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ABSTRACT 

A MULTI-PLOT ASSESSMENT OF VEGETATION STRUCTURE USING A 

MICRO-UNMANNED AERIAL SYSTEM (UAS) IN A SEMI-ARID 

SAVANNA ENVIRONMENT 

Nicholas E. Kolarik 

March 27, 2019 

Unmanned Aerial Systems (UAS) have emerged as a capable platform for measuring 

vegetation health, structure and productivity. Products derived from UAS imagery typically 

have much finer spatial resolutions than traditional satellite or aircraft imagery, allowing the 

spectral and structural heterogeneity of vegetation to be mapped and monitored with more 

detail.  This study uses UAS-captured imagery from the Chobe Enclave of northern 

Botswana. Flights were conducted across a gradient of savanna sites classified as grass-, 

shrub-, or tree-dominated. We compare multiple approaches for extracting woody vegetation 

structure from UAS imagery and assess correlations between in situ field measurements and 

UAS estimates. Sensor types were also compared, to determine whether multispectral data 

improves estimates of vegetation structure at the expense of spatial resolution. We found that 

leveraging multispectral reflectance information aids in crown delineation, areal estimates, 

and fractional cover of woody and non-woody vegetation within the study 

area.  Comparisons are made between two crown delineation techniques, and the efficacy of 

each technique within savanna environments is discussed.  The methods presented hold 

potential to inform field sampling protocols and UAS-based techniques for autonomous 

crown delineation in future dryland systems research. These findings advance research for 
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field and remote sensing analyses assessing degradation in heterogeneous landscapes where 

varying vegetation structure has implications on land use and land functions. 
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INTRODUCTION 

A thorough understanding of land functions is integral in the development of 

mutually beneficial relationships among human and non-human systems. Provisions of goods 

and services by the land system (Verburg et al. 2009), land functions not only provide insight 

to current measurable results of land cover change, but the trajectory of land cover dynamics 

as well. As models in land change science become increasingly more complex, remote 

sensing of the environment remains a fundamental necessity in efforts towards understanding 

the roles of various species and surficial features present (Verberg et al. 2004; Olson et al. 

2008). 

Savannas represent an important type of dryland system, covering one fifth of the 

Earth’s land mass and supporting large wildlife and human populations (Herrerro, 

Southworth, and Bunting 2016). In the Kavango-Zambezi Trans-frontier Conservation Area 

(KAZA) of Southern Africa, altered precipitation regimes and increases in population of 

humans, livestock, and wildlife can potentially affect land function, and may exhibit positive 

feedbacks leading to degradation of the landscape (Van Langevelde et al. 2002, Ward 2005). 

These among other processes contribute to a phenomenon known as “bush encroachment”, a 

pattern of degradation in semi-arid environments that interrupts the non-equilibrium nature of 

savannas towards a steady-state of shrub domination (Roques, O’Connor, and Watkinson 

2001, Van Auken 2009). Though not always linked to functional degradation (Eldridge et al. 

2011), a shift towards a shrub-dominated equilibrium has potential implications tied to how 

the land functions in the various systems present in terms of biodiversity and resource 

availability (Roques, O’Connor, and Watkinson 2001, Van Auken 2009). 
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Satellite data are widely accepted and have long been used in remote sensing analyses 

to provide objective landscape level vegetation estimates relating to productivity, biomass, 

and extent of cover. Where early work relied on field measurements, satellite remote sensing 

platforms allow for analysis of systematic repeat measurements over large swaths of land 

with regards to vegetation phenology and productivity, albeit at a much larger spatial grain 

(Avery and Burkhartn 2001; Zhang et al. 2003; Feng et al. 2007). Beyond these abilities, 

however, satellite data driven analyses tend to fall short when structural characteristics are of 

interest, as spatial resolutions of these data traditionally are inherently coarse and contain 

pixels with mixed cover (Hermann and Tappan 2013). What is more, coincidental seasonal 

greening cycles have been found to complicate the differentiation between herbaceous and 

woody covers (Apko 1997). Ecological differences in woody species establishment can be 

difficult to resolve, but important when assessing functional properties of vegetation cover 

(Brown, Valone, and Curtin 1997). 

Difficulties and inconsistencies associated with using imagery collected via satellite 

also include atmospheric effects, cloud cover, temporal restraints, and seasonality. These can 

be minimized through the collection of data with Unmanned Aerial Systems (UAS) with 

flexible timing, in desirable conditions, and at low altitudes (Zhang and Kovacs 2012). 

Furthermore, low altitude flights produce centimetric ground sampling distances that are 

much finer than data collected via satellite platforms. Flight parameters in the field, 

controlled by the researcher, enable data collection tailored to the needs of specific projects, 

delivering fine-scale imagery unobfuscated by limitations typical of data collected by sensors 

aboard traditional satellite or platforms (Anderson and Gaston 2013). 
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Three-dimensional structural information on the environment derived from remote 

sensing platforms has shifted scientific understanding of landscape phenomena and 

conditions. UAS surveys provide a substitute for early methods of ecosystem structure data 

collection that are both time consuming and labor intensive (Avery and Burkhartn 2001, 

Zahawi et al. 2015). This more logistically flexible method collects fine-resolution imagery 

at low-cost via UAS and has been shown to be effective for quantifying vegetation structure 

as well as estimating fractional vegetation coverage (Cunliffe, Brazier and Anderson 2016; 

Mayr et al. 2017). Despite these advances, a gap remains in the understanding of the utility of 

the spectral range of sensor payloads can be extended into the near infrared (700 nm to 900 

nm). Combined with the spatial grain and temporal fidelity of UAS data, increased spectral 

detail could further enable the ability to extract structural information for a given landscape. 

Reflectance measured in the near-infrared (NIR) portion of the electromagnetic 

spectrum is widely known to be useful for estimating the health and coverage of productive 

vegetation (Tucker 1979; Curran 1980). NIR reflectance values are shown to be highly 

sensitive to plants with active chlorophyll, which are excellent reflectors of energy at 

wavelengths between 700 nm and 900 nm (Jensen 2016). NIR reflectance is also regularly 

used for ratio-based proxies of greenness and vegetation health such as the normalized 

difference vegetation index (NDVI), but the red edge (680 - 750 nm) has also been shown to 

be very descriptive of active chlorophyll content in remote sensing analyses though utilized 

less often (Filella and Penuelas 1994). While this transition from the red to NIR is sensitive 

to changes in phenology and productivity across space and time, there have been mixed 

results with the comparison of red edge and NIR reflectance in some applications (Adelabu, 

Mutanga and Adam 2014; Kross et al. 2014). The differences between these portions of the 
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spectrum prove be useful for distinguishing within-flight differences in vegetation 

characteristics but also complicate standardization and comparison between flights. 

Regardless of these difficulties, reflectance in the red edge and NIR are known to be variable 

between species and seasons and could prove very useful for extraction of structural 

information in a highly heterogeneous landscape in terms of species and structure. 

While ground observations are frequently relied upon to provide estimates of 

vegetation and other land cover used for validation of satellite data (Foody 2015), these are 

often constrained measures that could possibly be improved through a consistent, systematic 

workflow that incorporates unmanned aerial systems (UAS) and high spatial resolution data. 

UAS have potential to mitigate the challenges of linking ground-based observations typically 

used to validate satellite data and the contrast in resolution can thus be quantified and scaled 

in a systematic manner that does not rely on human estimates (Marx, McFarlane, and 

Alzahrani 2017). Structural information derived from UAS imagery can also provide grounds 

upon which to estimate relative value of vegetation present in terms of structure for in 

systems of interest. Although it is not uncommon for studies to utilize data from UAS 

platforms in this manner (Dandois and Ellis 2010; Mayr et al. 2017), incorporation of data in 

the NIR is less explored. 

At spatial resolutions typically collected via satellite remote sensing platforms, 

vegetation community structure is very difficult to resolve (Lambin 1999). This challenge 

impedes analysis of land cover modification, where more subtle changes occur on a given 

landscape. Though more common than land conversions, these changes are not captured by 

typical land cover classification at relatively coarse resolutions characteristic or traditional 
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remote sensing analysis and are prone to misinterpretation (Lambin 1999; Herrmann and 

Tappan 2013). 

Savanna communities are typified by a gradation of various states of woody cover. 

Tree, shrub, and grass covers are determined by many factors that dictate various disturbance 

regimes such as fire and herbivory (Van Langevelde et al. 2002), precipitation inputs 

(Gaughan et al. 2011; Gibbes et. al 2014; Pricope et al., 2015) as well as soil properties and 

nutrient availability dictated by interactions between and among vegetation types (Scholes 

and Archer 1997; Roques, O’Connor, and Watkinson 2001). It is the interplay of these four 

determinants: fire, herbivory, soil properties, and water availability that dictate vegetation 

structure in semi-arid savannas globally (Scholes and Archer 1997). Distinguishing between 

various savanna states using two-dimensional satellite imagery is difficult and the potential 

for integrating UAS methods for quantifying extents of varying stages of woody cover is 

intriguing and should be thoroughly explored. 

Unmanned Aerial Systems in Remote Sensing 

Aerial photographs historically have been collected from various platforms including 

kites and balloons prior to the integration use of manned aircrafts, which provided distinct 

advantages in terms of maneuverability and weather dependence (Eisenbeiß 2009). However, 

while potentially valuable for analysis of surficial features, these data are expensive to collect 

through methods that require a piloted vehicle. 

UAS are now frequently employed in a wide variety of operations and are capable of 

performing many tasks with no risk to the pilot. Described by Colomina and Molina (2013), 

the largest UAS are typically reserved for tactical military applications, using complex 
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avionics and operate at high altitudes and endurance. A step below tactical drones, these 

authors categorize vehicles from 150 kg to 1250 kg as “close-short-medium-range UAS” 

typically used in the private sector for various remote sensing applications and operating at a 

range between 10 km and 70 km. These larger platforms are discussed in detail in a 

comprehensive review of UAS by Eisenbeiß (2009). For the sake of brevity, and applicability 

to the goals of this research, mini- and micro-UAS are the systems of interest, as off the shelf 

systems will occupy this space. These mini and micro-UAS are typified by lower endurance 

and range and are restricted to lower airspaces than those aforementioned. Defined by the 

Federal Aviation Administration (FAA) as unmanned vehicles less than 55 pounds and 

greater than 0.5 pounds, many of these vehicles are available for service off the shelf, and 

often employed by both hobbyists and researchers. Miniaturization of global positioning 

systems (GPS), inertial measurement units (IMU), and general avionics make micro-UAS 

highly accessible and reasonable tools for collecting aerial imagery for scientific analysis 

(Colomina and Molina 2013). 

Photogrammetry: Structure from Motion with Multi-View Stereo 

Photogrammetric techniques allow for the derivation of three-dimensional estimates 

from sets of overlapping two dimensional photos. Advances in computational efficiency in 

recent years enable for efficient and realistic representations of surficial features through the 

production of three-dimensional point clouds analogous to the output of Light Detection And 

Ranging (LiDAR) surveys, which represent the current standard in three-dimensional surface 

estimation (Smith, Carrivick, and Quincey 2013). This process of establishing keypoints in 

multiple overlapping photos to produce a sparse point cloud (Structure from Motion (SfM)) 
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and subsequently densifying the point cloud (Multi-View Stereo (MVS)) has been applied in 

many fields and provides safe, relatively inexpensive opportunities for extraction of detailed 

surface and structural information. 

As a result of the combined field and software processing appeal, applications for off 

the shelf systems combined with low to moderately priced sensors have provided fine-

resolution datasets used for studies in geomorphology (Tonkin et al. 2014; d’Oleire-Oltmann 

et al. 2012), archaeology (Georgopoulos et al. 2016), ecology (McDowall and Lynch 2017), 

forestry (Torresan et al. 2017), precision agriculture (Mathews and Jensen 2013; Chen et al. 

2017), and infrastructure maintenance (Hollerman and Morgenthal 2013) among others. In 

each of these studies, point clouds produced using photogrammetric workflows provide 

three-dimensional information at a fraction of the cost of a LiDAR survey and have been 

shown to be comparable to those produced via LiDAR (Jensen and Mathews 2016; Dandois 

and Ellis 2010). While some attention has been given to integrating multispectral data into 

LiDAR analyses to improve individual tree crown delineation (Zhen, Quackenbush, and 

Zhang 2016; Lindberg and Holmgren 2017), SfM-MVS point cloud generation is typically 

performed on images captured in the visible portion of the spectrum only. However, 

affordable multispectral sensors such as Micasense products (RedEdge and Parrot Sequoia) 

open the door for the integration of data collected into the NIR portion of the electromagnetic 

(EM) spectrum into low-cost micro-UAS studies. 

Existing Methods for Individual Tree Crown Delineation 

Aerial photography has been used for individual tree crown delineation (ITCD) since 

the mid-20th century, but automated techniques did not begin to emerge until the mid-1980’s 
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(Zhen, Quackenbush, and Zhang 2016). Until an archive of high-resolution satellite products 

was established through platforms such as QuickBird, WorldView, and IKONOS, the only 

imagery useful for the task of ITCD was aerial imagery due to its inherent advantage in 

ground sampling distance (GSD) (Ke and Quackenbush 2011). Aerial platforms are used 

extensively in early ITCD research efforts (Gougeon 1995), some including multispectral 

sensors such as the Multi-detector Electro-optical Imaging Sensor (MEIS-II) (Gougeon and 

Moore 1988) and even hyperspectral data from the Compact Airborne Spectrographic Imager 

(CASI) (Anger, Mah, and Babey 1994).  

Methods for ITCD using passive input data such as these require image segmentation 

techniques that are classified as either boundary-based or region growing image 

segmentations (Carleer, Debeir, and Wolff 2005). While both focus on differentiation 

between objects of interest (tree crowns) and the background, the algorithms are inherently 

different based upon the approach. In short, boundary-based algorithms are predicated on 

delineating objects using dissimilarity properties, where region-growing techniques begin 

with seeds and iteratively group neighboring pixels based on similarities between them 

(Zhang 1997).  

 Recent efforts in ITCD, however, focus on data collected by active sensors such as 

LiDAR due to the highly detailed individual tree information provided by multiple returns 

from emitted light (Ke and Quackenbush 2011). Zhen, Quackenbush, and Zhang (2016) 

report with a thorough review of ITCD research from 1990 to 2015 that 52.9% of the related 

literature within this time period focuses on active sensors, with another 11.0% using 

combined active and passive data. This proliferation within the discipline demonstrates the 

acceptance of active sensors and resultant point clouds as the benchmark for structural 
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vegetation information, however these data are often cost-prohibitive and not always 

practical to implement (Ke and Quackenbush 2011). 

Due to the inherent cost of LiDAR data, point clouds produced using 

photogrammetric techniques have been explored as cost-effective alternatives and 

concomitant products have been compared directly to those from LiDAR sensors. Wallace et 

al. (2016) demonstrate that comparable estimates of upper canopy are produced using both 

SfM and LiDAR point clouds, however SfM falls short when trying to resolve sub-canopy 

conditions. LiDAR pulses are able to penetrate the upper canopy and return information 

about the understory that is occluded in aerial photos used for photogrammetric techniques. 

This drawback aside, SfM-MVS point clouds produced in this 2016 study show the ability to 

provide useful and reliable structural information at more reasonable cost than LiDAR. 

Implications and Importance 

Quantifying vegetation structure in the context of KAZA is important for 

understanding land function in human and non-human systems. The gradation of trees, 

shrubs, and grasses in savanna environments is a prime example of a dynamic ecosystem 

highly dependent on four determining factors: herbivory, precipitation, soil properties, and 

fire (Scholes and Archer 1997). Land use and management in recent years have shown to 

strongly influence the vegetation trajectory, particularly fire and grazing disturbance regimes 

which are often closely related to the positive feedback phenomenon known as bush or shrub 

encroachment (Roques et al. 2001). For instance, overgrazing may reduce perennial grasses, 

decreasing fuel loads that would typically increase fire intensity and regulate woody growth 

(Van Langevelde et al. 2002). Subsequently, newly established shrubs and trees have a 
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competitive advantage over grasses in access to available water due to broad root systems 

(Eldridge et al. 2011) and also provide nutrients to themselves via leaf litter in self-catalytic 

manner fostering further woody growth (Scholes and Archer 1997). Increased carbon dioxide 

in the atmosphere is also beneficial to woody vegetation that sequesters carbon and more 

efficiently than herbaceous counterparts when CO2 levels are high (Ward 2005). 

VanLangevelde et al. (2002) explain that this phenomenon is intrinsic to the positive-

feedback mechanisms of grazing and fire in that increases in grazing pressure provide less 

fuel for fires that would prevent woody recruitment. Ward (2005) argues that precipitation 

and increased CO2 in the atmosphere are the main drivers of woody establishment and 

persistence. Alternatively, Stevens et al. (2016) recognize the role of local extinctions of 

megafauna keystone species such as the African elephant (Loxodonta africana) in the 

establishment of woody vegetation that would be prime fodder. Brown, Valone, and Curtin 

(1997) argue that a climatic shift is responsible for shrub encroachment in the American 

southwest, where grazing and fire pressures are far less influential. While specific causes and 

interactions may differ between savanna sites, altered determinants are leading to observed 

differences in woody cover in savannas across the globe. 

The savanna state in any particular zone determines how the land will function 

ecologically as well as what resources are available for human use. Organisms that rely on 

grasses and trees have been extirpated when land shifts to a shrub encroached state (Brown, 

Valone, and Curtin 1997). Similarly, shrub dominated savanna cannot be utilized for grazing, 

are difficult to cultivate, and do not provide significant amounts of timber, fuelwood, or 

polewood needed by established human populations. In both systems, an increase in shrub 

cover can decreases biodiversity devaluing the land in an ecological sense as well as in terms 
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of resource availability for human use (Roques, O’Connor, and Watkinson 2001, Van Auken 

2009). 

Effectively quantifying vegetation structure at the scale provided by the UAS holds 

potential to extend measurements to products with greater spatial and temporal extents. It 

would be reasonable to then analyze these measurements in the context of varying 

institutions, management tools, and policies across KAZA. This effort could help to elucidate 

the practices that minimize degradation and quantify their bounds. Conservation efforts 

globally struggle to minimize biodiversity loss while maintaining or improving upon 

livelihoods of those that live closest to protected areas (DeFries et al. 2007). The greater crux 

of balancing conservation and development is too great for this thesis; however, the first step 

in a multi-scalar remote sensing effort can be explored by assessing correlations of in situ 

measurements of woody vegetation with estimates made from UAS derived SfM-MVS point 

clouds across the vegetation gradient that defines savanna environments. 

Research Objectives and Hypotheses 

1. Analyze woody vegetation estimates derived from point clouds produced using SfM-

MVS in tree-, shrub-, and grass-dominated savanna sites. Hypothesis 1: Estimates of 

woody cover are simplest in grass dominated sites and sites with grassy understory. 

2. Compare point clouds produced using imagery captured in discrete spectral bands

into the NIR portion of the spectrum with those produced using RGB imagery for 

delineation of woody individuals in various savanna environments. Hypothesis 2: 

Spectral bands into the NIR portion of the spectrum (730 nm to 810 nm) will provide 
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better estimates of vegetation structure than RGB point clouds despite a trade-off in 

spatial resolution. 

 

3. Evaluate various methods used in LiDAR studies for individual tree crown 

delineation using SfM-MVS point clouds with respect to height and crown area 

estimates against in situ measurements. Hypothesis 3: Region growing segmentation 

will more closely resemble in situ measurements and canopy cover than a boundary-

based segmentation technique.  

 

This study asks these questions stratified across sites representative of savanna with 

different classes of dominant vegetation in order to determine how structural composition 

affects estimation of vegetation characteristics using SfM-MVS. It also addresses whether 

data captured from the NIR portion of the electromagnetic spectrum might improve estimates 

of height and crown area. These are derived from SfM-MVS point clouds from data collected 

within tree-, shrub-, and grass-dominated savannas. These questions directly relate to ways in 

which vegetation structure affects and informs land function, as degradation in the savanna 

context can be related directly to structure rather than productivity in many contexts (Roques, 

O’Connor, and Watkinson 2001; Van Langevelde et al. 2002; Pricope et al. 2015). Through 

establishing the efficacy of derived UAS datasets for describing structural characteristics of a 

region of interest, estimates provided through the workflow to follow can be considered more 

consistent and systematic than traditional reference sample collection. Potentially, this 

method could both corroborate other more subjective measures relied upon in the field as 
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well as leverage NIR information to discern structural classes and inform remote sensing 

analyses at greater temporal and spatial scales. 
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DATA AND METHODS 

Study Area 

Flights were conducted in a northern Botswana area known as the Chobe Enclave 

(Figure 1). Within Chobe Enclave, five village centers Kachikau, Kavimba, Mabele, 

Parakarungu, and Satau comprise what is known as the Chobe Enclave Community Trust 

(CECT); a community based organization heavily reliant on tourism activities. Villages in 

CECT experienced varying levels of population growth between the 2001 and 2011 censuses, 

with an overall growth of 13.66% (Table 1; Botswana 2011). Communal lands within CECT 

are utilized for grazing cattle and subsistence agriculture (Pricope et al. 2015), but due to 

poor soils and generally arid climate, agricultural yields are low.  A 2015 study found, 

howeverm that cattle to outnumber humans by more than two to one in CECT (Stone 2015). 

Village 2001 2011 % Change 

Kachikau 881 1356 53.92 

Kavimba 519 549 5.78 

Mabele 696 773 11.06 

Parakarungu 806 845 4.84 

Satau 730 605 -17.12 

Total 3,632 4,128 13.66 

Table 1. Total population of CECT villages in 2001 and 2011 censuses (Botswana 2011). 

To the north, the Chobe River and its floodplain separate five main village centers 

from Namibia, while to the south lies the Chobe Forest reserve. Beyond the forest lies Chobe 

National Park (CNP) the second largest park in southern Africa (10,566 km2) and widely 
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known for its wealth of wildlife. Vegetation tends to differ dependent upon elevation, with a 

gradation of woodlands and scrub found in higher elevations while alluvial soils within the 

floodplain are characterized by grassier terrain. Typical of savanna environments, 

heterogeneous vegetation cover is common, with multiple species present in various stages of 

succession as determined by various disturbances. Precipitation in CECT is typically limited 

to 650mm/year and is seasonally variable due to the shifting ITCZ, with wet season 

occurring from October to April (Nelleman, Moe, and Rutina 2002). 

Figure 1. Chobe Enclave and vicinity. UAS flights, n = 9 
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Data 

Platform and sensors 

 A micro-quadcopter, the DJI Mavic Pro, was chosen for this study and outfitted with 

two sensors. Attached as a stock feature to the Mavic quadcopter is a three-axis, gimbal-

stabilized 12-megapixel RGB camera (DJI, Shenzhen, China), and below the Parrot Sequoia 

multispectral sensor was mounted with the corresponding sunlight irradiance sensor mounted 

above (Micasense, Seattle, WA, USA). At only 135 grams for the sunshine sensor, camera, 

and cable, the four band multispectral sensor collects narrowband imagery in green, (530-570 

nm), red (630-670 nm), red-edge (730-740 nm), and near-infrared (NIR) (770-810 nm) 

portions of the EM spectrum while well within the payload capacity of the DJI Mavic Pro. 

Red-edge and NIR sensors are ideal for vegetation measurements, due to the properties of 

active chlorophyll that make healthy leaf structures excellent reflectors of energy in this 

portion of the spectrum (Jensen 2016). Flown leveraging autonomous capabilities of the DJI 

Mavic Pro, 200 x 200 meter double-grid patterns at 100 meter altitude were navigated with 

the on-board GPS and IMU via the Pix4Dcapture application on a smart device. Photos were 

captured to ensure 85% frontal overlap and 70% side overlap at minimum, sampling the 

study area according to recommendations for UAS image acquisition in the SfM-MVS 

workflow (Pix4D 2017). Flights were conducted at midday to minimize shadow effects. 

Though flight times did vary slightly, the use of the sunlight irradiance sensor mounted 

above the aircraft acts to normalize differences in light and reflectance between flights 

(Pix4D 2017).  
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Data Processing 

Several photogrammetric software options exist to employ the SfM-MVS approach 

all generating comparable output products suitable for geographic analyses (Colomina and 

Molina 2014). For this research, the Pix4Dmapper version 3.4.31 software package was 

chosen to process images collected from both sensors (Pix4D, Lausanne, Switzerland). 

Sensor consideration and ease of operation were influential in this decision, as the 

Pix4Dmapper is a package designed in collaboration with Micasense, developers of the 

Parrot Sequoia. Furthermore, the software is well documented and provides a graphical user 

interface that is not as technically demanding as many of the open-source options. In 

choosing Pix4D, we also benefit from the technical support network associated with 

proprietary software. While open source options exist and generate comparable products, the 

support and capabilities specific to Pix4Dmapper helped guide our decision. 

Optimal processing parameter values were given great consideration before final 

values were set. Through testing of isolated parameters, deviations from the default settings 

were determined to improve the quality of the output products. Parameters were optimized 

with an emphasis on producing the most accurate output products at the highest visual quality 

despite computational intensity (Table 2). After experimentation, these were the parameter 

settings we found to generate point clouds and resulting products most useful to our analysis. 
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Parameter Rationale Requirements/ Considerations 

Alternative 

calibration 
Optimized for aerial nadir images with accurate 

geolocation. 
Requires 75% of images to 

contain spatial information. 

Full 

image 

scale 

The original image size is used when computing 

additional 3D points. More points computed than 

with half image scale, especially in areas where 

features can be easily matched. 

Computationally intense- may 

require four times more RAM than 

half image scale (default). 

Window matching 

size- 9x9 

The larger window improves accuracy for densified 

points in original images. Suggested for terrestrial 

images. 
Slower processing 

Triangulation 

raster interpolation 

Based on Delauney triangulation, output rasters are 

more detailed than inverse distance weighting 

products. 

Noise potential due to less 

smoothing 

 

Table 2. Pix4D processing parameters differing from default values. Parameters were adjusted to maximize 

quality and effectively capture as much structural detail regardless of computational cost. 
 

Images captured with each sensor of the Parrot Sequoia were sorted by band to ensure 

that output products were independent of all other bands of spectral data. Resulting in high 

fidelity point clouds generated for each band of Sequoia data and a point cloud for the Mavic 

RGB data, outputs could be tested against in situ measurements to determine if additional 

multispectral information is useful in measuring vegetation structure in various ways 

throughout the study area. Geolocation of each point cloud was performed within the SfM 

workflow utilizing location information of captured photos. Location data stored in EXIF 

tags collected via on-board navigation system of the Mavic as well as the internal GPS within 

the Parrot Sequoia (and illumination sensor), allow for point cloud placement in three-

dimensional space without the use of ground control (Turner, Lucieer, and Wallace 2014). 

This method, while known to be inferior to methods incorporating intensive ground control 

survey, provides reasonable location accuracy in a small fraction of the time required for an 

intensive ground control survey (Padró et al. 2019). 
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At the time of capture, radiometric reflectance images were collected with the 

intention of performing radiometric calibration. However, many of the calibration images 

collected in the green band were considered by the software to be “overexposed”, disabling 

this feature. As directed by contact with Pix4D engineers, relative within flight surface 

reflectance was the best option if trying to incorporate all bands into analysis. As was the 

case, this study relies only on the illumination sensor to normalize within flight reflectance 

observed on the surface. 

Two-dimensional output products generated from point clouds as a result of Pix4D 

processing include a digital surface model (DSM), digital terrain model (DTM), 

orthomosaics and reflectance maps for RGB images and each individual Sequoia sensor 

respectively. Mavic RGB imagery resulted in 2D products with a mean of 3.46 cm ground 

sampling distance (GSD), and Sequoia products a mean of 10.41 cm GSD. DTMs, due to the 

nature in which they are estimated, are generated with a pixel size of five times the GSD by 

default. Derived from these were products to further inform our knowledge of the vegetation 

structure and nuance, such as a canopy height model calculated simply by subtracting the 

DTM from the DSM (Figure 2) (Levick and Rogers 2008). The Pix4D environment also 

generates a normalized difference vegetation index (NDVI) map from reflectance map 

values, though not utilized in this study. 
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Figure 2. Canopy Height Model (CHM) calculation. DSM - DTM = CHM 

Products generated for each sensor were then identically subsetted with a tool-chain 

developed using ArcGIS tools through the Python 2.7 environment (ESRI, Redlands, CA). 

Guided by the GSD calculator provided by Pix4D, we determined a buffer of 45 meters in 

every direction from each image geotag would provide suitable image overlap and 

undistorted estimations of reflectance and spatial information (Pix4D 2017). Leveraging the 

geotags stored in EXIF data for each image, a point was created for each photo and was 

buffered to 31.8 meters. A quadrilateral boundary was then drawn surrounding the buffered 

areas which was then used to subset each dataset. This conservative buffer accounts for 

instances where measurements from points to the bounded box are not perpendicular and 

could possibly exhibit distortion due to insufficient overlap.  All Sequoia CHM were co-

registered (georectified) to Mavic RGB data to compensate for minor differences in 

geolocation due to global navigation satellite system (GNSS) hardware differences in the 

absence of ground control (Figure 3). 
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Figure 3.  Workflow diagram. Images for each band of the Parrot Sequoia multispectral sensor are 

processed individually for comparison against the RGB data as a baseline. A transformation model for 

each dataset was applied to each CHM derived from SfM-MVS processing. Delineation methods are 

then applied to each CHM, enabling assessment of methods, site types, and input data. 
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Field data collection 

Sites were opportunistically sampled and stratified to ensure each category of savanna 

cover, grass-, shrub-, and tree-dominated sites were equally represented. Three sites within 

each category were identified to serve as reference samples to conduct a more intensive 

analysis of vegetation structure.  Following a modified Center for the study of Institutions, 

Population, and Environmental Change (CIPEC) protocol for collection of reference sample 

information with regards to vegetation cover, areas were chosen that represent 90 x 90 meter 

areas with homogeneous vegetation cover. Typically, the field analyst would collect a point 

sample using a GNSS device and provide estimates of ground and vegetation cover. These 

point estimates are then used to later classify the pixels within this area, useful for areas such 

as those in the Chobe Enclave with heterogeneous ground and vegetation cover. It is 

emphasized that these estimates are not a replacement for rigorous ecological sampling 

(Randolph et al. 2005), but are meant to serve as means to describe vegetation structure and 

ground cover that have implications in human and non-human systems. 

Since we aim to use UAS estimates to provide a more objective measure of 

vegetation cover, a sampling scheme was devised to randomize the cover within each site 

that would be used to compare UAS derived estimates. Guided loosely by the Gibbes et al. 

(2010) implementation of the Walker (1976) transect protocol, a random angle was chosen at 

each site using a stopwatch to determine the azimuth from the flight location for each random 

transect. This transect was then walked in both directions from center, stopping in ten meter 

intervals (Figure 4). At each stop, the nearest woody individual within a five meter radius 

was located and stem location was recorded using a Garmin R1 GNSS receiver (Garmin, 

Olathe, KS, USA). Heights were estimated by taking the mean of three height measurements 
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taken using a Leica Disto 810 rangefinder and through measurements in four cardinal 

directions, crown radial measurements were recorded for each stem. This process resulted in 

ten opportunities at each reference site from which to collect height and canopy extent 

measurements to compare to UAS estimates, totaling 30 opportunities for each savanna 

vegetation cover category. 

Location and crown metrics were then converted into .shp format using a toolchain in 

the R programming environment utilizing the gdal library. This process allowed for in situ 

measurements translated into a shapefile to be directly compared to output vectors from 

analyses described in the following sections. Due to low location accuracy of the GNSS 

receiver relative to the spatial grain of the imagery collected, in situ crowns were moved by 

hand to lie directly over the individuals measured in the field. 

Figure 4. Field sampling protocol guided loosely by Gibbes et al. (2010). A random angle used dictated the 

direction of the transect walked. Along the transect, stops were made in ten meter intervals where the nearest 

woody individual within a five meter radius was located and height and crown estimates were recorded. 
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Delineation methods 

As the two pervasive methods for image segmentation, this study chose to compare 

outputs between implementations of a boundary-based and region growing algorithms. Using 

identical input data, methodological comparisons were made using the implementations 

written for analysis of LiDAR point clouds in the R package lidR.  

 

Watershed Segmentation 

Densified point clouds for the RGB Mavic imagery as well as each narrowband 

sensor of the Sequoia were processed using the aforementioned Pix4DMapper workflow. To 

produce 2D canopy height models (CHM) for each data set, the DTM was subtracted from 

the DSM as described in figure 2. Each CHM was then analyzed using an implementation of 

a watershed segmentation algorithm within the lidR package. This exemplifies a boundary-

based algorithm, identifying strong gradients throughout datasets using thresholds provided 

through the use of the second derivatives exhibiting both magnitude and direction of change 

(Jin 2012). Through this local aggregation of cells via the definition of boundaries, rasterized 

maps for each data set within each site were produced that could then be converted to 

polygon vectors. Heights extracted from the CHM and crown areas of each estimated tree 

vector could then be used for proceeding analysis. 

 

Region Growing Segmentation 

Similar to the watershed algorithm, CHMs were analyzed using the lidR package to 

delineate individual tree crowns using a region-growing implementation. In contrast to the 

aforementioned tool, the itcSegment algorithm (known as dalponte2016 in the lidR package) 
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is considered to be a “tree-centric” approach (Coomes et al. 2017) that relies on similarity 

properties rather than within image differences to create output vectors for each estimated 

tree crown. A low-pass filter is applied to a rasterized CHM to reduce noise among the data. 

Local maxima are then identified to determine likely stem locations within the study region. 

This algorithm also leverages height to variably shift search extents for crown edges 

dependent upon local maxima. Known as variable window filtering (VWF), this process 

adjusts expectations for crown extent based upon heights of detected crowns to mitigate 

problems of under-segmentation for small trees and shrubs and over-segmentation for taller 

trees that possibly exhibit multiple maxima (Nunes et al. 2017). To fit a model to be used for 

VWF, height and crown data were used from both grass- and tree-dominated sites. A 

decision made to omit shrub-dominated sites seeks to remove woody individuals that are less 

representative of those found among all study sites and to eliminate the possibility of 

erroneous field measurements where individuals sampled were very difficult to access and 

measure. Due to the highly skewed nature of these data, the data required a square root 

transform to fulfill the assumption of normality among residuals, resulting in equation (1). 

y = 0.857 + 0.426h + 0.053h2 (1) 

User defined thresholds help guide the region-growing process, while neighboring 

pixels are searched to determine canopy extent. Two growing thresholds used are user 

defined values between 0 and 1. The first is the value at which a pixel is added to a region if 

its height is greater than the tree height multiplied by this value. The second is the value 

where a pixel is added to a region if its height is greater than the current mean height of the 
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region multiplied by this value (Dalponte and Coomes 2016). These parameters were 

iteratively tested using an RGB point cloud as the baseline to determine those producing 

estimates that best represent woody individuals in the study sites. A qualitative assessment of 

all parameter combinations in intervals of 0.2 revealed that the lowest thresholds for both 

parameters were most inclusive and least fragmented leading to crown estimates that more 

accurately capture the field observations (Figure 5). 

Figure 5.  Results of parameter testing using the Dalponte 2016 region growing implementation. Lowest values 

(0.2, 0.2) best capture crowns in their entirety and deemed most useful for describing vegetation structure in this 

environment. 

Height Thresholding 

Representing a simpler approach, each CHM was analyzed using height information 

alone without consideration of neighboring pixels. Following Fisher et al. (2014), all pixels 

with height values greater than three meters were classified as “tree”, from one to three 

meters as “shrub”, and below one as “other”. This process serves as a baseline to which the 

other more complicated methods can be compared with regards to structural classes. Results 

of this method cannot, however, be compared to in situ measurements for the delineation of 

individual crowns. 
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Assessment 

The first test of the efficacy of the previous delineation methods requires an 

assessment of disagreement globally. Following Pontius and Millones (2011), quantity 

disagreement (2, 3) and allocation disagreement (4, 5) for category g and J categories across 

each reference site. These measures of disagreement are meant to describe performance of 

delineation of structural vegetation classes. Using GIS, 100 random points in each study area 

were generated and visually classified using the high resolution orthoimagery collected with 

the micro-UAS. Land covers included “tree”, “shrub”, or “other”. The boundary-based and 

region-growing methods can then be objectively tested against the simple height threshold 

layer. Using a confusion matrix, these measures seek to describe the disagreement between 

estimates and the analyst-classified data in a straightforward manner. As Pontius and 

Millones (2011) suggest, the kappa family of indices are inadequate statistics for describing 

agreement in land cover analysis for several reasons. Kappa can lead to overestimation of 

chance agreement leading to underestimation of classification accuracy (Foody 1992), which 

begs the question if chance evaluation is even necessary (Turk 2002). 

Equation (2) calculates the quantity disagreement for category g. In this equation, the 

proportion of category g in the comparison map (algorithm output) is subtracted from the 

proportion of category g in the reference map (analyst classified). Equation (3) is responsible 

for overall quantity disagreement for J categories present in the study area. Since an 

overestimation in one category always results in underestimation of another, the sum of all 

quantity disagreements must be divided by two. Allocation disagreement is calculated in 

equation (4) for an arbitrary category g, where the first argument of the minimum function is 

the omission of category g and the second accounts for the commission. Because omission 
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and commission occur in pairs, this function must be multiplied by two and the pairing is 

limited by the minimum of the two proportions. Just as equation (3) must account for double 

counts as the summary statistic, equation (5) similarly sums allocation agreements for J 

categories and divides by two. Equation (6) is the total disagreement calculated by summing 

overall quantity and allocation disagreements. 

𝑞𝑔 = |(∑ 𝑝𝑖𝑔
𝐽
𝑖=1 ) − (∑ 𝑝𝑔𝑗

𝐽
𝑗=1 )| (2) 

𝑄 =  
∑ 𝑞𝑔

𝐽
𝑔=1

2
(3) 

𝑎𝑔 = 2𝑚𝑖𝑛[(∑ 𝑝𝑖𝑔
𝐽
𝑖=1 ) − 𝑝𝑔𝑔,(∑ 𝑝𝑔𝑗

𝐽
𝑖=1 ) − 𝑝𝑔𝑔 ] (4) 

𝐴 =  
∑ 𝑎𝑔

𝐽
𝑔=1

2
(5) 

D = Q + A (6) 

Regarding differences within sites and vegetation groups, various outputs were 

compared using Spearman’s Rank correlation coefficient (Equation 7). Rather than 

regressing, this statistic was chosen to describe agreement between datasets that are known to 

be error-prone. In situ measurements are estimates themselves and used as the baseline to 

compare UAS estimates in terms of agreement rather than assess the ability to predict one 
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from the other. Individuals from each of the polygon output layers were selected through an 

automated tool-chain implemented in the Python 2.7 environment using arcpy tools (ESRI, 

Redlands, CA) (Figure 6). Where the recorded in situ stem location fell within a delineated 

crown, that crown served as the representative for comparison. Otherwise, the nearest 

delineated crown that intersected or lied within the in situ crown measurement was used. 

𝑟𝑠 = 1 −  
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
(7) 

Figure 6. Algorithm result estimate selection tool-chain for in situ comparison implemented using the arcpy 

package in a Python 2.7 environment. A relationship between algorithm estimates and in situ measurements is 

created using the union tool. A selection query on these features establish where the in situ and union feature 

IDs are identical. The selected features and attributes are then joined to the in situ stems layer, which now 

contains algorithm estimates as well as in situ measurements.  
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RESULTS 

Data Processing Results 

In Situ Measurements 

The field sampling protocol provided opportunities for ten in situ representatives at 

each site. Table 3 provides descriptive statistics for all in situ measurements for height and 

crown area of samples at grass-, shrub-, and tree-dominated sites. As expected, height 

metrics consistently increase with increasing woody cover, as do mean crown areas. Plot 

heterogeneity is also captured through these statistics, with F4003 (shrub-dominated) 

exhibiting the highest degree of height variability (CV = 2.77) and A2201 (tree-dominated) 

the greatest variability in terms of crown area (CV = 2.12). 

Due to the highly variable nature of savanna environments in terms of species and 

woody density, samples did not always contain ten individuals for comparison, particularly in 

grassy sites where there is often little woody vegetation. Conversely, where the nearest 

individual within the five meter radius was a member of the understory, we also measured 

the individual with the occluding canopy, leading to the varying n sizes observed in Table 3. 
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Height Crown 

Site n 
Mean 

height 
Max 

height 
SD CV 

Mean crown 

area 
Max 

crown 
SD CV 

Grass 

A2200 7 2.13 4.35 1.35 0.64 5.95 27.98 10.01 1.68 

F4000 6 0.82 1.36 0.27 0.34 1.61 5.09 1.84 1.14 

N1004 4 2.44 5.76 2.26 0.93 6.28 21.62 10.25 1.63 

Shrub 

A2002 10 2.10 3.09 0.61 0.29 4.20 13.81 3.64 0.87 

F4003 10 2.21 16.69 6.12 2.77 9.89 41.22 16.37 1.66 

K101 10 2.04 2.52 0.64 0.31 22.33 54.08 16.36 0.73 

Tree 

A2100 8 12.60 18.00 4.41 0.35 162.42 463.35 136.72 0.84 

A2102 11 5.00 11.59 4.15 0.83 24.45 74.74 31.51 1.29 

A2201 10 5.18 14.46 4.03 0.78 46.88 314.20 99.32 2.12 

Table 3.  Summary of in situ measurements for each study site flown. It was not uncommon for fewer than 10 

individuals to be recorded (particularly in grass-dominated sites) despite 10 transect stops due to the highly 

variable nature of the vegetation in these savannas. Where nearest individuals were obfuscated in the 

understory, the overstory individual metrics were also recorded and included in analysis. 

Point cloud densities 

Point clouds and concomitant two-dimensional products resulting from Pix4D 

processing vary between sensors, bands, and sites (Table 4). Most notably, the largest 

differences are observed between sensors. RGB point clouds range from 154.22 points/m2 

(A2102, tree-dominated) to 362.08 points/m2 (F4000, grass-dominated) and discrete band 

point clouds from the Parrot Sequoia range from 9.49 points/m2 (A2102, tree-dominated, 

green band) to 16.25 points/m2 (A2200, grass-dominated, NIR band).  

Similarly, GSD varies across all data with the largest differences between sensors. 

RGB products exhibit GSDs ranging from 3.32 cm (N1004, grass-dominated; F4003, shrub-

dominated) to 3.59 cm (A2002, shrub-dominated) while multispectral data ranges from 10.15 

cm (A2100, tree-dominated, NIR band) to 10.65 cm (F4000, grass-dominated, green band). 

Resolution differences can be seen in figure 7. 
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Figure 7. Examples of orthomosaics for grass- (A,D,G,J), shrub- (B,E,H,K), and tree-dominated sites (C,F,I,L). 

Panels A-F represent RGB data collected via the stock Mavic sensor and G-L are false color composites 

assembled from discrete bands (green, red, near infrared) of Parrot Sequoia data. 
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  DJI Mavic Parrot Sequoia 

  RGB GRE RED REG NIR 

 Site points/m2 

GSD 

(cm) points/m2 

GSD 

(cm) points/m2 

GSD 

(cm) points/m2 

GSD 

(cm) points/m2 

GSD 

(cm) 

Grass 

A2200 237.65 3.54 14.76 10.44 15.66 10.35 15.12 10.37 16.25 10.33 

F4000 362.08 3.39 14.53 10.65 13.91 10.56 14.61 10.54 14.65 10.55 

N1004 297.05 3.32 14.04 10.64 13.47 10.56 12.71 10.62 13.04 10.59 

Shrub 

A2002 252.27 3.59 14.03 10.27 14.41 10.18 14.3 10.24 14.53 10.17 

F4003 253.3 3.32 11.41 10.49 11.57 10.41 11.16 10.47 11.74 10.39 

K101 208.88 3.35 9.68 10.57 9.6 10.52 9.96 10.49 10.32 10.44 

Tree 

A2100 202.69 3.58 10.71 10.31 10.41 10.26 11.82 10.21 12.43 10.15 

A2102 154.22 3.58 9.49 10.48 9.63 10.41 9.46 10.39 9.77 10.35 

A2201 189.71 3.52 9.97 10.39 10.12 10.32 10.18 10.36 10.79 10.3 

 max 362.08 3.59 14.76 10.65 15.66 10.56 15.12 10.62 16.25 10.59 

 min 154.22 3.32 9.49 10.27 9.6 10.18 9.46 10.21 9.77 10.15 

 

Table 4. Point cloud densities and GSD for each dataset from all sites flown.  

 

Quantity and Allocation Disagreement 

Results of the disagreement assessment between methods reveal the simplest method, 

height thresholding, as the method with the least disagreement between expert classified 

points and model estimations (D = 0.12) (Table 5). However, in grass-dominated sites, the 

region growing implementation minimized all error metrics for woody classified points (Q = 

0.003, A= 0, D = 0.003) Table 6). Among shrub-dominated sites, the simple height threshold 

minimized errors of quantity error and total error across all three classes. In tree-dominated 

sites, the region-growing algorithm exhibits the lowest quantity error of the three methods for 

the “tree” class, with thresholding and watershed methods superior for “shrub” and “other” 
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classes respectively (Table 6). Total disagreement in tree-dominated sites is minimized in 

“tree” and “shrub” classes by the thresholding method, while the watershed method exhibits 

slightly lower total disagreement among points classified as “other”. 

Q A D 

Watershed 0.141 0.027 0.168 

Dalponte 0.119 0.041 0.16 

Threshold 0.077 0.043 0.12 

Table 5. Quantity, allocation, and disagreement totals for pooled outputs. 

When sites are pooled, the tree-centric approach shows lowest quantity disagreement 

among points classified as “tree” (Q = 0.024, Table 8), but the simple height threshold has 

lowest values for this metric in the “shrub” and “other” classes (Q= 0.043, Q= 0.077, Table 

9) as well as overall quantity disagreement (Q=0.0765, Table 7).
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Watershed Estimate 

Tree Shrub Other SUM 

Observed 

Tree 0.152 0 0.02 0.172 

Shrub 0.079 0.02 0.063 0.162 

Other 0.004 0.001 0.66 0.666 

SUM 0.236 0.021 0.743 1 

Q 0.063 0.141 0.078 0.141 

A 0.04 0.002 0.011 0.027 

Table 7. Confusion matrix and quantity and allocation disagreements for pooled watershed outputs. Bolded 

values denote lowest error of all methods. 

Table 8. Confusion matrix and quantity and allocation disagreements for pooled region-growing (Dalponte 

2016) outputs. Bolded values denote lowest error of all methods. 

Threshold Estimate 

Tree Shrub Other SUM 

Observed 

Tree 0.129 0.022 0.021 0.172 

Shrub 0.01 0.091 0.061 0.162 

Other 0 0.006 0.66 0.666 

SUM 0.139 0.119 0.742 1 

Q 0.033 0.043 0.077 0.077 

A 0.02 0.056 0.011 0.044 

Table 9. Confusion matrix and quantity and allocation disagreements for pooled height threshold outputs. 

Bolded values denote lowest error of all methods. 

Dalponte2016 Estimate 

Tree Shrub Other SUM 

Observed 

Tree 0.138 0 0.034 0.172 

Shrub 0.057 0.041 0.064 0.162 

Other 0.002 0.002 0.661 0.666 

SUM 0.197 0.043 0.76 1 

Q 0.024 0.119 0.094 0.119 

A 0.069 0.004 0.009 0.041 
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The simple height thresholding method proved to be the best method for minimizing 

total and quantity disagreements globally using RGB CHM as input data (Table 5). As was 

the case, this method was extended to CHMs created from each band of the Parrot Sequoia 

multispectral sensor as well. Pooled site data were used to compare visually classified points 

for “other”, “shrub”, and “tree” classes to estimates of point clouds based on height threshold 

outputs (Table 9). Quantity disagreement is minimized in all classes within the three site 

types for NIR data (Q = 0.068, Q = 0.04, and Q =0.028 for “other”, “shrub” and “tree” 

classes respectively). Among points classified as “shrub”, the RGB data show lowest 

allocation and overall disagreements (A = 0.056, D= 0.099), but in both other classes, “other” 

and “tree”, data collected beyond the visible portion of the spectrum best show lowest 

disagreement with visually classified points (Dreg = 0.085, Dnir = 0.044 for “other” and 

“tree” classes respectively). When aggregating all classes, the point-rich RGB data show the 

lowest overall error quantified (D = 0.12, Table 10), while NIR data show lowest quantity 

disagreement (Q = 0.69) and red the lowest allocation disagreement (A = 0.039). Vegetation 

coverage visualizations using the NIR data are shown in figure 8. 

 

 Other Shrub Tree 

 Q A D Q A D Q A D 

RGB 0.077 0.011 0.088 0.043 0.056 0.099 0.033 0.02 0.053 

Green 0.09 0.009 0.099 0.053 0.071 0.124 0.037 0.022 0.059 

Red 0.138 0.002 0.14 0.077 0.062 0.139 0.061 0.013 0.074 

Red Edge 0.069 0.016 0.085 0.04 0.071 0.111 0.029 0.022 0.051 

NIR 0.068 0.029 0.097 0.04 0.076 0.116 0.028 0.016 0.044 

 

Table 10. Quantity and allocation disagreement totals of pooled outputs for each band with respect to points 

classified as “other”, “shrub”, or “tree”. 
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Q A D 

RGB 0.077 0.044 0.12 

Green 0.09 0.051 0.141 

Red 0.138 0.039 0.177 

Red Edge 0.069 0.055 0.124 

NIR 0.068 0.0605 0.129 

Table 11. Quantity and allocation disagreement totals for pooled band outputs. 

Figure 8.  Vegetation cover classification across grass- (panels A-C), shrub- (panels D-F), and tree-dominated 

sites (panels G-I) utilizing the simple height threshold method and the NIR CHM. 
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Height and Crown Area Estimates 

Due to low n values in some of the study sites, namely the grass-dominated sites, data 

were pooled for analysis. With both the watershed and dalponte2016 algorithms, highest 

overall n values were observed using RGB point clouds, identifying 56 of 76 woody 

individuals measured in the field with each method. Among Sequoia bands, the results were 

consistent between methods with respect to the number of in situ measurements represented 

by estimates. NIR point clouds identified 53 for each method, red-edge 51 and 50, green 48 

and 46, and red 45 and 41 for watershed and dalponte2016 methods respectively (Figures 8 

and 9). 

All point clouds exhibit statistically significant correlations with in situ measurements 

for both methods (p < 0.05) but vary with respect to mean absolute errors (Figure 9). 

Between methods, all sequoia bands show decreased MAE when using the region-growing 

implementation versus the watershed segmentation, while the RGB data shows an increase in 

this error metric. The lowest MAE values were observed in the red edge data for the 

watershed segmentation (MAE = 2.18m) and red using the tree-centric approach (MAE = 

1.55m). 

Crown areas were log transformed in an attempt to normalize the errors among in situ 

measured individuals that varied greatly in size. All estimate outputs from both methods 

prove to be statistically significant (p < 0.05) with respect to agreement with in situ measured 

crown areas, but again show major variation in MAE. As captured by the plots, the watershed 

segmentation both under and over-predicted crown areas at greater magnitudes than did the 

region-growing implementation (Figure 10, Figure 11). Every point cloud shows a 

substantial decrease in MAE when using the tree-centric approach. RGB output for the 
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watershed segmentation exhibits the lowest error of all watershed estimates (MAE = 

104.54m2), but also the smallest difference in MAE between methods. Tree-centric crown 

area estimates using discrete spectral band input data all decreased MAE drastically 

compared to RGB data. The red point cloud shows the lowest value for this metric (MAE = 

49.68m2) as well as the strongest correlation with in situ measurements (r = 0.71). 
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Figure 9. Comparisons of in situ height measurements and height estimates from the watershed segmentation 

(panels a - e) and dalponte2016 region-growing segmentation (panels f - j) for respective point clouds. Sample 
sizes reflect individuals estimated by the algorithm that were also measured in situ. 
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Figure 10. Log/log comparisons of in situ height measurements and crown area estimates from the 
watershed segmentation (panels a - e) and dalponte2016 region-growing segmentation (panels f - j) for 
respective point clouds. Sample sizes reflect individuals estimated by the algorithm that were also measured 

in situ. 
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Figure 11. Visual comparison of watershed (boundary-based)  (panels A, B, C) and dalponte2016 (region-

growing) (panels D, E, F) algorithms as implemented from the lidR package. Note the difference between 

algorithms in the ability to distinguish between neighboring individuals. Also of note- the difficulty presented 

by Acacia tortilis stands (panels C and F).  
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DISCUSSION  

Quantity and Allocation Disagreement 

Results of the quantity and allocation disagreement analysis indicate that all methods 

perform well in grass-dominated sites but degrade as woody cover increases. This supports 

the hypothesis of the first research question in that grass-dominated sites with woody 

individuals that are easily distinguished by the human eye are also well delineated in an 

automated fashion. This result is consistent with efforts seeking to delineate discrete trees on 

a landscape (Bonnet, Leisin, and Lejeune 2017; Alonzo et al. 2018) as opposed to those in 

closed canopy conditions (Coomes et al. 2018). 

The tree-centric region-growing algorithm outperformed the other methods in these 

sites despite the simple height thresholding proving to be more effective across all sites. This 

success may be attributable to the discrete nature of the boundaries of the individuals found 

in these sites, but also to the shortcomings of the height-thresholding method. With fewer 

opportunities, it is easily understood that the simplest method will fall short in terms of 

including the entire tree crown due to crown edges measured below three meters in height. 

The strength of the tree-centric approach is its inclusive nature of operation, iterating over 

neighboring cells to determine crown extent from a local maximum. This process emerges in 

the differences in quantity disagreement, as it is expected that the threshold will predict 

higher “shrub” proportions in these sites. 

Despite the strength of the region-growing technique in the grass-dominated sites, the 

results imply that a simple height-threshold is the most robust method of those tested in this 
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study for estimating woody cover and should continue to be used as a baseline of comparison 

(Fisher et al. 2014). Although the simplest design, this method should be favored for studies 

interested in quantifying extents of woody cover. However, the potential of slight over-

estimates in the shrub class should be noted, as edges of woody growth that function as trees 

below the user-defined threshold will contribute to shrub estimates. 

With regards to quantity and allocation disagreement metrics, Warrens (2015) 

reminds users that values and application must be considered within the context of each 

study. Despite the contextual nature of any disagreement or accuracy metric, quantity and 

allocation disagreements lend direct insight to sources of error rather than focusing on overall 

correctness or possibility of agreement due to change as does overall Kappa. For this 

research, allocation error is likely subject to bias introduced via the visual classification be 

used to effectively compare either methods or input data based on the subjectivity involved 

with the random point classification. For instance, when points were visually classified as 

either “tree” or “shrub”, heights of the individuals were largely unknown and classification is 

based only on expert opinion. Further, a woody individual can look and function as a shrub, 

but exceed three meters in height, leading to an automated classification as a tree, which 

would insert bias into both measures of disagreement. 

With the possibility of analyst bias in the allocation error metric, results of the 

analysis of input data should be revisited, as the overall disagreement may be skewed leading 

to misinterpretation of results. With this possibility established, the hypothesis with regards 

to the second research question that data beyond the visible portion of the spectrum into the 

NIR can provide better estimates of vegetation structured can be considered. Height 

thresholding quantity disagreements for NIR (Q = 0.068) and red edge (Q = 0.069) data are 
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both lower than that of the RGB (Q = 0.077) data despite the point clouds being far less 

dense (Table 3). While all three output products are likely acceptable, the data into the NIR 

portion of the spectrum performed marginally better with maximum point densities (reg max 

= 15.12 points/m2, nir max = 16.25 points/m2) being approximately 1/10 that of the 

minimum RGB point density (154.22 points/m2). 

While 100 meters has been shown to be the most appropriate flight altitude for RGB 

data (Fraser and Congalton 2018), this may not be the case for the multispectral bands of the 

Parrot Sequoia, and flights at a lower altitude may allow for more increased keypoint 

matching and denser point cloud production beyond the visible portion of the spectrum. This 

hypothesis would need to be tested, as Fraser and Congalton (2018) show point matching 

decreased at lower altitudes while flying a fixed wing aircraft. They attribute this decrease to 

lack of control over flight speed, however, which can be controlled with the use of a multi-

rotor microcopter such as the DJI Mavic Pro, as similar vehicles have been shown to be 

effective for flight at lower altitudes (Dandois, Olano, and Ellis 2015). 

 Taking point densities into consideration, data in the NIR portion of the spectrum 

could be considered valuable in for this work. If multispectral sensors emerge in the near 

future that allow for similar GSD as collected in the visible portion of the spectrum, these 

results could help guide their use and enhance results for SfM studies seeking to derive point 

clouds that quantify vegetation structure across a landscape of interest. 

  

Crown Height and Area Comparisons  

In a more conspicuous manner, estimates using data beyond the visible portion of the 

spectrum more closely resemble heights of in situ crown measurements in terms of MAE 
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using both boundary-based and region growing methods (Figure 9). These differences are 

open to interpretation, however, due to the varying sample sizes between bands of data. The 

RGB data with denser point clouds and finer GSD estimated more if the in situ individuals 

measured, but show higher error metrics and lower correlations. Further investigation is 

required to determine the individuals omitted from the Sequoia datasets, but judging from the 

scatter in Figure 9, it is likely coarser Sequoia products were unable to detect the smallest of 

the in situ shrubs (and sometimes forbs) measured. Moreover, a closer look could reveal that 

some (if not all) of individuals identified using RGB data are simply artifacts of both the 

sampling design as well as the automated workflow. A larger adjacent modeled crown could 

easily extend beyond its true extent to overlap its smaller neighboring shrub, which would be 

identified by the automated workflow outlined in Figure 6. This error source could also 

explain many of the height over-predictions among the scatter. 

The comparison of methods in terms of crown area are fairly straightforward as 

shown in figures 10 and 11. The boundary-based algorithm often struggles to capture true 

canopy extent which manifests as both under- and over-segmentations. With no constraints 

on extent, continuous shrub and tree covers will not be further subdivided and is often 

represented by one large aggregation of individuals. Conversely, in using the same method 

within the same scene, individuals exhibit multiple maxima, leading to over-segmentation 

and under-prediction of crown extent. This exercise exemplifies that the simpler boundary-

based method is inadequate for extracting information about individuals in a highly 

heterogeneous savanna landscape, favoring the tree-centric approach that incorporates a 

variable window filter (VWF) for detecting maxima and ultimately limiting crown extent. 
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Despite the incorporation of the VWF, the region-growing implementation is similarly 

confused in canopy edge areas (Figure 11c, 11f). 

The log/log transformations of the crown area plots highlight the shortcomings of the 

region-growing algorithm (Figure 10). Results are improved substantially from the watershed 

segmentation likely due to its integration of the VWF with a model fit from in situ 

measurements, but error in the low end of the scatterplot is particularly high compared to 

other residuals. Again, over-predictions are common and likely due to aggregations of 

multiple smaller shrubs or occlusion and false crown identification. With the tree-centric 

approach, despite lowest MAE observed among the red estimates (MAE = 49.68 m2), this 

band of data also only identified 41 of 76 individuals measured. The NIR and RGB estimates 

are similarly erroneous (MAEnir = 66.65m2, MAErgb = 68.48m2) but also represent larger 

proportions of the in situ measured crowns with 53 and 56 respectively. 

It is clear that the region-growing implementation better represents crown areas than 

the boundary-based watershed algorithm, confirming the hypothesis from the third research 

question, but it cannot be concluded that either implementation is performing particularly 

well in the highly heterogeneous savanna sites of the Chobe Enclave. The vegetation varies 

greatly both among and within sites in terms of species and succession leading to difficulties 

fitting a model that can account for variation present. The most successful VWF applications 

are conducted on homogenous plots or plots with very few dominant species (Alonzo et al. 

2018, Popescu and Wynne 2004), but consistent with this study, troubles are documented 

when trying to utilize this method in diverse plots (Coomes et al. 2017) and in areas with 

very dense vegetation (Nunes et al. 2017). 
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Specific species, such as Acacia tortilis further complicate the use of automated 

approaches for delineation of individual tree crowns. These difficulties can be inferred from 

the estimated crowns shown in tree-dominated site A2100 (Figure 11 c, 11f). In these 

instances, it would be next to impossible to delineate these crowns even manually with expert 

knowledge due to the continuous nature of the crown coverage. In the field, coppiced stems 

often led to observed entanglement between crowns, where multiple stems would grow apart 

and fill in the canopy between neighboring crowns growing in a similar manner. In these 

cases, it is impossible to distinguish which crown belongs to which stem location recorded in 

the field from aerial imagery alone. 

To avoid trying to choose a single metric of interest, indices should be explored using 

these metrics and parameterized based on a specific research question to encapsulate all 

metrics accordingly. For instance, if trying to determine the best data suited for polewood 

availability, MAE or tree heights and counts may be given greater weights than crown area as 

typically trees larger than three meters in height are sought for this use (Neke, Owen-Smith, 

N. and Witkowski 2006). Conversely, fuelwood availability may also rely on accurate crown 

metrics, which in turn would favor the use crown area (Ramírez-Mejía, Gómez-Tagle, and 

Ghilardi 2018), in which case the crown area MAE would be assigned a greater weight. 

Ecologists may be interested in quantifying habitat suitability which varies greatly dependent 

upon species of interest. Special needs would then inform the index model and utilized 

accordingly for ecological applications (Anderson and Gaston 2013). In this manner the 

utility of various methods and discrete spectral bands can be leveraged to answer particular 

questions of interest. 
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Further, the method described in Figure 6 used to identify the modeled representative 

for in situ measured crowns could be modified to account for instances of over-segmented 

crowns, which could enrich the results depending on the task. An example would be to 

identify the delineated sub-polygon within the measured crown with the height of greatest 

magnitude if interested in identifying maximum tree heights. Since stems are known to be 

irregular, the stem location on the ground is rarely indicative of the location of observed 

crown maxima. The method could be similarly adjusted for estimating crown area as well. 

Through selection of the largest delineated sub-polygon that lies within or intersects the 

crown of interest, a polygon that better represents crown dimensions would be identified than 

by simply identifying the sub-polygon where the stem location was recorded in instances of 

multiple maxima detection. 

Limitations and Future Directions of Research 

The exploratory approach taken in this thesis, while informative, leads to questions 

regarding methods, data collected, and application of multispectral UAS data. Beginning 

with the absence of an intense ground control survey - methods for conducting and 

incorporating ground control are well documented and utilized (Padró et. al 2019; Agüera-

Vega, Carvajal-Ramírez, and Martínez-Carricondo 2017). For this study, it is possible that if 

applied properly, ground control points (GCP) could have resolved any possible intrinsic 

sensor differences with regards to results. Point matching in homogenous portions of the site 

could possibly be improved and any possible sensor differences normalized through the use 

of an independent survey instrument at multiple locations within the site. 
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While the use of survey grade GCP could have improved results of this study, the 

larger aim is not dependent upon revisit of any of the particular study sites flown. With the 

goal of providing a quick, objective alternative to traditional reference sample collection, a 

time-expensive ground control protocol would be counterproductive and hinder the ability to 

collect necessary information efficiently. For future work the use of minimal GCPs should be 

considered, particularly for instances where GNSS malfunction could have major processing 

implications. Problems associated with accuracy of GNSS information as part of the ground 

control survey would come to bear, however, as differential correction methods are limited in 

this study area due to the absence of a reliable base station. 

Also omitted from data processing in this study was proper radiometric calibration. 

Although a target was used to capture images with known reflectance values in the field, an 

error arose with “oversaturation” in the green band which prohibited a full radiometric 

calibration on the data collected. As is the case, results are limited to within flight relativity 

and reflectance between flights/sources cannot be directly compared without the use of a 

ratio-based calculation. Any use of these data for scaling to other products with greater 

extents or direct comparisons with other flights must rely on these ratio-based indices alone, 

unless an irradiance normalization procedure is used as tested in Tu et al. (2018). In this 

study, irradiance information is extracted from image EXIF data to adjust digital numbers 

based on the image with the lowest irradiance coefficient. Since these data are available, a 

novel method such as this one should be explored as a possible alternative to mainstream 

techniques. 

This research has benefited greatly from support and ease of SfM-MVS 

implementation through the Pix4D environment, particularly for learning to handle, process, 



52 
 

and interpret data using a SfM-MVS approach. Though a very powerful and approachable 

toolset, it is likely that outputs with the current software implementation cannot be 

considered as final products without further processing. In a comprehensive review of UAS 

applications to date, Singh and Frazier (2018) highlight many shortcomings of recent and 

past studies. Of these, the bidirectional reflectance effect is cited as rarely considered, yet 

agreed to be of greater influence as resolution increases (Marceau, Howarth, and Gratton 

1994; Lelong et al. 2008; Tu et al. 2018). Unfortunately, this study has also overlooked 

bidirectional reflectance correction and it is unclear whether Pix4D image calibration goes 

beyond correcting intrinsic camera vignetting effects to take bidirectional reflectance into 

consideration. Tu et al. (2018) operationalize the Walthall method (Walthall et al. 1985) and 

while they found that the correction helped reduce variability among reflectance 

measurements, particularly in avocado trees with smaller foliage, mixed results suggest 

further research and examination is necessary. The mention of such a correction in the 

context of leaf size leads to the question of determining the appropriate GSD for quantifying 

crown dimensions, especially with the known problems associated with decreasing resolution 

and bidirectional reflectance. 

Beyond the limitations of the processing methods used, individual parameter values 

chosen could also have an undesired effect on results of this work. In particular, this study 

incorporated Delaunay triangulation interpolation when constructing the DSM with the 

rationale that this method possibly allows for the estimation of understory characteristics. In 

reality, this decision may be prohibiting best delineation efforts with a “pitting” effect 

observed in single crowns resulting in the termination of region growing with the 

dalponte2016 implementation. This effect could be addressed through the use of a smoothing 
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filter or by incorporation of a smoother interpolation method such as inverse distance 

weighting. 

Although the aim was to collect data close to solar noon to reduce various 

illumination effects, the larger goal of flying as many sites as possible during a short field 

season would not allow for all imagery to be collected in identical solar conditions. Moving 

forward with these data, efforts should be focused on trying to normalize these outputs as 

flights strictly at solar noon were logistically impossible in the timeframe at hand. 

Lastly, the field sampling protocol designed for collection of vegetation 

measurements within study sites was guided loosely by the Gibbes et al. (2010) 

implementation of the Walker (1976) transect protocol. With the goal of random collection of 

vegetation samples in mind, this method seems to have captured the variability well within 

and between sites. Where the sampling scheme fell short, however, is in the small sample 

sizes. As a result, site could not be used as a factor of analysis in due to low n values and an 

intensive sampling scheme within a single site of each type could possibly have yielded a 

more robust dataset. Following an ecological sampling approach, sample sizes could be 

increased by incorporating measurements all of woody individuals with stems of a given 

diameter at breast height within a given distance as well as all seedlings and saplings within a 

micro-subplot (Popescu, Wynne, and Nelson 2002). While these more traditional forestry 

methods would increase sample sizes within plots, measures of heterogeneity that typifies 

savannas may be lost, as these methods are designed for homogenous plots for forest 

inventory. 
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CONCLUSIONS 

This study shows the potential for leveraging NIR data for quantifying vegetation 

structure in highly heterogeneous environments such as the semi-arid savannas of Southern 

Africa. Despite the relatively coarse GSD associated with the data collected by the Parrot 

Sequoia, results indicate that data into the NIR portion of the EM spectrum estimate 

vegetation structure as well or better than data with greater spatial detail collected across the 

visible portion of the spectrum. Also shown through this work is the utility of small off-the-

shelf systems for collection of valuable data attainable in a cost- and time-effective manner. 

Micro-UAS are increasing in the ease of application and should be considered by land 

managers globally as a potential method of data collection. What is more, we demonstrate 

that objective estimates of vegetation coverage can be derived from imagery collected with 

micro-UAS and hold great potential for informing analyses at other scales. 

Study area and objectives require careful consideration before development of any 

UAS survey. In the context of semi-arid savannas, familiarity with the study area and/or 

ground observations can help guide decision making for input data used and methods 

employed. This study shows that region-growing techniques are strongest for individual 

crown delineation in all sites flown and also provide better estimates of fractional coverage in 

grass-dominated study sites where trees and shrubs are easily distinguishable. Height 

thresholding techniques provide stronger estimates of fractional coverage in more complex 

study sites where woody vegetation is continuous and in various stages of succession. These 

estimates may be most important, as degradation in terms of bush encroachment can have 

great implications for understanding impacts of disturbance in the context of varying land 

management strategies. 
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In highly complex environments dealing with a myriad of uncertainties surrounding 

resource availability, climate, and usufruct rights, the importance of a strong understanding 

of the current and future states of land cover and function are of great interest. In KAZA, 

vegetation structure across the five member nations could manifest differently with respect to 

direction and magnitude as policy, management, and social systems vary between member 

countries. Establishing ways to balance conservation and livelihoods could hinge on a strong 

understanding of the landscape in terms of resource use and habitat suitability. This 

application of micro-UAS could very well be extended to stakeholder collaboration efforts 

(Cummings et al. 2017), where communities, land managers, and scientists can collect data 

to contribute to a larger effort of understanding the trajectory of land cover change and 

function. 
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APPENDIX  

Code used for processing data can be found in the following locations: 

https://figshare.com/account/home#/projects/61694 

https://github.com/neko1010/multi_plot_assessment 

In these collections Windows batch files can be found used for processing UAS image 

projects identically. Also, Python tools were developed that access ArcGIS functions through 

the arcpy package instead of through the graphical user interface. These tools ensure that all 

processes were executed identically and outputs stored similarly. R code found in the 

repository was largely used to apply LiDAR analyses to the SfM-MVS point clouds 

generated via Pix4D. Other scripts found (either Python or R) are used for a variety of 

applications including plot generations, statistical calculations, and other assessment metrics.  

https://figshare.com/account/home#/projects/61694
https://github.com/neko1010/multi_plot_assessment
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