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—— Abstract

Partial singleton closure under weak composition, or partial ¢-consistency for short, is essential for
approximating satisfiability of qualitative constraints networks. Briefly put, partial e-consistency
ensures that each base relation of each of the constraints of a qualitative constraint network can

define a singleton relation in the corresponding partial closure of that network under weak com-
position, or in its corresponding partially ¢-consistent subnetwork for short. In particular, partial
e-consistency has been shown to play a crucial role in tackling the minimal labeling problem of a
qualitative constraint network, which is the problem of finding the strongest implied constraints of
that network. In this paper, we propose a stronger local consistency that couples e-consistency
with the idea of collectively deleting certain unfeasible base relations by exploiting singleton
checks. We then propose an efficient algorithm for enforcing this new consistency that, given a
qualitative constraint network, performs fewer constraint checks than the respective algorithm for
enforcing partial e-consistency in that network. We formally prove certain properties of our new
local consistency, and motivate its usefulness through demonstrative examples and a preliminary
experimental evaluation with qualitative constraint networks of Interval Algebra.
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1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study in Artificial
Intelligence, and in particular in Knowledge Representation & Reasoning. This field has
received a lot of attention over the past decades, as it extends to a plethora of areas and do-
mains that include ambient intelligence, dynamic GIS, cognitive robotics, and spatiotemporal
design [6]. QSTR abstracts from numerical quantities of space and time by using qualitative
descriptions instead (e.g., precedes, contains, is left of ), thus providing a concise framework
that allows for rather inexpensive reasoning about entities located in space and time.
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The problem of representing and reasoning about qualitative information can be modeled
as a qualitative constraint network (QCN) using a qualitative constraint language. Specifically,
a QCN is a network of constraints corresponding to qualitative spatial or temporal relations
between spatial or temporal variables respectively, and a qualitative constraint language is
used to define those constraints over a finite set of binary relations, called base relations (or
atoms) [19]. An example of such a qualitative constraint language is Interval Algebra (lA),
introduced by Allen [1]. IA considers time intervals (as its temporal entities) and each of its
base relations represents an ordering of the four endpoints of two intervals in the timeline.

The fundamental reasoning problems associated with a given QCN A are the problems
of satisfiability checking, minimal labeling (or deductive closure), and redundancy (or entail-
ment) [28]. In particular, the satisfiability checking problem is the problem of deciding if
there exists a spatial or temporal valuation of the variables of A that satisfies its constraints,
such a valuation being called a solution of A/, the minimal labeling problem is the problem of
finding the strongest implied constraints of A/, and the redundancy problem is the problem
of determining if a given constraint is entailed by the rest of A" (that constraint being called
redundant, as its removal does not change the solution set of the QCN). In general, for most
qualitative constraint languages the satisfiability checking problem is NP-complete. Further,
the redundancy problem, the minimal labeling problem, and the satisfiability checking
problem are equivalent under polynomial Turing reductions [13].

The vast amount, if not all, of the published works that study the aforementioned
reasoning problems, use partial ©-consistency as a means to define practical algorithms for
efficiently tackling them [2, 30, 29, 17, 27, 23, 15]. Given a QCN N and a graph G, partial
o-consistency with respect to G, denoted by &-consistency, entails (weak) consistency for all
triples of variables in N that correspond to three-vertex cycles (triangles) in G. We note that
if G is complete, %-consistency becomes identical to ¢-consistency [26]. Hence, o-consistency
is a special case of &-consistency. In fact, earlier works have relied solely on ¢o-consistency;
it was not until the introduction of chordal (or triangulated) graphs in QSTR, due to some
generalized theoretical results of [14], that researchers started restricting ¢-consistency to a
triangulation (or chordal completion) of the constraint graph of an input QCN and benefiting
from better complexity properties in more recent works.

Adding to the previous paragraph, and with respect to the satisfiability checking problem
in particular, the literature suggests that -consistency alone is sufficient in most cases
to guarantee that a solution for a given QCN, should it exist, is efficiently obtained (see
also [8]). However, for the more challenging problems of minimal labeling and redundancy,
a stronger local consistency is typically employed that builds upon g&-consistency, called
singleton &-consistency and denoted by &-consistency [2, 30]. Given a QCN N and a graph
G, ¢&-consistency holds on A if and only if each base relation of each of the constraints of
N is closed under &-consistency, i.e., after instatiating any constraint of that network with
one of its base relations b and closing the network under &-consistency, the corresponding
constraint in the &-consistent subnetwork will continue being defined by b.

It is then natural to ask whether we can have an even stronger local consistency than
¢.-consistency (and &-consistency) for QCNs that can also be enforced more efficiently than
&-consistency, as a positive answer to that question would suggest an immediate improvement
for any algorithm that currently employs ¢,-consistency. In this paper, we contribute towards
obtaining such a positive answer. In particular, we enrich the family of consistencies for
QCNs by proposing a new singleton style consistency inspired by k-partitioning consistency
for constraint satisfaction problems (CSPs) [4]. This filtering technique is based on domain
partitioning combined with a local consistency, typically arc consistency [5], and allows for
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Figure 1 The base relations of IA.

improved pruning capability over singleton arc consistency [9]. Similarly to k-partitioning
consistency, our new consistency, denoted by &U—consistency, combines singleton checks and
&-consistency to present itself as a better alternative to %-consistency. With respect to our
new consistency, we also propose an algorithm for applying it on a given QCN, which turns
out being more efficient than the respective algorirthm for applying ¢,-consistency on that
same QCN. As a brief intuitive explanation of this, g—consistency allows for proactively
eliminating base relations anywhere in a given QCN and not only in the set of base relations of
the constraint at hand that is singleton checked. Further, we obtain several theoretical results
and show, among other things, that g—consistency is strictly stronger than ¢-consistency
and, hence, than &-consistency. Finally, we present a preliminary experimental evaluation
of &U—consistency and Z-consistency using QCNs of IA, in support of our argument that
au—consistency can be enforced more efficiently than &-consistency for a given QCN.

The rest of the paper is organized as follows. In Section 2 we give some preliminaries
on qualitative spatial and temporal reasoning, and in Section 3 we focus on &-consistency
and Z-consistency and, in particular, recall some related result from the literature, but also
provide some new results of our own. Then, in Section 4 we introduce, formally define, and
thoroughly study our new local consistency, namely, g—consistency. In Section 5 we present
an algorithm for efficiently applying z;u—consistency on a given QCN N, and in Section 6 we

evaluate this algorithm against the state-of-the-art algorithm for achieving ?,-consistency.

Finally, in Section 7 we conclude the paper and give some directions for future work.

2 Preliminaries

A (binary) qualitative spatial or temporal constraint language, is based on a finite set
B of jointly erhaustive and pairwise disjoint relations defined over an infinite domain D,
which is called the set of base relations [19]. The base relations of a particular qualitative
constraint language can be used to represent the definite knowledge between any two of
its entities with respect to the level of granularity provided by the domain D. The set B
contains the identity relation Id, and is closed under the converse operation (7!). Indefinite
knowledge can be specified by a union of possible base relations, and is represented by the
set containing them. Hence, 2B represents the total set of relations. The set 2B is equipped
with the usual set-theoretic operations of union and intersection, the converse operation,
and the weak composition operation denoted by the symbol ¢ [19]. For all r € 28, we have
that r=t = J{b=! | b € r}. The weak composition (¢) of two base relations b,b’ € B is
defined as the smallest (i.e., strongest) relation r € 28 that includes b o ¥/, or, formally,
bob'={b"€B|b'Nbob) # D}, where bob'={(z,y) € D x D | 3z € D such that (z,2) €
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Figure 2 Figurative examples of QCN terminology using IA.

bA (z,y) €b'} is the (true) composition of b and &'. For all 7,7/ € 2B, we have that r o1’ =
U{bod | berb er'}.

As an illustration, consider the well known qualitative temporal constraint language of
Interval Algebra (IA) introduced by Allen [1]. A considers time intervals (as its temporal
entities) and the set of base relations B = {eq, p, pi, m, mi, o, 0, s, si, d, di, f, fi}; each base
relation of |A represents a particular ordering of the four endpoints of two intervals in the
timeline, as demonstrated in Figure 1. The base relation eq is the identity relation Id of IA.
As another illustration, the Region Connection Calculus (RCC) is a first-order theory for
representing and reasoning about mereotopological information [24]. The domain D of RCC
comprises all possible non-empty regular subsets of some topological space. These subsets
do not have to be internally connected and do not have a particular dimension, but are
commonly required to be regular closed [25]. Other notable and well known qualitative
spatial and temporal constraint languages include Point Algebra [35], Cardinal Direction
Calculus [18, 11], and Block Algebra [3].

The weak composition operation ¢, the converse operation ~!, the union operation U,
the complement operation c
Id of a qualitative constraint language, form an algebraic structure (28,1d, o, ! ,C ,U) that
can correspond to a relation algebra in the sense of Tarski [33].

, and the total set of relations 2B along with the identity relation

» Proposition 1 ([10]). The languages of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, and RCC-8 are each a relation algebra with the algebraic structure
(2% 1d, 0, 71, 6 L),

In what follows, for a qualitative constraint language that is a relation algebra with the
algebraic structure (28, Id, o, =1, ¢, U), we will simply use the term relation algebra, as the
algebraic structure will always be of the same format.

The problem of representing and reasoning about qualitative information can be modeled
as a qualitative constraint network (QCN), defined in the following manner:

» Definition 2. A qualitative constraint network (QCN) is a tuple (V, C) where:
V = {vy, ..., vy} is a non-empty finite set of variables, each representing an entity;
and C is a mapping C : V x V — 2B such that C(v,v) = {ld} for all v € V and
C(v,v") = (C(v',v))~! for all v,0" € V.

An example of a QCN of 1A is shown in Figure 2a; for simplicity, converse relations as
well as Id loops are not mentioned or shown in the figure.
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» Definition 3. Let N' = (V,C) be a QCN, then:
a solution of N is a mapping ¢ : V — D such that V(u,v) € V x V, 3b € C(u,v) such
that (o(u),o(v)) € b (see Figure 2b);
N is satisfiable iff it admits a solution;
a QCN is equivalent to N iff it admits the same set of solutions as N;
a sub-QCN N’ of N, denoted by N' C N, is a QCN (V, ") such that C'(u,v) C C(u,v)
Yu,v € V; if in addition Ju,v € V such that C'(u,v) C C(u,v), then NV C N;
N is atomic iff Yo, o' € V, C(v,v") is a singleton relation, i.e., a relation {b} with b € B;
a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 2¢);
a base relation b € C(v,v') with v,v" € V is feasible (resp. unfeasible) iff there exists
(resp. there does not exist) a scenario S = (V,C") of N such that C’(v,v") = {b};
N is minimal iff Yv,v" € V and Vb € C(v,v’), b is a feasible base relation of A;
the constraint graph of N, denoted by G(N), is the graph (V, E) where {u,v} € F iff
C(u,v) # B and u # v;
N is trivially inconsistent iff Ju,v € V such that C(u,v) = 0;
N is the empty QCN on V, denoted by LV iff C(u,v) = () for all u,v € V.

Let us further introduce the following operations with respect to QCNs:
given a QCN V' = (V,C) and v,v’ € V, we have that NV, .|/ with r € 28 yields the QCN
N’ = (V,C") defined by C’'(v,v") =r, C'(v',v) = r~! and C'(y,w) = C(y,w) V(y,w) €
v x VI {(0,0), (0, 0)};
given two QCNs N = (V,C) and N/ = (V, (") on the same set of variables V', we have
that N UN" yields the QCN N = (V,C"), where C"(v,v") = C(v,v") UC'(v,v") for all
v, v’ € V.

We recall the following definition of &-consistency, which, as noted in the introduction, is
the basic local consistency used in the literature for solving fundamental reasoning problems
of QCNs, such as the satisfiability checking problem.

» Definition 4. Given a QCN N = (V,C) and a graph G = (V,E), N is said to be

&-consistent iff V{v;,v;}, {vi, v}, {vk,v;} € E we have that C(v;,v;) C C(v;, vg) © C(vg, vy).

We note again that if G is complete, &-consistency becomes identical to o-consistency [26],
and, hence, o-consistency is a special case of &-consistency.

Given a graph G = (V, E), a QCN NV = (V, C) is &-consistent iff for every pair of variables
{v,v'} € E and every base relation b € C'(v,v’), after instantiating C'(v,v") with {b} and
computing the closure of N under &-consistency, the revised constraint C'(v,v’) is always
defined by {b}. Formally, &-consistency of a QCN is defined as follows:

» Definition 5. Givena QCN N = (V, C) and a graph G = (V, E), N is said to be &-consistent

iff V{v,v'} € E and Vb € C(v,v’) we have that {b} = C’(v,v"), where (V,C") = & (Nv,v)/{5})-

If G is a complete graph, i.e., G = Ky, we can easily verify that -consistency corresponds
to g-consistency of the family of ;i—consistencies studied in [8]. Interestingly, &-consistency
can also be seen as a counterpart of singleton arc consistency (SAC) [9] for QCNs. Given a
QCN NV = (V,C) and a graph G = (V, E), for every b € B and every {v,v'} € E, we will say
that b is &-consistent for C'(v,v’) iff {b} = C'(v,"), where (V,C") = &(Njv,v1)/{5})-

» Definition 6. A subclass of relations is a subset A C 2B that contains the singleton
relations of 28 and is closed under converse, intersection, and weak composition.
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Given three relations 7, 1/, " € 2B, we say that weak composition distributes over
intersection if we have that ro (' Nr”) = (ror’)N(ror”) and (r' Nr")or = (ror)N(r" or).

» Definition 7. A subclass A is distributive iff weak composition distributes over non-empty
intersection Vr, 7/, r"” € A.

Distributive subclasses of relations are defined for all of the qualitative constraint languages
mentioned in Proposition 1 [20].

Finally, for the sake of simplicity in phrasing some results, in what follows we assume
that all considered graphs are biconnected.

3 A closer look at g-consistency and ¢,-consistency

Let us come back to &-consistency and &-consistency and recall in this section some results
from the literature that will be relevant in the rest of the paper, but also provide some new
results of our own.

In order to compare the pruning (or inference) capability of different consistencies, we
introduce a preorder. Let g and g be two consistencies defined by some operations ¢ and v
respectively and a graph G. Then, g is stronger than g, denoted by g Eqé, iff whenever ‘é
holds on a QCN A with respect to a graph G, 1(/’; also holds on N with respect to G, and g is
strictly stronger than g, denoted by gbg, iff g > g and there exists at least one QCN N and
a graph G such that Z’, holds on N with respect to G but g does not hold on N with respect
to G. Finally, g and é are equivalent, denoted by g = é, iff we have both g lz“é and g E‘g.

We now recall the definition of a well-behaved consistency [8].

» Definition 8. A consistency g is well-behaved iff for any QCN N = (V| E) and any graph
G = (V, E) the following properties hold:
2(N) C N (viz., the &-closure of N w.r.t. G) is the largest (w.r.t. C) &-consistent
sub-QCN of N (Dominance);
2(N) is equivalent to N (Equivalence);
2(2(N) = &(N) (Idempotence);
if N/ C N then &(N7) C &(N) (Monotonicity).

It is routine to formally prove the following result for &-consistency:
» Corollary 9 (cf. [8]). We have that & -consistency is well-behaved.

It is routine to formally prove the following result for ?,-consistency as well:
» Corollary 10 (cf. [8]). We have that ¢ -consistency is well-behaved.

The aforementioned two results are derived from respective results of [8] where complete
graphs are used in all cases. The generalization to an arbitrary graph G is trivial.

We recall the following general result regarding the pruning capability of &-consistency
in comparison with that of ¢-consistency:

» Proposition 11 ([8]). We have that ¢-consistency > &-consistency.
Before we proceed, we introduce the following lemma to be used in the next proposition:

» Lemma 12 (cf. [20]). Let A be a distributive subclass of relations of a relation algebra.
Then, for any QCN N = (V,C) over A and any graph G = (V,E), if Z(N) = (V,C") is
not trivially inconsistent, we have that Yu,v € V and Vb € C'(u,v) there exists an atomic
&-consistent sub-QCN (V,C") of N such that {b} = C"(u,v).
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Proof (Sketch). The proof can be obtained by concatenating the proofs of Theorems 2
and 5 in [20] and applying that merged proof on each maximal chordal subgraph of G. The
only major difference is that in those proofs the property that any atomic QCN of a relation
algebra that is o-consistent is satisfiable is used in addition to guarantee a stronger result,
which is of no use to us for proving this particular lemma. |

Next, we introduce a result that identifies the case where -consistency and &-consistency
are equivalent.

» Proposition 13. Let A be a distributive subclass of relations of a relation algebra. Then,
for any QCN NV = (V, C) over A and any graph G = (V, E), we have that ¢, -consistency =
& -consistency.

Proof. If & (N) = (V,C) is not trivially inconsistent, then by Lemma 12 we have that
Vu,v € V and Vb € C(u,v) there exists an atomic &-consistent sub-QCN (V,C”") of &(N)
such that {b} = C'(u,v). This suggests that &(N) is also &-consistent and, hence, that
&-consistency > &.-consistency in this case. If &(N) is trivially inconsistent, then due to the
closure under &-consistency there is no triangle in G containing both an edge {v, v’} such
that C'(v,v") = 0 and an edge {u, v’} such that C'(u,u’) # 0); we can prove that -consistency
> &-consistency in this case as well, by isolating the trivial inconsistencies and using the first
part of the proof. Finally, by Proposition 11 we have that %-consistency > &-consistency in
all cases. <

It is interesting to note that Proposition 13 is a more general result that the respective
one of [30], namely, Proposition 7 in that work. In particular, Proposition 7 in [30] requires
a chordal supergraph of the constraint graph of a QCN over a distributive subclass of
relations of a relation algebra to be used, along with the property that any such QCN that
is o-consistent and not trivially inconsistent is minimal, in order to prove the equivalence
between &-consistency and &-consistency for distributive subclasses of relations.

The following result shows the connection between g-consistency and minimal QCNs:

» Proposition 14 ([21]). Let A be a distributive subclass of relations of a relation algebra
with the property that any atomic QCN over A that is o-consistent is satisfiable. Then, for
any QCN N = (V,C) over A and any chordal graph G = (V, E) such that GIN) C G, we
have that V{u,v} € E and Vb € C'(u,v), where (V,C") = &(N), the base relation b is feasible.

The property described in Proposition 14 is satisfied by all of the qualitative constraint
languages mentioned in Proposition 1 [10].
Finally, the following result shows the connection between ¢-consistency and minimal

QCNs:

» Proposition 15 ([2]). Let A be a subclass of relations of a relation algebra with the property
that for any QCN N = (V, C) over A there exists a graph G = (V, E) such that, if &(N) is
not trivially inconsistent, then N is satisfiable. Then, for any such N and G, we have that
V{u,v} € E and Vb € C'(u,v), where (V,C") = &(N), the base relation b is feasible.

As a note, an interesting case where the property described in Proposition 15 can be
satisfied, is the case where the considered subclass of relations is obtained from a relation
algebra that has patchwork [22] for &-consistent and not trivially inconsistent QCNs over
that subclass, where G = (V, E) is any chordal graph such that G(N) C G for a given QCN
N = (V,C). In that case, we will indeed have that N is satisfiable if & (A) is not trivially
inconsistent [2]. As a matter of fact, patchwork holds for all the qualitative constraint
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languages mentioned in Proposition 1 [14]. Of course, in general, the property may be
satisfied in other cases as well; for instance, patchwork may not hold, but the overall property
may hold for complete graphs (and, hence, when o-consistency is used) or when constraints
in the structure of the constraint graphs of the QCNs are imposed (a trivial case being
restricting the constraint graphs of QCNs to being trees).

4 &U—Consistency: a new local consistency for QCNs

We define a new local consistency for QCNs inspired by k-partitioning consistency for
constraint satisfaction problems (CSPs), where arc consistency is used as the underlying
local consistency of choice, or k-Partition-AC for short [4]. This technique divides a variable
domain into disjoint domains, where each of them contains at most k elements. In the case
of QCNs, these elements correspond to base relations. With respect to k-Partition-AC, the
most common and preferred approach is dividing a domain into singleton sub-domains, which
is the case where k = 1, otherwise many questions arise, such as what should the size of
each sub-domain be, how should this size be fixed, and which elements should be considered
for a given use case. Although having many questions to deal with is not necessarily bad
in general, the most important aspect regarding 1-Partition-AC is that it offers the nice
property that it is strictly stronger than singleton arc consistency (SAC) [9].

In this work, we adapt the aforementioned technique to QCNs using &-consistency as our
underlying local consistency of choice.! Given a QCN N/, enforcing this consistency for k = 1
will eliminate every base relation that is not &-consistent for some constraint in N, but also
every base relation that is not supported by some base relation in N through &-consistency.
We call this new local consistency &U—consistency, and better explain it with a demonstrative
example as follows. Consider the &-consistent QCN N = (V,C) of IA in Figure 3. We can
see that the base relation d is &-consistent for C(z1,x2), but it is not supported by any of
the base relations that define constraint C(x1, z3), namely, p and pi, through &-consistency.
In particular, by instatiating C(x1,x3) with either p or pi and closing the respective QCN
under &-consistency, the base relation d is eliminated in C'(z1,z2). After eliminating the
base relation d in C(z1,x2), the revised QCN A becomes ’Gu—consistent.

Now we can formally define this consistency.

» Definition 16. Given a QCN N = (V,C) and a graph G = (V,E), N is said to be
¢ -consistent iff A is &-consistent and V{v,v'} € E, ¥b € C(v,v'), and V{u,u'} € E we have
that 30 € C(u,u’) such that b € C’'(v,v’), where (V,C") = &(Nu,u/{v})-

We prove the following result to be used in the sequel, which suggets that &U—consistency
can only eliminate unfeasible base relations:

» Proposition 17. Let N = (V,C) be a QCN, G = (V,E) a graph, and b € C(u,u’)
with u,u’ € V a base relation. Then, if FH{v,v'} € E such that b ¢ C'(u,u’), where
(V,C") = U{EWNw,o)/qpy) | B € C(v,v")}, we have that b is an unfeasible base relation.

Proof. Let us assume that b is a feasible base relation. Then, by definition of feasible base
relations there exists a scenario S = (V,C”) of N such that C’(u,u’) = {b}. Further, by the
equivalence property of &-consistency it holds that &(S) =S (as S, being a scenario, is an

L The partitioning scheme can be combined with any local consistency or propagation technique. Here,
the definition is restricted to &-consistency as it is the most essential of local consistencies used for
dealing with QCNs.
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(b) M1 =& (Nas,231/(p}) (€) Mo =GN wsl/ipiy)  (d) N UN2

Figure 3 A ¢-consistent QCN A of |A along with a demonstration of how enforcing Z;U -consistency
can further eliminate base relations; here G is the complete graph on the set of variables of N.

atomic and satisfiable QCN and, hence, none of its base relations can be removed by application
of %-consistency). Thus, it follows that V{v,v'} € E we have that b € C”(u,v’), where
(V.C") = &Wp,w/crwon)s 88 S € Npwjcrwery and, hence, &(S) € &N,/ (v,01))
by the monotonicity property of &-consistency. As & C N, it follows that V{v,v'} € E
we have that C'(v,v") C C(v,v") and, hence, that 30" € C(v,v’) such that b € C"'(u,u’),
where (V,C"") = &(Ny,o)/{py), by simply considering the base relation b € C(v,v’) to
be the one of the singleton relation C’(v,v’) of S. Therefore, by definition of operation U
with respect to QCNs we can derive that V{v,v'} € E it holds that b € C*(u,u’), where
(V,C*) = UH{EWNw,v/qy) |V € C(v,0")}, which concludes our proof by contraposition. <

We recall the following result to be used in one of our proofs later on:

» Proposition 18 ([2]). For any QCNs N7 and Ny on a set of variables V and any graph
G = (V,E), if N1 and Ny are &,-consistent, then (N7 UN3) is &-consistent as well.

We note that the aforementioned result describes a sufficient property for proving domin-
ance for a new consistency, but that property might not be necessary in general and, hence,
does not solely follow from the well-behaveness of the consistency at hand. We prove the
same property for g—consistency, to be used in what follows.

» Proposition 19. For any QCNs N; and Ns on a set of variables V and any graph
G = (V,E), if N1 and N> are g -consistent, then (N7 UN3) is &U -consistent as well.

Proof. Let N7 = (V,C4), Na = (V,Cs), (Ny UN,) = (V,C), v,v" € V be two variables,
and b € C(v,v") a base relation. We only need to consider the case where b € Cy(v,v’),
as the case where b € Cy(v,v’) is symmetric. Since N is ’Gu—consistent7 we have that
N is &-consistent and V{u,u'} € E there exists b’ € Cy(u,u’) such that b € C{(v,v’),
where (V,C1) = &(Nipu,w)/qp}), by definition of ¢, -consistency. In addition, we have that
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(N1 UNy) is &-consistent by Proposition 18. As N1 C (N UN2), we have that Nipy wi/q6}
(N UN) /oy Viu, v’} € E and V' € Ci(u,u’). Thus, we have that & (N1 w)/p})
&(NLUN) [ wyoy) Y{u, v’} € E and V' € C1(u,u) by the monotonicity property of
2-consistency. From that we can deduce that V{u,u'} € E there exists b’ € C(u,u’) such
that b € C'(v,"), where (V,C") = &((N1 UN2), i ry)- Hence, by the assumption that
N7 and N5 are E;U—comsistent7 we have proved that (N7 UN3) is ’Gu—consistent as well. <

<
c

Next, we arrive to one of our main results in this work.
» Theorem 20. We have that &U -consistency is well-behaved.

Proof. (Dominance) From Proposition 19 we can assert that, for any QCN N = (V,C) and
any graph G = (V, E), there exists a unique & -consistent QCN [J{N” | N C N and NV is
¢, -consistent}, which by its definition is the largest (w.r.t. C) g—consistent sub-QCN of
N and, hence, the closure of A’ under & -consistency. (Equivalence) Let N = (V,C) be
a QCN, G = (V, E) a graph, and N/ = (V,C") the QCN where Vv,v" € V and Vb € B
we have that b € C'(v,v") iff there exists a solution o of N such that (o(v),c(v')) € b.
Clearly, N is a sub-QCN of A/ and it is necessarily }(Uv-consistent (where Ky denotes the
complete graph on the set of variables V' of N), as by Proposition 17 we have that the
application of E;U—consistency on any QCN (V,C) w.r.t. any graph G = (V, E) can only
remove unfeasible base relations, and not feasible ones. It follows that A/ C E;u N) SN
and, as such, & (V) and A share the same set of solutions. (Idempotence) Let N = (V, C)
be a QCN, and G = (V, E) a graph. Then, &U (N) is &U—consistent. Now, by dominance of
¢, -consistency the largest & -consistent sub-QCN of & (N) is itself and, hence, & (& (N))
= & (N). (Monotonicity) Let N' = (V,C) and N’ = (V, ") be two QCNs such that A" C
N, and G = (V, E) a graph. As N7 C N, we have that & (A') is a & -consistent sub-QCN
of N. In addition, by dominance of &U—consistency we can assert that E;U (N) is the largest

.U

¢, -consistent sub-QCN of . Therefore, we have that & (A7) C & (N). <

We prove the following general result regarding the pruning capability of ¢-consistency
in comparison with that of E;U -consistency:

» Proposition 21. We have that z;u -consistency > &-consistency.

Proof. By definition of g—consistency, we have that E;U—consistency > 2.-consistency, since,
for any graph G = (V, E), any QCN (V,C) that is &U—consistent is already ¢-consistent.
To prove strictness we use an example as follows. Consider the QCN N = (V,C) of
Figure 3. The reader can verify that N is &-consistent, as we have that b is ¢-consistent
for C(v,v") V{v,v'} € E and Vb € C(v,v"). However, we have that d ¢ C'(z1,x2), where
V,C") = W& WNwy,2)/10y) | V€ C(x1,23)}, as demonstrated in the figure. In detail,
&Ny ws1/10)) Y &Ny za]/{pi}) 15 @ QCN such that d is not among the base relations that
define the constraint on variables x; and xs. Thus, g—consistency does not hold in N. <«

The next result follows trivially:
» Proposition 22. We have that E;U -consistency > &-consistency.

Proof. A direct consequence of Propositions 11 and 21 and the transitivity of . |

Finally, we introduce the following result that identifies the case where ¢&-consistency and
&U—consistency are equivalent:
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Algorithm 1: PSWC” (N, G)

in :A QCN N = (V,C), and a graph G = (V, E).
out : A sub-QCN of V.
1 begin
2 N +— PWC(N,G);
3 Q + E;
4 while Q # 0 do
5 {v,v'} < Q.pop();
6 (V,C") « LY;
7 foreach b € C(v,v") do
8 | (V,C") « (V,C") U PWC(Npy iy gey5 Gy {{,0'3));
9 if (V,C") C NV then
10 foreach {u,v'} € E | C'(u,u’) C C(u,u’) do
11 Clu,u') + C'(u,u');
12 L Cu' u) + C' (v, u);
13 Q « E,;
14 return N\

» Proposition 23. Let A be a subclass of relations of a relation algebra with the property
that for any QCN N = (V,C) over A there exists a graph G = (V, E) such that, if &(N) is
not trivially inconsistent, then N is satisfiable. Then, for any such N and G, we have that
&-consistency = g -consistency.

Proof. We first prove that, if N is &-consistent, then A is also g-consistent. By Proposi-
tion 15 we have that V{u,v} € E and Vb € C(u,v) the base relation b is feasible. In addition,
by the equivalence property of ’GU -consistency we have that the application of ’Gu—consistency
on N can only remove unfeasible base relations and, hence, that ’GU (N) = N, as every base
relation b € C(u, v) ¥{u,v} € E is feasible. The proof that, if N is & -consistent, then A is
also &-consistent, follows directly from the definition of E;U -consistency. <

A hasty reading of Proposition 23 might give the impression that one should always opt
to apply &-consistency for the cases where the considered QCN and the graph G satisfy the
prerequisites detailed in that proposition, as &-consistency, being a weaker consistency than
g—consistency in general, should be “easier” to apply. However, as we will demonstrate in
our experimental section, g -consistency is faster to apply. To give an intuition, any well-
structured algorithm that will try to enforce g—consistency in a given QCN for some graph
G, will inescapably make better use of the singleton checks than the respective algorithm
for enforcing ¢&-consistency. This is because the former algorithm will exploit the singleton
checks (by the very definition of g -consistency) to proactively eliminate certain base relations
that are unfeasible and, hence, possibly not ¢-consistent for the corresponding constraints.

5 An algorithm for achieving ‘Gu-consistency

In this section, we propose an algorithm for efficiently applying E;U-consistency on a given
QCN WV, called PSWCY (U-collective partial singleton closure under weak composition) and
presented in Algorithm 1. This algorithm builds on the algorithm for efficiently achieving
¢-consistency, called PSWC (partial singleton closure under weak composition) and presented
in Algorithm 2, which in itself is an advancement of the respective algorithm for enforcing
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Algorithm 2: PSWC(N, G)

in :A QCN NV = (V,C), and a graph G = (V, E).
out : A sub-QCN of N.
1 begin
2 N« PWC(N, G);
3 Q + E;
a while Q # 0 do
s {00} © Qpop():
6 (V,C") «+ LY;
7 foreach b € C(v,v’) do
8 [ (V.C) += (V,C") U PWC(Njy0ry/qey, G, {{v,0'1});
9 if C'(v,v") C C(v,v") then
10 C(v,v") + C'(v,v");
11 C(v',v) + C' (v, v);
12 Q + E;
13 return N;

Algorithm 3: PWC(NV, G, e « 0)
in :A QCN N = (V,C), a graph G = (V, E), and optionally a set e such that e C E.
out : A sub-QCN of V.

1 begin

2 Q <« (eif e # ( else E);

3 while Q # 0 do

4 {v,v"} « Q.pop();

5 foreach v € V | {v,v"},{v,v"} € E do

6

7

8

9

r + C(v,0") N (C(v,v") o C(v',v"));
if r € C(v,v") then
C(v,v") « r;
C",v) + r7 1
10 Q« QU {{v,v"}}
11 r« C",v) N (CK’',v) o Clv,v));
12 if r € C(v",v') then
13 C',v') « r;
14 C',v") 7Y
15 Q< QU {{v", v}
16 return N;

¢.-consistency that is presented in [2]; we explain as follows. We use a queue in both of our
algorithms that is initialized with all of the edges of a given graph G that correspond to
constraints of a given QCN N. In addition, this queue is filled with all of the aforementioned
edges whenever any of the constraints of N is revised, i.e., whenever a base relation is
removed. This operation is equivalent to introducing a break statement in the algorithm of [2]
whenever a singleton check fails and, hence, a constraint is revised, forcing the inner loop in
that algorithm to stop and using the outer loop to initiate singleton checks in a fresh QCN.
We have found this tactic to perform much better in practice, cutting down on the number of
constraint checks by around 20%. Further, the use of a queue allows for prioritizing certain
edges, a strategy which is in line with similar techniques used in the algorithm for enforcing
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&-consistency [34, 27, 16], but this is something that we have not yet explored and retain for
future work. As we will also remind the reader in the experimental evaluation to follow, we
use a simple FIFO (first-in, first-out) queue for our algorithms. For the sake of completeness,
we also present the state-of-the-art algorithm for applying &-consistency on a given QCN,
called PWC (partial closure under weak composition), which is utilized as a subroutine by
both PSWC" and PSWC (see Algorithm 3).

The difference between algorithms PSWC” and PSWC lies solely in the way that they
exploit singleton checks. In particular, note the difference between the conditions in line 9 of
both algorithms; PSWC" will bring up all edges in the queue for revising the entire QCN
even when the constraint at hand was not revised, but another constraint somewhere in the
QCN was, whereas PSWC will keep its focus solely on the constraint at hand. This is due to
the fact that algorithm PSWC" will use a single singleton check to eliminate base relations

anywhere in the network, and not just in the constraint at hand as algorithm PSWC does.

Before proving the correctness of algorithm PSWC", we recall the following result regarding
the correctness of algorithm PSWC:

» Proposition 24 (cf. [2, 8]). Given a QCN N = (V,C) of a relation algebra and a graph
G = (V,E), we have that algorithm PSWC terminates and returns &(N).

Now, we prove that algorithm PSWC" is complete for applying g—consistency on a given
N = (V,C) for a given graph G = (V, FE). Due to space limitations, an intuitive proof is
provided, which however manages to explain the overall functionallity of algorithm PSWC"
in sufficient detail.

» Theorem 25. Given a QCN N = (V,C) of a relation algebra and a graph G = (V, E), we
have that algorithm PSWC terminates and returns & (N).

Proof (Intuition). It is easy to see that lines 9-12 in Algorithm 1 perform a superset of
the operations performed in lines 9-11 in Algorithm 2. Thus, by Proposition 24 we know
that given a QCN A = (V,C) and a graph G = (V, E), algorithm PSWC" applies the
set of operations required to make N &-consistent. We need to show that the rest of the
operations maintain -consistency and further achieve &U—consistency. With respect to
that, it is again easy to see that algorithm PSWC" enforces exactly the conditions specified
in Proposition 17 and, hence, removes the (unfeasible) base relations required to make
N ‘Gu—consistent. Further, since the algorithm will only terminate when b is guaranteed
to have become ¢&-consistent for C'(u,v) V{u,v} € E and Vb € C(u,v) and no constraint
is further revised to additionally achieve ’Gu—consistency, we can conclude that algorithm
PSWC" correctly applies &U—consistency on N. |

Time complexity analysis

Given a QCN NV = (V,C) and a graph G = (V, E), we have that algorithm PSWC" applies
&U—consistency on N in O(A - |E|? - B®) time, where A is the maximum vertex degree of
graph G. In particular, algorithm PWC is executed O(|E| - |B|) times every time a constraint
is revised, and such a constraint revision can occur O(|E| - |B|) times. Further, we note that
the unification operations that take place in line 8 of the algorithm are handled in O(|E|- |B|)
time in total, as we keep track of the constraints that are revised by algorithm PWC and
we can have a total of O(|E| - |B|) constraint revisions. The same argument holds for the
operations that take place in lines 9-12 of the alorithm. (These details are not included in
the algorithm to allow for a more compact representation.) Now, by taking into account
the worst-case time complexity of algorithm PWC, which is O(A - |E| - B) [7], a worst-case
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Table 1 Evaluation with random IA networks of model S(n = 70,| = 6.5,d).

min o max o
d PSWC PSWCY | PSWC PSWC" | PSWC PSWC" | PSWC PSwcC"
10 3.19s 3.11s 4.25s 4.02s 5.63s 5.43s 0.50s 0.52s
9k 9k 14k 13k 22 21k 2k 2k
12 5.79s 5.65s 7.82s 7.51s 11.85s 10.88s 1.38s 1.18s
9k 9k 14k 14k 22k 22k 2k 2k
14 9.92s 9.63s 13.81s 13.08s 21.26s 19.24s 2.68s 2.40s
12k 12k 19k 18k 38k 28k 5k 4k
16 14.14s 13.91s 30.19s 27.74s 96.24s 99.56s 14.20s 14.95s
18k 18k 31k 29k 61k 62k 8k 8k
18 21.39s 20.94s 56.16s 53.17s 154.14s 149.98s 22.92s 21.22s
26k 26k 45k 44k 88k 88k 13k 12k
20 54.42s 52.82s 100.22s 89.32s 192.68s 188.54s 30.68s 26.08s
39k 36k 58k 55k 108k 100k 14k 12k
29 19.66s 17.09s 42.51s 39.83s 86.09s 75.55s 16.67s 15.19s
48k 46k 67k 63k 108k 108k 14k 14k

time complexity of O(A - |E|? - B®) can be obtained for algorithm PSWC"; this is also the
worst-case time complexity of algorithm PSWC [2]. It is important to note that we cannot
utilize the incremental functionality of algorithm PWC (see Theorem 1 in [12, Section 3] and
the surrounding text) to obtain a better bound for our algorithm, as the singleton checks are
perfomed independently? of one another.

6 Experimental evaluation

We evaluated the performance of an implementation of algorithm PSWC", against an
implementation of the algorithm for enforcing partial ¢,-consistency that was presented here,
namely, PSWC, with a varied dataset of arbitrary QCNs of IA.

Technical specifications. The evaluation was carried out on a computer with an Intel Core
i5-6200U processor (which has a max frequency of 2.7 GHz per CPU core under turbo mode?),
8 GB of RAM, and the Xenial Xerus x86_64 OS (Ubuntu Linux). All algorithms were
coded in Python and run using the PyPy intepreter under version 5.1.2, which implements
Python 2.7.10; the code is available upon request. Only one CPU core was used.

Datasets and measures. We considered random IA networks generated by the S(n,l,d)
model [34]. This model can randomly generate satisfiable QCNs of n variables with an
average number | of base relations per non-universal constraint and an average degree
d for the corresponding constraint graphs. Further, this model is typically used in the
evaluation of algorithms dealing with problems associated with QCNs, with an emphasis on
the minimal labelling problem [34, 2, 23]. We generated 30 QCNs of IA of n = 70 variables

2 To be more precise, the unification operations that take place in line 8 of the algorithm do not provide
the level of interdependency required to tap into the incrementality of PWC.

3 Turbo mode was maintained throughout the experimental evaluation by staying well within thermal
design power (TDP) limit.



M. Sioutis, A. Paparrizou, and J.-F. Condotta

with | = |B|/2 = 6.5 base relations per non-universal constraint on average for all values of d
ranging from 10 to 22 with a step of 2 (a typical range for evaluating related algorithms [2]);
hence, we considered a total of 210 QCNs of IA. Finally, the mazimum cardinality search
algorithm [32] was used to obtain a triangulation of the constraint graph of a given QCN.
Notice that, with respect to our evaluation, any kind of graphs would have been adequate
(even complete ones), as they would have affected all involved algorithms proportionally and
would not have qualitatively distorted the obtained results; however, the choice of chordal
graphs was more reasonable given their extensive use in the recent literature [31].

Our evaluation involved two measures, which we describe as follows. The first measure
considers the number of constraint checks per base relation removals performed by an
algorithm for enforcing the respective local consistency. Given a QCN N = (V,C) and
three variables v;, vy, v; € V, a constraint check occurs when we compute the relation r =
C(vi,vj) N (C(v, vx) © Clug,vj)) and check if » C C(v;,v;), so that we can propagate its
constrainedness if that condition is satisfied. Weak compositions that yield relation B are
disregarded. The second measure concerns the CPU time and is strongly correlated with the
first one, as the run-time of any proper implementation of an algorithm for enforcing a local
consistency should, in principle, rely mainly on the number of constraint checks performed.

Results. The results of our experimental evalualation are detailed in Table 1, where a
fraction £ denotes that an approach required z seconds of CPU time and performed y
constraint checks per base relation removals on average per dataset of networks during its
operation. In short, the advantage of PSWC" over PSWC is clear across all parameters
and for all settings and corresponds to around 10%. This is a promising result in terms
of achieving a new stronger local consistency faster than what was possible to date even
when considering a weaker local consistency. Further, we recall to the reader that we used a
simple FIFO queue for our implementation; it would be interesting to explore prioritizing
edges corresponding to constraints that are revised at any given step of the execution. We
retain a more thorough experimental evaluation, which will also include the effect of our
new stronger local consistency on backtracking-based algorithms, for future work. Here, we
opted to maintain a simple configuration for our algorithms in order to obtain a first pure
comparison that will serve as a basis for further evaluation.

7 Conclusion and future work

Partial singleton closure under weak composition, or partial e-consistency for short, is a local
consistency that ensures that each base relation of each of the constraints of a qualitative
constraint network can define a singleton relation in the corresponding partial closure of that
network under weak composition, or in its corresponding partial ¢-consistent subnetwork
for short. This local consistency is essential for approximating satisfiability of qualitative
constraints networks, and has been shown to play a crucial role in tackling the minimal
labeling problem of a qualitative constraint network in particular, which is the problem
of finding the strongest implied constraints of that network. In this paper, we proposed a
stronger local consistency that couples e-consistency with the idea of collectively deleting
certain unfeasible base relations by exploiting singleton checks. Further, we proposed an
efficient algorithm for enforcing this new consistency that, given a qualitative constraint
network, performs fewer constraint checks than the respective algorithm for enforcing partial
e-consistency in that network. We formally proved certain properties of our new local
consistency, and motivated its usefulness through demonstrative examples and a preliminary
experimental evaluation with qualitative constraint networks of Interval Algebra.
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There are several directions for future work. Regarding the algorithm that enforces our
new consistency, we would like to explore queuing strategies such that the singleton checks
are applied in a more fruitful manner. In particular, it would make sense to prioritize certain
singleton checks that are more likely to eliminate base relations anywhere in the network at
hand, because this could unveil certain inconsistencies faster, but also lead to fewer constraint
checks overall. Such strategies have been used in the case of partial o-consistency [34, 27, 16].
Further, regarding the new local consistency itself, we would like to define a weaker variant of
it that considers singleton checks in the neighborhood of the constraint in question, instead
of the entire network. Early experiments in this direction have shown really promising results
with respect to constraint satisfaction problems, which is due to the fact that constraint
revisions tend to propagate themselves to just neighboring constraints [36].
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