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ABSTRACT
Broadcasting in Cycles with Chords

Lisa L. Kovalchick

Broadcasting is the process of information dissemination inwhich one node, the originator,
knows a single piece of information and using a series of calls must inform every other node in
the network of this information. We assume that at any given time, a node can communicate the
message to another node, with which it shares an edge, by acting as either a sender or receiver, but
not both. Multiple message broadcasting considers the casewhen the originator hasm messages,
wherem > 1, to disseminate. Whereas broadcasting limits the communication of a message from
one node to another node via a single edge, line broadcastingallows one node to send a message
to any other node in the network as long as a simple path existsbetween the sending node and the
receiving node and every edge along the path is not in use.

In this dissertation, we consider the problem of broadcasting in a cycle with chords and we
develop broadcast schemes for this type of network.

We begin by investigating the problem of broadcasting in a cycle with one and two chords,
respectively. Then, we consider the problem of multiple message broadcasting in cycles with one
and two chords. Finally, we consider the problem of line broadcasting in cycles with chords.

Through our investigations, we develop two algorithms for the problem of broadcasting in a
cycle with one and two chords, respectively and we analyze the correctness and complexity of
these algorithms. Then, we discuss problems associated with multiple message broadcasting in
cycles with one and two chords. Finally, we use techniques developed for line broadcasting in
cycles to create minimum time broadcast schemes for cycles through the addition of chords.

Using techniques developed in this dissertation, we are able to broadcast in minimum time in
cycles with chords. In cycles whose size is a power of2, we have proved that the number of chords
that we add to the cycle is the minimum number of chords required to broadcast in minimum time
in such a cycle.
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Chapter 1

Introduction

1.1 Preliminaries

Broadcasting is the process of information dissemination inwhich one node, the originator, knows

one or more pieces of information and using a series of calls must inform every other node in the

network of this information. A call is defined as the movementof information during a single time

interval between two adjacent nodes (neighbors). We assumethat time is discrete, meaning that any

calls made within the same time unit occur simultaneously. Many different broadcast models are

based on the above definition; [HHL88] provides a comprehensive investigation of these models.

The model of broadcasting that we will be using adds two additional constraints.

1. A node can be involved in at most one call per time unit.

2. The originator will have only a single message to disseminate.

We use a connected undirected graph,G = (V,E), to model the communication network, where

V represents the set ofn nodes andE represents the set of edges (i.e., communication links)

between pairs of nodes. A broadcast algorithm is defined as a sequence of calls with the following

constraints.
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1. A message must arrive at a node before that node can pass themessage on to another node.

2. At any given time unit, any node may act as either a sender orreceiver of a message, but not

both.

3. At the end of a broadcast algorithm, every node in the network has received the message.

Given a connected undirected graphG = (V,E) and an originator, nodeu, we define the broadcast

time of nodeu, b(u), to be the minimum number of time units required to complete broadcasting

from nodeu. We also define the broadcast time of the graphG, b(G), to be the maximum broadcast

time of any nodeu in G.

1.2 Formal Definition

Let G be a graph that has Cn as a subgraph, where Cn contains n nodes and n edges such that

n > 2 and, let there be one or more chords (edges not in Cn whose endpoints lie in Cn) connecting

pairs of nodes in the Cn, can we develop a broadcast scheme for such a graph?

Figure (1.1) depicts a cycle containing6 nodes with a single chord,c, dividing the cycle in half.
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Figure 1.1: A cycle containing6 nodes with a single chord,c.

Since we are working with an undirected graph, the number of unique chords of a cycle with

n nodes must range between0 and n·(n−3)
2

, inclusive forn ≥ 3. A cycle with n·(n−3)
2

chords is

merely the complete graph onn nodes,Kn. [HHL88] reports that the time to broadcast inKn is

equal to⌈log2 n⌉; an algorithm already exists that meets this time bound. However, the problem of

broadcasting in a cycle with fewer thann·(n−3)
2

chords remained an open problem, until now.

1.3 Motivation

The current push to obtain faster algorithms for many scientific problems often results in the use

of either parallel or distributed computing. The running time of algorithms which employ parallel

or distributed computing is often determined by the communication time between processors. If

it is possible to lower the amount of time taken for processorcommunication, it is often possible

to decrease the running time of such algorithms. It is for this reason that broadcasting algorithms

are an important part of current computing. While the problemof broadcasting a single message

throughout a network is well understood for several classesof graphs including grids [FH78],

cycles [S99, W99], trees [SCH81], etc., until now, no general solution existed for cycles with

3



chords. In this dissertation, we present algorithms for broadcasting in cycles with one and two

chords, respectively, and analyze the correctness and complexity of these algorithms. Then, we

discuss the problems associated with multiple message broadcasting in cycles containing one and

two chords. Finally, we use techniques developed for line broadcasting in cycles to create minimum

time broadcast schemes for cycles through the addition of chords.
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Chapter 2

History

2.1 Previous Results

The problem of broadcasting was first formulated in 1977, by Slater, Cockayne and Hedetniemi

who studied the amount of time necessary for a single person to share a single piece of information

with everyone else in a network. As a result of this work on broadcasting, a whole new area of

research developed.

As mentioned in Chapter 1, the broadcast time of nodeu, b(u), is defined as the minimum

number of time units required to complete broadcasting froma given nodeu. When broadcasting

begins, only a single node,u, has the message and, according to the constraints, the number of

informed nodes can at most double at each step (i.e., each informed member communicates with

an uninformed member at each time step), thusb(u) ≥ ⌈log2 n⌉. Obviously, broadcasting can be

completed in minimum time in a complete graph (i.e.,b(u) = ⌈log2 n⌉ for Kn); although, when the

number of nodes,n, is large the complete graph requires too many communication links (edges) in

order to be practical. This is one of the reasons that researchers have studied many other types of
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graphs in order to find a compromise between broadcast time and the number of communication

links required.

One of the first broadcast problems to be studied involved finding the minimum number of com-

munication links required in order to complete broadcasting in minimum time. In other words, if

we start with the complete graph onn nodes,Kn, we are interested in the maximum number of

communication links that can be removed while still being able to broadcast from any processor

in minimum time. In [JG79], Johnson and Garey showed that theproblem of determining whether

b(v) ≥ k for a nodev in an arbitrary graph for fixedk ≥ 4 is NP-Complete. As a result, several au-

thors studied methods for constructing graphs with small numbers of edges in which broadcasting

can be completed from any node in minimum time. For example, [SW84] developed a dynamic

programming formulation for optimal broadcasting in general networks, they also give an exact

algorithm based on its development. [F79] and [FHMP78] are among the authors that have discov-

ered graphs with the minimum number of edges possible to complete broadcasting in minimum

time.

It is not always necessary to complete broadcasting in minimum time. Obviously, the perfor-

mance of a parallel computer relies upon the amount of time necessary to complete broadcasting;

although, there may be cases when the cost of constructing such a computer is slightly more impor-

tant than achieving the very best performance. Redundant paths, extendability (i.e., the difficulty

and expense of adding nodes to the communication network) and the diameter of the communi-

cation network are all issues that involve improving the performance of a computer. On the other

hand, fixed degree, simple construction and a small number ofwires are issues that help to lower

the cost of a computer. For example, in the real world, havinga bounded maximum degree (i.e., a

maximum number of communication links connecting a node to its neighbors) for each node may

6



be more important than getting the very best performance forspecific situations. Thus, broadcast-

ing has been well studied for many classes of graphs, including trees, grids and cycles.

Obviously, a graph must be connected in order to complete broadcasting; otherwise, it would

be impossible to inform every node in the graph. A tree is a graph that contains the minimum

number of edges possible in order for the graph to be connected (i.e., a tree withn nodes hasn− 1

communication links). Thus, a tree is the cheapest communication network based on the number

of communication links required. [SCH81] studied broadcasting in trees. Specifically, they present

an algorithm which determines the broadcast time in a tree. This algorithm runs in linear time and

actually finds the broadcast center of the tree (i.e., the setof all nodes from which broadcasting

can be completed in the least amount of time). [P81] studied minimum broadcast trees (mbts),

which are defined as a special class of rooted trees that allowbroadcasting from the root to all

other nodes of the tree in minimum time (over all rooted treeswith n nodes). In addition, they give

an algorithm which decides membership in the class, anotheralgorithm to construct all mbts with

a given number of nodes and a recursive formula to count thesetrees.

A grid is defined as ann x m undirected graph consisting ofn rows andm columns of nodes.

Each node in a grid has communication links to four other nodes (its neighbors), except nodes

which form the border of the grid, which have either two or three neighbors (see Figure (2.1)).

Grids are one of several common topologies used when constructing parallel computers. Reasons

to choose a grid topology emphasize the performance of a computer. We define the diameter

of a graph as the number of edges in the maximum shortest path over all pairs of nodes. Grids

have a relatively small diameter, which helps improve communication time. For example, the

diameter of a 2-dimensional grid,Gm,n, containingm rows andn columns ism + n − 2. Grids

are also extendable (i.e., it is relatively easy to add processors to the network at a later time) and

7



they provide redundant paths, which may be useful to improvecommunication times. Thus, it is

important to study broadcasting in such a graph.

Figure 2.1: A3 x 4 grid.

Broadcasting in grid graphs was first presented in [FH78]. They presented broadcast times for

ann x m grid graph which relied on the location of the originator of the message (i.e., a corner

node, a side node, or an interior node). They also looked at broadcast times required for wrap-

around grids and ILLIAC-grids. Finally, they looked at broadcasting in an infinite 2-dimensional

grid, which gave rise to several other papers including [K79] and [P80].

A cycle is another popular model used when building parallelcomputers. A cycle is an undi-

rected graph onn nodes containingn edges; nodes in a cycle have the special property that every

node has degree2 (i.e., is connected to exactly2 other nodes). When building a parallel computer

using a cycle topology, few communication links are needed,which reduces the number of wires

necessary. A cycle also cuts cost by providing easy construction, since it simply involves connect-

ing processors in a ring-like fashion. In such a graph, the only realistic method for broadcasting is

for the originator to send the message to one of its neighborsand for each informed node to send

the message to an uninformed neighbor (if such a neighbor exists) at each successive step. See

Figure (2.2), for an example of broadcasting in a cycle containing 6 nodes; in this example, the

node colored black is the originator.
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Figure 2.2: Broadcasting in a cycle containing6 nodes.

Using this scheme it is obvious that the time to broadcast from any given node in a cycle is:

⌊
n

2
⌋ = D if n is even,

= D + 1 otherwise,

whereD represents the diameter of the graph. Although using a cycletopology reduces the cost

of the computer, it usually does not provide the performancenecessary. If we are able to develop

efficient schemes for broadcasting in a cycle with chords, wemay be able to reach a compromise

between cost and performance which can be useful to industry.

2.2 Related Work

Along with single message broadcasting, as defined in Chapter1, many other broadcast models

have been studied. Several surveys have been done in this area including [HHL88, FL94] and

[HKMP96]. Some of the more common models include reliable broadcasting, broadcasting using

the postal model, multiple message broadcasting and line broadcasting.

Reliable broadcasting is concerned with the idea of broadcasting in the presence of faults. A

fault is defined as the failure of one or more communication lines (edges) or the failure of one

9



or more communication sites (nodes). The study of reliable broadcasting is important for several

reasons including allowing for network maintenance to be done in a way that would reduce the

frequency of non-isolated network failures and making it easier to determine the effects of making

a site or line inoperable in order for maintenance to occur. Some networks in which reliable

broadcasting schemes have been studied include stars [MBHI96, GRV98], meshes [JW01] and

hypercubes [GLPR94, WGLM00].

As an example of the postal model, consider people living in the same town who communicate

by writing letters to one another and dropping these lettersin the mailbox. Once a letter is placed in

the mailbox, the sender forgets about the letter assuming that it will be delivered to the recipient in

a reasonable amount of time. The sender is not concerned withthe route that the letter travels and

may send several letters, before receiving delivery notification of the first letter. Broadcasting using

the postal model allows one to ignore the actual underlying connection network and to assume that

the underlying network is a complete graph with message latencies which represent the amount

of time that passes between the time a message is sent and the time that the message is received.

This model was introduced in order to study parallel and distributed systems which use packet

switching networks as opposed to circuit switching. [BK92, M92] and [GS99] are just a few of the

researchers who have studied the postal model.

When working with parallel or distributed architectures, sometimes, it may be more beneficial

to break a message into pieces and to send each piece separately. For example, this could occur

when the cost of sending a message is proportional to the sizeof the message. Often, broadcasting

schemes that work well for a single message are inefficient when used for broadcasting multiple

messages. Thus, multiple message broadcasting has been studied. Some examples in which multi-

ple message broadcast schemes have been investigated include grids [W99, WV96, VB94], paths
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[S99], hypercubes [QA97, S99] and complete graphs [KC95].

Circuit-switched networks are networks in which a dedicatedpath from sender to receiver is

established for the duration of a call. Early telephone systems were an example of circuit-switched

networks. In this type of telephone system, whenever a call is made between a sender and a

receiver, the physical line that connects the two parties isdedicated to those parties only and cannot

be used by anyone else for the duration of the call. This type of communication system can be

studied using the line broadcasting model. Line broadcasting allows for “long distance” calls to

be made between nodes. In line broadcasting, a node can call any other node as long as there is

an available path between the two nodes. An available path isdefined as any simple path in which

none of the edges are involved in another call. Some examplesin which line broadcasting schemes

have been investigated include cycles [KP98], grids [W99] and complete binary trees [AGR01].
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Chapter 3

Broadcasting in Cycles with a Single Chord

3.1 Background

In order for a cycle,Cn, to exist, the graph must contain at least3 nodes. The most obvious

algorithm for broadcasting in a cycle is for every informed node to pass the message along to one

of its uninformed neighbors at each time step, if such a neighbor exists; we refer to this algorithm

as the chordless cycle algorithm. Using the chordless cyclealgorithm, cycles containing between

3 and6 nodes (inclusive) can broadcast in minimum time (i.e.,b(Cn) = ⌈log2 n⌉, for 3 ≤ n ≤ 6)

as shown in Figure (3.1).
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Figure 3.1: Broadcasting in minimum time inC3, C4, C5 andC6 (the originator nodes are colored
black).

The time to broadcast in a cycle with an even number of nodes isequal to the diameter of the

graph (i.e.,⌊n
2
⌋) and the time to broadcast in a cycle with an odd number of nodes is equal to the

diameter of the graph plus one (i.e.,⌊n
2
⌋+ 1). Both the function representing the time to broadcast

in a cycle and the function representing the minimum broadcast time in a graph (i.e.,⌈log2 n⌉)

are monotonically increasing and for cycles containing more than6 nodes (i.e.,n > 6), the latter

function grows slower. Thus, minimum time broadcasting cannot be obtained for cycles containing

more than6 nodes (see Table 3.1).
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Table 3.1: Comparing the time to broadcast in a chordless cycle to the minimum time to broadcast
in a graph.

Number of nodes Time to broadcast Minimum time to
in a chordless cycle broadcast in a graph

3 2 2
4 2 2
5 3 3
6 3 3
7 4 3
8 4 3
9 5 4

During broadcasting, at each time step, each informed node may pass the message along to

one of its uninformed neighbors; thus, the number of nodes informed at each successive time step

can at most double. For example, at time step0 a single node (the originator) is informed of

the message; this node can inform one of its neighbors at timestep1. After this time step, two

nodes are informed (i.e., the originator and the node informed at time1). Then at time2, both the

originator and the node informed at time1 can inform one of their uninformed neighbors. After

this time step, at most4 nodes are informed (i.e., the originator, the node informedat time1 and

at most2 nodes informed at time2). Continuing this process for consecutive time steps, we see

that the number of informed nodes can at most double from one time step to the next. In order

for the number of nodes to double at timen, each informed node at timen − 1 must have an

uninformed neighbor that it can inform at timen. Table 3.2 shows the maximum total number of

nodes informed at time steps0 through5 and the maximum number of new nodes informed at each

time step.
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Table 3.2: Maximum number of nodes informed at time steps0 through5.
Time Total Number of Number of Newly

Informed Nodes Informed Nodes
0 1
1 2 1
2 4 2
3 8 4
4 16 8
5 32 16

The slow broadcast time of cycles is due to the fact that, after time 2, at most2 new nodes can

be informed at each time step. This occurs because each node of a cycle has exactly2 neighbors

and all nodes, except the originator, must be informed by oneof their neighbors, leaving only a

single neighbor for each node to inform (see Figure (3.2)).

v

1

2

6

3 5

u

2 3 54

4 6 7

7

Figure 3.2: Broadcasting inC14 (the originator node is colored black).

To improve the broadcast time of such cycles, chords must be added. In this chapter, we discuss

the placement of a single chord in the cycle. Then, we developtwo algorithms for broadcasting in

cycles containing a single chord. The first algorithm considers the case when the chord divides the

cycle in half. The second algorithm considers the case when the chord divides the cycle into two

cycles which differ in length by at least2 nodes. Finally, we discuss the location of the originator

in the cycle.
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3.2 Placement of the Chord

According to the definition of a cycle, each node of the cycle has exactly2 neighbors (i.e., is

connected to exactly2 other nodes). The addition of a chord connecting2 nodes of a cycle will

increase the number of neighbors of both of the nodes by one neighbor each. This allows for2

nodes of the cycle to each inform an additional node (as long as that node was not already informed)

during the broadcasting process, which can decrease the time to broadcast compared to the same

size cycle without chords.

As an example, comparing Figure (3.2) to Figure (3.3) shows that both nodeu and nodev were

able to inform an additional node, by making use of the chord.

v

1

2

5

3

6

u

2

3 54

4 4 3

4

Figure 3.3: Broadcasting inC14 with a single chord (the originator node is colored black).

Table 3.3 compares the number of nodes informed at each time step in a cycle without chords

(i.e., a chordless cycle) to the maximum number of nodes thatcan be informed at each time step.

Time3 is the first place that the number of nodes informed by the chordless cycle algorithm differs

from the maximum number of nodes that can be informed at that time step. In a cycle, we want to

increase the number of nodes informed as early as possible because this increase can increase the

number of nodes informed at each additional time step. The addition of a single chord to a cycle,

allows us to increase the number of nodes informed at time3 from 2 to a maximum of4 nodes
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(see Figure (3.4)). The2 additional nodes informed at time3 then have the ability to each inform

an uninformed neighbor at time4, which can increase the number of nodes informed at time4 by

at most2. At all times after time4, at most4 new nodes can be informed, since after time3, no

remaining nodes have more than2 neighbors.

Table 3.3: Comparison of nodes informed at time steps0 through5.
Time Number of Newly Informed Maximum Number of Newly

Nodes in a Chordless Cycle Informed Nodes
0
1 1 1
2 2 2
3 2 4
4 2 8
5 2 16

1

2 3

3

4

2

3 5 5

4

4

5 345

Figure 3.4: Sending the message across the chord as soon as possible.

In order to maximize the number of nodes informed at time3, thus, increasing the total number

of nodes informed at each time step after time2, we must make the originator one of the endpoints

of the chord (compare Figure (3.4) with Figure (3.5)).
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Figure 3.5: Delays in sending the message across the chord.

The next two sections present algorithms for broadcasting in a cycle containing a single chord

with the originator as an endpoint of the chord.

3.3 The Equal Split Chord Originator Algorithm

Our first algorithm considers the case in which the chord divides the cycle in half or, in the case

of an odd number of nodes, into two cycles which differ in sizeby a single node. We assume that

the originator is a node that forms one of the endpoints of thechord. We call this the Equal Split

Chord Originator (ESCO) algorithm. When the chord is added to the cycle, it creates two cycles

which share a single edge (call these cyclesA andB). We will label the cycles such that cycle

A will always be either the same size as cycleB or, if the original cycle contains an odd number

of nodes, cycleA will contain one more node than cycleB. ESCO proceeds by first sending the

message across the chord and then one informed node sends themessage to cycleA while the other
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informed node sends to cycleB. Algorithm (3.3.1) is a formal description of our technique. See

Figure (3.6) for an example of broadcasting using Algorithm(3.3.1).

Function ESCO(G, n)

1: The originator sends across the chord.
2: The originator sends to its neighbor in cycleA while the node informed in step1 sends to its

neighbor in cycleB.
3: The originator sends to its neighbor in cycleB while the node informed in step1 sends to its

neighbor in cycleA. The nodes informed in step2 send to their uninformed neighbor.
4: while Not all nodes are informed.do
5: Nodes informed in the previous step send to their uninformedneighbor.
6: end while

Algorithm 3.3.1: Equal Split Chord Originator Algorithm

1

2
3

3 4

cycle A

cycle B
23

34

4

4

Figure 3.6: Broadcasting using Algorithm (3.3.1).

3.4 Correctness and Analysis of ESCO

The correctness of Algorithm (3.3.1) follows from the observations below.

1. The message arrives at a node before that node can pass the message on to another node.

This follows clearly from the way the algorithm is defined.
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2. At any given time, any node may act as either a sender or receiver of a message, but not both.

This occurs since each node is used at most once in each step.

3. At the end of the broadcast algorithm, every node in the network has received the message.

This is obvious from the condition of the while loop in the algorithm.

Lemma 3.4.1 The time required to broadcast using Algorithm (3.3.1) is equal to ⌊n
2
⌋+ 1, where n

represents the number of nodes in the larger cycle formed by the chord (cycle A).

Proof: CycleA and cycleB differ in length by at most one node and according to the broadcast

algorithm, after steps1 − 3, both cycles contain the same number of informed nodes. Thus, the

larger cycle (cycleA) must finish broadcasting at the same time as, or after, the smaller cycle (cycle

B); therefore, we only need to consider cycleA, when analyzing the running time of the algorithm.

Further analysis of cycleA requires us to consider the case when cycleA contains an even number

of nodes and the case when cycleA contains an odd number of nodes.

Case1: CycleA contains an even number of nodes.

Farley’s lower bound is realized by such cycles; this bound states that the minimum broadcast time

is equal to2 · (M − 1) + D, whereM represents the number of messages being broadcast andD

represents the diameter of the graph [F80]. Since we are dealing with a cycle,D = ⌊n
2
⌋ and since

we are only interested in broadcasting one message,M = 1. Using this information, we calculate

the minimum broadcast time for the cycle to be⌊n
2
⌋. Figure (3.7) shows a broadcast algorithm on

Cn wheren is even, which obtains this bound. Figure (3.8) shows Algorithm (3.3.1) onCn+(n−2)

with a chord dividing the cycle in half (i.e., cycleA containsn nodes and cycleB containsn

nodes). Comparing Figure (3.7) with cycleA of Figure (3.8), the last two nodes are informed at

time ⌊n
2
⌋ in Figure (3.7); however, at that time, one node,x, remains to be informed in cycleA
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of Figure (3.8). The uninformed node can be informed by either of its neighbors at time⌊n
2
⌋ + 1.

Thus, the time required to broadcast when cycleA contains an even number of nodes is⌊n
2
⌋ + 1.

.  .  .  .  .  .  .

1

2 2

3 3

.  .  .  .  .  .

floor
(n/2)

floor
(n/2)

Figure 3.7: Case1: Broadcasting inCn, wheren is even, using the chordless cycle algorithm.
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(n/2)
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. . . . . . . . .

2

3

3

4

Figure 3.8: Case1: Broadcasting inCn+(n−2), wheren is even, using Algorithm (3.3.1).

Case2: CycleA contains an odd number of nodes.

Farley’s lower bound cannot be achieved in such cycles, since there are two nodes which are both

the maximum distance from the originator. The time requiredto broadcast is2 · (M − 1) + D + 1.

Once again,D = ⌊n
2
⌋ andM = 1; thus, the time required to broadcast becomes⌊n

2
⌋ + 1. Figure

(3.9) shows a broadcast algorithm onCn wheren is odd, which achieves this bound. Figure (3.10)

shows Algorithm (3.3.1) onCn+(n−2) with a chord dividing the cycle in half (i.e., cycleA contains

n nodes and cycleB containsn nodes). During the next to last time step, in Figure (3.9), two

nodes are informed; however, only one of these two nodes is needed to pass the message on to

the last node to be informed. Referring to Figure (3.9), we could increase the time at which the
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neighbor of nodex is informed by1 without affecting the overall time needed to broadcast. This

is precisely what happens in cycleA of Figure (3.10). Thus, the time required to broadcast when

cycleA contains an odd number of nodes is⌊n
2
⌋ + 1.

.  .  .

1

2 2

3 3

.  .  .

floor
(n/2)

floor
(n/2)

floor
(n/2)+1

Figure 3.9: Case2: Broadcasting inCn, wheren is odd, using the chordless cycle algorithm.
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Figure 3.10: Case2: Broadcasting inCn+(n−2), wheren is odd, using Algorithm (3.3.1).

2

3.5 The Unequal Split Chord Originator Algorithm

Our second algorithm considers the case in which the chord divides the cycle into two cycles

which differ in length by more than one node. Again, we assumethat the originator is a node that

forms one of the endpoints of the chord. We call this the Unequal Split Chord Originator (USCO)

algorithm. When the chord is added to the cycle, it creates twocycles which share a single edge; we

will call the larger cycleA and the smaller cycleB. USCO proceeds by first sending the message
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across the chord and then both of the informed nodes send the message to cycleA first and, then,

to cycleB. Algorithm (3.5.1) is a formal description of our technique. See Figure (3.11) for an

example of broadcasting using Algorithm (3.5.1).

Function USCO(G, n)

1: The originator sends across the chord.
2: The originator and the node informed in step1 both send to their neighbor in cycleA.
3: The originator and the node informed in step1 both send to their neighbor in cycleB. The

nodes informed in step2 send to their uninformed neighbor.
4: while Not all nodes are informed.do
5: Nodes informed in the previous step send to their uninformedneighbor.
6: end while

Algorithm 3.5.1: Unequal Split Chord Originator Algorithm

1

2
4

3 5

cycle A

cycle B 33

24

4

3

Figure 3.11: Broadcasting using Algorithm (3.5.1).

3.6 Correctness and Analysis of USCO

The correctness of Algorithm (3.5.1) follows from the observations below.

1. The message arrives at a node before that node can pass the message on to another node.

This follows clearly from the way the algorithm is defined.
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2. At any given time, any node may act as either a sender or receiver of a message, but not both.

This occurs since each node is used at most once in each step.

3. At the end of the broadcast algorithm, every node in the network has received the message.

This is obvious from the condition of the while loop in the algorithm.

Lemma 3.6.1 The time required to broadcast using Algorithm (3.5.1) is ⌈n
2
⌉, where n represents

the number of nodes in the larger cycle formed by the chord (cycle A).

Proof: In the first step of the algorithm, we send across the chord. Inthe second step, both

informed nodes send to their neighbors in cycleA. In the third step, the originator and the node in-

formed in step1 send to their neighbors in cycleB, while the nodes informed in step2 simply pass

the message on in their respective cycle. In the remaining steps, broadcasting completes following

the pattern used for broadcasting in a cycle without chords.Using this algorithm, broadcasting in

cycleA proceeds in the exact same manner as broadcasting in a cycle without chords (i.e., using

the chordless cycle algorithm); see Figure (3.12). Thus, the broadcast time for cycleA is equal to

⌊n
2
⌋, if the cycle is of even length and⌊n

2
⌋ + 1, if the cycle is of odd length, which is equal to⌈n

2
⌉

for both cases.
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Figure 3.12: Broadcasting in a cycle with a chord using Algorithm (3.5.1).

CycleB has at least2 fewer nodes than cycleA. If we assume that cycleA containsm nodes,

then cycleB can contain no more thanm − 2 nodes. Comparing the times to broadcast in a cycle

of sizem and a cycle of sizem − 2, we have⌈m
2
⌉ and⌈m−2

2
⌉, respectively. Thus, regardless of

m, cycleA will always require at least one more unit of time than cycleB. Broadcasting in cycle

B is identical to broadcasting using the chordless cycle algorithm, except that nodesx andy are

informed a time unit later in cycleB than they are using the chordless cycle algorithm; see Figure

(3.13). Thus, broadcasting in cycleB will require one extra time step than the chordless cycle

algorithm. Since we have shown that cycleB will always finish at least one time unit before cycle

A, adding an extra time unit to the time needed to broadcast in cycleB will cause cycleB to take

time at most equal to that of cycleA. Therefore, the time to broadcast using Algorithm (3.5.1) is

equal to the time needed to broadcast in cycleA (i.e.,⌈n
2
⌉, wheren represents the number of nodes

in cycleA).
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Figure 3.13: Broadcasting in a cycle using the chordless cycle algorithm.
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3.7 Results

In this chapter, we developed2 algorithms for broadcasting in a cycle with a single chord (with

one of its endpoints being the originator). In such a graph, there are only2 possibilities for the

location of the chord. Either:

1. It splits the cycle in half or nearly half, in the case of an odd length cycle, or

2. It splits the cycle into two smaller cycles, one of which is2 or more nodes larger than the

other.

Algorithm (3.3.1) deals with case1 and has a running time equal to⌊n
2
⌋ + 1, wheren is the

number of nodes in the larger cycle formed by the chord (cycleA). Algorithm (3.5.1) deals with

case2 and has a running time equal to⌈n
2
⌉, wheren represents the number of nodes in the larger

cycle formed by the chord (cycleA). Since the algorithm for case2 always considers the time to

broadcast in a cycle that is2 or more nodes larger than the largest cycle in case1, the time taken by

the algorithm for case1 is always as good or better than the time taken by the algorithm for case2.

Thus, the best running time that we are able to achieve when broadcasting in a cycle with a single

26



chord occurs when the chord divides the cycle in half and the originator is one of the endpoints of

the chord and is⌊n
2
⌋ + 1, wheren is the number of nodes in the larger cycle formed by the chord

(cycleA).

The chord placement and algorithms presented in this chapter assume that we know the location

of the originator. If the location of the originator is unknown, then the best that we can do is to

arbitrarily choose a node as the originator and draw a chord from this node that splits the cycle in

half. Since the originator is chosen arbitrarily, it could be the case that the actual originator is a

node in cycleA that is located halfway between each endpoint of the chord (see Figure (3.14)). In

this case, the chord will produce no benefit to the cycle and the time to broadcast will be equal to

the time to broadcast in a chordless cycle (i.e., a chordlesscycle consisting ofn nodes takes time

equal to⌊n
2
⌋ whenn is even and⌊n

2
⌋ + 1 whenn is odd).
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Figure 3.14: Worst case scenario for the location of the chord and the originator.
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Chapter 4

Broadcasting in Cycles with Two Chords

4.1 Background

Chapter 3 dealt with broadcasting in cycles with a single chord. Using Algorithm(3.3.1), we are

able to broadcast in minimum time for cycles containing between7 and12 nodes inclusive (see

Figure (4.1)). The running time of Algorithm (3.3.1) is equal to the diameter of the larger cycle

formed by the chord,Dm, plus1. Both the function representing the running time of Algorithm

(3.3.1) and the function representing the minimum broadcast time in a graph (i.e.,⌈log2 n⌉) are

monotonically increasing and for cycles containing more than12 nodes (i.e.,n > 12), the latter

function grows slower. Thus, minimum time broadcasting cannot be obtained for cycles containing

more than12 nodes and a single chord (see Table(4.1)). Therefore, more chords must be added. In

this chapter, we first discuss the placement of each of the chords in the cycle. We then develop two

algorithms for the placement of the chords and we give algorithms for broadcasting in such cycles.
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Figure 4.1: Broadcasting inC7, C8, C9, C10, C11 andC12.

Table 4.1: Comparing the time to broadcast using Algorithm(3.3.1) to the minimum time to broad-
cast in a graph.

Number of nodes Time to broadcast Minimum time to
using Algorithm(3.3.1) broadcast in a graph

8 3 3
9 4 4
10 4 4
11 4 4
12 4 4
13 5 4
14 5 4
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4.2 Placement of the Chords

As shown in Chapter 3, in order to increase the number of nodes that can be informed at each time

step after time2, we want to begin by increasing the number of nodes informed at time 3, since

this is the first time step that the number of nodes informed bythe chordless cycle algorithm differs

from the maximum number of nodes that can be informed in a graph. In Chapter 3, we showed

that we can inform the maximum number of nodes at time3 by branching at the originator at time

1. In the single chord case, this increased the number of nodesinformed at time3 and all times

after time3 from 2 nodes to a maximum of4 nodes. Thus, we will use the first of the two chords to

branch at the originator. Since the addition of the first chord maximizes the number of nodes that

are informed at time3, we now want to position the second chord so that we increase the number

of nodes informed at time4. Branching at time2 will allow this to happen. After time1, only 2

nodes have the message (the originator and the node at the other endpoint of the first chord). Thus,

in order to branch at time2, one of the endpoints of the first chord must also be an endpoint of the

second chord (see Figure (4.2)).
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Figure 4.2: Placement of a second chord.

In the next four sections, we develop an algorithm for the placement of each of the chords in

a cycle when the originator is the shared endpoint and we develop an algorithm for broadcasting

in such a cycle. Then, we develop an algorithm for the placement of each of the chords in a

cycle when the node informed at time1 is the shared endpoint and we develop an algorithm for

broadcasting in such a cycle.

4.3 Adding Chords to the Cycle when the Originator is the

Shared Endpoint

Now that we have determined that the first chord must use the originator as one of its endpoints

and that the second chord must share an endpoint with the firstchord, we need to determine where

to place the other endpoints of the chords. The shared endpoint must be either the originator or

the node informed at time1. We will first consider the case in which the originator is theshared
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endpoint. Adding two chords to a cycle, in the manner that we have explained, creates three smaller

cycles that share some endpoints. When analyzing the runningtime of a broadcast scheme such a

graph, we must take2 factors into consideration.

1. The time to broadcast in each of the smaller cycles that hasbeen formed.

2. The time, at which, broadcasting begins in each of the smaller cycles.

If we position the endpoints of the chords so that we create3 equal size (or as close to equal size

as possible) cycles, each of these cycles should be able to complete broadcasting in approximately

the same amount of time, depending upon when the first node in the cycle is informed. Using

Algorithm (4.3.1), we are able to calculate the positions for all endpoints of the chords; in this

algorithm, we assume that all of the nodes of the cycle have been consecutively numbered clock-

wise beginning with the originator numbered0 and thatn represents the total number of nodes

in the graph. Figure (4.3) shows the results of using Algorithm (4.3.1) to add2 chords to a cycle

containing16 nodes.

Function CHORDPLACEMENTALG(G, n)

1: Divide (n + 4) by 3 in order to obtain a quotient,w, and a remainder,r.
2: if (r > 0) then
3: c1 = w + 1
4: else
5: c1 = w

6: end if
7: c2 = w

8: Draw a chord from the originator to nodec1 − 1.
9: Draw a chord from the originator to noden − c2 + 1.

Algorithm 4.3.1: Algorithm to place2 chords into a cycle.
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Figure 4.3: Adding2 chords to a cycle using Algorithm (4.3.1).

4.4 The Two Chord Originator Algorithm

Algorithm (4.4.1) considers broadcasting in a cycle with2 chords, such that both chords share the

originator as a common endpoint and the chords are drawn using Algorithm (4.3.1). We call this

the Two Chord Originator (TCO) algorithm. When the chords are added to the cycle, they create

three cycles which share some edges. Working in a clockwise fashion around the original cycle,

we will call the first small cycle that we encounter, cycleA, the second, cycleB, and the third,

cycleC. TCO proceeds by first sending the message across the chord forming cycleA. Then, the

message is sent across the other chord, while the node informed at time1 sends to its neighbor

in cycle A. Algorithm (4.4.1) is a formal description of our technique. See Figure (4.4) for an

example of broadcasting using Algorithm (4.4.1).
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Function TCO(G, n)

1: The originator sends across the chord forming cycleA.
2: The originator sends across the other chord and the node informed in step1 sends to its neigh-

bor in cycleA.
3: The originator sends to its neighbor in cycleC, the node informed in step1 sends to its neigh-

bor in cycle B, the node informed by the originator in step2 sends to its neighbor in cycleC
and the other node informed in step2 sends to its uninformed neighbor.

4: The originator sends to its neighbor in cycleA, the node informed by the originator in step
2 sends to its neighbor in cycleB and all nodes informed in step3 send to their uninformed
neighbor.

5: while Not all nodes are informed.do
6: Nodes informed in the previous step send to their uninformedneighbor.
7: end while

Algorithm 4.4.1: Two Chord Originator Algorithm
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Figure 4.4: Broadcasting inC16 with two chords using Algorithm (4.4.1).

4.5 Correctness and Analysis of TCO

The correctness of Algorithm (4.4.1) follows from the observations below.

1. The message arrives at a node before that node can pass the message on to another node.

This follows clearly from the way the algorithm is defined.

2. At any given time, any node may act as either a sender or receiver of a message, but not both.

This occurs since each node is used at most once in each step.
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3. At the end of the broadcast algorithm, every node in the network has received the message.

This is obvious from the condition of the while loop in the algorithm.

Lemma 4.5.1 The time required to broadcast in Algorithm (4.4.1) is equal to ⌈n
2
⌉ + 1 where n

represents the number of nodes in the largest cycle formed by the chords (cycle A).

Proof: When analyzing the running time of such an algorithm, we must take2 factors into

consideration.

1. The time to broadcast in each of the smaller cycles that hasbeen formed.

2. The time, at which, broadcasting begins in each of the smaller cycles.

The time to broadcast in a cycle is determined by the size of the cycle. According to Algorithm

(4.3.1), cycleA will always be larger than or equal in size to cycleB and cycleC. Next, we

must consider the time at which broadcasting begins in each of the smaller cycles. Referring to

Algorithm (4.4.1) and Figure (4.4), we find that after the message is passed along the chords, it will

eventually begin moving through the small cycles using the chordless cycle algorithm (i.e., each

informed node simply passes the message along to its uninformed neighbor, if such a neighbor

exists). We define this as the time at which broadcasting begins in each of the smaller cycles.

Again, referring to Algorithm (4.4.1) and Figure (4.4), we find that after time2, we do not pass

along either of the chords and after time3, each small cycle contains the same number,4, of

informed nodes. Thus, after time3, broadcasting proceeds in each of the smaller cycles using the

chordless cycle algorithm. This means that at every step after time3, all of the smaller cycles

will have the same number of nodes informed. Therefore, whencalculating the running time of

Algorithm (4.4.1), we can simply concentrate on the largestof the small cycles (cycleA). Further
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analysis of cycleA requires us to consider the case in which cycleA contains an even number of

nodes and the case in which cycleA contains an odd number of nodes.

Case1: CycleA contains an even number of nodes.

Farley’s lower bound is realized by such cycles; this bound states that the minimum broadcast time

is equal to2 · (M − 1) + D, whereM represents the number of messages being broadcast andD

represents the diameter of the graph [F80]. Since we are dealing with a cycle,D = ⌊n
2
⌋ and since

we are only interested in broadcasting one message,M = 1. Using this information, we calculate

the minimum broadcast time for the cycle to be⌊n
2
⌋. Figure (4.5) shows a broadcast algorithm on

Cn wheren is even, which obtains this bound. Figure (4.6) shows Algorithm (4.4.1) onC3n−4 with

2 chords dividing the cycle into3 smaller cycles of equal length (i.e., each smaller cycle contains

n nodes). In Figure (4.5), the last nodes to be informed are informed at time⌊n
2
⌋. Since Algorithm

(4.4.1) begins sending to nodea 2 time units later than the chordless cycle algorithm, by time⌊n
2
⌋,

we have2 nodes,x andy, that have not yet been informed (refer to Figure (4.6)). In the next

time step (i.e., at time⌊n
2
⌋ + 1), nodey can be informed via nodez and nodex can be informed

via nodew, which completes the broadcast. Therefore, the time required to broadcast in cycleA,

when cycleA contains an even number of nodes is⌊n
2
⌋ + 1, which is equal to⌈n

2
⌉ + 1.

a .  .  .
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3 3

.  .  . . . . .
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floor
(n/2)

Figure 4.5: Case1: Broadcasting inCn wheren is even, using the chordless cycle algorithm.
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Figure 4.6: Case1: Broadcasting inC3n−4 wheren is even, using Algorithm (4.4.1).

Case2: CycleA contains an odd number of nodes.

Farley’s lower bound cannot be achieved in such cycles; since there are two nodes which are both

the maximum distance from the originator. The time requiredto broadcast is2 · (M − 1) + D + 1.

Once again,D = ⌊n
2
⌋ andM = 1; thus the time required to broadcast becomes⌊n

2
⌋ + 1. Figure

(4.7) shows the chordless cycle algorithm onCn wheren is odd, which achieves this bound. Figure

(4.8) shows Algorithm (4.4.1) onC3n−4 with two chords dividing the cycle into3 smaller cycles

of equal length (i.e., each smaller cycle containsn nodes). In Figure (4.7), the last node to be

informed is informed at time⌊n
2
⌋ + 1. Since Algorithm (4.4.1) begins sending to nodea 2 time

units later than the chordless cycle algorithm, by time⌊n

2
⌋+ 1, we have1 node,x, that has not yet

been informed (refer to Figure (4.8)). In the next time step (i.e., at time⌊n
2
⌋ + 1 + 1 = ⌊n

2
⌋ + 2),

nodex can be informed by either of its neighbors, which completes the broadcast. Therefore, the

time to broadcast in cycleA, when cycleA contains an odd number of nodes is⌊n
2
⌋ + 2, which is

equal to⌈n
2
⌉ + 1.
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Figure 4.7: Case2: Broadcasting inCn wheren is odd, using the chordless cycle algorithm.
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Figure 4.8: Case2: Broadcasting inC3n−4 wheren is odd, using Algorithm (4.4.1).
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4.6 Alternative Placement of the Chords

In Section (4.2), we determined that the first chord added to the cycle must use the originator as

one of its endpoints and that the second chord must share an endpoint with the first chord. Thus,

the shared endpoint must be either the originator or the nodeinformed at time1. In Section (4.3),

we considered the case in which the originator was the sharedendpoint. We now consider the

case in which the node informed at time1 is the shared endpoint. Adding two chords to a cycle,

in the manner that we have explained, creates three smaller cycles that share some endpoints. As

discussed in Section (4.3), we want to position the endpoints of the chords so that we create3

equal size (or as close to equal size as possible) cycles, so that each of these cycles has the ability

to complete broadcasting in approximately the same amount of time, depending upon when the

first node in the cycle is informed. Using Algorithm (4.6.1),we are able to calculate the positions

for all endpoints of the chords; in this algorithm, we assumethat all of the nodes of the cycle

have been consecutively numbered clockwise beginning withthe originator numbered0 and thatn

represents the total number of nodes in the graph. Figure (4.9) shows the results of using Algorithm
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(4.6.1) to add2 chords to a cycle containing16 nodes.

Function ALTERNATIVECHORDPLACEMENTALG(G, n)

1: Divide (n + 4) by 3 in order to obtain a quotient,w, and a remainder,r.
2: if (r > 0) then
3: c1 = w + 1
4: r = r − 1
5: else
6: c1 = w

7: end if
8: if r > 0 then
9: c2 = w + 1

10: else
11: c2 = w

12: end if
13: Draw a chord from the originator to nodec1 − 1.
14: Draw a chord from the nodec1 − 1 to nodec1 − 1 + c2 − 1.

Algorithm 4.6.1: Algorithm to place2 chords into a cycle.
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Figure 4.9: Adding2 chords to a cycle using Algorithm (4.6.1).

4.7 The Two Chord Non-Originator Algorithm

Algorithm (4.7.1) considers broadcasting in a cycle with2 chords, such that both chords share

the node informed at time1 as a common endpoint. We call this the Two Chord Non-Originator

(TCNO) algorithm. When the chords are added to the cycle, they create three cycles which share

some edges. Working in a clockwise fashion around the original cycle, we will call the first small

cycle that we encounter, cycleA, the second, cycleB, and the third, cycleC. TCNO proceeds
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by the originator first sending the message across the chord.Then the message is sent across the

other chord, while the originator sends to its neighbor in cycle A. Algorithm (4.7.1) is a formal

description of our technique. See Figure (4.10) for an example of broadcasting using Algorithm

(4.7.1).

Function TCNO(G, n)

1: The originator sends across the chord.
2: The originator sends to its neighbor in cycleA, while the node informed in step1 sends across

the other chord.
3: The originator sends to its neighbor in cycleC, the node informed in step1 sends to its neigh-

bor in cycle B, the node informed by the chord in step2 sends to its neighbor in cycleB and
the other node informed in step2 sends to its uninformed neighbor.

4: The node informed in step1 sends to its neighbor in cycleA, the node informed by the chord in
step2 sends to its neighbor in cycleC and all nodes informed in step3 send to their uninformed
neighbor.

5: while Not all nodes are informed.do
6: Nodes informed in the previous step send to their uninformedneighbor.
7: end while

Algorithm 4.7.1: Two Chord Non-Originator Algorithm
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Figure 4.10: Broadcasting inC16 with two chords using Algorithm (4.7.1).

4.8 Correctness and Analysis of TCNO

The correctness of Algorithm (4.7.1) follows from the observations below.
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1. The message arrives at a node before that node can pass the message on to another node.

This follows clearly from the way the algorithm is defined.

2. At any given time, any node may act as either a sender or receiver of a message, but not both.

This occurs since each node is used at most once in each step.

3. At the end of the broadcast algorithm, every node in the network has received the message.

This is obvious from the condition of the while loop in the algorithm.

Lemma 4.8.1 The time required to broadcast in Algorithm (4.7.1) is equal to ⌈n
2
⌉ + 1, where n

represents the number of nodes in the largest cycle formed by the chords (cycle A).

Proof: According to Algorithm (4.6.1), cycleA will always be as large or larger than cycle

B and cycleC. Both Algorithm (4.3.1) and Algorithm (4.6.1) place the firstchord in the same

position in a given cycle (i.e., no matter which algorithm weuse, cycleA will be exactly the same)

and after time3, each small cycle contains the same number,4, of informed nodes. After time3,

broadcasting proceeds in each of the smaller cycles using the chordless cycle algorithm. This is

precisely the same scenario that occurred using Algorithm (4.4.1). Thus, both Algorithm (4.4.1)

and Algorithm (4.7.1) will complete broadcasting at the same time (i.e.,⌈n
2
⌉ + 1.) 2

4.9 Results

In this chapter, we developed2 algorithms for the placement of2 chords into a cycle. The first

algorithm dealt with the case when the originator was the shared endpoint of the chords, while the

second algorithm dealt with the case when the node informed at time1 was the shared endpoint of

the chords. We developed and analyzed broadcasting algorithms for each of these cases. We found
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that the running time of both broadcasting algorithms was equal; therefore, it makes no difference

whether one chooses to make the originator the shared endpoint of the chords or the node informed

at time1 the shared endpoint of the chords.
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Chapter 5

Multiple Message Broadcasting in Cycles

with Chords

5.1 Background

Thus far, we have presented several algorithms for broadcasting a single message in a cycle with

one and two chords, respectively. Often times, it is necessary to broadcast a large file over a

computer network. Assuming that each message (file) to be passed requires only one call taking a

single time unit is not very realistic. Considering a large file, it is usually the case that the file is

broken up into many small pieces (messages) by the sending computer and then reassembled by

the receiving computer.

Multiple message broadcasting occurs when one node hasm messages which must be sent to

all other nodes in a network,G = (V,E), subject to the following constraints.
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1. Each call involves two nodes.

2. Each call requires only one unit of time.

3. A node can only call a node with which it shares an edge.

4. Only one message is sent during a single call.

5. A message must arrive at a node before that node can pass themessage on to another node.

6. At any given time unit, any node may act as either a sender ora receiver of a message, but

not both.

7. At the end of a multiple message broadcast algorithm, every node in the network has received

every message.

The following are two obvious approaches to the problem of broadcasting multiple messages.

1. Repeat a single message algorithmm times.

2. Modify a single message algorithm, so that each call now usesm time units.

Each of these approaches takesm · t time, wherem is the number of messages to be sent andt

is the time taken to broadcast a single message using the single message algorithm. Thus, sim-

ple modifications to a single message broadcasting scheme are not efficient enough to broadcast

multiple messages.

Farley was the first to study multiple message broadcasting in general connected graphs [F80].

He definedbm(v) for v ∈ V to be the minimum number of time units required to broadcastm

messages from nodev throughout a connected graphG = (V,E), when|V | = n. He also defined
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the broadcast time of a graphG, Bm(G), as follows.

Bm(G) =
max
v ∈ V bm(v)

Farley then developed the following bounds forBm(G) for any connected graph,G, with diameter,

D, and the maximum degree of any node,dmax.

2 · (m − 1) + D ≤ Bm(G) ≤ dmax · (m − 1) + (n − 1)

Farley’s lower bound is realized in cycles with an even number of nodes (see Figure (5.1)). The

upper bound is realized in paths and stars (see Figure (5.2)).

1, 3
2, 4

2, 43, 5

3, 5

Figure 5.1: Multiple message broadcasting inC6 using the chordless cycle algorithm.
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Figure 5.2: Multiple message broadcasting in a path with6 nodes and a star with6 nodes.

Farley’s lower bound cannot be achieved in a cycle with an oddnumber of nodes, since there

are2 nodes at the maximum distance from the originator, an additional time unit is required (see
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Figure (5.3)). The time required to broadcast in a cycle withan odd number of nodes is equal to

2 · (m − 1) + ⌊n
2
⌋ + 1, where2 represents the time delay between a node receiving consecutive

messages,(m−1) represents the number of additional messages to be sent (after the first message)

and⌊n
2
⌋ + 1 represents the time taken to broadcast the first message to all n nodes in the graph.

1, 3
2, 4

2, 43, 5

3, 54, 6

Figure 5.3: Multiple message broadcasting inC7 using the chordless cycle algorithm.

In this chapter, we will examine multiple message broadcasting in cycles with one and two

chords, respectively.

5.2 Multiple Message Broadcasting in a Cycle with a Single

Chord

Does the addition of a single chord decrease the time required to broadcast multiple messages in a

cycle? We start by comparing Farley’s upper and lower boundson a chordless cycle with Farley’s

upper and lower bounds on a cycle with a single chord. All nodes in a chordless cycle have degree

2 and that the diameter of such a cycle is⌊n
2
⌋, wheren is the number of nodes in the cycle. This

gives us the following bounds for a chordless cycle.

2 · (m − 1) + ⌊
n

2
⌋ ≤ Bm(G) ≤ 2 · (m − 1) + (n − 1)
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On the other hand, the maximum degree of any node in a cycle with a single chord is3, while the

diameter of such a cycle remains⌊n
2
⌋, which is realized by choosing two nodes in the cycle that

are the maximum distance from each other and do not benefit from the use of the chord (see Figure

(5.4)). This gives us the following bounds for a cycle with a single chord.

2 · (m − 1) + ⌊
n

2
⌋ ≤ Bm(G) ≤ 3 · (m − 1) + (n − 1)
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Figure 5.4: The diameter of cycles with a single chord remains ⌊n
2
⌋.

The lower bound of a chordless cycle is equal to the lower bound of a cycle with a single chord.

Farley’s lower bound can be achieved in a chordless cycle with an even number of nodes using the

chordless cycle multiple message broadcasting algorithm;therefore, Farley’s lower bound can be

achieved in a cycle with a single chord and an even number of nodes (i.e., we would simply ignore

the chord and use the chordless cycle multiple message broadcasting algorithm). However, in the

case of a chordless cycle with an odd number of nodes, Farley’s lower bound cannot be achieved,

since there are two nodes distanceD from the originator, one additional time unit is required for

broadcasting. So, we ask the question: Can Farley’s lower bound be achieved in a cycle with

a single chord and an odd number of nodes? The location of the originator is important in this

investigation; if the originator happens to be a node halfway between the endpoints of the chord,
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the chord will provide no benefit to the graph. As shown in Chapter 3, positioning the chord so

that it cuts the cycle in half and the originator forms one endpoint of the chord allows us to inform

the maximum number of nodes in the minimum amount of time. Therefore, we will assume that

the originator forms one of the endpoints of the chord and we will use the chord to divide the cycle

in half. A simple modification to our algorithm for broadcasting a single message in a cycle with a

single chord, such as repeating the single message broadcast schemem times or having each call

takem time units, is not efficient. If we treat the messages as a single set, sending each message

out from the originator following the same broadcast scheme, and the nodes with three edges do

not make use of all three of their edges (i.e., they do not makeuse of branching), we would simply

be broadcasting in a chordless cycle (see Figure (5.5)). However, when all3 of a node’s edges are

used, a delay of3 time units is introduced between messages leaving the originator, since at least

one node in the graph is busy for3 time units (see Figure (5.6)). The time required to broadcast

a single set of multiple messages in such a graph is3 · (m − 1) + t, where3 represents the delay

between messages (i.e., the coefficient of the message term), m represents the number of messages

to be broadcast andt represents the time required to broadcast the first message.According to

Farley’s lower bound,t can be no less than the diameter of the graph,D, which is equal to⌊n
2
⌋.

Thus, a lower bound of the expression is3 · (m− 1) + ⌊n
2
⌋. Comparing this expression to the time

required to broadcast multiple messages in a chordless cycle with an odd number of nodes (i.e.,

2 · (m − 1) + ⌊n
2
⌋ + 1), it is obvious that the latter algorithm is more efficient. Therefore, adding

a single chord to a cycle does not decrease the time required to broadcast a single set of multiple

messages.
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Figure 5.5: Performing multiple message broadcasting using a maximum of2 of any node’s edges.
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Figure 5.6: Performing multiple message broadcasting using all 3 edges of a node.

In order to improve upon the time taken to broadcast multiplemessages in a chordless cycle

with an odd number of nodes, we must keep the coefficient of themessage term equal to2. The

coefficient of the message term correlates to the delay between messages and in order to keep

the coefficient small, we must keep branching to a minimum, since each time we branch, we

increase the number of time units during which a node is busy.As an example, refer to Figure

(5.6). Considering the graphs in the example from left to right, in the first graph, the originator is

busy sending the first message for3 time units; thus, it cannot begin to send the second message

until time 4. Although, the originator is only busy for2 time units in the second graph, the node
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informed at time1 is busy for3 time units, which causes the originator to wait3 time units before

sending the second message. Since, at time3, if the originator sent a second message to the node

informed at time1, this node would be receiving the second message from the originator at the

same time that it was sending the first message to one of its neighbors and such an action is not

permitted, according to the definition of multiple message broadcasting (i.e., at any given time unit,

any node may act as either a sender or a receiver of a message, but not both). In the third graph,

both the originator and the node informed at time1 are busy for3 time units; thus, the originator

cannot begin to send the second message until time4.

In an attempt to decrease the coefficient of the message term,thereby making multiple message

broadcasting more efficient, several authors including [G06, VB94, V79, WV96] and [W99] have

developed methods for multiple message broadcasting, wherein, the messages are divided into

multiple sets (such as a set of odd messages and a set of even messages) and each set uses a

different broadcast scheme in order to deliver a message to every node in the graph. As an example,

Figure (5.7) depicts a multiple message algorithm developed by Wojciechowska in [W99] which

broadcasts multiple messages in a grid by dividing the messages into an odd set and an even set.
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Figure 5.7: Performing multiple message broadcasting in a grid by dividing the messages into two
sets [W99].

In order to calculate the coefficient of the message term, when using multiple sets of messages,

we must first locate the node that requires the largest numberof time units to broadcast one message

from each of thek sets of messages (let us call this nodeb). We then calculate the total number

of time units that nodeb requires to broadcast one message from each of thek sets and divide this

51



number by the number of sets of messages (i.e.,k). For example, let us say that a given broadcast

algorithm divides its messages into an odd set and an even setand that the busiest node (nodeb)

requires1 time unit to broadcast an odd message and3 time units to broadcast an even message.

Then, nodeb requires a total of4 time units to complete broadcasting one message from each set.

Since this is the busiest node and it requires4 time units to broadcast2 messages, the coefficient

of the message term is4
2

= 2.

In order to keep the coefficient of the message term equal to2, every node of the graph must

use no more than2 · k time units to complete broadcasting a single message from each ofk sets of

messages.

Referring to Figure (5.8), all nodes, except the originator and the node forming the other end-

point of the chord (let us call this nodey), have exactly2 edges connecting the node to other nodes

of the graph. These non-chord endpoint nodes can be busy for at most2 time units per message,

since, according to the definition of multiple message broadcasting, a node can only send to an

uninformed neighbor (i.e., a node can only receive each message once). Obviously, none of these

non-chord endpoint nodes will increase the coefficient of the message term beyond2. Therefore,

the originator and nodey are the only nodes that we will consider, when attempting to limit the

coefficient of the message term to2. We will refer to these nodes as branching nodes, since they

each have the ability to inform more than one node of a message.
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y

Figure 5.8:C11 with a single chord dividing the cycle in half.

According to the definition of multiple message broadcasting, at the end of the broadcast algo-

rithm, every node in the network has received every message;thus, each node, except the origi-

nator, must require at leastk time units to complete broadcasting allk messages (i.e., each node

requires1 time unit to receive each of thek messages). The originator knows allk messages at the

beginning of the broadcast algorithm; thus, it will never spend any time units receiving messages

(i.e., it can spend all of its2 · k time units sending messages). The originator is connected to the

rest of the graph via exactly3 edges; therefore, the originator may inform at most3 uninformed

nodes of a message (i.e., the nodes connected to it via the3 edges - its neighbors). However, the

originator cannot make use of all3 of its edges when sending every message, since this would

cause the coefficient of the message term to be6
2

= 3 rather than2.

We now consider nodey; this node, like the originator, is connected to the rest of the graph via

exactly3 edges. However, unlike the originator, nodey must receive every message. Thus, for

any given message, nodey may inform at most2 uninformed neighbors, since it must use the third

edge to receive the message. Nodey cannot make use of both edges when sending each message,
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since this would cause the coefficient of the message term to be 3 rather than2. Furthermore, if

nodey is not informed via the originator, it may inform at most1 uninformed neighbor, since the

originator already knows all of the messages.

The chordless cycle algorithm is able to broadcast multiplemessages in odd cycles in time equal

to 2 · (m− 1)+ ⌊n
2
⌋+1, wherem is equal to the number of messages andn is equal to the number

of nodes in the cycle. According to this equation, the coefficient of the message term is2; the first

message completes broadcasting at time equal to⌊n

2
⌋ + 1 (let us call this timet) and consecutive

messages complete broadcasting every2 time units later. In order to improve upon the efficiency of

the chordless cycle algorithm for broadcasting multiple messages, while keeping the coefficient of

the message term equal to2, we must limitt. Since we are broadcasting messages from multiple

sets,t is now the maximum amount of time it takes to broadcast the first message from a set.

For example, let us say that we divide the messages into an oddset and an even set and that the

first odd message completes broadcasting in time equal to2 · n + 1 and the first even message

completes broadcasting in time equal to2 ·n+2. Then,t = 2 ·n+2, since this the maximum time

taken by a set to complete broadcasting of the first message from the set. Farley’s lower bound

for broadcasting in a chordless cycle and Farley’s lower bound for broadcasting in a cycle with a

single chord are equal (i.e.,2 · (m−1)+⌊n
2
⌋, wherem is equal to the number of messages andn is

equal to the number of nodes in the cycle); therefore, the best we can do is to decrease the amount

of time taken to broadcast the first message by a single time unit, which will, in turn, decrease the

amount of time taken to broadcast each additional message bya single time unit.

It is not possible to broadcast a message in an odd length chordless cycle in time less than

⌊n
2
⌋+1, since there are exactly2 nodes as far away as possible from the originator. In other words,

if each node makes use of exactly2 edges, we cannot broadcast a message in an odd length cycle
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in time less than⌊n
2
⌋ + 1. When attempting to broadcast a message in an odd length cyclein time

equal to⌊n
2
⌋, we must add a chord and make use of the chord. In order to keep the coefficient

of the message term at2, while improving upon the efficiency of the chordless cycle algorithm

for broadcasting multiple messages, we want to divide the messages into multiple sets and use a

different branching node for each set of messages.

Since we must use different branching nodes for each set of messages and we have only2

branching nodes from which to choose, we will divide the messages into2 sets (an odd set and an

even set). One set of messages will use the originator as its branching node and the other set of

messages will use nodey as its branching node.

In order to improve upon the efficiency of the chordless cyclemultiple message broadcasting

algorithm, the first message from each set must complete broadcasting within⌊n
2
⌋ time units.

Broadcasting using a maximum of2 edges of each node will not achieve this time bound, since

when we make use of only2 edges of each node, every message must follow one of just2 possible

paths (see Figure (5.9)). In order to decrease the number of time units required to broadcast the

first message, we must make use of at least3 paths. The only nodes that have the ability to create

3 paths are the2 branching nodes (i.e., the originator and nodey), each of which has3 neighbors.

The originator may send to all three of its neighbors, allowing it to create3 paths; however, nodey

must receive the message through one of its neighbors, whichleaves it a maximum of2 neighbors

that it may inform, allowing it to create a maximum of2 paths (see Figure (5.10)). In order for

nodey to inform2 of its uninformed neighbors, it must receive the message from the originator.
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Figure 5.9: When each node uses a maximum of2 of its edges for broadcasting, all nodes are
informed via 1 of only2 paths.
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Figure 5.10: (a) The movement of messages out of the originator. (b) The movement of messages
out of nodey.

Without loss of generality, we will assume that odd messageswill use the originator as their

branching node; when sending an odd message, the originatorwill use all 3 of its neighbors.

Nodey is one of the originator’s neighbors; therefore, nodey will receive odd messages from

the originator via the chord. However, once nodey receives an odd message, it may not send

the message to either of its neighbors, since nodey may not be busy for more than4 time units

for every2 messages (i.e., the coefficient of the message term must remain 2) and nodey is used
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as a branching node for even messages (i.e., it is busy for3 time units for each even message).

According to the definition of a multiple message broadcast algorithm, every node in the network

must receive every message; since nodey may not send an odd message to any of its neighbors,

all nodes except the originator and its neighbors must receive odd messages from either node1 or

noden − 1, when the nodes are numbered clockwise, beginning with the originator numbered0.

More specifically, if we label the larger cycle formed by the chord cycleA and the smaller cycle

formed by the chord cycleB, all nodes in cycleA, except the originator and its neighbors, will be

informed of an odd message via a path through node1. Likewise, all nodes in cycleB, except the

originator and its neighbors, will be informed of an odd message via a path through noden − 1.

See Figure (5.11) for an example.

10 1

y

cycle B

cycle A

Figure 5.11: The movement of odd messages throughC11 with a single chord dividing the cycle in
half.

Using the broadcast scheme for odd messages presented in Figure (5.11), it is possible to broad-

cast the first message odd message in time equal to⌊n
2
⌋. Figure (5.12) gives an example of broad-

casting an odd message inC11 using this scheme.
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Figure 5.12: Broadcasting an odd message inC11 in time equal to⌊n
2
⌋.

Now that we have an algorithm that achieves the⌊n
2
⌋ time bound for sending odd messages, we

will attempt to find a second algorithm that uses nodey as its branching node and also achieves

this time bound. Since the originator is busy sending odd messages at time step1 and time step

2, this second algorithm will begin broadcasting2 time units later than the first algorithm and will

send even messages.

When sending an even message, nodey will act as the branching node, using all3 of its neigh-

bors. We have already shown that in order for nodey to inform the maximum number of unin-

formed nodes, it must receive each even message from the originator. Nodey will then inform

node⌊n
2
⌋ and node⌊n

2
⌋ + 2 of the message. Once the originator sends an even message to node

y, it may not send the even message to any of its other neighbors, since it is busy for3 time units

for every odd message and it may not be busy for more than4 time units for every2 messages.

Therefore, all nodes except nodey and its neighbors must receive even messages from either node

⌊n
2
⌋ or node⌊n

2
⌋+2. More specifically, all nodes in cycleA, except nodey and its neighbors, must

be informed via a path through node⌊n
2
⌋. Likewise, all nodes in cycleB, except nodey and its

neighbors, must be informed via a path through node⌊n
2
⌋ + 2. See Figure (5.13) for an example.

58



floor
(n/2)+2

floor
(n/2)y

cycle B

cycle A

Figure 5.13: The movement of even messages throughC11 with a single chord dividing the cycle
in half.

As shown in Figure (5.13), when broadcasting using nodey as the branching node, every even

message must follow one of just2 possible paths. We have already shown that it is not possibleto

complete broadcasting in time equal to⌊n
2
⌋, when just2 paths are used. Therefore, we conclude

that it is not possible to broadcast multiple messages in an odd length cycle with a single chord in

time less than2 · (m − 1) + ⌊n
2
⌋ + 1.

5.3 Multiple Message Broadcasting in a Cycle with Two Chords

Does the addition of a second chord decrease the time required to broadcast multiple messages in

a cycle? We would like to begin our investigation by comparing Farley’s upper and lower bounds

on a chordless cycle with Farley’s upper and lower bounds on acycle with two chords; however,

before we can do this, we must calculate the diameter of a cycle with two chords. As shown in

Chapter 4, positioning the chords so that they share an endpoint and cut the cycle into three smaller,

equal size cycles and the originator forms the shared endpoint, allows us to inform the maximum
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number of nodes in the minimum amount of time. Therefore, we will assume that the originator

is the shared endpoint and we will use the chords to divide thecycle into three smaller, equal size

cycles. This can be done using Algorithm (4.3.1); see Figure(4.3) for an example.

In order to calculate the diameter for this graph, we must locate two nodes (x andy) in the

graph that are the maximum distance apart; then, calculate the distance between these two nodes.

Obviously, these nodes must be in different cycles. According to Algorithm (4.3.1), cycleA is

always as large or larger than cycleB and cycleC; therefore, one of the nodes (let us say nodex)

will be located in cycleA. If nodex is located in cycleA, then nodey must be located in either

cycleB or cycleC and will be as far away as possible from nodex. Let us say that nodey1 is

the node in cycleB that is located as far away as possible from any node in cycleA and that node

y2 is the node in cycleC that is located as far away as possible from any node in cycleA. We

must determine which node (y1 or y2) is furthest away from any node in cycleA. According to

Algorithm (4.3.1), either cycleB and cycleC are the same size, or cycleB is one node larger than

cycle C. Focusing on the number of nodes in these cycles that are alsolocated in cycleA, we

find that2 nodes of cycleB are also located in cycleA, whereas only a single node of cycleC is

also located in cycleA. The faster a message can move from nodey into cycleA, the faster the

message can move from nodey to nodex. Thus, nodey2 is at least as far away from any node in

cycleA as is nodey1; thus, nodey will be located in cycleC.

Now that we know the general location of nodex and nodey, we will begin by locating the node

in cycleA that is as far away as possible from any node in cycleC. Since the shared endpoint is

the only node that is a member of both cycleA and cycleC, the shared endpoint will be the first

node from cycleC that we encounter when moving from nodex to nodey. Therefore, we will

label the node in cycleA that is as far away as possible from the shared endpoint, nodex. We can
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use the following formula to locate nodex: ⌈ c1
2
⌉, wherec1 is defined by Algorithm (4.3.1). Figure

(5.14) uses this formula to locate nodex (remember, the nodes of the cycle have been consecutively

numbered clockwise beginning with the shared endpoint, which is numbered node0).
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Figure 5.14: Locating nodex in C16 with two chords.

We must now locate a node,y, that is as far away as possible from nodex. This node will be

located in cycleC and will be as far away as possible from the shared endpoint. The following

formula can be used to calculate the position of nodey: n−⌊w
2
⌋, wheren represents the number of

nodes in the cycle andw is defined by Algorithm (4.3.1). Figure (5.15) uses this formula to locate

nodey.
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Figure 5.15: Locating nodey in C16 with two chords.

Now that we have established the location of nodex and nodey, we must find the fastest way to

move from nodex to nodey. The shared endpoint (node0) is contained in both cycleA and cycle
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C; our goal is to arrive at node0 as quickly as possible (i.e., we want to move the message from

one cycle to the other as quickly as possible). Examining thelocation of nodex (⌈ c1
2
⌉), we find

that the shortest path from nodex to node0 is by way of the first chord. Focusing on cycleA, node

x is as far away as possible from node0. Since cycleA is itself a chordless cycle of lengthc1, the

distance between node0 and nodex is ⌊ c1
2
⌋ (i.e., the diameter of chordless cycleA). Examining

the location of nodey (i.e.,n−⌊w
2
⌋), we find that the shortest path from node0 to nodey is by way

of the edges of the original chordless cycle. Focusing on cycle C, nodey is as far away as possible

from node0. Since cycleC is itself a chordless cycle of lengthw, the distance between node0 and

nodey is ⌊w
2
⌋ (i.e., the diameter of chordless cycleC). Combining the distances between node0

and nodex and node0 and nodey, we have⌊ c1
2
⌋ + ⌊w

2
⌋, which is the diameter of the graph.

CycleA and cycleC each contain approximately one-third of the total nodes,n in the graph.

Furthermore, according to Algorithm (4.3.1), cycleA will either be the same size as cycleC or

cycleA will contain one more node than cycleC. Thus, the worst case for the diameter occurs

when cycleA and cycleC both contain the same number of nodes (i.e.,n+4
3

nodes), which gives

us a diameter for the graph of2 · ⌊
n+4

3

2
⌋.

Now that we have calculated the diameter for a cycle with two chords that cut the cycle into

three smaller, equal size cycles and share an endpoint, we can compare Farley’s upper and lower

bounds on a chordless cycle with Farley’s upper and lower bounds on a cycle with two chords.

All nodes in a chordless cycle have degree2 and the diameter of such a cycle is⌊n
2
⌋, wheren is

the number of nodes in the cycle. This gives us the following bounds for a chordless cycle.

2 · (m − 1) + ⌊
n

2
⌋ ≤ Bm(G) ≤ 2 · (m − 1) + (n − 1)

The chordless cycle multiple message broadcasting algorithm is able to achieve Farley’s lower
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bound in even cycles and requires only a single additional time unit to broadcast in odd cycles (i.e.,

2 · (m − 1) + ⌊n
2
⌋ + 1).

On the other hand, the maximum degree of any node in a cycle with two chords that share an

endpoint is4; while we have shown that, in the worst case, the diameter of such a cycle is2 ·⌊
n+4

3

2
⌋.

This gives us the following bounds for a cycle with two chords.

2 · (m − 1) + 2 · ⌊
n+4

3

2
⌋ ≤ Bm(G) ≤ 4 · (m − 1) + (n − 1)

The lower bound of a cycle with two chords that share an endpoint is better than the lower bound

of an equal size chordless cycle. Therefore, we will attemptto find an algorithm that will achieve

this lower bound.

We already know that a simple modification to our algorithm for broadcasting a single message

in a cycle with two chords that share an endpoint, such as repeating the single message broadcast

schemem times or having each call takem time units, is not efficient.

When attempting to find an efficient algorithm for broadcasting in a cycle with two chords, in

order to be at least as efficient as the chordless cycle multiple message broadcasting algorithm,

we must keep the coefficient of the message term equal to2. The coefficient of the message term

correlates to the delay between messages and a delay is introduced for each time unit that a node

is busy broadcasting a message. In order to keep the coefficient of the message term equal to2, we

must keep branching to a minimum.

If we treat the messages as a single set, sending each messageout from the originator following

the same broadcast scheme, then, in order to limit the coefficient of the message term to2, a node

can be busy for no more than2 time units (allowing for a delay of2 between messages). This

means that both the originator and the node at the other end ofeach chord can use at most2 of
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their edges. The originator has4 edges; in determining which edges to use, we could choose both

chords, both original chordless cycle edges or one chord andone original chordless cycle edge (see

Figure (5.16)).

cycle
A

cycle
C

cycle
B

Figure 5.16:C16 with two chords, which share an endpoint, dividing the cycleinto three smaller,
equal size cycles.

If we choose to use both chords as the originator’s broadcasting edges, then each non-originator

node at the end of the chord could send in at most one direction, since it can be busy for at most

2 time units and one of those time units is needed for receivingthe message from the originator.

Since each non-originator endpoint can only choose to send in a single direction, there will always

be one segment of the graph that will not receive the message.For example, let us label the non-

originator endpoint of the chord separating cycleA and cycleB, nodea and the non-originator

endpoint of the chord separating cycleB and cycleC, nodeb and let nodea receive the message

and send to its neighbor in cycleA. Then, let nodeb receive the message and send to its neighbor

in cycleC. There is no way for the non-chord endpoint nodes of cycleB to receive the message
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without introducing a delay of3 (see Figure (5.17)). Therefore, it is not feasible to use both chords

when sending a single set of messages and limiting the coefficient of the message term to2.

b

a

cycle
A

cycle
C

cycle
B

Figure 5.17: Broadcasting inC16, using just two of each node’s edges, when the originator uses its
chords as broadcasting edges.

If we choose both original chordless cycle edges as the originator’s broadcasting edges, then we

are simply broadcasting in a chordless cycle. An efficient algorithm already exists for broadcasting

multiple messages in a chordless cycle.

Our final option is to make use of one chord and one original chordless cycle edge as the orig-

inator’s broadcasting edges. Again, in order to limit the coefficient of the message term to2, the

non-originator chord endpoint can only send in a single direction, since it must receive the mes-

sage from the originator. In order to inform all of the nodes in the graph, the non-originator chord

endpoint must send in the opposite direction of the chordless cycle edge that is being used (see

Figure (5.18)).
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Figure 5.18: Broadcasting inC16, when the originator uses one chord and one original chordless
cycle edge as broadcasting edges.

Regardless of the chordless cycle edge and chord that we choose, either the original chordless

cycle edge will need to inform approximately one-third of the nodes via a single path and the non-

originator chord endpoint will need to inform the remainingnodes (i.e., approximately two-thirds

of the nodes) via a single path or vice versa. Although, we have limited the coefficient of the

message term to2, we have increased the time required to send the first messagefrom, at most,
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⌊n
2
⌋+1, which can be achieved using the chordless cycle multiple message broadcasting algorithm,

to approximately2·n
3

. Therefore, using one chord and one original chordless cycle edge will not

improve upon the amount of time needed to broadcast multiplemessages.

We conclude that, when performing multiple message broadcasting using a single set of mes-

sages in a cycle with two chords, using the chordless cycle algorithm for multiple message broad-

casting is more efficient than using an algorithm that makes use of one or more of the chords. We

will now attempt to improve upon the efficiency of the chordless cycle multiple message broad-

casting algorithm by using multiple sets of messages, in order to develop a multiple message

broadcasting algorithm that makes use of one or more of the cycle’s chords.

When broadcasting using multiple sets of messages, we hope tolimit the coefficient of the

message term by requiring each set of messages to use a different broadcast scheme to deliver

the message to every node in the graph. In order to be at least as efficient as the chordless cycle

algorithm, we need to keep the coefficient of the message termequal to2. Therefore, every node

of the graph must use no more than2 ·k time units to complete broadcasting a single message from

each ofk sets of messages.

Referring to Figure (5.16), all nodes, except the originatorand the nodes forming the other

endpoint of the chords (let us call these nodesa andb), have exactly2 edges connecting the node

to other nodes of the graph. These non-chord endpoint nodes will be busy for at most2 time

units per message (one time unit receiving the message and possibly, another time unit sending to

an uninformed neighbor). Obviously, none of these non-chord endpoint nodes will increase the

coefficient of the message term beyond2; therefore, the originator, nodea and nodeb are the only

nodes that we will consider when attempting to limit the coefficient of the message term to2. We

will refer to these nodes as branching nodes, since they eachhave the ability to inform more than
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one node.

The chordless cycle algorithm is able to broadcast multiplemessages in time equal to2 · (m −

1) + ⌊n
2
⌋ + 1, in odd cycles, and in time equal to2 · (m − 1) + ⌊n

2
⌋, in even cycles, wherem is

equal to the number of messages andn is equal to the number of nodes in the cycle. According to

these equations, the coefficient of the message term is2, the first message completes broadcasting

at time equal to⌊n
2
⌋ + 1, in odd cycles (let us call this timet1), and at time equal to⌊n

2
⌋, in even

cycles (let us call this timet2), and in each case, consecutive messages complete broadcasting

every2 time units later. In order to improve upon the efficiency of the chordless cycle algorithm

for multiple messages, while keeping the coefficient of the message term equal to2, we must limit

t1 andt2. Since we are broadcasting messages from multiple sets,t1 is now the maximum amount

of time it takes to broadcast the first message from a set in an odd cycle andt2 is the maximum

amount of time it takes to broadcast the first message from a set in an even cycle. For example, let

us say that we are working with an even cycle and we divide the messages into an odd set and an

even set and that the first odd message completes broadcasting in time equal to2 · n + 2 and the

first even message completes broadcasting in time equal to2 · n + 1. Then,t2 = 2 · n + 2, since

this the maximum time taken by a set to complete broadcastingof the first message from the set in

a even cycle. In the above example, it is important to realizethe difference between an odd/even

cycle and an odd/even set. An odd/even cycle refers to the number of nodes in the original cycle;

if the number of nodes is odd, then the cycle is referred to as an odd cycle. Likewise, if the number

of nodes is even, then the cycle is referred to as an even cycle. Regardless of whether the original

cycle is odd or even, the messages being broadcast through the cycle are divided into two sets (i.e.,

an odd set and an even set). Farley’s lower bound for broadcasting in a chordless cycle is equal to

2 · (m − 1) + ⌊n
2
⌋ and Farley’s lower bound for broadcasting in a cycle with twochords is equal
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to approximately2 · (m − 1) + 2 · ⌊
n+4

3

2
⌋; wherem is equal to the number of messages andn is

equal to the number of nodes in the cycle, for both bounds. Since the first term in each of the above

equations is equal (i.e.,2 · (m − 1)), the best we can do is to decrease the amount of time taken

to broadcast the first message, which will, in turn, decreasethe amount of time taken to broadcast

each additional message.

If each node makes use of exactly2 edges, we cannot broadcast a message in a cycle with

two chords in time less than that taken by the chordless cyclealgorithm, since when we complete

broadcasting making use of only2 edges of each node, every message must follow one of just

2 possible paths (see Figure (5.19)). In order to decrease thenumber of time units required to

broadcast the first message, we must make use of at least3 paths. The only nodes that have the

ability to create multiple paths are the branching nodes (i.e., the originator, nodea and nodeb).

The originator may send to all4 of its neighbors, allowing it to create4 paths. Nodea and nodeb

each have3 neighbors; however, they must receive each message throughone of their neighbors,

which leaves them each a maximum of2 neighbors that they may inform, allowing them each to

create a maximum of2 paths. Since every node must receive every message and the originator

knows all messages at the beginning of the multiple message broadcasting algorithm, in order for

nodea and nodeb to each inform2 of their neighbors, they must each receive the message from

the originator.

We will begin by dividing the messages into2 sets (an odd set and an even set). Since we must

limit the coefficient of the message term to2 and the originator must send out both odd and even

messages, the originator can be busy for no more than3 time units when sending the first message

(i.e., the odd message). Thus, the originator can send an oddmessage to one, two or three of its
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Figure 5.19: Completing broadcasting inC16, making use of just2 of each node’s edges.

neighbors.

If the originator sends an odd message to a single neighbor, either it will send the message to one

of its original chordless cycle neighbors (let us call theseneighbors nodex and nodey), or it will

send the message to nodea or nodeb. If the originator sends to nodex or nodey, then all nodes

will receive the message via a single path; on the other hand,if the originator sends to nodea or

nodeb, then all nodes will receive the message via one of just2 paths (see Figure (5.20)). Since
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we must make use of at least3 paths, in order to improve upon the time taken by the chordless

cycle algorithm, allowing the originator to send to a singlenode will not provide an algorithm that

is more efficient than the chordless cycle multiple message broadcasting algorithm.

x

b

y

a

cycle
A

cycle
C

cycle
B

x

b

y

a

cycle
A

cycle
C

cycle
B

x

b

y

a

cycle
A

cycle
C

cycle
B

x

b

y

a

cycle
A

cycle
C

cycle
B

Figure 5.20: Broadcasting an odd message inC16, when the originator sends to a single neighbor.

In order to improve upon the time taken by the chordless cyclemultiple message broadcasting

algorithm, the maximum time taken to broadcast the first message from any set (odd or even) must

be less than⌊n
2
⌋. Thus, if the originator sends an odd message to3 of its neighbors, in order to limit

the message coefficient to2, it must send an even message to a single neighbor. However, we have
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already determined that allowing the originator to send to asingle neighbor will create at most2

paths for the message to follow, which will not improve upon the time taken by the chordless cycle

multiple message broadcasting algorithm.

We will now investigate allowing the originator to make use of 2 of its edges to send a message

from each set. When sending an odd message, the originator maysend to one of the following

pairs of neighborsxy, xa, by, ab, xb or ay. We will not allow the originator to send to nodex and

nodey, because this would result in broadcasting using the chordless cycle algorithm and we are

attempting to find a more efficient algorithm.

If the originator sends an odd message to nodex and nodea, in order to complete broadcasting,

nodea would be responsible for informing approximately two-thirds of the nodes via a single path

(see Figure (5.21)). The most nodes informed via a single path using the chordless cycle multiple

message broadcasting algorithm is approximately one-half; therefore, allowing the originator to

send an odd message to nodex and nodea would not decrease the time taken to send a message.

Similarly, allowing the originator to send an odd message tonodeb and nodey would cause nodeb

to be responsible for informing approximately two-thirds of the nodes via a single path and would

not improve upon the efficiency of the chordless cycle multiple message broadcasting algorithm.
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Figure 5.21: Broadcasting an odd message inC16, when the originator informs nodex and nodea.

If the originator sends an odd message to nodea and nodeb and these nodes both send to each of

their uninformed neighbors, they will each be busy with an odd message for3 time units, leaving

them each just a single time unit to spend on an even message. In order to spend a single time unit

on an even message, both nodes must receive the even message;however, neither of them would

be permitted to pass the even message on to either of their neighbors, since this would increase the

coefficient of the message term beyond2.

If the originator informs nodea and nodeb of an even message, then, it may not send an even

message to any other node, since it can send to at most2 of its neighbors. Thus, if the originator

sends an even message to nodea and nodeb, who were each busy for3 time units with an odd

message, the originator, nodea and nodeb would be the only nodes that would ever receive an

even message. This would not be a legal broadcast scheme, since, according to the definition of

multiple message broadcasting, at the end of a multiple message broadcasting algorithm, every

node in the network has received every message.
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If the originator does not send an even message to nodea or nodeb, then it must send an even

message to nodex and nodey and both nodea and nodeb must receive an even message from one

of their non-originator neighbors; however, neither nodea nor nodeb will be permitted to pass the

message on to either of their neighbors. In this scenario, nodex will inform nodea and nodey

will inform node b; however, none of the non-chord endpoint nodes of cycleB will ever receive

the message, resulting in an illegal broadcast scheme (see Figure (5.22)).
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Figure 5.22: Problems that occur with broadcasting when theoriginator informs nodea and nodeb
of an odd message and they each pass the message on to both of their uninformed neighbors; then,
the originator sends an even message to nodex and nodey.

If the originator sends an even message to nodea and nodex, then, there would exist nodes in

cycleB and cycleC that would never receive the message, since nodea is not permitted to pass

the message on to any other node (see Figure (5.23)). Thus, this scenario would result in an illegal

broadcast scheme; a similar argument can be made, if the originator were to send an even message

to nodea and nodey, nodeb and nodex or nodeb and nodey. If the originator sends an even

message to nodea and nodey, then there would exist nodes in cycleA and cycleB that would
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never receive the message. If the originator sends an even message to nodeb and nodex, then

there would exist nodes in cycleB and cycleC that would never receive the message. Finally, if

the originator sends an even message to nodeb and nodey, then there would exist nodes in cycle

A and cycleB that would never receive the message.
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Figure 5.23: Problems that occur with broadcasting when theoriginator informs nodea and nodeb
of an odd message and they each pass the message on to both of their uninformed neighbors; then,
the originator sends an even message to nodea and nodex.

Therefore, if the originator sends an odd message to nodea and nodeb, either nodea or node

b (not both) may send to both of their uninformed neighbors. Inorder for all of the nodes to

be informed of an odd message, either nodea or nodeb must inform both of their uninformed

neighbors. Without loss of generality, let us assume that node a is the node that sends an odd

message in both directions. Then nodea must be informed of an even message, however, it cannot

pass this message on to another node.

If the originator informs nodea of an even message, then the originator can only inform one

other node of an even message, either nodex, nodeb or nodey. If the originator chooses to inform
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nodea and nodex, then there will be nodes in cycleB and cycleC that will never receive an even

message (see Figure (5.24)). If the originator informs nodea and either nodeb or nodey of an

even message, then there will be nodes in cycleA (and either cycleB or cycleC - if node b is

used) that will never receive an even message (see Figure (5.25)).
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Figure 5.24: Problems with broadcasting when the originator sends an odd message to nodea and
nodeb and nodea passes the message on to both of its uninformed neighbors; then, the originator
sends an even message to nodea and nodex.
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Figure 5.25: Problems with broadcasting when the originator sends an odd message to nodea and
nodeb and nodea passes the message on to both of its uninformed neighbors; then, the originator
sends an even message to nodea and either nodeb or nodey.

If the originator does not inform nodea of an even message, then, nodea must be informed

via its neighbor in cycleA or its neighbor in cycleB. Nodea cannot pass an even message on to

any of its neighbors; therefore, in order for all of the nodesin cycleA to receive an even message,

the originator must send to nodex. Since the originator is not sending to nodea and it must

send to2 of its neighbors, it will send to nodex and either nodeb or nodey. Since nodeb was

busy for2 time units with odd messages, it can only send in a single direction, once it receives

an even message; therefore, in order to inform all of the nodes in cycleB and cycleC of an even

message, the originator must send to nodey. However, if we allow the originator to send even

messages out through nodex and nodey, we have just2 paths for even messages to follow (see

Figure (5.26)); this broadcast scheme would not improve upon the efficiency of the chordless cycle

multiple message broadcasting algorithm.
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Figure 5.26: Broadcasting when the originator sends an odd message to nodea and nodeb and
nodea passes the message on to both of its uninformed neighbors; then, the originator sends an
even message to nodex and nodey.

If the originator sends an odd message to nodex and nodeb and nodeb informs just one of

its uninformed neighbors, then, all nodes would be informedvia just one of2 paths (see Figure

(5.27)), which would not improve upon the efficiency of the chordless cycle multiple message

broadcasting algorithm. On the other hand, if nodeb informs both of its uninformed neighbors,

then nodeb will receive an even message; however, it will not be permitted to pass the message on

to any of its neighbors.
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Figure 5.27: Completing broadcasting of an odd message inC16, when the originator sends to node
x and nodeb and nodeb sends to just one of its uninformed neighbors.

If nodeb received an even message from the originator, then, the originator could only send to

one other node, which would cause nodes from at least one cycle to never receive the message.

This scenario is similar to that explained by Figure (5.23).

If node b is not informed of an even message via the originator, then, it must be informed by

either its neighbor in cycleC or its neighbor in cycleB and it cannot pass the message on to any

of its neighbors. In order for all of the nodes of cycleC to be informed of the even message, node

y must receive the message from the originator. Since the originator is not sending to nodeb and it

must send to2 of its neighbors, it will send to nodey and either nodex or nodea. If the originator

sends to nodex, then all nodes would be informed via just one of2 paths (similar to Figure (5.26)),

which would not improve upon the efficiency of the chordless cycle multiple message broadcasting

algorithm. If the originator sends to nodea and nodea was busy with an odd message for just a

single time unit (i.e., it simply received an odd message anddid not pass the message on to one
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of its neighbors), then nodea can send to both of its uninformed neighbors (see Figure (5.28)).

This scenario gives us what appears to be a feasible solutionto our multiple message broadcasting

problem.
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Figure 5.28: A solution to our multiple message broadcasting problem that appears to be feasible.

We will now attempt to assign times to our broadcast schemes,such that, the first message

from each set completes broadcasting in time less than that taken by the chordless cycle multiple

message broadcasting algorithm (i.e., less than⌊n
2
⌋ time units). Figure (5.29) gives an example of

broadcasting an odd message inC16 using our scheme. Now that we have an algorithm for odd

messages that improves upon the time taken by the chordless cycle multiple message broadcasting

algorithm, we will attempt to assign times to our even broadcast scheme. In Figure (5.28), even

messages travel across each edge in the opposite direction of odd messages and most nodes in

the cycle are busy for precisely4 time units broadcasting one message from each set. In order to

decrease the time taken to send an odd message, our odd broadcast scheme requires that we pass

an odd message from one node to the next at consecutive time intervals. Since the coefficient of
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the message term is4
2

= 2, each of our broadcast schemes will be repeated every4 time units (i.e.,

time units are assigned modulo4). Referring to Figure (5.30), if odd messages move through the

graph from nodee through nodea at consecutive time intervals, then we must carefully assign the

even time intervals, so that at any given time, every node in the graph is idle, is sending a message

or is receiving a message. As shown in Figure (5.30), nodeb is busy receiving an odd message at

time 3 mod4 and sending that same odd message the very next time step (i.e., 0 mod4). When

nodeb receives an even message, it must pass this even message on tonodec at time1 mod4, since

it is busy with an odd message at time unit3 mod4 and time unit0 mod4 and nodec is busy with

an odd message at time unit2 mod4 and time unit3 mod4. Once nodec receives an even message

at time unit1 mod4, it cannot pass this message on to noded until time unit0 mod4; however,

this produces a delay of3 time units between the time that nodec receives an odd message and

the time that nodec can pass an odd message on to noded. Since even messages cannot begin

broadcasting until2 time units after odd messages, we cannot delay the movement of an even

message throughout the graph, while improving upon the timetaken to broadcast in the chordless

cycle multiple message broadcasting algorithm. We could delay the time at which an odd message

moves through the graph by at most one time unit; however, this would not be sufficient to help the

movement of even messages. A solution to the time assignments could be to send odd messages

during odd time steps and even messages during even time steps (see Figure (5.31)); however, this

assignment would cause our broadcast scheme to take longer than the chordless cycle multiple

message broadcasting algorithm. See Figure (5.32) for an example.
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Figure 5.29: Broadcasting an odd message inC16 using the scheme shown in Figure (5.28).
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Figure 5.30: An example of why moving odd messages and even messages through the graph at
consecutive time intervals is not feasible.
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Figure 5.31: Moving odd messages during odd time steps and even messages during even time
steps.
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Figure 5.32: A solution to our multiple message broadcasting problem that takes longer than mul-
tiple message broadcasting using the chordless cycle algorithm on the same size graph.

If the originator sends to nodea and nodey, it is obvious that a similar scenario to that, which

was just discussed for the originator sending to nodex and nodeb will occur.

We conclude that, it is not possible to broadcast multiple messages using two message sets in a

cycle with two chords in time less than that required to broadcast multiple messages in the same

size chordless cycle using the chordless cycle algorithm.
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5.4 Results

In this chapter, we researched multiple message broadcasting in a cycle with one and two chords,

respectively. For each type of graph, we used Farley’s bounds to realize both upper and lower

bounds for broadcasting; we then compared these bounds to Farley’s bounds for broadcasting in a

chordless cycle of the same size. When feasible, we attemptedto develop multiple message broad-

cast algorithms for cycles with one and two chords that made use of the chords and improved upon

the time taken to broadcast multiple messages using the chordless cycle algorithm on chordless

cycles of the same size. We studied broadcasting multiple messages using both a single set of mes-

sages and multiple sets of messages. Unfortunately, we werenot able to broadcast in time better

than the chordless cycle multiple message broadcasting algorithm by adding one or two chords to

a cycle. We conjecture that there does exist some number of chords which, if used, will improve

upon the time taken to broadcast multiple messages in a cyclebeyond that of the chordless cycle

algorithm.
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Chapter 6

Line Broadcasting in Cycles with Chords

6.1 Background

Thus far, we have studied a form of broadcasting known as local broadcasting. Using a local

broadcasting scheme, a node may only send a message to a node with which it shares an edge (i.e.,

a neighbor). Due to this restriction on broadcasting, a local broadcasting scheme is often defined as

one in which each node of a graph is only permitted to make local calls. This type of broadcasting

is modeled in packet switched networks.

In this chapter, we study line broadcasting. In line broadcasting, a node may send a message

to any other node in the graph as long as a simple path exists between the sending node and the

receiving node and every edge along the path is not in use. A line broadcasting scheme is often

described as a scheme in which nodes are permitted to make long distance calls. Whereas, in local

broadcasting, at any single time unit, each node of a given graph may be either a sender or receiver

of a message, but not both, in line broadcasting, during a single time unit, a node may act as any

of the following.
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1. switching node

2. sending node

3. receiving node

4. switching and sending node

5. switching and receiving node

6. dormant node

Figure (6.1) shows examples of each of the above types of nodes.
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Figure 6.1: An example of line broadcasting.

In the graph depicted in Figure (6.1), nodef is referred to as a switching node, since it is not

the sender or receiver of a message; however, it is used as a throughway for messagebj. Nodeg is

another example of a switching node. We refer to nodea and nodeh as sending nodes, since their

sole task is to send a message. Similarly, noded and nodej are referred to as receiving nodes,

since they simply receive a message. Nodeb is referred to as a switching and sending node, since

it is used as a throughway in moving messagead from nodea to noded and it sends messagebj.

Nodec is known as a switching and receiving node, since it is used asa throughway in moving

messagead from nodea to noded and it is the receiver of messagehc. Finally, nodese, i, k andl
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are referred to as dormant nodes, since they are not busy during the time unit depicted in the graph

of Figure (6.1).

It is known that the minimum time required to complete broadcasting when using only local

calls is equal to⌈log2 n⌉, since, at each time step, the number of informed nodes can, at most,

double. In [F80], Farley showed that broadcasting can be completed in time equal to⌈log2 n⌉ in

any connected graph and from any originator, using line broadcasting. Thus, as long as a graph

is connected, it is possible to complete line broadcasting in minimum time. However, minimum

time line broadcasting does not come without a fee. Whereas, in local broadcasting, each call uses

only a single edge, in line broadcasting, multiple edges maybe used in order to place a single

call. If we associate each edge that a message must cross witha distance cost of1 unit, we find

that every call in local broadcasting costs the same amount (1 unit per call). However, when line

broadcasting is used, calls have varying distance costs ranging from1 (a local call) toD, where

D is the diameter of the graph. Thus, when creating line broadcasting algorithms, our goal is to

broadcast in minimum time while keeping the sum of the distances of all of the calls required of

the broadcast algorithm (i.e., cumulative cost) as low as possible.

In local broadcasting, cumulative cost is alwaysn − 1, wheren represents the number of nodes

in the connected graph, since each node may receive the message only once and all calls require

a single unit of time. Thus,n − 1 is a minimum bound on the distance cost of line broadcasting.

In [F80], Farley determined an upper bound of(n − 1) · ⌈log2 n⌉ on the distance cost required to

complete line broadcasting in minimum time on any connectedgraph withn nodes.

Kane and Peters studied line broadcasting in cycles. In [KP98], they determine the distance

cost of minimum time line broadcasting in cycles, give a complete characterization of optimal line

broadcasting schemes in cycles and develop efficient methods for constructing such schemes.
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Kane and Peters develop minimum time, optimal line broadcasting schemes for cycles contain-

ing 2k nodes, wherek is an integer andk > 1, using a constructive approach. They begin by

developing a scheme for a cycle containing4 nodes (i.e.,C4). This scheme is constructed by re-

moving a single edge from the cycle and laying the nodes out flat, so that they produce a path. If

the nodes of the cycle are numbered beginning with the leftmost node labeled0, then node1 is

denoted as the originator. During the first step of their linebroadcast scheme, the originator sends

the message to its neighbor to the left. During the second andfinal step, the originator sends to its

neighbor to the right, while the node informed at time step1 sends to its uninformed neighbor. An

example of this line broadcast scheme is shown in Figure (6.2).

12 2

Figure 6.2: Line broadcasting inC4 using the scheme developed by Kane and Peters.

In order to construct a minimum time, optimal line broadcasting scheme forC8, [KP98] places

two mirror images of the line broadcasting scheme for a cyclecontaining4 nodes next to one

another (though existent, the edge connecting node3 to node4 is not shown, since it is not used

in the line broadcast scheme). Each of the mirror images has its own originator. We will label

the originator of the mirror image on the left as the “actual”originator, whereas, the originator of

the mirror image on the right will be labeled as the “faux” originator. At time step1, the “actual”

originator places a long distance call to the “faux” originator; then, each mirror image completes

line broadcasting following the scheme forC4. Figure (6.3) depicts Kane and Peters’ line broadcast

scheme onC8.

88



32

1

3 3 32

Figure 6.3: Line broadcasting inC8 using the scheme developed by Kane and Peters.

Using the techniques of mirror images and long distance calls, Kane and Peters are able to con-

struct a line broadcast scheme for any cycle containing2k+1 nodes by placing two mirror images of

2k line broadcast schemes next to one another and joining them with a long distance call between

the “actual” originator and the “faux” originator at time step 1. After time step1, each mirror

image will complete line broadcasting following the schemeused for a cycle containing2k nodes.

Figure (6.4) depicts line broadcast schemes forC16 andC32, respectively.
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Figure 6.4: Line broadcasting inC16 andC32 using the scheme developed by Kane and Peters.

In [KP98], Kane and Peters proved that their line broadcast scheme for cycles containing2k

nodes, wherek is an integer andk > 1, is optimal. In other words, they show that the cumulative

cost of line broadcasting using their algorithm is as small as possible, while achieving minimum

time broadcasting.
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6.2 Line Broadcasting versus Local Broadcasting

If we view the long distance calls of the line broadcast scheme developed by Kane and Peters as

chords of a cycle, rather than calls, their construction method can be adapted to solve the problem

of adding a sufficient number of chords to a given cycle, in order to perform local broadcasting in

minimum time. In this section, we modify the construction method developed by Kane and Peters

in order to determine the number of chords required to perform minimum time local broadcasting

in a given cycle.

Kane and Peters’ construction method arranges nodes into sets, each of which contains4 nodes.

Each set is then connected to the adjacent set through a long distance call. Using this scheme,

it is possible to line broadcast in minimum time. If we modifyKane and Peters’ line broadcast

scheme by replacing a long distance call with a chord in the cycle, we are able to perform local

broadcasting in minimum time. We will call this the Alternative Kane and Peters (AKP) local

broadcast scheme.

Lemma 6.2.1 The total number of chords required to perform minimum time local broadcasting

in a cycle containing 2k nodes, where k is an integer and k > 1, using the AKP local broadcast

scheme is equal to 2k−2 − 1.

Proof: The construction method used to create the AKP local broadcast scheme arranges nodes

into sets, each containing4 nodes. It then places a chord between adjacent sets of nodes.Since

there are a total of2k nodes in the graph, there are2k

4
sets. If we place the sets in a single line with

the leftmost set being the first set, each of these sets, except the last, is connected to the set to its

right by a single chord. Therefore,2k

4
− 1 = 2k−2 − 1 chords are created.2
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Lemma 6.2.2 The minimum number of chords required to perform local broadcasting in minimum

time in a cycle containing 2k nodes, where k is an integer and k > 1, is equal to 2k−2 − 1.

Proof: The minimum time required to broadcast in a graph withn nodes is⌈log2 n⌉. If n = 2k,

the minimum time to broadcast becomesk. In such a graph, this minimum time bound is achieved

by doubling the number of nodes informed at each time step (see Table (3.3)). In order to double

the number of informed nodes at each time step, every informed node must send to an uninformed

neighbor at each time step until all nodes are informed. However, in a chordless cycle, all nodes

have degree2 (i.e., each node is connected via an edge, to exactly2 other nodes). Therefore,

unless chords are added, all nodes, except the originator, may send to at most one uninformed

node (the originator can send to at most2 uninformed nodes). The addition of a chord connecting

an informed node,w, with an uninformed node,y, increases the number of nodes that nodew can

inform by 1. In order to make the best use of the addition of a chord, we will choose nodey such

that both ofy’s neighbors are uninformed nodes (see Figure (6.5)). As shown in Chapter 3, this

choice will then allow each node informed via a chord to inform at least one extra node. In order

to maximize the number of nodes informed at each step, we wantto make use of chords as early

as possible. Since an informed node must send to an uninformed neighbor at every time step, the

originator must send at every time step. In a chordless cycle, the originator is connected to exactly

2 uninformed nodes; therefore, it must use chords to inform nodes at every time step except steps

k andk− 1, wherek is the time required to complete broadcasting. Thus, for allcycles containing

2k nodes, such thatk > 2, the node informed at time step1 will be informed by the originator via

a chord. For all cycles containing2k nodes, such thatk > 3, the originator and the node informed

at time step1 must each make use of chords at time step2. Continuing this idea, we see that
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all nodes, except those informed during the last3 time steps, must make use of chords in order

for every informed node to send to an uninformed node at each time step (see Table (6.1) for an

example).

x y z

Figure 6.5: Making the best use of the addition of a chord to a cycle.

Table 6.1: Analyzing the number of chords needed to perform minimum time local broadcasting
in a cycle containing25 nodes.

Time step Number of newly Number of chords needed for
informed nodes each newly informed node

0 3
1 1 2
2 2 1
3 4 0
4 8 0
5 16 0

The first2k node cycle to make use of a chord isC8 (i.e.,k = 3); this cycle will require a single

chord, since, the only node which needs to be informed via a chord is the node informed at time

step1. Whenk = 4, both the originator and the node informed at time step1 must make use

of chords, which requires a cycle with24 nodes to make use of3 chords. Table (6.2) shows the

number of chords required to perform local broadcasting in minimum time in cycles containing2k

nodes when2 < k < 7.
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Table 6.2: The number of chords needed to perform local broadcasting in minimum time in a cycle
containing2k nodes.

k Number of chords
needed

3 1
4 3
5 7
6 15

The following recurrence can be used in order to calculate the total number of chords required

to keep every informed node busy at every time step.

T (k) = 1 , whenk = 3

= T (k − 1) + 2k−3 , otherwise

A simple proof by induction can be used to show thatT (k) = 2k−2 − 1. 2

Lemma 6.2.3 The AKP local broadcast scheme uses the minimum number of chords necessary to

complete local broadcasting in a cycle containing 2k nodes in minimum time.

Proof: This result follows immediately from Lemma (6.2.1) and Lemma (6.2.2).2

By replacing Kane and Peters’ long distance calls with chords, we can construct minimum time

local broadcast schemes for cycles containing2k nodes, such thatk is an integer andk > 1, using

the minimum number of chords necessary. Thus far, we have only given results for cycles whose

total number of nodes (i.e., size) is a power of2. The remainder of this chapter will consider cycles

whose size is not a power of2.
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6.3 Local Broadcasting in Various Size Cycles

Kane and Peters have developed a method by which to constructa line broadcast scheme for cycles

containing between2k−1 and2k nodes, wherek is an integer andk > 2, by first constructing a

line broadcast scheme for a cycle containing2k nodes and then eliminating the necessary number

of nodes from the deepest layer of the broadcast scheme. Our method of constructing a local

broadcast scheme using chords closely follows that of Kane and Peters; however, we must be more

specific in the selection of nodes to delete in order to ensurethe minimum number of chords are

being utilized.

Before describing the elimination process, we define the termlayer as follows. Kane and Peters

group the nodes of a cycle into layers which are determined bythe location of each node in relation

to the long distance calls utilized by the line broadcast scheme. They define layer0 to include all

nodes who never take on the role of a switching node. Perhaps,this situation is best explained

through an example. Consider Kane and Peters’ line broadcastscheme for a cycle containing8

nodes (see Figure (6.3)). In this line broadcast scheme, allnodes, except node3 and node4, are

considered layer0 nodes (remember, nodes are numbered from left to right beginning with 0).

Layer 0 nodes never appear under a long distance call. The remainingnodes are grouped into

layers based on the number of long distance calls under whichthey appear. In Figure (6.3), node3

and node4 are classified as layer1 nodes, since they appear under a single long distance call.

In order to create a line broadcast scheme for a cycle containing n nodes, where2k−1 < n < 2k,

Kane and Peters construct a line broadcast scheme for a cyclecontaining2k nodes; then, they

repeatedly delete nodes and their incident edges from the deepest layer until the desired number of

nodes remain. The deepest layer is the name given to the largest numbered layer. In [KP98], Kane
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and Peters prove that the elimination method described above produces optimal line broadcasting

schemes for cycles in which the number of nodes contained in the cycle is not a power of2. Since

Kane and Peters optimality is defined as keeping the cumulative cost of the line broadcast scheme

as low as possible while broadcasting in minimum time and allnodes in the deepest layer contribute

the same cost to all long distance calls appearing above them, they may arbitrarily choose nodes to

delete from the deepest layer.

When working with local broadcasting, cumulative cost is always the same (i.e.,n− 1, wheren

is the number of nodes in the graph). Thus, when deleting nodes, instead of focusing on lowering

cumulative cost, we focus on lowering the number of chords required to complete local broadcast-

ing in minimum time. Each time we delete a node, we will combine its edges to form a single

edge. For example, node3, in Figure (6.4), has two edges; one edge connects node2 to node3 and

the other edge connects node3 to node4 (this edge is not shown on the graph, since it is not used

in the local broadcast scheme). If we delete node3 from this graph, we will remove both edges

and replace them with a single edge connecting node2 to node4. If we arbitrarily delete nodes

from the deepest layer, as done in Kane and Peters’ construction method, we cannot guarantee that

we will remove the largest number of chords while still broadcasting in minimum time. As an

example, let us say that we want to construct a local broadcast scheme for a cycle containing14

nodes. We will begin by constructing a local broadcast scheme for a cycle containing16 nodes,

C16, as depicted in Figure (6.4). InC16, node3, node4, nodes6 through9, node11 and node12 are

all classified as layer1 nodes and layer1 is the deepest layer. If we arbitrarily delete nodes from

layer1, it could be the case that we choose to delete nodes located under different chords. Since

we are deleting a total of2 nodes, if these2 nodes are located under different chords, or if both

nodes are located under the chord connecting node5 to node10, then the resulting14 node cycle
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will contain the same number of chords asC16. However, if we take care to delete both nodes from

the shortest chord, then we can, in fact, lower the number of chords by1, while still broadcasting

in minimum time (see Figure (6.6)).

2 3

1

3 3

2

4 4 4 4 34 4

Figure 6.6: A minimum time broadcast scheme forC14.

All nodes, except layer0 nodes, are located between the endpoints of a chord. Our modification

to Kane and Peters’ construction method, which we refer to asthe Alternate Kane and Peters

Deletion method (AKPD), simply involves requiring the nodes to be deleted on a per chord basis

beginning with one of the shortest chords. In other words, all the nodes occurring between the

endpoints of one of the shortest chords will be deleted first.Once these nodes have been deleted,

if we still have nodes to remove, we will begin deleting them from the next shortest chord. We

will continue this elimination method until the required number of nodes have been removed from

the cycle. Figure (6.7) depicts the results of the AKPD method of constructing local broadcast

schemes forC17 andC25.
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Figure 6.7: Minimum time local broadcast schemes forC17 andC25

.

Now that we have a method for deleting nodes, we want to determine the exact number of chords

required to perform local broadcasting in minimum time, using the AKPD method, in cycles whose

size is not a power of2. Our construction of a local broadcast scheme for cycles containing n

nodes, wherek − 1 < n < k, always begins with the construction of a local broadcast scheme

for a cycle containing2k nodes and then involves deletion of the extra nodes. Therefore, we will

begin by determining the number and size of chords required in a local broadcast scheme for a

cycle containing2k nodes. The first local broadcast scheme for a2k node cycle that requires a

chord is the broadcast scheme for the cycle containing23 nodes; this broadcast scheme requires

a single chord of size2. We will refer to the size of a chord as the number of nodes thatare

contained between the two endpoints of the chord. Since the local broadcast scheme for a cycle

containing2k nodes is constructed by placing2 mirror images of the local broadcast scheme for a

2k−1 cycle next to one another and joining them with a chord connecting the “actual” originator to

the “faux” originator, when creating a local broadcast scheme for a2k node cycle, we are doubling

the number of chords required in the broadcast scheme for the2k−1 node cycle and we are adding

an additional chord to join the “actual” originator with the“faux” originator. For example, consider
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the construction of a local broadcast scheme forC16. The local broadcast scheme for this cycle

will be formed by placing2 mirror images of the local broadcast scheme forC8 next to one another

and joining their originators. Each local broadcast schemefor C8 includes a single chord of size2

and an additional chord is required to join the two mirror images, which gives us a total of3 chords

required to construct a local broadcast scheme forC16 (see Figures (6.3) and (6.4)).

A local broadcast scheme forC32 is created from two local broadcast schemes forC16. Each

local broadcast scheme forC16 makes use of2 chords of size2 and one chord of size4. Therefore,

the local broadcast scheme forC32 will make use of4 chords of size2, 2 chords of size4 and one

additional chord. Using this construction method, the number of chords of each size (i.e.,2, 4,

10, etc.) is a function ofk. Specifically, a cycle containing2k nodes, wherek > 2, makes use of

exactly2k−3 chords of size2 and2k−4 chords of size4, whenk > 3 (see Table (6.3)).

Table 6.3: The number of chords of size2 and size4 contained in a local broadcast scheme for a
cycle containingn = 2k nodes.

n Number of chords Number of chords
of size2 of size4

23 1 0
24 2 1
25 4 2
26 8 4

Since our method for constructing a local broadcast scheme for a cycle containingn nodes with

2k−1 < n < 2k begins by constructing a local broadcast scheme for a cycle containing2k nodes,

we will never need to delete more than2k−1 nodes. According to the local broadcast scheme for

C8, only a single chord of size2 exists. When deleting nodes from the local broadcast scheme for

C8, we will begin by removing the nodes that are located betweenthe endpoints of the chord; if

additional nodes need to be deleted, they may be arbitrarilyremoved, since no chords remain in

the cycle.
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When deleting nodes from the local broadcast scheme for cycles containing2k nodes where

k > 3, we will begin by removing nodes located between the endpoints of the chords of size2,

on a per chord basis. Once all chords of size2 have been deleted, if additional nodes need to

be removed, we will begin removing nodes located between theendpoints of the chords of size

4, on a per chord basis. By removing all of the chords of size2, we will remove2k−3 · 2 nodes

and by removing all of the chords of size4, we will remove2k−4 · 4 additional nodes. Thus, by

removing all of the chords of size2 and size4 from a local broadcast scheme, we will remove

2k−3 · 2 + 2k−4 · 4 = 2k−1 nodes, which is the largest number of nodes that we will ever need to

delete. Therefore, we will only ever need to remove nodes located between chords of size2 or size

4. Using the above information, we are able to develop Algorithm (6.3.1) to calculate the number

of chords necessary to perform local broadcasting in minimum time in a cycle that containsn

nodes, where2k−1 < n < 2k.

Function CCA(n)

1: k = ⌈log2 n⌉
2: nodesToRemove = 2k − n

3: chordsToRemoveFromFirstChords = ⌊nodesToRemove
2

⌋
4: chordsToRemoveFromSecondChords = 0
5: if (chordsToRemoveFromFirstChords > 2k−3) then
6: chordsToRemove = 2k−3

7: chordsToRemoveFromSecondChords = ⌊nodesToRemove−2k−3
·2

4
⌋

8: else
9: chordsToRemove = chordsToRemoveFromFirstChords

10: end if
11: if (chordsToRemoveFromSecondChords > 0) then
12: chordsToRemove = chordsToRemove + chordsToRemoveFromSecondChords

13: end if
14: return 2k−2 − 1 − chordsToRemove

Algorithm 6.3.1: Chord Calculation Algorithm
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6.4 Results

In this chapter, we modified the line broadcasting results obtained by Kane and Peters in [KP98]

in order to create minimum time local broadcast schemes for cycles through the use of chords. We

proved that the number of chords added to a cycle containing2k nodes, wherek is an integer and

k > 2, using our local broadcast scheme is the minimum number of chords required to broadcast

in minimum time in such a cycle. Then, we developed a scheme for performing local broadcasting

in cycles whose size is not a power of2, through the use of chords. Finally, we developed an

algorithm to calculate the number of chords needed to broadcast using our local broadcasting

scheme for cycles containingn nodes, where2k−1 < n < 2k andk > 2.
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Chapter 7

Conclusion

7.1 Broadcast Schemes for Cycles with Chords

We have researched cycles with chords in order to develop efficient broadcast schemes for such

graphs. We considered local broadcasting, multiple message broadcasting and line broadcasting

schemes.

We began by studying the effects of adding a single chord to a cycle. We developed two algo-

rithms for broadcasting in such a graph. Both algorithms assumed that the originator formed one of

the endpoints of the chord. The first algorithm, ESCO, considered the case when the chord divided

the cycle into two smaller equal size cycles and completed broadcasting in time equal to⌊n
2
⌋ + 1,

wheren represents the number of nodes in the larger cycle formed by the chord. The second algo-

rithm, USCO, considered the case when the chord divided the cycle into two smaller cycles which

differed in size by more than a single node and completed broadcasting in time equal to⌈n
2
⌉, where

n represents the number of nodes in the larger cycle formed by the chord. We concluded that the

time taken to complete broadcasting using ESCO is always as good as or better than that taken by
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USCO.

Next, we studied the effects of adding two chords to a cycle. Again, we developed two algo-

rithms for broadcasting in such a graph. Both algorithms considered the case when the addition

of chords created three smaller equal size cycles. The first algorithm, TCO, considered the case

when the chords shared the originator as an endpoint. The second algorithm, TCNO, considered

the case when the chords shared a non-originator node as an endpoint and the originator formed

the endpoint of a single chord. Both of these algorithms completed broadcasting in time equal to

⌈n
2
⌉ + 1, wheren represents the number of nodes in the largest cycle formed bythe chords. We

concluded that the choice of the node forming the shared endpoint does not affect the running time

of the broadcast algorithm.

Then, we studied the effects of adding chords to a cycle in an attempt to improve upon the time

required to perform multiple message broadcasting in cycles. We discovered that the addition of

either one or two chords to a cycle does not improve upon the time taken to broadcast multiple

messages in the cycle.

Finally, we used techniques developed for creating minimumtime line broadcast schemes for

cycles in order to develop minimum time local broadcast schemes for cycles through the use of

chords. We proved that the number of chords added to a cycle containing2k nodes, wherek is an

integer andk > 2, using our local broadcast scheme is the minimum number of chords required to

broadcast in minimum time in such a cycle. We developed a scheme to perform local broadcasting

in minimum time in cycles whose size is not a power of2, through the use of chords. Then, we

developed an algorithm for calculating the number of chordsneeded to broadcast using our local

broadcasting scheme for cycles containingn nodes, where2k−1 < n < 2k.
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