76 research outputs found

    Metaheuristic-Based Neural Network Training And Feature Selector For Intrusion Detection

    Get PDF
    Intrusion Detection (ID) in the context of computer networks is an essential technique in modern defense-in-depth security strategies. As such, Intrusion Detection Systems (IDSs) have received tremendous attention from security researchers and professionals. An important concept in ID is anomaly detection, which amounts to the isolation of normal behavior of network traffic from abnormal (anomaly) events. This isolation is essentially a classification task, which led researchers to attempt the application of well-known classifiers from the area of machine learning to intrusion detection. Neural Networks (NNs) are one of the most popular techniques to perform non-linear classification, and have been extensively used in the literature to perform intrusion detection. However, the training datasets usually compose feature sets of irrelevant or redundant information, which impacts the performance of classification, and traditional learning algorithms such as backpropagation suffer from known issues, including slow convergence and the trap of local minimum. Those problems lend themselves to the realm of optimization. Considering the wide success of swarm intelligence methods in optimization problems, the main objective of this thesis is to contribute to the improvement of intrusion detection technology through the application of swarm-based optimization techniques to the basic problems of selecting optimal packet features, and optimal training of neural networks on classifying those features into normal and attack instances. To realize these objectives, the research in this thesis follows three basic stages, succeeded by extensive evaluations

    Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    Get PDF
    Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT) for feature extraction, probabilistic principal component analysis (PPCA) for dimensionality reduction, and a random subspace ensemble (RSE) classifier along with the K-nearest neighbors (KNN) algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5×5 cross-validation (CV), the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study

    Pathological Brain Detection by a Novel Image Feature—Fractional Fourier Entropy

    Full text link
    Aim: To detect pathological brain conditions early is a core procedure for patients so as to have enough time for treatment. Traditional manual detection is either cumbersome, or expensive, or time-consuming. We aim to offer a system that can automatically identify pathological brain images in this paper.Method: We propose a novel image feature, viz., Fractional Fourier Entropy (FRFE), which is based on the combination of Fractional Fourier Transform(FRFT) and Shannon entropy. Afterwards, the Welch’s t-test (WTT) and Mahalanobis distance (MD) were harnessed to select distinguishing features. Finally, we introduced an advanced classifier: twin support vector machine (TSVM). Results: A 10 x K-fold stratified cross validation test showed that this proposed “FRFE +WTT + TSVM” yielded an accuracy of 100.00%, 100.00%, and 99.57% on datasets that contained 66, 160, and 255 brain images, respectively. Conclusions: The proposed “FRFE +WTT + TSVM” method is superior to 20 state-of-the-art methods

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming

    Get PDF
    Machine learning algorithms are inherently multiobjective in nature, where approximation error minimization and model's complexity simplification are two conflicting objectives. We proposed a multiobjective genetic programming (MOGP) for creating a heterogeneous flexible neural tree (HFNT), tree-like flexible feedforward neural network model. The functional heterogeneity in neural tree nodes was introduced to capture a better insight of data during learning because each input in a dataset possess different features. MOGP guided an initial HFNT population towards Pareto-optimal solutions, where the final population was used for making an ensemble system. A diversity index measure along with approximation error and complexity was introduced to maintain diversity among the candidates in the population. Hence, the ensemble was created by using accurate, structurally simple, and diverse candidates from MOGP final population. Differential evolution algorithm was applied to fine-tune the underlying parameters of the selected candidates. A comprehensive test over classification, regression, and time-series datasets proved the efficiency of the proposed algorithm over other available prediction methods. Moreover, the heterogeneous creation of HFNT proved to be efficient in making ensemble system from the final population

    ADL-BSDF: A Deep Learning Framework for Brain Stroke Detection from MRI Scans towards an Automated Clinical Decision Support System

    Get PDF
    Deep learning has emerged to be efficient Artificial Intelligence (AI) phenomena to solve problems in healthcare industry. Particularly Convolutional Neural Network (CNN) models have attracted researchers due to their efficiency in medical image analysis. According to World Health Organization (WHO), rapidly developing cerebral malfunction, brain stroke, is the second leading cause of death across the globe. Brain MRI scans, when analysed quantitatively, play vital role in diagnosis and treatment of stroke. There are many existing methods built on deep learning for stroke diagnosis. However, an automatic, reliable and faster method that not only helps in stroke diagnosis but also demarcate affected regions as part of Clinical Decision Support System (CDSS) is much desired. Towards this objective, we proposed an Automated Deep Learning based Brain Stroke Detection Framework (ADL-BSDF). It does not rely on expertise of healthcare professional in diagnosis and know the extent of damage enabling physician to make quick decisions. The framework is realized by two algorithms proposed. The first algorithm known as CNN-based Deep Learning for Brain Stroke Detection (CNNDL-BSD) focuses on accurate detection of stroke. The second algorithm, Deep Auto encoder for Stroke Severity Detection (DA-SSD), focuses on revealing extent of damage or severity of the stroke. The framework is evaluated against state of the art deep learning models such as EfficientNet, ResNet50 and VGG16

    Analysis of the impact of metal thickness and geometric parameters on the quality factor-Q in integrated spiral inductors by means of artificial bee colony technique

    Get PDF
    The goal of this present paper is to design, analysis the influence of the inductor geometrical parameters and the effect of the metal thickness on the quality factor-Q in integrated square spiral inductor using an efficient application of the artificial bee colony (ABC) algorithm. The inductors were optimized at 2.4 GHz to determinate their major geometrical dimensions (sp, w, din…) and their number of turns, for uses in radio-frequency integrated circuits (RFICs). The optimization results are validated by the simulation using an electromagnetic simulator (ADS-Momentum). Using matlab software, the study on the impact of the effect of geometrical parameters and the effect of metal thickness, on the factor of quality-Q of spiral inductors, is shown. We first reported that it is possible to improve Q-factors further by increasing the metal thickness, and in the design of inductor; a compromise must be reached between the value of w, n, sp and din to achieve the desired quality factor-Q and other electrical parameters
    corecore