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ABSTRACT 

 

NEW FAULT TOLERANT MULTICAST ROUTING TECHNIQUES TO 

 

 ENHANCE DISTRIBUTED-MEMORY SYSTEMS PERFORMANCE 

 

by Masoud Esmail Masoud Shaheen 

 

December 2013 

 

Distributed-memory systems are a key to achieve high performance computing 

and the most favorable architectures used in advanced research problems. Mesh 

connected multicomputer are one of the most popular architectures that have been 

implemented in many distributed-memory systems. These systems must support 

communication operations efficiently to achieve good performance. The wormhole 

switching technique has been widely used in design of distributed-memory systems in 

which the packet is divided into small flits. Also, the multicast communication has been 

widely used in distributed-memory systems which is one source node sends the same 

message to several destination nodes. Fault tolerance refers to the ability of the system to 

operate correctly in the presence of faults. Development of fault tolerant multicast routing 

algorithms in 2D mesh networks is an important issue. This dissertation presents, new 

fault tolerant multicast routing algorithms for distributed-memory systems performance 

using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing 

in 2D mesh networks, but it can also be extended to other topologies. These algorithms 

are a combination of a unicast-based multicast algorithm and tree-based multicast 

algorithms. These algorithms works effectively for the most commonly encountered 

faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the 

proposed routing algorithms are effective even in the presence of a large number of fault 
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regions and large size of fault region. These algorithms are proved to be deadlock-free. 

Also, the problem of fault regions overlap is solved. Four essential performance metrics 

in mesh networks will be considered and calculated; also these algorithms are a limited-

global-information-based multicasting which is a compromise of local-information-based 

approach and global-information-based approach. Data mining is used to validate the 

results and to enlarge the sample. The proposed new multicast routing techniques are 

used to enhance the performance of distributed-memory systems. Simulation results are 

presented to demonstrate the efficiency of the proposed algorithms.  
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CHAPTER I 

INTRODUCTION 

Many of today's advanced research problems need great computing power at high 

speeds. Parallel computer systems, which emphasize parallel processing, are the most 

advantageous architectures to obtain a greater computing power needed by many of 

today’s advanced research problems.  These problems include artificial intelligence, 

expert system, robotics, signal processing, petroleum exploration, fluid mechanics, fusion 

energy research, medical diagnosis, military defense, weather forecasting, high-energy 

physics, space sciences, and servicing web servers. In many of these applications, input 

data arrives at very high rates, and the processed outputs must be generated very rapidly 

in order to be useful. In conventional sequential digital computers, a single memory 

buffer serves as the only gate between the high-speed memory and the central processing 

unit. This makes it necessary to organize all computational tasks in a strictly sequential 

fashion, hence the more complex the computing task, the more time consuming by the 

computation. Although advances in hardware technology have led to continuing increases 

in the speed of individual arithmetic operations, these have been greatly overshadowed 

by the increasing complexity of many simulation problems. To attain high speeds of the 

digital computers, the parallelisms have been used in their hardware design. The 

implementation of these techniques has given arise to the parallel computer systems. 

Distributed-memory systems, which have unshared distributed memories among 

processors, are the most advantageous architectures in building a massively parallel 

computer system. These systems need switching techniques to transmit messages among 

processors. The wormhole switching technique has been widely used in the design of 

these systems. The multicast pattern, in which one processor sends the same message to 
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multiple processors, is the most fundamental communication pattern. Fault tolerance is a 

central issue facing the design of interconnection networks for distributed-memory 

systems. The suited topologies for current distributed-memory systems are 2D mesh, 

Hypercube and tours. This research will concentrate on studying the fault-tolerant 

multicast wormhole routings in mesh networks.  

Problem Statement 

The multicast pattern, in which one processor sends the same message to multiple 

processors, is the most fundamental communication pattern used in distributed-memory 

systems. A familiar problem in the current design of distributed memory system is that 

fault tolerance is not considered early enough in the design process. It is critical that with 

the increased complexity and functionality of distributed-memory systems today that the 

fault tolerance abilities become a part of the system design. Early concern of fault 

managing abilities of a system can result in more reliable systems. Several researchers 

conducted as a result of software design and routing techniques errors were presented [1]. 

Hence, efficient fault-tolerant multicast routing algorithms are critical to the performance 

of distributed-memory systems. An effective multicast routing must be deadlock-free and 

should minimize network traffic steps and network traffic time. Tree-based techniques 

offer a very promising means of achieving extremely efficient multicast routing. These 

techniques forward a message copy to multiple output channels. Tree-based algorithms 

have advantageous over other multicast techniques. Hence, the multicasting using tree-

based techniques in routed mesh multicomputer will be studied in this research. 

Important issues such as deadlock and fault tolerance are critical to the performance of 

distributed-memory systems. 
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In this research, the above mentioned factors and issues will be studied to improve 

distributed-memory systems performance. Also, the most accepted criteria such as 

network traffic steps, network latency steps, network traffic time and network latency 

time for the communication patterns will be considered to evaluate the performance. 

Significance of the Study 

Many research works have been devoted throughout the last era to enhance the 

performance of distributed-memory systems (multicomputer). As the number of nodes in 

distributed-memory systems network is increasing, the time necessary to deliver data 

between the nodes is significant in whole system performance. In addition, it will affect 

the possible granularity level of parallel processing in running an application program. 

Distributed-memory systems (multicomputer) are the focal of this research for its several 

significant benefits. First, distributed-memory systems are scalable, which means that its 

efficiency increases as the number of node increases. Second, there is no switch and bus 

contention. Third, there are no cache coherency difficulties. Every processor is 

responsible for its own data and does not need to worry about placing copy of it in its 

own local cache and having another processor reference the original. 

In order to design a good routing algorithm, we should consider a switching 

technique (switching techniques determine how messages are forwarded through the 

network) that will satisfy the basic needs, the message length and buffer size that can be 

used. This research concentrates on wormhole switching for its several advantages. 

Wormhole switching technique makes more efficient use of buffers and helps to create 

deadlock-free algorithms.  An entire packet (message) need not be buffered to deliver to 

the next node, reduce traffic time and latency time. This reduces latency (delay) and 

traffic noticeably compared to other switching techniques. 
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Another consideration in the design of parallel processing systems is the set of 

pathways over which the processors, memories, and switches connect to each other. 

Those are the connections that define the network topology of the machine. Mesh 

network topology has been studied in this research because it has the following 

advantages: 

 It is easy detection and isolation of faults in the network.  

 Messages can be delivered from different devices concurrently and use alternative 

paths in case of failure take place or performance degradation.  

 Mesh can endure high traffic.  

 Expansion and modification in topology can be done without difficulties on other 

nodes. Distributed-memory systems using mesh topology as their essential 

architecture have been around for years. A number of large research and 

commercial multicomputer systems have been built based on mesh topologies, 

such as Blue Gene Supercomputer. 

It is important to find new fault-tolerant multicast routing techniques in the area 

of distributed-memory systems which exploit parallel computing facilities to: 

 Reduce a lot of concerned factors such as network latency steps, network traffic 

steps, network latency time and network traffic time. 

 Apply these routing techniques on 2D mesh network topology. 

 Apply it on fault regions with different ships – regular (convex, concave) and 

irregular - and solve a problem with overlap fault regions.  

As shown in the next few chapters, our proposed fault tolerant routing algorithms 

have achieved the above mentioned factors. In addition, they are compromise of two 
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basic techniques (tree-based and unicast-based) and they exploit the advantages of each 

one of these two techniques.  

The rest of the dissertation is organized as follow:  

In Chapter II, a background of parallel computer memory architectures are 

considered. Also, Basic network topologies and network switching techniques are 

investigated. In addition, they are surveyed.   

In Chapter III, an overview of fault tolerant multicast routing algorithms is 

presented. Also, a brief introduction to deadlock, Fault model and fault tolerance were 

given. Moreover, fault tolerant multicast routing algorithms for regular and irregular fault 

regions were studied. 

 In Chapter IV, FTDM and its improved version iFTDM fault tolerant multicast 

routing algorithms are proposed. Also, simulation study for both of algorithms is 

conducted.  

In Chapter V, data mining for proposed routing algorithm is presented to validate 

the results. In addition, three tools (WEKA, EXCEL and MATLAB) are used to do 

regression analysis.  

In Chapter VI, an efficient fault tolerant multicast routing algorithm, Yassin, for 

wormhole routed 2D mesh multicomputer is presented.   Four essential performance 

metrics in mesh networks, network traffic steps, network latency steps, network traffic 

time and network latency time are evaluated. 

In Chapter VII, list of some possible future work and summary of this dissertation 

are presented. 
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CHAPTER II 

BACKGROUND  

 Parallel computer systems, which emphasize parallel processing, are the most 

favorable architectures to increase the computing power. Parallel processing continues to 

hold the promise of the solution of the more complex problems by connecting a number 

of powerful computer processors together into a single system. These connected 

processors assist in solving a single problem that exceeds the capability of any one of the 

processors. Parallel processing systems provide cost-effective means to high system 

performance through concurrent activities. 

Multiprocessor systems, distributed-memory, shared-memory, and distributed-

shared memory are currently the most promising parallel systems to further increase 

computer performance. Distributed-memory systems have unshared distributed memories 

among processors of the systems. Shared-memory systems use a single physical memory 

shared by all processors. In a distributed-shared memory system, the shared-memory is 

physically distributed to all processors, and a collection of all local memories forms a 

global address space accessible by all processors. The interconnection networks are used 

for internal connections among processors, memory modules, and I/O devices in a 

shared-memory system or among nodes in a distributed memory system. The 

interconnection networks depend on several factors including topology, routing 

algorithms, and switching techniques. The network topology defines how the nodes are 

interconnected by channels. The routing algorithm is defined as the path chosen by a 

packet to reach its destination. The switching technique determines how and when the 

router switch is set when a packet header reaches an intermediate node.  
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Parallel Computer Memory Architectures 

A parallel computer is a system that emphasizes parallel processing. The parallel 

processing is a suitable manner of information processing that exploits the computing 

process. Parallel computer systems can be characterized as pipeline processors, vector 

processors, array processors, systolic processors, and shared memory (multiprocessor) 

systems [2]. Pipeline processors refer to those digital machines that provide overlapped 

data processing in the central processor, in the I/O processor, and in the memory 

hierarchy. The pipeline processing concept in a computer system is similar to assembly 

lines in an industrial factory. To achieve pipelining, the input task must be divided into a 

sequence of subtasks. Vector processors are designed to manipulate vector instructions 

over vector operands, all the elements of a vector are subjects to a particular instruction 

simultaneously. They work efficiently only if the arithmetic operations to be performed 

are vectorized, that is, arranged as continuous streams of data. Although the vector 

processors are remarkably fast in certain situations, it proved to be very difficult in 

practical simulation problems to arrange the computations to be performed in sufficiently 

long vectors. Array processors are well suited for the applications for which they are 

designed, general purpose computations. They consisted of a one or two dimensional 

array of processors, with nearest neighbor interconnections. Such an interconnection 

pattern is very natural for spatially decomposed problems like partial differential 

equations and image processing. Furthermore, there is host computer supervision which 

controls the growth of the computation by passing the next instruction to processors. A 

systolic processor is an extension of the pipelining concept. While a pipeline is a one 

dimensional, unidirectional flow, the systolic system permits multidirectional flow 

including feedback. The systolic processors are designed for a special purpose, such as 
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solving systems of linear equations with special structure, or performing fast Fourier 

transforms.  

Multiprocessor systems, which contain several processors of approximately 

comparable capabilities, are currently the most promising architectures to further increase 

computer performance. They have been shown to be very competent for solving 

problems that can be partitioned into tasks with homogeneous computation and 

communication patterns. Depending on how the memory is shared, there exist three 

models of multiprocessor systems, shared memory systems, distributed-memory systems, 

and distributed shared memory systems [3]. Shared memory systems use a single physical 

memory shared by all processors. Such systems are also called uniform memory access 

(UMA) systems. Distributed-memory systems have unshared distributed memories 

among processors of the systems. Such systems are also called message passing 

multicomputers. In distributed shared memory systems, the shared memory is physically 

distributed to all processors and a collection of all local memories forms a global address 

space accessible by all processors. Such systems are also, called non-uniform memory 

access (NUMA) systems. In the next three subsections, the three models of 

multiprocessor systems are discussed. An introduction to High Performance Computing 

and parallel computer was presented by Hager and Wellein [4].  

Shared-Memory Systems 

  The main property of shared-memory systems is that all processors in the system 

have access to the same memory; there is only one global address space. Typically, the 

main memory consists of several memory modules whose number is not necessarily 

equal to the number of processors in the system, as shown in Figure 1. The Intel Paragon 
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[5], the Thinking Machines Corp, CM-5 [6], and the Meiko CS-2 [7] are examples of 

shared-memory architectures. In these systems, communication and synchronization 

between the processors are done implicitly via shared variables.  

The processors are connected to the memory modules via some kind of 

interconnection network. These systems are called uniform memory access (UMA), since 

all processors access every memory module in the same way concerned latency and 

bandwidth. Each main memory location in the memory is located by a number called its 

address. Addresses start at 0 and extend to 2n-1 when there are n bits (binary digits) in 

the address. To extend the single processor model, there are multiple processors 

connected to multiple memory modules, such that each processor can access any memory 

module. They are divided into two types, symmetric and asymmetric. In a symmetric 

shared-memory system, all processors have equal access to all peripheral devices, and 

they are equally capable of running the operating system kernel and the I/O service 

routines. In an asymmetric shared memory system, only one processor can execute the 

operating system and handle I/O, while the other processors execute user codes under 

supervision of the master processor. 

 

Figure 1. [3] A shared memory architecture. 
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Programming of shared memory systems involves having executable code stored 

in the shared-memory for each processor to execute. The data for each program will also 

be stored in the shared memory, and hence each program could access all the data if 

needed. Programmers create the executable code and shared data for the processors that 

can be done in different ways, but the final result is to have each processor execute its 

own program or code sequences from the shared memory. 

  Shared-memory systems have some advantages, such as a parallel program can 

be written as a collection of processes that act on common set variables. Hence, writing 

efficient parallel programs in the shared memory systems is easier than other models.  

The work needed in shared memory systems to distribute the computation and data over 

the processors is less than the distributed-memory systems.    

Distributed-memory Systems 

A distributed memory system consists of multiple autonomous processing nodes 

with local memory modules connected by a common interconnection network. There is 

no common address space, i.e. the processors can access only their own memories. 

Communication and synchronization between the processors are done by exchanging 

messages over the interconnection network. Each computer consists of a processor and 

local memory. In principle, there are no limits to the number of processors or the total 

memory, other than the cost of constructing the system. The SGI Origin2000, Cray T3E, 

and IBM RS/6000 SP are examples of distributed memory architectures [8]. Figure 2 

illustrates the connection between the computer modules and a message transfer system. 
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Figure 2. [3] Distributed memory architecture. 

By using dedicated routers, distributed-memory systems decouple computation 

and communication functionality in order to improve the performance of both. In such 

systems, a computer node is attached to a router; which handles a message passing 

among nodes. A boundary router may be connected to I/O and peripheral devices. The 

message, which passes between any two nodes, involves a sequence of routers and 

channels. Several pairs of external channels are connected to define the network 

topology. A crossbar switch within the router allows the simultaneous transmission of a 

message between different input and output channels. Moreover, two messages may be 

transmitted concurrently in reverse directions between neighboring routers. A pair of 

internal channels connects a router to its local processor/memory. One channel of each 

pair, injection channel, injects messages into network. The other channel, ejection 

channel, consumes messages from the network. The architecture of a generic node in 

distributed-memory systems is illustrated in Figure 3. 

Distributed-memory systems can be classified into two approaches, medium-grain 

and fine-grain systems. The medium-grain system consists of a few tens of large 

processors. It uses large word sizes and memory capacities. Examples of medium-grain 

machines are iPSC/2, and nCUBE2 [8]. The fine-grain system consists of several 
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thousands of processors. It uses small word sizes and very small memory capacities. 

Examples of fine-grain machines are Caltech Mosaic [9] and j-machine [10]. 

 

Figure 3. [3] Generic node architecture. 

Programming of distributed-memory systems still involves separating the problem 

into parts that are intended to be executed concurrently to solve the problem. 

Programming could use a parallel or extended sequential language, but a common 

approach uses message-passing library routines that are inserted into a conventional 

sequential program for message passing. A problem is divided into a number of 

concurrent processes. Processes may be executed on individual computers. 

Distributed-memory systems have several advantages, such as they require 

relatively design effort less than shared-memory systems. As the number of processors in 

the system increases, some points are noticed: 

1) The memory size increases in distributed-memory systems, while in shared memory 

systems, it does not increase. 
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2) The total memory bandwidth increases in distributed-memory systems, while in 

shared-memory systems, it remains constant, independent of the number of 

processors.  

3) The processing capability of the system in distributed-memory systems, increases 

while in shared-memory systems; it may be decreased because of the synchronization 

[11]. 

Hence, distributed-memory systems are more scalable than shared-memory 

systems in building massively parallel computers. A Good overview of distributed-

memory systems and parallel computing are presented by Dally [12], Gebali [13].    

Distributed-Shared-Memory Systems 

In a distributed-shared-memory system, the shared memory is physically 

distributed to all processors, called local memories. The collection of all local memories 

forms a global address space accessible by all processors. Such systems are also called 

non-uniform-memory-access (NUMA) systems in which the access time varies with the 

location of the memory word. The memory access time for a local address is less than the 

access time for remote address, attached to other processors, through the interconnection 

network. Besides distributed memories, globally shared memory can be added to a 

multiprocessor system. In this case, there are three memory-access patterns, the fastest is 

local memory access, the next is global memory access, and the slowest is remote 

memory access. Examples of such systems are Cedar system [8], SGI Origin [14], 

Stanford Dash [15], and Stanford Flash [16]. 
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Figure 4. [3] A distributed shared memory architecture. 

The cache-only memory architecture is a special case of a non-uniform-memory 

access, in which the distributed memories are converted to caches. All caches form a 

global address space. The processors are divided into numerous clusters. Every cluster is 

itself an UMA or a NUMA multiprocessor. The clusters are linked to universal shared-

memory modules. A distributed-shared-memory systems configuration is shown in 

Figure 2 [8]. 

Basic Network Topologies 

In this subsection, different topologies of direct networks are discussed. Each 

computer found on the network is known as a network node. All topology has its 

advantages and disadvantages: generally correlated to the price, complexity, 

dependability and traffic.  

Linear Topology  

In a linear topology, Figure 5, all nodes connected to LAN as branches on a 

common line. In a linear network with N nodes, the internal nodes have degree equal to 2 

and the terminal nodes have degree equal to 1 while the diameter is N-1. Many devices 

connect to a single cable backbone. If the backbone is broken, the whole part fails. Linear 
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topologies are fairly easy to set up and do not need much cabling compared to the 

alternatives. 

 

Figure 5. Linear topology. 

Ring Topology 

In a ring topology, Figure 6, all nodes on the same circuit, which forms a 

continuous loop, is obtained by connecting the two terminal nodes of a linear array with 

one extra link. It is symmetric with a constant node degree of equal to 2. The diameter is 

N/2 for a bi-directional ring and N for unidirectional ring. All messages pass through a 

ring in the equivalent direction. A breakdown in any cable or device disconnects the loop 

and hence it takes down the whole segment. 

 

Figure 6. Ring topology. 

Star Topology 

In a star topology, Figure 7, every node attached to disconnect lines that direct to 

center. In a star network with N nodes, the degree of the central node is N-1 while that of 

other nodes is 1 and the diameter is 2. The star architecture has been used in systems with 

a centralized supervisor node. A star network has a central connection point – like a hub 
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or a switch. While it takes more channels, the benefit is that if a channel fails, only one 

node will be brought down.   

 

Figure 7. Star topology. 

Tree Topology 

In a tree topology, Figure 8, all nodes attached to separate lines that lead to a hub, 

and then the hubs are connected together (like the branches on a tree) to the main network 

backbone. The binary tree of k-level contains 2–1 nodes. The maximum node degree is 3 

and the diameter is 2(k-1). The tree topology is a combination of linear and star 

topologies. They are very common in larger networks. 

 

Figure 8. Tree topology. 



11 

 

 

Hypercube Topology 

A high-dimensional binary n-cube is called hypercube topology. An n- cube 

consists of N=2
n
 nodes spanning along n dimensions, with two processing nodes in each 

dimension. Two nodes x and y are neighboring nodes if and only if yj = ( xj ± 1 ) mod k 

for one j and xj = yj for all i ≠ j, 1 < j, j< n. The first generation multicomputer such as 

Intel iPSC/1 and n CUBE/2, implemented the hypercube topology. For example, iPSC/1 

consists of 128 nodes form a 7-dimensional hypercube with 512 k bytes of local memory 

per node and 8 I/O ports. While nCUBE/2 consists of 8192 nodes form a 13-dimensional 

hypercube with 512 Gbytes of local memory per node and 64 I/O boards [17]. Figure 9 

(a) illustrates an example of 3-cube networks.  

   

(a)    (b)    (c) 

Figure 9. Example of (a) Hypercube, (b) Torus and (c) Mesh. 

Torus Topology 

A low dimensional k-ary n-cube is called torus topology. Unlike a hypercube, a 

torus may contain more than two nodes per dimension. The torus topology has ring 

connections along each row and along each column of the array, i.e. wraparound 

channels have been added to connect each edge node to the corresponding node on the 

opposite edge. Each dimension in a k-ary n-cube contains the same number of nodes 
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while dimensions of a torus may contain different numbers of nodes. Two nodes x and y 

are neighboring nodes if and only if yj = ( xj±1) mod k for one j and xi = yi for all i≠j, 1 <  

i, j < n. Examples of torus architectures include the Torus Routing Chip and the Cray 

T3D [8]. Figure 9 (b) illustrates an example of ( 3 3 ) 2D torus networks. 

Mesh Topology 

Mesh network topology is one of the most important interconnection networks. 

Distributed-memory systems which use mesh topology as their essential architecture have 

been around for years. They utilize mesh topology because of its simplicity, reliability 

and good scalability. Also, their significance in achieving high performance, fault tolerant 

computing for mesh topology has been the focus of research. A 2D mesh with n x n 

nodes has an internal node degree of 4 (four neighbors), one in each of four directions: 

east, south, west, and north. A number of large research and commercial multicomputer 

systems have been built based on 2D and 3D mesh topologies, including Illiac IV, MPP, 

DAP, CM-2, Intel paragon, Goodyear MPP and Blue Gene Supercomputer [8]. All mesh 

communication channels and MRCs are built on a backplane. The 3D-Smesh network is 

implemented in the third generation of multicomputers. The Mosaic C project is designed 

to use VLSI-implemented nodes, each containing a 14-MIPS processor, 20-Mbytes/s 

routing channels, and 16 Kbytes of RAM integrated on a single chip [8]. Mosaic consists 

of 16,348 nodes [18]. Figure 9 (c) illustrates an example of (3  3) 2D mesh networks. 

Network Switching Techniques 

 Switching concerns the form in which link resources are allocated to messages. 

In most distributed-memory systems, a message enters the network from a source node 

and is switched towards its destination through a series of routers at intermediate nodes. 
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The switching technique is the mechanism that removes data from an input channel and 

puts it on an output channel. Also, the switching technique defines the hardware and 

software protocols for transmitting and buffering data when sending a message between 

neighboring routers. The transmission time which is extremely dependent on the 

switching technology is used to direct messages through the network. Different switching 

techniques have been proposed for supporting communication across the network. The 

most common techniques, including store-and-forward, virtual cut through, circuit 

switching, and wormhole switching, are presented in the next subsections.  

For each switching technique the computation of the transmission time of an M 

bit message in the absence of any traffic will be considered. The phit size and flit size are 

supposed to be equal to the physical data channel width of W bits. The routing header is 

assumed to be one flit, thus the message size is M + W bits. A router can make a routing 

decision equal to tr seconds. The physical channel between two routers works at B Hz, 

i.e., the physical channel bandwidth is BW bits per second. The propagation delay across 

this channel is denoted by tm = 1/B. When a path has been structure through the router, 

the switching delay is denoted by tw. The router internal data paths are supposed to be 

coordinated to the channel width of W bits. Thus, in ts seconds, a W bit flit can be 

transferred from the input of the router to the output [17].  

Store-and-Forward (SF) Switching 

Store-and-forward mechanism had been used to route messages in many 

multicomputer systems. This switching technique is sometimes called packet switching. 

In store-and-forward switching, a message destined for a node that is not directly 

connected to the source node must be received in its entirety at each intermediate node 

before forwarded to the next node. Therefore, the transmission time, the delay from the 
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beginning of sending a message at the source node until the destination node receives it, 

is proportional to the distance between the source and destination nodes. The hop step 

consists of copying the whole packet from one output buffer to the next input buffer. 

Routing decisions are completed by each intermediate node only after the entire packet 

was totally buffered in its input buffer.  

The transmission time of store-and-forward switching message can be computed 

as follows [17].  

  TSF = D  ( tr + (tm + tw)  (M+W) / W ) 

A time space diagram of the progress of a packet across three links is shown in 

Figure 10. 

 

Figure 10. [17] Time space diagram of store-and-forward switching message. 

The store-and-forward technique is valuable when messages are short and 

frequent, since one transmission makes busy at most one channel from the whole path. 

The necessity to buffer the entire packet makes the router design expensive and slower, 

or the packet size is restricted. The communication latency is proportional to the product 

of the packet size and distance between the source node and destination nodes. As a result 
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designers try to pursue shortest path routing and use small diameter networks. Routing 

algorithms based on store-and-forward switching techniques can found in [19]. 

Virtual Cut-Through (VCT) Switching 

Virtual cut-through (VCT) switching is the most complicated and expensive 

technique among switching techniques. In virtual cut-through a message is buffered at an 

intermediate node only when the desired outgoing channel (or channels if there is routing 

choice) is/are already in use. In this technique transmission time, in the absence of 

contention, becomes largely independent of the distance travelled by the message.   

The transmission time of a message that effectively cuts through each 

intermediate node can be computed as follows [17]. 

 TVCT = D  (tr + tm + tw) + max (tm , tw)  M/W) 

Figure 11 illustrates a time space diagram of a message transmitted using virtual 

cut-through switching wherever the message is congested after the first link waiting for 

an output channel to be free [20]. 

 

Figure 11. [20] Time space diagram of a virtual cut-through switching message. 

The header flit is the one that holds routing information and consequently each 

incoming data flit is merely sent along the same output channel as its predecessor. 
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Consequently, broadcast of different packets cannot be inserted or multiplexed over one 

physical channel [20], [21]. Routing algorithms based on virtual cut-through switching 

techniques can be found in [19]. 

Circuit Switching (CS) 

In circuit switching technique, the communication between a source node and a 

destination node has two phases: circuit establishment and message transmission. A 

physical path from the source node to the destination node is held in reserve proceeding 

to the broadcast of data by inserting a routing probe, which holds destination address and 

several control information. This routing probe developments towards the destination 

node keeping physical links as it is transferred through intermediate nodes. When the 

probe reaches the destination node, a whole path has been established and a response is 

conveyed back to the source node [17]. The circuit is unrestricted either by the 

destination node or by the last bits of the message. The acknowledgments in the Intel 

iPSC/2 routers [22] are multiplexed in the opposite direction on the similar physical line 

as the message.  

The transmission time of a circuit switched message can be computed as follows [17].  

  Tcircuit =  t setup                        +      t data 

= D  (tr + 2 (tm + tw)) + ((1/B)  M/W) 

A time space diagram of the transmission of a message is shown in Figure 12. The 

shaded boxes signify the times during which a link is busy. The space between these 

boxes is the time to process the routing header, and the intra-router propagation delays. 

The clear box defines the time the links are busy conveying data through the circuit [17]. 



13 

 

 

 

Figure 12. [17] Time space diagram of a circuit switching message. 

The circuit switching technique is valuable if messages are random and long, i.e. 

the transmission time is longer than the setup time. In case of short messages, the entire 

physical circuit is earmarked during the entire setup and transmission part. At each router 

on the path, the probe is buffered; however, the data bits are not. The circuit operates as a 

single wire form the source to the destination. Also, messages are not necessary to be 

divided into fixed-length packets, but they can be conveyed as incessant flow of bits 

along the setup circuit. Therefore, there are no restrictions on the length of conveyed data 

[17]. 

Wormhole (WH) Switching 

In most parallel computer systems, a message comes into the network from a 

source node and is switched or routed to its destination using a sequence of intermediate 

nodes. Throughout this dissertation, all our algorithms are based on wormhole switching 

technique. In wormhole switching (sometimes referred to as wormhole routing), a packet 

is transmitted between the nodes in units of flits, the smallest units of a message on which 

flow control can be performed. The header flits of a message hold all the essential routing 

information and remaining flits hold the data elements. The flits of the message are 

routed through the network in a pipelined fashion. From the time when only the header 
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flit hold the routing information, all the trailing flits follow the header flits alongside. 

Flits of two altered messages cannot be inserted at any intermediate node. When the 

header flit is congested, then all the trailing flits reside in the buffers at the intermediate 

nodes [17].  

The transmission time of a wormhole switched message can be computed as 

follows [17]. 

 TWH = D  (tr + tm + tw) + max (tm , tw)  M/W) 

Wormhole routing worked on a good way on simple, small, inexpensive, and fast 

routers. Consequently, it is the most mutual switching technique used currently in 

commercial machines. In addition, wormhole routers use frequently only input buffering. 

The main disadvantage of this switching technique is obstructive resources in case of 

stalled pipelines. Subsequently blocking chains of buffers can simply cause snowball 

effect, WH switching is very deadlock-prone. This subject is correlated to the idea of 

virtual channels.  

 

Figure 13. [17] Time space diagram of wormhole switching message. 
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The time space diagram of a wormhole switched message is shown in Figure 13. 

The clear rectangles illustrate the propagation of flits through the physical channel. The 

shaded rectangles illustrate the propagation of header flits through the physical channels. 

Wormhole routing is the supreme extensively used switching technique in 

massively parallel computer systems. Examples of the multicomputer systems that apply 

wormhole routing are nCUBE-2 [23] (hypercube), Symult 2010 [24], Intel Paragon [5], 

and Intel/DARPA's Touchstone Delta [5] (2D mesh), MIT-J-machine [25] and Caltech 

Mosaic (3D mesh), and Cray T3D [25] (3D torus). Also, wormhole has been approved in 

systems that use indirect switch based networks, such as TMC CM-5 and IBM SP series 

[26]. Performance of wormhole routing switching technique has been studied for several 

topologies. A simulation study of wormhole routing in 2D mesh was introduced in 

Chittor and Enbody [27] and a performance analysis of k-ary n-cube networks was 

introduced in Dally [12]. Wormhole routing techniques in direct networks were surveyed 

in Chen et al. [28], Ni and McKinley [29].  

Multicast Routing Algorithm 

The communication mechanism is one of the most important research areas in 

parallel computing systems. Its support provided by the system software and hardware 

for delivering a message from one node to another node. Hence, efficient communication 

mechanism among nodes is critical to the performance of message passing systems. In 

this section, the essential communication operation, multicast, is discussed. Also, to 

demonstrate the classifications of the multicast, a survey of deadlock-free multicast 

routing algorithms for direct networks is introduced. 

Multicast communication has numerous uses in distributed-memory systems and 

large-scale multiprocessors. Firstly, numerous parallel applications, including parallel 
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search algorithms and parallel graph algorithms, have been shown to benefit from the use 

of multicast services. Secondly, multicast is useful in the SPMD (single-program, 

multiple-data) mode of computation, in which the same program is executed on a 

different processor with different data. In particular, multicast is essential to numerous 

operations, such as replication and barrier synchronization, that are supported in data 

parallel languages. Thirdly, if a distributed shared-memory paradigm is supported, then 

multicast services may be used to efficiently support shared-data termination and 

updating. Finally, it is useful in many parallel numerical algorithms, including matrix 

multiplication, matrix transpose, and Gaussian elimination [30], [31].   

Providing support for multicast communication involves several requirements. 

First, it is desirable that the message delays from the source to each of the destinations 

are as small as possible. One solution is by sending a detach copy of the message to each 

destination along the shortest paths, but the enlarged traffic load resulting from these 

copies might delay the progress of the message. The second requirement is that the 

amount of network traffic must be minimized. The third necessity is that the routing 

algorithm is not being computationally complex. Therefore, heuristic algorithms are used 

and must be deadlock-free.  

Basic multicast routings can be classified as unicast-based, tree-based and path-

based [30]. In unicast-based multicast routing algorithms, a source node sends messages 

to its set of destinations through sending a series of separate unicast messages to each 

destination. It requires a great number of startups to send a message to a large set of 

destinations. Tree-based algorithms endeavor to distribute the message to all destinations 

in a single multi-head worm that splits at some routers and replicates the data on many 
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output ports. Path-based routing algorithms permit a worm to hold sorted list of multiple 

destination addresses in its header flits.  

In the next subsections, the three multicast techniques are discussed and some 

algorithms of each technique are surveyed. 

 Unicast-Based Techniques 

In unicast-based multicast algorithms, a source node broadcast a message to its set 

of destination by sending multiple unicast messages, which are routed independently 

through the network. In these techniques, no local processors other than the source and 

destination processors are required to handle the message, but only routers at the 

intermediate nodes are involved in forwarding the message [32]. Hence, the message is 

passed from a source to a destination node in one step. They require no additional 

hardware support, but additional software is added to support multicast. They have 

budding to achieve well when the average number of destinations for each multicast 

message is small [33]. In addition, routing of each individual message can take place 

using unicast routing; hence, there will be no additional deadlocks in this solution. Many 

recent distributed shared memory multiprocessors use this technique to perform cache 

invalidation in directory schemes [34], [35]. 

The separate addressing is one of the unicast-based multicasting routing 

techniques, in which the source node sends directly a separate copy of the message to all 

destination nodes [8]. The separate addressing routing, sometimes called individual, 

requires d startup latency to complete a multicast with d destinations. A communication 

step is the time required for a message to be sent from one node to another. In wormhole 

routed networks, the message startup latency is generally several orders of magnitude 

larger than network latency. Hence, it is desirable to minimize the number of startup 



18 

 

 

latencies used to deliver the message to all of its destinations. Figure 14 illustrates an 

example of a separate addressing algorithm on a 2D mesh. 

 

Figure 14. An example of a separate addressing algorithm on a 2D mesh. 

An alternative unicast-based multicasting technique is to use a binomial tree of 

unicast message [32], in which the number of sources is doubled in all steps. The 

binomial tree can be considered as a sequence of communication steps, in which each 

step incurs a startup time. In the first step, the source node sends the message to some 

subset of the destination nodes. In each subsequent step, each node holds a copy of the 

message and forwards it to at most one new destination node that has not yet received the 

message. Such multicast binomial tree algorithms are used to minimize the number of 

communication startups required for unicast-based multicasting.  

The competence of an algorithm is determined by the essential number of 

communication startups for the multicast to finish. In a binomial tree algorithm, the 

number of nodes holding the message can at most double with each step. Thus, it can be 
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easily observed that the lower bound on the number of communication setups required to 

complete a multicast to d destinations using multicast binomial tree routing is equal to 

log2 (d+1). A multicast binomial tree algorithm is called optimal if achieves the lower 

bound of communication steps. Also, the degree of channel contention knowledgeable 

among the messages of the multicast is significant for the efficiency of the algorithms. 

The channel contention, which is sometimes called step contention, occurs when two 

unicast messages in the same communication step contend for a common physical 

channel. A generalization of step contention is called depth contention. The depth 

contention happens when a node is scheduled to broadcast the message in communication 

step, probably competing with a unicast for the same message transmitted at 

communication step j, j ≤ i. This will guarantee that the depth contention freedom is 

stronger than the step contention freedom.  

Many unicast-based binomial tree multicasting algorithms [30]-[32], [36]-[39] 

have been proposed. Some of them [31], [32] are briefly discussed in this subsection. 

Some binomial tree multicasting routing algorithms for k-ary n-cube networks 

were presented in [31], [32]. Robinson et al. [31] extended the U-mesh algorithm to 

introduce an optimal binomial tree multicast routing algorithm, U-torus, for n- 

dimensional torus networks. The U-torus algorithm is applied to unidirectional and 

bidirectional tori. Also, it uses the deterministic dimension-ordered routing. It avoids 

contention between the ingredient unicast messages. McKinley et al. [32] proposed 

binomial tree multicast routing algorithms for one-port n-dimensional mesh and 

hypercube networks that use the deterministic dimension-ordered routing. These 

algorithms are optimal and prevent contention among the ingredient unicast messages. 

For example, in the U-mesh algorithm, the source and destination addresses are sorted 
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into a dimension-ordered chain, denoted Ф, at the time when multicast is initiated by 

calling the U-mesh algorithm [32]. The source node successively divides Ф in half. If the 

source node in the lower (upper) half, then it sends a copy of the message to the smallest 

(largest) node, according to a dimension order relation, in the upper (lower) half. That 

node will be accountable to deliver the message to other nodes in the upper (lower) half, 

using the alike U-mesh algorithm. In addition to the data, every message carries the 

address of destinations for which the receiving node is accountable. At each step, the 

source continues this procedure until Ф contains only one address. The U-mesh only 

guarantees contention freedom among the worms of a given step. 

 Unicast-based multicasting algorithms have some disadvantages. They allow a 

message to be delivered to only one destination, which leads to multicast operations 

being implemented as multiple phases of multicast message exchange. Thus, contention 

freedom must be guaranteed not only among the worms of a given phase, but also among 

worms in different phases. They also require additional software to support multicast. 

The essential disadvantage of unicast-based algorithms is the large number of 

communication startup delays, which they require. The ratio of communication startup 

time to propagation time is quite high on current generation parallel systems. It is 

typically in order of 1 to 20 microseconds [39], unicast-based multicasting techniques 

lead to very high latency. For example, to send a message to 512 destinations with 10 

microsecond communication startup time, the separate addressing technique takes 5120 

microseconds and binomial tree technique takes 100 microseconds. In addition, multiple 

unicast messages need more network channels, therefore affecting other network traffic 

and reducing the overall throughput of the network. 
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Path-Based Techniques 

In order to reduce the large number of startups obtained by unicast-based 

multicasting algorithms, path-based algorithms were proposed [40]. Path-based multicast 

algorithms allow a worm to contain a sorted list of multiple destinations addresses in its 

header flits. They use a simple hardware mechanism to allow routers to absorb the 

message on internal channels while concurrently forwarding a copy of the message on an 

output channel transmitted to the residual destinations. Current wormhole routers contain 

logic to take up and forward flits. In this scheme, a message can be delivered to several 

destinations with the same startup latency as a message sent to a single destination. The 

destinations of a multicast message are partitioned into a tiny number of subsets, and a 

copy of the multicast is broadcast to each subset of destinations. Each copy of the 

message visits its destinations in a predefined order. Diverse copies of a multicast 

message use displace sets of physical channels and are routed separately of one another, 

to prevent cyclic dependence and deadlock. Messages pursue shortcuts to decrease path 

length to assurance that a unicast message constantly follows the shortest path. Duato 

[41] urbanized the theory leading of design of path-based multicast routing algorithms.  

Some path-based multicast routing algorithms for direct networks, [26], [33], 

[42]-[44] are briefly discussed in this subsection. 

The Hamiltonian path in the network is used to develop some path-based 

multicast algorithms for mesh and hypercube networks. It is an undirected path which 

visits every node in a graph exactly once. The assignment of the label to a node is based 

on the position of that node in a Hamiltonian path, where the first node in path is labeled 

0 and the last node in the path is labeled N-1, where N is the network size. Two 

Hamiltonian path-based algorithms for 2D networks, the dual-path multicast and the 
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multipath multicast were proposed by Lin et al. [42]. The dual-path routing divides the 

destination nods into two disjoint subsets, DH and DL, where every node in DH has a 

higher label than that of the source node and where every node in DL has a lower label 

than that of the source node. A copy of the multicast message is sent to each subset of the 

destinations. Each copy of the message visits its destination nodes sequentially according 

to a defined routing function. Diverse copies of a multicast message use displace sets of 

physical channels and are routed independently of one another. The multipath algorithm 

has the same rules of the dual-path algorithm but divides the destination nodes into four 

disjoint subsets. When the source node is taken as the origin, all the destination nodes in a 

subset are in one of the four quadrants. The dual-path routing requires only two startups 

to send a message to any set of destinations, at the same time as the multipath routing 

requires four startups but often uses short paths to all destinations. The dual-path and the 

multipath algorithms offer deadlock-free routing of multicast messages. Also, they 

provide minimal routing of unicast messages, and either algorithm can be used to route 

unicast and multicast messages simultaneously in a common framework. Figure 15 

illustrates an example of the dual path algorithm on a 2D mesh. 
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Figure 15. An example of the dual path algorithm on a 2D mesh. 

Robinson et al. [26] described and evaluated some path-based multicast 

algorithms for unidirectional wormhole routed torus networks. The first algorithm, S-

torus, uses a single multi-destination message with single startup to reach the message to 

all destinations. The second algorithm, M-torus, is a generalized multi-phase multicast 

algorithm, in which a combination of multi-destination messages with multiple startups to 

reach a message to all destinations. Every copy of the message visits its destination nodes 

consecutively according to a distinct routing function. These algorithms are deadlock-free 

and produce contention-free multicast communication by requiring each multi-destination 

message to visit its destination nodes in an order corresponding to a Hamiltonian Circuit. 

A Hamiltonian Circuit (HC) begins at the node (0, 0) and, at each node u on HC, the next 

node is the neighbor, u
d
, that minimizes d under the constraint that u

d
 does not already 
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precede u on HC, where u
d 

is the node adjacent to u in dimension d. The advantage of S-

torus is the multicast operation requires only one communication step, which is useful for 

long messages. 

Boppana et al. [33], [43] proposed a multicast routing algorithm called the 

column-path algorithm for mesh and torus networks. In a k x k 2D mesh, the column-

algorithm partitions the set of destinations of a multicast message into at most 2k, such 

that there are at most two message copies directed to each column in the mesh. If a 

column holds one or more destinations of a multicast communication in the same row or 

in rows above that of the source, subsequently one message copy will send to service all 

those destinations. Likewise, if a column holds one or more destinations of a multicast 

communication in the same row or in rows below that of the source, then one message 

copy will send to service all those destinations. If all destinations of a column are either 

below or above the source node, then one message copy will send to service all those 

destinations. Messages are routed using row-column or e-cube routing method; therefore, 

the column-path algorithm is well-matched with the e-cube algorithm. Figure 16 

illustrates an example of the column-path algorithm on a 2D mesh. 

Abd El-Baky [44] proposed two efficient path-based multicast wormhole routing 

algorithms for 2D torus parallel machines. They used the concept of partitioning the torus 

into meshes. They entail shifting the origin of the torus network so that the source node 

always appears to be in (or closer to) the center of the network. This is possible because 

the torus network is symmetric. 

Abd El-Baky [44], the first algorithm, Torus Dual-Path (TDP) algorithm uses the 

vertical wraparound channels to divide the torus into two equal meshes. The first, MH, 

contains the nodes whose y-coordinates are between that of the source node and that of 
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the source node plus or minus n/2 while the other, ML, contains the remaining nodes in 

the torus. Also, it divides the destination set D into two subsets, DH and DL, where DH 

contains the destination nodes in MH and DL contains the destination nodes in ML. The 

messages will be sent to the nodes in DH and DL using the high-channel and the low-

channel networks, respectively. Thus, it requires at most two startup times. 

 

Figure 16. An example of the column path algorithm on a 2D mesh. 

 The second algorithm [44], Torus Multi-Path (TMP) algorithm uses the horizontal 

wraparound channels to divide the torus into four equal width meshes. First, the torus is 

divided into two meshes, the upper mesh, MU, and the lower mesh, ML. The upper mesh 

subnetwork MU contains the nodes whose y-coordinates are greater than that of the 

source node, while the lower mesh subnetwork ML contains the remaining nodes in the 

torus. Secondly, the two meshes MU and ML are further divided. The mesh MU is 

divided into two submeshes, the upper center mesh, MUC, which contains the nodes 

whose x-coordinates are between that of the source node and that of the source node plus 
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or minus n/2. The other is the upper boundary mesh, MUB which contains the remaining 

nodes in MU. In a similar manner, the mesh ML is divided into two submeshes, the lower 

center mesh, MLC, and the lower boundary mesh, MLB. The boundary meshes, MUB 

and MLB, use the horizontal wraparound channels to connect their partitions. Also, the 

TMP algorithm divides the destination set D into four subsets, DUC, DUB, DLC and 

DLB, where DUC contains the destination nodes in MUC and DUB contains the 

destination nodes in MUB and so on. The messages will be sent from the source node to 

the nodes in DUC and DUB uses the high-channel network, and to the nodes in DLC and 

DLB uses the low-channel network. The TMP Algorithm requires at most four startup 

times. Figure 17 illustrates message transition by using TMP algorithm. 

 

 

 

 

 

 

 

 

 

 

Figure 17. [44] Message transition by using TMP algorithm. 

Tree-Based Techniques 

Tree-based routing algorithms challenge to deliver the message to all destinations 

in single multi-head worm that splits at some routers and replicates the data on multiple 
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output ports. As path-based algorithms, tree-based algorithms use a simple hardware 

mechanism to allow routers to absorb the message to local processors while concurrently 

forwarding copies of the message on output channels enroute to the residual destinations. 

The path followed by every copy may supplementary branch in this method until the 

message is delivered to all destination nodes. In the literature, two approaches have been 

planned for replication of data in tree-based schemes, synchronous and asynchronous. 

Synchronous replication schemes need that all branches of the multi-head worm proceed 

in lock–step [30]. As a result any branch of the multi-destination that is blocked can 

block all other branches. Also, it needs some kind of feedback architecture to guarantee 

that the flits proceed in lock–step. To prevent deadlock under synchronous replication, 

deadlock avoidance algorithms have been proposed that arbitrate between multicast 

packets at a router to prevent cyclic wait. In asynchronous replication schemes, different 

heads of a multi-head worm can progress independently through the network. Also, an 

arriving multicast worm at an input buffer of a switch is read by multiple output ports. 

Bubble flits are inserted where required obviating the need for a hardware 

synchronization mechanism [30]. Asynchronous replication schemes may be ideal for a 

practical implementation due to the next reasons. Firstly, they do not require the costly 

feedback architecture required under synchronous replication. Secondly, they are more 

efficient because blocked branches do not block other branches. Finally, it works 

effectively because current routers already offer relatively large buffers. To avoid 

deadlock under synchronous replication, routers must be set with buffers large enough to 

store the largest packet in the system. Figure 18 illustrates an example of a tree-based 

algorithm on a 2D mesh. 
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Many tree-based multicasting algorisms [30], [40], [45]-[52] have been proposed. 

Some of them, [30], [40], [45], [46], [50]-[52], are briefly discussed in this subsection.  

   Shaheen [30] proposed a tree-based multicasting wormhole algorithm for 

arbitrary interconnection topologies, MURA. It is a deadlock-free and provides a general 

solution for multicasting in any direct network. It needs only fixed-sized input buffers 

that are independent of highest message length, and it uses a simple asynchronous flit 

replication mechanism. In this algorithm, wormhole switching is selected as the 

switching technique to route the message to the destination nodes. A multicast message is 

first forward to the least common ancestor (LCA), of the set of destinations. When the 

message has reached at the LCA, all succeeding routing is limited to down tree channels. 

The channel of the network is defined to be up or down channels depending on the source 

node coordinates. The head of the worm will require splitting at the LCA into a multi-

head worm and the heads of these multi-head worms may split regularly in order to reach 

all of the destinations.                                                                                                                   

Lin and Ni [40], the double channel XY routing scheme in 2D mesh networks, 

was proposed. It is a deadlock-free multicast algorithm based on XY unicast routing. It 

avoids cyclic channel dependencies by using two virtual channels for each physical 

channel in the 2D mesh. Thus, it partitions the network into four subnetworks, NE-N , NW-

N, NW-S, and NE-S. The subnetwork NE-N contains the unidirectional channels with 

addresses [(i ,j),(i+1,j)] and [(i,j),(i,j+1)] and the subnetwork NE-S contains the channels 

with addresses [(i ,j),(i+1,j)] and [(i,j),(i,j-1)] and so on. It can be easily verified that the 

four subnetworks use disjoint sets of virtual channels. The destination set D is divided 

into at most four subsets, DE-N, DW-N, DW-S, and DE-S. The set DE-N contains the 

destination nodes to the upper right of the source node and so on. In each subnetwork, the 
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multicast message is sent to the destinations using a tree that routes the message 

according to the XY routing. The message will be sent to DE-N through subnetwork NE-N, 

to DE-S through subnetwork NE-S, and so on. 

Malumbres et al. [45] proposed an asynchronous tree-based algorithm based on 

pruning blocked branches, which is effective only for short messages. Also, Wang and 

Blough [46] proposed an asynchronous tree-based algorithm based on pipelined circuit 

switching rather than wormhole routing. It avoids deadlock by allowing backtracking but 

it does not guarantee delivery of all messages. 

 

Figure 18. An example of a tree-based algorithm on a 2D mesh. 

Wu and Chen [51] proposed a tree-based multicast algorithm based on a relatively 

new switching technique called pipelined circuit switching PCS [52] and multicast-PCS 

[46]. In a PCS (multicast-PCS), the header (multiheader) is delivered first through the 

path (tree) setup phase. Once a path (tree) is kept by the header, an acknowledgement is 



22 

 

 

sent back to the source. As soon as the source receives the acknowledgement, data is sent 

through the path (tree) in a pipelined fashion. The algorithm always establishes a minimal 

path to each destination. Also, fault information of a fault block is spread to a restricted 

number of nodes in the neighborhood so that multiheader can keep away from the fault 

before reaching it. If the source satisfies certain conditions, the algorithm can set up a 

multicast tree such that each destination (a leave node in the tree) is reachable through a 

minimal path in the tree. Wu and Chen applied the algorithm in 2D mesh, 3-D mesh (the 

MIT J-machine [25]) and tori (Cray T3D [53] and Cray T3E), which are meshes with 

warp around links. 

Moharam et al. [50] proposed an efficient algorithm (YOMNA) to find a 

deadlock-free multicast wormhole routing in 2D mesh parallel machines. YOMNA 

algorithm assigns a label for each node based on the position of that node in a 

Hamiltonian path. YOMNA algorithm creates the routing decision at each sending node. 

The message may be sent through two paths. It divides the network into two 

subnetworks. The high-channel subnetwork contains all of the channels whose direction 

is from lower-labeled nodes to higher-labeled nodes, and the low-channel subnetwork 

contains all of the channels whose direction is from higher-labeled nodes to lower-labeled 

nodes. At the source node, YOMNA algorithm divides the network into two 

subnetworks, NU and NL, where every node in NU has a higher label than that of the 

source node and every node in NL has a lower label than that of the source node. 

YOMNA algorithm also divides the destination set D into two subsets, DU and DL, where 

DU containing the destination nodes in NU and DL are containing the destination nodes in 

NL. The messages will be sent from the source node to the nodes in DU using the high-
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channel network and to the destination nodes in DL using the low-channel network. 

Figure 19 illustrates message transition by using YOMNA algorithm.  

The message transmission in YOMNA technique is made according to the 

following method. Each sending node examines the above (below) neighboring node in 

the high-channel (low-channel) subnetwork. In the case where the above (below) 

neighboring is not a destination, the sending node sends the message together with the 

destination set DU (DL) to the neighboring which has maximum (minimum) label and 

having lower (higher) label than that of the first destination in DU (DL). In the case where 

the above (below) neighboring is a destination node, the sending node replicates the 

message and sends it together with its header to the above (below) neighboring. The 

message header contains the destination nodes which have higher (lower) label than or 

equal to that of the above (below) neighboring. The sending node sends the other copy of 

message together with its header to the next horizontal neighboring node. In this case, the 

message header contains the remaining destination nodes.  

 

 

 

 

 

 

 

 

 

Figure 19. [50] Message transition by using YOMNA algorithm. 
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Upon receiving the message, each receiving node determines whether it is the first 

destination node. If so, it is removed from the destination nodes and receives the 

message. At this point, if the sets of the destination nodes are not empty, the algorithm 

continues according to the previous method. YOMNA algorithm is efficiently used in all 

cases especially when the size of the network is large (massively parallel systems), and 

average destination number in the networks is large. 
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CHAPTER III 

FAULT TOLERANT MULTICAST ROUTING ALGORITHMS 

In distributed-memory systems, packets (messages) usually travel across several 

intermediate nodes before reaching the destination node. Deadlock occurs when some 

packets (messages) cannot advance toward their destination because the buffers requested 

by them are full. In direct networks, packets (messages) often go across several 

intermediate nodes before reaching the destination node. In switch based networks, 

packets (messages) frequently traverse numerous switches before getting the destination 

node. On the other hand, it may happen that some packets are not capable to arrive at 

their destination nodes, even if exist fault-free paths connecting the source and 

destination nodes for every packet (message) [17]. There are different situations take 

place when some messages are not capable to reach their destination node, even if they 

never block permanently. Once some packets (messages) cannot go forward toward their 

destination node because the buffers requested by them are full, the state is known as 

deadlock. A packet (message) may be traveling around its destination node, in no way 

getting it because the channels required to do so are occupied by other packets 

(messages). This circumstance is known as livelock. It can barely take place when 

packets (messages) are permitted to follow non-minimal paths. Deadlocks take place 

because the number of resources is finite. Moreover, some of these situations may create 

the others [54].  

In distributed-memory systems, a few components such as processors, routers, 

and communication channels may fail. According to number of parameters, faults are 

classified into different types, regular and irregular faults. Regular faults consist of 

convex and concave fault shapes. Other shapes considered as irregular faults. Convex 
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faults are the most commonly encountered faults in mesh networks. A convex fault is a 

fault region such that there is a rectangle whose interior contains all and only the faulty 

components of the fault region and all processors and links on its four boundaries are 

fault-free. A fault ring consists of the fault-free nodes and channels that are adjacent to 

one or more components of the associated fault region. There are two complementary 

approaches to create reliable (failure-free) systems, fault prevention and fault tolerance. 

Fault prevention approaches deal with ending faults being present in the final system. 

Fault tolerance refers to the capability of the system to operate correctly in the presence 

of faults. Fault model and fault tolerance are discussed in next section. A good fault 

tolerant routing should be simple and use few virtual channels. Fault tolerant routing 

algorithms for regular and irregular faults are discussed in this chapter.   

Fault Model and Fault Tolerance 

Some components such as processors, routers, and communication channels may 

fail in distributed-memory systems. Fault tolerance refers to the capability of the system 

to operate properly in the presence of faults. According to number of parameters, faults 

are categorized into different types. 

One of the considerations is the level at which components are identified as 

having failed. Detection mechanisms are assumed to have identified one of two classes of 

faults. The failure is called node failure when both the processors and their associated 

routers may fail. The failure is called link failure when any communication channel may 

fail. In node failures, all physical links incident on the failed node are also marked faulty 

at adjacent routers. When a physical link fails, all virtual channels on that particular 

physical link are marked faulty. It is noted that many types of failures will simply be 

noticeable themselves as link or node failures. For example, the failure of the link 
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controller, or the virtual channel buffers, appears as a link failure. On the other hand, the 

failure of the router control unit, or the associated PE, appears as a node failure.  

The model of individual link and node failures are lead to patterns of failed 

components. Adjacent faulty links and faulty nodes are coalesced into fault regions. The 

two most important fault regions are regular (convex, concave) and irregular faults. 

Convex faults are the most commonly encountered faults in mesh networks [55], [56]. A 

convex fault is a fault region such that there is a rectangle whose interior contains all and 

only the faulty components of the fault region and all processors and links on its four 

boundaries are fault-free, Figure 20(a). When a fault region touches one or more 

boundaries of a 2D mesh, the above definition still applies by assuming that there exist 

non-faulty virtual rows and columns beyond the four boundaries. Hence, all the 

connected fault regions under consideration are of rectangular shapes. A fault ring (f-

ring) can be formed around each fault region [57]. Essentially, an f-ring consists of the 

fault-free nodes and channels that are adjacent (row-wise, column-wise or diagonally) to 

one or more components of the associated fault region. If a fault region includes 

boundary nodes, the fault ring reduces to a fault chain. Generally, it is assumed that fault 

regions do not disconnect the network, since each connected network component can be 

treated as a distinct network. The second type of regular fault regions is called concave 

fault region, which faults in shape of └, ┘, ┌ and ┐, Figure 20(b). The third type of fault 

regions is called irregular fault region, which faults in shape other than shape in the 

previous two types, Figure 20 (c), [58], [59].  

According to how components fail, faults may be identified into three categories. 

These categories are transient, permanent, and intermittent faults. Transient faults appear 
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for a time and then disappear. Permanent faults appear at some time and remain forever. 

Intermittent faults occur and reappear from time to time.  

 

  (a)                                          (b)    (c) 

Figure 20. Example of regular (convex, concave) and irregular fault regions. 

Depending on when components fail, failures may be either static or dynamic. 

Static failures are present in the network when the system is running. Dynamic failures 

appear at random, throughout the operation of the system. Both types of faults are mostly 

considered to be permanent or transient. When dynamic or transient faults interrupt a 

message in progress, slices of messages may be left occupying message or flit buffers. 

Fault recovery structures are necessary to remove such message components from the 

network to avoid deadlock, mainly if such messages have became corrupted and can no 

longer be routed [17]. 

 The configuration of fault tolerant routing algorithms is a normal result of the 

types of faults that can happen, and the capability to identify them. The patterns of 

component failures and expectations about the behavior of processors and routers in the 

presence of these failures determine the approaches to achieve deadlock-freedom. This 

information is captured in a fault model. The fault tolerant computing literature is in 
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general the definition of fault models for the treatment of faulty regions in distributed-

memory systems. Designing a fault tolerate system requires the selection of a fault 

model, a set of possible failure scenarios along with an understanding of the frequency, 

duration, and impact of each scenario. A simple fault model merely lists the set of faults 

to be considered; inclusion in the set is decided based on a combination of expected 

frequency, impact on the system, and providing protection. Most reliable network designs 

address the failure of any single component, and some designs tolerate multiple failures. 

In contrast, few attempts to handle the confrontational conditions that might occur in a 

terrorist attack and cataclysmic events are almost never addressed at any scale larger than 

a scale of a city [17].  

Several additional problems must be considered in the design of a fault-tolerant 

system beyond the selection of a fault model. A system must be capable of detecting each 

fault in the model. In addition, it must be able to isolate each fault from the functioning 

portion of the system in a manner that prevents faulty behavior from spreading. As a fault 

detection mechanism may detect occurrence of fault, a system must also address the 

process of fault diagnosis. This process tightens the set of possible faults and allows more 

efficient fault isolation techniques to be employed.  

  Significance of the behavior of failed components is also great and the system 

implementation must defend certain behaviors to guarantee deadlock freedom. The failed 

node can no longer send or receive any messages and is effectively removed from the 

network. Otherwise messages designed for these nodes may block indefinitely holding 

buffers and leading to deadlock. This behavior can be preserved in practice in the absence 

of global information about the location of faults, by having routers adjacent to a failed 

node by removing it from the network messages designed for the failed router. The fault 
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model specifies the extent of the fault information that is available at a node. At one side, 

only the fault status of adjacent nodes is known. Moreover, the fault status of every node 

in the network is known. Finally, optimal routing decisions can be made at an 

intermediate node, i.e., messages can be forwarded along the shortest feasible path in the 

presence of faults. Conversely, in practice it is difficult to provide global updates of fault 

information in a timely manner without some form of hardware support. The occurrence 

of faults during this update period necessitates complex synchronization protocols [60].  

Moreover, the increased storage and computation time for globally optimal 

routing decisions have a significant impact on performance. On one hand, fault 

information is limited to the status of adjacent nodes. With only local fault information, 

routing decisions are relatively simple, they can be computed quickly, and updating the 

fault information of neighboring nodes can perform with an easy way. On the other hand, 

messages may be forwarded to a portion of the network with faulty components 

ultimately leading to longer paths. In practice, fault tolerant routing algorithm design is 

typically a compromise between purely local and purely global fault status information 

[17].  

Fault Tolerant Routing Algorithms for Regular Faults 

Optimal fault tolerant routing algorithm supposed to be simple (low 

accomplishment cost), uses few virtual channels, supports maximum flexibility in 

routing, uses the minimal paths when possible, guarantees the delivery of messages, 

tolerates a large class of fault region patterns and guarantees the deadlock-free routing. 

Additionally, all these goals should be achieved with a modest hardware constraint. Some 

approaches called the global-information-based assume that each node knows the global 

distribution of faults. Such an approach is very expensive because the difficult steps to 
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collect and maintain fault information, and also because it is not scalable. This 

dissertation focuses on designing a fault tolerant multicast wormhole routing algorithm 

using a limited knowledge based fault information which is a compromise between local 

knowledge based (which needs only the information of neighbor nodes on the routing 

path and that can take as close to optimal a routing path as possible for any routing 

instance) and global-information-based.  

The most used and simplest fault routing algorithm using in regular fault regions 

(block faults) in 2D mesh networks is e-cube routing algorithm. In dimension order fault-

free, messages (packets) are normally routed. When a block fault is encountered, the 

message can be routed around it. The e-cube algorithm remains deadlock-free by 

preventing messages from traversing a row after traversing a column. In recent years 

several fault tolerant routing algorithms for mesh and tori networks have been proposed. 

Fault tolerant routing algorithms for regular fault regions can be classified into two 

categories, convex and concave fault regions, depends on the fault shape.  

Convex Fault Region 

Glass and Ni [61] proposed a fault tolerant routing in meshes without virtual 

channels, the negative-first. The negative-first algorithm operates in two phases. In the 

first phase, the message is delivered adaptively in the negative direction and around fault 

region, even farther west or south than the destination. It re-labels the channels of the 

mesh in order to avoid fault region. It performs re-labeling in a purely local fashion, 

resulting in fast and straightforward reconfiguration. For example, the path that has been 

taken by message X is illustrated in Figure 21. In the second phase, the message is 

delivered adaptively in the positive directions to the destination, unless it reaches the 

destination column, in which case there is only one path to the destination. However, by 
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permitting the message to be delivered further west and south than the destination; more 

paths of the destination are created for the second phase. Negative-first routing algorithm 

can tolerate only one faulty component in a 2D mesh. 

 

Figure 21. [61] An example of the negative-first routing in a 2D mesh. 

Glass and Ni [62] proposed modifications to the routing logic of the base negative 

first routing algorithm to find an alternative path when blocked by a fault region, 

particularly along an edge of the mesh. The behavior that is permitted in this case is 

shown by message Y around f-chain fault region in Figure 21. Such a single misroute to 

avoid a fault region does avoid deadlock. They illustrated that the number of fault regions 

that can be tolerated by their algorithm is (n-1)-fault tolerant in n-dimensional meshes 

with no virtual channels and this is a unicast based multicast routing algorithm. Yet for 

more than three dimensional meshes, it is not easy to design fault tolerant routing 

algorithms following their approach [63].  
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Wu [64] proposed the design of fault tolerant minimal routing methods in 2D 

meshes that is based on the concept of limited knowledge based fault information. It 

addresses the issues of the existence of a minimal path at a given source node, limited 

distribution of fault information, and minimal routing techniques. The disconnected 

rectangular fault block (convex) is used as the fault model. In addition, Wu [65], 

proposed a fault tolerant routing algorithm without using virtual channels for mesh 

networks. The algorithm extended XY-routing techniques, which is based on an oddeven 

turn model. Wu uses extended convex fault regions (disjoint convex faults), which 

consists of connected unsafe and faulty nodes. Wu's technique can be applied to 2D 

meshes having orthogonal faulty blocks (convex polygon). The extended XY-routing 

technique, however, does not allow routing to some locations (i.e., some nodes cannot 

fail, and some nodes cannot be destinations, and the convex fault region in the model 

could include non-faulty nodes). 

Rezazadeh et al. [66] proposed a performance-enhancing fault tolerant routing 

algorithm for Network-on-Chip in Uniform Traffic based on f-cube3 as a solution for 

increasing the rate of switched and routed packets (messages) in NoCs. They proposed 

that when a message is not blocked by fault region, all virtual channels could be used. 

The proposed algorithm requires only one virtual channel per physical channel to ensure 

deadlock-free in NoCs. Also, Rezazadeh et al. [67] proposed, an improved fault tolerant 

routing algorithm for mesh network. The proposed algorithm requires only two virtual 

channels per physical channel to ensure deadlock-free in NoCs. The proposed 

modification tolerates multiple convex fault regions with overlapped f-rings. A whole 

column/row fault disconnects mesh networks and is not considered. Mohtashamzadeh et 

al. [68] proposed an innovative fault tolerant routing algorithm for 2-D mesh network 

http://en.wikipedia.org/wiki/Network_On_Chip
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routing (FTR) as a solution to decrease the delay of the messages deliver over the on-chip 

interconnection mesh networks. The proposed fault tolerant routing algorithm is a 

deterministic e-cube routing as long as no faults occur. Also, the proposed routing 

algorithm is a wormhole-switched routing for 2-D mesh networks and has been used for 

convex fault regions. The proposed routing algorithm requires virtual channels to ensure 

deadlock-free in 2D mesh networks. There is no restriction on the number of fault regions 

tolerated in the proposed routing algorithm. 

Xie et al. [69] proposed the two level turn model fault tolerant routing scheme in 

tori with convex fault regions. The proposed routing algorithm requires less than six 

virtual channels per physical channel to ensure deadlock-free in tori. The routing 

algorithm is based on the properties and idea of the turn model for each of his classified 

of the five message types, which itself could tolerate some faults of delivering for these 

messages and could work successfully no matter whether the fault regions are connected 

and no matter where the fault region locates. In addition, Xie et al. [70] presented another 

fault tolerant wormhole routing scheme in the tori networks with convex faults, called 

two-level-turn-model scheme, in the tori with revised convex fault regions, which is also 

based on turn model.  The proposed routing algorithm requires only four virtual channels 

per physical channel to ensure deadlock-free in tori. This algorithm could also tolerate 

disjointed or overlapped convex fault regions. Safaei et al. [71] proposed an evaluating of 

the performance of adaptive fault tolerant routing algorithms for wormhole-switched 

mesh interconnects networks. These networks carry a routing scheme proposed by 

Boppana and Chalasani [55] as an instance of a fault tolerant. They present a comparative 

performance study of ten famous adaptive fault tolerant routing algorithms in wormhole 

switched 2D mesh. The suggested algorithms is extensively used in the researching to 
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support inter-processor communications in parallel processing computer systems due to 

its capability to conserve both communication performance and fault tolerant demands in 

these networks and to achieve high adaptively in these computer systems. 

Wu and Chen [72] proposed a fault tolerant tree-based multicast algorithm for 2D 

meshes based on the idea of the extended safety level which is a vector associated with 

each node to capture fault information in the neighborhood. They suggested three 

strategies to develop their ideas. In this algorithm each destination node is reached 

through a small number of hops. This algorithm can be simply implemented by pipelined 

circuit switching (PCS) techniques based on limited global information with a simple 

model. The algorithm has been proved to achieve minimal use of number of hops to 

deliver the message. Gu et al. [73] proposed improved fault tolerant routing algorithm 

using a concept of ‘‘balanced ring.’’ The proposed routing algorithm keeps away from 

early saturation of the network by proposing the concept of balanced ring. The proposed 

routing algorithm also requires only one virtual channel per physical channel to ensure 

deadlock-free. With this concept employed, the existing f-ring-based fault tolerant 

routing algorithm can achieve a more even use of the network resources. The balanced 

ring is concentric rings of a given fault ring (convex fault region), which can be formed 

easily.  

Zhou and Lau [74] proposed fault tolerant wormhole routing in 2D meshes which 

is based on the XY routing scheme, which is not adaptive for the more general fault 

regions. The proposed algorithm requires only two virtual channels per physical channel 

to guarantee deadlock-free in 2D mesh networks and overlapping of processors along the 

boundaries of different fault regions is allowed. The proposed fault tolerant routing 

algorithm can be extended to n-dimensional mesh networks, where an n-dimensional 
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mesh can be treated as being composed of multiple two-dimensional mesh networks. 

Also, Zhou and Lau [75] proposed an adaptive fault tolerant routing algorithm with two 

virtual channels in 2D mesh networks. The proposed routing algorithm can tolerate 

convex fault regions with overlapping. The proposed routing algorithm requires only two 

virtual channels per physical channel to ensure deadlock-free in 2D mesh networks. The 

convex fault model used does not include any non-faulty processors. In addition, Zhou 

and Lau [76] proposed multi-phase minimal fault tolerant wormhole routing in mesh 

networks, which is based on the idea of multi-phase minimal routing. The proposed 

routing algorithm can tolerate convex fault regions with only four virtual channels per 

physical channel in spite of how processors of different convex fault regions may 

overlap. Moreover, Zhou [77] proposed fault tolerant wormhole routing with two virtual 

channels in mesh networks. The proposed routing algorithm can be simply extended to 

adaptive routing technique.  This routing algorithm can tolerate the disjointed convex 

fault regions with distance at most two hops, which do not include any non-faulty nodes 

and do not prohibit any routing as long as nodes outside convex fault regions are 

connected in the mesh networks. 

Chalasani and Boppana [78] proposed a fault tolerant routing algorithm to 

decrease the number of functional nodes that must be marked as faulty nodes. This 

routing algorithm builds on the idea of fault rings to support more flexible routing around 

convex fault regions. The proposed routing algorithm uses four virtual channels per 

physical channel to support more flexible routing around convex fault regions. In this 

routing algorithm, four virtual networks may be constructed, each comprised of virtual 

channels of each type. Messages are assigned types based on the relative positions of the 

source node and destination nodes and dimension ordered routing. In a 2D mesh, 
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messages are categorized as east-west (EW), west-east (WE), north-south (NS), or south-

north (SN) based on the relative values of offsets in the first dimension. Routing is 

dimension ordered until a message encounters a convex fault region. Depending on the 

type, the message is routed around the convex fault region as shown in Figure 22. The 

direction around the convex fault region is chosen based on the relative position of the 

destination node. The EW and WE messages may turn out to be NS and SN messages. 

However, the opposite is not true. As a result, dependencies between channel classes are 

acyclic. Since fault regions are convex faults, dependencies within a fault region are also 

acyclic – the arguments are similar to those provided for fault tolerant multicast planar 

adaptive routing.  

 

Figure 22. [78] Routing restrictions around a fault region. 

An example of routing around convex fault regions with overlapping fault rings is 

shown in Figure 23. Two messages X and Y have destinations and sources as shown. X is 

an EW message and Y is a WE message. Message Y is routed as a WE message around 

convex fault region until it reaches the destination column where the type is changed to 

that of a NS message. The figure also illustrates the path selected by message X. These 

two messages share a physical link where convex fault regions overlap. Consider the 

shared link where both messages traverse the link in the same direction towards the 

destination node. If virtual channels were not used to separate the messages in each fault 
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ring (convex fault), one of the messages could block the other. An EW message can 

block a WE message and vice versa, resulting in cyclic dependencies. The separation of 

the messages into four types (classes), the use of four virtual networks, and acyclic 

dependencies between these networks avoid occurrence of deadlock.  

 

Figure 23. [78] An example of routing around overlapping fault rings. 

Boppana and Chalasani [55] proposed an adaptive fault tolerant routing algorithm 

for mesh networks that can tolerate faults of arbitrary rectangular shapes (convex fault 

regions). The concepts of f-rings and f-chains were used for routing messages around 

rectangular fault regions. They enhanced routing algorithm for mesh networks based on 

e-cube routing. This routing algorithm uses two virtual channels to provide non-adaptive 

deadlock-free routing in networks with non-overlapping f-rings. For more complex fault 

regions, such as overlapping f-rings and f-chains, the algorithm uses four virtual channels 

to ensure deadlock-free.   

Chang and Chiu [60] proposed a fault tolerant multicast unicast-based routing 

algorithm, FT-cube2, in 2D mesh networks. In FT-cube2 routing algorithm, the well-
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known e-cube routing algorithm improved in order to handle multiple convex fault 

regions in 2D mesh networks. The proposed routing algorithm requires only two virtual 

channels per physical channel to guarantee deadlock-free in 2D mesh networks. Also it is 

local knowledge-based fault information and works correctly for any combination of 

convex fault regions. In FT-cube2 routing algorithm, normal messages from source node 

to destination node are routed via e-cube hops. A message is misrouted on an f-ring or f-

chain along clockwise or counterclockwise direction specified by table 1 [60]. FT-cube2 

will be compared with algorithms proposed in this dissertation.  

Table 1  

Misrouted on an f-ring or f-chain [60] 

 

 

  Message type         f-ring/f-chain     Direction 

 

 

Normal-WE                 Counterclockwise 

 

s-WE         Clockwise 

 

EW    n-Chain or nw-Chain   Clockwise 

    Others     Counterclockwise 

 

SN    w-Chain    Counterclockwise 

    Others     Clockwise 

 

NS    w-Chain    Clockwise 

    Others     Counterclockwise 

 

 

 Concave Fault Region 

Fault tolerant multicast routing algorithms in the presence of concave fault 

regions, which faults in shape of └, ┘, ┌ and ┐study is not the main research for a lot of 

researchers in the field of distributed-memory systems performance because most of 
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them consider concave fault region as a multi connected convex fault regions. In 

addition, some of them take into consideration other shapes like + as a concave fault 

region. Several of these studies consider concave fault region, which faults in shape of └, 

┘, ┌ and ┐will presented in this section. 

Xie and Xu [79] proposed the two level turn model fault tolerant routing 

algorithm in tori networks with convex and concave fault regions. This routing algorithm 

could tolerate the concave fault regions and the convex fault regions both with a few 

limitations to their shape. The proposed routing algorithm requires at most five virtual 

channels per physical channel to ensure deadlock-free in tori networks. 

Park et al. [80] proposed fault tolerant wormhole routing algorithms in mesh 

networks in the presence of concave fault regions. They proposed two fault tolerant 

wormhole routing algorithms that deal with more relaxed shapes of fault rings in the 

mesh networks. The first fault tolerant routing algorithm uses four virtual channels per 

physical channel and allows all four sides of fault rings to contain concave shapes. The 

second fault tolerant routing algorithm permits up to three sides to contain concave 

shapes using only three virtual channels per physical channel. In their fault models, there 

might be several f-rings in a 2D mesh networks. They divide also each f-ring (convex or 

concave) fault region into four portions: the north, south, west and east sides. Both fault 

tolerant routing algorithms are free of deadlock and guarantee the delivery of messages 

between any pair of non-faulty and connected nodes in mesh networks. The first fault 

tolerant routing algorithm, F4, will be compared with algorithms proposed in this 

dissertation.  
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Fault Tolerant Routing Algorithms for Irregular Faults 

Convex (rectangular and square) fault regions provide some form of non-

decreasing property in coordinates of misrouted messages. This property is exploited to 

prevent the occurrence of deadlocked message configurations. However, the construction 

of regular fault regions by the marking of fault-free routers and links as fault region can 

lead to under significant utilization of resources. These methods cannot be accepted by 

many of the early methodologies to design fault tolerant routing algorithms. Since a 

whole knowledge of the patterns of occurrences of fault regions is not assumed, these 

methodologies are not generally proper to cases where larger fault regions must be 

supported. Various fault tolerant routing algorithms use virtual channels of irregular 

faults for mesh networks have been proposed in recent years. 

Table 2  

Routing Rules for Irregular Fault Regions [57] 

 

 

  Message type   Position of destination  F-ring orientation 

 

 

WE    row above current row Clockwise 

 

WE    row below current row Counterclockwise 

 

EW    row above current row Counterclockwise 

     

EW    row below current row Clockwise 

      

NS or SN   either    either orientation 

     

 

Chalasani and Boppana [57], the concept of fault rings can be extended in a 

minimal manner to account for certain classes of irregular fault regions. Consider the 

class of fault regions in n-dimensional mesh networks where any two dimensional cross-
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section of the fault region produces a single rectangular fault region. Such a fault model 

is referred to as an irregular fault model [57]. Figure 24 provides an example of an 

irregular fault region, and a message is being routed along a fault ring around the fault 

region. Table 2 describes routing rules considered around fault region and these rules do 

not apply in case of overlap fault regions. As in previous techniques, for non-overlapping 

fault rings, and non-faulty boundary nodes, messages types are distinguished by the 

relative positions of the destination when the message is generated. When the message 

eventually arrives at the destination column, the message type is changed to NS or SN 

depending on the relative location of the destination. When a message encounters a fault, 

the rules for routing the message along the fault ring are shown. There are four virtual 

channels over each physical channel: v0, v1, v2, and v3. In these techniques, each set of 

channels implements a distinct virtual network. If a message must travel along a fault 

ring before encountering a fault region, (as shown in Figure 24 at node X) then the 

message must continue to be routed in the same direction, along the fault ring. Otherwise 

the message follows the direction specified in Table 2. Each message type is transmitted 

in a distinct virtual network. From the routing rules, the channel dependency graph within 

a virtual network is acyclic. In addition, messages can only transition from WE or EW 

channels to NS or SN channels but not vice versa. Consequently, the relation between 

these virtual networks residues acyclic and therefore routing residues deadlock-free.  
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Figure 24. [57] An example of routing around an irregular fault. 

Fukushima et al. [81] proposed a hardware-oriented fault tolerant multicast 

routing algorithm for 2D mesh Network-on-Chip without virtual channels. The proposed 

routing algorithm requires no virtual channels per physical channel to ensure deadlock-

free in irregular 2D mesh. The proposed position-route algorithm for non-VC routers 

needs much less routing complexity. The main idea is to add routing behaviors of the 

traditional message-based algorithm and to simplify the fault region (ring) selection.   

Mejia et al. [82] proposed an efficient fault tolerant routing algorithm for mesh 

and tori networks. The proposed routing algorithm is a deterministic routing methodology 

for tori and mesh networks, which accomplishes high performance without the necessity 

of use virtual channels. This routing algorithm can handle any topology derived from any 

combination of fault regions when combined with static reconfiguration. The algorithm, 

called segment-based routing (SR), works by dividing a topology into sub-networks, and 



61 

 

 

sub-networks into segments. Wu and Wang [83] proposed a fault tolerant and deadlock-

free routing in 2D mesh networks using rectilinear-monotone polygonal fault regions. 

The main idea for it is both source and destination nodes are outside any fault region. In 

addition, the destination node is not a boundary node of any fault region. Moreover, fault 

model is static, that is, no new fault regions happen during a routing process, and fault 

regions (ring) are at least 2 hops away from the four boundaries of a mesh network. Wu’s 

extended X–Y routing to 2D mesh networks that use a new fault region model called 

minimal-connected-component (MCC). The extended X–Y routing is a deterministic 

fault tolerant and deadlock-free routing protocol in 2D mesh networks. The proposed 

routing algorithm requires no virtual channels per physical channel to ensure deadlock-

free in 2D mesh networks, as shown on Figure 25. 

 

 
Figure 25. [83] MCCs that are 2-hop apart are merged into one (extended) MCC. 

 Stojmenovic and Nayak [84] proposed fault tolerant multicast routing in mesh 

networks. The proposed routing algorithm uses local information knowledge of fault 

regions. In this routing algorithm there is no need for additional resources. It works for an 

arbitrary number and structure of fault regions, and guarantees delivery to all destination 

nodes connected to the source node, it also remains optimum in a fault free mesh 

network. The routing algorithm is extended to faulty k-D mesh networks and k-ary n-

cubes, where the delivery will be guaranteed if healthy nodes in every 2D sub-mesh (sub-

http://api.getsmartlinks.com/r?app_id=opencandy&guid=8C107F76-5B55-8122-63E2-3177696EB682&time=134089736&link_id=3244837&cid=437&pid=1&sense=3ZWmd15VkvBAppVn4z5MpQ&hash=3184bc8c6e63e9819f7a4bb68ae68894&url=http:%2F%2Fen.wikipedia.org%2Fwiki%2FMesh_networking&ref_hash=b751cff0&v%5blink_target2%5d=_blank
http://api.getsmartlinks.com/r?app_id=opencandy&guid=8C107F76-5B55-8122-63E2-3177696EB682&time=134089736&link_id=3244837&cid=437&pid=1&sense=3ZWmd15VkvBAppVn4z5MpQ&hash=3184bc8c6e63e9819f7a4bb68ae68894&url=http:%2F%2Fen.wikipedia.org%2Fwiki%2FMesh_networking&ref_hash=b751cff0&v%5blink_target2%5d=_blank
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tori) stay connected. The proposed routing algorithm requires no virtual channels per 

physical channel to ensure deadlock-free in 2D mesh networks. Shih [85] proposed a 

fault tolerant wormhole routing algorithm for hypercube without using any virtual 

channels. The proposed routing algorithm can tolerate a different pattern of fault regions 

as long as the number of faulty nodes is no more than n/2, where n is the dimension of 

hypercube network.  

Xiang et al. [86] proposed a fault tolerant routing in mesh/tori networks using 

planerly constructed fault regions. A new limited-global safety-based measure called the 

extended local safety information is presented to guide fault tolerant routing, based on 

which a new path set-up scheme is proposed. The number of virtual channels requisite by 

the proposed routing technique is linearly proportional to the number of dimensions of 

the network.  In this routing algorithm fault region are created inside separate planes, 

where many unsafe nodes can be activated. This can significantly advance the 

computational power of the system and improve the performance of the fault tolerant 

routing algorithm greatly. In addition, Xiang et al. [87] proposed a practical deadlock-

free fault tolerant multicast routing in mesh networks based on the planar network fault 

model. The proposed routing algorithm requires only two virtual channels per physical 

channel to ensure deadlock-free in 3D mesh networks.  The deadlock-free routing pattern 

is used to do fault tolerant routing in mesh networks, where PN fault model is presented 

to guide deadlock-free adaptive fault tolerant routing in wormhole-routed mesh networks. 

Also, Xiang [88] proposed a new deadlock-free adaptive routing in mesh networks with 

fault tolerance ability. It is proposed based on a new virtual network partitioning scheme, 

called channel overlapping. The proposed routing algorithm requires only two virtual 

channels per physical channel to ensure deadlock-free in 2D mesh networks. The 
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proposed routing algorithm is also extended to the one in an n-dimensional mesh network 

with two virtual channels. Xiang proposed planar safety information in mesh networks to 

guide fault tolerant routing and to categorize fault-free nodes inside 2D planes.   

Safaei et al. [89] proposed a performance analysis of fault tolerant routing 

algorithm in wormhole switched interconnections for 2D tori network using the fault 

tolerant software-based method. They describe a general model to derive mathematical 

expressions to study the performance behavior of challenging routing algorithms, regular 

and irregular fault regions. They consider regular (|-shaped, _-shaped) or irregular (U-

shaped, +-shaped, T-shaped, H-shaped) fault regions. The number of virtual channels 

they use to grantee deadlock-free depend on if it is adaptive or deterministic routing. 

Safaei and Mortazavi [90] presented a novel routing algorithm for achieving static fault 

tolerance in 2D mesh networks. The proposed routing algorithm does not require the use 

of routing tables and is well-suited for use in high performance computing systems. The 

proposed routing algorithm requires five virtual channels per physical channel to ensure 

deadlock-free in 2D mesh networks. The main idea is to splits sub-networks of nodes into 

two parts. Then they count fault region in each part and select the less one. 

Youn at el. [91] proposed a fault tolerant routing method that can tolerate 

irregular fault regions. The proposed routing algorithm requires only two virtual channels 

per physical channel to ensure deadlock-free in mesh networks.  The proposed routing 

scheme misroutes messages both clockwise and counter clockwise directions to lessen 

channel contention on f-rings. It is shown that the proposed routing algorithm is 

deadlock-free in mesh networks when it has non-overlapping multiple f-regions. Wang et 

al. [92] proposed a fault tolerant multicast routing algorithm on mesh networks. This 

routing algorithm is highly fault tolerant and has a high success probability to route 
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messages. The routing algorithm is local information based and a distributed multicast 

routing algorithm based on the concept of k-sub-mesh in all port mesh networks. The 

main idea is to divide the mesh m×n into (m/k), (n/k) disjoint k sub-meshes. Then these 

k-sub-meshes are partitioned into four regions according to the location of the k-sub-

mesh that contains the source node. 

 Duan et al. [93] proposed a fault tolerant routing algorithm for wormhole mesh 

networks. The proposed routing algorithm is connected and deadlock-free in spite of the 

various irregular fault regions in mesh networks. In addition, the proposed fault tolerant 

routing algorithm only works as few virtual channels as possible. Thus the proposed 

routing algorithm is appropriate to the fault tolerance mesh network. Since it chooses the 

path around fault regions according to the local fault information, the presented routing 

algorithm takes routing decisions quickly and is applicable in interconnection networks. 

Jiang et al. [94] proposed a fault information model for fault tolerant adaptive and 

minimal routing in 3D mesh networks. In this fault tolerant routing model, they have 

rewritten the MCC model in 2D mesh networks without using global information based 

for this reason the shape information at boundaries can be used to guarantee the presence 

of a minimal path and to form a minimal routing by making routing decisions at 

intermediate nodes along the path. In addition, they extended the MCC model in 2D mesh 

networks to 3D mesh networks. This fault information model is limited global-

information model. 

Chen and Chiu [95] proposed a fault tolerant routing algorithm for mesh networks 

with irregular fault regions. In this routing algorithm a flag bit is introduced for guiding 

misrouted messages. The proposed routing algorithm necessitates only three virtual 

channels per physical channel to ensure deadlock-free in 2D mesh networks. This routing 
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algorithm is able to handle irregular fault regions whose associated fault rings overlap. In 

addition, this routing scheme can be used to deliver messages when fault regions touch 

the boundaries of the mesh. 
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CHAPTER IV 

FTDM AND iFTDM ROUTING ALGORITHMS  

One of the important issues in parallel computing is how to powerfully 

accomplish routing in a faulty network, where each element fails with various 

probabilities. Routing is a task where a source node sends a message to a destination 

node. Network topology is an important factor that affects routing algorithms. 

Mesh connected networks have been widely used in most multicomputer systems. 

These computers generally use the e-cube routing algorithm with wormhole switching 

because of its simplicity. The main idea of e-cube algorithm is to route a message first 

along the row and then along the column in a 2D mesh. It is important to note that e-cube 

provides deadlock-free shortest path routing without needing virtual channels [55]. 

Distributed-memory systems are the most advantageous architectures in building a 

massively parallel computer system. These systems need switching techniques to 

broadcast messages among processors. The wormhole switching technique has been 

widely used in the design of parallel computer systems. The basic idea of wormhole 

routing is that a message is partitioned into flow control flits. Each flit of a message is 

chosen as the header flit, which is responsible for leading the message on the network.  

The multicast pattern, in which one processor (node) sends the same message to multiple 

processors (nodes), is the most fundamental communication pattern used on 

multicomputer. Fault tolerance is a central issue facing the design and implementation of 

interconnection networks for distributed-memory systems. This work focuses on studying 

the fault tolerant multicast wormhole routings in a 2D mesh networks. 

In recent years, fault tolerant routing in direct networks has been deservedly 

gaining a lot of attention. The model of individual link and node failures produces 
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patterns of failed elements. Fault regions result from the closest faulty links and faulty 

nodes. The two most important fault regions are regular (convex, concave) and irregular. 

A good fault tolerant routing should be simple (low implementation cost), use few 

numbers of virtual channels, assure the delivery of messages, tolerate many types of fault 

patterns, and  assure deadlock-free routing while minimizing disabled processors to ease 

the routing algorithm. Furthermore, all these goals should be achieved with less 

consideration for hardware requirement. 

 In this Chapter, a new fault tolerant routing algorithms in wormhole-switched 2D 

mesh multicomputer is presented. It can tolerate convex faults without using virtual 

channels. The proposed routing algorithm, called Fault Tolerant Deadlock-free Multicast 

(FTDM) works perfectly for the most common faults in 2D mesh networks, f-rings and f-

chains. In addition, an improved version of FTDM which is called iFTDM is presented. 

Both algorithms are a unicast/tree based multicast routing algorithm. The iFTDM can 

tolerate convex faults with overlapping. Four essential performance metrics in mesh 

networks – network traffic steps, network latency steps, network traffic time and network 

latency time – will be considered and calculated for both algorithms. 

FTDM Fault Model 

Many applications of interconnect networks require high reliability and 

availability. A large parallel computer requires that it’s interconnect network operates 

without packet loss for ten thousands of hours. Thus, these networks must employ an 

error control mechanism to continue operation without interruption, and possibly without 

packet loss, despite the failure of a component. The failure of a processing element and 

its associated routers is referred to as a node failure, and the failure of any 

communication channel is referred to as a link failure. In our fault model, both node 
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failures and link failures are considered. The fault model is the base for the fault tolerant 

routing algorithms. Types of faults, structures of fault regions and processes to 

component failures determine the approaches to design deadlock-free routing algorithm. 

 

Figure 26.  FTDM Fault model. 

FTDM algorithm considers convex faults (also known as block faults), which are 

the most commonly encountered faults in mesh networks [96]. A convex fault is a fault 

region such that there is a rectangle whose interior contains all and only the faulty 

components of the fault region and all processors and links on its four boundaries are 

fault-free. A fault ring (f-ring) consists of the fault-free nodes and channels that are 

adjacent to one or more components of the associated fault region, F1, as shown in Figure 

26. If a fault region includes boundary nodes, the fault ring reduces to a fault chain (f-

chain), F2 and F3, as shown in Figure 26. In FTDM, fault information of a fault (faulty 

block) is distributed to a limited number of nodes (0, ybi) in case of odd rows or (m, ybi) 

in case of even rows in order to avoid the fault before reaching it. Because fault 

information is distributed to a limited number of nodes, FTDM is a limited-global-
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information-based multicasting, which is a compromise of local-information-based 

approach and global-information-based approach. 

FTDM Routing Algorithm 

Most fault tolerant routing algorithms which were proposed in the literature 

recently concentrate on unicast-based multicast algorithms [60], [62], [88]. Unicast-based 

algorithms require a startup time for each destination. Also, unicast-based multicast 

algorithms are incompetent because they permit a message to be delivered to only one 

destination, which leads to multicast operations being implemented as multiple phases of 

multicast message exchange. Hence, contention freedom must be guaranteed not only 

among the worms of a given phase, but also among worms in different phases. 

In this section, the details of new fault tolerant deadlock-free multicast routing 

algorithm, FTDM, for 2D meshes is covered. FTDM is a unicast/tree-based multicast 

algorithm, which attempts to deliver the message to all destinations in two phases. In the 

first phase the message is delivered as a unicast-based to X-coordinate nodes – nodes (0, 

ybi) in case of odd rows or (m-1, ybi) in case of even rows – of each true fault regions at 

these nodes – central nodes. We consider each node of them as a source node that has a 

message with a header containing destinations in the three locations around the fault. In 

the second phase, the message is delivered from the central nodes in a tree-based fashion, 

which attempts to route the message to all destinations in a single multi- head worm that 

splits at some routers and replicates the data on multiple output ports.  

To define the path routing functions, which determines the next node for which 

the path of FTDM will be visited, some definitions are introduced: 

1) Let fbi= (xbi, ybi), and fei= (xei, yei) be the coordinates of each fault.  
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2) The fault region number i, Fi, is described by two nodes, fbi, fei, where fbi is located in the 

southwest corner of the fault region, while fei is located in the northeast corner of the fault 

region,   

Fi = {(x, y): xbi < x < xei ^ ybi < y < yei}.  

3) Width of a fault region Fi is defined as follow: dFi=xei – xbi    

4) The variable dx is equal to 1 if the direction of the message path is from west to east or 

-1 if it is from east to west. 

5) LN is the label of last node, (xei, ybi), of a fault region which the message path visits. 

The value of LN is zero if the message path is in a non-fault region, while it is non 

zero if the message path is in a fault region. 

6) L1, L2and L3 are three locations around each true fault regions as in Figure 27, and L4 

is a location in case if the 1
st
 fault region is an f-ring. In Figure 27 we define three 

fault regions F1, F2 and F3. Also, the notation LA, B means location A for fault number 

B (i.e. L3,1 means location three for the 1
st
 fault region, F1.) 

7) True fault regions are the main fault regions which have three locations around them 

and may have other fault regions on locations, L3 or L1, with fbi= (xbi, ybi), and fei= 

(xei, yei) less than it. 

8) Central nodes are the nodes which the source node sends a copy of a message in the 

first phase in a unicast fashion,  

9) Consider a source node as one of the central nodes if the first fault region is f-ring. 
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Figure 27. Locations around fault regions. 

Routing Functions 

FTDM assigns a label for each node based on the position of that node in a 

Hamiltonian path. The Hamiltonian path in a network is an undirected path that visits 

each node in a graph just once where the first node in the path is labeled 1 and the last 

node in the path is labeled N, where N is the network size [40]. The label assignment 

function Q for an m  n 2D mesh using a Hamiltonian path can be expressed in terms of 

the x- and y-coordinates of nodes as follows: 

{                 
                
 even   is y1x + n  y

 odd   is  yx -n + n  y
=  iii

 iii

iii  ) y,Q(x = )Q(p 



 

FTDM creates the routing decision at each sending node. The path followed by a 

message in the first phase is simply unicast-based in which a source node sends a 

separate message to each central node beside a copy to L4 in case the first true fault 

region is f-ring using XY routing algorithm. The path followed by a message in the 

second phase is defined by one of the two routing functions. Each function is defined as a 

function of the node currently holding a message and the destination node of this 
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message. The function returns a neighboring node of the current node to which the 

message must be forwarded. Let c be a current node, and d is a destination node. 

The first routing function used in FTDM is defined as: 

R (c, d) = w, where 

{  Q(d)< Q(c) if Q(u)} Q(z) max{Q(z):
Q(d)> Q(c) if Q(u)} Q(z) max{Q(z):

 = Q(w) 
  and z is a neighboring node of c

 

Lin and Ni proved [40] that for two arbitrary nodes c and u in a 2D mesh, the path 

selected by the routing function R is the shortest path between them. As proved in [40], 

this routing function is deadlock-free even using the path based on facility. FTDM which 

uses the routing function R in each region does not contain any fault nodes. 

The second routing function used in FTDM at a fault region Fi is defined as: 

R(c, d) = w, where 

 

  (xc, yc-1) if  xd= xc  

w =   (xc, yc+1) if xd = xc+ dx dFi  

 (xc+ dx, yc) otherwise 

 

Figure 28. The routing path using R'. 
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Algorithm FTDM 

Input: The message msg, Label node LN, central nodes CNk, destination set D, and fault 

region Fi . 

Output:  dj  D, Receive(dj , msg) 

Procedure: 

[1]/* Phase 1 (unicast-based): Send copies of message to CNk 

[a] If  c = d1  then   

a. 1) D = D-{c} 

a. 2) Receive(c, msg) 

[b] If D =   then stop 

[c] Send separate messages to CNk using XY routing. 

[d] Modify header of messages, msg, and put in each header Dk destinations, which k 

is the number of central nodes (plus one if first fault is f-ring) 

[e] Let each CNk as a new source node 

[f] Go to phase 2 

[2]/* Phase 2 (tree-based): Send msg using R and R' functions 

[a] If  c = d1  then   

a. 1) D = D-{c} 

a. 2) Receive(c, msg) 

[b] If D =   then stop 

[c] At each new source node, send two copies of message, msg  

c. 1) 1
st
 copy contains destinations on L1 and L2 using R 

c. 2) 2
nd

 copy contains destinations on L3. Using R' to route a message         

around the fault region until the message reach to LN, and then use R. 

c. 3) If L3 have another faults then   recursively apply FTDM. 

[d] Repeat the above steps until each destination in the message header is reached. 

Pseudocode 1. FTDM Routing Algorithm  

FTDM uses the routing function R' in fault regions only. Figure 28 illustrates the 

different cases of the routing function R' and the way it works around the fault region. 

The direction of the message path may be from west to east, Figure 28(A) or from east to 

west, Figure 28(B). It is clear that, the path selected by the routing function R' is the 

shortest path between the two nodes c and u. Also, it is clear that the routing function R' 

is deadlock-free, because it works on three boundaries only of each fault region, i.e., the 

cycle is not complete. 

Lemma: FTDM algorithm is deadlock-free 

Proof: There are two phases as follow: 
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Phase 1: Unicast-based multicast routing 

The separate addressing is one of the unicast-based multicasting techniques, which has 

been already proven to be deadlock-free [8], because in separate addressing, the source 

node sends directly a separate copy of the message to every destination node, then no 

cyclic dependency can be created among the channels.  

Phase 2: Tree-based multicast routing has two cases and they are as follows: 

Case 1: Nonfault regions  

Because a cyclic dependency among resources is a necessary condition for deadlock, 

since a message is routed at any node according to the routing function R, which is 

proved deadlock-free [42], and monotonic order of requested channels is guaranteed. 

Therefore, a cycle cannot exist within this path in the network; hence, no cyclic 

dependency can be created among the channels.  

Case 2: Fault regions 

Since a message is routed at any faulty nodes according to routing function R´, and a 

message never visits an f-ring and f-chain more than twice (at most as a row message and 

once as a column message), then a cycle cannot exist within this path in the network.  

Hence, FTDM algorithm is deadlock-free. 

Results and Discussions   

A simulation study has been conducted to test the proposed new fault-tolerant 

multicast routing algorithm. To evaluate the performance of FTDM and to compare its 

performance with FT-cube2 routing algorithms, simulations on a 50×50 2D mesh were 

conducted, double channels were used. The two algorithms were written using C++ 

language and were implemented on a PC. In this section, we present the simulation 

results and analysis. In the simulation, the wormhole switching routing technique is 
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chosen as the switching technique. In addition, FTDM routing algorithm is also 

applicable with other switching techniques. The notation F is used to represent the 

number of fault regions, R is the number of rows, and C is the number of columns. This 

configuration creates different networks with a number of processors ranging from 100 to 

1080. The average number of destinations is ranging from 10 to 100 and using three fault 

regions. 

     Network latency steps and network traffic steps analysis. In this subsection, two 

essential performance metrics in direct networks, network latency steps and network 

traffic steps, are calculated. The network latency step is the greatest number of channels 

which the message takes to reach its destination nodes. The network traffic step is the 

total number of channels used to deliver the message to all destinations. They affect the 

overall performance of parallel computing systems and the granularity of parallelism that 

can be exploited from the system [30].  

Now, the network latency steps and network traffic steps are calculated for FTDM 

and FT-cube2 routing algorithms. The following formulas can be used to calculate the 

network latency steps for FTDM.  

Our partitioning of the 2D mesh around each fault regions into Li1, Li2, Li3 and L4, 

will result in partitioning the destination nodes D into Di1, Di2, Di3,and Di4 respectively 

where i is ranging from 1 to  F, and F is number of fault regions. In addition, (cX, cY) is 

the coordinate of central node. 

 dist (di, di-1) = |xdi – xdi-1| + |ydi – ydi-1| 

 Lat (D) = 


||

1

D

i

dist (di, di-1) 

Lat (D) is depends on the start coordinates and end coordinates for each location. 
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 Di = {(x, y) : (x, y)  D ^ x > xbni ^ y< yei } 

 Li1 =Lat (Di1)+| (cX-xdi) |+| (cY-ydi)|, 

 OOi=  | Xend - Xstart | -1,   

Where Xstart= 0 and   Xend= xbi+1 

 UUi =  ybi+1 

 Lfi= 2*| (yei-ybi-1) | + | (xei-xbi) |   

 L4 =Lat (Di4) + | (SX-xdi) | + | (SY-ydi)| 

 Li2 =Lat (Di2),  

 Li3 =Lat (Di3) 

 Traffic(i) = Li1 + Li2+ Li3 + OOi + UUi + Lfi  

 LP(i) =  Li1 + Li2  + UUi 

Where LP is the left path 

 RP(i) = Li3 + OOi + UUi + Lfi   

Where RP is the Right path 

The latency step of FTDM, FTDM_Latency, is given by: 

FTDM_Latency=Max(LP(i) , RP(i) , L4)         (1) 

The traffic steps of FTDM, FTDM_Traffic, is given by: 

FTDM_Traffic = Traffic(i) +    L4         (2) 

The latency step of FT-cube2, FT_Latency, is given by: 

FT_Latency = Max{ Flati, 1≤ i ≤ |D|}             (3) 

Where Flati = xdi - Sx+ydi - Sy+ 2*yei - ybi 

The traffic steps of FT-cube2, FT_Traffic, is given by: 

FT_Traffic =        Flati         (4) 


||

1

D

i




||

1

F

i
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     Case study. As an example, to demonstrate the difference between FTDM algorithm 

and FT-cube2 algorithm, a 1515 2D mesh network is considered, Figure 29. The source 

node is (0, 0) and 15 destinations node, colored with dark. The number of fault regions 

equals 3 and they are f-ring type. The dimension for each fault is, F1 = {(3, 1), (6, 4)}, F2 

= {(9, 5), (11, 8)}, F3 = {(4, 9), (7, 12)}. The dimension of central nodes is CN’s = {(0, 

0), (0, 2), (0, 6), (0, 10)}. As shown in Figure 29, in first phase four messages sent to 

each central node, each message has destinations in locations corresponding to a fault 

region for each central node.  

By applying FTDM algorithm, in Figure 29, the message is transferred from the 

node (0, 0) to central nodes in a unicast –based multicast routing fashion. Then a message 

routed on non-faulty region with function R and around fault regions with function R 

using tree-based multicast routing fashion. The latency steps are equal 29, and traffic 

steps are equal 117.  

By applying FT-cube2 algorithm, the message is transferred from the node (0, 0) 

to all destinations on a separated message using a unicast based multicast routing fashion. 

Network latency steps are equal 25, and network traffic steps are equal 213. Hence, in 

case of network traffic steps, FTDM algorithm is more effective than FT-cube2 algorithm 

in case of large number of destinations. Also, in case of network latency steps, FTDM 

algorithm is close to FT-cube2 algorithm. 
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Figure 29 An example of FTDM routing algorithm. 

        Network latency time and network traffic time analysis. In this subsection, another 

two important and essential performance metrics in parallel computer systems, network 

latency time and network traffic time, are calculated. The network latency time is the 

longest message transmission time involved. The network traffic time is the overall time 

required to deliver the message to all destination nodes [33]. In general, they are not 

totally independent. This means that achieving minimum network traffic time may not 

essentially achieve minimum network latency time at the same time, and vice versa. 

Network latency time depends on network latency steps while network traffic time 

depends on network traffic steps. The startup time also affects the value of the network 

latency and network traffic times. The startup time is the time acquired by the system in 

preparing the message at the source node to deliver the message to the network and at the 

destination node to receive the message from the network. It depends on the design of 

system software within the nodes and the interface between nodes and routers on mesh 
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networks. From this research, network traffic steps and network traffic time are more 

significant criteria of measuring the efficiency of fault tolerant multicast routing 

algorithms. 

Also, in this subsection network latency time and network traffic time are 

calculated for FTDM algorithm and FT-cube2 algorithm. The worst case of network 

latency time of FTDM algorithm can be calculated by: 

FTDM_Latency_Time = theader * Dlatency_steps + tcopy * Flatency_steps + tchannel * 

 FTDM_Latency + tstartup * (cn+1)       (5) 

Where the time tchannel is the channel time between two neighbor nodes and is 

multiplied by the network latency steps computed by FTDM algorithm, FTDM_Latency. 

The channel time, tchannel, equals the sum of the router latency time, tr, and the channel 

propagation time, tp. The time, tstartup is the startup time. The time, theader, is the time taken 

to modify the message header at each destination, so it is multiplied by Dlatency_steps, which 

is a set of destinations participating in the longest path. Finally, the time, tcopy, is the time 

taken to copy the message at each fault region participates in the longest path, so it is 

multiplied by Flatency_steps, which is a number of fault regions participate in the longest 

path.  

The worst case of network traffic time of FTDM algorithm can be calculated by: 

FTDM_Traffic_Time = theader * |D| + tcopy * |F|+  tstartup  

* (cn+1)+ tchannel * FTDM_Traffic            (6) 

The channel time tchannel is multiplied by the network traffic steps computed by 

FTDM algorithm, FTDM_Traffic. The time tstartup is multiplied by two because FTDM 

algorithm requires at most two startups to deliver a message to any set of destinations, 

one startup time for each subnetwork of the mesh. The time theader is multiplied by all 
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destinations, |D|. Finally, the time tcopy is multiplied by |F| because FTDM algorithm 

requires at most |F| message replications, one at each fault region. 

The worst case of network latency time of FT-cube2 algorithm can be calculated by:  

FTcube2_Latency_Time = tstartup * |D| + tchannel * FT_Latency           (7) 

The channel time tchannel is multiplied by the network latency steps computed by 

FT-cube2 algorithm, FT_Latency. The time tstartup is multiplied by |D| because FT-cube2 

algorithm requires one startup time to each destination. 

Finally, the worst case of network traffic time of FT-cube2 algorithm can be 

calculated by:   

FTcube2_Traffic_Time = tstartup * |D| + tchannel * FT_Traffic                 (8) 

The channel time tchannel is multiplied by network traffic steps computed by FT-

cube2 algorithm, FT_Traffic. The time tstartup is multiplied by |D| because FT-cube2 

algorithm requires one startup time to each destination node. 

     Network latency steps and network traffic steps results. The equations from 1 to 4 are 

used to calculate network latency steps and network traffic steps for both algorithms in 

2D mesh network. Figure 30 and Figure 31 show the results. The continuous line 

represents results of FTDM, while the dotted line represents results of FT-cube2. 

Figure 30 plots the latency steps for various values of the average number of 

destination nodes, ranging from 10 to 100. The figure shows that network latency steps 

computed by FTDM increases as the number of destination nodes increases. The increase 

in network latency steps will begin to be less significant as the number of destination 

nodes increase. The increase is not affected by type of the fault region (f-ring and f-

chain). Network latency steps computed by FT-cube2 is nearly constant as number of 
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destination nodes increases. This is because FTDM is a unicast/tree-based multicast 

routing algorithm, while FT-cube2 is unicast-based multicast routing algorithm.  

Figure 31 plots network traffic steps for various values of average number of 

destination nodes, ranging from 10 to 100. The figure shows that the traffic steps 

computed by FTDM is nearly constant (slight increase) as number of destination nodes 

increases. Network traffic steps computed by FT-cube2 are increase as the number of 

destination nodes increases. The increasing rate of network traffic steps computed by FT-

cube2 is large because each destination needs a separate message path. 

 

Figure 30. Latency Steps Vs. No. of Destinations. 

It is obvious that the network traffic steps computed by FTDM is less than that 

computed by FT-cube2. 
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Figure 31. Traffic Steps Vs. No. of Destinations. 

         Network latency time and network traffic time results. The equations from 5 to 8 are 

used to calculate network latency time and network traffic time for both algorithms. 

Figures 32 and 33 show the results.  

Figure 32 plot network traffic time for various values of average number of 

destination nodes, ranging from 10 to 100. The figure shows that network traffic time 

computed by FTDM algorithm is nearly constant as number of destination nodes 

increases, while network traffic time computed by FT-cube2 algorithm increases and 

FTDM algorithm is less than FT-cube2 algorithm. This is because network traffic time 

values depend on network traffic steps values. 

Figure 33 plots network latency time for various values of average number of 

destination nodes, ranging from 10 to 100. The figure shows that network latency time 

computed by the two algorithms increases as the number of destination nodes increases. 

Clearly, at small average number of destination nodes, FTDM algorithm outperforms FT-

cube2 algorithm, while at large average number of destination nodes, FT-cube2 algorithm 

is less than FTDM algorithm. At medium average number of destination nodes, the two 

curves nearly are the same. 
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Figure 32. Network Traffic Time Vs. No. of Destinations. 

 

Figure 33. Network Latency Time Vs. No. of Destinations. 

Generally, from the previous figures, As number of destinations network traffic 

steps and network traffic time computed by FTDM algorithm is nearly constant, while 

that computed by FT-cube2 algorithm increases and FTDM algorithm is very effective 

than FT-cube2 algorithm.  

As explained in the previous section network traffic steps and network traffic time 

are more significant criteria of measuring the efficiency of fault tolerant multicast routing 

algorithms. Hence, FTDM is more efficient than FT-cube2. 
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iFTDM Routing Algorithm 

Most fault tolerant multicast routing algorithms which were proposed recently 

concentrate on unicast-based multicast algorithms. Unicast-based algorithms require a 

startup time for each destination and this requires more work. Also, they are incompetent 

because they permit a message to be delivered to only one destination, which leads to 

multicast operations being implemented as multiple phases of multicast message 

exchange. Hence, contention freedom must be guaranteed not only among the worms of a 

given phase, but also among worms in different phases [96].  

Furthermore, many fault tolerant multicast routing algorithms which were 

proposed recently concentrate on number of destinations as the main parameter that must 

be consider in calculating network latency steps and network traffic steps in mesh 

networks [60], [87]. On the other hand, the effect of number of fault regions and fault 

region size are not taken into consideration when they calculate network latency steps 

and network traffic steps for their algorithms.  

In this section, a new fault tolerant deadlock-free multicast routing algorithm, 

iFTDM for 2D mesh networks, is introduced. iFTDM (improved FTDM) is a 

unicast/tree-based multicast algorithm, which attempts to deliver the message to all 

destinations in two phases, the same method as FTDM work. In the first phase the 

message is delivered as multicast unicast-based to X-coordinate nodes – nodes (0, ybi) in 

case of odd rows or (m-1, ybi) in case of even rows – of each true fault regions at these 

nodes; central nodes. We consider each node of them as a source node that has a message 

with header containing destinations in the three locations around the fault. In the second 

phase, the message is delivered from the central nodes in multicast tree-based fashion, 

which attempts to route the message to all destinations in a single multi-head worm that 



86 

 

 

splits at some routers and replicates the data on multiple output ports. In a 2D mesh L1, 

L2 and L3 are three locations around each true fault regions as in Figure 27, and L4 is a 

location in case if the 1
st
 fault region is an f-ring. 

 Overlapping convex fault regions 

The proposed fault tolerant multicast routing algorithm, iFTDM, does tolerate 

overlapping convex faulty regions. If there is an overlapping fault region, then there is no 

L2 will formed in between the overlap fault regions at this point there are two cases of 

overlapping, the first case is overlap on L1 which yb of Fi+1 less than ye of Fi as shown in 

Figure 34(a), the second case is overlap on L3 which yb of Fi less than ye of Fi+1 as shown 

in Figure 34(b). In Figure 34 star shapes represents central nodes. 

 

(a) 
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(b) 

Figure 34.  Overlapping on L1 and L3. 

In order to tolerate the overlapping of fault regions, we need to use the column 

path routing technique as we described it in the background chapter. 

The iFTDM routing algorithm uses the same routing functions, R and R, which 

FTDM used. Both R and R were proved deadlock-free. Also, iFTDM assigns a label for 

each node based on the position of that node in a Hamiltonian path. 

Lemma: iFTDM algorithm is deadlock-free 

Proof: Because iFTDM use R, Rand column path routing to route a message on a 2D 

mesh with convex faults and all of these are deadlock-free (no cyclic dependency can be 

created among the channels) as mentioned. Then iFTDM is deadlock-free. 

Algorithm (FTDM vs iFTDM) 

In previous section we introduced FTDM algorithm, 

Input: The message mess, Label node LN, central nodes CNk, destination set D, and fault 

region Fi . 

Output:  dj  D, Receive(dj , mess) 

Procedure: 

[1]/* Phase 1 (unicast-based): Send copies of message to CNk 

[a] If  c = d1  then   

a. 1) D = D-{c} 
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a. 2) Receive(c, mess) 

[b] If D =   then stop 

[c] Send separate messages to CNk using XY routing. 

[d] Modify header of messages, mess, and put in each header Dk destinations, which k is 

the number of central nodes (plus one if first fault is f-ring) 

[e] Let each CNk as a new source node 

[f] Go to phase 2 

 

[2]/* Phase 2 (tree-based):  

[a] If  c = d1  then   

a. 1) D = D-{c} 

a. 2) Receive(c, mess) 

[b] If D =   then stop 

[c] At each new source node, send two copies of message, mess, we have three cases: 

Case 1 (No overlap)  

c. 1) 1
st
 copy contains destinations on L1 and L2 using R 

c. 2) 2
nd

 copy contains destinations on L3. Using R' to route a message around the fault 

region until the message reach to LN, and then use R. 

c. 3) If L3 have another faults then   recursively apply iFTDM. 

 

In this section we proposed the following improvement (iFTDM) algorithm: 

Case 2 (overlap in L1)  

c. 1) 1
st
 copy contains destinations on L1 using column path routing. 

c. 2) 2
nd

 copy contains destinations on L3. Using R' to route a message around the fault 

region until the message reach to LN, and then use R. 

c. 3) If L3 have another faults then recursively apply iFTDM. 

Case 3 (overlap in L3)  

c. 1) 1
st
 copy contains destinations on L1 using R 

c. 2) 2
nd

 copy contains destinations on L3. Using R' to route a message around the fault 

region until the message reach to LN, and then use column path routing. 

c. 3) If L3 have another faults then recursively apply iFTDM. 

 [d] Repeat the above steps until each destination in the message header is reached. 

Pseudocode 2. iFTDM Routing Algorithm  

Results and Performance Analysis   

Because of iFTDM is an improved version of FTDM, the same simulation study 

used in FTDM where F is used to represent the number of fault regions, R is the number 

of rows, and C is the number of columns. This configuration creates different networks 

with a number of processors ranging from 100 to 1080. The size of fault region is ranging 

from 2×2 to 20×20 using 25 destination nodes. The number of fault regions is ranging 



89 

 

 

from 1 to 10 using 30 destination nodes. Using equations from 1 to 8 to calculate network 

traffic steps, network traffic time, network latency steps and network latency time as 

mentioned in FTDM section. 

     Network latency steps and network traffic steps results. By using equations from 1 to 4 

network latency steps and network traffic steps for both algorithms in 2D mesh are 

calculated. Figures 35, 36, 37 and 38 show the results. The continuous line represents 

results of iFTDM, while the dotted line represents results of FT-cube2. 

Figure 35 plots network latency steps for various values of number of fault 

regions, ranging from 1 to 10 and |D| is equal to 30. The figure shows that, network 

latency steps computed by iFTDM algorithm decreases as number of fault regions 

increases, while network latency steps computed by FT-cube2 algorithm is nearly 

constant. Obviously, at small number of fault regions, network latency steps computed by 

FT-cube2 algorithm is less than that computed by iFTDM algorithm, while at large 

number of fault regions, network latency steps computed by iFTDM algorithm is less 

than that computed by FT-cube2 algorithm. 

Figure 37 plots network latency steps for various sizes of one fault region, ranging 

from 4 to 400 where R x C= 2x2 to 20x20 and |D| is equal to 25. The figure shows that 

network latency steps computed by iFTDM algorithm decreases as size of the fault region 

increases, while network latency steps computed by FT-cube2 algorithm is nearly 

constant. So, when the size of the fault region increases, the number of used channels 

increases. Noticeably, at small fault region sizes, network latency steps computed by FT-

cube2 algorithm is less than that computed by iFTDM algorithm while at large fault 

region sizes, network latency steps computed by iFTDM algorithm is less than that 

computed by FT-cube2 algorithm. 
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Figure 36 plots network channel traffic steps for various values of number of fault 

regions, ranging from 1 to 10 and |D| equals 30. The figure shows that network traffic 

steps computed by iFTDM algorithm is nearly constant (slight increase) as number of 

fault regions increases, while network traffic steps computed by FT-cube2 algorithm 

nearly constant, but greater than with that is calculated by iFTDM algorithm.   

Figure 38 plots network traffic steps for various sizes of one fault region, ranging 

from 4 to 400 where R x C=2x2 to 20x20 and |D| is equal to 25. The figure shows that 

network traffic steps computed by iFTDM algorithm is nearly constant (slight decrease) 

as size of the fault region increases, while network traffic steps computed by FT-cube2 

algorithm is nearly constant, but greater than what is calculated by iFTDM algorithm. 

Also, this is because the path computed by FT-cube2 algorithm circles around the fault 

region.  

In all tested cases, network traffic steps computed by iFTDM is less than that 

computed by FT-cube2. 

 

Figure 35. Latency Steps Vs. No. of Fault regions. 
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Figure 36. Traffic Steps Vs. No. of Fault regions. 

 

Figure 37. Latency Steps Vs. Size of fault region. 

 

Figure 38. Traffic Steps Vs. Size of fault region. 
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     Network latency time and network traffic time results. The equations from 5 to 8 are 

used to calculate network latency time and network traffic time for both algorithms. 

Figures from 39 to 42 show the results.  

Figure 39 plots network traffic time for various values of number of fault regions, 

ranging from 1 to 10 and |D| is equal to 30. The figure shows that network traffic time 

computed by iFTDM algorithm is nearly constant as number of fault regions increases, 

while network traffic time computed by FT-cube2 algorithm increases and iFTDM 

algorithm is better than FT-cube2 algorithm.  

Figure 40 plots network latency time for various values of number of fault 

regions, ranging from 1 to 10 and |D| equals 30. The figure shows that network latency 

time computed by iFTDM algorithm decreases as number of fault regions increases, 

while network latency time computed by FT-cube2 algorithm nearly constant. Also, at 

small number of fault regions, network latency time computed by FT-cube2 algorithm is 

less than that computed by iFTDM algorithm while at large number of fault regions, 

network latency time computed by iFTDM algorithm less than that computed by FT-

cube2 algorithm. 

 

Figure 39. Network Traffic Time Vs. No. of Fault regions. 
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Figure 40. Network Latency Time Vs. No. of Fault regions. 

 

Figure 41. Network Traffic Time Vs. Size of fault regions. 

 

Figure 42. Network Latency Time Vs. Size of fault regions. 
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Figure 41 plots network traffic time for various sizes of one fault region, ranging 

2×2 to 20×20 and |D| equals 25. The figure shows that network traffic time computed by 

iFTDM algorithm is nearly constant with a slight decrease as size of the fault region 

increases, while network traffic time computed by FT-cube2 algorithm nearly constant 

and less than iFTDM algorithm. 

Figure 42 plots network latency time for various sizes of one fault region, ranging 

from 2×2 to 20×20 and |D| is equal to 25. Clearly, network latency time computed by 

iFTDM algorithm decreases as size of the fault region increases, while network latency 

time computed by FT-cube2 algorithm nearly constant and less than iFTDM.  

In general, from the previous figures, the following notes can be observed: 

 As size of the fault region and number of fault regions increase, network traffic 

steps and network traffic time computed by iFTDM algorithm is nearly constant, 

while that computed by FT-cube2 algorithm increases and iFTDM algorithm is 

very effective than FT-cube2 algorithm. 

 As size of the fault region and number of fault regions increase, network latency 

steps and network latency time computed by iFTDM algorithm increases, while 

that computed by FT-cube2 algorithm is nearly constant. In most tested cases, 

network latency steps and network latency time computed by iFTDM algorithm is 

larger than that computed by FT-cube2 algorithm. Also, at a small number of fault 

regions, network latency time computed by FT-cube2 algorithm is less than that 

computed by iFTDM algorithm while at a large number of fault regions, network 

latency time computed by iFTDM algorithm less than that computed by FT-cube2 

algorithm. 
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As explained in the previous section network traffic steps and network traffic time 

are more significant criteria of measuring the efficiency of fault tolerant multicast routing 

algorithms. Hence, iFTDM is more efficient than FT-cube2. 
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CHAPTER V 

DATA MINING FOR PROPOSED ROUTING ALGORITHMS 

Data mining is the process of mining patterns and new information from data. 

Data mining is seen as a progressively significant tool by recent business to transform 

data into business intelligence giving an informational benefit.  Marketing, surveillance, 

fraud detection, and scientific discovery are a wide range of profiling practices presently 

used by data mining. On the whole, spatial data mining, or knowledge discovery in 

spatial bases data is the mining of implicit knowledge, spatial relations and the discovery 

of interesting characteristics and patterns that are not explicitly represented in the data 

bases. These methods are essential in understanding spatial data and in capturing intrinsic 

connections between spatial and non-spatial data. Furthermore, such exposed connections 

and relationships can be used to present data in a brief manner and to rearrange spatial 

databases to accommodate data semantics and accomplish high performance [97].  

Traditional statistical techniques such as linear regression were basically hands-on 

technologies that operated on small, static datasets to validate hypotheses or models. 

Conversely, new data mining tools and methods are capable of not only understanding 

tremendously large and complex datasets but also inferring those relationships as trends 

and predictions [98], [99]. 

Distributed-memory systems are the most favorable architectures used in 

advanced research problems. 2D mesh networks are popular architectures that have been 

implemented in many distributed-memory systems. These systems must support 

communication operations efficiently to achieve good performance. Development of fault 

tolerant multicast routing algorithms in 2D mesh networks is an important issue.  FTDM, 

fault tolerant deadlock-free unicast/tree-based multicast routing algorithm for 2D mesh 
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multicomputer [96] is compared with another fault tolerant deadlock-free unicast-based 

multicast routing algorithm for 2D mesh algorithm called FT-cube2 [60]. FT-cube2 

algorithm matches and differs in some points with our algorithm as presented in the 

previous chapter. Chapter IV contains a detailed analysis of results calculated by several 

significant criteria such as network latency steps, network traffic steps, network latency 

time and network traffic time for both algorithms with studying the effect of a changing 

number of destination nodes.  

In this chapter, data mining techniques have been used to validate results obtained 

from algorithms presented in Chapter IV. This has been done by enlarging the number of 

destinations network traffic steps, which have been used to analyze data results. Data 

mining regression analysis is one of the best features to understand mapping and 

relationship between dependent and independent variables. Regression analysis using 

different data mining software tools is presented in the next section.     

Regression Analysis 

Regression is an easy and simple technique to use. This model can be as easy as 

one input variable (dependent) and one output variable (independent). Obviously, it can 

acquire more complexity than that, including many input variables. There are several 

independent variables, when taken together produce a result with a dependent variable. 

The regression model is then used to predict the result of an unidentified dependent 

variable, given the values of the independent variables [97].  

Regression analysis involves any techniques or methods for modeling and 

analyzing numerous variables when the focus is on mapping the relationship between a 

dependent variable and one or more independent variables. Additionally, regression 

analysis helps us to understand how the typical value of the dependent variable changes 

http://en.wikipedia.org/wiki/Dependent_variable
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when any one of the independent variables is varied, while the other independent 

variables are held fixed. Regression analysis is broadly used in many applications for 

prediction and forecasting, where its use has considerable intersection with the field of 

machine learning. Regression analysis is also used to understand and recognize which 

among the independent variables are correlated to the dependent variable, and to discover 

types of these relationships [97]. 

Methods and Analysis 

Multiple regressions have been done for FTDM result data using WEKA [100], 

EXCEL [101] and MATLAB [102]. By changing the number of destinations, network 

traffic steps have been observed for both FTDM and FT-cube2 algorithms. In the 

following sections regression analysis produced by this data mining software is 

introduced. 

Data Mining Using WEKA  

Data mining software are not exclusively the domain of big businesses and 

expensive software. Actually, there is good and free software which has almost all the 

same features and is as good as other expensive. WEKA is the product of the University 

of Waikato (New Zealand) and was first implemented and developed in its modern form 

in 1997. It uses the GNU General Public License (GPL). WEKA software is written in 

the Java™ language and contains a GUI for interacting with data files and producing 

visual results [100]. In addition, WEKA has a general API. Hence, WEKA can be 

embedding in application; like any other library. WEKA startup screen shown in Figure 

43.  
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Figure 43. WEKA startup screen. 

Our data are numerical and the relation measure here is between number of 

destinations and network traffic steps of FTDM and FT-Cube2 fault tolerant routing 

algorithms. The following is a brief description of steps of using WEKA software: 

 First step is building the data set for WEKA. In order to load data into WEKA, 

put it into a format that will be understood and accepted by WEKA. WEKA's 

most popular method for loading data is in the Attribute-Relation File Format 

(ARFF), where the type of data being loaded is defined. After that, supplies the 

data itself. In the file each column and what each column contains are defined. In 

the case of the regression model, numeric or a date column are limited. Finally, 

each row of data in a comma-delimited format is supplied.  

 Second step is starting WEKA, and then choose the Explorer. The next step is go 

to the Explorer screen, with the Preprocess tab selected. Select the Open File 

button and select the ARFF file. With WEKA review the data can do. In the left 

section of the Explorer window, it outlines all of the columns in FTDM result 

data (Attributes) and the number of rows of data supplied (Instances). By 
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selecting each column, the right section of the Explorer window will also give 

information about the data in that column of data set.   

 Third step is creating the regression model with WEKA. To create the model, 

select the Classify tab. Then chose the desired model and where the data is that it 

should use to build the model. However it may be noticeable that to use the data 

supplied in the ARFF file, there are actually different options, some more 

advanced than what we'll be using. The other three selections are supplied test set, 

where you can supply a different set of data to build the regression model: Cross-

validation, which lets WEKA build a model depending on subsets of the supplied 

data and then average them out to create a final model; and Percentage split, 

where WEKA takes a subset of the supplied data to build a final model. These 

other choices are useful with different models, depending on the nature of data 

sets. With regression, FTDM result data can simply choose Use training set to 

build the desired model data set supplied in ARFF file [100].  

 

Figure 44. Regression output model in WEKA. 
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 Finally, the last step to creating the model is to choose the dependent variable (the 

column we are looking to predict). We know this should be No. of destinations, 

since that's what we're trying to determine for FTDM result data. Right below the 

test options, select a combo box that lets you choose the dependent variable. Then 

select the column No. of destinations, the output, as shown in Figure 44. 

Data Mining Using EXCEL  

The following is a brief description of steps of using EXCEL software: 

 First step is to prepare data by writing each attribute in only one column, and then 

we decide the dependent and independent attributes [101].  

 Second step is adding-in the data analysis tool pack EXCEL software. Statistical 

data analysis such as descriptive statistics and regression needs the Excel Data 

Analysis add-in. The default configuration of Excel software does not 

spontaneously support descriptive statistics and regression analysis.  

 Third step is to do multiple regressions using the data analysis Add-in. In this case 

the data obtained from both routing algorithms are numerical and the relation 

between number of destinations and network traffic steps of FTDM and FT-cube2 

routing algorithms. In the next lines a brief analysis for this case is introduced. 

We have regression with an interrupt and regressors, network traffic steps of 

FTDM and FT-cube2 algorithms. The population regression model is given by:  y 

= β1 + β2 x2 + β3 x3 + u 

It is supposed that the error term u is independent with a constant variance. The 

estimated regression line is given by: y = b1 + b2 x2 + b3 x3 

Using the data analysis add-in and regression the only change over one-variable 

regression is to contain more than one column in the Input X Range. However, we need 
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adjoining columns to do this regression. If this is not the case in the original data, then 

columns need to be copied to get the regressors in adjoining columns. 

 

Figure 45. Regression output model in EXCEL. 

The regression output has three components, as shown in Figure 45: regression 

statistics table, ANOVA table and regression coefficients table (which are important to 

build the relation between dependent and independent variables).  

Data Mining Using MATLAB  

MATLAB is popular data mining software tool which is a numerical computing 

environment developed by MathWorks. Implement multiple linear regressions to find the 

best fit of dependent variable as a linear function of independent variables [102]. For 

example, in the X-and-Y data: 

X = [1766 1422 1077 1120 1040 1023 840]; 

Y = [1.22 0.97 1.32 1.56 0.72 0.35 1.55]; 
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We believe that there is a straight line relationship between the number of X and 

the number of Y, and we need to find the parameters a and b in the linear formula 

Y = b + a * X 

MATLAB facilities can do this with [a, b] = regress (Y', X') 

There are two important observations about this: (1) the first returned argument is 

the slope a in the linear formula, the second is the y-intercept term b. (2) the ' operator 

has been used to transpose the data, which is in row vector form, into column data. When 

there is more than one independent variable, regression will carry out multiple 

regressions. Actually, this is done by packaging the independent variables into a matrix, 

with one dependent variable per column [102]. 

NO_Dest = b + a1 * Traffic_FTDM + a2 * Traffic_FT_cube2 

 The parameters a1, a2, and b can be found using regression: 

[a,b]=regress(NO_Dest’, [Traffic_FTDM’, Traffic_FT_cube2’]) 

Our data are numerical and consists of two values, one for each of the two 

independent variables used in the regression. The following is a brief description of steps 

of using MATLAB software: 

 First step is putting data in the following format: 

NO_Dest=[10 20 30 40 50 60 70 80 90 100]; 

Traffic_FTDM=[305 367 538 619 698 841 911 1017 1109 1253]; 

Traffic_FT_cube2=[431 821 1316 1755 2212 2734 3187 3651 4114 4515]; 

 Second step is writing the regression function for three (multiple) variables: 

[a,b]=regress(NO_Dest’, [Traffic_FTDM’, Traffic_FT_cube2’]) 
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Figure 46. Regression output model in MATLAB. 

Results 

 We obtained from using these three data mining programs and from plotting our 

data that as number of destinations increases, network traffic steps computed by FTDM 

and iFTDM routing algorithm are less than that computed by FT-cube2 routing 

algorithm. MATLAB was used to enlarge data set to 1000 destinations instead of 100 on 

the original simulations as shown in Figure 47 in case of FTDM. Also, MATLAB was 

used to enlarge data set to 1000 fault regions instead of 10 on the original simulations as 

shown in Figure 48 in case of iFTDM 
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Figure 47. Validate comparison between FTDM and FT-cube2. 

Figure 47 plots network traffic steps for various values of average number of 

destination nodes, ranging from 200 to 1000. The figure shows that the traffic steps 

computed by FTDM is nearly constant (slight increase) as number of destination nodes 

increases (the same behavior as in Figure 31). The increasing rate of network traffic steps 

computed by FT-cube2 is larger than FTDM (the same behavior as in Figure 31).  The 

results shown on both Figure 47 and Figure 31 are similar; this validates results when the 

sample size of number of destinations is enlarged. 

 

 Figure 48. Validate comparison between iFTDM and FT-cube2. 
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Figure 48 plots network traffic steps for various values of number of fault regions 

ranging from 200 to 1000. From plotting our data as number of fault regions increases, 

network traffic steps computed by iFTDM routing algorithm is less than that computed 

by FT-cube2 routing algorithm. Using MATLAB results we can enlarge our data to 1000 

destinations instead of 100 on the original simulations as shown in Figure 48. 

Using data mining validation tools  the new fault tolerant multicast routing 

algorithms (FTDM and iFTDM) compared with competitive fault tolerant multicast 

routing algorithm (FT-cube2) are more effective in case of enlarge data set as well as in 

original simulations mentioned in Chapter IV.  
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CHAPTER VI 

YASSIN ROUTING ALGORITHM 

  As processors in distributed-memory systems need to communicate with each 

other, effective communication is crucial to improve the performance of the system. In a 

distributed memory system with hundreds and maybe thousands of processors, fault 

tolerance is an important issue which is defined as the capability of the system to function 

in the occurrence of component (processor or connections) failures. The challenge is how 

to effectively accomplish routing in a faulty network, where each element fails with 

various probabilities. The current generation of these systems are very powerful and do 

not appear to fail very often in practice. However, even in some superior environments, 

fault tolerance ability must be addressed no matter how remote the probability of 

component failures is. 

As stated in Chapter IV, mesh connected networks have been widely used in most 

distributed-memory systems. These computer systems generally use the e-cube routing 

algorithm with wormhole switching because of its simplicity. The main idea of e-cube 

algorithm is to route a message first along the row and then along the column in a 2D 

mesh. It is important to note that e-cube provides deadlock-free shortest path routing 

without needing virtual channels [55]. We introduced a multicast routing algorithm, 

Yassin, which depends on e-cube routing and uses no virtual channels to deliver a 

message. Distributed-memory systems are the most advantageous architectures in 

building a massively parallel computer system. These systems need switching techniques 

to broadcast messages among processors. The wormhole switching technique has been 

widely used in the design of parallel computer systems. The basic idea of wormhole 

routing is that a message is partitioned into flow control flits. The multicast pattern, in 
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which one processor (node) sends the same message to multiple processors (nodes), is the 

most fundamental communication pattern used on multicomputer. Fault tolerance is a 

central issue facing the design and implementation of interconnection networks for 

distributed-memory systems. This chapter will focus on studying the fault-tolerant 

multicast wormhole routings in a 2D mesh networks with concave fault regions. 

As mentioned in previous chapter, a novel fault tolerant multicast routing 

algorithm, FTDM, for wormhole routed 2D mesh multicomputer proposed. This routing 

algorithm is a unicast/tree based multicast routing algorithm. The proposed routing 

algorithm works effectively for the most common faults in 2D mesh networks, f-rings 

and f-chains. This algorithm is proved to be deadlock-free in chapter four. As presented 

in chapter III, Park et al. [80] proposed a fault tolerant wormhole routing algorithm in 

mesh networks in the presence of concave fault regions, called F4. They propose a fault 

tolerant wormhole routing algorithms that deal with more restricted shapes of fault rings 

in the mesh networks. In their fault models, there might be several f-rings in a 2D mesh 

networks. Also, they divide each f-ring (convex or concave) fault region into four 

portions: the north, south, west and east sides. In this chapter, F4 compared with 

proposed routing algorithm to evaluate the performance of both algorithms.  

In this chapter, an efficient fault tolerant multicast routing algorithm, Yassin, for 

wormhole routed 2D mesh multicomputer is presented. Yassin routing algorithm is 

deadlock-free in spite of the concave fault regions in mesh networks. Yassin routing 

algorithm works with minimum routing restrictions and exploits the advantages of the 

three multicast routing style, unicast, path and tree based. Since it takes routing decision 

with minimum numbers of nodes (neighbor and central nodes), the presented routing 

algorithm is applicable in interconnection networks. Four essential performance metrics 
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in mesh networks, network traffic steps, network latency steps, network traffic time and 

network latency time are evaluated. 

Yassin Fault Model 

Numerous applications of network topologies require high reliability and 

availability. A large parallel computer requires that its interconnect network operates 

without packet loss for many hours. Thus, these networks must employ an error control 

mechanism to continue operation without interruption, and possibly without packet loss, 

despite the failure of a component. The failure of a processing element and its associated 

routers is referred to as a node failure, and the failure of any communication channel is 

referred to as a link failure. In our fault model, both node failures and link failures are 

considered. The fault model is the base for the fault tolerant routing algorithms. Types of 

faults, structures of fault regions and processes to component failures determine the 

approaches to design deadlock-free routing algorithm. 

 

Figure 49. Fault model for Yassin. 

Yassin algorithm considers convex (also known as block faults) and concave 

faults, which are the most commonly encountered faults in mesh networks. A convex 
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fault is a fault region such that there is a rectangle whose interior contains all and only the 

faulty components of the fault region and all processors and links on its four boundaries 

are fault-free, F1, as shown in Figure 49. Convex faults can be f-chain if fault region 

includes boundary nodes otherwise f-ring. A concave fault is a fault region such that 

there is └, ┘, ┌ and ┐ shapes whose interior contains all and only the faulty components 

of the fault region and all processors and links on its four boundaries are fault-free, F2, as 

shown in Figure 49. 

In Yassin as in iFTDM, we consider fault information of a fault is distributed to a 

limited number of nodes (0, ybi) in case of odd rows or (m, ybi) in case of even rows) in 

order to avoid the fault before reaching it. Because fault information is distributed to a 

limited number of nodes, Yassin is a limited-global-information-based multicasting 

which is a compromise of local-information-based approach and global-information-

based approach. 

Yassin Routing Algorithm  

Fault tolerance is an important concern for the design of interconnection networks 

for large scale parallel processing computers. Most of fault tolerant multicast routing 

algorithms which were proposed recently concentrate on unicast-based multicast 

algorithms to deliver a message from source node to destination nodes. Unicast-based 

multicast algorithms require a startup time for sending a message to each destination 

node, and this needs more work. As in iFTDM fault tolerant multicast routing, Yassin 

algorithm assigns a label for each node on a 2D mesh based on the position of that node 

in a Hamiltonian path. In the Hamiltonian path, for each node there is a unique label, 

label 0 for the first node in the path and N-1 for the last node on the path of routing. The 

two algorithms create the routing decision at each sending node and both are a limited-
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global-information-based multicasting algorithm which is a compromise of local-

information-based approach and global-information-based approach. iFTDM can tolerate 

convex faults without using virtual channels but cannot work with concave fault regions. 

However, Yassin routing algorithm can tolerate convex and concave faults without using 

virtual channels.    

The routing technique used by Yassin minimizes the network traffic time 

involved between the source and the destination nodes. At the source node, Yassin 

algorithm divides the network into two sub networks. The high channel sub network 

contains the destination nodes and channels whose direction is from lower labeled nodes 

to higher labeled nodes, and the low channel sub network contains the destination nodes 

and channels whose direction is from higher labeled nodes to lower labeled nodes. 

The message transmission in Yassin is delivered according to the following 

method: 

Yassin is a unicast/tree-based multicast algorithm, which attempts to deliver the 

message to all destinations in two phases. In the first phase the message is delivered as a 

unicast-based (using separate addressing routing technique) to X-coordinate nodes (nodes 

(0, ybi) in case of odd rows or (m-1, ybi) in case of even rows) of each true fault regions 

at these nodes, central nodes. Yassin considers each node of them as a source node that 

has a message with header containing destination nodes in the three locations around the 

fault. In the second phase, the message is delivered from the central nodes in a tree-based 

fashion (using R, Rand R), which attempts to route the message to all destination nodes 

in a single multi- head worm that splits at some routers and replicates the data on multiple 

output ports.  
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Upon delivery of the message, each receiving node on the network decides 

whether it is the first destination node. In this case, it is removed from the set of 

destinations and receives the message. At this point, if there is a destination node on the 

sets of the destinations, Yassin algorithm continues according to the previous method. 

Yassin algorithm uses five functions and two procedures. The first function is R to route 

a message in each fault locations around the fault region. The second function is R to 

route a message on a boundary of a fault region in case of convex fault. The third 

function is R  to route a message on a boundary of a fault regions in case of concave 

fault. The fourth function is SEND(s, msg, d) takes as input the source, the message itself 

and the destination node. It makes s send the message mess to its neighboring d. The fifth 

function is RECEIVE(d , msg, s) takes as input the destination, the message itself, and the 

source node. It makes d receive the message mess from s. The first procedure, phase1, to 

route a message in the first phase (unicast based multicast phase). The second procedure, 

phase2, to route a message in the second phase (tree based multicast phase). 

 

Figure 50. Locations around concave fault region. 
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Routing Functions 

Yassin assigns a label for each node based on the position of that node in a 

Hamiltonian path [40].  

The first routing function used in Yassin is defined as: 

R (c, d) = w, where 

{  Q(d)< Q(c) if Q(u)} Q(z) max{Q(z):
Q(d)> Q(c) if Q(u)} Q(z) max{Q(z):

 = Q(w) 
  and z is a neighboring node of c

 

It was proved in Lin and Ni [40] that for two arbitrary nodes c and u in a 2D 

mesh, the path selected by the routing function R is deadlock-free. The routing function R 

is used in each region does not contain any fault nodes. 

The second routing function used in Yassin around convex fault region is defined as: 

R(c, d) = w, where 

 

  (xc, yc-1) if  xd= xc  

w =   (xc, yc+1) if xd = xc+ dx dFi  

 (xc+ dx, yc) otherwise 

It was proved in Shaheen and Abukmail [96], FTDM, this routing function is 

deadlock-free routing function.  

The third routing function used in Yassin around concave fault region is defined as: 

R(c, d) = w, where 
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 (xc+ dx, yc)  If    xd = xc+ (dx mFi), 

Or xd = xc+ (dx (dFi - mFi)), 

W=   Or  xd = xc+ (dx mFi)  

 (xc, yc-1) If   xd= xc  

  (xc, yc+1) otherwise 

This routing function is deadlock-free routing function because it works on five 

boundaries only for each concave fault region (which have six boundaries as in Figure 

51), a message never visits any node around a concave fault region twice then, a cycle 

cannot exist within this path in the network and the path selected by the routing function 

R is the shortest path between the two nodes c and d.  

 

Figure 51. The routing path using R''. 

To define the path routing functions, which determines the next node for which 

the path of Yassin will be visited, some definitions are introduced: 

1) Let fbi= (xbi, ybi), fmi= (xmi, ymi), and fei= (xei, yei) be the coordinates of each concave 

fault.  
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2) The fault region number i, Fi, is described by three nodes, fbi, fei, and fmi where fbi is located in 

the southwest corner of the concave fault region, while fei is located in the northeast corner of 

the concave fault region, and fmi is located in the angle of concave fault (at the middle of 

concave fault) as shown in Figure 50.  

3) Width of a fault region Fi is defined by: dFi=xei – xbi , mFi=xmi – xbi as shown on 

Figure 50.     

4) The variable dx is equal to 1 if the direction of the message path is from west to east or 

-1 if it is from east to west. 

5) LN is the label of last node, (xei, ybi), of a fault region which the message path visits. 

The value of LN is zero if the message path is in a non-fault region, while it is non 

zero if the message path is in a fault region. 

6) Let L1, L2 and L3 are three locations around each true fault regions as in Figure 50, and 

L4 is a location in case if the 1
st
 fault region is on a south boundary of 2D mesh.  

7) True fault regions are the main fault regions which have three locations around them 

and may have other fault regions on locations, L3 or L1, with fbi= (xbi, ybi), and fei= 

(xei, yei) less than it. 

8) Central nodes are the nodes which the source node sends a copy of a message in the 

first phase in a unicast fashion and Y-coordinate of them is ybi for each true fault 

region; a source node is one of the central nodes if the first convex and concave fault 

region is not on a south boundary of 2D mesh (inside 2D mesh). 

9) Di = {(x, y) : (x, y)  D ^ x > xbni ^ y< yei } 

10) D = Da + Db if the 1
st
 fault region is on a south boundary of 2D mesh, where Da is the 

destination nodes on L1 and L2, Db is the destination nodes on L3 plus the destination 
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nodes around fault region, where is a equal k and b equal k (k is number of central 

nodes). Otherwise, D = Da + Db + D4, where D4 is the destination nodes on L4 

11) Lfi is the distance around fault regions (on the boundary of the fault) which equal dFi 

plus 2*| (yei-ybi)| 

Algorithm Yassin 

Input: The message msg, Label node LN, Central nodes CNk, k is the number of central 

nodes, Source node s=(xs, ys), Destination set D, and Fault region Fi, the address of the 

current node of msg is c=(xc, yc ). 

Output:  dj  D, RECEIVE (dj , msg, s) 

BEGIN 
[1] IF ys is even THEN dx = 1 ELSE dx = -1     

[2] IF c = d1 THEN   

2. 1) D = D-{c} 

2. 2) RECEIVE (d, msg, c) 

[3] IF D =   THEN stop 

[4] Procedure Phase 1 

[5] Procedure Phase 2 

[6] Repeat the above steps until each destination in the message header is reached. 

End of Yassin 

 

Procedure Phase 1 

Begin 

/* Send copies of message to CNk */ 

[a] SEND (s, msg, CNk) using separate addressing routing. 

[b] Modify header of messages, msg, and put in each header Dk destinations.  

[c] Let each CNk as a new source node 

[d] IF CNk = d THEN   

D = D-{CNk} 

RECEIVE (d, msg, CNk) 

[e] IF D =   THEN stop 

End of Procedure Phase 1 

 

Procedure Phase 2 

Begin 

/* Send msg using R, R' and R'' functions */ 

// At each central node, send two copies of message, msg1 and msg2 

a) SEND(s, msg1, Da) using R 

IF c = da THEN   

Da = Da -{c} 

RECEIVE (da, msg1, c) 

b) SEND(s, msg2, Db) using R' (convex) or R'' (Concave) to route a message around the 

fault region until the message reach to LN, and then use R. 

IF c = db THEN   
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Db = Db -{c} 

RECEIVE (db, msg2, c) 

c) IF L3 have another faults then recursively apply Yassin. 

End of Procedure Phase 2 

Pseudocode 3. Yassin Routing Algorithm  

Yassin uses the routing function R'' in concave fault regions only. Figure 51 

illustrates the different cases of the routing function R'' and the way of its work around 

the fault region. The direction of the message path may be from west to east, Figure 

51(A) or from east to west, Figure 51(B).  

Yassin can be considered as a general form of FTDM (in case of convex fault 

regions only by applying R' function) and iFTDM (using the same main idea to overcome 

overlap problem of convex fault regions by use column path routing) that tolerate regular 

(convex and concave) fault region with overlap of convex faults. 

Lemma: Yassin algorithm is deadlock-free 

Proof: Because Yassin use R, R, R'' and separate addressing routing to route a message 

on a 2D mesh with convex and concave faults and all of these are deadlock-free (no 

cyclic dependency can be created among the channels) as mentioned. Then Yassin is 

deadlock-free.  

Results and Discussions   

A simulation study has been conducted   to evaluate Yassin performance and to 

compare it with F4 routing algorithms. The simulations were conducted on a 50×50 2D 

mesh and double channels were used. The two algorithms were written using C++ 

language and were implemented on a PC. In this section, we present the simulation 

results and analysis. In the simulation, wormhole routing is chosen as the switching 

technique and the routing algorithm is also applicable with other switching techniques. 
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This configuration creates different networks with a number of processors ranging from 

100 to 1080. The average number of destinations is ranging from 10 to 100 and using 

three fault regions one convex (f-ring) and two concave, ┘. 

In this subsection, four essential performance metrics in direct networks, network 

latency steps, network traffic steps, network traffic time and network latency time are 

calculated. The network latency step is the greatest number of channels which the 

message takes to reach its destinations. The network traffic step is the total number of 

channels used to deliver the message to all destinations. The network latency time is the 

longest message transmission time involved. The network traffic time is the overall time 

required to deliver the message to all destinations. They affect the overall performance of 

the distributed memory system and the granularity of parallelism that can be exploited 

from the system [30]. Network latency time depends on network latency steps, while 

network traffic time depends on network traffic steps. The startup time also affects the 

value of the network latency and network traffic times. The startup time is the time 

acquired by the system in preparing the message at the source node to deliver the 

message to the network and at the destination node to receive the message from the 

network. It depends on the design of system software within the nodes and the interface 

between nodes and routers.  

In this subsection, the network latency steps, network traffic steps, network 

latency time and network traffic time are calculated for Yassin and F4 routing algorithms. 

The formula that can be used to calculate the four performance metric for Yassin routing 

technique (tolerate concave fault regions) can be derived from FTDM routing technique 

(tolerate convex fault regions), if we consider a concave fault region as multiple convex 
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fault regions (two convex) as shown in Figure 52. The following formulas can be used to 

calculate the performance metrics for Yassin and F4 algorithms.  

Our partitioning of the 2D mesh around each fault regions into Lih and L4, will result 

in partitioning the destinations D into Dih and D4 respectively where i is ranging from 1 to  

F, h is ranging from 1 to 3 and F is number of fault regions. In addition, (cX, cY) is the 

coordinate of central node. 

 Distance (di+1, di) = |xdi+1 – xdi| + |ydi+1 – ydi| 

 Latency (D) = 


||

1

D

i

Distance (di+1, di) 

Which is dependent on the start coordinates and end coordinates for each location. 

 L4 =Latency (Di4) + | (SX-xdi) | + | (SY-ydi)| 

 Lih =Latency (Dih), where is h = 1, 2, 3 

 Traffic(i) = Lih + Lfi + ybi+ xbi +2  

 Left (i) =  Lih + ybi+1, where h = 1 and 2 

 Right (i) = Lih + Lfi + ybi+ xbi +2, where h = 3  
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A: One Concave (Yassin) 

 

 

B: Two Convex (FTDM) 

Figure 52. The Relationship between Yassin and FTDM Algorithms. 
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The network latency steps of Yassin is given by: 

Yassin_Latency=Max(Left (i) , Right (i) , L4)        (1) 

The network traffic steps of Yassin is given by: 

 Yassin_Traffic = Traffic(i) +    L4         (2) 

The network latency steps, F4_Latency, of F4 is given by: 

  yej - ybj if    xdi> xej 

Width(ij)= ydi – yej if  ybj< ydi< yej  

  xdi - ybj if   ydi< yej  & xdi< xej  

   0  otherwise 

Where width is number of steps around fault region and dependence on destination 

position 

F4_Latency = Max{ xdi - Sx+ydi - Sy+ 2* Width(ij), 1≤ j ≤ T, 1≤ i ≤ |D|}        (3) 

Where T is number of fault regions participate between source node and destination node 

The network traffic steps, F4_Traffic, of F4 is given by: 

F4_Traffic =        (xdi - Sx+ydi - Sy+ 2* Width(ij))     (4) 

The worst case of network latency time of Yassin algorithm can be calculated by:  

Yassin_Latency_Time = theader * Dlatency_steps + tcopy * Flatency_steps  

+ tchannel * Yassin _Latency + tstartup * (cn+1)   (5) 

The worst case of network latency time of Yassin algorithm can be calculated by:  

Yassin_Traffic_Time = theader * |D| + tcopy * |F|+  tstartup * (cn+1) 

+ tchannel * Yassin_Traffic            (6) 

The worst case of network latency time of F4 algorithm can be calculated by:   

    F4_Latency_Time = tstartup * |D| +tchannel * F4_Latency            (7) 

The worst case of network traffic time of F4 algorithm can be calculated by:   

F4_Traffic_Time = tstartup * |D| + tchannel * F4_Traffic           (8) 




||

1

D
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Where: tchannel, channel time, is the time taken between two neighbor nodes. The 

channel time, tchannel, equals the sum of the router latency time, tr, and the channel 

propagation time, tp. The time, tstartup is the startup time. The time, theader, is the time taken 

to modify the message header at each destination. Dlatency_steps is a set of destinations 

participating in the longest path. The time, tcopy, is the time taken to copy the message at 

each fault region participates in the longest path. Flatency_steps, is a number of fault regions 

participate in the longest path. 

Comparative study. As an example, to demonstrate the difference between Yassin 

algorithm and F4 algorithm, a 1515 2D mesh is considered, Figure 53. The source node 

is (0, 0) and the destination nodes equals 11. We assume that the channel time, tchannel, 

equals 25 nanoseconds, the time, tcopy, equals 15 nanoseconds, the time, theader, equals 5 

nanoseconds, and the startup time, tstartup, equals 33 nanoseconds. The number of fault 

regions equals 2, Dlatency_steps, equals 2, Flatency_steps, equals one, number of central nodes 

equals 3. 

By using Yassin algorithm, Figure 53(a), network latency steps is 27 channels. 

Then, by applying equation (5), the latency time computed by Yassin equals 799 

nanoseconds. Using F4 algorithm, Figure 53(b), network latency steps is 20 channels. 

Then, by applying equation (7), network latency time computed by F4 algorithm equals 

863 nanoseconds. It is clear that, network latency steps of Yassin algorithm is larger than 

that of F4 algorithm while network latency time of Yassin algorithm is less than that of 

F4 algorithm. Since F4 algorithm is a unicast-based technique, it produces low network 

latency steps and high network latency time. 

By using Yassin algorithm, Figure 53(a), network traffic steps is 70. Then, by 

applying equation (6), network traffic time computed by Yassin equals 1919 
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nanoseconds. Using F4 algorithm, Figure 53(b), network traffic steps is 123. Then, by 

applying equation (8), network traffic time computed by F4 algorithm equals 3438 

nanoseconds. It is clear that, the network traffic steps and network traffic time of Yassin 

algorithm are very less than those of F4 algorithm. 

 

 

Figure 53. Network traffic steps computed by (a) Yassin algorithm, (b) F4 algorithm. 
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Results. The equations from 1 to 8 are used to calculate network latency steps, 

network traffic steps, network latency time and network traffic time for both algorithms 

in 2D mesh. Figures from 54 to 57 show the results of the two algorithms. The 

continuous line represents results of Yassin, while the dotted line represents results of F4. 

Figure 54 plots network latency steps for various values of the average number of 

destination nodes, ranging from 10 to 100. The figure shows that, network latency steps 

computed by Yassin increases as number of destination nodes increases. The increase is 

not affected by type of the fault region (convex and concave). The latency steps 

computed by F4 is nearly constant as number of destination nodes increases. This is 

because Yassin is a unicast/tree-based multicast routing algorithm while F4 is unicast-

based multicast routing algorithm.  

Figure 55 plots network traffic steps for various values of average number of 

destination nodes, ranging from 10 to 100. The figure shows that network traffic steps 

computed by Yassin are nearly constant (slight increase) as number of destinations 

increases. Network traffic steps computed by F4 are increase as the number of destination 

nodes increases. The increasing rate of network traffic steps computed by F4 is large 

because each destination node needs a separate message path. 

Figure 56 plots network latency time for various values of the average number of 

destination nodes, ranging from 10 to 100. The figure shows that the network latency 

time computed by the two algorithms increases as number of destination nodes increases. 

Clearly, at a small average number of destination nodes, Yassin algorithm outperforms 

F4 algorithm, while at a large average number of destination nodes, F4 algorithm 

outperforms Yassin algorithm. This is because the network latency steps are the dominant 
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factor of network latency time computed by Yassin algorithm, while the startup time is 

the dominant factor of network latency time computed by F4 algorithm.  

Figure 57 plots network traffic time for the various values of average number of 

destination nodes, ranging from 10 to 100. The figure shows that network traffic time 

computed by Yassin algorithm is nearly constant as the number of destination nodes 

increases, while the traffic time computed by F4 algorithm increases. This is because the 

traffic time values depend on network traffic steps values. 

 

Figure 54. Network Latency Steps Vs. No. of Destinations. 

 

Figure 55. Network Traffic Steps Vs. No. of Destinations. 
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Figure 56. Network Latency Time Vs. No. of Destinations. 

 

Figure 57. Network Traffic Time Vs. No. of Destinations. 

 

Figure 58. Validate comparison between Yassin and F4. 
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Figure 58 plots network traffic steps for various values of the average number of 

destination nodes, ranging from 200 to 1000 using data mining regression tools. The 

figure shows that the traffic steps computed by Yassin is nearly constant (slight increase) 

as number of destination nodes increases (the same behavior as in figure 55). The 

increasing rate of network traffic steps computed by F4 is larger than Yassin (the same 

behavior as in Figure 55).  When compared, the results shown in both Figure 58 and 

Figure 55 are the same, and then this validates our results and enlarges the sample size of 

number of destinations. 

Generally, from the previous figures, the following notes can be observed: 

 As number of destinations network traffic steps and network traffic time 

computed by Yassin algorithm is nearly constant, that computed by F4 algorithm 

increases and Yassin algorithm is very effective than F4 algorithm. 

 As number of destinations increases, network latency steps and network latency 

time computed by Yassin algorithm increases, while that computed by F4 

algorithm is nearly constant. In most tested cases, network latency steps and 

network latency time computed by Yassin algorithm is larger than that computed 

by F4 algorithm. 

As explained in Chapter IV, network traffic steps and network traffic time are 

more significant criteria of measuring the efficiency of fault tolerant multicast routing 

algorithms. Hence, Yassin is more efficient than F4. 
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CHAPTER VII 

SUMMARY AND FUTURE WORK 

This chapter summarizes the research of this dissertation and introduces some 

suggestions for future research. 

Summary of This Dissertation 

This dissertation presented new fault tolerant multicast routing techniques for 

distributed-memory systems performance. 

Parallel computer systems, which emphasize parallel processing, are the most 

favorable architectures to increase the computing power. A parallel computer system 

consists of several powerful processors connected together into a single system. These 

connected processors cooperate to solve a single problem that exceeds the ability of any 

one of those processors. Parallel computer systems are constructed by connecting a 

number of powerful computer processors together into a single system, which cooperates 

to solve grand-challenge problems. They provide cost-effective mechanisms to achieve 

high system performance through concurrent activities. 

In Chapter II, multiprocessors systems, distributed-memory, shared-memory, and 

distributed-shared-memory, which are currently the most promising parallel systems, 

were considered. Popular network topologies, such as hypercube, tori, and mesh 

networks for distributed-memory systems were discussed. In distributed-memory 

systems, a switching technique is used to transmit a message between two nodes. The 

most common switching techniques for direct networks, including circuit, store-and-

forward, virtual cut-through switching, and wormhole switching, were considered. 

Multicast routing techniques can be classified as unicast-based, path-based and tree-based 
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algorithms. Multicast routing algorithms for direct networks were surveyed. In this 

chapter, we have demonstrated that: 

 Distributed-memory systems have become the popular architectures for massively 

parallel computers. 

 Lower-dimension mesh networks are the suited topologies for current distributed-

memory systems. 

 The wormhole routing has emerged as the most widely used in distributed-

memory systems 

In Chapter III, an overview of fault tolerant multicast routing algorithms was 

presented. In distributed-memory systems, packets usually travel across several 

intermediate nodes before reaching the destination node. Deadlock occurs when some 

packets cannot advance toward their destination because the buffers requested by them 

are full. Also, some components such as processors, routers, and communication 

channels may fail. Fault tolerance refers to the ability of the system to operate correctly in 

the presence of faults. According to number of parameters, faults are classified into 

different types. Fault tolerance is an important issue facing the design of distributed-

memory systems. A brief introduction to deadlock, Fault model and fault tolerance was 

given. Fault tolerant multicast routing algorithms for regular and irregular fault regions 

were studied. In the same Chapter, we have demonstrated that designing fault tolerant 

and deadlock-free multicast routing algorithms are the important problems in distributed-

memory systems. 

In Chapter IV, FTDM and iFTDM fault tolerant multicast routing algorithms were 

proposed. Fault tolerant multicast routing algorithm that uses less network traffic steps, 

network traffic time, network latency steps and network latency time is one of the most 
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important issues that deals with the implementation of interconnection networks for 

large-scale parallel computer systems. The proposed fault tolerant routing algorithm, 

FTDM, can tolerate convex faults without using virtual channels. Also, FTDM tolerates 

f-chains in mesh networks and does not lead to deadlock with any number of non-

overlapping f-regions. The proposed routing algorithm, FTDM, can tolerate convex faults 

with presence of a large number of destination nodes. In addition, an efficient fault 

tolerant multicast routing algorithm for 2D mesh, iFTDM, which is an improvement of 

FTDM algorithm, is presented. The proposed routing algorithm, iFTDM, can tolerate 

convex faults with the presence of a large number of fault regions and large fault region 

size. The routing algorithm iFTDM tolerates f-chains in meshes with the overlapping of 

convex fault regions. This algorithm is a dead lock free. Because fault information is 

distributed to a limited number of nodes, both FTDM and iFTDM are limited-global-

information-based multicasting algorithms, which is a compromise of local-information-

based approach and global-information-based approach. The simulation results show that 

FTDM and iFTDM routing algorithms has better performance than FT-cube2 in most 

significant criteria to measure the efficiency. 

In Chapter V, data mining for FTDM and iFTDM routing algorithms were 

presented to validate the results. Data mining has enormous applications in different areas 

like agriculture, marketing, biology, computational research etc. Regression analysis is 

one of the most important tools in data mining.  There are many tools available to do data 

mining analysis such as WEKA. Results are obtained using the tools WEKA, EXCEL 

and MATLAB. Using data mining concept, network traffic steps are calculated for two 

different algorithms by changing the number of destinations. 
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In Chapter VI, an efficient fault tolerant multicast routing algorithm, Yassin, for 

wormhole routed 2D mesh multicomputer is presented. The routing algorithm is 

deadlock-free in spite of the concave fault regions in mesh networks. The presented 

routing algorithm works with minimum routing restrictions and exploits the advantages 

of the three multicast routing style, unicast, path and tree based. Since it takes a routing 

decision with a minimum numbers of nodes (neighbor and central nodes), the presented 

routing algorithm is applicable in interconnection networks. Four essential performance 

metrics in mesh networks, network traffic steps, network latency steps, network traffic 

time and network latency time are evaluated. 

Future Work 

Several issues related to the study of fault tolerant multicast routing techniques for 

distributed-memory systems have been covered in this dissertation. Conversely, they are 

worthy of further study. They include 

 To extend this fault tolerant multicast routing techniques to other high level 

mesh networks (generalizing the use of this routing to n-D mesh networks). 

 To extend this fault tolerant multicast routing techniques to other network 

topologies, such as tours (as it is a mesh with wraparound) and hypercube. 

 Applying these fault tolerant routing algorithms, (FTDM, iFTDM and Yassin), 

for irregular fault regions with complicated ship (the proposed algorithms was 

applied for regular fault regions – convex and concave – it can be enhanced to 

achieve better effective results). 

 Using another path routing functions to determine the next node to which the 

message will be forwarded, (the proposed fault tolerant multicast routing 

algorithms was used in three functions R, Rand R). 
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 To extend this fault tolerant unicast/tree based multicast routing techniques to 

other types of combination (unicast, path and tree based multicast routing). 

 Using another switching technique (such as store and forward, virtual cut-

through and circuit switching), the proposed fault tolerant routing algorithms 

used wormhole switching. 
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