62 research outputs found

    Self-stabilizing wormhole routing in hypercubes

    Full text link
    Wormhole routing is an efficient technique used to communicate message packets between processors when they are not completely connected. To the best of our knowledge, this is the first attempt at designing a self-stabilizing wormhole routing algorithm for hypercubes. Our first algorithm handles all types of faults except for node/link failures. This algorithm achieves optimality in terms of routing path length by following only the preferred dimensions. In an n-dimensional hypercube, those dimensions in which source and destination address bits differ are called preferred dimensions. Our second algorithm handles topological changes. We propose an efficient scheme of rerouting flits in case of node/link failures. Similar to the first algorithm, this algorithm also tries to follow preferred dimensions if they are nonfaulty at the time of transmitting the flits. However, due to topological faults it is necessary to take non-preferred dimensions resulting in suboptimality of path selection. Formal proof of correctness for both solutions is given. (Abstract shortened by UMI.)

    New fault-tolerant routing algorithms for k-ary n-cube networks

    Get PDF
    The interconnection network is one of the most crucial components in a multicomputer as it greatly influences the overall system performance. Networks belonging to the family of k-ary n-cubes (e.g., tori and hypercubes) have been widely adopted in practical machines due to their desirable properties, including a low diameter, symmetry, regularity, and ability to exploit communication locality found in many real-world parallel applications. A routing algorithm specifies how a message selects a path to cross from source to destination, and has great impact on network performance. Routing in fault-free networks has been extensively studied in the past. As the network size scales up the probability of processor and link failure also increases. It is therefore essential to design fault-tolerant routing algorithms that allow messages to reach their destinations even in the presence of faulty components (links and nodes). Although many fault-tolerant routing algorithms have been proposed for common multicomputer networks, e.g. hypercubes and meshes, little research has been devoted to developing fault-tolerant routing for well-known versions of k-ary n-cubes, such as 2 and 3- dimensional tori. Previous work on fault-tolerant routing has focused on designing algorithms with strict conditions imposed on the number of faulty components (nodes and links) or their locations in the network. Most existing fault-tolerant routing algorithms have assumed that a node knows either only the status of its neighbours (such a model is called local-information-based) or the status of all nodes (global-information-based). The main challenge is to devise a simple and efficient way of representing limited global fault information that allows optimal or near-optimal fault-tolerant routing. This thesis proposes two new limited-global-information-based fault-tolerant routing algorithms for k-ary n-cubes, namely the unsafety vectors and probability vectors algorithms. While the first algorithm uses a deterministic approach, which has been widely employed by other existing algorithms, the second algorithm is the first that uses probability-based fault- tolerant routing. These two algorithms have two important advantages over those already existing in the relevant literature. Both algorithms ensure fault-tolerance under relaxed assumptions, regarding the number of faulty components and their locations in the network. Furthermore, the new algorithms are more general in that they can easily be adapted to different topologies, including those that belong to the family of k-ary n-cubes (e.g. tori and hypercubes) and those that do not (e.g., generalised hypercubes and meshes). Since very little work has considered fault-tolerant routing in k-ary n-cubes, this study compares the relative performance merits of the two proposed algorithms, the unsafety and probability vectors, on these networks. The results reveal that for practical number of faulty nodes, both algorithms achieve good performance levels. However, the probability vectors algorithm has the advantage of being simpler to implement. Since previous research has focused mostly on the hypercube, this study adapts the new algorithms to the hypercube in order to conduct a comparative study against the recently proposed safety vectors algorithm. Results from extensive simulation experiments demonstrate that our algorithms exhibit superior performance in terms of reachability (chances of a message reaching its destination), deviation from optimality (average difference between minimum distance and actual routing distance), and looping (chances of a message continuously looping in the network without reaching destination) to the safety vectors

    An Information Model for Geographic Greedy Forwarding in Wireless Ad-Hoc Sensor Networks

    Get PDF
    In wireless ad-hoc sensor networks, an important issue often faced in geographic greedy forwarding routing is the "local minimum phenomenon" which is caused by deployment holes and blocks the forwarding process. In this paper, we provide a new information model for the geographic greedy forwarding routing that only forwards the packet within the so-called request zone. Under this new information model, the hole and its affected area are identified easily and quickly in an unsafe area with a labeling process. The greedy forwarding will be blocked if and only if a node inside the unsafe area is used. Due to the shape of the request zone, an unsafe area can be estimated as a rectangular region in the local view of unsafe nodes. With such estimate information, the new routing method proposed in this paper will avoid blocking by holes and achieve better performance in routing time while the cost of information construction is greatly reduced compared with the best results known to date.Department of ComputingRefereed conference pape

    Broadcasting in cycles with chords

    Get PDF
    Broadcasting is the process of information dissemination in which one node, the originator, knows a single piece of information and using a series of calls must inform every other node in the network of this information. We assume that at any given time, a node can communicate the message to another node, with which it shares an edge, by acting as either a sender or receiver, but not both. Multiple message broadcasting considers the case when the originator has m messages, where m \u3e 1, to disseminate. Whereas broadcasting limits the communication of a message from one node to another node via a single edge, line broadcasting allows one node to send a message to any other node in the network as long as a simple path exists between the sending node and the receiving node and every edge along the path is not in use.;In this dissertation, we consider the problem of broadcasting in a cycle with chords and we develop broadcast schemes for this type of network.;We begin by investigating the problem of broadcasting in a cycle with one and two chords, respectively. Then, we consider the problem of multiple message broadcasting in cycles with one and two chords. Finally, we consider the problem of line broadcasting in cycles with chords.;Through our investigations, we develop two algorithms for the problem of broadcasting in a cycle with one and two chords, respectively and we analyze the correctness and complexity of these algorithms. Then, we discuss problems associated with multiple message broadcasting in cycles with one and two chords. Finally, we use techniques developed for line broadcasting in cycles to create minimum time broadcast schemes for cycles through the addition of chords.;Using techniques developed in this dissertation, we are able to broadcast in minimum time in cycles with chords. In cycles whose size is a power of 2, we have proved that the number of chords that we add to the cycle is the minimum number of chords required to broadcast in minimum time in such a cycle

    Improving Scalability and Usability of Parallel Runtime Environments for High Availability and High Performance Systems

    Get PDF
    The number of processors embedded in high performance computing platforms is growing daily to solve larger and more complex problems. Hence, parallel runtime environments have to support and adapt to the underlying platforms that require scalability and fault management in more and more dynamic environments. This dissertation aims to analyze, understand and improve the state of the art mechanisms for managing highly dynamic, large scale applications. This dissertation demonstrates that the use of new scalable and fault-tolerant topologies, combined with rerouting techniques, builds parallel runtime environments, which are able to efficiently and reliably deliver sets of information to a large number of processes. Several important graph properties are provided to illustrate the theoretical capability of these topologies in terms of both scalability and fault-tolerance, such as reasonable degree, regular graph, low diameter, symmetric graph, low cost factor, low message traffic density, optimal connectivity, low fault-diameter and strongly resilient. The dissertation builds a communication framework based on these topologies to support parallel runtime environments. Such a framework can handle multiple types of messages, e.g., unicast, multicast, broadcast and all-gather. Additionally, the communication framework has been formally verified to work in both normal and failure circumstances without creating any of the common problems such as broadcast storm, deadlock and non-progress cycle

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    Fault-Tolerant Computing: An Overview

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNASA / NAG-1-613Semiconductor Research Corporation / 90-DP-109Joint Services Electronics Program / N00014-90-J-127

    Checkpoint-based forward recovery using lookahead execution and rollback validation in parallel and distributed systems

    Get PDF
    This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR

    ProperCAD II: A Run-Time Library for Portable, Parallel, Object-Oriented Programming with Applications to VLSI CAD

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratorySemiconductor Research Corporation / grant 93-DP-10

    Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters

    Full text link
    Actualmente, los clusters de PC son un alternativa rentable a los computadores paralelos. En estos sistemas, miles de componentes (procesadores y/o discos duros) se conectan a través de redes de interconexión de altas prestaciones. Entre las tecnologías de red actualmente disponibles para construir clusters, InfiniBand (IBA) ha emergido como un nuevo estándar de interconexión para clusters. De hecho, ha sido adoptado por muchos de los sistemas más potentes construidos actualmente (lista top500). A medida que el número de nodos aumenta en estos sistemas, la red de interconexión también crece. Junto con el aumento del número de componentes la probabilidad de averías aumenta dramáticamente, y así, la tolerancia a fallos en el sistema en general, y de la red de interconexión en particular, se convierte en una necesidad. Desafortunadamente, la mayor parte de las estrategias de encaminamiento tolerantes a fallos propuestas para los computadores masivamente paralelos no pueden ser aplicadas porque el encaminamiento y las transiciones de canal virtual son deterministas en IBA, lo que impide que los paquetes eviten los fallos. Por lo tanto, son necesarias nuevas estrategias para tolerar fallos. Por ello, esta tesis se centra en proporcionar los niveles adecuados de tolerancia a fallos a los clusters de PC, y en particular a las redes IBA. En esta tesis proponemos y evaluamos varios mecanismos adecuados para las redes de interconexión para clusters. El primer mecanismo para proporcionar tolerancia a fallos en IBA (al que nos referimos como encaminamiento tolerante a fallos basado en transiciones; TFTR) consiste en usar varias rutas disjuntas entre cada par de nodos origen-destino y seleccionar la ruta apropiada en el nodo fuente usando el mecanismo APM proporcionado por IBA. Consiste en migrar las rutas afectadas por el fallo a las rutas alternativas sin fallos. Sin embargo, con este fin, es necesario un algoritmo eficiente de encaminamiento capaz de proporcionar suficientesMontañana Aliaga, JM. (2008). Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2603Palanci
    corecore