1,784 research outputs found

    Spatial Programming for Industrial Robots through Task Demonstration

    Get PDF
    We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    Enhanced online programming for industrial robots

    Get PDF
    The use of robots and automation levels in the industrial sector is expected to grow, and is driven by the on-going need for lower costs and enhanced productivity. The manufacturing industry continues to seek ways of realizing enhanced production, and the programming of articulated production robots has been identified as a major area for improvement. However, realizing this automation level increase requires capable programming and control technologies. Many industries employ offline-programming which operates within a manually controlled and specific work environment. This is especially true within the high-volume automotive industry, particularly in high-speed assembly and component handling. For small-batch manufacturing and small to medium-sized enterprises, online programming continues to play an important role, but the complexity of programming remains a major obstacle for automation using industrial robots. Scenarios that rely on manual data input based on real world obstructions require that entire production systems cease for significant time periods while data is being manipulated, leading to financial losses. The application of simulation tools generate discrete portions of the total robot trajectories, while requiring manual inputs to link paths associated with different activities. Human input is also required to correct inaccuracies and errors resulting from unknowns and falsehoods in the environment. This study developed a new supported online robot programming approach, which is implemented as a robot control program. By applying online and offline programming in addition to appropriate manual robot control techniques, disadvantages such as manual pre-processing times and production downtimes have been either reduced or completely eliminated. The industrial requirements were evaluated considering modern manufacturing aspects. A cell-based Voronoi generation algorithm within a probabilistic world model has been introduced, together with a trajectory planner and an appropriate human machine interface. The robot programs so achieved are comparable to manually programmed robot programs and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. Automated workspace analysis techniques and trajectory smoothing are used to accomplish this. The new robot control program considers the working production environment as a single and complete workspace. Non-productive time is required, but unlike previously reported approaches, this is achieved automatically and in a timely manner. As such, the actual cell-learning time is minimal

    Robot Learning from Human Demonstrations for Human-Robot Synergy

    Get PDF
    Human-robot synergy enables new developments in industrial and assistive robotics research. In recent years, collaborative robots can work together with humans to perform a task, while sharing the same workplace. However, the teachability of robots is a crucial factor, in order to establish the role of robots as human teammates. Robots require certain abilities, such as easily learning diversified tasks and adapting to unpredicted events. The most feasible method, which currently utilizes human teammate to teach robots how to perform a task, is the Robot Learning from Demonstrations (RLfD). The goal of this method is to allow non-expert users to a programa a robot by simply guiding the robot through a task. The focus of this thesis is on the development of a novel framework for Robot Learning from Demonstrations that enhances the robotsa abilities to learn and perform the sequences of actions for object manipulation tasks (high-level learning) and, simultaneously, learn and adapt the necessary trajectories for object manipulation (low-level learning). A method that automatically segments demonstrated tasks into sequences of actions is developed in this thesis. Subsequently, the generated sequences of actions are employed by a Reinforcement Learning (RL) from human demonstration approach to enable high-level robot learning. The low-level robot learning consists of a novel method that selects similar demonstrations (in case of multiple demonstrations of a task) and the Gaussian Mixture Model (GMM) method. The developed robot learning framework allows learning from single and multiple demonstrations. As soon as the robot has the knowledge of a demonstrated task, it can perform the task in cooperation with the human. However, the need for adaptation of the learned knowledge may arise during the human-robot synergy. Firstly, Interactive Reinforcement Learning (IRL) is employed as a decision support method to predict the sequence of actions in real-time, to keep the human in the loop and to enable learning the usera s preferences. Subsequently, a novel method that modifies the learned Gaussian Mixture Model (m-GMM) is developed in this thesis. This method allows the robot to cope with changes in the environment, such as objects placed in a different from the demonstrated pose or obstacles, which may be introduced by the human teammate. The modified Gaussian Mixture Model is further used by the Gaussian Mixture Regression (GMR) to generate a trajectory, which can efficiently control the robot. The developed framework for Robot Learning from Demonstrations was evaluated in two different robotic platforms: a dual-arm industrial robot and an assistive robotic manipulator. For both robotic platforms, small studies were performed for industrial and assistive manipulation tasks, respectively. Several Human-Robot Interaction (HRI) methods, such as kinesthetic teaching, gamepad or a hands-freea via head gestures, were used to provide the robot demonstrations. The a hands-freea HRI enables individuals with severe motor impairments to provide a demonstration of an assistive task. The experimental results demonstrate the potential of the developed robot learning framework to enable continuous humana robot synergy in industrial and assistive applications

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Cost optimization in AGV applications

    Get PDF
    A otimização de custos em aplicações com veículos autónomos pode ser conseguida em diversas frentes. Nesta dissertação estudam-se e comparam-se soluções a três problemas: a interface entre instalador/operador do robô; a otimização de variáveis na solução de um problema de logística; e a escolha dos sensores afetos ao sistema de navegação

    Exploiting Prior Knowledge in Robot Motion Skills Learning

    Get PDF
    This thesis presents a new robot learning framework, its application to exploit prior knowledge by encoding movement primitives in the form of a novel motion library, and the transfer of such knowledge to other robotic platforms in the form of shared latent spaces. In robot learning, it is often desirable to have robots that learn and acquire new skills rapidly. However, existing methods are specific to a certain task defined by the user, as well as time consuming to train. This includes for instance end-to-end models that can require a substantial amount of time to learn a certain skill. Such methods often start with no prior knowledge or little, and move slowly from erratic movements to the specific required motion. This is very different from how animals and humans learn motion skills. For instance, zebras in the African Savannah can learn to walk in few minutes just after being born. This suggests that some kind of prior knowledge is encoded into them. Leveraging this information may help improve and accelerate the learning and generation of new skills. These observations raise questions such as: how would this prior knowledge be represented? And how much would it help the learning process? Additionally, once learned, these models often do not transfer well to other robotic platforms requiring to teach to each other robot the same skills. This significantly increases the total training time and render the demonstration phase a tedious process. Would it be possible instead to exploit this prior knowledge to accelerate the learning process of new skills by transferring it to other robots? These are some of the questions that we are interested to investigate in this thesis. However, before examining these questions, a practical tool that allows one to easily test ideas in robot learning is needed. This tool would have to be easy-to-use, intuitive, generic, modular, and would need to let the user easily implement different ideas and compare different models/algorithms. Once implemented, we would then be able to focus on our original questions

    Learning of Generalized Manipulation Strategies in Service Robotics

    Get PDF
    This thesis makes a contribution to autonomous robotic manipulation. The core is a novel constraint-based representation of manipulation tasks suitable for flexible online motion planning. Interactive learning from natural human demonstrations is combined with parallelized optimization to enable efficient learning of complex manipulation tasks with limited training data. Prior planning results are encoded automatically into the model to reduce planning time and solve the correspondence problem

    Simplified and Smoothed Rapidly-Exploring Random Tree Algorithm for Robot Path Planning

    Get PDF
    Rapidly-exploring Random Tree (RRT) is a prominent algorithm with quite successful results in achieving the optimal solution used to solve robot path planning problems. The RRT algorithm works by creating iteratively progressing random waypoints from the initial waypoint to the goal waypoint. The critical problem in the robot movement is the movement and time costs caused by the excessive number of waypoints required to be able to reach the goal, which is why reducing the number of waypoints created after path planning is an important process in solving the robot path problem. Ramer-Douglas-Peucker (RDP) is an effective algorithm to reduce waypoints. In this study, the Waypoint Simplified and Smoothed RRT Method (WSS-RRT) is proposed which reduces the distance costs between 8.13% and 13.36% by using the RDP algorithm to reduce the path into the same path with fewer waypoints, which is an array of waypoints created by the RRT algorithm
    corecore