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We use fluid limits to explore the (in)stability properties of wire-
less networks with queue-based random-access algorithms. Queue-
based random-access schemes are simple and inherently distributed
in nature, yet provide the capability to match the optimal throughput
performance of centralized scheduling mechanisms in a wide range
of scenarios. Unfortunately, the type of activation rules for which
throughput optimality has been established, may result in excessive
queue lengths and delays. The use of more aggressive/persistent ac-
cess schemes can improve the delay performance, but does not offer
any universal maximum-stability guarantees.

In order to gain qualitative insight and investigate the (in)stability
properties of more aggressive/persistent activation rules, we examine
fluid limits where the dynamics are scaled in space and time. In some
situations, the fluid limits have smooth deterministic features and
maximum stability is maintained, while in other scenarios they ex-
hibit random oscillatory characteristics, giving rise to major technical
challenges. In the latter regime, more aggressive access schemes con-
tinue to provide maximum stability in some networks, but may cause
instability in others. In order to prove that, we focus on a particular
network example and conduct a detailed analysis of the fluid limit
process for the associated Markov chain. Specifically, we develop a
novel approach based on stopping time sequences to deal with the
switching probabilities governing the sample paths of the fluid limit
process. Simulation experiments are conducted to illustrate and val-
idate the analytical results.

1. Introduction. Emerging wireless mesh networks typically lack any
centralized access control entity, and instead vitally rely on the individual
nodes to operate autonomously and to efficiently share the medium in a dis-

Received March 2013.
∗The work of the first author was supported by a summer project at Alcatel-Lucent and

grants NSF CNS-1161404, ARO MURI W911NF-08-1-0233, and ONR N00014-13-1-0038
during his PhD at University of Illinois.

MSC 2010 subject classifications: Primary 60K25, 60K25; secondary 68M20, 90B18,
90B22

Keywords and phrases: Carrier-Sense Multiple Access (CSMA), fluid limits, queue-
based strategies, stability issues.

81

http://www.i-journals.org/ssy/
http://dx.doi.org/10.1214/13-SSY104


82 J. GHADERI, S. BORST AND P. WHITING

tributed fashion. This requires the nodes to schedule their individual trans-
missions and decide on the use of a shared medium based on knowledge
that is locally available or only involves limited exchange of information.
A popular mechanism for distributed medium access control is provided by
the so-called Carrier-Sense Multiple-Access (CSMA) protocol. In the CSMA
protocol each node attempts to access the medium after a certain back-off
time, but nodes that sense activity of interfering nodes freeze their back-off
timer until the medium is sensed idle. While the CSMA protocol is fairly
easy to understand at a local level, the interaction among interfering nodes
gives rise to quite intricate behavior and complex throughput characteristics
on a macroscopic scale. In recent years relatively parsimonious models have
emerged that provide a useful tool in evaluating the throughput character-
istics of CSMA-like networks, see for instance [3, 8, 9, 39]. Experimental
results in Liew et al. [23] demonstrate that these models, while idealized,
provide throughput estimates that match remarkably well with measure-
ments in actual systems.

Despite their asynchronous and distributed nature, CSMA-like algorithms
have been shown to offer the remarkable capability of achieving the full ca-
pacity region and thus match the optimal throughput performance of cen-
tralized scheduling mechanisms operating in slotted time [19, 20, 24]. More
specifically, any throughput vector in the interior of the convex hull associ-
ated with the independent sets in the underlying interference graph can be
achieved through suitable back-off rates and/or transmission lengths. Based
on this observation, various ingenious algorithms have been developed for
finding the back-off rates that yield a particular target throughput vector
or that optimize a certain concave throughput utility function in scenarios
with saturated buffers [19, 20, 26]. In the same spirit, several effective ap-
proaches have been devised for adapting the transmission lengths based on
queue length information, and been shown to guarantee maximum stability
[18, 29, 34, 35].

Roughly speaking, the maximum-stability guarantees were established un-
der the condition that the activity factors of the various nodes behave as log-
arithmic functions of the queue lengths. Unfortunately, such activity factors
can induce excessive queue lengths and delays, which has triggered a strong
interest in developing approaches for improving the delay performance [16,
22, 25, 28, 33]. Motivated by this issue, Ghaderi & Srikant [15] recently
showed that it is in fact sufficient for the logarithms of the activity factors
to behave as logarithmic functions of the queue lengths, divided by an ar-
bitrarily slowly increasing, unbounded function. These results indicate that
the maximum-stability guarantees are preserved for activity functions that
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are essentially linear for all practical values of the queue lengths, although
asymptotically the activity rate must grow slower than any positive power
of the queue length. A careful inspection reveals that the proof arguments
leave little room to weaken the stated growth condition. Since the growth
condition is only a sufficient one, however, it is not clear to what extent it
is actually a strict requirement for maximum stability to be maintained.

In the present paper we explore the scope for using more aggressive activ-
ity functions in order to improve the delay performance while preserving the
maximum-stability guarantees. Since the proof methods of [15, 18, 29, 34, 35]
do not easily extend to more aggressive activity functions, we will instead
adopt fluid limits where the dynamics of the system are scaled in both space
and time. Fluid limits may be interpreted as first-order approximations of
the original stochastic process, and provide valuable qualitative insight and
a powerful approach for establishing (in)stability properties [5, 6, 7, 27].

As observed in [4], qualitatively different types of fluid limits can arise,
depending on the structure of the interference graph, in conjunction with
the functional shape of the activity factors. For sufficiently tame activity
functions as in [15, 29, 34, 35], ‘fast mixing’ is guaranteed, where the ac-
tivity process evolves on a much faster time scale than the scaled queue
lengths. Qualitatively similar fluid limits can arise for more aggressive ac-
tivity functions as well, provided the topology is benign in a certain sense,
which implies that the maximum-stability guarantees are preserved in those
cases. In different regimes, however, aggressive activity functions can cause
‘sluggish mixing’, where the activity process evolves on a much slower time
scale than the scaled queue lengths, yielding oscillatory fluid limits that
follow random trajectories. It is highly unusual for such random dynamics
to occur, as in queueing networks typically the random characteristics van-
ish and deterministic limits emerge on the fluid scale. A few exceptions are
known for various polling-type models as considered in [13, 21, 14].

The random nature of the fluid limits gives rise to several complications
in the convergence proofs that are not commonly encountered. Since the
random-access networks that we consider are fundamentally different from
the polling type-models in the above-mentioned references, the fluid limits
are qualitatively different as well, and require a substantially different ap-
proach to establish convergence. Specifically, we develop an approach based
on stopping time sequences to deal with the switching probabilities govern-
ing the sample paths of the fluid limit process. While these proof arguments
are developed in the context of random-access networks, several key compo-
nents extend far beyond the scope of the present problem. Hence, we believe
that the proof constructs are of broader methodological value in handling
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random fluid limits and of potential use in establishing both stability and
instability results for a wider range of models. For example, the methodol-
ogy that we develop could be easily applied to prove the stability results for
the random capture scheme as conjectured in work of Feuillet et al. [12].

The possible oscillatory behavior of the fluid limit itself does not neces-
sarily imply that the system is unstable, and in some situations maximum
stability is in fact maintained. In other scenarios, however, the fluid limit
reflects that more aggressive activity functions may force the system into
inefficient states for extended periods of time and produce instability. We
will demonstrate instability for super-linear activity functions, but our proof
arguments suggest that it can potentially occur for any activity factor that
grows as a positive power of the queue lengths in networks with sufficiently
many nodes. In other words, the growth conditions for maximum stability
depend on the number of nodes, which seems loosely related to results in
[17, 36, 37] characterizing how (upper bounds for) the mean queue length
and delay scale as a function of the size of the network.

The remainder of the paper is organized as follows. In Section 2, we
present a detailed model description. We introduce fluid limits and discuss
the various qualitative regimes in Section 3. We then use the fluid limits
to demonstrate the potential instability of aggressive activity functions in
Sections 4 and 5. Simulation experiments are conducted in Section 6 to sup-
port the analytical results. In Section 7, we make some concluding remarks
and identify topics for further research. Appendices at the end of the paper
contain proofs of our results.

2. Model description.

Network, interference graph, and traffic model. We consider a network of
several nodes sharing a wireless medium according to a random-access mech-
anism. The network is represented by an undirected graph G = (V,E) where
the set of vertices V = {1, . . . , N} correspond to the various nodes and the
set of edges E ⊆ V × V indicate which pairs of nodes interfere. Nodes
that are neighbors in the interference graph are prevented from simultane-
ous activity, and thus the independent sets correspond to the feasible joint
activity states of the network. A node is said to be blocked whenever the
node itself or any of its neighbors is active, and unblocked otherwise. Define
S ⊆ {0, 1}N as the set of incidence vectors of all the independent sets of
the interference graph, and denote by C = conv(S) the capacity region, with
conv(·) indicating the convex hull operator.

Packets arrive at node i as a Poisson process of rate λi. The packet trans-
mission times at node i are independent and exponentially distributed with
mean 1/µi. Denote by ρi = λi/µi the traffic intensity of node i.
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Let U(t) ∈ S represent the joint activity state of the network at time t,
with Ui(t) indicating whether node i is active at time t or not. Denote by
Xi(t) the queue length at node i at time t, i.e., the number of packets waiting
for transmission or in the process of being transmitted.

Queue-based random-access mechanism. As mentioned above, the various
nodes share the medium in accordance with a random-access mechanism.
When a node ends an activity period (consisting of possibly several back-to-
back packet transmissions), it starts a back-off period. The back-off times
of node i are independent and exponentially distributed with mean 1/νi.
The back-off period of a node is suspended whenever it becomes blocked by
activity of any of its neighbors, and only resumed once the node becomes
unblocked again. Thus the back-off period of a node can only end when none
of its neighbors are active. Now suppose a back-off period of node i ends at
time t. Then the node starts a transmission with probability φi(Xi(t)), with
φi(0) = 0, and begins a next back-off period otherwise. When a transmission
of node i ends at time t, it releases the medium and begins a back-off pe-
riod with probability ψi(Xi(t

−)), or starts the next transmission otherwise,
with ψi(1) = 1. Equivalently, node i may be thought of as activating at an
exponential rate fi(Xi(t)), with fi(·) = νiφi(·), whenever it is unblocked at
time t, and de-activating at rate gi(Xi(t)), with gi(·) = µiψi(·), whenever
it is active at time t. For conciseness, the functions fi(·) and gi(·) will be
referred to as activation and de-activation functions, respectively.

There are two special cases worth mentioning that (loosely) correspond to
random-access schemes considered in the literature before. First of all, in case
φi(Xi) = 1 and ψi(Xi) = 0 for all Xi ≥ 1, node i starts a transmission each
time a back-off period ends, and does not release the medium, i.e., continues
transmitting until its entire queue has been cleared. This corresponds to
the random-capture scheme considered in [12]. In case µi = 1, νi = 1,
φi(Xi) = 1 − ψi(Xi), and ψi(Xi) = 1/(1 + ri(Xi)), node i may be thought
of as becoming (or continuing to be) active with probability ri(Xi(t))/(1 +
ri(Xi(t))) each time a unit-rate Poisson clock ticks. This roughly corresponds
to the scheme considered in [15, 18, 29, 34, 35] based on Glauber dynamics
with a ‘weight’ function wi(Xi) = log(ri(Xi)), except that the latter scheme
operates with a random round-robin clock, and uses w̃i(Xi) = wi(Xi) ∨
ǫ

2Nwi(Xmax), with Xmax = ∨N
j=1Xj .

Network dynamics. Under the above-described queue-based schemes, the
process {(U(t),X(t))}t≥0 evolves as a continuous-time Markov process with
state space S × NN

0 . Transitions (due to arrivals) from a state (U,X) to
(U,X + ei) occur at rate λi, transitions (due to activations) from a state
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(U,X) with Xi ≥ 1, Ui = 0, and Uj = 0 for all neighbors of node i, to (U +
ei,X) occur at rate νifi(Xi), transitions (due to transmission completions
followed back-to-back by a subsequent transmission) from a state (U,X)
with Ui = 1 (and thus Xi ≥ 1) to (U,X − ei) occur at rate µi(1 − gi(Xi)),
transitions (due to transmission completions followed by a back-off period)
from a state (U,X) with Ui = 1 (and thus Xi ≥ 1) to (U − ei,X − ei) occur
at rate µigi(Xi).

We are interested to determine under what conditions the system is sta-
ble, i.e., the process {(U(t),X(t))}t≥0 is positive-recurrent. It is easily seen
that (ρ1, . . . , ρN ) < σ ∈ C is a necessary condition for that to be the case.
In [15], it is shown that this condition is in fact also sufficient for weight
functions of the form wi(Xi) = log(1 +Xi)/yi(Xi), where yi(Xi) is allowed
to increase to infinity at an arbitrarily slow rate. For practical purposes, this
means that the function ri(Xi) is essentially allowed to be linear, except that
it must eventually grow to infinity slower than any positive power of Xi. Re-
sults in [4] suggest that more aggressive choices of the functions fi(·) and
gi(·), which translate into functions ri(·) that grow faster to infinity, can im-
prove the delay performance. In view of these results, we will be particularly
interested in such functions ri(·), where the stability results of [15] do not
apply. In order to examine under what conditions the system will remain
stable then, we will examine fluid limits for the process {(U(t),X(t))}t≥0 as
introduced in the next section.

3. Qualitative discussion of fluid limits. Fluid limits may be inter-
preted as first-order approximations of the original stochastic process, and
provide valuable qualitative insight and a powerful approach for establish-
ing (in)stability properties [5, 6, 7, 27]. In this section we discuss fluid limits
for the process {(U(t),X(t))}t≥0 from a broad perspective, with the aim
to informally exhibit their qualitative features in various regimes, and we
deliberately eschew rigorous claims or proofs.

3.1. Fluid-scaled process. In order to obtain fluid limits, the original
stochastic process is scaled in both space and time. More specifically, we
consider a sequence of processes {(U (R)(t),X(R)(t))}t≥0 indexed by a se-
quence of positive integers R, each governed by similar statistical laws as

the original process, where the initial states satisfy
∑N

i=1X
(R)
i (0) = R and

X
(R)
i (0)/R → Qi as R → ∞. The process {(U (R)(Rt), 1

RX
(R)(Rt))}t≥0 is

referred to as the fluid-scaled version of the process {(U (R)(t),X(R)(t)}t≥0.
Note that the activity process is scaled in time as well but not in space.
For compactness, denote QR(t) = 1

RX
(R)(Rt). Any (possibly random) weak

limit {Q(t)}t≥0 of the sequence {QR(t)}t≥0, as R→ ∞, is called a fluid limit.
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It is worth mentioning that the above notion of fluid limit based on the
continuous-time Markov process is only introduced for the convenience of
the qualitative discussion below. For all the proofs of fluid limit properties
and instability results we will rely on a rescaled linear interpolation of the
uniformized jump chain (as will be defined in Appendix A.I), with a time-
integral version of the U(·) component. This construction yields convenient
properties of the fluid limit paths and allows us to extend the framework
of Meyn [27] for establishing instability results for discrete-time Markov
chains. (The original continuous-time Markov process has in fact the same
fluid limit properties, but this is not directly relevant in any of the proofs.)

The process {(U (R)(Rt), 1
RX

(R)(Rt))}t≥0 comprises two interacting com-
ponents. On one hand, the evolution of the (scaled) queue length process
1
RX

(R)(Rt) depends on the activity process U (R)(Rt). On the other hand,

the evolution of the activity process U (R)(Rt) depends on the queue length
process X(R)(Rt) through the activation and de-activation functions fi(·)
and gi(·). In many cases, a separation of time scales arises as R→ ∞, where
the transitions in U (R)(Rt) occur on a much faster time scale than the vari-
ations in QR(t) = 1

RX
(R)(t). Loosely phrased, the evolution of QR(t) is then

governed by the time-average characteristics of U (R)(·) in a scenario where
QR(t) is fixed at its instantaneous value.

In other cases, however, the transitions in U (R)(Rt) may in fact occur
on a much slower time scale than the variations in QR(t), or there may
not be a separation of time scales at all. As a result, qualitatively different
types of fluid limits can arise, as observed in [4], depending on the mixing
properties of the activity process. These mixing properties, in turn, depend
on the functional shape of the activation and de-activation functions fi(·)
and gi(·), in conjunction with the structure of the interference graph G.

3.2. Fast mixing: Smooth deterministic fluid limits. We first consider the
case of fast mixing. In this case, the transitions in U (R)(Rt) occur on a much
faster time scale than the variations in QR(t), and completely average out
on the fluid scale as R → ∞. Informally speaking, this entails that the
mixing time of the activity process in a scenario with fixed activation rates
fi(Rqi) and de-activation rates gi(Rqi) grows slower than R as R → ∞. In
order to obtain a rough bound for the mixing time, assume that fi(·) ≡ f(·),
gi(·) ≡ g(·), and denote h(x) = f(x)/g(x). Further suppose that h(R) → ∞
as R→ ∞, and h(aR)/h(R) → ĥ(a) as R→ ∞, with ĥ(a) > 0 for any a > 0.
The latter assumptions are satisfied, for example, when h(x) = xγ , γ > 0,
with ĥ(a) = aγ , or when h(x) = log(x) with ĥ(a) ≡ 1. Without proof, we
claim that the mixing time then grows at most at rate f(R)m

∗−1g(R)−m∗

as
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R→ ∞, with m∗ the cardinality of a maximum-size independent set. Thus,
fast mixing behavior is guaranteed when f(·) does not grow too fast, g(·)
does not decay too fast, or m∗ is sufficiently small, e.g.,

(i) g(x) = g and m∗ = 1;
(ii) f(x) = x1/(m

∗−1)−δ, g(x) = g, and m∗ ≥ 2;
(iii) f(x) = f and g(x) ≥ x−1/m∗+δ;
(iv) f(x) = f , g(x) = 1/ log(1 + x);
(v) f(x) = log(1 + x) and g(x) = g.

As mentioned above, the fluid limit then follows an entirely deterministic
trajectory, which is described by a differential equation of the form

d

dt
Qi(t) = λi − µiui(Q(t)),

as long as Q(t) > 0 (component-wise), with the function ui(·) representing
the fraction of time that node i is active. We may write

ui(q) =
∑

s∈S

siπ(s; q),

with π(s; q) denoting the fraction of time that the activity process resides
in state s ∈ S in a scenario with fixed activation rates fj(Rqj) and de-

activation rates gj(Rqj) as R → ∞. Let S∗ = {s ∈ S :
∑N

i=1 si = m∗}
correspond to the collection of all maximum-size independent sets. Under
the above-mentioned assumptions,

π(s; q) = lim
R→∞

N
∏

i=1
h(Rqi)

si

∑

u∈S∗

N
∏

i=1
h(Rqi)ui

=

N
∏

i=1
ĥ(qi)

si

∑

u∈S∗

N
∏

i=1
ĥ(qi)ui

=
exp(

∑N
i=1 si log(ĥ(qi)))

∑

u∈S∗ exp(
∑N

i=1 ui log(ĥ(qi)))
,

for s ∈ S∗, while π(s; q) = 0 for s 6∈ S∗. In particular, if h(x) = xγ , γ > 0,
then

π(s; q) =

N
∏

i=1
qγsii

∑

u∈S∗

N
∏

i=1
qγui

i

=
exp(γ

∑N
i=1 si log(qi))

∑

u∈S∗ exp(γ
∑N

i=1 ui log(qi))
,

for s ∈ S∗. Also, if h(x) = log(1 + x), then π(s; q) = 1/|S∗| for s ∈ S∗.
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When some of the components of q are zero, i.e., some of the queue lengths
are zero at the fluid scale, it is considerably harder to characterize ui(q), since
the competition for medium access from the queues that are zero at the fluid
scale still has an impact. It may be shown though that

N
∑

i=1

ρiI{qi > 0} ≤ (1− ǫ)

N
∑

i=1

ui(q)I{qi > 0}

for some ǫ > 0, assuming that (ρ1, . . . , ρN ) < σ ∈ C. The latter inequality
also holds when q > 0, noting that then

∑N
i=1 ui(q) = m∗, while

∑N
i=1 ρi ≤

(1− ǫ)m∗ for some ǫ > 0.
We conclude that almost everywhere

N
∑

i=1

1

µi

dQi(t)

dt
≤

N
∑

i=1

(ρi − ui(Q(t)))I{Qi(t) > 0
}

≤ −ǫ
N
∑

i=1

ρiI{Qi(t) > 0
},

as long as Q(t) 6= 0. This means that Q(t) = 0 for all t ≥ T for some
finite T < ∞, which implies that the original Markov process is positive-
recurrent [5, 7]. This agrees with the stability results in [15, 18, 29, 35, 34]
for the case f(Xi) = 1 − g(Xi) and g(Xi) = 1/(1 + exp(w̃(Xi))), w̃(Xi) =
w(Xi) ∨ ǫ

2Nw(Xmax) (with the minor differences noted in the previous sec-
tion), and suggests that these results in fact hold without the need to know
the maximum queue size Xmax.

Of course, in order to convert the above arguments into an actual stability
proof, the informal characterization of the fluid limit needs to be rigorously
justified. This is a major challenge, and not the real goal of the present paper,
since we aim to demonstrate the opposite, namely that more aggressive
activity or de-activation functions can cause instability. Strong evidence of
the technical complications in establishing the fluid limits is provided by
recent work of Robert & Véber [30]. Their work focuses on the simpler case
of a single work-conserving resource (which corresponds to a full interference
graph in the present setting) without any back-off mechanism, where the
service rates of the various nodes are determined by a logarithmic function
of their queue lengths.

3.3. Sluggish mixing: Erratic random fluid limits. With the above aim in
mind, we now turn to the case of sluggish mixing. In this case, the transitions
in U (R)(Rt) occur on a much slower time scale than the variations in QR(t),
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Fig 1. The diamond network: A complete partite graph with K = 3 components, each
containing 2 nodes.

and vanish on the fluid scale as R → ∞, except at time points where some
of the queues hit zero. The detailed behavior of the fluid limit in this case
depends delicately on the specific structure of the interference graph G and
the shape of the functions fi(·) and gi(·). This prevents a characterization
in any degree of generality, and hence we focus attention on some particular
scenarios.

In order to show that sluggish mixing behavior itself need not imply in-
stability, we first examine a complete K-partite graph as considered in [12],
where the nodes can be partitioned into K ≥ 2 components. All nodes are
connected except those belonging to the same component. Figure 1 depicts
an example of a complete partite graph with K = 3 components, each con-
taining 2 nodes. We will refer to this network as the diamond network, since
the edges correspond to those of an eight-faced diamond structure, with
the node pairs constituting the three components positioned at the opposite
ends of three orthogonal axes.

Denote by Mk ⊆ {1, . . . , N} the subset of nodes belonging the k-th com-
ponent. Once one of the nodes in component Mk is active, other nodes
within Mk can become active as well, but none of the nodes in the other
components Ml, l 6= k, can be active. The necessary stability condition then
takes the form ρ =

∑K
k=1 ρ̂k < 1, with ρ̂k = ∨i∈Mk

ρi denoting the maximum
traffic intensity of any of the nodes in the k-th component.

Now consider the case that each node operates with an activation function
f(x) with limx→∞ f(x) > 0 and a de-activation function g(x) = o(x−γ), with
γ > 1, which subsumes the random-capture scheme with g(x) ≡ 0 for all
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x ≥ 1 in [12]. Since the de-activation rate decays so sharply, the probability
of a node releasing the medium once it has started transmitting with an
initial queue length of order R, is vanishingly small, until the queue length
falls below order R or the total number of transmissions exceeds order R
(but the latter implies the former). Hence, in the fluid limit, a node must
completely empty almost surely before it releases the medium. Because of
the interference constraints, it further follows that once the activity process
enters one of the components, it remains there until all the queues in that
component have entirely drained (on the fluid scale), and then randomly
switches to one of the other components. For conciseness, the fluid limit
process is said to be in an Mk-period during time intervals when at least
one of the nodes in component Mk is served at full rate (on the fluid scale).

Based on the above informal observations, we now proceed with a more
detailed description of the dynamics of the fluid limit process. We do not
aim to provide a proof of the stated properties, since the main goal of the
present paper is to demonstrate the potential for instability rather than
establish stability. However, the proof arguments that we will develop for
a similar but more complicated interference graph in the remainder of the
paper, could easily be applied to provide a rigorous justification of the fluid
limit and establish the claimed stability results.

Assume that the system enters an Mk-period at time t, then

(a) It spends a time period Tk(t) = ∨i∈Mk

Qi(t)
µi−λi

in Mk.
(b) During this period, the queues of the nodes in Mk drain at a linear

rate (or remain zero)

Qi(t+ u) = (Qi(t) + (λi − µi)u) ∨ 0, ∀i ∈Mk,

while the queues of the other nodes fill at a linear rate

Qi(t+ u) = Qi(t) + λiu, ∀i 6∈Mk,

for all u ∈ [0, Tk(t)].
(c) At time t + Tk(t), the system switches to an Ml-period, l 6= k, with

probability

pkl(t+ Tk(t)) = lim
R→∞

∑

i∈Ml
f(RQi(t+ Tk(t)))

∑

l′ 6=k,l

∑

i∈Ml′
f(RQi(t+ Tk(t)))

.

Thus the fluid limit follows a piece-wise linear sample path, with switches
between different periods governed by the transition probabilities specified
above. Figure 2 depicts an example of the fluid limit sample path for the
network of Figure 1 with f(x) = 1, x ≥ 1.
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Fig 2. A fluid limit sample path for the diamond network of Figure 1.

Now define the Lyapunov function L(t) :=
∑K

k=1 Q̂k(t), with Q̂k(t) =

∨i∈Mk
Qi(t)/µi. Then,

d
dtL(t) ≤

∑K
k=1 ρ̂k − 1 = ρ− 1 < 0 almost everywhere

when ρ < 1, as long as L(t) > 0. Therefore, L(t) = 0, and hence Q(t) = 0,

for all t ≥ T , with T = L(0)
1−ρ <∞, implying stability [5, 7], even though the

fluid limit behavior is not smooth at all.

4. Fluid limits for broken-diamond network. In the previous sec-
tion we discussed qualitative features of fluid limits in various scenarios,
and in particular for so-called complete partite graphs. We now proceed
to consider a ‘nearly’ complete partite graph, and will demonstrate that if
some of the edges between two components Mk and Ml are removed (thus
reducing interference), the network might become unstable for ‘aggressive’
activation and/or deactivation functions! Specifically, we will consider the
diamond network of Figure 1, and remove the edge between nodes 4 and 5 to
obtain a broken-diamond network with an additional component/maximal
schedule M4, as depicted in Figure 3.

The intuitive explanation for the potential instability may be described
as follows. Denote ρ0 = ρ1∨ ρ2, and assume ρ3 ≥ ρ4 and ρ6 ≥ ρ5. It is easily
seen that the fraction of time that at least one of the nodes 1, 2, 3 and 6
is served, must be no less than ρ = ρ0 + ρ3 + ρ6 in order for these nodes to
be stable. During some of these periods nodes 4 or 5 may also be served,
but not simultaneously, i.e., schedule M4 cannot be used. In other words,
the system cannot be stable if schedule M4 is used for a fraction of the time
larger than 1− ρ. As it turns out, however, when the de-activation function
is sufficiently aggressive, e.g., g(x) = o(x−γ), with γ > 1, schedule M4 is in
fact persistently used for a fraction of the time that does not tend to 0 as ρ
approaches 1, which forces the system to be unstable.

Although the above arguments indicate that invoking schedule M4 is a
recipe for trouble, the reason may not be directly evident from the sys-
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Fig 3. The broken-diamond network, obtained by removing 1 edge from the diamond
network of Figure 1, yielding an additional schedule M4.

q1 

q3 

q4 
q6 

M1 M2 M1 M4 M3 
q5 

Fig 4. A fluid limit sample path for the broken-diamond network of Figure 3, correspond-
ing to the switching sequence M1 → M2 → M1 → M4 → M3.

tem dynamics, since no obvious inefficiency occurs as long as the queues of
nodes 4 and 5 are non-empty. However, the fact that the Lyapunov function
L(t) =

∑3
k=1 ∨i∈Mk

Qi(t) may increase while serving nodes 4 and 5, when
Q3(t) ≥ Q4(t) and Q6(t) ≥ Q5(t), is already highly suggestive. (Such an
increase is depicted in Figure 4 during the M4-period of the switching se-
quence M1 → M2 → M1 → M4 → M3 → M1.) Indeed, serving nodes 4
and 5 may make their queues smaller than those of nodes 3 and 6, leaving
these queues to be served by themselves at a later stage, at which point
inefficiency inevitably occurs.

In the sequel, the fluid limit process is said to be in a natural state when
Q3(t) ≥ Q4(t) and Q6(t) ≥ Q5(t), with equality only when both sides are
zero. We will assume λ3 > λ4 and λ6 > λ5, and will show that the process
must always reside in a natural state after some finite amount of time. As
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described above, instability is bound to occur when schedule M4 is used
repeatedly for substantial periods of time while the fluid limit process is in a
natural state. Since the process is always in a natural state after some finite
amount of time, it is intuitively plausible that such events occur repeatedly
with positive probability, but a rigorous proof that this leads to instability
is far from simple. Such a proof requires detailed analysis of the underlying
stochastic process (in our case via fluid limits), and its conclusion crucially
depends on the de-activation function. Indeed, the stability results in [15,
18, 29, 34, 35] indirectly indicate that the broken-diamond network is not
rendered unstable for sufficiently cautious de-activation functions.

Just like for the complete partite graphs, the fluid limit process is said to
be in an M1-period when node 1 or node 2 (or both) is served at full rate.
The process is in an M2- or M3-period when node 3 or 6 is served at full
rate, respectively. The process is in an M4-period when nodes 4 and 5 are
both served at full rate simultaneously.

In Subsection 4.1 we will provide a detailed description of the dynamics
of the fluid limit process once it has reached a natural state and entered an
M1-, M2-, M3- or M4-period. The justification for the description follows
from a collection of lemmas and propositions which are stated and proved
in Appendices A–D, with a high-level outline provided in Subsection 4.2. In
Section 5 we will exploit the properties of the fluid limit process in order
to prove that the harmful behavior described above indeed occurs for suf-
ficiently aggressive de-activation functions, implying instability of the fluid
limit process as well as the original stochastic process.

4.1. Description of the fluid limit process. We now provide a detailed
description of the dynamics of the fluid limit process once it has reached a
natural state and entered an M1-, M2-, M3- or M4-period. For sufficiently
high load, i.e., ρ sufficiently close to 1, a natural state and such a period occur
in uniformly bounded time almost surely for any initial state. As will be seen,
for de-activation functions gi(x) = o(x−γ), with γ > 1, the fluid limit process
then follows similar piece-wise linear trajectories, with random switches, as
described in the beginning of Section 4 for complete partite graphs and
further illustrated in Figure 4. For notational convenience, we henceforth
assume µi ≡ 1, so that ρi ≡ λi, for all i = 1, . . . , N , and additionally assume
activation functions fi(x) ≡ 1, x ≥ 1, for all i = 1, . . . , N .

4.1.1. M1-period. Assume the system enters an M1-period at time t,
then

(a) It spends a time period T1(t) =
Q1(t)
1−ρ1

∨ Q2(t)
1−ρ2

in M1.
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(b) During this period, the queues of nodes 1 and 2 drain at a linear rate
(or remain zero)

Qi(t+ u) = (Qi(t)− (1− ρi)u) ∨ 0, for i = 1, 2,

while the queues of nodes 3, 4, 5, and 6 fill at a linear rate

Qi(t+ u) = Qi(t) + ρiu, for i = 3, 4, 5, 6,

for all u ∈ [0, T1(t)]. In particular, Q1(t+ T1(t)) = Q2(t+ T1(t)) = 0.
(c) At time t+T1(t), the system switches to anM2-,M3- orM4-period with

transition probabilities p12 =
3
8 , p13 =

3
8 , and p14 =

1
4 , respectively.

4.1.2. M2-period. Assume that the system enters anM2-period at time t,
then

(a) The system spends a time period T2(t) =
Q3(t)
1−ρ3

in M2.
(b) During this period, the queues of nodes 3 and 4 drain (or remain zero)

Qi(t+ u) = (Qi(t)− (1− ρi)u) ∨ 0, for i = 3, 4,

while the queues of nodes 1, 2, 5, and 6 fill at a linear rate

Qi(t+ u) = Qi(t) + ρiu, for i = 1, 2, 5, 6,

for all u ∈ [0, T2(t)]. In particular, Q3(t+ T2(t)) = 0.
(c) At time t+ T2(t), the system switches to an M1- or M3-period. Note

that Q3(t)
1−ρ3

> Q4(t)
1−ρ4

by the assumption that λ3 > λ4 and that the process
has reached a natural state, so that Q3(t) > Q4(t) (since Q3(t) =
Q4(t) = 0 cannot occur at the start of an M2-period). Thus node 4
has emptied before time t + T2(t), and remained empty (on the fluid
scale) since then, precluding a switch to an M4-period except for a
negligible duration on the fluid scale), only allowing the system to
switch to either an M1- or M3-period. The corresponding transition
probabilities can be formally expressed in terms of certain stationary
distributions, but are difficult to obtain in explicit form. Note that
in order for any of the nodes 1, 2, 5 or 6 to activate, node 3 must
be inactive. In order for nodes 1, 2 or 6 to activate, node 4 must be
inactive as well, but the latter is not necessary in order for node 5 to
activate. Since node 4 may be active even when it is empty on the
fluid scale, it follows that node 5 enjoys an advantage in competing for
access to the medium over nodes 1, 2 and 6. While it may be argued
that node 4 is active with probability ρ4 by the time node 3 becomes
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inactive for the first time, the resulting probabilities for the various
nodes to gain access to the medium first do not seem to allow a simple
expression.

Remark 1. If the process had not yet reached a natural state, the
case Q3(t)

1−ρ3
≤ Q4(t)

1−ρ4
could also arise. In case that inequality is strict, i.e.,

Q3(t)
1−ρ3

< Q4(t)
1−ρ4

, the queue of node 4 is still non-empty by time t+ T2(t),
simply forcing a switch to an M4-period with probability 1.
In case of equality, i.e., Q3(t)

1−ρ3
= Q4(t)

1−ρ4
, however, the situation would be

much more complicated, which serves as the illustration for the signifi-
cance of the notion of a natural state. In order to describe these difficul-
ties, note that the queues of nodes 3 and 4 both empty at time t+T2(t),
barring a switch to an M4-period, and permitting only a switch to ei-
ther an M1- or M3-period. Just like before, node 5 is the only one able
to activate during periods where node 3 is inactive while node 4 is
active, and hence enjoys an advantage in competing for access to the
medium. In fact, node 5 will gain access to the medium first almost
surely if node 3 is the first one to become inactive (in the pre-limit).
The probability of that event, and hence the transition probabilities
to an M1- or M3-period, depends on queue length differences between
nodes 3 and 4 at time t that can be affected by the history of the
process and are not visible on the fluid scale.

4.1.3. M3-period. The dynamics for anM3-period are entirely symmetric
to those for an M2-period, and are therefore omitted.

4.1.4. M4-period. Assume that the system enters anM4-period at time t,
then

(a) It spends a time period T4(t) =
Q4(t)
1−ρ4

∧ Q5(t)
1−ρ5

in M4.
(b) During this period, the queues of nodes 4 and 5 drain at a linear rate

Qi(t+ u) = Qi(t)− (1− ρi)u, for i = 4, 5,

while the queues of nodes 1, 2, 3, and 6 fill at a linear rate

Qi(t+ u) = Qi(t) + ρiu, for i = 1, 2, 3, 6,

u ∈ [0, T4(t)]. In particular, Q4(t+ T4(t)) ∧Q5(t+ T4(t)) = 0.
(c) At time t+ T4(t), the system switches to either an M2- or M3-period.

In order to determine which of these events can occur, we need to dis-
tinguish between three cases, depending on whether Q4(t)

1−ρ4
is (i) larger

than, (ii) equal to, or (iii) smaller than Q5(t)
1−ρ5

.
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In case (i), i.e., Q4(t)
1−ρ4

> Q5(t)
1−ρ5

, we have Q4(t+T4(t)) > 0, i.e., the queue
of node 4 is still non-empty by time t+ T4(t), causing a switch to an
M2-period with probability 1.
In case (ii), i.e., Q4(t)

1−ρ4
= Q5(t)

1−ρ5
, we have Q4(t+T4(t)) = Q5(t+T4(t)) = 0,

i.e., the queues of nodes 4 and 5 both empty at time t + T4(t). Even
though both queues empty at the same time on the fluid scale, there
will with overwhelming probability be a long period in the pre-limit
where one of the nodes has become inactive for the first time while the
other one has yet to do so. Since both nodes 4 and 5 must be inactive
in order for nodes 1 and 2 to activate, these nodes have no chance to
activate during that period, but either node 3 or node 6 does, depend-
ing on whether node 5 or node 4 is the first one to become inactive.
As a result, the system cannot switch to an M1-period, but only to an
M2- or M3-period. In fact, a switch to M2 will occur almost surely if
node 5 is the first one to become inactive, while a switch to M3 will
occur almost surely if node 4 is the first one to become inactive. The
probabilities of these two scenarios, and hence the transition proba-
bilities to M2 and M3, depend on queue length differences between
nodes 4 and 5 at time t that are affected by the history of the process
and are not visible on the fluid scale.
In case (iii), i.e., Q4(t)

1−ρ4
< Q5(t)

1−ρ5
, we have Q5(t + T4(t)) > 0, i.e., the

queue of node 5 is still non-empty by time t+ T4(t), forcing a switch
to an M3-period with probability 1.

Remark 2. As noted in the above description of the fluid limit process,
in cases 2(c), 3(c), and 4(c)(ii) the transition probabilities from anM2-period
to an M1- or M3-period, from an M3-period to an M1- or M2-period, and
from an M4- to an M2- or M3-period, depend on queue length differences
that are affected by the history of the process and are not visible on the
fluid scale. Depending on whether or not the initial state and parameter
values allow for these cases to arise, it may thus be impossible to provide
a probabilistic description the evolution of the resulting fluid limit process,
even in terms of its entire own history.

4.2. Overview of fluid limit proofs. In Section 4.1, we provided a descrip-
tion of the dynamics of the fluid limit process once it has reached a natural
state and entered an M1, M2-, M3 or M4-period. As was further stated, for
ρ sufficiently close to 1, a natural state and such a period occur in uniformly
bounded time almost surely for any initial state. The justification for all
these properties follows from a series of lemmas and propositions stated and
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proved in Appendices A–D. In this section we present a high-level outline of
the fluid limit statements and proofs.

First of all, recall that the description of the fluid limit process referred
to the continuous-time Markov process representing the system dynamics
as introduced in Section 2. For all the proofs of fluid limit properties and
instability results however we consider a rescaled linear interpolation of the
uniformized jump chain (as defined in Appendix A.I). This construction
yields convenient properties of the fluid limit paths and allows us to extend
the framework of Meyn [27] for establishing instability results for discrete-
time Markov chains. (The original continuous-time Markov process has in
fact the same fluid limit properties, but this is not directly relevant in any
of the proofs.)

The proofs of the fluid limit properties consist of four main parts. Part A
identifies several basic properties of the fluid limit paths, and in particular
establishes that the queue length trajectory of each of the individual nodes
exhibits ‘sawtooth’ behavior. This fundamental property in fact holds in
arbitrary interference graphs, and only requires an exponent γ > 1 in the
backoff probability. Part B of the proof shows a certain dominance property,
saying that if all the interferers of a particular node also interfere with some
other node that is currently being served at full rate, then the former node
must be empty or served at full rate (on the fluid scale) as well. Under the
assumption λ3 > λ4, λ5 < λ6, the dominance property implies that after a
finite amount of time the fluid limit process for the broken-diamond network
must always reside in a natural state (as defined in Section 4.1). Part C of
the proof centers on the M1-, M2-, M3- and M4-periods, and establishes
that at the end of any such period, the process immediately switches to one
of the other types of periods with the probabilities indicated in Section 4.1.
In particular, it is deduced that an M4-period cannot be entered from an
M2- or M3-period, and must always be preceded by an M1-period once the
process has reached a natural state. The combination of the sawtooth queue
length trajectories and the switching probabilities provides a probabilistic
description of the dynamics of the fluid limit once the process has reached a
natural state and entered anM1-,M2-,M3- orM4-period. Part B already es-
tablished that the process must always reside in a natural state after a finite
amount of time, but it remains to be shown that the process will inevitably
enter an M1-, M2-, M3- or M4-period, which constitutes the final Part D
of the proof. The core argument is that interfering empty and nonempty
queues can not coexist, since the empty nodes will frequently enter back-off
periods, offering the nonempty nodes abundant opportunities to gain access,
drain their queues, and cause the empty nodes to build queues in turn.
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Now we provide additional guidance to the reader regarding the technical
results in the appendix. Part A of the proof starts with the simple obser-
vation that, by the ‘skip-free’ property of the original pre-limit process, the
sample paths of the interpolated version of the uniformized jump chain are
Lipschitz continuous with a uniform Lipschitz constant (see (A.3)). It fol-
lows from this property and our initial assumptions that fluid limits exist
(see Theorem 3 and the surrounding discussion). In addition, the fluid limit
paths (associated with a fluid limit) are also Lipschitz continuous with the
same constant, and are thus differentiable almost everywhere with probabil-
ity one.

We then go on to show the fluid limit paths are determined by a count-
able set of ‘entrance’ times and ‘exit’ times of (0,∞) with probability one.
The exit times for each queue ℓ are defined in terms of countably many se-
quences of stopping times (see Definition 4, Corollary 2, and the preceding
discussion). With these in hand, the entrance times are seen to be random
variables, measurable with respect to the pre-T σ-algebras of the exit times.
Next we show that between an exit time and its corresponding entrance
time the sample path is ‘sawtooth’. To do this we show that if a nonempty
node (on the fluid scale) receives any amount of service during some time
interval, then it must in fact be served at the full rate until it has completely
emptied (on the fluid scale), assuming γ > 1 (see Lemma 8). This implies
that when node i is nonempty (on the fluid scale), its queue must either
increase at rate λi or decrease at rate 1 − λi until it has entirely drained.
In other words, the queue length trajectory of each of the individual nodes
exhibits sawtooth behavior (Theorem 4).

Part B of the proof pertains to the joint behavior of the fluid limit tra-
jectories of the various queue lengths. First of all, the natural property is
proved that whenever a particular node is served, none of its interferers can
receive any service (Lemma 3). Second, it is established that whenever a
particular node is served, any node whose interferers are a subset of those
of the node served, must either be empty or be served at full rate as well
(on the fluid scale) (Corollary 3). For example, in the broken-diamond net-
work, whenever node 3 is served, node 4 must either be empty or be served
at full rate as well, and similarly for nodes 5 and 6. These two properties
combined yield a dominance property, saying that if all the interferers of a
particular node also interfere with some other node that is currently being
served at full rate, then the former node must be empty or served at full
rate (on the fluid scale) as well. In the case of the broken-diamond network,
under the assumption λ3 > λ4, the queue of node 3 will therefore never be
smaller than that of node 4 after some finite amount of time, and similarly



100 J. GHADERI, S. BORST AND P. WHITING

for nodes 4 and 5. Thus the fluid limit process will always reside in a natural
state after some finite amount of time. In Theorem 5 it is shown that not
only is this the case but also for utilizations ρ sufficiently close to 1 the
network is non-empty at the time of first entrance into a natural state.

Part C of the proof focuses on the M1-, M2-, M3- and M4-periods as
described above. Because of the sawtooth behavior, an M1-period can only
end when both nodes 1 and 2 are empty (on the fluid scale). Likewise, anM2-
or M3-period can only end when node 3 or node 6 is empty, respectively. An
M4-period can only end when node 4 or node 5 (or both) is empty. It is then
proven that at the end of an M1-period, the fluid limit process immediately
switches to an M2-, M3- or M4-period with the probabilities specified in
Section 4.1 (see Theorem 6 and also Lemma 13 and Corollary 5 which state
related results for certain finite dimensional sets of paths). When the process
resides in a natural state, anM2-period is always instantaneously followed by
anM1- orM3-period, while anM3-period is always instantaneously followed
by an M1- or M2-period. In particular, it is concluded that an M4-period
cannot be entered from an M2- or M3-period, and must always be preceded
by an M1-period once the process has reached a natural state. In the case
of switching from an M4-period our results only show that the probability
of entering M1 is 0, following entry into a natural state, that is switching
is either to an M2- or M3-period (see Theorem 8). The actual switching
probabilities for these two events may have arbitrary dependencies, however
Theorem 8 is all that is needed for our main results.

There is no reason a priori however that the process is guaranteed to
actually ever enter an M1-,M2-, M3- or M4-period. In fact, the process may
very well spend time in different kinds of states, but the final Part D of the
proof establishes that these kinds of states are transient, and cannot occur
once a natural state has been reached, which is forced to happen in a finite
amount of time for particular arrival rates as was already shown in Part B.
Note that an M1-, M2-, M3- or M4-period occurs as soon as node 1, node 2,
node 3, node 6 or nodes 4 and 5 simultaneously are served at full rate. In
other words, the only ways for the process to avoid an M1-, M2-, M3- or
M4-period, are: (i) for node 4 to be served at full rate, but not nodes 3
and 5; (ii) for node 5 to be served at full rate, but not nodes 4 and 6; (iii) for
none of the nodes to be served at full rate. Scenario (i) requires node 3 to
be empty (on the fluid scale) and node 4 to be nonempty, which can not
occur in a natural state. Likewise, scenario (ii) cannot arise in a natural state
either. Scenario (iii) requires that every empty node i is served at rate ρi
(on the fluid scale), while all nonempty nodes are served at rate 0. Such a
scenario is not particularly plausible, but a rigorous proof is quite involved
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(see Theorem 9). Theorem 9 is treated by cases and we outline the arguments
in Lemma 16 and Lemma 17, for the case nodes 3,4,5,6 empty, leaving the
proofs of these as well as the other cases as an exercise for the reader. The
main idea is to introduce the notion of a ‘control-swap’ (see Definition 8),
whereby there is always a positive probability of an M1-period within a
bounded number of control-swaps. Second it is shown that control-swaps
occur infinitely often and with negligible fluid time for the network 3,4,5,6
in isolation. Thus our insights rely strongly on the specific properties of the
broken-diamond network, and an extension to arbitrary graphs does not
seem straightforward.

5. Instability results for broken-diamond network. In Section 4,
we provided a detailed description of the dynamics of the fluid limit process
once it has reached a natural state and entered an M1-, M2-, M3 or M4-
period. In this section we exploit the properties of the fluid limit process in
order to prove that it is unstable for ρ sufficiently close to 1, and then show
how the instability of the original stochastic process can be deduced from
the instability of the fluid limit process.

5.1. Instability of the fluid limit process. In order to prove instability of
the fluid limit process, we first revisit the intuitive explanation discussed
earlier, see Figure 4 for an illustration. Denote ρ0 = ρ1 ∨ ρ2, and recall that
ρ3 ≥ ρ4 and ρ5 ≤ ρ6 by assumption. Since nodes 1, 2, 3 and 6 are only
served during M1-, M2- and M3-periods, and not during M4-periods, it is
easily seen that the fraction of time that the system spends inM1-,M2- and
M3-periods must be no less than ρ = ρ0 + ρ3 + ρ6 in order for these nodes
to be stable. Thus, the system cannot be stable if it spends a fraction of
the time larger than 1 − ρ in M4-periods. As it turns out, however, when
the de-activation function is sufficiently aggressive, e.g., g(x) = o(x−γ), with
γ > 1, M4-periods in fact persistently occur for a fraction of time that does
not tend to 0 as ρ approaches 1, which forces the system to be unstable.

Figure 4 shows a fluid-limit sample path corresponding to the switching
sequence M1 → M2 → M1 → M4 → M3 → M1. The aggregate queue size
starts building up in the M3-period that follows the M4-period.

In order to prove instability of the fluid limit process, we adopt the Lya-
punov function L(t) =

∑3
k=1 ∨i∈Mk

Qi(t), and will show that the load L(t)
grows without bound almost surely. Note that the load L(t) increases during
M4-periods while the process is in a natural state.

In preparation for the instability proof, we first state two auxiliary lem-
mas. It will be convenient to view the evolution of the fluid limit process,
and in particular the Lyapunov function L(t), over the course of cycles. The
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i-th cycle is the period from the start of the (i − 1)-th M1-period to the
start of the i-th M1-period once the fluid limit process has reached a natural
state. Denote by ti the start time of the i-th cycle, i = 1, 2, . . . . Each ti is
finite almost surely for ρ sufficiently close to 1, and in particular an infi-
nite number of cycles must occur almost surely. In order to see that, recall
that the fluid limit process will reach a natural state and enter an M1, M2,
M3- or M4-period in finite time almost surely for any initial state as stated
in Section 4.1. The description of the dynamics of the fluid limit process
provided in that subsection then implies that M1-periods and hence cycles
must occur infinitely often (and if only finitely many M1-periods occurred,
then at least one of the nodes would in fact never be served again after some
finite time, implying that the fluid limit process is unstable regardless).

The next lemma shows that the duration of a cycle and the possible
increase in the load over the course of a cycle are linearly bounded in the
load at the start of the cycle.

Lemma 1. The duration of the i-th cycle and the increase in the load
over the course of the i-th cycle, L(ti+1)−L(ti), are bounded from above by

ti+1 − ti ≤ CTL(ti) and L(ti+1)− L(ti) ≤ CLL(ti),

for all ρ ≤ 1, where CT = 1
1−ρ3−ρ6

( 1
1−ρ0

+ 1
1−(ρ4∨ρ5)

) and CL = ρ
1−(ρ4∨ρ5)

.

The proof of the above lemma is presented in Appendix E.
In order to establish that the durations of M4-periods are non-negligible,

it will be useful to introduce the notion of ‘weakly-balanced’ queues, ensuring
that the queues of nodes 4 and 5 are not too small compared to the queues
of nodes 3 and 6.

Definition 1. Let βmin and βmax be fixed positive constants. The queues
are said to be weakly-balanced in a given cycle (with respect to βmin and

βmax) if βmin ≤ Q3(t)
Q5(t)

, Q6(t)
Q4(t)

≤ βmax, with t denoting the time when the
M1-period ends that initiated the cycle.

The next lemma shows that over two consecutive cycles, the queues will
be weakly-balanced with probability at least 1/3.

Lemma 2. Let

ǫ =
ρ2

2
(

ρ2 + (ρ3 + ρ6)
1−(ρ4∧ρ5)
1−(ρ4∨ρ5)

) ≥ ρ2
ρ

1− (ρ4 ∨ ρ5)
1− (ρ4 ∧ ρ5)

.
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Fig 5. A cycle Dk consisting of a pair of consecutive cycles.

Then over two consecutive cycles, with probability at least 1/3, the queues
will be weakly-balanced in at least one of these cycles with

βmax =
(ρ3 ∨ ρ6) + (1− ρ2)(1− ǫ)/ǫ

ρ4 ∧ ρ5
,

and βmin = 1/βmax.

The proof of the above lemma is presented in Appendix E.
As suggested by the above lemma, it will be convenient to consider pairs of

two consecutive cycles in order to prove instability of the fluid limit process.
Let Dk be the pair of cycles consisting of cycles 2k − 1 and 2k as in

Figure 5, k = 1, 2, . . . . With minor abuse of notation, denote by Tk = t2k−1

the start time of Dk and Lk = L(Tk). Denote by ∆Tk = Tk+1 − Tk the
duration of Dk and by ∆Lk = Lk+1−Lk the increase in L(t) over the course
of Dk.

The next proposition shows that for ρ sufficiently close to 1 the load
cannot significantly decrease over a pair of cycles and will increase by a
substantial amount with non-zero-probability. We henceforth assume

(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) = ρ(κ1, κ2, κ3, κ3 − α, κ6 − α, κ6),

with (κ1 ∨ κ2) + κ3 + κ6 = 1 and 0 < α < κ3 ∧ κ6, so that ρ = ρ0 + ρ3 + ρ6.

Proposition 1. Let CLT = CT (2+CL), with CT and CL as specified in
Lemma 1, θ = 1− (1− ρ)CLT , p = 1/12. Over cycle pairs Dk, k = 1, 2, . . . ,

(i) ∆Tk ≤ CLTLk;
(ii) L(t) ≥ θLk for all t ∈ [Tk, Tk+1];
(iii) P

(

Lk+1 − θLk ≥ δ(ρ)θLk|Lk

)

≥ p, with δ(ρ) a constant, depending
on ρ, and δ(ρ) ↑ δ = 1

βmax(1+βmax)(1+α−(κ3∧κ6))
, as ρ ↑ 1.

Proof. We first show part (i). Using Lemma 1, we find

∆Tk = ∆t2k−1 +∆t2k ≤ CT (L(t2k−1) + L(t2k)) ≤ CT (2 + CL)Lk.
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In order to prove part (ii), note that L(t) cannot decrease at a larger rate
than 1− ρ, so that in view of part (i),

L(t) ≥ Lk − (1− ρ)(t−Tk) ≥ Lk − (1− ρ)∆Tk ≥ (1− (1− ρ)CLT )Lk = θLk,

for all t ∈ [Tk, Tk+1].
We now turn to part (iii). Suppose that the following event occurs: the

queues are weakly-balanced at the end of an M1-period, say time τ , dur-
ing Dk (which according to Lemma 2 happens with at least probability 1/3)
and the system then enters an M4-period (which happens with probabil-
ity 1/4). Recalling that ρ3 > ρ4, Q3(t) ≥ Q4(t), ρ5 < ρ6 and Q5(t) ≤ Q6(t),
we find that during the M4-period L(t) increases by

ρ

(

Q4(τ)

1− ρ4
∧ Q5(τ)

1− ρ5

)

≥ ρ
Q4(τ) ∧Q5(τ)

1− ρ(κ3 ∧ κ6) + ρα
.

Since the queues are weakly-balanced, we deduce

Q3(τ) ≤ βmaxQ5(τ) ≤ βmaxQ6(τ) ≤ (βmax)2Q4(τ),

Q6(τ) ≤ βmaxQ4(τ) ≤ βmaxQ3(τ) ≤ (βmax)2Q5(τ).

Noting that Q1(τ) = Q2(τ) = 0, we obtain

L(τ) = Q3(τ) +Q6(τ) ≤ (1 + βmax)Q6(τ) ≤ βmax(1 + βmax)Q4(τ),

and also

L(τ) = Q3(τ) +Q6(τ) ≤ (1 + βmax)Q3(τ) ≤ βmax(1 + βmax)Q5(τ).

So
L(τ) ≤ βmax(1 + βmax)(Q4(τ) ∧Q5(τ)),

and thus the increase in L(t) during the M4-period is no less than δ(ρ)L(τ),
with

δ(ρ) =
ρ

βmax(1 + βmax)(1 − ρ(κ3 ∧ κ6) + ρα)
.

Using part (i) once again, we conclude that with at least probability 1/12,

Lk+1 ≥ Lk + δ(ρ)L(τ) − (1− ρ)∆Tk

≥ Lk + δ(ρ)(Lk − (1− ρ)∆Tk)− (1− ρ)∆Tk

= (1 + δ(ρ))(Lk − (1− ρ)∆Tk) ≥ (1 + δ(ρ))(Lk − (1− ρ)CLTLk)

= (1 + δ(ρ))θLk.
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Armed with the above proposition, we now proceed to prove that the fluid
limit process is unstable, in the sense that L(T ) → ∞ as T → ∞. In fact,

L(T ) grows faster than any sub-linear function T
1
m , m > 1, as stated in the

next theorem.

Theorem 1. For any m > 1, there exists a constant ρ∗ = ρ∗(κ,m) < 1,
such that for all ρ ∈ (ρ∗, 1],

lim sup
T→∞

E

[

T

Lm(T )

]

= 0,

for any initial state Q(0) with ||Q(0)|| = 1, and ||·|| denoting the L1-norm.

Proof. Consider the cycle pairs Dk, k = 1, 2, . . . , as defined right before
Proposition 1. Assume ρ ∈ (1− 1

CLT
, 1], so that θ ∈ (0, 1] in Proposition 1. For

any time t > T1, we can define a stopping timeNt such that TNt < t ≤ TNt+1,
i.e., t is within the Nt-th cycle pair. (This is possible almost surely, since
Tk → ∞ as k → ∞ almost surely, as will be proved below.) Recall that
TNt+1 ≤ TNt+CLTLNt and L(t) ≥ θLNt by parts (i) and (ii) of Proposition 1,
respectively, and trivially LNt ≤ L(0) + ρTNt ≤ 2TNt for t sufficiently large.
Thus,

lim sup
t→∞

E
[

tL−m(t)
]

≤ lim sup
t→∞

E
[

TNt+1θ
−mL−m

Nt

]

≤ θ−m lim sup
t→∞

E
[

TNtL
−m
Nt

]

+ θ−mCLT lim sup
t→∞

E
[

L−m+1
Nt

]

(5.1)

≤ θ(1 + 2CLT ) lim sup
t→∞

E
[

TNtL
−m
Nt

]

.

So it suffices to prove that there exists ρ∗ = ρ∗(κ,m) < 1 such that (5.1) is
zero for ρ > ρ∗, which we now proceed to show.

First of all, by Proposition 1, for any m > 0,

E
[

L−m
k+1|Fk

]

≤ (1− p)(θLk)
−m + p(θ(1 + δ)Lk)

−m

(5.2)
= αmL

−m
k ,

where Fk is a suitable filtration and αm := (1− p)θ−m + p(θ(1 + δ))−m.
Since θ(ρ) → θ(1) = 1 and δ(ρ) → δ(1) = δ > 0 as ρ ↑ 1, αm(ρ) is a

continuous function of ρ in the vicinity of 1. Because αm(1) < 1, there must
exist a ρ∗m = ρ∗(κ,m) < 1 such that αm < 1 for all ρ > ρ∗. This shows that,
for ρ > ρ∗m, L−m

k is a positive (geometric) supermartingale with parameter
αm < 1. Taking expectations on both sides of (5.2) yields

E
[

L−m
k

]

≤ αk
mL

−m
0 .(5.3)
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with L0 = L(ti0) > 0 as noted earlier. In particular, limk→∞ E[L−m
k ] = 0, and

1/Lk → 0 almost surely as k → ∞ by Doob’s supermartingale-convergence
Theorem (page 147 of [31]). This implies that Tk → ∞ almost surely because
Lk ≤ ρTk + 1 ≤ Tk + 1. Therefore, the stopping time TNt is well-defined.

Next, consider the sequence of random variables TkL
−m
k with m > 1.

Using Proposition 1,

E
[

TkL
−m
k |Fk−1

]

≤ (Tk−1 + CLTLk−1)E
[

L−m
k |Fk−1

]

≤ (Tk−1 + CLTLk−1)αmL
−m
k−1(5.4)

= αmTk−1L
−m
k−1 + αmCLTL

−m+1
k−1 .

Define ǫk := CLTαmL
−m+1
k , then, by (5.2) and (5.3), ǫk is a positive (ge-

ometric) super-martingale with parameter αm−1 < 1 for ρ > ρ∗m−1 =
ρ∗(κ,m − 1). Then,

∑∞
k=1 E[ǫk] ≤ CLTαm

∑∞
k=1 α

k
m−1 < ∞, which shows

that limk→∞ TkL
−m
k = 0 almost surely. In particular, define α := αm∨αm−1

and ρ∗ = ρ∗m ∨ ρ∗m−1, then taking expectations on both sides of (5.5) yields

E
[

TkL
−m
k

]

≤ αE
[

Tk−1L
−m
k−1

]

+ αCLTα
k−1,(5.5)

which, by induction, shows that

E
[

TkL
−m
k

]

≤ αk−1(E
[

T1L
−m
1

]

+ CLT (k − 1)α),(5.6)

for ρ ∈ (ρ∗, 1]. Now observe that T1 is strictly bounded and L1 is bounded
away from zero, since a natural state is reached in finite time, before the
system can empty, almost surely. It then follows that limk→∞ E[TkL

−m
k ] = 0.

The fact that TkL
−m
k converges in L1 implies that the sequence of ran-

dom variables TkL
−m
k is Uniformly Integrable (UI) (page 147, Theorem 50.1

of [31]). It therefore follows, by adapting the arguments of Doob’s optional
sampling theorem (page 159 of [31]), that the family of random variables
{TNtL

−m
TNt

} is also UI. Thus by definition, given ε > 0, there exists Kε such

that

E

[

TNtL
−m
Nt

I{
TNtL

−m
Nt

≥ Kε

}

]

≤ ε, ∀t > 0

We deduce

E
[

TNtL
−m
Nt

]

≤
∞
∑

k=1

E

[

TkL
−m
k I{Nt = k}I{TNtL

−m
Nt

≤ Kε

}

]

+ ε

≤ KεP {Nt ≤ D}+AI

∞
∑

k=D+1

kαk−1 + ε.
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for some constant AI > 0. Fixing ε and D, we find that

lim sup
t→∞

E
[

TNtL
−m
Nt

]

≤ (D + 1)AI
αD

1− α
+ ε

by the Monotone Convergence Theorem (Theorem 16.2, page 208 of [2]),
and thus, letting D → ∞ and ε → 0, we have lim supt→∞ E[TNtL

−m
Nt

] = 0
for ρ > ρ∗.

Corollary 1. For any m > 1, there exists a constant ρ∗ = ρ∗(κ,m) <
1, such that for all ρ ∈ (ρ∗, 1],

lim inf
T→∞

L(T )

T 1/m
= ∞,

almost surely for any initial state Q(0) with ||Q(0)|| = 1.

Proof. Note that for any initial state Q(0) with ||Q(0)|| = 1,

lim inf
T→∞

L(T )

T 1/m
≥ lim inf

k→∞

θLk

T
1/m
k+1

,

as can be seen from Proposition 1, and so it suffices to show that
lim supk Tk+1L

−m
k = 0. But Tk+1 ≤ Tk + CLTLk, thus,

lim sup
k→∞

Tk+1L
−m
k ≤ lim sup

k→∞
TkL

−m
k + CLT lim sup

k→∞
L−m+1
k .(5.7)

The right-hand side is zero because, as we saw in the proof of Theorem 1,
both TkL

−m
k and L−m+1

k converge to zero almost surely for ρ ∈ (ρ∗(κ,m), 1].

5.2. Instability of the original stochastic process. In Theorem 1 we estab-
lished that the fluid limit process in unstable, in the sense that L(T ) → ∞ as
T → ∞. We now proceed to show how the instability of the original stochas-
tic process can be deduced from the instability of the fluid limit process. The
original stochastic process is said to be unstable when {(U(t),X(t))}t≥0 is
transient, and ‖X(t)‖ → ∞ almost surely for any initial state X(0).

We will exploit similar arguments as developed in Meyn [27]. A notable
distinction is that the result in [27] requires that a suitable Lyapunov func-
tion exhibits strict growth over time. In our setting the fluid limit is random,
and the growth behavior as stated in Theorem 1 is not strict, but only in
expectation and in an asymptotic sense, which necessitates a somewhat del-
icate extension of the arguments in [27].

The next theorem states the main result of the present paper, indicating
that aggressive deactivation functions cause the network of Figure 3 to be
unstable for load values ρ sufficiently close to 1.
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Theorem 2. Consider the network of Figure 3, and suppose that fi(x) ≡
1, x ≥ 1, and gi(x) = o(x−γ), with γ > 1. Let (ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) =
ρ(κ1, κ2, κ3, κ3 − α, κ6 − α, κ6), with (κ1 ∨ κ2) + κ3 + κ6 = 1, and 0 <
α < κ3 ∧ κ6. Then there exists a constant ρ⋆(κ, α) < 1, such that for all
ρ ∈ (ρ⋆(κ, α), 1]:

lim
‖X(0)‖→∞

PX(0){lim inf
t→∞

‖X(t))‖ = ∞} = 1.

Since our Markov Chain is irreducible, the above theorem immediately
implies that it is transient. The proof of Theorem 2 relies on similar argu-
ments as developed in the proof of Theorem 3.2 in [27]. The proof details
are presented in Appendix E.

Remark 3. Recall that the class of deactivation functions gi(x) = o(x−γ)
includes the random-capture scheme with g(x) ≡ 0, x ≥ 1, as considered
in [12]. The result in Theorem 2 thus disproves the conjecture that the
random-capture scheme is throughput-optimal in arbitrary topologies.

6. Simulation experiments. We now discuss the simulation experi-
ments that we have conducted to support and illustrate the analytical re-
sults. Consider the broken-diamond network as depicted Figure 3 and con-
sidered in the previous sections. In the simulation experiments, the relative
traffic intensities are assumed to be κ1 = κ2 = 0.4, κ3 = 0.4, and κ6 = 0.2
with α = 0, for the components M1, M2, and M3, respectively, with a nor-
malized load of ρ = 0.97. At each node i, the initial queue size isXi(0) = 500,
the activation function is fi(x) ≡ 1, x ≥ 1, and the de-activation function is
gi(x) = (1 + x)−γ , where we set γ = 2.

Figure 6 plots the evolution of the queue sizes at the various nodes over
time, and shows that once a node starts transmitting, it will continue to do
so until the queue lengths of all nodes in its component have largely been
cleared. This characteristic, and the associated oscillations in the queues,
strongly mirror the qualitative behavior displayed by the fluid limit.

Although Figure 6 suggests an upward trend in the overall queue lengths,
the fluctuations make it hard to discern a clear picture. Figure 7 therefore
plots the evolution of the node-average queue size over time, and reveals
a distinct growth pattern. Evidently, it is difficult to make any conclusive
statements concerning stability/instability based on simulation results alone.
However, the saw-tooth type growth pattern in Figure 7 demonstrates strong
signs of instability, and corroborates the qualitative growth behavior exhib-
ited by the fluid limit. Indeed, careful inspection of the two figures confirms
that the large increments in the node-average queue size occur immediately
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Fig 6. Queue sizes at the various nodes as function of time for the network of Figure 3.
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Fig 7. Node-average queue size as function of time for the network of Figure 3.

after M4-periods, exactly as predicted by the fluid limit. We further observe
that in between these periods, the node-average queue size tends to follow a
slightly downward trend, consistent with the negative drift of rate (ρ− 1)/3
in the fluid limit.

7. Concluding remarks and extensions. We have used fluid limits
to demonstrate the potential instability of queue-based random-access al-
gorithms. For the sake of transparency, we focused on a specific six-node
network and super-linear activity functions (γ > 1). Similar instability is-
sues can however arise in a far broader class of interference graphs, as we
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will discuss in Section 7.1 below. The proof arguments further suggest that
instability can in fact occur for any activity factor that grows as a positive
power (γ ≥ 1/k) of the queue length for network sizes of order k, as will be
described in Section 7.2 below.

In terms of backoff probabilities 1
1+ew(X) used in [15], our results therefore

suggest instability for weights w(X) that grow faster than γ logX, for any
γ > 0 (as k can be chosen arbitrarily large). In other words, the near-
logarithmic growth condition on the weights in [15] is a fundamental limit
on the aggressiveness of nodes to ensure maximum stability (throughput
optimality) in any general topology.

7.1. Instability in general interference graphs. The instability of ran-
dom access, with aggressive de-activation functions, is not restricted to the
broken-diamond network, and can arise in many other interference graphs.
Consider a general interference graph G = (V,E). Without loss of general-
ity, we can assume G is connected, because otherwise we can consider each
connected subgraph separately. For γ > 1, the fluid limit sample paths still
exhibit the sawtooth behavior, i.e., when a node starts transmitting, it does
not release the channel until its entire queue is cleared (on the fluid scale).
Let M = {M1, . . . ,MK} denote the set of maximal independent sets (maxi-
mal schedules) of G. We say the network operates in Mi if a subsetW ⊆Mi

of nodes are served at full rate (on the fluid scale), andW does not belong to
any other maximal schedulesMj , j 6= i. Under the random-access algorithm,
at any point in time the network operates in one of the maximal schedules
and switches to another maximal schedule when one or several of the queues
in the current maximal schedule drain (on the fluid scale). More specifically,
assume the network operates in a maximal scheduleMi. IfMi interferes with
all other maximal schedules, i.e., Mi∩Mj = ∅ for all 1 ≤ j ≤ K, j 6= i, then
a transition fromMi to any maximal scheduleMj , j 6= i, is possible when all
the queues in Mi hit zero (on the fluid scale). On the other hand, if Mi over-
laps with a subset of maximal schedules M′

i := {Mj ∈ M : Mi ∩Mj 6= ∅},
then the activity process can make a transition to Mj ∈ M′

i when all the
queues in Mi\Mj drain (on the fluid scale).

The capacity region of the network is the convex set C = conv(S), which
is full-dimensional because all the basis vectors of RN belong to that set.
The incidence vectors of the sets M correspond to the extreme points of C as
they can not be expressed as convex combinations of other points. Consider
a covering of V = {1, 2, . . . , N} using the maximal schedules. Formally, a set
cover C of V is a collection of maximal schedules such that V ⊆ ∪Mi∈CMi.
A set cover C is minimal if removal of any of the elementsMi ∈ C leaves some
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nodes of V uncovered. Consider the class of graphs in which |C| ≤ K − 1
for some minimal set cover C, i.e., we do not need all Mi’s for covering
V . Without loss of generality, let M∗ = {M1,M2, . . . ,MK∗} denote such
a minimal cover with K∗ ≤ K − 1. Consider a (strictly positive) vector
of arrival rates λ = ρ

∑K∗

i=1 σi1Mi
where σi > 0, 1 ≤ i ≤ K∗, such that

∑K∗

i=1 σi = 1, and 0 < ρ < 1 is the load factor. Hence, a centralized algorithm
can stabilize the network by scheduling each Mi ∈ M∗ for at least a fraction
ρσi of the time. However, under the random-access algorithm, the network
might spend a non-vanishing fraction of time in the schedules M\M∗, which
can cause instability as ρ approaches 1. This phenomenon is easier to observe
in graphs with a unique minimal set cover M∗ and with a maximal schedule
M1 interfering with all the other maximal schedules, hence M1 ∈ M∗.

This means any valid covering of V must contain M∗. Therefore, consid-
ering arrival rate vectors of the form λ = ρ

∑K∗

i=1 σi1Mi
, σi > 0,

∑K∗

i=1 σi = 1,
the only way to stabilize the network is to useMi for a time fraction greater
than ρσi. Visits to M1 have to occur infinitely often, otherwise the network
is trivially unstable, and at the end of such visits, a transition to any other
maximal schedule is possible, including the schedules in M\M∗ with posi-
tive probability. Then, upon entrance to schedules in M\M∗, the network
spends a positive time in such schedules because the queues in M\{M1}
build up during visits to M1. Hence, the arguments in the instability proof
of the broken-diamond network can be extended to such networks, although
a rigorous proof of the fluid limits in such general cases remains a formidable
task. Figure 8 shows a few examples of such unstable networks with unique
minimal set covers.

7.2. Instability for de-activation functions with polynomial decay. Con-
sider any unstable network G = (V,E), for example the broken-diamond
network or a graph as described in the previous subsection. Let I(i) de-
note the set of neighbors of node i in G. We construct a k-duplicate graph
G(k), k ∈ N, of G as follows. For each node i ∈ V , add k duplicate nodes

d
(i)
1 , . . . , d

(i)
k to the graph, with the same arrival rate λi and the same initial

queue length Xi(0), such that each node d
(i)
j is connected to all the neighbors

of node i and their duplicates, i.e., I(d(i)j ) = I(i) ∪l∈I(i) {d(l)1 , . . . , d
(l)
k }, for

all 1 ≤ j ≤ k. For notational convenience, we define D
(k)
i := {i, d(i)1 , . . . , d

(i)
k }

and call it the duplicate collection of node i. Note that the duplicate graph
has the same number of maximal schedules as the original graph. In fact,

each maximal scheduleM
(k)
i of G(k) consists of nodes in the maximal sched-

ule Mi of G and their duplicates, i.e., M
(k)
i = ∪l∈Mi

D
(k)
l . Next, we show
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Fig 8. A few unstable networks with their unique minimal cover M∗ using the maximal
schedules.

that the duplicate graph is unstable for de-activation functions that decay
as o(x−γ), for γ > 1/(k+1). Essentially, for such a range of γ, each duplicate
collection acts as a super node with γ > 1, i.e., (i) if one of the queues in a

duplicate collection D
(k)
i starts growing, all the queues in D

(k)
i grow linearly

at the same rate λi (on the fluid scale), (ii) if a nonempty queue in D
(k)
i

starts draining, then all the queues in D
(k)
i drain at full rate until they all

hit zero (on the fluid scale). Then the instability follows from that of the
original network, as we can simply regard the duplicate collections as super
nodes. An informal proof of claims (i) and (ii) is presented below.

Claim (i) is easy to prove as all the queues in a duplicate collection share
the same set of conflicting neighbors and the fact that one of the queues
grows, over a small time interval, implies that some conflicting neighbors are
transmitting over such interval. To show (ii), note that if one of the queues in
the duplicate collection drains over a non-zero time interval, no matter how
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small the interval is, all the conflicting neighbors must be in backoff for O(R)
units of time in the pre-limit process. This guarantees that all the queues in
the duplicate collection will start a packet transmission during such interval
almost surely. As long as the duplicate collection does not lose the channel,
each queue of the collection follows the fluid limit trajectory of an M/M/1
queue. Suppose all the queues of the duplicate collection are above a level ǫ
on the fluid scale for some fixed small ǫ > 0. Thus, in the pre-limit process,
the amount of time required for the queues to fall below a threshold ǫR is
O(R) with high probability as R → ∞. The duplicate collection loses the
channel if and only if all k + 1 nodes in the collection are in backoff and a
conflicting node acquires the channel by winning the competition between
the backoff timers. The probability that a node goes into backoff at the end
of a packet transmission is O((ǫR)−γ), or approximately the fraction of time
that a node spends in backoff is O((ǫR)−γ). Therefore, the fraction of time
that all k+1 nodes of the duplicate collection are simultaneously in backoff is
O((ǫR)−kγ) because the nodes in the duplicate collection act independently
from each other. Therefore, over an interval of duration O(R), the amount
of time that all k + 1 nodes are in backoff is O(R1−(k+1)γ), which goes to
zero as R→ ∞ if γ > 1/(k+1). Thus, the nodes in the duplicate collection
follow the fluid limits of an M/M/1 queue until their backlog is below ǫ on
the fluid scale. Since ǫ could be made arbitrarily small, we can view the
duplicate collection as a super node that does not release the channel until
its backlog hits zero. This demonstrates the instability of fluid limits for the
initial queue lengths described above for the duplicate network.

To rigorously prove instability of the original process using the framework
of Meyn [27], we need to show instability of the fluid limit for any initial
state. Handling arbitrary initial states for general activity functions and in-
terference graphs is more involved than in the specific broken-diamond net-
work considered here. An alternative option would be to extend the method-
ology and develop a proof apparatus where it suffices to show instability of
the fluid limit for one particular initial state. The framework of Dai [6] offers
the advantage that instability of the fluid limit only needs to be shown for
an all-empty initial state. However the characterization of the fluid limit for
an all-empty initial state appears to involve additional complications.

The above proof arguments suggest that instability can in fact occur for
any γ > 0 as k can be chosen arbitrarily large. This indicates that the
growth conditions in Ghaderi & Srikant [15] are sharp in the sense that
backoff probabilities of the form 1

O(log(x)) are essentially the most aggressive
de-activation functions that guarantee maximum stability of queue-based
random access in arbitrary graphs.
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APPENDIX A: FLUID LIMIT PROOFS – PART A

A.I. Prelimit model. We start with the time-homogeneous Markov
process (U(t),X(t)), t ≥ 0, with state space S = S × NN

0 , where N = 6
and S ⊆ {0, 1}N is the set of feasible activity states, which has already
been fully described earlier in Section 2. We recap to state that service
times are unit exponential as are backoff periods. In addition, the Poisson
arrival processes are determined by the vector of arrival rates λ and the
probability of backoff is determined as a function of queue length 1/(1+Q)γ

with γ ∈ (1,∞). As mentioned earlier, the case γ = ∞ corresponds to the
random capture algorithm, considered in [12].

The fluid limit will not be obtained directly from the above process but
rather via the jump chain of a uniformized version with ‘clock ticks’ from a
Poisson clock with constant rate,

β
.
=

N
∑

ℓ=1

λℓ +N,

independent of state, with null (dummy) events introduced as needed.
With minor abuse of notation, denote by (U(n),X(n)) ∈ S the state of

the jump chain at n-th clock tick. For our subsequent construction, it will be
convenient to replace U(n) with the cumulative state I(n) =

∑n
k=0U(n) ∈

NN
0 , which is by definition nondecreasing. It determines and is determined

by the sequence U(n) and the associated jump chain is Markov if the state
is altered to be (I(n), I(n− 1),X(n)) with I(−1) = 0. Note that the process
I(n) counts the number of steps where the queue process is active. It is not
a count of the number of service completions by step n.

From the jump chain, we obtain a continuous stochastic process in C[0,∞)
by linear interpolation and by accelerating time by the factor β. To be
specific, at an arbitrary intermediate time t > 0 between two clock ticks
tl = (k − 1)/β ≤ t ≤ tu = k/β, k ∈ N, the interpolated process takes the
values

Q(t)
.
= β(tu − t)X(k − 1) + β(t− tl)X(k),

I(t)
.
= β(tu − t)I(k − 1) + β(t− tl)I(k).

From this construction we can obtain a sequence of such processes, in-
dexed by R ∈ N, with the usual fluid limit scaling

(A.1)
(

QR(t), IR(t)
) .
=

(

1

R
Q

(R)
(Rt),

1

R
I
(R)

(Rt)

)

.



QUEUE-BASED RANDOM-ACCESS ALGORITHMS 115

This is obtained together with a corresponding sequence of initial queue
lengths

(A.2) QR(0) =
1

R
Q

(R)
(0) → q.

Without loss of generality we may take ||q|| = 1 where ||·|| denotes the L1

norm.
For every R and time t ≥ 0, (QR(t), IR(t)) take values in E

.
= RN

+ ×RN
+ ,

which is therefore the state space of the process. E has the usual Euclidean
metric and associated topology and we will denote the Borel sets by BE.
Furthermore the underlying jump chain (U(n),X(n))n≥0 of the uniformized
Markov process satisfies the ‘skip-free’ property [27], which ensures that the
jumps between states are bounded in L1. It follows that the interpolated
paths are Lipschitz continuous with Lipschitz constant 3β <∞. This prop-
erty is conferred on the sample paths ω themselves as stated below

(A.3) ||QR(t, ω)−QR(s, ω)||+ ||IR(t, ω)− IR(s, ω)|| ≤ 3β (t− s)

which holds ∀ω, 0 ≤ s < t,R ∈ N. The factor 3 appears since at most two
nodes can be active at the same time and at each clock tick at most one
queue can be in(de)cremented.

To summarize, the scaled sequence of processes as defined in (A.1) take
values in the space C[0,∞) of continuous paths taking values in E, endowed
with the sup-norm topology, and σ-algebra C generated by the open sets.
This is obtained through the usual metric ρC as defined in [40], page 6. This
space is both separable and complete, see [40] Theorem 2.1, page 7. The
probability measure induced on C by the R-th interpolated process (A.1) is
denoted by µR so that µR(A) is the probability of an event A ∈ C.

A.II. Fluid limit. If there is an infinite subsequence, Rk1 , Rk2 , . . . such
that µRkn

⇒ µ, where ⇒ denotes weak convergence, then µ is said to be
a fluid limit measure. If such a fluid limit exists, then the corresponding
process can be defined as follows. Its state space is again E with under-
lying sample space C[0,∞) and corresponding σ-algebra C generated by
the open sets under the metric, ρC , as mentioned earlier. This is the same
space as for the sequence of prelimit processes. With the fluid limit mea-
sure µ (including the deterministic initial conditions) we have an underlying
probability space (C[0,∞), C, µ). The stochastic process, (Q, I) is the map-
ping [0,∞) × C[0,∞) → E, with values (Q(t, ω), I(t, ω)) ∈ E. The curves
(Q(., ω), I(., ω)) and ω itself are the same. While these definitions are some-
what redundant, nevertheless in what follows, it will be convenient to think
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of a sample path as either a point ω or as a random function. Finally, on some
occasions, we will use the notationX ∈ mC to indicate thatX : C[0,∞) → R

is measurable.
The proof of the next theorem is standard and follows from Lipschitz con-

tinuity, and our assumptions on the initial conditions (see e.g., Theorem 8.3,
page 56 of [1], and Lemma 3.1, page 19 of [40]). The details are omitted for
brevity.

Theorem 3. The sequence of measures µR defined on (C[0,∞), C) is
tight.

Thus, it follows from Prohorov’s Theorem (Theorem 6.1, page 37 of [1])
that the sequence µR is relatively compact and the fluid limit measure µ
must exist. We suppose without loss of generality that µR ⇒ µ. The sample
paths under µ have the same Lipschitz constant 3β. It follows that the
sample paths of µ are differentiable a.e., almost surely [32], Corollary 12,
page 109.

Lipschitz continuity also implies that there are only a countable number
of closed intervals [a, b], 0 ≤ a < b, such that Qℓ(a, ω) = Qℓ(b, ω) = 0,
ℓ = 1, . . . , N , and Qℓ(x, ω) > 0,∀x ∈ (a, b), ℓ = 1, . . . , N , holding almost
surely.

We denote by {Ft}t∈[0,∞), Ft ⊂ C the filtration of sub σ-algebras gener-
ated by the open sets restricted to the interval [0, t]. The process (Q, I) is
adapted to {Ft}t∈[0,∞). (In fact it is Ft-progressive as the process is contin-
uous, see [10], page 50 and Problem 1, page 89.)

By consideration of the weak law of large numbers and the existence of
the fluid limit measure µ, it holds that

(A.4) Q(t) = Q(0) + λt− 1

β
I(t), t ≥ 0.

This equation can be thought of as an accounting identity. If node ℓ is active
for a unit interval, then Iℓ increases by β, which corresponds (almost surely)
to departures at unit rate. During the same period the arrival rate is λℓ of
course.

Since Iℓ(t+h)−Iℓ(t) ≤ βh for any node ℓ, and any times t ≥ 0 and h > 0,
it follows from (A.4) that

Qℓ(t+ h) ≥ Qℓ(t) + λℓh− h, µ a.s.

We now derive an elementary property of the fluid limit process. Before
doing so, since many of the events that we consider later are in terms of
activity, we adapt the following notation throughout the paper. Given t ≥ 0,
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h > 0, define

Jℓ
=(t, h, βh) := {ω : Iℓ(t+ h, ω) − Iℓ(t, ω) = βh}(A.5)

to be the event that node ℓ is being served (at maximum rate) during the
interval [t, t+h], i.e., the node is fully active during the given interval. Here
the superscript ℓ denotes the node, t time and h duration. The term βh is
the amount of activity which must be met with equality here, as indicated
by the subscript “=”. The subscript “=” may be replaced by >, ≥, <, or
≤, depending on the event.

Lemma 3 (No Conflict Lemma). Let ℓ1 6= ℓ2 ∈ {1, . . . , N} be two neigh-
bors in the interference graph G, and h > 0, t ≥ 0, then

µ
{

Jℓ1
= (t, h, βh) ∩ Jℓ2

= (t, h, βh)
}

= 0.

Proof. This follows by definition, and the existence of the fluid limit.
The event Jℓ1

= (t, h, βh) ∩ Jℓ2
= (t, h, βh) contradicts the inequality that for all

t ≥ 0, h > 0,

[Iℓ1(t+ h, ω)− Iℓ1(t, ω)] + [Iℓ2(t+ h, ω)− Iℓ2(t, ω)] ≤ βh,

which holds µ almost surely.

To obtain more detailed information with respect to the sample paths of
µ, we proceed to the construction of sequences of stopping times.

A.III. Sequences of stopping times. We proceed to define stopping
times which will be used subsequently to mark the end of Mi-periods and to
state various properties of the fluid limit process. In this regard, it is natural
to try to make these statements through stopping times which are returns
of queues to 0 from being positive. However it appears difficult to do this for
a given Qℓ in terms of a single sequence of stopping times. This is because
such sequences can have limit points. As a brief illustration suppose Q4

large and Q3, Q5 are both small and say that Q3 and Q4 are being drained.
Anticipating that paths will be piecewise linear, it is readily seen that queue
3 will drain while queue 5 will be built up and then vice versa (alternating
between M1- and M4-periods). Moreover both queues 3 and 5 will shrink so
that bounded infinite sequences of such stopping times can occur. Therefore
in what follows we work with countably many infinite sequences of stopping
times, each one corresponding to the queue being non-zero within given
bounded intervals.

The following definition is in connection with the amount of time a sample
path for Qℓ is positive, immediately prior to a time z > 0.
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Definition 2. Given a time z > 0, and v, 0 < v ≤ z, and an ℓ =
1, . . . , N , define

Kℓ
z,v

.
= {ω : Qℓ(z − s, ω) > 0, ∀s ∈ (0, v)} .

In words, Kℓ
z,v is the set of sample paths for Qℓ which are strictly positive

in the interval (z − v, z); if z = 0, Kℓ
z,v is taken to be ∅.

Observe that it could be the case that either Qℓ(z, ω) = 0 or Qℓ(z−v, ω) =
0 (or both) and still ω ∈ Kℓ

z,v. Finally note that it is possible for a given ω
that no such v can be found, which requires that Qℓ(z, ω) = 0 on account
of continuity. It can be shown that

Kℓ
z,v =∩n:2/n<v[∪∞

m=1 {ω : Qℓ(z− q, ω)≥ 1/m, q ∈ [1/n, v− 1/n]∩Q}] ∈Fz,

for z > 0, where Q is the set of rational numbers.
Given a time z ≥ 0 and a path ω, we define the mapping Aℓ(z, ω) :

C[0,∞) → [0, z] to be Aℓ(z, ω)
.
= sup[{v : ω ∈ Kℓ

z,v} ∪ {0}], which is
the amount of time for which Qℓ was positive immediately prior to z. By
definition, if z ≥ u > 0, then

{

ω : Aℓ(z, ω) ≥ u
}

= Kℓ
z,u,

from which it follows that Aℓ(z, ω) ∈ Fz. So far z has been fixed. However
Aℓ : [0,∞)×C[0,∞) → R+ is a stochastic process carried by the underlying
probability space (C[0,∞), C, µ) and Ft-adapted as we have just seen. This
process is piecewise linear and left-continuous. (It falls to 0 immediately after
Qℓ returns to 0 from being positive.) It follows that Aℓ is Ft-progressive, [10]
Problem 1 page 89. We are now in a position to make the following definition.

Definition 3. Given an Ft stopping time σ, a node ℓ ∈ 1, . . . , N and
m ∈ Z0

.
= Z− {0}, define Tℓ,m(ω, σ) : C[0,∞)× [0,∞] → [0,∞] as follows

Tℓ,m(ω, σ)
.
= inf

{

z ≥ σ(ω) : Qℓ(z) = 0, Aℓ(z, ω) ∈ (em, fm]
}

≤ ∞,

where

fm =
1

m
, em =

1

m+ 1
; for m ∈ Z0, m > 0,

fm = |m− 1|, em = |m|; for m ∈ Z0, m < 0,

where again empty sets have an infinite infimum.
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In words, Tℓ,m is the earliest right-hand end of an open interval, with value
z, such that Qℓ is positive for a period A

ℓ(z, ω) ∈ (em, fm], immediately prior
to Tℓ,m. If z − fm is the first time prior to z that Qℓ = 0, then z is in the
set on the RHS. However, if this occurs at z − em, this is not the case.

For certain choices of σ it will be shown in Lemma 5 that Tℓ,m is also an
Ft stopping time. We first state a construction lemma using a sequence of
stopping times. These are returns to 0 following a fixed positive interval, in
which we wait for a particular event Ak to occur.

Lemma 4 (Stop and Look Back). Let σ ≥ 0 be an Ft stopping time and
a > 0 a constant. Proposition 1.5, page 54 in Ethier & Kurtz [10] ensures
that the following inductively defined sequence is a sequence of Ft stopping
times: s0, s1, s2, . . . ,

s0
.
= σ

sk
.
= τc({0} , sk−1 + a), k = 1, 2, . . .

Here, given an Ft stopping time σ1 > 0, τc({0}, σ1) = inf{t ≥ σ1,
Q(t, ω) = 0}. Now let Ak ∈ Fsk , k = 1, 2, . . . be a sequence of events in
the pre-T σ-algebras of the above stopping time sequence. Finally, define
τ
.
= sk if Ak occurs for the first time at step k and τ = ∞ otherwise. Then

τ is an Ft stopping time.

Note that we do not check to see if Ak has occurred if sk = ∞ at any
stage, as τ is assigned this value regardless.

We now proceed to show the following.

Lemma 5. Let σ0 ≥ 0 be an Ft stopping time such that Qℓ(σ0(ω), ω) = 0
or σ0 = ∞ and suppose ℓ,m are given. Let a = em and σ

.
= a+ σ0 which is

therefore an Ft stopping time, and Tℓ,m be the mapping given in Definition 3.
Then Tℓ,m(ω, σ) is an Ft stopping time.

Proof. Given σ we will obtain a sequence of stopping times as in the
first part of Lemma 4. However, as we have already discussed, Aℓ is Ft-
progressive, from which it follows by Proposition 1.4, page 52 of [10], that

Ak := Aℓ(sk(ω), ω) ∈ mFsk
,∀ k = 1, 2, 3, . . .

Hence τ as defined in Lemma 4 is an Ft stopping time.
It remains to show that τ coincides with Tℓ,m as defined. First suppose τ <

∞, and immediately, τ ≥ σ,Qℓ(τ, ω) = 0, Aℓ(τ, ω) ∈ (em, fm] by definition.
The fact that there is no earlier time satisfying these conditions follows since



120 J. GHADERI, S. BORST AND P. WHITING

each sk is a zero of Qℓ and the construction rules out that the event could
have taken place any earlier. The case τ = ∞ coincides with there being no
zero satisfying the required conditions.

We now make the following recursive definitions.

Definition 4. Given m ∈ Z0 and node ℓ ∈ {1, . . . , N}, let τ0 be the
first entry of Qℓ(t, ω) into 0 (τ0 is an Ft stopping time). Then Zℓ

m,0 is defined
as

Zℓ
m,0

.
= Tℓ,m(ω, 0); if Qℓ(0, ω) = 0

Zℓ
m,0

.
= τ0; if Qℓ(0, ω) > 0, τ0 ∈ (em, fm]

Zℓ
m,0

.
= Tℓ,m(ω, τ0); if Qℓ(0, ω) > 0, τ0 /∈ (em, fm],

and subsequent stopping times are defined as

Zℓ
m,n

.
= Tℓ,m(ω,Zℓ

m,n−1), n = 1, 2, 3, . . . .

The value of the stopping time is taken to be ∞ if the events do not occur.
With obvious notation, we also define

Aℓ
m,n(ω)

.
= Aℓ(Zℓ

m,n, ω)

to be the actual amount of time that the queue ℓ is positive prior to Zℓ
m,n,

and Aℓ
m,n = ∞ in case Zℓ

m,n = ∞. Finally define the time at which Qℓ last

enters (0,∞) prior to Zℓ
m,n to be

V ℓ
m,n

.
= Zℓ

m,n −Aℓ
m,n,

when Zℓ
m,n <∞ and V ℓ

m,n = ∞ otherwise. Note that V ℓ
m,n ∈ mFZℓ

m,n
and is

thus a non-negative random variable but not a stopping time.

The following corollary follows immediately from Lemma 5 and Defini-
tion 4.

Corollary 2. Zℓ
m,n, n ∈ N0 is a strictly increasing sequence of Ft

stopping times, ∀ℓ ∈ N,m ∈ Z0.

This completes our goal of constructing sequences of stopping times for the
queue processes. For any node ℓ, by construction and by Lipschitz continuity,
it follows that the set of stopping times, Zℓ

m,n determine all intervals where
Qℓ is positive for any sample path almost surely.
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For each m ∈ Z0, and ℓ ∈ {1, . . . , N}, let Z̄ℓ
m
.
= supn{Zℓ

m,n : Zℓ
m,n < ∞}

to be the supremum of the finite stopping times for positive intervals with
duration in (em, fm]. If there is an m such that Z̄ℓ

m = ∞, then Qℓ returns
to 0 infinitely often. Otherwise there is a Z̄ > 0, Z̄ > Z̄ℓ

m,∀m ∈ Z0. In this
case, either Qℓ remains at 0 as t→ ∞, or Qℓ never returns to 0.

A.IV. Piecewise linearity and no backoff until empty. So far the
backoff exponent γ > 1 has not been taken into consideration, but from
now on it will be. The following lemma bounds the probability, for the jump
chain, that node ℓ has a backoff before its queue gets ‘small’, provided that
it was active earlier. Given some number XT ∈ N define,

KXT

.
= {∃n : Xℓ(k) ≥ XT , 0 ≤ k ≤ n,Uℓ(n) = 0, Uℓ(n− 1) = 1}

to be the event that Xℓ has remained above XT and has had a backoff at
step n. We then have the following lemma,

Lemma 6 (No Early Backoff). Given any X0 > XT ,

(A.6) P{KXT
|Xℓ(0) ≥ X0} ≤ 1

1− λℓ

∞
∑

r=XT

1

(1 + r)γ
= εXT

.

Note that since the sum in the RHS of (A.6) is convergent, εXT
↓ 0 as

XT ↑ ∞.

Proof. It is convenient to consider the packets being served in gener-
ations. That is given a target packet, suppose that we serve the packets
which arrive during its service with preemptive priority up to and including
the target packet. This makes no difference to queue behavior as the service
times are exponential and we are only interested in the first occasion when
node ℓ goes into backoff.

Suppose there are XT > 0 packets in queue at the time the service of
a given target packet starts. Consider the busy period of this packet, i.e.,
the time to serve the target packet and the subsequent high-priority packets
(without backoff). It is easy to see that the mean number of packet arrivals
during this busy period is 1

1−λℓ
, including the target packet itself.

The service of each packet ends with a random decision to backoff with
probability less than 1

(1+XT )γ , since the queue length is never shorter than
XT until the target packet has departed. Thus, by the union bound, the
probability of a backoff occurring before or immediately after the target
packet departs, is less than 1

(1+XT )γ
1

1−λℓ
. The probability of a backoff, start-

ing with X0 > XT packets, and before the queue drops below the level XT ,
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is therefore smaller than 1
1−λℓ

∑r=X0
r=XT

1
(1+r)γ , which implies the statement of

the lemma.

The following lemma is a stepping stone to showing that any period of
activity, no matter how small leads to a positive queue draining at full rate
until it is empty. This gives rise to the ‘sawtooth’ trajectories which we shall
formalize later in Theorem 4. First given times t2 > t1 ≥ 0 on the fluid
scale, let Bℓ([t1, t2]) be the event that node ℓ starts a backoff in the interval
[t1, t2]. This event occurs in the prelimit process (QR

ℓ , I
R
ℓ ) if for some jump

chain index n,Uℓ(n) = 1, Uℓ(n + 1) = 0 with ⌊Rt1β⌋ ≤ n ≤ ⌈Rt2β⌉. Let
Dℓ,ς([t1, t2]) be the event that Q

R
ℓ (u) > ς (or equivalently Q̄ℓ(Ru) ≥ Rς) for

all u ∈ [t1, t2].

Lemma 7. Given the above definitions,

(A.7) lim
R→∞

µR {Bℓ([t1, t2]) ∩Dℓ,ς([t1, t2])} = 0.

Proof. First we may suppose node ℓ becomes active at some stage or
there is nothing to prove. The lemma then follows from the union bound.
Since there are at most Rt1,t2

.
= ⌈R(t2 − t1)β⌉ + 2 departures in the entire

interval, the union bound implies that the probability of a backoff is smaller
than

µR {Bℓ([t1, t2]) ∩Dℓ,ς([t1, t2])} ≤ Rt1,t2

(1 +Rς)γ
→ 0.

This completes the proof.

Definition 5. Given a node ℓ, a time t ∈ [0,∞) on the fluid scale, and
a queue length Qℓ(t) = Q > 0, we say that t is a point of increase for the
activity process of node ℓ if the event

P ℓ
t,Q

.
= ∩∞

M=1

{

Jℓ
>(t,

1

M
, 0)

}

∩Qℓ
t,Q

occurs, with Qℓ
t,Q

.
= {ω : Qℓ(t, ω) > Q}. In words, node ℓ is active in any

arbitrarily small interval (t, t+ 1/M) and Qℓ is greater than Q at time t.
Furthermore, given a time s ∈ [0,∞) and h > 0, we say that node ℓ is

under active, with duration h > 0 if Jℓ
<(s, h, βh) occurs.

Points of increase rule out that there is a sequence tn ↓ t such that
Iℓ(tn, ω) = Iℓ(t, ω), as there is activity no matter how small the interval.
Under activity means that there was some idling during the interval. Given
our choice of γ, it will be shown that a point of increase cannot be followed
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by a period of under activity until queue ℓ has drained. This is because the
probability of even a single backoff once service has begun, is effectively 0
until the queue has drained on the fluid scale.

Lemma 8. Suppose s ∈ (t, t+Q/(1−λℓ)). Then ∀h, 0 < h < t+Q/(1−
λℓ)− s, and for all sufficiently large M ,

(A.8) µ
{

Jℓ
>(t, 1/M, 0) ∩Qℓ

t,Q ∩ Jℓ
<(s, h, βh)

}

= 0.

Proof. Consider the sequence of prelimit processes. We will choose M
large enough and ς small enough so that [s, s+h] ⊂ (t+1/M, t+(Q−ς)/(1−
λℓ)] (for some small constant ς > 0). Then for R,M sufficiently large, and
then by definition, occurrence of Jℓ

<(s, h, βh) for the R-th prelimit process,
implies occurrence of Bℓ([t+ 1/M, s + h]). Hence we obtain,

µR

{

Jℓ
>(t, 1/M, 0) ∩Qℓ

t,Q ∩ Jℓ
<(s, h, βh)

}

≤

µR

{

Jℓ
>(t, 1/M, 0) ∩Qℓ

t,Q ∩Bℓ([t+ 1/M, s + h])
}

≤ µB,R + µF,D,R,

where

µB,R
.
= µR

{

Jℓ
>(t, 1/M, 0) ∩Bℓ (t+ 1/M, s + h) ∩Dℓ,ς([t, s + h])

}

,

and
µF,D,R

.
= µR

{

Qℓ
t,Q ∩ (Dℓ,ς([t, s+ h]))c

}

.

Thus, in order to prove the lemma, it is sufficient to show that both µB,R → 0
and µF,D,R → 0, as R→ ∞, because then we may conclude that

LHS of (A.8) ≤ lim inf µR

{

Jℓ
>(t, 1/M, 0) ∩Qℓ

t,Q ∩ Jℓ
<(s, h, βh)

}

= 0

on applying Theorem 2.1, page 11 in [1] and since the sets Jℓ
>(t, 1/M, 0),

Qℓ
t,Q, and J

ℓ
<(s, h, βh) are all open.

The fact that µF,D,R → 0 follows from (A.4) and then by definition of
Qℓ

t,Q and additionally by the choice of s, h, ς. As far as µB,R is concerned,

the event Jℓ
>(t, 1/M, 0) implies that service has started during the interval

[t, t+1/M ]. On the other hand, the event Bℓ([t+1/M, s+h]) implies that at
some time in [t, s+h] node ℓ starts to backoff. Setting t1 = t and t2 = s+h,
we may invoke Lemma 7 as by definition the event Dℓ,ς([t, s + h]) implies
Qℓ did not go below ς in the interval [t1, t2]. It follows that µB,R → 0 as
required.
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The implication of Lemma 8 is that any positive period of transmission,
no matter how short, must be followed by full activity until the queue has
drained on the fluid scale. This implies that there is no period of under
activity, until the queue has drained, with probability 1.

A.V. Piecewise linear paths with probability 1. The aim of this
section is to show that the queue sample paths follow a certain bilinear path
during the interval prior to the queue becoming zero again. The bilinear
path depends on the duration of the interval and on the arrival rate for the
given queue.

To make the above statements precise, given ℓ ∈ {1, . . . , N}, define the
bilinear path Φℓ

t0,t1 for the interval [t0, t1] to be

Φℓ
t0,t1(s) =

{

λℓ (s− t0) ; t0 ≤ s ≤ s0,
λℓ (s− t0)− (1− λℓ)(s− s0); s0 ≤ s ≤ t1,

where s0
.
= t1 − λℓ(t1 − t0). In words, Qℓ builds up linearly in the interval

[t0, s0] at rate λℓ and drains at rate 1− λℓ in the interval [s0, t1].

Given η > 0, and ℓ ∈ {1, . . . , N}, define 1(η,ℓ)t0,t1 to be the indicator for the
event

{

ω : sup
s∈[t0,t1]

|Qℓ(s, ω)− Φℓ
t0,t1(s)| < η

}

∈ Ft1

In words, 1(η,ℓ)t0,t1(ω) = 1 iff the absolute difference between Φℓ
t0,t1 and the

sample path for Qℓ is smaller than η in sup-norm over the interval [t0, t1].

We now examine the conditional probability that 1(η,ℓ)
V ℓ
m,n,Z

ℓ
m,n

(ω) = 1, given

Zℓ
m,n < ∞ and Aℓ

m,n (the case Zℓ
m,n = ∞ is irrelevant). Define, Zℓ

m,n
.
=

σ(Zℓ
m,n, A

ℓ
m,n) ⊂ C and also Zℓ,∞

m,n = Zℓ
m,n ∩ {ω : Zℓ

m,n(ω) <∞}.
It will be enough to show that the sample paths lie in an arbitrarily

small tube around Φℓ
V ℓ
m,n,Z

ℓ
m,n

conditional on Aℓ
m,n, Z

ℓ
m,n lying in some small

rectangle Z
(a,b)
(s,t)

.
= {ω : Aℓ

m,n(ω) ∈ (a, b], Zℓ
m,n(ω) ∈ (s, t]} ∈ Zℓ,∞

m,n.

Theorem 4. Given n ≥ 1,m ∈ Z0, then ∀η > 0,

µ
{1(η,ℓ)

V ℓ
m,n,Z

ℓ
m,n

= 1|Zℓ,∞
m,n

}

= 1 a.s.

In words, given the stopping time Zℓ
m,n and the time Aℓ

m,n prior to this that

Qℓ was positive, Φ
ℓ
V ℓ
m,n,Z

ℓ
m,n

is followed, starting at V ℓ
m,n and ending at Zℓ

m,n,

with probability 1, under the fluid limit measure µ.
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Proof. For any given ε > 0, the sets Z
(a,b)
(s,t) 0 < s < t, 0 < a < b,

0 < t− s, b− a < ε, are a π-system, see [42] Lemma 1.6, page 19 (i.e. closed

under finite intersections), which generate Zℓ,∞
m,n and the entire space is a

countable union of such sets. Hence by Theorem 10.3, page 163 of [2], we
only need to show that

µ
{1(η,ℓ)

V ℓ
m,n,Z

ℓ
m,n

(ω) = 1;Z
(a,b)
(s,t)

}

= µ
{

Z
(a,b)
(s,t)

}

,(A.9)

for suitably chosen ε given η > 0.
Let Bℓ

m,n(ω) ≤ Aℓ
m,n be the additional time, following strict entry of

Qℓ into (0,∞) at V ℓ
m,n, until the first point of increase of Iℓ is reached.

Bℓ
m,n ∈ mF

Zℓ
m,n

as can be seen on consideration of its definition,

Bℓ
m,n(ω)

.
= inf

{

u ∈ (0, Aℓ
m,n(ω)) ∩Q : Iℓ(V

ℓ
m,n + u, ω)− Iℓ(V

ℓ
m,n, ω) > 0

}

,

(A.10)

when Zℓ
m,n < ∞. By definition of Bℓ

m,n, Lemma 8 and then (A.4), we may

deduce that for ω ∈ Z(a,b)
(s,t) ,

Qℓ(V
ℓ
m,n(ω) + u, ω) = λℓu, u ∈ [0, Bℓ

m,n(ω)],

Qℓ(V
ℓ
m,n(ω) + u, ω) = λℓB

ℓ
m,n(ω)− (1− λℓ)(u−Bℓ

m,n(ω)),

u ∈ [Bℓ
m,n(ω),

Bℓ
m,n(ω)

1− λℓ
],

µ almost surely. Moreover Bℓ
m,n(ω) must satisfy

t− s+ b ≥
Bℓ

m,n(ω)

1− λℓ
≥ s− t+ a, µ a.s.

in order to reach 0 in [s, t]. Therefore, given any η > 0, we may choose εη > 0
such that for all v ∈ [s− b, t− a], z ∈ [s, t] with b− a, t− s < εη

sup
u∈[v,z]

|Qℓ(u, ω)− Φℓ
v,z(u)| < η,

µ almost surely, using Lipschitz continuity. Since ω ∈ Z
(a,b)
(s,t) implies V ℓ

m,n ∈
[s−b, t−a], Zℓ

m,n ∈ [s, t], we obtain (A.9), for all such a, b, s, t as required.

A similar result can be obtained when n = 0, where the possibility occurs
that Qℓ(V

ℓ
m,0) > 0.

A.VI. Brief discussion of results. Theorem 4 applies to general net-
works and relies only on the assumption that γ > 1. The theorem implies
that the sample paths are more or less determined given the sequences of



126 J. GHADERI, S. BORST AND P. WHITING

stopping times Zℓ
m,n. Only in the case where the (finite) stopping times have

a common upper bound is the process not completely defined, as otherwise
the queue returns to 0 infinitely often, determining the path completely. If
there is such a bound, either the queue remains at 0, or increases linearly,
as there can be no subsequent point of increase of Iℓ.

Indeed, since there are only countably many stopping times, and since for
each finite Zℓ

m,n <∞ the queue sample paths follow Φℓ
.,. for some finite inter-

val with probability 1, we may confine sample path realizations to countable
successions of such intervals. These either determine the entire sample path;
or the queue remains at 0 following the final return; or as the final alterna-
tive, the queue remains zero for some interval and then increases linearly at
rate λℓ thereafter. We define the set of such sample paths by P ⊂ C[0,∞).
The probability of any event F ∈ C can as well be taken as

µ {F} = µ {F ∩ P} ,
and, therefore, we suppose that the probability space is defined on (P, CP )
with topology relativized in the usual way to P which is a subset of C[0,∞).
This establishes that the queue-length trajectory of each of the individual
nodes exhibits sawtooth behavior in the fluid limit. This concludes Part A.

In Part B, we will show that we can in fact confine ourselves to a smaller
set of paths which reflect the constraints resulting from the underlying in-
terference graph.

APPENDIX B: FLUID LIMIT PROOFS – PART B

B.I. No idling property and zero delay capture. From Lemma 3,
it follows that if queue 2 is draining, then queues 3, 4, 5, and 6 are increasing
linearly. However, we also expect that queue 1 is either draining or remaining
at 0, and this is indeed the case as we now show.

More generally, given a node ℓ, let Iℓ be the set of its interfering nodes,
i.e., the set of its neighbors in the interference graph G. The following lemma
shows that if Qℓ(s) > Q, and all its interferers are idle in some interval [s, t]
then node ℓ is fully active until its queue drains.

Lemma 9 (No Idling Property). Given a node ℓ with interference set Iℓ,
an interval [s, t], and a fixed Q > 0, define hℓs,t,Q

.
= Q/(1 − λℓ) ∧ (t − s).

Then,

µ
{

∩j∈IℓJ
j
=(s, t− s, 0) ∩ Jℓ

<

(

s, hℓs,t,Q, βh
ℓ
s,t,Q

)

∩Qℓ
s,Q

}

= 0.

Recall that:

• Qℓ
s,Q is the event {ω : Qℓ(s, ω) > Q}.
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• ∩j∈IℓJ
j
=(s, t − s, 0) is the event that there is no activity for any node

in Iℓ during [s, t].
• hℓs,t,Q is the time period over which the queue ℓ empties.

• Jℓ
<(s, h

ℓ
s,t,Q, βh

ℓ
s,t,Q) is the events that node ℓ is under active in [s, s+

hℓs,t,Q].

Proof. Given n ∈ N such that n > 1/(t− s), fix an arbitrary ζ, 0 < ζ <
1
2N . (Recall that N is the number of nodes in the network.) Clearly,

∩j∈IℓJ
j
=(s, t− s, 0) ⊂ D̃ℓ

ζ,n := ∩j∈IℓJ
j
<(s, 1/n, ζ/n).

Hence, for arbitrary ǫn > 0 depending on n, to be fixed later,

∩j∈IℓJ
j
=(s, t− s, 0) ⊆ Jℓ

>(s, 1/n, 0) ∪
(

Jℓ
<(s, 1/n, ǫn) ∩ D̃ℓ

ζ,n

)

.

Next, observe that for all nS ∈ N sufficiently large,

Jℓ
<

(

s, hℓs,t,Q, βh
ℓ
s,t,Q

)

= ∪n>nS
Gn,

with Gn
.
= Jℓ

<(s + 2/n, s + hℓs,t,Q, β(h
ℓ
s,t,Q − 2/n)). The union bound thus

implies that

µ
{

Dℓ
s,t ∩ Jℓ

<

(

s, hℓs,t,Q, βh
ℓ
s,t,Q

)

∩Qℓ
s,Q

}

≤
∑

n>nS

µ
{

Gn ∩Qℓ
s,Q ∩ Jℓ

>(s, 1/n, 0)
}

+
∑

n>nS

µ
{

D̃ℓ
ζ,n ∩ Jℓ

<(s, 1/n, ǫn) ∩Qℓ
s,Q

}

.

Provided nS is sufficiently large, each term in the first sum must be 0, else
Lemma 8 is contradicted. To complete the proof, it is therefore sufficient to
show that each of the terms in the second sum is 0 as well by suitable choice
of ǫn. Given n, it is sufficient to find ǫn > 0 so that

lim
R→∞

µR

{

D̃ℓ
ζ,n ∩ Jℓ

<(s, 1/n, ǫn) ∩Qℓ
s,Q

}

= 0,

because D̃ℓ
ζ,n, J

ℓ
<(s, 1/n, ǫ), and Q

ℓ
s,Q are all open, so that Theorem 2.1 on

page 11 of [1] implies that

µ
{

D̃ℓ
ζ,n ∩ Jℓ

<(s, 1/n, ǫn) ∩Qℓ
s,Q

}

= 0.
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The event D̃ℓ
ζ,n implies that there must have been at least

(B.1)
Rβ

n
(1−Nζ) >

Rβ

2n

steps in the jump chain (if we allow for no overlap between active periods
and since |Iℓ| < N) at which all nodes in Iℓ are in backoff for the interval
[s, s+ 1/n]. Also,

(B.2) QR
ℓ > Q− β

n
> ς > 0,

throughout [s, s+ 1/n] since there can be at most Rβ/n departures.
But if (B.1) occurs, we may suppose that node ℓ becomes active within

Rβ/(4n) such steps, as the probability converges to 1 as R → ∞ that it
does so. But if we take 0 < ǫn < β/(4n), the implication is that there is
a subsequent backoff. Since (B.2) also occurs, Lemma 7 with t1 = s, t2 =
s+1/n and ς above shows that the probability of a subsequent backoff goes
to 0, which establishes the result.

Since s, t,Q are arbitrary in Lemma 9, it follows from continuity that
node ℓ begins service the instant its interferers become idle, if it has a positive
queue length.

Lemmas 3 and 9 carry an implication for the node pairs (1, 2), (3, 4), (5, 6)
in our network. We say that node ℓ1 dominates node ℓ2, ℓ1 6= ℓ2, if Iℓ2 ⊆ Iℓ1 .
Hence, if (say) node 3 (the dominant node) is draining, then no other node
than 4 may be active as a consequence of Lemma 3. But this implies all
interferers of node 4 are inactive. Hence, if Q4 > 0, it will therefore begin
to drain immediately, i.e., if node 3 is draining so is node 4. Also if Q4

becomes 0 before Q3, then it must remain at 0, until node 3 drains.
This result is formally stated in the following corollary, the proof of which

is omitted for brevity.
Given any node k ∈ {1, . . . , N}, Qk ≥ 0, and time t, define

(B.3) Ψk
t,Qk

(u)
.
= [Qk − (u− t)(1− λk)] ∨ 0, u ≥ t,

and given v > t, let F k
t,v,η be the event that |Ψk

t,Qk(t,ω)
(u)−Qk(u, ω)| < η

for u ∈ [t, v].

Corollary 3. Given a node ℓ, let k be any other node with Ik ⊆ Iℓ.
∀t ≥ 0, Q > 0, η > 0, define v = t + Q/(1 − λℓ), then with P ℓ

t,Q as in
Definition 5, it holds that,

µ
{

P ℓ
t,Q ∩

(

F
(k)
t,v,η

)c}

= 0.
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Corollary 3 implies that µ almost surely the dominated node k follows Ψk

the moment that dominating node ℓ becomes active.
In case the arrival rates satisfy λ1 = λ2 = λ > 0, λ4 = λ5, λ6 > λ5, and

λ3 > λ4, Corollary 3 may be used to show that the network enters a natural
state (as defined in Section 5) µ a.s. This result is proved in the following
theorem.

Theorem 5 (Almost Sure Natural State). Given the initial condition
Q(0)=q with ||q||=1, there exists a TN > 0 such that µ a.s. for all t≥TN ,

Q3(t) ≥ Q4(t),

Q6(t) ≥ Q5(t).

Moreover (recalling the definition of ρ given in Section 4), ∃ρ∗ < 1 such that
for all ρ ∈ [ρ∗, 1), ∨ℓQℓ(TN ) > 0, i.e., the network is non-empty at time TN .

Proof. This result follows from Lipschitz continuity and more particu-
larly from the fact that the sample paths are piecewise linear. Hence, apart
from a set of measure 0, the derivatives of all queue lengths exist.

Consider now nodes 3 and 4. Where the derivatives exist and Q4 > 0, it
holds that

dQ3

dt
>

dQ4

dt
,

since λ3 > λ4 and since Q4 is decreasing at linear rate whenever Q4 > 0 and
Q3 is decreasing at a linear rate, as shown in Lemma 9. We may therefore
deduce µ a.s. and where differentiability holds that

d [Q4(t)−Q3(t)]+
dt

≤ λ4 − λ3 < 0,

until some time T3, such that [Q4(t)−Q3(t)]+ = 0, t ≥ T3. The same holds
for nodes 5 and 6, with corresponding time T6 and the following inequalities
are satisfied,

T3 ≤
[Q4(0)−Q3(0)]+

λ3 − λ4
, T3 ≤

[Q5(0)−Q6(0)]+
λ6 − λ5

.

We may therefore take
TN = T3 ∨ T6,

and by taking worst case values in the above inequalities, we obtain a uniform
bound on TN . This concludes the first part of the lemma.

We now show that TE , the time to empty, can be taken arbitrarily large.
Define LP (t)

.
= (Q1(t)∨Q2(t))+Q3(t)+Q6(t). Then LP can be reduced at

most at rate 1, since service of nodes (1, 2), 3 and 6 is mutually exclusive,
and grows at rate ρ = ρ0 + ρ3 + ρ6, which can be made arbitrarily close to
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1. Hence TE → ∞ as ρ ↑ 1 if LP (0) > 0. It can be the case that LP (0) = 0
but then Q4(0) +Q5(0) = 1, so that LP (1/2) = ρ0/2 and TE ≥ 1

2(1 +
ρ0
1−ρ )

and again TE → ∞ as ρ ↑ 1.

This shows that a non-empty natural state can be reached in finite time,
because of the dominance property. Given Theorem 5 we can and will sup-
pose that the state is natural at time 0, without loss of generality.

We define the set of paths which additionally satisfy the constraints of
Lemmas 3 and 9 to be PL ⊂ P ⊂ C[0,∞). As previously, we now restrict
the set of sample paths to PL, so that the probability of an event F ∈ C can
be determined as µ{F} = µ{F ∩ PL}. This concludes Part B.I.

B.II. Discussion. We now give a largely informal description of the
paths in PL. Section 4.1 gives a detailed description of the Mk-periods,
k = 1, 2, 3, 4. The ends of M1-, M2-, and M3-periods are marked by the cor-
responding stopping times Z1,2

m,n, Z3
m,n, Z

6
m,n. For M4-periods, the following

construction is needed. (It is needed because Z4
m,n stopping times may be

part of an M2-period, and hence do not mark the end of an M4-period.)
We first define P ℓ

m,n = V ℓ
m,n + Bℓ

m,n ∈ mF
Zℓ
m,n

to be the time prior to

Zℓ
m,n when service begins (recall the definition of Bℓ

m,n in (A.10)).

Definition 6. A stopping time Z4
m,n is a M

(5)
4 stopping time, denoted

by Z
4,M

(5)
4

m,n if the following holds:

Q5(Z
4
m,n − P 4

m,n) ≥ Q4(Z
4
m,n − P 4

m,n),(B.4)

Iℓ(Z
4
m,n − P 4

m,n) = Iℓ(Z
4
m,n), ℓ = 3, 6.(B.5)

That Z
4,M

(5)
4

m,n is an Ft stopping time follows as both the above events lie
in FZ4

m,n
.

This is consistent with an M4-period taking place in which queue 4 emp-
tied first (or at the same time as queue 5) by (B.4). If this is a strict in-

equality then we say this is a strict M
(5)
4 stopping time. (B.5) ensures that

node 5 is being served throughout [P 4
m,n, Z

4
m,n] as a consequence of Lemma 9.

Similarly we may define Z
5,M

(4)
5

m,n .

APPENDIX C: FLUID LIMIT PROOFS – PART C

In this part, we will derive the probabilities according to which one period
Mi is followed by another Mj with no switching delay (on the fluid scale).
We first concentrate on the case of switching out of M1.
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We begin with some preliminary results. The first is for measures con-
structed from closed continuity sets. Given a set of sample paths G, define
the improper probability measures

µG {F} .
= µ {F ∩G} , µ

(R)
G (F ) = µR {F ∩G} .

The following lemma shows that weak convergence is conferred on µ
(R)
G pro-

vided G is a closed µ-continuity set.

Lemma 10. Suppose µ(R) is a sequence of probability measures on a met-
ric space (Ω,F), such that µ(R) ⇒ µ, where µ is also a probability measure
on the same space. Let G ∈ F be a closed µ-continuity set. Then it holds

that µ
(R)
G ⇒ µG.

In particular, the weak convergence definitions (iii), (iv), and (v), in The-
orem 2.1, page 11 of [1], all equivalently hold.

Suppose a pair of non-interfering queues in the network are operating
in isolation, e.g. queues (1,2). Then each queue will be empty and in fact
will then subsequently be empty infinitely often, almost surely. Given that
the evolutions of the two queues are independent, it is plausible that the
total number of steps in the jump chain for which both queues are backed
off together increases to infinity in a period which is negligible on the fluid
scale. We will formalize this in Lemma 11 below.

Given a start time taken to be 0, define WR(u) to be the total number of
steps that nodes 1 and 2 are both in backoff, starting at time 0 and ending
at time u > 0 on the fluid scale, in (QR(t), IR(t)). Partial periods between
one clock tick and the next, at the start and at the end are neglected. The
following lemma supposes nodes 1 and 2 are in isolation, so that no other
nodes may gain the medium.

Lemma 11 (Total Backoff). Given Q > 0, define t
.
= Q/(1 − λ), and

suppose that QR
ℓ (0) ≤ Q, ℓ = 1, 2, and both nodes are active at time 0. Then

for any Q, ξ > 0,

lim
R→∞

µR

{

WR(t+ 2ξ) ≥ 2
√
R
}

= 1.

Proof. Let τ0,0 be the stopping index in the jump chain for the first
occurrence of

(C.1) X1(τ0,0) = X2(τ0,0) = 0.

Given any ξ > 0, define pRξ,Q
.
= P{τ0,0 ≤ ⌊β(t + ξ)R⌋|Xℓ(0) ≤ RQ, ℓ = 1, 2}.

It will be enough to show that pRξ,Q → 1 as R→ ∞. To see this, note that any
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queue in isolation is positive recurrent, as a consequence of Lemma 6. Thus,
the jump chain restricted to nodes 1 and 2 in isolation (i.e., with remaining
queues barred from gaining the medium) is also positive recurrent. Let m0

be the mean number of steps between indices k such that (C.1) is again
satisfied. Also let KR

ξ be the random number of such steps in the next
interval of ⌊βξR⌋ steps. It is easily seen from the weak law of large numbers
that

lim
R→∞

µR

{

KR
ξ >

⌊βξR⌋
2m0

}

= 1,

which implies the statement of the lemma.
Thus, to complete the proof, we just need to show that pRξ,Q → 1. Fix

εXT
> 0 and choose XT := XT (λ, γ) <∞ as in (A.6) so that the probability

of even a single backoff before either queue reaches XT is no more than εXT
.

Moreover let τT,ℓ, ℓ = 1, 2 be the stopping indices for Xℓ(τT,ℓ) = XT . Then,
given any η > 0, and εR,η > 0, it can be seen that τT,1 ∨ τT,2 ≤ βR(t + η)
occurs with probability larger than 1 − 2εR,η − 2εXT

, with εR,η → 0 as
R→ ∞ by the weak law of large numbers.

Next, given any εL > 0, there exists a XL large enough such that
P{Xℓ(τT,ℓ+k) ≤ XL} > 1− εL for all k ∈ N. This follows from the fact that
the jump chain in isolation is positive recurrent, and thus the correspond-
ing sequence of infinite probability vectors is tight as they are converging
to the steady-state distribution, by the converse to Prohorov’s Theorem,
[1], page 37. Hence, with probability larger than 1 − 2εR,η − 2εXT

− 2εL,
Xℓ(⌊βR(t+ η)⌋) ≤ XL, ℓ = 1, 2.

Moreover, again by the positive recurrence of the isolated jump chain,
the mean number of steps for queues 1 and 2 both to become 0, starting
from any state with Xℓ ≤ XL, ℓ = 1, 2, is bounded by some constant mL :=
mL(XL) < ∞. Thus, by Markov’s inequality, except with a probability less
than mL/(ηR), in a further ηR steps both queues will become 0 (and thus
inactive).

Finally, given any ǫ > 0, choose XT and XL large enough so that εXT
<

ǫ/8 and εL < ǫ/8 and then R sufficiently large so that εR,η < ǫ/8 and
mL/(ηR) < ǫ/8. Hence, with probability larger than 1−ǫ, τ0,0 < (t+2η)R for
all R sufficiently large. Since ǫ and η are arbitrary, the proof is complete.

C.I. Transition from an M1-period. In what follows we will further
suppose that the queue lengths at nodes 1 and 2 and their activity are both
equal, as the following arguments are readily modified where this is not the
case. We therefore denote their common queue length as Q(u) = Q1(u) =
Q2(u) in what follows, and similarly for the activity I(u) = I1(u) = I2(u).
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=
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I
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3, 4

c

s s+h t  

Fig 9. Sample paths for the sets Gc,t and I
(3,4)
c,t .

Finally, in the following t, c and hence s are fixed, and

s
.
= t− c

1−λ , δk
.
= αkc, 0 < αk < 1, k = 0, 1,

h
.
= νc, ζ

.
= χc, ν > χ > 0,

for some small positive constants αk, ν, and χ to be determined later. We
are now ready to define the following closed set of paths,

Gc,t
.
= {ω : 0 < c− δ0 ≤ Q(s, ω) ≤ c+ δ1}

(C.2)
∩ {ω : I(s + h, ω)− I(s, ω) ≥ β(h − ζ)} .

Note that Gc,t is constructed to correspond to an M1-period.
Now given 0 < s1 < s2, and t (which will be specified later), define

I
(3,4)
c,t

.
= J3

=(t+ s1, s2 − s1, β(s2 − s1)) ∩ J4
=(t+ s1, s2 − s1, β(s2 − s1)).

Note that I
(3,4)
c,t is a (closed) set of paths for which node 3 (and also node 4)

are fully active during the interval [t+ s1, t+ s2]. Similar definitions, using

the same s1, s2, and t, can be made for I
(4,5)
c,t , I

(5,6)
c,t .

The first set of paths, Gc,t, is illustrated in the dashed lines in Figure 9.
Note all sample paths must pass through the interval [c − δ0, c + δ1] at

time s, but may continue to increase for a brief period at the beginning.
After s+ h the two queues must be draining at rate 1− λ almost surely, as
shown in Lemma 8. The red interval to the right indicates periods where one
of the other three node pairs are expected to have the medium during the
interval [t+ s1, t+ s2]. Only one such pair will be active during this period
as a result of the forthcoming construction.



134 J. GHADERI, S. BORST AND P. WHITING

The following is the earliest time that queues 1 and 2 can drain if the
sample paths are constrained to lie in Gc,t,

t
.
= t− α0

1− λ
c.

As far as additional queue build-up is concerned, under the fluid limit,

Q(s+ h, ω) ≤ Q(s, ω) + λh = Q(s, ω) + λνc

holds for sample paths in Gc,t (see (A.4)). It then follows that queues 1 and 2
will reach 0 under the fluid limit no later than

t
.
= t+

α1 + λν

1− λ
c,

which is the definition for t. We thus conclude that, under the fluid limit,
queues 1 and 2 will reach 0 in the interval (t, t) (for the first time after s+h
on occurrence of the event Gc,t). We formalize the above in the following
lemma.

Lemma 12 (Queue Bounds). Let τ0c,s
.
= τc(s, {0}) = inf{t ≥ s : Q(t) =

0} be the first contact time with 0 for Q = Q1 = Q2. Then,

µ
{

Gc,t ∩
{

ω : τ0c,s(ω) 6∈ [t, t]
}}

= 0.

Additionally, ∀ℓ = 3, 4, 5, 6,

µ {Gc,t ∩ {ω : Qℓ(t, ω) < ∆tλℓ}} = 0,

where
∆t

.
= t− (s+ h) = c(1− α0 − ν(1− λ))/(1 − λ).

Proof. By definition of Gc,t, Q(s, ω) ≥ c− δ0,∀ω ∈ Gc,t. It follows that
Q cannot reach 0 before t, as sample paths by definition lie in PL (see Part
A.VI, following Theorem 4). A similar argument applies to t.

For the last part, Lemma 3 shows that nodes 3, 4, 5, and 6 must be idle
in the period [s+ h, t]. Since the sample paths are restricted to lie in PL, it
follows that their queues must satisfy the stated inequality at time t. The
proof is complete.

The time for node ℓ to reach 0 following t is therefore at least

fℓ
.
= ∆t

λℓ
1− λℓ

, ℓ = 3, 4, 5, 6.

Clearly fℓ → (cλℓ)/((1 − λ)(1 − λℓ)) as α0, ν ↓ 0, and so this expression is
bounded from below as α0, α1, ν > χ are made arbitrarily small. For future
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use, we define
f
.
= ∆t ∧6

ℓ=3 λℓ/(1− λℓ),

as a lower bound on the time needed to drain any node ℓ = 3, 4, 5, 6.
Our results thus far do not rule out the possibility that there is an idle

period during which nodes 3, 4, 5, or 6 fail to obtain the medium. In order
to make allowance for this, we introduce a period ξc, ξ > 0, which comes
following queues 1 and 2 draining, and to be definite, we set ξc = f/8.
Hence, if it is the case that

(C.3) t− t < f/4

and that service of node ℓ cannot start before t− ξc and must have started
no later than t+ξc, then it follows that service will continue throughout the
interval [t + ξc, t+ ξc + f/2]. In this case, we may take s1 = f/4, s2 = f/2
again to be definite. Further, set s3 = ξc + f/2. To summarize, if (C.3)
holds, on occurrence of Gc,t and that service of queues 3 and 4 commences

in the interval [t − ξc, t + ξc], then the event I
(3,4)
c,t must take place. The

same is true in case service commences for either queue pair (4, 5) or (5, 6)
in [t− ξc, t+ ξc].

Let Ĉk, k = 3, 4, 5, 6, be the residual backoff time for nodes 3, 4, 5, or 6,
at time s+h, with Ĉ1 = Ĉ2 = 0 as these nodes will be almost surely active.
Define SM to be the number of steps in the jump chain before one of these
nodes gains the medium and also define

W (3,4) .
=

{

Ĉ3 < ∧6
k=4Ĉk

}

∪
({

Ĉ4 < Ĉ3 ∧ Ĉ5 ∧ Ĉ6

}

∩
{

Ĉ3 < Ĉ5

})

,

C
(3,4)
c,t,R

.
= W (3,4) ∩

{

SM ≤
√
R
}

.

W (3,4) is the event that nodes 3 and 4 win the backoff competition to take
the medium first from nodes 1 and 2. Similar definitions can be made for
nodes (4, 5) and for nodes (5, 6) in addition. The probabilities of these events
are

(C.4) P{W (3,4)} =
3

8
= P{W (5,6)}, P{W (4,5)} =

1

4
,

as the backoff periods are unit mean i.i.d. exponential random variables.

C
(3,4)
c,t,R is the event that nodes (3, 4) win the backoff competition, and that

they do so in no more than
√
R of the jump chain steps when nodes 1 and 2

are in backoff together.
Next let

B
(1,2)
R

.
= N

(1,2)
R (s+ h, t− ξc) ∩ {WR(s+ h, t+ ξc) ≥ 2

√
R}
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be the intersection of the event N
(1,2)
R (s + h, t − ξc) that neither node 1

nor node 2 starts to backoff during the time interval [s + h, t − ξc] and the
event {WR(s+ h, t+ ξc) ≥ 2

√
R} that nodes 1 and 2 operating in isolation

would be simultaneously in backoff for a cumulative period of time of at least

2
√
R during the interval [s+h, t+ ξc]. Informally speaking, the event B

(1,2)
R

ensures that there is sufficient backoff by nodes 1 and 2 and that they do not
begin to backoff while there are a significant number of packets remaining
at node 1 or 2.

Next define cQ to be,

cQ
.
=
s3 − s2

2
(1− λ3) > 0,

which is at least half the content of queues 3 and 4 on the fluid scale at time
t+ s2, given our construction. Further, define the following event

Q
(3,4)
R (t, t+s2)

.
=

{

ω : inf
{

QR
m(u, ω), u ∈ [t, t+ s2]

}

> cQ,m = 3, 4
}

∈ Ft+s2 ,

for which we obtain the following corollary.

Corollary 4.

lim
R→∞

µR

{

Gc,t ∩
(

Q
(3,4)
R

)c}

= 0.

Proof. Lemma 12 implies that for all n sufficiently large,

lim sup
R→∞

µR
{

Gc,t ∩
{

ω : QR
ℓ (t, ω) ≤ ∆tλℓ − 1/n

}}

= 0, ℓ = 3, 4,

on using Theorem 2.1, page 11 in [1] and the fact that both the above sets
are closed. Hence we need only show that,

(C.5) lim
R→∞

µR

{

{

ω : QR
ℓ (t, ω) > ∆tλℓ − 1/n, ℓ = 3, 4

}

∩
(

Q
(3,4)
R

)c}

= 0,

for sufficiently large n. However (C.5) follows from the weak law of large

numbers, from the definition of ∆t, cQ, and the event Q
(3,4)
R .

Finally, define N
(3,4)
R (t, t + s2) to be the event that neither node 3 nor

node 4 has a backoff during the time interval [t, t+ s2] (on the fluid scale).
Clearly, equivalent definitions for this and the above corollary can be made
for node pairs (4, 5), (5, 6).

In what follows it will be convenient to write G := Gc,t. Our aim now is
to show that no matter what trajectory the fluid limit path followed earlier,
if it lies in G so that nodes 1 and 2 almost surely reach 0 in the interval [t, t],
marking the end of an M1-period, then the probability of the next period
depends only on the residual backoff times, which is a Markov property.
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Lemma 13. Suppose that G is a set of paths as defined in (C.2), with
parameter values so that (C.3) holds, and is also a µ-continuity set. In ad-
dition, let F ∈ Fs be an arbitrary closed, finite-dimensional set of paths
defined by times s and earlier. It then holds that

µG

{

F ∩ I(3,4)c,t

}

≥ 3

8
µG {F o} ,

µG

{

F ∩ I(5,6)c,t

}

≥ 3

8
µG {F o} ,

µG

{

F ∩ I(4,5)c,t

}

≥ 1

4
µG {F o} .

In case F is a µ-continuity set, the interior can be dropped and ≥ replaced
with equality.

Proof. We first show the last part of the lemma, assuming the first part
to be true. If F is a µ-continuity set, then by definition, 0 = µ{∂F} ≥
µ{G ∩ ∂F}, and it follows that F is a µG-continuity set as well. Since the
factors sum to 1 and the events on the left are almost surely exclusive as
a consequence of Lemma 3, we can now replace the inequality sign with
equality.

We move to the first part of the lemma, which we will prove for nodes 3
and 4. The proof for the other node pairs is similar.

First observe that

C
(3,4)
c,t,R ∩B(1,2)

R ∩N (3,4)
R (t, t+ s2) ⊆ I

(3,4)
c,t ,

since C
(3,4)
c,t,R ∩ B(1,2)

R implies that nodes 3 and 4 activate before time t+ s1,

while N
(3,4)
R (t, t + s2) ensures that neither node 3 nor node 4 has a backoff

during the time interval [t, t + s2]. We thus obtain the following chain of
inequalities

µ
(R)
G

{

F ∩ I(3,4)c,t

}

≥ µ
(R)
G

{

F ∩ C(3,4)
c,t,R ∩B(1,2)

R ∩N (3,4)
R

}

≥ µ
(R)
G

{

F ∩W (3,4)
}

− µ
(R)
G

{({

SM ≤
√
R
}

∩B(1,2)
R ∩N (3,4)

R

)c}

(C.6)

≥ 3

8
µ
(R)
G {F} − µ

(R)
G

{

SM >
√
R
}

− µ
(R)
G

{(

B
(1,2)
R

)c}

− µ
(R)
G

{(

N
(3,4)
R

)c}

,
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with N
(3,4)
R ≡ N

(3,4)
R (t, t + s2) for compactness. The first line follows by

inclusion, the second using µG{A ∩ B} ≥ µG{A} − µG{Bc}, and the third
from (C.4) by independence of the residual backoff times and by using the
union bound in conjunction with de Morgan’s laws. We now proceed to show
that

µ
(R)
G,1

.
= µR

{

SM >
√
R
}

→ 0,

µ
(R)
G,2

.
= µR

{(

B
(1,2)
R

)c
∩Gc,t

}

→ 0,

µ
(R)
G,3

.
= µR

{(

N
(3,4)
R

)c
∩Gc,t

}

→ 0.

The first limit is immediate.
In order to deal with the second limit, define the event

Q
(1,2)
R (s+ h, t− ξc)

.
=

{

ω : inf
{

QR
m(u, ω), u ∈ [s+ h, t− ξc]

}

> ς,m = 1, 2
}

for some small constant ς > 0, and use the upper bound

µ
(R)
G,2 ≤ µR

{(

B
(1,2)
R

)c
∩Q(1,2)

R (s + h, t− ξc) ∩Gc,t

}

+µR

{(

Q
(1,2)
R (s + h, t− ξc)

)c
∩Gc,t

}

.

The limit of the second term is 0 by definition of t as the earliest time that
queues 1 and 2 can drain under the event Gc,t and on making a suitable
choice for ς. It suffices then to show that the limit of the first term is 0. In
order to prove this, we invoke the definition of the event B

(1,2)
R to obtain

that the first term is bounded from above by ‘A’+‘B’, where

‘A’ = µR

{(

N
(1,2)
R (s+ h, t− ξc)

)c
∩Q(1,2)

R (s+ h, t− ξc)
}

,

‘B’ = µR

{

{WR(s+ h, t+ ξc) ≤ 2
√
R} ∩Gc,t

}

.

The term ‘A’ converges to 0 by definition of the events and Lemma 7.
Lemma 11 shows that the limit of the term ‘B’ (i.e., the event there is
insufficient backoff by nodes 1 and 2 on occurrence of Gc,t) is 0.

In order to handle the third limit, we apply the upper bound

µ
(R)
G,3 ≤ µR

{(

N
(3,4)
R (t, t+ s2)

)c
∩Q(3,4)

R

}

+ µR

{(

Q
(3,4)
R

)c
∩Gc,t

}

.

Lemma 7 shows that the limit of the first term is 0, while the statement of
Corollary 4 is that the limit of the second term is 0.
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Taking limits in (C.6) with respect to R, and using Lemma 10, it follows
that

µG

{

F ∩ I(3,4)c,t

}

≥ 3

8
lim sup

R
µ
(R)
G {F} ≥ 3

8
lim inf µ

(R)
G {F o}

≥ 3

8
µG {F o} ,

where the first inequality follows from the fact that F and I
(3,4)
c,t are both

closed and the third since F o is open and again from Lemma 10.

Let µ be the fluid limit measure and proceed to define for any given t ≥ 0
the following class of sets, the finite-dimensional continuity rectangles Kµ,t

which are a subset of the finite-dimensional sets Ht.

Definition 7. Define the class of finite closed rectangles R to be the
sets





N
∏

j=1

[qj,L, qj,H ]









N
∏

j=1

[rj,L, rj,H ]



 ⊂ RN
+ ×RN

+ ,

where qj,L ≤ qj,H , rj,L ≤ rj,H , otherwise we obtain the empty set.
Given times 0 ≤ t1 < t2 < · · · < tJ ≤ t, define πJ,t : C[0,∞) → EJ to be

the (continuous) projection map taking the sample path to its position at
times t1, . . . , tJ ,

πK,t(ω) =
(

(Q(t1, ω), I(t1, ω)) , . . . , (Q(tJ , ω), I(tJ , ω))
)

.

Finally, take RJ to be J-products of closed rectangles. Define Kt to be sets
of the form π−1

K,tRJ , RJ ∈ RJ and finally Kµ,t ⊂ Kt to be those H ∈ Kt such
that µ{∂H} = 0. Clearly Kµ,t ⊂ Kt ⊂ Ft.

Returning to Lemma 13, we see that it is satisfied by all sets F ∈ Kµ,s with
equality since they are by definition closed µ-continuity sets. Furthermore,
since the terms on the left and on the right are measures and since Kµ,s

generates Fs, the following corollary holds.

Corollary 5. ∀F ∈ Fs, Lemma 13 holds with equality, i.e.,

µG

{

F ∩ I(3,4)c,t

}

=
3

8
µG {F} ,

µG

{

F ∩ I(5,6)c,t

}

=
3

8
µG {F} ,

µG

{

F ∩ I(4,5)c,t

}

=
1

4
µG {F} .
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Proof. First note that the measures on the LHS and RHS are both
finite and the entire space lies in a countable union of such sets. Thus both
measures are σ-finite, with respect to the sets in Kµ,s. It is readily shown
that Kµ,s is a π-system and σ(Kµ,s) = Fs. Theorem 10.3, page 163 in [2]
thus shows that LHS and RHS agree on Fs.

To continue towards Theorem 6, we now define paths that one of which
is followed immediately on completion of a (positive) M1-period at time s,
µ a.s. First define

ϑ
(Q,Mk)
s,t (u), u ∈ [s, t], k = 2, 3, 4,

to be the path which is at Q at time s and then follows Mk until time t,
e.g., if k = 1, queues 1 and 2 are decreasing linearly at rate (1 − λ) and
any other queue ℓ = 3, 4, 5, 6 is increasing at rate λℓ. Precise definitions we
omit as the form of the sample paths have already been discussed. The next
definition is for an indicator function that the above path is being followed
in an interval [s, s+ h], h > 0.

(C.7) 1(s,h,η)Mk,Q
.
= 1{ω : ||Q(v, ω) − ϑ

(Q(s,ω),Mk)
s,s+h (v)|| < η, v ∈ [s, s+ h]

}

.

In words, Mk is ‘followed’ for an interval of duration h starting at s to a
closeness η.

Note that the result of Corollary 5 applies only to events in some σ-
algebra Fw where w ≥ 0 is fixed. However, we require that equivalent results
be established for all events F ∈ F

Z
(1,2)
m,n

. This issue can be approached as

follows.
Given s < t, a < b, with n ∈ N0 and recalling Definition 4, let

C(n) .=
{

ω : (Z(1,2)
m,n , A

(1,2)
m,n ) ∈ [s, t)× [a, b)

}

,

then it is readily seen that

F ∩C(n) ∈ Ft, ∀F ∈ F .

Z
(1,2)
m,n

Suppose that s < t in the definition of C(n) satisfy t − s < λ1em, and
em < a < b ≤ fm (em and fm are given in Definition 4). Then, it can be
seen that for all paths ω ∈ F ∩ C(n), for any F ∈ F

Z
(1,2)
m,n

, we can find a

w < s such that Iℓ(s, ω)− Iℓ(w,ω) = β(s−w), ℓ = 1, 2, i.e., the queues and
activity components constitute a set of parallel lines over the interval [w, s].
This suggests that any event in the σ-algebra F

Z
(1,2)
m,n

∩C(n) is also an event

in Fw.
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The above intuitive argument can be formalized by establishing the exis-
tence of an equivalent σ-algebra. We say that the σ-algebra F

Z
(1,2)
m,n

∩C(n) is

equivalent to a sub σ-algebra, Hw ⊂ Fw, if to each event H ∈ F
Z

(1,2)
m,n

∩C(n)

there is an event Hw ∈ Hw so that H = Hw.

Lemma 14 (Equivalent σ-algebra). Given n ∈ N0, arbitrary t > s ≥ 0
such that t−s < λ1em, and em < a < b ≤ fm and arbitrary w ∈ (t−λ1em, s),
there is a σ-algebra, Hw ⊂ Fw equivalent to F

Z
(1,2)
m,n

∩ C(n).

We omit the proof. Let tZ = Z
(1,2)
m,n , h(1,2) = λ1em × ∧6

ℓ=3λℓ/(1 − λℓ),

and QZ = Q(Z
(1,2)
m,n ). Next define 1(η,M1)

Mk,m,n to be 1(tZ ,h(1,2),η)
Mk,QZ

, k = 2, 3, 4 if

Z
(1,2)
m,n <∞. Define F∞

Z
(1,2)
m,n

.
= F

Z
(1,2)
m,n

∩{Z(1,2)
m,n <∞} as we are only interested

in finite stopping times.

Theorem 6. ∀n ∈ N0,m ∈ Z0, ∃ηm such that ∀η, ηm > η > 0,

µ

{1(M1,η)
M2,m,n|F∞

Z
(1,2)
m,n

}

=
3

8
, µ a.s.,

µ

{1(M1,η)
M3,m,n|F∞

Z
(1,2)
m,n

}

=
3

8
,(C.8)

µ

{1(M1,η)
M4,m,n|F∞

Z
(1,2)
m,n

}

=
1

4
.

Since η > 0 can be taken arbitrarily small, the conclusion is that one of

the M2-, M3-, or M4-periods start immediately at Z
(1,2)
m,n on occurrence of

Z
(1,2)
m,n <∞ and with probabilities determined solely by the residual backoff

times.

Proof. Given F ∈ F∞

Z
(1,2)
m,n

, we may write F = ∪kFk as a countable union

of disjoint sets. Fk is obtained by intersection of F with the disjoint sets,

Ck
.
=

{

ω : (Z(1,2)
m,n , A

(1,2)
m,n ) ∈ (sk, tk]× (ak, bk]

}

,

where em ≤ ak < bk ≤ fm and em ≤ sk < tk are chosen according to η in a
way to be described subsequently. Ck ∩ Cm = ∅, m 6= k is constructed by

first choosing the intervals for the stopping time Z
(1,2)
m,n to be disjoint and

then likewise the durations into disjoint semi-open intervals. Thus, Fk
.
=

F ∩Ck ∈ Ftk .
We turn to Fk and will suppose that tk−sk is sufficiently small, so that we

may find a time wk ∈ (tk − emλ1, sk) as in Lemma 14. wk will be a constant
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determined by ak, bk, sk, tk and η only. For the moment suppose that wk and
η are used to determine constants cη, twk

and then a set Gcη ,twk
, satisfying

the conditions of Lemma 13, such that in addition

(C.9) Ck ⊂ Gcη ,twk
,

with the s in the definition of Gc,t, see (C.2), taken to be wk. It can then be
seen that the following chain of equalities hold,

µ
{

Fk ∩ I(3,4)cη,twk

}

= µGcη,twk

{

Fk ∩ I(3,4)cη,twk

}

= µGcη,twk

{

F
(wk)
k ∩ I(3,4)cη ,twk

}

=
3

8
µGcη,twk

{

F
(wk)
k

}

(C.10)

=
3

8
µGcη,twk

{

Fk

}

=
3

8
µ {Fk}

The first equality follows from (C.9), the second from Lemma 14 as there

exists a F
(wk)
k ∈ Fwk

such that F
(wk)
k = Fk, the third from Corollary 5 and

by definition of Gcη ,twk
, the fourth equality is again from Lemma 14, and the

final one follows again from (C.9). Corresponding results follow for I
(4,5)
cη,twk

and I
(5,6)
cη ,twk

. Once one of these events has occurred, µ almost surely the queues

corresponding to the active period proceed to empty because they lie in PL

and therefore P . Moreover, ηm is determined depending on the duration
(at least λ1em) of the M1-period. ηm is taken sufficiently small, so that if we
take any η, ηm > η > 0, only the node pair (and corresponding Mk-period)

can satisfy the constraints in (C.7), for the interval [Z
(1,2)
m,n , Z

(1,2)
m,n + h(1,2)].

The above steps may be taken provided that i) Gcη ,twk
is a closed µ-

continuity set, ii) Gcη ,twk
contains Ck and hence Fk iii) t+ s3 − wk is suffi-

ciently small, so that the paths ϑ(Q,Mk)
.,. satisfy the constraints as in (C.8),

and iv) the condition (C.3) must hold so that the conditions of Lemma 13
and also of Corollary 5 are met.

To show that cη, twk
and a corresponding Gcη ,twk

exist, given η > 0, set
tk−sk = A1η and cη = A2η, where A1 and A2 will be fixed later. Next fix the
time twk

= (sk + tk)/2. wk is now determined using twk
−wk = (1− λ)−1cη.

A brief calculation shows that α0, α1 must be chosen so that

(C.11) α0, α1 >
A1(1− λ)

2A2
,

in order that condition ii) above is met.
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As far as i) is concerned, Gc,t is an intersection of two sets, a queue
constraint and an activity constraint, so that it is enough to obtain each
as a µ-continuity set. With respect to the queue constraint set, at time wk,
there are uncountably many choices for α0, α1, which may be taken as close
as we like to the constraint in (C.11) given cη. For the activity set, we may
choose ν arbitrarily small and having fixed it, then there are uncountably
many choices for χ > 0 which we may also take arbitrarily small. Thus the
activity set can also be chosen to be a µ-continuity set. Putting the above
together, G may be constructed as a µ-continuity set for given A1, A2, η and
so that Ck ⊂ G.

We turn to condition iv), where it can be checked that it is satisfied
provided that

(C.12)
α0 + α1 + λν

1− λ
<

1

4

(

1− α0 − ν(1− λ)

1− λ
∧6
ℓ=3

λℓ
1− λℓ

)

,

which obviously holds by making α0, α1, and ν sufficiently small, and then
choosing A1/A2 sufficiently small according to (C.11).

As far as iii) is concerned, an examination of the construction preceding
Lemma 13 shows that t + s3 − wk ∝ cη = A2η. We may thus proceed by
taking A2 > 0 sufficiently small to ensure that iii) is met and then choose
A1 > 0 and ν > 0 sufficiently small so as to meet (C.11) and (C.12), fixing
cη , ν. The rest follows on choice of α0, α1, χ.

Note that common choices may be made for A1, A2, ν for each Ck and
once these are fixed, common values may be chosen for α0, α1, χ as there are
uncountably many possibilities and only a countable number of choices can
have positive probability for any Ck. We have thus shown that a suitable
Gc,t can be found for each k, given η > 0.

The rest of the proof follows on summing (C.10) over k, to obtain

∑

k

µ
{1(tZ ,hZ ,η)

M2,QZ
;Fk

}

=
3

8

∑

k

µ {Fk}
(C.13)

µ
{1(tZ ,hZ ,η)

M2,QZ
;F

}

=
3

8
µ {F} ,

and similarly forM3 andM4. This is the required result as F is arbitrary.

C.II. Switchover from M2,M3,M4. Here we will only state our re-
sults, moreover M2- and M3-periods are analogous and so we will only deal
with the former. To state our theorem for switching out of a M2-period,

define 1(M2,η)
Mk,m,n, k = 1, 3 as was done for switching out of M1. Also define

F∞
Z3
m,n

.
= FZ3

m,n
∩ {Z3

m,n <∞}.
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Theorem 7. ∀n ∈ N0,m ∈ Z − {0}, ∃p, q > 0, p + q = 1 and ∃ηm such
that ∀η, ηm > η > 0

µ
{1(M2,η)

M1,m,n|F∞
Z3
m,n

}

= p, µ a.s.,
(C.14)

µ
{1(M2,η)

M3,m,n|F∞
Z3
m,n

}

= q.

The quantities p, q are determined as follows

p =

∞
∑

X=0

∞
∑

X4=0

∑

U4=0,1

b(3)(X)π∞4 (X4, U4)c
X
1 (X4, U4),

(C.15)

q =

∞
∑

X=0

∞
∑

X4=0

∑

U4=0,1

b(3)(X)π∞4 (X4, U4)c
X
5 (X4, U4),

where π∞4 (X4, U4) is the equilibrium jump chain probability that node 4 is in
state (X4, U4) when operating in isolation (i.e., when node 4 is the only node
in the network). b(3)(X) is the limiting probability as X3

0 ↑ ∞ that a first
backoff of node 3 occurs when X3 = X, service starting with X3

0 packets.
cX1 (X4, U4) is the probability that nodes 1 or 2 first gain the medium when
node 3 has a first backoff with X3 = X packets and the state of node 4 as
given. The remaining definitions for q are similar. Thus in this case there is
no simple formula and p, q depend on the backoff parameter γ as well as the
arrival rates at nodes 3 and 4.

For the case of switching out of M4 we have the following result, again
making the corresponding definitions as in Theorem 6.

Theorem 8. For any Z
(4,M

(5)
4 )

m,n stopping time, there is a ηm > 0 suffi-
ciently small so that, for all ηm > η > 0

(C.16) µ

{1(M2,η)
M4,m,n ∨ 1(M3,η

M4,m,n) | F∞

Z
(4,M

(5)
4 )

m,n

}

= 1 µ a.s.,

and so that

(C.17) µ

{1(M1,η)
M4,m,n|F∞

Z
(4,M

(5)
4 )

m,n

}

= 0, µ a.s.

A similar result holds for Z
(5,M

(4)
4 )

m,n stopping times.
This concludes Part C.
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APPENDIX D: FLUID LIMIT PROOFS – PART D

In Parts A–C we have established a) ‘sawtooth’ properties and some con-
straints on those sample paths, b) what will occur at the end of a given
Mk-period, k = 1, 2, 3, 4 and c) that a natural state will be entered in finite
time before the network can empty almost surely. What has not been shown,
is whether any M1-period would ensue at all. The purpose of this section is
to show that M1-periods will occur µ a.s. following a natural state, provided
ρ is sufficiently close to 1.

In fact, establishing this result is not strictly needed to prove instability. If
there is a last visit to queues 1 and 2 (which might occur when they are both
empty), then these two queues must grow linearly and therefore the fluid
system is unstable. Nevertheless, we will show that an infinite sequence of
M1-periods will occur µ almost surely and in strictly bounded time, following
TN to enter a non-empty natural state,

Denote by τ
(1,2)
p : C[0,∞] → [0,∞] as the first point of increase of either

I1, I2, as in Definition 5, following TN . It is easily shown that τ
(1,2)
p is a Ft+

stopping time, and corresponds to the start of a positive M1-period. Our
main result is:

Theorem 9. There exists a 0 < TV < ∞ such that τ
(1,2)
p < TN + TV ,

µ a.s.

We first show that the issue of occurrence of an M1-period arises only
when there is at least one zero queue. To see this, consider the network at
time TN , and, without loss of generality, suppose TN > 0. If Qℓ(TN ) = qℓ >
0, ℓ = 1, . . . , 6 then continuity implies that this actually holds for some small
interval [TN − ξ, TN ], depending on ω, with ξ > 0. During any such interval,
one of theM1-,M2-,M3-, orM4-periods has to be active, with probability 1,
as a consequence of Lemma 9. Moreover if the active period is not M1, then

one will follow in bounded time τ
(1,2)
p < TN + TS , as a consequence of

Theorems 6, 7 and 8 and because the subnetwork determined by nodes 3, 4,
5, and 6 is work-conserving once a natural state is entered.

Next, consider the cases where a subset of queues {q1, q2, q3, q6} are 0.
Rather than deal with all every such cases, we will consider just one. The
approach for the remaining cases will then become apparent. We therefore
focus on the case q3 = q4 = q5 = q6 = 0 with q1 ∨ q2 > 0, and show

that τ
(1,2)
p is effectively TN on the fluid scale. Other cases are simpler to

address.
For the above case, it will be sufficient to prove the following lemma.
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Lemma 15. Given ǫ > 0, η > 0, and 0 < QL < QH , there exists δ > 0,
such that lim infR→∞ µR(Ξ) < η, where

Ξ
.
= {τ (1,2)p > TN + ǫ;QR

ℓ (TN ) < δ, ℓ = 3, 4, 5, 6,

QR
1 (TN ) ∨QR

2 (TN ) ∈ (QL, QH)}.

It then follows that

µ
{

τ (1,2)p > TN + ǫ; Qℓ(TN ) = 0, ℓ = 3, 4, 5, 6;Q1 ∨Q2 ∈ (QL, QH)
}

= 0,

by Theorem 2.1 on page 11 of [1]. Thus on occurrence of Qℓ = 0, ℓ = 3, 4, 5, 6
together with Q1 ∨Q2 > 0 the start of a M1 period must occur in negligible
time after TN on the fluid scale.

The proof of Lemma 15 is strongly specific to our choice of network and so
we only provide a sketch of the proof, which relies on the following definition.
Consider the sequence of node activations in the network and in particular
node 4 and 5 activations.

Definition 8. A control step, at index k of the jump chain, is CJ,k ∈
{4, 5}. At index 0, it is 4, unless only node 5 is active, in which case it is 5.
At any subsequent index k ≥ 1, the control step is determined as follows:
(i) if both nodes 4 and 5 are active at index k, CJ,k is the node that has
become active first, (ii) if only one is active, CJ,k is the active node, (iii) if
neither, then CJ,k is the last node that was active.

A control swap to node 5 occurs at step k if CJ,k−1 = 4 and CJ,k = 5,
and vice versa for a control swap to node 4. These events are denoted as
4 → 5 and 5 → 4. The step at which the r-th control swap takes place is a

(discrete) stopping time τ
(S)
r .

For the subnetwork of nodes 3, 4, 5, and 6 in isolation, it is readily shown
that the probability is 1 that an infinite number of control swaps occur,

τ
(S)
r <∞, τ

(S)
1 < τ

(S)
2 < · · · , with corresponding filtration {Gr}r∈N.

Next let S be the stopping time until one of nodes 1 and 2 gain the
medium (this event is blocked since we are considering the subnetwork in
isolation). Using the properties of our network it can then be shown that

Lemma 16. ∃ǫ > 0 and NS ∈ N such that ∀r ∈ N, P{S < r +NS | Gr} > ǫ.

The proof relies on showing that once a control swap has taken place, say
4 → 5, then within a bounded number of additional control swaps, either it
will occur that node 3 has a backoff with Q4 = 0 or node 6 has a backoff
with Q5 = 0 and with probability at least ǫ > 0.
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The result of Lemma 16 implies that mS = E[S] < ∞ and actually that
P{S > rNS} < (1 − ǫ)r, see [42], Ex. E10.5 page 233, for example. That is,
nodes 1 and 2 will gain the medium within a number of control swaps which
has finite expectation. It then follows from Markov’s inequality, that given
any η > 0, there is a number of control swapsMη such that P{S > Mη} < η.

Given the above, in proving Lemma 15, it will be enough to show the
following lemma.

Lemma 17. Furthermore, given ǫ > 0, ηP > 0 and any fixed number of
control swaps M ∈ N, let SM be the total number of steps to complete M
control swaps. Then there exists a δ > 0 such that for all R sufficiently large

P{SM > ⌈Rǫ⌉| QR
ℓ (0) ≤ δ, ℓ = 3, . . . , 6} < ηP .

Lemma 17 is sufficient since we are dealing with the case when queues
3,4,5,6 are o(R) in the prelimit, by assumption. Moreover in proving The-
orem 9 we will choose M := Mη as above, so that the probability more
control swaps are needed can be taken arbitrarily small.

The result of the lemma clearly relies on the supposed initial conditions.
It can be demonstrated via a construction. The construction works by deter-
mining M intervals so that the probability of a control swap in each is close
to 1, and so the total queue length at the start of each interval is small based
on the arrivals which might have taken place during previous intervals. The
proof is then completed by showing that given any control step at the start
of an interval, say 5, a swap 5 → 4 will occur with high probability in a
number of steps in proportion to the initial condition for the interval. Since
only M such intervals are required, a δ can be obtained accordingly.

Other cases are dealt with similarly but there is some positive but bounded
delay before an M1-period occurs. For example if q1 = q2 = q6 = q5 = 0 and
q3 > 0, then one shows that a M2-period occurs in negligible fluid time.

Thus in all the cases, we may can show that M1-periods occur within
bounded fluid time following a natural state. This concludes Part D.

APPENDIX E: ADDITIONAL PROOFS

E.I. Proof of Lemma 1. The proof relies on basic sample path prop-
erties of the fluid limit process {Q(t)} as described in Subsection 4.1. First
of all, the M1-period that initiates the i-th cycle ends at time ti + Ti1, with

Ti1 =
Q1(ti)

1− ρ1
∨ Q2(ti)

1− ρ2
≤ Q1(ti) ∨Q2(ti)

1− ρ0
≤ L(ti)

1− ρ0
.
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Define K(t) = (Q3(t) ∨ Q4(t)) + (Q5(t) ∨ Q6(t)) and recall that ρ =
ρ0 + ρ3 + ρ6. Then

K(ti + Ti1) ≤ K(ti) + (ρ3 + ρ6)Ti1

≤ L(ti)− (Q1(ti) ∨Q2(ti)) + (ρ3 + ρ6)
Q1(ti) ∨Q2(ti)

1− ρ0

= L(ti)−
(1− ρ)(Q1(ti) ∨Q2(ti))

1− ρ0
= L(ti)− (1− ρ)Ti1,

which may also be seen from the fact that L(t) decreases at a rate 1 − ρ
or larger during the time interval [ti, ti + Ti1] and K(ti + Ti1) = L(ti + Ti1)
since Q1(ti + Ti1) = Q2(ti + Ti1) = 0.

Define T0 = K(ti+Ti1)
1−ρ3−ρ6

. We distinguish between two cases, depending on
whether an M4-period starts before time ti + Ti1 + T0 or not.

If no M4-period occurs before time ti + Ti1 + T0, then K(t) decreases at
a rate 1 − ρ3 − ρ6 or larger for all t ∈ [ti + Ti1, ti + Ti1 + T0] and reaches
zero no later than time ti + Ti1 + T0, unless an M1-period intervenes. This
implies that the next M1-period must start no later than time ti + Ti1 + T0.

Using the above results, a simple calculation shows that

ti+1 − ti ≤ Ti1 + T0 ≤ Ti1 +
L(ti)− (1− ρ)Ti1

1− ρ3 − ρ6
≤ L(ti)

(1− ρ0)(1− ρ3 − ρ6)

≤ CTL(ti).

Also, L(t) has continuously decreased during the cycle, so L(ti+1)−L(ti) ≤ 0.
Now suppose that an M4-period does start at some time t0 ∈ [ti+Ti1, ti+

Ti1 + T0], and ends at time u0.
Since K(t) decreases at a rate 1−ρ3−ρ6 or larger during the time interval

[ti + Ti1, t0], it follows that

K(t0) ≤ K(ti + Ti1)− (1− ρ3 − ρ6)(t0 − ti − Ti1).

Noting that Q4(t0), Q5(t0) ≤ K(t0), we conclude that the duration of the
M4-period is no longer than

u0 − t0 ≤
(

Q4(t0)

1− ρ4
∧ Q5(t0)

1− ρ5

)

≤ K(t0)

1− (ρ4 ∨ ρ5)
.

Since K(t) increases at a rate no larger than ρ3 + ρ6 during the time
interval [t0, u0], it follows that

K(u0) ≤ K(t0) + (ρ3 + ρ6)(u0 − t0).
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The M4-period will cause queue 4 to empty at some point and become
smaller than queue 3, and likewise queue 5 must empty at some point and
become smaller than queue 6. BecauseM4-periods can no longer be initiated
from M2 and M3, K(t) decreases at a rate 1−ρ3−ρ6 or larger from time u0
onward, and reaches zero no later than time u0 +

K(u0)
1−ρ3−ρ6

, unless an M1-
period intervenes. This implies that the next M1-period must start no later
than time u0 +

K(u0)
1−ρ3−ρ6

.
Combining the above results, we obtain

ti+1 − ti ≤ u0 +
K(u0)

1− ρ3 − ρ6
− ti

= Ti1 + (t0 − ti − Ti1) + (u0 − t0) +
K(u0)

1− ρ3 − ρ6

≤ Ti1 + (t0 − ti − Ti1) +
K(t0) + (u0 − t0)

1− ρ3 − ρ6

≤ Ti1 + (t0 − ti − Ti1) +

(

1 +
1

1− (ρ4 ∨ ρ5)

)

K(t0)

1− ρ3 − ρ6

≤ Ti1 −
t0 − ti − Ti1
1− (ρ4 ∨ ρ5)

+
(2− (ρ4 ∨ ρ5))K(ti + Ti1)

(1− (ρ4 ∨ ρ5))(1 − ρ3 − ρ6)

≤ Ti1 +
(2− (ρ4 ∨ ρ5))(L(ti)− (1− ρ)Ti1)

(1− (ρ4 ∨ ρ5))(1− ρ3 − ρ6)

≤ (2− (ρ4 ∨ ρ5))L(ti) + ρ0(1− (ρ4 ∨ ρ5))Ti1)
(1− (ρ4 ∨ ρ5))(1 − ρ3 − ρ6)

=
L(ti)

(1− (ρ4 ∨ ρ5))(1− ρ3 − ρ6)
+
L(ti) + ρ0Ti1
1− ρ3 − ρ6

≤ L(ti)

(1− (ρ4 ∨ ρ5))(1− ρ3 − ρ6)
+

L(ti)

(1− ρ0)(1− ρ3 − ρ6)

=
L(ti)

1− ρ3 − ρ6

(

1

1− ρ0
+

1

1− (ρ4 ∨ ρ5)

)

= CTL(ti).

Also, L(t) has only increased during the M4-period at a rate no larger than
ρ = ρ0 + ρ3 + ρ6, so

L(ti+1)− L(ti) ≤ ρ(u0 − t0) ≤
ρK(t0)

1− (ρ4 ∨ ρ5)
≤ ρL(ti)

1− (ρ4 ∨ ρ5)
= CLL(ti).

E.II. Proof of Lemma 2. Denote by t1 and t2 the times that the cycles
start and by u1 and u2 the times that the M1-periods end. First assume
Q1(t1) ∨ Q2(t1) ≤ ǫL(t1). Then, (Q3(t1) ∨ Q4(t1)) + (Q5(t1) ∨ Q6(t1)) ≥
(1−2ǫ)L(t1), so we must have (Q3(t1)∨Q4(t1)) ≥ (1−2ǫ)L(t1)/2 or (Q5(t1)∨
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Q6(t1)) ≥ (1− 2ǫ)L(t1)/2. In the former scenario, with probability 3/8 the
M1-period is followed by an M2-period, which will last for an amount of
time no less than Q3(t1)

1−ρ3
∨ Q4(t1)

1−ρ4
≥ Q3(t1)∨Q4(t1)

1−ρ4
≥ (1−2ǫ)L(t1)

2(1−ρ4)
. Likewise, in

the latter scenario, with probability 3/8 theM1-period is followed by anM3-

period, which will last for an amount of time no less than Q5(t1)
1−ρ5

∨ Q6(t1)
1−ρ6

≥
Q5(t1)∨Q6(t1)

1−ρ5
≥ (1−2ǫ)L(t1)

2(1−ρ5)
. Thus, in either scenario, with probability at least

3/8, the time until the start of the next cycle is at least (1−2ǫ)L(t1)
2(1−(ρ4∧ρ5))

, so that

Q1(t2) ∨Q2(t2) ≥ Q2(t2) ≥
ρ2(1− 2ǫ)L(t1)

2(1− (ρ4 ∧ ρ5))
.

Invoking the fact that L(t2) ≤ CLL(t1), with CL as defined in the previous
lemma, we find that

Q1(t2) ∨Q2(t2) ≥ ǫL(t2),

with ǫ as specified in the statement of the lemma.
Now consider a cycle with Q1(tk) ∨Q2(tk) ≥ ǫL(tk), k = 1, 2. Then

Qi(uk) = Qi(tk) + ρi
Q1(tk) ∨Q2(tk)

1− ρ2
, for i = 3, 4, 5, 6.

Note that 0 ≤ Qi(tk) ≤ (1 − ǫ)L(tk), i = 3, 4, 5, 6, and ǫL(tk) ≤ Q1(tk) ∨
Q2(tk) ≤ L(tk). Then it is easily verified that the queues are weakly balanced
at time uk with βmin and βmax as given in the statement of lemma.

E.III. Proof of Theorem 2. Let (U(n),X(n)) denote the jump chain
obtained from the continuous-time Markov process by uniformization ac-
cording to a Poisson clock of rate β as described in Appendix A.I. In order
to prove Theorem 2 for the original stochastic process, it suffices to establish
a similar result for the jump chain:

lim
‖X(0)‖→∞

PX(0){lim inf
n

‖X(n)‖ = ∞} = 1.(E.1)

The above result will be established via Theorem 3.1 of [27], which is
reproduced below for completeness.

Theorem 10. Suppose that for a Markov chain {X(n);n = 0, 1, 2, . . . }
with discrete state space S, there exist positive functionsW (·) and ∆(·) on S,
and a positive constant c0, such that

E [W (X(n+ 1))|Fn] ≤W (X(n))−∆(X(n)),(E.2)
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whenever X(n) ∈ Sc0 = {x ∈ S :W (x) ≤ c0}, with Fn := σ(X(0),X(1), . . . ,
X(n)). Then for all x ∈ S,

Px

{

∞
∑

n=0

∆(X(n)) <∞
}

≥ 1−W (x)/c0.

In order to apply the above theorem, we will consider the functionW (x) =
E[W|X(0) = x], where the random variable W is defined as

W :=

‖X(0)‖T
∑

n=0

[1 + ‖X(0)‖ + a‖X(n)‖]−m

for some positive constants a and T to be determined later and m > 1. Note
that, with minor abuse of notation, W (X(0) = x,U(0) = u) = W (x), i.e.,
W only depends on the queue and not on the activity vector. The function
W (x) may be interpreted as the following approximation to a Lyapunov
function for the fluid limit process

‖x‖m−1W (x) ≈ Ex̂

[
∫ T

0
(1 + a‖Qx̂(t/β)‖)−mdt

]

= V (Qx̂(t)),(E.3)

with equality when ‖x‖ → ∞, and x̂ = x
‖x‖ is the initial state of the fluid

limit process. Then it follows from the instability of the fluid limit process
that we can choose a and T large enough such that V (Qx̂(t+r)) < V (Qx̂(t))
for any r > 0 and any initial state x̂. This implies that

‖x‖mE [W (X(n+ 1)) −W (X(n))|Fn] ≤ −constant,

when x = X(n) and ‖x‖ is sufficiently large. Thus, we can apply Theorem 10.
The detailed arguments may be described as follows. First of all, note that

E [W (X(1)) −W (X(0))|X(0) = x,U(0) = u]

= E
[

θ1W −W|X(0) = x,U(0) = u
]

,

where θ1 is the usual backward shift operator on the sample path space [27].
We write θ1W −W = A+B + C, where

A = −[1 + ‖X(0)‖ + a‖X(0)‖]−m,

B =

‖X(0)‖T
∑

n=1

{

[1 + ‖X(1)‖ + a‖X(n)‖]−m

− [1 + ‖X(0)‖ + a‖X(n)‖]−m
}

,
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and

C =

‖X(1)‖T
∑

n=‖X(0)‖T+1

[1 + ‖X(1)‖ + a‖X(n)‖]−m.

The term ‘A’ provides the negative drift and the other terms can be bounded
as follows. Using the fact that ‖X(1)‖ ≥ ‖X(0)‖ − 1, and noting that [·]−m

is a convex decreasing function, we have

B ≤
‖X(0)‖T
∑

n=1

m[‖X(0)‖ + a‖X(n)‖]−m−1.(E.4)

Multiplying both sides by ‖X(0)‖m, we see that

‖X(0)‖mB ≤ m

‖X(0)‖

‖X(0)‖T
∑

n=1

(

1 + a
‖X(n)‖
‖X(0)‖

)−m−1

.(E.5)

Let X(0) = x and x̂ := x/‖x‖. For any x, the random variable in the right-
hand-side (RHS) of (E.5) is bounded by mT , and hence

lim sup
‖x‖→∞

Ex̂ [‖x‖mB] ≤ Ex̂

[

m

∫ T

0
[1 + a‖Q(s/β)‖]−m−1ds

]

,

because of the weak limit convergence of 1
‖x‖X

(‖x‖)(‖x‖t) ⇒ Q(t/β) over

[0, T ] and uniform integrability of the random variables of the form RHS
of (E.5).

Next, for ‘C’, it is sufficient to consider the case that ‖X(1)‖ = ‖X(0)‖+1,
where

C ≤ T [1 + ‖x‖ + 1 + a(‖X(‖x‖T )‖ − T )]−m.

Similarly to ‘B’, multiplying both sides with ‖x‖m and taking the limit gives

lim sup
‖x‖→∞

Ex̂ [‖x‖mC] ≤ Ex̂

[

T [1 + a‖Q(T/β)‖]−m
]

,(E.6)

again, because ‖x‖mC < T (thus, uniform integrability holds) and by the
weak limit convergence. Putting the bounds together, we obtain

lim sup
‖x‖→∞

‖x‖mEx̂

[

θ1W −W
]

≤ −(1 + a)−m

+mEx̂

[
∫ ∞

0
(1 + aL(s/β))−m−1ds

]

+Ex̂

[

T (1 + aL(T/β))−m
]

,
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because ‖Q(s)‖ ≥ L(s) based on our notation with some initial state Q(0) =
x̂ such that ‖x̂‖ = 1. Consider the cycle pairs Dk, k = 1, 2, . . . , as defined
for Theorem 1. Then,

Ex̂

[∫ ∞

0
(1 + aL(s/β))−m−1ds

]

≤ βEx̂

[

∞
∑

k=0

∫ Tk+1

Tk

(1 + aL(s))−m−1ds

]

≤ βEx̂

[

∞
∑

k=0

∫ Tk+1

Tk

(1 + aθLk)
−m−1ds

]

≤ βEx̂

[

∞
∑

k=0

∆Tk(aθLk)
−m−1

]

≤ βCLT (aθ)
−m−1

∞
∑

k=0

Ex̂

[

L−m
k

]

.

where we have used Proposition 1 (ii), (i) for the second and last inequality
respectively. As we saw in the proof of Theorem 1, for ρ ∈ (ρ∗, 1], E[L−m

k ] ≤
L−m
0 αk. Therefore,

mEx̂

[∫ ∞

0
(1 + aL(s/β))−m−1ds

]

≤ mβCLT (aθ)
−m−1 L

−m
0

1− α
.(E.7)

So, we can choose a large enough to ensure that the RHS of (E.7) is less
than 1

3(1 + a)−m. Next we show that we can choose T large enough such
that

Ex̂

[

T [1 + aL(T/β)]−m
]

≤ 1

3
(1 + a)−m.(E.8)

Note that

Ex̂

[

T [1 + aL(T/β)]−m
]

≤ a−mEx̂

[

TL−m(T/β)
]

,(E.9)

and by Theorem 1, lim supT→∞ Ex̂[TL
−m(T )] = 0, for ρ ∈ (ρ∗, 1]. Hence, we

can choose T large enough such that (E.8) holds.
Therefore,

lim sup
‖x‖→∞

‖x‖mE [W (X(1)) −W (X(0))|(X(0), U(0)) = (x, u)] ≤ −1

3
(1+a)−m.

This means that there exists a positive constant ‖x0‖ such that,

E [W (X(1)) −W (X(0))|X(0) = (x, u)] ≤ −1

6
(1 + a)−m‖x‖−m,
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whenever ‖x‖ > ‖x0‖. Let c0 = W (x0) = W (‖x0‖). On the other hand, it
follows from (E.3) that lim sup‖x‖→∞W (x) = 0, which means that Sc0 is
well-defined and also c0 can be made arbitrarily small by letting ‖x0‖ →
∞. Therefore, the conditions of Theorem (10) are satisfied with ∆(x) =
1
6 (1 + a)−m‖x‖−m. This shows that

PX(0)

{

∞
∑

n=0

constant

‖X(n)‖m <∞
}

→ 1,(E.10)

as ‖X(0)‖ → ∞, which implies (E.1).
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