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Abstract 

An Accurate Analysis for Guaranteed Performance of Multiprocessor 
Streaming Applications 

Already for more than a decade, consumer electronic devices have been available for 
entertainment, educational, or telecommunication tasks based on multimedia streaming 
applications, i.e., applications that process streams of audio and video samples in digital form. 
Multimedia capabilities are expected to become more and more commonplace in portable 
devices. This leads to challenges with respect to cost efficiency and quality. This thesis 
contributes models and analysis techniques for improving the cost efficiency, and therefore also 
the quality, of multimedia devices. 

Portable consumer electronic devices should feature flexible functionality on the one hand 
and low power consumption on the other hand. Those two requirements are conflicting. 
Therefore, we focus on a class of hardware that represents a good trade-off between those two 
requirements, namely on domain-specific multiprocessor systems-on-chip (MP-SoC). Our 
research work contributes to dynamic (i.e., run-time) optimization of MP-SoC system metrics. 
The central question in this area is how to ensure that real-time constraints are satisfied and the 
metric of interest such as perceived multimedia quality or power consumption is optimized. In 
these cases, we speak of quality-of-service (QoS) and power management, respectively. 

In this thesis, we pursue real-time constraint satisfaction that is guaranteed by the system by 
construction and proven mainly based on analytical reasoning. That approach is often taken in 
real-time systems to ensure reliable performance. Therefore the performance analysis has to be 
conservative, i.e. it has to use pessimistic assumptions on the unknown conditions that can 
negatively influence the system performance. We adopt this hypothesis as the foundation of this 
work. Therefore, the subject of this thesis is the analysis of guaranteed performance for 
multimedia applications running on multiprocessors. 

It is very important to note that our conservative approach is essentially different from 
considering only the worst-case state of the system. Unlike the worst-case approach, our 
approach is dynamic, i.e. it makes use of run-time characteristics of the input data and the 
environment of the application.  

The main purpose of our performance analysis method is to guide the run-time optimization. 
Typically, a resource or quality manager predicts the execution time, i.e., the time it takes the 
system to process a certain number of input data samples. When the execution times get smaller, 
due to dependency of the execution time on the input data, the manager can switch the control 
parameter for the metric of interest such that the metric improves but the system gets slower. For 
power optimization, that means switching to a low-power mode. If execution times grow, the 
manager can set parameters so that the system gets faster. For QoS management, for example, 
the application can be switched to a different quality mode with some degradation in perceived 
quality. The real-time constraints are then never violated and the metrics of interest are kept as 
good as possible. 

Unfortunately, maintaining system metrics such as power and quality at the optimal level 
contradicts with our main requirement, i.e., providing performance guarantees, because for this 
one has to give up some quality or power consumption. Therefore, the performance analysis 
approach developed in this thesis is not only conservative, but also accurate, so that the 
optimization of the metric of interest does not suffer too much from conservativity. This is not 
trivial to realize when two factors are combined: parallel execution on multiple processors and 
dynamic variation of the data-dependent execution delays. We achieve the goal of conservative 
and accurate performance estimation for an important class of multiprocessor platforms and 
multimedia applications. Our performance analysis technique is realizable in practice in QoS or 
power management setups.  

We consider a generic MP-SoC platform that runs a dynamic set of applications, each 
application possibly using multiple processors. We assume that the applications are independent, 
although it is possible to relax this requirement in the future. To support real-time constraints, we 
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require that the platform can provide guaranteed computation, communication and memory 
budgets for applications. Following important trends in system-on-chip communication, we 
support both global buses and networks-on-chip. 

We represent every application as a homogeneous synchronous dataflow (HSDF) graph, 
where the application tasks are modeled as graph nodes, called actors. We allow dynamic data-
dependent actor execution delays, which makes HSDF graphs very useful to express modern 
streaming applications. Our reason to consider HSDF graphs is that they provide a good basic 
foundation for analytical performance estimation.  

In this setup, this thesis provides three major contributions: 
1. Given an application mapped to an MP-SoC platform, given the performance guarantees 

for the individual computation units (the processors) and the communication unit (the 
network-on-chip), and given constant actor execution delays, we derive the throughput 
and the execution time of the system as a whole.  

2. Given a mapped application and platform performance guarantees as in the previous 
item, we extend our approach for constant actor execution delays to dynamic data-
dependent actor delays. 

3. We propose a global implementation trajectory that starts from the application 
specification and goes through design-time and run-time phases. It uses an extension of 
the HSDF model of computation to reflect the design decisions made along the 
trajectory. We present our model and trajectory not only to put the first two 
contributions into the right context, but also to present our vision on different parts of 
the trajectory, to make a complete and consistent story. 

Our first contribution uses the idea of so-called IPC (inter-processor communication) graphs 
known from the literature, whereby a single model of computation (i.e., HSDF graphs) are used 
to model not only the computation units, but also the communication unit (the global bus or the 
network-on-chip) and the FIFO (first-in-first-out) buffers that form a ‘glue’ between the 
computation and communication units. We were the first to propose HSDF graph structures for 
modeling bounded FIFO buffers and guaranteed throughput network connections for the 
network-on-chip communication in MP-SoCs. As a result, our HSDF models enable the 
formalization of the on-chip FIFO buffer capacity minimization problem under a throughput 
constraint as a graph-theoretic problem. Using HSDF graphs to formalize that problem helps to 
find the performance bottlenecks in a given solution to this problem and to improve this solution. 
To demonstrate this, we use the JPEG decoder application case study. Also, we show that, 
assuming constant – worst-case for the given JPEG image – actor delays, we can predict 
execution times of JPEG decoding on two processors with an accuracy of 21%. 

Our second contribution is based on an extension of the scenario approach. This approach is 
based on the observation that the dynamic behavior of an application is typically composed of a 
limited number of sub-behaviors, i.e., scenarios, that have similar resource requirements, i.e., 
similar actor execution delays in the context of this thesis. The previous work on scenarios treats 
only single-processor applications or multiprocessor applications that do not exploit all the 
flexibility of the HSDF model of computation. We develop new scenario-based techniques in the 
context of HSDF graphs, to derive the timing overlap between different scenarios, which is very 
important to achieve good accuracy for general HSDF graphs executing on multiprocessors. We 
exploit this idea in an application case study – the MPEG-4 arbitrarily-shaped video decoder, and 
demonstrate execution time prediction with an average accuracy of 11%. To the best of our 
knowledge, for the given setup, no other existing performance technique can provide a 
comparable accuracy and at the same time performance guarantees. 
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1 Introduction 
This thesis concerns with the design of digital systems embedded in consumer electronics 

products, e.g. mobile phones, pocket computers, etc. It focuses on multimedia embedded systems, 
i.e., the tiny computer systems that are built into those devices and that perform various video 
and audio processing tasks. 

The design objective is to create an embedded system that has low cost and low power 
consumption. The increasing hardware design effort in the deep-submicron VLSI (very large 
scale integration) technologies as well as the costs of masks dictate the requirement that the 
existing designs be reused as much as possible. This can be achieved using a platform, i.e., an 
available hardware design that can be programmed for the required functionality. Then the 
system is implemented just by programming the platform.  

One important issue here is the fact that the programming should ensure that the embedded 
system meets its real-time constraints specifying the timing properties expected by the user. 
When the programming is done in a traditional timing-unaware way and the platform is chosen 
using intuitive rule-of-thumb methods, most likely the design will not satisfy the constraints at 
all or it will be characterized by unreliable timing behavior or it will be too power-hungry. 
Taking the timing behavior into account as an afterthought and trying to adjust it for real-time 
constraint satisfaction may result in multiple design iterations, involving laborious re-design of 
the software. Timing is currently one of the most limiting factors in the software code generation 
for embedded systems, as pointed out by Edward Lee in [51]. 

We consider it important to make the programming easier by using an implementation 
trajectory that is oriented towards real-time constraint satisfaction and automates the necessary 
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steps to reach that goal. In the ideal case, the system should become timing-correct by 
construction. In reality, one can expect a significant reduction in the number of design iterations. 
The performance analysis formalism proposed in this thesis provides unambiguous guidelines for 
creating an automated timing-aware implementation trajectory, which contributes to easier 
programming. 

Another important issue, especially for portable devices, is to ensure low power consumption. 
Therefore, the platforms should include sub-circuits tuned for a specific class of computations 
that are characteristic to a limited but still reasonably large subset of applications, called an 
application domain. We choose for such domain-specific platforms and reduce our scope to the 
multimedia streaming application domain, covering various video and audio processing 
applications. 

What kind of platform to choose? We target our studies to the multiprocessor systems-on-chip 
– MP-SoC, i.e., platforms having multiple processor cores on a single chip. We motivate this 
choice later in this chapter. 

Unfortunately it is not easy to exploit the multiprocessor parallelism, especially when 
imposing the real-time constraints. This difficulty has to be addressed by a design methodology, 
having three main ingredients, namely, application domain analysis, appropriate platform 
architecture design and the mapping of the applications to the platform.  

However, in addition to parallelism, another factor that complicates the embedded multimedia 
system design is the dynamic data-dependent execution delays of the application tasks, which 
can be treated efficiently by adaptation, i.e., the dynamic adjustment of the controllable system 
settings to the current computation workload. One contribution of this thesis is an analytical 
framework for on-the-fly performance evaluation of the running system. A tough problem that 
we address is predicting the throughput of an application that is mapped to several processors 
under the conditions of variable computation workload. In addition to that, our work also 
contributes to the design methodology, in terms of support for on-chip communication channels 
implemented using networks-on-chip (NoC), which is an important new trend for MP-SoCs.  

Because we bind our performance analysis approach to a certain design methodology, we 
describe this methodology in the first part of this chapter. Sections 1.1, 1.2, and 1.3 study the 
three major ingredients of a design methodology one-by-one – namely, the application-domain 
analysis, the multiprocessor platform architecture and the mapping of the applications to the 
multiprocessor. 

In the rest of the chapter, we zoom into the core problems addressed by this thesis – i.e. 
dealing with the dynamic timing behavior of streaming applications running in MP-SoCs. Also, 
we analyze related work and summarize our contributions and the structure of the thesis. 

 

1.1 Application Domain Analysis 
1.1.1 Run-time Combinations of Applications 

An important trend in modern consumer electronic media systems is that they are becoming 
more interactive, providing user interfaces with the possibility to open, rearrange and close 
different video/audio presentations, telecommunication sessions, etc. Interactive systems are 
characterized by multiple possible combinations of such activities, also known as use cases. 
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For example, Figure 1.1 describes an interactive television system where the user can open 
multiple windows with video or teletext. The particular use case shown in the figure combines 
two video windows and one teletext window. The diagram of the use case can be split into three 
parts corresponding to each window, and we say that three corresponding applications are 
currently active in the system. Each video application continually executes a chain of tasks 
processing video data streams. The teletext application executes another chain of tasks. Due to 
the user actions like opening and closing the windows or due to the environment, the number of 
applications, their structure as shown in the diagram, and the basic settings (e.g. resolution or 
color depth) may change at run time. This corresponds to switching between different use cases. 
For more use-case examples, see e.g. [67]. 

In general, we associate an application with an activity that is started and stopped at run time 
by events originating from user actions or the environment. A media streaming application can 
be split into a few tasks and represented by a task graph, modeling the communication between 
the tasks. Task graphs of different applications are combined together to form one use case. In 
Figure 1.1, the graphs of different applications are highlighted using different color 
combinations. 

Different applications may belong to different types, e.g., the video sample rate conversion 
application and teletext application, and for each interactive system one can make a list of 
different types of applications that can be involved in the system. Also some applications can be 
in different modes that can be switched due to the user actions, e.g., a video window may have 
color depth settings, and when it is in front of other windows it may be switched to high-quality 
mode.  

Which particular combinations of applications of different types and in different modes will 
be activated at run time is not predictable at design time, and the number of possible 
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Figure 1.1 A use case in a multi-window TV system 
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NR –  video noise reduction 
HSRC – video horizontal sample rate conversion 
VSRC – vertical sample rate conversion 
mem –  background memory access 
100Hz – conversion to 100 Hz frame rate 
Txt gen – generation of text image for teletext 
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combinations can be exponential in the number of types and modes. In practice, the number of 
use cases of interactive systems can reach a few tens and even a few thousands. 

 

1.1.2 Synchronization, Pre-scheduling and Shared Memory 

For the task graphs of multimedia streaming applications, we make one important assumption 
on the way the tasks communicate with each other. We assume that the data are exchanged using 
a set of point-to-point channels where the data is communicated in one direction, first-in-first-out 
(FIFO). The channel examples are shown as arrows in Figure 1.1. 

Restricting ourselves to FIFO communication is an important choice. Let us make a short 
overview, to position this choice in a more general context. The most general way to represent 
inter-task communication is a shared memory model. Unlike FIFO, it allows any order of writes 
and reads of the communicated data. Two major methods to ensure correct order of reads and 
writes are synchronization and pre-scheduling. Every design methodology uses a certain 
combination of those two methods. 

Synchronization means that, prior to read/write, a task checks for certain conditions set by 
other tasks. To ensure real-time constraint satisfaction, this method requires performance 
analysis, e.g. the one proposed in this thesis. Pre-scheduling means putting restrictions on the 
order in which different concurrent tasks are executed, which can go as far as creating a detailed 
schedule with prescribed starting times for every task execution. The pre-scheduling makes it 
easier to analyze the timing properties of the system and thus reduces the need for performance 
analysis. 

For the multimedia streaming applications implemented on programmable processors, it is 
crucial to use synchronization, for efficiency reasons. A major reason why we chose FIFO 
communication is that it is an efficient way for task synchronization. Another major reason is 
that FIFO is a wide-spread communication method for the multimedia streaming application 
domain. For the topic of this thesis, it is important to note that the assumption that the 
communicated data is organized in queues (i.e. FIFO memories) is a typical prerequisite for 
applying most known performance analysis formalisms for parallel computer systems. For 
example, this assumption is necessary for all formalisms we discuss later on in the related work 
section. 

In practice, FIFO communication is not the only possible communication scheme in the 
multimedia streaming application domain. The order in which the data is read and written can 
follow a different pattern, e.g. a matrix can be first written row-by-row and then read column-by 
column. Worse still, the order can be unpredictable, e.g. the video movie players typically use 
so-called motion compensation, which can read data in many various orders, depending on the 
direction in which video objects move in the given movie. Therefore, certain task graph models 
for embedded systems support such forms of communication; for an overview and generalization 
see e.g. the book by F. Thoen and F. Catthoor [95]. 

Nevertheless, for the reasons mentioned earlier, we still insist on restricting ourselves to the 
task graphs with FIFO communication. We assume that the other forms of communication are 
handled by pre-scheduling and can be avoided in the task graph without loss of generality, by 
abstraction. For example, if some tasks use a fixed non-FIFO communication pattern, then one 
construct a fixed schedule for them and encapsulate them into one task, whose delay is equal to 
the length of the schedule. Note that this means that our methodology may suffer from some loss 
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of efficiency for the applications that extensively use shared memory communication with non-
FIFO communication patterns. 

Encapsulation of shared memory accesses into special tasks, dedicated for that purpose, is a 
universal abstraction to model shared memory communication in a task graph. Such tasks would 
represent the tasks executed by memory controllers, accessing shared memory on behalf of other 
tasks. For example, the task graph in Figure 1.1 has two such tasks, denoted as ‘mem’. In 
general, more elaborate modeling of shared memory is possible, using special task subgraphs, as 
proposed e.g. by Sander Stuijk in [85]. 

 

1.1.3 Real-time Constraints 

Real-time constraints are imposed on most streaming applications, which can be described in 
terms of throughput and latency.  The throughput is the rate of consuming the data at the input 
and of producing the data items at the output. The latency is the time interval between 
consumption at the input and production at the output.  

One can classify applications by their real-time constraints. 
Hard real-time (HRT) applications must always maintain certain throughput and/or latency. 

Usually, only safety-critical applications are considered as such, but in our definition this class 
also includes certain entertainment applications with high quality expectations – where the user 
would not tolerate even smallest visible or audible ‘artifacts’ in the multimedia contents. 
Examples are high-definition television and home theater.1  

Soft real-time (SRT) applications may sometimes fail to maintain the required 
throughput/latency, but they try to keep the effect of their misbehavior limited. This keeps the 
user still satisfied with the results. An example is capturing and displaying simple videos in a 
digital photo camera.  

Best-effort applications do not guarantee any concrete throughput/latency, but they try to be as 
fast as possible, so that the user feels comfortable with them. An example is downloading a 
photo album from Internet. In fact, best-effort applications are not real-time.  

In this thesis, under ‘applications’ we will usually understand soft or hard real-time 
applications. We also make another important assumption on the real-time constraints. We 
assume that the input and output data are organized in coarse-grain data chunks, usually referred 
to as frames, consisting of fine-grain samples, called tokens. An execution run of the application 
task graph should consume one input data frame and produce one output frame. We assume that 
the timing constraints are specified in terms of deadlines on the production of the output frames. 

Under this assumption, the throughput is defined as the rate of processing the tokens and the 
latency is equal to the timing length of the execution run, i.e. to the total time required to 
consume the input frame plus some propagation delay. Thus, the latency is approximately equal 
to the frame size divided by throughput. Therefore, under our assumptions, the latency is directly 
related to throughput. Throughout this thesis, we use term execution time for latency, and see the 
problem of execution time calculation as equivalent to the throughput calculation. 

We must admit that our assumption can be harmful for the latency-critical applications that do 
not cluster the data tokens into frames, e.g. some audio applications. An important way to 
alleviate this assumption would be to support the input and output task graph ports characterized 

                                                
1 Sometimes, applications for which an occasional violation of timing requirements is highly undesirable but not 
catastrophic are referred to as firm real-time. 
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by periodic patterns of data token consumption and production. We believe that our analysis 
approach can be extended to support periodic patterns at the input/output ports, and it is an 
important subject for future work. 

 

1.2 Platform Architecture 
1.2.1 Platform: Domain-specific MP-SoC 

The VLSI technology development is the driving force behind integrating more and more 
functionality in the new product generations of consumer electronic devices. The technology 
already allows putting multiple processor cores on a single die, organizing them as a 
multiprocessor system-on-chip (MP-SoC). One of the first MP-SoC architectures studied in the 
literature is MIT RAW [92]. Examples available on the market are platforms like Cradle 
Technologies Quad [17], illustrated in Figure 1.2, NXP’s Nexperia™ [70], and many others. 
Recently, Intel demonstrated a chip containing 80 processor cores [96] in 65 nm technology. 

In 130 nm technology, a MIPS R3000 processor with caches occupies around 3 mm2, and one 
can estimate that, in the year 2012 (with 45 nm technology), the same processing core will shrink 
to less than 0.5 mm2. With a chip area size of 100 mm2, this will allow over 200 MIPS cores 
placed on a single die. However, not the area but rather the power consumption will be the 
limiting factor for such an integration. One can extrapolate the dynamic power consumption of 
the MIPS core in 2012 to be around 25 mW. With a limitation of 1W for a single chip, this 
would reduce the number of cores from the 200 cores mentioned above to only 40 cores. Worse 
still, in addition to the dynamic power, the static (leakage) power will probably limit this number 
even further. Note that the abovementioned 80-core Intel chip is reported to consume 98 W [96], 
which is a power consumption that is affordable for an experimental general-purpose computer 
chip but not for an embedded system. 

Therefore, domain-specific MP-SoCs employ not only general-purpose processors like MIPS, 
but also application-domain specific processors, specialized for a limited subset of functions. As 
mentioned before, specialization leads to a considerable decrease in the power consumption, and 

 GPP – general-purpose processor 
DSP – processor specialized for digital signal processing 
I/O – chip input/output 

Figure 1.2 Cradle Technologies multiprocessor DSP: ‘Quad’ architecture 
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it can be very efficiently exploited in a multiprocessor environment, where one can forward each 
function to the processor that is specialized for it, especially if the platform is properly aligned to 
the application domain.  

An MP-SoC platform architecture includes not only processors, but also memories and 
interconnection infrastructure, which consists of, for example, buses and bus bridges, as one can 
also see in the Quad architecture in Figure 1.2. In the rest of this section, we consider the basic 
memory and interconnect properties, and then we describe the platform’s programming model, 
which characterizes the platform as a whole. 

  

1.2.2 Memory: from Centralized to Distributed  

To benefit from the increasing number of on-chip processors, the overall architecture should 
be decentralized. Only then the power consumption stays manageable and the performance 
scales up as new processors are added on the same chip. 

We illustrate this in Figure 1.3(a). This example is borrowed from a presentation of Hugo De 
Man [58]. It depicts the topology of a platform architecture with four processors and a large 
memory located on chip. Assume that this picture relates to an old VLSI technology and the 
energy consumption per cycle constitutes 8 energy units. Assume also that when we step to the 
current technology the chip area allows us to increase the number of processors by a factor of 4, 
see Figure 1.3(b). One would expect that the energy consumption would be multiplied by a 
factor much less than 4, because as the VLSI technology advances the dynamic energy per 
processor decreases. However, we see that instead the energy has increased by a factor of 5 [58]. 

The reason for this is as follows. The accesses to large memories contribute considerably to 
the overall energy consumption. This energy cost quickly grows even further if one adds 
memory ports for independent accesses, which is done in this example to avoid memory conflicts 
between processors and thus to guarantee performance scalability. 
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Figure 1.3 Spatial distribution of memory (source: [58]). 
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To reduce the energy and keep the performance scalability, it is required to split the global 
on-chip memory into smaller local memories accessed by only a very limited number of 
processors, e.g., two adjacent elements as shown in Figure 1.3(c). The figure mentions a 
tremendous decrease in the energy consumption estimated as 1 energy unit per cycle [58]. 

In the remainder, we assume each processor has a local memory for its instructions and data, 
like the DSP processors in Figure 1.2. 

 

1.2.3 Interconnect: Network-on-chip  

For fast communication across the chip, systems-on-chip employ a global interconnect. Quite 
often this interconnect is a bus, connecting all the processors and memories together in a 
centralized way. However, a single bus is not scalable in the number of elements, because 
processors compete with each other and have to wait for their turn. When the number of 
processors increases, the waiting time also increases, and so does the energy consumption due to 
the increase of capacitive load of the bus.  

Due to those problems, it is widely recognized that using only a single bus for communication 
is not appropriate for high-performance media platforms. Therefore, also for the global 
interconnect one should rather go for distributed topologies, e.g. multiple bus segments joined by 
bus-to-bus bridges. For example, in the Quad architecture, Figure 1.2, we see a two-bus 
computer architecture that can be connected to a global bus, which, in turn, can connect the 
given Quad to other Quads. 

From this point on, we use the name network-on-chip – or NoC – referring to any 
interconnection network with a distributed topology. 

Note that the choice we made – in Section 1.1.2 – of focusing on only FIFO form of 
communication and abstracting from other forms of communication offered by the shared 
memory model, also impacts our abstraction of the network-on-chip. Throughout this thesis, we 
see the on-chip network simply as a homogeneous medium being used to setup peer-to-peer 
FIFO channels between two processors. This makes the network topology irrelevant for us, 
whereas network topologies can be exploited to efficiently implement shared memory 
hierarchies and efficient communication between different processors in that context. Efficient 
organization of memory hierarchies is important for embedded system design [13]. Explicit 
support of memory hierarchies is a subject for future work. 

 

1.2.4 Programming Model: Reconfigurable Streaming 

A programming model describes how the programmer sees the platform. We refer to our 
programming model as reconfigurable streaming (RS).  

The RS model has two levels. At the first level, we introduce the platform configuration, 
implementing a single use case of the system. The second level is responsible for switching from 
one use case to another as applications are started and stopped at run time. This level is called 
reconfiguration.  

Let us first consider the configuration level, which considers a single use case, characterized 
by a concrete combination of running applications. The active system functionality at this level 
stays unchanged.  

A configuration consists of 
1) distribution of the use-case functionality between the processors, 
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2) organization of communication between the processors using a set of peer-to-peer 
channels going through the network-on-chip. 

Figure 1.4(a) shows an example of a configuration. We see that different program codes are 
distributed between different processors and that the communication channels are set-up between 
different sources and destinations. 

Reconfiguration involves setting up/tearing down the channels and reprogramming the 
processors. For example, Figure 1.4(b) shows a switch from the configuration in Figure 1.4(a) to 
another configuration, whereby some processors get programming codes that are different from 
the previous configuration and the communication channels are changed. In a distributed 
platform, a reconfiguration can take a considerable time, and then it should be done only 
occasionally. In our chosen application domain, it happens, first of all, when the system switches 
from one use case to another one, e.g., when a new application starts or when an active 
application adapts to the changing user requirements. 

The scheme of operation of the platform can be split into three major phases repeating after 
some time intervals: 

1. deciding upon a new configuration, or mapping, 

2. (re-)configuring, 

3. static streaming until the next special event from the user or an application. 

For practical examples of reconfigurable streaming and possible implementation strategies see 
e.g. [67] and [35]. 

In this thesis, we do not model reconfiguration. We assume that the reconfiguration is 
relatively rare, and that it does not happen during the time intervals where critical loops of 
applications are active. However, because reconfiguration is a very important tool for efficient 
use of the hardware resources, such a topic as implementation and modeling of reconfiguration is 
an important subject for future work. 
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1.3 Mapping and Timing Verification 
1.3.1 Mapping Problem 

Phase 1 in the platform operation scheme defined above – deciding upon a configuration – is 
a combinatorial problem. This problem is referred to as the mapping problem. It considers a 
system use case as a collection of task graphs of the active applications, e.g., such as in 
Figure 1.1. Given a use case and the platform, the mapping involves allocation of processors to 
the use case and assignment of tasks to the processors and specification of the set of channels for 
communication between tasks. Figure 1.5 shows an example, where four tasks are assigned to 
four processors and two channels serve for communication between the tasks. 

The resulting configuration should satisfy the real-time constraints of HRT (hard real-time) 
applications, and, up to some level of certainty, of SRT (soft real-time) applications as well. 
Therefore, it is the ultimate goal of mapping to implement the applications such that it is possible 
to verify not only their functionality, but also the real-time constraint satisfaction. The latter 
makes the mapping problem complex. 

To solve it, the design methodology should offer algorithms for timing-constrained mapping 
of applications to the platform. The mapping problem with real-time constraints is at least as 
complex as checking whether a given mapping solution satisfies those constraints. The latter is 
referred to as timing verification.  

Note that, in a perfect design methodology, the timing verification should not be necessary in 
any foreseen situation (where for HRT applications any possible situation should be foreseen) 
because timing constraints in such a perfect methodology should be satisfied by construction. 
However, in any case, timing verification should be possible. 

 

1.3.2 Reservation-based Approach  

A major challenge for timing verification is resource sharing. The basic resources of the 
platform are the processors, memories and the network-on-chip. Tasks may share the same 
processor. The channels share the network-on-chip, like the two channels in Figure 1.4(a).  
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Figure 1.5 Mapping of tasks to processors 
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Each resource has a limited capacity. A processor can perform only a limited number of 
operations per second. Memories have limited size. The network components have limited 
bandwidth. Each application utilizes the resource capacities to a certain extent. If two 
applications share the capacity of a processor or a network component, the applications may 
delay each other, especially if the aggregated utilization of the resource in question is close to 
100%. For example, in Figure 1.5, tasks T1 and T2 may belong to one application that shares 
some network resources with the application with tasks T3 and T4. These applications may delay 
each other even though those applications are functionally unrelated. 

The system designer cannot avoid resource sharing and high collective utilization of the 
resources, because to produce a competitive product, it is required to get the highest performance 
out of the available hardware. Thus, if no measures are taken in the platform, non-functional 
timing dependencies between applications will be common. As a consequence, every running 
application will be dependent on all other running applications, and the combination of all 
running applications will have to be subject to timing verification. Timing verification under the 
condition of processor resource sharing is usually referred to as schedulability analysis2 [80].  

Unfortunately, it is problematic to use a schedulability analysis method in our application 
domain. Because of multiple functional and non-functional dependencies between the tasks, it is 
only feasible to perform the analysis at design time. Therefore, to support any possible use case 
of the designed system, one should analyze all possible run-time combinations of applications in 
a use case, but we have already pointed out that the number of combinations grows exponentially 
as the systems get upgraded with new functionality.  

To avoid this difficulty, we rather choose for the reservation-based approach. The main idea 
is to reserve part of the capacity of the resources – called a budget – for each application at run 
time. Budgets are reserved in terms of capacity of the processors, network-on-chip and 
memories. Under these conditions, each resource behaves towards the application as an 
independent resource, as if there was no resource sharing. This way, one can perform the timing 
verification of each application independently of other applications. 

Therefore, we speak of timing composability, meaning that relevant performance metrics of 
each application are invariant in any composition of the given application with other 
applications. The concept of timing composability is well-known in real-time systems and is 
explained, among other, in the work of Hermann Kopetz [47]. Timing composability drastically 
simplifies the complexity of timing verification, because one considers different applications 
separately, and not in combination with others. As we see in the next section, it also simplifies 
the mapping problem.  

Of course, these benefits of our approach come at a certain price. Timing composability is an 
implementation restriction that may lead to loss of efficiency, especially for very dynamic 
applications [48]. An alternative to timing composability is schedulability analysis, carried out at 
run time. Although advanced schedulability analysis techniques for MP-SoC systems are 
proposed by K. Richter et al in [80], they are not directly suitable for being used at run time. The 
assessment of possible run-time schedulability analysis techniques is a subject for future work. 
The work of Akash Kumar et al [48] is an interesting example of work in that direction. 

Note that a potential threat for the reservation-based approach is brought about by run-time 
variations in operating conditions (e.g. temperature and supply voltage). Those variations may 

                                                
2 For the single-processor case, the most famous example of schedulability analysis is rate-monotonic analysis [54] 
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require the operating frequency of the processors to be adjusted at run-time. Nevertheless, we 
ignore this problem without loss of generality. The point is that we mainly focus on the 
performance analysis carried out at run time, i.e. at the moment when the operating frequencies 
are known and can be taken into account in performance calculations immediately. Handling this 
problem in a broader scope – e.g. in mapping and in platform design – is outside the scope of this 
thesis and is a subject for future work. 

 

1.3.3 Two-stage Mapping 

As a result of the timing composability, the mapping problem can be naturally split into two 
stages: intra-application mapping and multi-application mapping, as illustrated in Figure 1.6. 

At the intra-application mapping stage, for each application, budgets are reserved at different 
processor, memory and communication resources. For processors, this is done in terms of 
processor cycle budgets and for the network in terms of the communication bandwidth. For 
example, in the example in Figure 1.5, we reserve 20% of the clock cycles of processor I for task 
T1, 25% of the clock cycles of processor IV for task T2, and 10% of the maximum bandwidth for 
the channel from T1 to T2.  

A task-graph diagram, like the one shown in Figure 1.5, consisting of tasks joined by 
channels, whereby each task and channel is annotated by a resource budget value, is called a 
resource budget subnetwork, meaning a logical part of the multiprocessor network on-chip that 
operates independently due to resource reservations. As shown in Figure 1.6, a resource budget 
subnetwork is generated by the intra-application mapping stage.  

Note that, given all the resource reservations, a resource budget subnetwork is basically 
enough to reason about the application timing. Thus, the timing verification can be done already 
after the first mapping stage.  

The second stage of mapping is multi-application mapping. For the applications that must run 
on the platform, this stage fits the resource budget subnetworks on the physical platform. The 
outcome of this stage is the low-level configuration data that can be loaded into the platform to 
set up a new configuration. 

One disadvantage of the two-phase approach is that the intra-application mapping stage 
restricts the freedom of possible solutions that can be exploited by the multi-application mapping 

appl 1 

intra-appl. mapping 

timing verification 

appl 2 

multi-appl. mapping 

resource budget 
subnetwork 

platform configuration 
data 

Figure 1.6 Two-stage mapping 
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stage. Another disadvantage is that it relies on the timing composability and thus can be 
inefficient for very dynamic applications. 

At the same time, the two-stage approach has two important advantages.  
First, for many applications, the system designer can perform the intra-application mapping 

and timing verification at design time. (The multi-application stage still has to be performed at 
run time.) This is possible because no run-time knowledge about the other applications running 
on the platform is required for that purpose. 

Second, if an application of the same type is represented in the run-time combination multiple 
times, one can reuse the given resource budget subnetwork for every application instance. 

 

1.4 Towards Run-time Performance Analysis 
In the previous sections, we provided a general context for this thesis by sketching the general 
design methodology framework. Now, within this context, we are turning our attention to the 
main topic of this thesis, namely, the run-time performance analysis. We start the discussion of 
this topic by introducing the main challenge addressed using the run-time performance analysis – 
i.e., coping with dynamic resource utilization. 
  

1.4.1 Sources of Dynamic Resource Utilization 

In general, a streaming system can be characterized by dynamically changing levels of 
required utilization of the resources. The problem that arises from this fact is to ensure that the 
required utilization of any resource by any application does not go above the application’s 
resource budget, because otherwise the real-time constraints will be violated. 

We refer to the dynamic variation of the resource utilization as dynamism. One can 
distinguish two sources of dynamism: 

1 starting new applications, stopping the active applications and adapting the active 
applications to the changing user requirements or environment; 

2 input data dependency of the processing times. 

The first source of dynamism has to do with switching between system use cases. This form 
of dynamism is dealt with at the multi-application level. The second source of dynamism refers 
to the data dependency of the processing times of tasks inside the applications. We see this 
phenomenon, first of all, in the applications that involve data compression, like MP3 audio and 
MPEG-4 video, because they need to process different numbers of input data bits within the time 
intervals of the same length. This form of dynamism is dealt with, for as much as possible, at the 
intra-application level, but if necessary the multi-application level is also involved. 
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Let us give a slightly more detailed example of the second source of dynamism. The MPEG-4 
standard supports arbitrarily shaped video objects on the video screen. As shown in the example 
in Figure 1.7, a video object is a variable-sized matrix of so-called macroblocks (MBs). Every 
macroblock is a fixed-size (16x16) matrix of pixels (i.e., dot elements of the picture).  As it is 
illustrated in Figure 1.7, the macroblocks can be divided into three different types, namely 
opaque blocks that are fully contained in the object, transparent blocks that are fully outside the 
object, and boundary blocks.  Because the object’s shape and size, encoded in the input data 
stream, may change quickly, the number of processor cycles needed for processing blocks over 
time may change as well. However, the real-time constraints typically require the object to be 
refreshed at a constant rate. Thus, within regular periods of time different numbers of processing 
cycles needs to be spent on data processing and the resource utilization changes. 

 

1.4.2 Three Degrees of Freedom to Cope with Dynamism  

In the presence of dynamism, classical mapping, meaning an optimized binding of fixed 
functionality to fixed resources, is not sufficient. To ensure meeting the real-time constraints 
under the conditions of dynamic workload, one can exploit several degrees of freedom. Three 
most important of them correspond to the three ingredients of the design methodology:  

1. For the applications, the freedom is to scale the visual/audio quality up and down, 
referred to as quality-of-service (QoS) management. 

2. For the platform, it is to scale the speed (and therefore the energy usage) of the 
resources up and down, called dynamic voltage/clock frequency scaling. 

3. For the mapping, it is the redistribution of the resource budgets between different 
applications, often referred to as renegotiation. 

The choice of the degrees of freedom3 to be used depends on the possibilities offered by the 
application algorithm and/or the platform. 

                                                
3 An example of the other degrees of freedom is switching between different algorithms implementing the same 
functionality, allowing to trade off speed for memory 
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1.4.3 Adaptation Framework to Handle Data Dependency 

The second source of dynamism, the data dependency of processing times, is potentially 
responsible for much more frequent changes in the resource utilization than the first source of 
dynamism, concerning the starting and stopping of applications. Therefore, when possible, it 
should be handled at the intra-application level to avoid frequent reconfiguration of the system. 

The applications, the mapping and/or the platform need to be enhanced with the ability to 
adjust themselves to the input data characteristics representing the resource requirements of 
processing. We refer to the run-time activity that adjusts the application/implementation 
parameters to the workload variations as adaptation. 

The adaptation can be seen as solving an optimization problem with constraints on 
performance. Figure 1.8 shows a typical example of a framework that implements such 
optimization. The figure introduces an optimization agent that can exploit the available degrees 
of freedom – i.e. quality, speed/energy and resource budgets – to adjust the settings of the 
optimization object – typically, an application. This should be done such that the real-time 
constraints, i.e., constraints on performance, are met and the optimization objective is reached – 
e.g., high quality, low energy and low requested resource budget. In Figure 1.8(a), the objective 
is denoted as F(x), where x is a vector of control parameters of the optimization object. As 
Figure 1.8(a) shows, the optimization agent requires a prediction of the circumstances under 
which the optimization object is going to operate. Only then it can take a proper decision and set 

(a) To optimize property F(x) of a useful object under the predicted 
circumstances, an optimization agent is introduced that sets the vector of 

control parameters, x 
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Figure 1.8 Optimization of F(x) with constraints on data-dependent performance 
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x in the best way. Figure 1.8(b) provides details on how the decision is taken by expanding the 
internal contents of the optimization agent.  

An optimization agent consists of an optimization unit that generates candidate solutions and 
a performance analysis unit, responsible for evaluation of those solutions. To illustrate the role 
of the performance analysis, we use an analogy with airplane control. One can estimate the 
future position of an airplane after time t given such input characteristics as current location r, 
speed v and acceleration a. The future position can be approximated by applying integration on v 
and a, and we get r + vt + at2/2 for the position at time t from now. This is a relevant metric that 
can be used to adjust the airplane control settings such that airspace congestion is avoided. 

In a similar way, the performance analysis predicts the performance metrics p relevant for the 
real-time constraints given the data complexity characteristics. For streaming applications, we 
mentioned that the relevant metric is throughput. Normally, some short-term variations of 
throughput can be tolerated, especially if the output is buffered in the memory buffer and 
particularly in case of soft real-time constraints. It is more important that the long-term average 
throughput, calculated using integration of fine-grain time intervals, stays within the constraint.  

The performance analysis is more than timing verification. It not only derives the relevant 
performance metrics, but also gives guidelines for the adaptation. If the current mapping choice 
does not satisfy the real-time constraints, the guidelines show which part of the implementation 
is a bottleneck and should be modified, and it also shows the direction for the necessary 
modification. By analogy to non-linear programming, where the objective function derivative 
may be used as an optimization guideline, in Figure 1.8(b), we denote the performance analysis 
guidelines as xp ∂∂ , although in reality our performance analysis approach may also give 

guidelines for discrete control parameters, such as a FIFO buffer memory capacity. In case the 
constraints are satisfied, the guidelines can help to estimate the extent to which the current 
control parameter settings can be relaxed, e.g., to improve the visual quality or to save power, 
without a risk to violate the constraints. Based on the received performance metrics and 
guidelines, the optimization unit may generate a new candidate solution to be analyzed, or it may 
decide to adapt the settings of the optimization object. Hereby, one needs to ensure that the 
algorithm does not run in an endless loop or at a local optimum.  

Note that in the diagram in Figure 1.8(b) the generation of candidate solutions, xk, is done 
from scratch, separately from the performance analysis. This approach is typical and quite 
universal. However, in some cases it is possible to improve the efficiency of this approach by 
integrating the solution generation and the performance analysis. 

The performance analysis is the main topic of this thesis. At the same time, the optimization 
algorithm issues such as candidate solution generation and stopping criterion are beyond our 
scope. Although the performance analysis can also be used for the design-time optimization, we 
mostly focus on using it to handle the dynamism due to data-dependencies, which is done 
through run-time optimization, or adaptation. 
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Figure 1.9 shows four examples of adaptation considered in practice. We present them here 
because they are possible contexts in which our performance analysis techniques can be applied. 
Each of them exploits one of the three degrees of freedom introduced in the previous subsection.  

Figures 1.9(a) and 1.9(b) show the adaptation based on QoS management, which we call 
quality adaptation. In related work, hierarchical control is proposed where two levels are 
distinguished [71]: local management (intra-application management) and global management 
(multi-application). At the intra-application level, one can introduce an optimization agent called 
a local manager (Figure 1.9(a)) which fine-tunes the quality settings of an application, whereas at 
the coarse level the quality is set by the global manager that oversees all the applications. 

Figure 1.9(c) shows the case where the optimization object is not only the application itself, 
but a stack consisting of the application and the underlying scheduler responsible for resource 
sharing. The optimization agent assigns different resource budgets to different applications, 
depending on their workloads. This is only possible at the global control level, because changing 
the budget of one application affects the budgets of other applications. We refer to this case as 
budget adaptation. 

Figure 1.9 Adaptation (run-time optimization) examples 
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Finally, Figure 1.9(d) presents power consumption adaptation, where dynamic voltage scaling 
is exploited with the objective to minimize the consumed energy. Because changing the 
frequency of a processor may affect multiple applications, this kind of adaptation is also 
performed at the global (multi-application) level. 

In all of the presented examples, it is meaningful to consider building performance analysis of 
some kind into the optimization agent. In the following section, we take a closer look at the 
performance analysis. 

 

1.4.4 The Required Profile for the Performance Analysis  

In this subsection, we make a ‘wish list’ of the performance analysis properties required for 
our design methodology and identify major appropriate means to achieve them. 

a) Guaranteed performance = conservative and, preferably, accurate 
To ensure good performance, one needs to be at the pessimistic side when estimating it, 

because if an embedded application too often fails to meet the real-time constraints, then it can 
become useless. Thus, our performance analysis should provide conservative estimates of the 
performance metrics, e.g., a lower bound on the throughput. On the other side, being too 
pessimistic on performance can result in paying too high a price in terms of higher energy 
consumption and lower visual quality. Therefore, it is desirable that the estimates are sufficiently 
accurate. The required level of accuracy is determined by trade-off between the analysis 
overhead and the loss in the adaptation objective (such as quality or energy), F(x), due to 
analysis error, which is often caused by analysis pessimism. To avoid a high price for pessimism, 
for SRT applications, we relax the conservativity requirement – by assuming the performance 
analysis may also give results that are pessimistic with a sufficiently high probability. In this 
case, we speak of weak conservativity, whereas a 100% guarantee is referred to a strict 
conservativity. The latter is a required for HRT applications. 

In the case when the required conservativity and accuracy levels are both achieved, we speak 
of guaranteed performance. We set it as a goal, but we must admit that satisfying both 
requirements is not always achievable in practice; therefore, we also accept situations where only 
conservativity is present, but the error is beyond the limits when the estimations can be called 
tight. 

b) Wide dynamic range and still not too far off ⇒ run-time 
We need our approach to scale up to a wide dynamic range of data-dependent processing 

times. To put it informally, the adaptation should be truly dynamic. However, the wider the 
dynamic range, the greater the uncertainty about the performance metrics of applications at 
design time.  

Therefore, at least part of our performance analysis should be performed at run time, because 
then the performance analysis can make use of run-time information about the application 
workload expected in the near future based on run-time characteristics of input data. This 
reduces the uncertainty and improves the accuracy. 

c) Appropriate Model: Multiprocessor parallelism and FIFO communication 
Performance analysis should be based on appropriate models. There are many models of 

computation that can capture the behavior of computer applications. An important class of such 
models explicitly captures the parallel activities, links between them and formal rules for 
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interaction through the links. In that class, two characteristic and well-established models are 
Communicating Sequential Processes (CSP) [37] and Kahn Process Networks (KPN) [43].  

The parallel activities can be characterized by the lifetime (e.g. continuous or temporary) and 
their nature, i.e., whether they are processor instructions, function calls or programs. We require 
support of multiprocessor parallelism, whereby several programs continuously run on different 
processors and interact with one another. Both CSP and KPN are suitable models to represent 
multiprocessor parallelism. 

As for the links and interactions between the programs, different models may have different 
assumptions. In CSP, processes interact through so-called channels by defining synchronization 
points at which a process waits until another process also reaches a particular synchronization 
point. In KPN, the programs communicate streams of data to each other through the channels in 
a FIFO order. For this reason, KPN is very well suitable in practice for modeling streaming 
applications [45]. Therefore, we prefer a model that intrinsically supports FIFO channels and has 
a direct relation to KPN instead of CSP. 

As already explained in Section 1.1.2, there are important reasons why we restrict ourselves 
to FIFO communication, and the other communication schemes are handled by pre-scheduling 
and encapsulation of the communicating sub-tasks inside the tasks of the task graph. 

d) Analytical; preferably, algebraic 
We prefer an analytical performance analysis approach. This means that we prefer to start 

from facts that one can rely upon (axioms) and to apply logical reasoning to arrive at the relevant 
results, the throughput estimation, in our case. In this case, one can rely upon the results and, in 
the case of errors, one can quickly trace them back to the wrong original assumptions. 

We want even more. Because, as we have seen before, the end result should be computed at 
run time, we prefer that it can be expressed algebraically, i.e., as an application of a well-defined 
sequence of limited-complexity operations to a well-defined combination of arguments. An 
example of an algebraic expression is the mentioned expression for prediction of the future 
position of an airplane, x + vt + at2/2. In the next section, we see examples for the context of SoC 
design. 

In case of streaming and multiprocessor platforms, the axioms would specify the timing 
properties of ‘microscopic’ low-level fine-grain operations carried out on small elements of a 
stream and primitive network-on-chip transactions. As the end result, we should obtain a coarse-
grain ‘macroscopic’ property, namely, the throughput of the application. This brings us to the 
final point. 

e) Covering long execution runs  
The streaming applications are typically characterized by long loops that produce a long 

sequence of stream data elements without interruption. Applying a brute-force approach by 
taking into account every stream element is not practical. We want our approach to scale up to 
any duration of uninterrupted execution. 

 

1.5 Analysis of Related Work 
1.5.1 From Static to Dynamic Optimization 

In Figures 1.8 and 1.9, we introduced frameworks for optimization of energy consumption, 
resource requirements and quality. Such frameworks can be divided into two major classes: 
static, whereby the input data characteristics are constant and can be computed or estimated at 
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design time, and dynamic, whereby the end results of the performance analysis are continually 
updated in correspondence to the run-time changes in the input data characteristics. The static 
approaches can provide a foundation for the dynamic ones. 

 Static approaches typically obtain worst-case/best-case or statistical (e.g., average case) 
performance metrics either analytically or empirically, either using a specification of input data 
properties or a sample set of input sequences. Static optimization frameworks are applied not 
only to program existing multiprocessor platforms, but also in hardware/software (HW/SW) co-
design.  

For example, Mladen Bereković et al [9] propose a HW/SW co-design approach to analyze an 
implementation of a particular video decoding algorithm. They evaluate the resource utilization 
using the linear formula ΣC(i)⋅F(i), where F(i) is the average frequency of task i and C(i) is the 
number of clock cycles to perform the task. If the resource utilization is too high, this technique 
provides guidelines on which task has the highest contribution and on how much effort should be 
put to decrease C(i) by enhancement of hardware resources.  

Although in [9] the platform contains two processors communicating with each other, their 
analysis was focused on only one of them, performing the most computation-intensive tasks; 
thus they ignored various subtle effects coming from multiprocessor parallelism and 
communication, e.g., processor stalling when waiting for data from another processor. But in 
general we cannot ignore those effects. We discuss the relevant research work on static 
performance analysis for multiprocessors in the next subsection. 

In the research on run-time power consumption adaptation, a popular approach is to 
extrapolate the performance metrics from those measured in the previous history. However, this 
work rests on the assumption that the performance metrics change rather smoothly in time. This 
approach does not satisfy our wish for the performance analysis to scale to wide dynamic ranges 
of processing time variation, and the assumption is, for example, not valid for many MPEG-4 
streams with arbitrary-shape video objects. 

Another popular direction in dynamic performance analysis can be seen as an extension of the 
static formula ΣC(i)⋅F(i) to the case where the task execution frequencies F(i) become run-time 
parameters provided as the input of the performance analysis. Such an approach is used in 
quality-of-service adaptation of 3D-graphics applications, e.g., as described by G. Bontempi et al 
in [10]. A very similar approach for a streaming application has been proposed by A.C. Bavier et 
al in [6]. Also the detailed workload prediction model for video decoding applications proposed 
by Yicheng Huang et al in [41] can be represented algebraically with the abovementioned linear 
expression. An advantage of this algebraic approach is the intrinsic support for arbitrarily long 
execution runs. A major disadvantage of the work in [10], [6], and [41] is the lack of support for 
multiprocessor parallelism and communication. 

All the examples given so far that allow for dynamism assume sequential execution. In the 
approaches surveyed in the next subsection the opposite is assumed: no dynamism and parallel 
execution. Note that allowing dynamism and parallelism in combination is a tough problem even 
for a standalone performance analysis, considered apart from the rest of the optimization 
framework. 

One approach for the dynamic adaptation of energy consumption in multiprocessors is 
proposed by Peng Yang et al in [99]. We explain their key idea for dealing with the dynamism 
combined with parallelism below, but first explain the limitations of their work for the problems 
addressed in this thesis. [99] is somewhat biased to control applications, because it assumes that 
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the set of possible execution paths is limited, whereas in arbitrarily long execution runs of 
streaming applications the set of alternative execution paths can be arbitrarily large. In a later 
continuation of [99], Zhe Ma et al [55] adapt the approach to long execution runs by representing 
an execution run of a streaming application as a concatenation of limited-size segments, i.e. pre-
calculated schedules. Unfortunately, this approach assumes that the segments are executed 
sequentially, one after another. This assumption will always lead to severe processor 
underutilization if the segments are to be pipelined. Not supporting pipelining is a serious 
limitation for streaming applications. To prevent underutilization due to sequential execution of 
different schedules, in [56] they propose timing-interleaving between the schedules. However, 
the method of [56] cannot be directly applied to the execution-run segments of [55], as they do 
not support dependencies between the segments. In [57], they consider a run-time scheduling 
approach that supports dependencies. For the streaming applications, their work would result in a 
fine-grain level of control, i.e. making a control decision for every segment, instead of handling a 
long execution run as one unit. Therefore, for long execution runs, they would potentially find 
more optimal run-time adaptation decisions at the cost of potentially larger run-time overhead. 
Up-to-date, we are not aware of any scheduling method that could take the inter-segment 
dependencies into account without analyzing every segment in the whole execution run.  

Nevertheless, [99] and [55] have introduced an important way for dealing with dynamism 
combined with parallelism. In that work, the set of alternative application execution paths is split 
into subsets with similar resource requirements. Those subsets are called scenarios. Each 
scenario is considered separately using static optimization at design time. At run time, different 
combinations of the static scheduling solutions are activated, using the run-time knowledge 
about which particular alternative execution path is taken at every segment of the execution run. 

An important idea of this method is that one can represent a dynamic system behavior by a 
discrete set of alternative static sub-behaviors. This makes the combination of dynamism and 
parallelism tractable for performance analysis due to separation between those two issues.  

Suppose that we have indeed separated dynamism and parallelism. Then we still have to deal 
with parallel applications, now being static. In the next subsection, we consider a class of 
candidate static performance analysis methods that can be applied for this case.  

 

1.5.2 Steady-state Performance Analysis 

The related work knows a few mathematical formalisms that can be used to analyze long runs 
of applications having static characteristics at the microscopic level of granularity – which is, in 
our design methodology, the level of primitive tasks and network transactions. What all those 
formalisms have in common is that their long-run or macroscopic performance metrics converge 
to a certain state of equilibrium, the steady state, and become static (stationary). Those 
formalisms are of big interest for us because they support long execution runs in multiprocessors, 
taking the parallelism and interactions into account. 

It is important to mention that the steady-state execution phase is preceded by a temporary 
transient phase. To extend a steady-state model to a dynamic model with multiple steady states, 
it is important that the transient phase can be analyzed as well. 

To analyze and optimize the programming of audio streaming applications on 
multiprocessors, IPC (interprocessor communication) graphs have been proposed by 
N. Bambha, S. Bhattacharyya and others in [5]. These graphs are instances of the homogeneous 
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dataflow graph (HSDF) model of computation, which can be seen as a special restrictive case of 
KPN. These graphs assume constant task processing times and a specific way of multiprocessor 
communication through the system bus [83]. By choosing HSDF model of computation, these 
graphs severely restrict the allowed communication properties of tasks, thus sacrificing the 
expressive power, but getting the ability to evaluate the performance analytically in return. The 
analysis formalism for this kind of computational model is max-plus algebra [4], which can be 
used to prove that IPC graphs have static average throughput in the steady state. This throughput 
metric can be derived analytically from the HSDF graph. Also the transient behavior of HSDF 
graphs is formally defined. We come back to these models in the next subsection. 

In [80], K. Richter, M. Jersak, and R. Ernst propose schedulability analysis for timing 
verification of combinations of multiprocessor applications. This approach requires the 
knowledge of the static worst-case and best-case performance metrics of the application tasks. 
That work analyzes the worst-case timing behavior of the system in the steady-state. As for the 
transient behavior, no formal reasoning is provided. The approach does not use resource 
reservation which can potentially lead to a better processor usage than approaches using resource 
reservations per application as we propose, but, as discussed before, the complexity of taking all 
interactions into account would make run-time performance analysis problematic. 

The formal modeling language POOSL can be seen as a model of computation with dynamic 
processing times of the system components, see e.g. Bart Theelen’s PhD Thesis [93]. The 
mathematical formalism applied for reasoning about the timing properties is Markov chains; for 
dataflow graphs it has been applied e.g. by Bart Theelen et al in [94]. Also this formalism 
requires the components to have some static properties. Here each processing time should have 
well-defined statistical moments (like the mathematical expectation and the standard deviation). 
However, in case of data-dependent streaming applications, where input data characteristics can 
change in an unpredictable way, it is not straightforward to find the conditions when an 
application possesses such a property, even in approximation. To avoid this issue, we leave 
evaluation of this approach to future work. Similar remarks can be made about other stochastic 
formalisms, like stochastic event graphs [4, §7, 8]. 

 

1.5.3 Conclusions on Related Work and Goal Formulation 

From the analysis of the related work, we draw the following conclusions. To support 
arbitrarily long execution runs on multiprocessor systems, we can use steady-state performance 
analysis approaches. To cope with dynamic behavior, we should be able to model it as a 
combination of several steady-state behaviors. Because this involves transitions from one steady 
state to another, the transient phases should be taken into account. 

HSDF/IPC graphs have a formalism for both transient and steady-state behavior and have a 
previous history of being used in the context of streaming applications. Moreover, they form a 
special case of KPN and inherit from them the support of FIFO communication (see 
Section 1.4.4). For these reasons, we choose to build our approach on HSDF graphs.  

This implies that we accept the HSDF-graph restrictions on the communication properties of 
tasks. Nevertheless, in the next chapter, we explain these restrictions and argue that reasonable 
workarounds are often possible. We also argue that, despite these restrictions, our work is still 
applicable for a large class of streaming applications. 
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Although our HSDF models reflect dynamic behavior (i.e.  data-dependent processing times), 
we do not model reconfigurations, i.e. changes from one configuration to another one. Our 
models assume that the mapping is static, see e.g. Figure 1.5.  This is a valid assumption when 
reconfigurations are rare, i.e. when they do not occur when the applications are actively busy 
with computations. Nevertheless, because our analysis approach is dynamic, we believe that in 
future we can extend this approach to support frequent reconfigurations as well. 

 

1.6 Contributions and Organization of this Thesis 
In this thesis, we consider a generic distributed-memory multiprocessor platform and 

streaming applications. These applications consist of tasks communicating through FIFO (first-
in-first-out) channels. To run an application, one has to perform mapping of the application onto 
the multiprocessor, i.e., distribute the tasks between the processors and organize the 
communication between them. 

Multiple applications can start and stop at run time, being executed in parallel to one another. 
Each application usually has real-time constraints requiring it to maintain a certain throughput.  
To make it possible for the applications to continually meet those constraints independently of 
other applications, we assume resource reservations per application. This means that each 
application gets capacity budgets on different resources of the platform.  

Within the context sketched above, this thesis contributes to the solution of the performance 
analysis problem. The primary task of the analysis is timing verification, i.e., checking whether 
an application can meet its real-time constraints. A positive or negative answer depends, in 
general, on the mapping and, which is very important, on the data content being processed by the 
application. 

Our main contribution to the multiprocessor performance analysis is twofold. First, we 
develop new timing models for applications mapped onto network-on-chip platforms. Second, 
for these models, we develop conservative analysis techniques to calculate important 
performance metrics related to application throughput. These techniques show promising results 
in terms of accuracy for a highly dynamic application we use as a case study. In the remainder of 
this section, we explain the main ideas of our contribution and the way we present them in the 
structure of this thesis. 

Our performance analysis techniques apply for long uninterrupted execution runs of highly 
dynamic applications on a multiprocessor system. To cover the long execution runs, we use a 
model of computation that supports multiprocessor parallelism and can be characterized by a 
steady-state behavior. The chosen model of computation is HSDF/IPC graphs. To support highly 
dynamic applications, we propose to characterize them by multiple transitions between different 
steady-state behaviors of IPC graphs. In Chapter 2, we introduce the basics of IPC graphs, and 
their main properties. We discuss the performance analysis for those graphs and extend that 
model such that different steady-state behaviors can be characterized. We also explain the 
practical use of the extended model in the context of quality adaptation. 

In the past, IPC graphs have been used only with constant processing times of graph nodes 
and only for multiprocessors with bus communication, whereas our distributed-memory platform 
assumes interconnection networks with distributed topologies. Therefore, we dedicate Chapter 3 
to the details of IPC graph construction, whereby we explain a generic method to model variable 
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processing times of the graph nodes and introduce novel methods to represent the network-on-
chip communication in IPC graphs. 

Having constructed an IPC graph, one can use it not only to calculate the application’s 
throughput, but also to improve the mapping solution. An IPC graph exposes subtle 
dependencies of the throughput on the implementation details. In Chapter 3, we show that the 
performance analysis can be used to select the size of the FIFO buffers such that the required 
throughput can be met.  

Chapter 4 first studies the theory behind the steady-state behavior of HSDF graphs with 
constant processing times, including some aspects that did not get much attention in the 
literature. Then, in Chapter 5, we turn our attention to the case with dynamic task processing 
times. There, we develop our novel concept of transitions between steady-state behaviors of IPC 
graphs in detail. This gives us a method to accurately estimate the throughput of a dynamic 
application and to provide guidelines for optimization also in the context of dynamic 
applications. As a result, we describe a throughput-related characteristic in the form ΣC(i)⋅F(i), 
traditionally used for dynamic performance analysis (see previous section). However, in our 
case, to cope with parallelism, the meaning of C(i) and F(i) in this formula are different from 
their meaning in the context of sequential execution. 

Chapter 6 revisits the MPEG-4 shape-decoding example illustrated in Figure 1.7. We consider 
a reasonable mapping of this application onto a multiprocessor platform and apply our 
performance analysis techniques to predict its varying performance under the conditions of a 
varying video object shape. We demonstrate the use of our techniques in a working quality 
adaptation manager that satisfies the description shown in Figure 1.9(a). 

Chapter 7 summarizes the thesis and discusses directions for future work. 
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2 A Strategy for Implementation and Analysis 
 
In Chapter 1, we sketched a system implementation approach that we argued to be relevant 

and important in advanced multimedia system design for consumer electronics products. That 
approach consists of two-stage mapping and run-time adaptation endowed with performance 
analysis. The latter is meant, in particular, to serve as an instrument to deal with high data-
dependent workload variations. In this chapter, we share our point of view on how the ideas 
raised in Chapter 1 can be realized, with an intention to create a background for presenting the 
modeling and performance analysis techniques of this thesis. The multimedia system design with 
on-chip multiprocessors is to a large extent an open research area due to their novelty, physical 
design challenges and extra degrees of freedom introduced to overcome those challenges. 
Therefore, we often have to refer to the work on multi-chip multiprocessors, which have a lot in 
common with on-chip multiprocessors. 

We start this chapter by introducing the behavior and implementation of a generic streaming 
application, in order to answer the question: what do we analyze? Afterwards, Section 2.2 gives 
an introduction into the existing performance analysis techniques that we use as a foundation to 
build our approach. We also explain how it contributes to the previous work. In Section 2.3, we 
discuss the adaptation techniques where the performance analysis of this thesis can be applied. 

This chapter raises several relevant implementation and analysis issues that are to a certain 
extent answered in the rest of this thesis. 
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2.1 The Object for Performance Analysis:  
Behavior and Implementation of a Streaming Application 
2.1.1 The Scope of Modeling: the Loop of Interest and HSDF graphs 

Design methods for embedded systems commonly assume a certain model of computation; 
for a detailed study of the models that are relevant for multiprocessor mapping see e.g. the book 
of F. Thoen and F. Catthoor [95]. The models reflect the properties of the application that are of 
interest for the system designer. 

The streaming applications are most of the time involved in a repetitive execution of a finite 
set of functions applied on the data items coming from the input data streams. Therefore, it is 
often implicitly assumed that the application contains a loop that is mainly responsible for the 
processing of the application. The design effort, directed at meeting the real-time constraints at 
optimal cost, is focused on that loop. In this thesis, we refer to that loop as the loop of interest.  

The model of computation that we choose for that loop is the model of synchronous dataflow 
(SDF) graphs [52], also known as the multi-rate data flow (MRDF) model of computation. It is 
widely used in the context of multiprocessors, e.g. in [83], [49], and [90]. Figure 2.1 gives an 
example of an SDF graph. The nodes of the SDF graph are called actors; they represent the tasks 
of the application. Each actor executes repetitively for an indefinite number of times. Every actor 
execution takes certain time, which we call the actor delay.  Before and after the execution, each 
actor receives and sends portions of information via incoming and outgoing graph edges from 
and to other actors. The elementary portions of information exchanged via edges are called 
tokens.  

 The main property that distinguishes the SDF model from other dataflow models is that each 
actor consumes and produces a fixed number of tokens per execution per input and per output, 
called consumption rate and production rate respectively. For example, as annotated in 
Figure 2.1, actor A has a production rate of three tokens per execution at the edge going to actor 
B, and actor B has a consumption rate of one token per execution at that edge. As a result, each 
actor is expected to execute at a fixed rate with respect to one another, e.g., actor B should 
execute three times more often than actor A. For that reason, SDF graphs are used to represent 
the streaming applications characterized by a set of fixed execution rates, e.g., in video image 
processing.  

(b) The equivalent HSDF graph 

B1 

A 

- edge  

A - actor 

B A 3 1

(a) An SDF graph 

Figure 2.1 Examples of dataflow graphs modeling the loop of interest 
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Nevertheless, we do not restrict ourselves to such applications; in this thesis, we also support, 
to a large extent, applications with variable rates, such as MPEG-4 arbitrarily shaped video. In 
order to do that we have to overcome the limitations of the SDF model that normally lead to their 
usage only in the context of fixed-rate applications. 

The main limitation of the conventional SDF model is that it does not allow data-dependent 
conditional execution of actors and conditional communication between them. It also does not 
allow conditional changes in the structure of the graph itself. The key idea we use to deal with 
the applications with data-dependent conditional behavior is to bring the conditional behavior 
into a different level of data granularity than the level represented by the SDF graph. 

Firstly, we allow the whole graph to execute a variable number of times per given time 
interval. Hereby, we support applications like the MPEG-4 application introduced in Chapter 1. 
Recall that, in that application, the number of blocks per video frame can change dynamically 
from one frame to another. In our implementation, one execution of all SDF actors processes one 
block. Hereby, the SDF graph does not need to model the dependency of the frame decoding on 
the number of blocks per frame, because the frame has a higher data granularity level than the 
data processed by the SDF graph. 

Secondly, we hide part of the conditional behavior inside the actors. We assume that the actor 
execution delays may change in a wide dynamic range. Thereby, when the specified application 
algorithm requires an actor to be skipped, we change the algorithm such that the actor is still 
executed but takes zero delay to execute. We refer to such zero-delay executions as ‘empty’ 
executions.  

Note that this changes the original timing behavior of the algorithm essentially, because the 
‘empty’ actor executions are essentially different from the conditionally skipped ones. The 
difference is that an ‘empty’ actor execution also reads and writes ‘empty tokens’. An ‘empty’ 
execution can be blocked, waiting for empty input tokens, thus slowing down the execution of 
the graph, whereas those tokens are not really required for the application algorithm to proceed. 

Thus, hiding the conditional behavior inside the actors may change the properties of the 
algorithm such that the system performance becomes worse. Nevertheless, by giving up some 
performance, we buy the predictability of the timing behavior of the system. If the performance 
penalty is not too large, the ability to analyze the timing behavior is likely to outweigh this 
disadvantage, especially for real-time applications. 

In this thesis, general SDF graphs serve only for the initial compact representation of the 
application. In our methodology, we mainly use a subclass of SDF graphs – homogeneous SDF 
(HSDF) graphs, also referred to as single-rate data flow (SRDF). An HSDF graph has an extra 
requirement that an actor may consume and produce only one token per input and output per 
execution. 

Therefore, at the very beginning of our implementation trajectory, we translate the SDF of the 
application into an HSDF graph. Figure 2.1 shows an example of such a translation. Because in 
the original SDF model, actor B has to execute at triple the rate of actor A, in the resultant HSDF 
graph, this is represented by three actor instances: ‘B1’, ‘B 2’ and ‘B3’. For any practical SDF 
graph, one can compute the relative execution rates and translate the SDF graph into an 
equivalent HSDF graph. For the computation of the relative execution rates, see e.g., Thomas 
Parks’ PhD Thesis [73, §2.3] and for the translation algorithm see e.g. [32]. 

Being modeled as an HSDF graph, the loop of interest must satisfy certain assumptions. We 
assume that the body of the loop of interest consists of a fixed set of actors. The loop executes 
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multiple iterations whereby in each loop iteration each actor executes a fixed number of times. 
We also assume that each actor can communicate only a fixed amount of data per execution.  

We put a restriction that the loop of interest is flat, not nested, which, although limiting the 
direct applicability of our approach, still keeps it useful as an approach solving a difficult part of 
a more general problem. Indeed, one could build on top of our technique a more general 
hierarchical approach for nested loops. That technique would apply our technique recursively 
bottom-up, from the lowest level of loop nesting to the higher levels, whereby a lower-level loop 
would be presented to a higher-level loop as an actor whose execution delay is calculated using 
the loop execution time calculation method that we propose in this thesis. However, exploring 
such an extension of our performance analysis approach is subject of future work. 

Another quite essential assumption we take is that the timing of the loop of interest is 
autonomous, i.e., its actors can only be blocked waiting for other actors of the same loop, but 
they never block on external inputs and outputs of the loop. Of course, in practice, streaming 
applications do have external inputs and outputs (I/O) to exchange the data streams with each 
other and the environment. In fact, it should be technically possible to extend our approach at 
least to the case where a loop communicates with the other loops and the environrment using 
periodic communication patterns, but we leave a study on the impact of the external I/O on the 
loop’s performance for future work. In this thesis, we assume that at any moment of time there is 
enough external input data and enough external space for output data in the external I/O ports, so 
that the timing of the external I/O does not have any impact on the performance of the loop 
execution. Under this assumption, the loop of interest can be considered autonomous and no 
external I/O ports need to be modeled explicitly. Therefore, we do not model them in this thesis. 

We call a semantically defined set of subsequent loop iterations a loop execution run. The 
duration of the execution run is called the loop execution time. Because in a multiprocessor 
platform both data parallelism and pipelining can be applied to achieve the required 
performance, the loop execution time is approximately a linear function of the number of loop 
iterations in the execution run. Hereby, the linear factor of the linear function depends on the 
throughput of the HSDF graph (in terms of the average number of loop iterations per second). 
The constant component of such a linear function is normally referred to as ‘latency’. However, 
due to the fact that we do not enforce any periodic schedule on the dataflow graph execution, the 
problem of finding the constant component in the abovementioned linear function becomes 
much less trivial than traditional calculation of latency of the given periodic schedule. For that 
reason, we give the constant component of the execution time a different name; we refer to it as 
‘lateness’. 

For calculating the execution time for a loop with constant actor delays, finding lateness and 
throughput is a central performance analysis problem. For the calculation of throughput, efficient 
algorithms are available [19], [23]. Unfortunately, as we see later in the thesis, we cannot say the 
same about the lateness. For variable actor execution times, the expression characterizing the 
loop execution time is not as simple as just a linear function on the number of loop iterations. 
The basics for our characterization method will be introduced in the end of this chapter. 

 

2.1.2 The implementation-enhanced HSDF model and the implementation trajectory 

The SDF model of computation – and mainly its HSDF variant – is used throughout our 
implementation trajectory. We often refer to that model just as the SDF/HSDF graph. We 
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enhance the HSDF model with implementation information required for our methodology and 
call it the implementation-enhanced HSDF model. However, the functional and timing behavior 
of the model is identical to the behavior of the basic HSDF model widely used in the literature. 

Definition: An implementation-enhanced HSDF model is a tuple >< PQTG,GPQ ,   where 

G is an HSDF graph, T is the set of timing modes, and PQ is the implementation process 
network. ♦♦♦♦ 

Thus, T and PQ are enhancement components of our model, introduced later in this section. 
They are data structures organically connected to the basic HSDF model G, carrying necessary 
information for the implementation trajectory. 

At design time, the enhanced model is used simultaneously as a design database and a timing 
model for the given application. It undergoes transformations, following a trajectory from 
specification to executable. Together with the executable, the design flow issues a timing model 
of the executable, used at run time for adaptation. We call it the IPC model, or IPC4 graph. The 
IPC model is central to this thesis. It gives the information needed for run-time performance 
analysis of the application executable.  

Figure 2.2 shows our implementation trajectory, which constructs the IPC model and the 
executable at design time and employs them at run time. The trajectory consists of four parts, 
marked with Roman numbers. Parts I and II constitute the design flow, and parts III and IV 
constitute the run-time management.  

In this subsection, we give an overview of the trajectory, at the same time giving the 
definitions of the basic features of the implementation-enhanced HSDF model. These definitions 
are used in this thesis to explain our timing modeling and performance analysis approach. 

We start from the beginning of the design flow (the top part of Figure 2.2). First, the 
application designer provides the task graph as an SDF model. To construct a task graph, the 
application designer first divides the body of the loop of interest into computation actors, thus 
making the task-level parallelism explicit. The actors constitute the nodes of the task graph. Each 
actor has an actor body, which is a programming routine that implements the functionality of the 
actor. Having divided the loop body into actors, the application designer joins the actors by 
edges to specify the data dependencies between the actors. For each edge, a production and 
consumption rate is specified. The actors joined by edges that are annotated with production and 
consumption rates constitute an SDF graph. 

Definition: The task graph is the SDF graph that is provided by the application designer as a 
specification of the application’s loop of interest. ♦♦♦♦ 

As discussed in the previous section and shown in Figure 2.2, our implementation trajectory 
translates the task graph from SDF form into an HSDF equivalent. We call the result of the 
translation the computation graph, which is the first instance of the implementation-enhanced 
HSDF used in the design flow.  

Definition: The computation graph is the implementation-enhanced HSDF model GPQcomp 
that is obtained as the result of converting the task graph into its HSDF equivalent and enhancing 
the resulting HSDF graph G with enhancement components T and PQ. ♦♦♦♦ 

                                                
4 Recall that ‘IPC’ stands for interprocessor communication and this name comes from previous work on IPC 
graphs.  
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Below we define the basic HSDF graph and the enhancement components, motivating them and 
explaining how they are obtained in the beginning of the design flow. 

Definition: An HSDF graph, >< m,,EVG , is a directed graph, where V is the set of actors, 

which are the graph nodes. V has two subsets: commcomp VVV += , where compV  is the set of 

computation actors and commV  is the set of communication actors.  E is the set of edges, and m – 

or the marking – gives a non-negative number of initial tokens on each edge; for example, the 
IPC graph shown in Figure 2.2 has three edges with one initial token shown as black dots. On the 
given edge, the actor at the input side of the edge is called the producer of the edge. For 
example, in the computation graph in Figure 2.2, actor A1 is the producer for one of the edges. 
The actor at the output side of the edge is called the consumer. For example, in the computation 
graph in Figure 2.2, actor B is the consumer of two edges. ♦♦♦♦ 

This definition is general and holds at any point of the design flow. As for the computation 
graph, it contains only the computation actors, no communication actors are present in the model 
at the start of the design flow. Therefore, we can write: 

compVVG =⇒graphn computatio a is  

Definition: The set of timing modes: T . Timing modes are data structures defining the actor 
delays for all actors in the HSDF graph. Different timing modes provide different levels of 
accuracy of actor delay modeling, to be used for different purposes in the implementation 
trajectory. ♦♦♦♦ 

As shown in Figure 2.2, the timing modes are obtained from Part I of the implementation 
trajectory – the application preparation.  
Definition. Part I: Application Preparation The application preparation characterizes the 
timing behavior of the computation actor on the processor architectures available in the target 
platform. It tries different implementations of different actors on different processor architectures 
and measures the corresponding actor delays, using profiling or worst-case execution time 
analysis tools. The results are stored in the design database in the form of timing modes, T. ♦ 

The application preparation and the timing modes are more rigorously defined and explained 
in Sections 3.1-3.3 of the next chapter.  

Now the turn comes to describe the last but not the least component of our model – namely 
the implementation process network, PQ. In our approach, every HSDF graph that models the 
loop of interest is accompanied by the implementation information telling how the computation 
actors are to be bound to processors and how the data communication between the actors is to be 
organized. 

The implementation process network is a graph structure that is used as the intermediate stage 
for binding the HSDF actors to the processors of the target platform. It groups together the 
computation actors that share the same processor at run time. It also groups parts of the HSDF 
graph that model the communication between multiple actors through the same network 
connection. The computation actor groups are called processes and the groups of communication 
actors and edges are called channels. Also, on the per-process and per-channel basis, the design 
flow specifies the resource budgets. As discussed in Chapter 1, the resource budgets realize the 
reservation-based approach, which makes it possible for us to handle the dynamic sets of real-
time applications. Assigning the resource budgets to actor groups rather than to individual actors 
decreases the overhead of budgeting.  
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Definition: The HSDF implementation process network, PQ, is a tuple >< − BVQP bodycomp ,,  ,  

where P is the set of processes, which bundle computation actors in ordered subsets. Q  is the set 

of channels between the processes. P and Q are nodes and edges of a directed multigraph5, which 
reflects the structure of the process network. bodycompV −  is the set that, for each computation actor 

gives the actor body, inherited from the task graph (recall that it is the specification of the 
computation actor in a programming language). B is the budget descriptor, which specifies the 
resource budgeting for each process and channel. ♦♦♦♦ 

For the computation graph, the process network represents an initial naïve implementation, 
serving as the starting point for the mapping. For each actor, this implementation allocates 100% 
budget of a processor, and each edge gets one infinite-capacity channel. Therefore, in the 
computation graph, there is one-to-one correspondence between the actors and the processes, as 
well as between the edges and the channels. Also, the budgets assigned to the processes and 
channels of the computation are either maximal or infinite. 

Let ‘ ↔ ’ denote one-to-one correspondence (bijection). Then we can write: 

maximalBBQEPV

GPQ

=↔↔
⇒

   ,   ,            

graph n computatio a is  
♦♦♦♦ 

Part II of the implementation trajectory, i.e., the intra-application mapping flow, applies 
transformations to GPQ. The goal of the mapping is to minimize the costs (i.e., the number of 
processors and channels to be used, the computation and communication budgets) while meeting 
the throughput constraints. Many existing multiprocessor mapping techniques fit in the iterative 
approach illustrated in Figure 2.2. This approach is similar to the adaptation, which we described 
before in Figure 1.8. There is an optimization unit that selects the best solution based on the 
performance estimation of different solutions and on the guidelines from the performance 
analysis. In contrast to the adaptation, in addition to the search for optimal scalar settings, like 
budgets, the mapping flow also brings some structural changes into the model; for example, it 
adds communication actors into the graph. Therefore, in the figure, we use notation ‘GPQ’ 
instead of ‘x’ for the optimized variable. Because the optimization problem is complex, it is split 
into a few sub-problems that are solved one after another. The mapping also differs from the 
adaptation problem in the sense that the mapping does not have the run-time predictions of the 
input data complexity characteristics, but it uses estimates of the typical values of those 
characteristics that are supposed to hold for the whole application run. The intra-application 
mapping flow is described in more detail in Sections 3.5 and 3.6. 

After the mapping flow, the design is ready to be issued in the form of an executable. As 
shown in Figure 2.2, the final GPQ-model is split into two parts: the IPC model and the resource 
budget subnetwork. 

Definition: The IPC model or IPC graph is obtained from the graph and the timing modes of 
the final implementation-enhanced HSDF model. The IPC graph includes two components of 
that model: graph G and set of timing modes T.♦♦♦♦ 

For the completeness of illustration, Figure 2.2 shows an example of an IPC graph, which can 
be obtained starting from the computation graph shown in the same figure. However, we 
postpone a detailed discussion of IPC graphs until later in this chapter. IPC models are proposed 
in this thesis as timing models for run-time performance analysis and adaptation of 
                                                
5 In a directed multigraph, more than one edge can join two nodes in the same direction.  
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multiprocessor streaming applications. Therefore, in Figure 2.2, the IPC graph is fed to part III of 
our implementation trajectory. 

Definition: The resource budget subnetwork is the implementation process network obtained 
at the end of the design flow. It represents the executable as seen by the target platform. This 
resource budget subnetwork has a graph structure, given by the processes joined by channels.♦♦♦♦ 

As shown in Figure 2.2, the resource budget subnetwork is used by the multi-application 
mapping module, Part III of the implementation trajectory. When an instance of the given 
application is being started on the platform, it assigns the processes and channels of the resource 
budget subnetwork to the physical resources. The multi-application mapper finds the physical 
processors for the processes and physical routes for the channels. In some sense, it can be 
compared to placement and routing in logic synthesis or to the application loader in operating 
systems. We use term ‘subnetwork’, to suggest that, in the context of the global on-chip network, 
each application operates in separate virtual subnetwork, being independent of the other 
subnetworks due to resource reservation. 

Part IV of the implementation trajectory (see Figure 2.2) is the run-time adaptation manager. 
The functionality of that manager has been considered in detail in Chapter 1, see Figure 1.1. It 
can be responsible for run-time adaptation of application’s power consumption or quality of 
service. Those tasks are very similar in the sense of the optimization problems being solved, and 
in this thesis we restrict our reasoning to the quality-of-service adaptation. 

After the applications have been loaded into the platform and concrete physical resources 
have been allocated to concrete applications, run-time scheduling comes into play. It 
complements the functionality of the run-time management, but we do not include it as a part of 
the implementation trajectory. The reason is that the run-time scheduling is not involved in 
taking any optimization decisions; it only realizes the decisions already taken in the trajectory. In 
particular, the run-time scheduling manages the sharing of the platform resources such that the 
processes and channels definitely receive as many shares of the physical resources as specified in 
their resource budgets. Note that the run-time scheduling is distributed, every processor has a 
local scheduler and also the network components are arbitrated by local arbiters. 

Given the implementation trajectory and the run-time scheduling environment discussed in 
this subsection, it is the purpose of this thesis to show how the implementation-enhanced HSDF 
model can serve for efficient performance analysis at design time and at run time. The basic 
events for our performance analysis are the starting/completion events of the actor executions. 
Based on those events one can completely characterize the execution of the loop of interest 
without going too deeply into details. For the purpose of the performance analysis, our 
implementation-enhanced HSDF model should adequately take into account the following 
features of the modeled application: 

• the ordering of the events, determined by the chosen implementation paradigm,  

• the delays between events, determined by the chosen run-time scheduling mechanisms. 

Therefore, in the following subsections, we show the important facts about our 
implementation paradigm and the run-time scheduling. 
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2.1.3 The Implementation Process Network 

The core of the implementation process network is the processes and the channels, which are 
entities that implement the application.  

The processes are connected to the channels consistently to the computation actors contained 
inside them. Each actor has a body. The actor bodies are segments of software code that program 
the functional behavior. The computation actor bodies specify inputs and outputs through which 
they are connected to the incoming and outgoing channels. Hereby, the processes, in which the 
actors are contained, are also connected to the channels. An example of a process network is 
shown in Figure 2.3(a). 

Recall that for the computation graph holds that each process contains just one actor and each 
channel contains just one edge.  Given that, it is enough to have the process network to derive 
the rest of the implementation-enhanced HSDF model. The computation graph G can be easily 
derived from its process network, because PQ and G are isomorphic; one can find an example in 
Figure 2.3(b). However, during the mapping flow, the original processes are bundled together, 
forming more complex processes, and the same happens to the channels. For that reason, the 
isomorphism between PQ and G is not present anymore. Then, the process network can be seen 
as a coarse-grain view on the structure of the HSDF graph. To be more precise, for each channel 

BA 
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(a) a process network (b) the isomorphic HSDF graph  

- process: the computation  entity of the implementation 
 

- state channel 

• ensures a correct cyclic order for the local data processing  
• enforces all actors on the cyclic path to be mapped to the same processor 

• does not copy information, it stays at the same location 

Figure 2.3 Implementation process network 

- communication channel: the communication entity 
• FIFO data communication  
• potentially – across the network-on-chip 

- the ‘first’ channel, preceding the first actor in the state consistency order 
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Q∈iq , a channel macro )( iqGQ is defined, which is a substructure6 of G , consisting of edges 

and communication actors commV , modeling the channel behavior. Similarly, for each process, 

P∈ip , a process macro )( ipGP  is defined, which is a substructure of G  consisting of edges 

and computation actors compV , modeling the behavior of the process. 

To summarize the general correspondence between the process network and the HSDF graph 
within the implementation-enhanced HSDF model at any point of the mapping flow, we can 
write: 

{ }
{ }
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Let us first consider the channels. The purpose of the channels is to carry the application data 
structures that have a longer lifetime than a single actor execution. We classify such data as 
communication inputs, communication outputs and state.  

The communication inputs/outputs contain information that can potentially be communicated 
between different processors. Typically, it is only worth paying the communication overhead if 
the sender actor and the receiver actor are capable of executing concurrently. For example, at a 
certain point in the MPEG video-decoding algorithm, a new 8x8 element DCT7 block is 
extracted. It can be sent to an IDCT8 actor and that actor can start processing it concurrently with 
extraction of the next DCT block, because, in order to proceed with the extraction there is no 
need to wait for the results of the IDCT. Therefore, it is worth specifying DCT blocks as 
communication input of the IDCT actor. Another reason that can justify the costs of the data 
communication between two actors is knowledge that there are two different processor 
architecture types, each implementing one of the communicating actors much more efficiently 
than the other.  

The communication data is transferred between the actors by communication channels commQ , 

which form a subset of Q. For example, the process network in Figure 2.3(a) contains two 
communication channels. It is important to note that the communication channels are FIFO 
(first-in-first-out) channels, i.e., the communication outputs connected to a channel (also called 
channel producers) should send the information in the same order as the order in which the 
communication inputs (also called channel consumers) receive them. 

By analogy to processes, which perform the computation by repeatedly executing the 
computation actors, we say that the communication channels continually execute communication 
transfers assigned to them. A communication transfer is an activity of passing one data token 
from a communication output of one actor to a communication input of another actor. As an 
activity running on-chip, a communication transfer is very similar to a computation actor, in the 
sense that it also operates on the data tokens, but its function is just copying the application data 
as it propagates through the communication network. Note that as long as a communication 
channel is not mapped to the network, its communication transfers are empty activities. This is 

                                                
6 Note that we call it a ‘substructure’ not a ‘subgraph’, because, a channel macro can consist, for example, of simply 
one edge, whereas a subgraph should be a graph by itself. 
7 Small piece of video image represented in a Fourier domain using Discrete (Fourier) Cosine Transform 
8 Inverse Discrete Cosine Transform 
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the case when all actors joined by a channel are mapped to the same processor, because no data 
copying is required in that case. 

Definition: A communication channel commq  is a channel that can be mapped to the network-

on-chip. It is defined as a tuple >< TQ  ,m , where m  is the number of initial tokens – or 

marking – and TQ  is a set of communication transfers that are continually repeated by the 
channel. The transfers are defined as triplets { } ),,( )(  cons prodcomm jzvvq jj=TQ , whereby the j-th 

communication transfer is defined by the producer actor jv  prod , the consumer actor jv  cons  and 

data token size jz . Any channel in the computation graph has only one producer and one 

consumer, and it continually repeats only one transfer. In the mapping flow, some channels may 
be bundled together, forming channels with multiple transfers. All the producer actors of a 
communication channel should belong to the same process. The same requirement holds for all 
the consumer actors. Data tokens propagate through the communication channel in a FIFO order, 
which means multiple communication transfers can be pending at any moment of time and they 
complete in the same order as the order in which they start.♦♦♦♦ 

In contrast to the communication inputs and outputs, the actor state refers to the data 
structures that, although being exchanged between the actors, are kept locally within the memory 
system of one processor. A guideline for an application designer to identify a data structure as 
the state is the case when the data dependencies impose a cyclic order in which the actor 
executions should access that data structure. Note that it can be executions of the same actor or 
different actors. A good example is the dependency based on parsing the input bitstream in the 
video/audio decoding algorithms. Each parsing operation needs to wait for the result of the 
previous operation to know the location where it should start further parsing. 

In the case of cyclic dependency, the actors (or the actor) can only execute sequentially. Then, 
especially when the actors are best fit for the same processor architecture, there would be hardly 
any reason for spreading the actor executions between multiple processors, so the data structure 
as well as the actors can be kept local.  

In the process network of the computation graph, the actors sharing the same state are joined 
by a special kind of channels – the state channels stateQ , which form the complementary subset 

of Q, thus commstate QQQ += . The state channels representing one state form a cyclic path. One 

channel in the sequence is marked as the first channel. It is defined as the channel preceding the 
first actor in the order imposed by the state. One can see an example of state channels in 
Figure 2.3(a).  

Definition: A state channel stateq  is identified by a triplet ),,(  cons prod vvm . It enforces the 

mapping flow to assign both the producer prodv  and the consumer  consv  to the same processor. 

This channel is associated with the state data structures in the processor’s local memory. 
Together with the other state channels, it enforces a cyclic order of execution, which we call the 
state consistency order. For the channel marking m of a state channel, it holds that }1,0{∈m . If 

1=m  then the channel is the first channel in the consistency order.♦♦♦♦ 

So far we have mentioned only one guideline to identify the state data structures. The scope 
of the state is, however, broader than the algorithmic cyclic ordering.  In general, it is also 
possible that some actors can execute concurrently, and their communication does not follow a 
FIFO pattern, which is the only pattern suitable for the communication channels as defined in 
our model. The FIFO pattern, for example, can be violated in the case when actors load and store 
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data at random positions in a table that survives one actor execution. If it can take an arbitrary 
number of iterations of the loop of interest before the data stored at the given table entry by one 
actor execution will be loaded by another one then no FIFO pattern can be established. To follow 
our approach, what one should do in such a case is to consider the mentioned table as the state. 
This is possible if there exists a cyclic ordering of the actor executions that ensures consistency 
of accesses to the table. In that case, the designer can model this ordering using state channels. 

Having discussed in detail the elements of the implementation process network that are 
responsible for communication, let us turn to the elements responsible for computation. As for 
the processes, it is the best to introduce them in the context of run-time scheduling and we do 
that in the next subsection. In the rest of this subsection, we introduce the computation actor 
bodies, which are building blocks for the processes. 

Definition: A computation actor body, for simplicity also identified by the corresponding 
computation actor compV∈v , is defined as a tuple >< statecommcomm ASAOAI ,,,, ATAPA , where 

APA – is the actor processing algorithm, AT  – is the temporary data structures of the algorithm, 

commAI  and commAO  are the sets of communication inputs and communication outputs and 

stateAS  is the set of state data structures. A communication input / communication output is 

identified by specifying one of the communication channels and, within that channel, a 
communication transfer where the given actor is the consumer/producer. A state is identified by 
specifying a pair of state channels for which the actor is the producer and the consumer. ♦♦♦♦ 

We have used the term ‘actor body’ to stress the reference to the implementation of an actor 
and to suggest that the body contains the actor’s APA. From this point on, as we already have 
done before a few times, we always refer to the computation actor body just as computation 
actor, or just an actor. 

For each actor, the run-time scheduling should be aware which inputs, outputs and states 
belong to that actor and which APA should be run for it. Prior to starting an actor execution, the 
run-time scheduling must ensure that: 

1) there is at least one data token available at each communication input;  

2) there is space for storing one data token available at the communication outputs; 

3) the state consistency order is respected. 

This way, the computation actor can run from the entry point until the exit point without any 
blocking, which could happen otherwise due to synchronization on communication inputs and 
outputs. Note that when saying ‘there is a data token/space’ and ‘available’ we implied ‘present 
in the local memory of the processor where the actor runs’. 

A computation actor satisfying the abovementioned requirement is seen as ready for firing at 
the given moment of time (traditionally, the starting of actor execution is called ‘firing’). The 
reason we put this requirement is fundamental: we choose to exclude the delays due to other 
activities from the total delay of the actor. This is a way to separate different issues, by putting 
external timing factors outside the actor delay to deal with them separately. We only include into 
the computation actor the timing factors that have to do with processing carried out by the actor 
itself. Note that this is different from the classical real-time scheduling, where a task can be 
blocked when accessing a shared resource.  

Doing the synchronization on the communication channels before the beginning of the actor 
execution is natural for HSDF models, and as we see in the next subsection, it is reflected in our 
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HSDF graphs based on what we call the firing procedure of HSDF actors. However, these 
assumptions might seem to be somewhat restrictive for a general parallel software routine, which 
may contain synchronization inside its body. Nevertheless, such a routine can be converted into 
data flow actors either by splitting them into different actors at every synchronization point or by 
moving the synchronization earlier, to the beginning of the routine.  

Note also that, here, we implicitly made an assumption that all the actor instruction code and 
the actor data fit into the local memory of the processor and thus no caching is required. Caching 
could result in unpredictable actor delay. Dealing with limitations of the processor local memory 
size is a fundamental issue that is outside the main scope of this thesis. To justify our 
assumption, we take a hypothesis that, due to the limited size of the loop of interest, most of the 
actor code and data can be handled with priority and have a special place in the local memory, 
reserved before the application starts. Another hypothesis is that if there are still local data 
structures that pose problems in fitting them to the local memory, then they can be located in 
remote memories and accessed using FIFO data communication, explicitly modeled in the 
implementation process network. Such modeling was proposed by Sander Stuijk et al in [85] and 
further elaborated in [90].  

 

2.1.4 Run-time Scheduling, Processes and their Budgets 

Both the computation actors and the communication transfers have to be scheduled on their 
resources. In this section, we focus on the scheduling of the computation actors, postponing the 
explanation of communication scheduling until Section 3.4, where we introduce the necessary 
details about the architecture of the network-on-chip. 

In streaming applications, the same set of computation actors is executed repetitively. For 
such applications, [83, §4] proposes the following classification of the multiprocessor run-time 
scheduling methods:  

•  fully static,  

•  static order,  

•  static assignment, 

•  fully dynamic.  

In a fully static method, every processor has a fixed set of computation actors and the starting 
times of every execution of every actor are fixed and predefined. In static order scheduling, only 
the cyclic order in which the actors execute is fixed per processor, but their starting times are 
determined dynamically; they start as soon as their turn in the order comes and the input data is 
available. In static assignment scheduling, the assignment of actors to processors is fixed but the 
actors assigned to a given processor may be scheduled in any order and preemption may be 
allowed. The computation actor to be scheduled at run time is chosen by a criterion that should at 
least give every ready actor a fair chance to execute. Thus static assignment supports 
concurrency between actors assigned to the same processor, and its advantage over the static 
order case is due to the fact that it avoids the situation where a ready actor should wait for a non-
ready actor just because the non-ready actor comes earlier in the static actor order assigned to 
this processor. Finally, in a fully dynamic method, the set of computation actors assigned to a 
processor may change at run time. 
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Recall that the reconfigurable streaming programming model, which we have assumed – see 
Figure 1.4 – does not change the assignment of computation actors to processors within one 
configuration. Although at the reconfiguration points the assignment can be changed, this 
happens relatively rarely; we leave the reconfiguration and the fully dynamic scheduling beyond 
the scope of this thesis. Also the fully static option is clearly of no or little use for us because we 
support applications with dynamic data-dependent execution delays.  

Therefore, the choice that remains is between static order and static assignment. We support a 
combination of both. We apply static-order scheduling within processes and static-assignment 
scheduling between processes. Hereby, because we do not mix the actors of different 
applications in one process, we ensure that no order is imposed between the actors of different 
applications, so that the applications can run concurrently with respect to each other. 

Now the time has come to give a more concrete specification of the term ‘process’.  

Definition. A process P∈p is defined by a tuple >< vpVP, , where the first element, denoted 
)( pVP , is a subset of computation actors of the given implementation-enhanced model GPQ  

and )( pvp  is an ordered sequence of elements in )( pVP . That sequence is either empty (if no 
ordering has been enforced yet for the given process) or it orders all the elements of )( pVP : 

))}({,...,)}({,)}(({)( 21 VPpvppvppvpp =vp , where )()}({ ppvp i VP∈  ♦♦♦♦ 

Note that there is a clear similarity between a process and a state consistency order: both 
impose a cyclic order on a subset of actors. However, the basic difference between them is that 
the states are implementation constraints, coming from the specification of the application, and 
the processes are implementation entities, i.e. they reflect choices made for the implementation. 
When the intra-application mapping flow forms processes consisting of multiple actors, it 
ensures that the process ordering is compatible with the state consistency ordering.  

To schedule multiple processes at the same processor, we assume each processor has a local 
scheduler that implements the static assignment scheduling. A local scheduler can be 
implemented as a software real-time kernel, interleaving different tasks on a general-purpose 
processor, or as a hardware wrapper, interleaving different data streams passing through the 
same function hardwired in a domain-specific processor.  

Let us compare the static-ordering and static-assignment scheduling by taking two extremes. 
If just one process runs on a processor, then this is pure static ordering. If there are multiple 
processes containing one computation actor each, then this is pure static assignment. The 
advantage of the pure static assignment is maximum concurrency, which is potentially better for 
the system performance if the context switching overhead due to different processes of (possibly) 
different applications that running in parallel is managed efficiently. The disadvantages of the 
static assignment scheduling are context switching overhead and concurrent resource sharing.  

Recall from Chapter 1, that due to concurrent resource sharing, non-functional timing 
dependencies may arise between the tasks of different applications, posing difficulties for 
performance analysis. To avoid that problem, we decided to use resource budgeting. Therefore, 
we support only a certain class of static assignment scheduling methods, which we call budget 
provision methods. Using those methods, we can provide guaranteed performance, although the 
price that we pay for that is the risk that our performance estimations may sometimes be very 
pessimistic. 

In our scheduling approach, budgets are assigned per process. Suppose that a certain 
subsequence of processor instructions in process p uses t processor clock cycles. Suppose that 
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budget Bp is the number of the processor cycles per second assigned to process p. In the ideal 
case, when the processor load is infinitely divisible, this would mean that the execution of that 
sequence would take time pBtd = . In practice, the schedulers can only provide some quanta of 

time to the processes, and therefore the value of d only comes in some neighborhood of the ideal 
value, such that: 

  pppp qBtdqBt ˆ+≤≤− (
      (2.2) 

where pq
(

 and pq̂  are positive constants, depending on the scheduling method and its settings. It 

is important to stress that pB , pq
(

, and pq̂  are fully controllable settings, independent on how 

much the multiprocessor system is loaded by applications at any given point of time. This 
enables us to reason about the performance of different applications independently, which is an 
important requirement set in Chapter 1. For conservative performance analysis, one can use 

pp qBt ˆ+  as estimate of d . (This is true because, as explained below, our framework is free of 

scheduling anomalies.) 
We say that a computation actor is enabled for firing when that actor’s turn in the process 

comes and it becomes ready. If an actor of process p uses t processor cycles, one can use 
Equality (2.2) to provide bounds on the time interval between the moment of time the actor is 
enabled and the moment of time the actor finishes.  

There are different scheduling methods that can ensure budget provision. Clifford Mercer et 
al [59], in effect, introduce budget provisioning for multimedia applications and propose a 
correspondent modification of classical rate-monotone (RM) scheduling. In that work, the 
processes are presented to the scheduler as tasks whose computation time is proportional to the 
budget assigned to the processes. Orlando Moreira et al [64] propose a simple practical budget 
provisioning scheme based on round robin (RR) scheduling. As for this thesis, we assume 
TDMA (time division multiple access) scheduling, which e.g. is the same as the TDMA 
scheduling assumed by Sander Stuijk in [88] and [90]. When compared to RM, TDMA is 
simpler, because it offers fewer fine-tuning settings, and, compared to RR, TDMA works better 
than RR when actors have highly dynamic data-dependent delays. The point is that, unlike RR, it 
can preempt the actors and thus it avoids that the actor delay growth in one process considerably 
delays another process. We give more information on the TDMA scheduling in Section 3.1.3. 

The multiprocessor-scheduling framework introduced in this section has an important 
property: it is free from scheduling anomalies. A scheduling anomaly (see e.g. [80]) is a 
phenomenon that may occur in multiprocessor scheduling. It manifests itself when faster 
execution of some tasks results in later completion of some other tasks. The absence of 
anomalies is favorable for ensuring a guaranteed system performance and it is proven in 
Section 2.2.4, where we show that our overall performance metrics increase monotonically when 
the actors execute faster. 
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2.2 The HSDF Graph: Timing Behavior and Performance Analysis  
In this section, we focus on the HSDF graph, G, from an implementation-enhanced HSDF 

model GPQ. The HSDF graph models the behavior of the application’s loop of interest. As 
suggested by Formulae (2.1), it can be partitioned into multiple parts, each modeling a process or 
a channel within one single model of computation.  

For the HSDF graph model of computation, there exists a sound theoretical basis for 
performance analysis. In the following subsections, we describe the timing behavior, the 
structure and the relevant performance analysis aspects. 

 

2.2.1 The Basics of HSDF Timing Behavior  

Figure 2.4 shows two HSDF graph examples. Recall that the basic elements of HSDF are 
actors V∈v and edges E∈e , where VVE ×⊆ .  

By default, the graph edges represent the communication of data between actors, and we call 
them data edges. However, dataflow graphs also know edges introduced to restrict the actor 
execution order, or sequence edges. Note that both edge types have the same behavior, and we 
distinguish between them only for convenience. In contrast to the channels, the edges cannot be 
seen as implementation entities; they are primitive abstractions used to model the behavior of the 
channels and processes. 

Every edge e = (vi, vj) can potentially transport any number of tokens from actor vi to actor vj, 
and can contain initial  tokens, which are present on the edges at start time. Recall that we call the 
number of initial tokens on an edge the edge’s initial marking, usually denoted m or m(e). The 
edges are directed, and the actor at the source of an edge is called the edge producer, and the 
actor at the sink of the edge is called the edge consumer. For convenience of explanation of the 
token order and timing, we assume that the edge producers annotate the produced tokens with 
order labels using the series of integers: 0, 1, 2, 3,…  and production times,  e.g. ‘1 ms’, ‘2 ms’, 
‘3 ms’ etc (the production times are not necessarily equidistant). The tokens appear on the edges 
at the times corresponding to their production times. If an edge contains m initial tokens, we 
assume that their order labels are −1, −2, …, −m and their production time labels are all 0.  

Now we are going to explain the behavior of the HSDF actors. Hereby, it may seem that there 
is too little visible correspondence between the behavior of the computation actors, as explained 
earlier in this chapter, and their HSDF prototypes, but that correspondence is clarified in the 
following subsections. 

To explain how actors consume/produce tokens and perform computations, we assume that 
each actor has its own execution counter n, originally initialized to 0. The actor behavior can be 
described using two procedures: the firing procedure, which initiates the actor executions, and 
the execution procedure.  

The firing procedure consists of four steps: 

1) at each input, wait until the production time of the token with label n − m, where m is the 
initial marking of the corresponding input edge; 

2) start another execution procedure, whereby the execution gets index n;  

3) annotate the input tokens obtained from step 1 as tokens captured at execution n; 
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4) increment n by 1 and return to step 1) 

Here only step 1) may take some time, steps 2), 3) and 4) are immediate. Note that step 3) 
only initiates an execution procedure, but does not wait until it completes. Multiple execution 
procedures can be initiated in parallel.  

The execution procedure of actor vk – also referred to simply as actor execution – takes index 
n as argument. It also consists of four steps: 

1) wait for time d (vk, n) , where d (vk, n) is defined as the function that models the delay of 
the actor execution; 

2) consume the tokens captured at execution n, one token at each input; 

3) produce one token at each output, annotating all the new tokens with label n and the 
current time; 

4) terminate. 

Note that, according to this definition, actors postpone the consumption of the captured input 
tokens until the end of the given execution, when they also produce output tokens. In the 
beginning of execution, the input tokens are only ‘captured’. Every token is captured only once, 

(b) IPC graph, modeling an implementation in a multiprocessor platform 

Figure 2.4 HSDF graphs of a producer-consumer example 
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to be used by only one actor execution. After being captured, the token continues to exist until 
the execution consumes it, in the end of execution. Although the moment of time when the 
tokens are consumed is not important for the timing behavior of this model of computation, our 
assumption that the token is consumed in the end of the execution procedure is in line with the 
behavior of actor implementations and is convenient when we explain the modeling of 
occupation of the memory buffers. 

In the execution procedure, we have introduced function d (vk, n), which for every actor vk 
defines a sequence of delay values in subsequent executions. We call that function the actor 
execution delay. In our implementation-enhanced HSDF models, the actor delay is determined 
by one of the timing modes from the set of timing modes T. Different timing modes are used for 
different purposes in our implementation trajectory. The timing modes are introduced in more 
detail in Section 3.1. 

As for the edges, they do not have any delay, and the tokens produced on an edge become 
immediately visible to the consumer’s firing procedure.  

In HSDF models, a key notion is the notion of an iteration. HSDF iterations are labeled with 
the same index as actor executions. Iteration n is a set of actor executions that all have the same 
index n. We call a semantically defined set of subsequent HSDF iterations an execution run.  

The reader can probably already see an analogy between the properties of HSDF graphs and 
the properties of the loop of interest. Indeed, the HSDF model also contains a fixed set of actors 
that are executed unconditionally, once per iteration. We did not introduce any external inputs 
and outputs for HSDF models, because, just like the loop of interest, they are assumed to execute 
autonomously. The terms ‘iteration’ and ‘execution run’ have the same meaning for the loop of 
interest and the HSDF model. 

Here we should put an important remark that, unlike the HSDF actors, the actor bodies, which 
implement the computation actors, do not label the tokens with the labels representing their 
order. The FIFO property of the communication channels ensures the proper order of data 
production and consumption. We will see later in this section that in the important subclass of 
HSDF graphs, used for the performance analysis, the same FIFO property holds for the edges, 
and no ordering labels are really necessary for the tokens. 

Note that from this definition of HSDF actors we see that the actors are not allowed to 
synchronize with each other using a general shared memory model, but all the synchronization 
should be organized using the edges, thus implying the FIFO order of event handling. We do not 
support any synchronization schemes that cannot be modeled using dataflow edges. Any non-
FIFO forms of communication happening inside the loop of interest should be handled by pre-
scheduling and hidden from the HSDF model by abstraction. 

HSDF models are used in our work to model both the computation and communication parts 
of the application, both before the mapping and after the mapping, as we see in the next two 
subsections.  

 

2.2.2 Computation Graph 

We use the term ‘computation graph’ not only for the implementation-enhanced model GPQ 
prior to mapping, but also for the basic HSDF graph G contained in that model. In the latter 
meaning, the computation graph is an HSDF graph that expresses the behavior of the loop of 
interest prior to mapping, when there is no processor assignment, no budgets and no 
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communication through the network. It represents the computation actors and the data/state 
dependencies between them that follow from the application algorithm implemented in the 
process network PQ. 

In the computation graph, the data edges represent the communication channels, the sequence 
edges represent the state channels and the computation actors represent the processes. The data 
edges get the same initial marking m as the communication channels. A sequence edge gets 
marking m = 1 if it models the first channel in a state consistency order, and otherwise it gets 
marking m = 0. A cyclic path (cycle) containing only one initial token forces the actors to 
execute sequentially in a cyclic order. The computation graph contains only the computation 
actors, and no communication actors.  

For example, Figure 2.4(a) shows a simple computation graph with three actors, namely, two 
‘producers’ (‘P1’ and ‘P2’) and one ‘consumer’ (C). In each iteration, first each producer must 
produce a data token and then the consumer may execute and consume the data tokens. The 
consumer has a sequence edge that indicates the state dependency of the current execution on the 
previous execution.  

As already mentioned earlier in this chapter, the intra-application mapping flow can be 
reflected by a sequence of transformations of the HSDF graph, starting from the computation 
graph and finishing by the IPC graph. In Chapter 3, we consider a mapping flow that can be 
appropriate for our generic multiprocessor network-on-chip platform and the construction of the 
correspondent IPC graph. Now we introduce IPC graphs, using the original work summarized in 
the book by S. Sriram and S. Bhattacharyya [83] as the illustration example, indicating the 
concepts that we can immediately borrow from that book. 

 

2.2.3 Modeling the Computation and Communication together: IPC Graph 

Also the term ‘IPC graph’ has in our work a dual meaning: a model GPQ defined in the 
previous section as well as the graph G contained in it. In the latter meaning, an IPC graph is an 
HSDF graph that models the execution of the application on a multiprocessor architecture [5], 
[83 §7]. In the multiprocessor platform assumed in [5], [83], the communication is realized 
through a global bus and global memory, it supports no budgeting and assumes only one process 
per processor. However, in their work as well as in our work, an IPC graph can be seen as the 
result of a transformation of the computation graph, whereby extra edges and actors are added to 
the original graph. The IPC graph actors must have two essential properties: 

1) the delay of an actor execution is independent of the starting time of the execution; and 
indeed, as we described, in the implementation, the delay can be bounded from above by 
expression qBt ˆ+ , which, being invariant on the absolute starting time, could be used as a 

model for HSDF actor delay, although for the TDMA scheduling we use a tighter upper 
bound (see Chapter 3); 

2) the time for waiting until the actor gets ready for execution (the blocking time) is not part 
of the actor execution delay; in the HSDF graph, the readiness on the inputs is ensured by the 
incoming data edges; the readiness on the state is ensured by the incoming sequence edges. 
The incoming sequence edges also ensure the readiness on the outputs, as it is shown below 
for the bus-oriented IPC graphs of [5], [83]. 
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Three conditions are missing in the computation graph to ensure that an execution of a 
computation actor in the HSDF model G starts, ideally, at the same time as when it starts in the 
process network running in the platform. Because these conditions are rooted not in the 
application functionality, but in the implementation, we call them implementation conditions. 

Remark. Implementation conditions for HSDF modeling: 

1) the communication delays should be taken into account; 

2) the actor should be ready also on the communication outputs (the communication resources  
should be ready to accept the data being written to the outputs); 

3) the actor should be enabled, i.e. its turn should come to execute in its process. ♦♦♦♦ 

These requirements are rooted not in the application functionality but in the implementation, 
and they are taken into account in the IPC graph. Let us now take a look on how it is done in the 
IPC graphs in the previous work, [83], explicitly defining the elements that are also re-used in 
our work.  

To take the first condition into account, in addition to the computation actors, coming from 
the computation graph, IPC graphs contain communication actors. 

Definition. Communication actors commV∈v  are actors modeling the delays of the 

communication transfers TQ between actors running on different processors9. The 
communication actors copy the data from one physical memory to another across the 
communication network. ♦ 

In the previous work, the communication actors are ‘write’ and ‘read’ actors – see 
Figure 2.4(b). A ‘write’ actor copies one data token from the local memory of a processor to the 
global memory. In the example, for each ‘write’ actor, there is a corresponding ‘read’ actor, 
which copies the data token from the global memory to the local memory of another processor. 
These actors are annotated with appropriate delays, satisfying the first of the above three 
implementation conditions. 

To satisfy the other two conditions, in the previous work, for each processor and for the 
global bus, a cycle is introduced in the graph, being similar to the cycle enforcing the state 
consistency order. We call those cycles, the ‘process cycles’ and the ‘bus cycle’. Recall that, to 
introduce such a cycle, sequence edges are added into the graph, whereby the actors are put in a 
specific static order, and an initial token is placed on the sequence edge at the input of the first 
actor in the order.  

The bus cycle includes all the communication actors. By ordering them, this cycle eliminates 
the bus conflicts between the bus transactions. It ensures that the output data tokens are written 
to the global memory only when the global communication and memory resources are available. 
This is in line with the second implementation condition, and, in addition, this ensures that the 
communication delays are also independent of the time when the communication actor starts.  

For example, Figure 2.4(b) shows an IPC HSDF graph for the example of Figure 2.4(a) 
assuming a two-processor case, where the producers are assigned to one processor and the 
consumer is assigned to the other one. It includes write actors (W1 and W2), read actors (R1 and 
R2) and two data edges, derived from the computation graph, to pass data tokens from the 

                                                
9 The communication transfers between actors mapped to the same processor do not involve any delay, so they are 
modeled only by edges. 
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producers to the consumer. The graph contains one bus cycle (W1, R1, W2, R2)*. Note that only 
two sequence edges are introduced to enforce the cyclic order there, namely, (R1,W2) and 
(R2,W1). The other two sequence edges are not necessary, due to the presence of the data edges. 

In our work, we do not use the bus cycles, because we propose IPC models for on-chip 
networks. In Chapter 3, we model communication channels by a structure )(qGQ  (a channel 

macro) that is much more complex than a cycle of sequence edges. 
In the previous work, a process cycle enforces an order in which actors execute on the given 

processor. In this thesis, we assume that processes can share the same processor, but because the 
processes get separate budgets, each process can be modeled by a separate cycle in graph G. 

Definition. Process cycle >=< )(),(  ),()( pmppp EVPGP  is a subgraph of G that models 

process p. Recall from the definition of process in Section 2.1.4 that VP(p) is the set of actors 
that belongs to process p, ordered according to the process order, determined by ordered 
sequence of actors vp(p). Therefore, if the process order is not empty, the set of edges )( pE  
joins the actors in a path in the order defined by sequence )( pvp , in addition also including an 

edge with marking 1 that joins the last actor to the first actor in the order. If the process 
order )( pvp  is empty, then )( pE  is also empty – that is the case for all processes in the 

computation graph, but it should not be the case for any process in the IPC graph.♦ 

In the example in Figure 2.4(b), there are two process cycles, namely, (P1, W1, P2, W2)* and 
(R1, R2, C)*. Note that if the computation graph contains channels that join actors that are finally 
assigned to the same process, then, at the end of the mapping flow – in the IPC graph – the 
processes enforce orderings that are consistent with all the data/state dependencies implied by 
those channels. Therefore, those channels are not needed and not present in the final process 
network. For example, in Figure 2.4, cycle (R1, R2, C)* is consistent with the cycle C* of the 
computation graph and therefore the channel from C to C is not present at the end of the 
mapping flow and is not represented in the IPC graph by any edge. 

Note that Figure 2.4 assumes constant actor delays, which is in line with the previous work on 
throughput analysis of the IPC graphs. In this thesis, it is our goal to also support variable actor 
delays in performance analysis. A more detailed discussion on this subject is postponed until 
Section 2.2.6. 

 

2.2.4 General IPC Graph: Restrictions and Properties 

There are two basic facts about IPC graphs that make their performance analysis far from 
trivial. First, to mimic the behavior of the computation actors executed in a multiprocessor, IPC 
graphs assume so-called self-timed execution, presented in this thesis as default behavior of 
HSDF actors. In self-timed execution, each actor executes as soon as the actor firing procedure 
sees input tokens with specific order labels, without aligning the starting time to any periodic 
timing grid, as it is often the case in dataflow scheduling. Second, we have seen that the 
dependencies of actors in IPC graphs are cyclic. Fortunately, there exist theoretical studies 
concerning the timing properties of the self-timed execution of cyclic static-delay HSDF models, 
where ),( nvd k  does not depend on n. Such HSDF graphs can be characterized by a steady-state 

throughput that can be calculated using efficient algorithms. The possibility to calculate the 
throughput is, after all, a major reason why IPC graphs have been employed.  

In this subsection, we consider the restrictions and properties of ‘general’ IPC graphs, where 
),( nvd k  may depend on n. These restrictions and properties are needed to provide basic facts for 
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reasoning about IPC graphs, and they specify some features any IPC graph should possess, no 
matter whether it is an instance of the IPC model proposed in [83] or of the IPC model that we 
introduce in Chapter 3. In the following subsections, we describe the steady-state throughput 
analysis results that we apply and complement in this thesis. We provide either intuitive proofs 
or motivation of the mentioned facts, without giving formal proofs. 

Postulate: An IPC graph is a strongly connected live FIFO graph:  

1) a graph is strongly-connected if the following holds: for any two actors vi and vj that belong 
to the graph’s actor set V there exists a path in the graph from actor vi to vj; this property 
follows from the fact that IPC graphs are built of substructures containing cycles; 

2) an HSDF graph is live if any cycle contains at least one edge with a non-zero number of 
initial tokens; liveness means that any actor in the HSDF graph can eventually always fire 
again [4 §1]. We require this property to ensure that IPC graphs never deadlock; 

3) an HSDF graph is a first-in-first-out (FIFO) graph if, when this graph executes, for any 
edge of the graph, the tokens produced earlier in time always have smaller order labels than 
the tokens produced later in time; this property reflects the FIFO order of processing of the 
stream elements by the computation actor bodies and the FIFO property of the communication 
channels; it is a fundamental requirement for the performance analysis of IPC graphs.♦ 

Note that an HSDF graph can be non-FIFO only if actors have dynamic execution delays. 
This is true because the firing procedure ensures by definition that each execution with index 
n + 1 starts no earlier in time than the execution with index n (the verb ‘wait’ in step 1 of this 
procedure implies going forward in time). Because each execution annotates the produced tokens 
with its index, a violation of the FIFO condition can only happen if, for some n, execution n + 1 
completes earlier than execution n, but we have just seen that execution n + 1 could not have 
started earlier. Thus, to finish earlier, execution n + 1 has to take less time to execute: 
d(vk, n + 1) < d(vk, n). Therefore, all HSDF actors with static delays abide the FIFO property. 

So, for those IPC actors that have static execution delay, there is no problem, but what about 
actors with dynamic execution delay? Tokens can overtake each other only when multiple actor 
executions overlap in time. A sufficient condition that excludes overlapped actor executions is 
that there is a cycle in the graph that contains the given actor and has only one initial token. 
Obviously, this property holds for all actors in the IPC graphs discussed in the previous 
subsection, because each actor in those graphs belongs to a process cycle and every process cycle 
has only one initial token. Thus, all actors in those graphs hold a ‘license’ for having dynamic 
delays and still being FIFO graphs. 

In the following lemma, we summarize the discussion on the FIFO property. 

Lemma 2.1. (Sufficient condition for the FIFO property) An HSDF graph is a FIFO graph if 
any actor with dynamic actor execution delays is contained within at least one cycle that has only 
one initial token.♦ 

The FIFO property leads to a fundamental equality that traditionally serves as a foundation for 
reasoning about the timing behavior of HSDF graphs: 

Lemma 2.2. (Evolution equation of a FIFO HSDF graph) Consider an HSDF graph G that 
possesses the FIFO property. Let xk(n) denote the time when actor vk completes the execution 
with index n; let us define xk(n) = 0 for n < 0. Consider actor vi, and let vj(1), vj(2), …, v j(P) be the 
list of the producers of all edges (vj(p), vi)  in graph G that have actor vi as the consumer, 
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p = 1, …, P. Let mp denote the initial marking of those edges. In that case, the relationship 
between the completion times of actor vi and of all the producers of input tokens for that actor is 
as follows: 

),())((max)(0 )(
..1

nvdmnxnxn ippj
Pp

i +−=⇒≥
=

    (2.3) 

Equality (2.3) is called the evolution equation of actor vi. ♦ 

Proof In a FIFO HSDF graph, the tokens being consumed by an arbitrary actor vi at an arbitrary 
input p have the following property: their production times, )()( ppj mnx − , are monotonically 

non-decreasing in n. This means that their maximum, given in Equality (2.3) is also 
monotonically non-decreasing. Now we observe that the three steps of the actor firing procedure 
imply that, in every iteration, this procedure does the following: 

1) it either waits for the moment of time given by that maximum expression and starts 
exactly at that moment, 

2) or it initiates an execution immediately if that maximum expression gives an earlier time 
than the current time.  

However because the maximum expression is non-decreasing and because, in the first iteration, 
situation 1 is necessarily true, we see that situation 2 can never occur. Thus, we have proven that 
the execution starting time exactly equals the maximum expression from Equality (2.3), so the 
completion time is given in the right part of that equality. ♦ 

Remark (FIFO property and validity of IPC graphs) The reason we discuss the FIFO 
property is, first of all, the fact that the actors in general may have variable execution delays and, 
in general, this can lead to out-of-order production of tokens – i.e., the actors may violate the 
FIFO property. However, the implementation entities being modeled by the IPC graphs – i.e. the 
processes and channels – enforce the FIFO property of the communication transfers by 
construction. For example, as we will see in Section 3.4, in the point-to-point network-on-chip 
connections used to implement the channels in the generic platform assumed in this thesis, the 
data packets cannot overtake each other and always arrive in the same order as they depart. It is 
for this reason that we postulated above that the IPC graphs, which model the FIFO channels, 
should themselves possess the FIFO property. ♦ 

Remark (The longest path in the unfolded graph) Note that the evolution equation, 
Equality (2.3), has the form of the Bellman’s equations [50] for the longest path lengths in an 
acyclic graph with weights equal to delays d. The nodes of that graph would correspond to actor 
executions in different iterations. We call that graph the unfolded graph and introduce it in 
Chapter 3. In Chapter 5, we use the graph unfolding to analyze the transitions between different 
steady states of the variable-delay HSDF graph. ♦ 

Remark (General evolution equations) For actors in more general HSDF graphs, which may or 
may not possess the FIFO property, we can write general evolution equations similar to 
Equality (2.3), but we need to introduce extra variables ‘y’, giving the starting time of actor 
execution. The equalities look as follows: 
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whereby Equality (2.4) models the firing procedure and Equality (2.5) models the execution 
procedure. However in practice one can expect IPC graphs that satisfy the conditions of 
Lemma 2.1, and thus we can avoid introducing extra variables.♦ 

We conclude this section with a fact that is also fundamental and that holds for any HSDF 
model where actors behave according to the definition given in this thesis – i.e., where they use 
the labels to process the incoming tokens in-order and follow the self-timed execution method. 

Lemma 2.3 (Monotonicity of HSDF graphs) If one would increase the execution delay 
),( ivnd of any actor vi in any iteration n or postpone a start or completion of an actor execution, 

one would see that the completion times of all actors in iteration n and future iterations either 
stay the same or increase. Consequently, if one would decrease the delay of events in the model, 
the completion times can only stay the same or decrease.♦♦♦♦ 

Remark (Monotonicity and independence of delays on the starting times) Monotonicity is a 
consequence of independence of the actor execution delays ),( nvd i  of the actor starting times 

‘y’, which is implied by Equalities (2.4) and (2.5). One can prove the monotonicity by observing 
that operators ‘max’ and ‘plus’ involved in those equalities are monotonically non-decreasing 
functions on their arguments. This remark is important because, in practice, one can imagine that 
the delay of executing some task on a hardware resource can depend on the initial state of that 
resource. In our case, the resource budgeting ensures that each actor execution finishes within a 
time interval whose length is independent of the starting time. ♦ 
Remark (Monotonicity and absence of scheduling anomalies) The monotonicity property of 
IPC graphs implies that the scheduling framework modeled by an IPC graph is free of scheduling 
anomalies; see the remark at the end of Section 2.1.4.♦ 

The monotonicity property is needed in practice to prove that, in order to derive the worst-
case execution time of the loop of interest, one can use the worst-case execution delays of the 
actors as the static execution delay annotations. 

 

2.2.5 Static-delay IPC Graphs: Steady-state Timing Behavior  

In this subsection we assume that the IPC model of the loop of interest has static (i.e. 
constant) actor delays. We also use the fact that any IPC graph is strongly-connected. The timing 
behavior of a strongly-connected graph with constant actor delays is, at least in the long run, 
periodic and the execution time of the loop of interest can be bounded from above by a simple 
analytical expression. We refer to the first property as periodicity and we use the second property 
(the analytically bounded execution time) as a very important ingredient of our performance 
analysis approach. The periodicity property gives us the throughput of the graph. Due to the 
monotonicity of HSDF graphs, if the static actor delays are worst-case, then the average period, 
the throughput and the execution time bound obtained from analysis give conservative estimates 
of those values. 

Suppose an IPC graph is given. Let us consider a simple cycle in the graph, i.e., a cyclic path 
that does not include any actor more than once. The cycle may contain both data edges and 
sequence edges; in fact, the performance analysis does not distinguish between them. In the 
remainder of this section, we refer to simple cycles just as cycles. Let us define the cycle length 
as the sum of execution delays of the actors in the cycle. Because the execution delays are static, 
the cycle length is a constant value. Let us also count the number of initial tokens on the edges of 
the cycle and call their total number the cycle depth. 
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We define the cycle mean as the cycle length divided by the cycle depth. A cycle with the 
maximum value of a cycle mean among all cycles in the graph is called a critical cycle. 

The maximum cycle mean (MCM) of the graph can be calculated in polynomial time [19]. 
Intuitively, it signifies the average time distance any initial token in the critical cycle has to 
travel, until it comes to the next starting position of another initial token (or itself). If the same 
would happen with every initial token in every cycle of the graph, the graph would come into the 
same state as where it started (a period is completed). The tokens of the critical cycle are the 
‘slowest’ ones in this sense and, due to the fact that the graph is strongly connected, they 
constrain the speed of the whole graph. 

Now we formulate an important corollary of the classical theorem about the periodic behavior 
of HSDF graphs, formulated e.g. as Theorem 3.112 in [4]. In Chapter 4, we come back to the 
theorem and formulate it in full detail, but here we only pick up a weaker statement, which 
nevertheless conveys the result that is most often used in practice. 

Theorem 2.4 (Periodicity) Let G(V,E) be a live strongly-connected HSDF graph with static 
actor delays. Let λ be the MCM of graph G. Let )(nxi  denote the completion time of the 

execution of actor vi with index n. Then, we have: 
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♦♦♦♦ 

According to this theorem, the MCM is the average time interval between iterations of graph G 
in case the number of iterations on which the average is evaluated is large enough. Henceforth, 
we call it simply the average iteration interval. Note that the actual intervals between iterations 
may vary, despite the fact that the actor execution delays are static. 

Note that for more general dataflow graphs, SDF (i.e. multirate dataflow), Theorem 2.4. does 
not hold in general, but it is still possible to calculate the average iteration interval by first 
translating the graph into an HSDF graph and then calculating the MCM. However, for such 
graphs, often in practice a different calculation method for the average iteration interval appears 
to be more runtime-efficient, i.e., state-space exploration, as demonstrated in the work of Amir 
Hossein Ghamarian [23], [22]. 

Now suppose that the amount of data in bytes produced by the loop of interest per iteration at 
the external outputs is constant; let us denote it z(G) (Note that because we do not reflect the 
external outputs in the graph, this value cannot be derived from the graph but has to be annotated 
by the designer.) Let us define the average throughput θ of the loop of interest, in bytes per 
second, as the ratio between the amount of data produced by the graph at the outputs and the 
time interval within which they were produced, evaluated for a long enough interval of 
uninterrupted execution of the graph. Thus defined, average throughput is inverse proportional to 
the average iteration interval: 

λ
θ )(Gz=         (2.7) 

Definition (Execution time of N loop iterations) The execution time of an execution run of N 
iterations, denoted N∆ , can be defined as the latest completion time of any actor execution 

within the first N iterations of the HSDF graph execution. ♦♦♦♦  
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The following lemma gives an important relationship between the execution time and the 
MCM value λ: 

Lemma 2.5 (A lower bound on the execution time of N iterations) The execution time of any 
live static-delay HSDF graph G that contains at least one cycle is bounded from below by: 

NN ⋅≥∆ λ         (2.8) 

where λ is the MCM of graph G. ♦ 

Proof Let us pick up a critical cycle in graph G and transform the graph by removing all actors 
and edges that do not belong to that cycle. This can only lead to a decrease in the value of N∆ . 

Let M be the depth of the remaining cycle; then the length of that cycle is λM. One can further 
transform the remaining cycle such that N∆  and λ stay invariant. Every edge with initial marking 

m more than 1 is split into m edges with initial marking 1 and a new actor with delay zero in 
between. Every chain of actors joined by edges with zero initial marking is replaced by one actor 
with the delay value equal to the sum of the delays in the chain. As a result, we obtain a cycle 
with the number of actors equal to M where M is the depth of the cycle, and where every edge 
has one initial token. Let us call such as cycle a special cycle. An example of the conversion of a 
cycle into the equivalent special cycle is shown in Figure 2.5(a). 

One can show that for any number of iterations N the fastest cycle among all possible special 
cycles with depth M and length λM is the cycle whose delay is evenly distributed between the 
actors, i.e., where each actor has delay λ. Hereby under the ‘fastest’ cycle for the given number 
of iterations N we understand the cycle with the smallest execution time N∆ . We call a special 

cycle with evenly distributed delay – a balanced cycle. An example of a balanced cycle is shown 
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Figure 2.5 A special cycle and a balanced cycle  

(a) A cycle and the equivalent special cycle 

λ = 10,  M = 3,  ∆N =  3/30 N⋅  

(b) The balanced cycle with the 

same λ  and M 

∆N = N⋅10  

(a lower bound to the result in (a)  ) 
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in Figure 2.5(b). That balanced cycle has the same length and depth as the cycle in Figure 2.5(a), 
but it has an execution time that is never larger than the execution time of the non-balanced 
cycle. The general statement that the balanced cycle is the fastest cycle is intuitive and not 
difficult to prove, and we leave the proof to the reader. That statement also proves Formula (2.8), 
because the execution time of the balanced cycle is equal to λN.♦ 

Remark (The lower bound and availability of the initial tokens at time zero) The statement 
that the balanced cycle is the fastest cycle follows from the fact that in the definition of the 
HSDF timing model all initial tokens are assumed to be available at time 0. Thus, if we allowed 
arbitrary release times of the initial tokens in the HSDF graph, we would have to generalize this 
lower bound. ♦ 

Now we know that the execution time grows at least as fast as N⋅λ . Can we bound that 
growth from above? From Equality (2.6), it follows that λ=∆

∞→
NN

N
lim . From this fact and 

Formula (2.8), we get the following result.  

Lemma 2.6 (The bounds on the execution time) With the preconditions of Theorem 2.4, the 
execution time of N iterations of graph G is bounded as follows: 

NN NN ⋅+≤∆≤⋅ )( δλλ                        (2.9) 

where Nδ  is a sequence that converges to 0 as N goes to infinity. ♦ 

Lemma 2.6 is a corollary of Theorem 2.4 and Lemma 2.5. In the next subsection, we discuss 
this result and its relationship to the rest of this thesis. 

 

2.2.6 Performance Analysis: Discussion, Objectives and Related Work 

Due to the fact stated by Theorem 2.4 and the observation that streaming applications process 
long sequences of data, the research on multiprocessor mapping of DSP applications has focused 
on issues concerning the MCM of HSDF graphs, λ. At the same time, the bounds on the graph 
execution time, characterized by Nδ , have hardly received any attention, apparently because they 

are only significant for smaller N.  
This situation, however, changes when we generalize the DSP applications that have, more or 

less, static actor delays to streaming applications characterized by highly dynamic variations of 
actor delays. Putting worst-case delay values and applying the static-delay analysis techniques 
can yield in general too pessimistic performance characteristics with arbitrarily large relative 
error. Therefore, for the dynamic case, we can refine the static analysis by splitting the long 
execution runs into multiple smaller ranges and make use of the approach known in calculus as 
integration. For each of the smaller ranges, Nδ  can have a significant impact, because according 

to Lemma 2.6, Nδ  is non-negative, and thus ignoring it is likely to lead to error accumulation. In 

Chapter 4, we consider the static-delay theory of HSDF graphs in more detail, whereby we also 
present our findings about Nδ . In Chapter 5, we study the transitions between smaller ranges and 

apply the integration principle. This way we generalize Formulae (2.9) and (2.7) such that, for 
dynamic-delay HSDF graphs, we get analytical expressions having at least the same but 
potentially much better accuracy than the case when we use (2.9) and (2.7) with static worst-case 
execution times. And, just like the worst-case estimates, our techniques also provide upper 
bounds on the execution time and average iteration interval.  
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Now, having mentioned some possibilities we are going to employ, let us step back and 
position them in terms of the related work on IPC graphs and in terms of the goals set in 
Chapter 1, Introduction; also let us be more specific about the means we use to achieve the goals. 

In [83, §7.6], a survey is done on the existing performance analysis approaches applicable to 
dynamic-delay IPC models. The objective of the considered approaches was to find the average 
iteration interval, but now for the dynamic-delay case. Let us denote it Λ. Being an extension of 
λ for the dynamic-delay case, this performance metric has got considerable interest in research. 
In the survey of [83], the authors conclude that analytical approaches – all based on stochastic 
models – capable of computing Λ cannot be used in practice due to the non-tractable number of 
states in the state spaces employed in those approaches. 

Therefore, in [83], they also considered approximations or bounds on Λ. Among those, the 
following are the basic bounds: 

MCM(Gmax) ≥ Λ ≥  MCM(Gave) ≥  MCM(Gmin)   (2.10) 

where Gmax, Gave, and Gmin are static-delay graphs where worst-case, average and best-case actor 
delays are used instead of the real dynamic delays. All of the inequalities, except for the least 
trivial one, Λ ≥ MCM(Gave), follow from the monotonicity property. Inequality Λ ≥ MCM(Gave) 
deserves further attention, because it is counterintuitive and because it also says that, although a 
naïve ‘practical’ approximation of dynamic delays with average values cannot provide any 
assurance of analysis accuracy, one can prove that it leads to optimistic performance estimates. 
Note that the inequalities in (2.10) are only valid when the limit value Λ exists and when the 
number of iterations for which the average actor delays in Gave are evaluated is large enough. 

For conservative analysis – which is the focus of our thesis – in the survey of [83 - §7.6], the 
authors are particularly interested in the problem of giving an upper bound on Λ which would be 
accurate enough, because, as we already mentioned, using Gmax can lead to very poor accuracy.  
However, in the survey the authors witness that attempts to give such a bound fail in practice, 
due to inaccuracy introduced when trying to approximate the huge number of possible states in 
the state space of the variable-delay graph by smaller computationally tractable models.  

On one hand, the IPC analysis goals we set for ourselves are closely related to calculating an 
upper bound on Λ. Based what we said in the beginning of this chapter, the main goal of the 
performance analysis technique is to calculate a tight upper bound of N∆ , i.e. the execution time 

of N graph iterations. Let us denote the average iteration interval of N iterations as NΛ , where 

NNN ∆=Λ .  Let us use notations N∆̂  and NΛ̂  for the upper bounds on N∆  and NΛ  

respectively. Thus our goal is to obtain N∆̂ , which is equivalent to obtaining a value for NΛ̂ , i.e. 

NNN ∆=Λ ˆˆ . If the latter has a limit value for ∞→N  then it is an upper bound on Λ. This 

shows the similarity between the goal of our performance analysis and the goals of the other 
researchers that are surveyed in [83 - §7.6]. 

On the other hand, there is also an essential difference between our goals and finding bounds 
on Λ. Recall that our IPC models are primarily meant to be run-time models, using available run-
time a-priori information on input data complexity characteristics to calculate run-time 
approximations of performance metrics – see Figure 1.8. In this way, our work is different from 
the related work surveyed in [83], which we see as pure design-time analysis trying to 
characterize the whole set of possible run-time situations that comply with a certain stochastic 
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model. Since we can use run-time information, we can avoid the problem of unmanageable state 
spaces.  

Fortunately, as mentioned in Chapter 1, in our case, the availability of the run-time 
information reduces the uncertainty about the run-time behavior, and in this way we are in a 
better situation to predict the performance than the pure design-time methods. We also involve a 
state space in our model, but we can keep adjusting the state definitions at run time, based on the 
available run-time information. Instead of trying to oversee an arbitrary infinite execution run 
with a huge number of states, we oversee a particular finite one with a small state set adjusted at 
run time, so we are better off. In general, that is a reason to believe that our approach can reach a 
sufficient level of accuracy at low computational overhead. Our case study, presented in 
Chapter 6, witnesses sufficient accuracy results for implementing a highly dynamic streaming 
application.
 

2.3 A Mathematical Framework for Implementing Applications 
In the previous sections, we explained how analysis models are constructed and used to obtain 

performance metrics, which is only one of the two important goals of performance analysis. In 
this section, we look at the basics of the second goal, namely, providing optimization guidelines. 
Recall that we have introduced the use of performance analysis both for run-time adaptation 
(Figure 1.8) and for intra-application mapping (Figure 2.2). In this section we focus on the 
former. In particular, we refer to QoS adaptation, because that has been subject of our studies. 
Nevertheless, we believe that our techniques are more widely applicable, because we have seen 
evidence in the literature that adaptation of budgets and of frequency/voltage (see Section 1.4.2) 
– have much in common with QoS adaptation. 

A considerable part of this section is dedicated to the notion of ‘parameters’, which has a 
special meaning in this thesis and which is essential for run-time adaptation. Strongly coupled 
with this notion is the notion of ‘parameter coefficients’, also explained in the next section. 

 

2.3.1 Introduction to Parameters  

The run-time characteristics of the input data we referred to at the end of the previous section, 
are, in fact, complexity parameters10, or parameters. They are reflected in our implementation-
enhanced HSDF model, being involved in some timing modes in the set of modes T. We 
introduce the parameters here, because this is important for understanding the practical use of 
our modeling approach. We start by giving an example of a parametric performance analysis 
model.  

Example (Parametric performance analysis). A. Bavier et al [6] studied the run-time 
prediction of MPEG-2 video frame decoding times on a single processor. Their prediction uses 
extrapolation of the decoding time measured for the previous frames. However, they have 
ascertained the fact that previously measured values alone do not carry enough information, and 
satisfactory predictions could only be obtained when using a priori run-time information about 
three different block types (I, P, and B) in the video frames. In their best prediction model, the 
frame decoding times ∆frame are evaluated as a linear expression: 

                                                
10 These parameters are related to the theory of algorithm complexity. 
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BPI ⋅+⋅+⋅=∆ BPIframe ααα       (2.11) 

where I, P, B are parameters giving the number of blocks of type ‘I’, ‘P’ and B in a frame, 
provided at run time in the frame header. Character ‘ α ’ is used to denote the parameter 
coefficients, giving the processor cycle cost estimates for each block type. 

In [6], the authors show that the parameters capture most of the dynamic changes in the frame 
decoding times. The parameters can change in an unpredictable way; therefore, the information 
about their values has to be provided in the frame headers. The values of parameter coefficients 
do not change so much, and, depending on the desired accuracy, one can consider the 
coefficients to be static or one can derive them based on extrapolation. ♦♦♦♦ 

The parameters are variables dependent on the application input data; they are specific for the 
given application. They count the number of times certain conditions in the state of the 
application algorithm repeat themselves when the input data is processed according to the 
application algorithm; the impact of the specific parameter is given by the coefficient. Thus the 
values of the parameters do not depend on the hardware architecture, but the values of the 
coefficients do. In fact, we referred to the parameters in Chapter 1 when we talked about the 
representation of performance metrics by a linear expression ΣC(i)⋅F(i). In that context, the F(i) 
are parameters and the C(i) are coefficients. 

Including the parameter values into the input data headers involves certain overhead in the 
number of bits, being undesirable, certainly for video coding applications, striving to achieve 
good data compression. Nevertheless, we see that the MPEG-4 standard provides for inclusion of 
a certain set of complexity parameters into the video frame headers as an optional extension [42]. 
A question arises: what is the motivation behind paying the overhead of parameters? 

 

2.3.2 Parameters and QoS Adaptation  

Before giving an answer to this question, let us consider the basics of QoS adaptation, 
because it provides a motivation for applying the run-time performance analysis proposed in this 
thesis. Hereby, let us, first of all, bring into attention the fact that there are two basic kinds of 
complexity parameters. We call them active parameters and passive parameters. The active ones 
are those that can be adjusted to scale the quality of application output, and the passive parameter 
values are characteristics that cannot be changed. Applications having active parameters are 
called scalable. Among modern multimedia applications, 3D-graphics applications can be 
distinguished for good scalability. There, an example of an active parameter is the number of 
triangles used to render a 3D object and an example of a passive parameter is the percentage of 
the video screen occupied by the object, as shown in a paper by J. Bormans et al [11].  

Given a scalable application, the objective of QoS adaptation is to maximize an audio/visual 
quality metric while meeting the real-time constraints – which means maintaining the required 
minimum throughput. When we have hard real-time constraints, the minimum throughput 
constraint is rigid. Thus, one can think of a combinatorial optimization problem, where an 
expression of the form ΣC(i)⋅F(i)  – which can be used to express the throughput – is involved to 
express the throughput constraint. In such a problem, the active parameters are variables F(iactive) 
to be optimized and the passive parameters F(ipassive) are values specified in the problem instance. 
To complete the picture of a combinatorial optimization problem, one can imagine that the 
objective – a quality metric – can also be expressed in terms of parameters; examples are given 
in the works of J. Bormans [11] and N. Ngoc [69]. In fact, the QoS adaptation approach we have 
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just depicted fits the general adaptation framework we have described in Chapter 1 using 
Figure 1.8. 

 [25] and [41], in effect, present two representative variations of the adaptation framework of 
Figure 1.8, which avoid the need in encoding the a-priori parameter values in the input data 
frames. S. V. Gheorghita et al [25] automatically insert workload predictors into source code, 
which, as soon as the most influential conditional branches in the execution run are taken, send 
corresponding signals to the adaptation manager. Those signals imply that the parameters in the 
current run can take values only in a certain limited range, which is enough for the adaptation 
manager to estimate the workload and adapt the operating voltage and the clock frequency. 
Unfortunately, the usage of workload predictors is only possible to control execution runs 
consisting of one iteration of the loop of interest, so encoding of parameter data in the headers is 
still necessary to control longer execution runs. Yicheng Huang et al [41] present an offline 
video decoding QoS adaptation framework that runs the decoding application on a high-
performance compute server such as a PC, in order to extract the application’s workload 
parameters, use them to estimate the workload for a certain embedded system architecture and 
then adapt the quality such that the workload of that system does not violate a workload 
constraint. Because in that approach the parameters are extracted offline, they do not need to be 
encoded in the input stream headers; but nevertheless this approach fits into the framework 
shown in Figure 1.8. The approach of [41] demonstrates the usefulness of a-priori knowledge of 
parameter values for workload estimation/ However, because one cannot accompany every 
embedded multimedia device with a compute server that would perform the quality adaptation 
for that device, encoding the parameters in the input data frame headers is a more acceptable 
solution in general case. 

The overhead of parameters in the input data headers can be justifiable in many practical 
cases. We also believe that the parameter overhead can be efficiently controlled. For this, one 
can reuse various techniques invented and widely applied to encode the useful multimedia 
content, video and audio. Advanced encoding of parameters is, however, beyond the scope of 
this thesis and is a subject for future work. 

 

2.3.3 Parameters and HSDF Performance Analysis  

The purpose of this subsection is to briefly show how HSDF performance analysis is extended 
based on the parameters defined in our parametric timing modes. 

Our parametric timing models distinguish two levels of hierarchy in the loop of interest: the 
loop-level and the actor-level. Respectively, the parameters are also divided into two levels.  

The loop-level parameters count the loop iterations having specific properties and their 
coefficients provide the impact of those iterations. The upper bound on the loop execution time 
we obtain in Chapter 5 has the form of a linear expression, which can be seen as a generalization 
of Equality (2.11): 

...2 scsc21 scsc1 +⋅+⋅≤∆ IIN αα       (2.12) 

where j scα  are loop-level coefficients and Iscj are loop-level parameters. The linear terms of this 

expression are contributions of different scenarios (or, to be more precise, of different scenarios 
and scenario transitions; these terms are introduced in detail later in this thesis). The idea is that 
the scenarios define the subsets of the loop iterations – based on certain application-specific 
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properties – such that the iterations that belong to the same scenario have similar contribution to 
the total execution time.  The loop-level parameters count the number of iterations in the subset 
of the scenario. 

In the example application for which Equality (2.11) has been constructed, the loop of interest 
processes one block of pixels per iteration and the specific property for grouping the iterations 
into different scenarios is the type of the block as defined in the MPEG-2 standard. However, in 
general, scenarios do not need to be bound to any classification defined in the standard from 
which the application is derived. We introduce scenarios in Chapter 5.  

In fact, our work on scenarios can be classified as part of scenario-based approach; a broad-
scope extensive overview on using that approach in embedded system design can be found in the 
paper of S.V. Gheorghita et al [29]. 

Note also that the method of A. Bavier [6] and also of most of the other work on timing 
models for adaptation, e.g. G. Bontempi’s work [10], assume that the contributions of different 
computations to the execution time add up together, which is a valid assumption only when the 
application has only one thread of execution. In our case, there are multiple parallel threads of 
execution – the processes. Because of that, we compute the contribution of scenarios differently, 
using IPC graph analysis. For example, a linear expression that can already be written based on 
Lemma 2.6 is the following: 

NN ⋅+≤∆ )( maxmax δλ        (2.13) 

where maxmax,δλ  are the MCM and the maximum Nδ  of IPC graph Gmax (see Equality (2.9)), 

with worst-case execution times. In this case, there is only one scenario that includes all N 
iterations of the loop of interest. Instead of one scenario, Chapter 5 proposes multiple scenarios 
and explains the algorithms to find the loop-level coefficients. The common property between 
the coefficients defined there and coefficient maxλ  mentioned here is that they are also calculated 

from the analysis of various paths through the IPC graph. 
Not only at the loop level, but also at a finer-grain level – the actor level – the execution 

delays are data-dependent. Unlike the loop-level expressions, the actor-level expressions can be 
non-linear functions on the parameters, and we support this case. Nevertheless, in Chapter 3 we 
make an observation that under reasonable general assumption, any actor execution delay can be 
accuirately translated into linear form, and therefore we use linear expressions for illustration 
purposes. In Chapter 3, we show that one can model variable actor execution delays in the form: 

( )kkkkkkk vCCCRnvd     ...,),( 2,2,1,1,0, +⋅+⋅+= ξξ     (2.14) 

where ωξ ,k  are actor-level parameters, ω,kC  are constant coefficients and R is a stepwise-linear 

function that takes into account the limited budget assigned to the process where actor vk 
belongs. Note that, as we see in Chapter 3, function R can be represented algebraically (i.e. using 
a simple set of arithmetic and ‘ceiling’ operations), and thus the whole right part of 
Equality (2.14) is an algebraic expression. Recall from Section 1.4.4 that the use of algebraic 
expressions is an important requirement for our performance analysis approach. 

Whereas loop-level parameters Ik count the iterations of the top-level loop of interest, actor-
level parameters ωξ ,k  count the iterations of the lower-level loops, hidden inside the actors. 

We conclude this subsection by an important remark.  

Remark. The values of active parameters should be set prior to the loop execution run. 
Recall that the active parameters are the parameters that can be set by the run-time QoS 
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adaptation algorithm. We would like to stress that in our approach it is not allowed to set them 
during the loop execution run. Therefore, the QoS adaptation cannot be part of functionality 
included in the computation actors of the loop of interest. The reason for that is the fact that QoS 
adaptation algorithms typically set the active parameter values based on the current slack (the 
time left until the deadline). If we included the QoS adaptation, then the execution delays of 
some actors would become dependent on their starting times, which would harm the validity of 
our analysis techniques. ♦ 

 

2.3.4 Implementation Trajectory 

In this subsection, we reconsider the basic implementation trajectory given in Section 2.1.2 – 
see Figure 2.2 – now updating it by exposing the use of parameters. Here we still avoid most 
details on the contents of the intra-application and multi-application mapping stages, postponing 
them to the next chapter. 

The purpose of this presentation is to give an overview on how the parameters are supported 
and applied in our design methodology. When reasoning about the use of the parameters in 
practice, we tried to come up with a ‘recipe’ that is simple but still general enough. For a 
concrete and detailed example we refer the reader to our application case study in Chapter 6. 

First, we discuss the variant of our methodology for soft real-time (SRT) applications, and 
then we consider the differences for the hard real-time (HRT) case. For SRT, we follow a 
philosophy similar to the one often followed in the domain of QoS for consumer terminals: 
design for average-case resource utilization and the best-quality setting of active parameters and, 
at run time, whenever the resource utilization goes above average, lower the quality as much as 
necessary to avoid too many deadline misses. In line with that approach, when dealing with SRT 
applications, our implementation trajectory uses average actor delays to perform the mapping to 
the platform. Strictly speaking, this is not exactly the same as targeting the average resource 
utilization, because, as we learn from Formula (2.10), using the average actor delays is a 
technique that tends to lead to optimistic estimation of the average performance and 
consequently it also leads to underestimation of the resource utilization. However, we do not 
have any better generic approximation of the average resource utilization, as we said we can only 
approximate it better at run time, and there are no general techniques available yet to 
approximate it better at design time.  

Below, a brief specification of the trajectory follows. Some terms used in the specification 
have not been introduced yet; we indicate them using Italic font. The explanation comes after the 
specification. Note that to be able to later extend this specification to the hard real-time case, in 
what follows, we use the words ‘typical’ and ‘typically’ instead of ‘average-case’. 

Specification of an implementation trajectory. 

I. Application preparation  
1. Parameter identification (application designer, design-time) 

a. identify actor-level parameters ωξ , 

b. identify the scenarios and loop-level parameters  Iscj, 
c. identify which parameters are passive and which are active. 

2. Actor-level characterization (system designer, design-time) 
- calculate the actor-level coefficients, ω,kC . 
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3. Typical timing and constraints evaluation (system designer, design-time) 
a. calculate the typical actor-level parameter values ωξ  typical , 

b. calculate typical actor delays, based on ωξ  typical , ω,kC ,  and Equality (2.14), 

c. calculate the typical required throughput θrequired. 
II. Intra-application mapping (system designer, design-time) 

1. Intra-application mapping of static-delay computation graph   
- minimize the resource usage assuming typical actor delays and a throughput 

constraint of θrequired. 
2.  (optional) Preparation for loop-level characterization 

- find analytical expressions for loop-level coefficients j scα . 

III. Multi-application mapping (system, run-time) 
IV. Run-time QoS adaptation manager (application, run-time) 
 

1. retrieve characteristic passive parameter values from the frame header, 
2. select the values for active parameters, based on the adaptation algorithm, 
3. use the parameter values to calculate the actor delays for different scenarios, for 

each scenarios applying Equality (2.14) , 
4. perform loop-level characterization 

- from the obtained actor delays, calculate loop-level coefficients j scα either 

based on the IPC graph analysis or using the prepared analytical 
expressions (if available), 

5. find an expression for an upper bound on N∆  using Equality (2.12), 

6. use the expression to verify that real-time constraints are met, and if the quality 
metric is maximized stop the adaptation algorithm11; if not go back to Step 2.♦ 

Let us consider the parameter identification first, i.e., Part I.1. It is performed once for a big 
class of target multiprocessor platforms that should support the given application. The 
identification of parameters in Steps ‘a’ and ‘b’ is essentially independent of the target platform 
architecture. For the parameter identification at actor-level – Step ‘a’ – one can apply an existing 
profiling-driven automated technique by S. V.  Gheorghita et al [28], [24]. However, they do not 
provide a way to derive algebraic expressions for the dependency of actor execution delays on 
the parameters, their method to estimate the execution delays are based on lookup tables, which 
are accurate only for a limited range of parameter values. To really represent the actor-level 
execution delays algebraically, e.g. as in Equality (2.14), one can do static control-flow analysis 
of every actor, like the one we sketch in Chapter 3. [28], [24] also present an automated 
technique for identifying scenarios and hence also for identifying the loop-level parameters – 
Step ‘b’. We discuss Steps ‘a’ and ‘b’ in Sections 3.2 and 5.3 respectively. Note that along with 
identifying the parameters, the application designer also selects the most significant parameters 
to be encoded in the data headers. Distinguishing between passive and active parameters, 
Step ‘c’; it should be done by the application designer him- or herself, based on the knowledge 
of the application algorithm.  

In contrast to the first subpart, Part I.2 targets a concrete multiprocessor platform, and 
therefore it is the job of the system designer. This subpart performs characterization, which we 
define as ‘finding the parameter coefficients’. Part I.2 calculates the coefficients at the actor-

                                                
11 The algorithm can also be stopped if a time-out is reached. 
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level, i.e., for the actor execution delays. In Section 3.3, we discuss how well-known execution 
delay analysis techniques such as linear regression for the execution delays measured in a 
platform simulator, as proposed e.g. in [6], and worst-case execution times, e.g. [53 - §3], can be 
modified to obtain conservative coefficients, which is necessary for conservative performance 
analysis. 

Part I.3 is the last subpart of the application preparation. It evaluates the possibilities and 
requirements for the application under typical conditions, which are used to allocate the platform 
resource budgets at design time. Step ‘a’ evaluates the typical values of passive parameters. This 
can be done experimentally, by measuring them for ‘typical’ sample input streams, e.g. Mladen 
Bereković et al [9] calculate the average values of parameters for the given MPEG-4 ‘profile’, 
i.e., for the given set of workload conditions defined in the MPEG-4 standard. As for the active 
parameters, determining the typical values means selecting the parameter settings that the QoS 
manager will ‘typically’ use at run time. One way or another, the application designer is in 
control over those values because it is he/she who designs the QoS adaptation manager. Step ‘b’ 
combines the calculated typical parameter values and the coefficients calculated for the given 
target platform by actor-level characterization. Note that knowing the typical parameter values 
for the given application and the coefficients for the given platform, one can quickly evaluate the 
typical actor delays even without profiling the given application with the platform’s profiling 
tools. Finally, step ‘c’ evaluates the typical throughput requirements of the application. For many 
streaming applications the throughput requirements are fixed, but for some of them they may 
change at run time. For example, in the MPEG-4 arbitrary-shape decoder, the video frame can 
grow or shrink, whereby the required number of blocks per second also changes. For such 
application, the ‘typical’ requirements should be evaluated at this step. 

The main task of Part II is intra-application mapping. We observe that most of the work on 
design-time mapping is done for static delays, e.g., [36], [49], [83], [66], [88], and [90]. 
Therefore, during the mapping, in Part II.1, we abstract the actor delays as static delays, i.e., the 
typical delays, calculated in Part I.3. Given the typical delays, at the beginning of the mapping 
flow one can assume that each actor gets 100% budget on the fastest native processor 
architecture that can execute the given actor. This enables the designer to immediately evaluate 
whether the fastest possible implementation can satisfy the typical required throughput 
constraint, and if it is the case, to continue by relaxing the resource budget requirements in the 
mapping flow. 

In our implementation trajectory, the objective of mapping is to minimize the number of 
resources (i.e., processors and channels) and the magnitude of resource budgets (i.e., processor 
cycle budgets and channel bandwidth budgets) under the performance constraint (the required 
typical throughput). An example of an intra-application mapping approach that considers similar 
kinds of applications and platforms as assumed in this thesis is presented by Sander Stuijk et al 
in [88], [90].  

To explain Step 2 in Part II, recall that our performance analysis uses an expression in the 
form of Equality (2.12) to yield a conservative estimate of ∆N at run time. That expression uses 
loop-level coefficients j scα .Recall also from the remark in Equality (2.13) that in this thesis we 

define run-time algorithms to calculate the loop-level coefficients based on analysis of various 
paths in the graph. One of those algorithms is MCM analysis. However, Amir 
Hossein Ghamarian et al [22] propose automatic design-time derivation of analytical expressions 
for a graph’s MCM, λ, as a function of actor delays as unknown variables. Those expressions 
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can be used for quick and accurate MCM evaluation at run time instead of performing run-time 
MCM analysis. This is, in fact, in line with Step 2 in Part II of our implementation trajectory. 
At Step 2, the designer derives analytical expressions for the loop-level coefficients as functions 
on the actor delays that are known only at run time. Note that Step 2 of Part II is optional, 
because one can run our analysis algorithms at run time. 

Thus, [22] partially automates this step. However, in Chapter 5, we define also other 
coefficients that we need for run-time estimation of ∆N. For those coefficients, either these 
automatic techniques have to be extended or the designer can try to derive analytical expressions 
manually, exercising his/her analytical skills. For the IPC graph in our case study in Chapter 6, 
we arrive at simple formulas for all loop-level coefficients in a 4-actor graph. 

Part III, the multi-application mapping, is not involved with parameters. It fits the resource 
budget subnetwork (obtained from the intra-application mapping flow) into the available 
unoccupied physical resources. Closely related topics are studied, for example, in the work of 
Orlando Moreira et al [65] Sander Stuijk et al [89], Srinivasan Murali et al  [67], and Andreas 
Hansson et al [34]. 

In Part IV, we see an iterative adaptation procedure, which is in line with Figure 1.8, whereby 
Steps 2 and 6 in Part IV represent the optimization unit and the other steps represent the 
performance analysis. To be able to estimate the execution time, our method needs to calculate 
special actor delay values that represent the actor delays in different scenarios. They are obtained 
from the actor parameter values that are characteristic for those scenarios and we refer to those 
values as characteristic parameter values. Those values are retrieved from the input data headers 
at Step 1. Having calculated the actor delays for different scenarios at Step 3, our method fills 
them in into the IPC graph and uses certain graph-path analysis algorithms (or the formulae 
derived at Step 2 in Part II) to calculate the loop-level coefficients at Step 4. The loop-level 
coefficients go into an expression that estimates the loop execution time, N∆ , based on 

Equality (2.12) . 
In the ideal case, the QoS adaptation procedure can immediately – without multiple iterations 

– find the appropriate values for the active parameters using the execution time expression. For 
example, suppose that the expression for the execution time gives:  

2 sc1 sc 510 IIN ⋅+⋅≤∆  

and suppose that the header provides value Isc 1=40 and suppose that Isc 2 is an active parameter, 
being at the same time the quality metric that has to be maximized. Suppose that the real-time 
constraint is 500≤∆N . In that case, to meet the constraint and to ensure the maximum quality, 

the manager can quickly solve this linear programming problem and come up with value Isc2=20. 
Note that although in general N∆  might be a non-linear function (if some active parameters are 

actor parameters), one can be sure that it will be monotone on its arguments, which is favorable 
for optimization. 

In case of hard real-time (HRT) applications, one can use the same trajectory, but the term 
‘typical’ will mean in this case ‘worst-case’, such that one can always ensure that the deadlines 
are automatically met for the typical active parameter setting. It is not necessary to involve a 
QoS adaptation manager here, but one may choose to use one to maintain, whenever possible, 
quality settings that are better than worst-case. Such a QoS manager would always be 
safeguarded by the possibility to resort to the worst-case setting. 
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2.4 Summary and Notes  
In this chapter, we have chosen and motivated a multiprocessor scheduling method and the 

basic timing models for that method – IPC graphs, enabling the application throughput analysis 
for the given implementation. We have argued that they can be extended to support a network-
on-chip platform and data-dependent execution delays. Therefore, those models can constitute a 
mathematical framework for run-time adaptation, making it possible to predict the performance 
metrics and identify performance bottlenecks in the given implementation based on a-priori 
characteristics of the dynamic computational workload available at run time. The details on how 
the extended IPC graphs can be built are presented in the next chapter of the thesis. 

Another major topic we studied is application dynamism due to data-dependent variations in 
the execution delays. Under those conditions, we wish to analytically derive the performance 
metrics that can be guaranteed by the system. We observed that a closely related problem 
addressed in the literature has proven to be too tough to solve analytically. Our hypothesis is that 
the reason for that is an attempt to globally cover all possible run-time situations. Nevertheless, 
for the purposes of run-time QoS adaptation, we have identified a possibility to exploit available 
run-time information on the temporarily local run-time situations to derive local performance 
metrics analytically. Later on in this thesis, in Chapter 4, we build a necessary basis for that idea 
and in Chapter 5 we work it out in detail. We will see there more evidence that this problem is 
challenging even under the current basic assumptions that the IPC graph is autonomous (no 
inputs and outputs) and that there is no conditional communication between the graph nodes. 

In the end, we would like to mention our major sources of inspiration for the ideas explained 
in this chapter and mention some related work. The original idea of IPC graphs and throughput 
analysis comes from the book of [83] and earlier papers by the same authors. The ideas on 
providing bounds on the performance metrics of HSDF models and on processor scheduling 
come from discussions in a multiprocessor networks-on-chip project at Philips Research Labs 
Eindhoven (nowadays NXP Semiconductors), and one can find more on this subject in [31], [7], 
[8], as well as in our own work [75]. We owe such a subtlety as the FIFO property and other 
general statements about the HSDF model to the fundamental book of F. Baccelli et al [4], but 
Lemmas 2.5 and 2.6 are original for this text. Last but not the least, the idea of characterization 
of the resource requirements of streaming applications using HSDF models with parameter 
expressions for actor delays comes from our collaboration with the video coding architectures 
group at our university, see e.g. [72], [77]. A publication of Clara Otero Pérez, Liesbeth Steffens 
et al [71] and related whiteboard presentations from the authors provided us a good introduction 
into the domain of QoS management for streaming applications. 

In this chapter, we implicitly touched upon an important topic – the possibility to embed 
models of multiple local schedulers of different resources (i.e., processors) into one single 
dataflow ‘super-model’, such that the ‘super-model’ enables the schedulability analysis that 
takes into account not only the behavior of separate schedulers but also the – possibly cyclic – 
dependencies between them. This is, in effect, done in our implementation-aware HSDF, 
whereby we model the run-time scheduling by using a scheduler-dependent actor delay 
determined by the upper bound given in Equality (2.2). Similar ideas were developed by Rob 
Hoes in his Master Thesis [38].  Maarten Wiggers et al [98] analyze the new possibilities opened 
by such super-modeling for the run-time scheduling theory in general and introduce more 
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accurate and elaborate models for a certain general class of local schedulers, whereby every 
application task is represented by a pair of actors as opposed to one actor, as in this thesis. 

A work that is closely related to our actor-level parameter identification is presented by 
Yicheng Huang et al in [41]. They study the decoding workload estimation for different video 
coding standards. The processing times are obtained using lookup tables from data-dependent 
conditions to either a constant number of clock cycles or to a simple parameter function. This is 
equivalent to introducing a separate Boolean parameter for every condition and using as a linear 
combination of those parameters and the lookup values. They can achieve good accuracy – [39] 
claims at most 2.7% average error for sequential execution on a single processor. They do not 
model parallelism and communication, which would be required for parallel execution on 
multiple processors. We present such modeling techniques, as well as the details of actor-level 
processing time modeling in the next chapter. 
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3 Design-Time Trajectory: IPC Model Construction 
This chapter focuses on the design flow introduced in the previous chapter. Recall that that 

flow consists of the application preparation and the intra-application mapping. The goal of the 
flow is to generate a resource budget network that typically satisfies the timing requirements and 
the IPC graph that can be used for performance analysis. In this chapter, we consider the design 
flow mainly from the point of view of IPC graph construction. 

Sections 3.1-3.3 are dedicated to the application preparation – or Part I of the trajectory. 
Whereas, in Chapter 2, we considered the structure of computation graphs, in those sections, we 
fill in the delay values into that structure. Hereby, we introduce the actor-level parameters and 
coefficients in more detail. As for the scenarios and loop-level parameters, which are also 
defined during the application preparation, we postpone their detailed treatment until later – 
Chapter 5. 

In the implementation trajectory, the application preparation is followed by the intra-
application mapping – or Part II. Before considering the mapping flow in Section 3.5, we give 
the necessary details on the multiprocessor architecture in Section 3.4. For the last design-time 
step, Step II.2 – the derivation of analytical formulas for the loop-level coefficients – we hardly 
can provide a general methodology, but we give an example in Chapter 6. 

In Section 3.6, we consider a few important miscellaneous properties of IPC models. 
The methodology presented in this chapter is a combination of different ideas, coming from 

different sources, including some original ideas. The summary on the literature sources and our 
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own claims are for the most part postponed until the ‘Summary and Notes’ section in the end of 
this chapter. 

 

3.1 Timing Modes 
3.1.1 Timing Mode: Processing Times and Computation/Communication Delay Relations 

In this subsection, we introduce the timing modes, which provide the actor delay values in the 
implementation-enhanced HSDF model.  

Before introducing the timing modes, we take a quick look on how the actor delays are 
computed in a timing mode and how the timing modes fit in the global picture of performance 
analysis. Recall that a computation actor in the IPC model starts at the moment when it is 
enabled, i.e., when its turn comes to execute and the input tokens as well as the free places for 
the output tokens are available. However, at the moment of time when an actor is enabled, rather 
than executing the process that runs the given actor, the processor may be busy with another 
process, and afterwards it may keep switching between processes. Nevertheless, recall from 
Section 2.1 that the processor scheduler guarantees that the computation actor will complete the 
necessary processing in time d, such that: 

d ≤ qBt ˆ+         (3.1) 

where t is the number of processor cycles required for the processing in the given actor 
execution; B is processor cycle budget assigned to the process per unit of time; q̂  is a constant 

depending on the scheduling method and settings. 
In Chapter 2, we did not yet detail the relation between the processing algorithm of the 

computation actor and delay annotation d (vk, n). We only suggested that expression qBt ˆ+  

could be used as such, because it gives a conservative estimate of the delay and because it is 
independent of the time when the computation actor is enabled. 

In the latter statement, we implicitly make a certain basic assumption that often holds by 
default. We assume that value t is stable under any possible starting conditions, and the real 
execution on a processor will not take more cycles than t. In fact, for conservative timing 
analysis, we do not require that t gives the exact number of processing cycles, we only need an 
upper bound, preferably a tight one. 

Postulate. (Actor processing time) There exists an upper bound on the number of cycles 
required for an actor execution, which only depends on the contents of the input data streams of 
the application. We call that bound actor processing time, denoted t (vk, n). ♦ 

The processing time postulate is motivated and discussed in detail in the next subsection. In 
an implementation-enhanced HSDF model, every timing mode defines a method to estimate the 
actor processing times and a relationship between the processing times t and the delays d.  
Definition (Computation delay relation12) The delay of a computation actor is related to the 
processing time by equality: 

( )kkkk vnvtRnvdv ),,(),( compcomp =⇒∈ V     (3.2) 

                                                
12 Although, in fact, Rcomp and Rcomm, defined later, are functions, I refer to them as ‘relations’, so that I can easily 
distinguish them from the other functions. 
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where compV  is a set of HSDF computation actors, and function compR  is called the computation 

delay relation, and its value gives an upper bound on the computation actor delay for the given 
processing time and the budget to which actor vk is assigned. We assume that compR is a 

monotonically increasing function on t. For any scheduling method, one can select compR  in the 

form ),(comp kvtR = )(ˆ)( kk vqvBt + , where B(vk)  is the budget assigned to the process where 

actor vk  is contained and )(ˆ kvq  is an additional factor that depends on the scheduling algorithm 

used by the processor where actor  vk  is executing. Nevertheless, for TDMA scheduling, which 
we adopted in Chapter 2, there exists a tighter upper bound that cannot be expressed in that form, 
and we introduce it in the last subsection of this section.♦ 

In fact, the postulate and the definition above give us the timing mode components for the 
computation actors. A timing mode also has components for the communication actors. This is 
illustrated in Figure 3.1. As shown in that figure, similar as in case of the computation actors, the 
delay of communication actors is determined by the amount of work they perform and by the 
communication budgets.  
Definition (Communication delay relation) The delay of a communication actor is related to 
the data token sizes by equality: 

( )kkkk vvzRnvdv ),(),( commcomm =⇒∈ V    (3.3) 

Function commR  is called the communication delay relation, and its value gives an upper bound 

on the communication actor delay for the given size )( kvz  of the data token transferred by the 

communication actor and the budget of the channel to which actor vk belongs. The 
communication budgets are introduced later in this chapter. ♦♦♦♦ 

Figure 3.1 Timing modes and performance analysis  
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Definition (Timing mode) A timing mode T∈τ of an implementation-enhanced HSDF model 
>< PQT,G, is a tuple >< commcomp ,,, RzRt , where t  is a function, ),( nvt k , that defines the 

processing times of computation actors, compR  is a function, ( )kvtR ,comp , that defines the 

computation delay relation, z  is a function, )( kvz , that defines the sizes of the data tokens 

transferred by the communication actors, and commR  is a function, ( )kvzR ,comm , that defines the 

communication delay relation.♦ 

Recall that we assume that the sizes of the data tokens transferred by the communication 
channels are fixed. Because the channels get guaranteed bandwidth budget, this means that the 
communication delays are constant. Figure 3.1 reflects that fact by showing that only the 
computation delays depend on parameters. 

An implementation-enhanced HSDF model has several timing modes, reflecting the actor 
timing with different accuracies. Different timing modes are meant for different purposes and 
situations. In each situation, only one timing mode is active. Which performance analysis 
method is applied in the given situation depends on which timing mode is active. As shown in 
Figure 3.1, given the actor delays and the structure of HSDF graph G, the mode-specific analysis 

method should estimate performance characteristics, such as an upper bound NΛ̂ on the loop 

iteration interval NΛ . 

The timing modes can be split into static and dynamic modes. Static modes assume that the 
processing times – and, consequently, the actor delays – are static. Recall that in the mapping 
flow, we use a static-delay timing mode that assumes that the actors have typical delays. In 
Figure 3.1, that mode is denoted as statictypical−τ . In that mode, the loop iteration interval, NΛ , can 

be efficiently approximated by its limit value for ∞→N , i.e. as the MCM of the graph, λ . λ  is 
used as a constraint for the optimization steps of the mapping flow, considered in Section 3.5. 

However, under conditions of dynamic computation delays, only the dynamic timing modes, 
using run-time information about the parameter values, can ensure good accuracy in the general 
case. We introduce two dynamic timing modes: detailed dynamic mode and multi-scenario-delay 
(MSD) dynamic mode. 

The detailed dynamic mode needs parameter values that characterize each actor in every loop 
iteration. In that case, every computation actor gets a sequence of accurate delay annotations, 

),( nvd k , for the whole loop execution run, 1 ..., 1, ,0 −= Nn . At design time, such information 

could be used to perform a simulation of the graph execution with accurate timing. From the 

simulation, one could obtain the loop execution time, N∆ , and then NΛ̂  is equal to NN /∆ . 

However, similar computations at run time would involve too much overhead. Nevertheless, we 
use the detailed mode as a foundation to define the multi-scenario-delay mode and to evaluate 
the accuracy of that mode experimentally. In fact, the detailed mode is the key mode for the 
identification of actor-level parameters, the first design task of the implementation trajectory. 
Therefore, this mode is central to Section 3.2. 

Also in the multi-scenario-delay (MSD) mode, run-time parameter values are required that 
characterize all the iterations in the loop execution run, but not in full detail. The purpose of the 
MSD mode is to reduce the overhead of the detailed mode while still preserving good accuracy. 
The MSD mode and the HSDF graph analysis in that mode are defined in Chapter 5. 
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In the remaining two subsections of this section, we revisit the concept of processing time and 
the computation delay relation, which are components of any timing mode. 

 

3.1.2 Processing Time 

In this subsection, we revisit the concept of processing time in detail. In fact, the postulate 
formulated in the previous subsection says that one should be able, for any given set of valid 
input data streams, to derive beforehand a sequence of guaranteed processing times for each 
actor in the computation graph.  

This statement implies two underlying requirements. Firstly, it presumes that, all the 
processing required to perform an actor execution – namely, the computation of the data outputs 
and the update of the internal state – constitutes a sequence of processor instructions that 
depends only on the data inputs being consumed in the given actor execution and on the internal 
state (which is, in general, predetermined by the contents of all data tokens consumed from the 
input data edges before the actor execution by all the actors that belong to the same process). In 
practice, a violation of that rule is only possible in an unlikely case when the actor contains a 
loop with a conditional number of repetitions that is chosen based on the current time value 
obtained from a timer or a random number generator. We cannot consider the values read from a 
timer or a random number generator to be part of actor input or state, because that could make 
the actor delays sensitive to the actor starting times and the behavior of the other processes 
running on the same processor. Fortunately, such situations are not typical in streaming 
applications, which easily satisfy this assumption. Therefore, we can speak of a deterministic, 
even though data-dependent, sequence of processor instructions required for processing within 
one actor execution for the given input data streams. Let us call that sequence of instructions the 
actor processing duty. 

Secondly, our postulate requires that the given processing duty take a tightly bounded number 
of processor cycles. Violations of that rule can happen, first of all, due to ‘improper’ use of 
instruction and data caches. The ‘improper’ use of caches, in our terms, means the possibility of 
cache misses when the processor does the actor processing duty. It is ‘improper’, because it 
violates the basic requirement that, before the actor execution starts and during its lifetime, the 
actor state must be fully available in the physically local part of the memory system (see Section 
2.1). To avoid ‘improper’ use of caches, one can either avoid the use of caches in the loop of 
interest at all (by mapping the actor state, instructions and input/output data to the local 
scratchpad memories) or, in case the cache has some advanced control features, by instructing 
the cache to pre-fetch the required data and to keep it as long as it is needed.   

In addition to caches, also conditional branch predictors can contribute to cycle count 
variation of an actor processing duty. Whether this factor is important depends on how many 
conditional branch instructions are contained in the actor instruction sequence and how much 
their processor cycle usage can vary. If the actor is ‘sensitive’ to conditional branches, this poses 
a threat to our processing time analysis techniques, especially when, at the start of actor 
execution, previously executed actors may influence the predictor state or when it can be 
disrupted by context switches. To avoid this, processor architectures could quickly save and 
restore the status of the branch predictors, and then it is possible to keep our assumption valid 
even in the ‘sensitive’ situation simply by extending the definition of actor processing duty by 
also including the initial state of the branch predictors. Now, not only the sequence of 
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instructions but also the initial state of the branch predictors would predetermine the processing 
time. One would only have to ensure that the first part of our assumption still remains valid, 
namely, that also the state of branch predictors is determined only by the input data of the 
process where the actor is contained, but never by the other processes or by the starting time of 
actor execution. This can be ensured by appropriate saving and restoring of that state at the 
context switches.  In case the save/restore facility is not available one can account for the worst-
case effect of the unknown state in the processing time analysis, considered in the next two 
subsections. In this case, one sacrifices the tightness of actor delay estimation for the sake of 
conservativity.   

Let us summarize the meaning of the two basic assumptions discussed in this subsection. 
Both of them follow the same philosophy: they permit the actor processing time to be influenced 
only by the internal state and input data, which are only determined by the actor’s predecessors 
in the computation graph. To ensure that processing times are close to the real execution cycle 
counts, one can involve the management of caches/scratchpad memory and the management of 
the branch predictor units, thereby incurring certain costs. To avoid that cost, one can take 
conservative assumptions about the behavior of the hardware units. We can add to that that one 
can choose to use different strategies for different actors. The HSDF analysis techniques of the 
next two chapters help to determine which actors are critical for the performance. Then one can 
choose to pay the cost of tight processing time estimation only for the critical actors. 

 

3.1.3 Computation Delay Relation under TDMA Scheduling 

Recall from Section 2.1 that each processor has a local scheduler managing multiple 
processes on a single processor. In this thesis, we adopt a time-division multiple access (TDMA) 
scheduling for processes, where time is divided into periods, and each period is split into several 
time slots of possibly different size assigned to different processes. 

The computation delay of an actor includes the processing time and the time the actor 
execution was initially postponed and subsequently preempted by the scheduler. To have a 
conservative model, our computation delay relation (see Equality (3.2)) assumes worst-case 
delay of postponement and preemption. In case of the TDMA scheduling, the computation delay 
relation is given by: 
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where D is the processing time measured in absolute timing units (rather than in processor clock 
cycles), kFclock  is the clock frequency of the processor to which the actor is mapped, kT  T  is the 

TDMA period of the processor’s local scheduler, kT  B  is the time slot reserved for the process 

that contains actor kv . The ‘ceiling’ part of the expression accounts for the worst-case number of 

time intervals when the given actor execution has to wait because the processor is busy with the 
timing slots that are different from the timing slot of the given actor and )(  B T kk TT −  gives the 

worst-case delay of one such interval. 
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Note that kkkk TTFB  T Bclock ⋅=  gives the processor cycle budget, measured in clock cycles per 

unit of time. Then, by using the property that   1+< xx  in Equality (3.4), after some algebraic 

manipulations, we obtain: 
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kkkkkk ˆ),,(    ˆ  ),,(   , comp B Tcomp +≤⇒−==∈ V  (3.5) 

This result proves that the TDMA scheduling is a budget-provision scheduling method 
according to our definition given in Section 2.1. It also proves that we use a tighter upper bound 
on the real actor execution delay than the bound that is suggested by Equality (3.1). 
 

3.2 The Identification of Actor-Level Parameters  
In this section, we cover part of the first design task to be performed for a given application in 

our implementation trajectory – the application preparation. According to the specification in 
Section 2.3.4, this part of the design flow is responsible for expressing the dynamic data-
dependent execution times of the application as functions of parameters, i.e. workload 
characteristics of the application input data streams. These functions should be expressed in 
algebraically, which is required in our performance analysis approach. In this section, we only 
consider actor-level part of the application preparation, which characterizes the actor processing 
times. This is the low-level part of the application preparation. The study of the other essential 
part of application preparation, working at the level of the whole HSDF graph, is postponed until 
Chapter 5. 

A major part of actor-level application preparation is the detecting the actor-level parameters, 
i.e. the parameters that determine the actor processing times. Currently we are not aware of any 
automated parameter identification techniques that would be able to not only detect the set of 
parameters, but also give an algebraic expression of the processing time as a function of the 
parameters. On one hand, the automated parameter-identification method proposed by 
S. V. Gheorghita et al in [28], [24] partly solves this problem, because it can automatically detect 
a set of input data variables that determine the processing time and thus can be used as 
parameters. Unfortunately, on the other hand, that work calculates the processing times from the 
input variables by means of a performing a lookup in a lookup table, which is only suitable for 
the cases where the set of possible values of every parameter is limited. 

Therefore, instead of using the input variables, we assume that the actor-level parameters are 
(implicit) functions of the input variables that count the number of executions of different 
source-code sub-blocks and thus always have a close-to-linear contribution. Our algebraic 
expression for the processing time is thus a linear combination of parameters. In this section, we 
propose and discuss a manual method to detect such actor-level parameters. (Note that the linear 
parameter functions to express execution times are often exploited in the design and performance 
analysis; the examples which we already discussed before are [9] and [6].)  

This section is organized as follows. In Section 3.2.1, we introduce the linear actor-level 
parameter functions. Hereby we set and justify our goal of identifying the actor-level parameters, 
by arguing that they can be used universally for various streaming applications. Section 3.2.2 is 
the core subsection of this section, discussing how to define suitable linear contributors to the 
processing time of the given computation actor. In effect, that section introduces our manual 
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parameter identification method. Note that for simplicity we often use term ‘actor parameter’ 
instead of ‘actor-level parameter’. 

The actor processing time expressions do not have to be linear, as our analysis approach 
works also for non-linear actor-level expressions. However, since our manual parameter 
identification method detects linear contributors, in this thesis we use linear actor-level models, 
for illustation purposes. 

 

3.2.1 Expressing the Processing Times as Actor Parameter Functions  

In modeling the actor processing time, we adopt a hypothesis that it can be computed as a 
linear function on data-dependent arguments with data-independent coefficients. We call that 
function an actor parameter function. In this subsection, we argue that this hypothesis is general 
enough to be widely used in practice. However, first we need to introduce the parameter function 
in detail. 

Suppose that the contents of the application input streams is given. Remember that the 
computation actors can be implemented on processors of different types. The actor parameter 
function is a linear function on a set of variables, and it can be expressed as follows: 

)(...)()(),( ,22,11,0, nCnCnCCnvt kkkkk ΩΩ ⋅++⋅+⋅+= ξξξ   (3.6) 

where ω,kC , 0 ≤ ω ≤ Ω,  are constant coefficients that depend on the processor type chosen for 

actor vk and )(nωξ  are variables that depend on index n and on the input data streams. These 

variables are called actor complexity parameters. Note that, typically, multiple actors may share 
these parameters, which is why the parameters in Equality (3.6) are not indexed with the actor 
index. 

A special case can be distinguished when all coefficients except 0,kC  are equal to zero. In that 

case the parameter function has a constant value. According to the definition of the processing 

Input :    i(n), n = 0, 1, 2… 

Output :    | i(n) ⋅ i(n−1) | 

    i ← i(n) 

    out ← i*i_1; 

    i_1 ← i; 

    if (out<0) { 

     out ← -out; 

    } 

Answer : out 
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time, that value gives then an upper bound on the number of cycles required by the processing. 
Such an upper bound is usually referred to as worst-case execution time (WCET) [53]. 

The derivation of WCET can be done for a broad class of processor architectures and 
application software. It is a broad research field, and some major results are published e.g. in a 
book by S. Malik et al [53]. The parameter function is a generalization of WCET, namely, it 
gives a conditional WCET value given that complexity parameter values are known. Similar to 
WCET, it can be derived based on the analysis of the internal structure of the actor code. 

Example: Processing time: an actor with an ‘if’ operator. Consider an actor that computes 
expression )1()()( −⋅= nininout , where )(ni is the sequence of numbers encoded in the input 

data stream. Figure 3.2(a) shows a possible implementation of such an actor using a C-language-
like pseudocode. Figure 3.2(b) gives three alternative parameter functions for this 
implementation. Function 1t is a WCET, and its sole coefficient covers the total clock cycle 

count of the whole actor body. Function 2t has Boolean parameter 1ξ  that takes value 1 only if 

the condition in the ‘if’-operator is satisfied. Its coefficient 1C  corresponds to the worst-case 

cycle count contribution of the operator body. Multiplied by 1ξ , it contributes to the total only 

when the condition is true and the operator body is executed. Function 3t  gives a more accurate 

expression of the processing time in case the architecture contains a branch predictor. It is taken 
into account by an extra term, 22 ξ⋅′C . Here 2C′  stands for the cost of a wrong prediction. The 

definition of parameter 2ξ  assumes that the branch predictor expects the previous condition to 

repeat in the current execution of the operator. If the algorithm of the branch predictor is indeed 
as assumed in the definition of this parameter, then introducing this parameter  makes it possible 
to select values for coefficients 0C′  and 1C′  that are smaller than for coefficients 0C  and 1C , 

because then 0C′  and 1C′  do not include the cost of a wrong prediction. In case the given actor is 

mapped to a processor having a different branch predictor or none, 2C′  should be set to 0 and 

costs of the wrong prediction should be included in 0C′  and 1C′ .♦ 

From the above example, we see that the application designer can anticipate a certain type of 
processor architecture and try to select the parameters accordingly; however, once the set of 
parameters are chosen, it should remain the same, no matter to which processor type the actor is 
mapped to. That is, in fact, what we mean when we say that the parameters are independent of 
the processor hardware architecture. 

Let us make a few claims about the generality of actor parameter functions. First of all, they 
are general enough for a broad class of processor architectures. Indeed, one can find the worst-
case contributions of different internal parts of each computation actor, such as the body of a 
conditional operator or a loop. These contributions can serve as coefficients in Equality (3.6) and 
can be obtained by applying standard WCET techniques to individual parts of each actor. Note 
that Equality (3.6) may seem to restrict us to non-pipelined architectures13, because it adds the 
contributions of actor parts, whereas their execution may overlap in time. However, we have 
performed multiple experiments on the computation actors of the JPEG and the MPEG-4 
decoding applications14, and we have observed that, for RISC architectures, which are pipelined, 
using the sum of the part contributions as parameter function leads to fairly accurate processing 

                                                
13 In fact, virtually any modern processor architecture is pipelined.  
14 A few more details on these experiments are mentioned later in this section, but they are mainly reported in 
Chapter 6. 
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time estimates, which can be explained by the parts being large enough, making the timing 
overlap between the parts negligible compared to the timing lengths of the parts themselves. Of 
course, in case when the overlap is considerable compared to the sizes of the actor parts, simply 
adding the WCET contributions of each part may lead to quite pessimistic estimates. 
Nevertheless, for such cases, we envision that, to reduce the pessimism and improve the 
accuracy, one can perform extra analysis to compute the minimum overlap between a given part 
and any other part that may precede it during an actor execution. This minimum overlap can be 
subtracted from the coefficient, and this makes the parameter function less pessimistic. We have 
not experimented with this idea at the level of individual actors, but we do use a similar idea at 
the level of multiple actors, and we describe the underlying method in Chapter 5. 

 The second generality claim we make is that a linear parameter function is general enough 
for any algorithm that may be used in the application. To support this claim we observe that 
algorithmic complexity theory can represent the processing time of virtually any algorithm as an 
algebraic function on the input data characteristics. It is, for example, well known that the 
complexity of an efficient algorithm for sorting an array of elements is ))log(( NNO ⋅ , where N 

is the size of the array. Equivalently, one can define the processing time of that algorithm as: 
)log(10 NNCCt ⋅⋅+= .  Although this function is not linear, we can transform it into a linear 

one by variable replacement: )log(1 NN ⋅=ξ . Not any function one can think of can be 

translated into the form of Equality (3.6), but, intuitively, any complexity function can. Take for 
example function )log( СN + , where C is an architecture-dependent constant. It is not possible 

to translate it into an accurate linear form of architecture-independent variables, except by an 
infinitely long Taylor expansion. Luckily, complexity theory does not come up with such 
‘strange’ complexity functions, because it represents the results in form )( fO , where f is an 

expression that does not include any architecture-dependent constants. 
The question about the generality of linear expressions has been raised in [91]. That article, 

by the way, proposes linear expressions like Equality (3.6), but for the consumed energy, rather 
than for the consumed clock cycles, which nevertheless boils down to the same reasoning as 
ours. The author’s remark that it is not always ‘possible’ to obtain a linear expression, referring 
to the ‘greatest common divisor’ (GCD) algorithm as a counterexample. We find it worth 
studying that example and the meaning of ‘possible’ in their sense to get a further insight into the 
nature of actor complexity parameters. 

Example: Processing time: GCD computation algorithm. Consider the following algorithm: 
Input : integer n and k , where n ≥ k 

Output : GCD(n, k ) 
  repeat { 

    p ← n; 

    n ← k; 

    k ← p mod n; 

  } until k=0;  

Answer : n 

The processing time of this algorithm is 110 ξ⋅+= CCt , where 1ξ  is the number of iterations of 

the ‘repeat until’ loop required to complete the computations. Obviously, 1ξ  depends on the 

input data, integer values n and k. In case of the sorting algorithm, we had the same parameter 
function, and 1ξ  could be expressed analytically, using a logarithm of the size of the input array. 
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Now a question arises on whether also for the GCD algorithm we can express 1ξ  analytically. 

We should admit that we are not aware of any simple way to do that. We can only give upper 
bounds on 1ξ , e.g. n+0 , k+1 , knmod2 + . Here each bound assumes that the loop, once it has 

started, executes at least a given number of iterations – the first operand of the addition – 0, 1, 2. 
The second operand of the addition gives an obvious upper bound on the number of remaining 
iterations, equal to the initial value of variable ‘n’ before the remaining iterations begin.♦ 

In [91], only informal reasoning on this subject is provided, but it can be formalized as 
follows. They consider it ‘possible’ to use a parameter function only if all the parameters can be 
expressed as analytical functions of the input elements. Here ‘input elements’ are such 
characteristics of the input data structure that can be computed in linear time, e.g. array N in case 
of an array sorting algorithm, and n and k in case of the GCD computation. Clearly, for the GCD 
example, using complexity parameters is ‘impossible’ according to the definition of [91].  

This example actually demonstrates the fact that to compute a complexity parameter for an 
algorithm may require as much computational resources as the algorithm itself. For example, 
although one does not have to execute the sorting algorithm to compute its parameter 1ξ , to 

compute 1ξ  accurately for the GCD algorithm one may have to execute the algorithm itself, 

extending it with a so-called counter variable that counts the number of iterations of the ‘repeat 
until’ loop, as shown by highlighted lines in the algorithm description below: 

Example: Introducing a counter into the GCD algorithm.  
Input : integer n and k, where n ≥ k 
Output : 1ξ  of the GCD computation algorithm 

  n ← n; 

  k ← k; 
  xi1 ←←←← 0; 

  repeat { 
   xi1 ←←←← xi1+1 

 … 

  } until k=0;  

Answer: xi1 ♦ 
Introducing the counters into the application algorithm and using the modified algorithm itself 

to compute its complexity parameters is a fallback solution that would always work. Therefore, 
we do not require that the complexity parameters can be computed ‘easily’ – in a constant time, 
or in a linear time, or whatsoever. That is what makes our actor parameter function general. 

However, the run-time quality/energy optimization managers, which are the ones that would 
make use of our timing models, may not wait until the application algorithm itself would 
compute parameters because the managers have to estimate the application performance 
beforehand. Therefore, the parameters have to be computed externally, without putting any 
considerable load on the resources of the embedded multiprocessor system-on-chip. This can be 
done by the external system that generates the input data streams, whereby the streams are 
extended with headers containing pre-computed values of actor complexity parameters, such that 
the managers can easily retrieve them. The practical examples of such external systems are, of 
course, the encoders of video input streams. As far as we know from practice, one can say that, 
in order to generate the parameters for the decoding applications, the encoders do not need to run 
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the decoding themselves, because the same parameters typically influence both the encoding and 
decoding complexity. It is thus sufficient to enhance the encoders with the counter variables and 
to let the encoders provide their values based on those counters. 

Note that we do not encode parameter values for each actor execution, but rather encode a set 
of parameter values that characterize the execution run as a whole, without sacrificing too much 
accuracy – the method is described in Chapter 5. Also, one can restrict the set of encoded 
parameters to include only those parameters that are essential, thus saving space in the headers 
(whereby for the skipped parameters one will have to make conservative assumptions). 

 

3.2.2 Constructing an Actor Parameter Function 

The processing time of any computation actor can be represented in the form of 
Equality (3.6). All actors share the same set of parameters, }{ ωξ , which we denote ΩΩΩΩ. However, 

each actor kv uses only a subset of set ΩΩΩΩ, denoted ΩΩΩΩk, such that only parameters in ΩΩΩΩk have 

influence on the processing time of that actor. Coefficients ω,kC  for the parameters ωξ  that do 

not belong to set ΩΩΩΩk are zero for any processor architecture. We have ΩΩΩΩ =
k
UΩΩΩΩk, and different 

sets ΩΩΩΩk may have common elements.  
Thus, to construct a parameter function for a given actor kv , two tasks need to be 

accomplished: 

1) a proper subset of actor complexity parameters ΩΩΩΩk should be detected; 

2) the coefficients ω,kC  should be computed for all suitable processor architectures 

represented in the target multiprocessor platform. 

Those two tasks are interrelated, but in this subsection we first focus on the first one and then 
on the second one.  

One way to specify the parameters of ΩΩΩΩk is first introducing their counter variables into the 
source code of the actor, and then, when this has been done for every actor kv , determining 

which parameters of different actors are identical, in order to save in the number of parameters. 
Detecting the parameters of an actor and deciding on their number is not trivial for automation, 
and that subject deserves further investigation, which is out of the scope of this thesis. So far we 
have used only a manual approach that partly relies on familiarity with the application algorithm 
and on empirical data.  

The parameter identification method we apply in this thesis uses the so-called profiling 
approach, measuring the processor clock cycles consumed by a running executable. Therefore 
we require a preliminary version of the application executable to be built and executed on the 
platform itself or on a sufficiently timing-accurate platform simulator. Note that the timing-
accuracy requirement for a multiprocessor simulator is relatively easy to meet given our 
assumption that the local memory system of every processor is free of cache misses and 
bus/memory port conflicts at each actor execution. 

The profiling infrastructure should support a profiling interface for measuring the number of 
processor cycles spent between any pair of user-specified breakpoints in the source code of each 
actor. In the infrastructure, it is favorable to assign no more than one process to one processor, 
thus avoiding the run-time scheduling. The point is that, in the presence of scheduling, one 
would have to separate the cycle counts of different processes. Note that not having to 
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implement the local processor schedulers and other operating system services may also greatly 
simplify the prototyping infrastructure and favor high simulation speed. 

Here we describe the parameter identification method using a practical example: the variable 
length decoding (VLD) actor of the JPEG video image decoding application presented by Erwin 
de Kock in [46]. The input of that actor is the bitstream containing the coded representation of 
the image in the JPEG format and the starting position in the bitstream for a 16x16 pixel matrix, 
called a minimum coding unit (MCU). The bitstream represents an MCU using a combination of 
the Huffman-tree coding and the run-length coding techniques, as specified in the JPEG 
standard. The VLD actor applies the Huffman and the run-length decoding to obtain a 
representation of the pixel matrices in the discrete cosine Fourier domain, ready for the 
subsequent inverse Fourier cosine transformation to be carried out by another actor. One 
execution of the VLD actor processes one MCU. 

The method that we use builds a timing model of the actor internals by splitting the actor 
control flow into parts called subroutines and blocks. We call that model the subroutine call 
graph (SCG); it is similar to the call graphs used in profiling. From the control flow, only the 
information relevant for the construction of the actor parameter function is preserved in an SCG. 
Thus, to a large extent, the model ignores the order in which different subroutines/blocks are 
executed inside the actor; it only counts the number of times they are executed. Given our earlier 
observation that the timing overlap between different parts of the actor can be efficiently 
accounted for or ignored, this is enough to construct a parameter function that achieves the 
desired level of accuracy. 

Below we first give the summary of our method’s algorithm and then explain it in more 
detail. 

Algorithm (Informal) : Detecting the complexity parameters for a given actor . 
1. Build an initial SCG graph. 
2. Determine actor parameters and call count annotations (CCAs) for the subroutines. 
3. For each non-visited subroutine in the SCG: 

a. Build a control flow diagram, hiding superfluous details in blocks 
b. Determine the CCAs for each edge in the diagram 
c. Exclude the blocks with processing times showing considerable variations and 

insert them into the SCG as new subroutines 
d. Based on the CCAs of the diagram nodes, compute the parameter subfunction 

4. Compute the actor parameter function as the sum total of the parameter subfunctions. ♦♦♦♦ 

To build an SCG at Step 1, one first has to identify the actor subroutines, which are modeled 
as graph nodes. The directed edges of the SCG graph specify the relation ‘the source subroutine 
calls the sink subroutine’. The subroutines may be identical to procedure/function calls of the 
source code or may correspond to the source code segments that the designer wishes to separate 
from one another because they correspond to different stages in the application algorithm and it 
is easier for the designer to analyze them separately. The subroutines should not share any source 
code lines with one another, and they should cover together all the lines of the actor source code. 
Figure 3.3 shows the subroutine call graph for our example, the VLD actor. It contains four 
subroutines, the VLD actor itself and the functions that are called during the execution of that 
actor. 
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The symbolic analytical annotations shown in the figure at the SCG edges are the call count 
annotations – CCAs, introduced at Step 2. A CCA stands for the total number of calls to the 
given subroutine per actor execution. If a subroutine is called from different subroutines, it has 
several CCAs and several incoming SCG edges that come from the calling subroutines15. In an 
actor SCG, there is always one and only one subroutine that has a CCA that is not associated 
with any incoming edge, and that is the subroutine corresponding to the actor itself, or the ‘top-
level’ subroutine. By definition, that CCA is set to ‘1’. In Figure 3.3, the ‘top-level’ subroutine is 
VLD. 

Being represented as symbolic expressions, the CCAs are different from the call counts in 
traditional profiling, because the profiling only provides the concrete values of data-dependent 
call counts measured for the given input data sample. In general, a CCA may constitute any 
analytical expression involving the complexity parameters and algorithmic constants. Those 
constants have concrete values, e.g. ‘1’, ‘6’ and ‘8’ in Figure 3.3, and they are architecture-
independent (as opposed to architecture-dependent constants, which we denote using character 
C, and use as the coefficients of parameter functions).  

We see that specifying the CCAs is the core of this parameter identification method, because 
it is here where the designer directly introduces the actor parameters. A CCA is specified based 
on examining the source code of the calling subroutine and understanding the application 
algorithm.  

For example, in the VLD algorithm, each MCU consists of 6 pixel blocks, and subroutine 
‘unpack_block’ is called for each block, so it gets CCA 6 – see Figure 3.3. The coded 
representation of an MCU can be split into so-called ‘DC’ and ‘AC’ symbols, there being 6 DC 
symbols and a variable number of AC symbols per MCU. For each symbol, ‘unpack_block’ calls 
two subroutines: ‘get_bits’ and ‘get_symbol’. Therefore, we assign to both subroutines a CCA 
equal to 6AC +ξ , where ACξ  is the total number of AC symbols in the given MCU. The 

definition of all parameters in this example can be found in Figure 3.3. They should be clear for 

                                                
15 Thus, if a subroutine can call itself recursively, it gets a loop self-edge, for which it is both the source and the sink. 
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ACξ  −  the number of AC symbols in the MCU; 

MCU −  the portion of input data processed per execution of 
the VLD actor; 

Hξ  −  the total number of bits in the Huffman codes 

contained in the MCU; 

BYTEξ  −  the total number of input stream byte boundaries 

crossed when reading the MCU bit-by-bit; 
it also holds that: 

   88 bBYTEb ξξξ ≤≤  

where: 

bξ  −  the total number of bits in all codes of the MCU; 

(a) the SCG (b) relevant information about the VLD algorithm 

Figure 3.3 VLD example: subroutine call graph (SCG) and parameter definition 

call count (CCA) 
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the readers familiar with the VLD algorithm, but it is not necessary to understand those 
definitions in detail to follow the explanation of this parameter identification example. 

Before we turn to Step 3 of the parameter identification method, let us comment on Step 2 for 
the general case. The SCG example given in the figure only represents the ideal case, where the 
designer is able to relate all the CCAs to a small set of meaningful algorithmic variables – the 
parameters – that have a clear definition in terms of the application algorithm. Hereby, the 
purpose of the SCG graph is to provide an overview of the actor source code such that it is easier 
for a human designer to analyze it in a structural way and not to overlook important details. 

 In general, it may be the case that the actor algorithm is so complex that the designer is not 
capable of finding all the relationships between the CCAs and the algorithmic variables within 
the available time. In that case, he/she may choose to introduce a new parameter for each CCA. 
The price paid for simplification is possibly too many parameters. 16 

Step 3 of the identification method builds – in Step 3a – a control flow diagram (CFD) of the 
subroutine to be analyzed. Figure 3.4 shows an example of the diagram for the ‘get_bits’ 
subroutine of the VLD actor. The diagram consists of block nodes, denoted as Cp, conditional 
nodes and successor subroutine nodes. The block nodes, or blocks, are different parts of the 
subroutine that cover all the processing done by the given subroutine excluding the processing 
done by the successor subroutines, called from the given subroutine. A block may have any 
number of entry points, but it may have at most one exit point, so a given block node either 
serves as predecessor to another node – like block C1 in the figure – or exits from the subroutine 
– like block C4. Thus, a block node does not provide conditional branches, which is the task of 
the conditional nodes. A conditional node has at least two successors – the conditional branches, 
                                                
16 One can also try to use automated techniques for finding the source code variables that have the largest impact on 
the processing time, e.g., the methods proposed by Valetin Gheorghita et al in [24], [28]. One can focus on the 
analysis of only those parts of the source code where those variables and the directly related variables are involved 
and express the CCAs in terms of those variables.  
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Figure 3.4 The derivation of a parameter subfunction using the control flow diagram  
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and every time the control flow arrives at a conditional node, the node decides which conditional 
branch is taken. 

Similarly to the edges of an SCG, the edges of a CFD have call count annotations (CCA), 
which use parameters. A CCA shows the number of times when the block at the source of the 
edge is followed by the block at the sink of the edge. For example, the edge from C3 to the 
following conditional node has annotation bξ . Every CFD must have one or a few entry and exit 

edges. An entry edge of the diagram – in our example the edge that goes into node C1 – is an 
edge that has no source node. Such an edge points to a node where the subroutine can be entered. 
Similarly, an exit edge – in our example the edge leaving node C4 – is an edge through which the 
subroutine can be finished. 

Not only the edges, but – for convenience – also the nodes may have CCA annotations – 
giving the total number of times the block is executed. For example, the conditional nodes in 
Figure 3.4 are annotated with CCA bξ . Note that the annotation of the nodes is superfluous if 

there is annotation of the edges, because – obviously – the CCA of a node is equal to the sum of 
CCAs of its incoming edges. 

The assignment of CCAs in a control flow diagram – which is the task of Step 3b – follows 
the same guidelines as the assignment of CCAs to the subroutines – in Step 2. However, in 
addition, the designer can use the control flow diagram as extra help, because it imposes three 
rules on the CCAs. Rule 1 says that the sum of CCAs of all entry edges of the diagram is equal to 
the sum of the CCAs of all exit edges, which, in turn, is equal to the cumulative CCA of the 
subroutine being analyzed. The latter can be determined from the SCG graph as the sum total of 
the CCAs of the incoming SCG edges. In Figure 3.4, we denoted the CCA of the entry and exit 
edges as ‘x’, and from Figure 3.3 we see that =x 6HAC ++ ξξ . Rule 2 says that the total CCA of 

the edges to a successor subroutine node is equal to the CCA of the edge between the current 
subroutine and the successor subroutine in the SCG graph. In Figure 3.4, we see that that this 
rule applies to the incoming edge of node ‘fetch_byte’. Rule 3 says that the CCA of any node is 
equal to the sum of the CCAs of all incoming edges and to the sum of the CCAs of its outgoing 
edges. In our example, the last rule helps us to find the CCA of the edges whose CCA was not 
yet known after applying the first two rules. From the knowledge of the actor algorithm, we 
know that the loop inside the ‘get_bits’ subroutine executes one iteration per bit. Therefore, we 
annotate the conditional nodes of the loop with CCA bξ . Using Rule 3 and the annotation of the 

entry edge, we annotate the loop edge entering the top conditional node with CCA x−bξ . 

Because, the CCA of ‘fetch_byte’ is BYTEξ , we can immediately calculate the CCA of node C2. 

At this point, it is obvious how to derive all the other CCAs in this example. 
If the reader is familiar with WCET analysis methods, he/she probably has noticed similarity 

of our control flow diagram to the control flow graph being automatically built by WCET tools. 
It is, in any case, useful here to give some comment on the WCET approach. WCET analysis 
exposes so-called basic blocks, which are typically quite small (a few lines of the source code in 
a high-level language). The basic blocks are split from one another by definition at every 
conditional or Boolean operator exposing the latter as a conditional node in the control flow 
graph. Hereby, it is more or less safe to assume that a basic block typically consumes the same 
number of processor cycles (exceptions are processor instructions with data-dependent cycle 
counts). As opposed to the basic blocks in case of WCET analysis, in our case the designer may 
choose to hide much bigger parts of the source code inside the blocks, including conditional and 
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Boolean operators. Hereby we take care that the variations in the block processing time stay 
insignificant and come back to this issue in one of the next sub-steps, but at this sub-step it is 
definitely desirable to make the blocks as large as possible, to only expose the major details of 
the subroutine’s control flow. Apart from the desire to keep the diagram manageable, we would 
thus avoid introducing multiple insignificant actor parameters, which might result from taking 
into account all the fine-grain details of the control flow. Ignoring parameters with insignificant 
impact on the processing time helps to reduce the performance analysis overhead. 

To explain Step 3c – i.e. the exclusion of blocks with variable processing times – we first 
make a remark that a major hypothesis of the described method is that each block consumes a 
constant number of the processor clock cycles every time it is called. In such an ideal case, this 
method would provide an ideally accurate parameter function; the higher the variations of the 
block processing time, the higher the error. Therefore, in Step 3c, for each block, we check the 
magnitude of variations of its processing times, and the blocks with considerable variations are 
turned into subroutines so that those blocks can be split into smaller blocks in the later iterations 
of the algorithm. The corresponding block nodes of the diagram are changed into subroutine 
nodes, and they get into the list of non-visited subroutines. Note that the described algorithm 
finally converges because splitting of blocks cannot continue indefinitely; in the worst case one 
gets to the basic-block level of granularity, and the basic blocks have stable processing times. To 
decide whether the processing of a block is stable enough, one can, for example, measure its 
processing times for a representative sequence of input data samples and build a histogram of the 
measured processing times. 

In the last sub-step of Step 3, we use the CCAs of the diagram nodes to find the total 
contribution of the given subroutine to the actor processing time excluding the contribution of 
successor subroutines. We call it the parameter subfunction of the subroutine. We also use the 
term ‘exclusive’ for it, because it excludes the successors. Just as the CCAs, it is computed in 
symbolic form, as the sum total of the contributions of all blocks and conditional nodes. For 
every block Cp we use symbol pC  to denote its processing time, which is assumed to be 

constant. The contribution of each block is its processing time pC  times its CCA. The number of 

the processor cycles consumed by a conditional block may depend on which of its branches is 
taken. The contribution of a conditional block is thus a sum total of a few terms defined as the 
branch’s cycle cost times the CCA of the branch. Note that, if blocks are large enough, the 
contribution of the conditional nodes is small compared to the contribution of the blocks, and 
then the conditional nodes can be ignored, just as it is done in Figure 3.4. 

In Step 4, when all subroutines have been visited, the designer adds the subfunctions together 
and obtains the final actor parameter function. Thereby, the designer has certain freedom in 
deciding which variables will finally act as parameters, trying to arrive at an expression using as 
few parameters as possible and still being accurate enough. First of all, the designer may try to 
group the variables that belong to the same CCA to one parameter, because those variables have 
the same coefficient. Also, the designer has to check that the set of all parameter variables 
extended by a non-zero constant forms a linearly independent set; the check can be performed 
empirically or based on the knowledge of the algorithm. This condition can be violated e.g. when 
one parameter is proportional to another one or differs from another one by a constant. Such a 
linear dependency is eliminated by replacing one variable by a linear combination of other 
variables plus a constant value. This way, the designer also ensures that all parameters are, in 
fact, variables, such that no parameters have constant values for any input sequence. Such 
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parameters should be excluded from the parameter set by replacing them by their constant 
values. It is also desirable to exclude approximately-linear dependent parameters, i.e. such 
parameters that stay in a relatively small neighborhood to a linear combination of other 
parameters.  

Let us illustrate the reduction of the parameter set by an example. If the designer decides that 
all variables in the subfunction in Figure 3.4(c) are to be parameters, then we obtain a set with 4 
parameters. However, in that subfunction, parameters ACξ  and Hξ have the same coefficient, and 

thus they can be grouped together into one parameter, equal to expression 6HAC ++ ξξ . Also, 

according to information in Figure 3.3, parameters bξ  and BYTEξ  have an approximately linear 

relationship between one another, to stay conservative one can replace term ‘ BYTEξ− ’ by its 

upper bound 8)7( b −− ξ , because it holds that   BYTEbb 88)7( ξξξ ≤≤− . Thus, the number of 

parameters for that subfunction can be reduced to two. 
Unfortunately, for the total VLD actor parameter function, saving in the number of 

parameters by grouping ACξ  and Hξ does not work, because, as we see from Figure 3.3, the call 

count of subroutine ‘get_symbol’ includes only one of those parameters. Fortunately, the 
expansion of the other subroutines into control flow diagrams does not yield extra parameters, 
and finally we obtain an actor parameter function with three parameters: 

)()()(),( bb,VLDACAC,VLDHH,VLD0,VLDVLD nCnCnCCnvt ξξξ ⋅+⋅+⋅+=  (3.7) 

The designer can express each actor coefficient ω,VLDC  as a simple algorithm-specific linear 

function of the various pC , i.e., the processor cycle costs of different blocks and conditional 

nodes. For example, from Figure 3.4(c), it is obvious that 0,VLDC  contains term 6)( 41 ⋅+ CC . This 

fact is used in one of the methods for computing the actor coefficients, presented in Section 3.3.
 

3.3 Calculating Actor Coefficients 
Having obtained the symbolic expression, to finalize the construction of the parameter 

function, one has to calculate the values of the coefficients for different processor architectures 
represented in the target platform. Recall that, in terms of our design flow, we refer to this task as 
actor-level characterization, i.e., the characterization of actor execution delays.  

In line with our requirements to the performance analysis method, we strive to obtain 
conservative estimates for the coefficients – upper bounds. Nevertheless, we base our method on 
the profiling approach, i.e., we use measurements of the processing times obtained from running 
an application executable with certain representative input data sequences. That approach, being 
to a large extent empirical, does not always yield upper bounds that are reliable for 100% of the 
actor executions. The advantage of this approach is, however, that it requires less sophisticated 
design automation tools effort as, for example, WCET analysis tools. We believe that our 
profiling-based methods are suitable in for our conservative performance analysis framework for 
three reasons: 

1) Our methods allow controlling the level of confidence to any desired level below 100%. 

2) The transition from the detailed actor timing mode to the multi-scenario delay mode – later 
on in the implementation trajectory – increases the model pessimism, thus compensating 
for occasional lack of pessimism in the detailed mode. 
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3) The chosen application domain (i.e. multimedia streaming) mostly includes soft real-time 
applications, which can tolerate deadline misses if their probability is low enough. 

We use two alternative actor-level characterization methods:  

1) direct measurement combined with control flow analysis; 

2) linear regression with consideration of confidence intervals for the coefficients. 

The direct measurement method is more laborious, but it can, in general, provide more 
reliable results than the second method. In particular, if one invests enough effort into the direct 
measurement method, one can obtain values of coefficients that are 100% guaranteed to be 
conservative; we say that in this case we have obtained a strictly conservative parameter 
function. The method is based on the measurement of the longest processing time of every block 
C p and every conditional node in the control flow diagrams of the actor subroutines. The effort 
to ensure that the processing times measured are really the worst-case times may range from 
simply registering the longest time ever measured in an arbitrarily chosen long input sequence to 
artificially creating an input sequence where the worst-case path conditions for the given block 
really occur and using that sequence to directly measure the worst-case processing time17. Once 
we have measured the worst-case processing times pC  of all nodes, we can derive the actor 

coefficients ω,kC  using the relationship between pC  and ω,kC  described at the end of the 

Section 3.2.2. 
We applied this method to the VLD actor using the JPEG executable presented in [46], which 

we ran on the ARM7TDMI™ processor architecture using the ARMulator™ simulator [3] and 
assuming a single-cycle access to the local memory. When measuring the costs of the blocks, we 
have ensured that we obtain the delays of their worst execution paths (by making sure that the 
worst-path conditions for every block occur in the representative input stream). The results are 
presented in Figure 3.5, where we see that the actor parameter function is indeed an upper bound, 
still being very close to the real processing time measurements. 

The linear regression method with consideration of confidence intervals yields actor-level 
coefficient estimates that are upper bounds with a probability close to 100%. Due to the fact that 
the probability is still below 100%, we call such a parameter function a weakly conservative 
parameter function. The advantage of the linear regression method is that it requires less routine 
work to be done. For this method, one only needs to perform processing time measurements for 
whole actors rather than for separate code blocks contained in the actors. 

Note that linear regression is most often used to obtain linear coefficients that are 
conservative with only a 50% probability. As explained below, one can exploit so-called 
confidence intervals, calculated during linear regression as a by-product, to increase this 
probability to any desired level below 100%.  

In the rest of this section, we give a detailed explanation of the use of linear regression and 
the confidence intervals for a weakly conservative parameter function. 

                                                
17 In this extreme case, the direct measurement method almost ceases to be a ‘profiling-based’ method, and 
resembles the WCET method. 
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We assume that the subset of parameters for every actor kv is known (having been derived e.g. 

using the method from the previous section). We denote that subset as ΩΩΩΩk. Let ξξξξk (n)  denote a 
column-vector whose first element is ‘1’ and the other elements are parameters in set ΩΩΩΩk; i.e. 

Tξ )](,...,),(),(,1[)( 21 nnnn kk Ω= ξξξ , where Ω k = |ΩΩΩΩ k| and n is the actor execution index. (Here, 

without loss of generality, we assume that the parameters ξω contained in set ΩΩΩΩk have indices ω 
in the range 1…Ω k.) Let kc  denote the column-vector of the corresponding coefficients ω,kC . 

Then, using matrix algebra, we can rewrite Equality (3.6) as an inner product of two vectors: 

kkk nnvt cξ T ⋅= )(),(        (3.8) 

The linear regression method for computing vector kc  requires a sequence of values of )(nkξ  

for n = 0…N – 1, where N >Ω k. Let us consider how to obtain that sequence in practice. 
First of all, one needs to create a version of the application executable instrumented with 

parameter counters, as discussed in Section 3.2.1. Let us call that version of the executable a 
‘counter-instrumented’ version, as opposed to the original version – or the ‘normal’ version. 
Secondly, one needs a sample of input data streams with enough data for at least N iterations of 
the loop of interest.  

Performing a run of the counter-instrumented executable with the sample input data results in 
N samples of parameter vectors: )1(),...,0( −Nkk ξξ . For the linear regression method to work, 

one has to ensure that the sequence is ‘rich enough’, i.e., it must contain Ω k + 1 linearly 
independent vectors. This is possible only when the linear dependency between the parameters 
has been excluded, as described in the previous subsection. From our experiments with the 
arbitrary-shaped video decoding application, described in Chapter 6, we observed that, for 
applications similar to that one, one is likely to have a rich enough input data sequence if it 
satisfies the following conditions: 
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2) all the possible video frame types and video block types are encountered in the stream. 

All the samples of the parameters together form a matrix, denoted k  charΞ , that characterizes 

the given input stream: 
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In addition to this matrix, the linear regression method also needs a column-vector of the actor 
processing times, k proft , measured by the profiling tools of the target platform by running the 

‘normal’ executable and feeding it with the same input stream samples. 
In the ideal case, our processing time model given by Equality (3.8) would exactly represent 

the measured processing times. Then, whatever rich enough input sequence one would use to 
generate k  charΞ  and k proft , one would always obtain the same vector of  ‘ideal’ coefficients, 

k idealc , by solving the system of N linear equations with Ω k +1 variables: 

kkk     profidealchar tcΞ =⋅        (3.10) 

In that case, k idealc would be equal to the unique solution of that system, which could be obtained 

by first reducing the number of equations in Formula (3.10) to Ω k + 1 and then by applying the 
standard techniques for solving a linear system with a square matrix. 

 In general, the ideal fit, k idealc , does not exist, because in addition to the actor parameters 

identified by the designer there can be other parameters contributing to the variability of the 
actor processing time. In that case, one can expect that the linear system given by Equality (3.10) 
does not have any exact solutions; this is likely to be the case because the number of equations N 
is (much) larger than the number of variables. Even if one is ‘lucky’ and an exact solution for the 
given k proft  still exists, for another sample sequence, there may be no exact solution. In general, 

placing any vector of coefficients k tryc  in the left part of Equality (3.10) would lead to some 

mismatch at the right-hand part: 

kkkk      mismatchproftrychar εtcΞ +=⋅       (3.11) 

Therefore, in general, it is only possible to offer a conservative solution, ensuring that the 
mismatch is often or always positive. To arrive at such a solution using linear algebra, one can, 
for example, think of the following approach. One can extract from the set of measured 
parameter vectors a number of subsets with Ω k + 1 linearly independent vectors. Solving the 
system of equations given by Equality (3.10) for each subset yields an exact solution for that 
subset. Maximizing every coefficient from the obtained series of solutions yields coefficient 
values, such that the longer the series of solutions considered the higher the probability that the 
calculated coefficients are conservative. However, this approach has no theoretical basis that 
would enable the concrete estimations of that probability.  

In contrast to that, the linear regression method is standard, well studied, and it can achieve 
the required results. Nevertheless, we still present some linear regression details in order to have 
a convenient way of showing how we deviate from the standard usage of that method so that 
conservative values of actor-level coefficients are obtained. 
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The ‘standard’ use of the linear regression method calculates solution k besttryc −  leading to the 

smallest sum of squares of the mismatch. The method computes it as a function: 
( )kkk f    ression linear_reg , profchar1besttry tΞc =−      (3.12)18 

  
 ‘Traditionally’, the linear regression method implies selecting k besttryc −  as the preferred 

solution, but we do not follow that approach. As already mentioned, the reason for that is that 

k besttryc −  is not a conservative solution; on the contrary, it ensures that the underestimation and 

the overestimation are balanced: { } 0
1

mismatch =∑
=

N

n
nkε . Instead, our method obtains a statistical 

upper bound on k tryc  such that the mismatch is more likely to be positive, but not ‘too far off’, to 

keep the error of our linear model under control. 
As we already mentioned, we use the confidence intervals of the coefficients to achieve this 

goal. To explain the meaning of the confidence intervals, we have to consider some basic facts 
about the linear regression method. In fact, linear regression assumes that the measured values 

k proft  are samples of a variable – lets denote it ktexact  – that is an exact linear combination of the 

parameters19, but the measurements of that variable contain a random error kerror ε . In order for 

our following statements to hold, it is required that the setup must satisfy a few basic general 
requirements. Let us assume, for the time being, that these requirements hold and come back to 
them later. 

According to the theoretical results on linear regression, k besttryc −  given by Equality (3.12) 

also appears to be the optimal estimate of the coefficients of the exact linear combination, 
denoted k exactc . However the exact coefficients are unlikely to precisely coincide with the 

optimal estimate; they are more likely to be located in a certain neighborhood of k besttryc − . Linear 

regression can estimate the boundaries of such neighborhood k  minbesttryc −  and k  maxbesttryc −  such 

that 
{ } coefmax best tryexact min best try }{c}{c}{c      11 pp pkpkpkk =≤≤⇒+Ω≤≤ −−Pr   (3.13) 

where ‘Pr’   stands for probability and 0 < pcoef < 1 is a control setting, usual set to ‘0,95’ in 

practice. As we see in Equality (3.13),  pcoef  controls the degree of confidence in the assumption 
that the exact coefficients are within the specified neighborhood interval from the calculated 
coefficients.  

Interval [ k  minbesttryc − , k  maxbesttryc − ] is called a confidence interval. The best solution lies in the 

center of the confidence interval: 
( ) 2     kkk  minbesttrymax besttrybest try ccc −−− +=      (3.14) 

The bounds of the interval can be derived based on the obtained measurements: 
( )coef   ression linear_reg ,, pf kkk profchar2max besttry tΞc =−     (3.15) 20 

                                                
18 ( ) ( ) xBBBxB TT

1 ⋅⋅⋅≡ −1

ression linear_reg ,f  

19 Note that the literature on the linear regression often uses the term ‘parameters’ for what we call ‘coefficients’ and 
the term ‘variables’ for what we call ‘parameters’. 
20 This formula just indicates that ctry-best maxk is derived from the measured samples; the exact formula can be found 
in the special literature on the linear regression topic. 
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which also gives possibility to compute k minbesttryc  −  using Equality (3.14), but we are more 

interested in the upper bound. 
Our method chooses k  maxbesttryc − as the preferred solution. The question arises on what can be 

said regarding the conservativity of this choice. As we already mentioned, it is the matter of  
‘probabilistic’ or weak conservativity, as we named it. From the fact that the distribution of 

k exactc is symmetrical and from Equality (3.13), it follows that the probability of one coefficient 

being conservative is: 975,02)1( coef =+ p (assuming pcoef = 0,95). Using the basic properties of 

probability values, we conclude from that that the probability that all coefficients are 
simultaneously conservative is between kΩ⋅− 025,0975,0  and 0,975. Thus, to ensure that even in 

the worst case that probability is high, one can keep the number of parameters small, which can 
be achieved by splitting the actor body into two or more components and performing the 
regression for different components separately. Having this in mind, we observe that in our 
experiments with the video decoder that no more than nine parameters were required. Thus, in 
those experiments, one can be sure that the result of the actor parameter function is greater than 
the result of the exact linear timing model with probability at least 75%21. Note that one can 
increase the level of assurance to any required level, because 2ression linear_regf  in Equality (3.15) 

supports any probability threshold 0 < pcoef < 1. 
As already said, these theoretical calculations hold exactly if certain assumptions about the 

experimental setup hold. A major assumption is that the exact linear timing model ktexact  exists. 

That assumption is supported by an observation made in the previous section. Namely, we have 
observed that, by splitting the blocks into control flow nodes and introducing more parameters, 
the designer approaches an exact linear model. Another major assumption is that the 
measurements are such that the mean value of kerror ε  is 0. In fact, this requirement boils down to 

the requirement that one can define a probability distribution for kerror ε . This follows from the 

fact that in our case the error is bounded in a finite range, because the measured processing times 
are limited by the actor WCET and every actor parameter is also bounded. Because kerror ε  is 

bounded, it has a finite mean value. If that value is different from zero – i.e. if the error has a 
systematic component – then one can redefine ktexact  by subtracting the systematic component 

from it and the new mean value of kerror ε  will be equal to zero. The next assumption in the linear 

regression method is that the error values kerror ε  in the N experiments are mutually independent. 

This requirement can be satisfied in practice as follows. Instead of selecting the N samples for 
the regression from the parameters/processing times measured for subsequent data items of the 
input data stream – which are likely to be dependent on one another – one can first collect a 
much larger set of samples, and then randomly select from those samples a subset with N 
samples. 

If the abovementioned assumptions are satisfied, then there is only one requirement left that is 
sufficient to make the probability estimates given above to hold strictly. Namely, kerror ε  should 

be distributed according to the normal probability distribution law. This requirement is the 
strongest one and requires a special discussion.  

                                                
21 This observation is based on pessimistic mathematical reasoning; in practice we have not encountered any 
influence of splitting the actor into components on the probability of overestimation; this question has not been 
investigated in detail, although we have witnessed that splitting the actor into components can reduce the mismatch 
of regression. 
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Firstly, the normality of the distribution law is only a sufficient, but not a necessary condition 
for such characteristics of the linear regression as the confidence intervals to hold strictly. 
Moreover, these characteristics are known to be robust against violation of the normality of the 
distribution law. 

Secondly, according to a well-known observation of C. F. Gauss22, in many physical 
experimental setups, kerror ε  is typically composed of multiple error contributors that are 

stochastically independent of each other thus satisfying the so-called central limit theorem of 
probability theory, which states that the more such contributors there are the closer the 
distribution of kerror ε  to the normal distribution. In our measurements, the error contributors are 

blocks that have variable processing times. If one can split the blocks into multiple groups such 
that each group brings a contribution that is stochastically independent of the contributions of the 
other groups, then Gauss’ observation is applicable. Recall that the contribution of a block is its 
CCA times its processing time. One can imagine, that if the algorithm of an actor is complex 
enough, its implementation can contain blocks whose CCAs and processing times are not 
directly related and are stochastically independent. At the same time, we must admit that, 
especially for smaller actors, one cannot always apply Gauss’ observation. For example, in the 
VLD actor, the parameters (and consequently, CCAs), although being linearly independent are 
clearly stochastically dependent, because, typically, the greater the number of AC symbols in an 
MCU, the more bits are required to encode it. 

Whether we can fully rely on probability and confidence interval estimates given by linear 
regression, needs further study and is beyond the scope of this thesis. Nevertheless, we believe 
that in many cases the major theoretical results can work at least as good approximations. Linear 
regression is very widely used in practice and one can find many literature references on the 
subject, e.g. [14]. 

We finish the discussion of the described linear regression-based method by a summary on 
linear regression, looking at our statements more from the practical point of view and making 
additional remarks. 

For the linear timing models of the actors of streaming applications, given that the measured 
sequence of parameter vectors k  charΞ  is ‘rich enough’ in the sense defined above, the method 

can calculate two statistical bounds k  minbesttryc −  and k  maxbesttryc − . Vector k  maxbesttryc −  is chosen as 

the preferred solution for a weakly conservative estimation of the real processing times; 
therefore, in case linear regression is used, the processing time model is defined as the model 
obtained by putting those coefficients into Equality (3.8): 

kkk nnvt   )(),( maxbesttry
T cξ −⋅=       (3.16) 

The obtained model, ),( nvt k , is weakly conservative in the following sense. Suppose that 

)(exact nt k  are the values of ),( nvt k  we would obtain if each block in the actors control flow had 

constant processing time equal to the long-run average of processing times they have in reality. 
Then,   

{ } %5,97    ),()(     %75      9 ... ,1 ,0 exact ≤≤≤⇒=Ω nvtnt kkk Pr   (3.17) 

which means that we stay above the exact average with probability at least 75%.  

                                                
22 Carl Friedrich Gauss (1777-1855) is a famous German mathematician, whose work has made a major impact on 
many mathematical disciplines, but also on physics and on other sciences. 
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The worst-case probability of 75% can be increased to any required level below 100% if one 
increases pcoef from its default value ‘0,95’ to a higher value. Note that although the linear 
regression method allows the actor-level parameter function to be non-conservative for a certain 
(typically small) part of actor executions, we see in practice that this is at least partially 
compensated by other ingredients of our performance analysis method. In particular, when we 
step from the detailed timing mode to multi-scenario timing mode (described in Chapter 5), this 
makes our timing model more conservative. Also, when we integrate the actor execution delays 
to calculate the loop execution time, we see that the less probable non-conservative estimations 
in a certain part of actor executions is compensated by more probable conservative estimations in 
the other part.  

Before we complete the description of the linear regression method, we mention two quality 
metrics for the linear model obtained using linear regression. The first metric gives an estimate 
of the relative error of the coefficients, which we denote as )(cerr . It is given by: 

pk
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The second metric, the so-called coefficient of determination, 2R , estimates how well the 
terms of the obtained linear model account for the variability of ),( nvt k . For example, 2R =99% 

would mean that the actor parameters account for 99% of the variability of the processing time. 
If 2R  is small, it would indicate that one should refine the model and add more parameters to it, 
e.g. by doing a more detailed control flow analysis. The formula for calculating 2R can be found 
in the literature, e.g. [14].  

We applied the linear regression method to compute the coefficients of several actors in the 
MPEG-4 arbitrary-shape video decoding application running on the ARM7TDMI-based 
processor. We have experienced that this method requires considerably less manual effort than 
the direct measurement of the coefficients and gives good results, although, as one can already 
expect, the obtained models are not strictly conservative. We performed a few experiments, 
where we checked the accuracy and the conservativity (the frequency of overestimation) of the 
linear model obtained from a sample of one MPEG-4 sequence against a few other real MPEG-4 
sequences. However, we postpone a detailed report on the results until Chapter 6. 

 

3.4 Generic Multiprocessor NoC Architecture 
3.4.1 Background 

As we have said before, the HSDF models we propose in this thesis co-model computation 
and communication. In Section 2.2, we used related work involving bus-based communication to 
introduce IPC graphs. However, in this thesis, we assume architectures with network-based 
communication, which is the main topic of this section.  

D. Culler et al [18 - §1] describe a general template for multiprocessors. It consists of 
multiple processing tiles connected with each other by an interconnection network. Each tile 
contains a few processor cores and local memories. If the hardware architecture and the 
operating conditions (clock frequency/supply voltage) of all the tiles are identical, then the 
multiprocessor is homogeneous; otherwise it is heterogeneous. The processing tiles contain 
communication buffer memories – referred to simply as buffers. The buffers are accessed both 
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by the local processor and the network. Each tile has a small controller, called a communication 
assist, that performs buffer accesses on behalf of the network. Many embedded MP-SoCs 
implemented on silicon, e.g., Daytona [1], AxPe [82], Prophid (CPA) [84], Cradle [17] and 
HIJDRA [8], [7], fit nicely into this general template. Cradle, Prophid and HIJDRA are 
heterogeneous platforms, whereas AxPe and Daytona are homogeneous. 

Among these architectures, Prophid and HIJDRA are the most interesting ones for us, because 
they use a packet-switched communication network and provide performance guarantees for 
hard real-time tasks. Prophid contains application-domain-specific processors communicating 
through a switch, based on a time-division multiple access (TDMA) scheme, enabling 
guaranteed-bandwidth communication. HIJDRA uses multiple switches, referred to as routers, 
joined in a certain topology. In Prophid and HIJDRA, different tasks running on the 
multiprocessor communicate with each other using asynchronous message passing, meaning that 
processors synchronize based on the availability of data in buffers. Message passing introduces 
the buffer overflow issue, which is solved using a kind of end-to-end flow control. We reuse 
some ideas of the Prophid and HIJDRA architectures in our architecture template.  

 

Figure 3.6 Architecture template 
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M – local general-purpose memory 
PrM – local producer communication memory 
CsM – local consumer communication memory 
 
Note: M, PrM, CsM can be integrated into one physical memory but then it 
might become too expensive in terms of area/power to have one large double-
ported memory. Alternatively, one single-ported memory can be used with 

appropriate arbitration between the processor and the communication assist 

making their memory access times independent. 
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3.4.2 Architecture Template 

The MP-NoC architecture template adopted in our work is shown in Figure 3.6. We focus on 
defining the issues important for the mapping flow and IPC graphs introduced in the rest of this 
chapter. 

The interconnection network in our template is a network-on-chip (NoC). Each processing tile 
is ‘plugged’ into the network through a producer link and a consumer link. The link names 
illustrate that the processing tile produces data on one link and consumes data on the other link. 
The NoC offers unidirectional point-to-point connections. The connections must provide 
guaranteed bandwidth and a tightly bounded propagation delay. The connections must also 
preserve the ordering of the communicated data. The details of the NoC implementation (e.g. the 
architecture of the network router) are not important and not exposed in this template.  

An example of a NoC providing these properties is ÆTHEREAL [81], [30]. It uses the TDMA 
scheme, for which efficient implementations of the network routers are possible. Note that 
several other schemes ensuring guaranteed performance in communication networks exist in the 
literature, but we are not aware of any of them having been implemented so far in the context of 
NoCs. The choice of the particular scheme does not influence the main idea and the structure of 
the timing models we present in this chapter. 

To keep the processing tile simple, we assume only one processing core (denoted ‘P’ in 
Figure 3.6) per tile. In future work, our design trajectory can be extended to support multiple 
processors per tile. The local memory layout contains three blocks: the general-purpose memory 
(‘M’) for processor instructions and data, the producer communication memory (PrM) and the 
consumer communication memory (CsM). PrM and CsM have ports for the processor and for the 
communication assist.  

Connections are the key logical elements for the implementation of the communication 
channels. Recall that the latter are the basic communication entities of applications. The 
communication channels that make use of the NoC are managed by the communication assists. 
Each channel connects two different processing tiles and transfers data in one direction. A 
communication channel is implemented by a producer buffer, a data connection, a flow-control 
connection and a consumer buffer. The buffers are located in the communication memories (PrM 
and CsM) at different sides of the channel. Every channel pumps data from its producer buffer to 
its consumer buffer through the data connection. Every communication assist can run multiple 
channels concurrently. The example tile in Figure 3.6 has three incoming and two outgoing 
channels. (Note that, in the literature, the usage of terms ‘connection’ and ‘channel’ can be 
different, even opposite to the usage adopted in this thesis.) 

For our timing models to be valid, we require that the following memory accesses be 
independent: 

1) the processor and the communication assist accesses to PrM and CsM; 

2) the communication  assist accesses to PrM and CsM;  

3) the accesses initiated by different channels through the same PrM/CsM port. 

In this context, with ‘independence’ we mean that the variation of the access time due to 
contention (if any) is sufficiently small. Requirement 1) is achieved by using a dual-ported 
communication memories and requirement 2) is achieved by making sure that the 
communication assist can access both those memories simultaneously. Note that we do not 
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necessarily demand that the memory layout be exactly the same as in the figure, as long as the 
independence requirements are satisfied. Requirement 3) can be satisfied if an appropriate 
arbitration scheme is used for the PrM/CsM ports. We believe that this can be achieved at a 
reasonable cost. Working out the details of such an arbitration scheme is a subject of future 
work. Note that recent publications of Arno Moonen et al [61], [62] motivate the use of a 
communication assist as mediator between a local processor memory system and the on-chip-
network. They investigate a concrete arbitration scheme for PrM and CsM accesses and show the 
advantage of PrM memories for the multiprocessor performance due to the decoupling of local 
memory systems of on-chip processors from the network-on-chip communication medium. 

The communication of a data token through a communication channel is realized as follows. 
First, the processor at the producer side puts a token into the producer buffer, where it waits for 
the tokens in front of it (in that buffer) to depart. Then, the local communication assist transfers 
the token into the producer link. Due to limited bandwidth of the data connection, this operation 
takes a certain time to execute, which we call a transfer delay ( transferd ). In the remainder, we 

often use the word ‘transfer’ to refer to the activity of pushing the data token from the producer 
buffer into the network. In that sense, we may say that the transfer delay is a delay of one 
transfer. Note that the term ‘communication transfer’ we introduced in Section 2.1 is more 
extensive, because it also implicitly includes the arrival of the data token in the consumer buffer.  

The exact value of transferd  depends on the NoC implementation. In an ideal network:  

(ideal)
transferd  = ztoken/Bconn,        (3.19) 

where Bconn is the bandwidth of the connection in bytes per second and ztoken is the size of the 
token in bytes. Recall from Figure 3.1 that we call such a relationship between the 
communication delays and the data token sizes the communication delay relation.  

In a real network, the transfer delay also includes the medium access delay, which depends on 
the scheduling mechanisms used in the network routers for multiple data packets competing for 
the same link. Because we deal with real-time applications, we choose to restrict ourselves to 
networks providing timing guarantees, i.e., supporting guaranteed upper bounds on the 
communication delays. Just as in the case of the processor scheduling, to ensure the 
independence of the timing behavior between different channels of different applications, we 
require that the data transfers in the network connections be also scheduled using budget-
provision techniques. For those techniques, by analogy to Equality (3.1), we can write: 

transferd  ≤   ztoken / Bconn + connq̂        (3.20) 

where connq̂  is a worst-case degradation of connection delay compared to ideal delay. 

Equality (3.20), although being true for any budget-provision network scheduling, is not 
always the best way to express the transfer delay in practice, because, by analogy to 
Equalities (3.4) and (3.5), tighter bounds can be obtained by using knowledge about the 
particular scheduling method involved.  

For the practical examples on the computation of the communication delays, we use better 
upper bounds that hold for the ÆTHEREAL NoC of [81]. That NoC uses TDMA scheduling and 
therefore an upper bound on the transfer delay (Æ)

transferd  can be expressed in a way similar to 

Equality (3.4): 
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where Z is the size occupied by the token on a network link, D is the transfer delay that the token 
would experience if it could use the whole link bandwidth without sharing; conn B T  is the total 

time that is dedicated to the transfers of the given connection per one TDMA period on every 
link along the connection path. All three symbols with ‘Æ’ in the subscript are network 
constants, namely Æ-minZ  is the data granularity of the network (the size of primitive packets), 

 ÆTT  is the TDMA period, Æ-LINKB  is the bandwidth of a network link, which is the maximum 

bandwidth one processing tile can use in one direction. 
The essential idea for the upper bound on the transfer delay in Formula (3.21) is to add the 

delay that the token would experience if it could use the whole network link – D – with the 
worst-case time the token has to wait for the TDMA slots. Note that the formula for Z does not 
include any packetization overhead (headers), because the guaranteed-throughput connections 
described in [81] do not need headers, because they are based on circuit-switching, where the 
routes followed by the packets are pre-programmed in the network routers instead of being 
derived from the packet headers. 

For our examples, we assume that the router runs at 400MHz (20% slower than the 500-MHz 
clock reported in [81]), using the link bit-width 16 bits (two times less than reported in [81]) and 
the primitive packet size 6 bytes (also two times less). We also assume that one TDMA period 
takes 768 router clock cycles (the same as reported in [81]). The reason we scale down the router 
performance is to achieve comparable computation and communication delays in our examples, 
where we use the ARM7 processor architecture. All the important network constants that we use 
in practice are summarized in Table 3.1. 

The transfer delay is not the only delay experienced by a data token in the network. Between 
the departure of a token from the producer buffer and its arrival at the consumer buffer there is 
another activity taking place: the ‘tail’ of the data token should propagate through the network. 
The propagation delay is called the latency of the network connection (latencyd ). In the 

ÆTHEREAL network, every connection follows a fixed path through the network and the latency 
is a constant proportional to the number of routers along the connection path, routersl : 

Æ-ROUTERrouters
(Æ)
latency dld ⋅=       (3.22) 

where Æ-ROUTERd  is the latency of one router, another ÆTHEREAL network constant, equal to the 

duration of three clock cycles of the network clock. (For readers familiar with the ÆTHEREAL 
network, it is appropriate to mention that we account for the network interfaces as routers 
because they are equivalent to the routers from the latency point of view.) 

Summed with transferd , the latency gives the total delay of a network connection. The reason to 

separate the transfer delay from the latency is the fact that the subsequent transfers on the given 
connection can only execute sequentially one after another, whereas propagation of subsequent 
data tokens through the network is pipelined and can take place concurrently. Later in this 
chapter, we take this difference into account in the HSDF subgraphs that model the network 
connections. 
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The other part of the network channel behavior that we have to consider here is the flow 
control mechanism, which helps to avoid consumer-buffer overflow. To implement the flow 
control, the communication assist at the producer side keeps a (pessimistic) counter of the 
number of free places (credits) in the buffer at the consumer side. The data token transfers are 
blocked when that counter reaches zero. The counter is decremented whenever a new token 
departs into the network. Every time the processor at the receiving side frees one or more places 
in the consumer buffer, it triggers a credit packet to be sent back to the sender through the flow-
control connection of the channel, and the credit counter is incremented accordingly.  

Because the network connections provide a guaranteed upper bound on the communication 
delay, we can bound the time interval it takes between the moment when the consumer frees up 
some space in the consumer buffer and the time when the credit counter is updated. We call the 
upper bound on that time interval the credit delay, and denote itcreditd . It is important to note that 

the credit information propagates through the credit connections that can be of the same type as 
the data connections. However, to transfer the credits, it is more efficient to follow different rules 
from those used for the data tokens. If at a certain moment of time, in a certain connection, there 
is a credit waiting to depart into the network and another credit is produced, the new credit does 
not have to wait in a queue until the earlier token departs, it can just be added to the earlier 
credit. Every network packet of the flow control connection carries a value equal to the number 
of tokens that were added to the credit during the time that the packet was waiting for departure. 
Thus, subsequent credit transfers occur concurrently. An important conclusion from this is that 
there is no need to split the credit delay into transfer delay and the latency. 

In the ÆTHEREAL network, it would take at most  ÆTT  time for a credit to depart and exactly 
(Æ)
latencyd  for a credit to propagate through the network back from the consumer of the channel to 

the producer. Therefore,  

Æ-ROUTERrouters ÆT
(Æ)
credit dlTd ⋅+≤      (3.23) 

At the end of this subsection, we would like to introduce one more network constant, Æ-minB  - 

the bandwidth granularity or the indivisible unit of bandwidth in the ÆTHEREAL network. The 
finite bandwidth granularity can be explained as follows. The TDMA period is divided into 256 

Table 3.1 Network constants used in this chapter  
(2x smaller link and 20% slower clock w.r.t. [81]) 

Notation Meaning Value 

 ÆTT  TDMA period of the network routers 1.92 µs 

Æ-LINKB  Link bandwidth in one direction 800⋅106 byte/s 

Æ-ROUTERd  Latency per router  7.5 ns 

Æ-minZ  Network data size granularity 6 bytes 

Æ-minB  Network bandwidth granularity 3.125⋅106 byte/s 
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slots [81] and the time dedicated to a given connection is allocated in terms of integer number of 
slots. Therefore, Æ-minB  = Æ-LINKB  / 256. 

 

3.5 Intra-application Mapping: Computation Phase 
3.5.1 The Goals of Studying the Mapping Flow in this Thesis 

In the previous sections, first steps were made towards the final goal of this chapter, the 
construction of the IPC graphs, used for our run-time performance analysis methodology, in 
which the main contributions of this thesis reside. In Sections 3.1-3.3, we have characterized the 
computation actor delays using the actor parameter functions, and this characterization is an 
important part of our methodology, because we use this characterization to model the actor 
delays at design time and at run time. Finally, in Section 3.4, we described the platform 
architecture that is supported by our IPC graphs. 

To explain how the IPC graphs are constructed, in this section and in the next section we 
study the intra-application mapping flow. This flow strives to minimize the resource usage under 
a minimum throughput constraint. It is important to stress that, in this thesis, it is not our purpose 
to propose or compare any mapping algorithms. The main purpose of this study is to show how 
the initial HSDF model of the application – i.e. the computation graph – is being gradually 
transformed by the mapping flow, through intermediate models, into the final model – i.e. the 
IPC graph. Although we consider the mapping flow step-by-step, we mainly focus on what every 
step has to do and how that goal is reflected in the intermediate HSDF model. The question how 
an optimal or efficient solution can be achieved at every step is beyond the scope of this thesis23. 
Although it is not our goal to give answers to this question, we also show that our HSDF models 
are not only product of the mapping flow, but also a performance analysis tool that the flow can 
use to direct the mapping decisions towards a better quality of results. The novel component here 
is the usefulness of the HSDF modeling techniques for the buffer capacity minimization for 
NoC-based platforms. 

The paradigm of updating and analyzing the intermediate graph-theoretic model of a real 
design object to support the design decisions is a well-recognized paradigm in the field of 
electronic design automation (EDA). The tools for logic synthesis and physical synthesis exploit 
so-called timing graphs, which provide an intermediate timing model of the digital logic design, 
being updated in conjunction to the modifications made in the design by the design flow and 
being used to guide the decisions made in the flow. The idea to use some sort of a ‘timing graph’ 
for the multiprocessor mapping of streaming applications is less widely known, although it is 
advocated and thoroughly researched, originally in [83] and [5]. In that original work, the focus 
has been limited to bus-based multiprocessors. Later work extends the idea of using graph-
theoretic mapping analysis models to the network-based multiprocessors. Examples are our 
publication [75], the work of Sander Stuijk, e.g. [90], and Orlando Moreira, e.g. [65]. As already 
mentioned, our contribution mainly lies in the buffer capacity minimization for NoC platforms 
and the HSDF-based modeling techniques that enable graph-theoretic formalization of that 

                                                
23 Note that the applicability of the performance method proposed in this thesis does not depend on the answer to the 
question how to achieve optimal results at every mapping step, because the analysis can be applied equally well for 
efficient and inefficient solutions. 
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problem. This formalization results in the ability to find bottlenecks in the given mapping 
solution. This ability can be used to develop iterative optimization algorithms. 

The study of the intra-application mapping flow spans two sections of this chapter, namely, 
this section (Section 3.5) and the next one (Section 3.6). By the end of the next section, it should 
become clear how our IPC graphs are constructed, and, after that, in the next chapters of this 
thesis, we can proceed with the performance analysis of the given IPC graph. A more detailed 
analysis of related work is postponed until the end of this chapter (Section 3.8). 

 

3.5.2 The Structure of the Mapping Flow 

We illustrate the trajectory taken by the application’s HSDF model in the course of the intra-
application mapping flow by means of a hypothetical example flow, which we call the preferred 
mapping flow. We base that flow on a mapping flow proposed by Rudy Lauwereins et al in [49], 
because it was devised for a similar application domain and for a similar type of multiprocessor 
platforms. We refer to the latter flow as the reference flow. 

 Figure 3.7 shows an overview of both the reference flow and the preferred flow, the latter 
being shown in the context of our overall implementation trajectory that we introduced in 
Sections 2.1.2 and 2.3.4.  

As we see from the figure, we split the preferred flow into two sub-phases – the computation 
phase (studied later in this section) and the communication phase (studied in Section 3.6). The 
computation phase focuses on the computation part of our implementation-enhanced HSDF 
model. It means that it primarily makes decisions about the computation actors and processes, 
striving to minimize the processing resource usage under the throughput constraint. Hereby, the 
minimization of the communication resource usage is seen as a secondary goal. The 
communication phase focuses purely on minimization of the communication resource usage in 
the context given by the computation phase. 

Recall that – as also shown in Figure 3.7 – at a level higher than the splitting into sub-phases, 
our implementation trajectory divides the mapping process into two stages, namely, the intra-
application mapping stage and multi-application mapping stage. This division constitutes a 
considerable difference of the preferred mapping flow from the reference flow. As explained in 
Chapter 1, the division into stages is also done in some related work and it is necessary to 
support dynamic starting and stopping of different applications in different combinations at run 
time. In the context of the intra-application mapping stage, the division into stages means 
postponing some optimization decisions that the reference mapping flow would consider at once. 
As explained below, some optimization decisions are postponed until the multi-application 
mapping stage, which is performed at run time. Although, in general, dividing the optimization 
solvers into several stages may lead to suboptimal results due to phase coupling between the 
stages, in our case, it is a necessary price for supporting dynamic run-time combinations of 
different applications. 

As shown in Figure 3.7, the reference flow starts with a preparatory step, the ‘resource 
estimation’, which corresponds to Application Preparation in our implementation trajectory, 
because its main goal is the same, namely, the calculation of typical actor delays. Therefore, the 
figure reflects the correspondence between those two steps in the different flows.  

In the preferred mapping flow, after the Application Preparation, follows the first step of the 
intra-application mapping – the processing assignment. The goal of the processing assignment is 
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to group the actors that go to the same processing tile of the NoC-based architecture, and then to 
subdivide every such group into sub-groups of actors that go to the same process. We study the 
processing assignment in Section 3.5.5.  

The reference flow also has the processing assignment step; and it also groups the actors that 
go to the same process together. However, unlike the preferred mapping flow, the reference flow 
also places the groups, i.e. assigns them to the physical processors. In our trajectory, the 
placement is postponed until the multi-application mapping stage, and we refer to it as the run-
time placement – see Figure 3.7. The term ‘placement’ in this context means selecting a free 
processing tile in the sub-array of the processing tiles that have an equivalent type. Note that if 
the multiprocessor platform is fully heterogeneous – i.e., if any two processing tiles have 
different types – then the placement is not needed. 

In our preferred flow, the second step is the ordering, which orders the computation actors in 
every process. The reason why we put this step immediately after the processing assignment is to 
ensure that the ordering comes before the communication phase of the flow. This is a 
prerequisite for us to be able to demonstrate the usefulness of our HSDF modeling techniques 
proposed in Section 3.6 for the communication phase and in particular for the buffer capacity 
minimization, as promised above. 
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In general, whether the ordering should go before the communication phase or the other way 
around is an important decision when one develops a mapping flow, see e.g. discussion on this 
subject in [13]. In the reference flow, the ordering step is done after the buffer capacity 
minimization – see Figure 3.7 – and in our preferred flow it is the other way around. Both 
approaches are worth considering when one develops a mapping flow, but it is beyond the scope 
of this thesis to analyze and compare different mapping approaches. No matter which approach 
is chosen, one can obtain in the end the IPC graph that models the results of the mapping and 
that can be used for the run-time performance analysis, and we use the preferred flow as an 
example of how that can be done.  

As we see in Figure 3.7, both flows perform some steps for optimizing the communication 
between the processors. Under the ‘routing’ in the reference flow, one understands the 
assignment of the computation graph edges to the network channels, calculation of the required 
network bandwidth, finding the physical routes through the communication network to realize 
the communication channels and allocating communication resources on every network router 
along the route to actualize the calculated physical routes (in the case of TDMA scheduling, this 
means allocating the TDMA slots for the packets that follow the routes). In our implementation 
trajectory, the calculation and actualization of the physical routes are postponed until the run-
time routing step in the multi-application mapping stage. As for the assignment of the graph 
edges to the network channels and the required network bandwidth calculation, this is done in 
the ‘communication assignment’ step, which is part of the communication phase of the preferred 
mapping flow, studied in Section 3.6. 

This completes our introduction into the structure of the mapping flow. In the remainder, we 
first present some preliminaries for the mapping flow and then visit the mapping steps one-by-
one in more detail. 

 

3.5.3 Preliminaries: Virtual Tiles, Budget Descriptor, Local Channels and Network 
Channels 

Before describing the intra-application mapping flow, we have to introduce the data structure 
used by the flow to assign budgets to processes and channels – namely, the budget descriptor B . 
That abstraction is based on a concept that is important for our two-stage mapping approach – 
the virtual tile. Let us introduce the virtual tiles in this subsection. 

At the intra-application mapping stage, the processes are not yet assigned to physical 
processing tiles, but they are rather grouped together into groups, called virtual tiles. Processes 
belonging to the same virtual tile have to be mapped at run time to the same physical processing 
tile. For example, in Figure 3.8, four processes are shown communicating via three channels. 
Processes 1p and 2p  have to be mapped to the same physical processor, because they are 

assigned to the same virtual tile. The same holds also for processes 3p and 4p . 
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The reason to introduce virtual tiles is as follows. In the highly dynamic run-time 
environments where the set of active applications changes at run time, it is not efficient to bind 
the processes of applications to the physical resources at design time; it is much more efficient to 
assign a physical processor at run time, based on the processor availability at the moment when 
the application starts. However, to assign budgets to the processes and channels, some 
information about the physical processing tile has to be known at design time. This information 
is encapsulated in the virtual tile. At run time, the multi-application mapping module decides 
which physical tiles implement the virtual tiles. 

A virtual tile tells, first of all, the processor type, which should be one of the types available 
in the target platform. The type of a virtual tile may be for example an ‘application-specific 
processor (ASIP) optimized for performing the discrete Fourier transformations’, or a ‘RISC 
processor of a certain architecture such as the MIPS R3000™ or ARM7TDMI™ series’ (like 
tile 1T  in Figure 3.8), or ‘a DSP processor of a certain architecture, e.g. a representative of  the 

TMS320™ series’ (like tile 2T  in Figure 3.8), etc. If the target platform contains only one 

processor of the type specified in the virtual tile, then assigning a process to that virtual tile 
would mean an indirect assignment to the physical processor. However, if the target platform 
contains multiple processors of the same type, then assigning a process to a virtual tile of that 
type would still leave the choice for a specific physical processor to the run-time multi-
application mapping module. In the extreme case, if all physical processors have the same type 
(in case of a homogeneous multiprocessor) then all virtual tiles must necessarily have that type 
as well and the type information does not play any role in process-to-processor assignment. 

Secondly, the virtual tile gives the numerical values of the local run-time scheduler settings 
that are expected from the physical processing tile. If TDMA scheduling is used, then the 
settings include only the TDMA period  TT , measured in seconds. For example, the run-time 

scheduler settings for the tiles in Figure 3.8 are ms 2 T =T for tile 1T  and ms 3 T =T  for tile 2T .  

During the intra-application mapping flow, the virtual tiles are treated as if they themselves 
were the physical processing tiles. The processes get processing cycle budgets in terms of the 
processor clock cycles of the virtual tiles. Recall from Figure 3.1 that the process budget directly 
influences the delays of the actors contained in the process. From the discussion in Section 3.1.3, 
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it follows that in the case of TDMA scheduling, the budget and the TDMA period  TT  imply the 

size of the timing slot BT  and the latter can be used to calculate the actor delay using 

Equality (3.5). Thus it is the information about the processing clock cycle budgets on the virtual 
tiles that we referred to in Figure 3.1 as ‘budget information’ and that is used in the computation 
delay relation for the performance analysis. From now on, we use notation ‘BP(p)’ for the budget 
of process p. In the example of Figure 3.8, Mcycles/s 40)( 1 =pBP . 

The process assignment to virtual tiles is important not only for the computation budgets, but 
also for the communication budgets. The processes assigned to the same tile share the same local 
memory system, so they do not need the on-chip communication network to communicate with 
one another. A communication channel that joins two processes belonging to the same tile is 
called a local communication channel. Such a channel does not involve the communication assist 
and the producer/consumer buffers – the architectural elements we have seen in Figure 3.6. It 
uses one FIFO buffer directly accessible by both the producer and the consumer. The only 
budgeting required for such channels is the buffer capacity, denoted bufferQ , measured in data 

tokens. For example, in Figure 3.8 the channel between processes 1p and 2p  is a local channel 

because both processes are assigned to the same tile, 1T . That channel has a buffer capacity of 

two tokens. 
The communication channels whose producer and consumer are assigned to different tiles use 

the network-based communication infrastructure discussed in the previous section. We refer to 
those channels as network communication channels. Their budgets include: 

1) the producer buffer capacity, denoted buffer-prodQ  and measured in data tokens, 

2) the consumer buffer capacity, denoted buffer-consQ  and also measured in data tokens, 

3) and the network bandwidth for data communication, BQ, in bytes per second. 

To summarize what we have considered so far in this subsection, we can say that the resource 
assignment and resource budgeting information is characterized by the set of the virtual tiles, the 
processing cycle budgets and by the communication budgets, the latter including the 
communication bandwidth and the buffer capacities. All this information is encapsulated in 
budget descriptor B , as defined below. 

Definition. A budget descriptor B  of a given implementation-enhanced HSDF model  GPQ is 
a tuple >< BQQQQBPP ,,,,,,,, bufferbuffer-consbuffer-prodschedtype TTTTTTT , where TTTT is a set of virtual tiles, 

typeT  is a function that for virtual tile T  specifies its processor type; schedT  is a function that for 

each T  specifies the run-time scheduling settings for the processor contained in T ; TP  is a 

function that for each process p specifies the virtual tile that runsp ; BP is a function that for 

each process p specifies its budget, in processor clock cycles per second; buffer-prodQ , buffer-consQ , 

bufferQ  and BQ are functions of the communication channel commQ∈q  that specify the 

corresponding characteristics of the channel. For a local channel, the producer/consumer buffer 
capacities are defined as zero, because no such buffers are used in those channels, and their 
bandwidth is defined as infinity, because the data gets from the producer to the consumer 
instantly: 

0)()(     channel local a is buffer-consbuffer-prod ==⇒ qQqQq , +∞≤< )(0 buffer qQ ,    +∞=)(qBQ . 
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Here, bufferQ  can also be set to infinity to model the situation when the buffer capacities are large 

enough to ensure that the computation actors never block due to full output channels. As for a 
network channel, it does not have a buffer that directly connects the producers and consumers, so 
the local buffer capacity is set to 0. The sizes of the intermediate buffers and bandwidth are 
either assigned a finite positive value or infinity. In the latter case, the communication cost 
through the network is being ignored. Therefore, we can write: 
  q is a network channel ⇒ 

+∞≤<+∞≤< )(0   ,)(0 buffer-consbuffer-prod qQqQ ,  +∞≤< )(0 qBQ ,  and 0)(buffer =qQ ♦ 

Recall from Section 2.1.2 that the budget descriptor is an element of a tuple defining the 
implementation process network, >=< − BVQPPQ bodycomp ,,  , . As it follows from the definition 

given above, the role of the budget descriptor is to group the processes in P  into the virtual tiles 
and to set the budgets for the processes in P  and for the communication channels in QQcomm ⊆ . 

 

3.5.4 The Computation Graph and the Initial Performance Estimates 

The mapping flow starts from the computation graph. Recall that in the computation graph 
there are only computation actors, and there is a one-to-one correspondence between each 
process and an actor, each sequence edge and a state channel, and each data edge and a 
communication channel. 

Figure 3.9 shows an example of the computation graph of the JPEG image decoding 
application, the same application from which we took actor ‘VLD’ as an example for 
determining the actor parameters in Section 3.2.2. We use that application as the main example 
for the rest of this section. The purpose of this example is to demonstrate already in this section 
that our methodology can be used for ‘real-life’ problems.  

One iteration of the loop of interest of the application decodes one minimum coded unit 
(MCU, 16x16 pixels). In any computation graph, the communication channels transfer one token 
per iteration. In our example, all the communication channels assume the same data-token type, 
an 8×8 pixel block. One MCU consists of six blocks corresponding to different positions within 
the MCU in different color planes.  

For clarity, the actors in Figure 3.9 are organized in columns and rows. The columns 
correspond to processing stages and the rows correspond to the six blocks of an MCU. The 
blocks undergo three processing stages: variable length decoding (VLD), inverse discrete cosine 
transform (IDCT), and scaling (SCALE), before they are fed into a color conversion stage 
(COLOR). The VLD actor has a self-loop state channel that is introduced there because each 
new iteration of the VLD actor needs the previous iteration to complete in order to know the 
position in the input bitstream where it can start with the decoding. 

In the computation graph, it is assumed that every actor/process gets 100% processor budget, 
therefore each actor/process is assigned a separate virtual tile. The processor architecture type of 
the tile is chosen such that the processor can typically execute the functionality of the given actor 
with the least delay. Because 100% budgets are given to the actors, the typical actor delay is 
computed as the ratio between the typical actor processing time on the given processor 
architecture and the processor clock frequency. In our application example, we assume that the 
ARM7TDMI running at 133MHz is the only processor architecture type available in the target 
platform (a homogeneous multiprocessor).  We assume that the application’s real time 
constraints are not hard but soft so that the ‘typical’ delays can be interpreted as ‘average’ delays 
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(see Section 2.3). Therefore, for the VLD actor, we had to obtain average values of each of the 
three parameters of that actor and then use them in Equality (3.7). As a result, we obtained the 
typical processing time of the VLD actor of 60 kilocycles (visually, in Figure 3.5, this value is 
also close to the average value). For the clock frequency of 133 MHz, this yields a delay of 
approximately 450 µs, which we use as the delay value for that actor, as shown in Figure 3.9. As 
for the other actors in this computation graph, all of them have zero parameters, so their typical 
processing times are equal to the corresponding actor coefficients 0,kC , calculated using the 

direct measurement approach described in Section 3.3. Note that for the IDCT actor, as for all 
the other actors in Figure 3.9, we report the results for the ARM architecture, although some 
embedded processor architectures can implement the IDCT operation much faster than the ARM 
processor. If we had assumed in this example that such an architecture type would have been 
available in the target platform, we would have used the IDCT delay of that architecture type in 
the computation graph in Figure 3.9. 

As for the communication costs, they are ignored at this point of the mapping flow. Until the 
final processing assignment of actors to the processes and processes to the virtual tiles is done, 
the communication resource requirements cannot be estimated accurately anyway. The preferred 
intra-application mapping approach first focuses on ensuring that the computation part of the 
implementation meets the performance requirements and then it can accurately estimate the 
computation resource requirements that should be met by the communication infrastructure. This 
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separation of computation and communication concerns is seen as important for the future NoC-
centered multiprocessor on-chip architectures [31]. 

This enables the initial abstraction of the communication channels by HSDF edges – the data 
edges of the computation graph. In the computation graph, all the communication channels are 
assumed to have unlimited bandwidth and unlimited buffer capacity. Because the edges in HSDF 
graphs have no intrinsic delay and can carry an unlimited number of tokens, it is valid to 
represent each communication channel just by one data edge until the mapping flow starts the 
communication assignment, whereby the communication bandwidth and the buffer capacities are 
determined. 

The computation graph allows to obtain the best performance estimate, maxθ , or the typical 

throughput of any implementation of the given application on the given target platform. Indeed, 
in the computation graph, the computation actors are assigned the best possible processor 
resources that the target platform can offer, with the assumption that the platform can provide a 
separate physical tile for every computation actor, and communication costs are ignored. It only 
makes sense to start the mapping flow if the best throughput the platform can offer, maxθ , is not 

less than the required throughput: maxrequired θθ ≤ . The difference )( requiredmax θθ −  can be seen as a 

slack that can be exploited by the intra-application flow to relax the high resource demands that 
are assumed initially for the actors of the computation graph. If the slack is negative, then either 
the application QoS/performance requirements have to be downgraded or the target platform has 
to be upgraded.  

We derive maxθ  from a throughput estimate that is useful for the whole computation phase of 

the mapping flow. The estimate is based on the critical cycle of the HSDF graph (i.e. the cycle 
with the maximum cycle mean) and the critical process, i.e. the process with the maximum total 
actor execution delay).  

Definition. Throughput estimate (for the computation phase of the mapping flow): 
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where MCM(G) is the maximum cycle mean of graph G, )(vd  is the static actor delay assumed 
in the typical delay timing mode, depending on the processor type; )( pVP  is the set of actors 
assigned to process p and )(Gz is the (constant) amount of information the loop of interest 

communicates to the implicit external memory buffers. (Because we do not explicitly model 
external communication, )(Gz is not present in our model, but it can be provided as an extra 

annotation.) ♦ 

In the computation graph, every process contains just one actor, so the maximum total process 
delay can be replaced by the maximum computation actor delay, and we get: 
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Equality (3.25) can be proven to be an optimistic – i.e. maximal – throughput estimate as 
follows. In the denominator, we have a lower bound on the typical iteration interval. The MCM 
of graph G – where actors have typical (i.e. average) delay – is a lower bound on the typical 
iteration interval, according to Formula (2.10). Also any actor delay is a lower bound on the 
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typical iteration interval, because, in the final implementation, the subsequent executions of 
every computation actor occur sequentially. Thus, the denominator of the expression in 
Equality (3.24) is the maximum of the lower bounds on the iteration interval, thus being itself a 
lower bound. In the final implementation, the graph cannot execute faster, because the 
transformations applied to the graph by the mapping flow respect the actor dependencies defined 
in the computation graph and because, the actors cannot get processor budgets that are larger 
than the budgets assumed in the computation graph. 

Note that often, when reasoning about the throughput constraint, instead of directly using 
θrequired we use Λallowed, i.e., the maximum allowed average iteration interval implied from the 
throughput constraint: Λallowed = z(G)/ θrequired. 

In the example in Figure 3.9, we see that maxθ  is one MCU per 677 µs, or 1477 MCUs per 

second. Now, let us assume that requiredθ  is 1000 MCUs per second, or one MCU per 1000 µs (i.e. 

Λallowed = 1000 µs). A single ARM processor cannot meet this requirement, because the sum of 
the typical delays is 1829 µs; therefore a multiprocessor is required. The optimization steps of 
the mapping flow considered in the next subsections are needed for efficient use of a 
multiprocessor platform. The final goal of the mapping is to issue an implementation process 
network of efficient structure and with efficient budget descriptor. This implies that the purpose 
is to generate a structure of the same type as the one shown in Figure 3.8 taking the computation 
graph as the starting point. 

 

3.5.5 Processing Assignment and Ordering 

In this section we consider both steps of the computation phase of the intra-application 
mapping flow – the processing assignment and the ordering. In terms of our implementation-
enhanced HSDF model, those two steps finalize all the elements related to the processes and 
processing tiles, leaving everything related to the communication channels to be finalized later in 
the mapping flow. At the start of the mapping flow, our model is configured for the maximum 
usage of processors, but the steps described in this subsection strive to ensure that the processor 
resource usage is reduced as much as possible, while the throughput constraint – evaluated using 
Equality (3.24) – is still satisfied. 

For convenience, we present all the tasks to be done in the processing assignment and 
ordering steps as a sequence of five sub-steps executed in a certain order, although in a real flow 
these sub-steps can be done in a different order or in parallel. For us, it is only important to 
mention all the optimization problems to be solved by the flow and to show their relationship to 
our HSDF-based model. We do not intend to describe a full mapping solution or to point to any 
in the literature; we only justify our flow discussions by the fact that similar mapping problems 
are discussed for the reference flow in [49] and, in the related work on mapping of the 
applications to the multiprocessor systems on chip, such as [90] and [66]. The only place where 
we do claim new insights in the mapping flow is the buffer capacity minimization; however, this 
exception refers to the communication phase of the mapping flow, being described, in the next 
section. In this section, we do not claim any novel results, as our reasoning is to a large extent 
comparable to the reasoning in [83]. An example of a mapping approach that proposes solutions 
to some relevant optimization problems in the computation phase of the mapping flow is 
presented by Sander Stuijk et al in [88], [90]. 

The sub-steps of the computation phase of our preferred mapping flow are as follows: 
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1) (partitioning into tiles) Determine TTTT , i.e., the final set of virtual tiles  and partition the set 
of actors between the tiles. Because at this point the actors still correspond one-to-one to 
the processes, this step, in fact, modifies the mapping of the processes to the tiles, denoted 
in our model as function TP (p) (in the budget descriptor). Assign a processor architecture 

type and run-time scheduling settings to every virtual tile in set TTTT, i.e. define final T type(T  ) 
and T sched(T ) (in the budget descriptor). 

2) (partitioning into processes) In every tile, lump the small one-actor processes into larger 
processes, thus effectively partitioning the sets of actors assigned to the same virtual tile 
into subsets – VP(p) (in the definition of the process) –  containing the actors assigned to 
the same process p in the final implementation. 

3) (the budget assignment) Assign a final budget to every process, i.e., define function BP(p) 
(which is included in the budget descriptor). 

4) (computation actor ordering) For the processes that contain more than one actor, decide 
on the ordering of the actors within the process, i.e., define function vp(p) (which is 
included in our definition of a process). 

The first sub-step – the partitioning of the actors between the virtual tiles – has the largest 
impact on the end result of the mapping. Therefore, this sub-step gets the most of our attention. It 
decides how many processing tiles will be used by the application, which tiles execute which 
actors, which processor architecture type every tile has (for heterogeneous target platforms) and 
how the local scheduling is organized in every tile. This step also indirectly decides which tiles 
communicate with each other via the network, because if there is a data edge between two actors 
assigned to different tiles, then a network channel is needed to implement that data edge. 

The main rationale of this sub-step is to allocate as few virtual processing tiles as possible and 
to distribute the actors between the allocated processing tiles such that no tile gets a load that is 
larger than Λallowed ⋅ (1 − δ margin(T )). Here δ margin(T ) is the –  set by the designer – tile-specific 
fraction of the processor clock cycles that is reserved to compensate the scheduling overhead, for 
the processor budget of the other applications and for the idle processor cycles due to possible 
inability of the later steps of the mapping flow to find such a scheduling that every processor 
resource is kept busy for 100% of the allocated processor budget. The load of a virtual 
processing tile is defined as the sum of the execution delays of all actors assigned to the tile, 
whereby for the load calculation we use the delays that assume no run-time scheduling, i.e. the 
delay is a ratio between the actor processing time and the processor clock frequency. Note that in 
a heterogeneous multiprocessor the contribution to the load of a given actor depends on the 
processor type assigned to the given virtual tile, also at this sub-step. 
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In our examples, we try to allocate no more tiles than necessary to bring the maximum load 
below the maximum allowed iteration interval and for simplicity we assume that δ margin(T ) is 
zero. We also try to spread the load as evenly as possible to maximize the load ‘slack’ of every 
tile, i.e., maximize the difference between Λallowed and the tile load. Figure 3.10(a) illustrates an 
example partitioning of a simple three-actor computation graph into two tiles. The maximum 
allowed iteration interval in this example is 20 time units. In Figure 3.10(a), we assume a 
homogeneous multiprocessor and a clock frequency of 1 frequency unit, so that the load has the 
same numeric value as the processing times. Obviously, in this example, at least two tiles are 
needed to bring the maximum load below 20. We partition the example graph into two tiles with 
the load of 16 and 12. 

Keeping the load below the maximum allowed iteration interval is necessary for the 
throughput constraint satisfaction. The reason for that is the observation that, if we assume that 
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the tiles correspond one-to-one to the processes, then the load is equal to the second term in the 
‘max’ expression in the denominator of the throughput calculation formula – Equality (3.24). 
One can show that the load is still a good estimate of the second term even for multiple processes 
per tile.  

If the computation graph contains no multi-actor cyclic paths, then the second term in the 
denominator – and hence the load – is the only effective term in the denominator of 
Equality (3.24). In the case where there are multi-actor cyclic paths, then the first thing to 
observe is that some of those cycles may be so-called state consistency cycles, i.e., those that 
include only state consistency channels and no communication channels. The partitioning of 
actors into tiles should see such cycles as indivisible elements, as if they were actors whose load 
is equal to the total load of the actors in the cycle; the reason for this is explained in 
Section 2.1.3. If all the cycles are state consistency cycles then the reasoning in terms of load is 
enough to ensure the throughput constraint satisfaction. However, if there are cycles that include 
communication channels, then the reasoning in terms of load is not enough, because these cycles 
may influence the application throughput via the ‘MCM’ term in the denominator in 
Equality (3.24). However we skip the discussion of this case to stay focused on the main topic of 
this section. 

In our discussion of the partitioning into tiles, we have to mention two special considerations 
that should be taken into account in this sub-step of the flow. Both of these considerations refer 
to the graph edges that cross the partition borders (see for example the edges in Figure 3.10(a)). 
The first consideration is the communication bandwidth limitation. Based on the token sizes of 
the edges that come in and out of a processing tile, one can estimate minimum bandwidth 
required from the network link that joins the given tile with the rest of the on-chip network in 
both directions. The partitioning should ensure that for each tile holds that this bandwidth does 
not exceed the maximum bandwidth a network link can offer physically. 

The second consideration to be taken into account is the insertion of extra computation actors 
that is necessary for certain kinds of hardware architecture of the processing tile, in particular for 
the case where the local general-purpose memory and the communication memories, PrM and 
CsM, are implemented in different physical memory modules (see Figure 3.6). In this case, the 
data tokens that are sent through the network channels have to be copied from the local memory 
to PrM at the producer side and from CsM to the local memory at the consumer side. The extra 
actors that should be introduced in the HSDF graph implement the data copying. Those actors 
are inserted at the edges that cross the tile partition boundaries, as illustrated in Figure 3.11. We 
call those actors write actors and read actors. When executing a write actor, the processor copies 

A B W R A B 

Figure 3.11 Insertion of ‘write’ (W) and read (R) actors at the tile boundaries 

if in the target architecture PrM/CsM memory modules are physically separate from the 
general-purpose data memory (M) – see Figure 3.6 – then the processing assignment should 
insert ‘W’ and ‘R’ actors to implement the data copying; 
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a data token from the general-purpose memory to the PrM memory. When executing a read 
actor, the data goes from CsM memory to the general-purpose memory. 

For implementing the JPEG decoding application introduced in the previous section, we 
assumed an architecture that requires data copying. In Figure 3.12(a), we see back all the 
computation actors from Figure 3.9 plus the data copying actors. As shown in Figure 3.12(a), the 
computation graph of the JPEG application is partitioned into two tiles, which is just enough to 
meet the throughput constraint (recall from above that one tile would not be enough). Because 
there are no multi-actor cycles in the computation graph and because we assume a homogenous 
multiprocessor architecture, reasoning in terms of load is enough for the throughput constraint 
satisfaction. The load is distributed roughly evenly between the tiles: tile 1T  has load 985 µs and 

tile 2T  has load 934 µs (calculated as the sum of actor delays in the partition).  Note that we still 

stay below the allowed maximum iteration interval of 1000 µs, so both tiles have some 
performance slack. 

Note that we did not mention anything on the methodology to assign the processor types T type 
and the scheduling settings T sched to the ties. This is only necessary for heterogeneous 
multiprocessors and for the case where the designer intentionally sets different clock frequencies 
or different scheduling settings – e.g. different TDMA periods – at different processors of the 
target platform. In fact, we do not have any suggestions on how our implementation-enhanced 
HSDF model can help in making these decisions.  

A simple solution for the second sub-step in our list – the partitioning of tiles into processes – 
would be to always have one process per tile. An advantage of that solution is that all actors use 
the maximum budget, equal to the processor clock frequency. When we introduce multiple 
processes per tile, the processor clock cycle budget gets split between the processes and each 
process enjoys only a portion of the budget. Consequently, due to such budget splitting, the actor 
delays get larger, and this can lead to throughput constraint violation. On the other hand, the 
processes are concurrent and therefore the actors of one process cannot delay the actors of 
another process when waiting for the input tokens. Due to this, in some cases, splitting into 
processes can help to satisfy the throughput constraint. This is demonstrated in the example 
below. 

Consider again the example in Figure 3.10(a), where the computation graph is partitioned into 
two virtual tiles. To partition tile 1T  into processes, there are two options, namely, either to use 

one process, as illustrated in Figure 3.10(b), or two processes, as shown in Figure 3.10(c).  
To analyze the results of those two alternative solutions, we need to look ahead in the flow, 

i.e., to do the budget assignment and the ordering. In the one-process case in Figure 3.10(b), the 
process containing actors A and C can use the 100% of the clock cycles in tile 1T . Therefore, no 

budget assignment is needed in tile 1T , and the actor delays are equal to the processing times 

divided by the clock frequency. As for the ordering sub-step of the flow, the only feasible 
ordering in this case is ‘first actor A and then actor C’.  Recall from Section 2.2.3 that the actor 
ordering in a process is modeled by extra edges, forming a cycle; see the bottom part of 
Figure 3.10(b). Due to extra graph paths introduced by the process cycle, we see in 
Figure 3.10(b) that the MCM of the graph is now 28 time units, which means a throughput 
constraint violation.  
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In the two-process case, illustrated in Figure 3.10(c), each process gets only one half of the 
budget, i.e., 0,5 frequency units. Consequently, actors A and C have higher delay values than in 
the one-process case. Nevertheless, the throughput constraint is not violated, because the graph 
MCM in this case is 16. 

This example illustrates the purpose of the partitioning of the virtual tiles into processes. The 
partitioning into processes helps to avoid the introduction of artificial cycles during the ordering 
sub-steps later on in the flow. We call a cyclic path artificial, if is not present in the HSDF graph 
before a certain sub-step of the mapping flow and gets introduced there by the mentioned sub-
step (in this case – the ordering sub-step). In Figure 3.10(b), cycle (A,B,C)* is such a cycle.  

On the other hand, our example also illustrates a disadvantage of multiple processes per tile – 
the actor delays get larger. Another disadvantage, not illustrated in the figure, is the context 
switch overhead. Note that introducing multiple processes per tile is not always necessary, 
because it is not always necessary to avoid the artificial cycles. An artificial cycle is only 

Figure 3.12 Processing assignment results for the JPEG decoding application 
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harmful when its cycle mean (see Section 2.2.5 for the definition of cycle mean) is close enough 
to Λallowed, and sometimes smart decisions in the ordering sub-step can avoid the violation of the 
throughput constraint due to artificial cycles. 

This finishes our discussion on the partitioning of tiles into processes. The flow sub-steps left 
to be discussed in this subsection are the budget assignment and the ordering. In fact, we have 
already mentioned the impact of those two sub-steps on our implementation-aware HSDF model, 
but we provide some more remarks to finish this topic. 

In every multi-process tile, the budget assignment splits the processor clock frequency into 
budgets of different processes assigned to the given tile and the budget left free for the other 
applications. For the formulation of the optimization problem solved at this sub-step of the flow, 
two contradictory objectives can be included. On the one hand, it is desirable to minimize the 
resource usage, which means maximization of the budgets left for the other applications. On the 
other hand, it is desirable to maximize the performance slack of every process and every cycle in 
the graph, i.e. to maximize the difference between Λallowed on one side and the total execution 
delay of every process and the cycle mean of every graph cycle on the other side. The purpose of 
the latter objective is to increase the optimization freedom for the later steps of the mapping 
flow. Which of the two objectives to choose depends on how scarce the processor cycle budget 
resources are at the given platform for the given application domain (i.e. on how great the need 
to share as much processor resources between different applications as possible) and on how 
hard the optimization problems are for the later steps of the flow (and thus on how much slack 
they need). The constraints for this optimization problem should specify that the total budget at 
every virtual tile should not exceed the processor clock frequency and that the slack of every 
process and every graph cycle should be positive. 

The ordering sub-step introduces process cycles GP(pi) into the HSDF graph (see definition 
of the process cycles in Section 2.2.3). The optimization problem to be solved at this sub-step is 
to find an ordering of actors for every process such that when the process cycles are introduced 
to enforce the chosen orderings, no artificial cycle gets a cycle mean that exceeds Λallowed minus a 
certain margin to be used by the later steps of the mapping flow (just as it is the case for the 
previous sub-step, one may consider to include this margin into the optimization objectives). The 
requirement to keep the cycle means of all cycles sufficiently small also means that if actors va 
and vb are assigned to the same process – lets call it process pab – and if there is an initial-token-
free path from actor va to actor vb in the computation graph, then va should be earlier than vb in 
the ordering vp(pab). The reason is that if actor vb could be earlier than va then process cycle 
GP(pab) would introduce an initial-token-free path from vb to va and, because there is already a 
path from va to vb, we would see an artificial cycle with zero initial tokens and thus with an 
infinite cycle mean. For example, in Figure 3.10(b), if we chose ordering ‘first C and then A’, 
then we would create an initial-token-free cycle – (C, A, B)*. 

An objective that the ordering sub-step should pursue in a flow like our preferred flow is 
minimizing of the estimated number of channels in the final implementation. We will explain 
this objective later on in this section, when we consider the JPEG decoding application example.  

The last thing that we mention about the ordering sub-step in general is that this is the first 
sub-step in our preferred mapping flow that modifies the structure of the HSDF graph (except 
that the partitioning into tiles may add ‘read’ and ‘write’ actors in some cases). After creating the 
process cycles, GP(pi), the ordering sub-step removes any previously existing intra-process 
edges, i.e., the edges that join different actors in the same process (whereby, in the 
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implementation process network, it also removes the intra-process channels, i.e., the channels 
that correspond to the intra-process edges). The reason for that is that in the presence of the 
process cycles the intra-process edges are superfluous, as we will see in the JPEG example 
below. 

Coming back to our JPEG decoding application example, we observe that we still need to 
apply the three last sub-steps of the computation mapping phase there. Recall from 
Figure 3.12(a) that we have partitioned the computation graph into two tiles. In the partitioning 
of tiles into processes, we choose to have one process per tile, and, as we will see later, this does 
not lead to artificial cycles in this example. Figure 3.12(b) shows the impact of the partitioning 
into processes on the implementation process network. We see two processes, p1 and p2, joined 
by six channels that cross the partition boundary in Figure 3.12(a). As already mentioned, at this 
point of the flow, the process network also contains intra-process channels, but they are removed 
later by the ordering sub-step, and we do not show them in Figure 3.12(b).  

For the budget assignment step, in this example, we choose to follow the objective to 
maximize the performance slack. Therefore, we assign 100% processor clock frequency to every 
process (because they are assigned to different tiles) thus not leaving any free processor budget 
for the other applications at the two processing tiles assigned to this application.  

Now let us consider the last sub-step, i.e., the ordering. Look at Figure 3.12(a), where a line 
partitions the graph into two partitions. We have to decide upon the actor ordering in the left 
partition and the right partition. Hereby we keep two requirements in mind. The first requirement 
is that in every process, the ordering should respect the internal edges of the process that are free 
from initial tokens, which means that the producers of such edges should be located earlier in the 
ordering than the consumers. This requirement is implied from the mentioned above requirement 
about initial-token-free paths in the computation graph. The second requirement is that the 
‘write’ actors in process p1 should be ordered in the same order as the corresponding ‘read’ 
actors in process p2. The purpose of this requirement is to ensure that the estimated number of 
the network channels in the final implementation is minimal, i.e., equal to one. The point is that 
if the producers of the inter-process channels are executed in the same order as the corresponding 
consumers then the communication assignment step later on in the flow can assign those inter-
process channels to the same channel. 

These two requirements still leave multiple ordering choices open. We choose the ordering 
for process p1 as follows. Ignore for the time being all the actors that have delay 7,5, i.e., the 
‘write’ actors. Inspect the remaining actors column-by-column from left to right, as they are 
placed in the figure. In each column, consider them from top to bottom. Use this ordering, and 
for each actor insert its corresponding ‘write’ actor immediately behind it. One can see the 
resulting ordering for p1 in Figure 3.13 in process cycle GP(p1). (Ignore, for the time being, the 
communication actors shown in Figure 3.13 in the context of channel macros GQ(qj).) 

In partition p2, we first consider only the ‘read’ actors column-by-column from left to right 
and in each column from top to bottom. Note that every ‘read’ actor has a corresponding non-
‘read’ actor that directly consumes the token received by the ‘read’ actor. Having ordered the 
‘read’ actors in this way, for each ‘read’ actor we insert its corresponding non-‘read’ 
immediately behind it. All the non-‘read’ actors that do not have a corresponding ‘read’ actor are 
placed in the end or the ordering, represented in Figure 3.13 in process cycle GP(p2). 
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Figure 3.13 The JPEG decoder HSDF graph after ordering and and 
communication actor insertion 
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As we see in Figure 3.13, in the HSDF graph, the ordering sub-step has replaced the intra-
process edges by the sequence edges of the process cycles. For example, in Figure 3.12(a), all the 
data edges that are outgoing from actor VLD (the actor with delay 450) are intra-process edges. 
In Figure 3.13, we do not see any of those edges, but all the actors that are consumers of those 
data edges come later than the actor VLD in the process cycle. Therefore, keeping those data 
edges would be unnecessary, as they would not have any impact on the performance analysis 
anyway. 

In the end of our discussion of the processing assignment and ordering, we would like to 
stress again that the splitting of the computation part of the mapping flow into sub-steps is not 
the only possible splitting and there is phase coupling between these sub-steps, and thus the 
order in which they are executed matters for the quality of results. Thus, it might be favorable to 
integrate these substeps into one optimization problem, so that the problem solver can see the 
whole design space of this part of the flow at a time. 

This completes our discussion of the processing assignment and the ordering mapping steps. 
In the next section, we consider the mapping steps that follow later in the preferred mapping 
flow. 

 

3.6 The Communication Mapping Phase  
3.6.1 Communication Assignment and Communication Actor Insertion 

If we take a look back at the computation phase of the mapping flow, described in the 
previous section, and ask ourselves what impact that mapping phase has on the final HSDF 
graph – the IPC graph – then the answer would be that that phase defines how certain subgraphs 
of the IPC graph will look like when the flow is completed. Those subgraphs are the process 
cycles, )( ipGP . Recall from Section 2.1.3 that the HSDF graph of our implementation-

enhanced model can be decomposed into parts called macros. Every macro corresponds either to 
a process or to a channel of the implementation process network. The process cycles, )( ipGP  

are, in fact, the process macros. The mapping phase considered in this section keeps the process 
macros intact and only transforms the channel macros, )( jqGQ , until they also reach the final 

form. Compared to the final structure of the process macros, consisting of just a single cycle, the 
final structure of the channel macros is more complex; it depends on whether the channel is a 
local channel, i.e., contained in a single tile, or a network channel, joining two tiles together. In 
this section, we introduce and explain the channel macros step-by-step. For the JPEG application 
example, whose graph has almost attained the structure depicted in Figure 3.13 (except that the 
communication actors already shown in that figure are yet to be inserted), we can now note that 
the process macros we see in that figure, )( 1pGP  and )( 2pGP , will be imported without 

changes into the IPC graph of that application, whereas the edges in between, now representing 
the six channels of the current process network, are going to undergo certain transformations. 
Communication actors and new edges are going to be introduced into graph G, so that the model 
adequately captures the mapping decisions taken at the communication phase. The new channel 
macros, )( jqGQ , are going to be built from the communication actors and the edges joining 

either a computation actor to a communication actor, or two communication actors, or two 
computation actors belonging to different processes.  
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As shown in Figure 3.7, the first step of the communication mapping phase is the 
communication assignment, which is the main topic of this subsection. This step has the 
following tasks: 

1) communication actor insertion (for the network channels),  

2) channel number minimization (for all channels), 

3) bandwidth minimization (for the network channels). 

In the rest of this subsection we consider Task 1). It is the simplest task, and it is illustrated in 
Figure 3.14. For every channel crossing the tile boundary, we change the channel macro such 
that the data edge originally contained there is replaced by a graph structure consisting of two 
actors and four edges, as shown in Figure 3.14(b). The new channel macro contains a graph path 
that joins the channel producer and the channel consumer; in Figure 3.14(b), that path goes from 
left to right. The two new actors model the two components of the network connection delay – 
recall them from Section 3.4. The first actor on the path models the transfer delay, transferd , and 

the second actor models the network latency, latencyd . Therefore, the first actor is called a transfer 

actor and the second one is called a latency actor. 
As for the initial tokens of the original data edge, one can choose one of the two possible 

implementations of communication channel, whereby in the channel macro the initial tokens are 
placed either in front or at the back of the path. This choice depends on the application 
algorithm, i.e. on whether, at the start of the loop execution, the content of the initial tokens can 
be implied by the consumer actor (e.g. all zeros) or whether it has to be pre-generated by the 
producer actor before the start. 

Originally, the transfer actor has a sequence edge that joins the actor with itself. Recall that, 
unlike the network propagation activity, modeled by the latency actors, the subsequent transfer 
activities of the given network connection can only execute sequentially, and that is exactly what 
that edge is modeling. 

We classify both newly introduced actors as communication actors because, unlike the 
computation actors, they are not executed by any processor; instead, they model the behavior of 
the on-chip network. The results of the actor insertion for the JPEG decoding example are shown 
in Figure 3.13. Each of the six channels in that example has attained a new channel macro 
similar to the one in Figure 3.14(b). 

When new actors are inserted into the HSDF graph of our implementation-enhanced HSDF 
model, their delays have to be defined based on the budgets (recall Figure 3.1).  Recall from 

Figure 3.14 Communication actor insertion 

  )( jqGQ    )( jqQG ′  

(a) original channel macro = an edge (b) new macro = a graph substructure 

d transfer d latency 

 tokens can also be placed at the other side 
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Equalities (3.19), (3.20) and (3.21) that the transfer delay depends on the token size. Because, in 
this thesis, we restricted ourselves to static token sizes, not depending on the input data content, 
the transfer delay does not depend on the actor parameters, thus keeping the same constant value 
in every timing mode. The same holds for the latency delay, assigned to the latency actor. 

In the preferred mapping flow, during actor insertion we assume that each network channel 
gets the maximum network link bandwidth, independently from the other channels. Due to the 
monotonicity of HSDF graphs, this means that we assume the best performance the model can 
have with the given communication network architecture. Thus, similarly to the computation 
phase, we start the communication phase with an initial solution having the biggest chance to 
satisfy the application throughput constraint – if that does not happen then either the computation 
phase results have to be reconsidered or there is no feasible solution at all. The initial solution 
may use an unrealistic amount of the network bandwidth, but later on, at task 3), the bandwidth 
assignment should be ‘relaxed’ such that the bandwidth requirements get into the realistic scope 
while the throughput constraint is still satisfied. 

As for the latency, in general, it depends on the distance between the physical processors to 
which the virtual tiles are assigned at run time. Our preferred mapping flow assumes that the 
latency values are much smaller than the computation actor delays, and therefore it assigns each 
latency actor a constant delay that is computed based on the maximum possible distance between 
the tiles in the given network-on-chip; after all, being conservative here does not imply being too 
pessimistic, because as long as our assumption holds the network latency does not have any 
considerable impact on performance. 

For the JPEG decoding example, we use the instance of the ÆTHEREAL NoC that is described 
in Section 3.4. The token size of every data edge in this example is 128 bytes (or 64 pixels, every 
pixel being a two-byte word). Assuming the highest connection bandwidth, Bconn = Æ-LINKB  and 

applying Equality (3.21) and taking the constants of Table 3.1, we get =transferd 165 ns. As for 

the latency, it is reasonable to assume that it is always possible to route a connection between 
any two processing tiles on chip using up to 20 routers; thus, by applying Equality (3.22) and 
Table 3.1, we obtain =latencyd 150 ns. The obtained numbers for the transfer delay and the latency 

are assigned as actor delays to the graph shown in Figure 3.13.  
Task 1), considered so far, does not introduce any artificial cycles into the HSDF graph, 

except for the cycles due to the edges around the transfer actors. The cycle means of those cycles 
must be smaller than Λallowed, otherwise the mapping problem is doomed to fail in finding a good 
solution due to high communication delay of the platform. The communication actors may also 
increase cycle means of the cycles that correspond to the cycles present in the original graph, but 
the corresponding increase in the cycle mean must also be non-dominating, for the same reason.  

 

3.6.2 Minimization of the Number of Channels and Bandwidth 

The communication assignment task that follows after the insertion of the transfer and latency 
actors is the minimization of the number of channels. In the previous subsection, we denoted that 
task as Task 2). That task comprises a combinatorial optimization problem, and the same holds 
for Task 3), i.e., the minimization of the required channel bandwidth. Similarly as for the 
previous mapping steps, since it is not our purpose to propose new solutions to the 
communication assignment problems, we only give a brief description for them and point out the 
relationship between those problems and our implementation-enhanced HSDF model. 
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In the channel number minimization problem, the state channels and the communication 
channels are treated similarly, but separately. For the end result, it does not matter which channel 
type is considered first, so let us start by considering the communication channels. Recall, that 
among those channels, we distinguish between the local channels, staying within one tile, and 
the network channels, joining two tiles. For the latter, also the bandwidth should be minimized –
Task 3). Having considered both minimization tasks for the communication channels, we explain 
a similar but simpler optimization problem for the state channels in the end of this subsection. 

Recall that every channel at this point of the flow has exactly one producer actor and one 
consumer actor. We refer to such channels as simple channels. The end result of the channel 
number minimization is the merging of the simple channels into complex channels, which have, 
in terms of the definition given in Section 2.1.3, a transfer set TQ with cardinality more than 
one. The purpose of channel merging is the sharing of the FIFO buffers and the network 
connections between multiple transfers. Looking ahead, for the JPEG decoding example, we can 
mention that the channel number minimization results in the merging of all six simple channels 
shown in Figure 3.12(b) into one complex channel. 

Note that channel merging cannot introduce deadlock if it follows the compatibility rules 
defined later in this subsection. Moreover, the merging of local and state channels does not have 
an impact on HSDF graph throughput, as it does not change the graph structure and delays. As 
we will see later in this subsection, merging of the network channels can decrease the throughput 
and thus it should be done with the throughput constraint in mind. 

The preferred mapping flow splits the optimization problem of Task 2) into basic 
subproblems working with different comparable parts of the HSDF model. The preferred 
mapping flow considers different parts of the problem separately, in an arbitrary order. Due to 
the possible coupling between the subproblems, the preferred approach may be suboptimal, but 
finding exact solutions for mapping problems is beyond the scope of this thesis. We only present 
reasonable indications in order to demonstrate the usefulness of our modeling techniques to 
formulate the mapping problems and to guide the optimization algorithms.  

We define the basic channel number minimization subproblem by selecting a distinct ordered 
pair of processes ),( ba pp  having the property that there is more than one communication 

channel going from process ap  to process bp . Those channels are candidates for merging. 

Figure 3.15 shows an example of the problem instance, where there are six candidate channels. 
The best would be to merge all those channels into one complex channel, but as mentioned in the 
figure, for this problem instance, the minimum number of channels is three. Soon below, we 
explain how a feasible solution should look like, and it will become clear why in this example 
the chosen solution is feasible and why it is infeasible to further merge channels. 
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 Note that in this example the channels are local; therefore, each channel is represented just by 
an edge and does not have communication actors. Note also that there is an important difference 
in the formulation of channel number minimization problem between the case where the 
channels are local and the case where they are network channels, because, merging the network 
channels together creates new cycles in the HSDF graph and thus can have impact on 
performance. This peculiarity of the network channel merging is discussed later in this 
subsection, and for now we focus on the compatibility of different channels for merging, where 
the rules for the local and network channels are similar.  

The preferred flow distinguishes only those actors in process ap  that are producers of the 

channels going to process bp . Similarly, only those actors in process bp  are considered that are 

consumers of those channels. In general, ap  and bp  may also contain other actors, but they are 

not in the scope of the problem instance, and any such actors are omitted from Figure 3.15. 
As already mentioned before, when forming complex channels with multiple producers and 

consumers, one should take the actor execution order into account to ensure the proper FIFO 
ordering of the communication transfers; namely, the producers should produce the tokens in the 
same order as the corresponding consumers consume them. For example, in Figure 3.15, simple 
channels ‘1’ and ‘2’ cannot be merged together because their producers execute in the opposite 
order to their consumers. When, like in this case, two simple channels cannot be merged together 
such that FIFO ordering of communication transfers can be ensured, we say that they are 
incompatible. If they can be merged together such that FIFO ordering can be satisfied then we 
call them compatible; for example, so are channels ‘2’ and ‘4’ in Figure 3.15. 

Figure 3.15 An instance of the channel number minimization problem 
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(a) the patterns of compatible channels 
more  compatible channel patterns can be obtained by adding the same 

number of initial tokens to both channels in one of the patterns 

(b) the patterns of incompatible channels 

Figure 3.16 Visual detection of channel (in)compatibility  

   Note! The positions of initial tokens are essential for each pattern! 
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Figure 3.16(a) illustrates a few examples of compatible channel pairs. The channels are 
represented by corresponding graph edges in the HSDF graph as it was before the insertion of 
the communication actors in Task 1) – to keep the illustration simpler for the network channels. 
One can check all these patterns one-by-one for compatibility by checking whether the first two 
tokens produced can be consumed in the same order as they can be produced; with a reasonable 
assumption that if an actor has multiple inputs/outputs then one can adjust the order in which the 
actor consumes/produces tokens at different inputs/outputs to the order in which the tokens are 
produced/consumed at the other side of the channel. For example, the producer of the bottom-left 
pattern in Figure 3.16(a) can first produce a token to the top edge and then to the bottom edge, 
and thus the corresponding channels are compatible. Note that because the production and 
consumption order of the patterns repeats cyclically, the FIFO-compliance check for the first two 
tokens produced in the complex channel is a necessary and sufficient condition of the FIFO-
compliance of the whole HSDF execution run. 

If a channel pair matches the pattern shown in one of the examples of Figure 3.16(a), then the 
corresponding two channels are compatible. ‘Matching’ a pattern means that a pair of channels 
has the same number of initial tokens as in the pattern and the same ordering of the producers 
and the consumers. For example, channel pair {4, 5} from Figure 3.15 matches the top pattern in 
the right column of Figure 3.16(a). Every pair of channels in Figure 3.13 – if one removes the 
communication actors – matches the top pattern in the left column. Note that more patterns of 
compatible channel pairs can be obtained from any pattern in Figure 3.16(a) by adding the same 
number of initial tokens to both channels. 

Figure 3.16(b) shows incompatible channel patterns. One can check them one-by-one for 
violation of FIFO ordering. For example, it is easy to see that the first two tokens produced in the 
top-left pattern will be consumed in the opposite order. In our example in Figure 3.15, channel 
pair {3, 4} matches this pattern and therefore those two channels cannot be merged together. 
Note that the positions of the initial tokens are essential in all patterns; for example, if one 
removed initial tokens from the top-right pattern in Figure 3.16(a) and the top-left pattern in 
Figure 3.16(b), then those two patterns would become identical. 

Definition. (Compatible channels/data edges) Two simple channels or two data edges that 
represent simple channels in the HSDF model are called compatible if they match one of the 
patterns in Figure 3.16(a) either directly or after adding the same number of initial tokens to 
every data edge. ♦ 

One can show that our original criterion to distinguish compatible channels – i.e. the 
compliance to FIFO ordering – and this explicit definition are equivalent. This can be proven as 
follows. First of all, all the patterns where the difference in the number of initial tokens is two or 
more are obviously incompatible (e.g. the top-right side Figure 3.16(b)). The reason for that is 
that at start of the execution, the new tokens produced on the edge with the larger number of 
tokens will have to wait until the new tokens at the other edge are consumed at least two times, 
which obviously violates the FIFO order of productions and consumptions. All the patterns 
where the difference is zero or one can be reduced – by removing the same number of initial 
tokens at every data edge – either to one of the patterns in Figure 3.16(a) or to one of the patterns 
in Figure 3.16(b) (except the top-right pattern). As mentioned before, one can check every 
pattern one-by-one to verify whether the FIFO-ordering criterion is satisfied. 

To solve the channel number minimization subproblem for a given pair of processes, one 
should split the set of simple channels into as few as possible subsets such that in every subset 
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any two channels are compatible. For the problem instance in Figure 3.15 three such subsets 
have been found; they are mentioned in the figure. For the JPEG decoding example in 
Figure 3.13, all the channels are compatible, and thus we can merge them into one complex 
channel. 

Recall that it is not our goal to present any algorithm for mapping flow, so we do not discuss 
algorithms for solving the channel number minimization problem. Instead, we continue the 
discussion on the relationship between that problem and the HSDF model that represents the 
current mapping decision. 

Unlike the minimization of the number of local channels, the minimization of the number of 
network channels leads to transformations of the HSDF graph G and thus it can have impact on 
the throughput. The point is that when one decides to merge a few simple network channels into 
one complex channel one has to join the transfer actors of those simple channels into one cycle, 
similar to the process cycle. This cycle is called a transfer cycle. The construction of a transfer 
cycle is explained in the following definition. 

Definition. (The transfer cycle of a complex network channel: construction rules) Consider 
the set of all transfer actors of the simple network channels merged into one complex network 
channel. Because the transfer actors are in one-to-one correspondence with the communication 
transfers, introduced in Section 2.1.3, we use the same notation for that set as for the set of 
transfers, TQ. In the example given in Figure 3.17, TQ = { A, B, C, D,  E }. Let ms-min be the 
minimum number of initial tokens per simple channel. Note that a set of simple channels can be 
mutually compatible only if the maximum difference in the number of initial tokens in the set is 
one. Therefore, only simple channels with either ms-min or (ms-min + 1) can be present in the set (in 
Figure 3.17, ms-min = 1). Therefore, in general, set TQ can be split into two subsets: 
TQ = TQm ∪ TQm+1, where TQm  is the set of transfer actors of the simple channels with ms-min 
initial tokens and TQm+1  is such a set for the simple channels with (ms-min + 1) initial tokens. 

Figure 3.17 A complex transfer cycle construction example 
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Note that in general, the latter subset can be empty. In our example TQm  = { D, E } and  TQm+1  
= { A, B, C }. To define the ordering of the transfers in the transfer cycle, first we have to order 
the elements in both subsets, thereby forming two ordered sequences, tqm  and  tqm+1 . Sequence 
tqm orders the transfer actors from TQm in the order that is consistent with the ordering of the 
corresponding producers. If any two transfers have the same producer, then one has to check the 
ordering of the corresponding consumers to decide upon the ordering. As for sequence tqm+1, it 
uses the same rules, but it orders the transfer actors from TQm+1. For example, in set TQm+1 from 
Figure 3.17, actors B and C have the same producer, but actor B has the earlier consumer; 
therefore actor B precedes actor C. The resulting sequences for our example are: tqm  = ( D, E ) 
and tqm+1  = ( A, B, C ). Finally, the transfer cycle order is equal to the concatenation of the two 
sequences, with  tqm+1 coming in front. Let  ‘°’ denote the concatenation operation, then: 

 tq = tqm+1 ° tqm        (3.26) 

where tq is the ordered sequence defining the transfer cycle order. In our example, we have: tq = 
( A, B, C, D, E ).  

Given the ordering, the transfer cycle is constructed in the same manner as a process cycle: 
between every two subsequent actors a sequence edge is introduced, without initial tokens, and 
there is a sequence edge with one initial token going from the last actor in the sequence to the 
first one. The transfer cycle is introduced into the HSDF model to reflect the fact that the data 
tokens coming from the producer buffer of the same network channel can only enter the network 
connection sequentially, one after another.♦ 

It is worthwhile to draw attention to the ‘unusual’ position of the initial token in the transfer 
cycle in Figure 3.17 – in the ‘middle’ of the transfer cycle. Technically, this is the result of the 
transfer cycle construction rule that we have just introduced. The rule places the initial token in 
front of the first actor of sequence tqm+1. Only if that sequence is empty (when TQ  = TQm), is 
the initial token in the transfer cycle ‘aligned’ with the first producer. 

As illustrated Figure 3.17, the HSDF model of a complex network channel can be split into 
three parts: the producer buffer model, the transfer cycle and the consumer buffer model 
(whereby the latter also includes the model of network latency). The producer buffer model 
consists of the data edges joining the producer process cycle to the transfer cycle. The consumer 
buffer model consists of the data edges and latency actors joining the transfer cycle to the 
consumer process cycle.  

Note that, it is not difficult to intuitively see the correctness of the complex network channel 
construction in Figure 3.17 in terms of token transfer ordering. This can be done using the 
following remark. First, in the consumer buffer model, let us, for explanation purposes, assume 
that we remove the latency actors and merge the incoming and outgoing edge of each such actor 
into one edge. Then, for both buffer models, it holds that one can enforce a series of actor 
executions in such a way that all the data edges in the buffer model get the same number of 
tokens, and afterwards it is possible to rearrange the actors (preserving the graph structure) in 
such a way that no data edges cross each other and the position of the initial token in the cycle 
that produces the data tokens corresponds to the initial token of the cycle that consumes the data 
tokens. For example, in Figure 3.17, for the producer buffer model, if we enforce execution of 
actors A, B, and C, then all the data edges will have one initial token and the initial token of the 
transfer cycle will move to edge (C, D), which corresponds to the initial position of the process 
cycle producing the data tokens to the channel. In the same figure we see that we can shift actors 
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A, B, C to the top of the figure, and D, E to the bottom, such that no data edges in the consumer 
buffer model cross each other, whereas the initial token position of the transfer cycle corresponds 
to the initial token position the process cycle of the consumer process. 

It is obvious that the transfer cycle can have an impact on the performance. In theory, it can 
become a critical cycle, limiting the throughput that the application can provide. This can be the 
case when the platform’s communication network is not tuned well for the given application 
domain and too slow or when the application has unusually high communication requirements 
(manifested in relatively large token sizes, causing large transfer delays). In that case, the 
optimal solution for the channel number minimization problem may not be the best choice. 
However, in practice, we do not expect that a transfer cycle can become critical at this point of 
the flow, because, as the reader may recall, so far we assume that each channel uses the 
maximum bandwidth a network can provide for one single channel, resulting in very small 
transfer actor delays. What indeed can happen is the phenomenon that the introduction of a long 
transfer cycle can lead to an extension of an existing critical cycle, whereby it changes its route 
and uses some new edges introduced by the transfer cycle.  

Note that the transfer cycle together with its incoming and outgoing data edges and also with 
the adjacent latency actors and their outgoing data edges – all those primitives together – now 
constitute a new single channel macro, which is the macro of a complex network channel. For 
example, in Figure 3.17, all the actors and edges in between the producer process cycle and the 
consumer process cycle constitute the macro of a channel performing five communication 
transfers per loop iteration and containing eight initial data tokens in total. As for the local 
channels, we can make a similar statement: all the edges that belonged to the simple channels 
merged into a complex channel now constitute a new channel macro, which is the macro of a 
complex local channel. For example, in Figure 3.15, after the channel merging, edges 2, 4 and 5 
together form a channel macro of a complex local channel.  

In the implementation process network, PQ, the new channels – complex channels – come to 
replace the simple channels that have been merged. The simple channels that have not been 
merged stay untouched; they can be seen as ‘complex’ channels containing just one transfer per 
loop iteration. 

All the communication channel macros that are present in the HSDF graph at this point of the 
flow come as an input to the buffer capacity minimization step, which follows as the next step in 
the mapping flow (see Figure 3.7) and which we consider in the next two subsections. 

Let us step back and recapitulate where we are in the description of the channel and 
bandwidth minimization tasks. So far, we have considered the basic subproblem of channel 
number minimization for the communication channels. Now there are a few ‘smaller’ topics to 
consider before we finish the description of the communication assignment and close this 
subsection. Those topics are: 

1) bandwidth minimization in the network channels, 

2) state channel number minimization. 

We consider these topics one-by-one in the remainder of this subsection, and we start with the 
bandwidth minimization. As already mentioned, in an ideal situation, at this point of the flow, 
the transfer cycles should have no or very little impact on the performance, because so far we 
assume the highest network bandwidth values allocated for the channels. To ensure that the 
requested bandwidth can be provided in reality and to decrease the communication resource 
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usage of the application, one should ‘relax’ the bandwidth values assigned to the channels. This 
is done by the bandwidth minimization task, the last task in the communication assignment step. 
The bandwidth budgets for all channels can be minimized using a cost function like the average 
or the maximum bandwidth per channel. The bandwidth minimization leads to a delay increase 
in the transfer cycles and other cycles that include the transfer actors. Therefore, the ‘relaxation’ 
of the bandwidth values should be constrained such that none of those cycles gets a cycle mean 
higher than Λallowed. Also a set of constraints should be imposed that specify the maximum 
bandwidth the network can provide per tile per producer link and consumer link (see Figure 3.6). 

The last (sub-)task of the communication assignment we have not discussed so far is the 
minimization of the state channels. That task is formulated and solved the same way as the local 
channel number minimization. The state channels are, in fact, very similar to the local channels, 
the major difference being that the state channels do not carry any data tokens; they only enforce 
some actor executions to wait for the completion of certain other actor executions. For the 
interested reader with a background in concurrent systems, we mention that the inter-process 
state channels can be implemented using semaphores – special variables that can be ‘acquired’ 
and ‘released’ multiple times; those variables are implemented as counters whose increments and 
decrements are atomic operations; trying to do more ‘acquires’ than ‘releases’ leads to blocking 
until the semaphore is released by another process. In the semaphore-based implementation, the 
channel producers would release the semaphore once per production and the channel consumers 
would acquire it once per consumption.  

In the JPEG example, the communication assignment step joins all the transfer actors in 
Figure 3.13 into one cycle (to see this transfer cycle, the reader can look ahead in this chapter 
and consider an IPC graph for this application in Figure 3.23). The bandwidth minimization step 
reduces the network bandwidth assigned to the channel from the maximum to the minimum 
possible value in the ÆTHEREAL network, Æ-minB  = 3.125 Mbyte/s. Due to this change, all the 

transfer actors (see Figure 3.13) acquire a delay value of 42 µs, which does not affect the 
throughput of the application in an adverse way, because the total delay of the transfer cycle is 6 
times 42µs – i.e. 252 µs – whereas Λallowed is 1000 µs. 

 
3.6.3 Modeling the FIFO Buffers of the Communication Channels 

After the communication assignment, the intra-application mapping is almost complete. The 
implementation process network has almost reached the final form: the process network structure 
has been finalized, the contents of the processes and channels have been defined in terms of 
actors/transfers and their ordering, the budgets have been assigned to the processes and channels 
in terms of the processor cycles per unit of time and the communication bandwidth. The only 
part of the implementation-enhanced HSDF model that still has to be filled in by the intra-
application mapping flow is the capacities of the FIFO buffers in the channels. Recall from 
Section 3.5.2 that the network channels are characterized by the capacities of the producer and 
the consumer buffer, buffer-consbuffer-prod ,QQ , and the local channels are characterized by the local 

buffer capacity, bufferQ . 

Before we can describe the final step of the preferred mapping flow, the buffer capacity 
minimization, we define how we model the FIFO buffers having finite buffer capacities and 
multiple producers and/or consumers. That modeling technique is, in fact, the main topic of this 
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subsection. We spend extra attention on this topic because it comprises an important part of our 
contribution. The modeling of finite-capacity FIFO buffers enables performance analysis of 
streaming applications whose channels are possibly shared by multiple producer and consumer 
actors and are mapped to network-on-chip. In the next subsection we use this modeling 
technique to guide buffer-capacity minimization. 

The simplest FIFO buffer models are HSDF graph edges. They can be used to model the 
infinite-capacity FIFO buffers. The FIFO buffer of a simple local channel with an infinite 
capacity is represented by a single data edge. It is essential that the producer of that edge be 
enclosed in a cycle with one initial token, because that ensures that the subsequent productions 
do not overlap and do not overtake one another. The consumer should also be enclosed in such a 
cycle. For example, in Figure 3.15, we see six data edges, modeling the buffers of six simple 
local channels. As for the simple network channels, consider their channel macro in 
Figure 3.14(b). The data edge that enters the transfer cycle models the producer buffer. The two 
data edges separated by the latency actor model the consumer buffer, whereby the latency actor 
represents the latency of the token arrival to the consumer buffer. 

After the channel merging, the FIFO buffers of complex channels are modeled by the 
collection of edges that, before the merging, were used to model the buffers of the simple 
channels. For example, in Figure 3.17, the data edges ingoing into actors A, B, C, D, E (entering 
those actors from the left side in the figure) model the producer buffer of the underlying complex 
channel. The latency actors and their adjacent edges model the consumer buffer and the latency 
of data arrival into the consumer buffer. By analogy to the channels, we give the name ‘complex 
buffers’ to the buffers having multiple consumers and/or multiple producers. 

Buffer models that contain only edges going from the producers to the consumers represent 
infinite capacity buffers. In this subsection, we assume that a finite buffer capacity is provided 
and explain how one can model the buffers with the given finite capacity. As we will see later, 
for that, we introduce special edges going in the reverse direction: from the consumers to the 
producers. 

In our explanation, we assume that we have an HSDF model for an infinite-capacity complex 
buffer, like the one shown in Figure 3.18(c). We assume that now we would like to limit the 
capacity of that buffer to a given finite capacity value. Therefore, we study how to reflect the 
limited capacity in the HSDF model. Note that for convenience, in this subsection, we often refer 
to the HSDF models of a buffer simply as ‘buffer’. In other words, we use the terms ‘(graph-
theoretic) buffer model’ and ‘buffer’ interchangeably. Thus, we refer to the infinite-capacity 
complex buffer model as initial buffer or initial buffer model. We refer to the finite-capacity 
buffer model that is obtained from the initial buffer as final buffer or final buffer model. 

Let us take a step back and reconsider the infinite-capacity complex channels introduced in 
the previous subsection. To be more precise, we reconsider their buffers. We are going to show 
that every initial buffer can be represented by a simple meta-model that expresses the essential 
properties of the buffer in a simple and transparent manner. We call that meta-model the 
prototype buffer. As opposed to the initial buffer, which is, in general, a complex buffer, the 
prototype buffer is always a simple buffer, i.e. it has only one producer and consumer. For 
example, an initial buffer and its prototype are shown in Figures 3.18(c) and 3.18(a) respectively. 
Soon we will explain and study that example in detail. 

A prototype buffer has a simple structure and there exists a clear relationship between any 
valid initial buffer and its prototype. Note that this relationship preserves the buffer capacity. The 
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reason to introduce the prototype buffer is that one can easily create a variant of the prototype 
buffer that has a finite buffer capacity. Then, using the relationship between the prototype and 
the complex buffer one can translate the finite-capacity variant into the complex-buffer form and 
thus obtain the model of a complex buffer with a finite buffer capacity. 

First let us study the infinite-capacity buffers. Let m be the number of initial tokens in the 
initial buffer and H be the number of simple channels merged into the initial buffer (or, 
equivalently, the number of transfers in the complex channel per loop iteration). For illustration 
purposes, we use an example with the initial buffer having m = 8 and H = 5. The graph model of 
the initial buffer is illustrated in Figure 3.18(c). Visually, it may seem that the edges of that 
buffer are incompatible (some edge pairs seem to not match the compatibility patterns in 
Figure 3.16), but one should beware the ‘unusual’ position of the initial token of the consumer 
that explains the counterintuitive visual effect. To verify visually that in reality all edge pairs are 
compatible, one can pull the top consumer to the bottom of the figure and then use the patterns of 
Figure 3.16 again. However, we intentionally have placed all the consumers with the smallest 
number of the initial tokens at the top of the figure and, as a by-product, we see that no data 
edges visually cross each other. It can be shown, that one can place the consumers of any 
complex buffer this way. 

For clarity and simplicity, we are now making an important assumption, namely, we assume 
that all the transfers of the complex channel that contains the given complex buffer have the 

Figure 3.18 The graphs modeling a complex buffer 
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same data token size, z. Later on, we will show how to waive that assumption and keep the 
model accurate. 

Here we need to introduce the notion of the initial buffer model more thoroughly.  

Definition (Initial buffer model: equal token size case) The initial buffer model can be seen as 
an extraction from the application’s HSDF graph that models only the particular complex buffer. 
It is a graph whose set of vertices is the set of producers and consumers and the set of edges 
includes: 

1) one data edge per one communication transfer (i.e., per original simple channel that was 
merged into the channel); 

2) one sequence edge per subpath of the process cycle (or transfer cycle) joining two 
subsequent buffer producers/consumers, whereby the sequence edge should have the 
same number of initial tokens (either zero or one) as the corresponding subpath. 

For example, the sequence edge between actors A and B in Figure 3.18(c) may correspond to a 
token-free chain of actors that come in the process ordering in between actors A and B and that 
do not access the initial buffer and – for that reason – do not appear in the buffer model. ♦ 

Now let us consider the prototype buffer model. The prototype buffer model built for the 
initial buffer example in Figure 3.18(c) is shown in Figure 3.18(a). A prototype buffer always 
has a single producer, single consumer and just one data edge. If all transfers of the initial buffer 
have equal token sizes then the prototype buffer carries the same number of initial tokens as the 
original buffer. In Figure 3.18(a), we see that all the initial tokens, which were distributed 
between different edges in the original graph, are neatly collected on the same edge.  

Let us now explain the relationship between the buffer models. The producer (or consumer) 
of the prototype buffer represents all the producers (consumers). One execution of the prototype 
producer (consumer) corresponds to one production (consumption) to (from) the initial buffer. In 
the example of Figure 3.18, executions 0 and 1 of prototype consumer Y corresponds to 
executions 0 of consumers F and G. Executions 0 through )1( −H  of Y (recall that H = 5) cover 

the executions of consumers F, G, H, and E in loop iteration 0. Note that E consumes two tokens, 
and thus corresponds to two executions of Y. Executions H through )12( −H  cover their 

executions in loop iteration 1, and so forth. 
In fact, this relationship is better explained by means of unfolding the prototype graph. 

Definition (Graph unfolding and folding with factor  H ) HSDF graph G′  is called an 
unfolded representation of HSDF graph G  with unfolding factor H if every actor kv  in graph G  

is in one-to-one relation with a distinct set of H actors: ],0[kv′  ],1[kv′  …, ]1[ −′ Hvk  in the 

unfolded graph G′ . Hereby the graph structure of an unfolded representation should imply a 
certain relationship between its behavior and the behavior of graph G. To define that 
relationship, we first extend the relation between set ][ jvk′  and actor vk by defining also a 

correspondence between the executions of ][ jvk′  and vk. We define that any execution n′  of 

actor ][ jvk′  in G′  corresponds to the execution jHn +⋅′  of actor vk in G. Then the relationship 

between the behaviors of  G′  and G is defined by two requirements given below: 

1) Every token produced and consumed in G should be related to a unique token produced 
and consumed in G′ . Let a be the producer and b be the consumer of a token in G. Then 
the producer in G′  should be related to a, i.e. it should belong to set a[0], a[1], …, 
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a[H−1]. The consumer in G′  should be related to b, i.e. it should belong to set b[0], b[1],  
…, b[H−1]. 

2) The reverse statement to 1) should also hold, and thus the relation between tokens in G 
and in G′should be a one-to-one. 

3) The delays of actor executions in G′  are equal to the delays of the corresponding 
executions in G: )  ,()],[(   jHnvdnjvd kk +⋅′=′′  

We say that graph G is the main graph with respect to an unfolded representation. The main 
graph is obtained from its unfolded representation by folding it back with the folding factor H. ♦ 

For example, Figure 3.18(b) shows an unfolded representation of the prototype buffer model 
in Figure 3.18(c) with unfolding factor 5. Actor X is related to actors X′ [0]…X′[4] and actor Y 
is related to actors Y′ [0]…Y ′ [4].  

As follows from Lemma 3.3, given below, the graph unfolding not only postulates a one-to-
one relation between an actor in G and a set of H actors in G′ , but also implies a one-to-one 
relation between an edge in G and a set of H edges in G′ . Note also that Lemma 3.3 also implies 
that all unfolded representations of a given graph G are isomorphic (i.e., have identical 
structure); therefore, in the remainder, we speak of ‘the’ unfolded representation instead of ‘an’ 
unfolded representation. Note also that H, the (un)folding factor, must be a positive integer, and 
if H = 1 then G′  is isomorphic to G. 

Remark (Similarity of the relationship between the main and unfolded graphs and the 
relationship between the prototype and the initial buffers) The definition given above can be 
interpreted as follows: the executions with index n of actors ],0[kv′  ],1[kv′  …, ]1[ −′ Hvk  in the 

unfolded graph G′  represent the executions with index Hn ⋅  to 1)1( −⋅+ Hn  of actor kv  in 

graph G . Thus, hereby we see a similar relationship as the relationship we have introduced 
between the initial and the prototype graph. 

For example, in Figure 3.18(b) we see that the unfolded prototype graph looks similar to the 
initial graph, shown in Figure 3.18(c), although there are differences, on which we will elaborate 
later. ♦ 

In fact, due to property 3) in the definition, graph (un)folding keeps the timing behavior of the 
HSDF graph essentially intact; the main graph and its unfolded representation have closely 
related evolution equations, whereby one can be obtained from the other by variable 
replacement: 

)  ,()],[('         )1( .. 0 jHnvxnjvxHj kk +⋅′=′′⇒−=     (3.27) 

where (...)x′  are the starting time variables in graph G′  and x(…) are the variables of graph G. 

We have explained the correspondence between the actors of the prototype graph and its 
unfolded representation. Now let us explain the correspondence between the edges of those 
graphs. 

Definition (Positions of the actors in the unfolded graph) From the previous definition, it 
follows that any actor in G′  can be identified as actor ][ jvk′  for some valid k and j. We refer to 

index j as the position of actor ][ jvk′ .♦ 

Lemma 3.3 (The characterization of the unfolded graph edges) Let G′  be an unfolded 
representation of graph G  with unfolding factor H. Then every edge ),( ba vve =  in G  is in a 
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one-to-one correspondence with a distinct set of edges )1..(0  },{ −=′ Hjej  in G′ . Those edges 

are defined by: 

( )     , ]mod )[(  ],[             )(  ),1..(0 HmjvjveemmHj baj +′′=′⇒=−=   (3.28.1) 
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where m(e) denotes the number of initial tokens on edge e. 

This lemma can be summarized as follows. Firstly, it says that every edge in G corresponds to 
a set of H edges in G′ . For example, the edge from the producer to the consumer in 
Figure 3.18(a) has resulted in H edges in Figure 3.18(b), going from the producers to the 
consumers. Secondly, this lemma says that the abovementioned set of H edges can be split into 
two subsets, the set with sm initial tokens per edge and the set with )1( +sm  initial tokens per 

edge, where 




=
H

m
ms  . The first set has producers with smaller positions: 

( )1mod...0 −−= HmHj . The second set takes the rest of the range of possible producer 

positions and may be empty. To give an example of those two sets, in Figure 3.18(b), the set 
consists of two edges with one initial token and three edge with two initial tokens.♦ 

We skip a rigorous proof of this lemma, because the statement of this lemma becomes almost 
straightforward when we make two remarks. The first remark is that execution n of an actor in G 
corresponds to the execution n′  of the corresponding actor at position j in G′  if  Hnn / =′  and 

j = n mod H. The second remark is that in graph G  (respectively, also in G′ ) any token 
produced by execution n (resp. n′ ) at any edge e (resp. e′ ) is consumed by execution n + m(e) 
(resp. )(emn ′+′ ) of the consumer actor. Based on these two remarks and the requirements 1) 

and 2) from the graph unfolding definition, after some straightforward technical derivation one 
can obtain Equalities (3.28). 

Let us now make three important observations.  
Firstly, based on the Lemma 3.3, one can show that the data edges of the unfolded prototype 

buffer model are mutually compatible – for example, we already discussed that property for 
Figure 3.18(b). So, in other words, by unfolding a simple buffer one obtains a complex buffer. 

Secondly, one can also show that the reverse statement is also true for a quite general case. 
Suppose that the buffer has only simple producers/consumers; i.e. produces/consumers that have 
only one outgoing/incoming data edge in the given initial buffer – e.g. in Figure 3.18(c), actor C 
is a simple producer and D is not, we call such actors complex producers/consumers. Let H be 
the number of transfers in the initial buffer and let all transfers have equal data token sizes. 
Under these assumptions, the structure of initial buffer can be shown to be an unfolded 
representation of the prototype buffer, with an unfolding factor H. In fact, this property follows 
from the requirement, introduced in the previous subsection, which states that the simple 
channels included into a given complex channel are compatible. In fact, this requirement 
‘enforces’ that the edges of those simple channels follow the pattern defined by Lemma 3.3. 
Thus, if one folds back a complex buffer with simple producers and consumers, one obtains a 
simple buffer. 
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Thirdly, recall that in case all token sizes in the initial buffer are the equal, then the prototype 
buffer contains the same number of initial tokens m as the initial buffer. Therefore, from the first 
two observations, it follows that, for any positive integer H, the prototype buffer has a unique 
initial buffer with simple producers/consumers. That buffer can be obtained by unfolding the 
prototype buffer with factor H. 

Now we have all the important ingredients to give a general description of the relation 
between the initial buffer and the prototype buffer for the case where the transfers have equal 
token sizes. We need to formulate that relation because later on we use it to step from infinite-
capacity buffers models to the finite-capacity buffer models. 

Definition. (Relationship between the initial buffer and its prototype buffer: equal token-
size case). Consider an initial buffer with the number of transfers H and the total amount of the 
initial data tokens m. Suppose that all the transfers have an equal data token size. 

 (From the initial buffer to the prototype buffer) First, the initial buffer is transformed to the 
unfolded prototype buffer, for example the buffer in Figure 3.18(c) is transformed into the buffer 
in Figure 3.18(b). The purpose is to split the complex producers and consumers into a few simple 
ones, e.g. in Figure 3.18(c) producer D is split to obtain actors X′ [3] and X′ [4]. When splitting 
the complex producers/consumers, the set of so-called groupings of producers/consumers is 
recorded, where a grouping is the relation between an actor in the initial buffer and a set of 
corresponding actors in the unfolded prototype graph. The rules for splitting are introduced later 
in this definition (for a preview, see Figure 3.19). The obtained set of groupings can be used for 
the reverse transformation. At the second step, one transforms the unfolded prototype buffer 
model into the prototype buffer model by folding it back with the folding factor H. 

 (From the prototype buffer to the initial buffer) First, the prototype buffer is unfolded with 
the unfolding factor H, hereby obtaining the unfolded prototype buffer. Then, one uses the set of 
groupings to transform the unfolded prototype buffer into the initial buffer. 

The transformations from the initial buffer to the unfolded prototype buffer and back are 
illustrated by four patterns in Figure 3.19. Let us first consider the first two patterns, which 
consider the case where the data edges attached have equal number of initial tokens (zero in the 
figure, but one can add any number of tokens to every data edge). 

In the first pattern, in Figure 3.19(a), we see a situation where the initial buffer contains a 
complex consumer B (respectively, complex producer A in the second pattern in Figure 3.19(b)) 
with multiple incoming edges coming from a set of L producers { A1, A2, …, AL } (resp. 
multiple outgoing edges to consumers in Figure 3.19(b)). In that case, in the unfolded prototype 
graph, consumer B (resp., producer A) is split into an ordered set of consumers { B1, B2, …, BL } 
(resp., producers { A1, A2, …, AL }), each consumer (resp., producer) being joined by an edge 
with a distinct producer (resp., consumer). The ordering of the new set of actors should be in line 
with the ordering at the other side of the buffer. Every such local transformation is recorded as an 
element in the set of groupings, where a grouping defines an actor and a set of corresponding 
split actors. For example, the grouping created by the transformation in Figure 3.19(a) is ( B, 
{ B 1, B2, …, BL }). 
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Figures 3.19(c) and 3.19(d) are generalization of Figures 3.19(a) and 3.19(b), taking into account 
the fact that part of compatible data edges may have one extra initial token. In that case the 
splitting of complex producers and consumers should make sure that the data edges with 
different token sizes are compatible to each other.  

If all groupings are available, the reverse transformation (from the split graph to the original 
graph) is possible, and done by replacement of each set of actors by one actor. For example, in 
Figure 3.18(b), two groupings are involved: (E, { [3]Y ′ , [4]Y ′ }) and (D, { [3]X ′ , [4]X ′ }). ♦ 

Note that the definition above is easily extendable to the situation where there are not only 
edges going from the producers to the consumers (.e., from left to right in Figure 3.19) but also 
in the reverse direction. We need such edges to support not only infinite-capacity buffers but also 
for finite-capacity buffers, which we introduce later. To extend this definition, we can use the 
same patterns as in Figure 3.19, but for convenience, one has to flip every pattern horizontally, 
preserving the structure of the graph. 

Now we are ready to start the discussion on finite-capacity buffers. As mentioned before, 
transforming the initial buffer to the prototype buffer gives us a convenient tool for doing that. 

We are still considering the case where all token sizes in a complex buffer are the equal. In 
this case, it is meaningful to specify the capacity in terms of the number of tokens. 

Definition. (Modeling the buffer capacity using the backward edges: equal token-size case)  

Let b be the buffer capacity specified in the number of data tokens that can fit in the given 
buffer. Let m be the number of initial tokens in that buffer. Then, it is an obvious requirement 
that: mb ≥ . 

To model the limited capacity of a buffer, we first obtain the ‘usual’ (infinite-capacity) 
prototype graph of that buffer. Then, we introduce an extra edge to the prototype graph. That 
edge goes in the reverse direction: from the consumer to the producer; we call that edge a 
backward edge. It carries )( mb −  initial tokens.24 After introducing the backward edge, the 

prototype buffer is called final-prototype buffer, because it acts as the prototype buffer model  
final buffer model; recall that the latter is the modified version of the initial model where the 
finite buffer capacity is taken into account. 

Having obtained the final-prototype buffer, we translate it into the final buffer by first 
unfolding it and then by grouping the actors that need to be grouped; hereby we use the 
groupings that have been created in the beginning, when the initial was being translated into the 
prototype graph.  

The final buffer model models the complex buffer with capacity b tokens. The edges that 
result from unfolding the backward edge are also called backward edges. They go from the 
consumers to the producers. To distinguish the default data edges of the buffer (i.e. the edges 
going from the producers to the consumers) we refer to them forward edges. ♦ 

For example, consider the complex buffer modeled in Figure 3.18(c). If we decide to limit the 
capacity of that buffer to b = 10 tokens, then, taking into account that 8=m , we have to 
introduce a backward edge with 2 initial tokens in the prototype buffer, as illustrated in 

                                                
24 Note that although this simple model only works under assumption that the tokens are consumed at the end of 
actor execution, it can be modified to support the case where the tokens are consumed in the beginning of actor 
execution, by adding another actor (with zero delay) into the consumer cycle of the prototype buffer 
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Figure 3.20(a). After unfolding the final-prototype graph, we get 5 backward edges (see 
Figure 3.20(b)), which are inherited by the final buffer model (see Figure 3.20(c)). 

Remark (The semantics of the backward edges: communicating the free slots for data 
tokens from the consumers to the producers). The tokens carried by the backward edges can 
be seen as free slots for the data tokens on the forward edges. At the start, there are )( mb − free 

slots, so the backward edge of the prototype graph has that number of initial tokens. At each 
execution, the producer of the final-prototype buffer consumes one free slot from the backward 
edge and produces one token at the forward edge. If there are no free slots (the backward edge is 
empty), then, in line with the definition of actor behavior, the producer blocks until a token 
appears on the backward edge, which will signal that the consumer has released a free slot. In the 
context of the HSDF graph, the producer actor behaves in the same way with respect to all 
incoming edges; it does not ‘know’ that one of the incoming edges is a backward edge. Note that 
because the backward edges do not model the carrying of any real data, we choose to denote 
them as sequence edges, in contrast to the forward edges, which are data edges. This serves for 
better visual understanding of the graphs modeling the buffers.♦ 

So far, in this subsection we have studied the equal token-size case and answered the question 
on how to translate the initial buffer model, modeling an infinite-capacity buffer, to the final 

Figure 3.20 Limiting the buffer capacity by introducing backward edges 
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buffer model, representing a finite-capacity buffer, using the prototype graph as an intermediate 
point of translation. To complete the description on finite-capacity buffer modeling, we need to 
answer two more questions: 

1) How to waive the requirement that the token sizes of the communication transfers are 
equal? We answer this question by using different rules to construct the initial buffer 
model for that kind of buffers.  

2) How to re-include the final buffer model we have obtained after limiting the buffer 
capacity in the overall HSDF model of the application? Recall that we have extracted the 
initial buffer model from the context of the application’s total HSDF.  

Definition (Initial model buffer for infinite-capac ity complex buffers: unequal token sizes) 
For the case with unequal token sizes, the initial buffer model is in fact not a graph in the usual 
meaning, but a multigraph, i.e., an extension of the notion ‘graph’ by a possibility to have more 
than one edge between two vertices. The set of vertices and the set of sequence edges of the 
extended original graph are defined the same way as for the ‘usual’ initial buffer model in the 
equal-token-size case. The set of data edges is, however, defined differently. Let g be the greatest 
common divisor of all token sizes in the channel. Then every communication transfer belonging 
to the given complex channel has a token size h⋅g, where h is an integer. We represent the given 
transfer by h data edges joining the producer and the consumer. ♦ 

This way we reduce this case to a case where the token sizes of all data edges are equal. Now 
we can answer question 1) above by applying the same rules to the initial buffer model for this 
case as we have defined so far in this subsection. When we re-include the final buffer model into 
the application HSDF graph, we remove multiple edges between the same pair of actors, so that 
the application’s HSDF graph remains to be a usual graph. Hereby, if different edges between a 
given pair of actors have different numbers of initial tokens, we remove the edges with more 
initial tokens. We do that because the edges with more initial tokens are less restrictive for the 
timing behavior of the graph. 

Figure 3.21(a) gives an extended example of imposing finite capacity values to the buffers of 
the communication channels, including an unequal-capacity case. In our example, channel q1 
contains two transfers with a token size of one unit and one transfer with a token size of two 
units. Channel q1 is local and thus it consists of one buffer, which is in this example a complex 
buffer. Figure 3.21(b), among other things, shows the initial buffer model for the buffer of 
channel q1. We see that the transfer with the token size two is represented by two edges between 
the same pair of actors. In Figures 3.21(c) and 3.21(d), the initial buffer undergoes the 
transformations we defined in this section: splitting the complex producers/consumers and 
folding the graph  with a factor equal to the number of data edges. Afterwards, we introduce the 
backward edge into the prototype buffer model. For the buffer of channel q1, we arbitrarily 
assume a capacity of five units, and every initial token at the data edge and backward edge 
models one capacity unit. Finally, we unfold the final-prototype buffer and group the actors 
back. From the resulting modified extended graph, in Figure 3.21(e), we remove two superfluous 
replicas of the same edge, and then we re-include the modified graph back into the HSDF model 
in Figure 3.21(f). 
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When answering question 2), the simplest case is the buffer of a local channel. In this case, we 
just import the backward edges of the modified original graph in the application HSDF graph. 
The same applies to the producer buffer of a network channel. Note that in that case the original 
graph sees the channel producers as producers and the transfer actors as consumers. In 
Figure 3.21, we demonstrate it using a simple network channel, with a simple producer buffer, 
being modeled by a data edge from actor B to actor T. 

The only case of translation from infinite- to finite-capacity model that is left to be studied in 
this subsection is the case of the consumer buffer, joining a transfer cycle to the channel 
consumer cycle. Recall from Figure 3.17, that the data edges of that buffer are actually split into 
two parts by the latency actors. When forming the initial buffer model of a consumer buffer, we 
temporarily remove the latency actors; for example, see the original graph with actors T and F in 
Figure 3.21(b). Having obtained the initial buffer model, we perform the usual transformations to 
obtain the final buffer model – see e.g. the top-right part of Figure 3.21(d)). When including the 
final buffer into the HSDF model, we re-introduce the latency actors back by splitting the data 
edge again (e.g. see path T→ L→F in Figure 3.21(f) ). It is important to note that we also need to 
split the backward edges and introduce actors that are analogous to the latency actors (e.g. see 
actor L′) – we call those credit actors, for the reason explained below. Hereby, if there are initial 
tokens at the backward edge, then we place the initial tokens at the edge closest to the transfer 
actor (e.g. edge (L′,T) in Figure 3.21(f)), as motivated below. Together with the transfer actors 
and the latency actors, the credit actors form the set of communication actors. They are all part of 
the channel macro )( jqGQ  for the network channel. 

In fact, the backward edges of the consumer cycle model the flow control mechanism of the 
communication network because they carry the information on the number of free slots available 
from the network consumers to the transfer actors that push the data into the network at the 
producer side of the channel. The tokens carried by the backward edges are in fact the credits 
that propagate through the flow control connection. The credit actors have delay equal to the 
upper bound given in Equality (3.23). Initially, credit tokens are placed at the backward edge 
closest to the transfer actor because at start of the execution, the channel is ‘aware’ of how many 
free slots are available at the consumer side and thus this information does not need to be 
communicated through the network. 

After importing the backward edges of all the channels, the application HSDF graph, in fact, 
reaches a final form, which we call the IPC graph. Recall that it is the main purpose of this 
chapter to explain how the IPC graphs for the network-on-chip are constructed, and at this point 
we have reached that goal. Recall that we define IPC graphs as HSDF graphs modeling the final 
implementation process network in the end of the flow, where all budgets are set to realistic 
finite values. From this, it follows that the IPC graphs are the HSDF graphs that model the finite 
capacities of the communication buffers and the finite bandwidths of the network channels. 
Thus, they justify their name – inter-processor communication graphs, or the graphs where the 
inter-processor communication is (conservatively) modeled with the highest accuracy that the 
given mapping methodology can deliver. 

In the remainder of this chapter, we explain the usage of the IPC graphs for buffer capacity 
minimization – the last step of our preferred mapping flow – and we also mention some 
miscellaneous properties of the IPC graphs. 



138 3 Design-time Trajectory: IPC Model Construction   

 

3.6.4 Buffer Capacity Minimization Using IPC Graphs 

In the previous subsection, we have seen that the capacities assigned to the buffers influence 
the initial marking of the backward edges. For the complex channels, they also influence which 
consumer-producer pairs are joined by the backward edges. For example, if in Figure 3.21(d), we 
increased the buffer capacity from 5 to 6, then the final-prototype graph would get one more 
initial token at the backward edge and when we unfold that graph the backward edges would be 
(D, A2),  (E1, C1), (E2, C2), and (E3, A1). Therefore, the buffer capacity assignment step has a 
direct impact on the structure and the number of initial tokens at the edges of the IPC graph, and 
thus in general it influences the MCM of the graph and the throughput of the loop of interest. 

If a critical cycle of an IPC graph contains at least one backward edge, then a large enough 
increase in the capacity of the corresponding buffer will always eliminate this critical cycle, 
which can only either leave the maximum cycle mean unchanged or lead to a favorable reduction 
of that value (and thus to the favorable increase in the throughput). 

Let us define a buffer capacity vector as a vector of the buffer capacities of all buffers, 
including buffer-consbuffer-prod ,QQ of all network channels and bufferQ  of all local channels. A buffer 

capacity vector is called feasible if at least one of the conditions below is satisfied: 

• the critical cycles of the corresponding IPC graph have cycle mean λ  that does not 
exceed the required iteration interval: λ  ≤ Λallowed 

OR: 

• there is a critical cycle in the corresponding IPC graph that does not include any 
backward edge of any buffer.  

A non-feasible IPC graph can be made feasible, by increasing the buffer capacities of the 
buffers contributing to the critical cycle until the maximum cycle mean goes below Λallowed  or 
some critical cycles appear that cannot be changed by any buffer capacity increase. For a feasible 
solution as defined above, it holds that no increase in any buffer capacity can provide the 
necessary throughput improvement anymore. 

The buffer minimization problem can be defined as a search for a feasible buffer capacity 
vector that minimizes the sum of the capacities of all buffers.  
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Figure 3.22 An IPC graph showing a feasible solution 
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Thus, the IPC graphs proposed in this thesis enable defining the buffer minimization problem 
in the context of HSDF-modeled applications having simple or complex channels implemented 
either in the local memory or using an on-chip network with guaranteed bandwidth of point-to-
point connections. 

In [68] it is shown that the minimization of buffer capacities in HSDF graphs is an NP-
complete problem, therefore we consider heuristic approaches. One can construct an interative 
heuristic using the optimization scheme we explained in Figure 1.8(b), with the analysis of IPC 
graph used to generate guidelines for iterative improvement of the solution candidate. As we 
show in this subsection, the guidelines can be generated based on the analysis of the critical 
cycles in the graph. 

Figure 3.22 gives an IPC graph, modeling a feasible solution with minimum total capacity. It 
considers three single-actor processes communicating via three local channels with equal token 
sizes. The optimal buffer capacities are 2 tokens for the channel from A to B, 2 tokens for the 
channel from B to C and 3 tokens for the channel from A to C. We assume that, in this example, 
Λallowed = 1. 

All cycles in that IPC graph have a cycle mean at most 1. Thus, the given solution satisfies the 
throughput constraint. Moreover, from the point of view of buffer capacity minimization it is a 
feasible solution, because there is at least one cycle, e.g. (A)* that has a maximum cycle mean of 
1 and does not include backward edges. Two other such cycles are (B)* and (C)*. Thus 
improving the throughput of this solution would require an increase in the computation budgets 
of those three actors. 

This solution uses minimum total capacity, because it has the property that removing one 
token from the capacity of any channel would lead to an increase of the MCM above the current 
value 1. For example, removing 1 initial token from edge (C, A) would leave only two initial 
tokens in cycle (C, A, B)*, leading to the cycle mean of 3/2 = 1,5, and removing 1 initial token 
from edge (B, A) would leave only one initial token in cycle (A, B)*, leading to the cycle mean 
of 2. 

Now let us consider an example that uses a complex network channel, namely our JPEG 
decoding application example. The communication channel of that example has two buffers:  the 
producer buffer and the consumer buffer. We determine a feasible buffer capacity vector by 
gradually increasing the capacities and changing the IPC graph respectively. This is repeated to 
the point when iteration interval λ  does no longer change, where λ  is computed analytically as 
the MCM of the IPC graph.  

Table 3.2 illustrates the results of this exercise. The third column of the table shows, for 
comparison purposes, the iteration intervals NΛ  measured using a particular input data stream 

fed to a multiprocessor simulator modeling two processors communicating via a network 

channel. NΛ  is computed as N
N∆ , where N∆  is the time it took the multiprocessor to decode 

the image and N is the total number of tokens in the sequence. The results of the third column 
considerably differ from the results of the middle column because in that case the ‘VLD’ actor 
has variable processing times, as shown in Figure 3.5, and thus it has also variable execution 
delays. However, a mapping flow cannot make use of such measurements because they can only 
be made a posteriori at run time, whereas our preferred intra-application mapping flow needs a 
priori estimates at design time, made using the typical delay timing mode, in which all actors 
have constant delays. 



140 3 Design-time Trajectory: IPC Model Construction   

98 

677 

450 

98 

98 

98 

98 

98 

19 

19 

19 

19 

19 

19 

7.5 

7.5 

7.5 

7.5 

7.5 

7.5 

7.5 

7.5 

7.5 

7.5 

7.5 

7.5 42 

42 
 

42 
 

42 
 

42 

42 

0.15 

0.15 

0.15 

0.15 

0.15 

0.15 

2.1 

2.1 

2.1 

2.1 

2.1 

2.1 

Figure 3.23 JPEG IPC Graph  

  critical cycle 



 3.6 The Communication Mapping Phase  141  

From Table 3.2, we see that the typical-delay based predictions are more optimistic than the 
measured iteration intervals, i.e., λ  < NΛ . This is, in fact, not necessarily the case for any input 

data sequence, but it can happen. Thus, although the mapping flow assumes that the throughput 
constraint is met with buffer capacity vector (2, 2), in reality, for the given input data stream, the 
constraint is not satisfied: NΛ  > Λallowed , which is 1000 µs. Recall from the previous chapters 

that it is not possible to avoid throughput constraint violation unless one can afford to design for 
the worst case25. Recall also that a remedy for this is run-time adaptation. It is for the purpose to 
support the run-time adaptation that, in the later chapters, we develop the run-time performance 
analysis that is based on the IPC graphs with variable actor execution delay. Because our run-
time adaptation approach gives guaranteed performance estimates, one can expect that for this 
input data sequence it would predict a throughput constraint violation and signal to the 
adaptation manager about the need to e.g. increase the processor clock frequency and/or scale 
down the quality of the output image26.  

Figure 3.23 shows the IPC graph that corresponds to the solution with capacity vector (1,1).  
Compared to Figure 3.13, we see that the transfer actors now reflect the channel number 
minimization decision (the actors are joined into a single transfer cycle) and the bandwidth 
minimization decision (the actors have delay 42 µs, as calculated earlier). We also see the 
backward edges and the credit actors. The credit actor delay 2.1 µs is calculated using 
Equality (3.23), where we again assume a maximum network path of 20 routers. 

In Figure 3.23, we see that the critical cycle uses the backward edges of the channel and the 
actors of both processes. That critical cycle results in entry ‘1140 µs’ in the table. When we 
increase the capacity of the consumer buffer and use the capacity vector (1,2), the destinations of 
the backward edges in the consumer buffer model in Figure 3.23 shift by one actor lower and as 
a result the critical cycle takes one ‘7.5’ and one ’98 ’ actor less in the first process cycle, which 
explains the decrease of the iteration interval by roughly 105 µs – see entry ‘1035 µs’ in the 
table. 

                                                
25 We tried to use the worst-case actor delay for the VLD actor and got such a large process cycle delay for process 
p1 that the conclusion was that satifying the throughput constraint in the worst-case is only possible using much 
faster processors.  
26 We demonstrate this approach in Chapter 6, using  a different application case study, where the actor delay 
variation is similar to this application 

Table 3.2 Arriving at a feasible buffer capacity vector 
The capacity vector, 

 ( buffer-consbuffer-prod ,QQ ) 
λ , µs 

NΛ , µs, measured 

for the ‘PHILIPS logo’ input sample  

1,1 1140 1201 

1,2 1035 1150 

2,2 985 1116 

2,3 no change 1093 

3,3  1076 

3,4  no change 

 



142 3 Design-time Trajectory: IPC Model Construction   

This example demonstrates the fact that our modeling technique for finite-capacity channels 
allows to obtain guidelines for improving a given solution when solving the buffer capacity 
minimization problem under throughput constraints. To make a decision on how to improve the 
current solution, one can calculate the critical cycles of the IPC graph – which can be done using 
polynomial algorithms ([19]). To improve the throughput, one has to touch every critical cycle 
by increasing the capacity of one of the buffers whose backward edge is contained in the cycle. 
These guidelines can be used to develop iterative buffer minimization algorithms. 

In the related literature, [2] studies dataflow buffer capacity minimization, but does not take 
the throughput constraint into account. In [33], [86], [87], [97] we can find a few alternative 
approaches for solving this problem under the throughput constraint. All mentioned works 
consider the SDF model of computation, which is more general than HSDF (see Section 2.1.1); 
in fact the last two references consider cyclo-static data-flow, which is even more general than 
SDF. However, all these algorithms do not support buffer space sharing between several simple 
buffers, and thus they do not support complex channels. Trying to extend these algorithms to 
support complex channels or to develop a heuristic algorithm based on iterative breaking of the 
backward edges in the critical cycles are interesting subjects for future work. 

 

3.7 The Properties of the Proposed IPC Graphs  
3.7.1 Strong-connectedness, Liveness and the FIFO Property 

In Section 2.2.4 we postulate the necessary requirements an HSDF graph must satisfy to be an 
IPC graph. Recall that our postulate says that a generic IPC graph: 

1) is strongly-connected,  

2) live, and 

3) has the FIFO property. 

Recall also that the IPC graphs of earlier related work, modeling bus-based architectures, can 
be shown to satisfy all those properties. In this subsection, we briefly show that also for the 
proposed IPC graphs, modeling network-based architectures, these properties hold as well for a 
quite general case. 

Let us first assume that the original computation graph fed to our mapping flow in the 
beginning is connected. Then the implementation process network is connected as well and stays 
connected during the whole mapping flow. From the connectedness of the implementation 
process network the strong-connectedness of the IPC graph follows, because in an IPC graph 
every process macro is a cycle and every channel macro contains not only the data edges, which 
go in the same direction as the channel, but also the backward edges, which go in the opposite 
direction. 

Only if the original graph is not connected, but consists of several disconnected subgraphs, 
may the IPC graph ever appear to be a disconnected graph. Nevertheless, in this case, due to the 
reasons that we have just discussed, every connected component of the IPC graph will by itself 
be a strongly-connected graph that can be considered independently from the other components 
as a separate IPC graph. 

The liveness property means that any actor in the HSDF graph can eventually always fire 
again and implies the absence of deadlock, i.e. the absence of a situation where no actor will 
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eventually fire again. For HSDF graphs, liveness is equivalent to the requirement that every 
cyclic path contains at least one initial token, according to a well-known property of so-called 
event graphs [4 - §1]. In our implementation trajectory, the intra-application mapping flow 
makes sure that that the MCM of the HSDF graph is not larger than Λallowed, and this implies that 
every IPC graph cycle should contain at least one initial token; otherwise the average iteration 
interval would be infinite.  

Recall that Lemma 2.1 in Section 2.2.4 states that an HSDF graph possesses the FIFO 
property if all actors having dynamic execution delays are enclosed within cycles having only 
one initial token. In our IPC graphs, only computation actors can have dynamic delays, but they 
are all enclosed into the process cycles. In fact, the only actors in our IPC graphs that are not 
enclosed into such a cycle are the actors modeling the network latency. Those actors have static 
delays even in the timing modes where the computation actor delays vary. The static delay of 
those actors models the fact that the data tokens cannot overtake each other as they propagate via 
a network connection. 

 

3.7.2 An Upper Bound on the Number of Initial Tokens in any Cycle 

In this subsection, we give an upper bound Cµ̂ on the number of initial tokens of any simple 

cycle (i.e. the cycle depth) of an IPC graph generated by our preferred mapping flow. We need 
this result in Chapter 4 to bound the algorithmic complexity which depends on the initial token 
count. 

The upper bound proposed in this subsection is such that if all cycles contain at least Cµ̂  

tokens, no increase of the capacity of any buffer can lead to throughput improvements. This 
bound helps to limit the maximum ‘reasonable’ number of initial tokens on the backward edges, 
and it is relevant only for mixed cycles, i.e., cycles containing the computation actors of different 
processes or computation actors and communication actors. Note that this definition includes the 
artificial cycles, as defined in Section 3.5.5. All the other cycles have only one initial token. 

Let C be an arbitrary simple mixed cycle in IPC graph G. Let the depth of cycle C be Cµ̂ . 

The main question we have to answer now is how to ensure that cycle C is not critical by setting 

Cµ̂  high enough. Let us represent the cycle mean of C as: 

Cˆ
)(

µ

∑∑ +
= i

i
i

i ba
CM C ,       (3.29) 

where ia  are the typical delays of all computation actors and transfer actors in C, and ib  are the 

typical delays of all latency and credit actors in C. 
Before we proceed in finding an appropriate Cµ̂ , let us introduce a few notations. Let â  and 

b̂  be the maximum computation/transfer and latency/credit actor delay in graph G respectively. 
Also, let aVC and bVC  be the number of process/transfer and latency/credit actors in C.  

Because any computation and transfer actor belongs to a cycle with only one initial token, we 
have aMCM ˆ)( ≥G . Therefore, we can ensure that C is not critical by the following 

requirement: 

aba
i

i
i

i ˆˆC ⋅≤+∑∑ µ ,       (3.30) 
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which, in turn, can be ensured by: 

abVaV ba ˆˆˆˆ CCC ⋅≤⋅+⋅ µ ,       (3.31) 

Now we can distinguish two major cases.  

In case ab ˆˆ < , we can obtain a valid inequality by replacing b̂  by â  in Formula (3.31). This 
yields the following requirement: ba VV CCCˆ +≥µ , i.e. CCˆ V≥µ , where CV  is the total number of 

actors in cycle C.  

In case ab ˆˆ ≥ , we can make use of the observation that at most half of the actors in cycle C 
are latency or credit actors because every latency or credit actor is joined to a process and a 
transfer actor. Therefore, we can replace bVC  and aVC  by 2CV  in Formula (3.31). Hereby, we 

get: 

( )ab
V

ab ˆˆ1
2

ˆˆˆ C
C +⋅≥⇒≥ µ        (3.32) 

In both cases Cµ̂  depends on CV . Now, to obtain an upper bound that does not depend on the 

number of actors in the cycle, we can use the observation that any simple cycle contains at most 
V actors, where V is the total number of actors in the graph. Combining the two major cases 
together, replacing CV  by V, and replacing inequality by equality we get the final expression for 

the upper bound on the number of tokens: 

( ))ˆˆ ,1max(1
2

ˆC ab
V +⋅=µ        (3.33) 

This formula can be motivated as follows. If the communication network latency is 
considerably higher than the computation delay, we need larger buffers in order to ‘hide’ the 
network latency and thus more initial tokens are introduced in the IPC graphs. If, however, the 
network latency is very small, only the computation and transfer actors influence the throughput. 
Then we need to put at most one token per one such actor in the mixed cycle to avoid that that 
cycle is critical. 

Note that Formula (3.33) only limits the depth of the cycles where the mapping flow 
introduces at least one initial token. It does not limit the number of tokens that are inherited by 
the IPC graph from the computation graph. However, we would consider it as an extremely 
unlikely situation where computation graphs would be heavily ‘saturated’ by initial tokens, such 
that there are more initial tokens than actors in the graph. Only in that case could they make our 
upper bound invalid. Assuming that such untypical and unpractical saturation do not take place, 
we conclude that Formula (3.33) holds for a quite general case. 

 

3.8 Notes 
We conclude Chapter 3 by highlighting and summarizing the achievements of this chapter 

and mentioning some important related work and the sources of inspiration without which this 
chapter would never have been possible. 

We place the main novelty claim of this chapter in the treatment of network communication 
channels. The novel parts of this treatment are summarized below: 

1) Models for complex finite-capacity buffers, based on HSDF graph unfolding; 



 3.8 Notes  145  

2) Models for network-on-chip (NoC) channels, including the transfer, latency and credit 
actors, the transfer cycle and the bounded-capacity buffer models mentioned in 1). 

These contributions were first presented in our paper [75]. The value of those contributions is 
that they enable guaranteed throughput analysis for the streaming applications running on NoCs, 
even when the network connections are shared by multiple primitive channels of the application 
that carry data tokens of different type. Contribution 1) is essential for minimizing the amount of 
communication buffer memory, which is an important cost factor for systems-on-chip (SoC). 
Contribution 2) enables extension of the buffer minimization problem formulation to the realm 
of NoCs. Our contributions are described in Section 3.7 and the supported hardware architectures 
are described in Section 3.4. Section 3.5 puts our contributions in the overall context of 
multiprocessor mapping techniques. 

An important part of this chapter is the following relatively new idea. For the data-dependent 
HSDF/SDF applications, it is useful to aid the mapping flow with an application preparation 
part, which precedes the mapping flow and detects the actor-level parameters and their 
coefficients for linear parameter functions modeling the actor delays. That idea is not our 
contribution, but it comes due to the work of Milan Pastrnak, [72], with whom we worked in a 
close cooperation.  

In this chapter, the application preparation part is systematically described in Sections 3.1 
through 3.3. Those sections contribute to the previous related work by an original discussion of 
linear parameter functions and by highlighting the less commonly known possibilities in this 
field – the use of confidence intervals in the linear regression approach to generate linear 
functions that are conservative from a probabilistic point of view. 

Note that, for this thesis, the main importance of the application preparation part lies not in 
determining the typical actor delays for the mapping flow but in our run-time performance 
prediction method for dynamic-delay HSDF graphs. We describe that method in Chapter 5 after 
building the necessary basis for that in Chapter 4.  

The first idea for the use of backward edges for modeling buffer capacities is coming from the 
discussion on strictly bounded Kahn process networks discussed in the PhD thesis of 
Thomas Parks, [73]. The formula for the delay in TDMA scheduling has been adopted from the 
Master Thesis of Rob Hoes [38] and [8]. The examples in Figure 3.10 and 3.22, explaining the 
peculiarities of the different steps in the mapping flow have been borrowed from the discussions 
in the ‘HIJDRA’ research project for soft-real-time multiprocessor streaming applications carried 
out in Philips Research Laboratories Eindhoven (nowadays NXP Semiconductors). 

In his Master Thesis [60] and in [63], Arno Moonen introduces more elaborate dataflow 
models for the network channels than our channel macros. His models are based on the general 
SDF model of computation, and they include more powerful and less pessimistic models of 
network scheduling of data packets, using transfer cycles with multiple initial tokens. However, 
those models reflect the events in the network channels at fine-grain hardware-specific level of 
granularity, i.e., at the level of network data words. On the contrary, our models work at the 
application-specific level of granularity, which allows us to model a block of data communicated 
through the network channels as one single token. Therefore, when the application uses data 
blocks, our models are simpler and performance analysis complexity is reduced. This is 
particularly favorable for doing the performance analysis at run time for variable actor delays. 

The work of Arno Moonen, as well as our own, provides a way to represent the FIFO memory 
buffers of the network channels using (H)SDF graphs. As already mentioned, provided an 
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(H)SDF representation, several works propose the algorithms to minimize the required buffer 
capacity, e.g. [2], [33], [86], [87], [97], but none of them can handle complex FIFO buffers, i.e. 
buffers shared by multiple producer-consumer actor pairs. For such cases, our modeling 
approach enables finding bottlenecks in a problem solution and thus can be potentially used in 
iterative-improvement optimization algorithms. 

Last but not the least, M. Coenen et al [15] propose a FIFO buffer capacity calculation 
method for TDMA-scheduled on-chip networks. Using the details of the behavior of such 
networks, it has a potential to produce more optimal buffer capacity allocation than dataflow-
oriented network models, which are based on a more abstract view of the scheduling. However, 
this work would not fit well into our design methodology for two reasons. First, it requires 
allocating network hardware resources at design time, whereas, in order to provide enough 
flexibility for dynamic run-time combinations of streaming applications it is better to postpone 
allocation of physical resources to run time. Second, it assumes that the producers and the 
consumers are ‘well-behaved’, in the sense that they communicate data at a constant rate. This 
assumption works well e.g. for video processing hardware blocks, which produce and consume 
video data samples following a (multi-)periodic pattern. However, the software tasks in 
applications like video/audio de-coding do not necessarily satisfy this assumption. 
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4 Analysis of Static-delay HSDF Graphs 
In the previous chapter we have described how one can create an HSDF timing model of an 

application executable running on a multiprocessor SoC with network-on-chip communication 
that supports predictable timing. An important advantage of this model is that it combines both 
the computation and communication using the same basic primitives, namely the actors, the 
edges and the initial tokens. This opens up a possibility to ignore in this chapter the details on 
what is being modeled and rather to focus on the model itself.  

In this chapter, we consider the fundamentals of static-delay HSDF graphs, in order to 
establish the facts that we use in the performance analysis approach proposed in this thesis. 
Hereby, the major analysis goal is to obtain tight and conservative bounds on the performance of 
the multiprocessor system being modeled by the graph.  

In this and the following chapters, we use the term algorithmic rule to refer to all the 
algorithms contributing to the performance analysis. The outcome of this chapter is the 
algorithmic rule that calculates the conservative bounds on the performance of the static-delay 
graph. We refer to it as the major algorithmic rule for static-delay analysis. The major rule 
consists of the smaller rules that are established throughout this chapter. 

In the whole chapter, we assume that the HSDF graph in question satisfies the basic IPC 
graph properties. Recall that those properties are: 
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• strong-connectedness, 

• liveness, and 

• FIFO property. 

Given those properties, we focus on the theoretical results that lead to the main theorem on 
the periodic timing behavior of an HSDF graph. That theorem serves as a foundation for the 
major algorithmic rule for static-delay analysis. A very convenient mathematical apparatus for 
expressing the main theorem and the supporting lemmas is max-plus algebra. The theoretical 
results of max-plus algebra are studied in much detail in [4]. However this book studies a 
different model of computation, namely event graphs.  

Our major algorithmic rule re-uses certain event-graph results such as max-plus algebra, 
certain algorithms and the main theorem. Therefore, to be able to introduce the major algorithmic 
rule unambiguously in the second part of this chapter, in the first part of this chapter – 
Sections 4.1 - 4.3 – we extend the results of [4] by building a thorough connection between 
HSDF graphs on one side and event graphs on the other side. This connection is not new, but, to 
the best of our knowledge, never worked out in enough detail in the literature. Once the 
connection is clear, for consistency, we also reintroduce the main theorem. 

In the second part of this chapter – Section 4.4 – we use the main theorem to introduce a new 
characteristic of the HSDF graph called ‘lateness’ – denoted ‘σ’ – which is important for our 
performance analysis approach. Having introduced the main-theorem, the event-graph results 
and ‘σ’, we are ready to present the major algorithmic rule, which is also done in the same 
section. Section 4.5 summarizes this chapter and mentions some related literature. 

Note that so-called state-space exploration is an approach to static-delay HSDF performance 
analysis that is alternative to max-plus algebra and event graphs. As shown by A.H. Ghamarian 
et al in [23], using that approach, the main theorem can be proven for more general graphs – i.e. 
SDF graphs (i.e. multirate dataflow graphs) and, for such graphs the performance analysis can be 
done more efficiently than using a translation from SDF to event graphs. However, it is not yet 
clear whether this advantage is still present when this technique is applied to HSDF graphs. 
Although the analysis techniques of [23] are focused on the calculation of throughput, they have 
some similarities with a technique we propose in this chapter to calculate lateness. We discuss 
these similarities in Section 4.5. In this chapter, we prefer using event graphs over state spaces, 
because, as already mentioned, for the event graphs efficient performance analysis algorithms are 
known to us, making a working set to construct the major algorithmic rule. Construction of 
similar algorithms using state space exploration, in order to provide better support for general 
SDF graphs is a subject for future work. 

 

4.1 HSDF Graphs and Max-plus Algebra 
In this section, we build a relation between HSDF graphs and max-plus algebra. First, using 

max-plus algebra, we give an overview of the basic steps towards the main theorem. Then, we 
make the first step in that direction by expressing the timing behavior of the HSDF actors using 
the max-plus algebra notations. 
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4.1.1 Overview of the Steps towards the Main Theorem 

Our starting point is a formal description of an HSDF graph’s timing behavior. Suppose we 
have an HSDF graph G( V, E, m) as defined in Chapter 2, where V is the set of actors, E is the 
set of edges and m – the edge marking – gives the number of initial tokens on each edge.  

Suppose that graph G satisfies the basic properties mentioned in the introduction to this 
chapter. Recall from Chapter 2 that the timing of the HSDF graphs possessing the FIFO property 
can be described using variables )(nxk , which, for each actor kv , give the completion time of the 

execution with index n, 0≥n .We also refer to )(nxk  as the time of the completion event of actor 

kv  in iteration n. For 0<n , we assume, for convenience reasons, that all variables )(nxk  take 

value 0. 
Recall also that, to define the timing behavior of an HSDF graph, recurrent equations are 

constructed, relating the future completion events to the past events. In Chapter 2, Lemma 2.2, 
we introduced those equations as the evolution equations. 

Consider, for example HSDF graph G  in Figure 4.1. Using Lemma 2.2, we can write the 
following evolution equations for this graph: 

)(1 nx  ))2( ,)1(max( 21 −−+= nxnxa      (4.1) 

)(2 nx  ))1(    ,)(  max( 21 −+= nxnxb  

The right-hand side of each equation is the sum of the actor delay and a ‘max’ operation. The 
‘max’ operation, in effect, gives the earliest moment when the actor can capture the input tokens 
and start the execution in iteration n. The ‘max’ has one entry per incoming edge of the actor. 
The entry gives the time of the completion event that produces the required input token. The 
index of this event equals n minus the number of initial tokens on the corresponding edge.  

In max-plus algebra, one can rewrite these equations as follows: 

)1()())1()(()(

)2()1())2()1(()(

21212

21211

−⊗⊕⊗=−⊕⊗=
−⊗⊕−⊗=−⊕−⊗=

nxbnxbnxnxbnx

nxanxanxnxanx
 (4.2) 

where in the middle part of Equality (4.2) we have replaced ‘max’ by ‘⊕ ’ and ‘+’ by ‘ ⊗ ’.  
Operators ‘⊕ ’ and ‘⊗ ’ are the scalar ‘addition’ and ‘multiplication’ operations in terms of 

max-plus algebra. Just as for the ‘normal’ addition and multiplication, the distributive law 
applies to them: tuvutvu ⊗⊕⊗=⊕⊗ )( . We apply the distributive law to the middle part of 

Equality (4.2) to obtain the right-hand part. 
Just as the ‘normal’ algebra, both the ‘addition’ and the ‘multiplication’ in max-plus algebra 

have one neutral element, or an element that, when combined with any other element in 

Figure 4.1 ‘Producer-consumer’ HSDF graph 

1v
 a 

2v
 b 

a, b are delays of actors 1v  and 2v  
(In this chapter, we do not distinguish between communication and computation 
actors and between the sequence and data edges.) 
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‘addition’ or ‘multiplication’ does not change that element. Thus, in the ‘normal’ algebra, the 
neutral element for addition is 0, ‘zero’, and the neutral element for the multiplication is 1, or 
‘unit’. In max-plus algebra, we also use the names ‘zero’ and ‘unit element’, but they have a 
different numeric value.  

‘Zero’ in max-plus algebra is denoted ‘ε ’ and its numeric value is ∞− . We see that for this 
‘zero’ element and the ‘⊕ ’ the neutral-element property holds: uuu =−∞=⊕ ),max(ε . 

Similarly, the unit element in max-plus algebra is denoted ‘e’. By definition e = 0. Thus, 
uueu =+=⊗ 0 . 

The scalar Equalities (4.2) can be re-written in matrix form: 
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where ‘normal’ matrix multiplication ‘⋅’ rules apply, i.e. matrix vector-rows are multiplied with 
vector-columns. However the role of scalar operations ‘⋅’ and ‘+’ are played by max-plus 
operations ‘⊗ ’and ‘⊕ ’. The reader can verify that by applying those rules to (4.3) we arrive at 
the equalities in (4.2). 

In this chapter we use the following mathematical notations. All algebraic expressions 
involving matrices (including vectors, seen as special cases of matrices) are max-plus algebra 
expressions. Thus, a matrix product, although denoted ‘⋅’, involves a linear combination of 
matrix elements using ‘⊗ ’and ‘⊕ ’. A matrix addition, although denoted ‘+’, means element-by-
element application of ‘⊕ ’ (maximization); for example ‘+’ in Equality (4.3) refers to matrix 
element-by-element maximization.  

To express the periodic behavior of HSDF graphs, also scalar-by-matrix product, ‘⋅’, is used 
in this chapter, and it means element-by-element application of ‘⊗ ’ (addition). If, in a scalar-by-
matrix product, the scalar is in some power N, then the ‘power’ means N times application of 
‘ ⊗ ’, being equivalent to ‘normal’ multiplication by N. Thus, in expression ‘ A⋅Na ’ where ‘A ’ 
is a matrix, ‘ Na ’ corresponds to a ⊗ a ⊗…⊗ a (N times) and refers to ‘normal’ algebra’s: 
‘ aN ⋅ ’. Also, the division of a matrix by a scalar, e.g. ‘ a/A ’, should be interpreted differently, 
namely as element-wise subtraction. At the end of this subsection, we summarize our max-plus 
notations in the form of a table.  

The main rationale of using max-plus algebra in our context is that one can interpret the 
iterations of the HSDF graph as applications of the matrix multiplication to the vector of 
completion times of the HSDF actors. As shown in [4], many matrix multiplication properties of 
the ‘normal’ linear algebra have analogies in max-plus algebra. Therefore, one can re-apply the 
powerful linear-algebra apparatus to explore the properties of the HSDF graphs, which appear to 
be ‘linear’ systems in the context of max-plus algebra. 

In a compact form, Equality (4.3) can be rewritten as follows: 

)(nx )2()1()( 2 −⋅+−⋅+⋅= nnn xAxAxA 10     (4.4) 

where the iA are above matrices and the )( mn −x  are vectors of variables )( mnxk − .  

The main theorem, which we develop in the first part of this chapter, requires that the 
evolution equations should be represented in canonic form: 

)(nx′ )1( −′⋅= nxB         (4.5) 
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where )(nx′  is an vector of variables which is, in general, different from the original vector of 
variables, )(nx . The translation into canonic form is always possible, and one can compute the 

new vector from the original one and vice versa. The basic idea is that any variable occurrences 
of the form x(n – k) for k > 1 in the evolution equations (Equality (4.2)) are replaced by a new 
variable. 

For example, in Equality (4.2), we do the following variable replacement: 

)1()(),()(),()( 232211 −=′=′=′ nxnxnxnxnxnx  

Note that these replacements are defined for all integer values of n, e.g. one can derive that 
x′3 (n) = x′2 (n – 1) = x′2 (n – 1). Using the variable replacement and substituting the first equality 
into the second one in (4.2), the following equivalent canonic-form system of can be obtained: 
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We have:  

)(nx′ )1(1 −′⋅= + xBn        (4.7) 

B  is called the canonic matrix of graph G . Thus, if the canonic matrix and the initial state, 
)1(−′x , are known then one can compute the completion times of any actor in any iteration n.  

Recall that under our assumptions, the initial state is such that all elements of )1(−′x  are equal to 

0, and this holds for any negative iteration index n. 
For a certain class of HSDF graphs, the main theorem for static actor delay executions implies 

that 1−⋅= nn BB λ , where scalar λ  is a max-plus eigenvalue of B and where n is large enough. In 
the context of max-plus algebra, the definition of the matrix eigenvalue is different from the 

eigenvalue definition of the ‘normal’ algebra and will be given later. From 1−⋅= nn BB λ , it 
follows that )(nx )1( −⋅= nxλ , which is equivalent to )1()( −⊗= nxnx kk λ  (for all actors vk). 

Because ‘multiplication’ ⊗  in max-plus algebra means ‘normal’ addition, we conclude that, for 
the class of HSDF graphs referred to above, the actor completion times are strictly periodic with 
period λ: )1()( −+= nxnx kk λ .  

As we see later, for all static-delay HSDF graphs possessing the basic IPC graph properties, a 
generalized version of expression 1−⋅= nn BB λ   applies, namely: WnWn −⋅= BB λ , where W is an 
integer and n is large enough. This again means that the graph’s behavior is strictly periodic, 
whereby the period spans W iterations and has duration W⋅λ  (recall that that is how we should 
interpret ‘ Wλ ’ in all expressions where matrices are involved). 

If we divide the period, i.e. W⋅λ , by the number of iterations in the period, i.e. W , we get 
the average iteration interval ‘λ’. Thus we see that ‘λ’, introduced here as a max-plus matrix 
eigenvalue, has the same meaning as in the previous chapters. In accordance to what we stated in 
the previous chapters, the main theorem, studied in this chapter, states that the max-plus matrix 
eigenvalue is computed as the maximum cycle mean of the HSDF graph. Therefore, the graph 
cycles, i.e. the cyclic paths in the graph, determine the graph’s long-run steady-state timing 
behavior, which is, in fact, strictly periodic. Therefore, the graph cycles play a central role in this 
chapter. 

The summary of the max-plus algebra notations used in this chapter is given in Table 4.1. 
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4.1.2 Evolution Equations of an HSDF Graph in Max-plus Algebra 

In this section, we describe how to obtain the matrix form of the HSDF evolution equations of 
graph G, e.g. Equality (4.3), in general. 

Let us consider a square table, with V rows and columns, where V=V  is the number of 

actors in graph G. We define that table as follows. Every row ‘i’ of the table corresponds to the 

Table 4.2 Table of variable contributions to the evolution equations, initially containing 
only default values (max-plus ‘zero’ element) 

 

  column 1 … column j … column V 

row 1 )(1 nx  = ε  … ε  … ε  

… … … … … … … 

row i )(nxi  = ε  … ε  … ε  

… … … … … … … 

row V )(nxV  = ε  … ε  … ε  

 

Table 4.1 A summary of max-plus algebra notations 
 

Notation contents Example Example meaning in ‘normal’ algebra 

Scalar operation ‘⊕’ ba⊕  ),max( ba  

Scalar operation ‘⊗’ ba⊗  ba +  

Max-plus ‘unit’ element e 0 

Max-plus ‘zero’ element ε  ∞−  
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evolution equation for variable )(nxi . Every column j corresponds to the contribution by 

variables ...,2,1,0),( =− mmnx j  to the evolution equations. Note that at most one of those 

variables can be a contributor to any given evolution equation, because there can be at most one 
edge going from actor jv  to actor iv .   

Let us first initialize all entries of the table with ε , as shown in Table 4.2.  

Before we update the table, let us answer the question how the )( mnx j −  variables contribute 

to the evolution equation of variable )(nxi .  An evolution equation, as given by Lemma 2.2, 

expresses variable )(nxi  as the maximum of a subset of variables )( mnx j −  plus the delay of 

actor iv . In max-plus algebra, we can write it as: 

( ))),(()()( ),( sinxvdnx sij
s

ii µ−⊗= ⊕      (4.8) 

where index s enumerates the incoming edges in an arbitrary order, ),( sij  identifies the producer 
actor of the incoming edge with index s and ),( siµ gives the number of initial tokens on that 

edge.  
In ‘normal’ algebra, multiplication distributes over the addition – i.e. acabcba +=+ )( ; as 

notices before, the same holds for operations ‘⊗ ’ and ‘⊕ ’ of max-plus algebra, namely 
)()()( cabacba ⊗⊕⊗=⊕⊗ . Applying the distributive law to Equality (4.8), we conclude that 

every edge ),( ij vv  with index s contributes the following term to the evolution equation of 

variable )(nxi : 

 )),(()( ),( sinxvd siji µ−⊗  

whereby the individual contributions are summed, using max-plus operator ‘⊕ ’. 

Now let us update the table with the terms contributed by the edges. For each edge, ),( ij vv , 

we replace theε  element at row i, column j by a non-ε  element, equal to the contribution of 
edge ),( ij vv , which is )),(()( jimnxvd ji −⊗ , where ),( jim  is the number of initial tokens on 

edge ),( ij vv . We insert the contribution of edge ),( ij vv  into the table row ‘i ’ column ‘j’, as 

shown in Table 4.3. 

Eventually, the table contains as many non-ε  elements as the number of edges in graph G.  
Before we explain how to derive matrix-form equations from the table, consider the HSDF 

graph example in Figure 4.2. The contributions of completion-time variables for that example are 
shown in Table 4.4. For example, element ‘ )(3 1 nx⊗ ’ in row 2 column 1 corresponds to edge 

),( 21 vv , whereby index ‘n’ or ‘n − 0’ shows that the edge carries 0 initial tokens and coefficient 

‘3’ shows that the consumer actor has delay 3. Element ‘ε ’ in row 3 column 3 shows that no 
edge joins actor 3v  with itself. 

Having constructed the table, it is straightforward to derive the matrix-form evolution 
equations. Hereby, for the matrices, we use the same notations as in Equality (4.4): 

2,, AAA 10 ,… In general, the system of evolution equations can be expressed in max-plus 

algebra in the following form: 

)(nx )(...)1()( Mnnn M −⋅++−⋅+⋅= xAxAxA 10    (4.9) 

where M is the maximum number of initial tokens of any edge in G. 
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It is straightforward to obtain the matrices 3,, AAA 10 ,… from the table. All of them have the 

same dimensions as the table: V×V. For matrix A0, consider all the table elements that have 
variables with index ‘n’ or ‘n − 0’. All the coefficients of those table elements go into the same 
positions of V×V matrix A0 as they have in the table. All the other elements in matrix A0 get 
value ‘ε ’. For instance, based on the table example above, we have: 



















=

εε
εεε
εεε
εεεε

11

1

3
0A  

Similar rules holds for any Am, Mm ,...0= ; one just needs to pick the coefficients of variables 

having index ‘n − m’ instead of ‘n − 0’. For our example, we have 2=M and: 

Table 4.3 Table of variable contributions: non-‘zero’ values 

 

  column 1 … column j … column V 

row 1 )(1 nx  = … … … … … 

… … … … … … … 

row i )(nxi  = … … )),(()( jimnxvd ji −⊗  … … 

… … … … … … … 

row V )(nxK  = … … … … … 

 

Figure 4.2 An HSDF graph with 4 actors 

1v  

3 
2v  

3 

4v  

1 
3v  

1 

Table 4.4 Table of variable contributions for the example in Figure 4.2 
 

  1 2 3 4 

1 )(1 nx  = )1(3 1 −⊗ nx  )2(3 2 −⊗ nx  ε  )2(3 4 −⊗ nx  

2 )(2 nx  = )(3 1 nx⊗  )1(3 2 −⊗ nx  )2(3 3 −⊗ nx  ε  

3 )(3 nx  = ε   )(1 2 nx⊗   ε    )1(1 4 −⊗ nx  

4  )(4 nx  =  )(1 1 nx⊗  ε   )(1 3 nx⊗    ε  
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Matrix Am is, in fact, the so-called adjacency matrix with respect to the maximum subgraph of 
G that contains only edges with m initial tokens. An adjacency matrix of a graph is, in general, a 
matrix that contains a non-zero element in row i and column j if and only if there is an edge from 
the j-th node to the i-th node of the graph. 

We call Am the adjacency matrix of order m with respect to graph G. 
To be able to apply the evolution equations in practice for the derivation of )(nx , one needs to 

define the initial conditions, because the evolution equations are recurrent equations. Under the 
assumption of Section 2.2.1 that all initial tokens are available at time 0, we have: 

exxx =−==−=− )(...)2()1( M  

where e is the vector of max-plus unit elements e, numerically equal to 0. Because these 
particular initial conditions correspond to the simultaneous release of all initial tokens, we call 
them synchronous initial conditions. 

The evolution equations are different from the canonic equations, given in Equality (4.5), in 
two ways.  

Firstly, the maximum order of adjacency matrices in (4.9) is M, whereas the system of 
canonic equations has order 1.  

Secondly, the evolution equations are, in general, not constructive, i.e., they cannot be directly 
applied to compute )(nx from )1( −nx , )2( −nx , etc., because, as we see in Equality (4.9), )(nx  

is present both in the left and the right side of the equations. Max-plus algebra does not have an 
analogy to the standard subtraction operation ‘–‘, which would help to resolve this situation in 
‘normal’ algebra. 

To derive the canonic equations from the evolution equations, we first reduce the maximum 
order of equations to 1 and then make them constructive. This is done through a series of 
transformations presented in the next section, following the same method as described in 
[4 - §2], now considering HSDF graphs rather than event graphs and filling in some details that 
were skipped in [4 -  §2]. 

 

4.2 Transformation into Canonic Form 
In this section, we study the derivation of canonic equations and the accompanying theoretical 

results about the canonic matrix, which are important for applying the main theorem given in 
Section 4.3 in the context of HSDF graphs and, in particular, for the major algorithmic rule, 
obtained at the end of this chapter. 

 

4.2.1 Low-order Variant of Graph G 

To reduce the maximum order of evolution equations, one can transform graph G into graph 
G′  by splitting each edge with marking m into m edges with marking 1, inserting new actors in 
between that have delay 0. We call the new HSDF graph G′  the low-order variant of graph G or 
just low-order graph. For example, the low-order graph corresponding to the graph in Figure 4.2 
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is shown in Figure 4.3. For a low-order graph, the evolution equations can be expressed as 
follows: 

)(nx′ )1()( −′⋅′+′⋅′= nn xAxA 10       (4.10) 

with initial conditions ex =−′ )1( , 

where 
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which means that it is a concatenation of the completion time vector of the original graph G with 
the vector of completion times of new actors )(~ nx . 

Example The evolution equations for the low-order graph shown in Figure 4.3 look as follows: 
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The adjacency matrices of graph G′ , 0A′  and 1A′ , are needed for the derivation of the 

canonic-form evolution equations of graph G . They can be constructed from G′  using the same 
rules for adjacency matrices as defined earlier in this section.  

Algorithmic Rule (Construction of low-order graph adjacency matrices 0A′  and 1A′ ) Let K  

be the number of actors in graph G′ . We would like to construct matrices 0A′  and 1A′  of 

size KK ×  represented as conventional 2-dimensional arrays.  
The first pass of the algorithm computes the size K of the matrices and initializes them with 

elements ‘ε ’. We have:  

Figure 4.3 The low-order variant of the graph in Figure 4.2 
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0>−+= mERVK        (4.12) 

where K is the number of actors in G′ , V is the number of actors in G, R is the total number of 
initial tokens in G, and 0>mE  is the number of edges containing at least one initial token.  

The second pass constructs graph G′  by splitting the edges of graph G and introducing 
auxiliary actors if m is greater than 1.  

The third pass creates the adjacency matrices of graph G′  as described in the previous 
subsection.  

The complexity of the algorithm is dominated by the matrix initialization, and it amounts to 

)( 2KO , where K is defined by Equality (4.12).♦♦♦♦ 

Potentially, the complexity of this rule could be exponential in the size of the specification of 
the original graph G. The point is that it is quadratic in the number of initial tokens m on any 
edge in G, whereas to express this number in the specification of G takes log(m) digits. In 
practice, this means that adding just a few decimal digits to the marking, e.g. changing from 2 to 
200 initial tokens, can lead to a big increase in the number of elements in 0A′  and 1A′ , up to a 

factor of 104 in the given example.  
Fortunately, one can anticipate that IPC graphs will be characterized by a polynomially 

bounded number of initial tokens per edge. We have shown in Section 3.7.2 that for practical 
IPC graphs one can bound the number of initial tokens in any cycle by an expression that is 
linear in the total number of actors V. Obviously, the same upper bound applies to the marking m 
of any edge in G. Therefore, for practical IPC graphs, K is at most )(VEO , and the complexity of 

the algorithmic rule given above is at most )( 22EVO . 

 

4.2.2 From the Low-order Graph to the Canonic Form  

To obtain the canonic form from the low-order graph, one has to get rid of the dependency of 
)(nx′  on itself in Equality (4.10). This is done by applying the following lemma. 

Lemma 4.1 If matrix A is an adjacency matrix of a graph that contains no cycles and K is the 
number of nodes in the graph, then equation bxAx +⋅=  has is a unique solution which is given 

by bAx * ⋅= , where *A is defined by  
110 ... −+++= KAAAA*      (4.13) 

♦ 

Here 0A  is a diagonal matrix with unit elements on the diagonal:  
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Proof. See e.g. [4 - §3.2.3.1] ♦ 
To apply this lemma to Equation (4.10), where 0AA ′=  and )1(1 −′⋅′= nxAb , we should 

check whether the lemma conditions hold. Recall that 0A′  is the adjacency matrix of the 

maximum subgraph of G′  that contains only edges without initial tokens. That subgraph cannot 
be cyclic because G , and hence G′  as well, cannot contain a cycle without initial tokens. The 
point is that we assume that G is an IPC graph, and an IPC graph is live, so it is free of such 
cycles. 
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Thus from Equation (4.10) and Lemma 4.1 we obtain an equation, which is, in fact, a 
canonic-form expression: 

)(nx′ )1( −′⋅= nxB      
where  

1
*

0 A)A(B ′⋅′=        (4.15) 

is the canonic matrix for graph G .  
Note that the canonic expression can be rewritten as follows: 

)(nx′ )1(1 −′⋅= + xBn        (4.16) 

Thus, the timing behavior of an HSDF graph at any iteration can be derived from the initial 
conditions.  

In the next subsection, based on Equality (4.15), we revisit the construction of the canonic 
matrix, giving more insight into the meaning of the matrix multiplication expression 1

*
0 A)A( ′⋅′ , 

which helps us to see an efficient algorithmic rule for that purpose. There, we also derive the 
canonic matrix for the example in Figure 4.2. 

 

4.2.3 HSDF Graph Paths and Their Representation in the Canonic Matrix 

The canonic expression (4.5) is used to reason about the periodicity and, consequently, about 
the throughput of an HSDF graph G. Recall from the previous chapters that it is the cycle with 
maximum cycle mean that determines the throughput, where the ‘cycle mean’ is the ratio 
between the length of the cyclic path, i.e., its total delay, and the depth of the cyclic path, i.e., the 
number of initial tokens on the cycle. In this subsection, we highlight the relation between the 
canonic matrix B on the one side and the paths through the low-order graph G′ , on the other 
side. This gives us an efficient algorithm to compute matrix B, which is based on a longest path 
algorithm. 

We start by defining an HSDF graph path and the path length formally, and then we show 
how one can calculate the canonic matrix efficiently using the longest path calculation 
algorithms. 

Definition. (A path/cycle and its length and depth) A non-empty path in an HSDF graph is an 
ordered sequence of edges, whereby, for every two subsequent edges in the order, it holds that 
the consumer of the first edge is the producer for the second edge. A non-empty path has a 
source – which is the producer of the first edge – and a destination – which is the consumer of 
the last edge. For example, in Figure 4.3, there is path ( )),(),,(),,(),,( 74411111 vvvvvvvv , whose 

source is 1v and destination is 7v .  

The set of edges of an empty path is empty. Nevertheless, an empty path has a source and a 
destination, which are always the same actor. We say that any actor is joined to itself by such a 
path. 

A cycle is a non-empty path joining an actor to itself. 

The depth of path P, µ(P), is the sum of initial markings of all edges in the path. 

The length of path P, denoted l(P), is the sum of the delays of the consumer actors of all edges 
in the path. ♦ 

Intuitively, the path length is a minimum time interval between the completion events of the 
source actor and the destination actor.  
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Having defined paths, let us come back to the main topic of this subsection – the relationship 
between matrix B and the paths in graph G′ . First of all, let us consider matrix *)( 0A ′ , the first 

multiplier in Equality (4.15). The meaning of this matrix is explained in the following lemma. 

Lemma 4.2 In matrix *)( 0A ′ , the element in row i and column j of this matrix represents the 

length of the longest path through graph G′  from the source actor j (by actor j we mean actor vj) 
to the destination actor i consisting only of 0-marking edges. We call such a path a 0-mark path.  

Therefore, the entries in matrix *)( 0A ′  can be filled by inserting at position ‘i,j ’ the length of 

the longest 0-mark path from actor j to actor i containing any number of edges. If the path is 
empty we insert ‘e’, which can happen only at the matrix diagonal. If no paths exist between the 
actors, we insert ‘ε’.  ♦ 

Before giving a proof, we provide an example. 

Example (Computation of matrix *)( 0A ′ ) In Figure 4.3, there are only two 0-mark paths going 

from actor 1v  to actor 4v . One of them consists of edges ),( 21 vv , ),( 32 vv , and ),( 43 vv . The 

other one consists of edge ),( 41 vv . The first path has a larger length, equal to 

+)( 2vd +)( 3vd )( 4vd = 3 + 1 + 1 = 5. Therefore, the value of matrix element 1,4
* }){( 0A ′  is 5. 

Having computed all the elements of matrix *)( 0A ′  in the same way, we obtain: 
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*)( 0A     (4.17) 

♦♦♦♦ 

Proof of Lemma 4.2. The lemma can be proven by showing that the k-th power of matrix k)( 0A ′  

gives the lengths of all 0-mark paths that have exactly k edges and then using the definition of 
unary matrix operator ‘*’ (See Lemma 4.1), which applies the max-plus algebra matrix operation 
‘+’  – i.e. maximization of the individual elements – to all the interesting powers of matrix 0A ′ , 

thereby finding the longest possible paths. Note that the powers accumulated in *)( 0A ′  are in 

range 1..K–1, which covers all possible numbers of edges on a path through an acyclic graph that 
has K nodes. 

The equality between the elements of the k-th power of matrix 0A ′  and the longest 0-mark 

path length can be shown by mathematical induction. By Equality (4.14), it holds for power 0, 
because the paths with zero edges start and end at the same actor and have length e, which 
corresponds to the e’s on the diagonal. For power 1, this property follows from the definition of 
the adjacency matrix, which contains the delays of the destination actors of the edges. Let us 
assume that the property is proven for power k and let us prove it for power )1( +k . Let’s 

consider the multiplication of k)( 0A ′  by 0A ′ . Element ‘i,j’ of the resultant matrix is obtained by 

applying operation ‘⊕’ – i.e. maximization – to all possible combinations ippj
k

,, }{}){( 00 AA ′⊗′  
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for all p, whereby the first element in the combination is the length of the longest path from actor 
j to actor p having exactly k edges and the second element is the length of the longest path from 
actor p to actor i having exactly one edge. Therefore, the result of operation ‘⊕’ contains the 
length of the longest path containing exactly )1( +k  edges. qed♦ 

When considering the product of *)( 0A ′  and 1A′ , resulting in matrix B, now it is not difficult 

to see the relation between B and the low-order live graph G′ . The element in row i and column 
j of matrix B represents the length of the longest of all the paths having the following properties: 

1) the path has actor j as the source and actor i as the destination;  

2) the path is not empty; 

3) the first edge of the path has marking 1; 

4) the rest of the edges, if any, have marking 0. 

We call such a path a special path. In a special path, the first edge is contributed by 1A′  and 

the rest are contributed by *A )( 0′ . If no such path exists, matrix element ‘i, j’ contains ε . 

Example (Computation of matrix B) In Figure 4.3, there are two special paths from actor 7 to 
actor 4. The first path consists of edges ),( 17 vv , ),( 21 vv , ),( 32 vv , and ),( 43 vv . The second path 

consists of edges ),( 17 vv  and ),( 41 vv . The first path has a larger length, equal to 8. Therefore 

element 7,4}{B  has value ‘8’. The other elements in matrix B can be computed in the same way. 

As a result, we obtain: 
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♦ 

Every multiplication of matrices of size KxK has complexity )( 3KO . Therefore, direct 

application of Equalities (4.13) and (4.15) to derive a canonic matrix from the low-order graph 
adjacency matrices, 0A′  and 1A′ , by )1( +K  multiplications has complexity )( 4KO . 

Let us consider faster algorithms for this problem, which is, by the way, well-studied and 
classical. It is not difficult to show that matrix *)( 0A ′  is the K-th power of matrix ))(( 0

0
0 AA ′+′ . 

[16 - §25] explains an )log( 3 KKO ⋅  algorithm for computing the K-th matrix power, which is 

faster than )( 4KO . However, [16] also shows that due to the relationship between the max-plus 

matrix powers and the path lengths, there exists a faster algorithm. Rather then directly 
computing the matrix powers, the fast algorithm computes longest 0-mark path lengths between 
all pairs of actors in graph G′ . We mention that algorithm in the following rule. 

Algorithmic Rule (Construction of the canonic matrix) To construct matrix B, one can, as a 
first step, compute *)( 0A ′  via the Floyd-Warshall algorithm [16 - §25] to solve the all-pair 
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longest path problem in the maximal subgraph of G′  containing all 0-mark edges. Then, one can 
find the product of matrices 1A′  and *)( 0A ′ . The algorithmic complexity of both steps is 

)( 3KO .♦ 

 

4.2.4 The Canonic Graph and its Relation to the HSDF Graph 

The canonic equation, Equality (4.5), might suggest that a canonic matrix, i.e. B, itself could 
be seen as a first-order adjacency matrix of an HSDF graph. However, it is not true in general. In 
an HSDF adjacency matrix, all the non-zero (non-ε ) elements of any row i must be identical, 
because they all contain the delay of actor i. This property is not necessarily true for any canonic 
matrix. For instance, it does not hold for rows 2, 3 and 4 of matrix B in the example given in 
Equality (4.18). 

Thus, in general case, for a given canonic matrix, one cannot build a supplementary HSDF 
graph such that matrix B would be its adjacency matrix, although that would be useful for 
characterization of that matrix. Nevertheless, another graph-theoretic model of the canonic 
matrix has proven to be a very handy tool for characterization and analysis of the canonic 
equation. In this subsection, we build a so-called canonic graph, which serves these purposes 
and which is a representative of a model of computation that is different from HSDF. Below we 
also establish an important relation between the canonic graph and the original HSDF graph G. 

Just as in the related work, [4 - §1-3], we use the ‘event graph’ model of computation, which 
can be seen as a modified version of the HSDF graph model of computation. In the event graphs, 
the graph nodes behave like actors. However, for simplicity, without loss of generality, we 
assume that the event graph nodes do not have delays (or we may say that they have delay 0). 
Instead, unlike HSDF graph edges, event graph edges do have delays27 [4 - §2]. As this model 
executes, after a token production on an edge, the consuming node can capture the token only 
after the edge delay.  

Definition. An event graph G is a tuple (V, E, µ, d ), where V is the set of nodes, E ⊆V ×V  is the 
set of (directed) edges, µ(e) is a function defines an non-negative integer number of initial tokens 
at edge e, and d(e)  is function that gives a non-negative real number defining the delay of edge e. 

♦ 
One can always translate an HSDF graph G into an equivalent event graph GE, preserving the 

same graph structure. One just has to change each HSDF actor into an event graph node, shifting 
the actor delay annotation to its incoming edges; see the example in Figure 4.4(a).  

Definition. The precedence graph G(A) of matrix A with dimensions KK ×  is an event graph 
with K nodes: v1, …, vK , whose edges (vj, vi) correspond one-to-one to non-zero (non-ε ) 
elements ‘i, j ’ of A, getting the delay annotations d (vj, vi) = {A} i, j and identical markings 
µ (vj, vi) =1. ♦ 

Definition (Canonic graph). If B is the canonic matrix of HSDF graph G, then its precedence 
graph G (B) is called the canonic graph of HSDF graph G.♦ 

                                                
27 Event graphs have two more features that we, however, do not need to use. Namely, they also allow multiple 
‘edges’ (in our terminology) between the same pair of nodes, and they also may allow nodes to have delays, but we 
do not need and do not include this into our definition of event graphs.  
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(a) Event graph GE equivalent to the low-order HSDF graph in Figure 4.3 

- event graph node, similar to an HSDF actor, but with delay e  

  (this drawing style is borrowed from Petri nets, a closely related model) 
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(b) The canonic graph G obtained for the HSDF graphs in Figures 4.2 and 4.3 

This graph is the precedence graph of matrix B in Equality (4.18) 
 
Figure 4.4 The equivalent event graph and its canonic graph 
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The canonic graph G (B) is the graph-theoretic model that we refer to in the beginning of this 
subsection. The structure of this model is, in general, quite different from the structure of the 
original HSDF graph. For instance, look at the canonic graph shown in Figure 4.4(b) and 
compare it to the original HSDF graph in Figure 4.2.  

For an event graph model, one can reuse the same definition for path, cycle, path/cycle length 
l(P) and path/cycle depth µ(P) as given in the previous subsection, with one exception: it is the 
delays of the edges themselves that contribute to the path length, not the delays of the edge 
consumers.  

The whole purpose of obtaining the canonic graph is to use the theoretical results that apply 
for such graphs. We start doing that in the next subsection, but first we need to establish an 
important relation between an HSDF graph and its canonic graph. 

Lemma 4.3 (Canonic cycles and HSDF cycles) Let G be a live HSDF graph and G its canonic 
graph. Then: 

1) For any cycle C in G, there is cycle C in G such that l(C) ≤ l(C) and µ(C) = µ(C). 

2) For any cycle C in G, there is cycle C in G such that l(C) = l(C) and µ(C) = µ(C).♦ 

Proof Instead of proving this lemma for cycles C in G, we do that for the correspondent cycles 
CE in graph GE that is equivalent to low-order graph G′ . In terms of the example we use in this 
chapter, this means that we prove the relationship between the cycles of the graphs shown in 
Figure 4.4(a) and 4.4(b).  

The replacement of graph G by graph GE in the proof is justified as follows. Firstly, GE has the 
same structure as the low-order variant of graph G, i.e. graph G′ . Moreover, the paths/cycles in 
G′  and GE have identical lengths and depths. Secondly, there obviously exists a one-to-one 
relationship between the cycles in G′  and the cycles in G that preserves lengths and depths. 
Therefore, such a one-to-one relationship exists between graphs G and GE, and one graph can be 
replaced by the other.  

Before we start with the actual proof, we need to observe a certain property of graph G. Graph 
G contains an edge (vj, vi) if and only if there is at least one non-empty path through GE from 
node vj to node vi whose first edge has marking 1 and the other edges, if any, have marking 0. By 
analogy to the terminology of the previous subsection, let us call such a path a special path. The 
delay of edge (vj, vi) is equal to the length of the longest special path from vj to vi. In the 
remainder, we refer to this property of graph G as the special property.  

The special property follows from the definition of G as the precedence graph of the canonic 
matrix B, and the corresponding property of matrix B has been already shown in the previous 
subsection. To give an example, edge (v5, v2) in Figure 4.4(b) corresponds to special path  

(v5, v1), (v1, v2) in Figure 4.4(a). 
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Let us prove part 1) of the lemma. Let CE be a cycle in GE. That cycle can be split into special 
paths P1, P2, … PP, where P = µ(CE) ≥ 1. This can be done by splitting the sequence of edges in 
cycle CE into subsequences, whereby every first edge in each subsequence has an initial token 
and the following edges, if any, do not have initial tokens. Now let Pp be one of those paths. We 
illustrate this path in Figure 4.5(a). Just as in that figure, let us denote the starting and final node 
of this path as vk(1) and vk(L). By the special property, graph G must contain an edge (vk(1), vk(L) that 
joins the starting and the final nodes. That edge has marking 1 and its delay should be at least the 
length of path Pp: d (vk(1), vk(L)) ≥ l(Pp). We can find such edges in G for all paths Pp and all those 
edges together form a cycle in G. Let us denote this cycle C. We get l(C) ≥ l(P1) + l(P2) +… + 
l(PP) = l(CE), whereas µ(C) = µ(CE) = P. qed 

For example, in graph GE in Figure 4.4(a), consider cycle CE with edge sequence (v4, v7), 
(v7, v1), (v1, v4). We have l(CE) = 4 and µ(CE) = 2. Cycle CE can be split into two special paths: P1 
with edge (v4, v7) and P2 with edges (v7, v1), (v1, v4). In Figure 4.4(b) these two paths are 
translated into two edges: (v4, v7) and (v7, v4), which form cycle C with a larger length and the 
same depth: l(C) = 8 and µ(C) = 2. 

Let us prove part 2) of the lemma. Let C be a cycle consisting of P edges in G. By the special 
property of graph G, each edge (vj, vi) in C corresponds to at least one special path Pp in GE from 
vj to vi, whereby d (vj, vi) = l(Pp). All paths Pp combined together make a cycle CE. We have: 

l(CE) = l(P1) + l(P2) +… + l(PP) = Σd (vj, vi) = l(C), and  µ(C) = µ(CE) = P. qed 
For example, in Figure 4.4(b), consider the cycle C with edge sequence (v4, v7), (v7, v1), and 

(v1, v4). Edges (v4, v7) and (v7, v1) correspond to the same edges in GE. Edge (v1, v4) corresponds 
in GE to the path with edge sequence (v1, v1), (v1, v2), (v2, v3), (v3, v4). As a result, we obtain in GE 
a cycle that visits node v1 twice. ♦♦♦♦ 

The last issue considered in this subsection is the issue of strong connectedness. We study this 
issue because, as mentioned in Chapter 2, the strong connectedness of an HSDF graph is 
essential so that the behavior of that graph can reach its steady state (i.e., eventually it becomes 
periodic). The question we look at in this subsection is to which extent the strong connectedness 
of HSDF graph G is preserved in its canonic graph G.  

To understand the concern about the preservation of strong connectedness, let us examine 
how certain parts of graph GE are represented in graph G. Consider a special path P in GE, see 
Figure 4.5(a). Let the sequence of edges of path P be (vk(1), vk(2)), (vk(2), vk(3)), …, (vk(L-1), vk(L)), 
where L is the total number of edges in P. Then, in graph G, this path will be represented by a 
tree of L edges (vk(1), vk(2)), (vk(1), vk(3)), …, (vk(1), vk(L)), see Figure 4.5(b). This is due to the fact 
that there exists at least one special path (a prefix of P) from vk(1) to every other node in P.  

(a) Special path P in GE 

vk(1) 

Figure 4.5 Transformation of the event graph into the canonic graph 

vk(2) 

vk(3) 

... 

vk(L) 

(b) The corresponding tree in G 
G  

vk(1) 

vk(2) 

vk(3) 

... 

vk(L) 
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Thus, nodes vk(2), vk(3), …, vk(L) are directly connected with each other in GE and not anymore 
directly connected in G; which means that the strong connectedness of graph G is compromised. 
This happens due to the nodes in GE that do not have any outgoing edges with initial tokens. 
Those nodes end up in graph G as dangling nodes. They are ‘dangling’ in the sense that they do 
not have any outgoing edges, they have only incoming edges.  

Our canonic graph example in Figure 4.4(b) does not have any dangling nodes. To illustrate 
dangling nodes, we give an example in Figure 4.6. In Figure 4.6(a), an IPC graph is shown that 
models two processes communicating through a local channel having a capacity of one token. In 
Figure 4.6(b), we show the canonic graph of that IPC graph; we see there that nodes v1 and v2 are 
dangling. 

Remark (Dangling nodes and simplification of the canonic graph) One can simplify the 
canonic system of equalities by excluding the variables of the dangling nodes from the system 
[4]. This simplification reduces the computational complexity of the algorithmic rules applied to 
the canonic graph later. However, this simplification step is not essential and has certain 
implications. Therefore, we skip it in this thesis to avoid overloading it with details.♦ 

Coming back to the strong-connectedness issue, we conclude that in general the canonic 
graph is not strongly connected. Nevertheless, there is one essential property that the canonic 
graph still inherits from its HSDF graph, namely, it has exactly one maximal strongly connected 
subgraph (m.s.c.s.). For example, in Figure 4.6(b), the subgraph formed by nodes v2 and v4  is the 
only m.s.c.s. of the given canonic graph. The uniqueness of the m.s.c.s. is stated below as a 
lemma. 

Lemma 4.4 (Strong connectedness) Let G be a live strongly-connected HSDF graph and G its 
canonic graph. Then graph G has exactly one maximal strongly-connected subgraph (m.s.c.s.). ♦ 

In other words, if all nodes of graph G can be clustered together into one strongly-connected 
graph, then at least part of the nodes of G can also be clustered such that the nodes outside that 
cluster are dangling nodes, which by definition cannot form another cluster. This generic 
structure is illustrated in Figure 4.7(a). 

Proof In this proof, we again represent graph G by graph GE. First of all, it is straightforward to 
show that the number of m.s.c.s.’s of graph G is at least one. We can make that statement because 

Figure 4.6 An IPC graph with dangling nodes in the canonic graph 
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GE is a strongly connected graph, thus it contains at least one cycle and therefore, by Lemma 4.3, 
graph G also contains at least one cycle and thus it has at least one m.s.c.s. 

Let us prove the uniqueness of the m.s.c.s. in graph G by contradiction. Consider 
Figure 4.7(b). Suppose there are two distinct m.s.c.s.’s in G, namely GI and GII. Then each of 
them must contain at least one cycle. Let edge (C, A) belong to a cycle in subgraph GI. Similarly, 
let edge (D, B) belong to a cycle in subgraph GII.  

Because GE is a strongly connected graph, any pair of nodes is joined in that graph by a path. 
In this proof, we make use of the fact that in graph GE there exists a path from A to B, denoted 
PAB, and also a path in the reverse direction, denoted PBA. In Figure 4.7(b), we illustrate paths in 
graph GE by dashed arcs, in order to distinguish them from the paths in canonic graph G, shown 
as solid arcs. 

By the special property of the canonic graph, edge (C, A) corresponds to a special path PCA 
from C to A in GE. Paths PCA and PAB combined together form path PCB, whose first edge carries 
one initial token due to the fact that PCA is special. For that reason, path PCB can be split into P 
special subpaths P1, P2, … PP, where P is the depth of path PCB. Those subpaths correspond to 
edges in G; therefore canonic graph G too has a path from C to A, and we illustrate this in 
Figure 4.7 by a solid arc. 

By a similar reasoning, we can show that D is connected to A. Therefore, we see that a node 
in GI is connected to a node in GII and vise versa; therefore the maximal strongly connected 
subgraphs GI and GII are equal, which contradicts the original assumption that they are different. 

qed ♦♦♦♦ 
 

4.3 Main Theorem 
In this section, we first state the main theorem, from which it directly follows that event graphs, 
when their execution starts, after a certain number of iterations, by themselves reach a mode in 
which they execute according to a periodic schedule with the period equal to the graph’s MCM 
(see Section 2.2.5). Then we use the relationship between canonic event graphs and HSDF 
graphs to prove a theorem stating that HSDF graphs behave in the same way. In Section 4.4, we 
use that Theorem to establish the major algorithmic rule for static-delay analysis, which plays an 
important role in the performance analysis approach of this thesis. 

PCA  

PAB  
GI 

(a) Unique maximum strongly 
connected subgraph 

(b) Proving that m.s.c.s’s are not separate 

m.s.c.

dangling 

nodes  

- path in G 
- path in GE 
- special path in 

PBA  

GII 

Figure 4.7 The generic structure of the canonic graph 
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Theorem 4.5 (‘Main theorem’ – Cyclicity of matrix B). Suppose that the precedence graph G 
of matrix B has exactly one maximum strongly connected subgraph. Let λ be the MCM of graph 
G. Then there are integers 0≥T and 0>W  such that: 

nWWnTn BB ⋅=⇒≥ + λ           (4.19) 

where ‘ Wλ ’, like the rest of the expression, is written in terms of max-plus algebra, in normal 
notation ‘ Wλ ’  equals W⋅λ . 

Proof. This theorem follows from theorem 3.112 in [4]. ♦ 

Definition (Matrix cyclicity.  (W,T)-cyclic matrix.) The property expressed by Formula (4.19) 
is referred to as the cyclicity of matrix B . Matrix B  satisfying Formula (4.19) for some 

0≥T and 0>W  is called cyclic or, in particular, (W,T)-cyclic. ♦ 

Remark (The periodic behavior of strongly-connected event graphs). Consider an arbitrary 
strongly-connected event graph G whose edges have positive static delays and contain one initial 
token each. Then, using Theorem 4.5, we can state that graph G is a precedence graph of some 
(W,T)-cyclic matrix B , for which Formula (4.19) applies. 

Let vector )1(−′x  give for every node in G the time when the initial token at every output 

edge of that node is released at the start of the execution. Then the completion times of the node 
executions in graph G satisfy Equality (4.16). 

Multiplying the left and right part of the equality in Formula (4.19) by )1(−′⋅ xB , we get:  

( ) )1()1(   11 −′⋅⋅=−′⋅⇒≥ +++ xBxB nWWnTn λ     (4.20) 

Finally, applying Equality (4.16) to the left and the right part of this equality, we obtain: 

)()(   nWnTn W xx ′⋅=+′⇒≥ λ       (4.21) 

Because, in max-plus algebra, multiplying a vector by expression ‘Wλ ’ means adding 
constant W⋅λ  to every element of the vector, Formula (4.21), in fact, states that, after the first T 
iterations, the event graph is characterized by a periodic execution schedule that spans W 
iterations of the graph and has a period equal to W⋅λ .♦ 

Definition (The periodic and transient power of a matrix)  For a cyclic matrix B , we refer to 
the minimum integer values of positive W and non-negative T such that Formula (4.19) holds as 
the periodic power and the transient power of matrix B accordingly.♦ 

Theorem 4.6 (Periodicity of HSDF graphs). Let G be a strongly connected live HSDF graph 
with static delays that contains V actors, and let )(nx  be the completion time vector of G . Then 

there are integers 0≥T  and 0>W  such that: 

)()(    ]..1[  , nxWWnxVkTn kk +⋅=+⇒∈≥ λ     (4.22) 

where λ = MCM(G) and )(nxk  are the elements of )(nx .♦ 

This theorem can be interpreted as follows: after the time it takes the graph to go through the 
transient phase (the first T iterations), we can split the time axis into intervals of duration W⋅λ ; 
let us call them the periods. Within each period, every actor executes W times, and the 
completion times of those executions relative to the period boundaries are exactly the same in all 
periods. Thus λ is the average interval between the subsequent executions of each actor, which 
means that it is the iteration interval of the given HSDF graph. 
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Proof. Let G be the canonic graph of HSDF graph G. Let C be a cycle with the maximum cycle 
mean in graph G (a critical cycle). Recall that the cycle mean of cycle C is the ratio l(C)/µ(C). 
From Lemma 4.3, part 1, it follows that there is a cycle C in graph G with at least the same cycle 
mean. Thus, MCM(G) ≥ MCM(G). 

On the other hand, for a critical cycle C in graph G, we can find a cycle C in G with the same 
cycle mean, as follows from Lemma 4.3, part 2. Thus, MCM(G) ≥ MCM(G). This relation 
between the MCMs and the previously obtained relation imply that they are equal. Let’s denote 
their value as λ. 

By Lemma 4.4, graph G has only one m.s.c.s., thus by Theorem 4.4 the canonic matrix B is 
(W,T)-cyclic for some integers W and T and Equality (4.19) holds for (MCM) λ. Let )(nx′  be the 
state vector of graph G, then Formula (4.21). Because, according to Equality (4.11), )(nx  is a 
sub-vector of vector )(nx′ , Formula (4.21) is also correct if you replace )(nx′  by )(nx . After 

such a replacement, Formula (4.21) becomes just a vector form of scalar equality (4.22). qed ♦♦♦♦ 

Definition (A periodic depth of an HSDF graph) We refer to any positive integer W such that 
Formula (4.22) holds as a periodic depth of an HSDF graph. It is the number of HSDF iterations 
in a period. ♦ 

Definition (The transient depth of an HSDF graph) We refer to the minimum value T such 
that Formula (4.22) holds as the transient depth of an HSDF graph.  It is the number of HSDF 
iterations between the start of the execution and the first period. ♦ 

Note that, unlike the transient and periodic powers of matrix B, the transient and minimum 
periodic depths of an HSDF graph depend on the initial conditions )1(−′x . The powers of the 

matrix give us an upper bound on the depths, because Formula (4.22) always holds if W and T 
are the powers of the canonic matrix. However, the HSDF graph depths might be smaller for 
certain initial conditions. In fact, Theorem 3.28 in [4] implies that for quite general case there 
exist initial conditions such that W = 1 and T = 1. 

 

4.4 The Lateness and the Major Algorithmic Rule for Static-delay 
HSDF 
4.4.1 The Upper Bound on the Execution Time and the Lateness  

The periodicity result shown in Theorem 4.6 is a refinement on the facts about the steady-
state behavior of the static-delay HSDF graph that we considered in Section 2.2.5. Theorem 4.6 
gives us a key to solve a major problem raised in Chapter 2: finding a conservative bound on the 
execution time of an HSDF graph for the first N iterations. Recall that, in Chapter 2, we come to 
a conclusion that, for the static-delay case, the upper bound is equal to N⋅λ  plus some 
additional component, which is less significant for large N. Nevertheless, that component cannot 
be ignored if one wants to obtain conservative results for smaller N, and, most importantly, this 
component takes into account the transient phase. Recall from Section 1.5 that the transient 
phase is an important factor for extending the static-delay analysis to the dynamic delay case. 
Therefore, in this section, we consider the additional component again. 
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Figure 4.8(a) illustrates the growth of the completion time variable )(nxk  for actor kv  in G as 

characterized by Formula (4.22). In Figure 4.8(a), we assumed that both the transient depth and 
the minimum periodic depth are 2 iterations. As also shown in the figure and implied from 
Formula (4.22), for any actor kv , the diagram of the actor completion time function, )(nxk , has 

an asymptote, which is a linear function on n with slope equal to λ . Let us express that function 
as kn σλ +⋅ , where kσ  is a constant that only depends on which actor we select. If we choose σ 

as the maximum σk for all actors of the HSDF graph, then we can give an upper bound on the 
execution time of N graph iterations, which can be expressed as σλ +−⋅ )1(N , because the last 

iteration has index 1−= Nn .  
Now let us establish that upper bound formally. 

Definition (Execution time of static- or dynamic-delay HSDF) The execution time of the first 
N iterations of a first-in-first-out (FIFO) HSDF graph with V actors and completion variables 

)(nxk  is defined by: 

( ))1(max
..1

−≡∆
=

Nxk
Vk

N        (4.23) 

Note that this definition applies for both static and dynamic-delay HSDF. This definition is in 
line with the informal definition given in Chapter 2, where we define the execution time as the 
latest completion of any actor execution in the first N iterations. Note that we included only the 
last iteration index – i.e. 1−= Nn  – because the graph is a FIFO graph and hence all the 
previous iterations complete earlier. ♦♦♦♦ 

Lemma 4.7 (Lateness and an upper bound on HSDF execution time) For the execution of a 
live strongly connected static-delay HSDF graph G with V actors and any 0>N holds: 

 NNN ∆≤∆⇒≥ ˆ   0         (4.24) 

where: 
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 σλ +−⋅=∆ )1(ˆ NN        (4.25) 

and σ  is the HSDF graph lateness, defined by: 

)1()1( max  max
..1..1

−⋅−−≡
+==

nnxk
WTnVk

λσ      (4.26) 

where T is the transient depth and W is a periodic depth of HSDF G, which have finite integer 
values. ♦♦♦♦ 

Proof For convenience, let us introduce the following expression: )1()1()( −⋅−−≡ nnxn kk λσ . 

From the definition of T and W, it follows that the infinite sequence ),...2(  ),1( ++ TT kk σσ  

repeats itself periodically every W entries. Therefore, the maximization over n = 1..T + W is 
equivalent to the maximization over the entire range ∞+..1 . After putting this range into 
Equality (4.26) and substituting (4.26) into (4.25), we get:  

( )
( )
( )
( ) Nk

Vk

k
Vk

k
nVk

k
nVk

N

Nx

NNxN

nnxN

nN

∆≡−=

=−⋅−−+−⋅≥

≥−⋅−−+−⋅=

=+−⋅=∆

=

=

∞+==

∞+==

)1(      max     

)1( )1(  )1(     max      

)1( )1( max )1(     max      

)( max )1(     maxˆ

..1

..1

..1..1

..1..1

λλ

λλ

σλ

 

qed ♦♦♦♦ 
Thus, we have refined the upper bound given in Chapter 2: NNN ⋅+=∆ )(ˆ ελ . In fact, we 

now assume thatNε  is equal to N/)( λσ − . 

Therefore, using the results of Section 2.2.5, for HSDF graphs with synchronous initial 
conditions, we can write: 

σλλ +−⋅≤∆≤⋅ )1(NN N      (4.27) 

Remark. (The upper bound on the execution time is tight) From Equality (4.27), it follows 
that the maximum difference between the upper bound and the real value of the execution time is 

equal to λσ − . This means that the error of N∆̂  in estimating the execution time is bounded by a 

constant, and therefore we say that N∆̂  is a tight bound. ♦♦♦♦ 

To calculate our upper bound on the graph execution, one needs to calculate two constants, 
characterizing the HSDF graph as a whole, namely the average iteration period, λ, and the graph 
lateness, σ . In this thesis, we use this upper bound as a conservative estimate of the performance 
of static-delay HSDF graphs. Therefore, we need to provide algorithmic rules to calculate λ and 
σ . 

Efficient polynomial algorithms exist to compute λ, see a survey in [19]. For example, one 
can compute it using Karp’s algorithm [44], having complexity )( 3KΘ . Note that in [23] the 

state-space exploration techniques have been experimentally shown to be more run-time efficient 
than the graph analysis algorithms, when applied to more general graphs – SDF (multi-rate) 
graphs. 

As for the lateness, to the best of our knowledge, no related work studies the derivation of any 
characteristic of event or HSDF graphs that is related to it. We dedicate the next subsection to the 
problem of calculating σ . 
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4.4.2 The Algorithmic Rule to Calculate Lateness  

Before we consider an exact algorithm, let us mention a polynomial algorithm to calculate a 
lower bound on lateness.  

Lemma 4.8 (A lower bound on the lateness) Under the synchronous initial conditions, the 
graph latenessσ is larger or equal to the length of a longest special path through G.  

Hereby a special path through an HSDF graph is defined in a similar way we defined before 
for the event graphs; namely, the first edge in such a path should contain some initial tokens and 
the other edges (if any) should contain no initial tokens. ♦♦♦♦ 

Proof Substituting 1=n  into Equality (4.26), we get: 

)0(  max
..1

k
Vk

x
=

≥σ  

From the canonic equations, Equality (4.7), it follows that:  

)(max)0( ,ik
i

k Bx =  

Now let us observe that Bk,i is, by definition, equal to the longest special path in the equivalent 
graph. Using this observation and the inequalities established in this proof it is easy to prove the 
statement of the lemma.♦ 

One can calculate the lower bound by applying the topological sorting algorithm, e.g. see 
[16], to the maximum acyclic subgraph of G that does not contain initial tokens. However, it is 
an upper bound that is necessary for a conservative estimate, whereas a lower bound can be used 
to evaluate how tight the upper bound is. 

Example (A lower bound on the lateness) A longest special path in Figure 4.2 is  (v1, v1), (v1, 
v2), (v2, v3), (v3, v4) and the length of this path is 8. Therefore, for this graph holds that σ ≥ 8. ♦ 

Unlike the value of average period λ, which depends only on the structure and delay values of 
HSDF graph G, the value of lateness σ  also depends on the initial conditions. In the remainder 
of this subsection, we study an exact algorithm to calculate lateness, which takes the initial 
conditions as an input. It computes not only σ, but also λ, as a byproduct. It repeats the same 
‘step’ until a stop criterion is satisfied. We index the steps with symbol N, N = 1, 2, etc. 

Algorithmic Rule (Calculation of σσσσ and λλλλ of graph G) Suppose that graph G′ , the low-order 
variant of graph G, and B, the corresponding canonic matrix, are derived as explained earlier in 
this chapter. At step N, the algorithm calculates completion time vector )1( −′ Nx  of graph 
G′ recursively as the product of matrix B and vector )2( −′ Nx . Hereby, vector )2( −′ Nx  is 

either derived at the previous step if N > 1 or it is equal to the initial conditions if N = 1. 

Then the algorithm checks whether N has passed the end of the first period, i.e. whether 
1++= WTN , see Equality (4.26). Because the values of T and W are not known in advance, 

this is done as follows. At every step, after obtaining )1( −′ Nx  we compute the vector of 
differences )1( −Ny , whose elements are defined by expression: for any integer n holds 

)()()( 1 nxnxny kk ′−′= . Note that the choice of actor 1v  to be the reference actor is arbitrary. 

Afterwards, the algorithm compares )1( −Ny  with the difference vectors computed at the 
previous steps: )2( −Ny , )2( −Ny , )3( −Ny ,… )1(−y . If there is a )1( −−WNy  that is equal 
to )1( −Ny , then this means that a period 2 .. 1 −−−= NWNn  of length W has been detected. 

Afterwards, the algorithm computes λ as ( ) WWNxNx /)1()1( 11 −−′−−′ . Finally, to compute σ, 
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the algorithm applies Formula (4.26), whereby the maximization goes over 1 .. 1 −= Nn  instead 
of 1..W + T (which is legal, because we show in a lemma below that N – 1 = W + T). 

Let us determine the complexity of this algorithm.  At the N-th step, one applies 
Equality (4.5) to compute )1( −′ Nx  – which costs )( 2KO  of computation time – and performs 

the comparison of the difference vectors. The comparison can be done efficiently by keeping the 
previous difference vectors in a max-heap – i.e. a data structure that efficiently implements a 
sorted list (see [16 - §6]). To store vectors in a max-heap one needs to define comparison 
between two vectors, which can be done e.g. using lexicographic ordering (i.e. first compare the 
first element of the two vectors, if they are equal then compare the next two, etc.). The search 
operation for an existing element as well as the insertion of a new element in a max-heap 
performs O(logN) comparisons of heap elements. Because the complexity of one comparison is 
O(K), the total cost for searching an existing vector is O(K ⋅ logN) per each step of our algorithm. 

In total, H steps are executed; H is defined by: 

 1++≡ WTH         (4.28) 

where T and W are the transient and minimum  periodic depths of HSDF graph G for the given 
initial conditions.  

Therefore the complexity of this algorithm is )log( 2 HHKHKO ⋅⋅+⋅ .♦ 

The correctness of this algorithm follows from the following lemma. It shows that the values 
for W, T, and λ calculated by the above algorithmic rule satisfy Formula (4.21). Having shown 
this, we in fact show that the interval 1 .. 1 −= Nn  where the algorithmic rule applies the 
maximization defined in Formula (4.26) is in fact interval WTn +=  .. 1 , where T and W are 
transient and periodic depths of the HSDF graph, as required by that formula. 

Lemma 4.9 (Correctness of the calculation of σσσσ and λλλλ) Let )(nx′  satisfy equation 

)(nx′ )1( −′⋅= nxB  for 0≥n . Let )(ny  be defined as )(/)()( 1 nxnn ′′= xy  and λ′  be defined as 

( ) WWNxNx ′−′−′−−′=′ /)1()1( 11λ . If there are some integers 0>′W  and WN ′>  such that 
)1()1( −′−=− WNN yy , then Formula (4.21) applies, with WW ′= , λλ ′=  and 

1−′−= WNT .♦ 

Proof Let 0≥k . Then, we have: 

( )
( ) )1()()()1(

)1()1(/)1()1()1(

)}1()1( using{)1()1()1()1(

111

1

kWNWN

NxWNxWNNxWN

WNNNxNNkN

WWk

kk

kk

+−′−′⋅′=′⋅−′−′⋅=

=−′⋅−′−′−′−′⋅=−′⋅−′−⋅=

=−′−=−=−′⋅−⋅=−′⋅=+−′

′′ xxB

xByB

yyyBxBx

λλ
 

To summarize, if W′  and N  satisfy the lemma conditions, we have:   

)1()()1(0 kWNkNk W +−′−′⋅′=+−′⇒≥ ′ xx λ ,   (4.29) 

which is equivalent to Formula (4.21) (when substituting n for T + k). ♦♦♦♦ 

Example (Calculation of σσσσ and λλλλ) Let us compute the iteration interval and the lateness of the 
graph in Figure 4.2. For that purpose, we use matrix B from Equality (4.18). We assume that 

Tx ]...[)1( ee=−′ . From this follows: Ty ]...[)1( ee=− . 

Step 1 (N = 1)  
TxBxBxx ]0008763[)1()2()1()0( =−′⋅=−′⋅=−′=′ NN  
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TTxy ]3335430[3/]0008763[)1(/)1()0( 1 −−−==−′−′= NxN  

Step 2 (N = 2)  
TxBxBxx ]876111096[)0()2()1()1( =′⋅=−′⋅=−′=′ NN  

TTxyy ]2105430[6/]876111096[)1(/)1()()1( 1 ==−′−′== NxNN  

Step 3 (N = 3)  
TxBxBxx ]1110916151411[)1()2()1()2( =′⋅=−′⋅=−′=′ NN  

TTxyy ]0125430[11/]1110916151411[)1(/)1()()2( 1 −−==−′−′== NxNN

 

Step 4 (N = 4)  
TxBxBxx ]16151419181714[)2()2()1()3( =′⋅=−′⋅=−′=′ NN  

TTxyy ]2105430[14/]16151419181714[)1(/)1()()3( 1 ==−′−′== NxNN

 

At this step, the value of )1( −Ny  for the first time repeats a value calculated earlier, namely, 

the one calculated at Step 2. Thus we have identified a period, and W = 2. 

We have: 

 11=−−= WNT  

( ) 42/)614(/)1()1( 11 =−=−−′−−′= WWNxNxλ  

To calculate σ, we can, for N = 1, 2, 3 (thus covering the transient phase and the first period), 
calculate the difference between the loop execution time N∆  (obtained from Equality (4.23) and 

expression )1( −⋅ Nλ . The graph lateness is equal to the maximum value of this difference for 
N = 1, 2, 3 (see Formula (4.26)). 

For N = 1, 8)0,0,0,8,7,6,3max( ==∆ N ; 0)1( =−⋅ Nλ . The difference is 8. 

For N = 2, 11)8,7,6,11,10,9,6max( ==∆ N ; 4)1( =−⋅ Nλ . The difference is 7. 

For N = 3, 16)11,10,9,16,15,14,11max( ==∆ N ; 8)1( =−⋅ Nλ . The difference is 8. 

Therefore, σ = max( 8, 7, 8) = 8. ♦ 

 

4.4.3 The Major Algorithmic Rule for Static-delay Analysis 

Recall that the major goal of this chapter is to give a tight and conservative upper bound on 
the performance of static-delay HSDF graphs. In Section 4.4.1, we have chosen σλ +−⋅ )1(N  as 

such a bound (for N iterations) in terms of the graph execution time. This bound uses the σ and λ 
characteristics of the graph. In the previous subsection, we have given an algorithm to calculate 
them, but that algorithm starts from the pre-calculated canonic matrix, B. In this subsection, we 
summarize the algorithmic rules used to obtain these characteristics starting from scratch. Those 
rules combined together constitute the major algorithmic rule for static-delay analysis. 

Algorithmic Rule (The major rule for static-delay analysis)  
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1. Construct the adjacency matrices 0A′  and 1A′  of the low-order variant of graph G. Recall 

that the complexity is )( 2KO , where K is the number of actors in the low-order graph, as 

given by Equality (4.12). 

2. From 0A′  and 1A′ , we obtain the canonic matrix 10)( AAB * ′⋅′= . Recall that the 

complexity is )( 3KO . 

3. Compute λ and σ using the algorithm described earlier in this subsection.  The complexity 
is )log( 2 HHKHKO ⋅⋅+⋅ . 

Summing up the complexities of all parts together, we conclude that the total complexity is 
)log( 23 HHKHKKO ⋅⋅+⋅+ . ♦♦♦♦ 

The two major complexity parameters here are thus K and H.  
As for parameter K, as already mentioned in the discussion about Equality (4.12), although 

this parameter includes the total number of initial tokens in the graph, which is a numeric value 
that can grow exponentially with the size of the HSDF graph specification, for IPC graphs this 
parameter is polynomial. 

 As for parameter H, the sum of the transient depth and the minimum periodic depth of the 
HSDF graph, the situation is more complex. Recall that those depth values depend on the initial 
conditions and that they are bounded from above by the periodic power and the transient power 
of the canonic matrix, B. Let us consider those upper bounds. 

Let us first consider the periodic power, W. From Lemma 4.3, it follows that if all critical 
cycles in the HSDF graph have the same depth µ, then this also holds for all the critical cycles in 
the canonic graph. From the results presented in [4 - §3.7], it follows that, in that particular case, 
W is equal to µ. For example, the graph in Figure 4.2 has only one critical cycle (v1, v2), (v2, v3), 
(v3, v4), (v4, v1). It contains two initial tokens, and we have seen, in our example above, that W is 
also equal to 2. 

However, in the worst case, when different critical cycles of the HSDF graph have different 
depths, W can be equal to the product of the critical cycle depths. This can lead to a high 
overhead in the calculation of σ using our algorithm. To avoid this situation, one can make a 
conservative assumption that the delay of one of the actors belonging to one of the critical cycles 
is slightly higher than it is in reality (one can use Karp’s algorithm to find not only λ , but also a 
critical cycle of the graph in )( 3KO  runtime). This will make the resultant estimates of λ and σ 

slightly pessimistic, but it will ensure W is limited by the depth of one of the critical cycles. 
Unfortunately, we are not aware of any general method to limit the upper bound on the other 

component of H, the transient power, T. In [4 - §3.7] a small example of a 2x2 canonic matrix is 
shown, whose T can be made arbitrarily high by slightly changing the value of one of the matrix 
entries. Using that example, our algorithm could be shown to have at least exponential 
complexity. Fortunately, the same example also brings the good news that in some cases a slight 
change in one of the delays in the graph can also make T significantly smaller, and therefore one 
can sometimes use an approach to limit T similar to the one we can use to limit W, but it is not 
known how to limit T in general. 

Nevertheless, in our experiments, we never face the problem of high complexity of 
calculation of σ. Some of these experiments are reported in Chapter 6. Anyway, this problem 
deserves investigation in future work. 
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4.5 Summary and Notes 
In this chapter, we use the mathematical apparatus of max-plus algebra and event graphs to 

give an algorithm to calculate an upper bound on the execution time of static-delay HSDF 
graphs. The upper bound is tight in the sense that it has a constant maximum error.  

In fact, an essential part of our major algorithmic rule that calculates the required upper bound 
can be seen as doing a simulation of an HSDF graph execution run and letting the simulation 
continue until a periodic regime is detected. A similar idea is exploited in [23] for performance 
analysis of SDF graphs, however using a finite-state machine model rather than event graphs. 
We believe their work can also be adapted to calculate not only λ but σ as well. 

In our publications, this approach was first briefly outlined in [75] and then thoroughly 
described in [76]. In itself, this investigation in the well-studied area of periodic behavior of the 
HSDF graphs is not a significant contribution, because giving an upper bound on the execution 
time of a periodic schedule is more or less trivial. Nevertheless, this investigation provides a 
basis for our performance analysis method for the HSDF graphs with dynamic actor delays, as 
shown in the next chapter.  
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5 The Dynamic-Delay Analysis 

5.1 Delay Quantization  
5.1.1 Basic Idea 

In Chapter 4, we have considered the timing behavior of HSDF graphs with static delays. The 
objective of this chapter is to accurately characterize the conservative (i.e. maximal) execution 
time for an execution run of an HSDF graph whose actor delays ),( nvd k  are not static, but rather 

variables changing with n. Note we still assume that basic IPC-graph properties are satisfied by 
the HSDF graph – i.e. strong-connectedness, liveness and FIFO order of the token transfers, we 
only change our assumption about the actor delays.  Hereby our purpose is to treat the data-
dependent behavior of the application.  

We approach the problem as follows. First, we introduce a set of quantization levels for actor 

delays. We apply quantization to ),( nvd k  for all actors and obtain functions ),(ˆ nvd k , which we 

call quantized delay functions. Those are stepwise functions that approximate but stay above 
),( nvd k , so they constitute a conservative actor delay model, called the multi-scenario delay 

(MSD-) mode. 
The MSD mode of an HSDF graph is one of the timing modes, as introduced in Chapter 3. 

This particular mode can be described as a state transition system with a scenario space, where 
the states are called scenarios. HSDF evolution from iteration to iteration corresponds to 
transitions between the scenarios. For each actor, one scenario corresponds to one quantization 
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level. Thus, as long as the HSDF graph stays in the same scenario, the actor delays are 
approximated with static values, and thus the static-delay theory applies.  

We reuse the static-delay results to characterize the HSDF graph behavior within each 
scenario. The new part that we introduce here is a method to analyze the timing properties of 
transitions between different scenarios. This method makes it possible to derive a conservative 
estimate of the execution time and throughput of the HSDF graph with dynamic delays. 

Recall that to handle the data-dependent execution delays, in this thesis we use so-called 
parameters, which are variables counting the data-dependent number of times the application 
executes the given calculation. Whereas, in Chapter 3, we described the parameters determining 
the execution delays at the actor level of granularity, the MSD mode opens up a possibility to 
define the parameters that determine the delays at the level of the whole graph, which we call the 
loop-level parameters. Using an MSD mode we can conservatively express the loop execution 
time – and hence also the throughput – in terms of linear functions on the loop-level parameters.  

Because the MSD mode plays a central role in this chapter, in the following subsections we 
first introduce the MSD mode formally, and then we outline the contents of the rest of this 
chapter. 

 

5.1.2 The Multi-scenario Delay (MSD) Timing Mode of an HSDF Graph 

Let us introduce actor delay quantization and scenarios, using Figure 5.1 for illustration 
purposes. In that figure, we assume that the graph has just two actors; for each of them, the 
figure shows the actor delay as function of iteration index n. For a given execution run, the delay 
functions are defined for n = 0.. N – 1, where N is the total number of HSDF graph iterations in 
the execution run. For better illustration, in Figure 5.1 the delay functions, despite being discrete, 
are shown as solid curves.  

As we see in the figure, an MSD mode splits the iteration axis n into execution intervals: I 1, 
I2, I 3, etc. The number of iterations in one interval is called the interval depth, denoted Np = |Ip|. 
Thus, axis n is split as follows: I1 = [0.. 11 −N ], I2 = [ 1N .. 121 −+ NN ], etc. Note that the 

splitting of axis n into intervals I m has a similar purpose as the similar splitting of axis x into 
intervals ∆xi in the definition of the integral in calculus; we are going to characterize the whole 
execution run by applying a summation over the intervals. 

Remark (Relationship between scenarios and execution intervals). To each execution 
interval Ip, the MSD mode assigns a certain scenario, identified by the scenario number s=s(p), 
where s(p) is a positive integer. We say that interval I p belongs to scenario s(p). The scenario 
s(p) is said to be active in interval I p. 

Every scenario s is distinguished by a unique vector of actor quantization levels:  

),...)(ˆ),(ˆ(ˆ
21 vdvdd sss =  ♦ 

For example, in Figure 5.1 we enumerate a few scenarios identically to the execution 
intervals, i.e. s(1) = 1, s(2) = 2, …, s(6) = 6, and we have: 

( )20 ,201̂ =d ; ( )30 ,40ˆ
2 =d ; ( )30 ,60ˆ

3 =d ; ( )10 ,80ˆ
4 =d ; ( )15 ,40ˆ

5 =d ; ( )15 ,20ˆ
6 =d ; 

Without loss of generality, we assume that any two subsequent execution intervals Ip and Ip+1 
always belong to different scenarios, otherwise we can merge them into one execution interval. 
Therefore, the scenario transitions take place exactly at the interval boundaries: )1()( +≠ psps . 
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Definition (Actor QD-function).  The quantized-delay function of the given actor is a stepwise 
function that in each execution interval takes the value equal to the quantization level of that 
actor in that interval: 

),(ˆ nvd k = )(ˆ
ks vd , if s=s(p) and ∈n  Ip ♦ 

Definition (Conservative MSD mode). An MSD mode being conservative means that the QD-
functions of all actors have at least the same magnitude as the real actor delay: 

),(),(ˆ nvdnvd kk ≥ , for any ∈n {0.. N – 1} and for all actors ♦ 

For example, the MSD mode illustrated in Figure 5.1 is conservative. In the remainder, we 
consider by default only conservative MSD modes. 

Different scenarios correspond to different execution intervals, but not vise versa. For 

example, in the MSD mode of Figure 5.1, we can change ( )15 ,20ˆ
6 =d  to ( )20 ,20  – as shown by 

an arrow. In that case, we can consider 1 and 6 as the same scenario. Thereby, we make the 
given MSD mode less accurate, but still conservative. 

In fact, for practical reasons, we would like the number of scenarios to be limited, such that 
many execution intervals belong to the same scenario. In the extreme case we have only one 
scenario and only one interval covering the whole iteration axis. In that case, one can use the 
worst-case actor delays as the quantization level of that scenario. That is the simplest MSD mode 

20 

n 

I1 

d(v2,n) 

40 

60 

80 

10 

20 

30 

I2 I 3 I4 I5 I6 

Figure 5.1 Quantization of actor delays for a two-actor graph 
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one can construct for the given execution run. However, for highly dynamic data-dependent 
applications, the accuracy of a worst-case model can be quite low due to high overestimation of 
actor delays. The basic intention of an MSD mode is to have an improved accuracy when the 
number of scenarios is increased. In other words, we achieve scalability in accuracy, i.e. one can 
achieve the required accuracy by selecting the proper number of scenarios. 

 

5.1.3 The Contribution of this Chapter  

Recall that the whole purpose of the dynamic-delay graph performance analysis is being able 
to predict the execution times (i.e. the total duration) of the execution runs using a-priori run-
time values of application parameters, characterizing the processing complexity of the input data. 
In our approach, those parameters characterize the curves of the delay functions of all the actors, 
like the curves we have seen in Figure 5.1. In our method, the delay quantization realized by the 
MSD mode helps us reduce the overhead of parameters by letting them characterize the step-
wise QD functions instead of the delay functions. 

In fact, our concept of MSD timing mode uses the scenario-based paradigm for the 
characterization of the application behavior [27], [26], [99], [29]. This paradigm is based on the 
observation that the dynamic behavior of an application is typically composed of a limited 
number of sub-behaviors, i.e., scenarios, that have similar resource requirements, i.e., similar 
actor execution delays in the context of this thesis. An extensive overview on scenario-based 
paradigm can be found in the paper of S. V. Gheorghita et al [29]. 

A scenario-based performance analysis method estimates the execution time via an algebraic 
expression in terms of scenario coefficients, i.e. the contributions of a scenario to the execution 
time, and scenario parameters, typically variables counting the number of invocations of the 
scenario. Scenario-based performance analysis has three basic tasks:  

• the derivation of the algebraic expression for the execution time, 

• scenario identification, i.e. defining the set of scenarios and scenario parameters, 

• characterization, i.e. calculating the scenario coefficients. 

In this chapter we develop a scenario-based performance analysis method based on the MSD 
timing mode, sketched in the previous section. As explained in Section 1.5.1, our method 
introduces the support of certain essential streaming application features, which is, to the best of 
our knowledge, not supported in other work on multiprocessor scheduling, such as scenario-
based scheduling work of Zhe Ma et al [55], [56]. We discuss the closely related work in more 
detail in the end of this chapter. 

Because our analysis works at the level of the application’s loop of interest, represented by 
the HSDF graph, we say that those tasks are carried out at the loop level, and we speak of loop-
level coefficients and loop-level parameters, and also of loop-level characterization and loop-
level identification. The corresponding loop-level algebraic expression can be represented as a 
linear combination of the parameters and coefficients, as we already introduced in a generic form 
in Section 2.3.3. Recall that the loop-level identification is done in the beginning of our design 
flow – because it does not depend on the mapping. The loop-level characterization is done partly 
in the end of the flow and partly at run time (see our flow overview in Section 2.3.4).  

In Section 5.2, we present the derivation of the execution time expression and loop-level 
characterization. We assume that an MSD mode is already given, in terms of quantization levels 
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and execution intervals. Under that assumption, we apply static-delay performance analysis to 
every execution interval Ip and develop a new technique to analyze the boundaries of the 
execution intervals, where the scenario transitions take place. This helps us to obtain an algebraic 
loop execution time estimate and to establish an algorithmic rule for dynamic-delay graphs, 
which calculates the loop-level coefficients. Provided that the MSD mode quantization levels are 
defined and the loop-level parameter values are known, this defines a complete method for run-
time estimation of the execution time. The practical usage of this method is demonstrated by our 
application study in the next chapter. 

To be able to apply this method for a given application, first one has to define an MSD mode 
for any possible execution run. This is the task of loop-level identification, considered in 
Section 5.3. Although the quantization levels are in general data-dependent, we can still define 
them at design time, using subspaces, i.e. certain intervals of actor-level parameter values. In 
Section 5.3, we introduce the scenario subspaces in more detail. 

Finally, Section 5.4 summarizes and concludes this chapter. There we also discuss the closely 
related publications of the other researchers as well as our own publications. 

Before we continue with the main topic, it is worthwhile to briefly discuss similarity between 
our loop-level and actor-level timing models. Recall that, in Chapter 3, we consider actor-level 
linear parameter functions, similar to the loop-level expression we derive in this chapter. 
Compared to our loop-level analysis, the actor-level analysis may deal with much more complex 
control flow that a plain loop. On the other hand, our actor-level analysis is restricted to 
sequential execution, as opposed to the parallel HSDF graph execution studied in this chapter. 
Thus, it is interesting to notice that, in this chapter, we show how the execution time of certain 
class of parallel programs such as HSDF graphs can be expressed in a similar linear form as the 
processing time of sequential programs such as actors. 

 

5.2 Using an MSD Mode for Performance Analysis 
5.2.1 Basic Execution Time Estimate as a Parametric Function 

Let us consider a loop of interest executing iterations 0.. 1−N  of an HSDF graph. In this 
subsection, we give a algebraic loop execution time estimate using a given MSD model. That 
estimate does not yet take the scenario transitions properly into account. We call it the basic 
expression for the execution time estimation. 

The basic expression is considered here for two main reasons: to reintroduce the concept of 
the loop-level parametric function (which we introduced in Chapter 2) and to use the basic 
expression as foundation for obtaining our final execution time expression, used in the 
algorithmic analysis rule for dynamic-delay HSDF graphs. 

In the basic expression, we assume that at the beginning of every execution interval the HSDF 
graph starts a new execution run and at the end of the execution interval the HSDF graph stops 
and waits until all actors finish the given execution interval before the next interval may start. 
Because in reality the actors do not wait for all other actors at the boundaries of the execution 
intervals, the basic expression is pessimistic, thus giving us a conservative estimate of the loop 
execution time. 

In the basic expression, we use the results of Chapter 4 to estimate the execution time of every 
interval and then add the results.  
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Definition . The instantaneous period λ s and instantaneous lateness σs are the period and the 

lateness of the HSDF graph with static delays equal to the levels sd̂ of scenario s. ♦♦♦♦ 

According to the given MSD mode, let us split the loop iteration interval into sub-intervals 

with depth values ,1N ,2N …, PN , ∑ Np = N. Then the basic expression is obtained by 

summation of Equality (4.25) over all intervals: 

basicN∆̂ =  ∑
∈ ]..1[ Pp

(λ s(p) ⋅ N p  +  (σs(p) – λ s(p))  )    (5.1) 

where λ s(p) and σs(p) are instantaneous period and lateness in scenario s(p). 
For practical reasons, it is convenient to group the intervals that belong to the same scenario 

together and rewrite this summation respectively. Define Js as: 

Js = ∑
=∈ spsPp
pN
)(:]..1[

 

Thus, Js is the total number of loop iterations in scenario s. Define Ls as: 

Ls = })(|]..1[{ spsPp =∈ , 

Thus, Ls is the total number of execution intervals belonging to scenario s. 
Grouping the terms of Equality (5.1) by scenario number s, we obtain the basic expression the 

execution time estimation: 

basicN∆̂ =  ∑
s

(λs ⋅ Js  +  (σs – λs) ⋅ Ls )     (5.2) 

In this algebraic expression, we see data-dependent parameters (Js and Ls) and constant 
coefficients (based on λs and σs). They are, in fact, examples of the loop-level parameters and 
loop-level coefficients that we referred to earlier in this chapter. They satisfy the definition given 
in Section 2.3.3, where we said that the loop-level parameters count the number of loop 
iterations that have certain properties and the coefficients give the contribution of those loop 
iterations.  

 

5.2.2 Scenario Transitions: Basic Considerations 

In this subsection, we start an investigation of the scenario transitions taking place at the 
boundaries of execution intervals. Eventually, this investigation leads to an algorithm that 
estimates the execution time with an essentially improved accuracy compared to the basic 
expression.  

The transitions take place between the iterations of the HSDF graph. Therefore, inter-iteration 
dependencies play an important role there. Those dependencies are reflected in the graph as 
initial tokens. 

Consider the HSDF graph in Figure 5.2 (a). It has three actors, whose completion time 
variables are x1, x2, x3. Consider an arbitrary execution interval [ 1... −jn ], where j > n, 

represented in Figure 5.2 (b) as a box with multiple inputs and outputs.  
The inputs of this box correspond to dependencies of the actor executions within the box on 

the iterations before n. Let us consider those dependencies one-by-one for the example given in 
Figure 5.2(a). Consider actor v1. Its evolution equation depends on x2( 1−n ) due to the initial 
token on edge (v3, v2). So, we label the first input of the box as x2( 1−n ). Look at actor v2 and 
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consider its executions x2(n) and x2( 1+n ). They both may fall within the interval of the box1, 
and they consume tokens produced by events x3( 2−n ) and x3( 1−n ) respectively2 due to two 
initial tokens on edge (v2, v1). Therefore, we introduce two more inputs with the corresponding 
labels. Finally, the initial token on the self-edge of v3 introduces a new box input labeled 
x3( 1−n ). Thus, we have two inputs labeled by the same event x3( 1−n ), but we separate them 
because they represent the dependencies of two different consumer actors, namely v2 and v3. In 
general, one initial token in a graph corresponds to one dependency at the box input. The same 
can be said about the box outputs, where we can just replace n by j in the labels (see 
Figure 5.2(b)). We enumerate the initial tokens – and hence the box inputs and outputs as well – 

                                                
1 In fact, x2(n + 1) only falls into this range, in case j>n+1, and it does not in case j=n+1. But considering all possible 
dependencies makes our model conservative, because, as we will see later, taking any extra dependency into 
consideration can only make our execution time estimate more pessimistic. 
2 Those dependencies are there only if n>0 and n>1 respectively, but the same remark as before applies here. 

Figure 5.2 The framework for taking the scenario transitions into account in N∆̂  
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in an arbitrary order by index r with values 1..R, where R is the total number of the initial tokens 
in the graph. For example, in Figure 5.2 (a), R = 4. 

Such an ‘execution interval box’ is similar to an actor, because it consumes tokens at the 
inputs and produces them at the outputs. However, unlike an actor, a box does not have to 
capture all input tokens simultaneously, neither does it have to simultaneously produce all output 
tokens. The tokens are produced at the times defined by the labels assigned to the box 
dependencies. 

Now suppose we have execution intervals I1, I 2, I 3,… IP for the given execution run of the 
loop of interest. Then we can introduce a separate box for each interval and connect the boxes in 
one chain, as shown in Figure 5.2 (c). According to the synchronous initial conditions, we put 
zeros at the box inputs of I 1 and calculate its outputs. This way, one can propagate the results 
through the chain from I 1 to IP.  

To give a conservative estimate of the loop execution time N∆̂ , we have to provide an upper 

bound on the latest output of I P. If there was always only one interval, P = 1, the answer would 
be: λs(1) ⋅ (N1 – 1) + σs(1). For more intervals, we consider each pair of subsequent intervals – Ip, 
Ip+1. The behavior of I p+1 depends on when the execution interval box Ip produces a token at each 
output. If I p produced all tokens simultaneously at a certain time Qp, then it would hold that Ip+1 
would complete all its iterations by time Qp+1 = Qp + λs(p+1) ⋅ (N(p+1) – 1) + σs(p+1). Then making a 
conservative assumption that all output tokens of the box Ip+1 are produced at time Qp+1, we 
could apply similar reasoning and calculate Qp+2 from Qp+1 , Qp+3 from Qp+2 , etc.  

However, this kind of calculation, would again yield the basic expression, (5.1). The 
disadvantage of that calculation is that we assume that the execution interval boxes produce all 
output tokens simultaneously, in an actor-like manner. In general, tokens at different outputs can 
be produced at different moments of time. As a consequence, when box I p releases a token at 
some outputs and still continues running, box Ip+1 may pick up a token at the corresponding 
inputs and start running before interval I p finishes its execution. In other words, there is a timing 
overlap between subsequent execution intervals. 

An idea of how to conservatively estimate that overlap is illustrated in Figure 5.3. Two filled 
parallelograms shown in the figure represent so-called time shapes of two subsequent execution 
intervals. The vertical axis corresponds to index r that enumerates the R dependencies between 
the execution intervals. Thus, the vertical axis is discrete, although our drawings ignore this fact. 
The horizontal axis corresponds to physical time. As shown in the figure, a horizontal section of 
a time shape is a time interval between two events: the begin event br, which corresponds to the 
capturing of a token at box input r, and the end event er, corresponding to the production of a 

∆er ∆br 
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scenario s scenario t 

I p I p+1 

execution box 
dependencies 



 5.2 Using an MSD Mode for Performance Analysis  187 

token at the box output r. In general, time shapes are not necessarily parallelograms; we drew 
them like that for illustrative purposes. 

Figure 5.3 shows how the time shapes are arranged according to the assumptions of the basic 
expression, (5.1). The main property of this arrangement is that we can distinguish a reference 
time point Q where one can draw a vertical line through the latest er in execution interval I p and 
the earliest br in execution interval I p+1. In such an arrangement, there is a gap between the time 
shapes.  If we redrew these shapes in Figure 5.3 for the real HSDF execution, there would be no 
gap at all. We implicitly introduced such a gap in the basic execution time estimate. This was a 
legal thing to do, because delaying the events br of Ip+1 in a monotone timing model like ours 
leads to conservative results. In return, our basic expression was relatively simple. 

We reduce the gap between the time shapes by shifting Ip+1 to the left as far as we can such 
that the shapes do not overlap each other. The shifted position of the time shape Ip+1 is shown in 
Figure 5.3 with dashed lines. The absence of overlaps between the shapes implies that we can 
shift the shape safely, i.e. without violating the dependencies between the shapes, because all 
possible dependencies are represented in the time shapes. This way, the execution interval Ip+1 
does not ‘notice’ the shifting and its time shape remains intact.  

We denote the shift distanceγ . Let us see how it can be calculated. For dependency r, let 

re∆ be the position of Ip’s right border relative to the reference point Q. Let rb∆  be the relative 

position of Ip+1’s left border. From Figure 5.3, it is obvious that time shape Ip+1 can be shifted to 
the left by at most:  

)(min
..1

rr
Rr

be ∆+∆=
∈

γ        (5.3) 

The value of γ  has the meaning of time overlap between the time shapes. Because one can 
overlap the time shapes by at least28 γ , we call it the minimum overlap at the scenario transition. 

It plays a key role in our execution time estimation for the dynamic-delay case. Just as λ and σ, 
this characteristic can be derived by analyzing the paths through the HSDF graph, as presented in 
the next subsection. 

 

5.2.3 Minimum Overlap: Graph Analysis 

The minimum overlap of a scenario transition depends on the current scenario and the next 
scenario; let us denote the scenarios as s=s(p) and )1( += pst . We calculate the overlap directly, 

by applying Equality (5.3); therefore we need to calculate the relative positions of the time shape 
borders rb∆ and re∆ for each r.  

It is important to stress here that in this subsection we assume that the HSDF graph executes 

with the actor delays defined by the quantized-delay function ),(ˆ nvd k , not the function ),( nvd k  

that represents the actual actor delays. This means that the shape borders, rb∆ and re∆ , and the 

minimum overlap, γ, are calculated in a conservative way – i.e. small enough – with respect to 
the quantized-delay execution. Note that when considering the actual execution delay, the 
overlap between the execution intervals may be even much smaller than the γ  that we obtain 
here. This is still legitimate, because our final purpose is to give an algorithmic rule to calculate 

                                                
28 In general, one can shift Ip+1 even further, but then it will ‘notice’ the change in the initial conditions and its time 
shape will deform.  
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the loop execution time, and our estimate, being obtained for the quantized-delay execution, is 
still conservative for the actual-delay execution. 

We have already explained the basic idea of the time shape borders using Figure 5.3. In this 
subsection, to calculate the relative positions of the borders rb∆ and re∆ , we give more rigorous 

definitions of those values. Because they in fact represent the time distances between certain 
events, they correspond to the lengths of certain paths through the HSDF graph. We show that by 
first applying the so-called trimmed unfolding to the HSDF graph and then doing a longest path 
analysis on the result of the trimmed unfolding. 

Let us first define and illustrate the trimmed unfolding and then explain its use in our context. 
The trimmed unfolding of HSDF graphs is based on the conventional unfolding, defined in 
Section 3.6.3.  

Recall that the graph resulting from the conventional graph unfolding is called the unfolded 
representation. Let G′  be the unfolded representation of graph G  and H the chosen unfolding 
factor. Then every actor kv  in G  is represented by H actors in the unfolded representation: 

],0[kv′  ],1[kv′  …, ]1[ −′ Hvk . Those actors are joined by edges according to the rules defined in 

Lemma 3.3. For example, the graph in Figure 3.18(b) is the unfolded representation of the graph 
in Figure 3.18 (a) with unfolding factor H = 5.  

The trimmed unfolded representation can be obtained from the ‘conventional’ unfolded 
representation by removing all the edges containing initial tokens. As a result we obtain an 
acyclic graph where all edges have marking 0. For example, Figure 5.4(b) shows the trimmed 
unfolded representation (with unfolding factor 4) of the HSDF graph in Figure 5.2(a). 

We give the name transition graph to the trimmed unfolded representation of the HSDF graph 
obtained for the purpose of analyzing the time shape boundaries rb∆  and re∆ . Comparing 

Figures 5.4(a) and (b), we see that the transition graph gives a detailed view of the dependencies 
between boxes Ip and I p+1. The transition graph can be partitioned into two parts, the ‘upper’ 
part, representing execution interval I p and the ‘lower’ part, representing execution interval Ip+1. 
The upper part contains the nodes that model the actor executions before the transition and the 

- edge of interest  
 

Figure 5.4 Transition analysis example for the HSDF in Figure 5.2(a) 
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lower part models the actor executions after the transition. Therefore, we refer to the cut-line that 
partitions the graph as the transition line (a dashed line in Figure 5.4(b)). 

Let M be the maximum number of initial tokens on any edge of the HSDF graph G . The 
output tokens of Ip can be produced up to M iterations backwards from the transition, and the 
box inputs of Ip+1 can be consumed up to M iterations forwards29. Therefore, to capture all 
possible dependencies, the transition graph has unfolding factor H = 2M, covering the interval 

1... −+−= MjMjn , where j is the first execution index in Ip+1. For our example in 

Figure 5.2(a), M = 2, and therefore every actor kv  is represented in the transition graph in 

Figure 5.4(b) by four actors ],0[kv′  ],1[kv′  ],2[kv′  and ]3[kv′ . We use the trimmed unfolding 

because we can ignore the dependencies of the actor executions in the specified index interval on 
the executions outside that interval, still being conservative. 

Note that the transition graph construction implicitly assumes that M > 0. However, this 
property always holds for the graphs that satisfy basic IPC properties, because strong-
connectedness and liveness imply that the HSDF graph contains at least one cycle having at least 
one initial token. 

So far, we have introduced only the structure of the transition graph, but not yet the actor 
delays in that graph. We also need to specify them before we can use the transition graph to 
calculate re∆ , rb∆ , and γ. 

The delays in the transition graph have to be either equal to the values of the quantized-delay 

function ),(ˆ nvd k  in the interval 1... −+−= MjMjn  or represent those values in a conservative 

way. In fact, we do not fill exact values of ),(ˆ nvd k  into the transition graph, because this would 

require information on not only which pair of scenarios, s and t,  is involved in the transition, but 
also which scenarios come before scenario s and which scenarios come after scenario t within the 
inspected interval of index n. That would complicate the use of the transition graph for the 
calculation of time shape borders, whereby considerable overhead would be involved in terms of 
the required input information. Therefore we choose to abstract from the detailed delay values by 
rather using their conservative estimates. 

Let us define the delays of the transition graph in a conservative way. We denote them as 
])[( fvd ktrans ′ , where ][ fvk′  is an actor in the transition graph and 12..0 −= Mf  is its unfolding 

index, representing the loop iteration with index fMjn +−= . Note that the transition line 
separates the transition graph actors with Mf <  from the actors with Mf ≥ . When assigning 

the delay values to transd  we need to remember that we can only be sure that the loop iteration 

with unfolding index 1−= Mf  belongs to scenario s and iteration f = M  belongs to scenario t, 

because the depths of intervals I p and Ip+1 are at least one. It is not known which scenarios are 
active further than one iteration away from the transition line, so we have to fill in conservative 
values there. Remember that the goal of model transd  is the calculation of re∆  and rb∆ . For  re∆  

and rb∆ , ‘conservative’ means ‘small enough’. Therefore in that case we fill in the minimal 

quantization delay values from all scenarios. So, we have: 

( )kktrans vdfvd •=′ ˆ])[( , MfMf >−<  or 1     (5.4.1) 

                                                
29 In case the depth of the ranges I p or Ip+1 is less than M, the number of actual dependencies between them is less 
than R, but filling this number always up to R in Equality (5.3) keeps the estimate of γ conservative, because this can 
make the value of γ only smaller (and thus more conservative) 
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where ( ) ( )( )kq
q

k vdvd ˆminˆ =•  

( )ksktrans vdMvd ˆ])1[( =−′        (5.4.2) 

( )ktktrans vdMvd ˆ])[( =′         (5.4.3) 

The notations used for actor delays in the example of Figure 5.4(b) refer to the values of 

])[( fvd ktrans ′  complying with equalities (5.4), e.g. ( )1
ˆ vda •• = , ( )1

ˆ vda ss = , ( )1
ˆ vda tt = . 

Based on these delay values, let us calculate the time shape borders rb∆ and re∆ . First of all, 

we observe that there is a one-to-one correspondence between each edge crossing the transition 
line and dependency r. We call such edges the edges of interest and show them in Figure 5.4(b) 
using bold arrows. We index them with index r as well. 

Value ∆br is the ‘as soon as possible’ (asap) time when the consumer node of edge r is ready 
to consume a token. The asap time is relative to the time when the lower part of the graph starts 
its first actor execution. To calculate this asap time, we find the nodes in the lower part of the 
graph that are the first to start, referring to them as the sources of interest Ui. A source of interest 
is recognized by the property that it has solely edges of interest as incoming edges. For example, 
in Figure 5.4(b) the only source of interest is U1 ≡ ]2[1v′ . The asap time of a (consumer) node 

][ fvk′  in the lower part of the transition graph is equal to the largest delay of a graph path from 

any source of interest to node ][ fvk′ , not including the delay of that node. For example, the asap 

time of node ]3[2v′  is •++ aba tt , and it is equal to ∆b2, because ]3[2v′  is the consumer of edge 2. 

The right boundary ∆er can be calculated by the same line of reasoning, except that we look at 
the upper part of the graph, we calculate the ‘as late as possible’ (alap) relative times, we use 
sinks of interest Vl, which have solely edges of interest as outgoing edge, and the paths propagate 
from the producer node of the edge of interest (not including its delay) to a sink of interest. In 
our example, node V1 ≡ ]1[3v′  is the only sink of interest and, for example, ∆e1 is the alap time of 

node ]1[2v′ , which is equal to sc .  

Having calculated all relative time shape boundaries re∆  and rb∆ , it is straightforward to 
calculate the minimum overlap value, γ , using Equality (5.3). For the example in Figure 5.4, we 

examined each edge of interest in Figure 5.4(b) and calculated alap value re∆  for its producer 

and asap value rb∆  for its consumer. Table 5.1 summarizes the results. 

Table 5.1 Asap and alap values for the transition graph in Figure 5.3 

r From To re∆  rb∆  

1 ]1[2v′  ]2[1v′  sc  0 

2 ]1[3v′  ]3[2v′  0 •++ aba tt  

3 ]0[3v′  ]2[2v′  sc  ta  

4 ]1[3v′  ]2[3v′  0 tt ba +  
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We see that table rows 2 and 3 cannot influence the minimum overlap in Equality (5.3) 
because rows 4 and 1 have smaller sums of columns re∆  and rb∆ . The result of the minimum 

overlap analysis is thus: ),min( tts bac +=γ . 

In the next two subsections, we summarize the minimum overlap analysis and update the loop 
execution time estimate, which directly yields the algorithmic rule for the performance analysis 
in the dynamic-delay case, being the major purpose of this section. 

 

5.2.4 Calculating the Minimum Overlap Values for a Multi-scenario-delay Mode 

In the previous subsection, we have, in fact, proposed a method to conservatively calculate 
the minimum overlap between the execution intervals of the given MSD mode in a way that is 
independent of the positions of the intervals in the execution run and the depths of the intervals. 
This is so, because γ only depends on the value of delays filled into the transition graph and 

those delays only depend on which pair of scenarios – s, t – is being considered. To be more 
precise, for a transition from scenario s to scenario t, the asap values ∆br depend only on 
scenario t and the alap values ∆er depend only on scenario s. Therefore, as already mentioned, 
the minimum overlap defined by Equality (5.3) depends only on s and t. Thus, it is valid to speak 
of the minimum overlap between scenario s and scenario t, denoted s,tγ .  

For a given MSD mode, one can rewrite Equality (5.3) as follows: 

))()((min
..1

, tbse rr
Rr

ts ∆+∆=
∈

γ       (5.5) 

The fact that this estimate of the timing overlap depends only on the pair of subsequent 
scenarios simplifies the performance analysis, because, to calculate all the overlaps between the 
execution intervals in a given execution run, one only needs to consider all pairs of scenarios 
rather than all the transition points of that run. This can be very beneficiary from the calculation 
complexity point of view, especially if the execution run is long enough and the number of 
scenarios is small.  

To calculate asap and alap values in the given transition graph, one can apply a longest path 
calculation algorithm. Because the transition graph is acyclic, the algorithm can be based on 
topological sorting [16]. Because the number of edges and actors in the transition graph is at 
most ME2  and MV2 , the topological sorting algorithm complexity is O(M(V+E)), where V and 
E are the number of actors and edges of the main HSDF graph, and M is the maximum number 
of intial tokens on any edge of the HSDF graph G. 

Therefore, the total algorithmic complexity to calculate all overlap values in the given multi-
scenario-delay timing mode of an HSDF graph is O(S M (V+E) + S2R), where S is the number of 
scenarios . This expression includes the complexity of first calculating the asap and alap values 
for all the scenarios and then applying Equality (5.5) for every pair of scenarios. If required, one 
can reduce this complexity by excluding the scenario pairs for which transitions occur only 
rarely or never at all and assuming that s,tγ  for such pairs is equal to 0 (which would lead to only 

a limited loss of accuracy). 
Note that a disadvantage of our current approach is the possibility of an estimate of the timing 

overlap that is too conservative when the HSDF graph has multiple sinks of interest, because of 
the (implicit) assumption that all sinks of interest complete their executions simultaneously. We 
consider an improvement of our technique for such cases as a topic of future work. 
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5.2.5 The Algorithmic Rule for the Dynamic-delay Analysis 

To obtain our final version of the loop execution time estimate for a given MSD mode, we 
subtract the overlaps of the transitions from the basic execution time estimate, given by Equality 
(5.2). As the result, we obtain: 

N∆̂ =  ∑
∈Ss

(λs ⋅ Js  +  (σs – λs) ⋅ Ls ) – s,t
ts

s,t K⋅∑
∈S),(

γ    (5.6) 

where S = { 1 .. S } is the set of scenario indices, s,tK is the number of transitions from scenario s 

to scenario t, and S  is the set of distinct scenario pairs: S = { }tsStsts ≠≤≤ ,,1),( . Just as 

sJ and sL , parameter s,tK  is a loop-level parameter, depending on the application input data, 

obtained from the frame headers of the application. Therefore, we can see that s,tγ is a loop-level 

coefficient. Just as the other loop-level coefficients,sσ  and sλ , this coefficient is calculated by 

applying an analysis algorithm to the HSDF graph.  
Parameters sL  depend on parameterss,tK  and therefore parameters sL  do not need to be 

provided explicitly. We have: 

if s ≠ s(1) => (i.e. if s is not the scenario of the first interval) 

Ls =  ∑
∈ }{\ sq S

q,sK         (5.7.1) 

if s = s(1) =>  

Ls = 1 + ∑
∈ }{\ sq S

q,sK        (5.7.2) 

At this point, we can formulate the algorithm for estimating the loop execution time. 

Algorithmic Rule (Dynamic-delay Analysis Rule)  

Given: 

• the set of  delay vectors for each scenario: ),...)(ˆ),(ˆ(ˆ
21 vdvdd sss = ; 

• the scenario of the first interval: s(1); 

• loop-level parameters: s,tK  and sJ . 

Then, one can estimate the loop execution time as follows: 

1.  Use equalities (5.7.1) and (5.7.2) to obtain sL . 

2. Apply the major static-delay rule to calculate loop-level coefficients sσ  and sλ  – see 

Section 4.4.3. 

3. Apply the minimum overlap calculation algorithm to calculate loop-level coefficients s,tγ . 

4. Apply Equality (5.6) 

The algorithmic complexity of this rule is: 

( )RSEVSMHHKHKKO 2
SSS

23 )()log( +++++  
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where SH  is the maximum value of parameter H  in all scenarios of the given MSD mode; 

parameters K and H are defined in Section 4.4.3 as the number of rows (or columns) in the 
canonic matrix B and the number of the lateness calculation algorithm iterations respectively. ♦ 

Although, in theory, the obtained worst-case algorithmic complexity may in some cases 
indicate a large calculation overhead, in practice the overhead can often be kept limited. We 
already discussed the overhead related to parameters K and H (and thus SH ) in Chapter 4. For 

any IPC graph, parameters M (the maximum number of initial tokens on a single edge) and R 
(the total number of initial tokens on the graph edges) are polynomial in the number of vertices 
in the graph, V, because, as discussed in Section 3.7.2, the total number of initial tokens in any 
cycle of an IPC graph is, in the worst case, linear in V. As for the number of scenarios S, it 
depends on the construction of the MSD mode, discussed in Section 5.3, where we argue that S 
also can be limited in practice. 

 

5.2.6 The Throughput of the Dynamic-delay HSDF Graph 

Before we finish this section, let us use the obtained execution time estimate to give a 
conservative estimate for the throughput, an important performance metric for streaming 
applications. Recall from Section 2.2.5 that, in general, for HSDF graphs with dynamic delays, 
one cannot give a practical way to derive a conservative throughput estimate for an infinite 
HSDF execution run from the statistical characteristics of the execution delays of actors. In other 
words, for streaming applications in general, it is an open problem to give an accurate lower 
bound on the mathematical expected value of the throughput from the characteristics of the 
probability distribution of the actor delays, whereby the calculation overhead to compute that 
bound should be reasonable. 

To contribute to the research in that direction, in this subsection, we give a conservative 
throughput estimate under the assumption that the dynamic delays can be accurately 
characterized by an MSD mode with known parameter values and quantization delay levels.  

Just as in Section 2.2.5, let us denote the number of output data bytes produced by the 
application per HSDF iteration as z(G). Then, for a finite execution run of N iterations, the 
throughput in bytes per second, denoted Nθ , is equal to NNz ∆⋅)(G , where N∆  is the 

execution time. Using the conservative execution time estimate given in Equality (5.6), we 
obtain the following estimate of the throughput for a finite execution run: 

s,t
ts

s,tssss
s

s
N KLJ

N
z

⋅−⋅−+⋅
⋅=

∑∑
∈∈ SS

G

),(

 )(  
)(    ˆ

γλσλ
θ    (5.8) 

This estimate is conservative, i.e. the real throughput is at least Nθ̂ .  

We can extend this finite-execution-run expression to the case of an infinite execution run 
provided that the following characteristics of the actor delays are known: 

NJsp s
N ∞→

= lim)(J , i.e., the probability that the application runs in scenario ‘s’ 

NLsp s
N ∞→

= lim)(L , i.e., the probability that a transition occurs from scenario ‘s’ to another 

scenario. 
NKtsp ts

N
,K lim),(

∞→
=  , i.e. the probability of a transition from scenario ‘s’ to scenario ‘t’. 
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If these characteristics are known, then an lower bound on the long-run application 
throughput is: 

t)(sp(s)p(s)p
z

ts
s,tss

s
s , )(  

1
)(    ˆ

K
),(

LJ ⋅−⋅−+⋅
⋅=

∑∑
∈∈ SS

G
γλσλ

θ   (5.9) 

This equality can be seen as a generalization of Equality (2.7) for multiple scenarios. It gives 
a fundamental relationship between the timing properties of the individual actors and the 
performance of the whole graph. Unfortunately, in general, it does not give a complete answer to 
the problem of obtaining a practical long-run throughput estimate for streaming applications, due 
to two main limitations: 

1. This approach assumes that probabilities )(J sp , )(L sp , and ),(K tsp  exist (in the sense that 

the mathematical limits defining them exist) and that they can be calculated beforehand. 

2. This approach can only be accurate if the MSD mode being employed in the calculation is a 
good approximation of the real actor delays. In general, this can only be true if the number 
of scenarios is large enough, whereas the calculation complexity grows quadraticaly in the 
number of scenarios, which leads to an increase in the calculation overhead. 

However, as we already stressed in Section 2.2.6, the main focus of this thesis is a simpler 
problem: to analyze the performance of finite executions runs whose characteristics of interest 
are provided a-priory, in the frame headers of the input data streams. Thus, we assume that the 
exact values of the probabilities (which, for finite runs, are always defined) are provided a-priori, 
hereby overcoming the first limitation mentioned above. Also, in many practical situations, we 
can also overcome the second limitation because we do not have to define the actor delay 
quantization levels statically, but can do that dynamically, based on a-priori information; 
therefore a working set of scenarios can be constantly updated at run time to only include a 
limited number of scenarios needed for the current frame. The determination of the working 
scenario set is discussed in the next subsection. 

 

5.3 Loop-level Identification of Scenarios 
5.3.1 The Goals 

In the previous section, we assumed that an MSD mode is already defined. In this section, we 
consider the problem of defining an MSD mode. This means specifying the number of scenarios, 

S, and, giving an algorithm that calculates the quantization levels ( )ks vd̂  and execution intervals 

Ip for the any possible application input data processed by the execution run. 
As we already mentioned earlier, in our design flow, the step that addresses this problem is 

referred to as loop-level identification, which belongs to the Application Preparation part of the 
flow. What is exactly meant under defining the scenarios for the given application’s loop of 
interest is explained later in this section. However, informally, we can interpret this step as 
splitting the set of possible loop iteration behaviors into subsets and identifying every subset as a 
distinct scenario s. We also say that this step (indirectly) identifies all the loop-level parameters, 
by giving each of them an application-specific meaning. For example, the meaning of parameter 
Js is that it counts the number of times a behavior in subset s occurs in the execution run.  
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In our work, the behavior of every scenario is defined as a subspace of values of the actor-
level parameters, ωξ . We refer to our scenario definition approach as scenario subspace 

approach. Although having a way to define the scenario behavior, we do not have an own 
algorithmic solution method for efficient identification of scenarios. However, the research work 
of S. V. Gheorghita et al, [28], [24], proposes an automated solution method for this problem 
that can be adapted for our design flow, and we are not aware of any alternative solutions. They 
also develop a scenario subspace approach that is very similar to ours. 

In Sections 5.3.2 – 5.3.4 we explain the main idea of the scenario subspace approach, which is 
essential for the practical use of our performance analysis work. Differently from [28], which is 
designed for single-task (i.e. single-actor) applications, we also discuss the issues relevant to 
multi-task (i.e. multi-actor) applications. In Section 5.3.5 we explain how the scenario 
identification method of [28] can be adapted for our design flow. In Section 5.3.6, we make a 
summary on how the scenarios are defined and used in our run-time performance analysis 
framework. 

 

5.3.2 Basic Issues 

Before we explain the scenario subspace approach, let us first discuss the basics of defining 
an MSD timing mode of an HSDF graph. Instead of first determining the execution intervals and 
then defining the quantization levels for them, as we did in Figure 5.1 for better illustration, we 
specify the MSD mode the other way around. We introduce the scenarios and their quantization 
levels first, and then, from the quantization levels, the execution intervals can be determined. In 
this way, the number of scenarios is determined directly, which makes it easier to ensure that the 
model does not have too many scenarios, thus being usable in practice. The number of scenarios 
should be large enough to provide for enough performance analysis accuracy and small enough 
to keep the overhead of scenarios and scenario transitions limited, (The overhead includes the 
graph analysis for calculating the loop-level coefficients and bit overhead for encoding the 
parameters in the frame headers.) In this section, we provide some hints on how to reach that 
goal in many cases. 

A simple quantization method is to enforce the quantization step for the delay of all actors to 
be a constant value. By selecting the magnitude of that constant, one can directly control the 
quantization error. Unfortunately such an MSD mode would apply to only one particular 
hardware architecture and scheduling, because it relies on physical time values of the delays. As 
a consequence, to specify the values of loop-level parameters Js and s,tK  to be placed in the 

frame headers of the input data stream, one would have to measure all actor delays of the given 
execution run for the given implementation and round them up to the predefined quantization 
levels, this way identifying the scenarios and scenario transitions. This would make the loop-
level parameters only valid for the given hardware architecture and scheduling, making them 
useless for the other implementations, which is not acceptable. 

What also should be avoided is defining a separate scenario for each possible combination of 
the quantization levels. In this case, if we denote the number of quantization levels per actor as 
Q, then the number of scenarios would be expressed as DEPDATA −VQ , where VDATA-DEP is the number 

of HSDF graph actors with data-dependent delays. For example, having 5 levels in a 3-actor 
graph would result in 53 = 125 scenarios, and 53 (53– 1) = 15500 scenario transitions. Although 
the loop-level coefficients could be calculated at design time, the amount of calculations and the 
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sheer number of coefficients could easily go beyond the practical limits. In the situation where 
different actors have mutually independent delays, it is not possible to avoid the exponential 
growth of the number of scenarios. Fortunately, in practice, we can expect that the delays of 
different actors depend on each other because all the actors are involved in processing of the 
same stream of data. Our ‘scenario subspace’ approach relies on the use of actor-level 
parameters to make the dependency between the actor delays explicit. 

 

5.3.3 The Advantage of Using the Actor Parameters in Delay Quantization 

Let us consider a simple example illustrating how the actor-level parametric functions can 
expose the correlation between actor delays. We illustrate it by considering the idealistic case 
where different delays depend on the same parameter. An example is shown in Figure 5.5. There, 
all actor delays are linear in the same parameter Aξ  – in practice that can be the case if each 

actor consists of a loop that executes Aξ  iterations. Suppose that [0, max-Aξ ] is the interval of 

possible values of Aξ . Introducing five quantization levels on Aξ  means splitting this interval 

into five integer intervals: [0,A1ξ ], [ 1A1 +ξ , A2ξ ], [ 1A2 +ξ , A3ξ ], [ 1A3 +ξ , A4ξ ], [ 1A4 +ξ , max-Aξ ]. 

Considering the evolution of parameter Aξ  in different iterations, each time the parameter value 

falls into a different interval, the MSD mode can round it up to the interval’s upper boundary, 
and assign the result as the (quantized) actor delay. Because all actors depend on the same 
parameter, such a quantization leads to just 5 scenarios, not to 125, as in the previous example. 
This example might be a bit idealistic, but what can be expected in practice more often is that the 
parameters of different actors are statistically correlated, which also helps to reduce the number 
of scenarios. 

To give a practical example, the number of AC symbols per MCU – denoted ACξ  – to a large 

extent determines the execution delay of the VLD actor in the JPEG application considered in 
Chapter 3 (see Figures 3.9 and 3.3). At the same time, ACξ  can also have a considerable impact 

on the execution delays of the IDCT actors for a certain implementation of the IDCT algorithm 
in the actor body. In that case, the execution delays of VLD and IDCT are correlated, which is 
favorable for making the number of scenarios as small as possible. 

 

5.3.4 Using the Actor Parameters to Define the MSD-mode Scenarios  

The scenario subspace approach defines the MSD mode based on the actor parameters, ωξ . In 

this way the resulting model is applicable to a wide range of hardware architectures and can 
exploit the mutual correlation between the delays of different actors. 

In the scenario subspace approach, we quantize the actor parameters, ωξ , and, consequently, 

the actor delays are also quantized, indirectly. Through the quantization levels of parameters the 
scenarios are defined. Not all the actor parameters are involved in the scenario definition, but 

14 A +ξ  

Figure 5.5 Mutually dependent actor delays: an ideal case 

A3ξ
 

38 A +ξ  
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only a subset of them. These parameters are called primary parameters. Those are, by 
preference, parameters that have a considerable impact on the execution delays of several actors. 

Before providing more in-depth definitions and explanation of the scenario subspace 
approach, let us give an example. For the JPEG application example mentioned in the previous 
subsection, let us choose ACξ  as the primary parameter. The range of possible values of  ACξ  is 

0..384. We can split that range into five sub-ranges, e.g. [0, 6], [7, 24], [25, 48], [49, 96], 
[97, 384], thus defining five scenarios, for this application (s = 0, 1, 2…). According to this 
definition, the scenario of the application in every iteration n of the loop of interest is determined 
by the sub-range in which parameter ACξ  is located in that iteration. 

The fact that the scenarios are defined in terms of the quantization levels of actor parameters 
makes the loop-level parameters, i.e., Js, Ls, and s,tK , independent of the hardware architecture. 

Consequently, to compute the run-time values of i.e. Js, Ls and s,tK  for the given execution run, 

one can first instrument the application source code with the actor parameter counters (as 
explained in Chapter 3) and then perform the execution run on a high-performance workstation, 
this way getting the trace of all actor parameter values in that run. From that trace, one can find 
the execution ranges Ip of different scenarios and can calculate the values of Js, Ls, and s,tK . For 

example, for the JPEG application, one can compute J1 for the given JPEG image as the number 
of MCU blocks of that image for which ACξ  lies in interval [7, 24] (as defined in our MSD mode 

example given above). 
In case there are multiple primary parameters, the scenarios are defined in terms of their 

combination. For convenience, we put the primary parameters in a vector, PRIMξ . The 

multidimensional space of possible values of PRIMξ  is split into subspaces, corresponding one-to-

one to scenarios.  

Example (Scenario subspaces). Suppose there are two primary parameters, ]2,0[1 ∈ξ  and 

]8,0[2 ∈ξ . We have Tξ ),( 21PRIM ξξ= . Below we give an example of a possible division into 

subspaces:  

s = 0 if TT ξ )3,1()0,0( PRIM ≤≤ ,  

s = 1 if TT ξ )8,1()4,0( PRIM ≤≤ , 

s = 2 if TT ξ )8,2()0,2( PRIM ≤≤  ♦ 

Given the scenario definition in terms of subspaces, for any iteration n of the loop of interest 
we can identify the scenario s to which it belongs. This is done by extracting the elements of 

PRIMξ  in iteration n from the trace of actor parameter values and then identifying the subspace to 

which the obtained PRIMξ  belongs. Recall from Chapter 3 that the extraction of actor parameter 

values can be done offline, when the input stream frame headers are being prepared for the 
application. Therefore, any necessary information about the scenarios, including Js and s,tK , can 

be prepared offline and stored in the frame headers. 
Let us answer the question why we define the scenarios in terms of subspaces and how that 

helps us to keep the error of the MSD mode limited. The MSD mode accuracy is limited because 
it assumes that the actor delays are constant in every scenario. Therefore, to keep the error 
limited, one has to define the scenarios such that the actor delay variation within each scenario is 
limited. The scenario subspace approach achieves this by trying to keep the variation of all actor 
parameters limited within each scenario. It is obvious that, in every scenario, the variation of all 
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the primary parameters is limited because, by definition, the primary parameters stay within the 
scenario subspace. If the subspace is small enough, the error caused by variation of the primary 
parameters is also small enough. To ensure small enough subspaces, one has to make their 
number large enough. Therefore, there is certain trade-off between the number of scenarios and 
the error of the MSD mode. 

As for all the other actor parameters, which we call secondary parameters, one can ensure 
that also their contribution to the total error is limited by using a proper way for classification of 
the actor parameters as primary and secondary. 

One has the most control over the quantization error in case all the parameters are classified 
as primary parameters. However, the number of scenarios grows exponentially in the number of 
primary parameters, and in practice one can expect that most parameters should be classified as 
secondary ones. 

We can propose two rules of thumb for identification of secondary parameters. 
Firstly, a parameter can be classified as secondary if its contribution to the actor delays is 

comparatively small. The contribution of an actor parameter to the delay of an actor at the given 
target multiprocessor platform can be defined as the parameter coefficient multiplied by the 
difference between the maximum and minimum parameter value. If for every actor and every 
representative target platform holds that the contribution of the given parameter is considerably 
smaller than the contribution of some other parameters, then the given parameter is a good 
secondary parameter candidate. Such a parameter can bring only a small contribution to the 
quantization error.  

Secondly, a parameter is a good secondary parameter candidate if it is statistically dependent 
on one or a few primary parameters. In that case, limiting the variation of the primary parameters 
within a subspace leads to the phenomenon where the parameter dependent on the primary 
parameters stays with high probability within a certain limited interval. A typical example is the 
number of bits used to encode the MCU block of a JPEG image – denoted bξ , see Figure 3.3  – 

which depends on the number of AC symbols per MCU block, ACξ  as sketched in the following 

way. Almost all bits used to encode an MCU block of a JPEG image are dedicated to AC 
symbols. For the JPEG images of a certain quality level, one can give a narrow interval for the 
most typical number of bits per AC symbol, e.g. from 4 to 12 bits. Therefore, for most MCU 
blocks with ACξ  lying in subinterval [25, 48], we can be sure that bξ  stays within interval 

]4812,254[ ⋅⋅ = [100, 576] with high probability. 

We know two alternative methods to define the scenarios, namely, a manual one and an 
automatic one. The manual one first finds the primary parameters (possibly, using the above 
rules of thumb) and then splits the range of possible values of each primary parameter into large 
enough number of sub-ranges such that the distance between the quantization levels is small 
enough and the required accuracy of the MSD mode is obtained. An example of an automated 
method is considered in the next subsection.  

 

5.3.5 Applying an Automatic Scenario Identification Technique 

The automated scenario identification technique proposed by S. V. Gheorghita et al in [28] 
consists of three major steps: 

1. Identification of actor-level control variables. 
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2. Scenario selection. 

3. Scenario analysis. 

The first step identifies the control variables of the actor source code that can have an impact 
on the actor execution time. The actor-level control variables are similar to our actor-level 
parameters, but they do not necessarily contribute to the actor execution time linearly. In our 
flow, we prefer actor-level parameters over actor-level control variables, because any 
combination of parameter values can be translated into actor processing times using linear actor-
level parameter functions (see Section 3.2), whereas [28] perform table lookup from the control 
variables to the processing times and it may happen that some combinations are not available in 
the table. Therefore, in our flow, we replace this step by identification of actor-level parameters, 
i.e. actor-level identification, explained in Section 3.2. 

Step 2, the scenario selection, is profiling-driven. Therefore, it requires a training stream, i.e. 
a representative input stream of application data used to generate the results. It also requires the 
corresponding trace of actor processing times, measured using profiling tools. Because their 
work assumes single-actor applications, during the scenario selection, we assume a single actor, 
whose processing time is the sum of the processing times of all actors. Based on the actor 
processing time trace, the scenario selection step defines multiple MSD mode candidates for the 
loop execution run that processes the training stream. Every candidate is identified by a given set 
of quantization levels and the corresponding set of execution intervals generated for the training 
stream. The scenario selection step produces MSD mode candidates with various numbers of 
quantization levels, trying to exploit the accuracy-overhead trade-off. When generating a 
candidate with a given number of scenarios, it tries to minimize the quantization error and the 
number of scenario transitions. 

An important task of Step 3, the scenario analysis, is to imply, for every MSD mode 
candidate, the primary parameters and subspaces of primary parameter values. As proposed and 
automated in [28], the basic goal is to detect a set of primary parameters and the corresponding 
subspaces of primary parameter vector PRIMξ  such that the cardinality of this vector is minimized 

and the value of this vector goes from one subspace to another at every boundary between two 
execution intervals in the given MSD mode candidate. As a result, for every MSD mode 
candidate, this scenario identification technique maps the quantization levels into subspaces of 
the primary parameter values. Every subspace becomes a definition of a scenario. Effectively, 
this step translates every MSD mode candidates into a scenario set candidate. 

As explained in [28], another important task of Step 3 is scenario set evaluation. For 
evaluation, one needs to measure the impact of different scenario set candidates on the run-time 
optimization goal, such as quality/resource budgets/energy, whatever is intended for this 
application. In a multiprocessor-oriented implementation trajectory like ours, for evaluation, it is 
recommended to run the design flow for several representative instances of the application-
domain specific platforms. In the end of every run of the design flow, for the given intra-
application mapping, one can run a simulation of the run-time adaptation manager, evaluating 
the gain in the optimization goal for every candidate set of scenarios. One has to weigh this gain 
against the overhead in terms of the processor clock cycles consumed by the run-time adaptation 
manager and the number of bits required to encode the parameters in the frame headers. 

In the end of this subsection, we can conclude that the considered automation technique fits 
well into our implementation trajectory, with some minor modifications. In this context, the last 
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important thing to mention is the fact that, unlike [28], we do not assume static (conservative) 
quantization levels for each scenario. As mentioned before and explained in the next subsection, 
to ensure good accuracy and guaranteed performance, we calculate the quantization levels 
dynamically, for every execution run of the loop of interest. We do this based on the run-time a-
priori actor-level parameter values calculated (and encoded in the frame headers) offline for 
every scenario subspace, as explained in the next subsection. 

 

5.3.6 Scenario Subspaces and Run-time Execution Time Prediction 

Having explained the foundations of the scenario subspace approach, in this subsection, we 
define the MSD mode based on scenario subspaces. After this, we can explain how our 
performance analysis method uses the scenarios to predict the loop execution times at run time. 

Definition (A subspace-based MSD mode) is an MSD mode where the scenarios are defined as 
subspaces of the actor-level parameter values. The MSD mode is defined by: 

1. the set of scenario subspaces; 

2. given an execution run of the loop of interest, the method to determine to which scenario each 
iteration n belongs; 

3. given an execution run, the method to calculate the quantization levels of the actor delays.♦ 

Below we define these three notions one-by-one.  

Definition (Scenario subspaces) Let ξξξξ PRIM denote the vector of primary parameters. The 
subspace of scenario s can be specified by a predicate (i.e., a Boolean function) πs(ξξξξPRIM), which 
defines a subspace in the space of possible values of vector ξξξξPRIM – namely the subspace where 
predicate πs evaluates to true. 

For the predicates of the scenario set should hold: 

a.   s ≠ t   ⇒   πs ∧ πt = 0 ,  meaning that different subspaces do not overlap 

b. π1 ∨ π2 ∨ π3 ∨… = πpossible,  where πpossible is the predicate specifying all possible values of 
the primary parameters; this way the subspaces cover the complete space of values of 
ξξξξPRIM.  

♦ 

For instance, in the scenario subspace example given in the previous subsection, the predicate 
for s = 0 can be expressed as follows: 

π0 (ξPRIM ) = TT ξ )3,1()0,0( PRIM ≤≤  

Definition (The method to determine to which scenario iteration n belongs.) Let ξξξξ PRIM(n) 
give the values of the primary actor parameters in iteration n of the given execution run. Due to 
properties A and B in the definition of the scenario subspaces, there should be exactly one 
predicate πs taking Boolean value 1, which identifies scenario s to which iteration n belongs. ♦ 

Definition (The method to calculate the quantization levels of actor delays.) The purpose of 
this method is to give a quantization level of the delay of every actor vk in each scenario s, 

denoted )(ˆ
ks vd . To make the quantization levels conservative, for each parameter ξω in each 

scenario s we use the maximum value of that parameter encountered within all iterations 
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belonging to scenario s. We call that value the characteristic parameter value and denote it as 

s,ω̂ξ :  

s,ω̂ξ = max (ξω(n) | n = 0..N − 1, πs(ξξξξPRIM(n)) = 1)   (5.10) 

Given the characteristic parameter values, we can calculate the characteristic value of the 
processing time of every actor, using the actor parameter function (see Section 3.2): 

skskskkks CCCCvt ,,,22,,11,0,
ˆ...ˆˆ)(ˆ
ΩΩ ⋅++⋅+⋅+= ξξξ    (5.11) 

Finally, using the computation delay relation, we obtain the quantization level of the actor delay 
(see Section 3.1): 

    ( )kksks vvtRvd ),(ˆ)(ˆ
comp=        (5.12) 

♦ 

This definition completes the formal definition of the multi-scenario timing mode of the 
HSDF graph. We finish this subsection by summarizing the representation of the MSD mode in 
the implementation trajectory for streaming applications adopted in this thesis. It consists of 
three parts: 

a. when designing the application, the application designer identifies the loop-level scenarios 
during the Application Preparation part of our implementation trajectory; 

b. the application generating the input data stream (e.g. the video encoder) fills the frame 
headers with the loop-level parameter values – i.e. the scenario of the first interval, s(1), 
the loop-level parameters Js and s,tK  (recall from Section 5.2.5 that Ls can be derived from 

s,tK  and s(1)) – and characteristic actor parameter values – s,ω̂ξ , once per every frame; 

c.  at run time of the user application, the quality adaptation manager decodes Js, s,tK  and 

s,ω̂ξ , and applies Equalities (5.11) and (5.12) to find the quantization levels; finally, the 

manager executes the algorithmic rule for dynamic-delay analysis (see Section 5.2.5). Note 
that the quantization levels cannot be pre-encoded in the frame headers, because that would 
make the input data stream dependent on the target hardware platform and mapping. 

Hereby, the major goal of performance analysis is achieved – i.e. accurate prediction of the 
important performance metrics for timely adaptation of quality/energy consumption/resource 
budgets. In the next chapter we apply our performance analysis method in an application case 
study. 

 

5.4 Summary and Notes 
This chapter introduces a performance analysis framework leading to an algorithmic rule for 

predicting the data-dependent execution time of an application based on run-time workload 
characteristics given in the application headers. In line with the goals of this thesis, the estimates 
provided by our framework are guaranteed, i.e. conservative and giving good expectations on the 
achieved accuracy. Our framework is based on the integration of contributions of multiple 
execution intervals that are parts of the total execution run. The contribution of intervals is 
estimated in a conservative way, based on the technique proposed in Chapter 4. The key idea of 
this chapter is the minimum overlap analysis technique. This technique does not follow a naïve 
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method of integration of contributions by a plain addition. Instead, it takes into account that, in 
an HSDF graph, different relevant events of the given execution interval occur at different times. 
This leads to tighter combination of contributions during integration than a plain addition could 
give, which suggests a good accuracy improvement.  For special cases, indicated in the 
description of this technique (i.e. multiple sinks in an HSDF graph), this technique may require 
some refinement in future work, to make the combination of contributions tighter. In our 
implementation trajectory, the minimum overlap analysis contributes to the loop-level 
characterization, i.e. the run-time calculation of coefficients of the loop-level parameter function. 

Our framework requires only a limited a-priori information overhead in the application 
header, because we define the execution intervals in terms of a set of so-called scenarios. Each 
scenario is specified by a conservative assignment of an actor delay level to every actor. The 
overhead of our analysis framework depends on the number of scenarios, because for every 
scenario our approach needs to know the values of certain parameters and also for every scenario 
transition it needs to know the number for transitions between the given pair of scenarios. The 
number of scenarios can be kept small using our scenario-subspace approach, described in 
Section 5.3. 

Our first publication on static-delay analysis and integration of execution intervals for 
multiprocessor streaming applications is [77]. In [76], [78], [79] we introduced the minimum 
overlap technique and worked out the static-delay analysis of execution intervals in more detail. 

As we mentioned in Section 1.5.1, among the related work, the only closely comparable work 
is the work of Zhe Ma et al [55], [56]. In [55], they introduce an analogue of our MSD mode for 
a streaming application case study. Although the focus of that work is run-time adaptation for 
minimization of energy consumption, they also implicitly introduce an accompanying run-time 
performance analysis technique that has much in common with ours. However, because their 
static-delay analysis only supports limited-length execution runs, their execution intervals 
include a constant number of loop iterations. Our analysis technique exploits steady-state 
analysis of HSDF graphs, which allows it to be more flexible, because it can extend every 
interval until it encounters a scenario transition. This allows us to minimize the number of 
execution intervals, which helps to reduce the possible prediction error introduced at interval 
boundaries. Note also that [55] does not take into account the timing overlap between the 
execution intervals, which makes their technique inefficient when significant timing overlap is 
present. Later on, in [56], they proposed ‘interleaving’ of different static schedules being 
combined together on the same multiprocessor resources. In that paper, they exploit – 
independently – a similar idea as we do, namely, the shifting the static schedules until the best 
timing overlap is reached. However, their timing overlap calculation does not support 
dependencies between the schedules being combined together, so, to support streaming 
application, it requires extensions.  

In the next chapter, we support our claims on good accuracy, low overhead and usefulness for 
run-time adaptation by doing an application case study. 
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6 The Practical Use of Performance Analysis 
In Chapter 1, we indicated that the practical use of our performance analysis framework is to 

provide optimization guidelines in two major areas: 
a. mapping streaming applications to a multiprocessor platform, 
b. dynamic adaptation of the application and implementation parameters to the application 

workload. 
Providing the performance analysis guidelines for mapping – point ‘a’ above – is described 

and illustrated in Chapter 3, using a JPEG image decoder as an application example. In this 
chapter, we do a case-study supporting point ‘b’, and we use an MPEG-4 decoding application 
for that. Hereby, we show how the techniques described in Chapters 3, 4 and 5 together can be 
used in a practical quality adaptation framework.  

In this case study, we investigate the costs and benefits that the performance analysis 
ultimately yields for the end user. For this purpose, we constructed a multiprocessor simulation 
environment, modeling the hardware timing at the processor instruction level. This allows us to 
evaluate the most important aspects without realization in the real hardware and with reasonable 
accuracy. 

This chapter is organized as follows. Section 6.1 describes the case-study application and the 
accompanying quality-adaptation manager. We explain why the latter needs accurate 
performance analysis. Section 6.2 reports on the design-time part of the performance analysis, 
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involving the framework presented in Chapters 3-5. In Section 6.3, we present the results of 
dynamic execution-time prediction in terms of benefits and overhead. Section 6.4 summarizes 
this chapter. 

 

6.1 Application: an MPEG-4 Video Object Shape Decoder  
6.1.1 Application Overview 

As our application case study, we use the same application example as the one briefly 
introduced in Chapter 1, see Figure 1.7. This application performs the shape decoding for an 
arbitrary-shape video object, defined in the MPEG-4 standard [42], [12]. According to the 
standard, a video presentation may consist of multiple video objects that can be opened and 
closed dynamically by the user or by a remote system. Therefore, in terms of this thesis, one 
video object corresponds to one active application. The resource requirements per application 
can considerably change at run time, because the objects can change in size and in shape. 
MPEG-4 video objects are thus good representatives of the streaming applications with dynamic 
workload. 

In the MPEG-4 standard, the video frames are referred to as ‘video object planes’ (VOPs). 
The VOPs are grouped in so-called groups of pictures (GOPs). Every VOP in a GOP except the 
first one, needs the previous VOP to be decoded first, because it uses the results of the decoding. 
VOPs in different GOPs do not depend on each other. 

Figure 6.1 shows the top-level functional diagram of one video object decoding application. 
The application contains a few core subroutines, shown as ovals. Those are GOP Decoder, VOP 
Decoder, and QoS Manager. Some of those subroutines contain functionality that can be 
distributed between a few processors. The application also uses a few peripheral modules such as 
Timer, VOP Presenter, the input memory queue and the output memory queue, shown as boxes. 

The application presents VOPs on the video screen at a constant rate, which is set by the 
Timer module. The Timer signals the moments of time when the presentation of each video 
frame should start. These equidistant time moments at which the frames should be ready are the 
deadlines that should be met by the application. In our case study, missing some deadlines is still 
acceptable (although discouraged). Thus this application is a soft real-time (SRT) application. 

As it is illustrated in Figure 1.7 in Chapter 1, each VOP is a variable-size two-dimensional 
array of macroblocks (MBs). The macroblocks are 16x16 pixels each. For simplicity, we assume 
that every VOP in the output queue takes a fixed portion of memory, equal to the size of the 
largest possible macroblock array for a VOP. 
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As also illustrated in Figure 6.1, each VOP in the output queue has a tag that indicates the 
deadline of that VOP. The VOPs with earlier deadlines are in front in the queue. At each 
deadline, the VOP Presenter looks in the queue for the first VOP in the queue whose deadline is 
not later than the current deadline. That VOP is selected as the next one to be presented. Ideally, 
that would be the VOP whose deadline tag coincides with the current deadline, but it is possible 
that that VOP was not decoded on time, and a later VOP is selected. The selected VOP of choice 
is kept in the queue at least until the next deadline. All the VOPs in front of that VOP are 
removed from the queue as they are no longer needed. 

As illustrated in Figure 6.1, the whole application can be seen as a nested loop. The top-level 
loop is the GOP-decoding loop, containing the VOP-decoding loop, which, in turn, contains the 
MB-decoding loop. The latter produces one MB per iteration at the output, and it is expected to 

Figure 6.1 MPEG-4 video object shape decoding application 
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have produced all the MBs of the current VOP by the deadline. Therefore, we identify the MB-
decoding loop as the loop of interest, which means that we directly analyze the performance of 
that loop at run time to see if the loop can meet its deadlines. 

Recall that our performance analysis techniques operate under the assumption that the input 
data of the loop of interest is always provided on time. In our case study, this requirement means 
that the input queue should be filled fast enough such that the loop of interest always finds the 
required input data when it is needed. This requirement is realistic because the input video data is 
coded (compressed) and therefore it involves much less off-chip and on-chip communication 
traffic than the decoded (uncompressed) video stream at the output.  

A similar requirement holds for the output queue. The environment should consume the 
output data of the loop of interest fast enough so that the loop always has the space to store the 
output data. This requirement is satisfied automatically, because, as explained later, the VOP 
Decoder subroutine starts the MB-decoding loop only when there is space enough for the whole 
VOP.  

Our case study covers only part of the VOP decoding procedure defined in the MPEG-4 
standard. Each VOP consists of three color planes describing the VOP ‘texture’ (the colored 
image) and one plane with the VOP ‘shape’ (defining the contour of the image). All four planes 
require that the input bitstream be parsed, but the texture planes also require some extra 
processing (such as inverse quantization, inverse discrete cosine transform, etc). Parsing the 
input bitstream and producing the shape plane can be done independently from the texture 
processing. Therefore, as also illustrated in Figure 6.1, we put the texture processing into a 
separate application and focus only on the bitstream parsing and shape decoding. We assume that 
the texture decoding runs in the background fast enough so that it does not influence the timing 
of our case-study application. This requirement is realistic because the texture-processing is 
characterized by better-predictable performance and can be implemented efficiently on high-
performance domain-specific processors or hardware [9], [20]. 

Now let us consider the subroutine called QoS Manager. It is the part of application that is 
responsible for treating the situation when the computational workload grows dynamically to 
such a high magnitude that not all the deadlines can be met. As shown in Figure 6.1, QoS 
Manager is called once per GOP with a request to generate a decision. The Manager decides how 
many VOPs of the current GOP are to be skipped due to lack of computational resources. (Those 
have to be the last VOPs in the GOP because of the chain dependency of every VOP on the 
previous VOP.) The algorithm used by the Manager is rather simple, but it relies on a complex 
performance analysis technique to predict the decoding times of the VOPs contained in the GOP.  

Because the QoS Manager is the part where we apply our run-time performance analysis 
techniques, in the next two subsections, we describe the Manager in more detail. 

 

6.1.2 QoS Manager  

The role of the QoS Manager subroutine can be classified as ‘local quality adaptation 
manager’ as we define it in Chapter 1 (see Figure 1.1). We call the QoS Manager local because it 
controls only one application. Recall that the role of quality adaptation in general is to treat the 
computational overload by scaling down some computational complexity parameters of the 
application such that the processor workload decreases. Recall that we refer to the application 
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complexity parameters that can be scaled by the Manager as active parameters whereas the 
parameters that cannot be scaled are called the passive parameters. 

Unfortunately, Macroblock Decoder subroutine has only passive parameters. Although some 
of those parameters are active in a broader context, they cannot be scaled by a local manager; 
only the video encoder (i.e., the remote application that produces the input data stream for this 
application) can scale those parameters [12].  

Therefore, our QoS Manager works at a higher level of the loop nesting, namely, at the level 
of GOPs, where there is one active parameter – the number of VOPs to be skipped. Under the 
resource overload conditions, our manager decides to skip some VOPs in the GOP, thus 
accepting some unavoidable loss in the quality of the video content presented to the user. 

Figure 6.2 shows the basics of the Manager’s implementation. As we illustrate in the figure, 
the QoS Manager subroutine can be expanded into two subroutines: the VOP Decoding-Time 
Estimator and the VOP Skipping Controller. Those two subroutines correspond to two blocks in 
Figure 1.8(b) in Chapter 1. The Decoding-Time Estimator acts here as the ‘performance 
analyzer’ and the Skipping Controller acts as the ‘optimization unit’ for optimizing the visual 
quality. The Controller sets the number of VOPs to be skipped, NSKIPPED, trying to make it as 
small as possible. The QoS Manager communicates NSKIPPED back to the requestor as the 
‘decision’ taken by the Manager. Note that, in our application case study, every VOP in GOP, 

Figure 6.2 QoS manager 
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except the first one, depends on the previous VOP and, therefore, it is the last NSKIPPED VOPs in 
a GOP that get skipped. 

The Estimator provides the Controller with the execution time estimates for every VOP in the 
current GOP. Using our notation for the execution time, we denote the result of estimation as 

N∆̂ [jVOP], where jVOP = 1… NVOP is the VOP index and NVOP is the number of VOPs in the GOP. 

To obtain the estimates, the Estimator uses the algorithmic rule for dynamic-delay analysis 
introduced in Chapter 5. 

The required input information for the dynamic-delay analysis is encoded in the VOP headers. 
Recall from Section 5.3.6 that the inputs are the first scenario identifier, s (1), loop-level 

parameters – Js,  Ks,t – and characteristic values of actor-level parameters – s,ω̂ξ . 

In this case study, the only part of the application whose timing behavior is taken into account 
in our models is the loop of interest. Thus we ignore the delays of subroutines GOP Decoder, 
VOP Decoder and QoS Manager. This can be justified by the fact that the delays of GOP/VOP 
Decoder subroutines, which are responsible only for the header parsing, are significantly smaller 
than the VOP decoding times. As for the overhead of the QoS Manager itself, it consists of the 
Estimator overhead and the Controller overhead. Later in this chapter we see that, in this case 
study, the most complex estimation work can be done at design time, so that the run-time 

overhead to calculateN∆̂  is negligible. If necessary, it is relatively straightforward to take into 

account the worst-case delay introduced by these three subroutines. 
The Skipping Controller is also fast enough to be neglected, because it uses an algorithm 

which is much less complex and computation-intensive than the Estimator. The Skipping 

Controller is the direct user of the N∆̂ [ jvop] estimates generated by our run-time performance 

analysis framework. We use it in this chapter to evaluate the impact of performance analysis 
accuracy on the video quality. Therefore, in the next subsection we focus on the Controller. As 
for the Estimator, we describe it in Section 6.3, after we have introduced the necessary details on 
the design flow for this application in Section 6.2. 

 

6.1.3 The Frame-skipping Algorithm 

The skipping algorithm is illustrated in Figure 6.3(a). The VOPs are shown as indexed 
rectangles, where index ‘K’  is an absolute VOP index, counting the VOPs from the beginning of 
the input video stream. Each GOP covers only a certain range of indices: K,  K+1, K+2,…, 
K + jVOP , …, K + NVOP − 1. The horizontal dimension of each rectangle shown in the figure 
corresponds to the time span of VOP decoding, from the starting time to the completion time. 

The figure illustrates the generic structure of a GOP. The first VOP in a GOP is called I-VOP, 
the rest are called P-VOPs. (MPEG-4 coding also knows so-called B-VOPs, but we do not 
support them is this case study.) An I-VOP is decoded independently of the previous VOPs. On 
the contrary, the decoding of a P-VOP depends on the previous VOP. Consequently, if the 
Manager decides to skip a VOP, it has to skip all the VOPs that come later in the same GOP. 
Thus, as already mentioned, parameter NSKIPPED specifies the last NSKIPPED VOPs in the GOP 
which are to be skipped. 

The Skipping Controller estimates the VOP completion times in order to check them against 
the grid of equidistantly placed deadlines to predict which VOPs will miss their deadlines. The 

completion time estimates are calculated by adding N∆̂ [ jVOP] to the estimated starting times – 
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see Figure 6.3(a). Typically, the starting time of VOP ‘ jVOP’ is equal to the completion time of 
VOP ‘jVOP − 1’, but this rule has an exception due to a limited capacity of the output queue, as 
explained later.  

In Figure 6.3(a), the grid of deadlines is shown using marks on the time axis. We see that 
VOPs K+1 and K+4 miss their deadlines, because their completion times are later than the 
deadlines.  

Let us explain how the Skipping Controller makes the skipping decision. At the tail of the 
current GOP, the Controller identifies the longest sequence of VOPs that miss their deadlines. 
The Controller assigns this sequence to be skipped. If there are any VOPs in the middle of the 
GOP that miss their deadlines, they are kept, so that the VOPs that follow them and do meet their 
deadlines can be kept as well. For example, in Figure 6.3(a), only K + 4 is skipped because it is 
in the tail. K + 1 is kept, because K + 2 and K + 3 meet their deadlines. 

Now let us come back to the estimation of the VOP starting times. For the I-VOP (the first 
VOP in the GOP,  jVOP = 1), the starting time is known. It is the current time, reported by the 
VOP Timer, which measures it directly and reports it to the Skipping Controller. At the start of 
every GOP, the Timer module reports the current position at the time axis with respect to the 
deadline grid; for the example in Figure 6.3(a), the Timer would report that the current time is in 
front of the K – 1-th deadline and that the distance to the deadline is δ. Knowing the exact 
position at the time axis is important for the Skipping Controller to build a realistic estimate of 
which VOPs in the current GOP will meet their deadlines. 

Figure 6.3 Skipping management for an example GOP with 5 VOPs 
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For jVOP = 2, 3…, the starting times, are estimated recursively, first for jVOP = 2, then for 

jVOP = 3, etc. The estimated starting times depend on N∆̂ [ jVOP] and the number of VOPs that can 

fit in the output queue – i.e. the output-queue capacity.  
Let us first assume that the output queue has an infinite capacity. In that case, the GOP 

Decoder never postpones decoding a VOP due to the full output queue. Therefore, the starting 
time of every P-VOP is equal to the completion time of the previous VOP.  

In practice, the output-queue capacity is finite. Therefore, the Controller takes into account 
the fact that, due to the full output queue, the GOP Decoder postpones starting a new VOP until 
at least one place is freed in the queue by the Presenter. Figure 6.3(b) shows an example. 
Suppose that the output queue capacity is 4 VOPs. Then, after the completion of VOP K + 3, all 
four places are filled, containing VOPs K, K + 1, K + 2, K + 3. Since VOP K is needed in the 
decoding of VOP K + 1, the Presenter keeps VOP K in the queue until the next deadline, 
deadline K + 1. Only at deadline K + 1, the Presenter removes VOP K from the queue, and then 
there is place for K + 4, and the decoding for that VOP starts. This is taken into account by the 
Controller when it estimates the starting times. 

The Controller depends on the accuracy of the N∆̂ [ jVOP] estimates made by the Estimator. In 

the next subsection, we show that accurate execution time estimations are very important for the 
Controller to produce good results. 

 

6.1.4 The Sensitivity of Visual Quality to the Accuracy of the Performance Analysis 

To evaluate the need for accurate VOP decoding time estimates, we simulated our application 
with the Skipping Controller enabled and with the Decoding-Time Estimator temporarily 
replaced by an artificial ‘oracle’ estimator, predicting the decoding times of all VOPs exactly and 
adding a random error to them when producing the estimations. In the random error generator, 
we assumed that the relative prediction error is normally distributed, being conservative with a 
probability of 95%. This model of prediction error reflects the fact that for soft-real-time 
applications, our performance analysis technique can produce predictions that are not 100%-
guaranteed to be conservative. Allowing the results to be occasionally non-conservative saves 
analysis effort and contributes to better accuracy. 

Note that the interval between the deadlines was chosen small enough to create significant 
computational overload, such that one could not avoid dropping at least 20% of the VOPs. The 
output queue capacity was set to three VOPs (the minimum required for a smooth performance). 

Figure 6.4 shows the dependency of the quality (as the percentage of VOPs presented to the 
user) on the average VOP-decoding-time estimation error. This dependency is obtained for one 
of the sample video streams from our case study. It illustrates that prediction errors may lead to 
an unacceptable drop in quality, the reason for that being that the higher the overestimation the 
more VOPs are skipped by the Skipping Controller. 

In the next section, we apply our performance analysis techniques to this case study with the 
purpose to achieve a small enough prediction error, and a close to 100% guarantee of 
conservative prediction results. 

 



 6.2 Design-time Performance Analysis of the MPEG-4 Decoder  213 

6.2 Design-time Performance Analysis of the MPEG-4 Decoder 
6.2.1 Overview and Recapitulation  

In this section, we take the MPEG-4 shape decoder application through the design flow 
introduced in Chapter 2. We focus on the performance analysis aspects of the design flow. 

Let us give a detailed overview of this section. In the beginning, we specify two starting 
points for the design flow: the description of the target system-on-chip platform (Section 6.2.2) 
and the HSDF graph G with mapping constraints (Section 6.2.3). Recall that the graph nodes are 
computation subroutines – actors. The mapping of graph G to the target platform is expressed in 
terms of the implementation process network, PQ, which encloses the actors and the edges of 
graph G into the processes and the channels, mapped to the processors and the communication 
network. 

Sections 6.2.4 and 6.2.5 describe Part I of our design flow, namely the Application 
Preparation. This part identifies the application’s complexity parameters, which are key aspects 
for dealing with the data-dependency in our performance analysis method. Recall that the 
parameters are defined at two granularity levels: the actor level (the finer granularity) and the 
loop level (the coarser granularity).  

The front-end of the Application Preparation is the analysis of the application timing at the 
actor level. Section 6.2.4 reports on the actor-level analysis for our case study, based on the 
methodology described in Sections 3.2 and 3.3. For the given application, we identify the actor-
level parameters – denoted ωξ . The linear combination of actor-level parameters and constant 

hardware-dependent coefficients models the actor processing times, i.e. the processor cycle 
counts of actor executions. The actor processing times are the main ingredients of the detailed 
dynamic timing mode, which is our highest-accuracy actor timing model. That model assumes 
that for every loop iteration n the values of all actor-level parameters − ωξ (n) − are known 

exactly, so that the processing times can be accurately calculated for each iteration of every 
actor. 
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In Section 6.2.5, we transform the detailed timing mode into a less thorough actor timing 
model, reducing the performance analysis overhead at the cost of giving up some accuracy. This 
timing model is referred to as the multi-scenario delay (MSD) mode. The main idea of this mode 
is to reduce the amount of information in the actor timing model by applying quantization to it. 
Recall that the core of the MSD mode is a set of scenarios, each scenario defining a quantization 
level for the actor processing times and for all actor-level parameters. Unlike the detailed mode, 

the MSD mode requires only one set of actor-level parameter values per scenario s − s,ω̂ξ  − and 

not per loop iteration n.  
The MSD mode brings us closer to our goal, which is to enable the run-time estimation of the 

execution times. Recall that our performance analysis method estimates the execution times as a 
linear combination of loop-level parameters and loop-level coefficients, where the loop-level 
parameters count the frequency of different scenarios (parameters Js) and the transitions between 
them (parameters Ks,t). As for the loop-level coefficients, they are determined later in the design 
flow. 

The main result of the Application Preparation, is thus the definition of the actor and loop-

level parameters to be encoded in the VOP headers: s,ω̂ξ , Js, Ks,t – see  Figure 6.2. 

Section 6.2.6 is refers to the first and major step of Part II of our design flow, i.e., the intra-
application mapping flow. Intra-application mapping is a complex problem solved in multiple 
mapping steps (see Figure 3.7). In our case study, due to the mapping constraints, only the 
processing and communication budget assignment steps are left to be done, which is the topic of 
Section 6.2.6.  

Section 6.2.7 considers the second step of Part II (mentioned in the flow overview in 
Section 2.3.4).  This step is optional and it is dedicated to finding the analytical formulas for the 
loop-level coefficients, to reduce the overhead of the Decoding Time Estimator. 

After this step, the VOP Decoding Time Estimator is well-equipped for the run-time 
estimation of the VOP decoding times (see Figure 6.2). The results of the VOP decoding time 
estimation are postponed until Section 6.3.  

 

6.2.2 Target Platform 

In this subsection we describe not only the target platform, but also the environment we used 
to simulate it. 

For this case study, the MPEG-4 application was written in C++ and then compiled and tested 
for the ARM7TDMI processor architecture, which is a RISC core. To simulate the application, 
we used the C++ programming environment and the ARMulator simulator provided by ARM 
Ltd [3], modeling the system timing at the level of processor instructions. 
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We extended the ARMulator single-processor simulation environment to handle the 
multiprocessor case. Our environment can run several ARMulators in parallel together with a 
simulation model of the ÆTHEREAL on-chip network for the communication between them. We 
simulate the network as a set of abstract channels, characterized by fixed bandwidth, latency, 
input buffer capacity and output buffer capacity. 

In this case study, we assume a multiprocessor consisting of a 5x5 matrix of processing tiles, 
as shown in Figure 6.5. Each processing tile is an ARM7TDMI core running at 100MHz with a 
certain amount of local memory, enough to accommodate the instruction code and the local data 
of several computation actors. As explained below and illustrated in Figure 6.5, the tile 
processors may play one of the two possible functions and their local memory architectures 
differ respectively. Each processing tile is connected to a local network router. All the routers 
together make a 5x5 grid topology. Note, that in our implementation, every active MPEG-4 
shape decoding application takes only two processing tiles out of 25; multiple such applications 
can be running on different tiles of the platform if multiple video objects are active in the video 
presentation. Which two tiles are assigned to which application is decided by the run-time 
mapping manager, which is outside the scope of this thesis. 

Some processors must have direct and fast access to a large memory storage. We call such 
processors memory controllers. Not every processor can afford to have a large local memory 
resource, and therefore the memory stores and retrieves blocks of data on behalf of the other 
processors. The other processors, called processing engines, use comparatively small local 
memories and run compute-intensive parts of the application with a highly localized range of 
memory accesses (delegating the wide-range accesses to the memory controllers). Typically, the 
hardware architecture of a memory controller would be optimized for efficient transfers of data 
blocks, handling multiple data transfers in parallel and performing memory address calculations 
efficiently. Also, typically a processing engine would be an application-domain specific 
processor, optimized for the given application domain. However, due to limitations in our 
experimental setup, we use the general-purpose ARM7TDMI architecture for both the processing 
engines as well as the memory controllers. 
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Note that the described multiprocessor falls into the generic template we described in 
Section 3.4, and is similar to the multiprocessor network-on-chip architectures described by 
other researchers, e.g. by Sander Stuijk et al in [88]. 

In Section 3.4, we referenced a sample set of realistic (i.e., feasible for modern 
microelectronics technology) characteristics of the ÆTHEREAL on-chip network. In our case 
study, we assume a network that is functionally the same, but running at 100 times lower clock 
frequency, i.e., not 400MHz, but only 4 MHz. Therefore, some technological constants we use 
for the ÆTHEREAL network (see Section 3.4) need to be scaled by a factor of 100. Some of the 
scaled values are given in Table 6.1. 

Later on, in Section 6.2.6, we use this table to calculate the communication delays of our 
case-study application. The purpose of scaling is to make the communication delays large 
enough compared to the computation delays of the ARM7TDMI@100MHz architecture; 
otherwise, the communication would be too much underutilized. Note also that, unlike 
Section 3.4, where we assume ARM processor clock frequency of 133MHz, in the examples of 
this chapter we assume a frequency of 100 MHz. 

To program the multiprocessor using our methodology, one needs the means to express the 
processes and channels of the application, as well as to express the resource binding and resource 
budgets of the processes and channels. For this purpose, we used the YAPI C++ parallel-process 
simulation library, which gives the basic infrastructure to express the processes and channels 
[45].  We extended YAPI with the following features: 

- running the processes on different instances of the ARMulator; 
- modeling the TDMA scheduling of different processes on the same processor; 
- modeling the guaranteed-bandwidth ÆTHEREAL network channels. 
Using this infrastructure, we simulated the implementation process network of the MPEG-4 

shape decoder application. This process network is described in the next subsection. 
 

6.2.3 IPC Graph and Implementation Process Network 

In this subsection, we specify the HSDF graph G – describing the parallelism and 
synchronization inside the application – and the implementation process network PQ, describing 
the mapping constraints. In this case study, the mapping constraints impose a complete binding 
of all computation actors to the processes and of all data transfers to the channels. Recall that, in 
our design flow, every binding decision is reflected in graph G by transformations of the graph 

Table 6.1 Network constants used in this chapter  

Notation Meaning Value 

 ÆTT  TDMA period of the network routers 192 µs 

Æ-LINKB  Link bandwidth in one direction 8 · 106 byte/s 

Æ-ROUTERd  Latency per router  0.75 µs 

Æ-minZ  Network data size granularity 6 bytes  

Æ-minB  Network bandwidth granularity 31.25 · 103 byte/s 

 



 6.2 Design-time Performance Analysis of the MPEG-4 Decoder  217 

structure. Having a complete binding means having the final structure of graph G, and we refer 
to the final graph structure as the IPC graph (inter-process communication graph). In this case 
study, the final graph structure is already defined in the beginning of the design flow. 

Let us first consider the implementation process network, PQ. Recall that it defines a graph-
like structure whose nodes are processes in set P, joined by channels in set Q. In addition, PQ 
also specifies the process and channel resource budgets, using a data structure called a budget 
descriptor, denoted B. Just as for graph G, in this case study, the mapping constraints also 
enforce a certain structure on process network PQ and a certain contents on budget descriptor B. 

Recall from Section 3.5.3 that a budget descriptor specifies, among others, the following 
design decisions: the set of the virtual tiles {1T , 2T , etc.}, the mapping of processes to the virtual 

tiles, and the channel capacities (in bytes). For all these settings, we also enforce certain 
decisions as mapping constraints. The only settings that remain to be decided by the mapping 
flow are the budgets of the processes BP, (in processor cycles per second), the bandwidth of the 
channels BQ (in bytes per second) and the scheduler settings (TDMA periods) of the virtual tiles. 

Figure 6.6 shows the structure of the process network of the MPEG-4 shape decoding 
application. We see three processes – pMAIN , pLOAD, and pSTORE – mapped to two virtual tiles – 1T  

and 2T . Recall that each virtual tile is characterized by its processor type and TDMA period, T. 

Each process pi executes a cyclic sequence of actors and is only active within a certain TDMA 
time slot, proportional to the budget, BP(pi). 

The processes are joined by three channels – qMV, qREF, and qOUT. Note that each of them is a 
network channel because it joins different virtual tiles. Recall that a network channel qj is 
characterized by the number of initial tokens in the channel – m(qj), a set of data transfers 
mapped to the channel, the producer and consumer buffer capacities – Qprod-buffer(qj) and 
Qcons-buffer(qj), and the reserved network bandwidth – BQ(qj). The data transfers through the 
channel are defined by triplets ‘producer actor, consumer actor, token size’ – 

{ } ),,( )(  cons prod kkkj zvvq =TQ . 

Figure 6.6 Implementation process network of the MB-decoding loop 
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Let us consider the contents and the meaning of the processes and channels, at the same time 
also referring to graph G, the IPC graph of the MPEG-4 application. Graph G reflects the 
internal behavior of the processes and channels in the corresponding subgraphs, called process 
macros and channel macros. Graph G is shown in Figure 6.7.  

Let us start a detailed description by process pMAIN . In terms of the MPEG-4 shape decoding 
algorithm, the role of this process is to parse the bit-fields from the input queue of the application 
and to decode the shape information, MB by MB. This is a compute-intensive process whose 
range of memory accesses is limited to a relatively small address space. Therefore, this process is 
mapped to a virtual tile of type ‘processing engine’ (and not ‘memory controller’). For better 
illustration of process pMAIN , we refer to its macro contained in the IPC graph G in Figure 6.7. 
That macro consists of a cyclic path in G containing actors v1, v2, v6, and v7.  

In the beginning of the process, actor v1, Ini  initializes the decoding data structures to start 
decoding a new MB. For the MB decoding purposes, sometimes an MB from the previous VOP 
– a reference MB – is needed. Because the decoded VOPs are kept in a large memory module, 
managed by a remote memory controller, process pMAIN  sends a request to process pLOAD running 
on that controller. To send a request, actor v2, ReqMV, produces a token to channel qMV, thus 
acting as a channel producer. Note that in case no reference MB is needed, actor v2 still has to 
send a token through the channel, because in the HSDF graph, the actors communicate tokens at 
every iteration. In the case when no reference MB is needed, we assume that actor v2 produces an 
‘empty’ token containing no useful information, but having the same size as the other tokens 
communicated through this channel. 

The token comes through the channel to the consumer, v4, Load . If the token is non-empty, it 
contains a motion vector (MV), i.e., the pair of relative coordinates of the reference MB. The 
corresponding data-transfer triplet is TQMV = (v2, v4, zMV), where the token size is zMV = 8 bytes 
(two 32-bit words specifying horizontal and vertical positions). TQMV is the only transfer in 
channel qMV, i.e., TQ(qMV) = { TQMV }. 
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Figure 6.7 The IPC graph of the VL/S MB decoding loop (the loop of interest) 
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Process pLOAD runs on a memory controller tile, which has fast physical access to the large 
memory module where the output queue is contained – see Figure 6.6. pLOAD is represented in 
graph G by one actor, v4, with a self-edge, i.e., an edge joining an actor with itself. In every 
execution, that actor consumes one token from channel qMV. If the token is non-empty, the 
process uses the motion vector coordinates contained in the token to locate the reference MB and 
to fetch it from the one-but-last VOP in the output queue – i.e., from the previously decoded 
VOP, see Figure 6.6. The fetched MB goes into channel qREF as a data token. If the incoming 
token is empty, actor v4 also produces an empty token in channel qREF. Channel qREF is also 
described by just one data transfer triplet: TQ(qREF) = {TQREF}, TQREF = (v4, v6, zREF) and 
zREF = 256 bytes (16x16 pixels of shape data). 

After receiving the reference MB (or an empty token) from qREF, process pMAIN  decodes the 
entropy-encoded information contained in the MB. This task is performed by actor v7, ‘DecMB’. 
Finally, the main process sends the decoded MB through channel qOUT back to the memory 
controller, to the process called pSTORE. Channel qOUT is described by one transfer triplet: 
TQ(qOUT ) = {TQ OUT}, where TQOUT = (v7, v9, zOUT) and zOUT = 256 bytes (16x16 pixels of shape 
data). 

Process pSTORE – represented by actor v9 and a self-edge – picks the output MBs from channel 
qOUT and copies them to the corresponding (x, y) position inside the current VOP, see Figure 6.6.  

Once all MBs of a VOP are decoded, the MB-decoding loop finishes the current execution 
and a new VOP is released in the output queue.  

So far, we mostly focused on the processes; now let us turn our attention to the channels. Two 
important settings specified for the channels are the number of initial tokens, m (as specified  by 
the application designer) and buffer capacities, BQ (as specified in the mapping constraints). As 
we see below, these specifications are reflected in the channel macros of graph G, according to 
the methodology described in Section 3.6 (see Figures 3.14 and 3.17). 

Because every channel has just one data transfer TQ, each channel macro contains just one 
transfer actor, shown in Figure 6.7 in gray color. For example, the transfer actor of channel qOUT 
is v8, OUT.  

In addition to the transfer actors, the channel macros would normally contain actors modeling 
the network latency. However, for the given application and target platform, the latencies can be 
ignored. The reason is that they are much smaller than the typical processing delay per data 
token. It can be shown as follows. Recall that in the ÆTHEREAL network, the latency is 
proportional to the number of the network routers on the network path. The longest ‘reasonable’ 
path in a 5x5 grid topology includes at most 10 network routers (the maximal Manhattan 
distance). Based on Table 6.1 and Equality (3.22), it is equal to 10×0.75 µs = 7.5 µs. On the 
other hand, according to the profiling performed on our processor simulator, the minimum time 
to copy one token (256 bytes) from channel qOUT to the background memory using an 
ARM7TDMI@100MHz is approximately 1000 µs. This is much larger than the maximal 
latency. Therefore, for simplicity, the network latency actors are not included into the channel 
macros in our example. 

As we know from Section 3.6.3, the producer and the consumer buffers of the network 
channel are modeled by so-called forward and backward edges. For the producer buffers, the 
forward edges go from the channel producers to the transfer actors. For the consumer buffers, 
they go from the transfer actors to the channel consumers. The backward edges go in the reverse 
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direction. For example, the forward edges of channel qOUT are (v7, v8) and (v8, v9) and the 
backward edges are (v9, v8) and (v8, v7). 

The initial tokens of a channel, if any, are located at the forward edges of the producer 
buffers. In this case study, when the MB-decoding loop starts, the channels are initially empty: 
m(qj) = 0. Therefore, the forward edges are also free from the initial tokens. 

The channel buffer capacities, )(buffer-prod jqQ  and )(buffer-cons jqQ , (i.e., the numbers of tokens 

that can fit in the producer and consumer queues of the channel) are modeled in the IPC graph 
using the backward edges. In this case study, all the channel buffers are so-called simple 
channels; they have only one producer and consumer. Therefore (also given the fact that these 
channels do not have initial tokens), the following simple rule applies: the number of initial 
tokens at the backward edge is equal to the buffer capacity when specified in tokens. 

For channels qMV and qREF, we fix the capacities of the producer and the consumer buffers to 
one token. For channel qOUT, we fix them to two tokens. As we see in Figure 6.7, this choice is 
reflected in the number of tokens on the backward edges.  

Let us motivate the chosen capacities. Because process pMAIN  first waits for a response to each 
reference-MB request before it issues another request, no two requests can be pending at the 
same time. Therefore, channels qMV and qOUT only need one token place at the producer and 
consumer buffers. For channel qOUT, the situation is different, because processes pMAIN  and pSTORE 
can run in parallel to each other and in parallel to the data transfers in channel qOUT. To ensure 
that this parallelism is possible, both producer and consumer buffers need a place for at least two 
tokens. If the buffers could fit only one token each, actors v7 and v8 would always execute 
sequentially, and actors v8 and v9 as well.  

In this and the previous subsection, we covered the input specification for implementing our 
case-study application. Hereby, we pre-constrained most of the mapping decisions. Therefore, in 
the following subsections, we can put more emphasis on the performance analysis aspects than 
on the mapping aspects, as intended for this case study. 

 

6.2.4 Detailed Actor Timing  

In this subsection, for our case study, we report on the actor-level parameter identification 
(i.e., defining the parameters as functions of the input data) and actor-level characterization (i.e., 
finding the contributions of the actor-level parameters to the actor processing times).  

The goal of this section is, for every actor, to obtain actor parameter functions which closely 
estimate the real actor processing times. The parameter functions constitute the detailed timing 
mode, which is the most accurate actor delay model in our modeling approach. The parameter 
functions give the linear relationship between the actor processing time t (vk , n) and the 
parameters: 
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where ω,kC  are the actor-level coefficients and )(nωξ  are the actor-level parameter values in 

loop iteration n. Typically, each actor vk is only influenced by a small subset ΩΩΩΩk of parameters, 
and only the parameters from that subset have non-zero coefficients ω,kC . Note that, for a 

conservative performance analysis, the coefficients have to be conservative. 
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The goal of the parameter identification is to identify the parameters in subset ΩΩΩΩk for each 
actor vk, ensuring that as few parameters as possible are introduced, but at the same time that the 
required level of accuracy is achieved. The parameter identification requires analyzing the actor 
execution algorithms. One technique for doing the parameter identification is sketched in 
Section 3.2.2, using the VLD actor of the JPEG decoder as an example; however that technique 
is not automated. In this case study, we performed the parameter identification manually, based 
on the knowledge of the application algorithm. This resulted in a grand total of 17 actor-level 
parameters. We do not report the details of parameter identification, but, later in this subsection, 
we summarize the ten most influential parameters in a table. Note that we do not mention all of 
them in order to not overload the text with too detailed application-specific information, but 
nevertheless we use all 17 parameters in the performance analysis.  

In the rest of this subsection we focus mostly on the actor-level characterization, i.e. the 
calculation of Ck,ω. In see Section 3.3, we described two alternative methods for that, namely, the 
direct measurement and the linear regression.  

The linear-regression method gives certain probabilistic guarantees on the accuracy and the 
conservativity of the processing time estimate. Recall that the control setting pcoef < 1 controls 
the degree of pessimism in estimating the coefficients, and the closer to 1 this setting is, the 
higher the probability that the parameter function time t(vk , n) defined in Equality (6.1) gives a 
higher estimate than the real processor cycle count. However, we do not want pcoef to be too 
close to 1, because then the accuracy of estimating the processor cycle count by t(vk , n) will 
suffer. In many use cases of linear regression, the usual practical setting used for pcoef is 0.95. We 
also use this default setting in our experiments. As we saw in practice, sometimes, for achieving 
a better accuracy, it helps to split the actor into a few subroutines and to apply linear regression 
to them separately. The advantage of the linear-regression method is that quite often it reduces 
the manual effort compared to the other method, especially if the number of parameters in ΩΩΩΩk is 
three or more (i.e., |ΩΩΩΩk| ≥ 3). See Section 3.3 for more details on the linear-regression method. 

The other method, i.e., the direct-measurement method, is closely related to so-called worst-
case execution time (WCET) calculation, giving much stricter guarantees on the conservativity 
of than the linear regression. This is important for hard real-time applications, especially for the 
safety-critical ones. This method is easier to apply if the control flow is relatively simple, 
especially when the processing can be characterized by less that three parameters (i.e., for actors 
where |ΩΩΩΩk|< 3). 

As we see from Figure 6.7, the graph contains six computation actors and three transfer 
actors. The Application Preparation part of the design trajectory (which we are doing now) 
focuses only on the computation actors. The transfer delays are constant and independent of the 
parameters; they are calculated later on in the trajectory. 

In this case study, we use both the mentioned methods. For the actors with |ΩΩΩΩk| ≥ 3, we use 
linear regression. Hereby, we sometimes split an actor into a few subroutines, mostly because 
these subroutines have clearly different functionality and sometimes because this improves the 
accuracy of the linear-regression results. For the actors with |ΩΩΩΩk| < 3, we use direct measurement, 
to achieve better guarantees on conservativity.  

Because the MPEG-4 decoder is a soft real-time application, not a safety-critical one, we do 
not need the parameter functions to be strictly conservative. Instead, we use coefficients that are 
conservative with a high probability, and we obtain them empirically from measurements based 
on a representative stream of input data samples.  
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The chosen representative stream consists of the first 30VOPs of the ‘singer’ sample stream 
for MPEG-4 shape coding developed in the MoMuSys project [74]. Each VOP in this 30-VOP 
substream contains 60 to 96 MBs, leading to a grand total of 1891 MBs.  

In both methods, we use the same representative input stream. Both methods use profiling, 
i.e., running the application code in the simulator and measuring actor processing times. 

The accuracy of the actor parameter functions depends on whether the representative stream 
and the parameter subsets ΩΩΩΩk are chosen correctly. To evaluate this, we use two kinds of metrics: 

1) linear regression quality metrics – g)(cerr  and gR2 ; 

2) estimation error metrics: average overestimation, maximum overestimation, probability of 
overestimation (et-avg-over,  et-max-over, p over) and the same for underestimation (et-avg-under,  
et-max-under, p under). 

Let us explain all these metrics before we proceed to reporting them for our case study. 
The regression quality metrics are measured for each actor subroutine, g, for which linear 

regression is applied. Metric g)(cerr  estimates the uncertainty in the calculation of the 

coefficients; the ideal value for this metric is 0%. Metric gR2  is introduced because the 

parameters typically do not capture all the sources of dynamic variations of subroutine 
processing times. This metric gives the best percentage of the processing time variability that the 
parameters still can capture; the ideal value for this metric is 100%. More details on the linear 
regression quality metrics can be found in Section 3.3. 

The other metrics are based on the estimation error et. It is defined as follows: 
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where ),( nvt k  is the actor parameter function (see Equality (6.1)), ),( nvt kprof is the actor cycle 

count measured from the profiling run, and ‘E(…)’ calculates the average value of the argument 
over a range of different n, which is, in our experiments, the range of all MBs in the given 
sample input stream. 

Based on et, our estimation error metrics are defined as shown in Table 6.2.  
Unlike the linear-regression metrics, which are measured on the representative stream, the 

estimation-error metrics are measured on the sample stream, i.e., an input data stream (longer 
than the representative stream) used for the evaluation of the accuracy of our performance 
analysis approach. We have two such streams: ‘singer’ and ‘dancer’, from the MoMuSys project 
[74]. We use them throughout this case study to evaluate the accuracy and conservativity of 
different performance analysis stages. Their basic characteristics (e.g., total number of VOPS) 
are summarized in Table 6.3. Note that the size of the complete ‘singer’ stream is much larger 
than the size of the sub-stream we used as reference stream (30 VOPs, 1891 MBs). Therefore, 
we consider it fair to use the complete stream to evaluate the accuracy of the coefficient 
calculation done based on such a small sub-stream. 

The rest of this subsection is built around the four tables with results. First, Table 6.4 
summarizes actor-level parameter identification. It is followed by Tables 6.5 and 6.6, where the 
estimation error is evaluated for two sample streams. Finally, Table 6.7 explains the parameter 
and subroutine names mentioned in this section. 
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Recall that we split some actors into subroutines. Table 6.4 summarizes the parameter 
identification statistics for every subroutine. The first column identifies the actor owning the 
subroutine. The second column gives the mnemonic name of the subroutine together with the 
subroutine’s average processing time and the call count per actor execution. For example, 
‘1 k x 6’ means that the average processing time is 1 kilocycles (of the ARM7TDMI core) and 
that the subroutine is called 6 times per actor execution. The third column gives the total number 
of parameters (Ωsub) influencing the given subroutine and the number of new parameters (∆Ω), 
i.e., the ones that are not shared with the subroutines reported earlier. It also mentions one or two 
most influential parameters (whose meaning is explained in Table 6.7). Hereby we measure how 
‘influential’ a parameter is as product of the measured dynamic range of parameter values and 
the parameter coefficient. Note that we do not mention the less influential parameters not 
because we do not use them, but to avoid overloading our reporting with application-specific 
information. The fourth column reports which characterization method was used. The last two 
columns report the linear-regression metrics, in the cases where linear regression was used. 

From Table 6.4, we see that for all cases where the linear regression was used, the parameters 
accounted for at least 93% of the processor cycle count variations, and that the uncertainty of the 
actor-level coefficients was at most 14%. This indicates a reasonable accuracy of the actor 
processing time estimates.  

We also used graphical plots to evaluate the accuracy visually. For example, Figure 6.8, 
shows the curves for subroutine ‘TextMV ’, for one of the VOPs of sample sequence ‘singer’, 
from which we see that the detailed timing mode accurately models the processing cycle counts, 
sometimes underestimating them and sometimes overestimating them. Note that the VOP we 

Table 6.2 Estimation error metrics. 

Metric Definition Explanation 

et-avg-over 
*E(et | et > 0) Average et for overestimation 

et-max-over Max(et | et > 0) The maximum et for overestimation 

p over Pr (et > 0) The probability of overestimation 

et-avg-under E(−et | et < 0) Average et for underestimation 

et-max-under max(−et | et < 0) The maximum absolute value of et for underestimation 

p under Pr (et < 0) The probability of underestimation 
*E( X | C ) is the average X for the cases where condition C holds and Pr (C ) is probability 
of condition C. 

Table 6.3 Sample input streams. 

Name #VOPs N,  #MBs per VOP #MBs 

‘singer’ 250 45-204 24708 

‘dancer’ 250 77-255 32915 
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have chosen to illustrate the accuracy in Figure 6.8 is chosen such that we can illustrate possible 
extreme deviations observed for this actor, and this VOP is outside the range of the first 
30 VOPs used to calculate the coefficients 

The accuracy and the conservativity of the processing times is directly measured by the 
estimation error metrics, presented in the next two tables, Table 6.5 and 6.6, for the two sample 
streams. In those tables, we skip actors v4 (Load ), v7 ( WrMB) and v9 (Store ), because the 
estimation error for those actors is negligible and can be considered zero. 

Table 6.4 Parameter identification and actor characterization  

Actor Subroutine  ΩΩΩΩsub g Method g)(cerr  gR2  

v1 Ini  
Ini 

2 k x 1 

Ωsub = 0 
direct - - 

v2 ReqMV 
ReqMV(*)  

1 k x 1 

Ωsub = 4 
∆Ω = 4 
ξref, ξ bbMV ∈ΩΩΩΩsub 

lin-reg 14 % 97 % 

v4 Load  
Load 

120 k x 1 

Ωsub = 1 
∆Ω = 0 
ξref ∈ΩΩΩΩsub 

direct - - 

v6 DecMB(1)  
DecodeCAE 

116 k x 1 

Ωsub = 2 
∆Ω = 1 
ξref ,ξCAE ∈ΩΩΩΩsub 

lin-reg   1 % 99 % 

v6 DecMB(2)  
CBP 

3 k x 1 

Ωsub = 2 
∆Ω = 2 
ξbnd,ξempty∈ΩΩΩΩsub 

lin-reg   3 % ~100% 

v6 DecMB(3)  
TextMV 

3 k x 1 

Ωsub = 3 
∆Ω = 3 
ξP, ξNmv∈ΩΩΩΩsub 

lin-reg 12 % 99 % 

v6 DecMB(4)  
VLD 

1k x 6 

Ωsub = 9 
∆Ω = 9 
ξne,ξbbVLD ∈ΩΩΩΩsub 

lin-reg 11 % ~100 % 

v6 DecMB(5)  
EndMB 

6 k x 1 

Ωsub = 1 
∆Ω = 1 
ξtex ∈ΩΩΩΩsub 

lin-reg   3 % 93 % 

v7 WrMB 
WrMB 

98 k x 1 

Ωsub = 0 
direct - - 

v9 Store  
Store 

102 k x 1 

Ωsub = 0 
direct - - 

 (*) – all acronyms are explained in Table 6.7 
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In Tables 6.5 and 6.6 we see similar results for the two different streams. As expected, the 
probability of conservative estimation (i.e. overestimation) is in all cases much larger than the 
probability of underestimation. For actor v4 (Ini ), we tolerate the huge average error because this 
actor has a comparatively small contribution of 2 k cycles per actor execution to the total 
processor cycle count. For the other actors, all analyzed using linear regression, the average 

Table 6.5 Detailed-mode estimation error for ‘singer’ stream 

Actor et-avg-over p over   et-max-over et-avg-under p under et-max-under 

v1 Ini  136 % 1.0  158 % - 0.0  - 

v2 ReqMV 4 % 0.87  107 % 10 % 0.13  152 % 

v6 DecMB 1 % 0.71  7 % 2 % 0.29  21 % 

 
Table 6.6 Detailed-mode estimation error for ‘dancer’ stream 

Actor et-avg-over p over   et-max-over et-avg-under p under et-max-under 

v1 Ini  147 % 1.0  165 % - 0.0  - 

v2 ReqMV 5 % 0.87  104 % 15 % 0.13  152 % 

v6 DecMB 1 % 0.80  6 % 2 % 0.20  33 % 
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errors are reasonably small. We also see that considerable underestimation can occur. (Note that 
> 100% underestimation means that, for some MBs, the value of tprof(vk, n) − t(vk, n)  is larger 
than E(tprof(vk, n)).) Nevertheless, the multi-scenario-delay mode (described in the next 
subsection), brings the underestimation down considerably. Also, the fact that the 
underestimation has a low probability makes it less of a concern, because the final performance 
analysis (i.e., VOP decoding time estimation in this case) integrates the actor processing times 
over multiple iterations, whereby frequent overestimation is likely to cancel the occasional 
underestimation.  

The last table, Table 6.7, explains the meaning of some key actor-level parameters and 
subroutines. The purpose of that table is to give an example of what the actor-level parameters 
can mean in practice. Note, however, that it is not necessary to understand all the details in this 
table. 

Table 6.7 The meaning of actor-level parameters and subroutines  

Parameter/ 
subroutine 

Meaning 

Ini Initialization of MB decoding. 

ReqMV If required, sends a request to load a reference MB, hereby decoding and 
sending the motion vectors (i.e., the relative coordinates of that MB)  

ξref Boolean, equal to ‘1’ if and only if a reference MB is required. 

ξbbMV  
The number of times a new byte is shifted into the 64-bit word used as a 
bit-stream parsing cache when decoding the shape motion vectors.  

Load  Loading of the reference MB from the previous VOP. 

DecodeCAE 
Decodes the current MB shape, using the reference MB; often involves 
the decoding of the context-arithmetic-encoded (CAE) data 

ξCAE 
Boolean, equal to ‘1’ if and only if the context-arithmetic decoding is 
involved. 

CBP 
Decodes the ‘code-bit-pattern’, i.e., determines which of the six sub-
blocks of the MB are empty (transparent). 

ξbnd 
Boolean, equal to ‘1’ if and only if the MB is located at the contour of a 
video object (i.e., determines whether shape decoding is active for this 
MB). 

ξempty 
Number of zero (i.e., transparent) pixels, traversed when scanning the 
MB sub-blocks in search for non-zero pixels. 

TextMV  Decodes the motion vectors for reference texture blocks 

ξP Boolean, equal to ‘1’ if and only the current VOP is a P-VOP 

ξmv Number of texture motion vectors encoded in the current MB. 

VLD Performs variable-length decoding for the texture information. 

ξne Number of AC symbols encoded by so-called ‘non-escape’ codes. 

ξbbVLD Same as ξbbMV , but for VLD decoding. 
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EndMB Finishes the processing of an MB. 

ξtex 
Boolean, equal to ‘1’ if the MB block contains any non-uniform texture, 
and equal to ‘0’ if the MB block is transparent or if all non-transparent 
pixels have the same color. 

WrMB Writes the decoded MB to the memory. 

Store Stores the MB into the current VOP memory in the output queue 

 
Having obtained the detailed-timing model of the application, we proceed with reducing the 

amount of detail in the timing models and finalizing the implementation of the application. In the 
next subsection, we step from the detailed mode to the multi-scenario delay mode. 

 

6.2.5 Scenario-based Actor Timing 

Recall that scenarios are defined as subspaces of the space of possible values of the most 
influential actor-level parameters, referred to as primary parameters. The subspaces define the 
conditions for the quantization of detailed-timing actor delay functions. As we mentioned in 
Section 5.3, subdividing the space of parameter values into scenarios can be done either 
manually or using automated technique, as the one proposed in [28], [24]. 

To define scenarios in this case study, we followed the manual approach. First, we identified 
eight major types of macro-blocks defined in the decoding algorithm, considering each type as a 
scenario candidate as it showed similar decoding delays for different blocks and corresponded to 
a certain combination of values of the most influential actor-level parameters. The candidates 
with similar contribution to execution time were merged, yielding three scenarios in the end, 
which are defined using two primary parameters: ξref  and ξCAE  (see Table 6.7 for their 
definition). 

The scenarios are defined as follows: 

Example Scenario 1: (s = 1)    ξref = 0 ♦ 

Example Scenario 2: (s = 2)   ξref = 1, ξCAE = 0 ♦ 

Example Scenario 3: (s = 3)   ξref,= 1, ξCAE = 1 ♦ 

Recall that the delay quantization works as follows: for all the data tokens that satisfy the 
scenario condition, maximum values of all actor parameters are found and used to calculate the 
delay quantization level. In the given case study, the quantization affects actors v1, v2, and v6, 
because the other actors have delays that are constant in every scenario. 

Figure 6.9 demonstrates the effect of quantization on the delay of actor v6 (DecMB). As we see 
from that figure, the quantization removes some delay variations, making the timing model less 
detailed and more conservative. 

Similarly to our experiments on the detailed timing mode, we evaluated the multi-scenario 
mode for the two video streams and summarized the results in Tables 6.8 and 6.9 below. 

Comparing these results to Tables 6.5 and 6.6, for actor Ini , we see the same behavior as in 
the detailed timing model, because the delay of that actor does not depend on any of the primary 
parameters. For the other two actors, we see that the probability and the magnitude of 
overestimation have increased considerably. This is in line with our expectations that the multi-
scenario delay mode is more conservative than the detailed timing mode.  
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We also see that the average error has reached a level of over 50%, which, as it seems, 
threatens to affect the accuracy of our performance analysis. In reality, it is not a problem. Let us 
ignore actor ReqMV, which, according to Table 6.4, has two orders of magnitude smaller average 
processing time than DecMB. For DecMB, as we see from Figure 6.9, we could have considerably 
reduced the scenario overestimation by introducing one extra scenario that would distinguish the 

Table 6.8 Estimation error of MSD mode for the ‘singer’ stream 

Actor et-avg-over p over   et-max-over et-avg-under p under et-max-under 

v1 Ini  136 % 1.0  158 % - 0.0  - 

v2 ReqMV 67 % 0.98   279 % 27 % 0.02  143 % 

v6 DecMB 75 % 0.99   199 %  4 % 0.01 19 % 

 
Table 6.9 Estimation error of MSD mode for the ‘dancer’ stream 

Actor et-avg-over p over   et-max-over et-avg-under p under et-max-under 

v1 Ini  147 % 1.0  165 % - 0.0  - 

v2 ReqMV 62 % 0.98   250 %  34 % 0.02  152 % 

v6 DecMB 56 % 0.995  149 %  3 % 0.005  15 % 
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smallest actor delay values, which occur on a regular basis. According to our extra experiments 
with stream ‘dancer’, this would take the MSD-mode overprediction error down to 13% on 
average and 41% maximum. Nevertheless we did not introduce that scenario, because we 
observed that for the final results – the estimation of the VOP decoding times – that scenario 
appears to bring no extra improvement. The reason for that lies in the structure of the HSDF 
graph, see Figure 6.7, and we can explain it in an informal way as follows. In general, the cyclic 
paths of the HSDF graph determine its performance. The cyclic paths containing DecMB compete 
with the other cyclic paths for the impact on the graph throughput. The processing time of actor 
DecMB is comparatively large on average (see Table 6.4), so it is a ‘major contributor’ for all its 
cyclic paths. Therefore, when actor DecMB gets a very small value, the other cyclic paths (in 
particular, those that contain actor Store ) win the competition, become the performance 
bottleneck and hide the influence of DecMB. Thus, reducing the MSD mode error is not necessary 
in this case.  

What we also see when we compare MSD-mode results to the detailed-mode results, is that 
the probability of underestimation has decreased. It is interesting to observe that the value of 
underprediction has increased, but this is due to the fact that we measure underprediction relative 
to the average processing time of the samples with underprediction, whereas this average value 
has decreased. 

At this point, the actor delay model has given up some detailed information that was present 
there originally, but still stays accurate enough to obtain reasonable accuracy in the end (as we 
see later in the results of VOP decoding time estimation). 

 

6.2.6 Budget Assignment 

Whereas in the previous two subsections we considered the first part of the design flow, i.e., 
the Application Preparation, in this subsection we turn our attention to the second part, the Intra-
application Mapping Flow, which optimizes the mapping of the application to the target platform 
resources. 

Recall that, due to the mapping constraints, the only intra-application mapping decisions left 
to be made in this case study are the processor cycle budgets allocated to the processes and the 
amount of the communication bandwidth assigned to the channels. We refer to these decisions as 
the budget assignment. Referring back to Figure 3.7, we note that, in the generic design flow, the 
budget assignment is part of the processing assignment and communication assignment steps. 
Before this point of the design flow, we reasoned about the actor delays using the actor 
processing times, t(vk , n), measured in processor clock cycles. The budget assignment effectively 
translates the processing times into actor delays, d(vk , n), measured in the real time units. By 
taking the budget assignment into account, the performance analysis can analyze the application 
performance in the real-time domain. 

As an optimization problem, budget assignment for this case study can be described by the 
following subtopics: 

a. problem instance, 
b. controllable variables (i.e., the structure of a problem solution), 
c. objectives and constraints, 
d. problem solution. 
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Problem instance. The problem instance consists of the implementation process network (recall 
Figure 6.6) and IPC graph (recall Figure 6.7). For every computation actor, we specify a typical 
(i.e., average) processing time. We use the average times reported in the first column of 
Table 6.4 (in kilocycles of the ARM7 processor): 

t(v1 ) = 2 k ; t(v2 ) = 1 k ;  t(v4 ) = 120  k ;  t(v6 ) = 134  k ;   
t(v7 ) = 98  k ;  t(v9 ) = 102  k ; 

For every transfer actor, we specify the size of the data tokens, in accordance to Section 6.2.3: 
z(v3 ) = 8 bytes ; z(v5 ) = 256  bytes ;  z(v4 ) = 256  bytes ; 

Note that hereby we partly specify the typical static timing mode – see Section 3.1.1 for an 
overview of the timing modes. 
Controllable variables. Referring back to Figure 6.6, we see that there are three processes and 
three channels in this case study. For each channel and process, the budget assignment 
determines certain budget variables. We refer to these variables as primary budget variables. 
They form a solution to the budget assignment problem. The primary variables are functions of a 
few platform-dependent variables, which we call secondary variables. Given the target platform, 
from the secondary variables we can determine the primary variables and vise versa. We use the 
secondary variables for convenience of explanation. Recall that T (pi) is the notation for the tile 
to which process pi is mapped. 

The relationship between the primary and the secondary variables for our case study can be 
expressed as follows: 

BP(pi) = 
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Table 6.10 The structure of a problem solution 

Objects 
(processes, channels) 

Primary variables Secondary variables 

pMAIN ,  pLOAD and pSTORE  

BP(pi) – processor cycle budget 
(clock cycles per second) 

)(sched )(
i

pTT  – the vector of local 

scheduler variables for the 
processing tile where process pi is 
running (depends on the 
scheduling method being used) 

)( B ipT  – TDMA time 

slot reserved for process 
pi (in seconds) (see 
Section 3.1.3) 

))((
i

pT TT  – the TDMA 

period of the local 
scheduler (in seconds) 

qMV,  qREF and qOUT 

BQ(qi) – channel bandwidth 
(bytes per second) 

nslots(qi) – the number of 
TDMA slots of the 
ÆTHEREAL network-on-
chip connection allocated 
for the given channel (see 
Section 3.4) 

 
 



 6.2 Design-time Performance Analysis of the MPEG-4 Decoder  231 

)(sched )( ipTT =




used is schedulingTDMA   theif    TDMA'' 

scheduling usenot  does   tileprocessing if INGNO_SCHEDUL

)))((,(

)()'('

T i

i

pT

p

T

T
 

BQ(qj) = nslots(qi)⋅ Æ-minB  

where Fclock is processor clock frequency and Æ-minB  is the granularity of network bandwidth 

allocation, which, for the ÆTHEREAL network, is defined in Table 6.1. 
Objectives and constraints. The budget assignment problem requests to find the budget 
variables (either primary or secondary) such that the minimum required throughput constraint for 
the given application is satisfied at the minimum resource usage.  

We assume the minimum throughput constraint is indirectly specified by the maximum 
allowed iteration interval: allowedλ  = 5 ms. 

The minimum resource usage objective requests to use as small as possible values of the 
control variables BP(pi) and BQ(qj), seen as multiple cost functions.  A possible problem 
formulation would request to find the so-called set of Pareto points in the space of control 
variables, yielding a set of alternative solutions that have a property that each solution is better 
than any other feasible solution by at least one control variable {BP(pi)} or { BQ(qj)}. Another 
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problem formulation would minimize a weighted sum of {BP(pi)} and {BQ(qj)}. However, since 
it is not the purpose of this case study to evaluate any budget assignment algorithm, we do not 
adopt any of those formulations, and try to find a solution using as small budgets as possible 
relying on logical reasoning. Note that algorithms for closely related optimization problems in 
the same context were proposed by Sander Stuijk et al in [88] and Orlando Moreira et al in [66]. 
Problem solution. To solve the budget assignment problem, we first simplify the problem 
instance. Figure 6.10(a) shows an equivalent simplified version of the IPC graph in Figure 6.7, 
also showing how the graph is partitioned into the process and channel macros. A few edges 
have been removed as superfluous. For each removed edge it holds that the graph contains a path 
that joins the same pair of actors as the edge and contains the same number of initial tokens. For 
example, edge (v3, v2), containing one initial token, is superfluous, because v3 and v2 are joined 
by a path – (v3, v4, v5, v6, v7, v1, v2) – that contains one initial token too.  

After the simplification, the graph has five simple cyclic paths, and only three of them – 
highlighted and indexed in Figure 6.10(b) by Roman numbers I, II and III – are potential critical 
cycle candidates (the two simple cycles which are not included have two initial tokens each and 
thus, in this particular case, cannot become critical). 

The purpose of this exercise is to assign as small as possible budgets to the processes  and 
channels such that none of the three critical cycles gets a total delay exceeding 5 ms, which is our 
maximal iteration-interval constraint, allowedλ . 

Let us first assume that all processes and channels get the maximum budgets. That means that 
all computation actors get typical delays equal to the processing times divided by the processor 
clock frequency (100 MHz for our target platform). Given the processing times as specified in 
the problem instance, we get the actor delays as shown in Figure 6.10(c). The delays of the 
transfer actors are all equal to 0.192  ms, i.e., the network TDMA period,  ÆTT , according to 

Table 6.1. Assuming maximal bandwidth allocation, this is the delay within which the network is 
guaranteed to transfer one token that fits within one TDMA period. Recall that within one 
TDMA period of the ÆTHEREAL has 256 data slots, with 6 bytes per slot (in our reduced version 
of the network, see Section 3.4), which means that the tokens with the sizes mentioned in the 
problem instance easily fit within one period. 

Examining the graph in Figure 6.10(c), we see that the critical cycle is cycle ‘I’ with delay 
3.934  ms, i.e., there is a slack of (5.000 ms - 3.934  ms) = 1.066 ms . The other critical cycle 
candidates have much larger positive slack values. The positive slack means that the real-time 
constraints are met. However, for the final solution we need to take two remarks into account: 

1) the processes of actors v4 and v9 share the same processing tile – i.e., the memory 
controller; therefore, they cannot have both a 100% budget; 

2) although we need to keep the slack values positive, as small as possible budgets should be 
assigned to the processes. 

Therefore, we split the processor clock cycle budget of the memory controller between pLOAD – 
the process of actor v4 – and pSTORE – the process of actor v9. We assume that the TDMA period of 
the local scheduler is )( 2T TT  = 1.000 ms , where 2T  is the processing tile of the memory 

controller. We give 60% of the budget to pLOAD and 30% of the budget to pSTORE (leaving 10% of 
the budget for the local scheduler overhead). This means that the time slots for these processes 
are TB(pLOAD) = 0.600 ms  and TB(pSTORE) = 0.300 ms  respectively. 

Now, to calculate the typical delays of actors v4 and v9, we can use the equality specified in 
Section 3.1.2, which we, for convenience, reproduce here using convenient notations: 
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for vk ∈ { v4 , v9 } ⇒ d(vk ) = D(vk ) + D(vk ) / TB( p(vk )) ⋅ (TT(T2) − TB( p(vk ))) 
where: 

)(
)()(

2clock TF
vtvD k

k =  

which results in the following actor delays: 
d(v4) = 2.000 ms   and d(v9) = 3.820 ms  
These actor delays are filled in into Figure 6.10(d). From that figure, we see that the resulting 

delay of cycle ‘I’ is 4.734  ms, and the remaining slack of that cycle is 
(5.000 ms - 4.734  ms) = 0.266 ms , which is very small, and therefore we do not change the 
budgets of any actors belonging to that cycle anymore. Also, the delay setting of actor v9 results 
in the slack of (5.000 ms - 3.820  ms) = 1.180 ms  in cycle ‘III’.  

At this point, the delay of actor v8 is as annotated in Figure 6.10(c), and the slack of the 
critical cycle candidate to which that actor belongs is very relaxed and amounts to 
(5.000 ms - 0.192  ms) = 4.808 ms . We make use of this slack to reduce the bandwidth 
allocated to channel qOUT. 

The delay of a transfer actor of a channel is calculated using Equality (3.21), given in 
Section 3.4.2, which we, again for convenience, reproduce here using convenient notations: 

for vk ∈ { v8 } ⇒ d(vk ) = D(vk ) + D(vk ) / TB(q(vk )) ⋅ (TTÆ − TB(q(vk ))) 
where: 
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k  is the transfer delay the token would experience 

without TDMA scheduling and without sharing the network links with other channels (see 
Table 6.1 for an explanation of the notations, and paragraph ‘Problem instance’ for the values of 
z(vk) ), and TB( q(vk )) = TTÆ ⋅(n slots (q(vk ))⋅ Bmin-Æ /B link-Æ ) is the time interval allocated for the 
given channel per TDMA period with nslots(q(vk )) being the number of link slots allocated for the 
channel (see Table 6.10). 

We set nslots(qOUT) as small as possible, but such that d(vk ) stays within a small interval below 
5.000 ms , to ensure some positive slack. We chose n slots(q OUT) = 2. This results in: 
d(v8) = 3.550 ms  , as annotated in Figure 6.10(d).  

Note that for the other network channels we assumed n slots(q MV) = 2 and n slots(q REF) = 44, 
which corresponds to 12 resp. 262 bytes, thus being enough to fit the corresponding token sizes 
z(v3 ) = 8 bytes  resp. z(v5 ) = 256  bytes  within one TDMA period. As we see Figure 6.10(d), this 
allows us to keep the transfer delays for actors v3 and v5  equal to the minimal possible 
conservative value of a transfer delay – 0.192  ms, i.e., one network TDMA period. 

Hereby we determined all the secondary controllable variables that we needed to determine at 
this design flow step. With this step, we finished the implementation issues of the main 
application functionality and start considering the implementation of the run-time performance 
analysis. 

 

6.2.7 Loop-level Characterization 

In this section, we consider the last step of the design flow (see the second step in part II in 
Section 2.3.4). This step is responsible for the loop-level characterization of the application. This 
design-flow step is optional, because it takes upon itself part of the tasks of the dynamic-delay 
analysis algorithmic rule (defined in Section 5.2), whereas that rule can also be completely 



234 6 The Practical Use of Performance Analysis  

executed at run time. Doing the loop-level characterization at design time reduces the run-time 
overhead. Note that the main difficulty of this design-flow step is that it operates with 
mathematical values that are only known at run time, therefore working with symbolic 
expressions rather than numbers. Due to that difficulty, we do not have a general algorithm 
perform this step completely, the method proposed by Amir Hossein Ghamarian et al in [22] can 
automate this step partially, as explained below. Therefore, in our application case study, we 
perform this step manually. 

The purpose of the loop-level characterization is the calculation of the loop-level coefficients: 
λs, σs, and γs,t. The end result represents the loop-level coefficients in symbolic form as functions 
of some variables. For practical reasons, those variables should be defined such that it is 
straightforward to calculate their values at run time, using the application header data. Then these 
values can be assumed to be given.  

The set of input variables of the loop-level characterization step contains the delay 

quantization levels of all actors in all scenarios: { )(ˆ
ks vd }, where s is the scenario index and k is 

the actor index. The values of delay quantization levels are recalculated at run time for every 
execution run of the loop of interest, using the data contained in application headers as described 
in Section 5.3.6.  

Based on those input variables, the dynamic-delay analysis step defines some intermediate 
variables using symbolic equalities. The final goal is to express the loop-level coefficients using 
the intermediate and/or input variables. For convenience, we refer to the set of symbolic 
equalities used in the loop-level characterization as rules. 

To derive the rules for this case study, let us first simplify the IPC graph, reducing the number 
of actors and edges. We start from the simplified graph structure shown in Figure 6.10(a) and 
simplify it even further. First of all, in Figure 6.10(a), we observe a chain of actors v1, v2, v3, v4, 
v5, v6, where every actor has only one incoming edge and one outgoing edge (except for the last 
actor). The subsequent actors are joined by an edge with zero initial tokens. This chain can be 
replaced by one actor whose delay is the sum of the delays of the actors in the chain. The graph 
structure after the replacement is shown in Figure 6.11. We denote the new actor as v′1 (see 
Figure 6.11(a)). The other three actors of the original graph, v7, v8, and v9, are copied into the 
new graph as actors v′2, v′3, and v′4. 

We denote the delay of actor v′1 in scenario s as ηs (see Figure 6.11(b)). This value can be 
expressed using the following rule: 

Rule 1: ηs = ∑
=

6

1

)(ˆ
k

ks vd ♦  

The delay of actor v′2 in scenario s is denoted as ϕ s. Because v′2 is equivalent to v7 (see 
Figure 6.11), we have: 

Rule 2: ϕs = )(ˆ
7vds = 0.980 ms ♦ 

The constant numeric value for this symbol is based on the observation that that actor has 
constant delay (it has zero actor-level parameters – see Table 6.4) and on delay calculations for 
the given target platform (see Figure 6.10(d)). 

As for actors v′3 and v′4, they are equivalent to actors v8 and v9 (see Figure 6.11). They both 
have constant delays, because v9 has zero actor parameters (see Table 6.4) and v8 is a transfer 
actor, transferring data tokens of constant size. From Figure 6.10(d), we see that their delays are 
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almost equal. Therefore, to keep our symbolic expressions as simple as possible, we use the 
same symbol, β s, for both actors, and choose a conservative value for it: 

Rule 3: β s = ))(ˆ),(ˆmax( 98 vdvd ss  = 3.820 ms♦ 

Although ϕ s and β s are constant values, we still use index ‘s’ in their notations, to stress that 
in general this step has to work with variables that take different values in different scenarios. To 
illustrate this fact, the reasoning in the rest of this section does not exploit the fact that those 
values are constants. Note that our application example is still interesting, because, unlike ϕs and 

v'2 

(a) The IPC graph structure obtained from further simplification of the IPC graph 
of Figure 6.10(a) 

v'3 v'4 

v'1 

ϕ s 

(b) The (intermediate) variables representing the actor delays  

β s β s 

ηs  

Figure 6.11 Simplified IPC graph, for the loop-level characterization 
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Figure 6.12 The scenario levels of actor v'1 – η 1, η 2, and η 3 
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βs, the value of ηs is not constant. That value is considerably different in different scenarios, as 
illustrated in Figure 6.12. Because it also differs in different execution runs, it can only be 
calculated at run time. 

As also indicated in the caption of Figure 6.11(b), values η s, ϕ s, and β s are intermediate 
variables. In the rest of this subsection, we derive the loop-level coefficients from these 
variables. 

In this application case study, the easiest loop-level coefficient to derive is λs, i.e., the 
iteration interval. Recall that λs is equal to the maximum cycle mean of all cycles in the graph, 
whereby the scope can be reduced to only simple cycles. There are only five simple cycles in the 
IPC graph in Figure 6.11(b). Recall also that the cycle mean is the sum of actor delays divided 
by the number of the initial tokens along the path. Therefore, we have: 

λs = max((η s+ϕ s),   (ϕ s+β s)/2,   β s,   (β s+β s)/2,   β s) 
This expression can be simplified, and we obtain the following rule: 

Rule 4: λs = max((η s+ϕ s),  β s)♦ 

Note that, in [22], an efficient method is proposed that can generate such a symbolic 
expression for λs automatically for a general class of HSDF graphs, and therefore that work can 
be used for automation of this design flow step, although this automation so far is only partial, 
because [22] only considers the maximum cycle mean (i.e., λs), but not the lateness and the 
minimum overlap (i.e., the other loop-level coefficients). 

We calculate coefficient σs, i.e., the graph lateness, from its definition, which, for 
convenience, can be rewritten as follows (see also Section 4.4.1): 

nnxk
nVk

⋅−≡
∞+==

λσ )( max      max
..0..1

      (6.3) 

where xk(n) is the completion time of actor vk in iteration n, assuming synchronous initial 
conditions (where all initial tokens are released at time zero). Note that we skipped the scenario 
index s in this formula for convenience, but not only σs but also xk(n) and λ  depend on the 
scenario. Note also that, again for convenience, we have replaced a finite range for n by an 
infinite range, but any assignment of static delays to the actors of IPC graph implies a finite 
range of n where it is enough to apply this formula, because, as follows from Theorem 4.6, the 
argument of Expression (6.3) is periodic. 

This definition relies on a comparison between symbolic expressions, due to the need to 
detect the periodic pattern in the argument of ‘max’ and due to ‘max’ itself, because xk(n) andλ  
can be only expressed using symbolic expressions on unknown actor delays. Therefore, applying 
this definition directly in practice is a challenging task. Nevertheless, for this case study, we 
overcome this difficulty. We do that by first using a lower bound on lateness (which is easy to 
calculate in symbolic form) and then using the definition to prove that it is also an upper bound, 
thus being equal to the lateness. 

Lemma 4.8 implies that a lower bound on σs is the largest total delay of a chain of actors 
joined by edges that do not contain initial tokens. From Figure 6.11(b) we see that the chain of 
actors v′1, v′2, v′3, v′4 is such a chain of actors, and therefore a lower bound on σs is 
η s+ ϕ s + 2β s. 

For convenience reasons, to calculate σs, we follow the same mathematical conventions as 
summarized in Table 4.1 in Section 4.1.1. Recall that we use notations ‘⊕’ and ‘⊗’ for 
conventional ‘max’ and ‘plus’ operations on scalar values, and ‘ε ’ and e for ‘ ∞− ’ and ‘0’. We 
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also use the power operation enclosed in round parentheses as an alternative notation for product, 
e.g., a(b) = a⋅ b.  

Thus, we may use alternative notations for some ‘normal’ mathematical operations between 
scalars and for some scalar values; for the rest, the expressions on scalars are as usual. However, 
for the expressions involving matrices and vectors, we make a special exception, meaning that 
usual notations ‘⋅’ , ‘+’, and ab are used to denote max-plus operations. For example, ‘+’ for two 
matrices means element-wise application of ‘⊕’. Multiplying two matrices means an inner 
matrix product where ‘⊗’ and ‘⊕’ are applied for matrix elements instead of ‘normal’ 
multiplication and addition. If a constant is multiplied by a matrix/vector or is a matrix/vector 
element, we do not use ‘⊗’, ‘ ⊕’,  and a(b) to express the constant, instead we use ‘⋅’, ‘+’, and ab. 
For example, if constant η s⊗ϕ s⊗(β s)

 (2) is a member of a matrix/vector or is multiplied by a 
matrix/vector, this constant is written simply as η sϕ sβ s

2 . 
To find an upper bound on lateness, we reason along the lines of the static-delay analysis 

algorithm of Section 4.4.2. Hereby we apply the algorithm in the following steps: 

1. Construct the equivalent event graph GE. 

2. Use the equivalent event graph to derive the canonic matrix, denoted B. 

3. Assume x(-1) = e (where e is a vector filled with values e, i.e., with ‘0’). Calculate max-
plus products:  

v4 

v1 

v6 
η s 

0 

ϕ s 

ϕ s 

β s 

ϕ s 

β s 

β s 

v2 

v5 

0 

Figure 6.13 The equivalent event graph 
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vk 
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(a) The equivalent event graph GE for the IPC graph of Figure 6.11(b) 

(b) Graph GE after simplification 

v4 

v1 
0 

η s ⊗ϕ s 

ϕ s 

β s 

ϕ s 

β s 

β s 

v2 

v5 

0 

v3 

v3 



238 6 The Practical Use of Performance Analysis  

x(0) = B x(-1),     x(1) = B x(0), …  , x(n) = B x(n−1),… 

4. Now we deviate from the original algorithm such that we can stop calculating x(n) for 
some n. In this case study, we can find an upper bound on x(n) that can be used to replace 
the elements of x(n) in Equality (6.3) and to get an upper bound on the lateness in 
symbolic form. 

Now let us realize this plan.  
In step 1, the structure of the equivalent event graph GE is closely related to the IPC graph. It 

is shown in Figure 6.13(a). How an equivalent event graph can be obtained from an HSDF graph 
in general is explained in Section 4.2.  

Note that in this example the equivalent graph has two extra nodes compared to the IPC 
graph: v4 and v5. Note also that for convenience we use a different enumeration of nodes in graph 
GE: v6 corresponds to v′1, v1 corresponds to v′2, v2 corresponds to v′3, and v3 corresponds to v′4. 

Before we proceed to the next step to calculate the canonic matrix, we simplify graph GE by 
merging nodes v6 and v1 into one node, v1 (see Figure 6.13(b)). 

Recall from Section 4.2.3 that to calculate matrix B, one needs to analyze the largest-length 
(i.e., longest) special paths between all pairs of nodes in GE. A special path is a path where only 
the first edge carries an initial token. In matrix B, entry {B} i,j contains the length of the longest 
special path from v j to vi. For example, the longest (and, in fact, the only) special path from node 
v1 to node v2 is ((v1, v1), (v1, v2)); its length is η s⊗ϕ s⊗β s and this value is placed as entry {B} 2,1 
in matrix B. In a similar way, one can calculate all the other entries in B and the result is given 
below.  
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Now, let us multiply the left and right part of this inequality by B j, where j ≥ 0: 
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The definition of σs in Equality (6.3) can be rewritten as follows: 

( )...)3()2()1()0( 321 +⋅+⋅+⋅+⋅= −−− xxxxeT
ssss λλλσ  

where eT is a row-vector filled with values e. 
Using Formula (6.4), we can write: 

( ) ( )( )...)1()1()1()0( 2321 +⋅+⋅⋅+⋅+⋅≤ −−− xxxxeT
ssssss λλλλλσ  

So, we have: 
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From this, it follows that the upper bound is the maximum element of the two vectors being 
added within the brackets. We list the elements from top to bottom and from left to right: 
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Comparing different elements to each other, we conclude that the maximum is 
η s⊗ϕ s⊗(β s)

(2). Because this value is both a lower bound and an upper bound on σs, we can 
conclude: 
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Rule 5: σs =  η s+ ϕ s + 2β s♦ 

The only loop-level coefficient left to be characterized is γs,t, i.e., the minimum overlap 
between scenario s and scenario t. To calculate that coefficient, we use the IPC graph analysis 
algorithm described in Section 5.2.3. For that, we unfold the IPC graph in Figure 6.11 with 
unfolding factor four (which is twice the maximum number of initial tokens per edge).  

As a result, we obtain the transition graph, shown in Figure 6.14. The actor delays drawn in 
the first and in the last row have index ‘•’, e.g. η•, which refers to the minimum value in all 
scenarios, e.g. η• = min ηs. Recall that the transition graph is partitioned into two subgraphs by 
the transition line. 

Recall that the edges that cross the transition line are called the edges of interest. They are 
shown by bold arcs in the figure and numbered with index r = 1..7. Above the transition line 
there are special nodes, which are involved in the calculation of γs,t. Those are so-called sinks of 
interest Vl, which are defined as the nodes that have only edges of interest as outgoing edges. In 
our example, there is only one such node, v'4[2], which is therefore labeled as V1. Similarly, there 
are special nodes also below the transition line. Those are the so-called sources of interest Ui, 
defined as the nodes that have only edges of interest as incoming edges. In our example, such a 
node is node v'1[3], labeled as U1. 

Before we can calculate γs,t, for each edge of interest with index r we calculate: 

• ∆er, as-late-as-possible production time on edge r (alap production time). It is equal to the 
largest sum of the delays of the consumer actors on a path from the producer of edge r to a 
sink of interest Vl. For example, for the edge indexed as edge ‘2’, we take path (v'3[1], v'3[2], 
v'4[2]). Therefore, we have ∆e2 = d(v'3[2])) + d(v'4[2])) = 2β s. An alternative path is (v'3[1], 
v'4[1], v'4[2]), but it has a smaller sum of consumer delays. 

• ∆br as-soon-as-possible consumption time on edge r (asap consumption time). It is equal to 
the largest sum of the delays of the producer actors on a path from a sink of interest Ui to the 
producer of edge r. For example, for the edge indexed as edge ‘6’, two paths are candidates: 
the first one is (v'1[3], v'2[3], v'1[4], v'2[4], v'3[4]) and the second one is (v'1[3], v'2[3], v'3[3], 

Figure 6.14 The transition graph for the IPC graph of Figure 6.11 
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v'3[4]). Taking the maximum sum of the producer delays, we obtain:   
               ∆b6 = d(v'1[3])) + d(v'2[3])) + max (d(v'1[4])) + d(v'2[4])), d(v'3[3])) =  
                  = η t + ϕ t + max(η • + ϕ  • , β t) 

The values of ∆er and ∆br for the edges of interest in this case study are given in the table 
below Table 6.11. 

Recall that γs,t is equal to the minimum sum of ∆er and ∆br in a row of the table. To find that 
value, let us first exclude the rows that have sums larger than or equal to other rows. Row 2 has a 
larger sum than row 1; row 3 has a larger sum than row 4; row 5 has a sum equal to row 4; row 6 
has a sum larger or equal to row 7.  

This leaves us with only three candidate table rows: row 1, row 4 and row 7. Finding the 
minimum value of those three rows yields the following expression: 

Rule 6: γs,t = min ( 2β s ,η t+ ϕ t + min(β s, β t) )♦ 

We see that Rules 4-6 express the loop-level coefficients in terms of the intermediate 
variables, which, in turn, can be calculated from the actor delays using Rules 1-3. Thus, the loop-
level characterization is completed. 

 

6.3 Run-time Performance Analysis Results for the MPEG-4 Decoder 
6.3.1 The Goals of the Experiments 

Whereas in the previous section we considered the design steps performed at design time, in 
this section, we evaluate the quality adaptation, performed at run time. The adaptation is the task 
of the QoS manager, which we introduced in Sections 6.1.2 and 6.1.3. In this section, we apply 
our performance-analysis approach to realize an important part of the QoS manager: the VOP 
Decoding-Time Estimator. Recall that, using Figure 6.2, we already explained the task of the 
estimator and showed that it can be realized with the dynamic-delay analysis algorithm 
introduced in Chapter 5. In this section, we evaluate the Decoding-Time Estimator 
experimentally. Note that the estimator uses the results of the previous section, such as the actor-

Table 6.11 Alap and asap values for the transition graph in Figure 6.14 

r From To re∆  rb∆  

1 v'2[2] v'1[3] 2β s  0 

2 v'3[1] v'2[3] 2β s  η t  

3 v'3[2] v'2[4] β s  η t + ϕ t + η •  

4 v'3[2] v'3[3] β s  η t + ϕ t  

5 v'4[1] v'3[3] β s   η t + ϕ t 

6 v'4[2] v'3[4] 0 η t + ϕ t + max(η • + ϕ  • , β t) 

7 v'4[1] v'4[3] 0 η t + ϕ t + β t 
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level coefficients, the definition of scenarios, the budget assignment and the loop-level 
characterization rules.  

 The purpose of our experiments with the VOP Decoding-Time Estimator is to evaluate the 
run-time component of the performance-analysis approach proposed in this thesis. The central 
issue is the accuracy of the execution time estimation, which is very important to reach good 
results in practice, as we showed in Section 6.1.4.  

In particular, the goals of the experiments are: 

• to measure the accuracy and to check conservativity; 

• to explore the overhead-accuracy trade-off; 

• to measure the impact of analysis error on visual quality; 

• to compare our performance analysis to the worst-case analysis. 

Thus, as the evaluation reference, we use the worst-case throughput approach, which is the 
traditional approach to handle the applications with dynamic data-dependent delays. This 
approach avoids the analytical difficulties in handling the dynamic delay variations by replacing 
the dynamic delays with static maximum values. With static delays, it is relatively easy to 
analyze the throughput of the dataflow graph and thus also to calculate the execution time. As it 
can be concluded from our earlier related work overviews in Sections 1.5 and 2.2.6, the worst-
case throughput approach is the only alternative to our method known to us provided that 
conservativity needs to be ensured and arbitrarily long execution runs need to be supported. 

We model the worst-case throughput approach by a special case of our approach where the 
multi-scenario delay (MSD) mode has only one scenario. Thus, our approach takes advantage of 
more scenarios (three in this case study) and of our ‘dynamic-delay analysis’ algorithm to handle 
multiple scenarios. 

 

6.3.2 Estimator Implementation  

For the experiments with the estimator, we used the two sample input video streams, ‘singer’ 
and ‘dancer’, which we introduced in Section 6.2.4.  

First of all, for both streams, we obtained the data to be encoded in the VOP headers as input 
for the estimator. As indicated in Figure 6.2, three kinds of data are necessary, the characteristic 

values of actor-level parameters, s,ω̂ξ , the values of loop-level parameters, Js and Ks,t, and the 

scenario index of the first macroblock, s(1). All these data are obtained based on the scenario 
definition in Section 6.2.5. 

Given this data, the run-time task of the estimator for the given VOP is as follows. From s,ω̂ξ , 

the estimator calculates the delay quantization levels of all actors, )(ˆ
ks vd . Using Rules 1-6 from 

Section 6.2.7, the estimator obtains the loop-level coefficients of the given VOP: λs, σs, and γs,t. 
Afterwards, the estimator calculates the loop-level parameters Ls, using Equalities (5.7). At 

this point, the estimator has all the loop-level coefficients and parameters values. After that, it 
calculates the predicted execution time as a linear combination of loop-level coefficients and 
parameters, as given in Equality (5.6), which we reproduce here for convenience: 

N∆̂ =  ∑
s

(λs ⋅ Js  +  (σs – λs) ⋅ Ls ) – s,t
tsts

s,t K⋅∑
≠,,

γ     (6.5) 
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To evaluate the estimator accuracy, in our experiments, we compare the results of the 
estimation from the execution times measured on our multiprocessor simulator. 

To evaluate the impact of estimation error on the visual quality of the video decoder, we feed 
the estimation results to the VOP Skipping Controller, being used in our QoS manager and 
described in Section 6.1.2. 

 

6.3.3 Experimental Results 

The results are summarized in Table 6.12. The columns show per stream the results for ideal 
estimation and the estimation using a certain number of scenarios. The first two lines show the 
average and maximum error with respect to simulations. For our default setting (three scenarios), 
our method yields 11% and 10% average error for the two sample streams. Figure 6.15 shows 
execution-time curves for stream ‘singer’. Our estimation turned out to be strictly conservative 
(although this is theoretically not guaranteed), which is in line with our objectives. The measured 
estimation error can be mostly explained by overestimation due to multi-scenario actor delay 
mode (Figure 6.12).  
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Figure 6.15 VOP decoding time estimation results 
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Table 6.12 Estimator evaluation results 

 stream ‘singer’ stream ‘dancer’ 

scenario count ideal 3 2 1 ideal 3 2 1 

avg error, % 0 11 25 56 0 10 18 60 

max error, %  0 17 36 77 0 14 24 89 

quality, %  77 64 46 28 77 70 65 33 

overhead (bytes) - 20 12 5 - 19 13 6 

overhead, % - 5 3 1.3 - 1 0.7 0.3 
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The more scenarios are used in the estimation, the larger the overhead, because the more 
actor-level and loop-level parameter values need to be encoded in the VOP header. Note that we 
need to encode 15 characteristic actor-level parameters per scenario (and two primary parameters 
are implied by the scenario itself) and one loop level parameter per scenario and scenario 
transition. We measure the overhead needed to encode the difference between the parameter 
values in the current and the previous VOP using Shannon’s entropy metric. The results are 
shown in the last two rows of Table 6.12. The relative overhead differs considerably between the 
streams because they have different average VOP size, 400 bytes and 2000 bytes. The absolute 
overhead is almost independent of the VOP size, because it determined mainly by the probability 
distributions of variations of parameter values from one VOP to another. The results show that 
the relative overhead is limited if VOP sizes are not too small. Note that overhead can be reduced 
further (compared to the application of entropy coding), e.g., by applying quantization to the 
least sensitive parameters. 

We see that using less scenarios reduces the overhead but leads to poorer accuracy. As we see 
in Table 6.12, reducing the number of scenarios from 3 to 2 (by merging the two highest delay 
levels in Figure 6.12) results roughly in twice the error. Having only 1 scenario leads to an even 
larger error increase (by a factor of 5 to 6). The one-scenario approach models the worst-case 
throughput approach, which shows the big advantage of our scenario-based approach over that 
technique. 

Note that 11% accuracy is a good result compared to the related work which is closest to our 
work in this area – [6] – where similar accuracy results were achieved, using, however, much 
less data encoded in the header (only three parameter values versus around 50 in our case). 
Nevertheless, the advantage of our technique is that, in return to a larger overhead, it gives 
conservative results and that it supports multiple processors.  

Due to the fact that we can expect a similar IPC graph structure from any video decoding 
algorithm, we expect that in practice the same accuracy can be achieved in this application 
domain with our technique. It is definitely an interesting future work subject to evaluate our 
technique for other application domains and for dataflow graphs in general. 

Differences in estimation accuracy have a big impact on the visual quality, because more 
VOPs are skipped if the overestimation grows. For stream ‘singer’, we set the VOP deadline to 
400 ms, which produces significant processor overload. For stream ‘dancer’, we set the deadline 
such that similar overload was achieved. This choice is intentional, showing a situation where 
the QoS manager has to actively control the quality. For our VOP-skipping QoS manager, 
Table 6.12 shows the quality results, measured in the percentage of VOPs presented to the user. 
From the table, for stream ‘singer’, we observe a significant quality drop, from 64% for our 
approach to only 28% for the worst-case approach. A similar observation holds for stream 
‘dancer’. 

Note that the video frame-skipping is not typical for advanced video decoders; neither is the 
frame rate of 2.5 frames per second (i.e., a 400 ms deadline). We made those assumptions due to 
practical limitations in the experimental setup. The results and conclusions carry over to realistic 
settings with faster processors and more advanced quality control methods. 
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6.3.4 Notes on the Processing Time Overhead 

In our experiments, we did not implement the estimator on the target platform, because we 
did not fully elaborate the encoding/decoding of the parameter values (recall that we only 
estimated the code sizes of the parameters using Shannon’s entropy metric). Instead, we 
emulated the main part of the estimator algorithm at higher abstraction level. Thus, we could not 
measure the processing time overhead of this algorithm (in terms of processor cycles per VOP); 
and we can reason about this overhead only based on the algorithmic complexity of the 
calculations. 

In the estimator implementation of this case study, the processing time overhead can be 
managed efficiently, because the amount of calculations does not depend much on the input data 
and the calculations mainly comprise the decoding of parameter values from the header and the 
calculation of a few linear formulas: the formulas of the actor delays, six rules for loop-level 
characterization, Equalities (5.7) and Equality (6.5). Intuitively, those calculations are negligible 
compared to decoding a VOP. 

This is due to the fact that we could reduce the amount of run-time calculations by doing the 
loop-level characterization at design time. However, for the general case, we do not have a 
method for design-time loop-level characterization; therefore, when implementing an Estimator 
for other applications, it might be necessary to do the loop-level characterization at run time. Let 
us discuss this option briefly. 

Among all the variables contributing to the complexity of loop-level characterization, the only 
concern is H – i.e., the number of iterations of the algorithmic rule to calculate lateness of an IPC 
graph – see Section 4.4.3. This variable is the only variable that is in the worst-case exponential 
in the representation of the IPC graph. We implemented this algorithm and saw that, in our case 
study, H could change by a factor of 2 due to a 0.00001% change of an actor delay, which could 
be explained by the fact that multiple bits are required to represent that change accurately, H 
being worst-case exponential in that number. Nevertheless, when we represent the actor delays 
with a reasonable accuracy of 0.1%, then H stays below 10 in our case study. To improve the 
robustness of our method, finding tight approximations of the graph lateness with polynomial 
algorithmic cost is an important future work topic. 

 

6.4 Notes and Summary 
In this chapter, we have evaluated the method proposed in this thesis for the performance 

analysis in the context of run-time adaptation of application quality to the variable computation 
workload. Hereby we have taken care to select proper ingredients for a demonstration of our 
approach. 

Firstly, because our method is oriented to multimedia streaming applications with scalable 
audio/video quality, as a case study we selected a modern streaming application – the MPEG-4 
arbitrary-shape decoder – enhanced with a practical quality adaptation manager, as described in 
Section 6.1.2. Secondly, because a major novel element being introduced by our performance 
analysis method is the support of network-on-chip multiprocessors, we mapped the application to 
two processors of such a platform, as described in Section 6.2.2. Thirdly, because modern 
dynamic streaming applications require support of multiprocessor resource budgeting and 
concurrent execution, we make use of these features in this case study and model them using our 
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elaborate timing model – the implementation-enhanced HSDF (in its final form – the IPC graph). 
The elements of this model for this case study are described in Sections 6.2.3 (the graph 
structure) and 6.2.4 (where the elements that model the processor and communication 
scheduling).  Finally, because the complexity of performance analysis is a very important 
practical issue, in Sections 6.2.4, 6.2.5 and 6.2.7, we demonstrate the mathematical framework 
that we employ in this thesis to reduce the level of detail in the timing model while offering 
sufficient accuracy. In those sections we start from a IPC graph mode; endowed with detailed 
actor execution traces and end by a limited set of algebraic expressions that can be quickly 
evaluated at run-time to quickly and accurately predict the application performance with limited 
overhead. 

In this evaluation, we have shown that our performance method yields accurate and 
conservative resource utilization predictions needed for run-time resource and quality 
management in low-power embedded multimedia systems. At the same time, we showed that the 
worst-case throughput analysis failed to yield good results. The latter is the only previous 
performance analysis technique that could be applied at run time for our implementation-
enhanced HSDF timing model. In addition, our evaluation has shown acceptable overhead in 
terms of the processing time and the data size. We published this evaluation in [76]. 

The conclusions and future work directions are summarized in the next chapter. 
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7 Conclusions and Future Work 

7.1 Thesis Summary 
In Chapter 1, we have set up the goals of this thesis, and in this chapter we summarize to 

which extent and how these goals have been met.  
This thesis focuses on computer systems that are important for consumer electronics, namely, 

on embedded systems for multimedia applications. We make a motivated choice to work on a 
very important class of such systems – the multiprocessor networks-on-chip. 

Our main application area has been defined as dynamic streaming applications, also referred 
to as digital signal processing applications and coding/decoding audio/video applications. Within 
that context, our major goal is run-time performance analysis that aids the dynamic adaptation of 
the computer system to run-time changes in the processing workload. The analysis has to be 
accurate and conservative. To support the streaming applications in the best way, the analysis 
has to natively support arbitrarily long execution runs of applications on multiprocessors, which 
means that it has to reason in terms of application throughput rather than in terms of response 
times, like it is done primarily for control applications. 

Whereas response-time methods focus on calculation of the worst-case execution paths, 
throughput analysis techniques focus on a certain state of equilibrium – a steady state – reached 
by the computational model that represents the analyzed system. However, the latter is not trivial 
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to do in the context of dynamic data-dependent system workload, because such a workload, in 
general, makes it hardly possible to define a single steady state of the system. 

Therefore, we generalized the steady-state approach for analyzing throughput of streaming 
applications to multiple steady states – called scenarios. Application scenarios are a well-known 
concept for dealing with dynamic system workload [27], [99], but our work for the first time 
associates an application scenario with a distinct state of equilibrium of a model of computation 
and includes transient behavior. (A very recent publication of Marc Geilen – to be published 
soon – also does that [21]) This allows us to unify the throughput-oriented reasoning needed for 
streaming applications and the scenario-based approach needed for dynamic applications. 

In the context of dynamically changing processing workload, the scenarios have unpredictable 
characteristics and unpredictable transitions between them. To deal with the uncertainty due to 
unpredictable workload, our performance analysis approach follows the common method for all 
scenario-based methods, namely, it exploits run-time characteristics of the scenarios that are 
known a priori.  

To capture the concurrent execution of the application in a multiprocessor, a certain model of 
computation has to be chosen. We have chosen the HSDF (Homogeneous Synchronous Data 
Flow) model of computation and motivated that choice in Chapter 2. There, we establish a 
relationship between that abstract model of computation and a real application implemented on a 
multiprocessor. We give a practical context for our HSDF performance analysis by describing an 
implementation trajectory from the specification through a design flow to the implementation 
decisions taken at run time. The performance analysis acts as a tool for continual evaluation of 
decisions taken at each implementation step and for guiding these decisions towards optimal 
solutions. At design time, the performance analysis can make use of existing theoretical results 
on the steady-state throughput analysis of HSDF graphs. However, to guide the run-time 
implementation decisions, the throughput analysis has to support dynamic data-dependent 
execution delays in HSDF graphs. When the execution delays are data-dependent, reasoning 
about the HSDF throughput appears to be a practically intractable problem in general. In the end 
of Chapter 2, we briefly explain how the methodology proposed in this thesis can avoid that 
difficulty by exploiting the a-priori run-time characteristics of multiple scenarios. 

In Chapter 3, we describe the enhancements we made to the HSDF model so that it can play a 
role of a performance-analysis model for data-dependent streaming applications running on 
modern multiprocessor systems-on-chip. The main novelty of this chapter is the treatment of the 
communication channels in the on-chip multiprocessor interconnection network, also known as 
network-on-chip. We build a framework for modeling the channels with guaranteed throughput 
and bounded FIFO buffers as subgraphs of the HSDF graphs. Hereby, we support complex 
channels that transfer the data tokens of different original simple channels in a fixed order. We 
presented this contribution in [75]. The only closely related work on this subject is the work of 
Arno Moonen et al. In [60], [63], they introduce network channel models that are similar to ours, 
but have important differences. On one hand they do not support complex channels. On the other 
hand, they propose more powerful and less pessimistic models for the TDMA scheduling of 
network packets. Note that their models reflect the events at the hardware-specific level of 
granularity, whereas our models work at the application-specific data granularity level. 
Therefore, if the application uses data samples consisting of a large number of network data 
words, then the performance analysis complexity for our models is much smaller. This is 
particularly favorable for the performance analysis that is done at run time. 
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Our framework for modeling the network-on-chip channels can be exploited in a design flow 
that maps streaming applications to a multiprocessor network-on-chip. This flow is responsible 
for a gradual transformation of our implementation-enhanced HSDF model from the 
specification to the final form. In Chapter 3, we sketch a hypothetical preferred mapping flow 
and the corresponding HSDF model transformations using a JPEG decoder application as a case 
study. The contribution of this thesis to multiprocessor mapping flows is focused on networks-
on-chip communication aspects, whereas, for bus-based multiprocessors, mapping flows and 
implementation-enhanced HSDF models have been known already for some time, see [5], [83]. 
In particular, our contribution is that we enable bottleneck analysis of buffer capacity 
minimization for complex network-on-chip channels under application throughput constraints. 
The bottleneck analysis can be used in heuristic iterative improvement algorithms for this 
problem. Although we do not formulate a general algorithm, we demonstrate this idea using the 
JPEG decoding case study in Chapter 3 and in [75]. In the final section of Chapter 3, we discuss 
different related publications on buffer capacity minimization. From that discussion we can 
conclude that no FIFO buffer capacity minimization method known to us can directly address the 
complex-channel capacity minimization problem without making too restrictive assumptions, 
and, therefore, this problem remains open. 

Of special importance for our methodology is the initial design-flow phase, which precedes 
the multiprocessor mapping. We refer to that phase as the application preparation. It is a 
generalization of conventional profiling and worst-case execution time analysis. Instead of 
assuming constant worst-case/average-case processor clock cycle counts for the HSDF graph 
actors, the application preparation characterizes the actor processor-cycle counts as functions on 
input data parameters, called actor-level parameters. On one hand, the parameter values are 
assumed to be constant when making the design-time decisions. On the other hand, at run time, 
we exploit the a priori information on the parameter value variations for accurate performance 
estimations at run time, as it becomes apparent from the following chapters of the thesis. In 
Chapter 3, we propose to use the confidence intervals of the linear regression method to make 
the coefficients of the actor-level parameters conservative. This is necessary to give performance 
guarantees, which is a major goal of this thesis. 

Chapter 4 revisits the steady-state throughput analysis of HSDF graphs with static delays and 
introduces a new metric for the graphs, called lateness. This metric characterizes the transient 
phase of the timing behavior when the HSDF graph execution is underway to a steady state. The 
lateness is important for extension of the single-steady-state throughput analysis to multiple 
steady states, because it helps to evaluate the impact of transitions between different steady 
states. Unfortunately, the only known exact algorithm to calculate the lateness is exponential. 
Nevertheless, in practice, this has never resulted in long runtimes for us and there are ways to 
give up some accuracy while reducing the probability of large calculation overhead. 

In Chapter 5, we realize the idea of using multiple steady states that are reached at different 
intervals of application execution run, in order to analyze the execution time and throughput in 
the case of dynamic data-dependent execution delays. We do that through quantization of actor 
execution delays. Different quantization levels correspond one-to-one to different steady states of 
the HSDF graph.  

We define a scenario as a sub-space in the space of possible values of the vector of actor-
level parameters of the given application. The scenario should be distinguished by the most 
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influential actor-level parameters, i.e., those that have a large impact on multiple actors of the 
HSDF graph.  

An important contribution of Chapter 5 is a graph-path analysis algorithm to calculate the 
timing overlap between different scenarios. This timing overlap appears due to the inherent 
parallelism of HSDF graph execution, whereby some actors may start executing in a new 
scenario earlier than the other actors. We presented the timing overlap technique in [79], [78], 
[76]. As discussed in Section 1.5 and 5.4, the only relevant related work on this subject – 
although focusing on a different topic – is the work of Zhe Ma et al [55], [56]. Their work on 
energy-aware scheduling implies a performance analysis method that has much in common to 
the actor execution delay quantization as proposed in this thesis. However, the main focus of that 
work lies on a different subject – i.e., efficient multiprocessor scheduling, whereby they do not 
yet explicitly exploit the steady-state analysis. As we argued in Section 5.4, in order to apply 
their method for the same performance analysis problem as considered in this thesis, their 
approach would need to be essentially modified. 

Our results on scenario-aware performance analysis give us the possibility to revisit the 
beginning of the design flow – the application preparation. Chapter 3 only provides 
characterization of performance at the level of actors, using functions on actor-level parameters. 
The results of Chapter 5 allow us to characterize the performance of the HSDF graph as a whole. 
The estimated duration of an execution run of the HSDF graph is a linear function of so-called 
loop-level parameters, which count the occurrence of different scenarios and scenario transitions 
in the given execution run.  

Therefore, in the beginning of the design flow in our methodology, having defined the actor-
level parameters, the application designer also has to identify the scenarios, which automatically 
leads to the definition of the loop-level parameters. The coefficients for the loop-level parameters 
are obtained from the graph analysis of the final HSDF graph after it has undergone all the 
transformations made by the design flow. Because the graph analysis needs to know the actor 
delays per scenario, it uses certain values of actor-level parameters in every scenario, referred to 
as characteristic values. Note that for the identification of a good scenario set of the given 
application, we do not propose any general approach, although we argue that the technique 
proposed by S. V. Gheorghita et al [28], [24] can be applied.  

The values of loop-level parameters and the characteristic values of actor-level parameters per 
scenario form, in fact, the a priori information exploited by our performance-analysis approach at 
run time. From these data, our run-time algorithm for the estimation of the execution-time (and 
throughput) can give estimations that are both conservative (with high probability) and that can 
be made as accurate as necessary by providing a large enough number of scenarios (at the cost of 
a larger overhead). This finalizes the development of the methodology of this thesis. 

Chapter 6 demonstrates our methodology using an application case study, an MPEG-4 
arbitrary-shape video decoder with a simple quality-of-service manager. For this application, we 
go through the design flow, especially focusing on the aspects important for the performance 
analysis. At the end of the flow, we have all the necessary data for run-time prediction of the 
decoding times of video frames. We simulate the run-time predictions of decoding times and the 
visual quality adaptation algorithm guided by those predictions. The results show that our 
method has a reasonable overhead and that it yields conservative predictions with enough 
accuracy to achieve a visual quality that is close to the best achievable quality. To the best of our 
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knowledge, no other existing performance-analysis methods can give conservative execution 
time predictions for multiprocessor systems that can match this result. 

 

7.2 Limitations and Future Work 
In this section, we summarize the main limitations of the work presented in this thesis and 

identify the major topics for future work.  
First of all, the chosen model of computation, i.e., HSDF, has only a limited support for the 

conditional execution of actors, see Section 2.2.1. Also, HSDF supports only a single-level 
nested loop at the graph level and no external inputs and outputs. Extending our performance 
analysis for a better support of conditional execution, for more complex loops, and for external 
inputs and outputs (with a fixed periodic pattern of data arrival and data required times) is a topic 
of future work. However, before extending the analysis to support more general models of 
computation, in future work, one also needs to handle a known issue for HSDF graphs, namely a 
possible lack of accuracy for graphs that have multiple actors that can be identified as so-called 
sinks of interest (see Section 5.2.4 for more details). In this respect, it would also be useful to try 
our performance-analysis approach on more HSDF benchmarks, first of all on random HSDF 
graphs with random sets of scenarios. 

The functional usability of our analysis approach needs to be explored in more application 
case studies of run-time adaptation of quality/energy consumption and resource budgets. For the 
distributed multiprocessor environment like the one we assumed in this thesis, the latter two 
cases may involve the reconfiguration of hardware resources and task migration between 
different processing tiles, which did not get attention in this thesis. Another important issue that 
is taken in this thesis for granted is the requirement to produce conservative results, i.e., to 
provide guaranteed performance, whereas we still, for efficiency reasons, allow our results to be 
non-conservative. We have not considered yet the question on how ‘bad’ it would be for real-life 
multimedia streaming applications for consumer electronics to use a performance analysis that 
often gives too optimistic results and whether one could find a good ‘middle point’ between the 
resource use efficiency and the reliability of performance estimations.  

The overhead of the performance analysis is a very important concern, especially if the 
analysis is performed at run time. In this respect, a weak point of our approach is that we use an 
exponential-complexity algorithm to calculate the lateness of an HSDF graph (see Section 4.4.2). 
This problem does not necessarily manifest itself in practice and we have discussed some ways 
to work around this problem if necessary (see Sections 4.4.3 and 6.3.4). In future work, 
developing a lateness calculation algorithm (possibly an approximation algorithm) with a 
polynomial complexity would be a valuable extension of this work. 

Our performance analysis method is based on actor delay quantization levels, determined by 
the scenarios. The only automatic technique for scenario identification that we are aware of is the 
technique of S. V. Gheorghita [28], [24]. Although we argued that it can be adapted for our 
implementation trajectory, it was originally developed for sequential implementations, and thus 
can provide non-optimal solutions for multiprocessors. In our case study we have seen an 
example where the choice of a better set of scenarios is influenced by the structure of the 
dataflow graph. Therefore, an interesting future work topic is development of scenario 
identification techniques taking into account the parallelism of different actor executions. 
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Another help for the application designer in this context would be automation of the 
generation of appropriate coding schemes (such as Huffman trees) for encoding the complexity 
parameters in the application data headers to be used in run-time adaptation. This task is very 
similar to the generation of encoding schemes for new video standards, such as MPEG-4. For 
example, also in this case there is a certain trade-off between the data-size savings due to lossy 
coding and the quality of the output results. However, the definition of the encoding schemes in 
video standards is a more complex task, which probably will remain to be manual work, whereas 
the encoding of the complexity parameters is probably a more routine task that can be automated. 

Recall that, apart from the run-time performance prediction, another goal of our performance 
analysis approach is to aid the design flow for networks-on-chip, especially the communication 
mapping phase. Our main contribution in this area is the bottleneck analysis for minimizing the 
capacities of complex buffers. Hereby, so far we have only considered only one application case 
study – the JPEG decoder. Therefore, also this contribution needs more evaluation on application 
benchmarks and random graph examples. Moreover, in our preferred mapping flow, other topics 
remain open and deserve future investigation. So far we are not aware of any algorithms to 
merge simple channels into complex channels, especially when we speak of the network (i.e., 
‘real’) channels, and not local memory buffers. Another open question lies in the more global 
context of the mapping flow. In the JPEG decoding case study, we have observed that assuming 
average actor processing times during mapping may often lead to inaccurate ‘optimistic’ results, 
i.e., assuming that the throughput constraint is met, whereas in reality it is not met even for the 
sample input stream used to measure the average processing times in the graph. An open 
question remains on how to make the mapping flow better aware of the dynamic variations of the 
actor processing times, so that it produces mapping solutions that are more reliable in terms of 
throughput constraint satisfaction, while still not making too pessimistic assumptions on the 
actor processing times. Using scenarios in the context of the mapping flow might be a promising 
approach in that direction, because they are already used in certain mapping flows (see e.g. [55]) 
to ensure better energy efficiency of the multiprocessor mapping solutions. Hereby, unlike 
existing approaches, one needs to also take the scenario transitions into account using timing 
overlap calculation techniques (see Section 5.2.3). 

Last but not the least, to improve the usefulness of our performance analysis approach for the 
state-of-the art embedded systems, we need to extend it with the support of shared memory 
hierarchies and with the of on-the-fly reconfigurations of the running applications. 

 

7.3 Main Conclusions 
In the context of embedded multimedia multiprocessor systems with dynamic streaming 

applications, our work brings some contributions into two major research areas: run-time 
adaptation and the design flow. 

For run-time adaptation, we have proposed a methodology for run-time prediction of the 
processing throughput, or in other words, for run-time prediction of the execution times 
necessary for processing a certain amount of input data. The execution-time/throughput 
prediction techniques help the run-time adaptation methods to act proactively when trying to 
maintain the necessary throughput. When predicting too long execution times, the adaptation 
methods can proactively adjust either the processor clock frequency/voltage, or the application 
quality-of-service level, or adapt the resource usage in some other way. We propose a method, 



 7 Conclusions and Future Work  255 

the only one known to us so far, that can do execution-time/throughput estimations that are both 
accurate and conservative. 

Giving guarantees on the performance is a key property of our contribution to the run-time 
adaptation area. This concept is important for ensuring smooth and reliable application execution 
runs without ever overloading the computation or the communication resources. In previous 
work, the only technique that could produce conservative throughput estimation was worst-case 
throughput analysis that assumes the worst-case execution delays of every application 
subroutine. The extension to execution-delay quantization and multiple scenarios, as explained 
earlier in this chapter, helps us to achieve good estimation accuracy in addition to being 
conservative. Our application case study – the MPEG-4 arbitrary-shape video decoder – 
demonstrates good accuracy and conservative predictions at a reasonable cost. Because this 
application is one of the most complex applications in the domain of video applications, we 
believe that these results are also promising for many other multimedia applications. 

Our secondary contributions are in the area of the design flow for mapping streaming 
applications to multiprocessors based on packet-switched networks-on-chip. To map the 
communication of an application to the network communication channels, one needs to 
understand the impact of the mapping decisions on the throughput of the application. We were 
the first to propose models that capture the performance impact of the mapping decisions 
involving the capacity of the input and output FIFO, the bandwidth of the channels, and the 
merging of multiple application communication channels into larger complex network-on-chip 
connections. As we demonstrated using the JPEG decoder case study, the modeling techniques 
help to take correct mapping decisions throughout the whole mapping flow, and especially the 
communication mapping decisions. 
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Samenvatting 

Een Nauwkeurige Analyse voor Gegarandeerde Bewerkingssnelheid 
van Multiprocessor Multimedia Toepassingen 

Reeds lange tijd zijn elektroniche apparaten beschikbaar voor vermaak, onderwijs of 
telecommunicatie doeleinden, die gebaseerd zijn op multimedia toepassingen, d.w.z., toepassingen 
die stromen van audio en video data bewerken in digitale vorm. Het is de verwachting dat in de 
toekomst de multimedia mogelijkheden in draagbare apparaten meer en meer alledaags zullen 
worden. Dit leidt tot uitdagingen met betrekking tot kostenefficiëntie en kwaliteit. Dit proefschrift 
draagt modellen en analysetechnieken bij om de kostenefficiëntie, en daarom ook de kwaliteit, van 
de multimedia apparaten te verbeteren. 

Draagbare elektroniche apparaten moeten enerzijds flexibele functies aanbieden en anderzijds 
lage vermogensdissipatie vertonen. Deze twee eisen zijn in strijd met elkaar. Daarom concentreren 
wij ons op een klasse van hardware die een goed compromis tussen die twee eisen vertegenwoordigt, 
namelijk op applicatiedomein specifieke multiprocessor systemen-op-een-chip (MP-SoC). Ons 
onderzoek levert een bijdrage tot dynamische (d.w.z., run-time) optimalisatie van MP-SoC 
systeemmetrieken. De centrale vraag daarbij is enerzijds hoe het systeem aan de eisen betreffende 
tijdaspecten kan voldoen en anderzijds hoe belangrijke systeemmetrieken zoals de waargenomen 
multimedia kwaliteit of de vermogensdissipatie geoptimaliseerd kunnen worden. In deze gevallen, 
praten we over vermogensdissipatie of quality-of-service (QoS) management. 

In dit proefschrift streven wij het apriori gegarandeerd voldoen aan de eisen aan 
bewerkingssnelheid na, voornamelijk door middel van analytisch redeneren. Dat houdt in dat de 
analyse van de bewerkingssnelheid conservatief moet zijn, d.w.z. het moet pessimistisch zijn wat 
betreft de omstandigheiden die de bewerkingssnelheid van het systeem negatief kunnen beïnvloeden. 
In de ingebedde-systemen industrie is conservatief ontwerp het belangrijkste middel om een stabiele 
kwaliteit te bereiken.  Daarom vormt deze benadering ook de basis voor dit onderzoek. Het 
hoofdonderwerp van dit proefschrift is dus de analyse van de gegarandeerde bewerkingsnelheid van 
multimedia toepassingen op multiprocessoren. 

Onze analysemethode is voornamelijk bedoeld voor het aansturen van de dynamische 
optimalisatie van de systeemtoestand, dat typisch als volgt verloopt. Een manager van de beschikbare 
hardware en software middlen of een kwaliteitsmanager voorspelt de uitvoeringstijd, d.w.z., de tijd 
die het systeem nodig heeft om een bepaald aantal eenheden invoergegevens te bewerken. 
Uitvoeringstijden zijn afhankelijk van de bewerkte gegevens. Wanneer de uitvoeringstijden kleiner 
worden kan de manager de controleparameter voor de gewenste systeemmetriek zodanig instellen dat 
de metriek verbetert maar het systeem vertraagt. In het geval van de optimalisatie van de 
vermogensdissipatie wordt het systeem dan ingesteld op een regime met een lagere 
vermogensdissipatie. Wanneer de uitvoeringstijden groter worden, kan de manager de 
controleparameter instellen voor snellere bewerking van de invoergegevens om zo de 
uitvoergegevens op tijd te produceren. Bij QoS management zal de toepassing dan ingesteld worden 
op een kwaliteitregime met wat lagere kwaliteit. Aan de tijdeisen wordt op die manier altijd voldaan, 
terwijl de belangrijke systeemmetrieken zo zo goed mogelijk gehandhaafd worden. 

Jammer genoeg is het handhaven van systeemmetrieken als vermogensdissipatie en kwaliteit op 
het optimale niveau tegenstrijdig met ons hoofdvereiste, d.w.z., gegarandeerde bewerkingssnelheid. 
Om een gegarandeerde bewerkingssnelheid te garanderen moet men af en toe wat kwaliteit of 
vemogensdissipatie opofferen. Daarom dient de bewerkingssnelheidsanalyse niet alleen conservatief 
te zijn, maar ook nauwkeurig, zodat de belangrijkste systeemmetrieken niet teveel lijden onder de 
conservativiteit. Dit idee is echter niet gemakkelijk te realiseren in de aanwezigheid van twee 
factoren, namelijk, parallelle uitvoering van de applicatie op een aantal processoren en de 
afhankelijkheid van de uitvoeringstijden van de inputgegevens. Niettemin bereiken we het doel van 
een conservatieve en nauwkeurige schatting van de bewerkingssnelheid voor een belangrijke klasse 
van multiprocessoren en multimedia toepassingen. 

We beschouwen een algemeen MP-SoC platform dat een dynamische verzameling van 
toepassingen uitvoert, waarbij elke toepassing gebruik maakt van één of meer processoren. We 



    

veronderstellen dat de toepassingen onafhankelijk zijn. Om tijdeisen te ondersteunen, vereisen we dat 
het platform gegarandeerde reken-, communicatie- en geheugenbudgetten aan toepassingen kan 
verstrekken. In overeenstemming met belangrijke trends in systemen-op-een-chip communicatie, 
onderstenen we zowel globale bussen als netwerken-op-een-chip. 

Wij modelleren elke toepassing als een homogene synchrone dataflow (HSDF) graaf, waar de 
toepassingstaken als graaf knooppunten, ‘actoren’ genaamd, worden gemodelleerd. We ondersteunen 
dynamische gegevenafhankelijke bewerkingsvertragingen voor actoren. Dit maakt HSDF grafen zeer 
bruikbaar om moderne multimedia toepassingen te modelleren. Onze reden om HSDF grafen als 
basismodel te accepteren is verder dat zij een goede basis vormen voor analytische berekening van de 
bewerkingssnelheid. 

In de geschetste context levert dit proefschrift drie belangrijke bijdragen: 

1. Gegeven een toepassing die op een MP-SoC platform afgebeeld is, gegeven de 
snelheidsgaranties voor de processoren en het communicatie netwerk, en gegeven constante 
vertragingen van de actoren, berekenen we de bewerkingsnelheid van het systeem als geheel.  

2. Gegeven een afgebeelde toepassing en snelheidsgaranties zoals in het vorige punt, breiden we 
onze benadering uit van constante actorvertragingen naar dynamische gegevensafhankelijke 
actorvertragingen. 

3. We stellen een globaal implementatietraject voor dat met de toepassingsspecificatie begint en 
verder bestaat uit fasen die uitgevoerd worden gedurende het ontwerptraject en gedurende de 
operationele fase van het systeem. Het implementatietraject gebruikt een uitgebreide versie van 
het HSDF basismodel als middel om de ontwerpbesluiten die worden genomen weer te geven. 
We stellen het implementatietraject niet alleen voor om de eerste twee bijdragen in de juiste 
context te plaatsen, maar ook om onze visie op de verschillende delen van het 
implementatietraject te presenteren, wat een compleet beeld oplevert. 

Onze eerste bijdrage is gebaseerd op zogenaamde IPC (inter-processor communicatie) grafen. 
Zo’n graaf is gebasserd op het idee om één enkel bewerkingsmodel (namelijk, HSDF) voor alle 
onderdelen van het systeem te gebruiken, namelijk de rekeneenheden, de communicatieonderdelen 
en de FIFO (first-in-first-out) geheugen modules die gebruikt worden als buffers tussen de 
rekeneenheden en de communicatie onderdelen. We hebben als eerste HSDF graafstructuren 
voorgesteld voor de modellering van zowel de in capaciteit beperkte FIFO buffers als ook on-chip 
netwerk verbindingen die bandbreedte garanties aanbieden. Op die manier maken onze HSDF 
modellen de graaf-theoretische formulering mogelijk van het minimalisatie probleem van de vereiste 
FIFO buffercapaciteiten onder tijdeisen. Dat geeft een middel om bij een gegeven kandidaatoplossing 
voor de buffergroottes de bottlenecks in bewerkingsnelheid op te sporen, om ze vervolgens te kunnen 
verwijderen. Om dit aan te tonen, gebruiken we de JPEG decoder case study toepassing. Ook, tonen 
we aan dat, met constante actorvertragingen die conservatief zijn voor een gegeven JPEG beeld, we 
uitvoeringtijden kunnen voorspellen van het JPEG decoderen op twee processoren met een 
nauwkeurigheid van 21%. 

Onze tweede bijdrage is gebaseerd op een uitbreiding van de scenariobenadering. Deze 
benadering is gebaseerd op de observatie dat het dynamische gedrag van een toepassing typisch 
samengesteld is uit een beperkt aantal sub-gedragingen, d.w.z., scenario's, die gelijkaardige vereisten 
hebben in termen van benodigde hardware middelen, wat neerkomt op gelijkaardige 
actorvertragingen in de context van dit proefschrift. Het voorafgaande werk aangaande scenario's 
behandelt slechts toepassingen voor een enkele processor of multiprocessortoepassingen die niet alle 
flexibiliteit van het HSDF model benutten. Wij ontwikkelen nieuwe op scenario’s gebaseerde 
technieken in de context van HSDF grafen, om de tijdsoverlap in de overgang tussen verschillende 
scenario's af te leiden, wat in het algemeen essentieel is om een goede nauwkeurigheid te bereiken 
voor het geval van een multimedia toepassing die draait op een multiprocessor. Wij realiseren dit 
idee in een case study toepassing – de MPEG-4 decoder van willekeurig-gevormde video objecten, 
en bereiken een voorspelling van de uitvoeringstijd met een gemiddelde nauwkeurigheid van 11%. 
Voor zover wij weten, kan, voor de beschreven context, geen andere bestaande 
prestatieanalysetechniek een vergelijkbare nauwkeurigheid bereiken en tegelijkertijd de te realiseren 
bewerkingssnelheid garanderen. 
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