
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Fall 12-2013

New Fault Tolerant Multicast Routing Techniques to Enhance New Fault Tolerant Multicast Routing Techniques to Enhance

Distributed-Memory Systems Performance Distributed-Memory Systems Performance

Masoud Esmail Masoud Shaheen
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Shaheen, Masoud Esmail Masoud, "New Fault Tolerant Multicast Routing Techniques to Enhance
Distributed-Memory Systems Performance" (2013). Dissertations. 234.
https://aquila.usm.edu/dissertations/234

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=aquila.usm.edu%2Fdissertations%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/234?utm_source=aquila.usm.edu%2Fdissertations%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

 The University of Southern Mississippi

NEW FAULT TOLERANT MULTICAST ROUTING TECHNIQUES TO

ENHANCE DISTRIBUTED-MEMORY SYSTEMS PERFORMANCE

by

Masoud Esmail Masoud Shaheen

Abstract of a Dissertation

Submitted to the Graduate School

of The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

December 2013

ii

ABSTRACT

NEW FAULT TOLERANT MULTICAST ROUTING TECHNIQUES TO

 ENHANCE DISTRIBUTED-MEMORY SYSTEMS PERFORMANCE

by Masoud Esmail Masoud Shaheen

December 2013

Distributed-memory systems are a key to achieve high performance computing

and the most favorable architectures used in advanced research problems. Mesh

connected multicomputer are one of the most popular architectures that have been

implemented in many distributed-memory systems. These systems must support

communication operations efficiently to achieve good performance. The wormhole

switching technique has been widely used in design of distributed-memory systems in

which the packet is divided into small flits. Also, the multicast communication has been

widely used in distributed-memory systems which is one source node sends the same

message to several destination nodes. Fault tolerance refers to the ability of the system to

operate correctly in the presence of faults. Development of fault tolerant multicast routing

algorithms in 2D mesh networks is an important issue. This dissertation presents, new

fault tolerant multicast routing algorithms for distributed-memory systems performance

using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing

in 2D mesh networks, but it can also be extended to other topologies. These algorithms

are a combination of a unicast-based multicast algorithm and tree-based multicast

algorithms. These algorithms works effectively for the most commonly encountered

faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the

proposed routing algorithms are effective even in the presence of a large number of fault

iii

regions and large size of fault region. These algorithms are proved to be deadlock-free.

Also, the problem of fault regions overlap is solved. Four essential performance metrics

in mesh networks will be considered and calculated; also these algorithms are a limited-

global-information-based multicasting which is a compromise of local-information-based

approach and global-information-based approach. Data mining is used to validate the

results and to enlarge the sample. The proposed new multicast routing techniques are

used to enhance the performance of distributed-memory systems. Simulation results are

presented to demonstrate the efficiency of the proposed algorithms.

COPYRIGHT BY

MASOUD ESMAIL MASOUD SHAHEEN

2013

The University of Southern Mississippi

NEW FAULT TOLERANT MULTICAST ROUTING TECHNIQUES TO

ENHANCE DISTRIBUTED-MEMORY SYSTEMS PERFORMANCE

by

Masoud Esmail Masoud Shaheen

A Dissertation

Submitted to the Graduate School

of The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved:

Dia Ali__________________________

Director

Ahmed Abukmail__________________

Joe Zhang________________________

Jonathan Sun______________________

Ras Pandey_______________________

Adel Ali__________________________

 Susan A. Siltanen___________________

 Dean of the Graduate School

December 2013

iv

ACKNOWLEDGMENTS

This is to thank all of those who have assisted me in this effort. I wish to express

my fruitful thanks and sincere appreciation to Dr. Dia Ali, committee chairman, for his

academic supervision, scientific discussion, helping, guiding, and his continuous valuable

support throughout this work. I also thank Dr. Ahmed Abukmail, Dr. Chaoyang Zhang,

Dr. Adel Ali, Dr. Ras Pandey and Dr. Zheng Sun, the members of my graduate

committee, for their guidance and suggestions. Especially Dr. Abukmail, gratitude is due

for all his advice, suggestion of the problem, friendship, helpful guidance, and active

support. I also thank the school of computing staff, especially Ms. Crystal McCaffrey;

without their knowledge and assistance, this study would not have been successful.

I would like to thank my family members, especially my wife, Asmaa Hassan, my

daughters, Jomana and Hana, and my son, Yassin, for supporting and encouraging me to

pursue this degree. Without my wife’s encouragement, I would not have finished the

degree. I also would like to thank my mom, dad, and sister, Rania, for their infinite

support throughout everything.

v

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. vii

LIST OF ILLUSTRATIONS ... viii

LIST OF PSEUDOCODE.. xi

CHAPTER

 I. INTRODUCTION ...1

 Problem Statement

 Significance of the Study

II. BACKGROUND ..6

 Parallel Computer Memory Architectures

 Basic Network Topologies

Network Switching Techniques

Multicast Routing Algorithms

 III. FAULT TOLERANT MULTICAST ROUTING ALGORITHMS43

 Fault Model and Fault Tolerance

Fault Tolerant Routing Algorithms for Regular Faults

 Fault Tolerant Routing Algorithms for Irregular Faults

 IV. FTDM AND iFTDM ROUTING ALGORITHMS67

 FTDM Fault Model

 FTDM Routing Algorithm

iFTDM Routing Algorithm

 V. DATA MINING FOR PROPOSED ROUTING ALGORITHMS96

Regression Analysis

 Methods and Analysis

 Results

vi

VI. YASSIN ROUTING ALGORITHM ..107

Yassin Fault Model

 Yassin Routing Algorithm

VII. SUMMARY AND FUTURE WORK ...128

 Summary of This Dissertation

 Future Work

REFERENCES ..133

vii

 LIST OF TABLES

Table

1. Misrouted on an f-ring or f-chain...57

2. Routing Rules for Irregular Fault Regions...59

viii

LIST OF ILLUSTRATIONS

Figure

1. A Shared Memory Architecture ...9

2. Distributed Memory Architecture ...11

3. Generic Node Architecture ..11

4. A Distributed Shared Memory Architecture ...14

5. Linear Topology ..15

6. Ring Topology ..11

7. Star Topology...16

8. Tree Topology ...16

9. Example of (a) Hypercube, (b) Tours and (c) Mesh ...11

10. Time Space Diagram of Store-and-forward Switching Message 12

11. Time Space Diagram of a Virtual Cut-through Switching Message 11

12. Time Space Diagram of a Circuit Switching Message ...23

13. Time Space Diagram of Wormhole Switching Message 12

14. An Example of a Separate Addressing Algorithm on a 2D Mesh 28

15. An Example of the Dual Path Algorithm on a 2D Mesh33

16. An Example of the Column Path Algorithm on a 2D Mesh 35

17. Message Transition by Using TMP Algorithm ...36

18. An Example of a Tree-based Algorithm on a 2D Mesh 39

19. Message Transition by Using YOMNA Algorithm ..41

20. Example of Regular (Convex, Concave) and Irregular Fault Regions 46

ix

21. An Example of the Negative-first Routing in a 2D mesh 50

22. Routing Restrictions Around a Fault Region ..55

23. An Example of Routing Around Overlapping Fault Rings 56

24. An Example of Routing Around an Irregular Fault ..61

25. MCCs that are 2-hop Apart Merged into One (Extended) MCC62

26. FTDM Fault Model ..69

27. Locations around Fault Regions ..72

28. The Routing Path Using R' ..73

29. An Example of FTDM Routing Algorithm ...79

30. Latency Steps Vs. No. of Destinations ..82

31. Traffic Steps Vs. No. of Destinations ..83

32. Network Traffic Time Vs. No. of Destinations ...84

33. Network Latency Time Vs. No. of Destinations..84

34. Overlapping on L1 and L3 ..86

35. Latency Steps Vs. No. of Fault Regions ..90

36. Traffic Steps Vs. No. of Fault Regions ..91

37. Latency Steps Vs. Size of Fault Region...91

38. Traffic Steps Vs. Size of Fault Region ..91

39. Network Traffic Time Vs. No. of Fault Regions ...92

40. Network Latency Time Vs. No. of Fault Regions ...93

41. Network Traffic Time Vs. Size of Fault Regions ..93

42. Network Latency Time Vs. Size of Fault Regions ..93

x

43. WEKA Startup Screen ...99

44. Regression Output Model in WEKA ...100

45. Regression Output Model in EXCEL ..102

46. Regression Output Model in MATLAB ..104

47. Validate Comparison Between FTDM and FT-cube2 ..105

48. Validate Comparison between iFTDM and FT-cube2 ..105

49. Fault Model for Yassin ..109

50. Locations around Concave Fault Region ...112

51. The Routing Path Using R'' ..114

52. The Relationship between Yassin and FTDM Algorithms120

53. Network Traffic Steps Computed by (a) Yassin Algorithm, (b) F4 Algorithm...123

54. Network Latency Steps Vs. No. of Destinations ...125

55. Network Traffic Steps Vs. No. of Destinations ...125

56. Network Latency Time Vs. No. of Destinations..126

57. Network Traffic Time Vs. No. of Destinations ...126

58. Validate Comparison between Yassin and F4 ..126

xi

LIST OF PSEUDOCODE

Pseudocode

1. FTDM Routing Algorithm ...74

2. iFTDM Routing Algorithm ..87

3. Yassin Routing Algorithm ...116

1

CHAPTER I

INTRODUCTION

Many of today's advanced research problems need great computing power at high

speeds. Parallel computer systems, which emphasize parallel processing, are the most

advantageous architectures to obtain a greater computing power needed by many of

today’s advanced research problems. These problems include artificial intelligence,

expert system, robotics, signal processing, petroleum exploration, fluid mechanics, fusion

energy research, medical diagnosis, military defense, weather forecasting, high-energy

physics, space sciences, and servicing web servers. In many of these applications, input

data arrives at very high rates, and the processed outputs must be generated very rapidly

in order to be useful. In conventional sequential digital computers, a single memory

buffer serves as the only gate between the high-speed memory and the central processing

unit. This makes it necessary to organize all computational tasks in a strictly sequential

fashion, hence the more complex the computing task, the more time consuming by the

computation. Although advances in hardware technology have led to continuing increases

in the speed of individual arithmetic operations, these have been greatly overshadowed

by the increasing complexity of many simulation problems. To attain high speeds of the

digital computers, the parallelisms have been used in their hardware design. The

implementation of these techniques has given arise to the parallel computer systems.

Distributed-memory systems, which have unshared distributed memories among

processors, are the most advantageous architectures in building a massively parallel

computer system. These systems need switching techniques to transmit messages among

processors. The wormhole switching technique has been widely used in the design of

these systems. The multicast pattern, in which one processor sends the same message to

1

multiple processors, is the most fundamental communication pattern. Fault tolerance is a

central issue facing the design of interconnection networks for distributed-memory

systems. The suited topologies for current distributed-memory systems are 2D mesh,

Hypercube and tours. This research will concentrate on studying the fault-tolerant

multicast wormhole routings in mesh networks.

Problem Statement

The multicast pattern, in which one processor sends the same message to multiple

processors, is the most fundamental communication pattern used in distributed-memory

systems. A familiar problem in the current design of distributed memory system is that

fault tolerance is not considered early enough in the design process. It is critical that with

the increased complexity and functionality of distributed-memory systems today that the

fault tolerance abilities become a part of the system design. Early concern of fault

managing abilities of a system can result in more reliable systems. Several researchers

conducted as a result of software design and routing techniques errors were presented [1].

Hence, efficient fault-tolerant multicast routing algorithms are critical to the performance

of distributed-memory systems. An effective multicast routing must be deadlock-free and

should minimize network traffic steps and network traffic time. Tree-based techniques

offer a very promising means of achieving extremely efficient multicast routing. These

techniques forward a message copy to multiple output channels. Tree-based algorithms

have advantageous over other multicast techniques. Hence, the multicasting using tree-

based techniques in routed mesh multicomputer will be studied in this research.

Important issues such as deadlock and fault tolerance are critical to the performance of

distributed-memory systems.

3

In this research, the above mentioned factors and issues will be studied to improve

distributed-memory systems performance. Also, the most accepted criteria such as

network traffic steps, network latency steps, network traffic time and network latency

time for the communication patterns will be considered to evaluate the performance.

Significance of the Study

Many research works have been devoted throughout the last era to enhance the

performance of distributed-memory systems (multicomputer). As the number of nodes in

distributed-memory systems network is increasing, the time necessary to deliver data

between the nodes is significant in whole system performance. In addition, it will affect

the possible granularity level of parallel processing in running an application program.

Distributed-memory systems (multicomputer) are the focal of this research for its several

significant benefits. First, distributed-memory systems are scalable, which means that its

efficiency increases as the number of node increases. Second, there is no switch and bus

contention. Third, there are no cache coherency difficulties. Every processor is

responsible for its own data and does not need to worry about placing copy of it in its

own local cache and having another processor reference the original.

In order to design a good routing algorithm, we should consider a switching

technique (switching techniques determine how messages are forwarded through the

network) that will satisfy the basic needs, the message length and buffer size that can be

used. This research concentrates on wormhole switching for its several advantages.

Wormhole switching technique makes more efficient use of buffers and helps to create

deadlock-free algorithms. An entire packet (message) need not be buffered to deliver to

the next node, reduce traffic time and latency time. This reduces latency (delay) and

traffic noticeably compared to other switching techniques.

2

Another consideration in the design of parallel processing systems is the set of

pathways over which the processors, memories, and switches connect to each other.

Those are the connections that define the network topology of the machine. Mesh

network topology has been studied in this research because it has the following

advantages:

 It is easy detection and isolation of faults in the network.

 Messages can be delivered from different devices concurrently and use alternative

paths in case of failure take place or performance degradation.

 Mesh can endure high traffic.

 Expansion and modification in topology can be done without difficulties on other

nodes. Distributed-memory systems using mesh topology as their essential

architecture have been around for years. A number of large research and

commercial multicomputer systems have been built based on mesh topologies,

such as Blue Gene Supercomputer.

It is important to find new fault-tolerant multicast routing techniques in the area

of distributed-memory systems which exploit parallel computing facilities to:

 Reduce a lot of concerned factors such as network latency steps, network traffic

steps, network latency time and network traffic time.

 Apply these routing techniques on 2D mesh network topology.

 Apply it on fault regions with different ships – regular (convex, concave) and

irregular - and solve a problem with overlap fault regions.

As shown in the next few chapters, our proposed fault tolerant routing algorithms

have achieved the above mentioned factors. In addition, they are compromise of two

1

basic techniques (tree-based and unicast-based) and they exploit the advantages of each

one of these two techniques.

The rest of the dissertation is organized as follow:

In Chapter II, a background of parallel computer memory architectures are

considered. Also, Basic network topologies and network switching techniques are

investigated. In addition, they are surveyed.

In Chapter III, an overview of fault tolerant multicast routing algorithms is

presented. Also, a brief introduction to deadlock, Fault model and fault tolerance were

given. Moreover, fault tolerant multicast routing algorithms for regular and irregular fault

regions were studied.

 In Chapter IV, FTDM and its improved version iFTDM fault tolerant multicast

routing algorithms are proposed. Also, simulation study for both of algorithms is

conducted.

In Chapter V, data mining for proposed routing algorithm is presented to validate

the results. In addition, three tools (WEKA, EXCEL and MATLAB) are used to do

regression analysis.

In Chapter VI, an efficient fault tolerant multicast routing algorithm, Yassin, for

wormhole routed 2D mesh multicomputer is presented. Four essential performance

metrics in mesh networks, network traffic steps, network latency steps, network traffic

time and network latency time are evaluated.

In Chapter VII, list of some possible future work and summary of this dissertation

are presented.

6

CHAPTER II

BACKGROUND

 Parallel computer systems, which emphasize parallel processing, are the most

favorable architectures to increase the computing power. Parallel processing continues to

hold the promise of the solution of the more complex problems by connecting a number

of powerful computer processors together into a single system. These connected

processors assist in solving a single problem that exceeds the capability of any one of the

processors. Parallel processing systems provide cost-effective means to high system

performance through concurrent activities.

Multiprocessor systems, distributed-memory, shared-memory, and distributed-

shared memory are currently the most promising parallel systems to further increase

computer performance. Distributed-memory systems have unshared distributed memories

among processors of the systems. Shared-memory systems use a single physical memory

shared by all processors. In a distributed-shared memory system, the shared-memory is

physically distributed to all processors, and a collection of all local memories forms a

global address space accessible by all processors. The interconnection networks are used

for internal connections among processors, memory modules, and I/O devices in a

shared-memory system or among nodes in a distributed memory system. The

interconnection networks depend on several factors including topology, routing

algorithms, and switching techniques. The network topology defines how the nodes are

interconnected by channels. The routing algorithm is defined as the path chosen by a

packet to reach its destination. The switching technique determines how and when the

router switch is set when a packet header reaches an intermediate node.

1

Parallel Computer Memory Architectures

A parallel computer is a system that emphasizes parallel processing. The parallel

processing is a suitable manner of information processing that exploits the computing

process. Parallel computer systems can be characterized as pipeline processors, vector

processors, array processors, systolic processors, and shared memory (multiprocessor)

systems [2]. Pipeline processors refer to those digital machines that provide overlapped

data processing in the central processor, in the I/O processor, and in the memory

hierarchy. The pipeline processing concept in a computer system is similar to assembly

lines in an industrial factory. To achieve pipelining, the input task must be divided into a

sequence of subtasks. Vector processors are designed to manipulate vector instructions

over vector operands, all the elements of a vector are subjects to a particular instruction

simultaneously. They work efficiently only if the arithmetic operations to be performed

are vectorized, that is, arranged as continuous streams of data. Although the vector

processors are remarkably fast in certain situations, it proved to be very difficult in

practical simulation problems to arrange the computations to be performed in sufficiently

long vectors. Array processors are well suited for the applications for which they are

designed, general purpose computations. They consisted of a one or two dimensional

array of processors, with nearest neighbor interconnections. Such an interconnection

pattern is very natural for spatially decomposed problems like partial differential

equations and image processing. Furthermore, there is host computer supervision which

controls the growth of the computation by passing the next instruction to processors. A

systolic processor is an extension of the pipelining concept. While a pipeline is a one

dimensional, unidirectional flow, the systolic system permits multidirectional flow

including feedback. The systolic processors are designed for a special purpose, such as

8

solving systems of linear equations with special structure, or performing fast Fourier

transforms.

Multiprocessor systems, which contain several processors of approximately

comparable capabilities, are currently the most promising architectures to further increase

computer performance. They have been shown to be very competent for solving

problems that can be partitioned into tasks with homogeneous computation and

communication patterns. Depending on how the memory is shared, there exist three

models of multiprocessor systems, shared memory systems, distributed-memory systems,

and distributed shared memory systems [3]. Shared memory systems use a single physical

memory shared by all processors. Such systems are also called uniform memory access

(UMA) systems. Distributed-memory systems have unshared distributed memories

among processors of the systems. Such systems are also called message passing

multicomputers. In distributed shared memory systems, the shared memory is physically

distributed to all processors and a collection of all local memories forms a global address

space accessible by all processors. Such systems are also, called non-uniform memory

access (NUMA) systems. In the next three subsections, the three models of

multiprocessor systems are discussed. An introduction to High Performance Computing

and parallel computer was presented by Hager and Wellein [4].

Shared-Memory Systems

 The main property of shared-memory systems is that all processors in the system

have access to the same memory; there is only one global address space. Typically, the

main memory consists of several memory modules whose number is not necessarily

equal to the number of processors in the system, as shown in Figure 1. The Intel Paragon

9

[5], the Thinking Machines Corp, CM-5 [6], and the Meiko CS-2 [7] are examples of

shared-memory architectures. In these systems, communication and synchronization

between the processors are done implicitly via shared variables.

The processors are connected to the memory modules via some kind of

interconnection network. These systems are called uniform memory access (UMA), since

all processors access every memory module in the same way concerned latency and

bandwidth. Each main memory location in the memory is located by a number called its

address. Addresses start at 0 and extend to 2n-1 when there are n bits (binary digits) in

the address. To extend the single processor model, there are multiple processors

connected to multiple memory modules, such that each processor can access any memory

module. They are divided into two types, symmetric and asymmetric. In a symmetric

shared-memory system, all processors have equal access to all peripheral devices, and

they are equally capable of running the operating system kernel and the I/O service

routines. In an asymmetric shared memory system, only one processor can execute the

operating system and handle I/O, while the other processors execute user codes under

supervision of the master processor.

Figure 1. [3] A shared memory architecture.

12

Programming of shared memory systems involves having executable code stored

in the shared-memory for each processor to execute. The data for each program will also

be stored in the shared memory, and hence each program could access all the data if

needed. Programmers create the executable code and shared data for the processors that

can be done in different ways, but the final result is to have each processor execute its

own program or code sequences from the shared memory.

 Shared-memory systems have some advantages, such as a parallel program can

be written as a collection of processes that act on common set variables. Hence, writing

efficient parallel programs in the shared memory systems is easier than other models.

The work needed in shared memory systems to distribute the computation and data over

the processors is less than the distributed-memory systems.

Distributed-memory Systems

A distributed memory system consists of multiple autonomous processing nodes

with local memory modules connected by a common interconnection network. There is

no common address space, i.e. the processors can access only their own memories.

Communication and synchronization between the processors are done by exchanging

messages over the interconnection network. Each computer consists of a processor and

local memory. In principle, there are no limits to the number of processors or the total

memory, other than the cost of constructing the system. The SGI Origin2000, Cray T3E,

and IBM RS/6000 SP are examples of distributed memory architectures [8]. Figure 2

illustrates the connection between the computer modules and a message transfer system.

11

Figure 2. [3] Distributed memory architecture.

By using dedicated routers, distributed-memory systems decouple computation

and communication functionality in order to improve the performance of both. In such

systems, a computer node is attached to a router; which handles a message passing

among nodes. A boundary router may be connected to I/O and peripheral devices. The

message, which passes between any two nodes, involves a sequence of routers and

channels. Several pairs of external channels are connected to define the network

topology. A crossbar switch within the router allows the simultaneous transmission of a

message between different input and output channels. Moreover, two messages may be

transmitted concurrently in reverse directions between neighboring routers. A pair of

internal channels connects a router to its local processor/memory. One channel of each

pair, injection channel, injects messages into network. The other channel, ejection

channel, consumes messages from the network. The architecture of a generic node in

distributed-memory systems is illustrated in Figure 3.

Distributed-memory systems can be classified into two approaches, medium-grain

and fine-grain systems. The medium-grain system consists of a few tens of large

processors. It uses large word sizes and memory capacities. Examples of medium-grain

machines are iPSC/2, and nCUBE2 [8]. The fine-grain system consists of several

11

thousands of processors. It uses small word sizes and very small memory capacities.

Examples of fine-grain machines are Caltech Mosaic [9] and j-machine [10].

Figure 3. [3] Generic node architecture.

Programming of distributed-memory systems still involves separating the problem

into parts that are intended to be executed concurrently to solve the problem.

Programming could use a parallel or extended sequential language, but a common

approach uses message-passing library routines that are inserted into a conventional

sequential program for message passing. A problem is divided into a number of

concurrent processes. Processes may be executed on individual computers.

Distributed-memory systems have several advantages, such as they require

relatively design effort less than shared-memory systems. As the number of processors in

the system increases, some points are noticed:

1) The memory size increases in distributed-memory systems, while in shared memory

systems, it does not increase.

13

2) The total memory bandwidth increases in distributed-memory systems, while in

shared-memory systems, it remains constant, independent of the number of

processors.

3) The processing capability of the system in distributed-memory systems, increases

while in shared-memory systems; it may be decreased because of the synchronization

[11].

Hence, distributed-memory systems are more scalable than shared-memory

systems in building massively parallel computers. A Good overview of distributed-

memory systems and parallel computing are presented by Dally [12], Gebali [13].

Distributed-Shared-Memory Systems

In a distributed-shared-memory system, the shared memory is physically

distributed to all processors, called local memories. The collection of all local memories

forms a global address space accessible by all processors. Such systems are also called

non-uniform-memory-access (NUMA) systems in which the access time varies with the

location of the memory word. The memory access time for a local address is less than the

access time for remote address, attached to other processors, through the interconnection

network. Besides distributed memories, globally shared memory can be added to a

multiprocessor system. In this case, there are three memory-access patterns, the fastest is

local memory access, the next is global memory access, and the slowest is remote

memory access. Examples of such systems are Cedar system [8], SGI Origin [14],

Stanford Dash [15], and Stanford Flash [16].

12

Figure 4. [3] A distributed shared memory architecture.

The cache-only memory architecture is a special case of a non-uniform-memory

access, in which the distributed memories are converted to caches. All caches form a

global address space. The processors are divided into numerous clusters. Every cluster is

itself an UMA or a NUMA multiprocessor. The clusters are linked to universal shared-

memory modules. A distributed-shared-memory systems configuration is shown in

Figure 2 [8].

Basic Network Topologies

In this subsection, different topologies of direct networks are discussed. Each

computer found on the network is known as a network node. All topology has its

advantages and disadvantages: generally correlated to the price, complexity,

dependability and traffic.

Linear Topology

In a linear topology, Figure 5, all nodes connected to LAN as branches on a

common line. In a linear network with N nodes, the internal nodes have degree equal to 2

and the terminal nodes have degree equal to 1 while the diameter is N-1. Many devices

connect to a single cable backbone. If the backbone is broken, the whole part fails. Linear

11

topologies are fairly easy to set up and do not need much cabling compared to the

alternatives.

Figure 5. Linear topology.

Ring Topology

In a ring topology, Figure 6, all nodes on the same circuit, which forms a

continuous loop, is obtained by connecting the two terminal nodes of a linear array with

one extra link. It is symmetric with a constant node degree of equal to 2. The diameter is

N/2 for a bi-directional ring and N for unidirectional ring. All messages pass through a

ring in the equivalent direction. A breakdown in any cable or device disconnects the loop

and hence it takes down the whole segment.

Figure 6. Ring topology.

Star Topology

In a star topology, Figure 7, every node attached to disconnect lines that direct to

center. In a star network with N nodes, the degree of the central node is N-1 while that of

other nodes is 1 and the diameter is 2. The star architecture has been used in systems with

a centralized supervisor node. A star network has a central connection point – like a hub

16

or a switch. While it takes more channels, the benefit is that if a channel fails, only one

node will be brought down.

Figure 7. Star topology.

Tree Topology

In a tree topology, Figure 8, all nodes attached to separate lines that lead to a hub,

and then the hubs are connected together (like the branches on a tree) to the main network

backbone. The binary tree of k-level contains 2–1 nodes. The maximum node degree is 3

and the diameter is 2(k-1). The tree topology is a combination of linear and star

topologies. They are very common in larger networks.

Figure 8. Tree topology.

11

Hypercube Topology

A high-dimensional binary n-cube is called hypercube topology. An n- cube

consists of N=2
n
 nodes spanning along n dimensions, with two processing nodes in each

dimension. Two nodes x and y are neighboring nodes if and only if yj = (xj ± 1) mod k

for one j and xj = yj for all i ≠ j, 1 < j, j< n. The first generation multicomputer such as

Intel iPSC/1 and n CUBE/2, implemented the hypercube topology. For example, iPSC/1

consists of 128 nodes form a 7-dimensional hypercube with 512 k bytes of local memory

per node and 8 I/O ports. While nCUBE/2 consists of 8192 nodes form a 13-dimensional

hypercube with 512 Gbytes of local memory per node and 64 I/O boards [17]. Figure 9

(a) illustrates an example of 3-cube networks.

(a) (b) (c)

Figure 9. Example of (a) Hypercube, (b) Torus and (c) Mesh.

Torus Topology

A low dimensional k-ary n-cube is called torus topology. Unlike a hypercube, a

torus may contain more than two nodes per dimension. The torus topology has ring

connections along each row and along each column of the array, i.e. wraparound

channels have been added to connect each edge node to the corresponding node on the

opposite edge. Each dimension in a k-ary n-cube contains the same number of nodes

18

while dimensions of a torus may contain different numbers of nodes. Two nodes x and y

are neighboring nodes if and only if yj = (xj±1) mod k for one j and xi = yi for all i≠j, 1 <

i, j < n. Examples of torus architectures include the Torus Routing Chip and the Cray

T3D [8]. Figure 9 (b) illustrates an example of (3 3) 2D torus networks.

Mesh Topology

Mesh network topology is one of the most important interconnection networks.

Distributed-memory systems which use mesh topology as their essential architecture have

been around for years. They utilize mesh topology because of its simplicity, reliability

and good scalability. Also, their significance in achieving high performance, fault tolerant

computing for mesh topology has been the focus of research. A 2D mesh with n x n

nodes has an internal node degree of 4 (four neighbors), one in each of four directions:

east, south, west, and north. A number of large research and commercial multicomputer

systems have been built based on 2D and 3D mesh topologies, including Illiac IV, MPP,

DAP, CM-2, Intel paragon, Goodyear MPP and Blue Gene Supercomputer [8]. All mesh

communication channels and MRCs are built on a backplane. The 3D-Smesh network is

implemented in the third generation of multicomputers. The Mosaic C project is designed

to use VLSI-implemented nodes, each containing a 14-MIPS processor, 20-Mbytes/s

routing channels, and 16 Kbytes of RAM integrated on a single chip [8]. Mosaic consists

of 16,348 nodes [18]. Figure 9 (c) illustrates an example of (3 3) 2D mesh networks.

Network Switching Techniques

 Switching concerns the form in which link resources are allocated to messages.

In most distributed-memory systems, a message enters the network from a source node

and is switched towards its destination through a series of routers at intermediate nodes.

19

The switching technique is the mechanism that removes data from an input channel and

puts it on an output channel. Also, the switching technique defines the hardware and

software protocols for transmitting and buffering data when sending a message between

neighboring routers. The transmission time which is extremely dependent on the

switching technology is used to direct messages through the network. Different switching

techniques have been proposed for supporting communication across the network. The

most common techniques, including store-and-forward, virtual cut through, circuit

switching, and wormhole switching, are presented in the next subsections.

For each switching technique the computation of the transmission time of an M

bit message in the absence of any traffic will be considered. The phit size and flit size are

supposed to be equal to the physical data channel width of W bits. The routing header is

assumed to be one flit, thus the message size is M + W bits. A router can make a routing

decision equal to tr seconds. The physical channel between two routers works at B Hz,

i.e., the physical channel bandwidth is BW bits per second. The propagation delay across

this channel is denoted by tm = 1/B. When a path has been structure through the router,

the switching delay is denoted by tw. The router internal data paths are supposed to be

coordinated to the channel width of W bits. Thus, in ts seconds, a W bit flit can be

transferred from the input of the router to the output [17].

Store-and-Forward (SF) Switching

Store-and-forward mechanism had been used to route messages in many

multicomputer systems. This switching technique is sometimes called packet switching.

In store-and-forward switching, a message destined for a node that is not directly

connected to the source node must be received in its entirety at each intermediate node

before forwarded to the next node. Therefore, the transmission time, the delay from the

12

beginning of sending a message at the source node until the destination node receives it,

is proportional to the distance between the source and destination nodes. The hop step

consists of copying the whole packet from one output buffer to the next input buffer.

Routing decisions are completed by each intermediate node only after the entire packet

was totally buffered in its input buffer.

The transmission time of store-and-forward switching message can be computed

as follows [17].

 TSF = D (tr + (tm + tw) (M+W) / W)

A time space diagram of the progress of a packet across three links is shown in

Figure 10.

Figure 10. [17] Time space diagram of store-and-forward switching message.

The store-and-forward technique is valuable when messages are short and

frequent, since one transmission makes busy at most one channel from the whole path.

The necessity to buffer the entire packet makes the router design expensive and slower,

or the packet size is restricted. The communication latency is proportional to the product

of the packet size and distance between the source node and destination nodes. As a result

11

designers try to pursue shortest path routing and use small diameter networks. Routing

algorithms based on store-and-forward switching techniques can found in [19].

Virtual Cut-Through (VCT) Switching

Virtual cut-through (VCT) switching is the most complicated and expensive

technique among switching techniques. In virtual cut-through a message is buffered at an

intermediate node only when the desired outgoing channel (or channels if there is routing

choice) is/are already in use. In this technique transmission time, in the absence of

contention, becomes largely independent of the distance travelled by the message.

The transmission time of a message that effectively cuts through each

intermediate node can be computed as follows [17].

 TVCT = D (tr + tm + tw) + max (tm , tw) M/W)

Figure 11 illustrates a time space diagram of a message transmitted using virtual

cut-through switching wherever the message is congested after the first link waiting for

an output channel to be free [20].

Figure 11. [20] Time space diagram of a virtual cut-through switching message.

The header flit is the one that holds routing information and consequently each

incoming data flit is merely sent along the same output channel as its predecessor.

11

Consequently, broadcast of different packets cannot be inserted or multiplexed over one

physical channel [20], [21]. Routing algorithms based on virtual cut-through switching

techniques can be found in [19].

Circuit Switching (CS)

In circuit switching technique, the communication between a source node and a

destination node has two phases: circuit establishment and message transmission. A

physical path from the source node to the destination node is held in reserve proceeding

to the broadcast of data by inserting a routing probe, which holds destination address and

several control information. This routing probe developments towards the destination

node keeping physical links as it is transferred through intermediate nodes. When the

probe reaches the destination node, a whole path has been established and a response is

conveyed back to the source node [17]. The circuit is unrestricted either by the

destination node or by the last bits of the message. The acknowledgments in the Intel

iPSC/2 routers [22] are multiplexed in the opposite direction on the similar physical line

as the message.

The transmission time of a circuit switched message can be computed as follows [17].

 Tcircuit = t setup + t data

= D (tr + 2 (tm + tw)) + ((1/B) M/W)

A time space diagram of the transmission of a message is shown in Figure 12. The

shaded boxes signify the times during which a link is busy. The space between these

boxes is the time to process the routing header, and the intra-router propagation delays.

The clear box defines the time the links are busy conveying data through the circuit [17].

13

Figure 12. [17] Time space diagram of a circuit switching message.

The circuit switching technique is valuable if messages are random and long, i.e.

the transmission time is longer than the setup time. In case of short messages, the entire

physical circuit is earmarked during the entire setup and transmission part. At each router

on the path, the probe is buffered; however, the data bits are not. The circuit operates as a

single wire form the source to the destination. Also, messages are not necessary to be

divided into fixed-length packets, but they can be conveyed as incessant flow of bits

along the setup circuit. Therefore, there are no restrictions on the length of conveyed data

[17].

Wormhole (WH) Switching

In most parallel computer systems, a message comes into the network from a

source node and is switched or routed to its destination using a sequence of intermediate

nodes. Throughout this dissertation, all our algorithms are based on wormhole switching

technique. In wormhole switching (sometimes referred to as wormhole routing), a packet

is transmitted between the nodes in units of flits, the smallest units of a message on which

flow control can be performed. The header flits of a message hold all the essential routing

information and remaining flits hold the data elements. The flits of the message are

routed through the network in a pipelined fashion. From the time when only the header

12

flit hold the routing information, all the trailing flits follow the header flits alongside.

Flits of two altered messages cannot be inserted at any intermediate node. When the

header flit is congested, then all the trailing flits reside in the buffers at the intermediate

nodes [17].

The transmission time of a wormhole switched message can be computed as

follows [17].

 TWH = D (tr + tm + tw) + max (tm , tw) M/W)

Wormhole routing worked on a good way on simple, small, inexpensive, and fast

routers. Consequently, it is the most mutual switching technique used currently in

commercial machines. In addition, wormhole routers use frequently only input buffering.

The main disadvantage of this switching technique is obstructive resources in case of

stalled pipelines. Subsequently blocking chains of buffers can simply cause snowball

effect, WH switching is very deadlock-prone. This subject is correlated to the idea of

virtual channels.

Figure 13. [17] Time space diagram of wormhole switching message.

11

The time space diagram of a wormhole switched message is shown in Figure 13.

The clear rectangles illustrate the propagation of flits through the physical channel. The

shaded rectangles illustrate the propagation of header flits through the physical channels.

Wormhole routing is the supreme extensively used switching technique in

massively parallel computer systems. Examples of the multicomputer systems that apply

wormhole routing are nCUBE-2 [23] (hypercube), Symult 2010 [24], Intel Paragon [5],

and Intel/DARPA's Touchstone Delta [5] (2D mesh), MIT-J-machine [25] and Caltech

Mosaic (3D mesh), and Cray T3D [25] (3D torus). Also, wormhole has been approved in

systems that use indirect switch based networks, such as TMC CM-5 and IBM SP series

[26]. Performance of wormhole routing switching technique has been studied for several

topologies. A simulation study of wormhole routing in 2D mesh was introduced in

Chittor and Enbody [27] and a performance analysis of k-ary n-cube networks was

introduced in Dally [12]. Wormhole routing techniques in direct networks were surveyed

in Chen et al. [28], Ni and McKinley [29].

Multicast Routing Algorithm

The communication mechanism is one of the most important research areas in

parallel computing systems. Its support provided by the system software and hardware

for delivering a message from one node to another node. Hence, efficient communication

mechanism among nodes is critical to the performance of message passing systems. In

this section, the essential communication operation, multicast, is discussed. Also, to

demonstrate the classifications of the multicast, a survey of deadlock-free multicast

routing algorithms for direct networks is introduced.

Multicast communication has numerous uses in distributed-memory systems and

large-scale multiprocessors. Firstly, numerous parallel applications, including parallel

16

search algorithms and parallel graph algorithms, have been shown to benefit from the use

of multicast services. Secondly, multicast is useful in the SPMD (single-program,

multiple-data) mode of computation, in which the same program is executed on a

different processor with different data. In particular, multicast is essential to numerous

operations, such as replication and barrier synchronization, that are supported in data

parallel languages. Thirdly, if a distributed shared-memory paradigm is supported, then

multicast services may be used to efficiently support shared-data termination and

updating. Finally, it is useful in many parallel numerical algorithms, including matrix

multiplication, matrix transpose, and Gaussian elimination [30], [31].

Providing support for multicast communication involves several requirements.

First, it is desirable that the message delays from the source to each of the destinations

are as small as possible. One solution is by sending a detach copy of the message to each

destination along the shortest paths, but the enlarged traffic load resulting from these

copies might delay the progress of the message. The second requirement is that the

amount of network traffic must be minimized. The third necessity is that the routing

algorithm is not being computationally complex. Therefore, heuristic algorithms are used

and must be deadlock-free.

Basic multicast routings can be classified as unicast-based, tree-based and path-

based [30]. In unicast-based multicast routing algorithms, a source node sends messages

to its set of destinations through sending a series of separate unicast messages to each

destination. It requires a great number of startups to send a message to a large set of

destinations. Tree-based algorithms endeavor to distribute the message to all destinations

in a single multi-head worm that splits at some routers and replicates the data on many

11

output ports. Path-based routing algorithms permit a worm to hold sorted list of multiple

destination addresses in its header flits.

In the next subsections, the three multicast techniques are discussed and some

algorithms of each technique are surveyed.

 Unicast-Based Techniques

In unicast-based multicast algorithms, a source node broadcast a message to its set

of destination by sending multiple unicast messages, which are routed independently

through the network. In these techniques, no local processors other than the source and

destination processors are required to handle the message, but only routers at the

intermediate nodes are involved in forwarding the message [32]. Hence, the message is

passed from a source to a destination node in one step. They require no additional

hardware support, but additional software is added to support multicast. They have

budding to achieve well when the average number of destinations for each multicast

message is small [33]. In addition, routing of each individual message can take place

using unicast routing; hence, there will be no additional deadlocks in this solution. Many

recent distributed shared memory multiprocessors use this technique to perform cache

invalidation in directory schemes [34], [35].

The separate addressing is one of the unicast-based multicasting routing

techniques, in which the source node sends directly a separate copy of the message to all

destination nodes [8]. The separate addressing routing, sometimes called individual,

requires d startup latency to complete a multicast with d destinations. A communication

step is the time required for a message to be sent from one node to another. In wormhole

routed networks, the message startup latency is generally several orders of magnitude

larger than network latency. Hence, it is desirable to minimize the number of startup

18

latencies used to deliver the message to all of its destinations. Figure 14 illustrates an

example of a separate addressing algorithm on a 2D mesh.

Figure 14. An example of a separate addressing algorithm on a 2D mesh.

An alternative unicast-based multicasting technique is to use a binomial tree of

unicast message [32], in which the number of sources is doubled in all steps. The

binomial tree can be considered as a sequence of communication steps, in which each

step incurs a startup time. In the first step, the source node sends the message to some

subset of the destination nodes. In each subsequent step, each node holds a copy of the

message and forwards it to at most one new destination node that has not yet received the

message. Such multicast binomial tree algorithms are used to minimize the number of

communication startups required for unicast-based multicasting.

The competence of an algorithm is determined by the essential number of

communication startups for the multicast to finish. In a binomial tree algorithm, the

number of nodes holding the message can at most double with each step. Thus, it can be

19

easily observed that the lower bound on the number of communication setups required to

complete a multicast to d destinations using multicast binomial tree routing is equal to

log2 (d+1). A multicast binomial tree algorithm is called optimal if achieves the lower

bound of communication steps. Also, the degree of channel contention knowledgeable

among the messages of the multicast is significant for the efficiency of the algorithms.

The channel contention, which is sometimes called step contention, occurs when two

unicast messages in the same communication step contend for a common physical

channel. A generalization of step contention is called depth contention. The depth

contention happens when a node is scheduled to broadcast the message in communication

step, probably competing with a unicast for the same message transmitted at

communication step j, j ≤ i. This will guarantee that the depth contention freedom is

stronger than the step contention freedom.

Many unicast-based binomial tree multicasting algorithms [30]-[32], [36]-[39]

have been proposed. Some of them [31], [32] are briefly discussed in this subsection.

Some binomial tree multicasting routing algorithms for k-ary n-cube networks

were presented in [31], [32]. Robinson et al. [31] extended the U-mesh algorithm to

introduce an optimal binomial tree multicast routing algorithm, U-torus, for n-

dimensional torus networks. The U-torus algorithm is applied to unidirectional and

bidirectional tori. Also, it uses the deterministic dimension-ordered routing. It avoids

contention between the ingredient unicast messages. McKinley et al. [32] proposed

binomial tree multicast routing algorithms for one-port n-dimensional mesh and

hypercube networks that use the deterministic dimension-ordered routing. These

algorithms are optimal and prevent contention among the ingredient unicast messages.

For example, in the U-mesh algorithm, the source and destination addresses are sorted

32

into a dimension-ordered chain, denoted Ф, at the time when multicast is initiated by

calling the U-mesh algorithm [32]. The source node successively divides Ф in half. If the

source node in the lower (upper) half, then it sends a copy of the message to the smallest

(largest) node, according to a dimension order relation, in the upper (lower) half. That

node will be accountable to deliver the message to other nodes in the upper (lower) half,

using the alike U-mesh algorithm. In addition to the data, every message carries the

address of destinations for which the receiving node is accountable. At each step, the

source continues this procedure until Ф contains only one address. The U-mesh only

guarantees contention freedom among the worms of a given step.

 Unicast-based multicasting algorithms have some disadvantages. They allow a

message to be delivered to only one destination, which leads to multicast operations

being implemented as multiple phases of multicast message exchange. Thus, contention

freedom must be guaranteed not only among the worms of a given phase, but also among

worms in different phases. They also require additional software to support multicast.

The essential disadvantage of unicast-based algorithms is the large number of

communication startup delays, which they require. The ratio of communication startup

time to propagation time is quite high on current generation parallel systems. It is

typically in order of 1 to 20 microseconds [39], unicast-based multicasting techniques

lead to very high latency. For example, to send a message to 512 destinations with 10

microsecond communication startup time, the separate addressing technique takes 5120

microseconds and binomial tree technique takes 100 microseconds. In addition, multiple

unicast messages need more network channels, therefore affecting other network traffic

and reducing the overall throughput of the network.

31

Path-Based Techniques

In order to reduce the large number of startups obtained by unicast-based

multicasting algorithms, path-based algorithms were proposed [40]. Path-based multicast

algorithms allow a worm to contain a sorted list of multiple destinations addresses in its

header flits. They use a simple hardware mechanism to allow routers to absorb the

message on internal channels while concurrently forwarding a copy of the message on an

output channel transmitted to the residual destinations. Current wormhole routers contain

logic to take up and forward flits. In this scheme, a message can be delivered to several

destinations with the same startup latency as a message sent to a single destination. The

destinations of a multicast message are partitioned into a tiny number of subsets, and a

copy of the multicast is broadcast to each subset of destinations. Each copy of the

message visits its destinations in a predefined order. Diverse copies of a multicast

message use displace sets of physical channels and are routed separately of one another,

to prevent cyclic dependence and deadlock. Messages pursue shortcuts to decrease path

length to assurance that a unicast message constantly follows the shortest path. Duato

[41] urbanized the theory leading of design of path-based multicast routing algorithms.

Some path-based multicast routing algorithms for direct networks, [26], [33],

[42]-[44] are briefly discussed in this subsection.

The Hamiltonian path in the network is used to develop some path-based

multicast algorithms for mesh and hypercube networks. It is an undirected path which

visits every node in a graph exactly once. The assignment of the label to a node is based

on the position of that node in a Hamiltonian path, where the first node in path is labeled

0 and the last node in the path is labeled N-1, where N is the network size. Two

Hamiltonian path-based algorithms for 2D networks, the dual-path multicast and the

31

multipath multicast were proposed by Lin et al. [42]. The dual-path routing divides the

destination nods into two disjoint subsets, DH and DL, where every node in DH has a

higher label than that of the source node and where every node in DL has a lower label

than that of the source node. A copy of the multicast message is sent to each subset of the

destinations. Each copy of the message visits its destination nodes sequentially according

to a defined routing function. Diverse copies of a multicast message use displace sets of

physical channels and are routed independently of one another. The multipath algorithm

has the same rules of the dual-path algorithm but divides the destination nodes into four

disjoint subsets. When the source node is taken as the origin, all the destination nodes in a

subset are in one of the four quadrants. The dual-path routing requires only two startups

to send a message to any set of destinations, at the same time as the multipath routing

requires four startups but often uses short paths to all destinations. The dual-path and the

multipath algorithms offer deadlock-free routing of multicast messages. Also, they

provide minimal routing of unicast messages, and either algorithm can be used to route

unicast and multicast messages simultaneously in a common framework. Figure 15

illustrates an example of the dual path algorithm on a 2D mesh.

33

Figure 15. An example of the dual path algorithm on a 2D mesh.

Robinson et al. [26] described and evaluated some path-based multicast

algorithms for unidirectional wormhole routed torus networks. The first algorithm, S-

torus, uses a single multi-destination message with single startup to reach the message to

all destinations. The second algorithm, M-torus, is a generalized multi-phase multicast

algorithm, in which a combination of multi-destination messages with multiple startups to

reach a message to all destinations. Every copy of the message visits its destination nodes

consecutively according to a distinct routing function. These algorithms are deadlock-free

and produce contention-free multicast communication by requiring each multi-destination

message to visit its destination nodes in an order corresponding to a Hamiltonian Circuit.

A Hamiltonian Circuit (HC) begins at the node (0, 0) and, at each node u on HC, the next

node is the neighbor, u
d
, that minimizes d under the constraint that u

d
 does not already

32

precede u on HC, where u
d

is the node adjacent to u in dimension d. The advantage of S-

torus is the multicast operation requires only one communication step, which is useful for

long messages.

Boppana et al. [33], [43] proposed a multicast routing algorithm called the

column-path algorithm for mesh and torus networks. In a k x k 2D mesh, the column-

algorithm partitions the set of destinations of a multicast message into at most 2k, such

that there are at most two message copies directed to each column in the mesh. If a

column holds one or more destinations of a multicast communication in the same row or

in rows above that of the source, subsequently one message copy will send to service all

those destinations. Likewise, if a column holds one or more destinations of a multicast

communication in the same row or in rows below that of the source, then one message

copy will send to service all those destinations. If all destinations of a column are either

below or above the source node, then one message copy will send to service all those

destinations. Messages are routed using row-column or e-cube routing method; therefore,

the column-path algorithm is well-matched with the e-cube algorithm. Figure 16

illustrates an example of the column-path algorithm on a 2D mesh.

Abd El-Baky [44] proposed two efficient path-based multicast wormhole routing

algorithms for 2D torus parallel machines. They used the concept of partitioning the torus

into meshes. They entail shifting the origin of the torus network so that the source node

always appears to be in (or closer to) the center of the network. This is possible because

the torus network is symmetric.

Abd El-Baky [44], the first algorithm, Torus Dual-Path (TDP) algorithm uses the

vertical wraparound channels to divide the torus into two equal meshes. The first, MH,

contains the nodes whose y-coordinates are between that of the source node and that of

31

the source node plus or minus n/2 while the other, ML, contains the remaining nodes in

the torus. Also, it divides the destination set D into two subsets, DH and DL, where DH

contains the destination nodes in MH and DL contains the destination nodes in ML. The

messages will be sent to the nodes in DH and DL using the high-channel and the low-

channel networks, respectively. Thus, it requires at most two startup times.

Figure 16. An example of the column path algorithm on a 2D mesh.

 The second algorithm [44], Torus Multi-Path (TMP) algorithm uses the horizontal

wraparound channels to divide the torus into four equal width meshes. First, the torus is

divided into two meshes, the upper mesh, MU, and the lower mesh, ML. The upper mesh

subnetwork MU contains the nodes whose y-coordinates are greater than that of the

source node, while the lower mesh subnetwork ML contains the remaining nodes in the

torus. Secondly, the two meshes MU and ML are further divided. The mesh MU is

divided into two submeshes, the upper center mesh, MUC, which contains the nodes

whose x-coordinates are between that of the source node and that of the source node plus

36

or minus n/2. The other is the upper boundary mesh, MUB which contains the remaining

nodes in MU. In a similar manner, the mesh ML is divided into two submeshes, the lower

center mesh, MLC, and the lower boundary mesh, MLB. The boundary meshes, MUB

and MLB, use the horizontal wraparound channels to connect their partitions. Also, the

TMP algorithm divides the destination set D into four subsets, DUC, DUB, DLC and

DLB, where DUC contains the destination nodes in MUC and DUB contains the

destination nodes in MUB and so on. The messages will be sent from the source node to

the nodes in DUC and DUB uses the high-channel network, and to the nodes in DLC and

DLB uses the low-channel network. The TMP Algorithm requires at most four startup

times. Figure 17 illustrates message transition by using TMP algorithm.

Figure 17. [44] Message transition by using TMP algorithm.

Tree-Based Techniques

Tree-based routing algorithms challenge to deliver the message to all destinations

in single multi-head worm that splits at some routers and replicates the data on multiple

6,3 7,3

6,1

6,0

7,2

7,1

7,0
0 1 2 3 4 5

15 14 13 12 11 10

16 17 18 19 20

21

31 30 29 28 27 26
4,3 5,3 0,3 1,3 2,3 3,3

0,1

0,0

1,2

1,1

1,0

2,2

2,1

3,2

2,0

3,1

4,2

4,1

5,2

5,1

3,0 5,0 4,0
6 7

9 8

22 23

25 24

0,2

6,2

6,5 7,5

7,4
32 33 34 35 36 37

47 46 45 44 43 42
4,5 5,5 0,5 1,5 2,5 3,5

1,4 2,4 3,4 4,4 5,4
38 39

41 40

0,4 6,4

6,7 7,7

7,6
48 49 50 51 52 53

63 62 61 60 59 58
4,7 5,7 0,7 1,7 2,7 3,7

1,6 2,6 3,6 4,6 5,6
54 55

57 56

0,6 6,6

5,2

31

output ports. As path-based algorithms, tree-based algorithms use a simple hardware

mechanism to allow routers to absorb the message to local processors while concurrently

forwarding copies of the message on output channels enroute to the residual destinations.

The path followed by every copy may supplementary branch in this method until the

message is delivered to all destination nodes. In the literature, two approaches have been

planned for replication of data in tree-based schemes, synchronous and asynchronous.

Synchronous replication schemes need that all branches of the multi-head worm proceed

in lock–step [30]. As a result any branch of the multi-destination that is blocked can

block all other branches. Also, it needs some kind of feedback architecture to guarantee

that the flits proceed in lock–step. To prevent deadlock under synchronous replication,

deadlock avoidance algorithms have been proposed that arbitrate between multicast

packets at a router to prevent cyclic wait. In asynchronous replication schemes, different

heads of a multi-head worm can progress independently through the network. Also, an

arriving multicast worm at an input buffer of a switch is read by multiple output ports.

Bubble flits are inserted where required obviating the need for a hardware

synchronization mechanism [30]. Asynchronous replication schemes may be ideal for a

practical implementation due to the next reasons. Firstly, they do not require the costly

feedback architecture required under synchronous replication. Secondly, they are more

efficient because blocked branches do not block other branches. Finally, it works

effectively because current routers already offer relatively large buffers. To avoid

deadlock under synchronous replication, routers must be set with buffers large enough to

store the largest packet in the system. Figure 18 illustrates an example of a tree-based

algorithm on a 2D mesh.

38

Many tree-based multicasting algorisms [30], [40], [45]-[52] have been proposed.

Some of them, [30], [40], [45], [46], [50]-[52], are briefly discussed in this subsection.

 Shaheen [30] proposed a tree-based multicasting wormhole algorithm for

arbitrary interconnection topologies, MURA. It is a deadlock-free and provides a general

solution for multicasting in any direct network. It needs only fixed-sized input buffers

that are independent of highest message length, and it uses a simple asynchronous flit

replication mechanism. In this algorithm, wormhole switching is selected as the

switching technique to route the message to the destination nodes. A multicast message is

first forward to the least common ancestor (LCA), of the set of destinations. When the

message has reached at the LCA, all succeeding routing is limited to down tree channels.

The channel of the network is defined to be up or down channels depending on the source

node coordinates. The head of the worm will require splitting at the LCA into a multi-

head worm and the heads of these multi-head worms may split regularly in order to reach

all of the destinations.

Lin and Ni [40], the double channel XY routing scheme in 2D mesh networks,

was proposed. It is a deadlock-free multicast algorithm based on XY unicast routing. It

avoids cyclic channel dependencies by using two virtual channels for each physical

channel in the 2D mesh. Thus, it partitions the network into four subnetworks, NE-N , NW-

N, NW-S, and NE-S. The subnetwork NE-N contains the unidirectional channels with

addresses [(i ,j),(i+1,j)] and [(i,j),(i,j+1)] and the subnetwork NE-S contains the channels

with addresses [(i ,j),(i+1,j)] and [(i,j),(i,j-1)] and so on. It can be easily verified that the

four subnetworks use disjoint sets of virtual channels. The destination set D is divided

into at most four subsets, DE-N, DW-N, DW-S, and DE-S. The set DE-N contains the

destination nodes to the upper right of the source node and so on. In each subnetwork, the

39

multicast message is sent to the destinations using a tree that routes the message

according to the XY routing. The message will be sent to DE-N through subnetwork NE-N,

to DE-S through subnetwork NE-S, and so on.

Malumbres et al. [45] proposed an asynchronous tree-based algorithm based on

pruning blocked branches, which is effective only for short messages. Also, Wang and

Blough [46] proposed an asynchronous tree-based algorithm based on pipelined circuit

switching rather than wormhole routing. It avoids deadlock by allowing backtracking but

it does not guarantee delivery of all messages.

Figure 18. An example of a tree-based algorithm on a 2D mesh.

Wu and Chen [51] proposed a tree-based multicast algorithm based on a relatively

new switching technique called pipelined circuit switching PCS [52] and multicast-PCS

[46]. In a PCS (multicast-PCS), the header (multiheader) is delivered first through the

path (tree) setup phase. Once a path (tree) is kept by the header, an acknowledgement is

22

sent back to the source. As soon as the source receives the acknowledgement, data is sent

through the path (tree) in a pipelined fashion. The algorithm always establishes a minimal

path to each destination. Also, fault information of a fault block is spread to a restricted

number of nodes in the neighborhood so that multiheader can keep away from the fault

before reaching it. If the source satisfies certain conditions, the algorithm can set up a

multicast tree such that each destination (a leave node in the tree) is reachable through a

minimal path in the tree. Wu and Chen applied the algorithm in 2D mesh, 3-D mesh (the

MIT J-machine [25]) and tori (Cray T3D [53] and Cray T3E), which are meshes with

warp around links.

Moharam et al. [50] proposed an efficient algorithm (YOMNA) to find a

deadlock-free multicast wormhole routing in 2D mesh parallel machines. YOMNA

algorithm assigns a label for each node based on the position of that node in a

Hamiltonian path. YOMNA algorithm creates the routing decision at each sending node.

The message may be sent through two paths. It divides the network into two

subnetworks. The high-channel subnetwork contains all of the channels whose direction

is from lower-labeled nodes to higher-labeled nodes, and the low-channel subnetwork

contains all of the channels whose direction is from higher-labeled nodes to lower-labeled

nodes. At the source node, YOMNA algorithm divides the network into two

subnetworks, NU and NL, where every node in NU has a higher label than that of the

source node and every node in NL has a lower label than that of the source node.

YOMNA algorithm also divides the destination set D into two subsets, DU and DL, where

DU containing the destination nodes in NU and DL are containing the destination nodes in

NL. The messages will be sent from the source node to the nodes in DU using the high-

21

channel network and to the destination nodes in DL using the low-channel network.

Figure 19 illustrates message transition by using YOMNA algorithm.

The message transmission in YOMNA technique is made according to the

following method. Each sending node examines the above (below) neighboring node in

the high-channel (low-channel) subnetwork. In the case where the above (below)

neighboring is not a destination, the sending node sends the message together with the

destination set DU (DL) to the neighboring which has maximum (minimum) label and

having lower (higher) label than that of the first destination in DU (DL). In the case where

the above (below) neighboring is a destination node, the sending node replicates the

message and sends it together with its header to the above (below) neighboring. The

message header contains the destination nodes which have higher (lower) label than or

equal to that of the above (below) neighboring. The sending node sends the other copy of

message together with its header to the next horizontal neighboring node. In this case, the

message header contains the remaining destination nodes.

Figure 19. [50] Message transition by using YOMNA algorithm.

4,4

4,3

5,4

5,3

4,5 5,5

0,4

0,3

1,5

1,4

1,3

2,5

2,4

3,5

2,3

3,4

3,3

1,3

0,1

0,0

1,2

1,1

1,0

2,2

2,1

0,2 3,2

2,0

3,1

4,2

4,1

5,2

5,1

3,0 1,3 5,0 4,0

1,5

0 1 2 3 4 5

11 10 9 8 7 6

12 13 14 15 16 17

23 22 21 20 19 18

24 25 26 27 28 29

35 34 33 32 31 30

A destination node

0,0

The source node

21

Upon receiving the message, each receiving node determines whether it is the first

destination node. If so, it is removed from the destination nodes and receives the

message. At this point, if the sets of the destination nodes are not empty, the algorithm

continues according to the previous method. YOMNA algorithm is efficiently used in all

cases especially when the size of the network is large (massively parallel systems), and

average destination number in the networks is large.

23

CHAPTER III

FAULT TOLERANT MULTICAST ROUTING ALGORITHMS

In distributed-memory systems, packets (messages) usually travel across several

intermediate nodes before reaching the destination node. Deadlock occurs when some

packets (messages) cannot advance toward their destination because the buffers requested

by them are full. In direct networks, packets (messages) often go across several

intermediate nodes before reaching the destination node. In switch based networks,

packets (messages) frequently traverse numerous switches before getting the destination

node. On the other hand, it may happen that some packets are not capable to arrive at

their destination nodes, even if exist fault-free paths connecting the source and

destination nodes for every packet (message) [17]. There are different situations take

place when some messages are not capable to reach their destination node, even if they

never block permanently. Once some packets (messages) cannot go forward toward their

destination node because the buffers requested by them are full, the state is known as

deadlock. A packet (message) may be traveling around its destination node, in no way

getting it because the channels required to do so are occupied by other packets

(messages). This circumstance is known as livelock. It can barely take place when

packets (messages) are permitted to follow non-minimal paths. Deadlocks take place

because the number of resources is finite. Moreover, some of these situations may create

the others [54].

In distributed-memory systems, a few components such as processors, routers,

and communication channels may fail. According to number of parameters, faults are

classified into different types, regular and irregular faults. Regular faults consist of

convex and concave fault shapes. Other shapes considered as irregular faults. Convex

22

faults are the most commonly encountered faults in mesh networks. A convex fault is a

fault region such that there is a rectangle whose interior contains all and only the faulty

components of the fault region and all processors and links on its four boundaries are

fault-free. A fault ring consists of the fault-free nodes and channels that are adjacent to

one or more components of the associated fault region. There are two complementary

approaches to create reliable (failure-free) systems, fault prevention and fault tolerance.

Fault prevention approaches deal with ending faults being present in the final system.

Fault tolerance refers to the capability of the system to operate correctly in the presence

of faults. Fault model and fault tolerance are discussed in next section. A good fault

tolerant routing should be simple and use few virtual channels. Fault tolerant routing

algorithms for regular and irregular faults are discussed in this chapter.

Fault Model and Fault Tolerance

Some components such as processors, routers, and communication channels may

fail in distributed-memory systems. Fault tolerance refers to the capability of the system

to operate properly in the presence of faults. According to number of parameters, faults

are categorized into different types.

One of the considerations is the level at which components are identified as

having failed. Detection mechanisms are assumed to have identified one of two classes of

faults. The failure is called node failure when both the processors and their associated

routers may fail. The failure is called link failure when any communication channel may

fail. In node failures, all physical links incident on the failed node are also marked faulty

at adjacent routers. When a physical link fails, all virtual channels on that particular

physical link are marked faulty. It is noted that many types of failures will simply be

noticeable themselves as link or node failures. For example, the failure of the link

21

controller, or the virtual channel buffers, appears as a link failure. On the other hand, the

failure of the router control unit, or the associated PE, appears as a node failure.

The model of individual link and node failures are lead to patterns of failed

components. Adjacent faulty links and faulty nodes are coalesced into fault regions. The

two most important fault regions are regular (convex, concave) and irregular faults.

Convex faults are the most commonly encountered faults in mesh networks [55], [56]. A

convex fault is a fault region such that there is a rectangle whose interior contains all and

only the faulty components of the fault region and all processors and links on its four

boundaries are fault-free, Figure 20(a). When a fault region touches one or more

boundaries of a 2D mesh, the above definition still applies by assuming that there exist

non-faulty virtual rows and columns beyond the four boundaries. Hence, all the

connected fault regions under consideration are of rectangular shapes. A fault ring (f-

ring) can be formed around each fault region [57]. Essentially, an f-ring consists of the

fault-free nodes and channels that are adjacent (row-wise, column-wise or diagonally) to

one or more components of the associated fault region. If a fault region includes

boundary nodes, the fault ring reduces to a fault chain. Generally, it is assumed that fault

regions do not disconnect the network, since each connected network component can be

treated as a distinct network. The second type of regular fault regions is called concave

fault region, which faults in shape of └, ┘, ┌ and ┐, Figure 20(b). The third type of fault

regions is called irregular fault region, which faults in shape other than shape in the

previous two types, Figure 20 (c), [58], [59].

According to how components fail, faults may be identified into three categories.

These categories are transient, permanent, and intermittent faults. Transient faults appear

26

for a time and then disappear. Permanent faults appear at some time and remain forever.

Intermittent faults occur and reappear from time to time.

 (a) (b) (c)

Figure 20. Example of regular (convex, concave) and irregular fault regions.

Depending on when components fail, failures may be either static or dynamic.

Static failures are present in the network when the system is running. Dynamic failures

appear at random, throughout the operation of the system. Both types of faults are mostly

considered to be permanent or transient. When dynamic or transient faults interrupt a

message in progress, slices of messages may be left occupying message or flit buffers.

Fault recovery structures are necessary to remove such message components from the

network to avoid deadlock, mainly if such messages have became corrupted and can no

longer be routed [17].

 The configuration of fault tolerant routing algorithms is a normal result of the

types of faults that can happen, and the capability to identify them. The patterns of

component failures and expectations about the behavior of processors and routers in the

presence of these failures determine the approaches to achieve deadlock-freedom. This

information is captured in a fault model. The fault tolerant computing literature is in

21

general the definition of fault models for the treatment of faulty regions in distributed-

memory systems. Designing a fault tolerate system requires the selection of a fault

model, a set of possible failure scenarios along with an understanding of the frequency,

duration, and impact of each scenario. A simple fault model merely lists the set of faults

to be considered; inclusion in the set is decided based on a combination of expected

frequency, impact on the system, and providing protection. Most reliable network designs

address the failure of any single component, and some designs tolerate multiple failures.

In contrast, few attempts to handle the confrontational conditions that might occur in a

terrorist attack and cataclysmic events are almost never addressed at any scale larger than

a scale of a city [17].

Several additional problems must be considered in the design of a fault-tolerant

system beyond the selection of a fault model. A system must be capable of detecting each

fault in the model. In addition, it must be able to isolate each fault from the functioning

portion of the system in a manner that prevents faulty behavior from spreading. As a fault

detection mechanism may detect occurrence of fault, a system must also address the

process of fault diagnosis. This process tightens the set of possible faults and allows more

efficient fault isolation techniques to be employed.

 Significance of the behavior of failed components is also great and the system

implementation must defend certain behaviors to guarantee deadlock freedom. The failed

node can no longer send or receive any messages and is effectively removed from the

network. Otherwise messages designed for these nodes may block indefinitely holding

buffers and leading to deadlock. This behavior can be preserved in practice in the absence

of global information about the location of faults, by having routers adjacent to a failed

node by removing it from the network messages designed for the failed router. The fault

28

model specifies the extent of the fault information that is available at a node. At one side,

only the fault status of adjacent nodes is known. Moreover, the fault status of every node

in the network is known. Finally, optimal routing decisions can be made at an

intermediate node, i.e., messages can be forwarded along the shortest feasible path in the

presence of faults. Conversely, in practice it is difficult to provide global updates of fault

information in a timely manner without some form of hardware support. The occurrence

of faults during this update period necessitates complex synchronization protocols [60].

Moreover, the increased storage and computation time for globally optimal

routing decisions have a significant impact on performance. On one hand, fault

information is limited to the status of adjacent nodes. With only local fault information,

routing decisions are relatively simple, they can be computed quickly, and updating the

fault information of neighboring nodes can perform with an easy way. On the other hand,

messages may be forwarded to a portion of the network with faulty components

ultimately leading to longer paths. In practice, fault tolerant routing algorithm design is

typically a compromise between purely local and purely global fault status information

[17].

Fault Tolerant Routing Algorithms for Regular Faults

Optimal fault tolerant routing algorithm supposed to be simple (low

accomplishment cost), uses few virtual channels, supports maximum flexibility in

routing, uses the minimal paths when possible, guarantees the delivery of messages,

tolerates a large class of fault region patterns and guarantees the deadlock-free routing.

Additionally, all these goals should be achieved with a modest hardware constraint. Some

approaches called the global-information-based assume that each node knows the global

distribution of faults. Such an approach is very expensive because the difficult steps to

29

collect and maintain fault information, and also because it is not scalable. This

dissertation focuses on designing a fault tolerant multicast wormhole routing algorithm

using a limited knowledge based fault information which is a compromise between local

knowledge based (which needs only the information of neighbor nodes on the routing

path and that can take as close to optimal a routing path as possible for any routing

instance) and global-information-based.

The most used and simplest fault routing algorithm using in regular fault regions

(block faults) in 2D mesh networks is e-cube routing algorithm. In dimension order fault-

free, messages (packets) are normally routed. When a block fault is encountered, the

message can be routed around it. The e-cube algorithm remains deadlock-free by

preventing messages from traversing a row after traversing a column. In recent years

several fault tolerant routing algorithms for mesh and tori networks have been proposed.

Fault tolerant routing algorithms for regular fault regions can be classified into two

categories, convex and concave fault regions, depends on the fault shape.

Convex Fault Region

Glass and Ni [61] proposed a fault tolerant routing in meshes without virtual

channels, the negative-first. The negative-first algorithm operates in two phases. In the

first phase, the message is delivered adaptively in the negative direction and around fault

region, even farther west or south than the destination. It re-labels the channels of the

mesh in order to avoid fault region. It performs re-labeling in a purely local fashion,

resulting in fast and straightforward reconfiguration. For example, the path that has been

taken by message X is illustrated in Figure 21. In the second phase, the message is

delivered adaptively in the positive directions to the destination, unless it reaches the

destination column, in which case there is only one path to the destination. However, by

12

permitting the message to be delivered further west and south than the destination; more

paths of the destination are created for the second phase. Negative-first routing algorithm

can tolerate only one faulty component in a 2D mesh.

Figure 21. [61] An example of the negative-first routing in a 2D mesh.

Glass and Ni [62] proposed modifications to the routing logic of the base negative

first routing algorithm to find an alternative path when blocked by a fault region,

particularly along an edge of the mesh. The behavior that is permitted in this case is

shown by message Y around f-chain fault region in Figure 21. Such a single misroute to

avoid a fault region does avoid deadlock. They illustrated that the number of fault regions

that can be tolerated by their algorithm is (n-1)-fault tolerant in n-dimensional meshes

with no virtual channels and this is a unicast based multicast routing algorithm. Yet for

more than three dimensional meshes, it is not easy to design fault tolerant routing

algorithms following their approach [63].

11

Wu [64] proposed the design of fault tolerant minimal routing methods in 2D

meshes that is based on the concept of limited knowledge based fault information. It

addresses the issues of the existence of a minimal path at a given source node, limited

distribution of fault information, and minimal routing techniques. The disconnected

rectangular fault block (convex) is used as the fault model. In addition, Wu [65],

proposed a fault tolerant routing algorithm without using virtual channels for mesh

networks. The algorithm extended XY-routing techniques, which is based on an oddeven

turn model. Wu uses extended convex fault regions (disjoint convex faults), which

consists of connected unsafe and faulty nodes. Wu's technique can be applied to 2D

meshes having orthogonal faulty blocks (convex polygon). The extended XY-routing

technique, however, does not allow routing to some locations (i.e., some nodes cannot

fail, and some nodes cannot be destinations, and the convex fault region in the model

could include non-faulty nodes).

Rezazadeh et al. [66] proposed a performance-enhancing fault tolerant routing

algorithm for Network-on-Chip in Uniform Traffic based on f-cube3 as a solution for

increasing the rate of switched and routed packets (messages) in NoCs. They proposed

that when a message is not blocked by fault region, all virtual channels could be used.

The proposed algorithm requires only one virtual channel per physical channel to ensure

deadlock-free in NoCs. Also, Rezazadeh et al. [67] proposed, an improved fault tolerant

routing algorithm for mesh network. The proposed algorithm requires only two virtual

channels per physical channel to ensure deadlock-free in NoCs. The proposed

modification tolerates multiple convex fault regions with overlapped f-rings. A whole

column/row fault disconnects mesh networks and is not considered. Mohtashamzadeh et

al. [68] proposed an innovative fault tolerant routing algorithm for 2-D mesh network

http://en.wikipedia.org/wiki/Network_On_Chip

11

routing (FTR) as a solution to decrease the delay of the messages deliver over the on-chip

interconnection mesh networks. The proposed fault tolerant routing algorithm is a

deterministic e-cube routing as long as no faults occur. Also, the proposed routing

algorithm is a wormhole-switched routing for 2-D mesh networks and has been used for

convex fault regions. The proposed routing algorithm requires virtual channels to ensure

deadlock-free in 2D mesh networks. There is no restriction on the number of fault regions

tolerated in the proposed routing algorithm.

Xie et al. [69] proposed the two level turn model fault tolerant routing scheme in

tori with convex fault regions. The proposed routing algorithm requires less than six

virtual channels per physical channel to ensure deadlock-free in tori. The routing

algorithm is based on the properties and idea of the turn model for each of his classified

of the five message types, which itself could tolerate some faults of delivering for these

messages and could work successfully no matter whether the fault regions are connected

and no matter where the fault region locates. In addition, Xie et al. [70] presented another

fault tolerant wormhole routing scheme in the tori networks with convex faults, called

two-level-turn-model scheme, in the tori with revised convex fault regions, which is also

based on turn model. The proposed routing algorithm requires only four virtual channels

per physical channel to ensure deadlock-free in tori. This algorithm could also tolerate

disjointed or overlapped convex fault regions. Safaei et al. [71] proposed an evaluating of

the performance of adaptive fault tolerant routing algorithms for wormhole-switched

mesh interconnects networks. These networks carry a routing scheme proposed by

Boppana and Chalasani [55] as an instance of a fault tolerant. They present a comparative

performance study of ten famous adaptive fault tolerant routing algorithms in wormhole

switched 2D mesh. The suggested algorithms is extensively used in the researching to

13

support inter-processor communications in parallel processing computer systems due to

its capability to conserve both communication performance and fault tolerant demands in

these networks and to achieve high adaptively in these computer systems.

Wu and Chen [72] proposed a fault tolerant tree-based multicast algorithm for 2D

meshes based on the idea of the extended safety level which is a vector associated with

each node to capture fault information in the neighborhood. They suggested three

strategies to develop their ideas. In this algorithm each destination node is reached

through a small number of hops. This algorithm can be simply implemented by pipelined

circuit switching (PCS) techniques based on limited global information with a simple

model. The algorithm has been proved to achieve minimal use of number of hops to

deliver the message. Gu et al. [73] proposed improved fault tolerant routing algorithm

using a concept of ‘‘balanced ring.’’ The proposed routing algorithm keeps away from

early saturation of the network by proposing the concept of balanced ring. The proposed

routing algorithm also requires only one virtual channel per physical channel to ensure

deadlock-free. With this concept employed, the existing f-ring-based fault tolerant

routing algorithm can achieve a more even use of the network resources. The balanced

ring is concentric rings of a given fault ring (convex fault region), which can be formed

easily.

Zhou and Lau [74] proposed fault tolerant wormhole routing in 2D meshes which

is based on the XY routing scheme, which is not adaptive for the more general fault

regions. The proposed algorithm requires only two virtual channels per physical channel

to guarantee deadlock-free in 2D mesh networks and overlapping of processors along the

boundaries of different fault regions is allowed. The proposed fault tolerant routing

algorithm can be extended to n-dimensional mesh networks, where an n-dimensional

12

mesh can be treated as being composed of multiple two-dimensional mesh networks.

Also, Zhou and Lau [75] proposed an adaptive fault tolerant routing algorithm with two

virtual channels in 2D mesh networks. The proposed routing algorithm can tolerate

convex fault regions with overlapping. The proposed routing algorithm requires only two

virtual channels per physical channel to ensure deadlock-free in 2D mesh networks. The

convex fault model used does not include any non-faulty processors. In addition, Zhou

and Lau [76] proposed multi-phase minimal fault tolerant wormhole routing in mesh

networks, which is based on the idea of multi-phase minimal routing. The proposed

routing algorithm can tolerate convex fault regions with only four virtual channels per

physical channel in spite of how processors of different convex fault regions may

overlap. Moreover, Zhou [77] proposed fault tolerant wormhole routing with two virtual

channels in mesh networks. The proposed routing algorithm can be simply extended to

adaptive routing technique. This routing algorithm can tolerate the disjointed convex

fault regions with distance at most two hops, which do not include any non-faulty nodes

and do not prohibit any routing as long as nodes outside convex fault regions are

connected in the mesh networks.

Chalasani and Boppana [78] proposed a fault tolerant routing algorithm to

decrease the number of functional nodes that must be marked as faulty nodes. This

routing algorithm builds on the idea of fault rings to support more flexible routing around

convex fault regions. The proposed routing algorithm uses four virtual channels per

physical channel to support more flexible routing around convex fault regions. In this

routing algorithm, four virtual networks may be constructed, each comprised of virtual

channels of each type. Messages are assigned types based on the relative positions of the

source node and destination nodes and dimension ordered routing. In a 2D mesh,

11

messages are categorized as east-west (EW), west-east (WE), north-south (NS), or south-

north (SN) based on the relative values of offsets in the first dimension. Routing is

dimension ordered until a message encounters a convex fault region. Depending on the

type, the message is routed around the convex fault region as shown in Figure 22. The

direction around the convex fault region is chosen based on the relative position of the

destination node. The EW and WE messages may turn out to be NS and SN messages.

However, the opposite is not true. As a result, dependencies between channel classes are

acyclic. Since fault regions are convex faults, dependencies within a fault region are also

acyclic – the arguments are similar to those provided for fault tolerant multicast planar

adaptive routing.

Figure 22. [78] Routing restrictions around a fault region.

An example of routing around convex fault regions with overlapping fault rings is

shown in Figure 23. Two messages X and Y have destinations and sources as shown. X is

an EW message and Y is a WE message. Message Y is routed as a WE message around

convex fault region until it reaches the destination column where the type is changed to

that of a NS message. The figure also illustrates the path selected by message X. These

two messages share a physical link where convex fault regions overlap. Consider the

shared link where both messages traverse the link in the same direction towards the

destination node. If virtual channels were not used to separate the messages in each fault

16

ring (convex fault), one of the messages could block the other. An EW message can

block a WE message and vice versa, resulting in cyclic dependencies. The separation of

the messages into four types (classes), the use of four virtual networks, and acyclic

dependencies between these networks avoid occurrence of deadlock.

Figure 23. [78] An example of routing around overlapping fault rings.

Boppana and Chalasani [55] proposed an adaptive fault tolerant routing algorithm

for mesh networks that can tolerate faults of arbitrary rectangular shapes (convex fault

regions). The concepts of f-rings and f-chains were used for routing messages around

rectangular fault regions. They enhanced routing algorithm for mesh networks based on

e-cube routing. This routing algorithm uses two virtual channels to provide non-adaptive

deadlock-free routing in networks with non-overlapping f-rings. For more complex fault

regions, such as overlapping f-rings and f-chains, the algorithm uses four virtual channels

to ensure deadlock-free.

Chang and Chiu [60] proposed a fault tolerant multicast unicast-based routing

algorithm, FT-cube2, in 2D mesh networks. In FT-cube2 routing algorithm, the well-

11

known e-cube routing algorithm improved in order to handle multiple convex fault

regions in 2D mesh networks. The proposed routing algorithm requires only two virtual

channels per physical channel to guarantee deadlock-free in 2D mesh networks. Also it is

local knowledge-based fault information and works correctly for any combination of

convex fault regions. In FT-cube2 routing algorithm, normal messages from source node

to destination node are routed via e-cube hops. A message is misrouted on an f-ring or f-

chain along clockwise or counterclockwise direction specified by table 1 [60]. FT-cube2

will be compared with algorithms proposed in this dissertation.

Table 1

Misrouted on an f-ring or f-chain [60]

 Message type f-ring/f-chain Direction

Normal-WE Counterclockwise

s-WE Clockwise

EW n-Chain or nw-Chain Clockwise

 Others Counterclockwise

SN w-Chain Counterclockwise

 Others Clockwise

NS w-Chain Clockwise

 Others Counterclockwise

 Concave Fault Region

Fault tolerant multicast routing algorithms in the presence of concave fault

regions, which faults in shape of └, ┘, ┌ and ┐study is not the main research for a lot of

researchers in the field of distributed-memory systems performance because most of

18

them consider concave fault region as a multi connected convex fault regions. In

addition, some of them take into consideration other shapes like + as a concave fault

region. Several of these studies consider concave fault region, which faults in shape of └,

┘, ┌ and ┐will presented in this section.

Xie and Xu [79] proposed the two level turn model fault tolerant routing

algorithm in tori networks with convex and concave fault regions. This routing algorithm

could tolerate the concave fault regions and the convex fault regions both with a few

limitations to their shape. The proposed routing algorithm requires at most five virtual

channels per physical channel to ensure deadlock-free in tori networks.

Park et al. [80] proposed fault tolerant wormhole routing algorithms in mesh

networks in the presence of concave fault regions. They proposed two fault tolerant

wormhole routing algorithms that deal with more relaxed shapes of fault rings in the

mesh networks. The first fault tolerant routing algorithm uses four virtual channels per

physical channel and allows all four sides of fault rings to contain concave shapes. The

second fault tolerant routing algorithm permits up to three sides to contain concave

shapes using only three virtual channels per physical channel. In their fault models, there

might be several f-rings in a 2D mesh networks. They divide also each f-ring (convex or

concave) fault region into four portions: the north, south, west and east sides. Both fault

tolerant routing algorithms are free of deadlock and guarantee the delivery of messages

between any pair of non-faulty and connected nodes in mesh networks. The first fault

tolerant routing algorithm, F4, will be compared with algorithms proposed in this

dissertation.

19

Fault Tolerant Routing Algorithms for Irregular Faults

Convex (rectangular and square) fault regions provide some form of non-

decreasing property in coordinates of misrouted messages. This property is exploited to

prevent the occurrence of deadlocked message configurations. However, the construction

of regular fault regions by the marking of fault-free routers and links as fault region can

lead to under significant utilization of resources. These methods cannot be accepted by

many of the early methodologies to design fault tolerant routing algorithms. Since a

whole knowledge of the patterns of occurrences of fault regions is not assumed, these

methodologies are not generally proper to cases where larger fault regions must be

supported. Various fault tolerant routing algorithms use virtual channels of irregular

faults for mesh networks have been proposed in recent years.

Table 2

Routing Rules for Irregular Fault Regions [57]

 Message type Position of destination F-ring orientation

WE row above current row Clockwise

WE row below current row Counterclockwise

EW row above current row Counterclockwise

EW row below current row Clockwise

NS or SN either either orientation

Chalasani and Boppana [57], the concept of fault rings can be extended in a

minimal manner to account for certain classes of irregular fault regions. Consider the

class of fault regions in n-dimensional mesh networks where any two dimensional cross-

62

section of the fault region produces a single rectangular fault region. Such a fault model

is referred to as an irregular fault model [57]. Figure 24 provides an example of an

irregular fault region, and a message is being routed along a fault ring around the fault

region. Table 2 describes routing rules considered around fault region and these rules do

not apply in case of overlap fault regions. As in previous techniques, for non-overlapping

fault rings, and non-faulty boundary nodes, messages types are distinguished by the

relative positions of the destination when the message is generated. When the message

eventually arrives at the destination column, the message type is changed to NS or SN

depending on the relative location of the destination. When a message encounters a fault,

the rules for routing the message along the fault ring are shown. There are four virtual

channels over each physical channel: v0, v1, v2, and v3. In these techniques, each set of

channels implements a distinct virtual network. If a message must travel along a fault

ring before encountering a fault region, (as shown in Figure 24 at node X) then the

message must continue to be routed in the same direction, along the fault ring. Otherwise

the message follows the direction specified in Table 2. Each message type is transmitted

in a distinct virtual network. From the routing rules, the channel dependency graph within

a virtual network is acyclic. In addition, messages can only transition from WE or EW

channels to NS or SN channels but not vice versa. Consequently, the relation between

these virtual networks residues acyclic and therefore routing residues deadlock-free.

61

Figure 24. [57] An example of routing around an irregular fault.

Fukushima et al. [81] proposed a hardware-oriented fault tolerant multicast

routing algorithm for 2D mesh Network-on-Chip without virtual channels. The proposed

routing algorithm requires no virtual channels per physical channel to ensure deadlock-

free in irregular 2D mesh. The proposed position-route algorithm for non-VC routers

needs much less routing complexity. The main idea is to add routing behaviors of the

traditional message-based algorithm and to simplify the fault region (ring) selection.

Mejia et al. [82] proposed an efficient fault tolerant routing algorithm for mesh

and tori networks. The proposed routing algorithm is a deterministic routing methodology

for tori and mesh networks, which accomplishes high performance without the necessity

of use virtual channels. This routing algorithm can handle any topology derived from any

combination of fault regions when combined with static reconfiguration. The algorithm,

called segment-based routing (SR), works by dividing a topology into sub-networks, and

61

sub-networks into segments. Wu and Wang [83] proposed a fault tolerant and deadlock-

free routing in 2D mesh networks using rectilinear-monotone polygonal fault regions.

The main idea for it is both source and destination nodes are outside any fault region. In

addition, the destination node is not a boundary node of any fault region. Moreover, fault

model is static, that is, no new fault regions happen during a routing process, and fault

regions (ring) are at least 2 hops away from the four boundaries of a mesh network. Wu’s

extended X–Y routing to 2D mesh networks that use a new fault region model called

minimal-connected-component (MCC). The extended X–Y routing is a deterministic

fault tolerant and deadlock-free routing protocol in 2D mesh networks. The proposed

routing algorithm requires no virtual channels per physical channel to ensure deadlock-

free in 2D mesh networks, as shown on Figure 25.

Figure 25. [83] MCCs that are 2-hop apart are merged into one (extended) MCC.

 Stojmenovic and Nayak [84] proposed fault tolerant multicast routing in mesh

networks. The proposed routing algorithm uses local information knowledge of fault

regions. In this routing algorithm there is no need for additional resources. It works for an

arbitrary number and structure of fault regions, and guarantees delivery to all destination

nodes connected to the source node, it also remains optimum in a fault free mesh

network. The routing algorithm is extended to faulty k-D mesh networks and k-ary n-

cubes, where the delivery will be guaranteed if healthy nodes in every 2D sub-mesh (sub-

http://api.getsmartlinks.com/r?app_id=opencandy&guid=8C107F76-5B55-8122-63E2-3177696EB682&time=134089736&link_id=3244837&cid=437&pid=1&sense=3ZWmd15VkvBAppVn4z5MpQ&hash=3184bc8c6e63e9819f7a4bb68ae68894&url=http:%2F%2Fen.wikipedia.org%2Fwiki%2FMesh_networking&ref_hash=b751cff0&v%5blink_target2%5d=_blank
http://api.getsmartlinks.com/r?app_id=opencandy&guid=8C107F76-5B55-8122-63E2-3177696EB682&time=134089736&link_id=3244837&cid=437&pid=1&sense=3ZWmd15VkvBAppVn4z5MpQ&hash=3184bc8c6e63e9819f7a4bb68ae68894&url=http:%2F%2Fen.wikipedia.org%2Fwiki%2FMesh_networking&ref_hash=b751cff0&v%5blink_target2%5d=_blank

63

tori) stay connected. The proposed routing algorithm requires no virtual channels per

physical channel to ensure deadlock-free in 2D mesh networks. Shih [85] proposed a

fault tolerant wormhole routing algorithm for hypercube without using any virtual

channels. The proposed routing algorithm can tolerate a different pattern of fault regions

as long as the number of faulty nodes is no more than n/2, where n is the dimension of

hypercube network.

Xiang et al. [86] proposed a fault tolerant routing in mesh/tori networks using

planerly constructed fault regions. A new limited-global safety-based measure called the

extended local safety information is presented to guide fault tolerant routing, based on

which a new path set-up scheme is proposed. The number of virtual channels requisite by

the proposed routing technique is linearly proportional to the number of dimensions of

the network. In this routing algorithm fault region are created inside separate planes,

where many unsafe nodes can be activated. This can significantly advance the

computational power of the system and improve the performance of the fault tolerant

routing algorithm greatly. In addition, Xiang et al. [87] proposed a practical deadlock-

free fault tolerant multicast routing in mesh networks based on the planar network fault

model. The proposed routing algorithm requires only two virtual channels per physical

channel to ensure deadlock-free in 3D mesh networks. The deadlock-free routing pattern

is used to do fault tolerant routing in mesh networks, where PN fault model is presented

to guide deadlock-free adaptive fault tolerant routing in wormhole-routed mesh networks.

Also, Xiang [88] proposed a new deadlock-free adaptive routing in mesh networks with

fault tolerance ability. It is proposed based on a new virtual network partitioning scheme,

called channel overlapping. The proposed routing algorithm requires only two virtual

channels per physical channel to ensure deadlock-free in 2D mesh networks. The

62

proposed routing algorithm is also extended to the one in an n-dimensional mesh network

with two virtual channels. Xiang proposed planar safety information in mesh networks to

guide fault tolerant routing and to categorize fault-free nodes inside 2D planes.

Safaei et al. [89] proposed a performance analysis of fault tolerant routing

algorithm in wormhole switched interconnections for 2D tori network using the fault

tolerant software-based method. They describe a general model to derive mathematical

expressions to study the performance behavior of challenging routing algorithms, regular

and irregular fault regions. They consider regular (|-shaped, _-shaped) or irregular (U-

shaped, +-shaped, T-shaped, H-shaped) fault regions. The number of virtual channels

they use to grantee deadlock-free depend on if it is adaptive or deterministic routing.

Safaei and Mortazavi [90] presented a novel routing algorithm for achieving static fault

tolerance in 2D mesh networks. The proposed routing algorithm does not require the use

of routing tables and is well-suited for use in high performance computing systems. The

proposed routing algorithm requires five virtual channels per physical channel to ensure

deadlock-free in 2D mesh networks. The main idea is to splits sub-networks of nodes into

two parts. Then they count fault region in each part and select the less one.

Youn at el. [91] proposed a fault tolerant routing method that can tolerate

irregular fault regions. The proposed routing algorithm requires only two virtual channels

per physical channel to ensure deadlock-free in mesh networks. The proposed routing

scheme misroutes messages both clockwise and counter clockwise directions to lessen

channel contention on f-rings. It is shown that the proposed routing algorithm is

deadlock-free in mesh networks when it has non-overlapping multiple f-regions. Wang et

al. [92] proposed a fault tolerant multicast routing algorithm on mesh networks. This

routing algorithm is highly fault tolerant and has a high success probability to route

61

messages. The routing algorithm is local information based and a distributed multicast

routing algorithm based on the concept of k-sub-mesh in all port mesh networks. The

main idea is to divide the mesh m×n into (m/k), (n/k) disjoint k sub-meshes. Then these

k-sub-meshes are partitioned into four regions according to the location of the k-sub-

mesh that contains the source node.

 Duan et al. [93] proposed a fault tolerant routing algorithm for wormhole mesh

networks. The proposed routing algorithm is connected and deadlock-free in spite of the

various irregular fault regions in mesh networks. In addition, the proposed fault tolerant

routing algorithm only works as few virtual channels as possible. Thus the proposed

routing algorithm is appropriate to the fault tolerance mesh network. Since it chooses the

path around fault regions according to the local fault information, the presented routing

algorithm takes routing decisions quickly and is applicable in interconnection networks.

Jiang et al. [94] proposed a fault information model for fault tolerant adaptive and

minimal routing in 3D mesh networks. In this fault tolerant routing model, they have

rewritten the MCC model in 2D mesh networks without using global information based

for this reason the shape information at boundaries can be used to guarantee the presence

of a minimal path and to form a minimal routing by making routing decisions at

intermediate nodes along the path. In addition, they extended the MCC model in 2D mesh

networks to 3D mesh networks. This fault information model is limited global-

information model.

Chen and Chiu [95] proposed a fault tolerant routing algorithm for mesh networks

with irregular fault regions. In this routing algorithm a flag bit is introduced for guiding

misrouted messages. The proposed routing algorithm necessitates only three virtual

channels per physical channel to ensure deadlock-free in 2D mesh networks. This routing

66

algorithm is able to handle irregular fault regions whose associated fault rings overlap. In

addition, this routing scheme can be used to deliver messages when fault regions touch

the boundaries of the mesh.

61

CHAPTER IV

FTDM AND iFTDM ROUTING ALGORITHMS

One of the important issues in parallel computing is how to powerfully

accomplish routing in a faulty network, where each element fails with various

probabilities. Routing is a task where a source node sends a message to a destination

node. Network topology is an important factor that affects routing algorithms.

Mesh connected networks have been widely used in most multicomputer systems.

These computers generally use the e-cube routing algorithm with wormhole switching

because of its simplicity. The main idea of e-cube algorithm is to route a message first

along the row and then along the column in a 2D mesh. It is important to note that e-cube

provides deadlock-free shortest path routing without needing virtual channels [55].

Distributed-memory systems are the most advantageous architectures in building a

massively parallel computer system. These systems need switching techniques to

broadcast messages among processors. The wormhole switching technique has been

widely used in the design of parallel computer systems. The basic idea of wormhole

routing is that a message is partitioned into flow control flits. Each flit of a message is

chosen as the header flit, which is responsible for leading the message on the network.

The multicast pattern, in which one processor (node) sends the same message to multiple

processors (nodes), is the most fundamental communication pattern used on

multicomputer. Fault tolerance is a central issue facing the design and implementation of

interconnection networks for distributed-memory systems. This work focuses on studying

the fault tolerant multicast wormhole routings in a 2D mesh networks.

In recent years, fault tolerant routing in direct networks has been deservedly

gaining a lot of attention. The model of individual link and node failures produces

68

patterns of failed elements. Fault regions result from the closest faulty links and faulty

nodes. The two most important fault regions are regular (convex, concave) and irregular.

A good fault tolerant routing should be simple (low implementation cost), use few

numbers of virtual channels, assure the delivery of messages, tolerate many types of fault

patterns, and assure deadlock-free routing while minimizing disabled processors to ease

the routing algorithm. Furthermore, all these goals should be achieved with less

consideration for hardware requirement.

 In this Chapter, a new fault tolerant routing algorithms in wormhole-switched 2D

mesh multicomputer is presented. It can tolerate convex faults without using virtual

channels. The proposed routing algorithm, called Fault Tolerant Deadlock-free Multicast

(FTDM) works perfectly for the most common faults in 2D mesh networks, f-rings and f-

chains. In addition, an improved version of FTDM which is called iFTDM is presented.

Both algorithms are a unicast/tree based multicast routing algorithm. The iFTDM can

tolerate convex faults with overlapping. Four essential performance metrics in mesh

networks – network traffic steps, network latency steps, network traffic time and network

latency time – will be considered and calculated for both algorithms.

FTDM Fault Model

Many applications of interconnect networks require high reliability and

availability. A large parallel computer requires that it’s interconnect network operates

without packet loss for ten thousands of hours. Thus, these networks must employ an

error control mechanism to continue operation without interruption, and possibly without

packet loss, despite the failure of a component. The failure of a processing element and

its associated routers is referred to as a node failure, and the failure of any

communication channel is referred to as a link failure. In our fault model, both node

69

failures and link failures are considered. The fault model is the base for the fault tolerant

routing algorithms. Types of faults, structures of fault regions and processes to

component failures determine the approaches to design deadlock-free routing algorithm.

Figure 26. FTDM Fault model.

FTDM algorithm considers convex faults (also known as block faults), which are

the most commonly encountered faults in mesh networks [96]. A convex fault is a fault

region such that there is a rectangle whose interior contains all and only the faulty

components of the fault region and all processors and links on its four boundaries are

fault-free. A fault ring (f-ring) consists of the fault-free nodes and channels that are

adjacent to one or more components of the associated fault region, F1, as shown in Figure

26. If a fault region includes boundary nodes, the fault ring reduces to a fault chain (f-

chain), F2 and F3, as shown in Figure 26. In FTDM, fault information of a fault (faulty

block) is distributed to a limited number of nodes (0, ybi) in case of odd rows or (m, ybi)

in case of even rows in order to avoid the fault before reaching it. Because fault

information is distributed to a limited number of nodes, FTDM is a limited-global-

12

information-based multicasting, which is a compromise of local-information-based

approach and global-information-based approach.

FTDM Routing Algorithm

Most fault tolerant routing algorithms which were proposed in the literature

recently concentrate on unicast-based multicast algorithms [60], [62], [88]. Unicast-based

algorithms require a startup time for each destination. Also, unicast-based multicast

algorithms are incompetent because they permit a message to be delivered to only one

destination, which leads to multicast operations being implemented as multiple phases of

multicast message exchange. Hence, contention freedom must be guaranteed not only

among the worms of a given phase, but also among worms in different phases.

In this section, the details of new fault tolerant deadlock-free multicast routing

algorithm, FTDM, for 2D meshes is covered. FTDM is a unicast/tree-based multicast

algorithm, which attempts to deliver the message to all destinations in two phases. In the

first phase the message is delivered as a unicast-based to X-coordinate nodes – nodes (0,

ybi) in case of odd rows or (m-1, ybi) in case of even rows – of each true fault regions at

these nodes – central nodes. We consider each node of them as a source node that has a

message with a header containing destinations in the three locations around the fault. In

the second phase, the message is delivered from the central nodes in a tree-based fashion,

which attempts to route the message to all destinations in a single multi- head worm that

splits at some routers and replicates the data on multiple output ports.

To define the path routing functions, which determines the next node for which

the path of FTDM will be visited, some definitions are introduced:

1) Let fbi= (xbi, ybi), and fei= (xei, yei) be the coordinates of each fault.

11

2) The fault region number i, Fi, is described by two nodes, fbi, fei, where fbi is located in the

southwest corner of the fault region, while fei is located in the northeast corner of the fault

region,

Fi = {(x, y): xbi < x < xei ^ ybi < y < yei}.

3) Width of a fault region Fi is defined as follow: dFi=xei – xbi

4) The variable dx is equal to 1 if the direction of the message path is from west to east or

-1 if it is from east to west.

5) LN is the label of last node, (xei, ybi), of a fault region which the message path visits.

The value of LN is zero if the message path is in a non-fault region, while it is non

zero if the message path is in a fault region.

6) L1, L2and L3 are three locations around each true fault regions as in Figure 27, and L4

is a location in case if the 1
st
 fault region is an f-ring. In Figure 27 we define three

fault regions F1, F2 and F3. Also, the notation LA, B means location A for fault number

B (i.e. L3,1 means location three for the 1
st
 fault region, F1.)

7) True fault regions are the main fault regions which have three locations around them

and may have other fault regions on locations, L3 or L1, with fbi= (xbi, ybi), and fei=

(xei, yei) less than it.

8) Central nodes are the nodes which the source node sends a copy of a message in the

first phase in a unicast fashion,

9) Consider a source node as one of the central nodes if the first fault region is f-ring.

11

Figure 27. Locations around fault regions.

Routing Functions

FTDM assigns a label for each node based on the position of that node in a

Hamiltonian path. The Hamiltonian path in a network is an undirected path that visits

each node in a graph just once where the first node in the path is labeled 1 and the last

node in the path is labeled N, where N is the network size [40]. The label assignment

function Q for an m n 2D mesh using a Hamiltonian path can be expressed in terms of

the x- and y-coordinates of nodes as follows:

{

 even is y1x + n y

 odd is yx -n + n y
= iii

 iii

iii) y,Q(x =)Q(p

FTDM creates the routing decision at each sending node. The path followed by a

message in the first phase is simply unicast-based in which a source node sends a

separate message to each central node beside a copy to L4 in case the first true fault

region is f-ring using XY routing algorithm. The path followed by a message in the

second phase is defined by one of the two routing functions. Each function is defined as a

function of the node currently holding a message and the destination node of this

13

message. The function returns a neighboring node of the current node to which the

message must be forwarded. Let c be a current node, and d is a destination node.

The first routing function used in FTDM is defined as:

R (c, d) = w, where

{ Q(d)< Q(c) if Q(u)} Q(z) max{Q(z):
Q(d)> Q(c) if Q(u)} Q(z) max{Q(z):

 = Q(w)
 and z is a neighboring node of c

Lin and Ni proved [40] that for two arbitrary nodes c and u in a 2D mesh, the path

selected by the routing function R is the shortest path between them. As proved in [40],

this routing function is deadlock-free even using the path based on facility. FTDM which

uses the routing function R in each region does not contain any fault nodes.

The second routing function used in FTDM at a fault region Fi is defined as:

R(c, d) = w, where

 (xc, yc-1) if xd= xc

w = (xc, yc+1) if xd = xc+ dx dFi

 (xc+ dx, yc) otherwise

Figure 28. The routing path using R'.

12

Algorithm FTDM

Input: The message msg, Label node LN, central nodes CNk, destination set D, and fault

region Fi .

Output: dj D, Receive(dj , msg)

Procedure:

[1]/* Phase 1 (unicast-based): Send copies of message to CNk

[a] If c = d1 then

a. 1) D = D-{c}

a. 2) Receive(c, msg)

[b] If D = then stop

[c] Send separate messages to CNk using XY routing.

[d] Modify header of messages, msg, and put in each header Dk destinations, which k

is the number of central nodes (plus one if first fault is f-ring)

[e] Let each CNk as a new source node

[f] Go to phase 2

[2]/* Phase 2 (tree-based): Send msg using R and R' functions

[a] If c = d1 then

a. 1) D = D-{c}

a. 2) Receive(c, msg)

[b] If D = then stop

[c] At each new source node, send two copies of message, msg

c. 1) 1
st
 copy contains destinations on L1 and L2 using R

c. 2) 2
nd

 copy contains destinations on L3. Using R' to route a message

around the fault region until the message reach to LN, and then use R.

c. 3) If L3 have another faults then recursively apply FTDM.

[d] Repeat the above steps until each destination in the message header is reached.

Pseudocode 1. FTDM Routing Algorithm

FTDM uses the routing function R' in fault regions only. Figure 28 illustrates the

different cases of the routing function R' and the way it works around the fault region.

The direction of the message path may be from west to east, Figure 28(A) or from east to

west, Figure 28(B). It is clear that, the path selected by the routing function R' is the

shortest path between the two nodes c and u. Also, it is clear that the routing function R'

is deadlock-free, because it works on three boundaries only of each fault region, i.e., the

cycle is not complete.

Lemma: FTDM algorithm is deadlock-free

Proof: There are two phases as follow:

11

Phase 1: Unicast-based multicast routing

The separate addressing is one of the unicast-based multicasting techniques, which has

been already proven to be deadlock-free [8], because in separate addressing, the source

node sends directly a separate copy of the message to every destination node, then no

cyclic dependency can be created among the channels.

Phase 2: Tree-based multicast routing has two cases and they are as follows:

Case 1: Nonfault regions

Because a cyclic dependency among resources is a necessary condition for deadlock,

since a message is routed at any node according to the routing function R, which is

proved deadlock-free [42], and monotonic order of requested channels is guaranteed.

Therefore, a cycle cannot exist within this path in the network; hence, no cyclic

dependency can be created among the channels.

Case 2: Fault regions

Since a message is routed at any faulty nodes according to routing function R´, and a

message never visits an f-ring and f-chain more than twice (at most as a row message and

once as a column message), then a cycle cannot exist within this path in the network.

Hence, FTDM algorithm is deadlock-free.

Results and Discussions

A simulation study has been conducted to test the proposed new fault-tolerant

multicast routing algorithm. To evaluate the performance of FTDM and to compare its

performance with FT-cube2 routing algorithms, simulations on a 50×50 2D mesh were

conducted, double channels were used. The two algorithms were written using C++

language and were implemented on a PC. In this section, we present the simulation

results and analysis. In the simulation, the wormhole switching routing technique is

16

chosen as the switching technique. In addition, FTDM routing algorithm is also

applicable with other switching techniques. The notation F is used to represent the

number of fault regions, R is the number of rows, and C is the number of columns. This

configuration creates different networks with a number of processors ranging from 100 to

1080. The average number of destinations is ranging from 10 to 100 and using three fault

regions.

 Network latency steps and network traffic steps analysis. In this subsection, two

essential performance metrics in direct networks, network latency steps and network

traffic steps, are calculated. The network latency step is the greatest number of channels

which the message takes to reach its destination nodes. The network traffic step is the

total number of channels used to deliver the message to all destinations. They affect the

overall performance of parallel computing systems and the granularity of parallelism that

can be exploited from the system [30].

Now, the network latency steps and network traffic steps are calculated for FTDM

and FT-cube2 routing algorithms. The following formulas can be used to calculate the

network latency steps for FTDM.

Our partitioning of the 2D mesh around each fault regions into Li1, Li2, Li3 and L4,

will result in partitioning the destination nodes D into Di1, Di2, Di3,and Di4 respectively

where i is ranging from 1 to F, and F is number of fault regions. In addition, (cX, cY) is

the coordinate of central node.

 dist (di, di-1) = |xdi – xdi-1| + |ydi – ydi-1|

 Lat (D) =

||

1

D

i

dist (di, di-1)

Lat (D) is depends on the start coordinates and end coordinates for each location.

11

 Di = {(x, y) : (x, y) D ^ x > xbni ^ y< yei }

 Li1 =Lat (Di1)+| (cX-xdi) |+| (cY-ydi)|,

 OOi= | Xend - Xstart | -1,

Where Xstart= 0 and Xend= xbi+1

 UUi = ybi+1

 Lfi= 2*| (yei-ybi-1) | + | (xei-xbi) |

 L4 =Lat (Di4) + | (SX-xdi) | + | (SY-ydi)|

 Li2 =Lat (Di2),

 Li3 =Lat (Di3)

 Traffic(i) = Li1 + Li2+ Li3 + OOi + UUi + Lfi

 LP(i) = Li1 + Li2 + UUi

Where LP is the left path

 RP(i) = Li3 + OOi + UUi + Lfi

Where RP is the Right path

The latency step of FTDM, FTDM_Latency, is given by:

FTDM_Latency=Max(LP(i) , RP(i) , L4) (1)

The traffic steps of FTDM, FTDM_Traffic, is given by:

FTDM_Traffic = Traffic(i) + L4 (2)

The latency step of FT-cube2, FT_Latency, is given by:

FT_Latency = Max{ Flati, 1≤ i ≤ |D|} (3)

Where Flati = xdi - Sx+ydi - Sy+ 2*yei - ybi

The traffic steps of FT-cube2, FT_Traffic, is given by:

FT_Traffic = Flati (4)

||

1

D

i

||

1

F

i

18

 Case study. As an example, to demonstrate the difference between FTDM algorithm

and FT-cube2 algorithm, a 1515 2D mesh network is considered, Figure 29. The source

node is (0, 0) and 15 destinations node, colored with dark. The number of fault regions

equals 3 and they are f-ring type. The dimension for each fault is, F1 = {(3, 1), (6, 4)}, F2

= {(9, 5), (11, 8)}, F3 = {(4, 9), (7, 12)}. The dimension of central nodes is CN’s = {(0,

0), (0, 2), (0, 6), (0, 10)}. As shown in Figure 29, in first phase four messages sent to

each central node, each message has destinations in locations corresponding to a fault

region for each central node.

By applying FTDM algorithm, in Figure 29, the message is transferred from the

node (0, 0) to central nodes in a unicast –based multicast routing fashion. Then a message

routed on non-faulty region with function R and around fault regions with function R

using tree-based multicast routing fashion. The latency steps are equal 29, and traffic

steps are equal 117.

By applying FT-cube2 algorithm, the message is transferred from the node (0, 0)

to all destinations on a separated message using a unicast based multicast routing fashion.

Network latency steps are equal 25, and network traffic steps are equal 213. Hence, in

case of network traffic steps, FTDM algorithm is more effective than FT-cube2 algorithm

in case of large number of destinations. Also, in case of network latency steps, FTDM

algorithm is close to FT-cube2 algorithm.

19

Figure 29 An example of FTDM routing algorithm.

 Network latency time and network traffic time analysis. In this subsection, another

two important and essential performance metrics in parallel computer systems, network

latency time and network traffic time, are calculated. The network latency time is the

longest message transmission time involved. The network traffic time is the overall time

required to deliver the message to all destination nodes [33]. In general, they are not

totally independent. This means that achieving minimum network traffic time may not

essentially achieve minimum network latency time at the same time, and vice versa.

Network latency time depends on network latency steps while network traffic time

depends on network traffic steps. The startup time also affects the value of the network

latency and network traffic times. The startup time is the time acquired by the system in

preparing the message at the source node to deliver the message to the network and at the

destination node to receive the message from the network. It depends on the design of

system software within the nodes and the interface between nodes and routers on mesh

82

networks. From this research, network traffic steps and network traffic time are more

significant criteria of measuring the efficiency of fault tolerant multicast routing

algorithms.

Also, in this subsection network latency time and network traffic time are

calculated for FTDM algorithm and FT-cube2 algorithm. The worst case of network

latency time of FTDM algorithm can be calculated by:

FTDM_Latency_Time = theader * Dlatency_steps + tcopy * Flatency_steps + tchannel *

 FTDM_Latency + tstartup * (cn+1) (5)

Where the time tchannel is the channel time between two neighbor nodes and is

multiplied by the network latency steps computed by FTDM algorithm, FTDM_Latency.

The channel time, tchannel, equals the sum of the router latency time, tr, and the channel

propagation time, tp. The time, tstartup is the startup time. The time, theader, is the time taken

to modify the message header at each destination, so it is multiplied by Dlatency_steps, which

is a set of destinations participating in the longest path. Finally, the time, tcopy, is the time

taken to copy the message at each fault region participates in the longest path, so it is

multiplied by Flatency_steps, which is a number of fault regions participate in the longest

path.

The worst case of network traffic time of FTDM algorithm can be calculated by:

FTDM_Traffic_Time = theader * |D| + tcopy * |F|+ tstartup

* (cn+1)+ tchannel * FTDM_Traffic (6)

The channel time tchannel is multiplied by the network traffic steps computed by

FTDM algorithm, FTDM_Traffic. The time tstartup is multiplied by two because FTDM

algorithm requires at most two startups to deliver a message to any set of destinations,

one startup time for each subnetwork of the mesh. The time theader is multiplied by all

81

destinations, |D|. Finally, the time tcopy is multiplied by |F| because FTDM algorithm

requires at most |F| message replications, one at each fault region.

The worst case of network latency time of FT-cube2 algorithm can be calculated by:

FTcube2_Latency_Time = tstartup * |D| + tchannel * FT_Latency (7)

The channel time tchannel is multiplied by the network latency steps computed by

FT-cube2 algorithm, FT_Latency. The time tstartup is multiplied by |D| because FT-cube2

algorithm requires one startup time to each destination.

Finally, the worst case of network traffic time of FT-cube2 algorithm can be

calculated by:

FTcube2_Traffic_Time = tstartup * |D| + tchannel * FT_Traffic (8)

The channel time tchannel is multiplied by network traffic steps computed by FT-

cube2 algorithm, FT_Traffic. The time tstartup is multiplied by |D| because FT-cube2

algorithm requires one startup time to each destination node.

 Network latency steps and network traffic steps results. The equations from 1 to 4 are

used to calculate network latency steps and network traffic steps for both algorithms in

2D mesh network. Figure 30 and Figure 31 show the results. The continuous line

represents results of FTDM, while the dotted line represents results of FT-cube2.

Figure 30 plots the latency steps for various values of the average number of

destination nodes, ranging from 10 to 100. The figure shows that network latency steps

computed by FTDM increases as the number of destination nodes increases. The increase

in network latency steps will begin to be less significant as the number of destination

nodes increase. The increase is not affected by type of the fault region (f-ring and f-

chain). Network latency steps computed by FT-cube2 is nearly constant as number of

81

destination nodes increases. This is because FTDM is a unicast/tree-based multicast

routing algorithm, while FT-cube2 is unicast-based multicast routing algorithm.

Figure 31 plots network traffic steps for various values of average number of

destination nodes, ranging from 10 to 100. The figure shows that the traffic steps

computed by FTDM is nearly constant (slight increase) as number of destination nodes

increases. Network traffic steps computed by FT-cube2 are increase as the number of

destination nodes increases. The increasing rate of network traffic steps computed by FT-

cube2 is large because each destination needs a separate message path.

Figure 30. Latency Steps Vs. No. of Destinations.

It is obvious that the network traffic steps computed by FTDM is less than that

computed by FT-cube2.

83

Figure 31. Traffic Steps Vs. No. of Destinations.

 Network latency time and network traffic time results. The equations from 5 to 8 are

used to calculate network latency time and network traffic time for both algorithms.

Figures 32 and 33 show the results.

Figure 32 plot network traffic time for various values of average number of

destination nodes, ranging from 10 to 100. The figure shows that network traffic time

computed by FTDM algorithm is nearly constant as number of destination nodes

increases, while network traffic time computed by FT-cube2 algorithm increases and

FTDM algorithm is less than FT-cube2 algorithm. This is because network traffic time

values depend on network traffic steps values.

Figure 33 plots network latency time for various values of average number of

destination nodes, ranging from 10 to 100. The figure shows that network latency time

computed by the two algorithms increases as the number of destination nodes increases.

Clearly, at small average number of destination nodes, FTDM algorithm outperforms FT-

cube2 algorithm, while at large average number of destination nodes, FT-cube2 algorithm

is less than FTDM algorithm. At medium average number of destination nodes, the two

curves nearly are the same.

82

Figure 32. Network Traffic Time Vs. No. of Destinations.

Figure 33. Network Latency Time Vs. No. of Destinations.

Generally, from the previous figures, As number of destinations network traffic

steps and network traffic time computed by FTDM algorithm is nearly constant, while

that computed by FT-cube2 algorithm increases and FTDM algorithm is very effective

than FT-cube2 algorithm.

As explained in the previous section network traffic steps and network traffic time

are more significant criteria of measuring the efficiency of fault tolerant multicast routing

algorithms. Hence, FTDM is more efficient than FT-cube2.

81

iFTDM Routing Algorithm

Most fault tolerant multicast routing algorithms which were proposed recently

concentrate on unicast-based multicast algorithms. Unicast-based algorithms require a

startup time for each destination and this requires more work. Also, they are incompetent

because they permit a message to be delivered to only one destination, which leads to

multicast operations being implemented as multiple phases of multicast message

exchange. Hence, contention freedom must be guaranteed not only among the worms of a

given phase, but also among worms in different phases [96].

Furthermore, many fault tolerant multicast routing algorithms which were

proposed recently concentrate on number of destinations as the main parameter that must

be consider in calculating network latency steps and network traffic steps in mesh

networks [60], [87]. On the other hand, the effect of number of fault regions and fault

region size are not taken into consideration when they calculate network latency steps

and network traffic steps for their algorithms.

In this section, a new fault tolerant deadlock-free multicast routing algorithm,

iFTDM for 2D mesh networks, is introduced. iFTDM (improved FTDM) is a

unicast/tree-based multicast algorithm, which attempts to deliver the message to all

destinations in two phases, the same method as FTDM work. In the first phase the

message is delivered as multicast unicast-based to X-coordinate nodes – nodes (0, ybi) in

case of odd rows or (m-1, ybi) in case of even rows – of each true fault regions at these

nodes; central nodes. We consider each node of them as a source node that has a message

with header containing destinations in the three locations around the fault. In the second

phase, the message is delivered from the central nodes in multicast tree-based fashion,

which attempts to route the message to all destinations in a single multi-head worm that

86

splits at some routers and replicates the data on multiple output ports. In a 2D mesh L1,

L2 and L3 are three locations around each true fault regions as in Figure 27, and L4 is a

location in case if the 1
st
 fault region is an f-ring.

 Overlapping convex fault regions

The proposed fault tolerant multicast routing algorithm, iFTDM, does tolerate

overlapping convex faulty regions. If there is an overlapping fault region, then there is no

L2 will formed in between the overlap fault regions at this point there are two cases of

overlapping, the first case is overlap on L1 which yb of Fi+1 less than ye of Fi as shown in

Figure 34(a), the second case is overlap on L3 which yb of Fi less than ye of Fi+1 as shown

in Figure 34(b). In Figure 34 star shapes represents central nodes.

(a)

81

(b)

Figure 34. Overlapping on L1 and L3.

In order to tolerate the overlapping of fault regions, we need to use the column

path routing technique as we described it in the background chapter.

The iFTDM routing algorithm uses the same routing functions, R and R, which

FTDM used. Both R and R were proved deadlock-free. Also, iFTDM assigns a label for

each node based on the position of that node in a Hamiltonian path.

Lemma: iFTDM algorithm is deadlock-free

Proof: Because iFTDM use R, Rand column path routing to route a message on a 2D

mesh with convex faults and all of these are deadlock-free (no cyclic dependency can be

created among the channels) as mentioned. Then iFTDM is deadlock-free.

Algorithm (FTDM vs iFTDM)

In previous section we introduced FTDM algorithm,

Input: The message mess, Label node LN, central nodes CNk, destination set D, and fault

region Fi .

Output: dj D, Receive(dj , mess)

Procedure:

[1]/* Phase 1 (unicast-based): Send copies of message to CNk

[a] If c = d1 then

a. 1) D = D-{c}

88

a. 2) Receive(c, mess)

[b] If D = then stop

[c] Send separate messages to CNk using XY routing.

[d] Modify header of messages, mess, and put in each header Dk destinations, which k is

the number of central nodes (plus one if first fault is f-ring)

[e] Let each CNk as a new source node

[f] Go to phase 2

[2]/* Phase 2 (tree-based):

[a] If c = d1 then

a. 1) D = D-{c}

a. 2) Receive(c, mess)

[b] If D = then stop

[c] At each new source node, send two copies of message, mess, we have three cases:

Case 1 (No overlap)

c. 1) 1
st
 copy contains destinations on L1 and L2 using R

c. 2) 2
nd

 copy contains destinations on L3. Using R' to route a message around the fault

region until the message reach to LN, and then use R.

c. 3) If L3 have another faults then recursively apply iFTDM.

In this section we proposed the following improvement (iFTDM) algorithm:

Case 2 (overlap in L1)

c. 1) 1
st
 copy contains destinations on L1 using column path routing.

c. 2) 2
nd

 copy contains destinations on L3. Using R' to route a message around the fault

region until the message reach to LN, and then use R.

c. 3) If L3 have another faults then recursively apply iFTDM.

Case 3 (overlap in L3)

c. 1) 1
st
 copy contains destinations on L1 using R

c. 2) 2
nd

 copy contains destinations on L3. Using R' to route a message around the fault

region until the message reach to LN, and then use column path routing.

c. 3) If L3 have another faults then recursively apply iFTDM.

 [d] Repeat the above steps until each destination in the message header is reached.

Pseudocode 2. iFTDM Routing Algorithm

Results and Performance Analysis

Because of iFTDM is an improved version of FTDM, the same simulation study

used in FTDM where F is used to represent the number of fault regions, R is the number

of rows, and C is the number of columns. This configuration creates different networks

with a number of processors ranging from 100 to 1080. The size of fault region is ranging

from 2×2 to 20×20 using 25 destination nodes. The number of fault regions is ranging

89

from 1 to 10 using 30 destination nodes. Using equations from 1 to 8 to calculate network

traffic steps, network traffic time, network latency steps and network latency time as

mentioned in FTDM section.

 Network latency steps and network traffic steps results. By using equations from 1 to 4

network latency steps and network traffic steps for both algorithms in 2D mesh are

calculated. Figures 35, 36, 37 and 38 show the results. The continuous line represents

results of iFTDM, while the dotted line represents results of FT-cube2.

Figure 35 plots network latency steps for various values of number of fault

regions, ranging from 1 to 10 and |D| is equal to 30. The figure shows that, network

latency steps computed by iFTDM algorithm decreases as number of fault regions

increases, while network latency steps computed by FT-cube2 algorithm is nearly

constant. Obviously, at small number of fault regions, network latency steps computed by

FT-cube2 algorithm is less than that computed by iFTDM algorithm, while at large

number of fault regions, network latency steps computed by iFTDM algorithm is less

than that computed by FT-cube2 algorithm.

Figure 37 plots network latency steps for various sizes of one fault region, ranging

from 4 to 400 where R x C= 2x2 to 20x20 and |D| is equal to 25. The figure shows that

network latency steps computed by iFTDM algorithm decreases as size of the fault region

increases, while network latency steps computed by FT-cube2 algorithm is nearly

constant. So, when the size of the fault region increases, the number of used channels

increases. Noticeably, at small fault region sizes, network latency steps computed by FT-

cube2 algorithm is less than that computed by iFTDM algorithm while at large fault

region sizes, network latency steps computed by iFTDM algorithm is less than that

computed by FT-cube2 algorithm.

92

Figure 36 plots network channel traffic steps for various values of number of fault

regions, ranging from 1 to 10 and |D| equals 30. The figure shows that network traffic

steps computed by iFTDM algorithm is nearly constant (slight increase) as number of

fault regions increases, while network traffic steps computed by FT-cube2 algorithm

nearly constant, but greater than with that is calculated by iFTDM algorithm.

Figure 38 plots network traffic steps for various sizes of one fault region, ranging

from 4 to 400 where R x C=2x2 to 20x20 and |D| is equal to 25. The figure shows that

network traffic steps computed by iFTDM algorithm is nearly constant (slight decrease)

as size of the fault region increases, while network traffic steps computed by FT-cube2

algorithm is nearly constant, but greater than what is calculated by iFTDM algorithm.

Also, this is because the path computed by FT-cube2 algorithm circles around the fault

region.

In all tested cases, network traffic steps computed by iFTDM is less than that

computed by FT-cube2.

Figure 35. Latency Steps Vs. No. of Fault regions.

91

Figure 36. Traffic Steps Vs. No. of Fault regions.

Figure 37. Latency Steps Vs. Size of fault region.

Figure 38. Traffic Steps Vs. Size of fault region.

91

 Network latency time and network traffic time results. The equations from 5 to 8 are

used to calculate network latency time and network traffic time for both algorithms.

Figures from 39 to 42 show the results.

Figure 39 plots network traffic time for various values of number of fault regions,

ranging from 1 to 10 and |D| is equal to 30. The figure shows that network traffic time

computed by iFTDM algorithm is nearly constant as number of fault regions increases,

while network traffic time computed by FT-cube2 algorithm increases and iFTDM

algorithm is better than FT-cube2 algorithm.

Figure 40 plots network latency time for various values of number of fault

regions, ranging from 1 to 10 and |D| equals 30. The figure shows that network latency

time computed by iFTDM algorithm decreases as number of fault regions increases,

while network latency time computed by FT-cube2 algorithm nearly constant. Also, at

small number of fault regions, network latency time computed by FT-cube2 algorithm is

less than that computed by iFTDM algorithm while at large number of fault regions,

network latency time computed by iFTDM algorithm less than that computed by FT-

cube2 algorithm.

Figure 39. Network Traffic Time Vs. No. of Fault regions.

93

Figure 40. Network Latency Time Vs. No. of Fault regions.

Figure 41. Network Traffic Time Vs. Size of fault regions.

Figure 42. Network Latency Time Vs. Size of fault regions.

92

Figure 41 plots network traffic time for various sizes of one fault region, ranging

2×2 to 20×20 and |D| equals 25. The figure shows that network traffic time computed by

iFTDM algorithm is nearly constant with a slight decrease as size of the fault region

increases, while network traffic time computed by FT-cube2 algorithm nearly constant

and less than iFTDM algorithm.

Figure 42 plots network latency time for various sizes of one fault region, ranging

from 2×2 to 20×20 and |D| is equal to 25. Clearly, network latency time computed by

iFTDM algorithm decreases as size of the fault region increases, while network latency

time computed by FT-cube2 algorithm nearly constant and less than iFTDM.

In general, from the previous figures, the following notes can be observed:

 As size of the fault region and number of fault regions increase, network traffic

steps and network traffic time computed by iFTDM algorithm is nearly constant,

while that computed by FT-cube2 algorithm increases and iFTDM algorithm is

very effective than FT-cube2 algorithm.

 As size of the fault region and number of fault regions increase, network latency

steps and network latency time computed by iFTDM algorithm increases, while

that computed by FT-cube2 algorithm is nearly constant. In most tested cases,

network latency steps and network latency time computed by iFTDM algorithm is

larger than that computed by FT-cube2 algorithm. Also, at a small number of fault

regions, network latency time computed by FT-cube2 algorithm is less than that

computed by iFTDM algorithm while at a large number of fault regions, network

latency time computed by iFTDM algorithm less than that computed by FT-cube2

algorithm.

91

As explained in the previous section network traffic steps and network traffic time

are more significant criteria of measuring the efficiency of fault tolerant multicast routing

algorithms. Hence, iFTDM is more efficient than FT-cube2.

96

CHAPTER V

DATA MINING FOR PROPOSED ROUTING ALGORITHMS

Data mining is the process of mining patterns and new information from data.

Data mining is seen as a progressively significant tool by recent business to transform

data into business intelligence giving an informational benefit. Marketing, surveillance,

fraud detection, and scientific discovery are a wide range of profiling practices presently

used by data mining. On the whole, spatial data mining, or knowledge discovery in

spatial bases data is the mining of implicit knowledge, spatial relations and the discovery

of interesting characteristics and patterns that are not explicitly represented in the data

bases. These methods are essential in understanding spatial data and in capturing intrinsic

connections between spatial and non-spatial data. Furthermore, such exposed connections

and relationships can be used to present data in a brief manner and to rearrange spatial

databases to accommodate data semantics and accomplish high performance [97].

Traditional statistical techniques such as linear regression were basically hands-on

technologies that operated on small, static datasets to validate hypotheses or models.

Conversely, new data mining tools and methods are capable of not only understanding

tremendously large and complex datasets but also inferring those relationships as trends

and predictions [98], [99].

Distributed-memory systems are the most favorable architectures used in

advanced research problems. 2D mesh networks are popular architectures that have been

implemented in many distributed-memory systems. These systems must support

communication operations efficiently to achieve good performance. Development of fault

tolerant multicast routing algorithms in 2D mesh networks is an important issue. FTDM,

fault tolerant deadlock-free unicast/tree-based multicast routing algorithm for 2D mesh

91

multicomputer [96] is compared with another fault tolerant deadlock-free unicast-based

multicast routing algorithm for 2D mesh algorithm called FT-cube2 [60]. FT-cube2

algorithm matches and differs in some points with our algorithm as presented in the

previous chapter. Chapter IV contains a detailed analysis of results calculated by several

significant criteria such as network latency steps, network traffic steps, network latency

time and network traffic time for both algorithms with studying the effect of a changing

number of destination nodes.

In this chapter, data mining techniques have been used to validate results obtained

from algorithms presented in Chapter IV. This has been done by enlarging the number of

destinations network traffic steps, which have been used to analyze data results. Data

mining regression analysis is one of the best features to understand mapping and

relationship between dependent and independent variables. Regression analysis using

different data mining software tools is presented in the next section.

Regression Analysis

Regression is an easy and simple technique to use. This model can be as easy as

one input variable (dependent) and one output variable (independent). Obviously, it can

acquire more complexity than that, including many input variables. There are several

independent variables, when taken together produce a result with a dependent variable.

The regression model is then used to predict the result of an unidentified dependent

variable, given the values of the independent variables [97].

Regression analysis involves any techniques or methods for modeling and

analyzing numerous variables when the focus is on mapping the relationship between a

dependent variable and one or more independent variables. Additionally, regression

analysis helps us to understand how the typical value of the dependent variable changes

http://en.wikipedia.org/wiki/Dependent_variable

98

when any one of the independent variables is varied, while the other independent

variables are held fixed. Regression analysis is broadly used in many applications for

prediction and forecasting, where its use has considerable intersection with the field of

machine learning. Regression analysis is also used to understand and recognize which

among the independent variables are correlated to the dependent variable, and to discover

types of these relationships [97].

Methods and Analysis

Multiple regressions have been done for FTDM result data using WEKA [100],

EXCEL [101] and MATLAB [102]. By changing the number of destinations, network

traffic steps have been observed for both FTDM and FT-cube2 algorithms. In the

following sections regression analysis produced by this data mining software is

introduced.

Data Mining Using WEKA

Data mining software are not exclusively the domain of big businesses and

expensive software. Actually, there is good and free software which has almost all the

same features and is as good as other expensive. WEKA is the product of the University

of Waikato (New Zealand) and was first implemented and developed in its modern form

in 1997. It uses the GNU General Public License (GPL). WEKA software is written in

the Java™ language and contains a GUI for interacting with data files and producing

visual results [100]. In addition, WEKA has a general API. Hence, WEKA can be

embedding in application; like any other library. WEKA startup screen shown in Figure

43.

99

Figure 43. WEKA startup screen.

Our data are numerical and the relation measure here is between number of

destinations and network traffic steps of FTDM and FT-Cube2 fault tolerant routing

algorithms. The following is a brief description of steps of using WEKA software:

 First step is building the data set for WEKA. In order to load data into WEKA,

put it into a format that will be understood and accepted by WEKA. WEKA's

most popular method for loading data is in the Attribute-Relation File Format

(ARFF), where the type of data being loaded is defined. After that, supplies the

data itself. In the file each column and what each column contains are defined. In

the case of the regression model, numeric or a date column are limited. Finally,

each row of data in a comma-delimited format is supplied.

 Second step is starting WEKA, and then choose the Explorer. The next step is go

to the Explorer screen, with the Preprocess tab selected. Select the Open File

button and select the ARFF file. With WEKA review the data can do. In the left

section of the Explorer window, it outlines all of the columns in FTDM result

data (Attributes) and the number of rows of data supplied (Instances). By

122

selecting each column, the right section of the Explorer window will also give

information about the data in that column of data set.

 Third step is creating the regression model with WEKA. To create the model,

select the Classify tab. Then chose the desired model and where the data is that it

should use to build the model. However it may be noticeable that to use the data

supplied in the ARFF file, there are actually different options, some more

advanced than what we'll be using. The other three selections are supplied test set,

where you can supply a different set of data to build the regression model: Cross-

validation, which lets WEKA build a model depending on subsets of the supplied

data and then average them out to create a final model; and Percentage split,

where WEKA takes a subset of the supplied data to build a final model. These

other choices are useful with different models, depending on the nature of data

sets. With regression, FTDM result data can simply choose Use training set to

build the desired model data set supplied in ARFF file [100].

Figure 44. Regression output model in WEKA.

121

 Finally, the last step to creating the model is to choose the dependent variable (the

column we are looking to predict). We know this should be No. of destinations,

since that's what we're trying to determine for FTDM result data. Right below the

test options, select a combo box that lets you choose the dependent variable. Then

select the column No. of destinations, the output, as shown in Figure 44.

Data Mining Using EXCEL

The following is a brief description of steps of using EXCEL software:

 First step is to prepare data by writing each attribute in only one column, and then

we decide the dependent and independent attributes [101].

 Second step is adding-in the data analysis tool pack EXCEL software. Statistical

data analysis such as descriptive statistics and regression needs the Excel Data

Analysis add-in. The default configuration of Excel software does not

spontaneously support descriptive statistics and regression analysis.

 Third step is to do multiple regressions using the data analysis Add-in. In this case

the data obtained from both routing algorithms are numerical and the relation

between number of destinations and network traffic steps of FTDM and FT-cube2

routing algorithms. In the next lines a brief analysis for this case is introduced.

We have regression with an interrupt and regressors, network traffic steps of

FTDM and FT-cube2 algorithms. The population regression model is given by: y

= β1 + β2 x2 + β3 x3 + u

It is supposed that the error term u is independent with a constant variance. The

estimated regression line is given by: y = b1 + b2 x2 + b3 x3

Using the data analysis add-in and regression the only change over one-variable

regression is to contain more than one column in the Input X Range. However, we need

121

adjoining columns to do this regression. If this is not the case in the original data, then

columns need to be copied to get the regressors in adjoining columns.

Figure 45. Regression output model in EXCEL.

The regression output has three components, as shown in Figure 45: regression

statistics table, ANOVA table and regression coefficients table (which are important to

build the relation between dependent and independent variables).

Data Mining Using MATLAB

MATLAB is popular data mining software tool which is a numerical computing

environment developed by MathWorks. Implement multiple linear regressions to find the

best fit of dependent variable as a linear function of independent variables [102]. For

example, in the X-and-Y data:

X = [1766 1422 1077 1120 1040 1023 840];

Y = [1.22 0.97 1.32 1.56 0.72 0.35 1.55];

123

We believe that there is a straight line relationship between the number of X and

the number of Y, and we need to find the parameters a and b in the linear formula

Y = b + a * X

MATLAB facilities can do this with [a, b] = regress (Y', X')

There are two important observations about this: (1) the first returned argument is

the slope a in the linear formula, the second is the y-intercept term b. (2) the ' operator

has been used to transpose the data, which is in row vector form, into column data. When

there is more than one independent variable, regression will carry out multiple

regressions. Actually, this is done by packaging the independent variables into a matrix,

with one dependent variable per column [102].

NO_Dest = b + a1 * Traffic_FTDM + a2 * Traffic_FT_cube2

 The parameters a1, a2, and b can be found using regression:

[a,b]=regress(NO_Dest’, [Traffic_FTDM’, Traffic_FT_cube2’])

Our data are numerical and consists of two values, one for each of the two

independent variables used in the regression. The following is a brief description of steps

of using MATLAB software:

 First step is putting data in the following format:

NO_Dest=[10 20 30 40 50 60 70 80 90 100];

Traffic_FTDM=[305 367 538 619 698 841 911 1017 1109 1253];

Traffic_FT_cube2=[431 821 1316 1755 2212 2734 3187 3651 4114 4515];

 Second step is writing the regression function for three (multiple) variables:

[a,b]=regress(NO_Dest’, [Traffic_FTDM’, Traffic_FT_cube2’])

122

Figure 46. Regression output model in MATLAB.

Results

 We obtained from using these three data mining programs and from plotting our

data that as number of destinations increases, network traffic steps computed by FTDM

and iFTDM routing algorithm are less than that computed by FT-cube2 routing

algorithm. MATLAB was used to enlarge data set to 1000 destinations instead of 100 on

the original simulations as shown in Figure 47 in case of FTDM. Also, MATLAB was

used to enlarge data set to 1000 fault regions instead of 10 on the original simulations as

shown in Figure 48 in case of iFTDM

121

Figure 47. Validate comparison between FTDM and FT-cube2.

Figure 47 plots network traffic steps for various values of average number of

destination nodes, ranging from 200 to 1000. The figure shows that the traffic steps

computed by FTDM is nearly constant (slight increase) as number of destination nodes

increases (the same behavior as in Figure 31). The increasing rate of network traffic steps

computed by FT-cube2 is larger than FTDM (the same behavior as in Figure 31). The

results shown on both Figure 47 and Figure 31 are similar; this validates results when the

sample size of number of destinations is enlarged.

 Figure 48. Validate comparison between iFTDM and FT-cube2.

126

Figure 48 plots network traffic steps for various values of number of fault regions

ranging from 200 to 1000. From plotting our data as number of fault regions increases,

network traffic steps computed by iFTDM routing algorithm is less than that computed

by FT-cube2 routing algorithm. Using MATLAB results we can enlarge our data to 1000

destinations instead of 100 on the original simulations as shown in Figure 48.

Using data mining validation tools the new fault tolerant multicast routing

algorithms (FTDM and iFTDM) compared with competitive fault tolerant multicast

routing algorithm (FT-cube2) are more effective in case of enlarge data set as well as in

original simulations mentioned in Chapter IV.

121

CHAPTER VI

YASSIN ROUTING ALGORITHM

 As processors in distributed-memory systems need to communicate with each

other, effective communication is crucial to improve the performance of the system. In a

distributed memory system with hundreds and maybe thousands of processors, fault

tolerance is an important issue which is defined as the capability of the system to function

in the occurrence of component (processor or connections) failures. The challenge is how

to effectively accomplish routing in a faulty network, where each element fails with

various probabilities. The current generation of these systems are very powerful and do

not appear to fail very often in practice. However, even in some superior environments,

fault tolerance ability must be addressed no matter how remote the probability of

component failures is.

As stated in Chapter IV, mesh connected networks have been widely used in most

distributed-memory systems. These computer systems generally use the e-cube routing

algorithm with wormhole switching because of its simplicity. The main idea of e-cube

algorithm is to route a message first along the row and then along the column in a 2D

mesh. It is important to note that e-cube provides deadlock-free shortest path routing

without needing virtual channels [55]. We introduced a multicast routing algorithm,

Yassin, which depends on e-cube routing and uses no virtual channels to deliver a

message. Distributed-memory systems are the most advantageous architectures in

building a massively parallel computer system. These systems need switching techniques

to broadcast messages among processors. The wormhole switching technique has been

widely used in the design of parallel computer systems. The basic idea of wormhole

routing is that a message is partitioned into flow control flits. The multicast pattern, in

128

which one processor (node) sends the same message to multiple processors (nodes), is the

most fundamental communication pattern used on multicomputer. Fault tolerance is a

central issue facing the design and implementation of interconnection networks for

distributed-memory systems. This chapter will focus on studying the fault-tolerant

multicast wormhole routings in a 2D mesh networks with concave fault regions.

As mentioned in previous chapter, a novel fault tolerant multicast routing

algorithm, FTDM, for wormhole routed 2D mesh multicomputer proposed. This routing

algorithm is a unicast/tree based multicast routing algorithm. The proposed routing

algorithm works effectively for the most common faults in 2D mesh networks, f-rings

and f-chains. This algorithm is proved to be deadlock-free in chapter four. As presented

in chapter III, Park et al. [80] proposed a fault tolerant wormhole routing algorithm in

mesh networks in the presence of concave fault regions, called F4. They propose a fault

tolerant wormhole routing algorithms that deal with more restricted shapes of fault rings

in the mesh networks. In their fault models, there might be several f-rings in a 2D mesh

networks. Also, they divide each f-ring (convex or concave) fault region into four

portions: the north, south, west and east sides. In this chapter, F4 compared with

proposed routing algorithm to evaluate the performance of both algorithms.

In this chapter, an efficient fault tolerant multicast routing algorithm, Yassin, for

wormhole routed 2D mesh multicomputer is presented. Yassin routing algorithm is

deadlock-free in spite of the concave fault regions in mesh networks. Yassin routing

algorithm works with minimum routing restrictions and exploits the advantages of the

three multicast routing style, unicast, path and tree based. Since it takes routing decision

with minimum numbers of nodes (neighbor and central nodes), the presented routing

algorithm is applicable in interconnection networks. Four essential performance metrics

129

in mesh networks, network traffic steps, network latency steps, network traffic time and

network latency time are evaluated.

Yassin Fault Model

Numerous applications of network topologies require high reliability and

availability. A large parallel computer requires that its interconnect network operates

without packet loss for many hours. Thus, these networks must employ an error control

mechanism to continue operation without interruption, and possibly without packet loss,

despite the failure of a component. The failure of a processing element and its associated

routers is referred to as a node failure, and the failure of any communication channel is

referred to as a link failure. In our fault model, both node failures and link failures are

considered. The fault model is the base for the fault tolerant routing algorithms. Types of

faults, structures of fault regions and processes to component failures determine the

approaches to design deadlock-free routing algorithm.

Figure 49. Fault model for Yassin.

Yassin algorithm considers convex (also known as block faults) and concave

faults, which are the most commonly encountered faults in mesh networks. A convex

112

fault is a fault region such that there is a rectangle whose interior contains all and only the

faulty components of the fault region and all processors and links on its four boundaries

are fault-free, F1, as shown in Figure 49. Convex faults can be f-chain if fault region

includes boundary nodes otherwise f-ring. A concave fault is a fault region such that

there is └, ┘, ┌ and ┐ shapes whose interior contains all and only the faulty components

of the fault region and all processors and links on its four boundaries are fault-free, F2, as

shown in Figure 49.

In Yassin as in iFTDM, we consider fault information of a fault is distributed to a

limited number of nodes (0, ybi) in case of odd rows or (m, ybi) in case of even rows) in

order to avoid the fault before reaching it. Because fault information is distributed to a

limited number of nodes, Yassin is a limited-global-information-based multicasting

which is a compromise of local-information-based approach and global-information-

based approach.

Yassin Routing Algorithm

Fault tolerance is an important concern for the design of interconnection networks

for large scale parallel processing computers. Most of fault tolerant multicast routing

algorithms which were proposed recently concentrate on unicast-based multicast

algorithms to deliver a message from source node to destination nodes. Unicast-based

multicast algorithms require a startup time for sending a message to each destination

node, and this needs more work. As in iFTDM fault tolerant multicast routing, Yassin

algorithm assigns a label for each node on a 2D mesh based on the position of that node

in a Hamiltonian path. In the Hamiltonian path, for each node there is a unique label,

label 0 for the first node in the path and N-1 for the last node on the path of routing. The

two algorithms create the routing decision at each sending node and both are a limited-

111

global-information-based multicasting algorithm which is a compromise of local-

information-based approach and global-information-based approach. iFTDM can tolerate

convex faults without using virtual channels but cannot work with concave fault regions.

However, Yassin routing algorithm can tolerate convex and concave faults without using

virtual channels.

The routing technique used by Yassin minimizes the network traffic time

involved between the source and the destination nodes. At the source node, Yassin

algorithm divides the network into two sub networks. The high channel sub network

contains the destination nodes and channels whose direction is from lower labeled nodes

to higher labeled nodes, and the low channel sub network contains the destination nodes

and channels whose direction is from higher labeled nodes to lower labeled nodes.

The message transmission in Yassin is delivered according to the following

method:

Yassin is a unicast/tree-based multicast algorithm, which attempts to deliver the

message to all destinations in two phases. In the first phase the message is delivered as a

unicast-based (using separate addressing routing technique) to X-coordinate nodes (nodes

(0, ybi) in case of odd rows or (m-1, ybi) in case of even rows) of each true fault regions

at these nodes, central nodes. Yassin considers each node of them as a source node that

has a message with header containing destination nodes in the three locations around the

fault. In the second phase, the message is delivered from the central nodes in a tree-based

fashion (using R, Rand R), which attempts to route the message to all destination nodes

in a single multi- head worm that splits at some routers and replicates the data on multiple

output ports.

111

Upon delivery of the message, each receiving node on the network decides

whether it is the first destination node. In this case, it is removed from the set of

destinations and receives the message. At this point, if there is a destination node on the

sets of the destinations, Yassin algorithm continues according to the previous method.

Yassin algorithm uses five functions and two procedures. The first function is R to route

a message in each fault locations around the fault region. The second function is R to

route a message on a boundary of a fault region in case of convex fault. The third

function is R to route a message on a boundary of a fault regions in case of concave

fault. The fourth function is SEND(s, msg, d) takes as input the source, the message itself

and the destination node. It makes s send the message mess to its neighboring d. The fifth

function is RECEIVE(d , msg, s) takes as input the destination, the message itself, and the

source node. It makes d receive the message mess from s. The first procedure, phase1, to

route a message in the first phase (unicast based multicast phase). The second procedure,

phase2, to route a message in the second phase (tree based multicast phase).

Figure 50. Locations around concave fault region.

113

Routing Functions

Yassin assigns a label for each node based on the position of that node in a

Hamiltonian path [40].

The first routing function used in Yassin is defined as:

R (c, d) = w, where

{ Q(d)< Q(c) if Q(u)} Q(z) max{Q(z):
Q(d)> Q(c) if Q(u)} Q(z) max{Q(z):

 = Q(w)
 and z is a neighboring node of c

It was proved in Lin and Ni [40] that for two arbitrary nodes c and u in a 2D

mesh, the path selected by the routing function R is deadlock-free. The routing function R

is used in each region does not contain any fault nodes.

The second routing function used in Yassin around convex fault region is defined as:

R(c, d) = w, where

 (xc, yc-1) if xd= xc

w = (xc, yc+1) if xd = xc+ dx dFi

 (xc+ dx, yc) otherwise

It was proved in Shaheen and Abukmail [96], FTDM, this routing function is

deadlock-free routing function.

The third routing function used in Yassin around concave fault region is defined as:

R(c, d) = w, where

112

 (xc+ dx, yc) If xd = xc+ (dx mFi),

Or xd = xc+ (dx (dFi - mFi)),

W= Or xd = xc+ (dx mFi)

 (xc, yc-1) If xd= xc

 (xc, yc+1) otherwise

This routing function is deadlock-free routing function because it works on five

boundaries only for each concave fault region (which have six boundaries as in Figure

51), a message never visits any node around a concave fault region twice then, a cycle

cannot exist within this path in the network and the path selected by the routing function

R is the shortest path between the two nodes c and d.

Figure 51. The routing path using R''.

To define the path routing functions, which determines the next node for which

the path of Yassin will be visited, some definitions are introduced:

1) Let fbi= (xbi, ybi), fmi= (xmi, ymi), and fei= (xei, yei) be the coordinates of each concave

fault.

111

2) The fault region number i, Fi, is described by three nodes, fbi, fei, and fmi where fbi is located in

the southwest corner of the concave fault region, while fei is located in the northeast corner of

the concave fault region, and fmi is located in the angle of concave fault (at the middle of

concave fault) as shown in Figure 50.

3) Width of a fault region Fi is defined by: dFi=xei – xbi , mFi=xmi – xbi as shown on

Figure 50.

4) The variable dx is equal to 1 if the direction of the message path is from west to east or

-1 if it is from east to west.

5) LN is the label of last node, (xei, ybi), of a fault region which the message path visits.

The value of LN is zero if the message path is in a non-fault region, while it is non

zero if the message path is in a fault region.

6) Let L1, L2 and L3 are three locations around each true fault regions as in Figure 50, and

L4 is a location in case if the 1
st
 fault region is on a south boundary of 2D mesh.

7) True fault regions are the main fault regions which have three locations around them

and may have other fault regions on locations, L3 or L1, with fbi= (xbi, ybi), and fei=

(xei, yei) less than it.

8) Central nodes are the nodes which the source node sends a copy of a message in the

first phase in a unicast fashion and Y-coordinate of them is ybi for each true fault

region; a source node is one of the central nodes if the first convex and concave fault

region is not on a south boundary of 2D mesh (inside 2D mesh).

9) Di = {(x, y) : (x, y) D ^ x > xbni ^ y< yei }

10) D = Da + Db if the 1
st
 fault region is on a south boundary of 2D mesh, where Da is the

destination nodes on L1 and L2, Db is the destination nodes on L3 plus the destination

116

nodes around fault region, where is a equal k and b equal k (k is number of central

nodes). Otherwise, D = Da + Db + D4, where D4 is the destination nodes on L4

11) Lfi is the distance around fault regions (on the boundary of the fault) which equal dFi

plus 2*| (yei-ybi)|

Algorithm Yassin

Input: The message msg, Label node LN, Central nodes CNk, k is the number of central

nodes, Source node s=(xs, ys), Destination set D, and Fault region Fi, the address of the

current node of msg is c=(xc, yc).

Output: dj D, RECEIVE (dj , msg, s)

BEGIN
[1] IF ys is even THEN dx = 1 ELSE dx = -1

[2] IF c = d1 THEN

2. 1) D = D-{c}

2. 2) RECEIVE (d, msg, c)

[3] IF D = THEN stop

[4] Procedure Phase 1

[5] Procedure Phase 2

[6] Repeat the above steps until each destination in the message header is reached.

End of Yassin

Procedure Phase 1

Begin

/* Send copies of message to CNk */

[a] SEND (s, msg, CNk) using separate addressing routing.

[b] Modify header of messages, msg, and put in each header Dk destinations.

[c] Let each CNk as a new source node

[d] IF CNk = d THEN

D = D-{CNk}

RECEIVE (d, msg, CNk)

[e] IF D = THEN stop

End of Procedure Phase 1

Procedure Phase 2

Begin

/* Send msg using R, R' and R'' functions */

// At each central node, send two copies of message, msg1 and msg2

a) SEND(s, msg1, Da) using R

IF c = da THEN

Da = Da -{c}

RECEIVE (da, msg1, c)

b) SEND(s, msg2, Db) using R' (convex) or R'' (Concave) to route a message around the

fault region until the message reach to LN, and then use R.

IF c = db THEN

111

Db = Db -{c}

RECEIVE (db, msg2, c)

c) IF L3 have another faults then recursively apply Yassin.

End of Procedure Phase 2

Pseudocode 3. Yassin Routing Algorithm

Yassin uses the routing function R'' in concave fault regions only. Figure 51

illustrates the different cases of the routing function R'' and the way of its work around

the fault region. The direction of the message path may be from west to east, Figure

51(A) or from east to west, Figure 51(B).

Yassin can be considered as a general form of FTDM (in case of convex fault

regions only by applying R' function) and iFTDM (using the same main idea to overcome

overlap problem of convex fault regions by use column path routing) that tolerate regular

(convex and concave) fault region with overlap of convex faults.

Lemma: Yassin algorithm is deadlock-free

Proof: Because Yassin use R, R, R'' and separate addressing routing to route a message

on a 2D mesh with convex and concave faults and all of these are deadlock-free (no

cyclic dependency can be created among the channels) as mentioned. Then Yassin is

deadlock-free.

Results and Discussions

A simulation study has been conducted to evaluate Yassin performance and to

compare it with F4 routing algorithms. The simulations were conducted on a 50×50 2D

mesh and double channels were used. The two algorithms were written using C++

language and were implemented on a PC. In this section, we present the simulation

results and analysis. In the simulation, wormhole routing is chosen as the switching

technique and the routing algorithm is also applicable with other switching techniques.

118

This configuration creates different networks with a number of processors ranging from

100 to 1080. The average number of destinations is ranging from 10 to 100 and using

three fault regions one convex (f-ring) and two concave, ┘.

In this subsection, four essential performance metrics in direct networks, network

latency steps, network traffic steps, network traffic time and network latency time are

calculated. The network latency step is the greatest number of channels which the

message takes to reach its destinations. The network traffic step is the total number of

channels used to deliver the message to all destinations. The network latency time is the

longest message transmission time involved. The network traffic time is the overall time

required to deliver the message to all destinations. They affect the overall performance of

the distributed memory system and the granularity of parallelism that can be exploited

from the system [30]. Network latency time depends on network latency steps, while

network traffic time depends on network traffic steps. The startup time also affects the

value of the network latency and network traffic times. The startup time is the time

acquired by the system in preparing the message at the source node to deliver the

message to the network and at the destination node to receive the message from the

network. It depends on the design of system software within the nodes and the interface

between nodes and routers.

In this subsection, the network latency steps, network traffic steps, network

latency time and network traffic time are calculated for Yassin and F4 routing algorithms.

The formula that can be used to calculate the four performance metric for Yassin routing

technique (tolerate concave fault regions) can be derived from FTDM routing technique

(tolerate convex fault regions), if we consider a concave fault region as multiple convex

119

fault regions (two convex) as shown in Figure 52. The following formulas can be used to

calculate the performance metrics for Yassin and F4 algorithms.

Our partitioning of the 2D mesh around each fault regions into Lih and L4, will result

in partitioning the destinations D into Dih and D4 respectively where i is ranging from 1 to

F, h is ranging from 1 to 3 and F is number of fault regions. In addition, (cX, cY) is the

coordinate of central node.

 Distance (di+1, di) = |xdi+1 – xdi| + |ydi+1 – ydi|

 Latency (D) =

||

1

D

i

Distance (di+1, di)

Which is dependent on the start coordinates and end coordinates for each location.

 L4 =Latency (Di4) + | (SX-xdi) | + | (SY-ydi)|

 Lih =Latency (Dih), where is h = 1, 2, 3

 Traffic(i) = Lih + Lfi + ybi+ xbi +2

 Left (i) = Lih + ybi+1, where h = 1 and 2

 Right (i) = Lih + Lfi + ybi+ xbi +2, where h = 3

112

A: One Concave (Yassin)

B: Two Convex (FTDM)

Figure 52. The Relationship between Yassin and FTDM Algorithms.

111

The network latency steps of Yassin is given by:

Yassin_Latency=Max(Left (i) , Right (i) , L4) (1)

The network traffic steps of Yassin is given by:

 Yassin_Traffic = Traffic(i) + L4 (2)

The network latency steps, F4_Latency, of F4 is given by:

 yej - ybj if xdi> xej

Width(ij)= ydi – yej if ybj< ydi< yej

 xdi - ybj if ydi< yej & xdi< xej

 0 otherwise

Where width is number of steps around fault region and dependence on destination

position

F4_Latency = Max{ xdi - Sx+ydi - Sy+ 2* Width(ij), 1≤ j ≤ T, 1≤ i ≤ |D|} (3)

Where T is number of fault regions participate between source node and destination node

The network traffic steps, F4_Traffic, of F4 is given by:

F4_Traffic = (xdi - Sx+ydi - Sy+ 2* Width(ij)) (4)

The worst case of network latency time of Yassin algorithm can be calculated by:

Yassin_Latency_Time = theader * Dlatency_steps + tcopy * Flatency_steps

+ tchannel * Yassin _Latency + tstartup * (cn+1) (5)

The worst case of network latency time of Yassin algorithm can be calculated by:

Yassin_Traffic_Time = theader * |D| + tcopy * |F|+ tstartup * (cn+1)

+ tchannel * Yassin_Traffic (6)

The worst case of network latency time of F4 algorithm can be calculated by:

 F4_Latency_Time = tstartup * |D| +tchannel * F4_Latency (7)

The worst case of network traffic time of F4 algorithm can be calculated by:

F4_Traffic_Time = tstartup * |D| + tchannel * F4_Traffic (8)

||

1

D

i

||

1

F

i

111

Where: tchannel, channel time, is the time taken between two neighbor nodes. The

channel time, tchannel, equals the sum of the router latency time, tr, and the channel

propagation time, tp. The time, tstartup is the startup time. The time, theader, is the time taken

to modify the message header at each destination. Dlatency_steps is a set of destinations

participating in the longest path. The time, tcopy, is the time taken to copy the message at

each fault region participates in the longest path. Flatency_steps, is a number of fault regions

participate in the longest path.

Comparative study. As an example, to demonstrate the difference between Yassin

algorithm and F4 algorithm, a 1515 2D mesh is considered, Figure 53. The source node

is (0, 0) and the destination nodes equals 11. We assume that the channel time, tchannel,

equals 25 nanoseconds, the time, tcopy, equals 15 nanoseconds, the time, theader, equals 5

nanoseconds, and the startup time, tstartup, equals 33 nanoseconds. The number of fault

regions equals 2, Dlatency_steps, equals 2, Flatency_steps, equals one, number of central nodes

equals 3.

By using Yassin algorithm, Figure 53(a), network latency steps is 27 channels.

Then, by applying equation (5), the latency time computed by Yassin equals 799

nanoseconds. Using F4 algorithm, Figure 53(b), network latency steps is 20 channels.

Then, by applying equation (7), network latency time computed by F4 algorithm equals

863 nanoseconds. It is clear that, network latency steps of Yassin algorithm is larger than

that of F4 algorithm while network latency time of Yassin algorithm is less than that of

F4 algorithm. Since F4 algorithm is a unicast-based technique, it produces low network

latency steps and high network latency time.

By using Yassin algorithm, Figure 53(a), network traffic steps is 70. Then, by

applying equation (6), network traffic time computed by Yassin equals 1919

113

nanoseconds. Using F4 algorithm, Figure 53(b), network traffic steps is 123. Then, by

applying equation (8), network traffic time computed by F4 algorithm equals 3438

nanoseconds. It is clear that, the network traffic steps and network traffic time of Yassin

algorithm are very less than those of F4 algorithm.

Figure 53. Network traffic steps computed by (a) Yassin algorithm, (b) F4 algorithm.

112

Results. The equations from 1 to 8 are used to calculate network latency steps,

network traffic steps, network latency time and network traffic time for both algorithms

in 2D mesh. Figures from 54 to 57 show the results of the two algorithms. The

continuous line represents results of Yassin, while the dotted line represents results of F4.

Figure 54 plots network latency steps for various values of the average number of

destination nodes, ranging from 10 to 100. The figure shows that, network latency steps

computed by Yassin increases as number of destination nodes increases. The increase is

not affected by type of the fault region (convex and concave). The latency steps

computed by F4 is nearly constant as number of destination nodes increases. This is

because Yassin is a unicast/tree-based multicast routing algorithm while F4 is unicast-

based multicast routing algorithm.

Figure 55 plots network traffic steps for various values of average number of

destination nodes, ranging from 10 to 100. The figure shows that network traffic steps

computed by Yassin are nearly constant (slight increase) as number of destinations

increases. Network traffic steps computed by F4 are increase as the number of destination

nodes increases. The increasing rate of network traffic steps computed by F4 is large

because each destination node needs a separate message path.

Figure 56 plots network latency time for various values of the average number of

destination nodes, ranging from 10 to 100. The figure shows that the network latency

time computed by the two algorithms increases as number of destination nodes increases.

Clearly, at a small average number of destination nodes, Yassin algorithm outperforms

F4 algorithm, while at a large average number of destination nodes, F4 algorithm

outperforms Yassin algorithm. This is because the network latency steps are the dominant

111

factor of network latency time computed by Yassin algorithm, while the startup time is

the dominant factor of network latency time computed by F4 algorithm.

Figure 57 plots network traffic time for the various values of average number of

destination nodes, ranging from 10 to 100. The figure shows that network traffic time

computed by Yassin algorithm is nearly constant as the number of destination nodes

increases, while the traffic time computed by F4 algorithm increases. This is because the

traffic time values depend on network traffic steps values.

Figure 54. Network Latency Steps Vs. No. of Destinations.

Figure 55. Network Traffic Steps Vs. No. of Destinations.

116

Figure 56. Network Latency Time Vs. No. of Destinations.

Figure 57. Network Traffic Time Vs. No. of Destinations.

Figure 58. Validate comparison between Yassin and F4.

111

Figure 58 plots network traffic steps for various values of the average number of

destination nodes, ranging from 200 to 1000 using data mining regression tools. The

figure shows that the traffic steps computed by Yassin is nearly constant (slight increase)

as number of destination nodes increases (the same behavior as in figure 55). The

increasing rate of network traffic steps computed by F4 is larger than Yassin (the same

behavior as in Figure 55). When compared, the results shown in both Figure 58 and

Figure 55 are the same, and then this validates our results and enlarges the sample size of

number of destinations.

Generally, from the previous figures, the following notes can be observed:

 As number of destinations network traffic steps and network traffic time

computed by Yassin algorithm is nearly constant, that computed by F4 algorithm

increases and Yassin algorithm is very effective than F4 algorithm.

 As number of destinations increases, network latency steps and network latency

time computed by Yassin algorithm increases, while that computed by F4

algorithm is nearly constant. In most tested cases, network latency steps and

network latency time computed by Yassin algorithm is larger than that computed

by F4 algorithm.

As explained in Chapter IV, network traffic steps and network traffic time are

more significant criteria of measuring the efficiency of fault tolerant multicast routing

algorithms. Hence, Yassin is more efficient than F4.

118

CHAPTER VII

SUMMARY AND FUTURE WORK

This chapter summarizes the research of this dissertation and introduces some

suggestions for future research.

Summary of This Dissertation

This dissertation presented new fault tolerant multicast routing techniques for

distributed-memory systems performance.

Parallel computer systems, which emphasize parallel processing, are the most

favorable architectures to increase the computing power. A parallel computer system

consists of several powerful processors connected together into a single system. These

connected processors cooperate to solve a single problem that exceeds the ability of any

one of those processors. Parallel computer systems are constructed by connecting a

number of powerful computer processors together into a single system, which cooperates

to solve grand-challenge problems. They provide cost-effective mechanisms to achieve

high system performance through concurrent activities.

In Chapter II, multiprocessors systems, distributed-memory, shared-memory, and

distributed-shared-memory, which are currently the most promising parallel systems,

were considered. Popular network topologies, such as hypercube, tori, and mesh

networks for distributed-memory systems were discussed. In distributed-memory

systems, a switching technique is used to transmit a message between two nodes. The

most common switching techniques for direct networks, including circuit, store-and-

forward, virtual cut-through switching, and wormhole switching, were considered.

Multicast routing techniques can be classified as unicast-based, path-based and tree-based

119

algorithms. Multicast routing algorithms for direct networks were surveyed. In this

chapter, we have demonstrated that:

 Distributed-memory systems have become the popular architectures for massively

parallel computers.

 Lower-dimension mesh networks are the suited topologies for current distributed-

memory systems.

 The wormhole routing has emerged as the most widely used in distributed-

memory systems

In Chapter III, an overview of fault tolerant multicast routing algorithms was

presented. In distributed-memory systems, packets usually travel across several

intermediate nodes before reaching the destination node. Deadlock occurs when some

packets cannot advance toward their destination because the buffers requested by them

are full. Also, some components such as processors, routers, and communication

channels may fail. Fault tolerance refers to the ability of the system to operate correctly in

the presence of faults. According to number of parameters, faults are classified into

different types. Fault tolerance is an important issue facing the design of distributed-

memory systems. A brief introduction to deadlock, Fault model and fault tolerance was

given. Fault tolerant multicast routing algorithms for regular and irregular fault regions

were studied. In the same Chapter, we have demonstrated that designing fault tolerant

and deadlock-free multicast routing algorithms are the important problems in distributed-

memory systems.

In Chapter IV, FTDM and iFTDM fault tolerant multicast routing algorithms were

proposed. Fault tolerant multicast routing algorithm that uses less network traffic steps,

network traffic time, network latency steps and network latency time is one of the most

132

important issues that deals with the implementation of interconnection networks for

large-scale parallel computer systems. The proposed fault tolerant routing algorithm,

FTDM, can tolerate convex faults without using virtual channels. Also, FTDM tolerates

f-chains in mesh networks and does not lead to deadlock with any number of non-

overlapping f-regions. The proposed routing algorithm, FTDM, can tolerate convex faults

with presence of a large number of destination nodes. In addition, an efficient fault

tolerant multicast routing algorithm for 2D mesh, iFTDM, which is an improvement of

FTDM algorithm, is presented. The proposed routing algorithm, iFTDM, can tolerate

convex faults with the presence of a large number of fault regions and large fault region

size. The routing algorithm iFTDM tolerates f-chains in meshes with the overlapping of

convex fault regions. This algorithm is a dead lock free. Because fault information is

distributed to a limited number of nodes, both FTDM and iFTDM are limited-global-

information-based multicasting algorithms, which is a compromise of local-information-

based approach and global-information-based approach. The simulation results show that

FTDM and iFTDM routing algorithms has better performance than FT-cube2 in most

significant criteria to measure the efficiency.

In Chapter V, data mining for FTDM and iFTDM routing algorithms were

presented to validate the results. Data mining has enormous applications in different areas

like agriculture, marketing, biology, computational research etc. Regression analysis is

one of the most important tools in data mining. There are many tools available to do data

mining analysis such as WEKA. Results are obtained using the tools WEKA, EXCEL

and MATLAB. Using data mining concept, network traffic steps are calculated for two

different algorithms by changing the number of destinations.

131

In Chapter VI, an efficient fault tolerant multicast routing algorithm, Yassin, for

wormhole routed 2D mesh multicomputer is presented. The routing algorithm is

deadlock-free in spite of the concave fault regions in mesh networks. The presented

routing algorithm works with minimum routing restrictions and exploits the advantages

of the three multicast routing style, unicast, path and tree based. Since it takes a routing

decision with a minimum numbers of nodes (neighbor and central nodes), the presented

routing algorithm is applicable in interconnection networks. Four essential performance

metrics in mesh networks, network traffic steps, network latency steps, network traffic

time and network latency time are evaluated.

Future Work

Several issues related to the study of fault tolerant multicast routing techniques for

distributed-memory systems have been covered in this dissertation. Conversely, they are

worthy of further study. They include

 To extend this fault tolerant multicast routing techniques to other high level

mesh networks (generalizing the use of this routing to n-D mesh networks).

 To extend this fault tolerant multicast routing techniques to other network

topologies, such as tours (as it is a mesh with wraparound) and hypercube.

 Applying these fault tolerant routing algorithms, (FTDM, iFTDM and Yassin),

for irregular fault regions with complicated ship (the proposed algorithms was

applied for regular fault regions – convex and concave – it can be enhanced to

achieve better effective results).

 Using another path routing functions to determine the next node to which the

message will be forwarded, (the proposed fault tolerant multicast routing

algorithms was used in three functions R, Rand R).

131

 To extend this fault tolerant unicast/tree based multicast routing techniques to

other types of combination (unicast, path and tree based multicast routing).

 Using another switching technique (such as store and forward, virtual cut-

through and circuit switching), the proposed fault tolerant routing algorithms

used wormhole switching.

133

REFERENCES

[1] E. Alotaibi and B. Mukherjee,“A survey on routing algorithms for wireless ad-Hoc

and mesh networks,” Computer Networks, vol. 56, no.2, 2012, pp. 940–965.

[2] K. Hwang and D. DeGroot, Parallel Processing for Super-Computers and Artificial

Intelligence, McGraw Hill, 1989.

[3] A. Trew and G. Wilson, Past, Present, Parallel: A Survey of Available Parallel

Computer Systems, Springer-Verlag, 1991.

[4] G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists

and Engineers, Chapman & Hall/CRC Press, 2010.

[5] R. Esser and R. Knecht, Intel Paragon XP/S - Architecture and Software Enviroment,

Anwendungen, Architekturen, Trends, Seminar, June 24-26, 1993, pp. 121-141.

[6] Thinking Machine Corporation, CM5 Technical Summary, October 1991.

[7] Meiko Limited, Meiko CS-2 System Overview, 1994.

[8] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,

Programmability, McGraw-Hill, 1993.

[9] C.L. Seitz, “Mosaic C: An Experimental Fine-Grain Multicomputer,” Tech. Rep.,

California Institute of Technology, Pasadena, CA 91125, 1992.

[10] W.J. Dally, et al., “The Message-Driven Processor: A Multicomputer Processing

Node with Efficient Mechanisms,” IEEE Micro, vol. 12, no. 2, Apr. 1992, pp. 23-

39.

[11] H. Stephen Morse, Practical Parallel Computing, Academic Press Limited, 1994.

[12] W.J. Dally, Network and Processor Architecture for Message-Driven Computers,

Morgan Kaufmann, VLSI and Parallel Computation, 1990.

132

[13] F. Gebali, Algorithms and Parallel Computers, New York: John Wiley, 2011.

[14] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly Scalable Server,”

Proc. of the 24
th

 IEEE/ACM Ann. Intl. Symp. on Computer Architecture (ISCA-

24), June 1997, pp. 241-251.

[15] D. Lenoski, et al., “The DASH Prototype: Logic Overhead and Performance,” IEEE

Trans. On Parallel and Distr. Systems, vol. 4, no. 1, Jan. 1993, pp. 41-61.

[16] M. Heinrich, et al., “The Performance Impact of Flexibility in the Stanford Flash

Multiprocessor,” 6
th

 Intl. Conf. On Architecture Support for Programming

Language and Operating Systems (ASPLOS-VI), San Jose, CA, Oct. 1994, pp.

274-285.

[17] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks: An Engineering

Approach, Morgan Kaufmann, 2002.

[18] C.L. Seitz. “The Cosmic Cube.” Communication ACM, vol. 28, 1985, pp. 22-33.

[19] S.A. Felperin, et al., “Routing Techniques for Massively Parallel Communication,”

Proc. of the IEEE, vol. 79, 1991, pp. 488-503.

[20] P. Kermani and L. Kleinrock, “Virtual Cut-Through: A new Computer

Communication Switching Technique,” Commut. Network vol. 3, no. 4, 1979, pp.

267-286.

[21] S. Konstantinidou and L. Snyder, “Chaos Router: Architecture and Performance,”

Proc. of the 18th International Symposium on Computer Architecture, June 1991,

pp. 212-221.

[22] S. Nugent, “The iPSC/2 Direct Connect Communications Technology,” Proc. of the

Third Conference on Hypercube, Concurrent Computers and Applications, Jan.

1988, pp. 51-59.

131

[23] NCUBE Company, NCUBE 6400 Processor Manual, 1990.

[24] C.L. Seitz, et al., “The Architecture and Programming of the Ametek Series 2010

Multicomputer,” Proc. Conf. Hypercube Computers and Concurrent

Applications, Pasadena, CA, Jan. 1988, pp. 33-36.

[25] W.J. Dally, “The J-machine: System Support for Actors,” Actors: Knowledge-Based

Concurrent Computing (Hewitt and Agha, eds.), MIT Press, 1989.

[26] D.F. Robinson, P.K. McKinley, and B.C. Cheng, “Path-Based Multicast

Communication in Wormhole-Routed Unidirectional Torus Networks,” J. of

Parallel and Distributed Computing, vol. 45, Sep. 1997, pp. 104-121.

[27] S. Chittor and R. Enbody, “Performance Evaluation of Mesh-Connected Wormhole-

Routed Networks for Interprocessor Communication in Multicomputers,” Proc. of

Supercomputing’90, Nov. 1990, pp. 647-656.

[28] S. Chen, et al., Reconfigurable Networks-on-Chip, Springer, 2012.

[29] L.M. Ni and P.K. McKinley, “A Survey of Wormhole Routing Techniques in Direct

Networks,” IEEE Computing., vol. 26, Feb. 1993, pp. 62-76.

[30] M. E. Shaheen, “High Distributed-Memory Systems Performance,” master thesis,

Computer Scince Dept., Cairo University (Fayoum Branch), 2005.

[31] D.F. Robinson, P.K. McKinley, and B.C. Cheng, “Optimal Multicast

Communication in Wormhole-Routed Torus Networks,” IEEE Trans. on Parallel

and Distributed Systems, vol. 6, no. 10, Oct. 1995.

[32] P. Mckinley, et al., “Unicast-Based Multicast Communication in Wormhole-Routed

Networks,” IEEE Trans. on Parallel and Distributed Systems, vol. 5, no. 12, Dec.

1994, pp. 1252-1265.

136

[33] R.V. Boppana, S. Chalasani, and C.S. Raghvendra, “Resource Deadlocks and

Performance of Multicast Routing Algorithms,” IEEE Trans. on Parallel and

Distributed Systems, vol. 9, no. 6, June 1998.

[34] A. Agarwal et al., “The MIT Alewife Machine: Architecture and Performance,” In

ISCA ’98: 25 years of the International Symposia on Computer Architecture, New

York, NY, USA, 1998, pp. 509-520.

[35] Oliveira C and Pardalos P. Mathematical Aspects of Network Routing Optimization,

Springer Verlag, vol 53, 2011.

[36] Baijian Yang and Prasant Mohapatra. “DiffServ- Aware Multicasting.” Journal of

High Speed Networks, vol 13, 2004, pp. 37–57.

[37] C.T. Ho and M.-Y. Kao, “Optimal Broadcast in All-Port Wormhole-Routed

Hypercubes,” IEEE Trans. Parallel Distributed Systems, vol. 6, 1995, pp. 200–

204.

[38] E. Rosenberg, A Primer of Multicast Routing, Springer, 2012.

[39] Y.-C. Tseng, S.-Y. Wang, and C-W. Ho, “Efficient Broadcasting in Wormhole-

Routed Multicomputers: A Network-Partitioning Approach,” IEEE Trans. on

Parallel and Distributed Systems, vol. 10, no. 1, Jun. 1999.

[40] X. Lin and L.M. Ni, “Deadlock-Free Multicast Wormhole routing in Multicomputer

Networks,” Proc. of the Intl. Symp. On Computer Architecture, 1991, pp. 116-

124.

[41] J. Duato, “On the Design of Deadlock-Free Adaptive Multicast Routing,” Parallel

Processing Letters, vol. 3, 1993, pp. 321-334.

131

[42] X. Lin, P. K. McKinley, and L. M. Ni, “Deadlock-Free Multicast Wormhole Routing

in 2-D Mesh Multicomputers,” IEEE Trans. on Parallel and Distributed Systems,

vol. 5, no. 8, Aug. 1994.

[43] R.V. Boppana, S. Chalasani, and C.S. Raghvendra, “On Multicast Wormhole

Routing in Multicomputer Networks,” Proc. 6
th

 IEEE Symp. On Parallel and

Distributed Processing, Oct. 1994, pp. 722-729.

 [44] M. A. Abd El-Baky. “New Routing Techniques for High Message-Passing Systems

Performance.” Doctoral dissertation, Computer Science Dept. Cairo University (

Fayoum Branch), 2000.

[45] M.P. Malumbres, J. Duato, and J. Torrellas, “An Efficient Implementation of Tree-

Based Multicast Routing for Distributed Shared-Memory Multiprocessors,” Proc.

Of the 8
th

 IEEE Symp. On Parallel and Distributed Processing, Oct. 1996, pp.

186-189.

[46] H. Wang and D. Blough, “Tree-Based Fault-Tolerant Multicast in Multicomputer

Networks Using Pipelined Circuit Switching,” Tech. Rep. ECE-97-05-01, Dept. of

Electrical and Computer Engineering, Univ. of California at Irvine, May 1997.

[47] J. Wu and L. Sheng, “Deadlock-Free Multicasting in Irregular Networks Using

Prefix Routing,” Journal of Supercomputing, vol. 31, no. 1, 2005, pp. 63-78.

[48] Nen-Chung Wang and Chih-Ping Chu, “An Efficient Tree-Based Multicasting

Algorithm on Wormhole-Routed Star Graph Interconnection Networks Embedded

with Hamiltonian Path,” Journal of Supercomputing, vol. 34, no. 1, 2005, pp. 5-

26.

138

[49] D.K. Panda and R. Sivaram, “Fast Broadcast and Multicast in Wormhole Multistage

Networks with Multidestination Worms,” Tech. Rep. OSU-CISRC-4/95-TR21,

Dept. of Computer and Information Science, The Ohio State Univ., Apr. 1995.

[50] H. Moharam, M.A. Abd El-Baky, and S.M.M. Nassar, ” YOMNA: An Efficient

Deadlock–Free Multicast Wormhole Algorithm in 2-D Mesh Multicomputers,” J.

of Systems Architecture, vol. 46, no. 12, pp. 1073-1091 Oct. 2000.

[51] J. Wu and X. Chen, “A Fault-tolerant Tree-Based Multicasting in Mesh

Multicomputers,” Department of Computer Science and Engineering, Florida

Atlantic University, Boca Raton, FL 33431, Apr. 1999.

[52] P. T. Gaughan and S. Yalamanchili, “A family of Fault-Tolerant Routing Protocols

for Direct Multiprocessor Networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 6, no. 5, May 1995, pp. 482-495.

[53] R.E. Kessler and J.L. Schwarzmeier, “CRAY T3D: A New Dimension for Cray

Research,” Compcon, Spring 1993, pp. 176-182.

[54] M. Singhal, “Deadlock Detection in Distributed Systems,” IEEE Computer, vol. 22,

no. 11, 1989, pp.37-48.

[55] R. V. Boppana and S. Chalasani, “Fault-Tolerant Wormhole Routing Algorithms for

Mesh Networks,” IEEE Transactions on Computers, vol. 44, no. 7, July 1995, pp.

848-864.

[56] S. Gunasekran and K. Duraiswamy,“ Robust Multicast Communication in

Heterogeneous Network with Fast Recovery Scheme,” J. of Mathematics &

Technology, no. 2, 2010, pp. 48-53.

139

[57] S. Chalasani and R.V. Boppana,“Communication in Multicomputers with

Nonconvex Faults,” IEEE Trans. Comput. vol. 46, no. 5, May 1997, pp. 616-

622.

[58] Nitin and Durg Chauhan, “Comparative analysis of Traffic Patterns on k-ary n-tree

using adaptive algorithms based on Burton Normal Form,” J. of Supercomputing,

vol. 59, no. 2, 2012, pp. 569-588.

[59] P.-H. Sui and S.-D. Wang, “Fault-Tolerant Wormhole Routing in Two-Dimensional

Mesh Networks with Convex Faults,” Information Sciences, vol. 121, 1999, pp.

217-231.

[60] H.-H. Chang and G.-M. Chiu, ”An Improved Fault-Tolerant Routing Algorithm in

Meshes with Convex Faults,” Parallel Computing, vol. 28, 2002, pp. 133-149.

[61] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,” J. of the ACM,

vol. 41, Sept. 1994, pp. 874-902.

[62] C.J. Glass and L.M. Ni, “Fault-Tolerant Wormhole Routing in Meshes Without

Virtual Channels,” IEEE Trans. Parallel Distrib. Syst. vol. 7, no. 6, 1996, pp.

620636.

[63] C. J. Glass and L. M. Ni, “Fault-Tolerant Wormhole Routing in Meshes,” Proc. of

the 23rd International Symposium on Fault-Tolerant Computing, June 1993, pp.

240-249.

[64] J. Wu, “Fault-Tolerant Adaptive and Minimal Routing in Mesh-Connected

Multicomputers using Extended Safety Levels,” IEEE Trans. Parallel Distrib.

Syst. vol. 11, no. 2, 2000, pp. 149159.

122

[65] J. Wu, “A Fault-Tolerant and Deadlock-Free Routing in 2D Meshes Based on

OddEven Turn Model,” IEEE Trans. Comput. vol. 52, no. 9, 2003, pp.

11541169.

[66] A. Rezazadeh, M. Fathy and A. Hassanzadeh, “A Performance-Enhancing Fault-

Tolerant Routing Algorithm for Network-on-Chip in Uniform Traffic,” Asia

International Conference on Modeling and Simulation, 2009, pp. 614-619.

[67] A. Rezazadeh, M. Fathy and Gh. Rahnavard, “An Enhanced Fault-Tolerant Routing

Algorithm for Mesh Network-on-Chip,” Int. Conf. on Embedded Software and

Systems (ICESS 2009), 2009, pp. 505-510.

[68] Mohtashamzadeh, M., Momeni, L. and Rezazadeh, A. “An Innovative Fault-

Tolerant Method for 2-D Mesh-Based Network-on-Chip Routing,” EMS, 2011,

pp. 339-343.

[69] Xie, L., et al., “The Two-Level-Turn-Model Fault-tolerant Routing Scheme in Tori

with Convex Faults,” Proc. of the 2008 international Conference on Computer

Science and information Technology (August 29 - September 02, 2008), 2008, pp.

379-387.

[70] Xie, L., et al., “A New Fault-Tolerant Wormhole Routing Scheme in Tori with

Convex Faults,” Proc. of the 2008 11th IEEE High Assurance Systems

Engineering Symposium (December 03 - 05, 2008), 2008, pp. 467-470.

[71] F. Safaei, et al., “Evaluating the Performance of Adaptive Fault-Tolerant Routing

Algorithms for Wormhole-Switched Mesh Interconnect Networks,” IPDPS, 2007,

pp.1-8.

121

[72] J. Wu and X. Chen, “Fault-Tolerant Tree-Based Multicasting in Mesh

Multicomputers,” Journal of Computer Science and Technology, vol. 16, no. 5,

2001, pp. 393-408.

[73] H. Gu, et al., “Enhanced fault tolerant routing algorithms using a concept of

‘balanced ring’,” J. of Systems Architecture, vol. 53, pp. 902–912, 2007.

[74] J. Zhou and F.C.M. Lau, “Fault-Tolerant Wormhole Routing in 2D Meshes,”

Proceedings of the Fifth International Symposium on Parallel Architectures,

Algorithms, and Networks, 2000, pp. 94-101.

[75] J. Zhou and F.C.M. Lau, “Adaptive Fault-Tolerant Routing with Two Virtual

Channels in 2D Meshes,” Proc. Seventh Int’l Symp. Parallel Architectures,

Algorithms and Networks, 2004, pp. 142-148.

[76] J. Zhou and F.C.M. Lau, “Multi-phase minimal fault-tolerant wormhole routing in

meshes,” J. parallel computing, vol. 30, 2004, pp. 423-442.

[77] J. Zhou, “Fault-tolerant wormhole routing with 2 virtual channels in meshes,”

Journal of Computer Science and Technology, vol. 20, 2005, pp. 822-830.

[78] S. Chalasani and R. V. Boppana, “Fault-Tolerant Wormhole Routing in Tori,” Proc.

of the 8
th

 International Conference on Supercomputing, July 1994.

[79] L. Xie, and D. Xu,” The Two-Level-Turn-Model Fault-Tolerant Routing Scheme in

Tori with Convex and Concave Faults,” Proc. of the 2009 Sixth international

Conference on information Technology: New Generations (April 27 - 29, 2009),

2009, pp. 107-113.

[80] S. Park, J.-H. Youn and B. Bose, “Fault-Tolerant Wormhole Routing Algorithms in

Meshes in the Presence of Concave Faults,” IPDPS, 14th International Parallel

and Distributed Processing Symposium, 2000, pp.633-638.

121

[81] Y. Fukushima, et al., “A Hardware-Oriented Fault-Tolerant Routing Algorithm for

Irregular 2D-Mesh Network-on-Chip without Virtual Channels,” Proc. of

International Symposium on Defect and Fault Tolerance in VLSI Systems

(DFT'10), 6-8 Oct., Kyoto, Japan, 2010, pp. 52-59.

[82] A. Mejia, et al., “Segment-Based Routing: An Efficient Fault-Tolerant Routing

Algorithm for Meshes and Tori,” IEEE International Parallel & Distributed

Processing Symposium (IPDPS), April 2006.

[83] J. Wu and D. Wang, “Fault-tolerant and deadlock-free routing in 2-D meshes using

rectilinear-monotone polygonal fault blocks,” The Int’l J. of Parallel, Emergent

and Distributed Systems, vol. 20, no. 2, 2005, pp. 99-111.

[84] M. Stojmenovic and A. Nayak, “Broadcasting and routing in faulty mesh networks,”

IPDPS, 2006.

[85] J-D Shih, “Fault-tolerant routing in hypercube networks without virtual channels,”

IEE Proc. Comput Digit Tech, vol. 5, 2006, pp. 377-384.

[86] D. Xiang, et al., “Fault-Tolerant Routing in Meshes/Tori Using Planarly Constructed

Fault Blocks,” Proc. 34th Int’l Conf. Parallel Processing (ICPP ’05), 2005, pp.

577-584.

[87] D. Xiang, Y. L. Zhang, and Y. Pan, “Practical Deadlock-Free Fault-Tolerant

Routing in Meshes Based on the Planar Network Fault Model,” IEEE

Transactions on Computers, vol. 58, no. 5, pp. 620-633, 2009.

[88] Dong Xiang, “Deadlock-Free Adaptive Routing in Meshes with Fault-Tolerance

Ability Based on Channel Overlapping,” IEEE Transactions on Dependable and

Secure Computing, vol. 8, no. 1, pp. 74-88, 2011.

123

[89] F. Safaei, et al., “Performance analysis of fault-tolerant routing algorithm in

wormhole-switched interconnections,” The Journal of Supercomputing, Springer

US, vol. 41, no. 3, 2007, pp. 215-245.

[90] F. Safaei, and A. Mortazavi, “A Novel Routing Algorithm for Achieving Static

Fault-Tolerance in 2-D Meshes,” 10th IEEE International Conference on

Computer and Information Technology(CIT 2010), 2010, pp. 2621-2627.

[91] J.-H Youn, B. Bose and S. Park, “Fault-Tolerant Routing Algorithm in Meshes with

Solid Faults,” The J. of Supercomputing, vol. 37, 2006, pp.161–177.

[92] G. Wang, J. Chen and C. Lin, “A New Fault-Tolerant Broadcast Routing Algorithm

on Mesh Networks,” J. of Interconnection Networks , vol. 11, nos. 3 & 4, 2010,

pp. 175–187.

[93] X. Duan, D. Zhang and X. Sun, “Fault-Tolerant Routing Schemes for Wormhole

Mesh,” Int’l Symposium on Parallel and Distributed Processing with

Applications, ISPA, 2009, pp. 298-301.

[94] Z. Jiang, J. Wu, and D. Wang, “A New Fault Information Model for Fault-Tolerant

Adaptive and Minimal Routing in 3-D Meshes,” Proc. 34th Int’l Conf. Parallel

Processing, 2005, pp. 500-507.

[95] C. Chen and G. Chiu, “A Fault-Tolerant Routing Scheme for Meshes with

Nonconvex Faults,” IEEE Transactions on Parallel and Distributed Systems, vol.

12, no. 5, May 2001, pp. 467-475.

[96] M. E. Shaheen and A. Abukmail, “A Fault Tolerant Deadlock-Free Multicast

Algorithm for 2D Mesh Multicomputers,” The Journal of management and

Engineering Integration (JMEI), vol. 5, no. 2, May 2012, pp. 1-9.

122

[97] J. Han and M. Kamber, Data Mining: Concepts and Techniuqes, Morgan Kaufmann

Publishers, 2001.

[98] Lee J. L. and Siau K, “A review of data mining techniques,” Industrial

Management and Data Systems, 2001, pp. 41–46.

[99] Li Y.-H., Sun L.-Y, “Study and applications of data mining to the structure risk

analysis of customs declaration cargo,” Proc. of the IEEE International

Conference on e-Business Engineering, October 2005, pp. 761–764.

[100] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann, 2nd ed. 2005.

[101] G. Harvey, Excel 2007 For Dummies, Wiley, 2006.

[102] Amos Gilat, MATLAB: An Introduction with Applications 2nd Edition, John Wiley

& Sons, 2004.

	New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance
	Recommended Citation

	tmp.1453304161.pdf.LL7hI

