
December 1993 UILU-ENG-93-2250
CRHC-93-22

Center for Reliable and High-Performance Computing

PROPERCAD II: A RUN-TIME LIBRARY FOR PORTABLE,
PARALLEL, OBJECT-ORIENTED PROGRAMMING WITH
APPLICATIONS TO VLSI CAD

Steven Parkes
John A. Chandy
Prithviraj Banerjee

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

1

i
UNCLASSIFIED_________

SECURITY CLASSIFICATION OF THIS PAGÉ

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3 . DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
U IL U -E N G -9^_093_22

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(I f applicable)

N/A.

7a. NAME OF MONITORING ORGANIZATION

Semiconductor Research Corporation
6c ADDRESS (City, State, and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADDRESS (City, State, a n d ZIP Code)

Research Triangle Park, NC 27709

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

7a
8b. OFFICE SYMBOL

(If applicable)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PRO GRAM PROJECT T A SK

7 b

ELEMENT NO. NO. NO.
WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)
ProperCADII: A Run-Time Library for Portable, Parallel, Object-

Oriented Programming with Applications to VLSI CAD
12. PERSONAL AUTHOR(S)

PARKES, Steven, John A. Chandy and Prithviraj Banerjee
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, M onth, Day) 15. PAGE COUNT

Technical FROM TO 93-11-30 77
16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse i f necessary and identify by block number)

computer-aided-design, parallel, portable, object-oriented,
algorithms, vlsi

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Despite the increasing availability of parallel platforms, their wide-spread use in the solution of
large computing problems remains restricted to a fairly narrow set of applications. This is due
in part to the difficulty of parallel application development which is itself largely the result of
a lack of sophisticated environments for parallel application development. Further, though the
number of parallel platforms is increasing, the convergence of parallel architectures and operating
systems does not appear to be similarly increasing. Given that most development environments
are targeted towards a particular architecture, it is difficult to amortize development costs over a
wide base of installed machines.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
E UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ DT1C USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. N A M E OF RESPONSIBLE IND IV IDUAL 22b. TELEPHONE Qndude Area Code) 22c. OFFICE SYMBOL

DD FORM 1473, 84 m a r 83 APR edition may be used until exhausted.

All other editions are obsolete.
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED____________
‘ • U R I T Y CLA&SI FI C A T IO N OF TH I* PA O C

In this research, we address these problems through the application of two significant tech­
nologies; object-oriented design techniques and the actor rnodel of concurrent computation. Our
approach is manifested in the ProperCAD II library, a C++ object library supporting actor con­
currency on parallel architectures based on contemporary microprocessor technologies and ap­
propriate for applications demonstrating medium-grain parallelism. The development of the
library has been driven in general by the requirements of large, unstructured problems, which
have not proven amenable to techniques used in scientific computing, and in particular by the
requirements of VLSI CAD applications. The efficacy of our approach and implementation is
demonstrated through ProperHITEC, a parallel implementation of the HITEC algorithm for au­
tomatic test pattern generation, and Proper PLACE, a parallel implementation of the TimberWo 1 f
simulated-annealing algorithm for cell placement.

UNCLASSIFIED
SCCUPITv ft o p t u k p » r r

ProperCAD H: A Run-Time Library for
Portable, Parallel, Object-Oriented Programming

with Applications to-VLSI CAD

Steven Parkes John A. Chandy Prithviraj Banerjee
parkes@uiuc.edu j-chandy@ud.uc.edu p-banerjee@ud.uc.edu

Center for Reliable and High-Performance Computing
University of Illinois

1308 W. Main
Urbana, IL 61801 " '

This research was supported in part by the Semiconductor Research Corporation under grant 93-DP-109.

mailto:parkes@uiuc.edu
mailto:j-chandy@ud.uc.edu
mailto:p-banerjee@ud.uc.edu

Abstract

Despite the increasing availability of parallel platforms, their wide-spread use in the solution of.
large computing problems remains restricted to a fairly narrow set of applications. This is due
in part to the difficulty of parallel application development which is itself largely the result of
a lack of sophisticated environments for parallel application development. Further, though the
number of parallel platforms is increasing, the convergence of parallel architectures and operating
systems does not appear to be similarly increasing. Given that most development environments
are targeted towards a particular architecture, it is difficult to amortize development costs over a
wide base of installed machines.

In this research, we address these problems through the application of two significant tech­
nologies, object-oriented design techniques and the actor model of concurrent computation. Our
approach is manifested in the ProperCAD II library, a C++ object library supporting actor con­
currency on microprocessor-based parallel architectures and appropriate for applications demon­
strating medium-grain parallelism. The development of the library has been driven in general by
the requirements of large, unstructured problems, which have not proven amenable to techniques
used in scientific computing, and in particular by the requirements of VLSI CAD applications. The
efficacy of our approach and implementation is demonstrated-through ProperHITEC, a parallel
implementation of the HITEC algorithm for automatic test pattern generation, and Proper PLACE,
a parallel implementation of the TimberWolf simulated-annealing algorithm for cell placement.

Table of Contents

1 Introduction 1
1.1 Parallel and Distributed Computing .. 1

1.1.1 Hardware Architectures .. l
1.1.2 High-level Programming Models .. 3

1.2 VLSI Computer-Aided Design ... 12
1.3 A p p ro a c h .. 13
1.4 Report O verview .. - .. 14

1 Run-Time Library 17

2 Overview 19
2.1 A p p ro a c h .. 19

2.1.1 Ta rg e ts... 19
2.1.2 Constraints .. 20

2.2 Library Com ponents... 21
2.3 Related w o rk21

2.3.1 Actor Languages ..22
2.3.2 Non-actor Language-based Approaches ..23
2.3.3 Library-based Approaches ...24

3 Actor Interface 25
3.1 Actor Model ... 25
3.2 Library In te rfa c e 26

3.2.1 Actors ...26
3.2.2 ActorNames ..27
3.2.3 ActorMethods ...28
3.2.4 Messages and Continuations ...29
3.2.5 NewActorMethods..30
3.2.6 Aggregates ..31
3.2.7 Distributions ... 32
3.2.8 AggregateNames ..32

3.3 Meta-programming In te rfa c e ...33
3.3.1 System A g g re g a te s...33
3.3.2 Task Queues and Priorities ... 33

i

ü TABLE OF CONTENTS

4 Abstract Parallel Architecture 35
4.1 Overview ..35
4.2 Thread M anagem ent..35
4.3 Address Space M anagem ent.. 38
4.4 Communication M anagem ent..39
4.5 Physical Interface ..40

5 Performance 42

Il Applications 45

6 Automatic Test Pattern Generation 47
6.1 Related W o rk ... 47
6.2 ProperHITEC ... 48
6.3 Pe rfo rm a nce ... 52
6.4 Fault Efficiency Results ...54

7 Standard Cell Placement 55
7.1 Simulated Annealing for P la c e m e nt.. 55
7.2 Parallel Placem ent.. 56

772.1 Parallel evaluation within each m o v e ...56
7.2.2 Parallel evaluation of multiple moves ...56

7.3 ProperPLACE .. 58
7.4 Pe rfo rm a nce ... 60

8 Conclusions 62

Acknowledgments

The authors would like to gratefully acknowledge the support of the Argonne National Laboratory,
the San Diego Supercomputer Center, and the National Center for Supercomputer Applications.

iii

7 Introduction

The desire to employ multiple processors to solve difficult problems has, to date, remained largely
unfulfilled for all but a restricted, albeit significant, set of applications, namely the numerical
problems found in scientific applications and the database problems found in large transaction-
processing applications. Although significant problems occur in many other fields, the techniques
used in scientific and transaction-processing applications have not proven equally effective on
more general, unstructured problems. Moreover, due to the restricted nature of previous problems,
the solutions that have been developed have typically been designed for a particular architecture;
for more general problems, in order to target the broad range of installed machines, a degree
of portability not previously required becomes necessary. Similarly, to meet cost constraints,
potential solutions must be compatible with preexisting code which has historically not been the
case.

This chapter provides, as motivation for the work in the sequel, an introduction to both parallel
computing and VLSI applications. It introduces the approach taken in this research and highlights
the most significant contributions.

1.1. Parallel and Distributed Computing

Parallel and distributed computing, the process of using multiple processing elements to solve a
computing problem, has existed almost as long as computers themselves. This section provides a
broad overview of the hardware and programming models in existence today.

1.1.1. Hardware Architectures

Traditionally, parallel and distributed architectures could be cleanly divided into two classes,
shared memory architectures and message passing architectures. In recent years, logically shared,
physically distributed architectures such as the Kendall Square KSR-1[1] have been introduced.
Additionally, with the rapid increase in interconnectivity via local- and wide-area networks,
virtually all machines support some form of message passing interconnection, giving rise to
so-called hybrid architectures.

This section considers the key characteristics of each of these architecture classes. It should be
noted that these are hardware architectures and do not necessarily reflect the programming model
as viewed by the application programmer. It is possible, via compilers, run-time libraries, and
operating systems, to implement any of the application programming models of the next section on
any of the hardware architectures presented below. We use the term low-level programming model
to describe the model supported directly by the hardware and high-level programming model to

1

2 CHAPTER 1. INTRODUCTION

Interconnection Network

Memory Memory Memory

Figure 1.1 Shared memory multiprocessor.

describe the model provided to the applications developer. High-level models will be considered
in Section 1.1.2.

Shared Memory

Shared mejnory architectures are constructed from a number of processing and memory modules
which are connected via an interconnection network (see Figure 1.1.) In the first generation of
shared memory machines, processing modules generally lacked memory other than that repre­
sented by the registers in each CPU and the interconnection network was a bus. Both of these
characteristics led to scaling problems. To improve performance, local caches were added to
each processor; while this drastically cut the latency of memory references it introduced problems
of cache-coherency. More advanced interconnection networks were also developed, including
cross-bar and multistage networks.

Even though the addition of cache mechanisms has enabled the scaling of shared memory
machines to larger sizes, the difficulty of maintaining cache coherence typically limits the feasibility
of this approach to tens of processors.

Message Passing

In message passing architectures, each processing module consists of both a processor and local
memory. Processor modules are interconnected by a network (see Figure 1.2.) Typically, network
bandwidths are at least an order of magnitude less than those of the buses in shared memory
machines. The most significant characteristic of message passing systems is that each processor
has its own individual address space; access to the network is explicit, via primitives such as send
and r ec e i ve. The bandwidth of the network in these architectures has traditionally been less than
that of shared memory machines and often varies between different pairs of processors. As a result,
these architectures are considered more scalable than shared memory architectures. Machines of
this type have been built with thousands of processors. Of course, the lower bandwidth of the
network means that many algorithms that perform well on shared memory machines may perform
poorly on message passing architectures.

1.1. PARALLEL AND DISTRIBUTED COMPUTING 3

Figure 1.2 Message passing multiprocessor.

Logically Shared, Physically Distributed Memory

In the late '80s, a new architecture was developed using techniques borrowed from both the shared
memory and message passing architectures. This architecture uses hardware components similar
to those developed for message passing to implement a low-level programming model mirroring
shared memory. Thus, though an interconnection network is used, the hardware does not support
send and r e c e iv e primitives. Instead, the low-level programming model is a uniform address
space and the hardware detects accesses to non-local memory, sending the appropriate messages
to gain access to the necessary data. Consistency in these systems is usually maintained via a
combination of hardware software in a mechanism called a directory[2]. Contemporary machines
in this class are Non-Uniform Memory Architecture (NUMA) machines such as the Stanford
DASH[2] and Cache-Only Memory Architecture (COMA) machines such as the KSR-1[1].

Hybrid Shared Memory and Message Passing

Hybrid architectures combine both shared memory and message passing architectures. Some pro­
cessors will share a uniform address space; otherwise communication requires explicit sends and
r e c e iv e s (see Figure 1.3.) With the recent dual growth in workstation clusters and desktop multi­
processors, hybrid machines are becoming ubiquitous. Further, MPP manufactures are beginning
to consider hybrid architectures for their machines; the INTEL Paragon supports configurations
which have shared memory multiprocessors at each node within the mesh interconnect.

1.1.2. High-level Programming Models

In this context, "high-level" means the programming model as seen by the applications program­
mer, not the operating system designer. The overall programming model can be broken into
two fundamental components, the communication model and the thread model. Though a complete
model requires aspects of both components, considering the components separately helps clarify
the issues involved while making more explicit the space of possible complete models. While only
a few combinations are currently in use, almost any combination of a communication model and a
thread model could form a new complete programming model. We reiterate that these models are
high-level and thus with proper software support could be implemented on any of the hardware
architectures described in the previous section. For current purposes, we are not concerned with

4 CHAPTER 1. INTRODUCTION

Shared Memory Subsystem

Processor Processor Processor

______ 1______________ _______ 1_____________
Interconnection Network

Memory Memory Memory

Interconnection Network

Memory Memory Memory

Interconnection Network
• 1

Processor Processor Processor

Shared Memory Subsystem

Figure 1.3 Hybrid multiprocessor.

1.1. PARALLEL AND DISTRIBUTED COMPUTING 5

Before:
a = 1; b = 2; c = 3; d = 4;

Thread 1 Thread 2

a = 5; c = b;
b = 10; d = a;

i t
After: one of
a = 5; b = 10; c = 10; d = 5;
a = 5; b = 10; c = 10; d = 1;
a = 5; b = 10; c = 2; d = 5;
a = 5; b = 10; c = 2; d = 1;

Figure 1.4 Communication and Consistency in Shared Memory.

the cost of high-level models on dissimilar low-level models.

Communication Model

The communication model defines how the "threads" of a program coordinate data interchange
amongst themselves. Though we use the term 'thread' in this section, we defer precise specification
of a thread to the sequel. For the purposes of this section, threads may be considered an active
execution environment (stack) which vies for processor time with other threads.

Shared Memory In the shared memory programming model, the application sees a single flat
address space. Communication is implicit, through access to shared variables. To fully support
such a model, a method of interprocessor synchronization is necessary, usually implemented at the
lowest level via atomic operations such as test-a n d -set or through higher-level abstractions
such as semaphores. The exact semantics of a semaphore, i.e., busy-wait versus rescheduling,
cannot be defined precisely without reference to a thread model.

Specifying the exact semantics of shared memory machines is complicated by the existence
of different consistency models. With hardware support for caching and load/store reordering,
the most conservative model of shared data consistency, sequential consistency]^, is prohibitively
expensive. Thus in addition to the uniform address space, a shared memory model must explicitly
define the aspects, both deterministic and non-deterministic, of access to shared memory.

An example of shared memory communication is shown in Figure 1.4. In the figure, two
threads access two shared integer variables, a and b. Because the model specifies a shared
address space, the variables exist at the same addresses in both threads. The figure demonstrates
the consistency problem. Though the first thread stores 5 into a followed by storing 10 into b, it

6 CHAPTER 1. INTRODUCTION

Figure 1.5 Communication through Message Passing.

is possible, under certain consistency models, for the second thread to see the change to b before
seeing the change to a.

Message Passing In the message passing model, a send primitive is used to send data from one
thread to another thread. An explicit r e c e iv e operation must be executed before the data is
available to the receiving thread. Figure 1.5 shows two possible ways communication can occur
in a message passing model. In the blocking case, the send operation does not complete until
the corresponding r e c e iv e operation has begun. This style of communication is one of the
types supported by the Thinking Machines CM-5 CMMD library. In the non-blocking case, the
send operation completes when the necessary data are copied out of the application buffer; it
is not necessary that the corresponding r e c e iv e be executed. This type of message passing is
common on the INTEL iPSC hypercubes. Variations on message passing provide for broadcasting,
multicasting, synchronous and asynchronous communication, and typed messages.

Thread Models

There are two principal thread models, which we will call physical and virtual.

Physical Threads In a physical thread model, the thread, as seen by the application program, is
a processing element and generally available for "exclusive" use by the application. If the code
running on a thread executes a blocking call, the entire thread is blocked for the duration of the
call.

The physical model includes those systems which provide more threads than processors but
for which the developer cannot rely on the underlying run-time library efficiently handling a
number of threads vastly greater than the number of available processors.

Virtual Threads In a virtual thread model, the number of threads visible to the program is typically
not related to the number of processing elements. Applications developers think in terms of a
number of threads convenient for the application at hand. It is the responsibility of the underlying
language and run-time support to map these virtual threads to physical processors. When a
virtual thread blocks, it is expected that the underlying run-time support will find another virtual
thread to schedule. This model is often referred to as light-weight threads.

1.1. PARALLEL AND DISTRIBUTED COMPUTING 7

Complete Models

A complete model is created by combining a communication model with a thread model and
then specifying the semantics of the interaction between the two components. We consider three
complete high-level models. Many more are possible, but the examples serve to demonstrate the
issues involved.

Unix Shared Memory Multiprocessor The model of a Unix shared memory machine combines the
shared memory and physical thread components. The underlying consistency model is that of
the underlying hardware and varies from architecture to architecture. The model is considered
physically threaded because the Unix operating system—in particular, the scheduler—does not
perform well when the number of kernel-scheduled threads is much greater than the number of
processors (e.g., 100 times or more.)

MPI The message passing interface (MPI) model is a send-receive model currently being stan­
dardized by a consortium of manufactures and users. The model is similar to the programming
interfaces on the INTEL iPSC and Paragon multicomputers and supplied by libraries such as
PVM[4] and Express[5].

The basic model provides a send/receive interface over a physically-threaded model. Pro­
grams written for this model are written for a fixed number of processors. While they can be
parameterized by the size of the machine, the model provides little or no support for context
switching a physical thread over multiple virtual threads.

In the MPI interface, the basic send/receive model is augmented with such concepts as process
groups and environments, making the interface more applicable to virtual threads. Experience
with the advanced virtual thread interface for message passing systems is, to date, limited.

Actor An actor model is based on continuation passing[6] using virtual threads. From the
programmer's point of view, an actor is an object with its own thread of control that at most times
is blocked waiting for a message—a continuation execution of one of its methods.

Continuation passing is similar to message passing but omits the explicit receive operation.
Instead, each message sent contains enough information to determine the action to be invoked
by the receiver. This model is much like the active messages model[7]. Figure 1.6 shows how
continuation passing might occur in a C++-like language. In continuation passing style (CPS),
execution of a member function is initiated through the execution of a continuation. In the figure,
execution of the member p for actor a is initiated though calling a continuation and is represented
by the arc labeled p (c). In response, a executes a member function of b by creating a continuation,
x, from the actor address and member function pointer and using function call syntax to call the
continuation. The figure demonstrates one of the important characteristics of CPS; control flow
need not be stack-based as it is in function call mechanisms. In the example, b need not return a
value to a in order for it to return to the caller of a : : p; instead, using the continuation c passed
to a : :p and then to b : : q, the result is communicated directly to the initial caller.

The actor model combines continuation passing with a virtual thread model. Most of the time
the thread associated with an actor is blocked waiting for the continuation execution of one of
its methods. When a continuation destined for the actor is executed, the appropriate member

8 CHAPTER 1. INTRODUCTION

class Actor {
int data;
Int p(Continuation c)
{ ...Continuation x (b, q);
x(c) ;

}

int q(Continuation c){ ... c(5) ... >
} ;

Actor a, b;

Figure 1.6 Communication through Continuation Passing.

b.q(c)

P(c)

a’s thread b’s thread -

p(c)

called

returns

b finishes any previous
work
Q(c)

Figure 1.7 Multi-threaded continuation execution.

function is executed. As part of the execution, the actor may execute other continuations, create
new actors, or perform computations, possibly with side effects.

In a parallel context, continuations express parallelism because the call to a continuation
returns after scheduling the future execution of the continuation body rather than synchronizing
with the actual execution. Figure 1.7 shows how the execution of the code in Figure 1.6 might
occur, a . p (c) is called via a continuation (not shown). In response, it does some processing and
executes b . q (c) via a continuation. While processing the continuation call, the parameters are
copied and a message is sent to the processor responsible for scheduling b's thread. As soon as the
message send has started, a resumes its processing. At some later point, b finishes any previous
continuation and becomes available to process the continuation from a. Each actor has a single
virtual thread so only one message can be delivered at a time. The figure emphasizes the particular
communication and thread models comprising the actor model. The communication style natural
to actors is asynchronous; basing an actor implementation on a synchronous model would in most
cases result in performance degradation. Since every actor has a thread and an actor is simply
a concurrent object, actor programs typically have thousands if not hundreds of thousands of
virtual threads. Thus, the virtual thread mechanism used by an actor implementation must be
extremely efficient.

1.1. PARALLEL AND DISTRIBUTED COMPUTING 9

Serial

Send-Receive Model

Actor Model

Completely

Parallel

Figure 1.8 Spectrum of Parallelism. Arrows indicate increasing programmer effort.

Comparison of MPI and Actors With the MPI style interface much more well established, the
actor model must provide significant benefits in performance or programmability to be considered
useful.

Expression of Parallelism One can view the gamut of parallelism as a one dimensional space
with extremes representing completely serial and completely parallel programs (see Figure 1.8.)
If we consider the MPI and actor programming styles, we see that they lie on opposite ends of the
parallelism spectrum. For example, if we consider a send-receive code that sends two messages
from a thread A to a thread B, in the most straightforward, synchronous case, parallelism is
decreased by the imperative r e c e iv e primitive:

// Thread 1 // Thread 2
• send(2, typel, datal); receive(typel, datal);
send(2, type2, data2); receive(type2, data2);

Though the semantics of the application may allow the messages to be processed in any order, the
underlying model requires that the messages be received in the order sent and the serial nature of
code execution implies that one receive command must precede the. other. Though it is possible
to express unordered reception via asynchronous send and r e c e iv e primitives, such code is
significantly more difficult to write. Thus, the basic MPI interface is represented at the left of the
parallelism spectrum; the developer must apply more effort to express more parallelism.

In the actor model, message reception may occur as long as the actor is not processing a previous
message. In contrast to the MPI case above, the actor will receive whichever message arrives at
the actor thread first. There is, however, a dual to the MPI case; if there is a semantic dependency
on message processing, the actor must handle the case where message reception order is reversed.
In this case, the actor must delay processing of the second message until the first is received
and processed. Thus, the actor model starts at the completely parallel end of the spectrum and
requires that the programmer apply more effort to express less parallelism. The extreme amount of
parallelism in an actor program can sometimes lead to difficulty in programming. To remedy this,
most actor languages include constructs for shifting order maintenance from the programmer to
the run-time system. As will be seen in Chapter 3, combing the actor model with an imperative
language such as C++ also serves to simplify the expression of parallelism without putting an
unacceptably large burden on the developer.

Composability Another point of comparison is the ease of composability, the process of taking
two existing modules for solving unrelated problems and combining them into a single application

10 CHAPTER 1. INTRODUCTION

to solve a more complicated problem. For example, an application might require the processing
of independent linear system solver and matrix multiplication problems. Composability, then,
refers to the ability to take existing modules for solver and multiplication and to use them, without
modification, to solve the appropriate subproblems.

In composability, physical thread-based models tend to fall short of the virtual techniques
because partitioning, usually static, of available processors is required. Designers of message
passing interfaces such as MPI are trying to implement ways of solving this problem but as yet
there are no practical examples of such features.

Implementations of the actor model, being based on a virtual thread model, implicitly perform
load balancing when a new actor is created. Thus, if an actor type exists for each of the solver
and multiplication problems, an actor can be created for one without interfering with the other.
It is the task of the run-time system to load balance and schedule the actors to take advantage of
available processing elements.

Figure 1.9 shows graphically the difference between typical message passing and actor imple­
mentations of the linear system solver and matrix multiplication problem. In the message passing
case, we assume a function exists for each subproblem and that each function assumes it has full
use of the multiprocessor. Thus, individually each of the two subproblems is solved in parallel
but the two subproblems are sequentially ordered with barriers. If the matrices are sparse, as is
typical, it is often difficult to use the processors efficiently. In the actor case, since each subproblem
is represented by an actor, the two actors, and by extension, the subproblem actors, are created
in parallel and only synchronized when the two operations are completed. The result is higher
processor efficiency. (The barriers shown in the actor example are symbolic; though an actor
model does not have blocking primitives, the combination of the code effectively creates barriers.)

Integration of Object-Oriented Design Techniques Since continuations are a language-based
concept, their integration into object-oriented languages is relatively straightforward. In an object-
oriented language, a continuation conceptually contains both the address of the target object and
a pointer to the method to be invoked on the target object. The dynamic binding mechanism
(virtual functions in C++) is invoked in exactly the same manner as it is for serial languages.

On the other hand, in the send-receive model communication looks more like an input/output
operation. When a number of possibilities exist for the type of a received message, some sort of
type-globbing mechanism is necessary in the r e c e iv e primitive. Subsequently, a type switch,
eg-/

if (type == a)

else if (type == b)

is required. Type switches are difficult to maintain and anathema to object-oriented design. The
elimination of the need for such constructs was one of the main impetuses for the development
of the object-oriented methodology. Any technique, such as continuation passing, which obviates
the need for type switches is considered highly desirable.

1.1. PARALLEL AND DISTRIBUTED COMPUTING 11

Send-Receive

PO P1 P2

Actor

Figure 1.9 Linear System Solver and Matrix Multiplication on Send-Receive and Actor models.

12 CHAPTER 1. INTRODUCTION

1.2. VLSI Computer-Aided Design

The types of large, unstructured problems encountered in general computing are typified by those
in electronic design automation for VLSI CAD. Examples of VLSI CAD problems are:

ATPG Automatic test pattern generation (ATPG) for VLSI circuits is a difficult problem (NP-
complete) which is nonetheless critical if the quality of ever larger VLSI devices is to be
maintained.

Synthesis Owing to increasing circuit densities, the last decade has seen a considerable increase
in interest in algorithms for the automatic synthesis of VLSI circuits. Industry consensus is
that only through synthesis will it be possible to manage the design complexity of the current
and coming generations of VLSI chips. Most synthesis algorithms are both memory and
processor intensive and display a quality of results tightly coupled to the resources applied
to the problem.

Extraction Extraction is the process of taking a VLSI mask-level layout and extracting circuit
connectivity and parametric values. The results of extraction are used to verify both de­
sign correctness and performance requirements, usually after automatic cell placement and
routing. Extraction is typically performed in terms of rectangles on various masks of the
layout; the number of these rectangles can approach 100 million on contemporary micro­
processor designs. Few processors in industry have the resources to handle such a design
efficiently. Given the frequency of this problem (extraction is usually iterated with design
changes to verify changes and to update extracted parametric information), techniques to
take advantage of all available resources are valuable.

Cell Placement and Routing When logic design for a VLSI circuit has been completed, cell place­
ment and routing are performed. With chips approaching tens of millions of gates, the
complexity of these problems is enormous. Moreover, one of the most popular techniques
for placement, simulated annealing, is an inherently expensive operation. As in most other
CAD tasks, the quantity of resources applied to the problem has a direct impact on the
quality of results.

With the preponderance of evidence indicating that virtually any method of managing the
algorithm development process and any technique for improving quality through the application
of additional resources would appear promising, it is perhaps surprising that neither parallel pro­
cessing nor object-oriented techniques are well represented in the CAD development community.
To date, with few exceptions, the only use of either technology is almost exclusively in the area of
graphical user interfaces(GUIs). This situation is not without justification:

• For more than a decade, most CAD development has been performed in the C programming
language and until the advent of C++ use of an object-oriented language implied the sacrifice
of existing code, an unacceptable alternative. With the availability of C++, adoption is
slowly occurring. C++ is easily an order of magnitude more complicated than C and is still
undergoing rapid development; development tools are only now attaining the degree of
stability needed for even the most aggressive commercial development.

1.3. APPROACH 13

• Due to a lack of widely available libraries (again, outside the GUI area) much of the promise
of C++ remains to be realized. Given the ability of C++ to trade flexibility for efficiency,
the process of generating reusable code is made more complicated by the fact that the set
of design choices, in terms of flexibility versus overhead, for one application may not be
acceptable for another; CAD problems, with their inherent complexity and size, are known
to be sensitive to overheads in area or space.

• Until recently, the wide-spread availability to CAD users of parallel platforms has been
severely limited. Supercomputers have in general been limited to the restricted applications
mentioned previously and thus the techniques developed for these platforms have had no
place for application in the CAD community. This situation leads to a chicken-and-the-egg
problem: with little availability of parallel platforms, interest in parallel solutions to CAD
problems has been relatively low. With only limited development of parallel applications,
little impetus exists for CAD users to explore the cost-benefit tradeoff of parallel platforms,
even though the costs associated with VLSI development and fabrication are high and time-
to-market is a critical factor.

• The generation of useful parallel algorithms has also been impeded by concurrent rapid im­
provement in serial algorithms. Often by the time a parallel CAD algorithm is completed, it
lags significantly behind the quality, and sometimes even the performance, of contemporary
serial algorithms.

1.3. Approach

Based on past experience, a strong argument can be made that any practical, parallel, unstructured
application—and CAD applications in particular—must be based on models and implementations
that are portable across the widest variety of parallel machines, scalable to the maximum degree
feasible, and based initially upon the best available serial algorithm. These constraints are ex­
plicitly addressed in the approach taken in the ProperCAD project. The goal of the project is
the development of a library which provides a seamless, high-level programming model across a
variety of parallel architectures along with a set of applications based on that model that address
the most significant tasks in electronic design automation [9,10,11].

The main portion of the work reported here is the development of a layered library which
can be used as the basis for porting serial algorithms to an abstract parallel machine. The library
is divided into two layers. The lower half, the abstract parallel architecture, interfaces with
underlying hardware and system software to provide a consistent interface across a wide variety
of parallel machines including heterogeneous combinations of parallel architectures. The upper
half, the actor interface, is an implementation of the actor-model of concurrency which, through
abstraction, simplifies the task of writing parallel applications. The actor interface helps the
application designer avoid dealing with low level, architecture-dependent issues.

Specific contributions of this work are:

1. A library approach to portable, actor-based parallelism in a strongly- and statically-typed
language.

14 CHAPTER 1. INTRODUCTION

Applications:

ProperEXT: extraction

ProperHITEC: test generation

ProperPROOFS: fault simulation

ProperTEST: test generation

ProperFAULT: fault simulation

ProperSYN: logic synthesis

ProperPLACE: placement

ProperflOUTE: routing

ProperSIM: behavioral simulation

IN TEL iPSC/2,/860 Hypercubes

IN TEL Paragon

ProperCAD

Sun 4/600MP

Encore Multmax

Existing

Sequential

Algorithms

MIS-II

H ITEC/PRO O FS

■TimberWolf

Abstract Parallel Architecture

Workstation Cluster

CM-5

others
Planned

Figure 1.10 An overview of the ProperCAD project [8].

2. A set of classes for controlling, or meta-programming, an actor system on contemporary
medium-grain machines.

3. An implementation of aggregates with additional features applicable to medium-grain com­
putation.

4. An abstract parallel architectural model, with an object library-based implementation, which
is capable of describing the full range of contemporary parallel architectures.

5. A parallel algorithm for ATPG, incrementally derived from a well-known top performing
algorithm, which achieves significant multiprocessor utilization without degradation of
resultant quality.

6. A parallel algorithm for cell placement which achieves significant multiprocessor utilization
without degradation of resultant quality.

1.4. Report Overview

The sequel is broken into two parts. The first part presents our approach to concurrent object-
oriented computing. A small numeric kernel, the Gauss-Jacobi algorithm for the solution of partial
differential equations, is used to exemplify the approach. Individual chapters present an overview
of the library, the low-level abstract parallel architecture, the high-level actor interface, and the
results of the Jacobi kernel on a number of parallel platforms.

1.4. REPORT OVERVIEW 15

The second part details two CAD applications, ATPG and cell placement. Each problem is
described along with a description of the serial algorithm which forms the basis for the parallel
application. The parallel application is then described and performance results presented.

16 CHAPTER 1. INTRODUCTION

Parti

Run-Time Library

17

2 Overview

2.1. Approach

The approach to parallelism taken in this research is the development of a library which pro­
vides simultaneously a high-level, object-oriented abstraction to application programmers and
an underlying run-time implementation of that interface tuned to the highest efficiency possible.
The library enables an application designer to incrementally apply object-oriented programming
mechanisms to develop a parallel application while maintaining compatibility, i.e., sharing code,
with an existing serial application. This approach differs from previous work in a number of
ways, most notably in the sets of target architectures, applications, and languages.

2.1.1. Targets
In this work, we specifically target those architectures developed atop contemporary micropro­
cessor technologies, supporting medium-grain parallelism. Likewise, the target application set
consists of those applications which require medium-grain parallelism. The term medium-grain
requires some clarification.

Medium-grain Parallel Architectures

It is fairly simple to quantify the difference between fine-grain architectures and others, fine-grain
architectures being those having upwards of a thousand processors, network latency on the order
of a few microseconds, and per-node memory sizes on the order a few kilobytes per MIP of
processing power[12].

Coarse-grain applications are ones for which the ratio of computation to communication is
very high. Rather than trying to define an exact level of performance to differentiate coarse-grain
applications, it is helpful to consider protection boundaries. If processes must validate all com­
munication with other processes for complete safety, we would consider such communication
coarse-grain. The motivation for Such differentiation is that the overhead implied by such check­
ing usually places a lower bound on the cost of communication, thus limiting performance as
communication requirements increase.

Medium-grain architectures cover the wide but ill-defined range between fine- and coarse-
grain architectures. Current machines from Thinking Machines, Intel, and Cray fit within this
class, as do clusters of workstations incorporating the most recent networking technologies. For
the purpose of this work, we consider clusters of workstations connected via an Ethernet LAN
to be medium-grain machines. Depending on the speed of routers and bridges, even work­
stations connected to multiple Ethernet segments could provide enough performance for some

19

20 CHAPTER 2. OVERVIEW

applications.

Medium-grain Parallel Applications

While it is difficult to quantify the characteristics which make an application medium-grain, the
library demonstrates this leaning in the interface it provides to the programmer. The library
provides a set of parallel constructs which can be used to express parallelism while not precluding
the use of native constructs provided in the language. In contrast, fine-grain parallel languages
such as the original actor languages differ in that all constructs are implicitly parallel[13]. Though it
is possible to express programs in the library using exclusively parallel interfaces, the performance
of such an application on the targeted architectures is not likely to be high.

Even more difficult to distinguish is medium-grain parallelism from coarse-grain parallelism.
The most significant difference between the medium-grain target here is the integration with the
target language. Medium-grain implementations try to reduce the conceptual barrier between
parallel and serial constructs. Additionally, on coarse-grain systems parallel constructs such as
message passing typically cross hardware protection boundaries and incur significantly more
overhead than the equivalent medium-grain operation. Just as an application aimed at fine-grain
parallelism is likely to perform poorly on a medium-grain system, an application written for
medium-grain parallelism is likely to suffer on an architecture where communication is burdened
with large overheads.

2.1.2. Constraints
Several significant constraints were placed on the design space that was explored in development
of the library. Most constraints were a result of the targeted application communities and practical
usability.

C++
The overriding constraint was that the implementation be in either C or C++, with a noted prefer­
ence for C++. The choice of C++ was made for two reasons. First, C++ has a level of expressiveness
not found in other object-oriented languages. Unlike most object-oriented languages, C++ has
the ability to express very low level constructs. This ability is critical to CAD applications which
manipulate huge datasets and where even small overheads in data structures or functions can
have dramatic impacts on application performance. C++ is also available on virtually all machines,
parallel machines being notorious for lacking all but the most basic programming support. In
view of this last observation, no extensions to either C++ or the programming environment were
considered, such extensions being likely to prohibit the use of existing compilers and debuggers.

Portability

The wide variety of extant medium-grain parallel architectures makes the issue of portability
extremely important; an implementation that is difficult to port would have little chance of success.
Therefore, a major goal of the library design process was to try to isolate any machine-dependencies
from both the application developer and, to the greatest extent feasible, the components of the
library itself.

2.2. LIBRARY COMPONENTS 21

Actor Interface (AIF)

Virtual Threads

Continuation Passing Style

Support for:

Load Balancing

Prioritization

Abstract Parallel Archicture (APA)

Physical Thread Management

Memory Management

Communication Management

Virtual Machine Configuration

Figure 2.1 The ProperCAD II Library

2.2. Library Components

To simultaneously maximize the portability and efficiency of the library, the library was broken
into two distinct interfaces (see Figure 2.1.) The upper level’of the library, the Actor Interface
(AIF), provides a high-level programmer interface, one that helps the application developer limit
complexity, via abstraction and encapsulation, without limiting parallelism. The Actor Interface
is based closely on the Actor paradigm and supports several advanced features such as aggregates
(collections of actors) and meta-programmability.

The lower of the two interfaces, the Abstract Parallel Architecture (APA), provides a set of
objects and interfaces which can be used to describe and utilize resources needed by virtually any
programming model, across a wide variety of architectures. Such resources include processor
threads, synchronization primitives, and memory management functions.

2.3. Related work

There are many approaches to concurrent object-oriented programming, covering wide ranges of
both techniques and targeted platforms and applications. Since the work presented in the sequel
is based on the Actor model targeted to medium-grain parallel architectures, previous work in
these areas is considered in detail. Alternate approaches are considered more briefly. Previous
work is divided into language-based work and library-based work, with languages further broken
into actor and non-actor models.

22 CHAPTER 2. OVERVIEW

2.3.1. Actor Languages

The Actor model for concurrent computing was first proposed by Hewitt[14] and subsequently
refined and codified by Agha[13,15]. In its original form, it is a message-driven model targeted
towards fine-grain, massively parallel platforms.

A number of pure actor languages have been implemented since the proposal of the original
model. Following the original model, most Actor languages are functional, i.e., side-effect free, and
untyped. The majority of implementations are targeted to fine-grain concurrency on massively-
parallel MIMD architectures. Few of the original actor languages were actually implemented on
distributed machines. The earliest languages were Act[13], Actl[16], Act2[17], Act3[13], Sal[13],
and ABCL/1[18]. A more recent contribution, with an emphasis on reflection, is MERING IV[19].
Of particular note is the HAL language of Houck and Agha[20] which was implemented on top
of the Charm programming system[21]. HAL is a truly distributed implementation and is notable
for having formed the basis for further exploration into extensions of the Actor model.

Aggregates

Chien[12] recognized the need for a multi-access interface to augment the serial interface of
Actors. He proposed aggregates as collections of actors which present a unified, yet multi-access,
interface to client code. Key to aggregates is support for efficient intra-aggregate addressing. Chien
developecTan actor language, Concurrent Aggregates (CA), which in addition to the features of
actors, aggregates, and intra-aggregate addressing, provides support for first-class continuations
and messages.

The Concert system of Chien, Karamcheti and Plevyak[22, 23], is a compiler and run-time
support system for CA on stock hardware, i.e., such contemporary parallel machines as Thinking
Machines' CM-5 and Intel's Paragon. The emphasis of the Concert system is on extensive compiler
analysis and optimization.

ActorSpaces

Recently, Agha and Callsen[24] have proposed ActorSpaces as a technique for extending the actor
model to open systems. ActorSpaces offer an alternate approach to collections of actors than that
of aggregates. Rather than the fixed-size, homogeneous collections of actors in CA, ActorSpaces
represent variable-sized heterogeneous collections of actors. The emphasis in ActorSpaces is
on providing an open interface, via which an actor can communicate with other actors without
knowing a priori of the existence of the other actors, something not possible in the basic actor
model.

Charm

Charm[25,21,26] was developed specifically to address the need for a portable, parallel interface
and implementation for parallel programming across a wide variety of both shared memory and
message passing architectures. Charm differs from other actor languages in that it is targeted to
medium-grain architectures rather than the fine-grain architectures. Among the most significant
and unique features of Charm are:

2.3. RELATED WORK 23

Imperative-Language Interface Charm represents an extension of the C programming language
with extensions to support actor- and aggregate-like characteristics. With a few exceptions, most
of the the imperative constructs of C are retained. Recently, with the introduction of Charm++,
the C-language model of Charm has been extended to a C++-based interface.

Meta-programming features Charm provides developer-visible models for the operation of the
underlying run-time system in the areas of load-balancing and prioritized message delivery.
Strategies in both areas can be selected from a set of alternatives at link-time. Of particular note is
work with lexicographically-ordered message priorities applied to search problems[27].

Library Types Charm provides a library of object types with parallel semantics such as read-only
variables, distributed computation types such as accumulators, and distributed mappings.

The first phase of the ProperCAD project, to which this work is a successor, was based upon
Charm and many of the issues addressed in this work reflect the experience gained in using
Charm.

2.3.2. Non-actor Language-based Approaches

Significantwork has been done in concurrent object-oriented computing not based upon the actor
model. We consider in particular C- and C++-oriented solutions.

Gannon and Lee[28] developed pC++, an extension of C++ with support for distributed data
structures. The flavor of pC++ is much that of High-Performance FORTRAN (HPF). pC++ pro­
vides support for distributed collections of arbitrary types, both array-based and tree-based, with
full support for the C++ mechanisms of derivation and dynamic-binding.

Compositional C++, or CC++, proposed by Chandy and Kesselman[29] takes an alternate ap­
proach to parallelism; where in pC++ processor control is implicit in the parallel data structures,
in CC++ parallelism is achieved though imperative constructs which cause particular code frag­
ments to be executed concurrently on different processing threads. CC++ also provides a number
of synchronization primitives necessary for a thread-oriented programming interface.

The Experimental Systems Kernel, or ES-Kit, of Leddy and Smith[30] is implemented via
modifications to an existing C++ compiler and as such tries to stay true to the spirit and syntax
of C++. In ES-Kit, pointers are extended to address a global namespace and remote execution is
represented by the execution of a method call though a pointer to a non-local address. Object
distribution is either automatic or under program control via the C++ placement syntax[31]. The
fundamental parallelism constructs in ES-Kit are remote procedure calls (RPCs) and futures[32].

The Amber system[33], derived from Presto[34], is an extension of C++ targeted specifically
toward a workstation cluster running the Topaz operating system[35]. In Amber, the approach is
to explicitly locate a shared datum on a particular node and then to cluster Topaz threads on that
node. When access is made to a remote node, the run-time system traps to the Amber kernel and
the thread of control is transferred to the processor on which the data value resides.

COOL, developed by Chandra, Gupta, and Hennessy[36], is also based on thread-explicit
extensions to C++, in this case targeted towards shared memory architectures in general and
the Dash architecture in particular. COOL provides a full-range of classical synchronization
constructs.

24 CHAPTER 2. OVERVIEW

Linda, developed by Carriero and Gelemter[37], represents a relatively radical approach to
concurrent processing. In Linda, shared data are represented by a shared tuple-space to which
all functions have access. Elements in the tuple space are key-value pairs which are accessed
via pattern matching on the key. This formulation has particular benefit in logic-programming
and artificial-intelligence and was one of the motivations for the development of the ActorSpaces
extension to the actor model.

POOL-T, developed by America[38], is based upon message passing but uses synchronous
message passing rather than the asynchronous message passing of actors. POOL-T is targeted
particularly towards large system development on medium-parallelism architectures and was
developed from the beginning with an interest in applying formal methods for proving program
correctness.

2.3.3. Library-based Approaches

One of the most attractive aspects of library-based approaches is that they are at least to a first
approximation compatible with existing compilers and other development tools. Again, we
consider C and C++ libraries.

ACT++ is a C++ library-based implementation of the actor paradigm developed by Kafura and
Lee[39]. ACT++ implements an Actor base class which supports the actor model primitives, new,
send, and become. Additionally, ACT++ supports an RPC-style of actor method invocation[13].
ACT++ supports the use of normal (non-actor) C++ objects, but only as private, non-shared
acquaintances of an actor. ACT++ is targeted toward medium-grain architectures but implemen­
tation details on parallel architectures have not yet been reported.

The Paragon project of Chase, Cheung, Reeves and Smith[40] is implemented via a C++ library
for support of distributed data structures. Support is provided for distributed arrays, both through
partitioning and replication.

PVM, developed by Sunderam et al.[4] is a widely used library for parallel programming
on local area network-connected processors and, recently, a number of parallel architectures.
The library provides C and FORTRAN interfaces for synchronous and asynchronous message
passing and provides support for heterogeneity of processing elements, both in data representation
and processing power. Included tools provide particularly strong support for easy machine
configuration, debugging, and performance analysis.

p4, developed by Butler and Lusk at Argonne National Laboratory[41], provides a similar
message passing interface to that of PVM and also adds an interface for shared memory. In
addition to supporting network-connected processors, p4 provides support for a wide range of
parallel platforms.

3 Actor Interface

The actor model is the high-level and preferred interface for application development. In this
chapter we consider the objects in the ProperCAD II library that support an actor model. We
begin with an examination of the original actor model.

3.1. Actor Model

The fundamental object in an Actor paradigm is the actor. An actor is an object which commu­
nicates with other actors by sending messages. Message delivery in an Actor system is reliable,
unordered, and fair. Reliability guarantees that messages that are sent will be delivered. Delivery,
however, is unordered; two messages sent from one actor to another are not guaranteed to be
received fffthe order sent. Fairness guarantees that no actor can delay indefinitely the processing
of a message by flooding a receiver with messages.

All actions an actor performs are in response to messages; i.e., the model is message-driven.
When a message is received, the receiving actor can perform a number of actions in response. The
possible actions are use the send primitive to send a message to an existing actor; use the new
primitive to create a new actor; and use the become primitive to change its behavior.

send An actor can send a message to any actor for which it knows the receiving actor's name.1
Actors know their own name and can determine the name of any actor they create. Actor names
can be communicated as part of the contents of a message. Otherwise, an actor cannot determine
the name of an arbitrary actor and thus cannot send such an actor a message. This property is
key to the formalism of the actor model but is also important in that it facilitates encapsulation
in software design. The send operation completes when the message has been passed to the
run-time system; delivery is asynchronous.

new An actor can create new actors using the new primitive. Creating a new actor is similar to
sending a message; the actual birth of the actor is asynchronous with respect to the execution of
the creating actor.

become An actor can change its behavior via the become primitive. The utility of the become
operation is unclear in languages such as C++ which have side-effects. Since it has not yet been
shown to be useful in targeted algorithms, we omit further discussion.

1 Agha[13] refers to these names as mail-addresses.

25

26 CHAPTER 3. ACTOR INTERFACE

C++ Object AIF Object Comments
object
none
object pointer
none
member function
constructor
none
value

Actor
Aggregate
ActorName
AggregateName
ActorMethod
NewActorMethod
Continuations
Message

An actor has parallel semantics
C++ has no built-in collection types
ActorNames are pointers to Actors or Aggregates
AggregateNames are pointers to Aggregates

A Continuation is a bound member function pointer
Used as argument to continuations

Table 3.1 Comparison of C++ and AIF objects

Of particular note is the lack of explicit sequencing primitives in the actor model. Instead,
synchronization is implicit and derives from the message reception serialization property of the
model; while an actor is processing a message, it may not receive another. Because there are
no explicit synchronization primitives, an actor processing a message cannot block or suspend
itself in anticipation of a particular event. When the processing for a particular message is
complete, the actor returns control to the run-time library and implicitly becomes available for
any messages pending for it. This limited synchronization control is key to the concurrency of
actors; concurrency in parallel applications is often lost because the interface to a message passing
system requires an ordering on message sends and receives. The lack of blocking primitives is also
beneficial in terms of portability; since an actor cannot suspend execution implicitly in the middle
of a comptftation, all the context needed to restart the computation upon message reception must
be explicitly moved off the run-time stack. While this puts more burden on the developer, the
elimination of the need for the run-time system to deal with stack and register manipulation has
obvious benefits in terms of portability.

3.2. Library Interface
The actor interface (AIF) provides a set of classes that represent the concepts of the actor model
concretely. Table 3.1 shows the correlation between native C++ concepts and the actor equivalents.
The AIF does not restrict the use of the native C++ objects but it likewise provides no parallel
interpretation.

3.2.1. Actors
Actor instances in the actor interface are similar in most respects to class instances in C++. In the
ProperCAD II library, all actor types are derived from a common class, Actor, provided in the
library. The Actor interface is very simple2:

class Actor
{ METACLASS(Actor)
protected:

Actor();
virtual ~Actor() = 0;

2Since the private interface of a class is not exported to derived classes, it is elided in most examples. In the case of
the Actor class, it is also empty. The METACLASS declaration at the beginning of a class is a macro used to implement
the run-time type information needed by the library.

3.2. LIBRARY INTERFACE 27

class JacobiBlock : public Actor
{ METACLASS(JacobiBlock)
public:class New : protected NewActorMethod<JacobiBlockData> {

METACLASS(JacobiBlock::New)
} ;JacobiBlock(Message<JacobiBlockData>&) ;
virtual ~JacobiBlock();

protected:
void performlteration();
void sendAllO;
void sendBoundary(const ActorName<JacobiBlock>Sc,int xOffset, int yOffset, int stride);
class boundary : public ActorMethod<JacobiBoundary> {
METACLASS(JacobiBlock::boundary)

};void boundary(const JacobiBoundary&);
private:Message<JacobiBlockData> message;

int iteration;
int boundariesReceived;
Matrix& alternateMatrix;
Matrix* pCurrentMatrix;
Matrix* pNextMatrix;

} ;

Figure 3.1 C++ code for the Ja c o b iB lo c k actor class definition.

} ;

The Actor class is an abstract base class and provides only the minimal abstract interface for
Actor types. Aside from the necessary base class, there are few restrictions on the structure of
actor classes. Like all other C++- classes, they may have public, protected, and private members
and may be derived from other types, including other Actor types.

As an example, Figure 3.1 shows the definition of a JacobiBlock actor type. Instances of this
class use the Gauss-Jacobi algorithm, an iterative algorithm for solving partial differential equa­
tions, to calculate a block of a larger Jacobi computation (see Figure 3.2.) Each instance exchanges
boundary values with neighboring objects at the end of each iteration. The JacobiBlock actor
class uses normal member functions and data to perform the desired computation. Only the
Actor base and the ActorMethods differentiate it from other C++ classes.

3.2.2. ActorNames
ActorNames play the role of pointers and references for Actor instances. ActorNames are valid
in the global namespace of a running program, independent of the number, type, and intercon­
nection of physical threads executing the application. This contrasts with native C++ pointers
and references which may or may not be valid, depending on the physical characteristics of the

28 CHAPTER 3. ACTOR INTERFACE

JacobiBlock
1
/

/
/

/ _____ ___________--------------gar

V
\V

\
\

\ V

...........1 ■

L\

Jac ob i Boundary
Figure 3.2 Sub-block of Jacobi Computation

underlying machine. To support this functionality, in addition to the address of an actor instance,
ActorNames encode information which is needed to send a message to an actor irrespective of
where the actor exists. Actor names can also be used to send messages to actors which have not
yet been created; the underlying run-time system will queue messages until actor creation occurs.
An example of this use appears in the next section.

Actor names are first class values; they may be created, .copied, assigned, stored, and trans­
mitted to other actors in the contents of a message. In most cases, actor names are created and
initialized similar to the way in which C++ references are created.

3.2.3. ActorMethods

The message passing Actor paradigm is not the common view of computation used in the C++
community. While the calling of a member function and the sending of a message are treated
as more or less synonymous in the larger object-oriented community, each language tends to
emphasize one model over the other; the C++ community emphasizes the function-call paradigm.

To that end, in the ProperCAD II library the normal member interface for Actor classes has
been extended with the concept of actor methods which, when executed via continuations, fill the
role of asynchronous remote procedure calls. An actor method is a nested class, derived from
the templated ActorMethod library class, which enables the creation of a continuation which
will execute the member function of the same name. When such a continuation is executed, an
asynchronous invocation of the C++ member is scheduled to occur.

3.2. LIBRARY INTERFACE 29

3.2.4. Messages and Continuations
Actor methods are implemented using two abstractions: Messages and Continuations, both
of which are provided by the library. The interaction between the classes comprising these
abstractions results in a statically-typed interface to application code; the classes encapsulate all
type information necessary to correctly transport the method operand to a distant processor and
continuation execution is checked at compile-time for type correctness.

Messages are first-class values that are passed as arguments to actor method calls. Continua­
tions fill the role of bound method pointers; when called—using function-call syntax—execution
of the appropriate member function is scheduled. Actual execution occurs asynchronously with
respect to the calling actor but is serialized with respect to the target actor.

Referring back to the JacobiBlock example, a JacobiBlock actor instance creates and
sends JacobiBoundary instances to neighbors to exchange boundary data:

voidJacobiBlock::sendBoundary(const ActorName<JacobiBlock>& neighbor,int xOffset, int yOffset, int stride)
{ boundary:Continuation aContinuation (neighbor);

Message<JacobiBoundary> aBoundary
(xOffset, yOffset, stride, pCurrentMatrix);

aContinuation(aBoundary);
}

Since continuation types play the role of bound function pointers, they require an ActorName
of the correct type when they are constructed; the member function is encoded in the name of the
continuation type. In the example above, continuation is a continuation which, when 'called',
will schedule an invocation of the boundary member of the JacobiBlock instance referred
to by neighbor. Invocation of continuations naturally uses function-call syntax, as seen in the
example above.

Continuation calls differ from C++ member function calls in a few key ways, reflecting their
parallel nature:

Continuation execution occurs asynchronously When an actor method is invoked via a continu­
ation, a request (message) is passed to the run-time system and dispatched to the location of the
target actor. Continuation execution is the sole construct in the AIF for expressing parallelism and
subsumes task-parallelism primitives such as fork and join.

Continuation calls take a single argument This requirement is an artifact of the library implemen­
tation and could be hidden in a compiler implementation via a compile-time transformation. In
cases where multiple arguments would be used by a C++ member function, it is sufficient to wrap
the argument vector in a minimal C structure. The type of the single argument is specified by the
template argument of the ActorMethod base class. For example, the JacobiBlock: : boundary
method is derived from ActorMethod<JacobiBoundary>. JacobiBoundary is an ordinary
C++ class containing the boundary values exchanged between JacobiBlock actors.

Continuation calls do not return a value The lack of return value is a result of the asynchronous
nature of continuation execution. This restriction is unavoidable in a strict actor paradigm but

30 CHAPTER 3. ACTOR INTERFACE

may be loosened by using a compiler which performs continuation-lifting to implement what is
essentially a remote-procedure call (RPC).

Beyond these characteristics, ActorMethod execution is virtually synonymous with member
function execution. When an ActorMethod invocation is scheduled to run on a particular
processor, the member function of the same name is invoked by the run-time system with the
datum passed to the continuation call as the function parameter.

The implementation of the ActorMethods, Continuations, and Messages is handled
completely within the library; the developer sees only the type-safe interface. Discussion of
implementation details would be lengthy and would add little to this discussion.

3.2.5. NewActorMethods
NewActorMethods implement the Actor new primitive; for actor types, they fill the role of a C++
new-expression[31\. Creation of actors typically differs from creation of common C++ objects in
that actors are usually distributed over available processors to maximize resource utilization.

Declaration and usage of NewActorMethods is similar in most respects to that of Ac torMeth-
ods. NewActorMethods differ from ActorMethods in that there is no target actor provided
when a new actor continuation is created. Instead, a set of options which will control the way that
the actor is eventually created may be specified.

The coxtstructor for NewActorMethod continuations takes two optional parameters, the loca­
tion (processing element) where the actor will be created and the name of the new actor. While the
meaning of the location parameter is intuitive, the use of the optional name parameter is less so
and most easily explained via an example. In the case where a location is not given, the run-time
system selects a location to maximize load balance. The only effect of not providing a name is the
inability of the creator to communicate with the new actor.

In the Jacobi application, a Userlnterf ace actor reads in all necessary information, decom­
poses the problem into pieces, and then creates one JacobiBlock actor to solve each subproblem.
Each JacobiBlock actor needs to be able to communicate with up to four neighbors in order to
exchange boundary values and to do this, it needs to know their names. As mentioned previously,
an actor which creates another can determine the name of the new actor, so the Userlnterf ace
object could be expected to know the names of all the instances it has created and therefore it
could send those names to any object it subsequently creates. However, in the Jacobi example,
this is not enough; JacobiBlock: :boundary actors need to know the names of all neighbors
which is not possible when actor creation is performed sequentially.

To alleviate this problem, the ProperCAD II library provides an actor name server which allows
the asynchronous allocation and binding of actor names. Taking advantage of this, the Userln­
t e r f ace actor preallocates all the names it will need and then binds these names to individual
actors as they are created. The code, slightly simplified for clarity, is:

ActorName<JacobiBlock>** names =
new ActorName<JacobiBlock>[nJacobi][nJacobi]; for(i = 0; i < nJacobi ; i++) {
for (j = 0; j < nJacobi ; j++) {// actor name server operates behind the scenes to allocate

// names for the newName call
names[i][j] = ActorName<JacobiBlock>::newName();

}

3.2. LIBRARY INTERFACE 31

}for(i = 0; i < nJacobi; i++) {
for(int j = 0; j < nJacobi; j++) {

JacobiBlock::New create (names [i H j 1create(names[i-1] 1 j], // up
names[i+1] 1 j] , // down
names [i] 1 j-1], // left
names [
...);

i] 1 j+1], // right
>

}

In this case, the continuation is created with an optional parameter, a name that will be bound
to the actor when it is created. Since creation and name binding are no longer causally re­
lated, construction is simple. The library provides the necessary communication to spread actor
name information among involved processors and uses an as-needed protocol to minimize com­
munication. The actor name server is also responsible for tracking name usage, assuring that
continuations called on unbound names are queued until the actor is created. The name server
itself is implemented as an aggregate.

-

3.2.6. Aggregates
Though the actor paradigm is in some sense complete, it is not necessarily the most convenient
way of describing parallel problems. There are many higher-level constructs which are not easily
mappable to a single actor. Moreover, since continuation execution is synchronized, routing all
requests through a single actor serves to reduce concurrency rather than increase it.

To alleviate this synchronization, aggregates were introduced [12]. An aggregate is a collection
of one or more actors which share a common name. Messages sent to an aggregate name are
directed by the run-time system to a member actor or representative. In contrast to actors, which
always exist on exactly one processor, aggregates may have representatives distributed across
multiple processors. This makes it possible for other actors and ordinary C++ objects to directly
execute member functions on aggregate instances, in those cases where a local representative
exists; such access is facilitated by the run-time library. Application aggregate types are derived
from the library class Aggregate.

An example of the use of aggregates in representing distributed data structures is shown in
Figure 3.3. The abstraction in the figure is a distributed array where distinct ranges of elements
are located on different processors. The figure shows two possible implementations; an actor
implementation and an aggregate implementation. In the actor implementation, a gateway actor is
required (since client code only knows one name) which must redirect messages to the appropriate
sub-range actor. This is inefficient in that it requires an extra indirection and because the redirection
process is serialized. Alternately, in the aggregate implementation, since all representatives in the
aggregate share the same name, there is no need to send all requests to a single actor. Instead,
a message can be sent to any of the representatives where it may be either serviced immediately
or forwarded to another representative to be serviced. The ProperCAD II interface allows the
aggregate designer to chose among a number of standard representative selection mechanisms or
to provide a custom selection mechanism. In the figure, serialization of access to the array would
only happen if two clients needed to access an element stored in the same representative.

The constructor for a NewActorMethod continuation for aggregates takes an additional op­
tional parameter beyond those described for actors. The additional parameter is a distribution

32 CHAPTER 3. ACTOR INTERFACE

Actor Implementation Aggregate Implementation

Figure 3.3 Actor and Aggregate Implementation of a Distributed Array

object which specifies the number and location of the representatives comprising the aggregate.

3.2.7. Distributions
Distribution of aggregate representatives is specified via a distribution instance, an object which
specifies the number and location of the representatives of an aggregate. The interface of the ab­
stract Distribution class is general enough to represent both enumerated and algorithmically-
computed distributions. The library provides distribution classes which facilitate the most com­
monly used sharing abstractions found in medium-grain applications.

3.2.8. AggregateNames
The library provides AggregateNames which provide extra support for intra-aggregate address­
ing. The library supports intra-aggregate communication by allowing aggregates to send messages
to representatives by index. Aggregate communication is also extended to support broadcast con­
tinuations which, when called, send identical messages to all actors within the aggregate. A
significant feature of AggregateNames is their interchangeability with ActorNames. Although
intra-aggregate addressing functionality is only provided via the static AggregateName inter­
face, an AggregateName can be turned into an ActorName without loss of information. Thus
client code is usually independent of whether the object being communicated with is an actor or
an aggregate; in all cases characteristics of continuations, such as broadcasts, are preserved.

3.3. META-PROGRAMMING INTERFACE 33

3.3. Meta-programming Interface

In many cases, the actor model is sufficient for describing problems. However, certain characteris­
tics of the actor model, such as unordered message delivery, occasionally have a significant impact
on algorithm performance. In such cases, it is desirable to have an application-visible interface
which facilitates programming the underlying actor run-time system. Such programming of the
library itself is called meta-programming.

3.3.1. System Aggregates
The run-time support of the actor interface is meta-circularly implemented via a number of
library-supplied aggregates, brief descriptions of which follow. Since the system aggregates are
themselves simply aggregate classes, they can be used as base classes for application-specific
types, in which case the application-type may modify the semantics provided by the library.
Additionally, the system aggregates have member function interfaces which may be used to affect
run-time characteristics without the need to resort to derivation.

Director The main controller of each physical thread in an actor program is a representative
of the Director aggregate. The Director loop () method is invoked on each physical
thread as it is created. The Director representative is responsible for sending and receiving
messages and for delivering messages to individual actors.

NameServer The NameServer aggregate is responsible for coordinating actor and aggregate
names within the system. This coordination includes allocating names which are unique
across all processors, routing actor method calls to the appropriate processor for execution,
and maintaining binding information as new actors and aggregates are created.

LoadBalancer Load balancing functionality is also implemented as an aggregate and the Di­
rector aggregate uses services of the LoadBalancer aggregate to effectively utilize pro­
cessor resources. Currently the library implements only a random placement technique for
load balancing; the addition of more sophisticated techniques is planned. Load balancing
is of special interest because experience in the first phase of the ProperCAD project showed
that problem-specific load balancing was often required resulting in significant duplication
of effort[10]. It is hoped that an aggregate-based approach will allow more of the load
balancing functionality to be placed in the library, reducing developer effort.

QuiescenceDetector The Director aggregate coordinates its action with a quiescence detec­
tion aggregate to determine when the system is idle; i.e., there are no pending actor method
calls. The current algorithm follows that of [42] but the notification interface has been gener­
alized. Any actor can pass a Continuation<Void> instance to the quiescence aggregate,
which will in turn invoke the continuation when quiescence is detected.

3.3.2. Task Queues and Priorities
The Director maintains all ready-to-run actor method invocations on a set of task queues,
prioritizable by a library-defined, user-extensible priority system. Several factors influenced our
decision to add priorities to the ProperCAD 13 library, even though a pure Actor paradigm has no

CHAPTER 3. ACTOR INTERFACE• 34

equivalent abstraction. Since the Director aggregate uses the same message passing mechanisms
for intra-aggregate communication as do the user-level actors and aggregates, a method is required
to ensure that certain time-critical Director information is processed expeditiously. Once this
conclusion was reached, it was relatively easy to expand the abstraction to a user-level service.
Several CAD algorithms have been shown to be more easily expressible when some sort of ordering
is applied [9,11,43]. Though priorities have been used in Charm [21], the priorities implemented
in the ProperCAD II library differ in that they are hierarchical and extensible. The developer may
add new priority types to the library as needed without in anyway affecting the prioritization
of other classes of messages. This is required in order to support the composition property of
object-oriented systems.

4 Abstract Parallel Architecture

4.1. Overview

The Abstract Parallel Architecture (APA) is a model of a parallel computer and a set of objects
that represent a reification, or concrete, program-visible implementation, of the model. The
APA provides abstractions for thread, memory, and communication management and has been
architected to provide a standard interface to common resources across all platforms with no
significant overhead. To that end, the interface has been factored in such a way that code is shared
to the maximum extent possible within the zero-overhead requirement. This factoring facilitates
porting by minimizing the amount of code that must be changed to support new operating
system interfaces. The APA is self-sufficient and has been designed to be usable apart from the
actor interlace.

The APA can be divided along logical and physical lines. The physical classes are primarily
involved with implementation aspects of the library and include the Machine and Network
classes. The logical classes represent implementation-independent resources such as threads and
datagrams. The application designer usually deals solely with the logical classes without concern
for the type of machine represented by a particular thread. Similarly an individual responsible
for porting the library to a new machine architecture or network protocol is usually concerned
solely with the physical classes. An area of future extension is a third APA dimension, perfor­
mance, which provides a mechanisms for describing the relative processor speed and network
bandwidths.

The APA is broken into four interrelated subsystems. Three of these comprise the logical
interface; the fourth is the physical interface. The three logical interfaces are thread management,
address space management, and communication management.

4.2. Thread Management

The APA manages a set of physical threads, represented by instances of the Thread class. Thread
objects are collected into sets characterized by the means by which the processors they represent
are interconnected. These sets are represented by the library classes Process, ProcessGroup,
and Cluster. The relationship between the classes is depicted in Figure 4.1.

Threads The fundamental unit of computation is the Thread, defined as an allocated processing
element. A thread may or may not represent individual processors; under operating systems with

35

36 CHAPTER 4. ABSTRACT PARALLEL ARCHITECTURE

Cluster

Completely-connected,
reliable datagram network

Figure 4.1 A PA Thread Management Classes

4.2. THREAD MANAGEMENT 37

Machine APA Configuration
Figure 4.1 architecture 3 / 2 / 3 "
16 node 1N1EL iFSC 16/1/1

4-processor Sun 4/690MP 1/4 /1
Two 4-processor Sun 4/690MPs

connected by Ethernet)
2 /4 /1

INTEL 64 fat node Paragon 6 4 /1 /4

Table 4.1 APA triples (ProcessGroups/Processes/Threads) for various machines.

multiprocessing support, a thread represents an operating-system scheduled entity.1

Processes Threads that share a complete address space are collected into a container called a
Process. Since all Threads in a Process share the same address space, all pointers are valid
across Thread boundaries within a Process. This model is applicable, for example, to Mach
threads.

ProcassGroups Threads which share at least a portion of their address space are collected into
a container called a ProcessGroup. Since all Threads in a ProcessGroup do not necessarily
share identical address spaces, pointers may not be valid across Process boundaries; addresses
are guaranteed to be valid if and only if they point into a shared memory segment. This model is
applicable, for example, to Unix fork-based multiprocessing systems.

clusters All threads in a program are collected into a Cluster object. To the user of the APA, it
appears that ProcessGroups are interconnected by a completely-connected, reliable, unordered,
datagram network. All Threads in the APA can communicate in some way; either through shared
memory if they are in the same ProcessGroup, or via a reliable, datagram network if they are
not.

The utility of this architecture can be demonstrated by considering the mapping of contempo­
rary architectures to the model. Table 4.1 shows the number of each type of thread management
object for a number of common parallel architectures. The first number in each triple represents
the number of ProcessGroups per Cluster, the second the number of Processes per Pro­
cessGroup, and the last the number of Threads per Process; the total number of threads can
be calculated by forming the product of the triple elements. Of particular interest are the last two
rows in the table, an IP-connected pair of Sun multiprocessors and an INTEL Paragon with fat
nodes.2 In contrast to most previous work, the APA can represent machines which are hybrids
of message passing and shared memory architectures. Though not shown in the table, the APA
is not restricted to architectures that can be expressed by triples of the form above (e.g. uniform
numbers of Processes per ProcessGroup.)

In terms of managing these resources, the APA provides standard interfaces for several im­
portant functions. During initialization and deinitialization, the APA provides for the spawning

h av in g more threads than processors provides no performance improvement but is useful when debugging a
program on a uniprocessor workstation.

2 The Paragon is a mesh-connected multicomputer; when configured with fat nodes each node contains four proces­
sors connected by shared memory and running OSF/1.

38 CHAPTER 4. ABSTRACT PARALLEL ARCHITECTURE

Figure 4.2 APA Free Store Management Classes

and reaping of objects at every level; e.g., for a Process which spawns and reaps a number of
Threads. The APA also provides a static 'this' function for each type, e.g., Thread: : this-
Thread () , which returns the object relevant to the executing thread of control.

4.3. Address Space Management

Free store (mal lo c) management is an area of common difficultly and little standardization. Most
machines which supply a shared memory interface provide either little support for allocation of
memory within shared memory segments or provide it in a very machine-dependent manner,
mal lo c implementations are also notorious for having widely varying performance characteris­
tics. The APA free store management classes were designed to address both issues. Figure 4.2
depicts graphically the relationship between the component classes, described below.

Freestores The operating system interface to the free store hierarchy is contained completely
within the FreeStore class. A FreeStore object manages a contiguous segment of memory in
units of pages. FreeStores allocate, on demand, new pages of memory at the end of the current
segment and can return pages at the end of the segment to the underlying source. Freestores
neither handle non-contiguous segments nor do they maintain lists of free pages.

FreeStore is an abstract class; concrete classes derived from FreeStore provide services
for a particular operating system interface. The APA currently supports free stores for memory
allocated using the UNIX brk () and sbrk () system calls (BrkFreeStore), for memory allocated
using the UNIXmmap () system call (MMapFreeStore), and for memory allocated using the UNIX

4.4. COMMUNICATION MANAGEMENT 39

brk () call and shared using the Encore Multimax share () call (ShareFreeStore).

PageTables Since FreeStores do not support arbitrary deallocation or provide a thread-safe
interface, another object is needed to manage lists of pages and which can be safely used in a
multi-threaded application. The PageTable object provides this functionality. One PageTable
is allocated for each Frees tore and provides an interface for allocating and deallocating arbitrary
numbers of pages. It also supports concurrency on those architectures where it is available. A
PageTable keeps an array of page descriptors which encode information on the state of each
page, whether it is free or allocated and, if allocated, how it was allocated. This last feature is used
by Reservoirs, described next. Although the PageTable has a few critical regions to prevent
chaotic behavior, it has been optimized for performance. Since most accesses to the PageTable
do not modify the state of the table, the PageTable object differentiates between read access and
write access and allows concurrent access to multiple readers.

Reservoirs Since PageTables support only allocations in multiples of page sizes, an interface
is needed to efficiently handle large numbers of small and medium size objects. The Reservoir
fits this need. A Reservoir contains a number of Pools of equal-sized objects. Since most of
the time there are unused objects in a pool, allocation for most cases is very fast.

Like PageTables, Reservoirs must be thread-safe. Because an object may be allocated
by one thread, passed to another thread, and then freed by that thread, write access to the
Reservoir must be synchronized. However, a thread will usually make heavy use of allocation
and deallocation primitives so it is not desirable to require synchronization on every allocation
and deallocation. Instead, we note that if we provide each Thread with its own Reservoir, all
allocations will be to its private Reservoir and the vast majority of deallocations will be to its
own Reservoir. This is the approach taken; synchronization is only needed in a few special
cases of deallocation.

Figure 4.2 shows what the snapshot of the free store system might look like during the execution
of an application on a machine with an APA triple of 1 /2 /2 ; i.e., two Processes communicating
via a shared memory segment, each containing two Threads running in the same address space.
Each Thread has two reservoirs, one which exists in the private address space of its Process and
one in the shared segment, owned by the ProcessGroup. Each Process has one PageTable to
manage its private address space. Each ProcessGroup has a PageTable to manage the shared
segment. Each PageTable has a FreeStore object which provides the sources of pages.

The ProperCAD II library implements a number of data structures — variable-sized arrays,
linked-lists, etc. — which understand the APA memory management system and arrange to create
individual collection elements in the same free store as the collection object.

4.4. Communication Management

The final portion of the APA provides the interface necessary to support interprocess communi­
cation. The two abstractions provided are Semaphores and Networks.

40 CHAPTER 4. ABSTRACT PARALLEL ARCHITECTURE

semaphore The Semaphore class provides a uniform interface to spin-lock style semaphores.
ReadWriteSemaphores provide separate read and write locks; multiple read locks are allowed
at one time while a write lock ensures exclusive access. In addition to the normal P and V
operations, Semaphores provide a state-based interface based on Guards. Instances of a Guard
class guarantee exclusive access for exactly their lifetime. For example, typically a PageTable
member function locks the object for the duration of a member call. Rather than execute separate
lock and unlock functions, a guard object is used. PageTable has several functions of the type:

PageTable::function(...) const
{ ReadWriteSemaphore::ReadGuard guard (accessSemaphore);

// Since guard is live during the call to unsafeFunction, the state of
// the PageTable will not be changed (or examined) by other threads
// for the duration of the call.
return unsafeFunction(...);

}

The guard object locks accessSemaphore in its constructor and unlocks it in its destructor. This
eliminates the chance that a semaphore will be left locked.

For performance reasons, the necessary indivisible read-modify-write operation for Sema­
phores is implemented in assembly code on those machines for which it is necessary. Moreover,
the Semaphore class is not an abstract class; a single implementation is chosen when the library
is compiled. In this case, the overhead of dynamic binding is of particular concern.

Network The Network class provides an abstract interface supporting reliable, unordered, data­
gram communication among ProcessGroups. The interface to Networks is very simple, con­
sisting of send, broadcast, receive, and is Ready members. Each concrete, physical class
is responsible for implementing these functions along with any necessary local data.

The Network class provides support for marshaling and unmarshaling; the process of turning
an object into a datagram and back into an object. The information required to perform this
function is provided by the library for simple and collection classes and by the developer for
complex types. Automating this process is a subject of future research.

4.5. Physical Interface

The Machine and Network classes provide abstract interfaces to underlying hardware and have
interfaces sufficiently flexible and recursive to describe almost any interconnection of machines.
The primary responsibility of the Machine class is the management of machine configuration.
The Network classes work together to provide a reliable, unordered, complete, datagram inter­
connection.

Current machine classes are the Machine abstract base class, IPSCMachine for INTEL iPSC
and Paragon computers, UnixMultiprocessedMachine for Unix machines based on multiple
processes sharing a segment of memory, i.e., the Sun multiprocessors, and UnixMultithread-
edMachine for Unix machines supporting multiple threads within an address space, i.e., the
Encore Multimax and Mach-based operating systems. A special class, Compos iteMachine does
not reflect any particular physical machine but instead a composite machine made up of separate

4.5. PHYSICAL INTERFACE 41

physical machines joined by a network. Because all machine classes have the same interface, client
code is not dependent upon the particular machine architecture.

Current network classes are the Network abstract base class and the IPSCNetwork for INTEL
iPSC and Paragon computers. The Network class currently provides both a logical and physical
interface. Networks may also be hierarchical, as would be required for two Ethernet-connected
Paragon machines.

The development of the physical interface is still underway so a detailed interface description
is pending.

5 Performance

An implementation of the Gauss-Jacobi iteration for solving partial differential equations was
created to explore the performance of the library. Four implementations were created: serial, a
straightforward serial implementation, shared-memory, a version applicable to shared memory
machines, message-passing, a version applicable to message passing machines, and actor,
an actor implementation based on the run-time library. All implementations except for actor
were implemented in C using the most efficient method for the target architecture. The actor
implementation is based on the actor model and thus represents a message passing style even
on shared memory machines. Since the library is written in C++, it includes some inefficiencies
reflecting the relative lack of maturity of C++ compilers. The same actor code is used on all
architectures.

Figures 5.1 and 5.2 show the performance of 100 iterations of the Jacobi computation across
a range ofproblem sizes on a message passing machine, the Intel iPSC/2, and a shared memory
machine, the Encore Multimax. The data presented represent speedups over the serial algorithm,
serial. The results show that the performance of the actor application lags the custom versions,
especially for small problem sizes but approaches the optimum for larger problem sizes.1 For
sufficiently large grain-sizes, the actor application demonstrates little performance penalty and
near optimal speedup for all cases. The bulk of the difference between the custom C and actor
C++ implementation is due to overhead in the non-parallel elements of the C++ library; the library
is currently undergoing optimization of these elements.

1A small super-linear speedup is seen on the uniprocessor versions of the shared memory and message passing
codes; this is tentatively attributed to small changes in memory allocation.

42

Sp
ee

d
Up

Sp

ee
d

Up

message-passing ----

.
actor----

-

• •

"
....... 1 ...- ____ i- ■ ■ , , 1......1_________

100 150 200 250 300 350 400
Problem Size

processors = 16

processors = 4

processors = 1

Speedup over optimized C code on iPSC/2

processors = 4

processors = 1

Figure 5.2 Speedup over optimized C code on Encore Multimax

44 CHAPTER 5. PERFORMANCE

Part II

Applications

45

6 Automatic Test Pattem Generation

Automatic test pattern generation (ATPG) involves the generation of a set of inputs to an inte­
grated circuit that, when applied to a fabricated device, will indicate if a defect occurred during
manufacturing. ATPG is an NP-complete search problem and represents a significant portion of
the design effort for new devices. The HITEC/PROOFS package for sequential test generation[44]
exhibits performance and quality among the best known and thus was chosen as the basis for the
development of a parallel test generator.

6.1. Related Work

Most popular serial algorithms for test generation are based on the PODEM algorithm[45]. Several
approaches have been proposed for parallelizing test pattern generation, most of which involve
modification of the PODEM algorithm.

Fault-parallel Fault-parallelism refers to the generation of test patterns for a given fault set in
parallel. In this method, the fault set is divided equally among available processors, each processor
generating tests for its fault set independently. Such a scheme has been proposed by Chandra
and Patel [46], Patil and Banerjee[47,48], Patil, Banerjee and fatel[49], and Agrawal et al[50]. The
main advantage of fault-parallelism is that communication overhead is very low and, as such,
it is possible to achieve linear speedups when the number of processors is very small compared
to the number of faults. The main disadvantage is that faults which are hard to detect by the
serial algorithm (i.e., faults which require a large number of backtracks) remain undetected even
on the parallel implementation. Additionally, since most test generation systems now use fault
simulation to capitalize on the serendipitous detection of multiple faults by the patterns generated
for a single fault, when fault-parallelism is used, speedups can fall due to one processor expending
useless effort to detect a fault which will be serendipitously detected by the vectors generated for
another.

Decision-parallel Decision-parallelism refers to the evaluation of the functions associated with
several decision alternatives in parallel. In this respect, techniques to parallelize ATPG borrow
from the parallelization of pure depth-first-search, examples of which appear in [51, 52, 53, 54].
This technique was proposed in [55], but the search space allocation strategy did not utilize
heuristics to increase the probability of searching in a solution area. A parallel branch and
bound algorithm was proposed by Patil and Banerjee [56, 57] that is based on searching different
portions of the search space concurrently. A similar parallel algorithm for combinational test
generation, suitable for execution on a network of workstations, was proposed by Arvindam et

47

48 CHAPTER 6. AUTOMATIC TEST PATTERN GENERATION

al[58]. Recently, a parallel algorithm for ATPG on sequential circuits has been proposed by Patil,
Banerjee and Patel [49]. The parallel algorithm, which is suitable for execution on shared memory
multiprocessors, uses a variation of decision-parallel functional decomposition. Ramkumar and
Banerjee[43] used Charm[21] to create a parallel version of [49] which used both fault-parallelism
and decision-parallelism. The work presented here adopts many of the techniques of their work.

Heuristic-parallel Almost all test generation algorithms use a set of heuristics to guide test gener­
ation. Experiments reported in [59,60] suggested that there is no clear cut advantage of using one
heuristic over the other. One can therefore exploit heuristic parallelism by letting each processor use
a different heuristic to guide the search for the same fault. Chandra and Patel[46] reported results
on a parallel algorithm for test generation of combinational circuits using heuristic decomposition.
The main disadvantage of this method is that the parallelism is limited by the number of heuris­
tics available for search, which is usually no more than five or six. Also, when using different
heuristics there is no guarantee that search spaces are disjoint, which may lead to redundant work.
Finally, no improvement is possible if a fault remains undetectable for all the heuristics. The main
advantage of this method is that communication overheads are low.

Partition-parallel Another approach to parallel test generation is based on circuit decomposition
or partition-parallelism. In all the other parallel approaches, each processor has a copy of the
entire circuit. For extremely large circuits, the memory of each processor may not be able to
store the entire circuit. In a circuit decomposition approach, each processor keeps a partition
of the circuit and performs backtracing operations on its own subcircuit to satisfy various test
generation objectives[61]. It has proven to be extremely difficult to achieve efficient speedups
using this approach.

6.2. ProperHITEC
The HITEC/PROOFS package for sequential test generation and fault simulation exhibit per­
formance and quality among the best known in the field[44]. Following the premises of the
ProperCAD project, it was chosen as the basis for the development of an efficient and effective
parallel test generator. HITEC is a descendent of and an extension to the PODEM approach. The
extensions, roughly in decreasing order of significance, are: Targeted ^-Frontier, enhanced state
justification, fault simulation, and variable time frame processing.

The overall organization of the original HITEC/PROOFS package is shown in Figure 6.1. In
the original, HITEC and PROOFS run as separate programs, communicating via a TCP/IP socket.1
The original applications are written in C++ using what might be called an 'object-based' design
style. In particular, the object-oriented concept of encapsulation is only weakly represented and
the use of dynamic-binding is omitted. Table 6.1 provides a brief description of the major classes
in HITEC.

The approaches used to parallelize HITEC are fault-parallelism and decision-parallelism (see
Figure 6.2). Implementation of fault-parallelism is relatively straightforward, since test generation
for different faults is by-and-large independent. The use of decision parallelism was deemed

^ v e n though the two programs run in parallel, the synchronous nature of the communication eliminates any
possibility of parallelism.

6.2. PROPERHITEC 49

C lass D escription
Circuit
Dominators
Arg
Disconnect
Window
Fault
VectorStates
Objectives
Frontier
Podem

circuit connectivity, observability, and controllability
precalculated dom in ator inform ation for all nodes
argum ents to HITEC /PROOFS
object used to perform fault injection
tim e w in d ow representing circuit state for all active tim e fram es
fault statu s d atabase
d ata base of test vectors and resulting state from PROOFS
list of justification objectives
list of D -Fron tier nodes
w rap p er of core podem () and state_justify () routines

Table 6.1 Classes in HITEC

50 CHAPTER 6. AUTOMATIC TEST PATTERN GENERATION

Figure 6.2 Parallelism in ProperHITEC

necessary to achieve high efficiency on many processors while maintaining quality of results.
Quality is higher for decision-parallel execution because the execution trace more closely matches
the serial version when decision and fault-parallelism are combined. In strictly fault-parallel
execution, all but one processor are working on a different fault than the serial algorithm; if
additional faults are covered by patterns generated by a previous fault, all work done in generating
tests for those faults is wasted. Moreover, since test generators generally spend most of their time
generating tests for a relatively small number of hard faults, even with fault-parallelism, execution
time is bounded on the low-end by the time required to test the hardest fault. Decision-parallelism
explores different areas of the search space in parallel and thus for cases where a large portion
of the search space must be explored, can provide significant speedup. Note that by casting
the ATPG search in such a general framework, it is easy to enable purely fault-parallel, purely
assignment-parallel, or assignment and D -Frontier-parallel execution (HITEC), allowing extensive
experimentation.

Only one significant change was required to HITEC heuristics to implement decision-parallel­
ism. The change stems from the ability to pass information up the search tree in serial depth-first
search. When a backtrack occurs in a depth-first search, information gained in detecting the
backtrack can be passed up the search tree to influence the backtracking process itself. HITEC
utilizes such information when a state-justification failure occurs. When such a condition occurs,
a backtrack-must-change-state flag is set indicating that any decision alternatives that do
not change the state-justification target should be backtracked immediately. When a decision
alternative results in a different state for justification, normal search resumes.

6.2. PROPERHITEC 51

ProperHITEC class

Figure 6.3 ProperHITEC Organization

When decision-parallelism is used, a breadth-first-like search is employed. Since decision
alternatives no longer execute strictly in sequence, there is no way to pass the backtrack-mus t -
change-state flag among them. Fortunately, this information is closely related to the failed
states array already maintained by the fault database. In fact, it is easy to show that for those
cases where the backtrack-must-change-state flag is set, the backtracked state must be in
the failed states array. Checking the failed states array is actually more accurate, since a backtrack
that does change the state may simply change it to another failed state, a condition which the
original HITEC algorithm does not detect. Since the amount of processing required to check the
failed states array is more than that required to simply to test a flag, the choice of which technique
to use is dependent upon the relative amount of time required to check the array versus that
required to perform the useless work of exploring non-solution alternatives. Informal testing of
the original HITEC using both heuristics showed the cost of useless searching to be much greater
than the cost of checking the failed states array and thus HITEC and ProperHITEC have been
modified to use the better heuristic.

ProperHITEC uses lexicographically-ordered bit-string priorities to guide the execution of
ProperHITEC as closely as possible to the order used in the sequential algorithm. This technique
is essentially the same as described in [43]. We note that in the ProperCAD II library, the use of
bit-string priorities for the test generator objects has no effect on the priority system used by the
other objects in ProperHITEC or in the library in general.

Figure 6.3 shows the most significant objects in the ProperHITEC implementation along with
the HITEC and ProperCAD II objects from which they are derived.

TestGenerator The TestGenerator object is an actor which represents a 'test generator ma­
chine/ The implementation is relatively straightforward; TestGenerator instances can be
created for a specified fault to implement fault-parallelism or can be cloned from an existing in­
stance and an alternate assignment to implement decision parallelism. To implement an efficient
algorithm, fault-parallelism is bounded by a user-specified limit, past which decisions are made
in a depth-first manner.

Each TestGenerator new actor continuation is assigned a priority which the underlying

52 CHAPTER 6. AUTOMATIC TEST PATTERN GENERATION

run-time system uses to execute the TestGenerator objects in an order as close as possible
to the serial algorithm. When run on a uniprocessor, the TestGenerator objects are executed
in exactly the same order as the serial algorithm; on one processor, HITEC and ProperHITEC
produce virtually identical results.

CircuitAggregate The circuit is implemented as an aggregate with one representative on each
processor. A limited form of sharing for shared memory machines (supported completely by
the library) was considered but discarded because the HITEC /PROOFS implication procedures
are based on fault-injection through circuit modification. Since only one TestGenerator object
is active at a time on a processor, it is granted write access to the local CircuitAggregate
representative. When the TestGenerator instance completes its work, it restores the circuit to
its original state.

FaultDataBase The fault database is implemented as an aggregate with a representative on each
processor. Each representative stores the most recent state of the test generation process for each
fault and provides the same interface to the test generator objects as the serial Fault object. When
an update is received from a TestGenerator object or from the vector/states database, in the
form of a change of status, notification of resource usage, or detection of a new failed state, the
FaultDataBase representative records the information locally and if this results in a change of
the local state, broadcasts that information to all other representatives. The broadcast operation
is implemented completely via ProperCAD II intra-aggregate addressing.

Vector The Vectors object is essentially the same as the serial object but uses ActorMethods
to record new vectors and to send results to the FaultDataBase. Currently the fault simulator
is the FaultSimulator object used in HITEC using the actor methods provided by the Vectors
actor. This implies that fault simulation occurs sequentially on a single processor. This was done
both for reasons of expediency and because test generators have been observed to spend little
time in fault simulation relative to time spent in test generation. Parallel fault simulation in the
ProperCAD II library is a topic of future interest.

Userlnterface The Userlnterf ace object is used to interact with the user during the running
of the test application. It creates the system objects and then creates test generator objects for each
undetected fault in the circuit. If the progressive time limit feature of HITEC is used, the process
of creating test generator objects is iterated using progressively larger time limits.

6.3. Performance

ProperHITEC runs on all platforms supported by the library. Results are presented on the Sun,
iPSC/860, and Encore; the memory on the nodes of the INTEL iPSC/2 is too small to run all but
the smallest circuits.

Figures 6.2,6.3, and 6.4 show the results of ProperHITEC for a number of circuits drawn from
the ISCAS-89 benchmark set. All times, T, are reported in seconds and represent the elapsed wall
clock time. Fault efficiency, E, is computed as efficiency = (# • V is the number of

6.3. PERFORMANCE 53

C ircu it/ HITEC ProperHITEC
Seconds Processors

Per 1 2 3 4
Fault T E V T E V T E V T E V T E V

S 3 4 4 /2 0 369 .4 95.9 121 374 .3 95.9 121 251.9 96.2 110 160.0 96.5 130 156.2 96.2 112
S 8 2 0 /2 0 435 .9 99.3 956 396 .8 99.3 956 225.4 99.3 1010 196.3 99.1 1059 140.3 99.1 1013
S 9 5 3 /2 0 125.8 100 20 134.2 100 20 71.37 100 12 64 .17 100 16 47 .24 100 12

s i 2 3 8 /2 13.13 100 386 21.64 100 38 6 15.15 100 390 13.31 100 405 16.18 100 385
S 1 4 9 4 /2 0 722.0 99.1 1058 663.4 98.9 1058 434.1 98.9 1123 350 .5 98.9 1153 240.1 99.1 1093

Table 6.2 Results on the Sun 4/670MP

C ircu it/
Seconds

HITEC ProperHITEC
Processors

Per 1 4 8
Fault T E V T E V T E V T E V T E V

s 3 4 4 /2 0 481 .4 94.2 89 485 .8 94.2 89 215 .8 96.8 105 194.5 96.8 112 142.1 96.5 102
S 8 2 0 /2 0 438.3 99.3 959 440 .8 99.3 959 270.4 99.2 958 158.0 99.3 951 108.0 98.9 1034
S 9 5 3 /2 0 140.2 100 14 147 .7 100 14 89.13 100 14 49 .00 100 24 28 .66 100 14
s i 2 3 8 /1 14.15 100 374 23.29 100 374 14.69 100 383 12.16 100 369 11.12 100 402

S 1 4 9 4 /2 0 819 .8 99 .0 1079 821.3 98 .7 1079 503.3 99.1 1168 310.1 98.6 1113 192.2 98.8 1151

Table 6.3 Results on the INTEL iPSC/860

test vectors generated. Higher fault efficiencies and lower numbers of generated vectors represent
better solutions.

For each circuit, the results of the sequential HITEC algorithm and the ProperHITEC algo­
rithms on various machine configurations are reported. The HITEC numbers presented are for the
version of HITEC that shares code with ProperHITEC. Although the current version of HITEC
takes more advantage of dynamic memory allocation, the amount of time spent doing memory
management has been carefully analyzed and shown to be less than a fraction of a percent.

The results show that ProperHITEC achieves consistent speedup with only marginal effect
on quality across a range of moderately difficult test problems- The major effect on quality is the
addition of a small amount of noise in the results; while ProperHITEC does not always achieve
results identical to HITEC, the number of cases where it does worse are on par with number of
cases where it does better.

The results show that ProperHITEC does not achieve particularly good results on the 'easy'
benchmarks, those for which 100% efficiency is achived by the serial algorithm in a few tens
of seconds on current microprocessors. The reason for this is known; if the very first attempt
at generating a test virtually always succeeds, the decision parallelism in ProperHITEC is not
useful. We are considering techniques for improving the response of ProperHITEC for these
cases.

C ircu it/
Seconds

HITEC ProperHITEC
Processors

Per 1 2 4 8
Fault T E V T E V T E V T E V T E V

s 3 4 4 /2 0 484.2 93.9 105 493 .2 93.9 105 274.3 95.6 95 167.0 95.6 85 131.2 94 .7 108
S 8 2 0 /2 0 1200 97 .8 891 1206 98.1 891 761.8 97.6 1008 418.9 97.2 959 255 .6 96.9 955

S 9 5 3 /1 0 0 572.4 100 20 597.1 100 20 343.3 100 18 252.1 100 14 166 .7 100 10
S 1 2 3 8 /1 0 65.41 100 386 97.49 100 386 60.53 100 382 53.83 100 382 55.35 100 406
S 1 4 9 4 /1 0 2615 87 .0 492 2920 84.2 402 1654 85.5 460 997.0 83.9 49 7 540 .2 85.5 510

Table 6.4 Results on the Encore Multimax

54 CHAPTER 6. AUTOMATIC TEST PATTERN GENERATION

M achine Seconds
Per

Fault

#
of

Processors

T E

S u n M P 1 1 707.0 82.2
2 2 230 .7 97.1
3 3 222 .0 97.6
4 4 185.4 98.1

iP S C /8 6 0 2 1 777.4 79.5
3 2 335 .0 94.4
8 4 212 .7 97.8

20 8 192.2 98.8
M ultim ax 2 1 2069 42.0

4 2 1465 67.1
8 4 1047 77.4

20 8 540.2 85.5

Table 6.5 Results on Increased Efficiency on s!494

6.4. Fault Efficiency Results

In addition to providing faster turnaround, parallel processing can be used to achieve higher fault
efficiency in a fixed amount of time. Table 6.5 shows the results of running test generation on sl494
where the time-per-fault limit was scaled with number of processors. Consistent improvement is
observed for all platforms. Of note is the fact that even though the time limit per fault was raised
in tandemjwith the number of processors, run times still decreased on parallel runs. This is due
to the fact that once a fault is detected, raising the per-fault time limit does not increase run time.

7 Standard Cell Placement

When the logic design of a VLSI circuit has been completed, automatic placement is performed
to choose locations for each cell such that the area of the layout is minimized. With chips
approaching tens of millions of gates, the complexity of this problem is enormous, and moreover,
the most popular technique for placement, simulated annealing, is inherently expensive. Using
the ProperCAD II library, we have constructed Proper PLACE, an efficient parallel placement
implementation based on an existing simulated annealing placement tool, TimberW olf 6.0 [62].

7.1. Simulated Annealing for Placement

Simulated annealing is a powerful technique that has been employed to solve combinatorial
problems.using a probabilistic hill-climbing algorithm with the added ability to escape from local
minima in the search space. Given a problem and an associated cost function, the objective
is to find a near-optimal solution by generating possible solutions and selectively accepting or
rejecting them. If a candidate solution reduces the cost function, it is always accepted. Unlike
greedy methods, however, simulated annealing may also allow solutions that increase the cost.
These "uphill" solutions are accepted with a probability dependent on a parameter called the
temperature. In any simulated annealing algorithm, four important criteria are the choice of the
initial temperature, the equilibrium detection condition at a particular temperature, the rate of
decrease of the temperature, and the frozen or termination condition. This set of criteria is referred
to as the annealing schedule. Most implementations of simulated annealing use a fixed sequence of
empirically-derived temperatures [63, 62].

Simulated annealing has been successfully applied to the standard cell placement problem in
TimberWolf [62]. The cost function used in the original version of the TimberWolf algorithm
(version 3.2) for standard cell placement consists of three parts:

• Estimate of the wire length of all nets as the half perimeter of the bounding box which is the
smallest aligned rectangle containing all terminals in a net.

• Overshoot or undershoot of each row length over the desired row length

• Area overlap between cells in the same row

Two types of moves are used to generate new configurations. Either a cell is chosen randomly
and displaced to a random location on the chip or two cells are selected randomly and exchanged.
The ratios of displacement to exchange moves is set to about 5:1. A temperature dependent range
limiter is used to limit the distance over which a cell can move. Initially, the span of the range
limiter is set such that a cell can move anywhere on the chip. Subsequently, the span decreases

55

56 CHAPTER 7. STANDARD CELL PLACEMENT

logarithmically with temperature. The annealing schedule is fixed in that at each temperature a
fixed number of moves per cell is attempted. The initial temperature is set to a very high fixed
temperature, and the final temperature is a very low fixed temperature. The cooling schedule is
computed as Tt+! = a(T) • T„ where a varies between 0.8 to 0.95.

Other implementations of simulated annealing for cell placement have been reported. For
example, in a later version of TimberWolf (version 4.2), several enhancements have been made
to improve the run-time performance. The cost function is the same as the earlier version, but
the move generation and cost computation have been changed. Each row is divided into non­
overlapping bins, use of which makes the computation of the row overlap and row overshoot
functions very efficient. For move generation, a cell is selected randomly and a random location
is selected as a destination. If the destination is vacant, a displacement is performed, otherwise an
exchange is performed. The temperature profile is, again, a set of fixed temperatures but over a
smaller range. More recent versions of TimberWolf (version 6.0) use the notion of early rejection
of bad moves. The basic idea being that before initiating the costly evaluation of the wire length
portion of the cost function, the row and cell overlaps are determined. On the basis of those
costs, if it is determined that the move is not going to be accepted, the wire length evaluation is
bypassed.

7.2. Parallel Placement

Because of the inherent computational costs associated with simulated annealing, several re­
searchers have investigated the parallelization of these placement algorithms. There have been
two major approaches that researchers have taken to apply parallelism to simulated annealing for
placement.

7.2.1. Parallel evaluation within each move

In this approach, each individual move is evaluated faster by breaking up the task of evaluating a
move into subtasks and allocating various subtasks to different processors. This type of parallelism
is also called move decomposition or move acceleration. The work of a move consists of selecting a
feasible move, evaluating the cost changes, deciding to accept or reject, and perhaps updating a
global database. One can then delegate individual portions of work such as wire length evaluation
and updating to different processors [64]. Such approaches to parallelization are limited to shared
memory algorithms and have limited scope for large scale parallelism.

7.2.2. Parallel evaluation of multiple moves
In this methodology, each processor evaluates a different move (cell displacement or cell exchange)
in parallel. Unfortunately, there is a problem with using parallelism to propose and evaluate
several moves simultaneously since global information about the state is required in order to
evaluate the cost function. The cost function calculations maybe incorrect due to interacting moves
(see Figure 7.1.) If two processors are simultaneously considering moves involving different cells,
one processor may move a cell after the second processor reads the state of the layout. The
second processor now has inaccurate information about the positions of the cells and will use
this out-of-date information to compute the cost of the proposed move. The resulting evaluation

7.2. PARALLEL PLACEMENT 57

Figure 7.1 Illustration of parallel move interaction

will be wrong and may lead to a wrong decision in accepting or rejecting a move. There are two
possibilities for handling these interactions in parallel moves.

Parallel evaluation of multiple moves and acceptance of moves that do not interact In this
approach, a set of moves can be identified either statically or dynamically such that they do
not interact and apply parallelism to those moves. The advantage of this method is that the
convergence characteristics of the parallel algorithm are identical to those of the serial algorithm.
However, since many possibly good moves are left unused, the majority of the computation is
wasted, and hence, the effective parallelism is limited. In addition, the identification of moves
that do not interact is itself an NP-complete problem [65].

Parallel evaluation and acceptance of multiple interacting moves The alternative is to allow
multiple moves to be evaluated for acceptance based on inaccurate information; some errors in
the computation of cost functions are permitted [66, 67]. Here, there can be problems with move
interactions, affecting the convergence characteristics of the parallel algorithm. However, this
approach allows for maximal parallelism. In such schemes, a large number of parallel moves are
evaluated and accepted on the basis of past state information. The new cell positions are then
updated after every set of parallel moves.

58 CHAPTER 7. STANDARD CELL PLACEMENT

Figure 7.2 Row ownership in ProperPLACE. Example shows one row per partition.

7.3. ProperPLACE
ProperPLACE is based on an existing uniprocessor simulated annealing placement tool, Timber -
Wolf1. This application is parallelized using the parallel interacting moves strategy described
above.

In order to allow for these parallel moves, the circuit must be divided among the available
threads. Ownership of specific cells is determined for each layout row by partitioning consecutive
standard cell rows as shown in Figure 7.2. An Anneal actor is then created to process each partition
or processor grouping, and concurrency is achieved as each actor independently proposes moves
for evaluation. Typically, for maximum performance, one actor is created for each of the processors
available in the target machine.

Each actor is responsible for moving cells that it owns, by completing the sequential simulated
annealing schedule on its own partition. In ProperPLACE three different types of moves are
possible (see also Figure 7.3):

M l Intra-actor cell displacement
M2 Intra-actor cell exchange
M3 Inter-actor cell displacement
If a cell moves to a region owned by another actor (M2 or M3), the ownership of the cell goes

to the new actor. To evaluate the cost function accurately, each processor must have complete
cell location information in its local database. Therefore, after an actor accepts a move, it has

1The work described here is based on an earlier version of ProperPLACE [11] which was implemented using the
Charm language, but has since been modified to take advantage of the ProperCAD II library.

7.3. P R O P E R P L A C E

Actor on
PEO

59

Actor on
PE1

Figure 7.3 Moves in ProperPLACE

Figure 7.4 Anneal and Placement relationship in ProperPLACE

to propagate the accepted move to other actors so that each, actor uses more or less the same
information about cell locations.

This task of maintaining a coherent state of the current placement is the responsibility of the
Placement aggregate which has a representative associated with each actor, as illustrated in
Figure 7.4. Cell database management is the responsibility of the Placement aggregate. The
relationships between the Anneal actors and the Placement aggregate are shown in the figure.
The solid lines show the update messages that an actor will send to the aggregate every time it
makes an accepted move. The dashed lines indicate a relationship between an Anneal actor and
the corresponding Placement representative on its thread. It is through this latter association
that an actor is able to access the cell location information. This ability to allow an actor access to
internal representatives of an aggregate is a powerful feature of the ProperCAD II library.

The difficulty with updating after every accepted move is that the system will get flooded
with update messages as more and more moves are accepted. To reduce this traffic a threshold,
U, is introduced to limit the number of moves accepted before an update message is sent. This
threshold may directly affect the quality of the solution. As U is raised, the cell position database
becomes more and more inaccurate thus causing errors. However, previous researchers [65, 66]
have shown that simulated annealing is tolerant of some error in the cost function calculations.

Another user defined threshold, L, is used to limit the number of moves that an Anneal actor
may perform in succession without interruption. Since actors are not preemptive, this threshold

60 CHAPTER 7. STANDARD CELL PLACEMENT

C ircuit O riginal
W

TimberWolf

T W

ProperPLACE
Processors

1 2 3 4T W T W T W T W
s298 126984 192.7 31832 183.6 29909 113.2 31364 99.90 3 6 3 5 7 87.25 49873
s420 274056 315 .0 45744 269.4 4 4 330 191.3 4 8 206 153.5 61794 143.2 79596

p rim a ry ! 1202241 1403 285000 1281 265318 934.5 272686 823 .8 281475 796.1 285963
stru ct 2668124 4011 182930 35 4 0 173730 2588 174548 2469 183693 1529 221819

p rim ary2 7292946 4784 1 6 87487 4191 1410450 2825 1461104 2638 1 6 15180 3265 1614893

Table 7.1 Results on the Sun 4/670MP

C ircuit O riginal
W

TimberWolf

T W

ProperPLACE
Processors

1 2 4 8
T W T W T W T W

s298 126984 190.0 3 1832 205.1 29558 113.2 3 1 978 96.90 4 2 868 82 .8 7 74612
s420 274056 288 .0 45744 318 .4 37253 203.9 41356 149.3 48271 124.9 94823

p rim a ry l 1202241 — 285000 1442 271062 937.9 286624 676.5 291960 568.9 434095
stru ct 2668124 — 182930 3795 173730 2554 180038 1938 177153 1928 318648

p rim ary2 7292946 — 1687487 4 3 4 7 1410450 2906 1449492 2200 1708271 1968 2009394

Table 7.2 Results on the INTEL iPSC/860

determines the granularity of the Anneal actor workload. After L moves have been evaluated,
the actor .gives up control of the thread, to allow the Placement aggregate to gain control to
process update messages. To ensure that the actor regains control, it must send a message to itself,
before giving up control.

7.4. Performance

The ProperCAD II implementation of ProperPLACE has been run on all platforms supported
by the library. Results are shown in Tables 7.1, 7.2, and 7.3 for a sampling of circuits from a
standard benchmark set. All times, reported in seconds, represent the elapsed wall clock time.
The wire-length measure, W, is a cost factor generated by TimberWolf that estimates the total
wire length of the layout.

The results show that ProperPLACE achieves reasonable speedup with moderate impact on
resultant quality. As circuit size and number of processors grow, the speedups become smaller
because the amount of inter-actor communication grows. Notice, also, on circuits such as struct,
where the wire length has been reduced by over a factor of 10, the speedups are small. This
behavior is caused by the poor initial layout quality, which results in a dramatic increase in the
number of accepted moves. This causes an increase in the number of update messages, and thus
a drop in speedup. Layout quality declines due to algorithmic issues that do not allow inter-actor
cell exchanges. Algorithm modifications are a subject of future work.

7A. PERFORMANCE 61

C ircuit O riginal
W

TimberWolf

T W

ProperPLACE
Processors

1 2 4 8
T W T W T W T W

s298 126984 536.5 31832 561.2 29909 372.9 2 9 668 286 .8 46384 142.2 79585
s420 2740 5 6 776.7 45744 926.9 4 4 330 586.4 46354 3 9 2 .7 71068 169.3 87816

p rim aryl 1202241 4887 285000 4571 265318 2983 2 6 8 2 5 7 2182 295594 1927 439205
stru ct 2668124 12098 182930 12477 173730 9481 181214 6708 191249 6650 332345

p rim ary2 7292946 15266 1687487 15427 1410450 10417 1435690 8295 1900559 6844 2892132

Table 7.3 Results on the Encore Multimax

8 Conclusions

We have presented a run-time library suitable for a strongly- and statically-typed language,
C++, which implements the actor model of concurrent computation. We have shown how a
library-based implementation can be used to incrementally modify an existing code with only
incremental increase in development cost. We demonstrated, through a scientific kernel and
two large industrial applications, the efficacy of this approach on contemporary architectures.
On-going work comprises the addition of new applications, implementation on other parallel
platforms including workstation clusters, and development of a compiler which generates code
utilizing the services of the run-time library.

62

References

[1] Kendall Square Research, Waltham, MA, KSR-1 Technical Summary, 1992.

[2] D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. L. Hennessy, M. Horowitz, and M. Lam,
"The Stanford DASH," IEEE Computer, vol. 25, pp. 63-79, Mar. 1992.

[3] L. Lamport, "How to make a multiprocessor computer that correctly executes multiprocess
programs," IEEE Trans. Computers, pp. 241-248, Sept. 1979.

[4] V. S. Sunderam, "PVM: A framework for parallel distributed computing," Concurrency: Prac­
tice and Experience, vol. 2, pp. 315-339,1990.

[5] Parasoft Corporation, Pasadena, CA, Express Reference Guide for FORTRAN Programmers, 1992.

[6] A. W. Appel, Compiling with Continuations. Cambridge University Press, 1992.

[7] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, "Active messages: A mech­
anism for integrated communication and computation," in Proceedings o f the 19th Annual
International Symposium on Computer Architecture, pp. 256-266, May 1992.

[8] B. Ramkumar and P. Banerjee, "ProperCAD: A portable object-oriented parallel environment
for VLSI CAD," Tech. Rep. CRHC-93-04/UILU-ENG-93-2205, Center for Reliable and High-
performance Computing, University of Illinois, Jan. 1993. A shorter version of this report
appears in the Proceedings of the International Conference on Computer Design, 1992.

[9] K. De, B. Ramkumar, and P. Banerjee, "ProperSYN: A portable parallel algorithm for logic
synthesis," Digest o f Papers, International Conference on Computer-Aided Design, pp. 412-416,
Nov. 1992.

[10] B. Ramkumar and P. Banerjee, "ProperEXT: A portable parallel algorithm for VLSI circuit
extraction," Proceedings o f the International Parallel Processing Symposium, pp. 434-438,1993.

[11] S. Kim, "Improved algorithms for cell placement and their parallel implementations." Ph.D.
Dissertation, University of Illinois at Urbana-Champaign, July 1993. Tech. Rep. CRHC-93-18,
UILU-ENG-93-2231.

[12] A. A. Chien, Concurrent Aggregates: Supporting Modularity in Massively Parallel Programs. The
MIT Press, 1993.

[13] G. A. Agha, Actors: A Model o f Concurrent Computation in Distributed Systems. The MIT Press,
1986.

63

64 REFERENCES

[14] C. Hewitt, "Viewing control structures as patterns of passing messages," Journal o f Artificial
Intelligence, vol. 8, pp. 323-364, June 1977.

[15] G. A. Agha, Foundations o f Object-Oriented Languages, ch. The Structure and Semantics of Actor
Languages, pp. 1-59. Springer-Verlag, 1991.

[16] H. Lieberman, Object-Oriented Concurrent Programming, ch. Concurrent Object-Oriented Pro­
gramming in Actl, pp. 9-36. MIT Press, 1987.

[17] D. Theriault, "Issues in the design and implementation of Act2," Tech. Rep. 728, MIT Artificial
Intelligence Laboratory, June 1983.

[18] E. Shibayama and A. Yonezawa, Object-Oriented Concurrent Programming, ch. Distributed
Computing in ABCL/1, pp. 129-158. MIT Press, 1987.

[19] J. Ferber and P. Carle, "Actors and agents as reflective concurrent objects: A MERING IV
perspective," IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, pp. 1420-1436, Dec.
1991.

[20] C. Houck and G. Agha, "HAL: A high-level actor language and its distributed implemen­
tation," Proceedings o f the International Conference on Parallel Processing, pp. 158-165, Aug.
1992.

[21] W. Fenton, B. Ramkumar, V. A. Saletore, A. B. Sinha, and L. V. Kalé, "Supporting machine
independent programming on diverse parallel architecturs," Proceedings o f the International
Conference on Parallel Processing, Aug. 1991.

[22] A. A. Chien, V. Karamcheti, and J. Plevyak, "The Concert system — compiler and run­
time support for efficient, fine-grained concurrent object-oriented programs," Tech. Rep.
UIUCDCS-R-93-1815, Department of Computer Science; University of Illinois, June 1993.

[23] V. Karamcheti and A. Chien, "Concert — efficient runtime support for concurrent object-
oriented programming languages on stock hardware," Proceedings o f Supercomputing '93,
pp. 33-36,1993.

[24] G. Agha and C. Callsen, "ActorSpaces: A model for scalable heterogeneous computing,"
Proceedings o f the 26th Hawaii International Conference on System Sciences, 1993.

[25] L. V. Kalé, "The Chare Kernel parallel progrmaming language and system," Proceedings o f the
International Conference on Parallel Processing, vol. II, Aug. 1990.

[26] A. Gursoy and L. V. Kalé, "Dagger: Combining the benefits of synchronous and asynchronous
communication styles," Tech. Rep. 93-3, Department of Computer Science, University of
Illinois, June 1993.

[27] L. V. Kalé, B. Ramkumar, V. Saletore, and A. Sinha, "Prioritization in parallel symbolic
computing," Library Notes o f Computer Science, 1993.

[28] D. Gannon and J. K. Lee, "Object-oriented parallelism: pC++ ideas and experiments," Pro­
ceedings o f the Japan Society for Parallel Processing, pp. 13-23,1993.

REFERENCES 65

[29] K. M. Chandy and C. Kesselman, "Compositional C++: Compositional parallel program­
ming," Proceedings o f the Fifth Workshop on Compilers and Languages for Parallel Computing,
pp. 79-93,1992.

[30] W. J. Leddy and K. S. Smith, "The design of the experimental systems kernel," Proceedings
o f the Fourth Conference on Hypercubes, Concurrent Computers and Applications, pp. 10-17, Mar.
1989.

[31] B. Stroustrup, The C++ Programming Language. Addison Wesley, second ed., 1991.

[32] H. Baker and C. Hewitt, "The incremental garbage collection of objects," Conference Record of
the Conference on AI and Programming Languages, pp. 55-59, Aug. 1977.

[33] J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Littlefield, "The Amber system:
Parallel programming on a network of multiprocessors," Tech. Rep. 89-04-01, Department of
Computer Science and Engineering, University of Washington, Sept. 1989.

[34] B. N. Bershad, E. D. Lazowska, and H. M. Levy, "Presto: A system for object-oriented parallel
programming," Software — Practice and Experience, vol. 18, Aug. 1988.

• A

[35] A. D. Birrell and B. J. Nelson, "Implementing remote procedure calls," ACM Transactions on
Computer Systems, vol. 2, pp. 39-59, Feb. 1984.

[36] R. Chandra, A. Gupta, and J. L. Hennessy, "Integrating concurrency and data abstraction in a
parallel programming language," Tech. Rep. CSL-TR-92-511, Computer Science Laboratory,
Departments of Electrical Engineering and Computer Science, Stanford University, Feb. 1992.

[37] N. Carriero and D. Gelernter, "Linda in context," Communications o f the ACM, vol. 32, pp. 444-
458, Apr. 1989.

[38] P. America, Object-Oriented Concurrent Programming, ch. POOL-T: A Parallel Object-Oriented
Language, pp. 199-220. MIT Press, 1987.

[39] D. Kafura and K. H. Lee, "ACT++: Building a concurrent C++ with actors," Journal o f Object-
Oriented Programming, pp. 25-37, May/June 1990.

[40] C. M. Chase, A. L. Cheung, A. P. Reeves, and M. R. Smith, "Paragon: A parallel programming
environment for scientific applications using communications structures," Proceedings o f the
International Conference on Parallel Processing, vol. II, pp. 211-218,1991.

[41] R. Butler and E. Lusk, User's Guide to the p4 Parallel Programming System. Argonne National
Laboratory, Argonne, IL, June 1992. Tech. Rep. ANL-92/17.

[42] B. Ramkumar, "Machine independent "AND" and "OR" parallel execution of logic pro­
grams." Ph.D. Dissertation, Dept, of Computer Science, University of Illinois at Urbana-
Champaign, Oct. 1990. Tech. Rep. UIUCDCS-R-90-1639.

[43] B. Ramkumar and P. Banerjee, "ProperTEST: A portable parallel test generator for sequential
circuits," Digest o f Papers, International Conference on Computer-Aided Design, pp. 220-223, Nov.
1992.

66 REFERENCES

[44] T. Niermann and J. Patel, "HITEC: A test generation package for sequential circuits," Proceed­
ings o f the European Design Automation Conference, pp. 214-218, Feb. 1991.

[45] P. Goel, "An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic
Circuits," IEEE Transactions on Computers, vol. C-30, pp. 215-222, Mar. 1981.

[46] S. Chandra and J. H. Patel, "Test generation in a parallel processing environment," Proc. Int.
Conf Comp. Design (ICCD-88), pp. 11-14, Oct. 1988.

[47] S. Patil and P. Banerjee, "Fault partitioning issues in an integrated parallel test generation
fault simulation environment," Proc. Int. Test Conf, pp. 718-727, Aug. 1989.

[48] S. Patil and P. Banerjee, "Performance trade-offs in a parallel test generation fault simulation
environment," IEEE Trans. Computer-Aided Design, vol. 10, no. 12, pp. 1542-1558, Dec. 1991.

[49] S. Patil, P. Banerjee, and J. Patel, "Parallel test generation for sequential circuits on general
purpose multiprocessors," Proc. 28th Design Automation Conf. (DAC-91), Jun. 1991.

[50] P. Agrawal, V. D. Agrawal, and J. Villoldo, "Sequential circuit test generation on a distributed
system," Proceedings o f the Design Automation Conference, June 1993.

[51] G. J. Li and B. W. Wah, "Manip-2: A multicomputer architecture for evaluating logic pro­
grams," Proc. Int. Conf. Parallel Processing, pp. 123-130, Aug. 1985.

[52] B. W. Wah, G. J. Li, and C. F. Yu, "Multiprocessing of combinatorial search problems," IEEE
Computer, vol. 18, no. 6, pp. 93-108, June 1985.

[53] V. N. Rao and V. Kumar, "Parallel depth first search, part I: Implementation," International
Journal o f Parallel Programming, vol. 16, no. 6,1987.

[54] V. N. Rao and V. Kumar, "Parallel depth first search, part H: Analysis," International Journal o f
Parallel Programming, vol. 16, no. 6,1987.

[55] A. Motohara, K. Nishimura, H. Fujiwara, and I. Shirakawa, "A Parallel Scheme for Test-
Pattern Generation," in Proceedings o f the International Conference on Computer Aided Design,
pp. 156-159, Nov. 1986.

[56] S. Patil and P. Banerjee, "A parallel branch and bound approach to test generation," Proc. 26th
Design Automation Conf, pp. 339-345, Jun. 1989.

[57] S. Patil and P. Banerjee, "A parallel branch and bound approach to test generation," IEEE
Transactions on Computer Aided Design, vol. 9, pp. 313-322, Mar. 1990.

[58] S. Arvindam, V. Kumar, V. N. Rao, and V. Singh, "Automatic test pattern generation on
parallel processors," tech, rep., Computer Science Dept, Univ. of Minnesota, May 1990.

[59] S. T. Patel and J. H. Patel, "Effectiveness of heuristics measures for automatic test pattern
generation," Proc. 23rd Design Automation Conf, pp. 547-552,1986.

[60] S. J. Chandra and J. H. Patel, "Experimental evaluation of testability measures for test gener­
ation," IEEE Trans. Computer-Aided Design, vol. 8, pp. 93-97, Jan. 1989.

REFERENCES 67

[61] R. H. Bell, Jr., R. H. Klenke, J. H. Aylor, and R. D. Williams, "Results of a topologically
partitioned parallel automatic test pattern generation system on a distributed-memory mul­
tiprocessor," ASIC '92, Sept. 1992.

[62] C. Sechen and A . Sangiovanni-Vincentelli, "The TimberWolf placement and routing package,"
IEEE Journal for Solid State Circuits, vol. SC-20, pp. 510-522, April 1985.

[63] S. Kirkpatrick, C. Gelatt, and M. Vecci, "Optimization by simulated annealing," Science,
vol. 220, pp. 671-680, May 1983.

[64] S. Kravitz and R. Rutenbar, "Multiprocessor-based placement by simulated annealing," in
Proceedings o f the 23rd Design Automation Conference, pp. 567-573, June 1986.

[65] P. Banerjee, M. H. Jones, and J. Sargent, "Parallel simulated annealing algorithms for standard
cell placement on hypercube multiprocessors," IEEE Transactions on Parallel and Distributed
Systems, vol. 1, pp. 91-106, Jan. 1990.

[66] R. Jayaraman and R. A. Rutenbar, "Floorplanning by annealing on a hypercube multiproces­
sor," in Proceedings o f the International Conference on Computer Aided Design, pp. 346-349, Nov.
1987.

[67] J. S. Rose, W. M. Snelgrove, and Z. G. Vranesic, "Parallel cell placement algorithms with
quality equivalent to simulated annealing," IEEE Transactions on Computer-Aided Design, vol. 7,
pp. 387-396, Mar. 1988.

