173 research outputs found

    Elucidating musical structure through empirical measurement of performance parameters

    Get PDF
    The differences between a musical score and an instance of that music in a performance, communicates a performer’s view of the information contained in that score. The main hypothesis in this thesis is that by measuring quantifiable parameters such as tempo, dynamics and motion from live performance, the performer’s interpretation of musical structure can be detected. This will be tested for pieces for which the structure is explicit and obvious, and then used to discover musical structure from looking at patterns of aural and visual performance parameters in performances of more ambiguously structured pieces. This thesis is in two strands. The first part covers the acquisition of multi-modal parameters in piano performance. This will explore current technologies in acquiring MIDI information such as accurate onset timings and key velocities as well as motion tracking systems for measuring general body movements. A new cheap, portable and accurate system for tracking the intricacies of pianists’ finger movement is described as well as methods and tools available for analysis and visualisation of musical data. The second strand of this thesis will explore uses of these capture systems in empirically measuring performance parameters to elucidate musical structure. Two experiments follow which test the hypothesis of detecting musical structure from parameters such as tempo, dynamics and movement, before using these patterns as a basis for discovering structure in performances of the finale of Chopin’s B flat minor sonata. Body movement is discovered as an indicator of phrasing boundaries, which when combined with the measured aural parameters provides interpretations of the performed music. Phrasing boundaries are identified correctly for the control piece (Chopin’s Prelude in A major Op.28, No.7) and consequently for the first test piece (Chopin’s Prelude in B minor Op.28 No.6). The proceeding experiment identifies performers’ style of phrase endings through performances of the control piece and tests them against patterns found in the second test piece (Chopin’s B Flat minor Sonata Finale). Five out of the six performers confirm the musicological hypothesis that bar 5 is not the entry of a new theme but the continuation of the the theme beginning in bar 1

    Reach, a keyboard-based gesture recognition system for live piano sound modulation

    Get PDF
    This paper presents Reach, a keyboard-based gesture recog- nition system for live piano sound modulation. Reach is a system built using the Leap Motion Orion SDK, Pure Data and a custom C++ OSC mapper1. It provides control over the sound modulation of an acoustic piano using the pi- anist’s ancillary gestures. The system was developed using an iterative design pro- cess, incorporating research findings from two user studies and several case studies. The results that emerged show the potential of recognising and utilising the pianist’s existing technique when designing keyboard-based DMIs, reducing the requirement to learn additional techniques

    ESCOM 2017 Book of Abstracts

    Get PDF

    ESCOM 2017 Proceedings

    Get PDF

    Integrating optical finger motion tracking with surface touch events

    Get PDF
    This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction

    A statistical framework for embodied music cognition

    Get PDF

    Characterizing Movement Fluency in Musical Performance: Toward a Generic Measure for Technology Enhanced Learning

    Get PDF
    Virtuosity in music performance is often associated with fast, precise, and efficient sound-producing movements. The generation of such highly skilled movements involves complex joint and muscle control by the central nervous system, and depends on the ability to anticipate, segment, and coarticulate motor elements, all within the biomechanical constraints of the human body. When successful, such motor skill should lead to what we characterize as fluency in musical performance. Detecting typical features of fluency could be very useful for technology-enhanced learning systems, assisting and supporting students during their individual practice sessions by giving feedback and helping them to adopt sustainable movement patterns. In this study, we propose to assess fluency in musical performance as the ability to smoothly and efficiently coordinate while accurately performing slow, transitionary, and rapid movements. To this end, the movements of three cello players and three drummers at different levels of skill were recorded with an optical motion capture system, while a wireless electromyography (EMG) system recorded the corresponding muscle activity from relevant landmarks. We analyzed the kinematic and coarticulation characteristics of these recordings separately and then propose a combined model of fluency in musical performance predicting music sophistication. Results suggest that expert performers' movements are characterized by consistently smooth strokes and scaling of muscle phasic coactivation. The explored model of fluency as a function of movement smoothness and coarticulation patterns was shown to be limited by the sample size, but it serves as a proof of concept. Results from this study show the potential of a technology-enhanced objective measure of fluency in musical performance, which could lead to improved practices for aspiring musicians, instructors, and researchers

    ZATLAB : recognizing gestures for artistic performance interaction

    Get PDF
    Most artistic performances rely on human gestures, ultimately resulting in an elaborate interaction between the performer and the audience. Humans, even without any kind of formal analysis background in music, dance or gesture are typically able to extract, almost unconsciously, a great amount of relevant information from a gesture. In fact, a gesture contains so much information, why not use it to further enhance a performance? Gestures and expressive communication are intrinsically connected, and being intimately attached to our own daily existence, both have a central position in our (nowadays) technological society. However, the use of technology to understand gestures is still somehow vaguely explored, it has moved beyond its first steps but the way towards systems fully capable of analyzing gestures is still long and difficult (Volpe, 2005). Probably because, if on one hand, the recognition of gestures is somehow a trivial task for humans, on the other hand, the endeavor of translating gestures to the virtual world, with a digital encoding is a difficult and illdefined task. It is necessary to somehow bridge this gap, stimulating a constructive interaction between gestures and technology, culture and science, performance and communication. Opening thus, new and unexplored frontiers in the design of a novel generation of multimodal interactive systems. This work proposes an interactive, real time, gesture recognition framework called the Zatlab System (ZtS). This framework is flexible and extensible. Thus, it is in permanent evolution, keeping up with the different technologies and algorithms that emerge at a fast pace nowadays. The basis of the proposed approach is to partition a temporal stream of captured movement into perceptually motivated descriptive features and transmit them for further processing in Machine Learning algorithms. The framework described will take the view that perception primarily depends on the previous knowledge or learning. Just like humans do, the framework will have to learn gestures and their main features so that later it can identify them. It is however planned to be flexible enough to allow learning gestures on the fly. This dissertation also presents a qualitative and quantitative experimental validation of the framework. The qualitative analysis provides the results concerning the users acceptability of the framework. The quantitative validation provides the results about the gesture recognizing algorithms. The use of Machine Learning algorithms in these tasks allows the achievement of final results that compare or outperform typical and state-of-the-art systems. In addition, there are also presented two artistic implementations of the framework, thus assessing its usability amongst the artistic performance domain. Although a specific implementation of the proposed framework is presented in this dissertation and made available as open source software, the proposed approach is flexible enough to be used in other case scenarios, paving the way to applications that can benefit not only the performative arts domain, but also, probably in the near future, helping other types of communication, such as the gestural sign language for the hearing impaired.Grande parte das apresentações artísticas são baseadas em gestos humanos, ultimamente resultando numa intricada interação entre o performer e o público. Os seres humanos, mesmo sem qualquer tipo de formação em música, dança ou gesto são capazes de extrair, quase inconscientemente, uma grande quantidade de informações relevantes a partir de um gesto. Na verdade, um gesto contém imensa informação, porque não usá-la para enriquecer ainda mais uma performance? Os gestos e a comunicação expressiva estão intrinsecamente ligados e estando ambos intimamente ligados à nossa própria existência quotidiana, têm uma posicão central nesta sociedade tecnológica actual. No entanto, o uso da tecnologia para entender o gesto está ainda, de alguma forma, vagamente explorado. Existem já alguns desenvolvimentos, mas o objetivo de sistemas totalmente capazes de analisar os gestos ainda está longe (Volpe, 2005). Provavelmente porque, se por um lado, o reconhecimento de gestos é de certo modo uma tarefa trivial para os seres humanos, por outro lado, o esforço de traduzir os gestos para o mundo virtual, com uma codificação digital é uma tarefa difícil e ainda mal definida. É necessário preencher esta lacuna de alguma forma, estimulando uma interação construtiva entre gestos e tecnologia, cultura e ciência, desempenho e comunicação. Abrindo assim, novas e inexploradas fronteiras na concepção de uma nova geração de sistemas interativos multimodais . Este trabalho propõe uma framework interativa de reconhecimento de gestos, em tempo real, chamada Sistema Zatlab (ZtS). Esta framework é flexível e extensível. Assim, está em permanente evolução, mantendo-se a par das diferentes tecnologias e algoritmos que surgem num ritmo acelerado hoje em dia. A abordagem proposta baseia-se em dividir a sequência temporal do movimento humano nas suas características descritivas e transmiti-las para posterior processamento, em algoritmos de Machine Learning. A framework descrita baseia-se no facto de que a percepção depende, principalmente, do conhecimento ou aprendizagem prévia. Assim, tal como os humanos, a framework terá que aprender os gestos e as suas principais características para que depois possa identificá-los. No entanto, esta está prevista para ser flexível o suficiente de forma a permitir a aprendizagem de gestos de forma dinâmica. Esta dissertação apresenta também uma validação experimental qualitativa e quantitativa da framework. A análise qualitativa fornece os resultados referentes à aceitabilidade da framework. A validação quantitativa fornece os resultados sobre os algoritmos de reconhecimento de gestos. O uso de algoritmos de Machine Learning no reconhecimento de gestos, permite a obtençãoc¸ ˜ao de resultados finais que s˜ao comparaveis ou superam outras implementac¸ ˜oes do mesmo g´enero. Al ´em disso, s˜ao tamb´em apresentadas duas implementac¸ ˜oes art´ısticas da framework, avaliando assim a sua usabilidade no dom´ınio da performance art´ıstica. Apesar duma implementac¸ ˜ao espec´ıfica da framework ser apresentada nesta dissertac¸ ˜ao e disponibilizada como software open-source, a abordagem proposta ´e suficientemente flex´ıvel para que esta seja usada noutros cen´ arios. Abrindo assim, o caminho para aplicac¸ ˜oes que poder˜ao beneficiar n˜ao s´o o dom´ınio das artes performativas, mas tamb´em, provavelmente num futuro pr ´oximo, outros tipos de comunicac¸ ˜ao, como por exemplo, a linguagem gestual usada em casos de deficiˆencia auditiva

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc
    corecore