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Abstract

Most artistic performances rely on human gestures, ultimately resulting in an elab-

orate interaction between the performer and the audience.

Humans, even without any kind of formal analysis background in music, dance or

gesture are typically able to extract, almost unconsciously, a great amount of rele-

vant information from a gesture. In fact, a gesture contains so much information,

why not use it to further enhance a performance?

Gestures and expressive communication are intrinsically connected, and being

intimately attached to our own daily existence, both have a central position in our

(nowadays) technological society. However, the use of technology to understand

gestures is still somehow vaguely explored, it has moved beyond its first steps

but the way towards systems fully capable of analyzing gestures is still long and

difficult (Volpe, 2005). Probably because, if on one hand, the recognition of

gestures is somehow a trivial task for humans, on the other hand, the endeavor of

translating gestures to the virtual world, with a digital encoding is a difficult and ill-

defined task. It is necessary to somehow bridge this gap, stimulating a constructive

interaction between gestures and technology, culture and science, performance

and communication. Opening thus, new and unexplored frontiers in the design of

a novel generation of multimodal interactive systems.

This work proposes an interactive, real time, gesture recognition framework called

the Zatlab System (ZtS). This framework is flexible and extensible. Thus, it is in

permanent evolution, keeping up with the different technologies and algorithms that

i



ii

emerge at a fast pace nowadays. The basis of the proposed approach is to partition

a temporal stream of captured movement into perceptually motivated descriptive

features and transmit them for further processing in Machine Learning algorithms.

The framework described will take the view that perception primarily depends on

the previous knowledge or learning. Just like humans do, the framework will have

to learn gestures and their main features so that later it can identify them. It is

however planned to be flexible enough to allow learning gestures on the fly.

This dissertation also presents a qualitative and quantitative experimental valida-

tion of the framework. The qualitative analysis provides the results concerning

the users acceptability of the framework. The quantitative validation provides the

results about the gesture recognizing algorithms. The use of Machine Learning

algorithms in these tasks allows the achievement of final results that compare or

outperform typical and state-of-the-art systems.

In addition, there are also presented two artistic implementations of the framework,

thus assessing its usability amongst the artistic performance domain.

Although a specific implementation of the proposed framework is presented in this

dissertation and made available as open source software, the proposed approach

is flexible enough to be used in other case scenarios, paving the way to applications

that can benefit not only the performative arts domain, but also, probably in the near

future, helping other types of communication, such as the gestural sign language

for the hearing impaired.



Resumo

Grande parte das apresentações artı́sticas são baseadas em gestos humanos,

ultimamente resultando numa intricada interação entre o performer e o público.

Os seres humanos, mesmo sem qualquer tipo de formação em música, dança ou

gesto são capazes de extrair, quase inconscientemente, uma grande quantidade

de informações relevantes a partir de um gesto. Na verdade, um gesto contém

imensa informação, porque não usá-la para enriquecer ainda mais uma perfor-

mance?

Os gestos e a comunicação expressiva estão intrinsecamente ligados e estando

ambos intimamente ligados à nossa própria existência quotidiana, têm uma posição

central nesta sociedade tecnológica actual. No entanto, o uso da tecnologia para

entender o gesto está ainda, de alguma forma, vagamente explorado. Existem

já alguns desenvolvimentos, mas o objetivo de sistemas totalmente capazes de

analisar os gestos ainda está longe (Volpe, 2005). Provavelmente porque, se

por um lado, o reconhecimento de gestos é de certo modo uma tarefa trivial

para os seres humanos, por outro lado, o esforço de traduzir os gestos para

o mundo virtual, com uma codificação digital é uma tarefa difı́cil e ainda mal

definida. É necessário preencher esta lacuna de alguma forma, estimulando uma

interação construtiva entre gestos e tecnologia, cultura e ciência, desempenho e

comunicação. Abrindo assim, novas e inexploradas fronteiras na concepção de

uma nova geração de sistemas interativos multimodais .

Este trabalho propõe uma framework interativa de reconhecimento de gestos, em
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tempo real, chamada Sistema Zatlab (ZtS). Esta framework é flexı́vel e extensı́vel.

Assim, está em permanente evolução, mantendo-se a par das diferentes tecnolo-

gias e algoritmos que surgem num ritmo acelerado hoje em dia. A abordagem

proposta baseia-se em dividir a sequência temporal do movimento humano nas

suas caracterı́sticas descritivas e transmiti-las para posterior processamento, em

algoritmos de Machine Learning. A framework descrita baseia-se no facto de que

a percepção depende, principalmente, do conhecimento ou aprendizagem prévia.

Assim, tal como os humanos, a framework terá que aprender os gestos e as suas

principais caracterı́sticas para que depois possa identificá-los. No entanto, esta

está prevista para ser flexı́vel o suficiente de forma a permitir a aprendizagem de

gestos de forma dinâmica.

Esta dissertação apresenta também uma validação experimental qualitativa e quan-

titativa da framework. A análise qualitativa fornece os resultados referentes à

aceitabilidade da framework. A validação quantitativa fornece os resultados sobre

os algoritmos de reconhecimento de gestos. O uso de algoritmos de Machine

Learning no reconhecimento de gestos, permite a obtenção de resultados finais

que são comparaveis ou superam outras implementações do mesmo género.

Além disso, são também apresentadas duas implementações artı́sticas da frame-

work, avaliando assim a sua usabilidade no domı́nio da performance artı́stica.

Apesar duma implementação especı́fica da framework ser apresentada nesta dissertação

e disponibilizada como software open-source, a abordagem proposta é suficien-

temente flexı́vel para que esta seja usada noutros cenários. Abrindo assim, o

caminho para aplicações que poderão beneficiar não só o domı́nio das artes

performativas, mas também, provavelmente num futuro próximo, outros tipos de

comunicação, como por exemplo, a linguagem gestual usada em casos de deficiência

auditiva.
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Chapter 1

Introduction

”Small gestures can have a big impact.”

Julianna Margulies

1.1 Context and Motivation

There is so much information in a simple gesture. Why not use it to enhance a

performance? We use our hands constantly to interact with things. Pick them up,

move them, transform their shape, or activate them in some way. In the same

unconscious way we gesticulate in communicating fundamental ideas: stop; come

closer; go there; no; yes; and so on. Gestures are thus a natural and intuitive

form of both interaction and communication (Watson, 1993). Children start to

communicate by gestures (around 10 months age) even before they start speaking.

There is also an ample evidence that by the age of 12 months children are able to

understand the gestures other people produce (Rowe and Goldin-meadow, 2009).

For the most part gestures are considered an auxiliary way of communication to

speech, tough there are also studies that focus on the role of gestures in making

1
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interactions work (Roth, 2001).

Gestures have been studied for a long time. The research on gesture analysis,

processing and synthesis has seen a growing interest on the part of the scientific

community in recent years, and demonstrated its paramount importance for the

Human Computer Interaction (HCI) (Volpe, 2005). One of the main characteristics

in gesture research is its cross-disciplinary nature. The philosophical research

on gesture allows a deep investigation into the mechanisms of human-human

communication (e.g. in the fields of psychology, social science, art and humanities)

and this knowledge can be successfully exploited by the rather more technological

research, for example, in interaction design. This cross-disciplinary nature can

highly benefit the research and open new perspectives in both fields. If, on one

hand, scientific and technological research can grow from models and theories

borrowed from psychology, social science, art and humanities, on the other hand,

these disciplines can start using, with increasing confidence, the tools technology

can provide for their own research (i.e. examine, at a depth never before reached,

the remaining mysteries and hidden complexities of human beings).

It is also important to understand that whereas all gestures derive from a chain

of movements, not all movements can be considered gestures (Kendon, 1994).

Gestures are the principal non-verbal, cross-modal communication channel, and

they rely on movements for different domains of communication. Looking at the

Merriam-Webster dictionary 1, one will find the word “gesture” means a movement

usually of the body or limbs that expresses or emphasizes an idea, intention,

sentiment, or attitude, as well as the use of motions of the limbs or body as a

means of expression.

There are unconscious gestures, those used on the common day to day routine.

And there are conscious gestures, rehearsed over and over, and carried out in

a stage during a performance. In this later sense, gestures are truly used as

conveyors of information, the performer has the ability to change the meaning

1http://www.merriam-webster.com/dictionary/gesture

http://www.merriam-webster.com/dictionary/gesture
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and feeling of what is transmitting just with a simple nod of the head, positioning

of the shoulders or raise of an arm. This focus on the affective and emotional

information gesture conveys leads to the concept of “expressive” gesture (Volpe,

2005), as carrier of a set of temporal/spatial features responsible for conveying

expressiveness. While for many years research was devoted to the investigation

of more cognitive, intellective aspects, in the last decade a lot of studies have

focused on emotional processes and social interaction (e.g. the Kansei research

project (Inokuchi, 2010)). There is also a growing effort in the research areas

of movement and gesture, in particular the expressive gesture. This (expressive

gesture) can be considered a broad concept that includes music, human movement

and visual gesture. And thus, it assumes an important role for research in music,

computer music and performing arts. Actually, the performing arts have become

a key research and application field, since they are an ideal test-bed for works

concerning mechanisms for non-verbal communication of affective, emotional, ex-

pressive content. Volpe (Volpe, 2005) even refers that “a main topic for current

and future research consists of using music and dance performances to study

expressive gestures and their ability to convey emotional states (e.g., the well-

known and consolidated basic emotions) and engage spectators”‘.

Gestures and expressive communication are therefore intrinsically connected, and

being intimately attached to our own daily existence, both have a central posi-

tion in our (nowadays) technological society. However, the use of technology

to understand gestures is still somehow vaguely explored, it has moved beyond

its first steps but the way towards systems fully capable of analyzing gestures

is still long and difficult. Probably because if on one hand, the recognition of

gestures is somehow a trivial task for humans, on the other hand, the endeavor of

translating gestures to the virtual world, with a digital encoding is a difficult and ill-

defined task. It is necessary to somehow bridge this gap, stimulating a constructive

interaction between gestures and technology, culture and science, performance

and communication. Opening thus, new and unexplored frontiers in the design of
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a novel generation of multimodal interactive systems.

1.2 Thesis Statement

The main problem this work addresses is the real-time identification and recogni-

tion of gestures, particularly in the complex domain of artistic performance.

The overall goal of this research is to foster the use of gestures, in an artistic

context, to the creation of new ways of expression. By recognizing the performed

gestures, one is able to map them to several controls, from lightning control to the

creation of visuals, sound control or even music creation, thus allowing performers

the real-time manipulation of creative events.

However, the objective is not, at least at this stage, to provide a complete ges-

ture classification system, neither a model for expressing and communicating the

linguistic or psychological meaning of gesture. Instead, the work presented and

discussed in this dissertation proposes a modular gesture recognition framework

along with the individual building blocks (modules) involved. These building blocks

range from movement analysis and gesture recognition, to human skeleton repre-

sentation or data transmission. This modular framework provides a solid basis of

development, already paving the way for the future inclusion of higher level pro-

cesses, such as the ones involved, for example, in the recognition and automatic

translation from gesture to speech (in the case of sign language).

1.3 Current State

Generally speaking, there are two lines of thought running through the gesture

research field (Zhao and Badler, 2001). In one line, there is work by linguists,

psychologists, neurologists, choreographers and physical therapists. Their con-
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cern is largely related with a conceptual understanding of gesture and its function.

Although their work often involves some deep analysis, most of their models are

qualitative and theoretical, making it very difficult to verify their correctness, gen-

erality, and appropriateness. They are not committed to building a computational

gesture model to verify their theories, and are rarely concerned with any computer

implementation implications of their work.

The other line of research on gesture operates in areas such as Computer Vision

(CV), HCI, human motor control, and computer graphics and animation. Most of

these approaches are in a system-oriented context that enables the experimenta-

tion and empirical analysis.

However, while these approaches explore different areas of research, some funda-

mental questions remain unanswered. On the Chapter 2, is presented a discussion

on the main approaches taken in each line of research. It will give a complete

overview about the state of the art, carefully map the challenges and sustain the

path taken on this work to overcome them.

The gesture recognition systems (including the one proposed in this thesis) face

several demanding difficulties, making their performance somehow limited when

compared to the human recognition capabilities. Nevertheless, some of the current

results already provide improved alternatives to the common gesture analysis and

recognition applications.

1.4 The Main Challenges

The gesture recognition is rather simple for the average person. Humans can

process multiple factors (such as muscle volume and tension or facial expressions)

from multiple senses simultaneously to analyze an action, while a computerized

system often limits available data to one or two channels (i.e. sensors) (Zhao

and Badler, 2001). Automatically recognizing gestures is a complex task which
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involves many aspects such as motion modeling, motion analysis, pattern recog-

nition and machine learning, and even psycholinguistic studies (Wu and Huang,

1999).

Nevertheless, there have been many systems implemented (Wu and Huang, 1999)

in domains such as virtual environments, smart surveillance, teleconferencing, sign

language translation. And some solutions for the performance domain have been

already provided (Bevilacqua and Muller, 2005), (Camurri et al., 2000). But,

there is still a big gap between what the systems are able to do when compared to

humans capabilities.

This work takes the challenge of shortening that gap, doing gesture recognition in

real-time, using a multidisciplinary approach to the problem, based in some of the

known principles of how humans recognize gestures, together with the computer

science methods to successfully complete the task.

1.5 Related Research Areas

The work proposed in this thesis is multidisciplinary, ranging from sciences such

as HCI and gesture related research to more mathematical, objective sciences

such as CV and Machine Learning (ML). The following paragraphs provide short

descriptions of these research areas and their connection to the project.

Human Computer Interaction (Chairman-Hewett, 1992) is a discipline concerned

with the design, evaluation and implementation of interactive computing systems

for human use and with the study of major phenomena surrounding them. Because

HCI studies a human and a machine in communication, it draws from supporting

knowledge on both the machine and the human side. On the machine side,

techniques in computer graphics, operating systems, programming languages, and

development environments are relevant. On the human side, communication the-

ory, graphic and industrial design disciplines, linguistics, social sciences, cognitive
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psychology, and human performance are relevant. All this knowledge from the

different areas of the HCI field contribute in some degree to this work.

Machine Learning (Grosan and Abraham, 2011) derives from the artificial intel-

ligence field. It is concerned with the study of building computer programs that

automatically improve and/or adapt their performance through experience. ML

can be thought of as “programming by example” and has many common aspects

with other domains such as statistics and probability theory (understanding the

phenomena that have generated the data), data mining (finding patterns in the

data that are understandable by people) and cognitive sciences. Instead of the

human programming a computer to solve a task directly, the goal of ML is to devise

methods by which a computer program is able of come up with is own solution

to the task, based only on examples provided. In the particular case of the work

presented in this thesis, machine-learning techniques are used to implement a

computer system, which is able to identify specific gestures in a complex human

movement.

Computer Vision (Aggarwal, 2011) consists in the estimation of several proper-

ties of physical objects, based on their two dimensional (projection) images through

the use of computers and cameras. With its beginnings in the early 1960s, it was

thought to be an easy problem with a solution probably possible over a short time

period. However, it revealed to be a task far more difficult. Since those early days

CV has matured from a small research topic to a complete field of research and

application. Some CV techniques will be described on this thesis, including some

algorithms developed and published by the author (e.g. (Baltazar et al., 2010)).

Gesture Research is of upmost importance for this thesis. Before programming a

computer to recognize gestures it is important to know as much as possible about

their characteristics. How they are defined, their main features, the notations used,

what features are important to extract and how to extract them.

As an overview one can already state there are various domains of research
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in gestures. These domains can range from the psychological-linguistic, to the

cognitive science or the performative arts. And regarding each of them one will

find different definitions and conventions on gestures. With respect to references

in the field, one investigated the work of leading authors in their respective research

domain. These include: Kendon (Kendon, 1970, 8, 9); McNeill & Levy (McNeill,

1985, 9; McNeill and Levy, 1982); and Rimé & Schiaratura (Feldman and Rimé,

1991; Rimé, 1982)); Godoy (Godoy and Leman, 2009); Camurri (Camurri et al.,

2000); amongst other important research works in the field.

A thorough discussion about gestures, their understanding, observation, capture

and recognition, will be presented in Chapter 2.

1.6 Applications

Real-time gesture recognition is a challenging problem by itself. Adding the perfor-

mance context to it, where the technology should pass unnoticed by the audience,

and without disturbing the performers natural abilities, increases even further the

difficulty. This work presents an opportunity for the development of gesture recog-

nition solutions for a very specific set of conditions. Nevertheless, when developing

for such a specific case scenario, one will reach solutions that can be used in a

broader sense, not only for the performing arts field, but also in others related

researches. Some examples of possible applications for the solutions proposed in

this thesis are listed next:

• Automatic sign language recognition - If a gesture itself conveys infor-

mation, the sign language conventions allow for the deaf to communicate

using hand gestures and body language to express meaning, as opposed

to acoustically transmitted sound patterns. This can involve simultaneously

combining hand shapes, orientation and movement of the hands, arms or

body, and facial expressions to fluidly express a speaker is thoughts (Zafrulla
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et al., 2011). Even though this thesis does not present the solution for

automatically translating sign language into speech, or written text, it can

contribute for some of the tools to do it in the future.

• Physiotherapy - is a health care profession primarily concerned with the

recovery of impairments and disabilities and the promotion of mobility, func-

tional ability, quality of life and movement potential through examination, eval-

uation, diagnosis and physical intervention. Most of the physical work of

recovery consists in repeating certain movements or gestures over and over.

With a gesture recognition program working with the patient, he can easily get

automatic feedback if the gesture he is performing is correct or not, without

the need of a physiotherapist presence (Ravi, 2013).

• Automatic gesture notation - Just like in music there is the music score, in

the performing arts there are two main currents that allow to keep a written

score of a choreography. They are Labanotation (Loke et al., 2005) or

Benesh Movement Notation (Harrison et al., 1992). Usually the notation in

done by hand by the choreographer or performer himself. This could be done

automatically by developing further the framework presented here, therefore

enabling the performer to record and annotate his practice for later offline

revision or share it with others (Kahol et al., 2004).

Further applications are possible, extending the spectrum of research, these may

include:

• enabling very young children to interact with computers;

• monitoring medical patients emotional states or stress levels;

• navigating and/or manipulating in virtual environments;
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1.7 Main Contributions

This dissertation includes several contributions that can be divided in two facets:

conceptual and implementation. Conceptual contributions are related with abstract

concepts such as ideas, algorithms, studies and theoretical frameworks. Imple-

mentation contributions are related with the development of tools and specifica-

tions.

One conceptual contribution is the proposal and experimental validation of an

efficient and modular, real-time gesture recognition framework for the performance

context (one is tempted to consider the study and literature review concerning

gestures also a conceptual contribution).

As implementation contributions there are the various modular tools developed in

the scope of this thesis and implemented as open-source software, in the form of

addons for openFrameworks2, namely:

• a skeleton joint representation module - allows the visual feedback of the

subject being captured;

• an Open Sound Control (OSC) transmission module which is able to read and

transmit data in real-time from the Vicon Blade Motion Capture3 proprietary

program;

• a gesture recognition module based in Dynamic Time Warping (DTW);

• a gesture recognition module based in Hidden Markov Models (HMM);

• the entire framework (named ZatLab System) consisting on the tools listed

previously, working together in a single operational framework for the recog-

nition of real-time gestures and event triggering.
2http://www.openframeworks.cc/ - openFrameworks is a powerfull C++ toolkit designed

to develop real-time projects. Nowadays, is a popular platform for experiments in generative sound

art, creating interactive installations and audiovisual performances.
3http://www.vicon.com/software/blade

http://www.openframeworks.cc/
http://www.vicon.com/software/blade
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A detailed description about the software implementation of these contributions will

be provided in Chapter 5.

Additionally, the gestures recorded on the course of this study are also available4

for further scientific research. These constitute a data bank of 5 different gestures

with 290 samples each, resulting in 1450 gesture samples.

1.8 Publications Related to the Thesis

The research work presented in this thesis has resulted in the collaborative publi-

cations5 listed below:

• André Baltazar, Carlos Guedes, Fabien Gouyon, and Bruce Pennycook. A

Real-time Human Body Skeletonization Algorithm for MAX/MSP/JITTER. In

Proceedings of the International Computer Music Conference, 2010 (Baltazar

et al., 2010);

• Andre Baltazar, Luis Gustavo Martins, and Jaime S. Cardoso. ZATLAB: A

Gesture Analysis System to Music Interaction. In Proceedings of the 6th

International Conference on Digital Arts (ARTECH 2012) (Baltazar et al.,

2012).

• Andre Baltazar, Luis Gustavo Martins. Zatlab: A Framework for Gesture

Recognition and Performance Interaction. Book chapter in “Innovative Teach-

ing Strategies and New Learning Paradigms in Computer Programming”, IGI

Global 2014 (in print process).

Upon this thesis completion there were also papers submitted to other confer-

ences, but the results are still pending evaluation.

4The gesture data bank is available at http://andrebaltazar.wordpress.com
5The articles are available in PDF format at http://ucp.academia.edu/AndreBaltazar.

http://andrebaltazar.wordpress.com
http://ucp.academia.edu/AndreBaltazar
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1.9 Outline of the Dissertation

Six chapters compose this dissertation. The remainder of the thesis is organized

as follows.

Chapter 2 focuses on the main aspects involved in gesture analysis. It discusses

the various definitions of gesture, its understanding, observation and recognition.

An overview of the importance gestures have in human life is also presented,

followed by a discussion about how they are perceived and evaluated in different

research fields. The remainder of the chapter presents some of the technological

approaches to capture human movements and the chapter concludes with a review

of some of the most important and relevant work previously conducted in the field

of human movement analysis and gesture recognition.

Chapter 3 introduces the Zatlab System, a computational framework for the real-

time recognition of gestures. Following an overview of the framework, a descrip-

tion of its main modules is presented. These include the Data Acquisition, the

Data Processing, the Gesture Recognition and the Triggers Output Modules. The

description of each Module will include the theory that supports the respective

implementation, explained in Chapter 5. Finishing this chapter is a description of

the available operation modes of the framework.

Chapter 4 presents a set of evaluation experiments and application scenarios

where several aspects of the gesture recognition framework proposed in Chapter 3

are tested and validated experimentally. The research methodology is described,

followed by the evaluation model and the respective experiment design. These will

allow the understanding of evaluations performed. The questionnaire results will

allow to assess the framework acceptability. Experimental results are presented

for the main recognition algorithms and the latency of the Motion Capture (MoCap)

technologies. The Chapter closes with the description of the artistic applications of

the framework.
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Chapter 5 discusses the most relevant aspects of the software implementation

of the gesture recognition framework proposed in this thesis. The design re-

quirements, implementation strategies and the major contributions towards the

development of an open source software framework for gesture recognition are

put into perspective and ultimately justify the adoption of the openFrameworks

framework as the base software platform. The software implementation of the

different processing algorithms that comprise the methods proposed in this thesis

are detailed.

Chapter 6 closes the thesis with the final conclusions and suggests possible direc-

tions for future research.

This thesis also comprises an appendix. This includes additional and detailed infor-

mation about the ML algorithms described in Chapter 3 and also the questionnaire

done for the experimental validation of the framework, described in Chapter 4.
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Chapter 2

Gestures

“For an action to be treated as a gesture it must have features

which make it stand out as such.”

(Kendon, 1980)

2.1 Introduction

As Godoy (Godoy and Leman, 2009) refers, there is no clear definition of what a

gesture is: “Given the different contexts in which gestures appear, and their close

relationship to movement and meaning, one may be tempted to say that the notion

of gesture is too broad, ill-defined, and perhaps too vague.” This work is focused

on gesture recognition, so there is intrinsically a demand for the explanation and

definition of terms that are not well clarified.

This chapter is dedicated to the understanding and definition of a gesture and

how it can be captured and recognized. It will also discuss the previous works

published on the research field of this thesis and present a review and technical

15
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comparison of the different MoCap systems available nowadays. This section will

provide valuable input for the development of the proposed framework.

2.2 Understanding Gestures

The human movement (Zhao and Badler, 2001) can be involuntary, subconscious,

that occurs for biological or physiological purposes (e.g. blinking, breathing, bal-

ancing), or voluntary, conscious like those task-driven actions such as speaking

or running to get somewhere. There is also a wide class of movements that fall

in between these two, having both the voluntary and involuntary qualities. Such

movements are the ones that occur in an artistic performance or music concert

and perhaps unconsciously with other activities. These can range from leg and

foot coordination enabling walking, till the communicative gestures, such as facial

expressions, expressive limb gestures and postural attitude. The communicative

gestures are the focus of this work and thus, their definition is of central importance.

The word gesture on the remainder of this thesis will always refer to this notion of

communicative gesture.

A good perspective on how to distinguish movement from gesture is given by

Kurtenbach and Hulteen (Wachsmuth and Fröhlich, 1998), they state that “A

gesture is a motion of the body that contains information. Waving goodbye is a

gesture. Pressing a key on keyboard is not a gesture because the motion of a

finger on its way to hitting a key is neither observed nor significant. All that matters

is which key was pressed. Pressing the key is highlighted as the meaning-bearing

component, while the rest of the movement of the person is considered irrelevant.”.

Actually, there is no single universally accepted definition of what a gesture actually

is. Depending on the domain of research one will find different meanings (Zhao and

Badler, 2001). These domains can range from the psychological-linguistic, to the

cognitive science or the performative arts. In the following subsections the different
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approaches will be explained.

2.2.1 Gestures in the psychological-linguistic domain

In psychological-linguistic domain, there are three authors that have made sig-

nificant contributions, following the seminal work David Efron started in the 40s

(re-issued later (Efron, 1972)). They are Kendon (Kendon, 1970, 8, 9), McNeill

& Levy (McNeill, 1985, 9; McNeill and Levy, 1982), and Rimé & Schiaratura

(Feldman and Rimé, 1991; Rimé, 1982)).

Kendon, presented the following definition: “...for an action to be treated as a

gesture it must have features which make it stand out as such.” Although this

is clearly not a definition, it suggests the analysis of features as classification

characteristics. Kendon started his research by attempting to determine if people

recognize gestures when they watched videos of subjects talking in a foreign lan-

guage (unknown by the viewers) (Kendon, 1970). He reported that the viewers

had no trouble finding out gestures. Observing the relations between speech

and gesture, he proposed his gesticulation theory. A gesture is the “nucleus of

movement with definite form and enhanced dynamic qualities (...) preceded by a

preparatory movement and succeeded by a movement which either moves the limb

back to is rest position or repositions it for the beginning of a new gesture phrase.”

((Kendon, 1980) pp.34). Kendon also noticed different modes of expression,

depending on the context gestures are used. For example, gestures are used more

often when the conditions of speech reception occur in a noisy environment or by

limited knowledge of a foreign language. Or, when is difficult to express something

through speech, this may be conveyed by gesture, specially regarding spatial in-

formation such as distance, orientation and trajectories. Kendon concluded stating

that speech and gestures are one integrated system.

Mcneill & Levy made the same discovery as Kendon: speech and gesture are part

of a coherent whole (McNeill and Levy, 1982). Through their experiments they
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have found gestures can present meaning in a form fundamentally different from

that of speech. First, gestures are non-combinatoric (two gestures done together

do not combine to form a larger, more complex gesture), second there is no

hierarchical structure of gestures made out of other gestures, which contrasts with

the hierarchical structure of language, and third, gestures do not share linguistic

properties such as standard forms and duality of patterning.

Rimé & Schiaratura conduct experiments that involved a speaker talking to a lis-

tener with and without visual contact. They found that the frequency of gestures

was not particularly affected by the presence or absence of mutual visibility of

partners (Rimé, 1982). Thus, they concluded the gesture had some function

or purpose for the speaker, besides the communicative aspect to the listener.

Actually, they found that when a speaker is restricted of his gestures during his

speech, he tends to give poorer descriptions and induce more compensatory motor

activity of eyebrows and fingers. Furthermore, careful analysis of the semantic

content of the speech showed that the speakers used more words but the speech

was less clear and less fluid (Feldman and Rimé, 1991). Again, this empirical

evidence can be interpreted to support theories like McNeill, that gesture and

speech are elements of a single integrated system.

2.2.2 Gestures in the cognitive science domain

The cognitive science domain is a research area also related to psychology but

with a strong branch on Artificial Intelligence (AI). The research consists in building

cognitive models in order to understand human behavior. If the model can repro-

duce human behavior under certain assumptions, it will also provide answer about

human behavior in different assumptions. By changing these assumptions one can

achieve different explorations and thus, different results. The speech and gesture

relation has been broadly studied in the cognitive science context (Feyereisen and

de Lannoy, 1991), but yielded contradictory hypotheses. Here are explained two



2.2. UNDERSTANDING GESTURES 19

of the more prominent but contradictory hypotheses.

In one hand, there is the competitive model. This model generated empirical

evidence that the gestural stroke phases alternate with rest phases and the gesture

is sometimes prevented or delayed instead of being done simultaneously with the

process of thought expression (Feyereisen and de Lannoy, 1991). According to

this, the researchers hypothesize that gesture and speech are two rival tasks, this

is, assuming a perspective where resources are limited and both of them compete

for it, the attention load required for one task reduces the amount that can be

allocated to the other task. This means that speaking and gesturing implies to

divide our attention between both, and if the attention load reaches its maximum,

hesitation pauses may occur.

On the other hand, there is the coactivation model. In this model, the researchers

assumed there is an inevitable activation of the gestural system during speech

production. Thus, the gesture is a visible manifestation of the speaker ongoing

thinking process. The hypothesis presented is that gesture and speech share

the same origin and are triggered simultaneously, and then separated in different

output channels. However, this model presents some problems because implies a

direct relationship between speech and gesture. Accordingly to that the more one

speaks, the more gestures are performed. But in some circumstances this may be

false, (i.e. for sign language interpreters) the gestural rate and speech fluency can

be inversely related (Feyereisen and de Lannoy, 1991).

In short, the cognitive perspective does not provide a consistent answer. Some

defend the coactivation, others the competition. These different hypotheses still

need to be further investigated and reviewed. Maybe with different approaches

from psychology, neurophysiology and even pathology, some day one will be able

to delineate the functioning of communicative gesture.
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2.2.3 Gestures in the performing arts domain

Gestures are seen as the most appropriate mean of expression for theater and

dance. Performers use gestures to communicate to an audience, either if it is a

comedy or a tragedy, either if a character is good or evil. Thus, through gestures,

actors enhance the emotional content of their stories and characters. For the con-

temporary dance and avant-garde theater the gesture is not simply a complement

or a decoration. It is yes, the source, the cause and the conductor thread (Royce,

1984).

In this performative domain, gestures can have different interpretations due to

culture specifications. In ballet, the gesture is based in greco-roman ideals of

posture and and movement. Standing straight, with slow, expansive and gracious

movements will portray an elegant and graceful ballerina, while narrow, clumsy and

rough movements will be seen as ugly and poor. Also in a play, the director must

plan the combined movement of the cast, treating the movement as an extension

of the line, mass and form. The actors themselves must be aware the quantity of

movement used in a gesture, and how much space they are occupying in a stage,

in order to transmit energy or weakness. The length of a gesture, either short or

long, its intensity, either strong or soft, everything will add and convey emotional

content. One wrong gesture can ruin a character or all the stage dynamics. Thus,

adequately planned, chosen and executed, gestures can create a mood, or a state

of mind and arouse an emotional response from the audience (Dietrich, 1983).

Also in the music research field, body movement has been often related to the

notion of gesture. The reason is that many musical activities (performance, con-

ducting, dancing) involve body movements that evoke meanings, and therefore

these movements are called gestures (Godoy and Leman, 2009). Reading about

musical gestures, there is a curious research conducted by Leante (Leante, 2007)

in which she used available footage of the rock band Genesis and investigated

the gestures used by the singer, Peter Gabriel. Using the categories defined by
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McNeill, Rimé and Schiaratura and Kendon, seen previously in this section, Leante

investigated how the singer used gestures to enrich the song “The Musical Box”.

For instance, to highlight parts of the song, such as “wanting”, “feeling”, “knowing”

and “touching”, Peter used a single pantomimic gesture (moving the hands as

though “grabbing” something). Leante argues this gesture conveys a stronger

sense of physicality, or tactility than what is expressed in the text, and adds to

the pathos and emotion of the lyrics.

To summarize, the study of gesture is a broad research field, with long branches

extending from the rather philosophical, theoretical approaches, till the more tech-

nological, experimental areas. This gives a cross-disciplinary nature to the re-

search (what is good) but also adds to the difficulty on defining precisely what is a

gesture. What is common with the different approaches is that a gesture implies

expression, communication and a purpose. It is the voluntary act of synthesizing

movements to achieve a goal, fulfill an intention.

2.3 Notating Gestures

There is also a parallel research area devoted to the human movement and gesture

notation (Craine and MacKrell, 2004). This departed from the importance of

registering and maintaining records of traditional dance, in particular, ballet. The

first fully comprehensive system of notation was established on the 20th century,

which means that many ballets prior to this date were either lost or handed down

in partial form.

The fact that gestures requires both spatial and temporal notation makes it hard

to record accurately on paper, although attempts to do so date back to the 15th

century. These are proven by surviving manuscripts of that era, e.g. Margherita

d’Austria’s Livre des Basses Danses (in 1460). Since then, the notation has

evolved in its accuracy and elaboration, with the first sophisticated attempt at a
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system published by Feuillet in his Chorégraphie ou L’Art de décrire la danse par

caractères, figures et signes demonstratifs (Paris, 1700), which was based on

ideas originated by Beauchamps (Pierce, 1998). This became popular all around

Europe as a means of recording and teaching dances. It depicted the floor patterns

of the dances, adding signs for the direction of each step as well as for turns, beats,

and other details of footwork.

Already on the 19th century, the idea of writing down dance in a manner similar

to music was first developed by B. Klemm in 1855 and further developed by the

Russian dancer Stepanov (Craine and MacKrell, 2004). In his Alphabet des

mouvements du corps humain (Paris, 1892) he placed movement symbols on a

special stave while recording the floor patterns above it.

During the 20th century there were attempts at more rigorous and complete nota-

tion based on abstract symbols, in order to record styles of movement other than

ballet. The most famous of these was originated by Laban and first published in

1926 in his Choreographie (Maletic, 1987). Now widely referred to as Labanotation

(Loke et al., 2005), this system uses a vertical staff to represent the body and has

symbols that indicate not only the position but also the direction, duration, and the

quality of any movement.

Another widely used system is that developed by Rudolf and Joan Benesh. This

began as a shorthand for notating ballets and was first published as An Introduction

to Benesh Dance Notation (London, 1956) (Harrison et al., 1992). Now termed

Choreology, the Benesh system (see Figure 2.1) uses a five-line musical stave

running horizontally across the page with abstract stick figures indicating the po-

sition of the body and special symbols indicating timing, direction, etc. Though

most widely used in ballet companies, such as the Royal Academy of Dance1,

Choreology has subsequently evolved to deal with non-classical movement also,

and together with Labanotation (presented in Figure 2.2) is the most internationally

1https://www.rad.org.uk/study/Benesh/how-benesh-movement-notation

-works

https://www.rad.org.uk/study/Benesh/how-benesh-movement-notation-works
https://www.rad.org.uk/study/Benesh/how-benesh-movement-notation-works


2.3. NOTATING GESTURES 23

used system. Other systems have been less widely adopted, for example N. Eshkol

and A. Wachman’s, published in Movement Notation (London, 1958), which is

based on a mathematical record of the degree of rotation made by each of the

moving parts of the body.

Figure 2.1: An example how movement is described using Benesh Notation, from

the Royal Academy of Dance.

Figure 2.2: An example how movement is described using Labanotation, adapted

from (Ryman, 2001) .

Recently the availability of simple and inexpensive video equipment has provided

another means of recording dances. Nevertheless, the automatic notation of dance

still requires further research until satisfactory results can be achieved.

Although the notation and transcription of human movements and gestures is not

the main focus of this thesis, the work developed can be used for future application

in this field.
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In the next sections it will be described the state of art of technology that allows

capturing human movements for future gesture recognition.

2.4 Motion and Gesture Capture Technology

Although a few years ago MoCap systems were only available for the movie and

animation industries, due to the high costs of the technology, nowadays, thanks

to the decrease in the hardware prices, there are systems somehow affordable for

research purpose or even entertainment.

There are four main types of motion capture systems, they can be: Magnetic,

Mechanical, Optical and Inertial (Wong, 2007). Now, there is also development

and use of a combination of two or more of these techniques, creating thus the

Hybrid Motion Capture Systems.

The next sub sections present a technological review and comparison of the sev-

eral MoCap systems available nowadays. This will provide valuable input for the

decisions made on the path taken to develop the framework.

2.4.1 Magnetic Motion Capture Systems

In these systems, magnetic sensors are placed on the object being tracked (Su

et al., 2003), (Mitobe et al., 2006). These are able to measure the magnetic

field generated by a magnetic transmitter. Based on the measurements, one can

calculate the position and orientation of the sensors in relation to the transmitter.

The main advantages of the magnetic motion capture systems are they are not

affected by occlusion and can measure absolute positioning of an object in three

dimensional (3D) space. However there are also disadvantages. The strength of

magnetic fields decreases greatly with the distance between transmitter and sen-

sor. The data acquired is noisier than the one obtained using optical systems. And
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besides the movement constraint, the magnetic motion capture is very sensitive to

magnetic interference, which can occur often due to all the wiring and technology

surrounding us everywhere. This makes the magnetic motion capture systems to

be used only in very specific projects and most of the times depreciated against

the other systems.

Yusu (Su et al., 2003) used a model like this to accurately model and capture the

motion of the human in order to detect the tremor evident in subjects with Parkin-

son’s disease. He used 11 three-dimensional electromagnetic sensors to model

the human hand including all the phalanges. A capture rate of 10 measurements

per second was achieved. A discrete Fourier analysis has been applied to extract

the tremor frequency from the sensor data time series. The technique described

provides an objective and quantitative method for the analysis of clinic conditions,

such as Parkinson disease and essential tremor, as a way to assess the effect of

therapeutic interventions.

Mitobe (Mitobe et al., 2006), described a Magnetic MoCap system for the human

hands. The magnetic tracker that is composed from one transmitter and sixteen

receiver, can calculate the distance (x, y, z) from a transmitter to a receiver. Each

receiver was attached to each finger using Kinesiotex tape and liquid type plastic

in order to prevent the receiver from sliding. The hand MoCap can measure the

data (six degree of freedom) of 32 receivers at the rate of 240Hz simultaneously.

That resulted in the cumbersome setup demonstrated in the Figure 2.3.

Figure 2.3: Electromagnetic hand MoCap system, from (Mitobe et al., 2006).
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2.4.2 Mechanical Motion Capture Systems

In the mechanical motion capture systems, an exoskeleton is attached to the per-

son (or object) being tracked. This exoskeleton is equipped with various sensors

at each joint of the subject being tracked. The mechanical segments accompany

the movements of the subject, which allow the sensors at the joints to determine

the relative motion of the subject. An example of such system is the “IGS 180

Range” motion capture from Animazoo2. The main advantages of such systems

are their in-susceptibility to occlusion, the high sampling rate of data (since it does

not require a lot of processing to extract the motion information) and the low cost of

development, due to their construction made of primarily plastic or metal rods and

potentiometers that act as sensors. As disadvantages, they are unable to directly

measure the absolute positioning of the object, their use limits or constraints some

of the movements and they are only suitable to objects with movable joints such as

human performers.

In the 2010 New Instruments for Musical Expression (NIME) Conference there

was a paper presented by Collins (Collins and Kiefer, 2010) addressing the use

of exoskeletons. Their paper describes the initial experiments in mapping the suit

control data to sonic attributes for musical purposes. As the suit provides up to

66 channels of information, they confronted a challenging mapping problem, and

described techniques for automatic calibration, and the use of echo state networks

for dimensionality reduction. The Figure 2.4 presents the exoskeleton used in

Collins research.

2.4.3 Optical Motion Capture Systems

The optical motion capture systems usually imply the use of markers on the object

being tracked. Optical cameras then track the individual markers on the object. The

2http://www.animazoo.com

http://www.animazoo.com
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Figure 2.4: Animazoo exoskeleton, from (Collins and Kiefer, 2010).

setup consists in various cameras surrounding the object so software can process

the images captured and triangulate the 3D position of each marker. These can be

grouped in two categories: Active or Passive. In the active optical systems, such

as the Optotrak from NDigital3, each marker contains an embedded emitter with a

unique identification. This makes the system more reliable when overlaps occur

and decreases the processing time required to track and distinguish individual

markers. The passive, such as the commercially produced by Vicon4 consist in

placing retro-reflective markers on the object and then emitting infra-red light to

illuminate the markers so they can be tracked by the cameras (see example on

Figure 2.6)

Besides these two techniques, there are also markerless options available. With

the launch of 3D/depth cameras such as the Microsoft Kinect and the development

of software that can easily track and map the human skeleton, such as the OpenNi

3http://www.ndigital.com/
4http://vicon.com/

http://www.ndigital.com/
http://vicon.com/
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library (Villaroman et al., 2011) nowadays one can do a MoCap laboratory in

almost any room by just placing one, two or several of these cameras, without the

need of markers or any special conditions.

There are a number of advantages in the use of optical systems over other meth-

ods. First, they can measure the absolute positioning of an object in the 3D space.

Second, the data obtained is less noisy than the above-mentioned techniques.

Third, the cameras are flexible in terms of positioning and therefore allow for

greater freedom of movements and to track more then one object at the same

time. Off course there are also some disadvantages in these systems. The most

relevant is the susceptibility to occlusion, this can be reduced by increment the

number of cameras, but that will also increase the computational and economical

costs. Another disadvantage is that everything implies a lot more of computational

processing, the software has the complex task of extracting information from visual

data, then determining the absolute positioning of each marker and finally the

3D orientation has to be calculated based on the relative positioning between

neighboring markers.

In this Section one will present the Kinect and Vicon MoCap technologies with

more detail, since this will support the choice made in Section 3.3.

2.4.3.1 The Kinect

The advances made in 3D depth cameras, in the recent years, such as Microsoft

Kinect sensors have open new possibilities to multimedia computing (Zhang, 2012a).

Kinect was developed to revolutionize the way people play games and how they

experience entertainment. The key feature is on the third dimension information,

the depth. The foreground - background separation and tracking of an object (or

human) in a scene has always been an active research field in CV, but always

considered a formidably difficult task for video cameras. The Kinect sensor allows

the computer to directly capture the third dimension (depth) of the scene, enabling
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thus to reduce the task of foreground - background separation to a simple threshold

measure.

The impact of the Kinect has extended far beyond the gaming industry. Being

available anywhere gaming consoles are sold (almost everywhere in the world)

and having a reasonable low price, enables it to be used among the communities

of researchers and practitioners in computer science, electronic engineering and

robotics, allowing them to develop creative new ways to interact with machines

(Stowers et al., 2011) and to perform other tasks, like helping in physical rehabili-

tation (Chang et al., 2011) for instance.

The Kinect sensor incorporates several advanced sensing hardware. Not only con-

tains a depth sensor and a color camera, but also includes a four-microphone array

(although one will not go into the sound specifications of the device). Figure 2.5

shows the infrared (IR) projector, the color camera, and the IR camera. The depth

sensor consists of an IR projector combined with an IR camera (a Complementary

Metal-Oxide Semiconductor (CMOS) sensor). The IR projector consists in an IR

laser diffracted into a set of IR dots. Knowing the relative geometry between the

IR projector and the IR camera, as well as the projected IR dots, makes it possible

to triangulate each dot position, thus reconstructing a 3D map of the scene and

matching it to the color camera capture.

Figure 2.5: The infrared projector, infrared camera and the RGB camera inside a

Kinect, from (Zhang, 2012a).
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The depth values are encoded with gray values; the darker a pixel, the closer the

point is to the camera in space. The black pixels indicate that no depth values are

available for those pixels. This might happen if the points are too far (and the depth

values cannot be computed accurately), are too close (there is a blind region due

to limited fields of view for the projector and the camera), are in the cast shadow

of the projector (there are no IR dots), or reflect poor IR lights (such as hairs or

specular surfaces).

Besides the advances in hardware, also the software that accompanies the Kinect

brought innovation and advances in skeletal tracking. The fact it was developed

primarily for commercial purposes pressured the Microsoft developers to full-proof

the algorithms and make it robust enough to detect almost every person on the

planet, in every household set, without any calibration (Zhang, 2012a).

2.4.3.2 The Vicon MoCap

The Vicon MoCap is a system commercially developed to track human or other

movement in a room-size space. Spheres covered with reflective tape, known as

markers, are placed on visual reference points on different parts of the human

body. The different cameras surrounding the scene project IR light and capture

the reflection of the markers. Being the same marker captured by three or more

different cameras, its absolute position in the space is calculated by triangulation.

Due to the fact this is a proprietary system, there are no details published about

software implementations.

The position of the markers is calculated in the Vicon Blade program (a com-

mercially closed program). The data derived from the captured motion are most

commonly saved to disk, as a Vicon-standardized .C3D file. Captured data files

are then used as offline input to an animation program such as Maya5 for realistic

generation of lifelike animated characters, or used for bio mechanical studies of

5http://www.autodesk.com/products/autodesk-maya/overview

http://www.autodesk.com/products/autodesk-maya/overview
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body motion (sports, physical therapy, ergonomics, etc.). In the .C3D format,

each frame of information is represented as a list consisting of Cartesian x, y,

z coordinates in 3D space for each marker. The Vicon system at Universidade

Católica Portuguesa (UCP) reports up to 120 frames per second (fps). The user

determines the ordering of the markers in the list when recording the data.

One good example of the use of a Vicon MoCap system is the work in progress in

the MAPP project, developed at CITAR and UCP, being the author of this thesis

directly involved in the technological aspects of the study. This project is developed

under the supervision of Dra. Sofia Lourenço (Lourenço, 2010) and has the

goal of detecting different pianists schools according to the gestures performed

by professional pianists playing.

Summarizing the project, there are three main traditional schools currents of piano:

the Russian, the French and the German. Each school can be characterized by

subtle differences in the expressive movements when in live performance context.

For instance, if one school constricts the movement, other encourages it, or if in

one school one can identify a curl of the wrists to reach the piano keyboard, in

other are the elbow and forearm that change. The use of the MoCap system in this

project allows to gather data to do a statistical analysis of the pianists movements.

The Figure 2.6 presents the setup of the MoCap capture sessions (in this case

Dra. Sofia Lourenço during the setup tests).

2.4.4 Sensor Motion Capture Systems

This kind of systems employs inertial sensors, such as gyroscopes and accelerom-

eters to measure the relative motion of the object being tracked. Gyroscopes

are used to determine orientation while accelerometers are used to determine

accelerations. By placing the sensors normal to each other, inertial motion capture

systems can determine the relative 3D orientation and position at a particular joint.

Usually this systems are used for vehicle navigation and tracking (e.g the work of
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Figure 2.6: Pianist performing on one of the MAPP project capture sessions.

the portuguese researcher Jorge Lobo (Lobo et al., 1995)) and human motion

tracking (Luinge, 2002), (Roetenberg, 2006).

The main advantages are the ability to do a direct measure in six degrees of

freedom, which cannot be achieved using an optical system. Also, it only needs

one sensor for tracking both 3D position and orientation, which is great for wireless

3D controllers, such as the Wii-Remote by Nintendo (Shih et al., 2010). Another

advantage is that it can acquire data at high sampling rates, without the processing

requirements of the optical systems, neither the occlusion problems of the former.
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As disadvantages, it has three that are relevant. First, like what happens in the

mechanical MoCap, it can not directly measure the absolute positioning of the

object. Second, the inertial sensors do not measure explicitly the position and

orientation, they derive it from the measured acceleration and angular velocity.

This leads to rapid error accumulation over time and therefore these are stable

only in short periods of time. And third, it also implies the use of sensors attached

to the body being measured, which can constrict movements.

One can see on Figure 2.7 the artist Tom Tlalim (featured in an article from Popular

Science6), creator of a full-body, eight-piece “suit” of Wiimotes interfaces with

custom software to turn his entire body into an electronic instrument.

Figure 2.7: Tom Tlalim wearing his Wii-Remotes suit (image extracted from Popular

Science)

There is also the example of the BioMuse (Tanaka, 2000), a biosignal musical

interface. In this case instead of gyroscopes and accelerometers, the system

takes bioelectrical signals in the form of electroencephalogram, electromyogram

and electrooculogram and translates them into serial digital data and MIDI. The

placement of electrodes in different locations of the arms allows to detect not only

6http://www.popsci.com/entertainment-gaming/article/2008-02/dancing

-song-full-body-wiimote-music-controller-suit

http://www.popsci.com/entertainment-gaming/article/2008-02/dancing-song-full-body-wiimote-music-controller-suit
http://www.popsci.com/entertainment-gaming/article/2008-02/dancing-song-full-body-wiimote-music-controller-suit
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the arm movements, but also the muscles contraction.

2.4.5 Hybrid Motion Capture Systems

Other works on motion capture systems center around hybrid systems, which

make use of different sensors to provide more robust and accurate 3D position

and orientation measurements. These include systems which combines GPS

and inertial sensors to localize an autonomous land vehicle (Caron et al., 2006),

magnetic and inertial (Roetenberg et al., 2007) (the magnetic tracker is able to cal-

culate relative distances and orientations between body segments while the inertial

tracker registers accelerations and angular rates), magnetic and optical (Joguet

et al., 2003) and inertial and optical (Blomster, 2006), (Foxlin and Naimark, 2003).

For instance, Foxlin (Foxlin and Naimark, 2003) presented a self-tracker, using

robust software that fuses data from inertial and vision sensors, as an approach to

use in the Augmented Reality context. Self-trackers have the advantage that ob-

jects can be tracked over an extremely wide area, when compared to infrastructure-

based trackers, without the prohibitive cost of an extensive network of sensors or

emitters to track them. Thus, Foxlin develop a self-tracker which is small enough

to wear on a belt, low cost, easy to install and self-calibrate. The Figure 2.8 shows

the self-tracker being tested.

The Table 2.1 presents a comparative summary of various characteristics of the

different MoCap systems.

Analyzing this table to choose one of the technologies to work with to develop a

framework without a set of specifications can be very ambiguous. Each method

has its pros and cons along several dimensions, such as: accuracy, resolution,

latency, range, user comfort, and cost amongst others. If on the one hand a

gestural interface based in a glove or exoskeleton allows for great accuracy for

joints rotation, on the other hand this typically require the user to wear a cumber-
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Figure 2.8: The self-tracker device in tests, from (Foxlin and Naimark, 2003)

some device and carry a load of cables to connect to a computer. This constricts

the user movements and consequently his gestures. Vision based techniques

overcome this restrictions, but have to deal with other problems related to occlusion

of parts of the user body. Other techniques have also some advantages but some

disadvantages as well. That is why gesture recognition is not trivial, there is not

one proven and foolproof method to do it. It is always dependent on the goals one

wants to achieve and the limiting conditions to achieve them.

The system chosen has to detect and capture human movements, but also recog-

nize the gestures in a continuous stream of movement. While humans have few

problems separating a hand gesture (e.g. waving goodbye), this is much more

problematic for computers. This is not only due to the remarkable capacity of

visual scene analysis in humans, but is also due to the fact that we understand the

intended meaning of the gesture based on its context and on our life-long expe-

rience of multimodal communication. The next section will present the difficulties



36 CHAPTER 2. GESTURES

Table 2.1: Comparison of existing motion capture techniques, based on (Wong,

2007).
Criteria Magnetic Mechanical Optical with markers Optical Markerless Inertial

Cost Med-High Low Med-High Low Low

Complexity High Low-Med High Low Low-High

Resolution Low High Low-High Low-Med High

Accuracy Low-Med High High Med-High High

Positioning Absolute Relative Absolute Absolute Relative

Latency Med-High Low Med Med Low-Med

Range Low N/A Low-Med Low-Med Med-High

Intrusiveness Med High Med No High

Highly Susceptible to Occlusion No No Yes Yes No

and some of the possible solutions for recognizing gestures.

2.5 Recognizing Gestures

Gesture recognition consists in recognizing meaningful expressions of motion by

a human, either to communicate or to interact with the environment. Typically, the

meaning of a gesture can be dependent on:

• the spatial information: where it occurs;

• the temporal information: when and how fast it occurs;

• pathic information: the path it takes;

• symbolic information: the sign it makes;

• affective information: its emotional quality.

Learning from the psycholinguistic research field, gestures can be physically dis-

tinguished from other movements mainly by four characteristics (Kendon, 1994):

1. gestures begin on a position of rest, move away from that position, and then

return to rest;
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2. gestures have what is commonly referred as a stroke, generally recognized

as a moment of accented movement to denote the function of meaning of a

movement;

3. one can identify a preparation phase before the stroke, and a recovery phase

after it in which the hand and arm return to their rest position.

4. gestures are often symmetrical.

Furthermore, gestures are usually language and culture specific, nevertheless

there are some commons to almost every society, such as:

• hand and arm gestures: recognition of hand poses, sign languages, and

entertainment applications (allowing children to play and interact in virtual

environments);

• head and face gestures (e.g. nodding or shaking of head; direction of eye

gaze; raising the eyebrows; winking; flaring the nostrils; looks of surprise,

happiness, disgust, fear, anger, sadness, contempt, etc.);

• body gestures: involvement of full body motion, as in tracking movements of

two people interacting outdoors; analyzing movements of a dancer for gen-

erating matching music and graphics; recognizing human gaits for medical

rehabilitation and athletic training.

Indeed, gestures can involve the hands, arms, face or even the entire body. They

can be static, where the user assumes a certain pose, or dynamic, where the user

treads a set of poses through time. Some gestures can also have both static and

dynamic elements. To detect and recognize all this range of gestures one needs

to specify where it begins and where it ends in terms of frames of movement, both

in time and space. So the automatic recognition of gestures implies the temporal

or spatial segmentation of the movement.
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Besides, in order to determine the relevant aspects of a gesture, the human body

position, the angles and rotations of its joints as well as their kinetic information

(velocities, accelerations) need to be determined. This can be done (as seen in

the previous section), either by using sensing devices attached to the user, or

using cameras and CV techniques.

The next sections present the literature review on movement segmentation, analy-

sis and feature extraction.

2.5.1 Movement Segmentation

In order to recognize gestures automatically, the computer must be able to segment

a continuous movement at its temporal and spatial level. The spatial segmentation

is the problem of identifying where the gesture starts and ends. Likewise the

temporal segmentation is the problem of identifying when the gesture begins and

when it ends.

The literature proposes various methods for recognizing gestures in a continuous

stream of movement when the temporal segmentation is unknown. The suggested

methods can be grouped into two basic approaches (Alon et al., 2009).

The first is the direct approach, where the temporal segmentation precedes gesture

recognition. That is, first one calculates low level motion parameters, such as

speed, acceleration, trajectory, and curvature (Kang et al., 2004) or mid-level

motion parameters such as the activity of the human body (Kahol et al., 2004),

and then looks to abrupt changes (e.g. zero-crossings) in parameters to identify

candidate gesture boundaries. A major limitation of such methods is that they re-

quire every gesture to be preceded and followed by intervals of rest, a requirement

that may not be satisfied in continuous gestures.

The second consists in the indirect approach, that intertwines the temporal seg-

mentation with gesture recognition. This is, the limits of the gesture are detected



2.5. RECOGNIZING GESTURES 39

by finding the sequence of unknown input that gives good recognition results, when

tested against the models of previous trained gestures. Most indirect methods

are based on extensions of Dynamic Programming, for example, DTW (Corradini,

2001a; Gillian et al., 2011) or various forms of HMM (Bevilacqua et al., 2005;

Elmezain and Al-Hamadi, 2009; Rabiner, 1989). In those methods, the gesture

endpoints are detected by comparing the recognition likelihood score to a thresh-

old. The threshold can be fixed or adaptively computed (Yang et al., 2006).

Besides the movement segmentation, there are other crucial aspects for the recog-

nition of gestures. These are the analysis of the movement and what features best

describe it, presented next.

2.5.2 Movement Analysis and Feature Extraction

There are unlimited possibilities and some more research is needed to determine

which features are best for gesture recognition. In the literature there are examples

of a variety of motion features employed. Rubine (Rubine, 1991), used mainly ge-

ometrically based features to recognize simple pen gestures. Segen et al (Segen

and Kumar, 1998) rely on local features such as “peaks” and “valleys” on the

contour of the hand shape to help classify gestures. Zhao (Zhao and Badler,

2001), in other hand, defends the use of case specific categories accordingly to

the following criteria:

• efficiently computable: each feature should be geometrically, algebraically, or

incrementally computable, using only data available from the motion capture

process;

• meaningful: features should be correlated to the motion qualities;

• minimum coverage: there should be sufficient features to capture and differ-

entiate the motion qualities, but the feature set should not be redundant.
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Al-Hamadi et al (Al-Hamadi et al., 2010), also addressed this problem when devel-

oping their hand gesture recognizing system. One of their main contributions were

the tests performed to examine the influence of the various features of coordinates

position, orientation angle and velocity in their gesture recognition system.

In essence, they concluded the best results were obtained when using a combina-

tion of the X and Y coordinates, the orientation angles and the respective velocity

of the analyzed joint (these provided 98.33% accuracy). However, when using

isolated features they realize the main contributor for the recognition was the ori-

entation angle of the gesture path, with an accuracy of 96.94%. Furthermore, the

velocity feature shows a lower discrimination power (57.22%) and the coordinates

position feature result has the lowest recognition rate of 32.78%.

Also, Yoon et al (Yoon et al., 2001) in their approach to hand gesture recognition

(using a 2D webcam) realize that when using separated movement features, the

angle features had recognition rates of 87%, and that they are better than the

recognition rate using the location or velocity features. Their conclusion was the

most effective feature among the three basic features was the angle feature.

To complete this description about movement analysis and feature extraction, is

important to mention gesture recognition can be divided in two sub problems (Zhao

and Badler, 2001): feature representation and classification. Consequently, a

complete gesture recognition framework consists in two assets: a representer and

a classifier. The representer uses the raw data, captured through optical, magnetic,

mechanical or hybrid sensors and outputs or creates an internal representation of

the data. Often is a set of parameters and features extracted from the raw data in

a convenient form to pass to the classifier (described in the following Chapter 3).

The classifier, taking the features passed by the representer as input, outputs an

appropriate classification (if one exists). Usually the classifier consists in various

methods based in various fields of research (Mitra and Acharya, 2007), they

range from statistical modeling, CV and pattern recognition, image processing and

machine learning, making this topic a good example of multidisciplinary research.
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The approaches can go from rather typical template matching, pattern recognition

or neural networks in case of a static gesture (i.e. a pose) to the more complicated

techniques, such as DTW, HMM in the case of dynamic gesture recognition. These

algorithms will be further described in Chapter 3.

Once the features are extracted and the gestures recognized, these can be mapped

to events using several techniques, next section presents a short review concern-

ing the mapping of motion to computer music.

2.6 Mapping Motion to Computer Music

The mapping of human gestures or movements to music has been discussed for

several years. It can be said the invention of the Theremin, in 1919, was a major

driver of the development of music produced by electrical means and is more re-

markable by being the first musical instrument without the need of physical contact

to play. The results obtained by the instrument was somewhat more intricate than

a simple oscillator, since the sound produced reflected the expressive quality of

human movement (Winkler, 1995a). Already in the 60s, many composers have

explored the human movements as a way of creating electronic music. From these

stands out the collaborative work “Variations V”, in 1965, with music by John Cage

and choreography by Merce Cunningham, in which the sounds were derived from

movements of dancers (depending on their proximity to various sensors placed

around the stage). With the technology constantly evolving, there has been a

refinement and improvement of the various techniques of motion capture and the

creation of several systems which show the feasibility of using computers to inter-

pret and use human motion data creatively (as presented in the next Section 2.7).

More recently the research questions are also related with the mapping7 of these

7the word “mapping” refers to the correspondence between control parameters (derived from

the human movements) and consequent events (e.g. sound synthesis parameters, visual effects,

etc).
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movements for sound synthesis and their performance in musical compositions.

Specifically, how can composers create music based on motion data? How can

movement be mapped to form and structure musical material?

Interactive music systems can be used to answer these questions by interpreting

the data and extending the power of expression of the performer beyond simple re-

lationship of one-to-one sound trigger, to include the control of multiple processes

of composition, musical structure, signal processing and sound synthesis (Winkler,

1995a).

In reality there are two main points of view regarding the mapping in interactive

systems (Hunt et al., 2000). The first states the mapping is a specific feature of

a composition. The second states mapping is an integral part of the instrument.

Besides these two currents, there are also three categories in which the mapping

can be classified (Rovan et al., 1997):

• One-to-One Mapping - in this case each control parameter (i.e. gesture rec-

ognized) is assigned to one musical parameter. This is the simplest mapping

scheme, but usually is also the least expressive approach.

• One-to-Many Mapping - Also known as divergent mapping, usually implies

that one control parameter is used to control multiple musical parameters.

Although it provides a more expressive experience when compared to the

one-to-one mapping, it is nevertheless a macro approach not allowing the

access and manipulation of micro features of the sound object.

• Many-to-One Mapping - i.e. the convergent mapping - This approach consists

in coupling many control parameters to produce one musical parameter. This

scheme is the most complex of them all and usually implies the performer

to train and rehearse with the system in order to achieve effective control.

Nevertheless this is far more expressive than the simpler mapping strategies.

In summary, it is important to mention that in terms of expressivity, the manner in
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which the mapping of gestural data onto the consequent events or sound parame-

ters is done is just as important as the capture of the gesture itself. Nevertheless, in

the case of the framework proposed, the mapping strategies are left to the decision

of the final user. This is, the framework provides the control parameters, but the

subsequent events and mapping strategies employed are dependent on the user

choice.

Section 2.7 will provide a review of previous works developed in the area of gesture

recognition, with particular emphasis for the performative arts.

2.7 Previous Works

The field of human movements and gesture analysis has, for a long time now,

attracted the interest of many researchers, choreographers and dancers. Thus,

since the end of the last century, a significant corpus of work has been conducted

relating movement perception with music (Fraisse, 1982). The important role

of the human body in complex processes such as action and perception, and

the interaction of mind and physical environment has been acknowledged origi-

nating new concepts such as embodiment (the argument that the motor system

influences our cognition, just as the mind influences body actions) and enactive

(the human mind organizes itself through interaction with the environment) (Varela

et al., 1993). Along with these relatively new concepts, many approaches have

been proposed to translate the human physical movement and gesture into digital

signals for further observation, study or plainly so that one can use them to control

musical parameters in algorithmic music composition systems.

Already in the 90s, Axel Mulder (Mulder et al., 1994) characterized three tech-

niques for tracking/capturing human movements, that still remains an important

reference. Accordingly to him, the human movement tracking systems can be

classified as inside-in, inside-out and outside-in systems.
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Inside-in systems are defined as those which employ sensors and sources that

are both on the body (e.g. a glove with piezo-resistive flex sensors). The sensors

generally have small form-factors and are therefore especially suitable for tracking

small body parts. Whilst these systems allow for capture of any body movement

and allow for an unlimited workspace, they are also considered obtrusive and

generally do not provide 3D world based information.

Inside-out systems employ sensors on the body that sense artificial external sources

(e.g. a coil moving in a externally generated electromagnetic field), or natural

external sources (e.g. a mechanical head tracker using a wall or ceiling as a

reference or an accelerometer moving in the earth gravitational field). Although

these systems provide 3D world-based information, their workspace and accuracy

is generally limited due to use of the external source and their form factor restricts

use to medium and larger sized bodyparts.

Outside-in systems employ an external sensor that senses artificial sources or

markers on the body, e.g. an electro-optical system that tracks reflective markers,

or natural sources on the body (e.g. a videocamera based system that tracks

the pupil and cornea). These systems may suffer from occlusion, and a limited

workspace, but they are considered the least obtrusive. Due to the occlusion it

is hard or impossible to track small bodyparts unless the workspace is severely

restricted (e.g. eye movement tracking systems). The optical or image based

systems require sophisticated hardware and software and may be therefore ex-

pensive.

Following this least obtrusive Outside-In technique, several projects with the pur-

pose of creating and controlling electronic music have been developed since the

mid 1990s. Early works of composers Todd Winkler (Winkler, 1995b) and Richard

Povall (Povall, 1998), or the choreographer Robert Weschler work with Palin-

drome8. Also, Mark Coniglio continued development of his Isadora programming

8http://www.palindrome.de

http://www.palindrome.de
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environment9, plus the groundbreaking work Troika Ranch10 has done in interactive

dance, stand out as important references on how video analysis technologies have

provided interesting ways of movement-music interaction.

Other example of research in this field is the seminal work of Camurri, with several

studies published, including:

• an approach for the recognition of acted emotional states based on the anal-

ysis of body movement and gesture expressivity (Castellano et al., 2007).

By using non-propositional movement qualities (e.g. amplitude, speed and

fluidity of movement) to infer emotions, rather than trying to recognise differ-

ent gesture shapes expressing specific emotions, they proposed a method

for the analysis of emotional behaviour based on both direct classification of

time series and a model that provides indicators describing the dynamics of

expressive motion cues;

• the Multisensory Integrated Expressive Environments (Camurri et al., 2005),

a framework for mixed reality applications in the performing arts such as

interactive dance, music, or video installations, addressing the expressive

aspects of nonverbal human communication;

• the research on the modelling of expressive gesture in multimodal interaction

and on the development of multimodal interactive systems, explicitly taking

into account the role of non-verbal expressive gesture in the communication

process (Camurri et al., 2004). In this perspective, a particular focus is

on dance and music as first-class conveyors of expressive and emotional

content;

• the Eyesweb software (Camurri et al., 2000), one of the most remarkable and

recognised works, used toward gestures and affect recognition in interactive

dance and music systems.
9http://www.troikatronix.com/isadora.html

10http://www.troikaranch.org/

http://www.troikatronix.com/isadora.html
http://www.troikaranch.org/
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In 2005, Guedes (Guedes, 2005a) realized that analysing the number of pixels in

video sequences whose luminance levels changed, due to repetitive movements,

allowed to detect the periodicity in the video signal. Using the Goertzel Algorithm,

a variation of the common spectral analysis algorithms (such as the Fast Fourier

Transform), permitted the efficient computation of the fundamental frequency from

the video signal, and subsequently estimates the rhythm of the physical move-

ments on the video stream. Thus, Guedes developed the m-objects, a series of

external objects for Max/MSP11, for musical rhythm generation and musical tempo

control from dance movement in real-time (Guedes, 2005b).

In 2008, Naveda (Naveda and Leman, 2008) proposed an approach for the rep-

resentation of dance gestures in Samba dance. The representation was based

on a video analysis of body movements, carried out from the viewpoint of the

musical meter. His method provided the periods, a measure of energy and a visual

representation of periodic movement in dance. He developed tools to relate the

music and the dance on a metrical level, proposing relevant heuristic methods to

connect music and dance.

Also Bevilacqua, at IRCAM-France worked on projects that used unfettered ges-

tural motion for expressive musical purposes (Dobrian and Bevilacqua, 2003)

(Bevilacqua et al., 2005) (Bevilacqua and Muller, 2005). The first involved the

development of software to receive data from a Vicon motion capture system and

to translate and map it into music controls and other media controls such as lighting

(Dobrian and Bevilacqua, 2003). The second (Bevilacqua et al., 2005) consisted

in the development of the toolbox “Mapping is not Music” (MnM) for Max/MSP,

dedicated to mapping between gesture and sound. And the third (Bevilacqua and

Muller, 2005) presents the work of the a gesture follower for performing arts, which

indicates in real-time the time correspondences between an observed gesture

sequence and a fixed reference gesture sequence.

Likewise, Nort and Wanderley (Nort et al., 2006) presented the LoM toolbox. This

11http://cycling74.com/products/max/

http://cycling74.com/products/max/
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allowed artists and researchers access to tools for experimenting with different

complex mappings that would be difficult to build from scratch (or from within

Max/MSP) and which can be combined to create many different control possibili-

ties. This includes rapid experimentation of mapping in the dual sense of choosing

what parameters to associate between control and sound space as well as the

mapping of entire regions of these spaces through interpolation.

Schacher (Schacher, 2010) searched answers for questions related to the percep-

tion and expression of gestures in contrast to pure motion-detection and analysis.

Presented a discussion about a specific interactive dance project, in which two

complementary sensing modes were integrated to obtain higher-level expressive

gestures. Polloti (Polotti and Goina, 2011) studied both sound as a means for ges-

ture representation and gesture as embodiment of sound and Bokowiec (Bokowiec,

2011) proposed a new term, “Kinaesonics”, to describe the coding of real-time one-

to-one mapping of movement to sound and its expression in terms of hardware and

software design.

Another important work, also published in 2011, is the one of Gillian (Gillian et al.,

2011). He presented a machine learning toolbox that has been specifically de-

veloped for musician-computer interaction. His toolbox features a large number

of machine learning algorithms that can be used in real-time to recognize static

postures, perform regression and classify multivariate temporal gestures.

Also in 2009, the author made part of the project “Kinetic controller driven adaptive

and dynamic music composition systems”12. One of the aims of the project was

to utilize video cameras as gestural controllers for real-time music generation. The

project included the development of new techniques and strategies for computer-

assisted composition in the context of real-time user control with non-standard

human interface devices. The research team designed and implemented real-time

software that provided tools and resources for music, dance, theatre, installation

artists, interactive kiosks, computer games, and internet/web information systems.

12http://smc.inescporto.pt/kinetic/

http://smc.inescporto.pt/kinetic/
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The accurate segmentation of the human body was an important issue for in-

creased gestural control using video cameras. In the International Computer Music

Conference (ICMC) of 2010 the author published a paper (Baltazar et al., 2010),

presenting an algorithm for real-time human body skeletonization for Max/MSP.

This external object for Max/MSP was developed to be used with the technology

available at that time, a computer webcam capturing video in two dimensions.

The algorithm was inspired by existing approaches and added some important

improvements, such as means to acquire a better representation of the human

skeleton in real-time. The output of the algorithm could be used to analyze in real-

time the variation of the angles of the arms and legs of the skeleton, as well as

the variation of the mass center position. This information could be used to enable

humans to generate rhythms using different body parts for applications involving

interactive music systems and automatic music generation. Nevertheless, the

common CV problems of image segmentation using a two dimensional webcam,

reduced the applications of the algorithm.

By the end of 2010 a new sensor was launched, with three dimensions video

capture technology, that changed the way the human body could be tracked, the

Microsoft Kinect camera (Zhang, 2012b), introduced in the previous Section 2.4.

The Kinect impact has extended far beyond the gaming industry. Being a relatively

cheap technology, many researchers and practitioners in computer science, elec-

tronic engineering, robotics, and even artists are leveraging the sensing technology

to develop creative new ways to interact with machines. Being for health, security

or just entertainment purposes. For instance, Yoo (Yoo et al., 2011) described

the use of a Microsoft Kinect to directly map human joint movement information to

MIDI.

Also, using a Kinect, already in the scope of this thesis, the author published a

first version of the framework in ARTECH 2012 conference (Baltazar et al., 2012).

The paper described a modular system that allows the capture and analysis of

human movements in an unintrusive manner (using a custom application for video
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feature extraction and analysis developed using openFrameworks). The extracted

gesture features are subsequently interpreted in a machine learning environment

(provided by Wekinator (Fiebrink et al., 2009)) that continuously modifies several

input parameters in a computer music algorithm (implemented in ChucK (Wang

et al., 2003). The paper published at ARTECH was one of the steps for the

framework presented in this thesis.

Despite all these relevant works made in this sub theme of the Human-Computer

Interaction field, there are always new technologies emerging and new algorithms

to apply to somehow improve and go further. This is the main objective of this

thesis, to push through existing technology and contribute with a new framework

to analyze gestures and use them to interact/manipulate/create events in a live

performance setup.

2.8 Summary

This chapter was focused on gestures. It started by giving a definition and ex-

planation about gestures and how they are defined in the psychological-linguistic

domain, cognitive science domain and in the performing arts domain. Then, it

described the different technologies available for capturing gestures.

After understanding gestures and learning the technological resources to capture

them, one discussed how they can be recognized, the main applications of the

recognition and the main approaches to do it successfully.

To finish the section, a review of the previous works done on the scope of this

thesis was presented.

The corpus of research developed in this area in recent years has made available a

new basis for the creation of computational models inspired on the human expres-

sion and perception of movement and gesture. These models have been used to
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test and refine existing theories, and to create interactive systems that are able to

perform perceptually and artistically relevant tasks in real-time. Nevertheless, we

are still looking for more satisfactory approaches and solutions to understand, in-

terpret and creatively use human gestures in interactive art contexts. In this sense

the framework proposed intends to fill some of the gaps still vaguely explored, such

as the development and assembly of an entire system, from the capture of human

movements till the training, recognition of gestures and consequent artistic event

triggering, allowing thus a more straightforward utilization by the end users.



Chapter 3

Zatlab: A Framework for Gesture

Recognition

“Reduce your plan to writing. The moment you complete this,

you will have definitely given concrete form to the intangible

desire.”

Napoleon Hill

3.1 Introduction

As explained in Chapter 2, humans have excellent capabilities to learn, recognize

and perceive gestures (Rowe and Goldin-meadow, 2009). Computers already

present some qualities for the same task, however, many of the computational

issues of recognizing gestures are still unsolved.

This chapter proposes an interactive gesture recognition framework called the

Zatlab System (ZtS). This framework is flexible and extensible. Thus, it is in

51
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permanent evolution, keeping up with the different technologies and algorithms

that emerge at a fast pace nowadays. The basis of the proposed approach is

to partition a temporal stream of captured movement into perceptually motivated

descriptive features. The analysis of the features will then reveal (or not) the

presence of a gesture (similarly to the way a human “unconsciously” perceives

a gesture (Kendon, 1980)).

The framework described in this chapter will take the view that perception primarily

depends on the previous knowledge or learning. Just like humans do, the frame-

work will have to learn gestures and their main features so that later it can identify

them. It is however planned to be flexible enough to allow learning gestures on the

fly.

In this particular case, while developing a framework to be used on a stage, by

a dancer or performer, one wanted to allow as much freedom of movements as

possible without being intrusive on the scene. The less the performer had to

change is routine (by wearing sensors, markers or specific clothes) the better.

That, together with the low cost of the technology (that allows the framework to

reach to a broader number of performers), lead to the decision of using the optical

MoCap option instead of others. The challenge of choosing this path resides on

the development of sensor and CV solutions, and their respective computational

algorithms.

Designed to be efficient, the resulting system can be used to recognize gestures in

the complex environment of a performance, as well as in “real-world” situations,

paving the way to applications that can benefit not only the performative arts

domain, but also, helping the hearing impaired to communicate, in a near future.

First, one presents the architecture of the framework, along with a description of

the different modules and the main algorithms involved in its development. Then,

the various modes of functioning of the ZtS are discussed.
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3.2 System Overview

Figure 3.1: ZatLab system architecture diagram.

An overview of the proposed gesture recognition framework is presented in Figure

3.1. Summarized descriptions of the main blocks that constitute the proposed

system are presented in this section. More detailed discussions about each of the

processing stages will appear in the subsequent sections of this chapter.

The ZtS is a modular framework that allows the capture and analysis of human

movements and the further recognition of gestures present in those movements.

Thus, using the optical approach, the Data Acquisition Module will process data

from a Microsoft Kinect or a Vicon Blade MoCap (presented in detail in Section

2.4.3). However it can be easily modified to have input from any type of data

acquisition hardware.
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The data acquired will go through the Data Processing Module. Here, it is pro-

cessed in terms of movement analysis and feature extraction. This will allow provid-

ing a visual representation of the skeleton captured and its respective movements

features. This module has also access to the database where it can record or load

files. These can include: gestures, an entire captured performance, or features

extracted from the movements.

Once the features are extracted, these are processed by the Gesture Recognition

Module using two types of ML algorithms. The DTW and HMM (explained in the

following sections). If a gesture is detected, it is passed to the Processing Module

and this will store it, represent it or pass it to the Trigger Output Module.

In the Trigger Output Module the selected movement features or the detected

gestures are mapped into triggers. These triggers can be continuous or discrete

and can be sent to any program that supports the OSC communication protocol

(Wright et al., 2001) (this protocol will be further explained in the following Section

3.6). In the next sections the different modules are presented in detail.

3.3 Data Acquisition Module

The human body tracking is one of the key elements of this system. The acquisition

of human movements should be as accurate as possible, to ensure a proper

analysis of their features and a correct gesture recognition. But the technology

chosen must also be available and affordable to a broad range of performers. Also

it should be the least intrusive possible. This arises some issues to solve and

decisions to make. In a previous research, the author developed a similar module

using a 2D webcam, whose output was then analyzed using image segmentation

algorithms (as described in Section 2.7 (Baltazar et al., 2010)). Not being as

accurate as one intended, another solution had to be taken.

More recently, with the Microsoft Kinect, it became possible to obtain a full-body
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detection using the depth information combined with the video signal. When com-

pared with the previous webcam version, it can be said that it becomes simpler

to detect and track a foreground object/person. The “traditional” CV tracking prob-

lems, such as light constraints or background/foreground separation can be solved

using this new hardware.

Another advantage, that is very important in the scope of this framework, it is

its portability. Not only it can be used in almost every environment imaginable

(indoors, outdoors, good or bad light conditions, crowded places) but also, this

sensor can be considered (almost) a Plug & Play technology. After some drivers

and software installations, and computer teaks to make it work native, one just

needs to plug it to the USB port and start working with it. To users/performers that

are not keen to informatics, there is also the alternative to download applications

that already have the drivers and software packages embedded, that will work

instantly, such as the Synapse1.

Altogether the Kinect provides a good solution for the framework: it is portable,

reasonable cheap and has high performance tracking capabilities. In the Chapter

4, it will be possible to review the tests made with it and draw the conclusions of its

suitability to this framework.

There is also a higher end method for detection, the Vicon MoCap system. With the

advantages of remarkable tracking and low latency. It has, nevertheless, explicit

disadvantages, such as: the cost, the rather complex and somewhat fixed setup

for several infrared cameras and the necessity of wearing a special suit equipped

with reflective markers.

Another disadvantage is that Vicon Blade only allows the real-time transmission

of data to other commercially developed programs of their company or with com-

panies that have established sharing protocols. Also, the transmission is made in

a proprietary protocol. Consequently, in the case of this work, the real-time OSC

1http://synapsekinect.tumblr.com

http://synapsekinect.tumblr.com
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transmission between the Vicon Blade and the ZtS (or any other external program)

had to be developed (its implementation will be explained in Chapter 5).

This application, named ofxViconOSC, developed within the scope of this thesis,

that can stream, in real-time the data from a Vicon system to any computer, is now

available to the scientific community at the CITAR website2.

Having these two technologies available at UCP, the framework developed should

allow working with both. This way one can compare the Vicon MoCap against

the Kinect in terms of the specific purpose of the gesture recognition latency (in

Chapter 4, one can analyze the latency results).

In summary, this module consists on the acquisition of the real-world data to the

virtual-world. It is independent of the hardware chosen to acquire the human

movements, but is preset to work with a Microsoft Kinect and a Vicon Blade. In

this module the hardware messages are decoded into human body joints to feed

the Data Processing Module, presented next.

3.4 Data Processing Module

This module is the core of the framework, it will process and redirect the data to

other modules keeping the framework functioning properly and effectively. This

receives the skeleton joints data from the aforementioned Data Acquisition Module

and processes it for three different purposes:

1. Visual Representation.

2. Database Management.

3. Movement Analysis and Feature Extraction.

The following sections will discuss these three different purposes in detail.
2http://artes.ucp.pt/citar/

http://artes.ucp.pt/citar/
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3.4.1 Visual Representation

The Graphical User Interface (GUI) provides a real-time, intricate but intuitive visual

feedback to the user. Not only displays the skeleton of the user as if he was in front

of a mirror (a virtual mirror in this case), but it can also display different panels of

information. These range from the gestures previously recorded (with velocity and

acceleration information attached), the gesture that was recognized, what triggers

are setup and if a movement trigger was activated or not.

The Figures 3.3 and 3.2 present different views of the ZtS GUI.

Figure 3.2: The GUI in development mode and the respective control panel. On the

control panel one can see the DTW Mode is activated and the triggers are being

sent to “localhost” and port 12345. Next to the gesture is presented its index and

some statistics about it, in this case its average speed and acceleration. On the

top right corner one can see the algorithm just recognized gesture “1”.
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Figure 3.3: An application of the framework. The setup for FestivalIN (further

described in Chapter 4) and a young boy interacting with the framework. The

different color particles indicate triggers have been activated (in this case sound

triggers).

3.4.2 Database

The database allows the user to record and load several types of files. It is

organized in the following folders:

• Performances - The user can record an entire performance (e.g. a dance,

a presentation, etc). It records the several skeleton joints data sequence in

a text file. It allows to reproduce exactly what was done by the user, thus

enabling the review, setup and adjustment of triggers in offline mode (for

instance, can be used to record a dance rehearsal, review it and setup some

gesture triggers to use on the next rehearsal or in the presentation of the

dance performance).

• Gestures - The user can record a set of gestures for training the recognition
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algorithms or for gesture notation purposes. Different from the performance

recording, hence will be recording only the segment of data that represent the

gesture and its main features (for instance, the circles presented in Figure 3.3

can be recorded in the database for future use).

• Gesture Models - When the user trains the gesture recognition algorithms,

he is creating a gesture model. This model contains the features of the

recognition algorithms, necessary for the recognition of a similar gesture.

This folder stores the model files.

• Drawings - The user can use the framework in a more lateral purpose for

free drawing (like for instance, a virtual board). In this folder the user can

store the drawings.

The files are stored with a single identifier name consisting on the data and time of

the start of recording.

3.4.3 Movement Analysis and Feature Extraction

Having in mind the results of previous researches, presented in Chapter 2 - Sec-

tion 2.5.2, the features chosen to compute are the ones provided by the Physics

kinematic equations3 to describe movement along with the orientation angle of the

gesture path, described next.

From the data acquired one already has the information of the coordinates and the

respective timestamp t for each joint of the human body. Therefore, the following

features can be computed.

3http://www.physicsclassroom.com/class/1dkin/u1l6a.cfm

http://www.physicsclassroom.com/class/1dkin/u1l6a.cfm
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Time

For a given movement segment, its total time can be easily computed by subtract-

ing the first sample time-stamp t1 from the last sample time-stamp tn:

T = tn − t1 (3.1)

Displacement

Knowing all the coordinates of the movement segment, the total displacement

D can be calculated by summing the relative difference among coordi and the

previous coordi−1, from the first sample (i = 1) till the last (n).

D =
n∑
i=1

‖coordi − coordi−1‖ (3.2)

Velocity

Also, the velocity and acceleration can be computed. The average velocity will be

defined as the quotient of the displacement ∆d and the interval time ∆t. In the

case of consecutive frames (where the ∆t is very small) we can assume this is the

instantaneous velocity vi.

vi =
coordi − coordi−1

ti − ti−1

(3.3)

And the average velocity can be computed as the sum off all the vi divided by the

number of samples n:

vavg =

∑n
i=1 ‖vi‖
n

(3.4)
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Acceleration

Similarly, the instantaneous acceleration can be approximated by the average

acceleration over a small interval ∆t.

ai =
vi − vi−1

ti − ti−1

(3.5)

And the average acceleration can be computed as:

aavg =

∑n
i=1 ‖ai‖
n

(3.6)

All the features are extracted within a motion segment. These features are very

important to describe the joint movements. Although with these features one

is already able to visualize and extract relevant information from the data, the

direction of movement the joint takes at each frame is also a key feature for the

ML algorithms (explained in the next section). This feature will allow not only to

detect immediately if the movement is done from left to right, but also if it is a

simple line or something more complex like a circle or a square.

Direction of Movement

The angle or direction of movement can be calculated using the known coordinates

at consecutive frames and applying the arc-tangent function. This is given by

Equation (3.7) and the result is given in degrees (in this case computed only in two

dimensions: ∆x is the displacement along the X axis and ∆Y is the displacement

along the Y axis).

θ = atan
∆Y

∆X
(3.7)

θ ranges from 0o till 360o. This would create a tremendous range of data to be
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analyzed, in real-time, by the ML algorithms (Al-Hamadi et al., 2010). Also,

measuring the direction of the movement in single unit degrees could lead to

additional noise in the data. Therefore, it is necessary to normalize the data to

an observable “codeword”. This can be done by dividing the total range of the

angles in 12 equally separated spaces (12 spaces allow to understand differences

in increments of 30o). So, the direction of movements is classified accordingly to

the degrees belonging to a determined interval. The framework is setup to work

with these 12 symbols, but it can be easily adapted to work with more or less

(however these achieved good results, as presented in Chapter 4). See Table

3.4.3 and Figure 3.4 for better understanding this angle based “codeword”.

Table 3.1: Angles codeword table

Angle Codeword Value

[0o,30o] 0

[31o,60o] 1

[61o,90o] 2

[91o,120o] 3

[121o,150o] 4

[151o,180o] 5

Angle Codeword Value

[181o,210o] 6

[211o, 240o] 7

[241o, 270o] 8

[271o, 300o] 9

[301o, 330o] 10

[331o,359o] 11

3.5 Gesture Recognition Module

The gesture recognition in HCI has many similarities with other areas of research.

Being encompassed in a more general area of pattern recognition, stand out, in

particular, the similarities with speech or handwriting recognition. Being these

areas already more developed in scientific terms, it is natural to try to mirror the var-

ious techniques applied in these areas to gesture recognition (Corradini, 2001a).

Considering a gesture G can be described as a sequence of feature vectors, it can

be assumed that the best way to describe it is to gather N sequences (prototypes)
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Figure 3.4: Examples of gestures recorded and their associated angle orientation

codeword. In the case of the circle all the orientation values are present, but

the timestamped sequence will reveal if it was executed in clockwise or counter-

clockwise motion.

of that gesture (performed in different ways). Therefore, when in recognition mode,

an unknown input can be compared against each one of these N prototypes and,

taking into account the measures and criteria chosen, a degree of similarity can be

assigned.

Although it has a high computational cost, a large set of reference patterns N

should be used for this comparison, representing each gesture G. The biggest

problem with this approach is the choice of a suitable distance measure. The

simplest way to define it is by calculating the distances between the corresponding

samples of the reference and the unknown input sequences and accumulate the

result. Unfortunately, gestures have a variable spatio-temporal structure. They

vary when performed by different people and even the same user is not able to

perform a gesture exactly the same way several times in a row. This means that,

depending on both the speed of the movement performance and the user, the

recorded gesture signals can be stretched or compressed.

Therefore, to compare two signals permitting them to have different lengths re-

quires dynamic programming. Learning from speech recognition, since speech

shares the varying temporal structure of gestures, an algorithm often used in that
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field is the DTW (Rabiner and Juang, 1993). The DTW algorithm, performs a time

alignment and normalization by computing a temporal transformation allowing two

signals of different lengths to be matched.

Another alternative of dynamic programming is the statistical and probabilistic ap-

proach, such as Hidden Markov Model (HMM). It is a rich tool used for gesture

recognition in diverse application domains. Probably, the first publication address-

ing the problem of hand gesture recognition is the seminal paper by Yamato et al

(Yamato et al., 1992). In his approach, a discrete HMM and a sequence of vector-

quantized (VQ)-labels have been used to recognize six different types of tennis

strokes.

In this section, one will discuss the principles and background of both the algo-

rithms working on the Gesture Recognition Module, the DTW and the HMM.

In this particular instance, the module is being trained and fed with the human

movement features (sequence of coordinates, velocities and orientation of the

movement). But it can be used also for recognition of any other signals sequence

(writing, speech, image), the user just needs to use the right features to feed the

module at each case.

3.5.1 The Dynamic Time Warping

When two signals with temporal variance must be compared (e.g. a reference time

sequence of features that represent a gesture against an unknown time sequence

of features), or when looking for a pattern in a data stream, the signals may be

stretched or shrunk along its time axis in order to fit into each other. A comparison

made after these operations can give false results because we may be comparing

different relative parts of the signals. The DTW is one of the methods to solve this

problem (Ten Holt et al., 2007). The algorithm calculates the distances between

each possible pair of the two signals taking into account their associated feature
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values. With these measured distances it builds a matrix of accumulated distances

and finds the path that guarantees the minimum distance between the reference

and tested signals. This path represents the best synchronization of both signals

and thus, the minimum feature distance between their synchronized points.

Consequently, the DTW has become popular by being extremely efficient as the

time-series similarity measure which minimizes the effects of shifting and distortion

in time, allowing “elastic” transformation of time series in order to detect similar

shapes with different phases. It has been used in various fields, such as speech

recognition (Rabiner and Juang, 1993), data mining (Keogh and Ratanamahatana,

2005), and movement recognition (Corradini, 2001b; Gillian et al., 2011).

Formally explaining, given two time series X = (x1, x2, ...xN), N ∈ N and Y =

(y1, y2, ...yM),M ∈ N represented by the sequences of values, the DTW will permit

the synchronization of the two signals, see Figure 3.5 .

Figure 3.5: Time alignment of two time-dependent sequences. Aligned points are

indicated by the arrows, adapted from (Senin, 2008a).

If sequences are taking values from some feature space φ then in order to compare

two different sequences X, Y ∈ φ one needs to use a local distance measure d

(usually the Euclidean distance). Intuitively d has a large value when sequences

are different and a small value if they are similar. This distance function is usually

called the “cost function” and the task of optimal alignment of the sequence be-
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coming the task of arranging all sequence points by minimizing the cost function

(or distance). The algorithm starts by building the local cost matrix C ∈ RN×M

representing all pairwise distances betweenX and Y as it is described by Equation

3.8:

C ∈ RN×M : cij = ‖xi − yj‖ , i ∈ [1 : N ] , j ∈ [1 : M ] (3.8)

Once the local cost matrix is computed, the algorithm finds the alignment path that

runs through the low cost areas of the matrix. This alignment path (or warping

path) defines the correspondence of an element xi ∈ X to yj ∈ Y following the

boundary condition which assign first and last elements of X and Y to each other

(see Figure 3.6).

Figure 3.6: The optimal warping path for the signals alignment. The vertical axis

presents the reference signal and the horizontal axis presents the query input,

adapted from (Senin, 2008b).

This accumulated cost matrix results to be the minimum distance possible among

the reference gesture and the unknown input. Having thus, an overall measure to

state if the signals are similar or not. In this case, if the gesture being tested has
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an accumulated cost matrix value low enough (in regard to the original recorded

gesture), then it is safe to say we are in the presence of the same gesture.

When testing the unknown input against different gestures one can end up with the

respective cost matrix values similar among themselves. This can create doubt in

which is the correct gesture. In this case there are two options: to consider only the

nearest-neighbor (the one that presents the lower cost value) as the correct one

or to consider evaluating K-nearest-neighbors to achieve weighted results (e.g.

consider the 5 nearest-neighbors and choose the gesture more represented in

that group as the correct one).

A more detailed explanation on the DTW and how the cost matrix is computed is

presented in Annex A.

The DTW works good enough when the gesture is simple, due to simplicity of the

training (further analysis is explained in Chapter 4). But if the gesture is somehow

more complex, it needs to be trained with more samples and in a more statistical

and probabilistic driven algorithm. This lead to the implementation of the HMM,

explained next.

3.5.2 The Hidden Markov Model

HMM (Rabiner, 1989), (Yamato et al., 1992), are powerful statistical models for

representing sequential or time-series data, and have been successfully used in

many tasks such as speech recognition, protein/DNA sequence analysis, robot

control, and information extraction from text data. HMM have also been applied

to hand and face recognition (Nefian and Hayes III, 1998). The HMM is rich in

mathematical structures and has been found to efficiently model spatio-temporal

information in a natural way. The model is termed “hidden” because all that can

be seen is only a sequence of observations (symbols). It also involves elegant

and efficient algorithms, such as Baum-Welch and Viterbi (Viterbi, 1967), for
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evaluation, learning and decoding.

Formally, an HMM is defined as a quintuple (S, V,Π, A,B) (Rabiner, 1989) where

S = {s1, ..., sN} is a finite set of N hidden states (that model a gesture); V =

{v1, ..., vM} is a set of M possible symbols (e.g. features of the gesture) in a

vocabulary; Π = {πi} are the initial state probabilities; A = {aij} are the state

transition probabilities; B = {bi(vk)} are the output or emission probabilities.

Therefore, each HMM is modeled and expressed as λ = (Π, A,B) where the

parameters are:

• πi - the probability that the system starts at state i at the beginning;

• aij - the probability of going from state i to state j;

• bi(vk) - the probability of generating symbol vk at state i.

The generalized topology of an HMM is a fully connected structure, know as an

ergodic model, where any state can be reached from any other state. When

employed in dynamic gesture recognition, the state index transits only from left

to right with time (left to right HMM). The global structure of the HMM recogni-

tion is constructed by training of each HMM (λ1, λ2, ..., λM), whereby insertion (or

deletion) of a new (or existing) HMM is easily accomplished. λ corresponds to a

constructed HMM model for each gesture and M is the total number of gestures

being recognized.

When working with HMM there are three basic problems to solve:

1. Evaluation: Given a model and a sequence of observations, how do we

compute the probability that the observed sequence was produced by the

model? Namely, one has to evaluate the probability of an observed sequence

of symbols O = o1, o2, ..., ot (where oi ε V ) given a particular HMM (λ), e.g.
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p(O|λ). This is extremely useful, in this case having several competing “mod-

els” of gestures, this will allow to find which gesture “model” best matches the

observations (of the gesture being performed live).

2. Decoding: This is to uncover the hidden part of the model, i.e. to find the

state sequence that illustrates best the model. In other words, to find the most

likely state transition path associated with an observed sequence. Having a

sequence of states q = q1, q2, ..., qt we will want to find the q∗ = argmaxqp(q∧

O|λ).

3. Training: Is the crucial part of HMM, since it will allow to adapt the model

parameters to the observed training sequence, hence creating the best mod-

els for the gestures performed. In other words, is to adjust all the parameters

of our model λ to maximize the probability of generating an observed set of

sequences O, this is, to find the λ∗ = argmaxλp(O|λ).

These three problems already have solutions. The first is solved by implementing

part of the Forward-Backward iterative algorithm. The second by using the Viterbi

algorithm, and the third by using the Baum-Welch algorithm, which uses the the

Forward and Backward probabilities calculated previously to update the parame-

ters iteratively. Next, one will explain briefly these three algorithms. A more detailed

description of these algorithms is presented in Annex A.

Forward-Backward Algorithm

The forward–backward algorithm can be used to find the most likely state for any

point in time. In HMM, each symbol emission and each state transition depend only

on the current state. There is no memory of what happened before, no lingering

effects of the past. This means that having a sequence of observation symbols

O(1...T ), it can be broken into two parts, a “past” sequence O(1...t) and a “future”

sequence O(t + 1...T ). Thus, one can work on each half separately. The motive
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for splitting the sequence into two parts is to use induction on t. The inductive

calculation where t advances from 1 towards T is called the forward calculation,

while the calculation where t is decremented down from T towards 1 is called the

backward calculation.

The Forward probabilities will allow solving the problem 1 and finding the proba-

bility of a sequence of observations to belong to a determined HMM model. The

Backward probabilities will allow solving problem 3 along with the Baum-Welch

algorithm, explained ahead.

Viterbi Algorithm

Although being, nowadays, one of the most used algorithms in the field of Pattern

Recognition and ML (Jr, 2005), the Viterbi algorithm was created and published

by Andrew Viterbi in 1967 (Viterbi, 1967) as simply an explaining support tool for

his Information Theory classes. Curiously, at that time he had no idea that the

algorithm was actually an optimum (maximum likelihood) decoder, nor that it was

potentially practical.

The Viterbi algorithm allows computing the most likely state transition path given

an observed sequence of symbols. It is similar to the Forward algorithm, but in

this case, instead of doing the sum over all the possible ways to arrive at the

current state being considered, it will keep only the path segments with maximum

likelihood. Thus, having a sequence of states q = q1, q2, ..., qT we want to find the

q∗ = argmaxqp(q ∧O|λ).

The algorithm will return the Viterbi Probability - V P , i.e. the best score (highest

probability) along a single path, at time t, which accounts for the first t observations

and ends in state Si.
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Baum-Welch Algorithm

The Baum-Welch algorithm allows to solve the fundamental problem of an HMM.

This is, to adjust the model (λ) parameters in order to maximize the probability of

the observation sequence. This is again a maximum likelihood problem. Actually

there is no optimal analytically method of estimating the model parameters, given

any finite observation sequence as training data. Neither there is a known way to

analytically solve for the model that maximizes the probability of the observation

sequence. It is possible, however, to use an iterative procedure (such as Baum-

Welch method) to choose λ = (A,B, π) such that P (O|λ) is locally maximized.

The training procedure is done by iteratively computing the expected probability

of all possible hidden state transition paths, and then re-estimates all the param-

eters based on the expected counts of the corresponding events. The process is

repeated until the likelihood converges.

The training of the model can go through a fixed number of iterations or, as in

the case of this framework, it stops if there is no substantial difference between

consecutive iterations values, what is assumed to be the best model possible to

the observed sequence.

The results of the HMM algorithm recognition rate are presented in Chapter 4.

The Gesture Recognition Module is of paramount importance for this framework.

The recognition algorithms (DTW and HMM) can be used in simultaneous or indi-

vidually, providing different modes of training and recognition (presented in Chapter

4). Their computer implementation will be presented in Chapter 5.

When a gesture is recognized, this is communicated to the Processing Module that

will redirect the information to the Triggers Output Module. Next is the description

of this module.
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3.6 Triggers Output Module

Paraphrasing Newton third law of movement, “For every action, there is an equal

and opposite reaction”. This module is responsible for the reaction. It may not

be opposing neither equal, but it is definitely a reaction, in this case to a gesture

performed.

This module has the setup of what will be the framework reaction to a gesture

recognized. This can be internal or external. Internally it can react by generating

visual contents on the GUI such as images, information or drawings. And externally

it can control anything that directly assumes OSC communication protocol, what

nowadays is pretty common.

OSC (Wright et al., 2001) was originally developed to facilitate the distribution of

control structure computations to small arrays of loosely coupled heterogeneous

computer systems. A common application of OSC is to communicate control

structure computations from one client machine to an array of synthesis servers.

OSC is a ‘transport-independent’ network protocol (Wright, 2005), meaning that

OSC data can be carried by any general-purpose network technology. Today most

implementations use the main Internet protocols (UDP and TCP/IP) via Ethernet

or wireless network connections.

Part of what makes OSC to be used so often is that it comes with no standard set

of messages, no preconceptions of what parameters should be available or how

they should be organized. Each implementer of OSC can and must decide which

parameters to make accessible, what to name them, and how to organize them

in a tree structure. This form of openness has led to great creativity among OSC

implementations, supporting idiosyncratic, creative software and hardware. Thus,

most of the programs used in the performative arts domain (and other domains)

allow communication through OSC, these range from sound and music control pro-

grams, video or light setup and display tables, till computers and robotic hardware.
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Therefore, is possible to control a vast amount of events with a gesture. One just

have to decide on the trigger mapping and respective OSC syntax.

For each gesture trained in the framework a trigger is assigned. It can be discrete

(triggering only events each time gesture is recognized) or continuous (controlling

events such as sound pitch or modulation accordingly to a velocity or coordinate

value). The triggers can be further customized by the user, but are preset to work

in the following fashion:

1. Discrete triggering - Each gesture trained for recognition is associated with

a single identifier trigger, matching the gesture index (e.g. Gesture 1, Gesture

2, etc.). When a gesture is recognized a trigger message is sent through

OSC, using the following syntax:

\Gesture index joint coordX coordY coordZ Avg.V elocity Avg.Acceleration

2. Continuous triggering - The default configuration for continuous triggering

consists on maintaining a constant communication of the joints kinematic

features. For instance, the left hand OSC message will be:

\HandL coordX coordY coordZ Inst.V elocity Inst.Acceleration

In order to create an interesting result one needs to map the triggers to the re-

spective events. As reviewed in Chapter 2, there are several strategies to do the

mapping of the triggers to expressive events. The choice of which to apply is done

by the users of the framework. This is, the framework allows the association of

triggers to gestures, therefore when the gesture is performed and recognized the

trigger is sent. What the user does with that trigger is depends on his creativity or

purpose. For instance, on the applications described on the following Chapter

4, the triggers were mapped internally to the emission of visual particles and

externally to the control of sound events.
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3.7 Framework Operation Modes

During the course of developing the framework, it was tested in different scenarios.

It was used in public spaces for people interaction, in laboratory context to test

the recognition algorithms and in the performance context in an internationally

commissioned Opera (these applications will be further explained in the Chapter

4). Consequently, the framework was customized to work in different setups:

• Drawing mode - this mode operates manly for public installations or class

teaching. No triggers are associated, the user can draw freely in a canvas,

as if working with a virtual board.

• Simple movement trigger - the user can set and activate triggers based on

body joints position, velocities and accelerations.

• Gesture mode - the user can record gestures, choose the algorithm to use

for recognition (DTW or HMM) and use the recognized gestures as triggers.

• Gesture and Movement mode - probably the most interesting of the setups.

A mixture of the previous modes, where not only the gesture is important, but

also the speed and where it is performed are relevant.

The main concern when dividing the framework in these main operation modes

was to allow the end user an easy customization for his own purpose or application.

These modes can be chosen using the control panel of the framework.

3.8 Summary

This chapter presents the ZtS framework as a conceptual system to recognize

gestures in real-time, using algorithms and specifications already tested in other

research domains. These specifications were selected based on the analysis
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presented in Chapters 2 on the current standards and systems in the gesture

recognition realm. The framework presents an abstraction of a modular system

that should base the implementation of the gesture recognition tool for the complex

domain of performative arts. This framework is developed to be a highly modular

system, where any module can be reused for a different purpose or in a different

scenario.

Actually, the framework presented was abstracted from the concrete application

presented in the following chapters. It is expected that this abstract framework may

be applied to other domains, unrelated to the domain that motivated this research.

In a strict sense the ZtS cannot be called as a framework since it was only ”applied”

to a single instance. It will be part of the future work, resulting from this dissertation

to apply the ZtS to other domains and validate it as a framework.

The implementation of this framework for the computer-programming domain is

presented in Chapter 5. In the following Chapter 4 will be conducted an objective

and comprehensive evaluation and validation of the ZatLab System.
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Chapter 4

Experimental Validation and

Applications

“The value of an idea lies in the using of it.”

Thomas A. Edison

4.1 Introduction

This chapter describes the overall research approach used throughout this study

and presents, in finer detail, the evaluations and artistic applications of the frame-

work proposed in the previous chapter.

The research methodology used will be explained, followed by the brief description

of Nielsen evaluation model for acceptability. Knowing the methods and items pro-

posed for evaluation, the experiment design is laid out and also both the qualitative

and quantitative evaluation results of the framework are exposed.

The chapter finishes with the artistic applications of the framework. Namely its use

77
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in an Interactive Opera, in collaboration with Miso Music Portugal, and the use of

the framework as a public interactive installation in the Festival of Creativity and

Innovation, in Lisbon, 2013.

4.2 Research Methodology

To perform a validation, first one needs to establish the research methodology. This

is generally defined as a set of procedures one has to systematically complete in

order to find the solution for a scientific problem. These are standardized tech-

niques known and shared by the scientific community, ensuring the reproducibility

of results when all the original conditions are replicated. Furthermore, they allow

for the identification and quantification of the systematic errors existing in each

procedure (for example, when measuring something). A consolidated methodology

and a stable terminology are necessary conditions for the production of cumulative

knowledge.

The methodology should be compliant with the phenomenon being studied and the

scientific field where this is inserted. In this case, the framework proposed is in the

scientific field of HCI but also has points in common other research areas, such as

Cognitive Sciences, or Psychological-Linguistic Sciences and Performating Arts,

amongst others. Therefore, the choice of research method is not trivial, this should

comply with the various practices of these research fields, but also merge and

adapt to this particular project demands.

HCI is still a young scientific discipline; established methodologies started dur-

ing the 70s in the Silicone Valley but new assessment methods are still being

introduced. HCI has emerged from the combination of core computer science

with cognitive psychology, which “encompasses many sub disciplines with different

research questions and methods” (Boring, 2002), such as sociology, anthropology

or communication. HCI is, therefore, related to human factors. In this field, most
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of the research methods rely on empirical studies, since the phenomena assessed

are always somehow related with the use of technology.

From the Social Sciences (e.g. Cognitive, Psychological-Linguistic) there are three

main methods for research: experiments, surveys and ethnography.

• An experiment is usually a laboratorial test where most of the variables are

kept under control. This is able to provide great internal validity since all

the systematic errors are taken into consideration while designing the study.

However, the possibility of inferring universal laws are constrained to the

laboratorial settings, and real-world applications are sometimes hindered by

the lack of real and more complex settings during the study. The outcome of

an experiment is usually based on quantitative data.

• Surveys are one of the most common tools used in social sciences research.

They can range from closed questionnaires to open interviews. In the former,

respondents are asked to answer a fixed number of questions, each one with

a fixed number of answers; in the latter, interviews may have a structural

script, which adapts to the answers being given. Closed questionnaires

produce numeric quantitative data and are more easily compared with each

other, while interviews require a linguistic analysis and tend to produce more

qualitative data. Nowadays, using web technologies, surveys can have an

instantly wide spread across a population at a very low cost.

• Ethnography is the scientific description of the traditions and habits of a

population. It is, therefore, a methodology based on the observation of indi-

viduals in their natural habitat. The scientist has no control over independent

variables, thus it is difficult to assess a case-effect dynamic. On the other

hand, these studies are more prone to having external validity, since the

experimental setting corresponds to a real-world scenario.

Taking all this into account, the approach chosen puts an emphasis on HCI and

combines several methodologies in an interdisciplinary fashion, where borders of
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distinct knowledge are defied, aiming at the integration of different methods into a

science of its own. Consequently, the following evaluation studies were conducted:

1. a qualitative measurement of the acceptability of the framework amongst the

users, using the Nielsen Acceptability model (Nielsen, 1993) (using surveys);

2. a quantitative laboratorial experiment for the analysis on several aspects of

the framework performance;

3. two, real-world context, artistic experiments, being one of them a professional

application in a performance, that allowed also a qualitative evaluation done

by a professional performer.

The next sections describe these studies, starting by a brief explanation of the

Nielsen model to measure acceptability.

4.3 Evaluation Model

Hence the framework presented was developed with the main purpose of being

used broadly by different people one must evaluate its acceptance.

According to Nielsen (Nielsen, 1993) the acceptability of a system is defined as

the combination of social and practical acceptability. The former determines the

success/failure of the system, since the more the system is socially acceptable the

greater is the number of people using it. The latter relates factors such as useful-

ness, cost, reliability and interoperability with existing systems. An adaptation to

the Nielsen model is depicted in Figure 4.1.
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Figure 4.1: System acceptability, adapted from (Nielsen, 1993).

The usefulness factor relates the utility and usability offered by the system.

Utility is the capacity of the system to achieve a desired goal. As the system

performs more tasks, the more utility it has. Usability is defined by Nielsen as

a qualitative attribute that estimates how easy is to use an user interface. He

mentions five characteristics involved in the concept of usability:

1. ease of learning - the system should be easy to learn so that the user can

start doing some work with the system;

2. efficiency - the system should be efficient to use, so after the user learns the

system, a high level of productivity is possible;

3. memorability - the system should be easy to remember so that the casual

user is able to return to the system after a period without using it, without

requiring to learn it all over again;

4. errors - the system should prevent the user from committing errors as should

deal with them gracefully and minimizing the chance of occurring catastrophic

errors;

5. satisfaction - the system should be pleasant to use so that users become

subjectively satisfied when using.
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The reliability is the ability of a system or component to perform its required

functions under stated conditions. Interoperability is the ability of two or more

systems or components to exchange information and to use the information that

has been exchanged.

In the experiments explained next the overall system acceptability was evaluated.

In regard to the practical acceptability, the usefulness evaluation was done apply-

ing users questionnaires. The reliability evaluation is provided by a quantitative

analysis and the interoperability is shown in artistic performance applications

of the framework. The cost factor was not considered since ZtS is a free (and

open source) software. The social acceptability was also done recurring to users

questionnaires.

4.3.1 Experiment Design

The experiment took place at UCP, MoCap Laboratory. This allowed to use two

MoCap technologies to capture gestures, the Vicon system and the Kinect. In

terms of setup, the framework was working in a Macintosh Apple Computer (Mac-

Book Pro model with processor Intel Core i7 at 2,7 GHz QuadCore, 16GB of RAM

and a NVIDIA GeForce GT 650M 1024 MB graphic board), the GUI of the system

was being displayed in a large (48 inches) LCD screen (see Figure 4.2).

Overall there were 29 participants. These ranged from musicians, artistic per-

formers, scientists and even sportsmen of different age, gender and education

background. Further details are provided in the following sections of results.

The experiment itself consisted in providing, to each participant independently,

an explanation (15min duration) of the framework main functions. There was a

script of the briefing to guaranty the consistency through out all the participants.

First, to explain the possibilities of the framework, one presented the fully working

application of the system that was installed at FestivalIn (described in section 4.6.2)
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and let the participants interact with it. Second, the participants were taught to work

with the framework in order to achieve a result similar to the application presented.

This included teaching them:

• how to capture a gesture for future recognition;

• how to record an entire performance for working offline with it;

• how to load a previously recorded performance or gesture;

• how to train both the recognition algorithms;

• how to setup the recognition algorithms thresholds;

• how to setup the Internet Protocol (IP) address and Port to where the recog-

nized gesture triggers should be sent.

Next, the participants were asked to interact again with the system. Figure 4.2

depicts the system setup.

They were placed in front of a LCD screen displaying the framework GUI and were

asked to use the free drawing mode first. This allowed them to understand the

basics of the framework, more specifically, to get a grasp of their real-time human

body representation and learn how to “draw” their gestures. After this, they were

asked to record various predetermined gestures, granting thus, the gathering of a

good amount of gesture data for the quantitative evaluation explained ahead.

The interaction with the system comprised the use of a wireless mouse to trigger

the capture of the gestures. While keeping the left mouse key pressed, the system

was capturing the gesture made. To delete the gestures the user just had to

press the right mouse key (to clarify, the use of the mouse is just for capturing

the gestures to train the algorithms, in performance context there is no need to

use it). The choice of the mouse standout from other approaches tested, mainly

for two reasons. First, by its practicability, since it is a common object and familiar
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Figure 4.2: A participant of the experiment. One is able to see the Microsoft Kinect

just bellow the LCD screen and two of the 10-camera array of the Vicon system

(up corners of the photo). Looking closely you may notice, in her right hand, the 3

markers used for the capture with the Vicon and also the wireless mouse to trigger

the gesture capture. In this case the participant was asked to draw the Gesture “3”

several times.
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to computer users. Second, for its accuracy, since the use of its buttons allows

to identify precisely where the gesture begins and where it ends. The other ap-

proaches tested consisted on having a capture trigger either by making a specific

pose or either by placing one hand in a virtual button. However, these methods

revealed to be confusing and did not allow to specify accurately the start and end

of the gesture captured.

In the end the participants filled out a survey, in order to analyze (qualitatively)

the system acceptability. The surveys were fulfilled and collected on-line using

Google Forms and include questions on the ZtS usability (the entire questionnaire

is presented in Appendix A).

The participants also contributed for the quantitative evaluation, by recording (each),

ten samples of five gestures of different complexity. This data was recorded by

the framework in order to process gesture training and evaluate the recognition

algorithms with real life recordings. To build up an uniform data bank, all the

participants were asked to execute the alphanumerical gestures showed in Figure

4.3. The choice of these specific gestures was done taking into account mainly

their shapes features. The intention was to have a set of gestures with rather

similar shapes in their composition (e.g. the curves of Gesture “0”, “3” and “8”, or

the angles of Gesture “1” and “Z”) to test the recognition algorithms. The fact that

the gestures are alphanumeric is to benefit their execution, since they are familiar

to the participants. This allows getting a somehow homogeneous, gestures, data

bank.

The use of both capturing technologies, Kinect and Vicon MoCap also allowed to

test the latency of both systems in regard to the framework response.

The results are described in the next sections.
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Figure 4.3: The 5 alphanumerical gestures the participants were asked to execute

(10 samples of each one).

4.4 Qualitative Evaluation

This section presents the evaluation of the system from the perspective of its

usability amongst the participants of the experience. The analysis presented here

is grounded in questionnaires. Therefore, first one will deconstruct and explain the

different sections of the questionnaire, clarifying what information was aimed to

acquire and why. And after, the results are exposed. This section could also fit in

the methodology, but presenting it at this stage can provide the reader with a better

understanding of both, the questionnaire and the results.

4.4.1 The Questionnaire

Questionnaires are widely used in several scientific areas, with predominance in

those related with human factors. Designing a questionnaire is a process that

should not be overlooked, since poorly formulated questions may lead to useless

data. One of the key points of the questionnaire is its validity, therefore it is wise to

produce it iteratively, testing the questionnaire with small groups before consider it

ready for assessment with the final audience. This approach was followed, testing
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and refining the document with a small test group till the questions achieved a

satisfactory degree of objectiveness and purpose.

The majority of the questions offer a four-point Likert scale (Likert, 1932), “forcing”

the respondents towards a positive or negative answer by removing the neutral

central option (although there was also a “No Answer (N.A.)” option). At the end of

each section there was a commentary box, in case the participants felt there was

something left unsaid on their multiple choice answers.

The full version of the questionnaire can be found in Appendix A.

1. Sample Characterization - The goal of this section is to collect basic iden-

tification elements from users, such as: age, genre, degree of formation

(elementary, high, graduate education or other) and main background area

(Science, Arts, Humanity, Sports, Economy, or other). This will allow profiling

the test group giving further insight in terms of demographic analysis.

2. Ease of Learning - This section is related with the comprehension of the

system and respective ease of learning. The questions address if the system

is intuitive, easy to learn and asks for an estimate on the time the user would

need to work with the main functions of the system.

3. Visibility - Here, the goal is to assess if the system provides enough visual

information to the user, therefore addressing its efficiency and memorability.

For instance, questioning if the buttons, sliders and toggles present in the

GUI control panel are correctly identified, as well as if their state (activat-

ed/deactivated) is clearly indicated.

4. Usability - This section aims to analyze the overall interaction with the sys-

tem, and the simplicity of the displayed information. The questions concern

the control the user has on the information being displayed, if this information

is enough for the different operation modes and if stands out from the back-

ground. Also, it has one question concerning the aesthetic and the methods
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used for the record of gestures.

5. Complexity of Recorded Gestures - The goal of this section is to infer on

the users perception about the complexity of the gestures they were asked to

record.

6. Acceptability - Finally, this section consists in questions to assess the ac-

ceptability of the framework. In particular, one asks the users opinion re-

garding the framework suitability for live artistic performances or interactive

installations. There is also a more general question about the user qualifi-

cation of the ZtS framework accordingly to all the parameters he previous

analyzed.

4.4.2 Questionnaire Results

The following sections present the results of the data collected. On the end of each

section, the main commentaries done by the participants are shown and the main

conclusions are draw.

4.4.2.1 Sample Characterization

There were 29 participants on the experiment. These formed what can be clas-

sified as a heterogeneous group, with ages from 18 to around 60 years old, ed-

ucation backgrounds from secondary till post-docs and from different areas of

formation. Next, are the graphical results that allow characterizing the experiment

group.
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Figure 4.4: The gender distribution of the experiment sample.

Figure 4.5: The age distribution of the experiment sample.

1. Gender - The group was comprised of 18 male and 11 female, what in

percentage is the equivalent to 62% male and 38% female. As depicted

on the chart in Figure 4.4.

2. Age - the ages ranged from 18 till over 50 years old. Most of them were mid
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30s and curiously there were two elements in their 60s (and not very familiar

with computer technology) Figure 4.5.

3. Scholar Degrees and Main Area of Formation - The group was mainly

constituted by elements with University degrees and had one person with

only secondary school. The elements were from different areas of formation.

The results are depicted in Figure ??.

Figure 4.6: The left graphic displays the scholar degrees of the experiment sample.

The right graphic displays the area of formation of the experiment sample. The

field “other” refers to one element from Marketing, one with secondary school and

another that specified Engineering.

4. Artistic Performance Related - There were 13 participants (45%) that were

related with artistic performances, either by being performers themselves

(e.g. in music, dance or theatre) or being involved in the development for

artistic performances (e.g. sound and light producers, technical computer

developers, artistic performance direction, etc.). Presented next in Figure

??.



4.4. QUALITATIVE EVALUATION 91

Figure 4.7: The distribution of answers regarding the relation of the participants

with artistic performance.

Concerning the commentaries made in this section, some elements felt the need

to specify further their formation background. From two who chose Arts, one

stated particularly Dance Formation and the other Music, Musicology and Piano

Performance. One who chose Science stated in particular Social Sciences and

Psychology and finally one element from Humanities stated Theatre formation.

Provided that the group had so different elements it was interesting to analyze their

responses about the framework, in particular relating to the subjects education

degrees and formation background.

4.4.2.2 Ease of Learning

This section is aimed to analyze if the system was intuitive enough to operate and

if so, how much time would the participants assume they would need to learn its

main functions. The following list presents the results of this section:

• Intuitiveness - Figure ?? presents the answer to the question if the system
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is intuitive.

Figure 4.8: The distribution of answers regarding the system intuitiveness.

• Learning - The questions were: -Is it easy to learn how to use the system?

and -Give an estimate on how much time would you need to work with the

main functions of the system. Results in Figure ?? and 4.6 respectively.

Figure 4.9: The distribution of answers regarding the system ease of learning.
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Figure 4.10: The distribution of answers regarding the expectation of how much

time a user need to learn to work with the system main functions.

Is interesting to review these results and frame them with the previous characteri-

zation of the sample. Regarding the intuitiveness, the main answer, with 59% was

“Yes, very” followed by the “Yes” with 31% and 10% “Not really”. The “Not really”

was answered by three users that are used to develop computer applications,

and their commentaries address the interface should be further developed, they

considered the functions as clear, but the interface could be more user friendly (e.g.

presenting a checklist of tasks for the user to follow, depending on the objective to

accomplish).

Having a look at Figure 4.7, that represents the distribution of the answers per

background formation, concerning the intuitiveness, one can see the answers

are balanced amongst the several areas, thus demonstrating the system is rather

intuitive independently of the background formation.
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Figure 4.11: The distribution of answers per background formation.

Figure 4.12: The distribution of answers regarding the time to learn estimate per

formation background and per age respectively.

Another interesting fact when addressing the time to learn estimate on how to work

with the framework (see Figure 4.8), is that the majority has chosen the under

60min option. The 60-120min slot was chosen mainly by the Humanities forma-

tion background elements (along with one from Arts and another from Marketing)

and the 120-180min slot was chosen by the two elements aged above 50 years

old. Also interesting is that despite the fact of considering the framework “Not

really” intuitive, the same subject choose the under 60min option for learning, and
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the subject over 50 years with the High-school degree found the framework very

intuitive, but admitted he needed 120-180min to learn to interact with.

This section provides already some conclusions. The majority of the subjects

find the framework intuitive and expect to learn how to interact with it in under

60 minutes. Nevertheless, this should be further developed to become more user

friendly, taking into account the aforementioned commentaries. In general the age

and background formation influences the time users need for learning to work

with new technologies, in this case, with this framework. Still, in the future, the

framework should become straightforward enough in order to decrease this time

window. Ideally to the under 60 minutes threshold, no matter age of formation.

4.4.2.3 Visibility

Hence the framework is to be used by individuals with different computer expertise,

the visibility addresses the concern with the GUI control panel. In detail, if its

buttons are correctly identified, and if there is enough visual feedback when these

are activated, or modified (in the case of sliders).

The results of the main questions -“The buttons used for the main tasks are cor-

rectly identified?” and “The state of the buttons (selected/not selected, slider posi-

tions) is clearly indicated?” - are depicted in Figures 4.9 and 4.10.

In respect to the first question most of the answers were positive, the users either

choose the ”Always” (45%) or the ”Almost always” (31%) options. The N.A. is

relative to one user that commented he could not see the buttons during the test

due to the distance of the screen. The participant that chosen ”Almost never”

(is used to computer application development) commented there should be more

buttons and not so many keyboard shortcuts.
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Figure 4.13: The answers concerning the buttons visibility.

In the case of the second question, if the state of the buttons is clearly identified,

there was a 62% choice of the ”Always” option and an equal 17% for the ”Almost

always” and ”Regularly” options. Again the N.A. was chosen by the user that could

not see properly at that distance.

Figure 4.14: The answers concerning if the buttons state is clearly identified.
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Regarding this section the main commentaries were to use more colors to better

differentiate the several buttons, also to use a simpler nomenclature (not so techni-

cal). Another good input was to add the ability of language choice (is working only

in English presently).

4.4.2.4 Usability

This section was the longest, comprising questions about the use of the frame-

work. For instance, the control the user has on the information displayed, if this

information stands out from the rest, or if the system keeps the user informed of

every task being performed. There was also a question addressing the method

and accessory used to record/delete gestures usability. Again, the main results

are limned in the following Figures 4.11, 4.12 and 4.13.

Regarding the first question about the control the user feels he has on the informa-

tion being displayed, the principal choice was ”Yes, very” control, with 59%.

Figure 4.15: The distribution of answers about the control of information displayed.
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Figure 4.16: The answers concerning the system feedback when performing tasks

such as recording performance, gesture training, recognizing, etc.

Figure 4.17: The distribution of answers about the method and accessory for

recording gestures .

Bearing on the question about the information feedback of the system when per-

forming the tasks, in particular those that did not involve directly the GUI - tasks
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such as recording a file or training a gesture recognition algorithm, among others

- the answers were positive. The ”Always” had the higher percentage with 66%

followed by the ”Almost always” with 17%.

The question regarding the suitability of the accessory for recording gestures, in

this case a wireless mouse, the distribution of answers had a predominance on the

”Yes” with 52% followed by the ”Yes, very” with 38% and with a 10% choice of the

”Not really”.

The commentaries made on the end of this section may explain some of the

obtained results. Some refer the color of information should stand out more from

the background. Two users stated the mouse was easy to use, but in the case of

complex gestures, it would be better to have a customized accessory that would

fit better in the hand. Another good input from one user was that the represen-

tation of the gestures could be done in perspective (in 3D), since presently the

representation is done in 2D.

4.4.2.5 Complexity of Recorded Gestures

The users were also asked to sort the gestures according to their complexity of

execution (from 1 to 5 being 1 the less complex and 5 the most complex). Although

the questionnaire explicitly asked for a scale with only one choice of complexity

value for each gesture, some of the participants (seven of them) classified the

gestures without building the required scale. Those were not included from the

following graphic (Figure 4.14).

Although the classifications are disperse along the several complexity values there

are some facts that are clear. The gesture considered most complex to execute is

the “8” with 72,7% of choices, followed by the “3” equally classified as complexity

4 or 3 with 31,8%. Then the Gesture “Z” was mostly classified as complexity 3

(36,4%), the circle “O” was considered as complexity 2 (31,8%) and the Gesture

“1” of complexity 1 with 36,4%.
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Figure 4.18: The complexity scale in regard to the recorded gestures. The higher

percentage of each complexity classification value is shown underlining the value.

Seven participants were left out, because did not build correctly the scale.

Interesting enough, some users found the number “1” to be more complex than

what was expected when designing the experiment. Some commentaries point

out the difficulty in executing straight vertical lines, opposing to the facility in do-

ing horizontal lines that lead to the “Z” balancing amongst classification values 1

(31,8%) and 3 (36,4%).

Knowing the participants classification concerning the complexity of the gestures

performed, is interesting to compare it to the system performance when recog-

nizing it, in Section 4.5.1. The expectation that the recognition rate is inversely

proportional to the complexity classification is not observed in the following results.

More details are provided at the following sections.
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4.4.2.6 Social Acceptability

Figure 4.19: The participants answers on the acceptance of the framework regard-

ing its use in live performance or installations (e.g. public display, interactive).

The last section of the questionnaire addressed the overall opinion of the partic-

ipants regarding the framework social acceptability. The questions made to the

participants of the experiment were:

• Do you think the framework can be used in live performance scenarios or as

other type of installations (public display, interactive)?

• Considering all the parameters you have analyzed how do you classify the

ZtS Framework?

The answers are graphically displayed in the Figures 4.15, 4.16 and 4.17.
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Figure 4.20: The overall classification of the ZtS framework considering all the

aspects observed by the participants.

Figure 4.21: The overall classification of the ZtS framework concerning the users

that are related with artistic performances.
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These results about the acceptability are encouraging. First, the answers were

generally positive and all the users viewed the potential of the framework for being

used in live performance or other types of interactive installations. Second, know-

ing the overall classification of the participants that are usually involved in perfor-

mative aspects, reveals the system can have a future in the artistic performance

domain.

On the end of the questionnaires there was a commentary box where the partic-

ipants were encouraged to write something, for instance: a critic, a compliment,

suggestions of implementations, etc.

The commentaries were in general positive, regarding the overall working of the

framework and its respective functions. Nevertheless, also point out some im-

provements such as, to make it more simple and intuitive, specially regarding the

use of it by people with different levels of computer or technological skills. Another

interesting input was to add a help button linking to a manual document or video

tutorials.

Some participants mentioned it was easier to perform the gestures asked, without

looking at the screen and that actually the outcome seamed better. These en-

courage to further work with this “No feedback” possibility having in mind future

applications in medical surgeries, music creation or domestic use (e.g. intelligent

houses). On the other side, some wanted more feedback besides the visuals,

something like task confirmation sounds or pop-up windows.

In a more lateral note, another positive result, that one was not expecting, was the

use of the framework just in the draw mode. In the end of one session that had six

participants attending, they started playing Pictionary1 with each others and would

not leave the Laboratory. This lead to the consideration of using of the framework

also for simple entertainment purposes.

1Pictionary is a guessing word game, with players trying to identify specific words from their

teammates drawings.
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In summary, the participants found the Framework useful, very interactive and

responsive.

4.5 Quantitative Evaluation

Besides the qualitative evaluation provided by the participants of the previous

experiment, the framework was also evaluated quantitatively. In this case the main

technical aspects were considered for evaluation, especially the performance of

the different MoCap systems, and recognition algorithms.

The following subsections describe the methods and evaluations done.

4.5.1 Evaluation on the Recognition Algorithms

A challenge when working with ML algorithms is collecting enough real-world data

to partition into three substantial training, validation, and testing sets. The training

set is used to fit the models. For model selection, the validation set is used in

tuning the model parameters to yield the best results. For model assessment, the

chosen model prediction recognition rate is estimated using the previously unseen

testing set (Hastie et al., 2003).

Regarding the evaluation of both recognition algorithms, one of the main differ-

ences, already known, between HMM and DTW is on their training.

In one hand, the DTW is an algorithm that is able to do pairwise comparison of

signals, therefore it only needs one example of a ground-truth signal to instantly

start looking for a similar. This brings the benefit of simple, immediate training and

recognition, that in the purpose of an artistic performance can be a key feature

(e.g. for live improvisation). Nevertheless this simplicity of training has some

disadvantages, in particular depending on the signal complexity, as will be reviewed
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in the next sections.

In the other hand, the HMM relies on statistics and probabilities to do a correct

recognition. Thus, the more data is used to train it, the better results will be

achieved. This implies the gathering of more data until one can start the recognition

process. Therefore, one will need more time until accomplish the training (and

probably this training should be done before a performance), but the achieved

recognition results can compensate the work.

Another key aspect of the evaluation one have to consider, is if the training is done

by the same person that is going to use the system or by someone else. This will

influence the results of the recognition. Consequently there are two approaches

for testing: the “first-person” and the “third-person” methods. The former consists

on using different samples of the same data set (same user) for training, refining

and testing (one data set divided for the three functions). The latter comprises the

use of different data sets (different users) to train, refine and then test (one different

data set for each function).

On the experiment explained previously, the 29 users were asked to draw 10 sam-

ples of each of the gestures (5 gestures) depicted in Figure 4.3. This generated

a database of around 290 samples for each gesture and a total of 1450 gesture

samples. Having in mind the enormous variety of gestures a person can perform,

this database can be classified as small, nevertheless this can be considered a

base test, knowing that if the recognition algorithms perform well enough with this

database, then one is on the right track and can expand it in the future. The

features previously explained in Chapter 3 (Section 3.4.3) were computed for each

gesture sample in order to use them on the recognition algorithms.

The next sections describe the evaluations and results made for each recognition

algorithm using the recorded gesture database.
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4.5.1.1 DTW Evaluation

For the DTW evaluation, since it only requires one gesture sample to start the

recognition process, it is very difficult to determine one gesture sample that will

represent the majority of that gesture database.

Therefore, the first approach taken, using the “third-person” method, was on choos-

ing a random example of each gesture, train the 5 gesture DTW and then testing

the models against 90 unknown samples of each gesture (450 test samples total).

The second approach, using the “first-person” method, was to go to each data set

(50 samples - 10 for each gesture), use one of the samples of each gesture to train

the 5 gesture DTW and then testing this against the other 45 samples. Repeat this

10 times to get the 90 sample test for comparison.

The results are depicted in the confusion matrices Tables 4.1 and 4.2.

Table 4.1: The confusion matrix of the 90 samples DTW test of each gesture with

the “third-person” method.

Prediction Recognition

A
ct

ua
l

Gesture 0 1 Z 3 8 Rate

0 44 12 5 7 22 49%

1 1 86 0 0 3 96%

Z 2 6 45 14 23 50%

3 17 0 2 66 5 73%

8 28 5 2 7 48 53%

Average Recognition: 64%

It can be perceived an improvement of the results when using the “first-person”

method. This may be explained by the fact of each subject executes the gestures

in different ways, so when using one of their own gestures as a training set,

obviously this will provide better results. Nevertheless, the results of the “third-

person” method are good, in particular for the Gesture “1”, which did not change

the recognition rate (96%). This may serve as an indicator on the simpler kind of
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Table 4.2: The confusion matrix of the 90 samples DTW test of each gesture with

the “first-person” method.

Prediction Recognition

A
ct

ua
l

Gesture 0 1 Z 3 8 Rate

0 51 2 8 12 16 57%

1 2 86 0 0 2 96%

Z 0 6 71 12 1 79%

3 1 5 4 80 0 89%

8 3 6 13 5 63 70%

Average Recognition: 78%

gestures that work best with this recognition method.

Another interesting point, Gesture “1” was considered the simplest to execute

regarding the previous complexity classification done (in Section 4.4.2.5) and is

the one with better recognition rate. However, Gesture “0” was the second in

the complexity scale, but has the lowest recognition rate with 57%. This may

be explained by this gesture being codified by all the “codewords” on the feature

normalization process (referring to Section 3.4.3), or can even be explained by the

discrepancy on the recording of the several examples.

The overall recognition rate of the DTW for the five distinct gestures was of 78%.

Therefore, one is led to conclude its advantage for real-time improvisation, has the

downsize of limiting its recognition rate to simple gestures, such as the Gesture

“1” (96% recognition rate). One assumes it will perform well distinguishing simple

one-direction gestures (e.g. vertical top to bottom gesture, or horizontal left to right

gesture).

4.5.1.2 HMM Evaluation

For this evaluation, the methodology consisted in training one HMM for each ges-

ture (using 130 samples), and refine it using the 70 samples of validation. Once,
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the best description models are found, these are tested against the 90 remaining

samples (“third person” method).

The main refinements made were in respect to the number of hidden states that

best suit each gesture description. Therefore, each gesture HMM was trained with

3, 5, 7, 9 and 11 hidden states, then they were analyzed in terms of accuracy rate

against the 70 samples. Besides the accuracy, also the training time was mea-

sured, since the number of hidden states has direct relation with the calculations

need to build the HMM transition matrices. The respective results are depicted in

Tables 4.3 and 4.4.

Table 4.3: The time it takes to train each of the gestures (using 130 samples)

regarding the number of hidden states. The last column presents the average time

of training per number of hidden states (in milliseconds).

HMM Train Times (ms)

Hidden States Gesture 0 Gesture 1 Gesture Z Gesture 3 Gesture 8 Avg Time

3 930 140 398 361 627 491

5 2130 4015 2247 1611 2535 2508

7 5953 6978 5869 4338 12507 7129

9 10416 5925 12364 15208 10942 10971

11 14053 31299 17541 11270 18160 18465

Analyzing Table 4.3 one is able to notice the more hidden states are used, the more

time it takes to train each HMM. It is also interesting to note that the Gesture “1” is

the one that shows larger increment in time, in respect to the hidden states used

(particularly when using 11 hidden states, the training took 31,3 seconds). This

may be due to the simplicity of the gesture only requiring few states, and when it

is creating a model using so many hidden states, this makes the training process

diverge and go through more iterations until being complete.

Important to realize, although the training times can take up to a few seconds, the

recognition time is much more efficient, practically instantaneous.
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Table 4.4: The recognition rate of the HMM using different number of hidden states

(testing against the 70 refinement samples).

Gestures Recognition Rate (%)

Hidden States 0 1 Z 3 8 Avg. Recog.

3 76% 94% 91% 90% 97% 90%

5 73% 100% 91% 96% 100% 92%

7 79% 100% 91% 96% 100% 93%

9 86% 100% 96% 91% 100% 95%

11 84% 96% 94% 91% 96% 92%

Regarding Table 4.4, one can realize that when using 11 hidden states to describe

the gestures, their respective performance of recognition decreases. This again is

probably due to the elevated number of hidden states used, when compared to the

number of observable symbols (one is using 12 different “codewords” in this case,

as described in Chapter 3, Section 3.4.3 ). The Table 4.4 presents results only up

to 11 hidden states, since from there on the results were even worse.

One can also perceive two distinct results, regarding the recognition rates on the

refinement samples:

1. The best results, for each gesture, are achieved using the following combina-

tion of hidden states:

• Gesture “0” - 9 hidden states - 86%.

• Gesture “1” - 5 hidden states - 100%.

• Gesture “Z” - 9 hidden states - 96%.

• Gesture “3” - 5 hidden states - 96%.

• Gesture “8” - 5 hidden states - 100%.

2. The maximum overall average recognition is obtained when using 9 hidden

states for every gesture (95%).
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Following these enumerated results, the HMM were trained again and tested against

the last 90 samples, using two approaches:

1. This approach consisted in training the HMM with the number of hidden

states that achieved better results (in less time to train when there is a tie in

performance) in the refinement test, for each gesture. Thus, considering the

former result enumerated, the Gesture “0” was trained with 9 hidden states,

Gesture “1” with 5, Gesture “Z” with 9, Gesture “3” with 5 and Gesture “8”

with 5. The results achieved with this setup are displayed in the confusion

matrix present in Table 4.5.

Table 4.5: The confusion matrix using different number of hidden states in the

training of each HMM.

Prediction

A
ct

ua
l

Gesture 0 1 Z 3 8 Recognition Rate

0 83 0 1 1 5 92%

1 1 89 0 0 0 99%

Z 0 0 85 3 2 94%

3 26 0 0 63 1 70%

8 1 0 0 0 89 99%

Hidden States 9 5 9 5 5

Average Recognition: 91%

2. This approach consisted in training every HMM with 9 hidden states, to see

if accordingly to the former evaluation, the overall recognition would improve.

The confusion matrix is represented in Table 4.6

Analyzing both Tables one can observe that the main difference is on the Gesture

“3” recognition. When using 5 hidden states (the suitable number of states accord-

ingly to Table 4.4) this has a 70% recognition rate and when using 9 hidden states,

for all gestures, this achieved 90% recognition rate. One is able to realize also that

the main confusion made on the Gesture “3” recognition was against Gesture “0”.
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Table 4.6: The recognition rate using 9 hidden states for each gesture HMM.

Prediction

A
ct

ua
l

Gesture 0 1 Z 3 8 Recognition Rate

0 77 1 0 5 7 86%

1 0 89 0 0 1 99%

Z 1 0 87 2 0 97%

3 8 0 0 81 1 90%

8 0 0 0 0 90 100%

Hidden States 9 9 9 9 9

Average Recognition: 94%

The performance of the remainder gestures stood almost the same between both

tests. Gesture “0” decreased shortly, Gestures “Z” and “8” increased and Gesture

“1” remained equal. Overall the recognition rate improved from 91% on the for-

mer test to 94% on this, mainly because the aforementioned confusion amongst

Gesture “3” and “0” achieved better results.

This leads to the conclusion that the fact of using different number of hidden states

to describe different gestures influences the recognition rates, and that in the

particular case of this set of gestures, defining a single good number of hidden

states for all, provides the best results.

Although there are not implementations exactly like this in the literature, when com-

paring this recognition rates to similar HMM experiments (Kim, 1999), (Elmezain

and Al-Hamadi, 2009) one is able to conclude the results match the former, and

are in some cases better.

4.5.2 Evaluation on the Acquisition Module Latency

Concerning the Acquisition Module, since the experiment took place in a controlled

environment (with no occlusions that could harm the capture of gestures), and the

capture was synchronized in the ZtS framework (thus recording the same gesture
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data for both systems) the main evaluation performed was in regard to the latency

of both capturing technologies.

By simple observation, the Vicon seems faster and more fluid than the Kinect

outcome, but hence the Kinect was directly plugged into the computer running the

framework and the Vicon had to transmit its data, first internally to the ofxOSCVI-

CON and second through a router establishing a Local Area Network (LAN), this

can provide different results in regard to the overall framework response time.

Figure 4.22: The latency measurement. Top and bottom waves are from the same

audio signal, since it was captured in stereo. The wave peaks are identified by the

vertical lines. The first sound wave peak is the clapping, the second is the sound

response of the system.

Therefore, the experiment engineered for measuring the latency consisted in the

following: when a detected subject claps his hands the framework responds im-

mediately triggering a distinct sound if detecting the “hands together pose” from

Kinect or from Vicon. Both clapping sound and framework response sounds are

captured externally by a microphone and then the difference between sound waves

is measured (if there is latency in the sound capture setup, this is constant for every
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sound captured, thus not influencing the overall latency measure of the system).

After first experiments, the systems were responding very close and analyzing

the sound waves was very difficult due to the overlapping sounds. Therefore the

measures had to be made again and testing one system at the time. Same setup

for both, just volume down for one and up on the other on the first test and then

switch. Figure 4.18 shows one of the set of sound waves captured, in this case for

the Kinect test.

The test was done 10 times for each setup and the Table 4.7 depicts the latency

results.

Table 4.7: The measurement of the MoCap system latency times in miliseconds.

First column depicts the Vicon, second the Kinect and the third is the difference

(Kinect-Vicon). It is also presented the average measurement and the standard

deviation measure.
Time Delay (ms)

VICON Kinect Difference

136 158 22

150 164 14

159 170 11

128 156 28

145 150 5

137 141 4

156 153 -3

144 158 14

123 147 24

Average: 142,00 155,22 13,22

St. Deviation 12,14 8,76 10,21

These results are not what one expected. In theory, Vicon (since working at 120

fps) should provide latency times inferior to the ones observed. To derive further

conclusions one decided to measure the time difference between consecutive OSC

messages arriving for the same human body joint (e.g right hand). Surprisingly
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the Vicon MoCap has, in average, a measured time of 33 milliseconds between

consecutive frames what signifies that it transmits the data at only 30fps, even if

working at 120fps. Investigating the reason of such, one discovered that in the

transmission process it drops 3 frames and sends each fourth one. This can

be explained by the Server-Client transmission buffers being filled up with data.

Nevertheless, is important to mention, this might be a problem of the Vicon Blade

DataStream Server-Client transmission and not a problem in the ofxViconOSC

module (further explained in Chapter 5, Section 5.5.4), since this was tested and

debugged with other OSC transmission program working at 120fps and it main-

tained the transmission rate. Further tests are needed to resolve this problem.

The overall system latency measured with the Kinect was, in average, of 155

milliseconds. There are two perspectives to discuss this result:

1. Regarding the clapping, it is a very sudden movement. Moreover, if one

considers the clapping sound and the respective audio system response, the

latency between both sounds is noticeable. Therefore, in this particular case,

the latency is not satisfactory. In future work, one will implement anticipation

methods to overcome this problem (Rett and Dias, 2007; Vamplew and

Adams, 1995).

2. If one take into account the remainder gestures performed by the participants

of the aforementioned laboratorial experience (Figure 4.3). These have a

duration ranging from 1 second until 5 seconds. Consequently, for those kind

of gestures, this latency measure can be considered residual (Licsár and

Szirányi, 2005; Wolf et al., 2002).

Important to mention, although the latency is of 155 milliseconds, the jitter (varia-

tion between latency measures) is very small, having a value of 8,76 milliseconds.

Consequently, one can consider the latency measure as constant, therefore en-

abling the users to predict the delay and anticipate themselves the movements

and gesture performing.
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4.6 Artistic Applications

Besides the experimental setup described previously, the system was also tested in

real-life scenarios. The following sections will describe the applications of the ZtS

framework in the performative arts and interactive installation domains. Allowing

thus, analyzing its performance out of the laboratorial controlled environment.

4.6.1 Using ZtS in an Artistic Performance

MisoMusic Portugal2 was commissioned to create an interactive multimedia Opera

(to debut in September 2013), by the renown Polish Festival ’Warsaw Autumn’

(Warszawska Jesień) 3.

Knowing the work developed in the scope of this thesis, MisoMusic proposed the

use of the ZtS framework in the Opera to control real-time audio samples and the

direct sound input of the voice of one performer.

But before entering on further details about the developments made, the following

section will describe briefly the Opera, named “A Laugh to Cry”. This will set the

benchmark for the work developed in the ZtS framework.

4.6.1.1 About the Opera “A Laugh to Cry”

A Laugh to Cry explores some primary concerns, which have always haunted

human beings, and reveals them from the perspective of our contemporary glob-

alized world. The opera is shaped like a meditation on the hegemonic power of
2Music Portugal Cultural Association, which has the status of Portuguese Public Utility Institu-

tion, was born as an extension of Miso Ensemble, to develop and promote contemporary musical

creation in Portugal and Worldwide. Its founders are Paula and Miguel Azguime, composers,

performers and directors that since the foundation of the Miso Ensemble in 1985, develop their

work tirelessly in the field of new music, contributing actively to expand the contemporary way.
3http://warszawska-jesien.art.pl/en/wj2013/home

http://warszawska-jesien.art.pl/en/wj2013/home
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the destruction of memory, the devastation of the Earth and even the collapse of

humanity. It evolves in the fringes between dream and reality, between the visible

and invisible, being divided in several acts where five characters, two sopranos,

one bass and two narrators (a female and a male voice), live and dwell constantly

between these two parallels. The opera also involves seven acoustic instruments:

flute, clarinet, percussion, piano, violin, viola, cello, as well as live electronics and

extended video scenography.

A Laugh to Cry is a metaphysical theatre embodying eternal archetypes with music

and multilingual libretto by Miguel Azguime.

A Laugh to Cry pursues Miguel Azguime goal, as poet and composer, to grasp an

ideal balance between language and music, to merge the language semantic and

metaphorical components with its sonic values, in order to achieve his concept of

“speech as music and music as speech”. A Laugh to Cry extends Miguel Azguime

research on voice analysis, re-synthesis and processing, aiming at creating a

dynamic continuum between timbre, harmony, rhythm and voice spectra.

4.6.1.2 System Requirements

The framework had to be tailored to the composer/performer (Miguel Azguime)

needs. Specifically, he wanted to control sound samples and live voice input with

his movements and gestures. In this case, the framework was adapted with several

triggers that controlled sounds in a MAX/MSP patch (this patch was developed by

a fellow researcher, André Perrotta).

The framework went through a series of tests and refinements, in particular to

respond to the composer choices and performer abilities.

In the end the ZtS framework enabled several types of sound control:

• the trigger of sound samples with the movement velocity of the hands of the

performer;
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• the cycle through eight banks of sound samples by performing a gesture;

• the trigger of capturing a sound action (sound sample or live voice input). The

performer was able to freeze a sound when he performed a holding hands

pose. This enabled the performer to control the captured sound in terms of

pitch, reverb, feedback and loudness. When he wanted he just needed to

do a more sudden movement with both hands (exceeding a pre-determined

hand movement velocity threshold) to release the sound.

In Figure ?? one can see the hardware setup.

Figure 4.23: The setup used for the Opera “A Laugh to Cry”. On the top left image

is the view from the technical sound area. The top right and left bottom images

present the view of the ZtS setup. The last photo illustrates the view Miguel had

when using the system.

A Microsoft Kinect was used to capture the human body and an Apple MacMini

running the ZtS was hidden under a black cloth. The framework was sending

the control triggers to the sound computer on the technical regie at 25 meters of
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distance. One setup a LAN to enable the trigger transmission. Also, in this case,

the performer wanted the visual feedback to make sure he was in the right position,

so there was a 15 inch LCD on stage (also hidden from the audience).

The framework ended up being used for the solo of one of the main Opera char-

acters, performed by Miguel Azguime himself. The ZtS framework travelled with

the Opera throughout the entire tour. In the first performances the setup was done

by the author of this thesis, which also supervised its function during the Opera.

Since everything ran smoothly on the first three performances of the Opera (two in

Lisbon and one in Poland), for the Sweden leg of the tour (four more presentations)

one of the Opera technicians received a brief formation on how to do the setup and

execute the ZtS. Important to realize that he did the setup alone and operated the

framework on those four shows without any problem, thus revealing the usability of

the framework.

In sum, the result of the developments made specially for the Opera use was very

interesting. The relation between human movement/gestures and sound manipu-

lation was immediately perceived by the audience, therefore creating a particular

arouse during that part of the piece. Of course the principal credit goes to the

performer, in this case Miguel, which learned very quickly to interact and get exactly

what he wanted from the framework, when he wanted, thus enabling him to add

extra layers of emotion and enhancement to the solo he performed.

In the following section is the statement Miguel gave regarding the use of the

framework.

4.6.1.3 Evaluation

Once the Opera presentations were finished, one asked Miguel Azguime, the

author/performer and main user of the ZtS framework, to answer a few questions

about the system and to transmit his opinion about it. Here is a literal quote of the

text he sent.
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“Since the beginning , in the design of the opera “The Laugh to Cry”, were implicit

certain technological aspects and modes of interaction, which had not been pos-

sible to research, develop and use in previous works. In particular the relationship

sound - gesture took this project a clear role that was intended to develop and the

Zatlab System developed by André Baltazar came precisely to meet this desire,

having been adapted to respond to musical, performative and expressive purpose

I intended for a crucial moment of the opera and true climax of the symbolic and

narrative discourse thereof.

Playwright and musical composition itself for this decisive moment in the opera

were designed to take advantage of the interaction with the system and conditioned

by the type of gestural control offered by the same.

A clear perception to the public that the gesture is that of inducing sound, respon-

siveness of the system to allow clarification of musical and expressive speech, ef-

fectively ensuring the alternation between sudden, rapid, violent gestures, sounds

on the one hand and modular suspensions by gesture in total control of the sound

processing parameters on the other, constituted a clear enrichment both in terms

of communication (a rare cause and effect approach in the context of electronic

music and it certainly is one of its shortcomings compared with music acoustic

instruments) and in terms of expression by the ability of the system to translate the

language and plastic body expression.

Clearly, as efficient as the system may be, the results thereof and eventual artistic

validation, are always dependent on composite music and the way these same

gestures are translated into sound (or other interaction parameters) and therefore

is in crossing gesture with the sound and the intersection of performance with the

musical composition (in this case) that is the crux of the appreciation of Zatlab.

However, regardless of the quality of the final result, the system has enormous

potential as a tool sufficiently open and malleable in order to be suitable for different

aesthetic, modes of operation and different uses.”
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4.6.2 Using ZtS in a Public Interactive Installation

Another application of the system consisted in making it as an interactive installa-

tion at FestivalIN 4, Lisbon.

The FestivalIN was announced as the biggest innovation and creativity aggregating

event being held in Portugal, precisely in Lisbon at the International Fair of Lisbon.

It is described as an unique event that integrates, in a practical, dynamic and con-

sistent way, the core concepts associated to Creativity and Innovation. It presents

itself as an absolutely innovative event, anchoring sensorial experiences (physical

and virtual interactions), crossing different areas of the Creative Industries. It

is a space which involves people, ideas and experiences and promotes, both

nationally and internationally, Portugal most creative possessions, boosting its

authors, creators and entrepreneurs in a worldwide scale.

4.6.2.1 System Requirements

Departing from the developments made to the Opera, the framework was adapted

to be more responsive and easy to interact with. The users were able to trigger

and control sound samples, much like Miguel did on the Opera, however they did

not had the same level of control.

Since the purpose was to install the application at a kiosk and leave it there for

people to interact with, the visuals were further developed to create some curiosity

and attract users. The human body detection algorithm was also customized in

order to filtrate the control, amongst the crowd, to only the person closer and

centered to the system.

In Figure 4.19 you can see the setup and some interactions with the system. The

closet was provided by CITAR. This stored inside a MacMini running the ZtS and

had a custom fit opening for a Microsoft Kinect. Outside the visuals were displayed

4http://www.festivalin.pt/

http://www.festivalin.pt/
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in a 32 inch LCD and the sound was provided by a stereo setup mounted by the

FestivalIn organization.

Figure 4.24: The setup used for FestivalIn. On the left, the cabinet provided by

CITAR, you can notice the Kinect bellow the LCD TV. On the right top the visuals

when someone interacted and left bottom a kid playing with the system.

4.6.2.2 Evaluation

The response to the system was very good, in particular amongst the children. All

day long there was someone playing with it. The fact that the people were detected

immediately either if they were just passing by or really wanted to interact was a

key factor to the system popularity. The persons saw their skeleton mirrored on

the screen and wave at it, therefore triggering sounds and building up the users

curiosity. Soon enough they understand the system response to their gestures

and were engaged, interacting and creating musical expressions.
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4.7 Summary

This chapter presented the experimental validation of the framework proposed in

Chapter 3 and its main applications.

First it was explained the research methodology, followed by Nielsen heuristics

to determine the framework acceptability. Next the validation approaches were

described.

The qualitative validation was done by means of a public experiment and ques-

tionnaires. These revealed the framework usability and acceptability results. The

conclusions achieved are that the system presents a solid basis and already is

considered a good tool for artistic applications. Nevertheless, the interface should

be further developed to make the framework more straightforward and easy to

interact with.

The quantitative validation used the data gathered on the public experiment to test

the recognition algorithms performance. The DTW recognition method achieved an

average recognition rate of 78% in general and, depending on the gesture, it can

present recognition rates till 96%. The HMM recognition presented better results,

ranging from 86% till 100% depending on gesture and with an overall average

recognition rate of 94%.

The chapter finished with a description of the ZtS framework in artistic applica-

tions. Its use on the Miso Music Opera “A Laugh to Cry” and its installation as an

interactive application on the FestivalIn, in Lisbon.

Chapter 5 will provide some details regarding the software implementation of the

framework.



Chapter 5

Software Implementation

“I think, fundamentally, open source does tend to be more stable

software. It is the right way to do things.”

Linus Torvalds

5.1 Introduction

The research on the topic of gesture recognition poses challenging demands on

the development of software modules and tools so that any proposed hypothe-

sis and algorithms can be objectively implemented and evaluated. The proto-

types developed are also important to establish a starting point for future research,

therefore enabling the further improvement and validation of the algorithms imple-

mented.

Inevitably, during the development of this thesis a great deal of work has been

invested into software development, mainly focused on the gesture recognition

framework proposed and discussed in the previous chapters.

123
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Therefore, this chapter presents the main design requirements and the implemen-

tation strategies taken towards the development of a software framework for the

analysis of gestures. It also describes in detail the major software contributions.

Despite these software descriptions, a thorough discussion about Software Engi-

neering is out of the scope of this thesis, and the reader will be redirected to the

specialized literature whenever appropriate.

Having the mindset of a computer programmer, the tasks are distributed among

different blocks and then coordinated by a core function to form an effective and

coherent application.

5.2 Design Requirements

The designing and implementation of a multimedia framework, efficient enough to

recognize gestures in real-time, poses challenging demands.

First, considering the huge amounts of multimedia data available today, the ap-

plication should be able to process content in a timely manner, otherwise it may

compromise its usefulness.

Second, when creating a flexible software framework, one should be concerned

with attributes such as code reusability and modularity. This will allow the follow-

ing developers the ability to perform rapid-prototyping of complex algorithmic pro-

cesses or even develop fully fledged applications without the need to repeat from

scratch the cycle of coding, testing, debugging and validating, being able instead

to focus on the development of new and highly specialized software modules.

Third, if the framework is to remain useful with the passing of time, an effort should

be put into designing it so that it makes the best use of the increasingly avail-

able computational power, allowing it to scale as well as possible with increasing

amounts of data to process.
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Furthermore, an important feature is it should be portable. This means that it

should be possible to use the same software code in the nowadays, increasingly

distinct and fast growing developing computational systems. Hence, the framework

should allow execution in different:

• modes, depending not only on the user is expertise, but also the goal he

wants to achieve with its use (e.g. as a console service running in an artistic

performance, or as a GUI application providing easy interaction in a public

display);

• architectures (e.g. x86, Power-PC, SPARC);

• platforms (e.g. UNIX/Linux, MacOSX, Microsoft Windows).

However, this requires the use of well-established coding standards (e.g. ANSI C,

portable C++, JAVA) and discourages the use of architecture and platform specific

features and optimisations (e.g. assembly coding, platform specific libraries or

technologies). Although there are external libraries that are multi-platform and

could be used as processing algorithms (e.g. HMMToolkit1), GUI (e.g. QT2, GTK3),

or even numeric routines (e.g. BLAS4), among other. These would require depen-

dencies and installations that would create portability issues. Thus, its important

that they are kept as limited as possible. In the case of this framework, no external

libraries (to the platform chosen) were used. This made the implementation of

the algorithms more difficult, but it payed of in terms of knowledge. Furthermore,

the framework can be executed as a standalone application without any external

dependencies, besides the chosen MoCap hardware drivers.

Interoperability with existing software packages or applications (e.g. MATLAB5,

1http://htk.eng.cam.ac.uk
2http://qt-project.org/
3http://www.gtk.org
4http://www.netlib.org/blas/index.html
5http://www.mathworks.com/products/matlab/

http://htk.eng.cam.ac.uk
http://qt-project.org/
http://www.gtk.org
http://www.netlib.org/blas/index.html
http://www.mathworks.com/products/matlab/
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WEKA6, Python7, Qt) is another valuable feature. This is different from the use of

external libraries, as presented above. In this case there is no actual integration of

external code into the framework (i.e. by means of some sort of static or dynamic

linking with external libraries). Instead, interoperability simply implies the usage of

the features provided by those packages or applications by means of some existing

data communication interface (e.g. input/output of a common file format or some

way of run-time communication, such as OSC). This has an added virtue of also

making the software framework a potentially useful package those applications can

interface and build upon.

A final but significant feature of a software framework is its code complexity. This

takes great importance when the framework aims at bringing non-experts in soft-

ware engineering to contribute with the creation of valuable and specialized soft-

ware modules, but who would otherwise be turned down by a steep learning

curve or high complexity and programming overheads. Therefore, one should

avoid highly complex or over-engineered software architectures (an aspect eas-

ily overlooked when dealing with feature-rich and sophisticated projects) in order

to prevent an excessive burden on code understanding, creation and usability.

However, this is always a compromise situation, where increasing flexibility and

efficiency usually bring along added complexity.

5.3 Implementation Strategies

Different strategies may be adopted when facing the task of implementing software

modules that are just a small part of a larger system. Usually there are two

approaches to consider:

1. Commercially available platforms - Have the downside of, as the majority

6http://www.cs.waikato.ac.nz/ml/index.html
7http://www.python.org

http://www.cs.waikato.ac.nz/ml/index.html
http://www.python.org
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of the available commercial software packages, being released as closed

source. Hence, it may not be possible to develop a tailored framework that

will fulfill entirely the needs and specificities of the project. And certainly,

at the light of the discussion in the previous Section, it wont be easy to

find a commercial software package that perfectly fits all the requirements

posed by a specific research task. Equally important, the cost of purchasing

and maintaining a commercial software license is often high, turning such

solutions unsustainable for low-budget or unfunded projects.

On the other hand, traditionally, these software packages already provide

some ready-to-use building blocks and routines for commonly known and

used tasks (which may range from basic mathematical or numerical rou-

tines to advanced signal processing algorithms), and allow in most of the

cases coding new user-defined ones. (e.g. MATLAB, Simulink8, LabView9,

MAX/MSP).

2. Free and open-source software (FOSS) projects - This approach can be

potentially complex and challenging (both in time and in expertise). Usually

requires writing all the software from scratch and finding some way to in-

tegrate the different software modules into a working system. It demands

more time and effort to implement, test and evaluate the system and all

the processing modules. Nevertheless, it has the advantage of allowing the

definition and fine-tuning of the software architecture taking into consideration

any specific requirements, staying in complete control of the way the software

is designed and subsequently implemented. The learning experience gained

from undertaking such an endeavor would also be a valuable added bonus.

In fact, the second approach may turn out to be productive far beyond the scope

of its development. FOSS projects, fruit of individual or team efforts have been re-

leased to the community and were successfully embraced by the scientific research

8http://www.mathworks.com/products/simulink/
9http://www.ni.com/labview

http://www.mathworks.com/products/simulink/
http://www.ni.com/labview
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community. Examples of such, include Processing 10, Cinder 11, MARSYAS12,

PureData13, and openFrameworks.

These projects are an interesting opportunity for carrying on existing work and con-

tributing back with any original or relevant achievements (be it software, algorithms

or improved results). This usually ends up originating a positive feedback loop of

contributions of software modules, tools, collections of routines and even complete

frameworks around a field of study. An entire community may end up using the

software and putting it to the test, eventually reporting any found deficiencies or

limitations, posting new feature requests, or even becoming an active collaborator

of the project. Specially relevant when used for research, FOSS allows using

code as a means of communication, where publications can not possibly describe

all the nuances and details of how an algorithm is implemented. At the same

time, replication of experiments is essential for progress in research especially

with new emerging technologies and controllers in HCI. For complex systems and

algorithms it is almost impossible to know if a reimplementation is correct and

therefore the ability to run the original code is crucial. Finally, FOSS solutions have

a lower cost when compared to proprietary or commercial software, a particularly

important point given that traditionally researchers have limited financial resources.

5.4 Developing with openFrameworks

Taking into account the personal past experience of working both commercial

software packages (i.e. MATLAB and MAX/MSP) (Baltazar, 2009) and FOSS

frameworks (i.e. openFrameworks) (Baltazar et al., 2010) and considering the

previous discussions about design requirements and implementation strategies,

the decision was made to look for a suitable FOSS framework.
10http://www.processing.org/
11http://libcinder.org/
12http://marsyas.sourceforge.net
13http://crca.ucsd.edu/˜msp/software.html

http://www.processing.org/
http://libcinder.org/
http://marsyas.sourceforge.net
http://crca.ucsd.edu/~msp/software.html
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Among the available options described in the previous section, openFrameworks

meets most of the discussed requirements for a research software framework and

the previous acquaintance with programming in C++ implied a smoother learning

curve and a good prospect of easily reusing some of the functions provided by the

platform. All things considered, openFrameworks was the software framework of

choice.

A key point of openFrameworks is its division in core functions (i.e. math, text and

other generic functions) and “addons”. The addons are software code modules

developed by the community to tackle some specific problem. These addons can

be integrated in any openFramewroks application, hence allowing to develop some

rather complex applications, such as the ZtS framework. The addons are published

in the openFrameworks website, thus becoming available for download and reuse

by anyone.

Given the free and open source nature of openFrameworks, their openness and

availability for integrating new ideas into the framework gave space for most of the

software development contributions that will be described in the following Sections.

5.4.1 Contributions to the openFrameworks Platform

openFrameworks provides a general, extensible and flexible framework that en-

ables the easy and efficient combination of a variety of existing addons as com-

ponents which ultimately allow to implement efficient, robust algorithms and also

create complex applications.

As a result, openFrameworks provided a solid software base upon the gesture

recognition framework proposed in this thesis was implemented. However, given

the challenging and specific requirements posed by the proposed ZtS framework,

its implementation in openFrameworks asked for the substantial development of

new processing and composite modules (addons), such as the HMM module or
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the DTW module. As explained previously, these addons can be used by anyone

in other projects.

The following list summarizes the main software implementations done in the scope

of this thesis. Thus, resulting in contributions to the openFrameworks software

framework, in the form of addons:

• ofxVisualKinect - This addon receives the data information from the Mi-

crosoft Kinect sensor (explained in Section 2.4.3.1). It transposes the data

of each skeletal joint to 3D coordinates in the openFrameworks canvas and

displays it. Can be very useful as a point-start to developing applications with

this hardware. It can easily be adapted to use with other hardware, such as

Vicon. It is preset to work with Kinect since it is one of the most popular

MoCap solutions.

• ofxDTW - This addon implements the DTW algorithm, as explained in Sec-

tion 3.5.1 and the practical implementation explained next, in Section 5.5.2. It

allows to measure the similarity of two signals (feature vectors) by executing

the DTW “cost” matrix.

• ofxHMM - This addon implements the HMM algorithms, thus enabling to

perform all the general HMM associated functions. These include: train

several HMM, output the most likely sequences of hidden states for each

model, test if a sequence of observations belongs to a trained model. The

practical implementation is described next, in Section 5.5.3.

• ofxViconOSC - This addon implements the communication of the Vicon

Blade software through OSC to any IP in a known network. The implementa-

tion and final application a described in Section 5.5.4

• ofxZtS - This addon is the entire ZtS framework. It is a composite using

the previous addons with some more code modules to integrate everything

and extract the correct features to feed the machine learning addons. Also
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explained in detail in the next Section.

This complex endeavor demanded a long time of studying and programming. At the

end, this effort allowed the implementation of the gesture recognition framework

proposed in Chapter 3 and to subsequently conduct the evaluation experiments

and concrete applications presented in Chapter 4.

Furthermore, because it is designed as a flexible, modular and efficient framework,

this allows the current framework to be easily expanded to include future ideas

and algorithms, such as the ones anticipated during the course of this work, and

compiled in Chapter 6.

The following sections will present and describe the main aspects of the implemen-

tation of some of the main algorithms of the framework proposed in this thesis. It

is assumed that the reader is sufficiently familiarized with computer programming

(in particular Object Oriented Programming).

5.5 Implementing the ofxZtS Framework

Figure 5.1 shows the overall architecture of the implemented system proposed in

this thesis (see Chapter 3). Next is a brief explanation on how the system works

and detailed descriptions of each block will be made in the following sections.

The human movements are acquired in real-time, either by the Kinect or using the

Vicon MoCap system. The data gathered by these systems is then transmitted

to the ofxVisualKinect Module through OSC. In the case of the Vicon, the

ofxViconOSC Module had to be implemented to stream the data in real-time from

the proprietary Vicon Software through OSC as well.

The ofxVisualKinect Module interprets the data stream as a set of human joint

coordinates (e.g. JointLeftHand x, y, z), sends them to the Visual Representa-

tion Module and also transmits the data to the ZatLab System Core block. In the
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Figure 5.1: The ZtS architectural diagram. The blocks starting by “ofx” are the

modules published to openFrameworks as addons. Besides being integrated in

the ofxZtS, they can be reused independently in other openFrameworks projects.
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Visual Representation Module these are displayed (as a virtual human skeleton)

integrated in the GUI.

In the ZatLab System Core this data is processed and sent to the Movement

Analysis and Feature Extraction Module. This module retrieves the essential

features about the movements being performed (accelerations, velocities, move-

ment orientation, etc). If the system is already operating in Gesture Recognition

Mode (explained in Section 3.7), the features extracted will be transmitted for

further processing to the ofxDTW , the ofxHMM or both. The ZatLab System

Core is also responsible for the GUI, and the respective toggles and commands

the user might change. The ZatLab System Core processes all the user choices

including the communication to the Database for recording or loading various types

of files (described in Section 3.4.2).

The ofxDTW and the ofxHMM use the movement analysis resultant features for

the train, analysis and recognition of gestures. If a gesture is recognized, its index

is returned to the ZatLab System Core, that again, accordingly to the user choices

will act on it. These actions include recording it, display it, or signal it to Trigger

Output Module.

The Trigger Output Module activates a discrete or continuous trigger, once a

gesture or special feature is received. This trigger can be used to control an event

in any program compliant with OSC, such as Chuck, MAX/MSP, PD, or any other

exemplified in the Figure 5.1.

With this global perspective on how the system works, the next sections will detail

the main contributions and implementations of the ZtS framework modules.

5.5.1 The Graphical User Interface

The GUI is one of the key points of the ZtS. This section details the main functions

the users can control using it.
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Figure 5.2: The ZtS graphical user interface.

Figure 5.2 displays the interface. In this particular example the user was operating

in “Draw” mode and just finished drawing 20 circles. On the top right corner is the

indication of the number of gestures recorded and on the left of the screen is the

control panel. With it, the user can control:

• the hand to use in the gesture training or recognition. Important to realize the

decision was to include here only both hands, since it is the more common to

use, but the framework is ready to work with any of the body joints;

• the operation mode - Draw, DTW Recognition, HMM Recognition (the recog-

nition algorithms can be used simultaneously);

• the thresholds of the recognition algorithms;

• the IP and Port addresses to where the user wants to send the triggers.
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Besides that, the control panel also provides information concerning the keyboard

shortcuts.

The work of the interface is straightforward. Once the user approaches the ap-

plication, he is detected and his skeleton represented on the canvas. He can

interact with the panel and choose its options using the computer mouse or the

keyboard shortcuts. Once he draws a gesture he can activate the recognition

methods. Having at least one recognition method activated, once the training of the

respective algorithm is complete, this immediately starts the recognition process

(for the DTW is only required one sample and for the HMM at least 10 samples).

Next are described the recognition addons.

5.5.2 The ofxDTW

The DTW algorithm allows the comparison of two signals or the detection of a

pattern in a larger stream of data (Ten Holt et al., 2007). The algorithm calculates

the distance between each possible pair of points out of two signals in terms of their

associated feature values. In this case, this is calculated using the Euclidean dis-

tance. It builds a cumulative distance matrix with the distances measured and finds

the least expensive path through this matrix, the optimal warping path. Specifically

the path represents the best synchronization of the two signals, this is, the mini-

mum feature distance between their synchronized points. Therefore, the DTW is

useful to compare pairs of data vectors, in this particular case, vectors of movement

features data. This makes it very immediate and simple to use. The advantage of

this against the HMM (explained in next section) is this immediate using without

the need for several samples of training to each gesture.

To explain this implementation, first it is important to realize how to proceed in order

to recognize a gesture. Regarding a case-study example of an user using his right

hand to record and test gesture recognition. This relies in two main procedures:
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1. Recording Gestures - When recording a gesture, a vector of features

is incremented, at each frame, with several feature values, for instance (x, y, z, φ)

where x, y, z are the coordinates and φ is the orientation angle of the hand

movement. So when the user decides to record a gesture he will really be

recording the sequence of movement features he is performing. The user

can record as many gestures he wants, thus creating a database of several

of these vector of features stored in a vector of gestures. This

database will be the reference to which the forthcoming “test” gestures will

be compared. Refer to Figure 5.3 to a graphical explanation of the recording

procedure.

Figure 5.3: The sequence of gesture features are accumulated in a vector. When

the user records the gesture, this sequence will be stored as a new gesture in the

vector of gestures.
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2. Recognizing - Having at least one gesture recorded on the database, the

system enters in recognition mode. At each frame the vector of test

will be fed with the same features the previous vector of features. This

vector stores the data, keeping thus a real-time array of features (with size N

- the double of space the biggest gesture recorded).

Once it gets N feature samples, the system will cyclically divide the move-

ment input at regular intervals creating several (vec of test) that will in-

crement (vector to dtw). The system performs the DTW distance of each

one of this vector of test against each vector of features stored in

the vector of Gestures. When the DTW distance to one of the gestures

recorded is lower then a determined threshold, the input sequence is rec-

ognized as a gesture. Refer to Figure 5.4 to a graphical explanation of the

procedure.

Figure 5.4: A movement is tested through the DTW distance in order to find if it

is present in the Gestures Database. Relating to the previous Figure 5.3 when

testing the entire movement (in blue) it would result in finding the stored Gesture 1

(vector of features1). In this case, you can realize the signal being tested

in slightly bigger than Gesture 1, nevertheless, is the same gesture in shape.

Therefore, despite some distance between both signals, the DTW algorithm will

detect it as being similar to Gesture 1 (as intended).
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The key point of this algorithm is the construction of the DTW cost matrix. This

is built by iteratively finding the minimum Euclidean Distance amongst the compo-

nents of both vector signals, hence finding the optimal warping path, also named

minimum warping distance.

Breaking down into a detailed description (refer to Figure 3.6), each component of

vector of testwill be tested against each component of vector of features.

Once the minimum pair-wise distance is found, this distance will be stored in

the cost matrix, and proceed to the next component. This cycle repeats until all

the components have been analyzed and the cost matrix built. By summing all

these minimum distance values along the cost matrix, one will have the shortest

warping path, or the minimum distance of the signals. The implementation code

was done based on Lemire (Lemire, 2009) approach to DTW algorithm, but with

some modifications to work with the openFrameworks methods.

5.5.3 The ofxHMM

As explained in Section 3.5.2, HMM allows the modeling of sequential or time-

series data through powerful statistical methods (Rabiner, 1989). In fact HMMs

have been successfully used in many tasks, such as, speech recognition, pro-

tein/DNA sequence analysis and face recognition (Nefian and Hayes III, 1998). It

involves elegant and efficient algorithms, such as Baum-Welch, Viterbi and Forward-

Backward, for learning, evaluation and decoding.

Although the algorithms are elegant and sophisticated, their implementation is not

very straightforward. Consequently, the next paragraphs will explain how these

work together in gesture recognition. Specifically the HMM class was developed

with 3 modes of operation: Train, Evaluate, Test. These are called by using the

pointer to the class and choosing the operation mode wanted (1-for testing, 2 -

for evaluating, 3- for training). This implementation was based in (Liu, 2009) and

(Rabiner, 1989).
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Again, for a gesture to be recognized, first one will have to “teach” the algorithm

how the gesture look like and how it is executed. In the previous DTW approach,

one is able to do direct and immediate comparison of signals. In the case of

HMM, being a probabilistic model build upon statistics, the “teaching” is not so

forthcoming. It will involve the creation of a training set of gestures for each one we

wish to detect. Recalling the same case-study proposed before, imagine an user

using his right hand to record and test gesture recognition. In order to do so, this

module operates in the following fashion.

1. Record gesture samples - To train a HMM of a gesture first one needs to

create several instances of the same gesture. Thus, using a similar method to

the one explained before (Section 5.5.2) one will be recording, at each frame,

several feature values of the user movement (kept in vector of features).

The user will record several identical samples of the same gesture being each

one stored in a vector of gestures.

2. Create a new HMM - Having a reasonable amount of examples of the same

gesture (defined by the user), when the order to train a new HMM is made,

this has to be created and initialized. For each new HMM the user can

dynamically choose the number of hidden states (Nstates). For instance to

create a new HMM with a vector of gestures and Nstates one would do:

• vec hmm models.push back(new HMM(vector of gestures, Nstates));

This creates a new instance of HMM class with a new position in the pointer

vec hmm models to it. The matrices of this new HMM are initiated following

the next rules:

(a) The initial states probability (matrix Nstates x 1) is initiated as 1/Nstates to

give an equal probability distribution amongst the states.

(b) Considering the gesture is done in one continuous, fluid movement, the

transition probability between states should have more weight between
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the adjacent ones, thus the state transition probability matrix (aij of size

Nstates X Nstates) is initiated as exemplified on the following Table 5.1.

Table 5.1: The state transition probability matrix initialization example. The

probability is divided amongst adjacent states. The N -ish state is connected to

the first, closing thus the probabilities loop.

State 0 1 2 N

0 0,5 0,5 0 0

1 0 0,5 0,5 0

2 0 0 0,5 0,5

N 0,5 0 0 0,5

(a) At last, the state output matrix (Nobservations X Nstates), that allows to relate

the observed output data (Nobservations) to the state transition, is initiated

by distributing equally the probabilities of the output: 1/Nobservations.

3. Train a HMM - Having the new HMM created, the system will train it using

the samples provided. To do so, the vector of gestures will be passed to

the Baum-Welch algorithm (formally explained in Section 3.5.2 and computer

implementation explained next) by calling the HMM class with the respective

operation mode (mode 3, for training):

• vec hmm models[last]->RunHMM(3, vector of gestures);

The train routine will breakdown the vector of gestures in its constituents

(vector of features). These features are the observed data and with

it the algorithm performs a statistical evaluation of the data sequence that

will lead to the update of the emission and transition probabilities matrices,

modeling thus the hidden states for the gesture performed.
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Computing the Baum-Welch

The algorithm takes sequences of observations as input and estimates the

new values of transition matrix (aij) and emission matrix (bi(vk)) that maximize

the probability for the given observations. It runs iterations over the input

data and terminate until convergence or certain threshold condition is met,

for instance: number of iterations, difference in parameter changes. The

algorithm takes two passes over the data. In the first pass, it uses forward

algorithm to construct α probabilities (the pseudo-code for this algorithm is

explained in the following section Computing the Likelihood). Besides the

α probabilities, in the second pass the algorithm runs a similar backward

algorithm to construct β probabilities. The backward probability β(t, i) is the

probability of seeing observation from ot+1 to the end, given that we are in

state j at time t. Based on the α and β probabilities, one can compute the

expected number (counts) of transitions (ξ(i, j)) from state i to state j at a

given observation t (γ(t, i)) as described by Equations A.11 and A.12 in Ap-

pendix A. Part of the pseudo-code for Baum-Welch algorithm is presented in

Listing 5.1. The α probabilities are updated after calling the forward function

at line 2. The remaining code computes ξ(i, j) and γ(t, i) counts.

With ξ(i, j) and γ(t, i) computed, the aij and bi(vk) matrices are updated using

the Equations A.14 and A.15, described in Appendix A.

1 i n i t i a l i z e a l l c e l l s o f α , β , γ , ξ to 0

2 c a l c u l a t e likelihood← Forward(o)

3 β(oT , 1) = 1 / / base case t = T , end of sequence

4 for t = oT to o1 / / cyc le to compute the Backward a lgo r i t hm

5 for i = 1 to N

6 do γ(t, i) = γ(t, i) + (α((t, i) · β(t, i)/likelihood)))

7 for j = 1 to N

8 do β(t, i) = β(t, i) + β(t+ 1, i)αjibit

9 ξ(j, i) = ξ(j, i) + (α(t, j)β(t+ 1, i)αjibit/likelihood)

Listing 5.1: The pseudo-code for the Baum-Welch algorithm.
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4. Verify the Model - Having the model constructed with its respective emission

and transition matrices one can verify if the training was done properly. This is

accomplished using the Viterbi algorithm (formally described in Section 3.5.2

and computer implementation explained next). This algorithm will provide the

sequence of hidden states in respect to the HMM built:

• vec hmm models[last]->RunHMM(2, 0);

Computing the Viterbi

The Viterbi algorithm finds the most likely path of states that generate the

observations. Instead of summing over all α probabilities (like Baum-Welch

algorithm does), Viterbi algorithm finds the maximum one and keeps a pointer

to trace the state that leads to the maximum probability. The pseudo-code

for Viterbi algorithm is given in Listing 5.2. The input to the algorithm is a

sequence of observations and output is a sequence of the most likely states

that generate the observation.

1 i n i t i a l i z e a l l c e l l s o f α to 0

2 α(o1, s) = 1 / / base case t =1 , there are no preceding s ta tes

3 for t = o2 to oT / / cyc le to compute the V i t e r b i a lgo r i t hm

4 for i = 1 to N

5 for j = 1 to N

6 i f α(t− 1, j)aijbit > αMax(t, i)

7 then αMax(t, i) = α(t− 1, j)aijbit

8 MaxPointer(t, i) = j

9 Seq o f s ta tes= sequence ( MaxPointer )

10 return Seq o f s ta tes

Listing 5.2: The pseudo-code for the Viterbi algorithm.

5. Recognizing - Once having a trained HMM the system can enter in test

mode. Again, like in the DTW case (Section 5.5.2) the vector of test

will be fed with the same features of the previous samples used to train the
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model. In this case the vector will be continuously tested against the trained

HMM:

• vec hmm models[last]->RunHMM(1, vector of test);

If there are more than one HMM trained, the vector of test is iteratively

tested against all the models (M ) of the vec hmm models[M]. The highest

likelihood HMM is returned by the Forward Algorithm (formally explained in

Annex A.2 and computer implementation next).

This test is done using equation A.3 in regard to each trained model emission

and transition probabilities matrices. If the observed test sequence matches

the probabilities previously calculated for the model matrices, the likelihood

of that sequence will be maximized. Therefore, if that returned likelihood is

high enough to surpass a user-defined threshold, the gesture is recognized

as belonging to that respective model.

Computing the Likelihood

To compute the likelihood, the Forward algorithm computes the α for the

sequence of O observations and N hidden states. This can be viewed as

a matrix, where each cell α(ot, i) is the probability of being in state i while

seeing the observations until t. An overview of Forward algorithm is shown in

the pseudo-code below (Listing 5.3). The input to the algorithm is a sequence

of observations O. The output is the likelihood probability for the observation.

The algorithm makes the assumption the first observation in sequence is the

start state, and the last observation is the end state.

1 i n i t i a l i z e a l l c e l l s o f α to 0

2 α(o1, s) = 1 / / base case t =1 , there are no preceding s ta tes

3 for t = o2 to oT / / cyc le to compute the Forward a lgo r i t hm

4 for i = 1 to N

5 for j = 1 to N

6 do α(t, i) = α(t, i) + α(t− 1, j)aijbit
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7 likelihood = α(oT , N)

8 return likelihood

Listing 5.3: The pseudo-code for the Forward algorithm.

5.5.4 The ofxViconOSC

Although this module is not really integrated as part of the ofxZtS, since was

developed as an additional feature, it is per se a fundamental contribution, not

only for the openFrameworks community, but to the researchers and laboratories

operating with the Vicon MoCap. Its implementation took a long time for developing

due to the software restrictions of the Vicon software, nevertheless, was worth it.

With it, it is possible to do real-time transmission of any scene being recorded

in a MOCAP laboratory to other programs besides those officially compliant with

Vicon. The Vicon data is encapsulated in an OSC message and can be transmitted

to any IP address determined by the user. The module is developed to work as

a standalone application and has a GUI where the user can specify the IP and

communication port number he wishes to send the data to.

The only software that was found to work like ofxViconOSC was QVICON2OSC14,

but this is already obsolete since Vicon introduced the new software capture Blade

1.7 in 2010 (substituting the previous Vicon Targus).

Nowadays Vicon Blade is on version 2.1, the ofxViconOSC works with every ver-

sion of it. The implementation of this software required the learning and use of

the Vicon DataStream Server drivers and their integration as an openFrameworks

addon.

The Vicon DataStream Server can operate in three different modes. Each mode

has a different impact on the Client, Server, and network resources used:

14http://sonenvir.at/downloads/qvicon2osc/

http://sonenvir.at/downloads/qvicon2osc/
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1. In ServerPush mode, the Server pushes every new frame of data over the

network to the Client. The Server will try not to drop any frames. This results

in the lowest latency one can achieve. If the Client is unable to read data

at the rate it is being sent, then it is buffered, firstly in the Client, then on

the TCP/IP connection, and then at the Server. Once all buffers have filled

up then frames may be dropped at the Server and the performance of the

Server may be affected.

2. In ClientPull mode, the Client waits for a call to GetFrame(), and then

request the latest frame of data from the Server. This increases latency,

because one needs to send a request over the network to the Server, the

Server has to prepare the frame of data for the Client, and then it needs

to send the data back over the network. Network bandwidth is kept to a

minimum, because the Server only sends what you need. It is very unlikely

to fill up our buffers, and Server performance is unlikely to be affected.

3. ClientPullPreFetch is an enhancement to ClientPull mode. A thread

in the SDK continuously and preemptively does a ClientPull on our behalf,

storing the latest requested frame in memory. When next calling GetFrame(),

the SDK returns the last requested frame which had cached in memory. As

with normal ClientPull, buffers are unlikely to fill up, Server performance

is unlikely to be affected. Latency is slightly reduced, but network traffic may

increase if one request frames on behalf of the Client, which are never used.

Since one wants the least latency possible, the ServerPush mode is the one

chosen to be implemented.

Another characteristic of the Vicon DataStream Server is that one can request

what data to transmit by implementing the following functions:

• EnableSegmentData - Enable kinematic segment (bones connecting mark-

ers) data transmission.
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• EnableMarkerData - Enable labeled reconstructed marker data transmis-

sion.

• EnableUnlabeledMarkerData - Enable unlabeled reconstructed marker

data transmission.

• EnableDeviceData - Enable ForcePlate, Electromyography (EMG), and

other devices complaint with Vicon MoCap data transmission.

Currently the ofxViconOSC only transmits the labeled Marker Data, this was the

most relevant for the present work being developed. Nevertheless, the implemen-

tations of the other modes of transmission can be easily accomplished in future

works.

5.6 Summary

Following the proposal of a gesture recognition framework proposed in Chapter

3, this chapter discussed some of the requirements, choices and the major con-

tributions towards the development of an open source software platform for the

computational analysis of gestures. Some implementation details about the main

building blocks of the framework proposed in this work were described, where the

efficiency, flexibility and code reusability aspects taken into consideration during

the software development, were highlighted.

The next chapter presents the conclusions and discusses future research and

developments.



Chapter 6

Conclusions

”A conclusion is the place where you got tired of thinking.”

Martin H. Fischer

6.1 Results and Contributions

The goal of this research is to foster the use of gestures, in an artistic context,

for the creation of new ways of expression. Consequently, the approach taken

envisioned the study of the gesture: its understanding, how to capture it (in a non

intrusive way) and how to recognize it (in real-time).

Following this study, one concluded the gesture recognition is a rather simple task

for the average person, but its automatically recognition, by a machine, is a much

more complex task. Therefore, this dissertation proposes a flexible and extensible

computer framework for recognition of gestures in real-time.

Designed to be causal and efficient, the resulting system can be used to capture

and recognize human body gestures, in real-time, paving the way to applications
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such as interactive installations, computer music interaction, performance events

controlling, amongst others.

The main advantage of this framework against other works developed in this area

is to have a fully functional pipeline of integrated modules, allowing the human

movement capture, movement feature extraction, gesture training and its recogni-

tion, all in a single application. Consequently, enabling a more straightforward use

(specially by the artistic community).

In this dissertation a specific implementation of the framework is also presented,

where several assumptions had to be considered due to practical constraints.

Nevertheless, the proposed framework was designed to be modular, efficient and

flexible enough to be able to utilize different analysis front-ends and to incorporate

further methods in a straightforward manner.

The proposed system is based in a relatively cheap MoCap system (Microsoft

Kinect) and is developed to work without any third party installations besides the

respective capture device drivers. The recognition process is then based in ML

algorithms, namely DTW and HMM. The use of both methods is justified by the

different training processes and recognition rates achieved.

Although, there is not a system working like this, described in the state of art,

the experimental validation shown the methods presented in this dissertation (in

particular, the ML algorithms) provide results that compare satisfactorily to other

state of the art implementations.

The gestures used for the quantitative evaluation are only a small representative

sample of the enormous variety possible of human gestures, nevertheless this

experiment can be considered a successful test case, showing the framework is

on the right track for the recognition of a broader range of gestures.

The qualitative evaluation of the framework, based in Nielsen heuristics, allowed

classifying the framework in respect to its practical and social acceptability. The
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results obtained suggest it has good overall acceptability and it is intuitive enough

for being used amongst the performative arts community.

This thesis also described two artistic applications of the framework. One was an

interactive artistic installation and the other was its use in an interactive Opera.

These applications sustain the artistic relevance of the framework.

In particular regarding its application in the Opera, one can conclude the framework

was successfully applied in performance context, recognizing the performer ges-

tures, in real-time, and triggering events. Being the performers the ultimate users of

the framework, one reckons their opinion is very important. Therefore the fact that

Miguel Azguime (the Opera performer) considers the use of the framework “con-

stituted a clear enrichment (to the performance) both in terms of communication

and in terms of expression” leads to the conclusion the main goal one proposed

to achieve (using gestures, in an artistic context, for the creation of new ways of

expression) was accomplished.

A software implementation of the system described in this thesis was also made

available as free and open source software. Together with the belief that this

work showed the potential of gesture recognition, it is expected that the software

implementation may stimulate further research in this area as it can have significant

impact in many HCI applications such as interactive installations, performances

and Human-Computer Interaction per se.

6.2 Future Work

After a great deal of investment in the area of algorithm development, which has

given rise to the framework proposed in Chapter 3 and to the results presented in

Chapter 4, there are nevertheless several lines of future work that are now possible

to anticipate.
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In regard to the present software implementation one of the main improvements

that can be accomplished is the further development of the GUI in order to make

the framework even more intuitive and easy to work with.

Also, the current version still requires the prior specification of the number states

to train each new HMM. This is a limitation of the current implementation, but the

framework is flexible enough to include new approaches to an automatic estimation

of the number of hidden states for each HMM.

Moreover, the latency measured by either capture systems should be further stud-

ied and research methods to overcome it, either by using anticipatory methods

(Rett and Dias, 2007) or new MoCap approaches (e.g. Kinect 21).

The proposed framework is able to easily accommodate other movement and ges-

ture related researches, such as Choreology or Labanotation (described in Section

2.3). It would be also interesting to integrate human movement feature analysis

methods previously developed (when there were no 3D cameras available). Works

like the human movement rhythm determination done by Guedes (Guedes, 2005b)

or explore further the emotion contained in the gesture has Camurri intended

(Camurri et al., 2004).

The motivation for this research was drawn from the performative art domain.

However, it was always kept in mind that the proposed concepts and methods

could be used in other domains. Thus, interesting opportunities for future research

comes from extending this framework to other domains and requirements. For

instance, one has the future goal of applying these methods in benefit of the earing

impaired community.

1There are not yet papers published on this emerging MoCap technology, nevertheless one can

find more information on: http://www.wired.com/2013/05/xbox-one#kinect or http://

www.youtube.com/watch?v=Hi5kMNfgDS4

http://www.wired.com/2013/05/xbox-one#kinect
http://www.youtube.com/watch?v=Hi5kMNfgDS4
http://www.youtube.com/watch?v=Hi5kMNfgDS4


Annex A

Recognition Algorithms Detailed

Description

A.1 Dynamic Time Warping

The alignment path (or warping path, or warping function) of the DTW defines the

correspondence of an element xi ∈ X toyj ∈ Y following the boundary condition

which assigns first and last elements of X and Y to each other (Senin, 2008a).

Formally speaking, the alignment path built by DTW is a sequence of points p =

(p1, p2, ..., pk) with pl = (pi, pj) ∈ [1 : N ]× [1 : M ] for l ∈ [1 : K] that must satisfy to

the following criteria:

1. Boundary condition: p1 = (1, 1) and pK = (N,M). The first and last points of

the warping path must be the first and the last points of aligned sequences.

2. Monotonic condition: n1 ≤ n2 ≤ ... ≤ nK and m1 ≤ m2 ≤ ... ≤ mK. This

condition preserves the order of the points.

3. Step size condition: this criteria limits the warping path from long jumps (shifts

in time) while aligning sequences. One can set this condition to allow only
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jumps of one unity in time or multiple.

So, the cost function Cp associated with a warping path (of length L) that represents

all the pairwise distances of the aforementioned sequence of points p, will be given

by equation A.1:

Cp(X, Y ) =
l=1∑
L

c(xn1, ym1) (A.1)

The warping path has a minimal cost associated with alignment called the optimal

warping path. In order to find it, one has to test every possible warping path be-

tween X and Y which could be computationally challenging due to the exponential

growth of the number of optimal paths as the lengths of X and Y grow linearly. To

overcome this challenge, DTW employs the following distance function (equation

??):

DTW (X, Y ) = cp∗(X, Y ) = min
{
cp(X, Y ), p ∈ PN×M} (A.2)

where PN×M is the set of all possible warping paths, and then builds the accumu-

lated cost matrix or global cost matrix D defined as follows:

1. First row: D(1, j) =
∑j

k=1 c(x1, yk), j ∈ [1,M ]

2. First column: D(i, 1) =
∑i

k=1 c(xk, y1), i ∈ [1, N ]

3. All other elements:

D(i, j) = min {D(i− 1, j − 1), D(i− 1, j), D(i, j − 1))}+ c(xi, yj),

i ε [1, N ] , j ε [1,M ]

A.2 Hidden Markov Model

As described in Chapter 3, an HMM is defined as a quintuple (S, V,Π, A,B) where

S = {s1, ..., sN} is a finite set of N states (Rabiner, 1989); V = {v1, ..., vM} is a set
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of M possible symbols in a vocabulary; Π = {πi} are the initial state probabilities;

A = {aij} are the state transition probabilities; B = {bi(vk)} are the output or

emission probabilities.

Therefore, each HMM is modeled and expressed as λ = (Π, A,B) where the

parameters are:

• πi - the probability that the system starts at state i at the beginning;

• aij - the probability of going from state i to state j;

• bi(vk) - the probability of generating symbol vk at state i;

So, the probabilities constraints apply:

•
∑N

i=1 πi = 1

•
∑N

j=1 aij = 1 for i = 1, 2, ..., N

•
∑M

k=1 bi(vk) = 1 for i = 1, 2, ..., N

When working with HMM there are three basic problems to solve:

1. Evaluation: one has to evaluate the probability of an observed sequence

of symbols O = o1, o2, ..., ot (where oi ε V ) given a particular HMM, this is

p(O|λ).

2. Decoding: to find the most likely state transition path associated with an

observed sequence. Having a sequence of states q = q1, q2, ..., qt we will

want to find the q∗ = argmaxp(q ∧O|λ)

3. Training: to adjust all the parameters of our model λ to maximize the prob-

ability of generating an observed set of sequences O, this is, to find the

λ∗ = argmaxλp(O|λ)
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These three problems already have solutions. The first is solved by implement-

ing the Forward-Backward iterative algorithms. The second by using the Viterbi

algorithm, and the third by using the Baum-Welch algorithm, which uses the For-

ward and Backward probabilities calculated previously to update the parameters

iteratively.

Forward-Backward Algorithm

The Forward probabilities will allow solving the problem 1 and finding the proba-

bility of a sequence of observations to belong to a determined HMM model. The

Backward probabilities will allow solving problem 3 along with the Baum-Welch

algorithm.

Calculating Forward Probabilities

Having αt(i) = p(o1, ..., ot ∧ qt = si|λ) as the probability of observing the symbols

o1, ..., ot and the system is at a state si at time t, given our current HMM λ. The

α can be calculated starting with the base case and following the recursive proce-

dure:

1. The base case is when t = 1. Thus, as seen previously, the probability that

the system start at state i is πi and the probability of generating a symbol

ok at state i as also been explained as being bi(ok). Therefore, numerically,

α1(i) = πibi(o1), for any i state.

2. For 1 6 t 6 T , we want to generate the symbol ot+1 and arrive to state si from

any previous sj with a probability (already known) aij. Thus we will have to

multiply the the probability bi(ot+1) by the sum of all the possible intermediate

states j. This probability is given by equation A.2:
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αt+1(i) = bi(ot+1)
N∑
j=1

αt(j)aij (A.3)

Knowing that α1(i), ..., αT (i) corresponds to the T observed symbols and that one

may end at any of the N states. To determine which of the λ models ascribes the

highest probability to a sequence we will need to do equation A.3.

p(O|λ) =
N∑
i=0

αT (i) (A.4)

Calculating Backward Probabilities

Defining βt(i) = p(ot+1, ..., oT ∧qt = si|λ) as the probability of observing the symbols

ot+1, ..., oT , given that the state is si at time t and knowing the parameters of our

model λ. Note how this complements the definition of α. In this case we are

going down from T , hence the name backward algorithm. Again the procedure is

recursive starting from the base case when t = T .

1. When t = T There is no symbol to generate, we reach the end of the

sequence and any state s can be a possible ending state. Thus, βT (i) = 1.

2. For 1 6 t 6 T , as with the forward calculation, we have to multiply an emis-

sion probability, a transition probability, and a rest-of-sequence probability.

Hence, obtaining the following equation A.4.

βt(i) =
N∑
j=1

βt+1(j)aijbj(ot+1) (A.5)

Viterbi Algorithm

The algorithm will return the Viterbi Probability - V P , i.e., the best score (highest

probability) along a single path, at time t, which accounts for the first t observations
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and ends in state Si.

This can be done by induction:

1. At t = 1 there are no preceding states, so as what happened in the forward

probabilities calculation, V P1(i) = πibi(o1).

2. For 1 6 t 6 T , the V P will be similar (again) to the forward algorithm, but

instead of doing the sum, one will do the “max” probability of being in state i

at time t over all state sequences that account for the first t observed symbols,

resulting in equation A.5

V Pt+1(i) = bi(ot+1)max
N
j=1[aijV Pt(j)] (A.6)

3. To retrieve the final sequence of maximum likelihood states one will need to

keep track of the argument that maximized equation A.5, for each t and j.

Thus we will need an auxiliary array φ(j) that will be actualized using the

following equation A.6:

φ(j) = argmaxNj=1[aijV Pt(j)] (A.7)

In the end one will get the states probability maximum for V P and the respective

argument that maximized the probability. Given by equations A.7 A.8.

P = maxNi=1[V PT (i)] (A.8)

QT = argmaxNi=1[V PT (i)] (A.9)

Therefore, using both equations A.7 and A.8 only thing left to do is backtracking

and constructing the best state sequence transition path, using equation A.9.
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Q∗
t = φt+1Q

∗
t+1 , where t = T − 1, T − 2, ...1 (A.10)

Baum-Welch Algorithm

The Baum-Welch algorithm allows to solve the fundamental problem of an HMM.

This is, to adjust the model parameters in order to maximize the probability of the

observation sequence. This is again a maximum likelihood problem. Actually there

is no optimal way of estimating the model parameters, given any finite observation

sequence as training data. Neither there is a known way to analytically solve for the

model, which maximizes the probability of the observation sequence. It is possible,

however, to use an iterative procedure (such as Baum-Welch method) to choose

λ = (A,B, π) such that P (O|λ) is locally maximized.

The formulas for updating can be expressed in terms of the equations A.2 and A.4

together with the current parameter values. So, defining ξt(i, j) as the probability

of being in state Si at time t, and state Sj at time t + 1, given the model and the

observation sequence, one will get equation ??.

ξt(i, j) = P (qt = Si ∧ qt+1 = Sj|O ∧ λ). (A.11)

This can be decomposed in the probability of:

• αt(i) - observing the sequence o1...ot and ending in state i and

• aij - the transition from state i to state j and

• bi(vk) - the emission of symbol ot while in state i and

• βt(i) - observing ot+1...T , given that st = j

what leads to the following equation A.10:
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ξ(i, j) =
αt(i)aijbj(ot+1)βt+1(j)∑N

j=0 αt(j)βt(j)
(A.12)

And defining γt(i) as in equation A.11:

γt(i) =
αt(i)βt(i)∑N
j=0 αt(j)βt(j)

(A.13)

will allow to simplify ξ(i, j) to equation A.12:

ξ(i, j) =
γt(i)aijbj(ot+1)βt+1(j)

βt(j)
(A.14)

Therefore, allowing to finally get the updating formulas for all the parameters at

each iteration (equations A.13,A.14, A.15:

π
′

i = γ1(i) (A.15)

a
′

ij =

∑T−1
t=1 ξt(i, j)∑N

j=1

∑T−1
t=1 ξt(i, j)

(A.16)

bi(vk)
′
=

∑T
t=1,ot=vk

γt(i)∑T
t=1 γt(i)

(A.17)
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Framework ZtS Qualitative Evaluation
This survey intends to gather data to perform a qualitative analisys. All the data here inserted 
will be treated only in regard to this investigation and the survey is anonymous. 

Este inquérito pretende reunir dados para efectuar uma análise qualitativa. Todos os dados aqui 
inseridos serão tratados apenas no âmbito desta investigação e o inquérito é totalmente 
anónimo.

* Required

Sexo / Sex *
Mark only one oval.

 Masculino / Male

 Feminino / Female

1.

Idade / Age *
Mark only one oval.

 till 18

 18-30

 31-50

 +50

2.

Escolaridade / Scholarship *
Mark only one oval.

 Inferior ao Ensino Secundário / Less than High School

 Ensino Secundário / High School

 Ensino Superior / University Degree

3.

Qual é a sua principal área de formação? / What is your main area of formation?
Mark only one oval.

 Ciências / Science

 Humanidades / Humanity

 Artes / Art

 Desporto / Sports

 Economia / Finances

 Não Aplicavel. / No Answer

 Other: 

4.
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Comentários / Comments
 

 

 

 

 

5.

Facilidade / Ease of Learning

Facilidade na aprendizagem e compreensão do sistema / Learning and understanding the system

O sistema é intuitivo? / Is the system intuitive? *
(percebo facilmente como funciona à medida que experimento) / (i can understand easily
how it works as i try it)
Mark only one oval.

 Não / No

 Nem por isso / Not really

 Sim / Yes

 Sim, bastante / Yes, very

 Não sei / Não respondo / No answer

6.

Tenho facilidade em aprender a utilizar o sistema? / Is it easy to learn how to use the
system? *
(embora apenas tenha experimentado brevemente, considera que é facil aprender a utilizar o
sistema?) / (althoug this brief experiment do you consider is easy to learn how to work with
the system?)
Mark only one oval.

 Não / No

 Nem por isso / Not really

 Sim / Yes

 Sim, bastante / Yes, very

 Não sei / Não respondo / No answer

7.
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Quanto tempo acha que precisaria para aprender a utilizar as principais funções do
sistema? / How much time do you expect to need for learning how to use the system
main functions? *
Mark only one oval.

 menos de 60min / less than 60min

 60...120min

 120...180min

 mais de 180min / more than 180min

 Não sei / Não respondo / No answer

8.

Comentários / Comments
 

 

 

 

 

9.

Visibilidade / Visibility
Visibilidade do estado do sistema (feedback e controlo do que está a acontecer) / Visibility of the 
system (feedback and control of what is happening)

O painel de informação e controlo / The information and
control panel
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Os botões usados para realizar as tarefas mais importantes estão claramente
identificados? / Are the buttons for the main functions clearly identified? *
Refere-se ao painel de botões que lhe permite escolher os modos de funcionamento e
thresholds
Mark only one oval.

 Nunca / Never

 Quase nunca / Almost Never

 Regularmente / Regularly

 Quase sempre / Almost always

 Sempre / Always

 Não sei / Não respondo / No answer

10.

O estado dos botões (seleccionado / não seleccionado, posição dos sliders) é
indicado com clareza? The state of the buttons (activated/ deactivated, position of the
sliders) clearly identified? *
Mark only one oval.

 Nunca / Never

 Quase nunca / Almost Never

 Regularmente / Regularly

 Quase sempre / Almost Always

 Sempre / Always

 Não sei / Não respondo / No answer

11.

Comentários / Comments
 

 

 

 

 

12.

Usabilidade / Usability

Interacção com o sistema e simplicidade de apresentação da informação. / Interaction with the 
system and simplicity when presenting the information.

Várias vistas possiveis do sistema / The several views
possible.
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Consigue controlar a informação que é apresentada no ecrã? / Can you control the
information that is presented on the screen? *
Por exemplo, se consigo activar/desactivar as várias vistas possiveis (modo desenho, modo
HMM, modo DTW). / For instance, can you control (activate / deactivate) the several possible
views (draw mode, DTW mode, HMM mode)).
Mark only one oval.

 Não / no

 Nem por isso / Not Really

 Sim / Yes

 Sim, bastante / Yes, very

 Não sei / Não respondo / No answer

13.

A informação contida no ecrã destaca-se do fundo? / Does the information on the
screen stand out from the background? *
Mark only one oval.

 Não / No

 Nem por isso / Not really

 Sim / Yes

 Sim, bastante / Yes, very

 Não sei / Não respondo / No answer

14.
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Esteticamente o sistema é agradavel nos factores: cores, brilhos, contrastes, etc? /
Aesthetically, is the system pleasant in the terms of colors, brightness, contrast, etc? *
Mark only one oval.

 Não / No

 Nem por isso / Not Really

 Sim / Yes

 Sim, bastante / Yes, very

 Não sei / Não respondo / No answer

15.

O acessório usado para desenhar os gestos no ecrã é fácil de usar? / Is the accessory
used to draw the gestures easy to use? *
Neste caso, o uso do rato para registar/apagar gestos / In this case, the use of the wireless
mouse to register/delete gestures.
Mark only one oval.

 Não / No

 Nem por isso / Not really

 Sim / Yes

 Sim, bastante / Yes, very

 Não sei / Não respondo / No answer

16.

Quando executo uma tarefa, o sistema informa sobre o que está a acontecer? / When
you perform a task, does the system keeps you updated on what's happening? *
Por exemplo, quando desenho um gesto, vejo imediatamente o resultado? Ou quando gravo
para ficheiro, o sistema informa? / For instance, when you perform a gesture does it shows
immediatly the result? Or when you record a file, does the system informs on the actin result?
Mark only one oval.

 Nunca / Never

 Quase nunca / Almost Never

 Regularmente / Regularly

 Quase sempre / Almost Always

 Sempre / Always

 Não sei / Não respondo / No answer

17.

Complexidade dos gestos gravados / Complexity of the
gestures
Foi-lhe pedido para gravar 5 gestos diversas vezes, agora pretende-se analisar qual é para si a 
escala de complexidade dos gestos desenhados.
/ You were asked to perform 5 gestures. Now we want to analyze what is , for you, the grade of 
complexity of the gestures.
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Ordene os gestos que desenhou por complexidade crescente / Order the gestures you
performed by its increasing complexity.
(sendo o valor 1 o menos complexo e 5 o mais complexo. Não repita o grau de
complexidade.) / Being the value 1 the less the complex and 5 the most complex. Do not
repeat the classification for different gestures.
Mark only one oval per row.

1 2 3 4 5

Gesto "0"

Gesto "1"

Gesto "Z"

Gesto "3"

Gesto "8"

18.

Comentários / Comments
 

 

 

 

 

19.

Aceitação da framework ZtS / Framework ZtS acceptability
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Powered by

Acha que o sistema poderá ser usado em cenários de performance ao vivo ou outro
tipo de aplicações artisticas? / Do you think this framework can be used for live
performances or other type of artistic applications? *
Mark only one oval.

 Não / No

 Nem por isso / Not Really

 Sim / Yes

 Sim, bastante / Yes, very

 Não sei / Não respondo / No answer

20.

Atendendo aos parâmetros que analisou como classificaria a Framework ZtS. /
Concerning the parameters you have just analyzed, how do you classify the ZtS
framework? *
Mark only one oval.

 Mau / Bad

 Insuficente / Insuficient

 Suficiente / Suficient

 Bom / Good

 Muito Bom / Very Good

 Não sei / Não respondo / No answer

21.

Comentários, Sugestões, Criticas ou Elogios / Comments, suggestions, critics or
compliments
Encorajo que escreva algo. Pode ser uma critica, um elogio, algo que gostava de ver
implementado, etc.
 

 

 

 

 

22.
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Feldman, R. S. and Rimé, B., editors (1991). Fundamentals of Nonverbal Behavior

(Studies in Emotion and Social Interaction). Cambridge University Press.

Feyereisen, P. and de Lannoy, J.-D. (1991). Gestures and Speech: Psychological

Investigations (Studies in Emotion and Social Interaction). Cambridge

University Press.

Fiebrink, R., Trueman, D., and Cook, P. (2009). A metainstrument for interactive,

on-the-fly machine learning. In Proc. NIME, volume 2, page 3.



172 REFERENCES

Foxlin, E. and Naimark, L. (2003). Vis-tracker: A wearable vision-inertial self-

tracker. In Proceedings of the IEEE Virtual Reality 2003, VR ’03, pages 199–,

Washington, DC, USA. IEEE Computer Society.

Fraisse, P. (1982). Rhythm and Tempo. In Deutsch, D., editor, The Psychology of

Music, Springer Handbook of Auditory Research, pages 149–180. Academic

Press.

Gillian, N., Knapp, R. B., and O’Modhrain, S. (2011). A machine learning toolbox

for musician computer interaction. Proceedings of the 2011 International

Coference on New Interfaces for Musical Expression (NIME11).

Godoy, R. I. and Leman, M. (2009). Musical Gestures: Sound, Movement, and

Meaning. Routledge.

Grosan, C. and Abraham, A. (2011). Machine Learning, volume 17 of Intelligent

Systems Reference Library. Springer Berlin Heidelberg.

Guedes, C. (2005a). Mapping Movement to Musical Rhythm: A Study in Interactive

Dance. PhD thesis, New York University.

Guedes, C. (2005b). THE M-OBJECTS : A SMALL LIBRARY FOR MUSICAL

RHYTHM GENERATION AND MUSICAL TEMPO CONTROL FROM DANCE

MOVEMENT IN REAL TIME. In Proceedings of the International Computer

Music . . . .

Harrison, M. A., Atkinson, H., and De Weerdt, W. (1992). Benesh movement

notation: A tool to record observational assessment. International Journal

of Technology Assessment in Health Care, 8:44–54.

Hastie, T., Tibshirani, R., and Friedman, J. (2003). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction (Springer Series in Statis-

tics). Springer, 0 edition.

Hunt, A., Wanderley, M., and Kirk, R. (2000). Towards a model for instrumental

mapping in expert musical interaction. In Proceedings of the 2000 Interna-

tional Computer Music Conference, pages 209–212.

Inokuchi, S. (2010). Review of kansei research in japan. IJSE, 1(1):18–29.

Joguet, C., Caritu, Y., and David, D. (2003). Pen-like’natural graphic gesture



REFERENCES 173

capture disposal, based on a micro-system. In Proc. of Smart Objects

Conference SOC’03, Grenoble, France. Citeseer.

Jr, G. F. (2005). The viterbi algorithm: A personal history. arXiv preprint

cs/0504020.

Kahol, K., Tripathi, P., and Panchanathan, S. (2004). Automated gesture segmen-

tation from dance sequences. In Automatic Face and Gesture Recognition,

2004. Proceedings. Sixth IEEE International Conference on, pages 883–888.

IEEE.

Kang, H., Woo Lee, C., and Jung, K. (2004). Recognition-based gesture spotting

in video games. Pattern Recognition Letters, 25(15):1701–1714.

Kendon, A. (1970). Movement coordination in social interaction: Some examples

described. Acta Psychologica, 32(0):101 – 125.

Kendon, A. (1980). Gesticulation and speech: two aspects of the process of

utterance. In Key, M. R., editor, The Relationship of Verbal and Nonverbal

Communication, pages 207–227. Mouton, The Hague.

Kendon, A. (1994). Do Gestures Communicate? A Review. Research on Language

& Social Interaction, 27(3):175–200.

Keogh, E. and Ratanamahatana, C. A. (2005). Exact indexing of dynamic time

warping. Knowledge and Information Systems, 7(3):358–386.

Kim, J. (1999). An HMM-based threshold model approach for gesture recog-

nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21(10):961–973.

Leante, L. (2007). Multimedia Aspects of Progressive Rock Shows: Analysis of

the Performance of ”The Musical Box”. In Proceedings of the International

Conference “Composition and Experimentation in British Rock 1966-1976.

Lemire, D. (2009). Faster Retrieval with a Two-Pass Dynamic-time-warping lower

bound. Pattern recognition, (June 2009):1–26.
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