

conservative performance analysis, the coefficients talie conservative.
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The goal of the parameter identification is to identify tleameters in subs€y for each
actorvy, ensuring that as few parameters as possible are ingddbut at the same time that the
required level of accuracy is achieved. The paramegstiittation requires analyzing the actor
execution algorithms. One technique for doing the pammielentification is sketched in
Section 3.2.2, using the VLD actor of the JPEG decosl@maexample; however that technique
is not automated. In this case study, we performed ahengeter identification manually, based
on the knowledge of the application algorithm. This resulted grand total of 17 actor-level
parameters. We do not report the details of parametstifidation, but, later in this subsection,
we summarize the ten most influential parameters in a.thlote that we do not mention all of
them in order to not overload the text with too detailedlieg@tion-specific information, but
nevertheless we use all 17 parameters in the perfmenanalysis.

In the rest of this subsection we focus mostly on therdetel characterization, i.e. the
calculation ofCy .. In see Section 3.3, we described two alternative rdstfay that, namely, the
direct measurement and the linear regression.

The linear-regression methodives certain probabilistic guarantees on the accusadythe
conservativity of the processing time estimate. Recall theattmtrol settingd..e< 1 controls
the degree of pessimism in estimating the coefficientd,the closer to 1 this setting is, the
higher the probability that the parameter function tifwe, n) defined in Equality (6.1) gives a
higher estimate than the real processor cycle count. Howae do not wanpc.esto be too
close to 1, because then the accuracy of estimatingrdoegsor cycle count by, n) will
suffer. In many use cases of linear regression, thal gsactical setting used fpgoeris 0.95. We
also use this default setting in our experiments. As weiisgractice, sometimes, for achieving
a better accuracy, it helps to split the actor into a fdwasiuines and to apply linear regression
to them separately. The advantage of the linear-regressethod is that quite often it reduces
the manual effort compared to the other method, edpeitithe number of parameters @ is
three or more (i.e.Q| = 3). See Section 3.3 for more details on the linearessygn method.

The other method, i.e., thdBrect-measurement method closely related to so-called worst-
case execution time (WCET) calculation, giving much griguarantees on the conservativity
of than the linear regression. This is important fodhaal-time applications, especially for the
safety-critical ones. This method is easier to apply if thetrob flow is relatively simple,
especially when the processing can be characterizedsdyHat three parameters (i.e., for actors
where Q,|< 3).

As we see from Figure 6.7, the graph contains six coatippn actors and three transfer
actors. The Application Preparation part of the desigediary (which we are doing now)
focuses only on the computation actors. The transfer sl@l@yconstant and independent of the
parameters; they are calculated later on in the trajectory.

In this case study, we use both the mentioned methodsh&actors withQy|= 3, we use
linear regression. Hereby, we sometimes split an actorarfew subroutines, mostly because
these subroutines have clearly different functionality smmhetimes because this improves the
accuracy of the linear-regression results. For the swtith | < 3, we use direct measurement,
to achieve better guarantees on conservativity.

Because the MPEG-4 decoder is a soft real-time applicatiot a safety-critical one, we do
not need the parameter functions to be strictly conservaistead, we use coefficients that are
conservative with a high probability, and we obtain thempirically from measurements based
on arepresentative streawf input data samples.
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The chosen representative stream consists of the G¥4DBs of the ‘singer’ sample stream
for MPEG-4 shape coding developed in the MoMuSyseuatdj74]. Each VOP in this 30-VOP
substream contains 60 to 96 MBs, leading to a granbtabis91 MBs.

In both methods, we use the same representative ingainstBoth methods use profiling,
i.e., running the application code in the simulator and measadtor processing times.

The accuracy of the actor parameter functions dependshether the representative stream
and the parameter subs@gare chosen correctly. To evaluate this, we use two kihdeetrics:

1) linear regression quality metricser(c), and R%;

2) estimation error metrics: average overestimation, maxionenestimation, probability of
overestimation &.avg-oves E€-max-oves Pove) and the same for underestimatios.afg-under

€t-max-under p undeb-

Let us explain all these metrics before we proceed tartiag them for our case study.

The regression quality metrics are measured for each sghwoutine,g, for which linear
regression is applied. Metrierr(c), estimates the uncertainty in the calculation of the
coefficients; the ideal value for this metric is 0%. Metié, is introduced because the

parameters typically do not capture all the sources ofamyjc variations of subroutine
processing times. This metric gives the best percenfadpe processing time variability that the
parameters still can capture; the ideal value for this mestrd®0%. More details on the linear
regression quality metrics can be found in Section 3.3.

The other metrics are based on déiséimation error g It is defined as follows:

t(vk ’ n) - tprof (Vk ' n)
E( tprof (Vk ' n) )

wheret(v,,n )is the actor parameter function (see Equality (61)), (v,n is the actor cycle

(6.2)

eV, N) =

count measured from the profiling run, am...)’ calculates the average value of the argument
over a range of differem, which is, in our experiments, the range of all MBs in therg
sample input stream.

Based org, our estimation error metrics are defined as shovirabie 6.2.

Unlike the linear-regression metrics, which are measureth@rrepresentative stream, the
estimation-error metrics are measured onsaeple streami.e., an input data stream (longer
than the representative stream) used for the evaluafiche accuracy of our performance
analysis approach. We have two such streams: ‘siagelr*dancer’, from the MoMuSys project
[74]. We use them throughout this case study to evaliteaccuracy and conservativity of
different performance analysis stages. Their basic ctaistics (e.g., total number of VOPS)
are summarized in Table 6.3. Note that the size of dtheptete ‘singer’ stream is much larger
than the size of the sub-stream we used as refereeans{B0 VOPs, 1891 MBs). Therefore,
we consider it fair to use the complete stream to evaltieeaccuracy of the coefficient
calculation done based on such a small sub-stream.

The rest of this subsection is built around the four tablél results. First, Table 6.4
summarizes actor-level parameter identification. It is foldvy Tables 6.5 and 6.6, where the
estimation error is evaluated for two sample streams. FjnBélgle 6.7 explains the parameter
and subroutine names mentioned in this section.
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Table 6.2Estimation error metrics.

Metric Definition Explanation

€t-avg-over "E(a |e > 0) Averagee for overestimation

€.max-over | Max(e |& > 0) | The maximung for overestimation

P over Pr(e>0) The probability of overestimation

€ravg-under | E(—€& | & < 0) Averagee for underestimation

€.max-under | Max(& | & < 0) | The maximum absolute value &ffor underestimation

P under Pr(e<0) The probability of underestimation

E( X|C) is the averagX for the cases where conditi@holds andpr (C) is probability
of conditionC.

Table 6.3Sample input streams.

Name #VOPs N, #MBs per VOP #MBs
‘singer’ 250 45-204 24708
‘dancer’ 250 77-255 32915

Recall that we split some actors into subroutines. T@adlesummarizes the parameter
identification statistics for every subroutine. The firstuomn identifies the actor owning the
subroutine. The second column gives the mnemonic ndrteeubroutine together with the
subroutine’s average processing time and the call coentaptor execution. For example,
‘1 k x 6" means that the average processing time is tyales (of the ARM7TDMI core) and
that the subroutine is called 6 times per actor executionthiittecolumn gives the total number
of parametersCs,y) influencing the given subroutine and the number of pavameters/Q),
i.e., the ones that are not shared with the subroutapested earlier. It also mentions one or two
most influential parameters (whose meaning is explaindalole 6.7). Hereby we measure how
‘influential’ a parameter is as product of the measurethohc range of parameter values and
the parameter coefficient. Note that we do not mentionleke influential parameters not
because we do not use them, but to avoid overloadingeporting with application-specific
information. The fourth column reports which characteéiGramethod was used. The last two
columns report the linear-regression metrics, in tisesahere linear regression was used.

From Table 6.4, we see that for all cases wherdribar regression was used, the parameters
accounted for at least 93% of the processor cycletoa@uriations, and that the uncertainty of the
actor-level coefficients was at most 14%. This indicategasonable accuracy of the actor
processing time estimates.

We also used graphical plots to evaluate the accuracyllyis For example, Figure 6.8,
shows the curves for subroutingextmv’, for one of the VOPs of sample sequence ‘singer’,
from which we see that the detailed timing mode accuratelgels the processing cycle counts,
sometimes underestimating them and sometimes overestintaéng Note that the VOP we
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Table 6.4Parameter identification and actor characterization
Actor Subroutine | Qsung Method err(C), R?q
i Q=0 )
vy Ini n sub direct - -
2kx1
RegM\¥) Qsup=4
Vo ReqMV L : 1 AQ =4 lin-reg 14 % 97 %
X
&ref, € bomv Qsub
Load Qsp=1
V Load 1022 1 AQ=0 direct - -
X
C(ref Dqub
D deCAE QSUb: 2
Ve DecMB(1) 1‘;‘;"; ) AQ=1 lin-reg 1% | 99 %
X
Ctref ,{CAE |]qub
CBP QSUb - 2
Vg DecMB(2) AQ =2 lin-reg 3% ~100%
3kx1
Ctbnd,fempt)Dqub
TextMV QSUb: 3
Ve DecMB(3) 38: ) AQ =3 lin-reg 12% | 99 %
X
CCP, G(vaDqub
VLD QSUb - 9
Vg DecMB(4) ers AQ =9 lin-reg 11 % ~100 %
X C(ne,fbeLD Dqub
EndMB QSUb: 1
Vs DecMB(5) 6”k ) AQ=1 lin-reg 3% | 93%
X Cttex |]qub
Q=0 )
V; WrMB WiMe sub direct - -
98k x 1
Q=0 .
Vg Store store sub direct - -
102 kx1

® _ all acronyms are explzed in Table 6.

have chosen to illustrate the accuracy in Figure 6.8dsen such that we can illustrate possible
extreme deviations observed for this actor, and this VOButside the range of the first

30 VOPs used to calculate the coefficients

The accuracy and the conservativity of the processingstim directly measured by the
estimation error metrics, presented in the next two tabkgsle 6.5 and 6.6, for the two sample
streams. In those tables, we skip actos$Load), vz(WrMB and vy (Store ), because the

estimation error for those actors is negligible and carobsidered zero.
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Table 6.5Detailed-mode estimation error for ‘singer’ stream

Actor €-avg-over | Pover | Etmax-over | -avg-under | Punder | E:max-under
vy Ini 136 % 1.0 158 % - 0.0 -

v,Requv | 4 % 0.87 107 % 10 % 0.13 152 %
vsDecmB | 1 % 0.71 7% 2% 0.29 21 %

Table 6.6Detailed-mode estimation error for ‘dancer’ stream

Actor €-avg-over | Pover | €-max-over | €-avg-under | Punder | Et-max-under
vy Ini 147 % 1.0 165 % - 0.0 -

VoReqgMV | 5 % 0.87 104 % 15 % 0.13 152 %
vsDecmB | 1 % 0.80 6 % 2% 0.20 33 %

ARM7TDMI cycles
3000 ‘ 4

rea
2500 + a

2000 -

1500 -

1000 -

500

! UL

185 190 195 200 205 210 215 220 225 230 235 240

real = measured processor cycle count
model = detailed-mode processing time (i.e. actoameter function)

Figure 6.8 SubroutinerextMV : cycle count curve for a VOP in ‘singer’ stream

In Tables 6.5 and 6.6 we see similar results for thedifferent streams. As expected, the
probability of conservative estimation (i.e. overestimatisnin all cases much larger than the
probability of underestimation. For actor(ini ), we tolerate the huge average error because this
actor has a comparatively small contribution of 2 k cygles actor execution to the total
processor cycle count. For the other actors, allyaedl using linear regression, the average
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errors are reasonably small. We also see that conBldaraderestimation can occur. (Note that
> 100% underestimation means that, for some MBs, the @ltig.(vi, N) — t(vi, n) is larger
than E(tpro(Vis N)).) Nevertheless, the multi-scenario-delay mode (describedhe next
subsection), brings the underestimation down considerabligo, the fact that the
underestimation has a low probability makes it less of a conbecause the final performance
analysis (i.e., VOP decoding time estimation in this cageprates the actor processing times
over multiple iterations, whereby frequent overestimatiorikisly to cancel the occasional
underestimation.

The last table, Table 6.7, explains the meaning of sonyeakéor-level parameters and
subroutines. The purpose of that table is to give amele of what the actor-level parameters
can mean in practice. Note, however, that it is notsszng to understand all the details in this
table.

Table 6.7The meaning of actor-level parameters and subrautine

Parameter/ | Meaning
subroutine
Ini Initialization of MB decoding.
RegMV If required, sends a request to load a referenceldBby decoding and
sending the motion vectors (i.e., the relative coordinaftésat MB)
Eref Boolean, equal to ‘1’ if and only if a reference MBrequired.
‘ The number of times a new byte is shifted into the 64vbrd used as a
bOMV bit-stream parsing cache when decoding the shape mataiars.
Load Loading of the reference MB from the previous VOP.
DecodeCAE Decodes the current MB shape, using the referencedit@n involves
ecode the decoding of the context-arithmetic-encoded (CAE) data
& Boolean, equal to ‘1’ if and only if the context-arithmeticalding is
CAE involved.
cap Decodes the ‘code-bit-pattern’, i.e., determines whichhef six sub-
blocks of the MB are empty (transparent).
Boolean, equal to ‘1’ if and only if the MB is located at ttontour of a
ond video object (i.e., determines whether shape decodiagtige for this
MB).
‘ Number of zero (i.e., transparent) pixels, traveradgn scanning the
empYy MB sub-blocks in search for non-zero pixels.
TextMV Decodes the motion vectors for reference texture blocks
ép Boolean, equal to ‘1’ if and only the current VOP iB-&OP
Emv Number of texture motion vectors encoded in the curredit M
VLD Performs variable-length decoding for the texture ingtram.
éne Number of AC symbols encoded by so-called ‘non-esteodes.
$obvLD Same agpuwv, but for VLD decoding.
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EndMB Finishes the processing of an MB.

Boolean, equal to ‘1’ if the MB block contains any narfarm texture,
Srex and equal to ‘0’ if the MB block is transparent or iff mbn-transparen
pixels have the same color.

—

WrMB Writes the decoded MB to the memory.

Store Stores the MB into the current VOP memory in the outpeug

Having obtained the detailed-timing model of the applicatie®,proceed with reducing the
amount of detail in the timing models and finalizing thelengentation of the application. In the
next subsection, we step from the detailed mode to thi&soanario delay mode.

6.2.5 Scenario-based Actor Timing

Recall that scenarios are definedsabhspaceof the space of possible values of the most
influential actor-level parameters, referred topasnary parametersThe subspaces define the
conditions for the quantization of detailed-timing actor delayctions. As we mentioned in
Section 5.3, subdividing the space of parameter values soémarios can be done either
manually or using automated technique, as the one projpo§28], [24].

To define scenarios in this case study, we followedrthaual approach. First, we identified
eight major types of macro-blocks defined in the decodiggrithm, considering each type as a
scenario candidate as it showed similar decoding delaykifferent blocks and corresponded to
a certain combination of values of the most influential raleteel parameters. The candidates
with similar contribution to execution time were merged, yigjdthree scenarios in the end,
which are defined using two primary parametefgi and écae (See Table 6.7 for their
definition).

The scenarios are defined as follows:

Example Scenario 1(s=1) &e=0¢
Example Scenario 2(s=2) &et=1,écae=0¢

Example Scenario 3(s=3) &ei=1,écac=1¢

Recall that the delay quantization works as follows: fortlal data tokens that satisfy the
scenario condition, maximum values of all actor parametersound and used to calculate the
delay quantization level. In the given case study, trentigation affects actong, v,, andvs,
because the other actors have delays that are conseugrinscenario.

Figure 6.9 demonstrates the effect of quantizatiotherdelay of actovs (DecMB. As we see
from that figure, the quantization removes some delajtians, making the timing model less
detailed and more conservative.

Similarly to our experiments on the detailed timing mode,ew&luated the multi-scenario
mode for the two video streams and summarized the seauliables 6.8 and 6.9 below.

Comparing these results to Tables 6.5 and 6.6, for acto we see the same behavior as in
the detailed timing model, because the delay of that do&s not depend on any of the primary
parameters. For the other two actors, we see that tbiealplity and the magnitude of
overestimation have increased considerably. This is inwitte our expectations that the multi-
scenario delay mode is more conservative than the detarleng mode.
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real = measured processor cycle count

model = multiscenario-mode processing time
Figure 6.9 Actor vs (DecMB — processing time in multiscenario mode

Table 6.8Estimation error of MSD mode for the ‘singer’ stream

Actor €-avg-over | Pover | E-max-over | €-avg-under | Punder | Etmax-under
vy Ini 136 % 1.0 158 % - 0.0 -

v,Reqmv | 67 % 0.98 279 % 27 % 0.02 143 %
VgDecMB | 75 % 0.99 199 % 4% 0.01 19%

Table 6.9Estimation error of MSD mode for the ‘dancer’ stream

Actor €avg-over | Pover | Emax-over | €avg-under | Punder | €tmax-under
vy Ini 147 % 1.0 165 % - 0.0 -

voReqmv | 62 % 0.98 250 % 34 % 0.02 152 %
VgDecMB | 56 % 0.995 | 149 % 3% 0.00% 15%

We also see that the average error has reached aolkeweer 50%, which, as it seems,
threatens to affect the accuracy of our performanaéysis. In reality, it is not a problem. Let us
ignore actoRegMV which, according to Table 6.4, has two orders ofmtade smaller average
processing time thabecMB For DecMB as we see from Figure 6.9, we could have condilera
reduced the scenario overestimation by introducing ona egénario that would distinguish the
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smallest actor delay values, which occur on a regulsisbAccording to our extra experiments
with stream ‘dancer’, this would take the MSD-mode owedtmtion error down to 13% on
average and 41% maximum. Nevertheless we did notdute that scenario, because we
observed that for the final results — the estimation of@® decoding times — that scenario
appears to bring no extra improvement. The reasothédrlies in the structure of the HSDF
graph, see Figure 6.7, and we can explain it in sorimdl way as follows. In general, the cyclic
paths of the HSDF graph determine its performance.cybkc paths containin@ecMBcompete
with the other cyclic paths for the impact on the graphutinput. The processing time of actor
DecMBis comparatively large on average (see Table 6.4}, isai‘major contributor’ for all its
cyclic paths. Therefore, when actbecMB gets a very small value, the other cyclic paths (in
particular, those that contain actStore ) win the competition, become the performance
bottleneck and hide the influencemicMB Thus, reducing the MSD mode error is not necessary
in this case.

What we also see when we compare MSD-mode resuttsetdetailed-mode results, is that
the probability of underestimation has decreased. It isesiieg to observe that the value of
underprediction has increased, but this is due to thaHat we measure underprediction relative
to the average processing time of the samples with uretBcipn, whereas this average value
has decreased.

At this point, the actor delay model has given up somadléetmformation that was present
there originally, but still stays accurate enough to obtairoredde accuracy in the end (as we
see later in the results of VOP decoding time estimation).

6.2.6 Budget Assignment

Whereas in the previous two subsections we consideeefirsh part of the design flow, i.e.,
the Application Preparation, in this subsection we tumatteéntion to the second part, the Intra-
application Mapping Flow, which optimizes the mapping ofghplication to the target platform
resources.

Recall that, due to the mapping constraints, the only imtpdieation mapping decisions left
to be made in this case study are the processor cydtgetsuallocated to the processes and the
amount of the communication bandwidth assigned tohhearmels. We refer to these decisions as
thebudget assignmeniReferring back to Figure 3.7, we note that, in theege design flow, the
budget assignment is part of the processing assignarehcommunication assignment steps.
Before this point of the design flow, we reasoned alibat actor delays using the actor
processing timed(vg, n), measured in processor clock cycles. The budgiframent effectively
translates the processing times into actor deld{&, n), measured in the real time units. By
taking the budget assignment into account, the performemadgsis can analyze the application
performance in the real-time domain.

As an optimization problem, budget assignment for thé cdudy can be described by the
following subtopics:

a. problem instance,

b. controllable variables (i.e., the structure of a probdettion),

C. objectives and constraints,

d. problem solution.
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Table 6.10The structure of a problem solution

Objects Primary variables Secondary variables
(processes, channels)

BP(p) — processor cycle budgefly (p;)) — TDMA time
(clock cycles per second) slot reserved for process

Tocned 7(P;)) — the vector of local pi (in  seconds)  (se
eSection 3.1.3)

®

Puan: Poao @NdPstore | scheduler  variables  for  th
processing tile where procegss | 17(7(p)) — the TDMA

running  (depends on  theperiod of the loca
scheduling method being used) | scheduler (in seconds)

BQ(g) - channel bandwidthngedq) — the number of
(bytes per second) TDMA slots of the
AETHEREAL network-on-
chip connection allocated
for the given channel (see
Section 3.4)

Owvs Orer @NdQoyur

Problem instance.The problem instance consists of the implementatiooga® network (recall
Figure 6.6) and IPC graph (recall Figure 6.7). Ramg computation actor, we specify a typical
(i.e., average) processing time. We use the averages tieyorted in the first column of
Table 6.4 (in kilocycles of the ARM7 processor):

t(vi) =2k; t(vo) =1k; t(vs) =120 k; t(ve) =134 k;

t(vz) =98 k; t(vg) =102 k;
For every transfer actor, we specify the size of the tidens, in accordance to Section 6.2.3:

Z(v3) = 8 bytes ; Z(vs) =256 bytes ;  Z(V4) =256 bytes ;
Note that hereby we partly specify the typical static tgnimode — see Section 3.1.1 for an
overview of the timing modes.
Controllable variables. Referring back to Figure 6.6, we see that thergtaee processes and
three channels in this case study. For each channelpeowkss, the budget assignment
determines certain budget variables. We refer to thasables as primary budget variables.
They form asolutionto the budget assignment problem. The primary vasadole functions of a
few platform-dependent variables, which we call secondariables. Given the target platform,
from the secondary variables we can determine theapyivariables and vise versa. We use the
secondary variables for convenience of explanationalRtwat 7(p;) is the notation for the tile
to which procesg; is mapped.

The relationship between the primary and the secondarghbles for our case study can be

expressed as follows:

Fooa(T(P)))if processingile T'(p,) doesnotusescheduling

BP(n) =
(®) {Fc,ock(rr( B)XT, (p)/T,(T(p,))if theTDMA schedulings used
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Puman

(c) actor delays in ms (d) final solution
(maximal budget case)

Figure 6.10Analyzing and solving the budget assignment problem

('NO_SCHEDULNG') if processingile 7'(p, ) doesnotusescheduling

T, T(p: )=
scred (P} ) { (TDMA', T:(T'(p,))) if theTDMA schedulings used

BQ(q) = Nsiots(a) (B in. £

where Feiock iS processor clock frequency amy,, - is the granularity of network bandwidth
allocation, which, for the AHEREAL network, is defined in Table 6.1.

Objectives and constraints. The budget assignment problem requests to find the budget
variables (either primary or secondary) such that thénmaim required throughput constraint for
the given application is satisfied at the minimum resousege.

We assume the minimum throughput constraint is indiresplgcified by the maximum
allowed iteration intervalA,,,, .4 =5 ms.

The minimum resource usage objective requests to usmals & possible values of the
control variablesBP(p;)) and BQ(q), seen as multiple cost functions. A possible problem
formulation would request to find the so-called set of Papetiats in the space of control
variables, yielding a set of alternative solutions thaehaproperty that each solution is better
than any other feasible solution by at least one cbutngable {BP(p;)} or { BQ(q;)}. Another
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problem formulation would minimize a weighted sum BP{p;)} and {BQ(q;)}. However, since

it is not the purpose of this case study to evaluatebadget assignment algorithm, we do not
adopt any of those formulations, and try to find a solutisimg as small budgets as possible
relying on logical reasoning. Note that algorithms for dipselated optimization problems in
the same context were proposed by Sander Sttigkin [88] and Orlando Moreirat alin [66].
Problem solution. To solve the budget assignment problem, we first simpligy phoblem
instance. Figure 6.10(a) shows an equivalent simplifiedime of the IPC graph in Figure 6.7,
also showing how the graph is partitioned into the proeesischannel macros. A few edges
have been removed as superfluous. For each remdgediteholds that the graph contains a path
that joins the same pair of actors as the edge and cetiteirsame number of initial tokens. For
example, edgev{, v»), containing one initial token, is superfluous, becausendv, are joined
by a path —\i, v4, Vs, V6, V7, Vi1, V2) — that contains one initial token too.

After the simplification, the graph has five simple cygbaths, and only three of them —
highlighted and indexed in Figure 6.10(b) by Roman rensibh, 11 and Ill — are potential critical
cycle candidates (the two simple cycles which are nouded have two initial tokens each and
thus, in this particular case, cannot become critical).

The purpose of this exercise is to assign as small asbfpbudgets to the processes and
channels such that none of the three critical cyclesaytital delay exceedisgns, which is our
maximal iteration-interval constraind

allowed*

Let us first assume that all processes and channetsggataximum budgets. That means that
all computation actors get typical delays equal to the psowpsimes divided by the processor
clock frequency (100 MHz for our target platform). &ivthe processing times as specified in
the problem instance, we get the actor delays as showigumef6.10(c). The delays of the
transfer actors are all equal eal92 ms, i.e., the network TDMA period], ., according to
Table 6.1. Assuming maximal bandwidth allocation, this isd#lay within which the network is
guaranteed to transfer one token that fits within one ADpériod. Recall that within one
TDMA period of the ZEHEREAL has 256 data slots, with 6 bytes per slot (in ourgedwersion
of the network, see Section 3.4), which means that tkentowith the sizes mentioned in the
problem instance easily fit within one period.

Examining the graph in Figure 6.10(c), we see thatcthial cycle is cycle ‘I' with delay
3.934 ms, i.e., there is a slack 05.000 ms - 3.934 ms) =1.066 ms . The other critical cycle
candidates have much larger positive slack values. dhgiye slack means that the real-time
constraints are met. However, for the final solution wedrte take two remarks into account:

1) the processes of actokg and v share the same processing tile — i.e., the memory

controller; therefore, they cannot have both a 100% kudge

2) although we need to keep the slack values positive, ab aspossible budgets should be

assigned to the processes.

Therefore, we split the processor clock cycle budg#t@imemory controller betwe@n,., —

the process of actoy — andps;ore — the process of actes. We assume that the TDMA period of
the local scheduler is+(7,) =1.000ms , where 7, is the processing tile of the memory

controller. We give 60% of the budgetf., and 30% of the budget fmox: (leaving 10% of
the budget for the local scheduler overhead). This mé@at the time slots for these processes
areTg(PLoap) =0.600 ms  andTg(Psrore) = 0.300 ms respectively.

Now, to calculate the typical delays of actessandve, we can use the equality specified in
Section 3.1.2, which we, for convenience, reprod@e hsing convenient notations:
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for vicO { va, Vo} = d(M) =D(v) +D(W) / Ta( p(vic)) 1 O(T+(72) = Ta( p(w)))
where:

D(Vk) - t(Vl%clock (Tz)

which results in the following actor delays:

d(vs) =2.000 ms andd(vg) = 3.820 ms

These actor delays are filled in into Figure 6.10(ddnithat figure, we see that the resulting
delay of cycle ‘I' is 4734 ms, and the remaining slack of that cycle is
(5.000 ms - 4.734 ms) =0.266 ms , which is very small, and therefore we do not change th
budgets of any actors belonging to that cycle anymora, Mfee delay setting of actes results
in the slack of%.000 ms - 3.820 ms) =1.180ms  in cycle ‘lII'.

At this point, the delay of actorgis as annotated in Figure 6.10(c), and the slack ®f th
critical cycle candidate to which that actor belongs is veslaxed and amounts to
(5.000 ms - 0.192 ms) =4.808 ms . We make use of this slack to reduce the bandwidth
allocated to channej,.

The delay of a transfer actor of a channel is calculatgidg Equality (3.21), given in
Section 3.4.2, which we, again for convenience, regrediere using convenient notations:

for vi 0 { Vg} = d(w) =D(w) +D(w) / Ta(q()) 1 ATra ~ Ta(dl(w)))
where:

D(vk):{z(v% ._Jtﬁzmm-%l_ HE) is the transfer delay the token would experience

without TDMA scheduling and without sharing the networkksinwith other channels (see
Table 6.1 for an explanation of the notations, and papdigiProblem instance’ for the values of
Z(vi) ), and Te( d(v)) = Tr& [N siots(A(Vk ) Brin-£/B iink-£ ) IS the time interval allocated for the
given channel per TDMA period withyodq(vk)) being the number of link slots allocated for the
channel (see Table 6.10)

We setnsioidGour) @s small as possible, but such tti@k) stays within a small interval below
5.000ms , to ensure some positive slack. We chasguddour) =2. This results in:
d(vs) =3.550 ms , as annotated in Figure 6.10(d).

Note that for the other network channels we assumg@(q.,) =2 and NgQrer) = 44,
which corresponds to 12 resp. 262 bytes, thus beinggbnio fit the corresponding token sizes
Z(v3) =8 bytes resp.z(vs) =256 bytes within one TDMA period. As we see Figure 6.10(d), this
allows us to keep the transfer delays for acteyand vs equal to the minimal possible
conservative value of a transfer delag.t92 ms, i.e., one network TDMA period.

Hereby we determined all the secondary controllable Vesahbat we needed to determine at
this design flow step. With this step, we finished the impleatmm issues of the main
application functionality and start considering the implementadfotihe run-time performance
analysis.

6.2.7 Loop-level Characterization

In this section, we consider the last step of the design (dew the second step in part Il in
Section 2.3.4). This step is responsible for the lowptleharacterization of the application. This
design-flow step is optional, because it takes upon ipself of the tasks of the dynamic-delay
analysis algorithmic rule (defined in Section 5.2), wheridwg rule can also be completely
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executed at run time. Doing the loop-level characterimadtodesign time reduces the run-time
overhead. Note that the main difficulty of this desigmflstep is that it operates with
mathematical values that are only known at run time, ftwreworking with symbolic
expressiongather than numbers. Due to that difficulty, we do noteha general algorithm
perform this step completely, the method proposed by Auogsein Ghamariagt alin [22] can
automate this step partially, as explained below. Thexefa our application case study, we
perform this step manually.

The purpose of the loop-level characterization is #leutation of the loop-level coefficients:
As, G5, and . The end result represents the loop-level coefficiensgimbolic form as functions
of some variables. For practical reasons, those vadabhould be defined such that it is
straightforward to calculate their values at run time, usiegapplication header data. Then these
values can be assumed to be given.

The set of input variables of the loop-level characterinatstep contains the delay
guantization levels of all actors in all scenarioég({/k)}, wheresis the scenario index arkds

the actor index. The values of delay quantization levadsreczalculated at run time for every
execution run of the loop of interest, using the datatained in application headers as described
in Section 5.3.6.

Based on those input variables, the dynamic-delay anates defines some intermediate
variables using symbolic equalities. The final goal isxpress the loop-level coefficients using
the intermediate and/or input variables. For conveniemae,refer to the set of symbolic
equalities used in the loop-level characterizatiorubes

To derive the rules for this case study, let us firapsify the IPC graph, reducing the number
of actors and edges. We start from the simplified grstpicture shown in Figure 6.10(a) and
simplify it even further. First of all, in Figure 6.10(aje observe a chain of actors Vo, Vs, Vg,

Vs, Vg, Where every actor has only one incoming edge andotgwing edge (except for the last
actor). The subsequent actors are joined by an edbezero initial tokens. This chain can be
replaced by one actor whose delay is the sum of thgslefahe actors in the chain. The graph
structure after the replacement is shown in Figure 8Mld.denote the new actor &§ (see
Figure 6.11(a)). The other three actors of the origimaplg, v7, vs, andvg, are copied into the
new graph as actoxs,, v, andv’.

We denote the delay of actef in scenarios as /755 (see Figure 6.11(b)). This value can be
expressed using the following rule:

6 .
Rule 1 7s= ) d,(v,) ¢
k=1

The delay of actow’ in scenarios is denoted a® s. Becauser’ is equivalent tov; (see
Figure 6.11), we have:

Rule 2: ¢ = d (v,) = 0.980 ma»

The constant numeric value for this symbol is basedhenobservation that that actor has
constant delay (it has zero actor-level parameters —algle 6.4) and on delay calculations for
the given target platform (see Figure 6.10(d)).

As for actorsv3 andv’, they are equivalent to actors andvg (see Figure 6.11). They both
have constant delays, becawseénas zero actor parameters (see Table 6.4)vaigla transfer
actor, transferring data tokens of constant size. Frigur& 6.10(d), we see that their delays are
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Figure 6.11Simplified IPC graph, for the loop-level characterizatio
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Figure 6.12The scenario levels of actet — 71, 72, andn 3

almost equal. Therefore, to keep our symbolic expsassas simple as possible, we use the
same symbolj3, for both actors, and choose a conservative valui: for

Rule 3: Bs= max(as(vg),as(vg)) = 3.820 ms

Although ¢ s and s are constant values, we still use indgxr their notations, to stress that
in general this step has to work with variables that takerdiit values in different scenarios. To
illustrate this fact, the reasoning in the rest of thigisealoes not exploit the fact that those
values are constants. Note that our application exarsliinteresting, because, unliggand
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Ls, the value ofs is not constant. That value is considerably different ifediht scenarios, as
illustrated in Figure 6.12. Because it also differs in differexecution runs, it can only be
calculated at run time.

As also indicated in the caption of Figure 6.11(b)Jusa s ¢ and B are intermediate
variables. In the rest of this subsection, we derive the-lag coefficients from these
variables.

In this application case study, the easiest loop-level icamff to derive isAs i.e., the
iteration interval. Recall thais is equal to the maximum cycle mean of all cycles in thpigra
whereby the scope can be reduced to only simple cythese are only five simple cycles in the
IPC graph in Figure 6.11(b). Recall also that the cyclennieéhe sum of actor delays divided
by the number of the initial tokens along the path. Tloeegfwe have:

As=max((7st@s), @stB9)2, Bs BstB)2, By

This expression can be simplified, and we obtain the fatigwule:

Rule 4: As= max((7st@s), Ls)¢

Note that, in [22], an efficient method is proposed thah generate such a symbolic
expression forls automatically fora general class of HSDF graphs, and therefore that wemk
be used for automation of this design flow step, althathis automation so far is only partial,
because [22] only considers the maximum cycle mean fig but not the lateness and the
minimum overlap (i.e., the other loop-level coefficients).

We calculate coefficiento;, i.e., the graph lateness, from its definition, which, for
convenience, can be rewritten as follows (see alsodBetid.1):

g=max  max X (n)—Aln (6.3)

where x(n) is the completion time of actok in iteration n, assuming synchronous initial
conditions (where all initial tokens are released at time)zétote that we skipped the scenario
index s in this formula for convenience, but not ondy but alsoxc(n) and A depend on the
scenario. Note also that, again for convenience, we hgpaced a finite range far by an
infinite range, but any assignment of static delays to thesacfolPC graph implies a finite
range ofn where it is enough to apply this formula, because, asafslfoom Theorem 4.6, the
argument of Expression (6.3) is periodic.

This definition relies on a comparison between symbelpressions, due to the need to
detect the periodic pattern in the argument of ‘mand due to ‘max’ itself, becausg(n) andA
can be only expressed using symbolic expressionsknown actor delays. Therefore, applying
this definition directly in practice is a challenging task. &i#hweless, for this case study, we
overcome this difficulty. We do that by first using a &avwbound on lateness (which is easy to
calculate in symbolic form) and then using the definitomprove that it is also an upper bound,
thus being equal to the lateness.

Lemma 4.8 implies that a lower bound onis the largest total delay of a chain of actors
joined by edges that do not contain initial tokens. From Eigut1(b) we see that the chain of
actors v, v5, V3 V7% is such a chain of actors, and therefore a lowarnbtoon o; is
Nst ¢s+ 2Bs

For convenience reasons, to calculagewe follow the same mathematical conventions as
summarized in Table 4.1 in Section 4.1.1. Recall that we nations [1' and ‘00" for
conventional ‘max’ and ‘plus’ operations on scalar ealuand £’ ande for ‘ —o’ and ‘0’. We
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(a) The equivalent event gragfe for the IPC graph of Figure 6.11(b)

(b) Graphge after simplification

Figure 6.13The equivalent event graph

also use the power operation enclosed in round paresthesmn alternative notation for product,
e.g.,a® = a/b.

Thus, we may use alternative notations for some ‘normathematical operations between
scalars and for some scalar values; for the rest xgiregsions on scalars are as usual. However,
for the expressions involving matrices and vectors, \a&era special exception, meaning that
usual notations/7 ‘+’, and & are used to denote max-plus operations. For exarplor two
matrices means element-wise application @f. ‘Multiplying two matrices means an inner
matrix product where ' and ‘00’ are applied for matrix elements instead of ‘normal’
multiplication and addition. If a constant is multiplied &ymatrix/vector or is a matrix/vector
element, we do not us&*, ‘[, anda® to express the constant, instead we uge+', and a’.

For example, if constamsJ¢0(Bs) © is a member of a matrix/vector or is multiplied by a
matrix/vector, this constant is written simplyagp 3¢ .

To find an upper bound on lateness, we reason alwadiries of the static-delay analysis

algorithm of Section 4.4.2. Hereby we apply the algorithitine following steps:

1. Construct the equivalent event gragh
2. Use the equivalent event graph to derive the canoniéxndémoted.

3. Assumex(-1) = e (wheree is a vector filled with values, i.e., with ‘0’). Calculate max-
plus products:
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Xx(0) =B x(-1), x(1) =B x(0), ... ,x(n) =B x(n-1),...

4. Now we deviate from the original algorithm such that we stop calculating(n) for
somen. In this case study, we can find an upper boung(onthat can be used to replace
the elements ok(n) in Equality (6.3) and to get an upper bound on the ésenn
symbolic form.

Now let us realize this plan.

In step 1, the structure of the equivalent event gi@apis closely related to the IPC graph. It
is shown in Figure 6.13(a). How an equivalent event gcaphbe obtained from an HSDF graph
in general is explained in Section 4.2.

Note that in this example the equivalent graph has two extdes compared to the IPC
graph:v, andws. Note also that for convenience we use a differentnenation of nodes in graph
Ge: ve COrresponds @7, v corresponds te?, v, corresponds tes, andvs corresponds .

Before we proceed to the next step to calculate thenta matrix, we simplify graplge by
merging nodess andv; into one nodey; (see Figure 6.13(b)).

Recall from Section 4.2.3 that to calculate maBjxone needs to analyze the largest-length
(i.e., longest) special paths between all pairs of nauggs.iA special path is a path where only
the first edge carries an initial token. In matBixentry {B};; contains the length of the longest
special path fromy; to v. For example, the longest (and, in fact, the only) sp@eith from node
v to nodew; is ((v1, v1), (w1, v2)); its length isn @ L1 and this value is placed as entB}4 1
in matrix B. In a similar way, one can calculate all the othdries inB and the result is given
below.

I ’75¢s € d ¢S €
neLs B ¢ @SB B
B= /73¢S,BSZ ﬁsz ﬁs ¢sﬁsz ﬁsz

£ e £ £ £

£ £ e £ £

Now, according to the algorithm, we have:

ng. e e b e | [e] [ nds
e nebs B ¢ B B | |e| | 1Pk
X(-D=|e; xO=BX(D=\ng.L" B B ¢85 B ||e|=|nbB. |
e £ e £ £ £ e e
| €] L £ £ e £ c | e | € ]
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nsPs
B.(n.d.+ B.)
X(W) =10, B 1P+ Bs) |
B.
. B
40P+ B.) | 8.8+ B,)]
B.(n.p.+ B.)> B.(n.p.+B.)
(2 =0, B9, +B.)? | NP B8, +B.)? | = (1.8, + B) XD = A, X(Q)
B.(n.$.+.) B.(n.9. + .)
B8+ B,) | | B 8.+ B, |

Now, let us multiply the left and right part of this inelitysby B, wherej = 0:
X(2) <A, x(@)

Bx(2) < A, BX(1) = x(3) £ A, x(2) = x(3) < A2 x(1)

B?x(2) < A, B2 X(1) = x(4) < A, x(3) = x(4) < A.° x(1)

X2+ j) <A x@) (6.4)

The definition ofos in Equality (6.3) can be rewritten as follows:
o= fx(O0) + 17 X@) +AZXEQ) +A XK@ +...)

wheree' is a row-vector filled with values
Using Formula (6.4), we can write:

o, <e" X0 + A X@) + A7 0 x®) +A 202 x@)+...)

So, we have:
o, <e" fxO0) + A X )
[ ng, | [N, |
R/NEN BA
o.<le e e e €U|ne.B> |+ B, BA
e B
| e | B

From this, it follows that the upper bound is the maxinalement of the two vectors being
added within the brackets. We list the elements fromddgttom and from left to right:

0.<(7.04,) 0 (,04.08,) 0 (.04,082) 0 e
0 (p.0s,08%)0 (1000, 06)?) 0 (2.04,08)
0 (.0 082)0 (W 0n08,08)0 WP 0s,00,087)

Comparing different elements to each other, we concltid@ the maximum is

n¢(B)P. Because this value is both a lower bound and anrupmend ong;, we can
conclude:
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Figure 6.14The transition graph for the IPC graph of Figure 6.11
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Rule 5:0s = nst ¢+ 284

The only loop-level coefficient left to be characterized)ds i.e., the minimum overlap
between scenaris and scenarid. To calculate that coefficient, we use the IPC grapdlysis
algorithm described in Section 5.2.3. For that, we unfold IBC graph in Figure 6.11 with
unfolding factor four (which is twice the maximum numbémitial tokens per edge).

As a result, we obtain the transition graph, shown in Fi§uré. The actor delays drawn in
the first and in the last row have inde¥, ‘e.g. 7., which refers to the minimum value in all
scenarios, e.gj. = min 77s. Recall that the transition graph is partitioned into two sfigs by
the transition line.

Recall that the edges that cross the transition line areddhideedges of interesfThey are
shown by bold arcs in the figure and numbered withxmde 1..7. Above the transition line
there are special nodes, which are involved in the calcnlafigs . Those are so-callesinks of
interestV,, which are defined as the nodes that have only edgeseoést as outgoing edges. In
our example, there is only one such nadg2], which is therefore labeled &5. Similarly, there
are special nodes also below the transition line. Thoseha so-calledources of interedt;,
defined as the nodes that have only edges of interést@wing edges. In our example, such a
node is node'[3], labeled adJ;.

Before we can calculate for each edge of interest with indewe calculate:

* Ae, as-late-as-possible production time on edgalap production timg It is equal to the
largest sum of the delays of the consumer actors athafpom the producer of edgedo a
sink of interesd,. For example, for the edge indexed as edge ‘2’,ake path\{3[1], v'3[2],
V'4[2]). Therefore, we havAe, = d(v'3[2])) + d(V'4[2])) = 26s An alternative path isvi[1],
V'[1], V'4[2]), but it has a smaller sum of consumer delays.

» Ab; as-soon-as-possible consumption time on ed@sap consumption tinelt is equal to
the largest sum of the delays of the producer actoesath from a sink of interelsk to the
producer of edge. For example, for the edge indexed as edge ‘6’,gaths are candidates:
the first one is\(1[3], v2[3], vi[4], v[4], V3[4]) and the second one ig4(3], v2[3], V3[3],
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Table 6.11Alap andasapvalues for the transition graph in Figure 6.14

r | From | To Ae, Ab,

1 vy[2] | V4[3] 205 0

2 | V1] | V3] 2[5 7k

3 | ve2] | vi[4] Bs net @et 1.

4 | ve[2] | v4[3] Bs N+ ¢

5 | V1] | v4[3] Bs N+ P

6 V2] | Vi34] 0 Nit+ @+ max@. + @ ., G
7 | V1] | v4[3] 0 Nt P+ P

V'3[4]). Taking the maximum sum of the producer delayesobtain:
Abg = d(v1[3])) + d(v2[3])) + max @(v[4])) + d(v'o[4])), d(v'3[3])) =
F)i+ P+ max@. + @ ., B

The values ofAe andAb; for the edges of interest in this case study are givehe table
below Table 6.11.

Recall thaty ; is equal to the minimum sum A& andAb; in a row of the table. To find that
value, let us first exclude the rows that have sums langeror equal to other rows. Row 2 has a
larger sum than row 1; row 3 has a larger sum thamdaew 5 has a sum equal to row 4; row 6
has a sum larger or equal to row 7.

This leaves us with only three candidate table rows: rowoW 4 and row 7. Finding the
minimum value of those three rows yields the following esgian:

Rule 6: )¢t=min ( 28s,/7¢+ @+ min(Bs, SBy) )¢

We see that Rules 4-6 express the loop-level coefficianteerms of the intermediate
variables, which, in turn, can be calculated from therat#tays using Rules 1-3. Thus, the loop-
level characterization is completed.

6.3 Run-time Performance Analysis Results for the MPEG-4 Decoder
6.3.1 The Goals of the Experiments

Whereas in the previous section we considered the det#gs performed at design time, in
this section, we evaluate the quality adaptation, performathgtme. The adaptation is the task
of the QoS manager, which we introduced in Section? @dd 6.1.3. In this section, we apply
our performance-analysis approach to realize an impopart of the QoS manager: the VOP
Decoding-Time Estimator. Recall that, using Figure 6.2, ineady explained the task of the
estimator and showed that it can be realized with the dgrd@tay analysis algorithm
introduced in Chapter5. In this section, we evaluate Decoding-Time Estimator
experimentally. Note that the estimator uses the results @réweous section, such as the actor-
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level coefficients, the definition of scenarios, the budgetigasment and the loop-level
characterization rules.

The purpose of our experiments with the VOP DecodimgeTEstimator is to evaluate the
run-time component of the performance-analysis appr@aoposed in this thesis. The central
issue is the accuracy of the execution time estimation, whielery important to reach good
results in practice, as we showed in Section 6.1.4.

In particular, the goals of the experiments are:

» to measure the accuracy and to check conservativity;

to explore the overhead-accuracy trade-off;

* to measure the impact of analysis error on visual quality;

to compare our performance analysis to the worst-cadgsis

Thus, as the evaluation reference, we useathiest-case throughpudpproach, which is the
traditional approach to handle the applications with dynad@ta-dependent delays. This
approach avoids the analytical difficulties in handlingdiieamic delay variations by replacing
the dynamic delays with static maximum values. With stdétays, it is relatively easy to
analyze the throughput of the dataflow graph and thwustalsalculate the execution time. As it
can be concluded from our earlier related work overviewSections 1.5 and 2.2.6, the worst-
case throughput approach is the only alternative to ouhadeknown to us provided that
conservativity needs to be ensured and arbitrarily longugie runs need to be supported.

We model the worst-case throughput approach by a $pesa of our approach where the
multi-scenario delay (MSD) mode has only one scenahasTour approach takes advantage of
more scenarios (three in this case study) and ofdgnamic-delay analysis’ algorithm to handle
multiple scenarios.

6.3.2 Estimator Implementation

For the experiments with the estimator, we used the tw@lsamput video streams, ‘singer’
and ‘dancer’, which we introduced in Section 6.2.4.

First of all, for both streams, we obtained the dateetercoded in the VOP headers as input
for the estimator. As indicated in Figure 6.2, three kioiddata are necessary, the characteristic
values of actor-level parameteréwvs, the values of loop-level parametedsandKs;, and the

scenario index of the first macroblocl). All these data are obtained based on the scenario
definition in Section 6.2.5.
Given this data, the run-time task of the estimator fogthen VOP is as follows. Fronﬁwys,

the estimator calculates the delay quantization leveldl attrs, d (v,). Using Rules 1-6 from
Section 6.2.7, the estimator obtains the loop-level coeffisiof the given VOP),, o, and ) .
Afterwards, the estimator calculates the loop-level paraskte using Equalities (5.7). At
this point, the estimator has all the loop-level coefficients parameters values. After that, it
calculates the predicted execution time as a linear cotdnnef loop-level coefficients and
parameters, as given in Equality (5.6), which we repredere for convenience:
A= Y, (Al + (=29 [s) = Y ya Ky, (6.5)

S st,s#t
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Figure 6.15VOP decoding time estimation results

Table 6.12Estimator evaluation results

stream ‘singer’ stream ‘dancer’
scenario count ideal 3 2 1 ideal 3 2 1
avg error, % 0 11 25 56 0 10 18 60
max error, % 0 17 36 77 0 14 24 89
quality, % 77| 64 46 28 77 70 65 33
overhead (bytes) - 20 12 5 - 19 13 6
overhead, % - 5 3 1.3 - 1 0.7 0.3

To evaluate the estimator accuracy, in our experimengs,campare the results of the
estimation from the execution times measured on our mut&ssor simulator.

To evaluate the impact of estimation error on the visualitgwof the video decoder, we feed
the estimation results to the VOP Skipping Controller, beisgd in our QoS manager and
described in Section 6.1.2.

6.3.3 Experimental Results

The results are summarized in Table 6.12. The colwshow per stream the results for ideal
estimation and the estimation using a certain numberesfasos. The first two lines show the
average and maximum error with respect to simulationso#odefault setting (three scenarios),
our method yields 11% and 10% average error for thes@vople streams. Figure 6.15 shows
execution-time curves for stream ‘singer’. Our estimatiomed out to be strictly conservative
(although this is theoretically not guaranteed), which isni@ With our objectives. The measured
estimation error can be mostly explained by overestimadize to multi-scenario actor delay
mode (Figure 6.12).
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The more scenarios are used in the estimation, tigerldhe overhead, because the more
actor-level and loop-level parameter values need to beded in the VOP header. Note that we
need to encode 15 characteristic actor-level parametescpnario (and two primary parameters
are implied by the scenario itself) and one loop levehipater per scenario and scenario
transition. We measure the overhead needed to enceddiffarence between the parameter
values in the current and the previous VOP using Shesrentropy metric. The results are
shown in the last two rows of Table 6.12. The relativerbead differs considerably between the
streams because they have different average VOP4€)@ebytes and 2000 bytes. The absolute
overhead is almost independent of the VOP size, becadstermined mainly by the probability
distributions of variations of parameter values from ¥@®P to another. The results show that
the relative overhead is limited if VOP sizes are not todlsiate that overhead can be reduced
further (compared to the application of entropy codingg,, &y applying quantization to the
least sensitive parameters.

We see that using less scenarios reduces the overheleddsito poorer accuracy. As we see
in Table 6.12, reducing the number of scenarios fraim 3 (by merging the two highest delay
levels in Figure 6.12) results roughly in twice the errowiki@only 1 scenario leads to an even
larger error increase (by a factor of 5 to 6). The-scenario approach models the worst-case
throughput approach, which shows the big advantagaioscenario-based approach over that
technique.

Note that 11% accuracy is a good result compared teetated work which is closest to our
work in this area — [6] — where similar accuracy reswise achieved, using, however, much
less data encoded in the header (only three parametersvedusus around 50 in our case).
Nevertheless, the advantage of our technique is thagtimnrto a larger overhead, it gives
conservative results and that it supports multiple procgssor

Due to the fact that we can expect a similar IPC grapletatel from any video decoding
algorithm, we expect that in practice the same accuraoybe achieved in this application
domain with our technique. It is definitely an interesting fetwork subject to evaluate our
technique for other application domains and for dataflcaplgs in general.

Differences in estimation accuracy have a big impacthenvisual quality, because more
VOPs are skipped if the overestimation grows. For stresimger’, we set the VOP deadline to
400 ms, which produces significant processor overlbad stream ‘dancer’, we set the deadline
such that similar overload was achieved. This choiceténiional, showing a situation where
the QoS manager has to actively control the quality. Fwr\OP-skipping QoS manager,
Table 6.12 shows the quality results, measured in treepege of VOPs presented to the user.
From the table, for stream ‘singer’, we observe aiiggmt quality drop, from 64% for our
approach to only 28% for the worst-case approach.miilesi observation holds for stream
‘dancer’.

Note that the video frame-skipping is not typical for adesmhvideo decoders; neither is the
frame rate of 2.5 frames per second (i.e., a 40@easline). We made those assumptions due to
practical limitations in the experimental setup. The results andlesions carry over to realistic
settings with faster processors and more advanced qoatityol methods.
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6.3.4 Notes on the Processing Time Overhead

In our experiments, we did not implement the estimatothe target platform, because we
did not fully elaborate the encoding/decoding of the patamvalues (recall that we only
estimated the code sizes of the parameters using &ftianentropy metric). Instead, we
emulated the main part of the estimator algorithm at higheraatisin level. Thus, we could not
measure the processing time overhead of this algorithterfims of processor cycles per VOP);
and we can reason about this overhead only based omlgbethmic complexity of the
calculations.

In the estimator implementation of this case study, tleegssing time overhead can be
managed efficiently, because the amount of calculatoss not depend much on the input data
and the calculations mainly comprise the decoding of petemvalues from the header and the
calculation of a few linear formulas: the formulas of #wtor delays, six rules for loop-level
characterization, Equalities (5.7) and Equality (6.5). tivtelly, those calculations are negligible
compared to decoding a VOP.

This is due to the fact that we could reduce the amountmfime calculations by doing the
loop-level characterization at design time. However, fordéeeral case, we do not have a
method for design-time loop-level characterization; therefwteen implementing an Estimator
for other applications, it might be necessary to do the-leegl characterization at run time. Let
us discuss this option briefly.

Among all the variables contributing to the complexityanfp-level characterization, the only
concern iH —i.e., the number of iterations of the algorithmic ruledlzulate lateness of an IPC
graph — see Section 4.4.3. This variable is the onlpbie that is in the worst-case exponential
in the representation of the IPC graph. We implemertisdaigorithm and saw that, in our case
study,H could change by a factor of 2 due to a 0.00001%@ha&f an actor delay, which could
be explained by the fact that multiple bits are requicedepresent that change accuratély,
being worst-case exponential in that number. Neverthelelsen we represent the actor delays
with a reasonable accuracy of 0.1%, thérstays below 10 in our case study. To improve the
robustness of our method, finding tight approximationshef graph lateness with polynomial
algorithmic cost is an important future work topic.

6.4 Notes and Summary

In this chapter, we have evaluated the method propos#usirthesis for the performance
analysis in the context of run-time adaptation of applicatieality to the variable computation
workload. Hereby we have taken care to select proggedients for a demonstration of our
approach.

Firstly, because our method is oriented to multimedieasting applications with scalable
audio/video quality, as a case study we selected a matteaming application — the MPEG-4
arbitrary-shape decoder — enhanced with a practical quaalaptation manager, as described in
Section 6.1.2. Secondly, because a major novel elebeng) introduced by our performance
analysis method is the support of network-on-chip multigssors, we mapped the application to
two processors of such a platform, as described inid®e@.2.2. Thirdly, because modern
dynamic streaming applications require support of multgssor resource budgeting and
concurrent execution, we make use of these featutbssicase study and model them using our
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elaborate timing model — the implementation-enhanced HSDEs (iimal form — the IPC graph).
The elements of this model for this case study are ibescin Sections 6.2.3 (the graph
structure) and 6.2.4 (where the elements that model ptloeessor and communication
scheduling). Finally, because the complexity of pertoroe analysis is a very important
practical issue, in Sections 6.2.4, 6.2.5 and 6.2.7, weodstrate the mathematical framework
that we employ in this thesis to reduce the level of detail entithing model while offering
sufficient accuracy. In those sections we start frolR@ graph mode; endowed with detailed
actor execution traces and end by a limited set of algebspressions that can be quickly
evaluated at run-time to quickly and accurately predetagplication performance with limited
overhead.

In this evaluation, we have shown that our performancéhadeyields accurate and
conservative resource utilization predictions needed far-time resource and quality
management in low-power embedded multimedia systems. Atthe time, we showed that the
worst-case throughput analysis failed to yield good ltesiThe latter is the only previous
performance analysis technique that could be applied attims for our implementation-
enhanced HSDF timing model. In addition, our evaluationdmasvn acceptable overhead in
terms of the processing time and the data size. We puthlibfgeeevaluation in [76].

The conclusions and future work directions are summaiizgee next chapter.









7 Conclusions and Future Work

7.1 Thesis Summary

In Chapter 1, we have set up the goals of this thest,irathis chapter we summarize to
which extent and how these goals have been met.

This thesis focuses on computer systems that are iamddr consumer electronics, namely,
on embedded systems for multimedia applications. We raaketivated choice to work on a
very important class of such systems — the multiprocesstaorks-on-chip.

Our main application area has been defined as dynstneiamingapplications, also referred
to as digital signal processing applications and coding/degadidio/video applications. Within
that context, our major goal is run-time performancdyaisthat aids the dynamic adaptation of
the computer system to run-time changes in the processingoad. The analysis has to be
accurate and conservative. To support the streamiplicapons in the best way, the analysis
has to natively support arbitrarily long execution runs giliagtions on multiprocessors, which
means that it has to reason in terms of applicatiooughputrather than in terms atsponse
times like it is done primarily for control applications.

Whereas response-time methods focus on calculatiotheofworst-case execution paths,
throughput analysis techniques focus on a certain staquiibrium — a steady state — reached
by the computational model that represents the analyzedrsydtavever, the latter is not trivial



250 7 Conclusions and Future Work

to do in the context of dynamic data-dependent systerkloam, because such a workload, in
general, makes it hardly possible to define a single gtstatk of the system.

Therefore, we generalized the steady-state approachngdyzing throughput of streaming
applications to multiple steady states — caliednarios Application scenarios are a well-known
concept for dealing with dynamic system workload [28B]] but our work for the first time
associates an application scenario with a distinct statgufibrium of a model of computation
and includes transient behavior. (A very recent publicadioMarc Geilen — to be published
soon — also does that [21]) This allows us to unifyttiteughput-oriented reasoning needed for
streaming applications and the scenario-based appnescted for dynamic applications.

In the context of dynamically changing processing word|dlae scenarios have unpredictable
characteristics and unpredictable transitions between themdeal with the uncertainty due to
unpredictable workload, our performance analysis apprtmidws the common method for all
scenario-based methods, namely, it exploits run-timeackexistics of the scenarios that are
knowna priori.

To capture the concurrent execution of the applicationnmultiprocessor, a certain model of
computation has to be chosen. We have chosen the H3@Rogeneous Synchronous Data
Flow) model of computation and motivated that choice inp@e2. There, we establish a
relationship between that abstract model of computatioraagdl application implemented on a
multiprocessor. We give a practical context for our H$i@Formance analysis by describing an
implementation trajectory from the specification througheaigh flow to the implementation
decisions taken at run time. The performance analysisaacastool for continual evaluation of
decisions taken at each implementation step and for guttiese decisions towards optimal
solutions. At design time, the performance analysis carema& of existing theoretical results
on the steady-state throughput analysis of HSDF grabHbsvever, to guide the run-time
implementation decisions, the throughput analysis has tooguplynamic data-dependent
execution delays in HSDF graphs. When the executioryslelee data-dependent, reasoning
about the HSDF throughput appears to be a practicallyciatole problem in general. In the end
of Chapter 2, we briefly explain how the methodology pema in this thesis can avoid that
difficulty by exploiting the a-priori run-time characteristicsnofiltiple scenarios.

In Chapter 3, we describe the enhancements we made HSDF model so that it can play a
role of a performance-analysis model for data-depend#atming applications running on
modern multiprocessor systems-on-chip. The main nowéltlyis chapter is the treatment of the
communication channels in the on-chip multiprocessor interection network, also known as
network-on-chipWe build a framework for modeling the channels withrgateed throughput
and bounded FIFO buffers as subgraphs of the HS@phg. Hereby, we suppotbmplex
channelsthat transfer the data tokens of different original singblannels in a fixed order. We
presented this contribution in [75]. The only closely teddawork on this subject is the work of
Arno Moonenet al In [60], [63], they introduce network channel modabst are similar to ours,
but have important differences. On one hand they dsupgort complex channels. On the other
hand, they propose more powerful and less pessimistielsyddr the TDMA scheduling of
network packets. Note that their models reflect the tsvan the hardware-specific level of
granularity, whereas our models work at the applicatiociBpedata granularity level.
Therefore, if the application uses data samples corgisfira large number of network data
words, then the performance analysis complexity for models is much smaller. This is
particularly favorable for the performance analysis ihdbne at run time.
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Our framework for modeling the network-on-chip chanmais be exploited in a design flow
that maps streaming applications to a multiprocessor netwrod&ip. This flow is responsible
for a gradual transformation of our implementation-ewed HSDF model from the
specification to the final form. In Chapter 3, we sketchypothetical preferred mapping flow
and the corresponding HSDF model transformations usitRE& decoder application as a case
study. The contribution of this thesis to multiprocessoppirag flows is focused on networks-
on-chip communication aspects, whereas, for bus-basdtiprocessors, mapping flows and
implementation-enhanced HSDF models have been knowedglfer some time, see [5], [83].
In particular, our contribution is that we enable bottlenecialysis of buffer capacity
minimization for complex network-on-chip channels undapli@ation throughput constraints.
The bottleneck analysis can be used in heuristic iterathy@ovement algorithms for this
problem. Although we do not formulate a general algoritivendemonstrate this idea using the
JPEG decoding case study in Chapter 3 and in [75]. Ifinthkesection of Chapter 3, we discuss
different related publications on buffer capacity minimizatiénom that discussion we can
conclude that no FIFO buffer capacity minimization mdtknown to us can directly address the
complex-channel capacity minimization problem without makiog restrictive assumptions,
and, therefore, this problem remains open.

Of special importance for our methodology is the initialigle$low phase, which precedes
the multiprocessor mapping. We refer to that phase aspp#cation preparation It is a
generalization of conventional profiling and worst-casescution time analysis. Instead of
assuming constant worst-case/average-case procdsskraycle counts for the HSDF graph
actors, the application preparation characterizes the actoegsor-cycle counts as functions on
input data parameters, called actor-level parameters. Orham#, the parameter values are
assumed to be constant when making the design-timeaexi©n the other hand, at run time,
we exploit thea priori information on the parameter value variations for accyratiormance
estimations at run time, as it becomes apparent fromalteving chapters of the thesis. In
Chapter 3, we propose to use the confidence intervalsedinear regression method to make
the coefficients of the actor-level parameters conservalivis is necessary to give performance
guarantees, which is a major goal of this thesis.

Chapter 4 revisits the steady-state throughput analy$iSDF graphs with static delays and
introduces a new metric for the graphs, called latengss. metric characterizes the transient
phase of the timing behavior when the HSDF graph exectigianderway to a steady state. The
lateness is important for extension of the single-steadg-skeitbughput analysis to multiple
steady states, because it helps to evaluate the impadcnsitions between different steady
states. Unfortunately, the only known exact algorithntatculate the lateness is exponential.
Nevertheless, in practice, this has never resulted in longes for us and there are ways to
give up some accuracy while reducing the probability mfdaalculation overhead.

In Chapter 5, we realize the idea of using multiple stesdtes that are reached at different
intervals of application execution run, in order to analymeexecution time and throughput in
the case of dynamic data-dependent execution delaysioMeat through quantization of actor
execution delays. Different quantization levels corresporedto-one to different steady states of
the HSDF graph.

We define ascenarioas a sub-space in the space of possible values okettier of actor-
level parameters of the given application. The scenarialdhee distinguished by the most
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influential actor-level parameters, i.e., those that havarge impact on multiple actors of the
HSDF graph.

An important contribution of Chapter 5 is a graph-pathlyai algorithm to calculate the
timing overlap between different scenarios. This timingrap appears due to the inherent
parallelism of HSDF graph execution, whereby some aatmag start executing in a new
scenario earlier than the other actors. We presentetintirg overlap technique in [79], [78],
[76]. As discussed in Section 1.5 and 5.4, the only agievelated work on this subject —
although focusing on a different topic — is the work ot &ta et al [55], [56]. Their work on
energy-aware scheduling implies a performance anatysifiod that has much in common to
the actor execution delay quantization as proposedsrhsis. However, the main focus of that
work lies on a different subject — i.e., efficient multipessor scheduling, whereby they do not
yet explicitly exploit the steady-state analysis. As weuadgin Section 5.4, in order to apply
their method for the same performance analysis problermoasidered in this thesis, their
approach would need to be essentially modified.

Our results on scenario-aware performance analysis gé/the possibility to revisit the
beginning of the design flow — the application prepamti€hapter 3 only provides
characterization of performance at the level of actms®)g functions on actor-level parameters.
The results of Chapter 5 allow us to characterize thi@ipeance of the HSDF graph as a whole.
The estimated duration of an execution run of the HSRPyis a linear function of so-called
loop-level parameters, which count the occurrence oémdifft scenarios and scenario transitions
in the given execution run.

Therefore, in the beginning of the design flow in outhndology, having defined the actor-
level parameters, the application designer also has tafiddre scenarios, which automatically
leads to the definition of the loop-level parameters. ddedficients for the loop-level parameters
are obtained from the graph analysis of the final HSDaplgrafter it has undergone all the
transformations made by the design flow. Because thghgraalysis needs to know the actor
delays per scenario, it uses certain values of actor-levamgders in every scenario, referred to
as characteristic values. Note that for the identificatibra @ood scenario set of the given
application, we do not propose any general approach,uglthove argue that the technique
proposed by S. V. Gheorghi¢h al [28], [24] can be applied.

The values of loop-level parameters and the characteraties of actor-level parameters per
scenario form, in fact, the a priori information explditey our performance-analysis approach at
run time. From these data, our run-time algorithm foresgmation of the execution-time (and
throughput) can give estimations that are both conserv@titie high probability) and that can
be made as accurate as necessary by providing a tawggrenumber of scenarios (at the cost of
a larger overhead). This finalizes the developmentefibthodology of this thesis.

Chapter 6 demonstrates our methodology using an appiicatse study, an MPEG-4
arbitrary-shape video decoder with a simple quality-o¥ise manager. For this application, we
go through the design flow, especially focusing oa #ispects important for the performance
analysis. At the end of the flow, we have all the neargsdata for run-time prediction of the
decoding times of video frames. We simulate the run-tirediptions of decoding times and the
visual quality adaptation algorithm guided by those predistiorhe results show that our
method has a reasonable overhead and that it yields reatige predictions with enough
accuracy to achieve a visual quality that is close ti#st achievable quality. To the best of our
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knowledge, no other existing performance-analysis metltadsgive conservative execution
time predictions for multiprocessor systems that can mhtshesult.

7.2 Limitations and Future Work

In this section, we summarize the main limitations of the waodsgnted in this thesis and
identify the major topics for future work.

First of all, the chosen model of computation, i.e., HSB&s only a limited support for the
conditional execution of actors, see Section 2.2.1. Als®8DIH supports only a single-level
nested loop at the graph level and no external inputsoatmlits. Extending our performance
analysis for a better support of conditional executionpfore complex loops, and for external
inputs and outputs (with a fixed periodic pattern of dat@adrand data required times) is a topic
of future work. However, before extending the analysissupport more general models of
computation, in future work, one also needs to handleowiknssue for HSDF graphs, namely a
possible lack of accuracy for graphs that have multiplerad¢hat can be identified as so-called
sinks of interest (see Section 5.2.4 for more detdiighis respect, it would also be useful to try
our performance-analysis approach on more HSDF bearismfirst of all on random HSDF
graphs with random sets of scenarios.

The functional usability of our analysis approach seedbe explored in more application
case studies of run-time adaptation of quality/energy copsan and resource budgets. For the
distributed multiprocessor environment like the one we asdumehis thesis, the latter two
cases may involve the reconfiguration of hardwareuees and task migration between
different processing tiles, which did not get attention ia thesis. Another important issue that
is taken in this thesis for granted is the requirement tdym® conservative results, i.e., to
provide guaranteed performance, whereas we still,fficiency reasons, allow our results to be
non-conservative. We have not considered yet the questitiw ‘bad’ it would be for real-life
multimedia streaming applications for consumer electromiasse a performance analysis that
often gives too optimistic results and whether one céottia good ‘middle point’ between the
resource use efficiency and the reliability of perforoeastimations.

The overhead of the performance analysis is a very riapio concern, especially if the
analysis is performed at run time. In this respect, &kweat of our approach is that we use an
exponential-complexity algorithm to calculate the latenessidiSDF graph (see Section 4.4.2).
This problem does not necessarily manifest itself in prachd we have discussed some ways
to work around this problem if necessary (see Section3 44d 6.3.4). In future work,
developing a lateness calculation algorithm (possibly arroappation algorithm) with a
polynomial complexity would be a valuable extension &f tork.

Our performance analysis method is based on actor dekaytization levels, determined by
the scenarios. The only automatic technique for sceidentification that we are aware of is the
technique of S. V. Gheorghita [28], [24]. Although weywed that it can be adapted for our
implementation trajectory, it was originally developed forusedgial implementations, and thus
can provide non-optimal solutions for multiprocessors.our case study we have seen an
example where the choice of a better set of scenariasflienced by the structure of the
dataflow graph. Therefore, an interesting future wookid is development of scenario
identification techniques taking into account the parallelifnlifterent actor executions.
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Another help for the application designer in this contexuldiobe automation of the
generation of appropriate coding schemes (such asnduaftrees) for encoding the complexity
parameters in the application data headers to be nsethitime adaptation. This task is very
similar to the generation of encoding schemes for newovitandards, such as MPEG-4. For
example, also in this case there is a certain trade-bifele®m the data-size savings due to lossy
coding and the quality of the output results. However, #imition of the encoding schemes in
video standards is a more complex task, which probatilyemain to be manual work, whereas
the encoding of the complexity parameters is probabipee routine task that can be automated.

Recall that, apart from the run-time performance premtictanother goal of our performance
analysis approach is to aid the design flow for networkehip, especially the communication
mapping phase. Our main contribution in this area idttdeneck analysis for minimizing the
capacities of complex buffers. Hereby, so far we hanlg considered only one application case
study — the JPEG decoder. Therefore, also this cotitibneeds more evaluation on application
benchmarks and random graph examples. Moreoveuyripreferred mapping flow, other topics
remain open and deserve future investigation. So faangenot aware of any algorithms to
merge simple channels into complex channels, espeeidiin we speak of the network (i.e.,
‘real’) channels, and not local memory buffers. Anotbpen question lies in the more global
context of the mapping flow. In the JPEG decoding casgyswe have observed that assuming
average actor processing times during mapping man &t to inaccurate ‘optimistic’ results,
i.e., assuming that the throughput constraint is metyeuasein reality it is not met even for the
sample input stream used to measure the average girgrdsnes in the graph. An open
guestion remains on how to make the mapping flow bettereagiahe dynamic variations of the
actor processing times, so that it produces mapping satutiat are more reliable in terms of
throughput constraint satisfaction, while still not making pessimistic assumptions on the
actor processing times. Using scenarios in the contakieahapping flow might be a promising
approach in that direction, because they are alreasty inscertain mapping flows (see e.g. [55])
to ensure better energy efficiency of the multiprocessapping solutions. Hereby, unlike
existing approaches, one needs to also take the scenasdidras into account using timing
overlap calculation techniques (see Section 5.2.3).

Last but not the least, to improve the usefulness opetformance analysis approach for the
state-of-the art embedded systems, we need to extemithitthe support of shared memory
hierarchies and with the of on-the-fly reconfiguratiohthe running applications.

7.3 Main Conclusions

In the context of embedded multimedia multiprocessotesys with dynamic streaming
applications, our work brings some contributions into twoomagsearch areas: run-time
adaptation and the design flow.

For run-time adaptation, we have proposed a methoddimgyun-time prediction of the
processing throughput, or in other words, for run-tiprediction of the execution times
necessary for processing a certain amount of inpt&. d@he execution-time/throughput
prediction techniques help the run-time adaptation methodsttpraactively when trying to
maintain the necessary throughput. When predicting too éomgution times, the adaptation
methods can proactively adjust either the processok étequency/voltage, or the application
guality-of-service level, or adapt the resource usagmime other way. We propose a method,
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the only one known to us so far, that can do executineAhroughput estimations that are both
accurate and conservative.

Giving guarantees on the performance is a key promérour contribution to the run-time
adaptation area. This concept is important for ensurimapgh and reliable application execution
runs without ever overloading the computation or the mamication resources. In previous
work, the only technique that could produce conservatiraighput estimation was worst-case
throughput analysis that assumes the worst-case execditays of every application
subroutine. The extension to execution-delay quantizanohnnaultiple scenarios, as explained
earlier in this chapter, helps us to achieve good estmaiccuracy in addition to being
conservative. Our application case study — the MPEGhitrany-shape video decoder —
demonstrates good accuracy and conservative predicioasreasonable cost. Because this
application is one of the most complex applications indbmain of video applications, we
believe that these results are also promising for many othkimedia applications.

Our secondary contributions are in the area of the de$gn for mapping streaming
applications to multiprocessors based on packet-switchéwories-on-chip. To map the
communication of an application to the network communioatihannels, one needs to
understand the impact of the mapping decisions on theghpot of the application. We were
the first to propose models that capture the performamgact of the mapping decisions
involving the capacity of the input and output FIFO, thedwadth of the channels, and the
merging of multiple application communication channets ilarger complex network-on-chip
connections. As we demonstrated using the JPEG decaderstudy, the modeling techniques
help to take correct mapping decisions throughout the winalgping flow, and especially the
communication mapping decisions.
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Samenvatting

Een Nauwkeurige Analyse voor Gegarandeerde Bewerkingssnelheid
van Multiprocessor Multimedia Toepassingen

Reeds lange tijd zijn elektroniche apparaten bébelasir voor vermaak, onderwijs of
telecommunicatie doeleinden, die gebaseerd zijmafiimedia toepassingei.w.z., toepassingen
die stromen van audio en video data bewerken iitatkgvorm. Het is de verwachting dat in de
toekomst de multimedia mogelijkheden in draagbgrpaeaten meer en meer alledaags zullen
worden. Dit leidt tot uitdagingen met betrekking kmstenefficiéntie en kwaliteit. Dit proefschrift
draagt modellen en analysetechnieken bij om deckefficiéntie, en daarom ook de kwaliteit, van
de multimedia apparaten te verbeteren.

Draagbare elektroniche apparaten moeten enerdgatodle functies aanbieden en anderzijds
lage vermogensdissipatie vertonen. Deze twee eigemn strijd met elkaar. Daarom concentreren
wij ons op een klasse van hardware die een goegroonis tussen die twee eisen vertegenwoordigt,
namelijk op applicatiedomein specifiekmultiprocessor systemen-op-een-chip (MP-SoOphs
onderzoek levert een bijdrage talynamische (d.w.z., run-time) optimalisati@en MP-SoC
systeemmetrieken. De centrale vraag daarbij iszgdsrhoe het systeem aan de eisen betreffende
tijdaspecten kan voldoen en anderzijds hoe belfegdaysteemmetrieken zoals de waargenomen
multimedia kwaliteit of de vermogensdissipatie geunpliseerd kunnen worden. In deze gevallen,
praten we over vermogensdissipatie of quality-ofise (QoS) management.

In dit proefschrift streven wij hetapriori gegarandeerd voldoen aan de eisen aan
bewerkingssnelheid na, voornamelijk door middel @malytisch redeneren. Dat houdt in dat de
analyse van de bewerkingssnelhe@hservatiefmoet zijn, d.w.z. het moet pessimistisch zijn wat
betreft de omstandigheiden die de bewerkingssreelaa het systeem negatief kunnen beinvioeden.
In de ingebedde-systemen industrie is conservatigferp het belangrijkste middel om een stabiele
kwaliteit te bereiken. Daarom vormt deze benadermk de basis voor dit onderzoek. Het
hoofdonderwerp van dit proefschrift is dusatelyse van de gegarandeerde bewerkingsneNeaid
multimedia toepassingen op multiprocessoren.

Onze analysemethode is voornamelijk bedoeld voor densturen van de dynamische
optimalisatie van de systeemtoestand, dat typikscticdgt verloopt. Een manager van de beschikbare
hardware en software middlen of een kwaliteitsmanagorspelt deuitvoeringstijd d.w.z., de tijd
die het systeem nodig heeft om een bepaald aamefaheden invoergegevens te bewerken.
Uitvoeringstijden zijn afhankelijk van de bewerlgegevens. Wanneer de uitvoeringstijden kleiner
worden kan de manager de controleparameter vogewenste systeemmetriek zodanig instellen dat
de metriek verbetert maar het systeem vertraagthdh geval van de optimalisatie van de
vermogensdissipatie wordt het systeem dan ingesmid een regime met een lagere
vermogensdissipatie. Wanneer de uitvoeringstijderoteg worden, kan de manager de
controleparameter instellen voor snellere bewerkimgn de invoergegevens om zo de
uitvoergegevens op tijd te produceren. Bij QoS rmgan@ent zal de toepassing dan ingesteld worden
op een kwaliteitregime met wat lagere kwaliteitnAde tijdeisen wordt op die manier altijd voldaan,
terwijl de belangrijke systeemmetrieken zo zo goedelijk gehandhaafd worden.

Jammer genoeg is het handhaven van systeemmetidkerermogensdissipatie en kwaliteit op
het optimale niveau tegenstrijdig met ons hoofdigéee d.w.z., gegarandeerde bewerkingssnelheid.
Om een gegarandeerde bewerkingssnelheid te gaesandenet men af en toe wat kwaliteit of
vemogensdissipatie opofferen. Daarom dient de Hémgssnelheidsanalyse niet alleen conservatief
te zijn, maar ook nauwkeurig, zodat de belang®gjksgsteemmetrieken niet teveel lijden onder de
conservativiteit. Dit idee is echter niet gemakjkelie realiseren in de aanwezigheid van twee
factoren, namelijk, parallelle uitvoering van deplgatie op een aantal processoren en de
afhankelijkheid van de uitvoeringstijden van deutgegevens. Niettemin bereiken we het doel van
een conservatieve en nauwkeurige schatting varedeiingssnelheid voor een belangrijke klasse
van multiprocessoren en multimedia toepassingen.

We beschouwen een algemeen MP-SoC platform dat dy@mamische verzameling van
toepassingen uitvoert, waarbij elke toepassing ebmaakt van één of meer processoren. We



veronderstellen dat de toepassingen onafhankdilijk@m tijdeisen te ondersteunen, vereisen we dat
het platform gegarandeerde reken-, communicatiegameugenbudgetten aan toepassingen kan
verstrekken. In overeenstemming met belangrijk@dsein systemen-op-een-chip communicatie,
onderstenen we zowel globale bussematsverken-op-een-chip

Wij modelleren elke toepassing als een homogenehsgne dataflow (HSDF) graaf, waar de
toepassingstaken als graaf knooppunten, ‘actormagmd, worden gemodelleerd. We ondersteunen
dynamische gegevenafhankelijke bewerkingsvertragingor actoren. Dit maakt HSDF grafen zeer
bruikbaar om moderne multimedia toepassingen teeittezén. Onze reden om HSDF grafen als
basismodel te accepteren is verder dat zij eenggbasis vormen voor analytische berekening van de
bewerkingssnelheid.

In de geschetste context levert dit proefschrift Belangrijke bijdragen:

1. Gegeven een toepassing die op een MP-SoC platfofgebeeld is, gegeven de
snelheidsgaranties voor de processoren en het coioatie netwerk, en gegeven constante
vertragingen van de actoren, berekenen we de bawsrielheid van het systeem als geheel.

2. Gegeven een afgebeelde toepassing en snelheidsgaraoals in het vorige punt, breiden we
onze benadering uit van constante actorvertraginggar dynamische gegevensafhankelijke
actorvertragingen.

3. We stellen een globaal implementatietraject vodrrdat de toepassingsspecificatie begint en
verder bestaat uit fasen die uitgevoerd worden mgedie het ontwerptraject en gedurende de
operationele fase van het systeem. Het implemeirajgct gebruikt een uitgebreide versie van
het HSDF basismodel als middel om de ontwerpbesiuiie worden genomen weer te geven.
We stellen het implementatietraject niet alleenrvom de eerste twee bijdragen in de juiste
context te plaatsen, maar ook om onze visie op @eschillende delen van het
implementatietraject te presenteren, wat een carhpleeld oplevert.

Onze eerste bijdrage is gebaseerd op zogenaamd€infRGprocessor communicatie) grafen.
Zo'n graaf is gebasserd op het idee om één enkettengsmodel (namelijk, HSDF) voor alle
onderdelen van het systeem te gebruiken, namedijkelleneenheden, de communicatieonderdelen
en de FIFO first-in-first-ouf) geheugen modules die gebruikt worden als buftessen de
rekeneenheden en de communicatie onderdelen. Wbehehbls eerste HSDF graafstructuren
voorgesteld voor de modellering van zowel de inac#pit beperkte FIFO buffers als ook on-chip
netwerk verbindingen die bandbreedte garanties iedab. Op die manier maken onze HSDF
modellen de graaf-theoretische formulering mogelgk het minimalisatie probleem van de vereiste
FIFO buffercapaciteiten onder tijdeisen. Dat geeft middel om bij een gegeven kandidaatoplossing
voor de buffergroottes de bottlenecks in bewerkiediseid op te sporen, om ze vervolgens te kunnen
verwijderen. Om dit aan te tonen, gebruiken weRIEGQ decoder case study toepassing. Ook, tonen
we aan dat, met constante actorvertragingen diseceatief zijn voor een gegeven JPEG beeld, we
uitvoeringtijden kunnen voorspellen van het JPEGoderen op twee processoren met een
nauwkeurigheid van 21%.

Onze tweede bijdrage is gebaseerd op een uitbgeidem de scenariobenadering. Deze
benadering is gebaseerd op de observatie dat Imeindyche gedrag van een toepassing typisch
samengesteld is uit een beperkt aantal sub-gediagim.w.z., scenario's, die gelijkaardige veraiste
hebben in termen van benodigde hardware middeleat weerkomt op gelijkaardige
actorvertragingen in de context van dit proefsthtfet voorafgaande werk aangaande scenario's
behandelt slechts toepassingen voor een enkelegsmcof multiprocessortoepassingen die niet alle
flexibiliteit van het HSDF model benutten. Wij orkkelen nieuwe op scenario’s gebaseerde
technieken in de context van HSDF grafen, om disdiyerlap in de overgang tussen verschillende
scenario's af te leiden, wat in het algemeen esstnis om een goede nauwkeurigheid te bereiken
voor het geval van een multimedia toepassing diitlop een multiprocessor. Wij realiseren dit
idee in een case study toepassing — de MPEG-4 desad willekeurig-gevormde video objecten,
en bereiken een voorspelling van de uitvoeringstigt een gemiddelde nauwkeurigheid van 11%.
Voor zover wij weten, kan, voor de beschreven odptegeen andere bestaande
prestatieanalysetechniek een vergelijkbare nauviddeeid bereiken en tegelijkertijd de te realiseren
bewerkingssnelheid garanderen
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