63 research outputs found

    A systematic literature review

    Get PDF
    Barriguinha, A., Neto, M. D. C., & Gil, A. (2021). Vineyard yield estimation, prediction, and forecasting: A systematic literature review. Agronomy, 11(9), 1-27. [1789]. https://doi.org/10.3390/agronomy11091789Purpose—knowing in advance vineyard yield is a critical success factor so growers and winemakers can achieve the best balance between vegetative and reproductive growth. It is also essential for planning and regulatory purposes at the regional level. Estimation errors are mainly due to the high inter-annual and spatial variability and inadequate or poor performance sampling methods; therefore, improved applied methodologies are needed at different spatial scales. This paper aims to identify the alternatives to traditional estimation methods. Design/methodology/approach—this study consists of a systematic literature review of academic articles indexed on four databases collected based on multiple query strings conducted on title, abstract, and keywords. The articles were reviewed based on the research topic, methodology, data requirements, practical application, and scale using PRISMA as a guideline. Findings—the methodological approaches for yield estimation based on indirect methods are primarily applicable at a small scale and can provide better estimates than the traditional manual sampling. Nevertheless, most of these approaches are still in the research domain and lack practical applicability in real vineyards by the actual farmers. They mainly depend on computer vision and image processing algorithms, data-driven models based on vegetation indices and pollen data, and on relating climate, soil, vegetation, and crop management variables that can support dynamic crop simulation models. Research limitations—this work is based on academic articles published before June 2021. Therefore, scientific outputs published after this date are not included. Originality/value—this study contributes to perceiving the approaches for estimating vineyard yield and identifying research gaps for future developments, and supporting a future research agenda on this topic. To the best of the authors’ knowledge, it is the first systematic literature review fully dedicated to vineyard yield estimation, prediction, and forecasting methods.publishersversionpublishe

    GeoAI approach to Vineyard Yield Estimation

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsKnowing in advance vineyard yield is a key issue for growers, winemakers, policy makers, and regulators being fundamental to achieve the best balance between vegetative and reproductive growth, and to allow more informed decisions like thinning, irrigation and nutrient management, schedule harvest, optimize winemaking operations, program crop insurance, fraud detection and grape picking workforce demand. In a long-term scenario of perceived climate change, it is also essential for planning and regulatory purposes at the regional level. Estimating yield is complex and requires knowing driving factors related to climate, plant, and crop management that directly influence the number of clusters per vine, berries per cluster, and berry weight. These three yield components explain 60%, 30%, and 10% of the yield. The traditional methods are destructive, labor-demanding, and time-consuming, with low accuracy primarily due to operator errors and sparse sampling (compared to the inherent spatial variability in a production vineyard). Those are supported by manual sampling, where yield is estimated by sampling clusters weight and the number of clusters per vine, historical data, and extrapolation considering the number of vines in a plot. As the extensive research in the area clearly shows, improved applied methodologies are needed at different spatial scales. The methodological approaches for yield estimation based on indirect methods are primarily applicable at small scale and can provide better estimates than the traditional manual sampling. They mainly depend on computer vision and image processing algorithms, data-driven models based on vegetation indices and pollen data, and on relating climate, soil, vegetation, and crop management variables that can support dynamic crop simulation models. Despite surpassing the limitations assigned to traditional manual sampling methods with the same or better results on accuracy, they still lack a fundamental key aspect: the real application in commercial vineyards. Another gap is the lack of solutions for estimating yield at broader scales (e.g., regional level). The perception is that decisions are more likely to take place on a smaller scale, which in some cases is inaccurate. It might be the case in regulated areas and areas where support for small viticulturists is needed and made by institutions with proper resources and a large area of influence. This is corroborated by the fact that data-driven models based on Trellis Tension and Pollen traps are being used for yield estimation at regional scales in real environments in different regions of the world. The current dissertation consists of the first study to identify through a systematic literature review the research approaches for predicting yield in vineyards for wine production that can serve as an alternative to traditional estimation methods, to characterize the different new approaches identifying and comparing their applicability under field conditions, scalability concerning the objective, accuracy, advantages, and shortcomings. In the second study following the identified research gap, a yield estimation model based on Geospatial Artificial Intelligence (GeoAI) with remote sensing and climate data and a machine-learning approach was developed. Using a satellite-based time-series of Normalized Difference Vegetation Index (NDVI) calculated from Sentinel 2 images and climate data acquired by local automatic weather stations, a system for yield prediction based on a Long Short-Term Memory (LSTM) neural network was implemented. The results show that this approach makes it possible to estimate wine grape yield accurately in advance at different scales

    A Smart Crop Water Stress Index-Based IoT Solution for Precision Irrigation of Wine Grape

    Get PDF
    The Scholander-type pressure chamber to measure midday stem water potential (MSWP) has been widely used to schedule irrigation in commercial vineyards. However, the limited number of sites that can be evaluated using the pressure chamber makes it difficult to evaluate the spatial variability of vineyard water status. As an alternative, several authors have suggested using the crop water stress index (CWSI) based on low-cost thermal infrared (TIR) sensors to estimate the MSWP. Therefore, this study aimed to develop a low-cost wireless infrared sensor network (WISN) to monitor the spatial variability of MSWPs in a drip-irrigated Cabernet Sauvignon vineyard under two levels of water stress. For this study, the MLX90614 sensor was used to measure canopy temperature (Tc), and thus compute the CWSI. The results indicated that good performance of the MLX90614 infrared thermometers was observed under laboratory and vineyard conditions with root mean square error (RMSE) and mean absolute error (MAE) values being less than 1.0 °C. Finally, a good nonlinear correlation between the MSWP and CWSI (R2 = 0.72) was observed, allowing the development of intra-vineyard spatial variability maps of MSWP using the low-cost wireless infrared sensor network

    A multi-plot assessment of vegetation structure using a micro-unmanned aerial system (UAS) in a semi-arid savanna environment.

    Get PDF
    Unmanned Aerial Systems (UAS) have emerged as a capable platform for measuring vegetation health, structure and productivity. Products derived from UAS imagery typically have much finer spatial resolutions than traditional satellite or aircraft imagery, allowing the spectral and structural heterogeneity of vegetation to be mapped and monitored with more detail. This study uses UAS-captured imagery from the Chobe Enclave of northern Botswana. Flights were conducted across a gradient of savanna sites classified as grass-, shrub-, or tree-dominated. We compare multiple approaches for extracting woody vegetation structure from UAS imagery and assess correlations between in situ field measurements and UAS estimates. Sensor types were also compared, to determine whether multispectral data improves estimates of vegetation structure at the expense of spatial resolution. We found that leveraging multispectral reflectance information aids in crown delineation, areal estimates, and fractional cover of woody and non-woody vegetation within the study area. Comparisons are made between two crown delineation techniques, and the efficacy of each technique within savanna environments is discussed. The methods presented hold potential to inform field sampling protocols and UAS-based techniques for autonomous crown delineation in future dryland systems research. These findings advance research for field and remote sensing analyses assessing degradation in heterogeneous landscapes where varying vegetation structure has implications on land use and land functions

    Assessing berry number for grapevine yield estimation by image analysis: case study with the white variety “Encruzado”

    Get PDF
    Mestrado em Engenharia de Viticultura e Enologia (Double degree) / Instituto Superior de Agronomia. Universidade de Lisboa / Faculdade de Ciências. Universidade do PortoNowadays, yield estimation represents one of the most important topics in viticulture. It can lead to a better vineyard management and to a better organization of harvesting operations in the vineyard and in the cellar. In recent years, image analysis has become an important tool to improve yield forecast, with the advantages of saving time and being non-invasive. This research aims to estimate the yield of the white cultivar ‘Encruzado’ using visible berry number counted in the images aquired at veraison and near harvest, using a manual RGB camera and the robot VINBOT. Images were collected in laboratory and in the field at the experimental vineyard of the Instituto Superior de Agronomia (ISA) in Lisbon. In the field images the number of visible berries per canopy meter was higher at maturation than at veraison, respectively 72.6 and 66.3. Regarding the percentage of visible berries, 30.2% where visible at veraison and 24.1% at maturation. Concerning percentage of berries occluded by other berries it was observed 28.7% at veraison and 24.3% at maturation. Regression analysis showed that the number of berries in the image explained a very high proportion of bunch weight variability, R2=0.64 at veraison and 0.91 at maturation. Regression analysis also showed that the canopy porosity explained a very high proportion of visible berries variability, R2=0.81 at veraison and 0.88 at maturation. The obtained regression models underestimated the yield with an higher error at veraison than at maturation. This underestimation indicates that the use of visible berry number on the images to estimate yield still needs further research to improve the algorithms accuracyN/

    Yield sensing technologies for perennial and annual horticultural crops: a review

    Get PDF
    Yield maps provide a detailed account of crop production and potential revenue of a farm. This level of details enables a range of possibilities from improving input management, conducting on-farm experimentation, or generating profitability map, thus creating value for farmers. While this technology is widely available for field crops such as maize, soybean and grain, few yield sensing systems exist for horticultural crops such as berries, field vegetable or orchards. Nevertheless, a wide range of techniques and technologies have been investigated as potential means of sensing crop yield for horticultural crops. This paper reviews yield monitoring approaches that can be divided into proximal, either direct or indirect, and remote measurement principles. It reviews remote sensing as a way to estimate and forecast yield prior to harvest. For each approach, basic principles are explained as well as examples of application in horticultural crops and success rate. The different approaches provide whether a deterministic (direct measurement of weight for instance) or an empirical (capacitance measurements correlated to weight for instance) result, which may impact transferability. The discussion also covers the level of precision required for different tasks and the trend and future perspectives. This review demonstrated the need for more commercial solutions to map yield of horticultural crops. It also showed that several approaches have demonstrated high success rate and that combining technologies may be the best way to provide enough accuracy and robustness for future commercial systems

    The data concept behind the data: From metadata models and labelling schemes towards a generic spectral library

    Get PDF
    Spectral libraries play a major role in imaging spectroscopy. They are commonly used to store end-member and spectrally pure material spectra, which are primarily used for mapping or unmixing purposes. However, the development of spectral libraries is time consuming and usually sensor and site dependent. Spectral libraries are therefore often developed, used and tailored only for a specific case study and only for one sensor. Multi-sensor and multi-site use of spectral libraries is difficult and requires technical effort for adaptation, transformation, and data harmonization steps. Especially the huge amount of urban material specifications and its spectral variations hamper the setup of a complete spectral library consisting of all available urban material spectra. By a combined use of different urban spectral libraries, besides the improvement of spectral inter- and intra-class variability, missing material spectra could be considered with respect to a multi-sensor/ -site use. Publicly available spectral libraries mostly lack the metadata information that is essential for describing spectra acquisition and sampling background, and can serve to some extent as a measure of quality and reliability of the spectra and the entire library itself. In the GenLib project, a concept for a generic, multi-site and multi-sensor usable spectral library for image spectra on the urban focus was developed. This presentation will introduce a 1) unified, easy-to-understand hierarchical labeling scheme combined with 2) a comprehensive metadata concept that is 3) implemented in the SPECCHIO spectral information system to promote the setup and usability of a generic urban spectral library (GUSL). The labelling scheme was developed to ensure the translation of individual spectral libraries with their own labelling schemes and their usually varying level of details into the GUSL framework. It is based on a modified version of the EAGLE classification concept by combining land use, land cover, land characteristics and spectral characteristics. The metadata concept consists of 59 mandatory and optional attributes that are intended to specify the spatial context, spectral library information, references, accessibility, calibration, preprocessing steps, and spectra specific information describing library spectra implemented in the GUSL. It was developed on the basis of existing metadata concepts and was subject of an expert survey. The metadata concept and the labelling scheme are implemented in the spectral information system SPECCHIO, which is used for sharing and holding GUSL spectra. It allows easy implementation of spectra as well as their specification with the proposed metadata information to extend the GUSL. Therefore, the proposed data model represents a first fundamental step towards a generic usable and continuously expandable spectral library for urban areas. The metadata concept and the labelling scheme also build the basis for the necessary adaptation and transformation steps of the GUSL in order to use it entirely or in excerpts for further multi-site and multi-sensor applications

    Crop assessment and monitoring using optical sensors

    Get PDF
    Doctor of PhilosophyDepartment of AgronomyV. P. Vara PrasadCrop assessment and monitoring is important to crop management both at crop production level and research plot level, such as high-throughput phenotyping in breeding programs. Optical sensors based agricultural applications have been around for decades and have soared over the past ten years because of the potential of some new technologies to be low-cost, accessible, and high resolution for crop remote sensing which can help to improve crop management to maintain producers’ income and diminish environmental degradation. The overall objective of this study was to develop methods and compare the different optical sensors in crop assessment and monitoring at different scales and perspectives. At crop production level, we reviewed the current status of different optical sensors used in precision crop production including satellite-based, manned aerial vehicle (MAV)-based, unmanned aircraft system (UAS)-based, and vehicle-based active or passive optical sensors. These types of sensors were compared thoroughly on their specification, data collection efficiency, data availability, applications and limitation, economics, and adoption. At research plot level, four winter wheat experiments were conducted to compare three optical sensors (a Canon T4i® modified color infrared (CIR) camera, a MicaSense RedEdge® multispectral imager and a Holland Scientific® RapidScan CS-45® hand-held active optical sensor (AOS)) based high-throughput phenotyping for in-season biomass estimation, canopy estimation, and grain yield prediction in winter wheat across eleven Feekes stages from 3 through 11.3. The results showed that the vegetation indices (VIs) derived from the Canon T4i CIR camera and the RedEdge multispectral camera were highly correlated and can equally estimate winter wheat in-season biomass between Feekes 3 and 11.1 with the optimum point at booting stage and can predict grain yield as early as Feekes 7. Compared to passive sensors, the RapidScan AOS was less powerful and less temporally stable for biomass estimation and yield prediction. Precise canopy height maps were generated from a CMOS sensor camera and a multispectral imager although the accuracy could still be improved. Besides, an image processing workflow and a radiometric calibration method were developed for UAS based imagery data as bi-products in this project. At temporal dimension, a wheat phenology model based on weather data and field contextual information was developed to predict the starting date of three key growth stages (Feekes 4, 7, and 9), which are critical for N management. The model could be applied to new data within the state of Kansas to optimize the date for optical sensor (such as UAS) data collection and save random or unnecessary field trips. Sensor data collected at these stages could then be plugged into pre-built biomass estimation models (mentioned in the last paragraph) to estimate the productivity variability within 20% relative error

    Generation of a Land Cover Atlas of environmental critic zones using unconventional tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore