

Enhanced Online Programming for

Industrial Robots

Christian Kohrt

A thesis submitted in partial fulfilment of the requirements of the

University of the West of England, Bristol, UK

for the degree of Doctor of Philosophy

This research programme was carried out in collaboration with the University of

Applied Sciences Landshut, Landshut, Germany

Faculty of Environment and Technology

University of the West of England, Bristol

July 2013

Dedicated to my wife Erica.

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement.

iv

Abstract

The use of robots and automation levels in the industrial sector is expected to grow, and

is driven by the on-going need for lower costs and enhanced productivity. The

manufacturing industry continues to seek ways of realizing enhanced production, and the

programming of articulated production robots has been identified as a major area for

improvement. However, realizing this automation level increase requires capable

programming and control technologies. Many industries employ offline-programming

which operates within a manually controlled and specific work environment. This is

especially true within the high-volume automotive industry, particularly in high-speed

assembly and component handling. For small-batch manufacturing and small to medium-

sized enterprises, online programming continues to play an important role, but the

complexity of programming remains a major obstacle for automation using industrial

robots. Scenarios that rely on manual data input based on real world obstructions require

that entire production systems cease for significant time periods while data is being

manipulated, leading to financial losses. The application of simulation tools generate

discrete portions of the total robot trajectories, while requiring manual inputs to link paths

associated with different activities. Human input is also required to correct inaccuracies

and errors resulting from unknowns and falsehoods in the environment. This study

developed a new supported online robot programming approach, which is implemented as

a robot control program. By applying online and offline programming in addition to

appropriate manual robot control techniques, disadvantages such as manual pre-processing

times and production downtimes have been either reduced or completely eliminated. The

industrial requirements were evaluated considering modern manufacturing aspects. A cell-

based Voronoi generation algorithm within a probabilistic world model has been

introduced, together with a trajectory planner and an appropriate human machine interface.

The robot programs so achieved are comparable to manually programmed robot programs

and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented.

Automated workspace analysis techniques and trajectory smoothing are used to accomplish

this. The new robot control program considers the working production environment as a

single and complete workspace. Non-productive time is required, but unlike previously

v

reported approaches, this is achieved automatically and in a timely manner. As such, the

actual cell-learning time is minimal.

vi

Acknowledgment

I thank my director of studies, Dr. Richard Stamp, and my supervisors, Dr. Antony Pipe

and Dr. Janice Kiely at the University of the West of England at Bristol. I also thank my

supervisor Dr. Gudrun Schiedermeier at the University of Applied Sciences Landshut.

Dr. Richard Stamp guided me through this work. I have learnt a great deal from him

about scientific working and writing. I am glad to have had a director of studies who was

willing to take a personal interest in his student.

Dr. Gudrun Schiedermeier made my PhD studies at the University of Applied Sciences

Landshut possible. I thank her for her guidance, her constant interest in my PhD studies

and for providing the robotics laboratory including its special equipment required for the

experiments; without that, I would not have been able to accomplish this work.

Dr. Anthony Pipe gave me his advice, valuable comments and constructive discussions.

Dr. Janice Kiely was always available for discussions during my PhD studies.

I also thank the persons at the University of the West of England who offered me the

opportunity to study for a PhD within the Faculty of Environment and Technology, and

who provided me with the academic support necessary to complete this work successfully.

In particular, I thank Matthew Guppy for his advice during the studies.

I am thankful to have had the opportunity to conduct my research at the University of

Applied Sciences, Landshut. I am grateful to the former President, Prof. Dr. Erwin Blum,

and to the former vice President, Prof. Dr. Helmuth Gesch, to support this work.

I am grateful to BMW AG Munich and Hans-Joachim Neubauer for setting the idea for

this work and also to Robtec GmbH for giving me insight to professional robot

programming and for their support and experience in the field of robotics.

I also thank my mother who always supported me during all these years. I also thank my

friends listening to me and motivating me during this part of my life.

vii

Finally, I thank my wife, to whom I dedicate this thesis, for her patience,

encouragement and support during the probably hardest time of this work.

Travelling costs for this work were partly funded by the “Bayerische

Forschungsstiftung” of the Bavarian Government, Germany.

Contents

viii

Contents

1 INTRODUCTION ... 1

2 LITERATURE SURVEY .. 7

2.1 Industrial Manufacture ... 8

2.1.1 Robot Programming ... 8

2.1.2 Manufacture Assistants ... 11

2.2 Modelling of the Robot ... 12

2.3 Configuration Space Discretization ... 13

2.4 Path and Trajectory Planning .. 14

2.4.1 Graph based Path Planning .. 15

2.4.2 Potential Field Based Path Planning ... 20

2.4.3 Harmonic Functions Based Path Planning .. 22

2.4.4 Neural Network Based Path Planning... 23

2.4.5 Movement Planning ... 24

2.5 World Model ... 24

2.6 Vision and Perception ... 27

2.7 Collision Detection and Avoidance .. 28

2.8 Model Driven Software Development ... 29

2.9 Summary .. 29

3 AIMS .. 32

3.1 Motivation .. 33

3.2 Objectives ... 34

4 EXPERIMENTAL ... 37

5 REQUIREMENTS FOR ADOPTION BY INDUSTRY OF ONLINE PROGRAMMING

 ... 42

5.1 Industrial Production Environment ... 43

5.2 Analysis of Existing Robot Programming Approaches ... 46

Contents

ix

5.2.1 Conventional Online Teach-In Programming ... 47

5.2.2 Offline-Programming Amended by Online Teach-In .. 47

5.3 Identification of Industry Robot Programming Requirements ... 48

5.4 The Proposed Enhanced Online Robot Programming Approach .. 49

5.5 Comparison of Programming Approaches ... 51

5.6 The General Design of the Enhanced Online Programming System 52

5.7 Summary .. 55

6 INVESTIGATION INTO A PROBABILISTIC DATA FUSION WORLD MODEL 57

6.1 Cartesian Position Storage .. 59

6.1.1 Index Assignment ... 60

6.1.2 Neighbour and Parent-Child Relations ... 61

6.1.3 Digitalization of the Robot Environment .. 63

6.2 Robot Joint Position Storage ... 64

6.3 Model Data Storage .. 67

6.4 Data Fusion Framework .. 68

6.5 Vision System.. 72

6.5.1 Colour Recognition ... 73

6.5.2 Image Stream Source.. 74

6.5.3 Marker Recognition .. 75

6.6 Summary .. 77

7 RESEARCH OF THE ROBOT KINEMATICS MODEL AND THE ROBOT

CONTROL CAPABILITIES .. 79

7.1 Mitsubishi RV-2AJ Manipulator Control .. 80

7.1.1 The Built-In Robot Control Modes .. 81

7.1.2 Overview of the built-in Communication Modes ... 82

7.1.3 The Extended Data Link Control Mode ... 83

7.2 Mitsubishi RV-2AJ Kinematics ... 85

7.2.1 The Geometric Solution .. 89

7.2.2 Algebraic Solution ... 92

7.2.3 Application of the Dubins Airplane Model ... 93

7.3 Robotino Mobile Robot Control .. 94

Contents

x

7.4 Robotino Kinematics ... 95

7.5 Robot Simulation .. 98

7.6 Summary .. 98

8 INVESTIGATION INTO A TRAJECTORY PLANNING ALGORITHM TO

SUPPORT INTUITIVE USE OF THE ROBOT PROGRAMMING SYSTEM 99

8.1 Usage Scenarios .. 100

8.2 System Overview .. 103

8.3 Human Machine Interface... 105

8.3.1 Graphical User Interface ... 105

8.3.2 Visual Servo Robot Control ... 111

8.4 Mission Planner .. 112

8.4.1 The General Path Planning Control Loop ... 113

8.4.2 Mission Planning ... 115

8.5 Trajectory Planner .. 118

8.5.1 The General Trajectory Planning Workflow ... 119

8.5.2 Discretization of the Configuration Space .. 121

8.5.3 Reachability Calculation ... 123

8.5.4 The Neural Network Based Roadmap Approach .. 124

8.5.5 The Cell Based Roadmap Approach .. 133

8.5.6 Search within the Roadmap ... 141

8.5.7 Obstacle Types .. 144

8.5.8 Elastic Net Trajectory Generation .. 146

8.6 Robot Program Generation ... 152

8.6.1 Calculating Linear Movements ... 154

8.6.2 Calculating Circular Movements ... 158

8.6.3 Connecting Movement Primitives .. 165

8.7 Summary .. 167

9 RESEARCH OF A SOFTWARE DEVELOPMENT FRAMEWORK FOR COMPLEX

SYSTEMS ... 170

9.1 System Modelling ... 172

9.2 Communication Middleware ... 174

9.3 The Toolchain ... 174

Contents

xi

9.4 Toolchain Implementation .. 175

9.5 Connecting Specialized Tools .. 177

9.6 Code Generation Example ... 178

9.7 Summary .. 181

10 SYSTEM IMPLEMENTATION ... 183

10.1 General Workflow ... 185

10.2 Pre-Existing Data Import ... 185

10.3 Mission Preparation .. 185

10.4 Roadmap Generation .. 186

10.5 Path-Planning Application ... 187

10.6 Elastic Net Trajectory Generation ... 188

10.7 Re-planning of the Robot Path .. 190

10.8 Robot Program Generation ... 192

10.9 Robot Programming Duration ... 193

10.10 Summary .. 196

11 DISCUSSION ... 197

12 CONCLUSIONS ... 202

13 FUTURE WORK ... 205

REFERENCES .. 208

A. LIST OF PUBLICATIONS ... 221

B. MATERIALS & EQUIPMENT .. 225

C. ROBOT CONTROL ... 229

D. DENAVIT-HARTENBERG-PARAMETER ... 233

E. EXECUTION MODEL ... 235

F. KOHONEN MAP ... 244

Contents

xii

G. NODE MOVEMENT CALCULATION .. 246

H. PLUGIN MANAGER ... 249

I. SAMPLE SOURCE CODE .. 254

I.1 Message Service .. 254

I.2 Robot Kinematics .. 261

Forward Calculation ... 261

Inverse Calculation ... 262

Common Transformation Equation ... 263

I.3 Program Export ... 264

I.4 Linear Octree and Trajectory Planning .. 265

J. ATTACHMENTS ... 267

I. Glossary

xiii

I. Glossary

Configuration space A robot with degrees of freedom is usually a manifold of

dimension . This manifold is called the configuration space

of the robot, and is considered as a state-space.

Kinematics The study of the motion of bodies without reference to mass

or force.

Manufacture assistant Manufacture assistants are clever systems, which help the

worker to accomplish their task.

Mission A mission defines a path-planning task with application

information and locations.

Octree An octree is a tree data structure in which each internal node

has up to eight children. Octrees are most often used to

partition a three dimensional space by recursively subdividing

it into eight octants.

Online programming Programming of robots by the help of the teachpendant or

other robot control devices with the need of the real robot.

Offline programming

Programming of robots by the help of a simulation system

without the need of the real robot.

Quadtree A quadtree is a tree data structure in which each internal node

has up to four children. Quadtrees are most often used for

partitioning by recursively subdividing it into four quadrants.

Trajectory The line or curve described by an object moving through

space.

World model The in-memory environment representation based on sensory

input or external information source.

II. List of Abbreviations

xiv

II. List of Abbreviations

Acronym Definition

AD* Anytime Dynamic A*

BSP Binary Space Partitioning

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering

COM Component Object Model

CORBA Common Object Request Broker Architecture

DDE Dynamic Data Exchange

DH Denavit Hartenberg

DLL Dynamic Link Library

DSP digital signal processor

DXF Drawing Exchange Format

EMF Eclipse Modelling Framework

EN Elastic Net

ES Evolution Strategy

FPGA Field Programmable Gate Array

GPP General purpose processor

GUI Graphical User Interface

HMI Human Machine Interface

HSV Hue, Saturation, and Value Colour Space

ICE Internet Communication Engine

IP Internet Protocol

JET Java Emitter Template

JNI Java Native Interface

JVM Java Virtual Machine

LED Light Emitting Diode

MDA Model Driven Architecture

MDG Model Driven Generation

NARC New Architecture Robot Controller

ODE Open Dynamics Engine

OMG Object Management Group

PC Personal Computer

PLC Programmable Logic Controller

RBF Radial Basis Function

RFID Radio-Frequency Identification

II. List of Abbreviations

xv

RGB Red, Green, and Blue Colour Space

ROOM Real Time Object Oriented Modelling

SMA Simple Moving Average

SWT Standard Widget Toolkit

TCP Transmission Control Protocol

TCP Tool Centre Point

TD Temporal Difference

TSP Traveling Salesman Problem

UDP User Datagram Protocol

UK United Kingdom

UML Unified Modelling Language

XML Extensible Mark-up Language

YCbCr YCbCr Colour Space

III. List of Figures

xvi

III. List of Figures

Figure 1: Illustration of the visibility graph (by author). ... 16

Figure 2: Cell decomposition graph (by author). ... 16

Figure 3: Cell decomposition with black obstacles and free space (by author). 17

Figure 4: A Voronoi diagram with regions, where each region consists of all points that

are closer to one site than to any other (by author). .. 18

Figure 5: Potential field method. .. 21

Figure 6: The Cosirop robot programming software. .. 39

Figure 7: The experimental system. ... 40

Figure 8: Typical production cell. .. 44

Figure 9: Schematic view of a production cell. ... 45

Figure 10: Robot program structure. .. 46

Figure 11: Production cell life cycle. ... 46

Figure 12: Online teach-in programming. .. 47

Figure 13: Offline-programming amended by online teaching.. 47

Figure 14: The enhanced online robot programming approach. .. 49

Figure 15: Overview of the enhanced online programming system. 53

Figure 16: Path planning system: a logical view. .. 54

Figure 17: System overview of parts and devices. ... 55

Figure 18: The logical view of the path planning system with the highlighted flow of

sensor information. .. 58

Figure 19: A linear octree with two subdivisions. ... 60

Figure 20: Octree data structure representation. .. 61

Figure 21: Four neighbours. ... 62

Figure 22: Eight neighbours. .. 62

Figure 23: The problem with eight neighbours. ... 62

Figure 24: Spatial space neighbour relationship of an octree cell, shown by the arrows. ... 63

Figure 25: The robot environment and relation of world and octree representation. 63

Figure 26: Example robot. ... 64

Figure 27: General joint angle binary tree for a joint 𝑗 with depth 𝑡=3. 65

Figure 28: Joint angles binary tree. .. 66

III. List of Figures

xvii

Figure 29: Experimental scenario (2D example in 3D world), with obstacle O3 being

unknown. ... 68

Figure 30: Illustration of the experimental scenario in the 3D world. 68

Figure 31:Data sources of the information fusion system. .. 69

Figure 32: Sensor fusion architecture. ... 69

Figure 33: Sensor values derived from real sensors. ... 71

Figure 34: Fused sensor data. ... 71

Figure 35: Image stream processing chain. .. 73

Figure 36: The HSV colour space. ... 74

Figure 37: Colour calibration process. ... 74

Figure 38: Simulink image acquisition block and colour conversion. 75

Figure 39: Image stream processing chain. .. 75

Figure 40: Image stream segmentation. ... 76

Figure 41: Blob analysis block. .. 76

Figure 42: Blob analysis block. .. 77

Figure 43: Blob analysis block. .. 77

Figure 44: Schematic representation of forward and inverse kinematics 86

Figure 45: Revolute (left) and prismatic (right) joints ... 86

Figure 46: Mitsubishi RV-2AJ joints (from Mitsubishi documentation). 87

Figure 47: Mitsubishi RV-2AJ dimensions ... 87

Figure 48: Robot coordinate systems. .. 88

Figure 49: Law of cosine.. 89

Figure 50: Geometric inverse calculation for joint 1 ... 89

Figure 51: Geometric inverse calculation for joint 2 and 3 ... 90

Figure 52: Dubins airplane model. ... 93

Figure 53: Industrial manipulator ‘free flying’ model. .. 94

Figure 54: A Robotino robot from the company Festo. ... 95

Figure 55: Local coordinate axes of the Robotino robot.. 95

Figure 56: Kinematics of a car like robot. ... 96

Figure 57: Robotino calculations. .. 96

Figure 58: The use cases of the support system. .. 101

Figure 59: Support system overview. .. 103

Figure 60: Design of the Graphical-User-Interface. .. 106

Figure 61: Communication system of the Graphical-User-Interface. 107

III. List of Figures

xviii

Figure 62: Graphical-User-Interface controller Finite-State-Machine. 109

Figure 63: The dynamic toolbar. .. 110

Figure 64: The dynamic toolbar. .. 111

Figure 65: Visual servo control application. .. 112

Figure 66: The Mission and path planning control loop. ... 114

Figure 67: Logical view of the support system. ... 115

Figure 68: Path length information exchange. ... 115

Figure 69: Definition of the roadmap elements. A1 and A2 set the start and end location

of the application path. .. 116

Figure 70: Illustration of possible path connecting three application path for mission

task planning. ... 117

Figure 71: Graph of a discretized configuration space. ... 122

Figure 72: Workspace approximation of the obstacles and the free space with robot

configuration locations. ... 126

Figure 73: Forces on the safe and unsafe nodes for random inputs, marked as crosses. ... 127

Figure 74: Error-based safe node addition. .. 128

Figure 75: Error-based safe node addition. .. 128

Figure 76: Unsafe nodes on the boundary.. 129

Figure 77: Error-based safe node addition. .. 129

Figure 78: Error-based safe node addition. .. 129

Figure 79: Scene-based unsafe node addition. ... 130

Figure 80: Scene-based unsafe node addition. ... 130

Figure 81: Scene-based unsafe node addition. ... 130

Figure 82: Scene based safe node addition. ... 130

Figure 83: Workspace approximation of the obstacles and the free space. 131

Figure 84: Simplification of a complex roadmap. ... 131

Figure 85: The shrinking forces. .. 132

Figure 86: Voronoi approximation in a two-dimensional uniform grid. 135

Figure 87: Level 1, edge length: 21=2. .. 137

Figure 88: Level 2, edge length: 22=4. .. 137

Figure 89: Level 3, edge length: 23=8. .. 137

Figure 90: Level 4, edge length: 24=16. .. 137

Figure 91: Level 5, edge length: 25=32. .. 137

Figure 92: Dynamic and fast cell extension example (before and after update). 139

III. List of Figures

xix

Figure 93: Defined distance influence on Voronoi path generation. 140

Figure 94: Roadmap elements. ... 141

Figure 95: Obstacle synchronization. ... 144

Figure 96: Correlation between e and the radius r in a circle (2D). 147

Figure 97: Correlation between e and the radius r in a polygon (2D)................................ 147

Figure 98: Installed forces. ... 148

Figure 99: Angles of the rotational force. .. 149

Figure 100: Path with ta,min = 0. ... 151

Figure 101: Path with ta,min > 0. ... 152

Figure 102: Linear Movement corridor (highlighted in red) calculation with three points

P0-2. .. 155

Figure 103: New node not touching the corridor. .. 157

Figure 104: Planes calculated from connected nodes. ... 159

Figure 105: Calculation of the allowed corridor in two dimensions. 160

Figure 106: Nodes in a circular segment.. 161

Figure 107: Final point calculation. ... 164

Figure 108: Connecting two linear movement primitives.. 166

Figure 109: Connecting a linear and a circular Movement. ... 167

Figure 110: Connecting a circular and a linear movement. ... 167

Figure 111: Connecting two circular movements. ... 167

Figure 112: Communication overview: Message passing from component A to

component C (dashed arrow). ... 173

Figure 113: Code generation workflow. .. 175

Figure 114: Toolchain implementation. ... 176

Figure 115: Execution environment. .. 177

Figure 116: Node. .. 177

Figure 117: Actor deployment. .. 177

Figure 118: Plugin manager communication. .. 178

Figure 119: Component connections. .. 179

Figure 120: Component interfaces. .. 180

Figure 121: Interface definition. .. 180

Figure 122: UniMod state machine diagram example. .. 181

Figure 123: Experimental scenario (2D example in 3D world). .. 186

Figure 124: Screenshot of the experimental scenario. ... 186

III. List of Figures

xx

Figure 125: Roadmap of the scenario (without obstacle O3). ... 187

Figure 126: Roadmap corridor including configuration space positions. 188

Figure 127: Trajectory through the roadmap without obstacle O3. 189

Figure 128: Elastic net trajectory generation. .. 190

Figure 129: Adding collision indication positions (part of obstacle O3). 191

Figure 130: New re-planned path. .. 191

Figure 131: Experimental scenario. ... 192

Figure 132: Automatically planned path. ... 192

Figure 133: Manually planned path. .. 192

Figure 134: Devices overview. .. 225

Figure 135: The Robot manipulator Mitsubishi RV-2AJ. ... 226

Figure 136: CR1 Controller. .. 227

Figure 137: A Robotino robot from the company Festo. ... 228

Figure 138: Constructed coordinate systems. .. 233

Figure 139: Actor with ports. ... 236

Figure 140: Communication overview. ... 238

Figure 141: Running loop of a thread. ... 238

Figure 142: Event scheduling. ... 239

Figure 143: Thread priorities. .. 240

Figure 144: Interrupt handling. .. 241

Figure 145: The Kohonen Map. ... 244

Figure 146: Vectors of movement.. 246

Figure 147: Recalculation of the node movement vector. ... 247

IV. List of Tables

xxi

IV. List of Tables

Table 1: The robot programming scenarios. .. 51

Table 2: Comparison of scenarios. ... 52

Table 3: Status of sent commands. ... 82

Table 4: Built-in robot communication modes. ... 83

Table 5: Use cases. ... 83

Table 6: DH-parameters (see also Appendix C). ... 88

Table 7: Path combinations. ... 117

Table 8: Optimal discretization compared to uniform discretization. 123

Table 9: Object type definition. ... 145

Table 10: Parameter values. ... 151

Table 11: Path planning execution times. .. 194

Table 12: Comparison of the online programming times. ... 194

Table 13: Comparison of the overall programming times. .. 195

Table 14: Controller communication mode set up. .. 230

Table 15: Controller communication mode set up (continued). .. 231

Table 16: Receive command pattern. ... 232

Table 17: Message parameters. .. 242

Table 18: Mapping of Java data types to native types. .. 250

Table 19: Data types... 252

Table 20: Return types. .. 252

V. List of Listings

xxii

V. List of Listings

Listing 1: Command protocol format. .. 81

Listing 2: Multitask management program. ... 84

Listing 3: Datalink communication. ... 85

Listing 4: Control link communication. ... 85

Listing 5: Summary of the use cases. ... 102

Listing 6: The support system execution tasks. ... 121

Listing 7: Cell extension algorithm. ... 134

Listing 8: Obstacle addition algorithm. .. 138

Listing 9: Cell addition for obstacles. .. 140

Listing 10: Simple movement commands. ... 153

Listing 11: Generated Java code. ... 181

Listing 12: Manually-programmed Melfa Basic IV file. ... 193

Listing 13: Automatically generated Melfa Basic IV robot program file. 193

Listing 14: Simple internal message. ... 242

Listing 15: Broadcasting external message. ... 243

Listing 16: Pointed external message. .. 243

Listing 17: Invoke method from Plugin Manager. ... 249

Listing 18: Attach native thread to JVM. ... 251

Listing 19: Detach native thread from JVM. ... 251

Listing 20: Native method definition in java class. ... 251

Listing 21: Creating a linked list. ... 252

1

1 Introduction

 1 Introduction

2

Automated production is essential for industries, including the automotive, electronics,

plastics and metal products industries. Automation can be realized by the introduction of

industrial robots, which are efficient in terms of speed, flexibility and reliability. At the end

of 2010, the worldwide stock of operational industrial robots numbered between 1,030,000

and 1,305,000 units. In 2010, the worldwide market value for robot systems was estimated

to be US$5.7 billion (International Federation of Robotics, 2011). The use of robots and

automation levels in the industrial sector is expected to continue to grow in future, and will

be driven by the on-going need for enhanced productivity. Manufacturing industries

continue to be faced with shortened product life cycles, increasing dynamics of innovation,

and continuing diversification of their product ranges. Simultaneously, they have to lower

the costs per item and the costs of hiring skilled workers. The dynamic requirement profile

of production must be addressed in order to ensure compliance with high quality standards

as well as time and cost efficiency. Industrial robots are capable of meeting the emerging

needs with regards to flexibility and productivity, but the use of these robots remains

difficult, time consuming and expensive. There are particularly high requirements in terms

of capable robot programming and control technologies. Industries are strongly motivated

to improve efficiency and effectiveness of robot programming and control. Production

engineering and automation have been developed to an advanced level, and further

improvements may be reached using new approaches to the programming of robots.

Therefore, the vision of the industry is to realize a completely automated production

process without any manual intervention from the product planning stage to the

manufactured product. This vision has not been achieved, and even under ideal conditions

of production machines, trajectory planning remains difficult. With regard to errors that

result from unknowns and falsehoods in the environment, realizing this vision becomes

even more unlikely. Robot programming for a specific application may require months,

while the cycle time of the application is executed in only a few minutes or hours.

Therefore, robotic automation requires that significant investments be made before

commencing production.

While conventional online programming is simple, it is only useful for programming an

uncomplicated application with simple geometries of the workpieces. Those workpieces

are required to be present within the robot cell. Highly skilled operators are needed to

execute this task, while the production is halted during online programming. Any scenario

that relies on manual data input based on real world obstructions requires that the complete

 1 Introduction

3

production system be put offline and out of production for significant periods of time while

the data are manipulated, e.g. upload of or programming of robot programs. This leads to

production downtimes and financial loses. It also places a lot of pressure on the operators,

which may have an impact on the quality of the created programs. Once the programs are

created, it is difficult to make amendments. Nevertheless, conventional online

programming is widely used because of its intuitiveness and low initial cost. Advances in

online programming simplify the control of the robots, such as Master-Slave programming

and demonstrational programming (Demiris and Billard, 2007), but have not yet led to

crucial improvements.

On the other hand, offline programming reduces the production downtime, creating the

robot programs beforehand with a simulation system (Kain et al., 2008, Maletzki et al.,

2008). Many industries employ offline programming within a manually controlled and

specified work environment. This is especially true within the high-volume automotive

industry, particularly when it is related to high-speed assembly and component handling.

Therefore, it is widely accepted in high volume manufacture industries with proven

efficiencies and cost effective strategies. Its strength is in the programming of complex

applications, and when compared to online programming, it is more reliable and allows the

re-use of robot programs with ease. Because it relies on the modelling of the production

cell, additional manual modifications of the generated robot programs are necessary to

meet the accuracy requirements in production. Inaccuracies and errors resulting from

unknowns and falsehoods in the environment have to be altered manually. The simulation

of the production cell verifies the virtually programmed production process; subsequently,

the robot program may be generated and uploaded to the real robot cell. An online robot

programmer verifies and eventually modifies the programs to guarantee its actual function,

but this task can be time consuming. Manual modifications may be made, and may involve

a complete re-programming of the simulated robot. Possible reasons for this include

inaccuracies of the simulation data, last minute changes in the production process, and a

misunderstanding of the robot programs. The offline program developer and the online

robot operator are not usually the same person, and they tend to have different skills, which

may also be a source of misunderstanding. However, this is expensive, requires skilled

workers, and depends on an accurate modelling of the realistic scenario, which is often not

possible.

 1 Introduction

4

Investigations have been carried out with the aim being to optimize the robot-

programming methodology for industrial high-volume and small-batch manufacturing. To

address this aim, two key aspects have been identified that are different but related. First,

the reduction of financial investments required that an analysis be made of the current

robot programming approaches in order to explore all possible cost reduction options.

Because production cost is measured in terms of the product cost, the production volume is

an important feature that highlights the difference in the requirements for small-batch and

high-volume production. In particular, in the area of small-batch production, the

investments required for offline programming are prohibitive, and attention has been

turned to developing approaches to online robot programming. High-volume production

would also benefit from a change to the online robot programming approach, given that

production downtimes are within the current range, and that the functionality of the current

offline approach is still supported. A new online robot programming approach has been

analysed, with the focus being on the fulfilment of requirements for both production

volumes. This has required significant investigations into existing approaches to robot

programming, including assisted interaction with the operator to help less experienced

operators use this system. An enhanced online robot programming support system has been

adopted for this task.

As the second key aspect, online robot programming is very demanding for a

requirements-driven trajectory-planning algorithm. This also includes the ability to handle

inaccurate information (which may be obtained by sensors) and the environment, as well as

pre-existing information. Research has been undertaken to develop a trajectory-planning

algorithm and to fuse inaccurate information into an in-memory occupancy grid to

represent the production environment. It is understood that the development of large

software systems requires a modern software development approach to integrate the entire

system that consist of robot control devices, sensors and software components. Research

has been carried out to implement a model-driven code generation toolchain.

The research started with a comparison of robot programming approaches and the

exploration of important requirements of the production industry, focusing on the

employment of robots. The chosen robot-programming approach, including the associated

requirements, is summarized in Chapter 5. The realization of the robot-programming

software application requires robot control capabilities for the articulated and mobile

robots used. Robot modelling with the ‘Denavit and Hartenberg’ formulation is applied

 1 Introduction

5

throughout this study, which enables the execution of forward and inverse calculations

between the robot coordinate system and the world coordinate system. Robot control and

modelling are illustrated in Section 5.7. The environment in which the robot operates is

stored in a so-called world model, which is an in-memory occupancy grid. Information,

such as sensor data and pre-existing models, is fused into the grid to obtain coherent data.

The world model and information fusion are illustrated in Chapter 6. Based on robot

control and the in-memory occupancy grid, a trajectory-planning algorithm that supports

the chosen robot programming approach has been introduced. It also includes path finding,

trajectory generation and automated robot program creation that is ready to be uploaded to

the real system. The results are stated in Chapter 7. The implementation of the system

requires the incorporation of many software and hardware components. A modern software

development toolchain has been analysed and implemented to support the development of

the enhanced online robot programming support system. Chapter 9 addresses the

development toolchain.

Chapter 2 presents a review of the whole research activity covered in this investigation,

and it helps to collate important results that address the original aims of the study. The

conclusions made are itemised in Chapter 12. Sample source code is presented in

Appendix I. The investigation has highlighted particular aspects, many of which were

unknown at the beginning of the research described herein, and which could themselves

form the basis for additional studies. These are stated in Chapter 13.

Significant findings of this research have already been published, and Appendix A

presents a summary of these. The papers themselves are appended to this thesis. One

international journal paper were subject to peer-review and have now been published.

Selected findings have been presented by the author at international conferences, and five

papers were published between 2006 and 2012. The research was directed to the

enhancement of the car production at BMW AG, Munich, and discussed with the robot

programming company Robtec GmbH. Currently, the processes and techniques developed

are intended to be scientifically and commercially used in close co-operation with the

University of Applied Sciences Landshut, Germany. The system will be permanently

installed at the lab of the University of Applied Sciences Landshut, and further

improvements are planned for future study.

 1 Introduction

6

The result of this work leads to an enhanced online robot programming system for robot

arms. The proposed system will be a novel, rapid, convenient and flexible method to

program industrial robots. Programming within the real environment becomes possible and

will decrease offline programming time and render offline simulation systems unnecessary

when physical production parts and fixtures are to hand either as real objects or as

Computer-Aided Design (CAD) data.

The system will have greatest benefit within the production industry, however its use

will not be restricted to this application area. It could also assist in areas as diverse as home

robots, surgery and health care assistant machines.

7

2 Literature Survey

 2 Literature Survey

8

2.1 Industrial Manufacture

Based on the product lifetime and production volume, Hägele et al. (2001) classifies

industrial manufacture into conventional, pre-configured, decentralized and assisted

manufacturing.

Conventional manufacturing lines can be effectively employed when the product

lifetime and the production volume are known beforehand. The degree of automation is

based on the technological feasibility and cost of each operation.

Pre-configured robot work cells produced in medium numbers at low cost for standard

manufacturing processes such as welding, painting and palletising may even be cost-

effective when operated below full capacity (Westkämper et al., 1999).

Modern decentralized paradigms restructure the production into a network of

configurable working cells, which are connected such that they achieve flexibility in terms

of changing products. These production cells are often called ‘holonic’ or ‘bionic’

manufacturing systems (Westkämper et al., 1999).

The greatest flexibility is required in assisted manufacturing co-operating with the

worker in handling, transporting, machining and assembly tasks (Hägele et al., 2002,

Kristensen et al., 2001, Kristensen et al., 2002, Prassler et al., 2002, Stopp et al., 2002,

Thiemermann, 2005, Wösch et al., 2002).

Motion planning is required for any of the above-mentioned types of manufacturing.

Assisted manufacturing is based on reactive motion planning, whereas conventional, pre-

configured and decentralized manufacturing processes are often based on fixed robot

programs, and are further explained in Subsection 2.1.1. The limitation of fixed robot

programs is reached when the task execution requires a level of perception, dexterity and

decision making which cannot be met technically in a cost effective or robust way. To

achieve better productivity, assisted manufacturing relies on the co-operation between the

robot and the operator. These robots can be considered to be manufacturing assistants, and

are further described in Subsection 2.1.2.

2.1.1 Robot Programming

Online and offline robot programming approaches have been established in practical

industrial applications. Offline programming is based on a model of a complete robot

working-cell, and it shifts the programming tasks from the robot operator to the software

 2 Literature Survey

9

engineer in the office. It has its strength in the programming of complex systems, and it has

been proven to be more efficient and cost-effective for production with large volumes.

Pan et al. (2010) reviews modern robot programming approaches and summarizes

sensor-assisted online programming and offline programming approaches. Advancements

in online programming have led to a simplification of the control of the robots, such as

Master-Slave programming and demonstrational programming, but they have not yet led to

any significant improvements. Offline programming reduces the production downtimes by

creating the robot programs beforehand with a simulation system (Kain et al., 2008,

Maletzki et al., 2008, Pan et al., 2010). Nevertheless, the calibration phase and the offline

programming phase are still expensive, and result in significant programming effort, large

capital investment and long delivery times (Pan et al., 2010).

Online Programming

Online programming is carried out by skilled operators in the robot working-cell, and

requires that the production be offline. The robot is guided through the desired path using a

teach pendant to record specific points into the robot controller, which is further utilized

for the manual creation of movement commands (Pan et al., 2010). The robot operator

maintains the robot programs including the positions and orientations with a teach pendant.

Many coordinate systems like the world, tool and work piece coordinate systems have to

be tracked by the operator. This task is difficult and not intuitive. Guiding the robot

accurately through the working space without any collisions is usually a very difficult and

time-consuming task, especially when the work piece has a complex geometry or the

process itself is very complicated. The created robot program often lacks flexibility and

reusability. Online robot programming remains the choice for low and medium volume

production. Currently, more intuitive human machine interfaces and sensory interfaces are

being researched to reduce the reliance on the operator skill, and to improve automation

(Bjorn Solvang, 2008, Gonzalez-Galvan et al., 2007, Hu et al., 2007, Hui et al., 2006,

Myoung Hwan and Woo Won, 2001, Nicholson, 2005, Pan and Zhang, Schraft and Meyer,

2006, Sugita et al., 2004, Takarics et al., 2008). Pan et al. (2010) highlight that only the

research outcomes from Hui et al. (2006) have led to the development of a commercial

tool. Pan et al. also identified the limitation to specific setups as being one of the main

reasons for the failure to commercialize the remaining approaches. In particular, small-,

medium- and high-volume manufacture may benefit from enhanced sensor-assisted online

programming.

 2 Literature Survey

10

Offline Programming

High-volume manufacture utilises offline programming to simulate and generate robot

programs with specialized simulation software. The software engineer evaluates the

reachability, fine-tunes properties of robot movements, and handles the process-related

information before generating a program that can be downloaded to the robot. The actual

robot is not required for programming, minimizing the production downtime. Usually,

robot programs are developed at the beginning of the product development and production

cycle. However, a simulation and programming phase executed by skilled engineers is time

consuming and requires specialized and expensive simulation software. Thus, small- and

medium-volume manufacture does not benefit from this technology (Pan et al., 2010),

whereas large companies, for example BMW AG in the automotive industry, apply offline

programming as a standard process. High volume production justifies the costly simulation

and programming phase in order to assure high quality production.

Offline programming incorporates models of the work pieces, the robots and the

environment. While the robot model is usually delivered by the manufacturer, the work

pieces and the environment have to be created manually or, for example, with laser

scanning (Bi and Sherman, 2007).

Successively, application locations have to be created in a manual or automatic fashion.

The offline programming tools often provide functions that are used to extract features, e.g.

edges and corners, and which can be utilized to define the required robot application task.

Additional aspects related to the application type, e.g. equipment control, have to be

considered in order to produce the robot programs. It becomes evident that the software

engineer also requires skills in the specific application type to produce high-quality robot

programs. The approach proposed by Pires et al. (2004) attempts to extract robot motion

information from the models automatically.

The creation of the trajectory connecting all application locations and paths is often

executed manually. Automatic solutions are usually not provided by the vendor of the

software package, and have to be incorporated by third party tools or developments.

Connecting large amounts of application locations and paths may result in the well-known

‘travelling salesman’ problem, which may be solved using various approaches (Al-

Mulhem and Al-Maghrabi, 1997, Fritzke and Wilke, 1991, Kim et al., 2002).

 2 Literature Survey

11

The entire production cycle, or parts of it, can be simulated after robot program creation

to verify the production process without the physical production system (Heim, 1999).

Successively, the robot program can be uploaded and executed within the real production

environment. Extensions have been developed, for example by Wenrui and Kampker

(1999), to enhance the simulation and offline programming process. In practice,

inaccuracies and errors resulting from unknowns and falsehoods in the environment have

to be altered manually using the real production system.

2.1.2 Manufacture Assistants

Hägele et al. (2002) describes manufacture assistants as clever systems which help the

worker to accomplish their task. However, high-volume manufacturing is presently fully

automated, and human-robot interaction is not always required. The high level of

automation is attained through the robot-programming task, which is executed once during

installation of the production cell. Thus, assisted robot-programming produces a robot

program and is distinguished from manufacture assistants. Helms (2002) proposes a

‘human centred automation’ to improve the usability of robots, with the aim being to

combine the sensory skill, the knowledge and the skilfulness of the worker with the

advantages of the robot, e.g. strength, endurance, speed and accuracy. Manufacturing

assistants represent a generalization of industrial robots characterized by their advanced

level of interaction. Nevertheless, the human-machine interface and the underlying

technology realizing the assistance functionality also play an important role.

The human-machine co-operation has been addressed by numerous researchers, and is

viewed as a prime research topic by the robotics community (EURON, 2012). Haegele et

al. (2001) also state the typical requirements for the human-machine interface. The human

and the robot assistant should co-operate and safely interact, even in complex situations.

This implies that the assistant understands the human intent through natural speech, haptic

or graphical interfaces. In addition, effective cooperation depends on the recognition and

perception of typical production environments, as well as on the understanding of tasks

within their own contexts. Effective assistance requires the technical intelligence of the

robot as well as the knowledge and skill transfer between the human and the robot.

A typical example of learning is programming by demonstration (Pan et al., 2010).

During human-machine interaction, motions have to be planned and quickly co-ordinated.

For motions without physical human contact, skills such as avoiding obstacles,

 2 Literature Survey

12

approaching humans, and presenting objects have to be performed. In the more difficult

case of physical contact with the human, typical skills would comprise compliant motion,

anthropomorphic grasping and manipulation. A suitable safety concept has to account for

the integrity of the system just as it must account for the integrity of its surroundings.

External events affecting the proper function of the system and internal error conditions

have to be identified beforehand and classified according to their inherent risk factors.

2.2 Modelling of the Robot

The robot manipulator is an essential tool for the development of automated

manufacturing. A robot manipulator, also known as robot-arm, is a non-linear system with

 rotatory joints (Craig, 2003). The motion equations of the robots are coupled, non-linear

high-order differential equations, and the expenditure required for their evaluation is

generally very high. Either procedures for the evaluation of the motion equations work

numerically, or the motion equations are determined in symbolic form. An overview is

given by Schiehlen (1990), Paul (1981), Spong et al. (2004) and Kucuk and Bingul (2006).

The motion equations of robots may always be produced in closed form, but lead to a high

complexity of the equations. Equations in symbolic form are usually much more efficient

in the evaluation than the purely numeric procedures, because many simplifications can be

employed (Craig, 2003, Fisette and Samin, 1993, Vukobratovic and Kircanski, 1982,

Westmacott, 1989).

The Robotics Toolbox for Matlab (Corke, 1996) allows the user to create and

manipulate fundamental data types with ease, such as homogeneous transformations,

quaternion and trajectories. Functions provided for arbitrary serial-link manipulators

include forward and inverse kinematics, and forward and inverse dynamics.

In most cases, the manipulator has to be controlled in the workspace, which is defined

by external world coordinates and not in the configuration space, which is defined by

internal joint coordinates. Therefore, a transformation between world and configuration

space is required (Craig, 2003, Lenz and Pipe, 2003, Maël, 1996, Russell and Norvig,

2002).

The forward kinematics is a continuous mapping of the joint coordinates from the multi-

dimensional configuration space to the world coordinates, and is described in detail by

Craig (2003).

 2 Literature Survey

13

The inverse kinematics problem involves finding joint coordinates so that a desired

world coordinate is reached. Calculating the inverse kinematics is generally hard,

especially for robots with many degrees of freedom. This problem is ill posed because the

solution does not have to be unique. In particular, considering an unreachable target, no

solution exists at all (Russell and Norvig, 2002).

The kinematics of a robot may also be seen as a non-linear system, which can be

approximated by mapping the input space to an output space of a function. Neural

networks have the ability to learn such mappings, and they are therefore called ‘function

approximators’. A general example with a Continuous Self-Organizing Map is given by

Aupetit (2000). Features of neural networks are utilized to learn the kinematics of a robot,

which is an open- or closed-loop kinematic chain, and is not often precisely known. Maël

(1996) proposes a hierarchical network for visual servo coordination which is based on the

publication of Ritter et al. (1992). The hierarchical approach allows the learning of

geometric models of realistic robots with six or more axes. The network consists of several

one-dimensional sub networks which learn the coordinate transform and rotation axis for

each joint below the visual error. A dynamically-sized radial basis function Neural

Network was developed by Lenz and Pipe (2003) to control a six-axis Puma 500 robot on a

slow 16-bit microcontroller. Following Ge (2004), given a nonlinear robot system, model-

based control is superior to non-model-based control. On the other hand, for complex

nonlinear systems, it is more difficult to obtain a realistic model than to design a working

control system in reality.

2.3 Configuration Space Discretization

The configuration space of the robot is often used by a path-planner to solve the

problem of finding a collision-free path. A robot with degrees of freedom is usually a

manifold of dimension (LaValle, 2006). This manifold is called the configuration space

of the robot, and is considered as a state-space. Within such a state-space, the problem of

path finding may be abstracted to the problem of finding a path that goes through the

manifold. Discretisation of the configuration space is also important. Often, uniform

discretisation is used, but in the work by Reif and Wang (2000), they developed a non-

uniform discretisation approximation method with interesting properties for path planning.

The ego-kinematic space of a robot has been defined in literature (Glavina, 1990,

Mínguez et al., 2002). A robot can be considered a 'free-flying robot' with no constraints.

 2 Literature Survey

14

Thus, the path-planning algorithm does not need to take care of the configuration space of

the robot. This is realized by ego-kinematic transformations. Because the kinematic

constraints are embedded in the ego-kinematic transformation, the admissible paths are

mapped onto straight lines in the transformed space, and each point of the ego-kinematic

space may be reached by a straight-line motion of 'free-flying behaviour'.

The state space of the robot configuration space is often infinite. Sampling-based

planning algorithms may consider a small number of samples to reduce the running time

(LaValle, 2006). Therefore, path planners often use sampling strategies that are based on

the specific path planning problem and environment. Known strategies are random and

deterministic sampling schemes (LaValle, 2006). Random sampling schemes take samples

from the configuration space of the robot in a uniform manner; every state of the

configuration space must have an equal opportunity to appear in the sample. Deterministic

sampling schemes are pre-defined sampling techniques (LaValle and Kuffner, 2000). They

have the advantages of classical grid search approaches and a good uniform coverage of

the configuration space, but require long processing times (Branicky et al., 2001, Lavalle

et al., 2000, Lindemann and LaValle, 2004). Reif and Wang developed (2000) an

algorithm with non-uniform discretisation for motion planning, where the discretization is

greater in regions that are farther from all obstacles.

2.4 Path and Trajectory Planning

Trajectory planning is a fundamental problem, and significant research has been

conducted over the past few decades, either in static or in dynamic environments, for

example in the process of spray painting (Chen et al., 2008). Trajectory planning includes

the generation of a trajectory from the start to the target position, giving consideration to

objectives, such as minimizing path distance or motion time, and avoiding obstacles in the

environment and satisfying the robot kinematics. Motion planning is usually decomposed

into path planning and trajectory tracking. The former generates a nominal trajectory,

whereas the latter tracks that trajectory.

In robotics, the search space is most often the configuration space (LaValle, 2006).

Some path-planning algorithms try to compute the entire configuration space, which is

useful for low degree-of-freedom robots to find a global path (LaValle and Kuffner, 2000).

However, for systems with high degrees-of-freedom, the computing time rises

exponentially.

 2 Literature Survey

15

 Therefore, path-planning algorithms often try to find an approximated solution to

reduce computation time (LaValle, 2006). For example, roadmap methods (Geraerts and

Overmars, 2002) do not compute the whole configuration space, but try to generate a

roadmap of suitable configurations. Apart from roadmap-based techniques, the potential

field approach (Koren and Borenstein, 1991, Warren, 1989) and cell-based method

(Kitamura et al., 1995, Ranganathan and Koenig, 2004) are two popular path planning

approaches.

Path planning often includes searching the shortest path within a given graph. This can

be accomplished with shortest-path search algorithms like the Dijkstra, A* or D* (Goto et

al., Likhachev et al., 2005, Xiang and Daoxiong, 2011). The A* algorithm is one of the

most important algorithms because its implemented heuristic enhances the search

algorithm by directing the search to the target node.

2.4.1 Graph based Path Planning

Graph based approaches are also known as skeleton (Yang and Hong, 2007) or roadmap

(Bhattacharya and Gavrilova, 2008) approaches. A free space, such as the set of feasible

motions, is mapped onto a network of one-dimensional lines. The visibility (Yang and

Hong, 2007) and cell decomposition graph (Lingelbach, 2004), Voronoi diagram

(Bhattacharya and Gavrilova, 2008) and probabilistic roadmap (Kazemi and Mehrandezh,

2004b) are frequently-used skeletons, and are presented in the following subsections.

Visibility Graph

In a visibility graph, all obstacles are formed by polygons. These may be enlarged to

allow a minimum clearance of the robot to the obstacle. A graph is generated by

connecting the edges of the polygons and the start and target locations with linear polygon

lines. Subsequently, this graph is used to find an optimal path. An example is demonstrated

in Figure 1. The algorithm can be easily extended to a three-dimensional space, but it

requires all obstacles being available and real-time calculation of the trajectory seems

difficult, especially when new obstacles are detected.

 2 Literature Survey

16

Obstacle

Start

Target

Obstacle

Figure 1: Illustration of the visibility graph (by author).

Cell Decomposition Graph

The cell decomposition graph subdivides a given free space into cells. One example of

such subdivision is illustrated in Figure 2. The world model, which is the in-memory

model of the surrounding, is delimited to a rectangle. For each edge of the obstacles, a

horizontal line is included. The bisecting of each line is a point of the graph, and therefore,

the horizontal clearance to obstacles is maximized. Extension to a three-dimensional space

is difficult and the path obtained in this way is long.

Obstacle

Start

Target

Obstacle

Figure 2: Cell decomposition graph (by author).

 2 Literature Survey

17

Cell decomposition methods generally divide the robot’s free space into cells. The

connectivity graph is built by connecting adjacent cells. A channel leading from the start to

the target configuration through the graph may then be computed. A path may be chosen

leading through the midpoints of the intersections of two successive cells. Examples of

grid-based approaches are cell decomposition methods, which convert the configuration

space of the robot in discrete cells. The cell division may be either object-dependent or -

independent. Both cases are shown in Figure 3. A path is required to connect the start and

the target node with a sequence of adjacent cells, which can be computed using a shortest-

path search algorithm.

Figure 3: Cell decomposition with black obstacles and free space (by author).

Voronoi Diagrams

According to Hoff et al., a Voronoi diagram consists of a given set of Voronoi sites,

which partitions space into regions, where each region consists of all points that are closer

to one site than to any other (Hoff et al., 1999). An example of a Voronoi diagram is

illustrated in Figure 4.

 2 Literature Survey

18

Figure 4: A Voronoi diagram with regions, where each region consists of all

points that are closer to one site than to any other (by author).

Voronoi diagrams have been shown to be powerful tools in solving seemingly unrelated

computational problems, and therefore have increasingly attracted the attention of

computer scientists in the last few years. Efficient and reasonably simple techniques have

been developed for the computer construction and representation of Voronoi diagrams.

Voronoi-based path planning methods have been studied in literature (Bhattacharya and

Gavrilova, 2008, Fortune, 1986, Hoff et al., 2000, Hoff et al., 1999, Kim et al., 2009,

Vleugels et al., 1993). The basic properties of a Voronoi diagram are treated by

Aurenhammer (1991), who also recommended the publications of Preparata and Shamos

(1985) and Edelsbrunner (1987). Hoff et al. (1999) presented a computational algorithm

for generalized Voronoi diagrams, and did a survey of existing Voronoi computation

algorithms for two and higher dimensions. The presented Voronoi computations are the

divide-and-conquer algorithm (Shamos and Hoey, 1975) and the sweep line algorithm

(Fortune, 1986). Numerically robust algorithms for constructing Voronoi diagrams have

also been proposed in literature (Ingaki et al., 1992, Sugihara and Iri, 1994). Higher-order

Voronoi diagram computations have been summarized by Okabe et al. (2008) based on

incremental and divide-and-conquer techniques. The set of algorithms includes divide-and-

conquer algorithms for polygons (Lee, 1982, Martin, 1998), an incremental algorithm for

polyhedra (Milenkovic, 1993), and three-dimensional tracing for polyhedral models

(Culver et al., 1999, Milenkovic, 1993, Sherbrooke et al., 1995).

Hoff et al. (1999) stated that the computation of generalized Voronoi diagrams involves

representing and manipulating high-degree algebraic curves and surfaces and their

 2 Literature Survey

19

intersections, and as a result, there are no known algorithms for their computation that are

both efficient and numerically robust. Many algorithms compute approximations of

generalized Voronoi diagrams based on the Voronoi diagram of a point sampling of the

sites (Sheehy et al., 1995). However, the derivation of any error bounds on the output of

such an approach is difficult, and the overall complexity is not well understood.

Recent work aimed at reducing the length of the path obtained from a Voronoi diagram

was presented by Yang and Hong (2007). The method involves the construction of

polygons at the vertices in the roadmap where more than two Voronoi edges meet. This

results in a smoother and shorter path than that obtained directly from the Voronoi

diagram. The authors Wein et al. (2005) created a new diagram called the Visibility-

Voronoi diagram to obtain an optimal path for a specified minimum clearance value.

Vleugels et al. have presented an approach that adaptively subdivides space into regular

cells, and computes the Voronoi diagram up to a given precision (Vleugels et al., 1996,

Vleugels and Overmars, 1995). Lavender et al. (1992) used an octree representation of

objects, and performed spatial decomposition to compute the approximation. Teichmann

and Teller (1997) computed a polygonal approximation of Voronoi diagrams by

subdividing the space into tetrahedral cells. All of these algorithms require considerable

amounts of time and memory for large models that are composed of a large number of

triangles, and therefore cannot be easily extended to handle dynamic environments

directly.

Probabilistic Roadmap

Sampling-based motion planners such as probabilistic roadmap methods (Kavraki and

Latombe, 1994) or those based on the rapidly exploring random tree (Kuffner and LaValle,

2000) provide good results for robot path planning problems with many degrees-of-

freedom. Its success is based on the sampling method of the configuration space, e.g. the

explicit characterization of configuration space obstacles is not required, and the aim of

avoiding collisions is reached only by checking sample configurations of the configuration

space. To improve the sampling efficiency and to find a path with as few configuration

space samples as possible, several variants have been proposed to bias the sampling

towards the most promising and difficult regions. For instance, a sample distribution is

defined such that it increases the number of samples on the border of the configuration

space obstacles (Boor et al., 1999) around the medial axis of the free configuration space

 2 Literature Survey

20

(Wilmarth et al., 1999) or around the initial and goal configurations (Sánchez and

Latombe, 2002). In addition, the use of an artificial potential field was proposed to bias the

sampling towards narrow passages (Aarno et al., 2004, Kazemi and Mehrandezh, 2004a).

A probabilistic road map path planner was described by Sánchez and Latombe (2003)

with a single query, bi-directional and systematic lazy collision-checking strategy. It is

shown that this approach reduces planning times by ‘large factors’, making it possible to

efficiently handle difficult planning problems, for example problems involving multiple

robots in geometrically complex environments. This approach was successfully employed

for several planning problems involving robots with 3 to 16 degrees-of-freedom operating

in known static environments.

Narrow passages in configuration space can hardly be found. Results published by Hsu

et al. (1998) attempt to solve that problem using a new random sampling scheme. An

initial roadmap is built in a 'dilated' free space allowing some penetration distance of the

robot into the obstacles. This roadmap is then modified by re-sampling around the links

that do not lie in the true free space. Experiments have shown that this strategy allows

relatively small roadmaps to capture the free space connectivity reliably.

2.4.2 Potential Field Based Path Planning

Potential field methods are straightforward approaches used to calculate a vector field

based on target and obstacle locations; the robot follows the vector field until it reaches the

target (Khatib, 1986, Koditschek and Rimon, 1990, Waydo, 2003). These planning

algorithms often divide the free space into a fine regular grid, and use this grid to search

for a free path. Different potentials are assigned to the cells of the grid, where ‘attractive’

potentials are given to cells close to the target and ‘repulsive’ potentials are assigned to

cells close to obstacles. A path is constructed along the most promising direction. An

example is shown in Figure 5.

 2 Literature Survey

21

Start

Target

Figure 5: Potential field method.

Potential field methods have given good results, although not in high-dimensional

configuration spaces, since an approximated decomposition of the configuration space is

usually required (Barraquand and Latombe, 1991).

The cell-based method has been studied in combination with the potential field by

Kitamura et al. (1995), and has been successfully applied to arbitrarily shaped robots in

dynamic environments.

Yang and LaValle (2003) extended potential-field based methods to higher dimensional

configuration spaces, combined with a random sampling scheme. A similar approach

proposes global navigation functions over a collection of spherical balls of different radius

that cover the free configuration space (Yang and LaValle, 2004). Those balls are arranged

as a graph that is incrementally built following sampling-based techniques. The original

concept of potential-field navigation is summarized by Khatib (1986). The topological

properties of navigation functions are described by Koditschek and Rimon (1990).

The potential-field method developed by Pipe (2001) utilizes topographical cognitive

mapping to store the locations of the robot environment, linking them with a value for

‘pleasant’ and ‘unpleasant’ experiences. Obstacles are for negative reinforcement and

 2 Literature Survey

22

energy charging sites for positive reinforcement. The knowledge is stored in a Radial Basis

Function (RBF) neural network using techniques such as temporal difference (TD)

learning and evolution strategy (ES). Inherent features of this neural network type lead to

the creation of a potential-field structure that exerts appetitive and aversive ‘forces’ on the

robot while moving in the environment. Potential-field methods are powerful approaches

which appear to be promising, especially in a mixture of neuronal nets. Much more work

can be found in literature (Arkin, 1992, Arkin, 1989, Arkin, 1987, Arkin and Craig, 1989a,

Arkin and Craig, 1989b, Chuang, 1998, Ge and Cui, 2000, Koren and Borenstein, 1991,

Masoud and Masoud, 2000, Rao and Arkin, 1990a, Rao and Arkin, 1990b, Valavanis et al.,

2000).

A three-dimensional potential field was proposed by Fujimura (1995) considering

collision avoidance in static environments. It was demonstrated that both potential

functions and their gradients due to polyhedral surfaces can be derived analytically, and

this may facilitate efficient collision avoidance. The continuity and differentiability

properties of a particular potential function were investigated. Koren and Borenstein

(1991) discussed limitations of the mentioned potential-field methods, and Ge and Cui

(2000) discussed solutions for non-reachable targets in potential fields, that is, when

obstacles are near to the goal. Repulsive functions are improved by taking into

consideration the relative distance between the robot and the goal. This ensures that the

goal position is the global minimum of the total potential.

The potential field approach requires the decomposition of the configuration space

(Barraquand and Latombe, 1991) that might lead to high processing times. In addition, in a

real-time scenario, where the obstacles are not known beforehand, a complete recalculation

of large portions of the potential field might be unavoidable. The algorithm may get stuck

in local minima.

2.4.3 Harmonic Functions Based Path Planning

Potential-field approaches based on harmonic functions have good path planning

properties, although an explicit knowledge of the robot configuration space is required.

Kazemi et al. (2005) applied a sensor-based probabilistic approach to build an online

map with the use of harmonic functions for path planning. It iteratively extends the

knowledge of the environment using laser range sensors, thereby extending the map. No

prior knowledge of the environment is needed.

 2 Literature Survey

23

Connolly et al. (1990) described the application of numerical solutions of Laplace's

equation to robot navigation, which lead to harmonic functions. These are resolution-

complete planners without local minima (Connolly, 1992). The panel method of

hydrodynamic analysis is applied by Kim and Khosla (1992) to develop analytic

approximations to stream functions for complex geometries. Important reference work on

potential field navigation is given by Masoud and Masoud (2000).

A combination of harmonic functions and sampling-based probabilistic cell

decomposition methods for path planning is used by Rosell and Iniguez (2005) to bias cell

sampling towards more promising regions of the configuration space. Cell classification is

performed by evaluating a set of configurations of the cell obtained with a deterministic

sampling sequence that provides a uniform and incremental coverage of the cell. In

general, sampling-based methods allow the use of the harmonic functions approach

without the explicit knowledge of the configuration space.

An electrostatic field approach without minima is described by Valavanis et al. (2000).

In addition to path planning in static environments, dynamic environments are also treated.

The well-formulated and well-known laws of electrostatic fields are used to prove that the

proposed approach generates a resolution-complete optimal path in a real-time frame.

Harmonic functions suffer from the same disadvantages like the potential field

approach, although they do not have local minima. Their extension to higher configuration

spaces is reported to be difficult (Kazemi and Mehrandezh, 2004b).

2.4.4 Neural Network Based Path Planning

Literature for robot motion planning in unknown environments using neural networks

has been discussed in various publications (Lebedev et al., 2003b). A situation-action map

is introduced (Knobbe et al., 1995) for car-like robots (Latombe, 1991). New edge

detection on the visible objects generated possible motions to escape from dead end

situations while backtracking has been employed to choose from different possibilities.

Vleugels et al. (1993) present a new probabilistic road map approach that combines a

neural network and deterministic techniques with the scope of solving the path-planning

problem with a coloured version of a Kohonen map. Random configurations of the robot

are inputted to the network, which constructs a road map of possible motions in the

 2 Literature Survey

24

workspace, and approximates the obstacles. This road map is searched to find motions

connecting the given start and target configurations of the robot.

The sampling scheme of the presented algorithm by Vleugels et al. (1993) requires

random configurations of the robot, which is infeasible for a real-time path planning

approach.

2.4.5 Movement Planning

Movement planning usually takes the geometric and kinematic constraints of the robot

into account. Different approaches have been developed using randomized or graph-based

planners. Movement planners often have a constraint on the steering angle (Barraquand

and Latombe, 1989, Fraichard, 1999). Such robots have dependent degrees-of-freedom,

and thus, the motion is restricted. A feasible trajectory has to be found for the robot, to be

able to route the robot position from the start to the target without collisions. In addition,

the boundary conditions imposed and dynamics of the kinematic model of the robot have

to be satisfied.

In the geometric formulation of the movement problem, the robot is reduced to a point

on a two-dimensional surface with a behaviour that is similar to Dubins car (Dubins,

1957), which is only able to drive forward, and the radius of the steering is bounded. The

resulting paths must be differentiable and feasible for the robot. An extension of the

Dubins car is given with the Dubins airplane, which applies to three-dimensional spaces

(Chitsaz and LaValle, 2007).

2.5 World Model

The modelling of the environment of the robot is necessary for an inner representation

of the world. Often, this format is a boundary representation or a solid representation.

While the former is a surface representation of the objects within the environment, the

latter is a collection of points in space.

A number of approaches such as memory-based techniques (Blaer and Allen, 2002,

Matsumoto et al., 1996, Payeur, 2004), expressions by features such as line segments

(Gutmann et al., 2001, Newman et al., 2002), parametric expressions (Brooks, 1983, Quek

et al., 1993) and mesh modelling methods (Hilton et al., 1996, Wheeler, 1996) are suitable

for world modelling. For example, Boada et al. (2004) combined topological and

geometric information to model the environment. This map is obtained from a Voronoi

 2 Literature Survey

25

diagram using measurements of a laser telemeter. In addition, other approaches can also be

found in literature (Kagami et al., 2003).

Gran (1999) shows simplification algorithms for the generation of a multi-resolution

family of solid representations from an initially polyhedral solid. Discretised polyhedral

simplifications using space decomposition models are introduced based on a new error

distance. This approach provides a scheme for the error-bounded simplification of

geometry topology, preserving the validity of the model.

Another proposed method uses trihedral discretised polyhedral simplifications and an

octree for topology simplification and error control (Garland, 1999). This method is able to

generate approximations that do not affect the original model. It is either completely

contained in the input solid or bounded to it, and can handle complex objects. A brief

overview to object simplification with various algorithms was presented.

Knuth (1973) employed a uniform grid to store the data. The space is divided into equal

sized cells, that is, squares and cubes for two- and three-dimensional data, respectively.

Hierarchical data structures were also presented (Gargantini, 1982a, Gargantini, 1982b,

Payeur et al., 1997, Schrack, 1992), and can be applied in order to save memory

consumption. The most important approach is a linear region quadtree or octree that

recursively subdivides the space into four or eight equal-sized space regions. Such space

partitioning data structures are used to store geometric data in a specified resolution. In

robotics, it is often useful to find the neighbours of a cell. Finding the neighbours either on

the same level or on a higher or deeper level within the hierarchy is explained in literature

(Balmelli et al., 1999, Bhattacharya, 2001, Lee and Samet, 2000, Samet, 1990, Schrack,

1992). Among other techniques such as Binary Space Partitioning (BSP) trees or -

Dimensional (-D) trees, hierarchical data structures are also explained by Chang (2001).

Of the different existing neural network types, the growing neural network type is

discussed in many applications such as surface reconstruction (Ivrissimtzis et al., 2003)

and robot path planning (Fritzke, 1991, Fritzke and Wilke, 1991, Vleugels et al., 1993).

Also, a self-organizing neural network is often employed for data visualization, clustering

and vector quantization. The main advantage lies in its ability to find a suitable network

structure and size automatically. This ability can also be exploited to reconstruct objects

such as obstacles in the workspace of the robot.

 2 Literature Survey

26

However, growing neural net adaptation rules are mostly based on different approaches

(Blackmore and Miikkulainen, 1993, Cheng and Zell, 1999, Fritzke, 1995, Fritzke, 1991,

Fritzke, 1993, Fritzke and Wilke, 1991, Ivrissimtzis et al., 2003, Lenz and Pipe, 2003).

Fritzke (1995) explained in detail the power of growing neuronal nets, which are able to

learn the important topological relations in a given set of input vectors by means of a

simple Hebb-like learning rule. The net grows and continue to learn and add units and

connections until a specified performance criterion has been met.

The concept of the coloured Kohonen map introduced by Vleugels et al. (1993) uses an

adapted version of the growing neural network presented by Fritzke (1991) to identify the

free and occupied working space for two different colours.

Another variant of the approach by Fritzke (1995) was proposed by Cheng and Zell

(1999). The goal of their paper was to speed up the convergence of the learning process. A

performance comparison between a Kohonen Feature Map and growing neural networks

was explained in depth by Fritzke (1993).

Blackmore and Miikkulainen (1993) presented a growing feature map that is able to

represent the structure of high-dimensional input data. An extension has been given with

the approach used by Rauber (2002), where a growing hierarchical self-organizing map is

built. This is an artificial neural network model with a hierarchical architecture, which is

composed of independent growing self-organizing maps. The motivation of the authors

was to provide a model that adapts its architecture during its unsupervised training process

according to the particular requirements of the input data.

The algorithm proposed by Ivrissimtzis et al. (2003) samples a target space randomly

and adjusts the neural network accordingly which also include the connectivity of the

network. The speed is virtually independent from the size of the input data, making it

particularly suitable for the reconstruction of a surface from a very large point set.

Triangle primitives are popular in computer graphics for surface reconstruction because

they are also used by graphics acceleration hardware (LaValle, 2006). Combining neural

network algorithms with triangle meshes leads to an algorithm for path planning, which is

presented by Vleugels et al. (1993). An optimization of the quadtree is presented by

Hwang et al. (2003) using triangles instead of a quadtree to improve object approximation.

 2 Literature Survey

27

They presented a path-planning algorithm that simplifies the triangle mesh into a compact

and obstacle-dependent mesh to reduce the search space.

Data structures and algorithms of progressive triangle meshes were presented by Hoppe

(1998). For a given mesh, this representation defines a continuous sequence of level-of-

detail approximations, which allows smooth visual transitions among them and makes an

effective compression scheme.

2.6 Vision and Perception

Path planning in robotics considers model-based and sensor-based information to

capture the environment of the robot. Perception, which is initiated by sensors, provides

the system with information about the environment and subsequently interprets them.

Those sensors are, among others, cameras or tactile sensors which are often used for robot

manipulators. Gandhi and Cervera (2003) presented a sensor skin for a robot manipulator.

An approach based on touch sensors was also mentioned by Zlajpah (1999).

Vision-based sensing is the most useful sense for dealing with the physical world

(Russell and Norvig, 2002). Extracting the pose and orientation of objects in images or an

image stream and the detection of motion delivers useful information for path planning.

Object recognition converts the features of an image into a model of known objects. This

process consists of segmentation of the scene into distinct objects, determining the

orientation and pose of each object relative to the camera, and determining the shape of

each object. Those features are given with motion, binocular stereopsis, texture, shading

and contour.

Motion estimation algorithms are presented in literature (Hsu et al., 2002, Lippiello,

2005) to estimate motions of obstacles online for realistic environments. An introduction

of image processing is given by Pollefeys (2000) and Russell and Norvig (2002). Peter

Corke's Machine Vision Toolbox for Matlab (Corke, 2005, MathWorks, 1997) allows

developers to use professional image processing capabilities with ease.

In many cases, the sensor data are redundant, uncertain, imprecise, inconsistent and

contradictory. The knowledge of the spatial relationships among objects is also inherently

uncertain (Nandi and Mitra, 2005). Those data should be considered to recognize errors. A

review of papers on uncertainty analysis in the context of manipulator control (Di et al.,

1998, Langlois et al., 2001, Mao-Lin and Meng, 2000, Smith et al., 1990) shows that a

 2 Literature Survey

28

common step involved in all these systems is the interpretation of identical information

that has been acquired through multiple sensory units. The fused information needs to be

represented with minimized uncertainty, and the level of this minimization depends on

task-specific applications.

2.7 Collision Detection and Avoidance

Path planning in a dynamic environment with moving obstacles is computationally

hard (Hsu et al., 2002), and several solutions have been proposed in the past (Akgunduz et

al., 2005).

One solution is to ignore moving obstacles and to compute a collision-free path of the

robot among the static obstacles; the robot’s velocity along this path is tuned to avoid

colliding with moving obstacles (Kant and Zucker, 1986). However, the resulting planner

is clearly incomplete. The planner developed by Fujimura (1995) tries to reduce

incompleteness by generating a network of paths. The planner proposed by

Fraichard (1999) dealt concurrently with velocity and acceleration constraints and moving

obstacles, such as car-like robots. It extends the approach of Donald et al. (1993) and

Erdmann and Lozano-Perez (1987) to the state-time-space, which solves the trajectory-

planning problem for velocity- and acceleration-constrained movements. It also transforms

the problem of searching the time-optimal canonical trajectory to one of searching the

shortest path in a directed graph embedded in the state-time-space. The concept augments

the state space with the time dimension, and is useful for trajectory planning.

Hsu et al. (2002) presented a randomized motion planner for robots that avoids

collisions with moving obstacles under kinematic and dynamic constraints. The planner

does not pre-compute the roadmap; instead, for each planning query, it generates a new

roadmap to connect the start and target state-time points. A vision module estimates the

obstacle motions just before planning, and the planner is then allocated a small amount of

time to compute a trajectory. If a change in the obstacle motion is detected while the robot

executes the planned trajectory, the planner re-computes a trajectory on the fly (Boada et

al., 2005, Etzion and Rappoport, 2002, Kim et al., 2009, Kitamura et al., 1995, Lebedev et

al., 2003a, Nagatani and Choset, 1999, Vleugels and Overmars, 1995).

Another approach employed for collision detection was given by Sánchez and Latombe

(2003). To reduce the time needed to check collisions, this strategy postpones collision

checks until they are absolutely needed. Schwarzer et al. (2004) provided a collision-

 2 Literature Survey

29

checking method that tests single straight-line segments, sequences of such segments, or

more complex paths in the configuration space. It was shown that this approach is faster

when compared to resolution-based approaches with a suitable resolution. The spatial

potential field by Chuang (1998) shows that potential functions and their gradients can be

derived, and may therefore facilitate efficient collision avoidance.

2.8 Model Driven Software Development

The object management group (OMG) (Object Management Group, 2011) is an

international, open membership, not-for-profit computer industry consortium that provides

modelling standards such as the Unified Modelling Language (UML), Model Driven

Architecture (MDA), and Common Object Request Broker Architecture (CORBA). These

standards have been applied to several projects of the eclipse development environment

(Eclipse Foundation, 2006, Eclipse Foundation, 2011a, Eclipse Foundation, 2011b, Eclipse

Foundation, 2011c, Eclipse Foundation, 2011d). A model-based execution system has been

presented by the eTrice Group (2011) and Pontisso and Chemouil (2006). An overview of

domain-specific programming, which is most often part of a model-based code generation

framework, was given by Shani and Sela (2010).

2.9 Summary

Industrial manufacturing requires more intuitive human-machine interfaces and sensory

interfaces to reduce reliance on the operator skill and to improve automation. Online robot

programming leads to a loss of production and reduces preparation times, which are

necessary for the counterpart of online programming, namely, offline programming. The

offline generation of robot programs needs a simulation and programming phase executed

by skilled engineers. This is time consuming and requires specialized and expensive

simulation software. Thus, small- and medium-volume manufacturing do not benefit from

this technology. Industrial production may be improved with enhanced online

programming for industrial robots.

This enhancement can be attained with an assisted online robot programming system,

which can be operated with ease. The required human-machine interface is closely

connected with the underlying trajectory-planning algorithm to support the robot-

programming task.

 2 Literature Survey

30

The perception of the environment and the representation of the in-memory world

model play an important role in the efficient utilization of the environment information for

trajectory planning. Vision and perception has to be appended by other sensor types and

fused into the in-memory representation of the environment. Research is required,

especially for robot programing in the industrial surrounding to utilize existing data

sources.

The trajectory planner has to deal with both the available information and the

operational requirements of the enhanced programming system.

In general, the computation time of algorithms can be reduced by introducing

hierarchical subdivision approaches such as quadtree- and octree-based methods

(Gargantini, 1982b).

Cell-based planning methods often generate a path that connects the midpoints of the

cells. The publication by Hwang et al. (Hwang et al., 2003) identifies two limitations with

cell-based methods. First, the detection of small passages requires high accuracy of the

octree or quadtree. Secondly, the shortest path is not always identified since the distance

calculations of the cells often use the midpoints of the cells. Thus, the paths obtained by

the cell-based method are not optimal because of the connectivity limitations in a grid.

The potential-field approach has several limitations, as outlined in the work of Koren

and Borenstein (1991). In particular, the robot may get stuck at a local minimum and the

reported paths can be arbitrarily long.

Trajectories that are directly obtained from Voronoi-based path planning methods are

often long, and are not smooth. In recent years, much research has focused on improving

the quality of the path. Masehian and Amin-Naseri (2004) combine the Voronoi diagram

with the visibility graph and potential-field approach into a single path-planning algorithm

to obtain a trade-off between safest and shortest paths. The algorithm is complicated, but

the path length is shorter than the paths obtained from the potential-field method or the

Voronoi diagram.

Neural networks have the ability to learn from input vectors. Among its most important

benefits are object and environment recognition, generalization to new situations,

evaluation of situation-contexts, short and long-term memory and their real-time ability.

 2 Literature Survey

31

Research of trajectory planning with neural networks for real robot systems has been given

less attention in the past.

The literature survey shows that a large amount of scientific work has been done in the

last decades. However, in the context of robot-program file generation for robot

manipulators in deterministic industrial environments, other prerequisites have to be taken

into consideration.

The usability of the robot-program generation application is an important factor and it

has to be analysed in detail. For example, not only the usage but also the created final robot

program file is relevant for a good usability. It has to comply with guidelines for manually

created robot program files to allow manual amendments. Nevertheless, the trajectory

planning process within the production system has to be applicable by inexperienced users,

which requires an intelligent expert system to support the user. The intelligence contains

the human machine interaction, the path-planning algorithm and the knowledge transfer

between the user and the expert system. An additional aspect is the trajectory planning

process that might become easier in a deterministic production environment where only

objects with a predictable motion may exist.

This work is focused on an intuitive expert system for industrial use and the acquisition

of industry requirements sets the basis for further investigations, such as the trajectory-

planning algorithm, the world model, the robot kinematics and a suitable software

development framework. The following aims chapter summarizes the aim and specifies the

objectives treated in this work.

32

3 Aims

 3 Aims

33

3.1 Motivation

Industrial production systems within the high-volume automotive industry are highly

optimized. Further advancements may be achieved through a systematic improvement of

the production process. Existing online robot programming approaches have not been

completely accepted because of the required production downtime. Consequently, offline

programming is generally employed even if it requires serious financial investments in

terms of additional personnel and equipment costs. Furthermore, offline programming

requires expensive simulation systems and skilled operators who are able to create the

model of the specific production environment and to produce high-quality robot programs.

Exact modelling of the production environment is a time-consuming task, although models

of the production machines are most often provided by the manufacturer. Simulation

systems generally allow the use of modelled production parts and fixtures to optimize the

offline-programming process. This represents an improvement, especially when the models

are not available as physical objects. The quality of the robot programs is highly dependent

on the knowledge of the operator, who must be experienced in online robot programming

and in the use of simulation systems. Nevertheless, offline programming still requires

installation time to upload the robot programs and to adjust inaccuracies and errors

resulting from unknowns and inaccuracies in the environment. Finally, offline-created low-

quality robot programs are most often re-programmed online, presenting the risk of a

production loss. This also affects the performance of the robot programmer, set under high

pressure.

Costs may be reduced by the development of a new robot programming system which is

executed solely online, and which creates robot programs in a period of time that is

comparable to the time necessary for the installation of offline programming approaches. A

seamless integration into the existing industrial environment is required to reach a high

acceptance level. This may be realized by combining the advantages of existing robot

programming approaches and a new trajectory-planning algorithm, which is extended with

an intuitive user interface.

 Robot use and automation levels in the industrial sector will continue to grow in future,

driven by the ever-present need for lower item costs and enhanced productivity. In order to

support this market-driven requirement, more capable programming and control

technologies will be necessary. Therefore, research has been undertaken to optimize the

 3 Aims

34

robot programming process and to reduce personnel and equipment costs. Accordingly,

this work addresses the future needs of the production industry.

3.2 Objectives

This work aims to present a method that can substitute the current robot programming

approach with an enhanced robot programming system, in effect rendering offline

programming an unnecessary technology. Offline programming is still an accepted and

proven programming approach; the present production environment setup is well

established in industry. Therefore, an analysis of the current key aspects regarding robot

programming is required. The integration of those aspects into the new programming

approach guarantees a high acceptance level and future employment of the new

technology.

With no offline programming phase, robot programming can only be accomplished

online. This aspect defines the scope of the new online robot programming approach. The

required information for online programming, like mission data and computer aided design

data, must be managed and processed online. The complexity of a tool that executes

information management and the robot-programming task itself requires a usable frontend

that encapsulates the complexity. The frontend provides assistance in order to ensure the

simple use of such a complex tool which is able to interpret information and execute the

robot-programming task by itself.

Online robot programming approaches are generally time critical since production

downtimes have to be minimal. A crucial aspect that is able to support the general need to

reduce the time lies in the development of a fast trajectory-planning algorithm. The

knowledge acquired during the process will be efficiently employed to optimize online

robot programming. This also includes the ability to handle inaccurate information, which

may be obtained through sensors, the environment and pre-existing modelled information.

The combination of the robot, the sensors and the software components requires a modern

software development approach, which supports their integration into the proposed

enhanced online robot programming system.

It is the intention to introduce an enhanced robot programming system that should be

used solely online to reduce costs by entirely omitting the offline programming phase. Its

handling should be kept simple, and should allow less experienced workers to apply the

programming system in a more productive way. It can also be utilized by an expert to

 3 Aims

35

increase his or her productivity. An online robot programming system can also be easily

applied in small-batched productions, which is a field that is very sensitive to robot

programming speed, system flexibility and cost efficiency. The high quality results of the

system are reproducible, and the process itself still has the potential for further

optimization and modernization.

Objective one: Requirements for adoption by industry of online programming.

Important key features of current robot programming approaches have to be supported by

an enhanced online robot programming system to reach a high acceptance level. Some of

the key features may include the use of modelled production parts and fixtures that are

physically unavailable, and the creation of high-quality robot programs. In addition,

technical aspects of the industrial environment have to be considered to allow a seamless

integration of the system. The results of the analysis are summarized in the requirements

definition for the enhanced online robot programming system, also affecting the robot

programming process. The results are described in Chapter 5.

Objective two: Investigation into an efficient probabilistic world model for data

fusion. Trajectory planning relies on inexact information about the environment in which

the robot operates, although sensor information is almost incomplete and inaccurate.

Additional information such as the utilization of modelled data may be incorporated to

improve the in-memory environment representation. The information sources are fused

according to their reliability to provide cohesive information. A probabilistic world model

stores the information statistically, and considers the history of the information. Objective

two is to develop an efficient data-structure and information fusion algorithm which allows

statistical environment data to be stored. The world model and information fusion system

are described in Chapter 6.

Objective three: Research of the robot kinematics model and the robot control

capabilities. The use of industrial-scale experimental machinery robot systems such as the

Mitsubishi RV-2AJ manipulator is essential throughout the investigation to prove new

theories. Furthermore, autonomous mobile robots such as the Festo Robotino robot may

also be applied to verify control algorithms in a simplified two-dimensional space. This

requires a robot communications and control framework for both robot types. In particular,

the kinematics of the robots is required for forward and inverse calculations; they

transform positions of the real world into the robot coordinate system. In this work, the

 3 Aims

36

robot geometry and the joint types are applied to create a kinematic model of the utilized

robots. The robot communications and control framework and the kinematics model of the

used robots are described in Chapter 7.

Objective four: Investigation into a trajectory planning algorithm to support

intuitive use of the robot programming system. The user and the enhanced online robot

programming system should co-operate and safely interact, even in complex situations.

Effective assistance requires that the robot be technically intelligent, and that there is a

knowledge and skill transfer between the human and the robot. The co-operation depends

on the recognition and perception of typical production environments as well as on the

understanding of tasks in their context. During human-machine interaction, robot motions

have to be planned and quickly co-ordinated. In compliance with the requirements for the

enhanced online robot programming system, online programming needs to be a simple and

fast method compared to other robot programming approaches. This also applies to less

experienced operators. This is only possible with a high level of automation of the

trajectory-planning task. Considering that the operation of an industrial robot is restricted

to a small set of commands, the planned trajectories consist of circular and linear

movement primitives. The robot-program generation transforms the trajectories into robot

programs, which are stored in the robot-type specific program syntax file. The trajectory

planning approach is described in Chapter 8.

Objective five: Research of a software development framework for complex

systems. The system development and implementation of many hardware and software

components require a clear and structured implementation approach. Model driven

approaches have been shown to overcome this complexity, but have to be setup for their

use in specific problem domains. Starting with the analysis of the current state-of-the-art

technology, a model-driven code generation toolchain has been developed and

implemented. The results derived using this analysis are presented in Chapter 9.

Much of the results have been published and the findings are appended.

37

4 Experimental

 4 Experimental

38

The executed experiments focused on human-machine interaction and trajectory

planning algorithm development. The human-machine interface (HMI) and the trajectory

planning are interconnected tasks, which have had an impact on the graphical user

interface (GUI) design. A task-oriented approach was chosen to provide only relevant

information and functions to the operator, based on a user interaction finite-state-machine.

The user interface consists of a dynamic toolbar which proposes a standard robot

programming workflow. It simultaneously offers extended interaction possibilities and

maintains the effectiveness of the interface. The GUI itself provides a dynamic main screen

that displays only task-relevant widgets.

The experiments regarding user interaction and the GUI design concentrated on usage

experiences and an evaluation of standard graphical interface design rules. The trajectory-

planning algorithm was first tested with an autonomous mobile robot to omit forward and

inverse robot position calculations and robot arm constraints. In the second step, the

experiments were extended to an industrial scenario, which includes an articulated arm.

These experiments were designed to prove the feasibility of the user-interaction and the

trajectory generation.

The experiments completed as a part of this investigation were carried out using the

Mitsubishi RV-2AJ manipulator and the autonomous mobile robot Robotino produced by

Festo (Festo, 2011).

The mobile robot is a platform equipped with wireless communication and infrared

distance measurement units, and it was employed for early algorithm tests. In addition, the

implementation of a simulated robot accelerated the algorithm development and the user-

interaction design because no direct connection to the real robot was necessary.

The manipulator is an advanced, but mature and industrially proven machine, and its

commercial viability has already been demonstrated in the manufacture of car sub-

assemblies, semiconductor memories and other industrial/consumer goods.

The connection to the robots was established using C# for the mobile robot (Festo,

2011) and a Java framework for the manipulator (Kohrt et al., 2008). The communication

and control capabilities of the manipulator were enhanced to extend sensor measurement

and robot movement capabilities. The Mitsubishi documentation regarding controller

commands is not complete. However, the data sent between the controller and the

 4 Experimental

39

Mitsubishi Software Cosirop (Mitsubishi-Electric, 2011) is not encoded, which allowed

listening to the Ethernet communication between the controller and the personal computer.

This helped to identify undocumented commands. Cosirop is a software development and

simulation environment from Mitsubishi, which is used to program in Melfa Basic IV

(Mitsubishi-Electric, 2003), illustrated in Figure 6.

Figure 6: The Cosirop robot programming software.

Figure 7 shows the equipment employed, which is described in more detail in

Appendix B.

 4 Experimental

40

Software System

Vision

Manipulator

Robot Tool

Centre Point

Marker

Operator

Joystick

Graphical User

Interface

Mobile Robot
Pointing

Device

Mobile Computer

Workpiece

Figure 7: The experimental system.

The operator utilizes a GUI that was developed with the Java Standard Widget Toolkit

(SWT) framework on a Windows operating system (Kohrt et al., 2006a). The buttons on

the GUI and the Joystick were applied to indicate collisions. Vision sensors are connected

and processed by a Matlab/Simulink generated C++ code. The GUI, the joystick and

pointing device allow the control of the employed robots.

The pointing device is a 50 cm long stick with a single coloured 2.5 cm-diameter red

ball that is used as a marker for position recognition. Different marker colours were

chosen, e.g. for the robot-arm and the pointing device, so that they can be distinguished

from each other.

Other sensory modalities, such as machine vision, distance measurement and ultrasonic

sensors, may also be included through the sensor fusion framework. The choice of sensor

types depends greatly on the application. The vision system was utilized for the recognition

of the markers.

 4 Experimental

41

The software was installed on a mobile computer with a 32-bit Microsoft Windows 7

operating system running on an Intel Core i5 processor with a maximum frequency of

2.4 GHz. Other real-time capable systems, such as a PowerPC with a VxWorks operating

system, may improve the performance of the system.

42

5 Requirements for Adoption by Industry of
Online Programming

5 Requirements for Adoption by Industry of Online Programming

43

This chapter presents the findings from the investigation to the requirements for

adoption of online programming by industry. This is objective number one, as outlined in

Chapter 3. It identifies and specifies requirements for robot programming for small-

batched, medium sized and high-volume manufacturing industries.

In Section 5.1, a typical production cell in the automotive industry is introduced and in

the subsequent Section 5.2, offline programming approaches are analysed. The analysis

identifies industry requirements for robot programming, which are summarized in

Section 5.3. A new robot programming approach is presented in Section 5.4, which was

researched based on the identified requirements. Section 5.5 compares the proposed

programming approach with conventional online and offline programming. Moreover, a

first system design which implements the new robot programming approach is introduced

in Section 5.6. Finally, Section 5.7 summarizes the system requirements for the

implemented enhanced robot programming support system.

5.1 Industrial Production Environment

A typical production environment within the automotive industry is illustrated in Figure

8. A work object, such as the chassis of a car, may be transported into a production system

which consists of four robots installed on two external axes. Cameras may be used to

measure the offset position of the work object. The robots may use this information to

calibrate their robot programs in order to compensate positioning inaccuracies of the work

object. In industry, it is also common to transport the work object with a conveyor during

robot operation. The robot programs have to consider these usage scenarios which are most

often supported by the robot manufacturer with special movement commands. Typical

applications are welding, gluing, assembling, spraying, handling and picking and placing.

5 Requirements for Adoption by Industry of Online Programming

44

Work

Object

Cameras

Robot

Robot

Robot Robot

External

Axis

External

Axis

Figure 8: Typical production cell.

A production system usually requires a specialized communication, logic and control

system, an example of which is shown in Figure 9. The logic component may be

implemented using a Programmable Logic Controller (PLC), personal computer (PC) or

one of the robot controllers to synchronize the entire production process with preceding

and successive working tasks. The control component requires information such as

mechanical, physical, electrical and logical data to control the production system. Robots

are often utilized for production systems, and are usually equipped with robot control

devices such as a teach pendant or other HMI.

5 Requirements for Adoption by Industry of Online Programming

45

Physical Data

(mass, inertia,etc.)

Mechanical Data
(3D geometry,

kinematics)

Electrical Data

(sensors, actuators)

Logical Data

(behaviour models)

Robot Control

Devices

(teachpendant, HMI)

Product/Work Object

Production System

Logic

Control

Production Cell

Figure 9: Schematic view of a production cell.

The control component may execute robot programs to control the robots. Increased

product diversity is realized by implementing work-object dependent robot program

execution. The identification of work objects is often achieved by bar codes or radio-

frequency identification (RFID) chips on the work objects. The increased flexibility is also

demanding for the material flow automation, since the correct production parts have to be

delivered just in time.

The flexibility of robots makes them important for production applications, especially

within the automotive industry. For example, Mercedes Benz uses robots for rear-axle

assembly tasks of their C-Class car (Kiefer et al., 2010). The analysis of a robot program in

Figure 10 indicates that 68% of the program is related to the production task (movement

instructions, variable declarations and syntactical instructions), while 32% are related to

external communication and assembly procedures (plausibility checks).

5 Requirements for Adoption by Industry of Online Programming

46

Figure 10: Robot program structure.

The automation of robot programming implies the automatic creation of the robot

program structure which is illustrated in Figure 10. The life cycle of a production cell from

the initial design to the operation stage is illustrated in Figure 11. To create and modify

robot programs, research focused on the ‘Installation & Initial Setup‘ and the ‘Operation

and Maintenance‘ phases.

Design & Plan
Plant

Engineering

Production &

Supply

Installation &

Initial Setup

Operation &

Maintenance

Figure 11: Production cell life cycle.

5.2 Analysis of Existing Robot Programming Approaches

The analysis of existing robot programming approaches focused on conventional online

teach-in programming and offline programming amended by online teach-in programming.

These two programming approaches are frequently employed in industry, for example at

BMW AG Munich, Germany. A general description is given for each approach to allow

the derivation of industry needs. A new programming approach was examined based on the

identified needs, and it is then compared with the existing robot programming approaches

in Section 5.5.

5

28

40

27
5% External control to PLC etc.

28% Simple movement
instructions (PTP, LIN, CIRC)

40% Variable declarations and
syntactical instructions

27% Program modules for task
procedures

5 Requirements for Adoption by Industry of Online Programming

47

5.2.1 Conventional Online Teach-In Programming

Figure 12: Online teach-in programming.

Conventional online teach-in programming is carried out within a real robot cell without

any preparation. However, some robot programmers attempt to create the program

structure beforehand to speed up the programming task, and to minimize the production

downtimes. Nevertheless, this programming approach is often used when the expected

production downtimes are acceptable and all physical parts are available. This approach

may result in high production downtimes, and leads to high costs. All work objects have to

be available, and thus robot programming may not commence until these objects are

physically available. In contrast, this approach is simple, and has been approved and

widely accepted. It may be cost efficient when downtimes are acceptable, that is, when

robot programming is performed during regular production breaks.

5.2.2 Offline-Programming Amended by Online Teach-In

Figure 13: Offline-programming amended by online teaching.

5 Requirements for Adoption by Industry of Online Programming

48

Offline-programming amended by online teach-in utilizes Computer-Aided Software

Engineering (CASE) tools to simulate the robot cell beforehand. All work objects have to

be modelled to enable offline robot programming. Models of work objects often exist

before the real prototype, and they may be adopted during offline programming. Offline

programming tools are usually complex and time consuming. To produce high-quality

results, the operator is required to be experienced in the use of both, CASE tools and online

robot programming.

The online programmer modifies the programs created offline within the real robot cell

to compensate for inaccuracies. If the offline robot program is not sufficiently accurate, or

if the program structure does not satisfy the online programmer, the entire robot program is

often created manually without the use of the offline program. This results in duplicate

costs for both offline and online programming of the whole program. Nevertheless, this

approach is mainly approved in industries because of the generally shorter production

downtimes, even though greater capital is required for robot-programming investments.

5.3 Identification of Industry Robot Programming Requirements

An up-to-date industry requires a modern production system which is able to combine

and support flexibility, high-speed and optimization (International Federation of Robotics,

2005); the overall production time available must be maximized to guarantee the highest

productivity possible.

The high level of complexity of typical robot-programming tasks for human operators

has to be considered; consequently, the robot application-software presented in this study

takes over the most complicated task, which is robot motion planning. The remaining

manageable tasks which are related to the given mission, e.g. spraying, handling and

painting, remain the responsibility of the operator. For example, in a handling mission, the

operator provides information about what the robot has to do, e.g. placing objects in

specific positions in a specified order, while the online robot software application knows

how to control the robot.

Modifications to the existing industrial environment in order to execute the robot

programming software should be minimized. In addition, permanently installed hardware

and software should not be required.

5 Requirements for Adoption by Industry of Online Programming

49

Supported online programming must be fast and flexible to reduce possible production

downtimes. The generated trajectories must conform to the given requirements in terms of

quality, such as the smoothness and shortness, and the possible speed of the robot

movement.

Physical production parts and fixtures are often not available during online robot

programming, and the support system must therefore handle such situations to permit its

use.

Nevertheless, robot programs may be modified manually during their lifecycles due to

changes that may occur during production. Those robot programs are usually stored as

robot program files in a specific robot programming language on the robot controller.

Therefore, the generated programs must be readable and maintainable. The proposed

method helps to generate such robot programs, and it is therefore easy for these programs

to be manually changed by the human operator.

Using the robot application-software presented here, there is still some non-productive

time, but unlike previously reported approaches, this is mostly achieved automatically, and

therefore rapidly. As such, the actual cell-learning time is minimal, and consequently,

offline systems become unnecessary, leading to reduced costs for the offline preparation of

robot programs.

5.4 The Proposed Enhanced Online Robot Programming Approach

Mitsubishi RV-2AJ

Visual feedback

Operator

Pre-Existing Data

(e.g. Model Data) Enhanced Robot

Programming

Support System

Figure 14: The enhanced online robot programming approach.

The main disadvantages of offline programming are the investments that are required

for programming within the simulation system, including the required skilled operators,

computers and infrastructure. Therefore, online programming was further studied, leading

to the combination of online and offline programming properties. This required an expert

5 Requirements for Adoption by Industry of Online Programming

50

support system that is able to support the operator in robot programming. To enable online

robot programming, it should be simple to use and efficient. The support system is required

to lead the operator through the required steps to produce high quality robot programs. The

approach has to combine the flexibility of online programming and the speed of offline

programming. Additional aspects, which include a simple integration into the existing

environment, short production downtimes and high quality results have also had to be

considered. These aspects required a complete system solution, specialized path planning

and robot programming algorithms.

The proposed support system is used within the real robot cell. Changes within the

environment or to the equipment are considered immediately. The turnaround time to

produce robot programs with such changes is shorter compared to offline programming.

In offline programming, small changes are often made directly online, while the

corresponding offline simulation remains unsynchronized to the real production cell. Then,

changes to the robot program within the simulation system often require an additional task

to merge the robot program with the simulation. This task requires special skills and is not

reliable. Because the proposed system eliminates the simulation, this aspect is no longer

relevant.

A single robot operator is required to perform the online robot-programming task

without the need for any special skills. The available CAD data information is utilized to

speed up the automatic programming procedure and to enable the use of model data. The

system is semi-autonomous, takes over the complicated low-level tasks, and leaves the

high-level tasks to the operator. This approach is simple and cost effective. Without the

need for offline programming the company no longer needs the offline programmer, the

required hardware and infrastructure. Nevertheless, the integration of the approach into the

existing offline-programming systems may also be possible to simplify the offline robot-

programming task. The online integration is also helpful when robot program inaccuracies

are to be corrected.

This leads to fewer investments for skilled online and offline programmers, rendering

offline programming unnecessary. In the automotive industry, offline programming may

take up to several weeks. For example, the offline programming of a single robot cell with

two robots, each of which is installed on a conveyor for a painting application requires

about 10 person-days for offline simulation, 1 day for online programming, and a few days

5 Requirements for Adoption by Industry of Online Programming

51

for CAD data preparation. The cost incurred by ten person-days of a skilled online

programmer is about 7000 EUR plus the cost for equipment, infrastructure, offline

simulation systems and CAD data preparation.

5.5 Comparison of Programming Approaches

A comparison of the presented robot programming approaches and the required robot

programming steps is stated in Table 1. Only the first and last programming approaches

omit offline programming, which was identified as the main research objective.

No.
Programming

Approach
Steps

1
Online Teach-In

Programming
Online-programming within the real cell

2

Offline-

Programming

Amended by Online

Teaching

Offline simulation
Creation of the offline

robot programs

Uploading of the
programs into the real

cell

Manual amendment

of the robot program

3

S
u

p
p

o
rt

ed
 P

ro
g

ra
m

m
in

g

Offline

integration
Offline simulation

Run the assistant

within the simulated
cell

Uploading of the

programs into the real
cell

Manual amendment

of the robot program

4
Online

integration
Offline simulation

Creation of the offline

robot programs
Calibration of the cell

Run the assistant
within the real cell

with simulation data

5

Enhanced

online

programming

Optional preparation

of data, that is, robot
kinematic or model

data

Start the assistant
within the real cell

Calibration of model

data, teaching of the

locations

Run the assistant in
the real cell

Table 1: The robot programming scenarios.

Approach 1, online teach-in, has already been evaluated as being insufficient with

respect to production downtimes for high-volume production.

The second approach requires high investments but it can be applied to reduce

downtimes of the production system.

It was assumed that offline integration, approach 3, would help the offline programming

expert to generate suitable trajectories automatically, while built-in special features of the

simulation tools are still applicable.

An online integration would take the results of the offline-programming phase to

modify the generated program automatically in approach 4. This may simplify the process

of amending the online programming, although tool development costs that are incurred

may reduce its benefit.

5 Requirements for Adoption by Industry of Online Programming

52

Although the integration of enhanced programming into existing programming

approaches would be beneficial, research has focused on the programming approach 5,

enhanced online programming, while the remaining approaches may be researched in

future.

An evaluation considering the previously defined requirements has produced the results

in Table 2 for high-volume production. The summary column also supports the enhanced

online programming approach.

No.

Programming Approach

C
o

st
s

P
r
o

d
u

c
ti

o
n

D
o

w
n

ti
m

e
s

In
te

g
ra

ti
o

n

Q
u

a
li

ty
 o

f

P
r
o
g

ra
m

s

H
a

n
d

li
n

g
 o

f

m
o

d
el

 d
a

ta

U
sa

b
il

it
y

S
u

m
m

a
ry

1

Online Teach-In Programming -2 -2 +1 +1 -2 -2 -6

2

Offline-Programming Amended by Online Teach-In -2 +1 0 +1 +2 -1 +1

3 Offline integration

-1 +1 0 +2 +2 0 +4

4 Online integration

-1 +1 +1 +2 +1 +1 +5

5 Enhanced online programming

+2 +1 +2 +2 +1 +2 +10

Table 2: Comparison of scenarios.

(+ positive - negative o neutral)

5.6 The General Design of the Enhanced Online Programming System

A general overview of the integration of the enhanced online robot programming

support system software into the system is given in Figure 15. The system is connected to

the robot system, receives input from the environment and the operator, who also creates a

mission plan with the support system which in turn generates a robot program file.

5 Requirements for Adoption by Industry of Online Programming

53

Enhanced

Online

Programming

SystemMission-Plan

Environment

Operator

Robot(s)

Robot Program

File

Figure 15: Overview of the enhanced online programming system.

Model-based and sensor-based information were considered to capture the environment

of the robot within the system. Those sensors include vision systems, input devices and

tactile sensors, which are often used for path planning and control of robots. The robot,

work objects, and the obstacles are available within the robot cell. Model data may also be

utilized when the physical objects are not available. The logical diagram in Figure 16

shows a typical system architecture and the robot control loop, which consists of the sensor

input, actuator output and control functions. Those control functions were implemented as

mission and motion planners, based on a world model that stores the in-memory model of

the environment.

5 Requirements for Adoption by Industry of Online Programming

54

Robot Cell

Environment

Motion Planning

Enhanced Online Robot

Programming System

Online robot

trajectory and

programming

support system

GUI

World Model External Sensors

Internal Sensors

(position/velocity)

Obstacles

Work Objects

Robot

Manipulator

Effector

Robot-Control-

Commands

Mission Planning

Figure 16: Path planning system: a logical view.

The overview in Figure 17 shows the interconnected system components and devices.

The proposed support system is executed on a personal computer which is connected to the

robot controller via an Ethernet or serial connection, depending on the robot type and its

communication capabilities. In addition, a teach pendant and the robot are connected to the

controller. A vision system, a pointing device, and a joystick are plugged into the personal

computer. Model data may be imported from files. The hardware and devices are

introduced in detail in Appendix B.

5 Requirements for Adoption by Industry of Online Programming

55

Figure 17: System overview of parts and devices.

5.7 Summary

The development of large software systems requires a structured and homogeneous

development strategy to cover aims like reusability, maintainability and testing. This

should be accomplished using a model-driven development toolchain. The toolchain

should allow the integration of hardware devices such as robots, joysticks, mice, keyboards

and pointing devices. Artefacts produced by other tools and toolchains, such as

Matlab/Simulink, should be integrable by dynamic link libraries.

The HMI should be simple and easy for inexperienced users to use. It should control all

parts of the software system including start and stop procedures, installation procedures

and life-cycle management of the connected software components. The GUI should be

easily extendable.

The world mode stores a model of the environment, especially the robot cell and the

working space of the robot. Information in the form of CAD and robot joint-space data

should be handled. Additional requirements are the access delay times to the stored

information and the storage size in memory. The information input should be fused to

overcome inaccuracies of the data and to provide cohesive information.

5 Requirements for Adoption by Industry of Online Programming

56

The mission planner is responsible for storing the mission data provided by the HMI

with several input possibilities. Each mission consists of a start and a target location, and

may have multiple application trajectories with application data such as for painting and

gluing. Those application trajectories should be connected to control the robot from the

start to the target position, including all application trajectories in a path-length optimized

manner. Known algorithms for the travelling-salesman-problem (TSP) should also be

considered.

The path planner should be controlled by the mission planner, and should create a

trajectory with given start and goal positions. Real robot control should be considered to

direct the robot from the start to the target position. Inputs from the operator and the

sensors should be possible during trajectory planning to incorporate collision indications.

The process of planning should also be fast, and the planned trajectories should have a

short trajectory length and the generated program should be readable, changeable and

similar to those that are manually programmed. Virtual objects should also be considered.

Vision should be incorporated using webcams to recognize the pointing device and the

robot-tool-centre-point. Further developments of image processing algorithms using

specialized tools such as Matlab/Simulink should be enabled.

A robot model is used throughout the software system. It should provide forward and

inverse calculations of the robot kinematic of the Mitsubishi RV2-AJ robot. Those

calculations should be based on the ideal, theoretic geometry of the robot.

57

6 Investigation into a Probabilistic Data Fusion
World Model

6 Investigation into a Probabilistic Data Fusion World Model

58

Path planning is based on data of the physical environment, as illustrated in Figure 18.

Information of the environment was retrieved with internal and external sensor perception

amended by pre-existing model data and stored within an in-memory model, the world

model. It is a hierarchically structured data storage which saves position and collision

information. A position can be given either in Cartesian (position and orientation) or robot

joint space (with joints of the robot). In addition, model data has to be stored as well. The

presented probabilistic data fusion world model is the data basis for the enhanced robot

programming system and it is illustrated in Figure 18 as ‘World Model’.

Robot Cell

Environment

Motion Planning

Enhanced Online Robot

Programming System

World Model
Cartesian Storage

Joint Storage

Model Data Storage

External Sensors

Internal Sensors

RobotRobot-Control-CommandsMission Planning

Model Data

Figure 18: The logical view of the path planning system

with the highlighted flow of sensor information.

The Cartesian storage was realized by a linear octree which was introduced by

Gargantini (1982b), and detailed in Section 6.1. The robot joint space positions are stored

in a specialized hierarchical binary tree structure, which is presented in Section 6.2. Both

the octree and the joint position storage are able to deliver information with a specified

level of detail. Sensors such as vision systems, ultra-sonic detectors, and laser-distance

measurement systems can be employed to retrieve dynamic information. The proposed

system is equipped with a specific button for the operator on the control panel and a

joystick button to indicate collision points. The model data storage was implemented using

a Java3D scene graph, which is presented in Section 6.3. The model data was retrieved

utilizing CAD drawings of the working-cell construction process.

6 Investigation into a Probabilistic Data Fusion World Model

59

In general, real robot applications have demonstrated that sensors may deliver wrong

information (Hall and Llinas, 1997). The world model combines the different data sources

using a data fusion architecture. It includes sensor abstraction, algorithms and architectures

(Hall and Llinas, 1997), and was implemented as a voting system.

The data fusion architecture presented in Section 6.4 filters the data sources through a

simple moving average (SMA) filter and incorporates the reliability of the data sources. A

value is defined for each data source to reflect the reliability. Thus, the averaged weighted

sum of the sensor values was applied to deliver cohesive information.

The vision system presented in Section 6.5 both delivers information about the

environment and interprets the markers presented in Subsection 6.5.3. However, object

recognition is a major problem in path planning because of the sparseness of information.

A solely vision-based recognition system may not be capable of delivering enough

information within an industrial environment, and model data was incorporated into the

world model to utilize additional data, although models are often inaccurate.

Results obtained contributed to a journal publication and a conference paper. This

chapter corresponds with objective three.

6.1 Cartesian Position Storage

A linear octree presented by Gargantini (1982b) was implemented to store spatial

coordinates of the robot environment. The implemented octree is a region octree type.

Compared to conventional methods for storing octrees, where the access delay time to

certain subdivisions is exponentially increasing () with the level of accuracy , special

properties of a certain index assignment scheme were utilized, and provides linearity in

terms of the access delay time to cells of an arbitrary accuracy. The linear octree allows

high-speed access to the cells lying on the movement path of the robot. Finer resolutions of

the octree may be reached by more subdivisions, which increases the relative speed (cells

per second) of the robot and thus requires shorter access delay times. The use of an octree

structure significantly decreases the required storage space, since only fully- and partly-

occupied cells are stored. A detailed description of the properties and structure has been

presented in various papers (Bhattacharya, 2001, Chang, 2001, Frisken and Perry, 2002,

Gargantini, 1982b, Globus, 1991, Gran, 1999, Hwang et al., 2003, Kitamura et al., 1995,

Mahler, 2003, Merkle, 2004, Payeur, 2004, Payeur et al., 1997, Peng et al., 2005, Samet,

1994, Schrack, 1992).

6 Investigation into a Probabilistic Data Fusion World Model

60

The implemented linear octree is initialized with its octree size and accuracy. The

required number of subdivisions is automatically determined. Using this representation, the

encoding, decoding and determination of adjacent voxels within a specified radius are

implemented basic operations that can also be found in literature (Bhattacharya, 2001,

Samet, 1994, Schrack, 1992).

6.1.1 Index Assignment

A linear octree stores points using equally sized cubic cells. Each cell represents an

element (I, J, K) of a spatial array. The three dimensions also represent the coordinate

system normalized to integer values, which denote the number of cell steps in each

direction. An octree with two subdivisions is illustrated in Figure 19 to illustrate the basic

concept of the index assignment. The accuracy of the octree cell grid increases with the

number of subdivisions.

Figure 19: A linear octree with two subdivisions.

The indexing scheme is recursive from the root to the child cells. Child cells inherit the

index from their parent voxel and extend it by one digit. The cells may also be represented

in two dimensions, as illustrated in Figure 20, where the cells may be either empty, partly

or fully occupied.

0

4

1

10 11
1312

00
0

01
0302

2 3

5

7

J

I
K

6 Investigation into a Probabilistic Data Fusion World Model

61

0

Root

2 43 5 76

0 2 43 5 76

Fully

occupied
Partly

occupied

0 1 2 43 5 76

Empty

Figure 20: Octree data structure representation.

Thus, for the example above, the cells were stored in an array with the octal code

indexing scheme entries as { }. Because of the strict

order of the indices, a fully occupied parent cell can be combined by encoding it with .

The array has therefore been shortened to { }, and is denoted as a mixed-octal

representation of octal digits { } and . Only fully and partly occupied cells of the

octree need to be stored. From the left to right, the octal digits within those indices

determine the path from the root to certain leafs of the octree, respectively.

6.1.2 Neighbour and Parent-Child Relations

A position is added to the octree by converting it to the octree indexing scheme and

adding the cell. Each cell may store additional information, for example to indicate the

occupancy probability. Each parent of an added voxel is created with the correct

occupancy value derived from its children. However, if the parent already exists with a

collision probability value, the highest collision probability of its children is applied. In

this way, a parent cell always has the highest collision probability value of its children.

When a non-existing voxel is selected by neighbour relationships, this neighbour will

inherit the collision probability of the next existing parent node.

Each voxel has neighbour relations to adjacent voxels if they do not exceed the

boundary of the robot world, that is, the borders of the root cell. Neighbours exist in

perpendicular and diagonal directions at each subdivision level.

In a uniform grid, the transition between cells may be considered to occur at edges

within a graph. This may be utilized to find the shortest path from a start to a goal cell, for

example with the A* search algorithm (Likhachev et al., 2005, Russell and Norvig, 2002).

6 Investigation into a Probabilistic Data Fusion World Model

62

Figure 21: Four neighbours.

The neighbourhood relationships define the connectivity. The Manhattan metric in

Figure 21 defines four neighbours in two-dimensional space. The chessboard metric in

Figure 22 defines eight neighbours, which are also in diagonal directions.

Figure 22: Eight neighbours.

The robot path-planning scenario demonstrated in Figure 23 results in a wrong

connectivity since the robot may always have physical dimensions, and therefore, direct

diagonal movements through the cells P to Q (left) have to be forbidden, although it is

mathematically correct.

Figure 23: The problem with eight neighbours.

In three-dimensional space, 26 directions are possible from the middle cell, leading to

Figure 24. The special case demonstrated in Figure 23 also applies in three dimensions.

6 Investigation into a Probabilistic Data Fusion World Model

63

Figure 24: Spatial space neighbour relationship of an octree cell, shown by the arrows.

6.1.3 Digitalization of the Robot Environment

The octree midpoint was defined to the robot base position, which is shown in Figure

25, and which may be arbitrarily positioned in the world space. Therefore, points in the

world space have to be converted to the local coordinate system of the octree. This was

accomplished using a simple shift operation since the orientation of the world and local

coordinate systems are identical.

Figure 25: The robot environment and relation of world and octree representation.

Cells may be represented by their world coordinate, (I, J, K) coordinate or index scheme

representation. All types may be converted into each of the other types, although the

conversion from world to (I, J, K) or index scheme representation leads to a loss of

accuracy. The reason for this is the fixed voxel sizes and the defined octree accuracy.

6 Investigation into a Probabilistic Data Fusion World Model

64

The octal point class is a sophisticated and intelligent data structure that was used

internally. This class provides a wide scope of knowledge about its environment, and

encapsulates a representation of the octal number as array structure. Within this structure,

child relations of the encapsulated points and all its neighbour relations in every direction

are stored by their respective octal representations. The necessary calculations were

executed during the creation of the octal point to minimize computational costs. The

neighbour relations are stored for all neighbours independent from their existence.

6.2 Robot Joint Position Storage

The octree stores spatial Cartesian coordinates, but a robot arm position is an

 -dimensional vector of joint angles. A single Cartesian world coordinate may be reached

using multiple robot arm positions. Collisions of the robot arm with obstacles may occur

anywhere at the robot arm. Therefore, the whole robot arm position (not only the Cartesian

world position) has to be considered within an -dimensional storage system, where is

the number of robot arm joints.

0j

1j

2j

Figure 26: Example robot.

A high-performance and memory-efficient storage system was implemented, and allows

information to be requested on a specified accuracy level. Each position consists of the

angle values of each robot joint, as illustrated in Figure 26. Robot arm joints are usually

limited to a specific range, which is given by a minimum and maximum value. An example

is given in equation (1). Mechanical sensors are often installed to check the robot arm

ranges.

(1)

 []

 []

 []

6 Investigation into a Probabilistic Data Fusion World Model

65

The joint angle ranges may also overlap, which is the case here for . The storage

system implements a binary tree with an accuracy that is defined by its depth 𝑡 . The

absolute angle range is subdivided by two on each depth level, as illustrated in Figure 27.

0

0.0

0.0.0

0.1

0.0.1 0.1.0 0.1.1

1t

2t

3t

Figure 27: General joint angle binary tree for a joint 𝑗 with depth 𝑡 .

The depth 𝑡 for each joint is calculated based on the required minimum accuracy

and the absolute joint range in equation (2). 𝑡 is rounded up to a natural number, which

increases the accuracy .

(2)

Therefore, the depth 𝑡 for a joint is calculated using the absolute range length in

equation (3).

(3) ⌈ (

)⌉

For joint 𝑗 , an accuracy of and an absolute range length ‖𝑗 ‖ ,

 and may be given as an example in (4).

(4)

 ⌈ (

)⌉ ⌈ ⌉

 ⌈ (

)⌉ ⌈ ⌉

 ⌈ (

)⌉ ⌈ ⌉

An illustration may be given in equation (5) using the calculation of an example point

 () in a binary tree with a simplified example accuracy of for

the joints 𝑗 𝑗 .

(5) ⌈ (

)⌉

6 Investigation into a Probabilistic Data Fusion World Model

66

 ⌈ (

)⌉

 ⌈ (

)⌉

The resulting binary tree position 𝑡 of the example positions are graphically

shown in Figure 28.

50

-200 200

0 100

-180 +180

0j

1j

2j

0

0

-180à0.0.0

40à0

0à0.1.0

t=2

t=0

t=2

Figure 28: Joint angles binary tree.

(𝑗 binary tree for () and accuracy)

The resulting binary tree index positions for are stated in equation (6).

(6)

 { () } []

 { () } []

 { () } []

Because every position represents a collision point with an occupancy value ,

these values are stored and updated along the position using the update rule provided in

equation (7).

(7)
 (

)

The external interface to this component defines methods to obtain and store robot arm

positions, including their occupancy values in the requested accuracy. If the requested

position does not exist within the binary tree, an occupancy value of zero is returned.

Positions are stored when they do not yet exist in the binary tree. Existing positions update

their occupancy values with the formula given in (7).

Storing joint positions in the presented way reduces the number of joint positions stored

per octree cell and allows storing the joint positions in a ‘natural’ way. Thus, joint

positions that are near together, and also their occupancy information can be summed up to

one binary tree cell. The joint positions are normalized.

6 Investigation into a Probabilistic Data Fusion World Model

67

6.3 Model Data Storage

Although a Cartesian and a joint storage have already been implemented based on space

partitioning, a model storage was implemented to additionally store the modelling elements

as objects. The model storage was implemented as a Java3D scene graph (Sun-

Microsystems, 2012), which is structured as a tree containing several elements that are

needed to display the objects. It can be directly visualized, as illustrated in Figure 30, using

an implemented Java3D viewer. The user is able to interact with the viewer using the

mouse and the keyboard. Information about the visualized objects can be obtained by

clicking on the objects. Storing moving obstacles within the Cartesian storage requires the

processing of intensive octree transformations. Therefore, models were stored within the

model storage.

The geometric models were imported from files with the Drawing-Exchange-Format

(DXF), which is a widely accepted format utilized by many computer-aided design

programs. This file consists of pre-existing static model information, which may either be

imported into the world model or directly be used within it. The import has been

accomplished with the help of Java3D by using collision test methods and storing each

position within the world model.

The model information was imported using a rasterization step with a predefined raster

size with . The raster size was set to . Although

pre-processing was not necessary, it was employed to reduce the running times of the

algorithm. Modelled obstacle data does not need to be complete, and it has been employed

to add already existing information to the in-memory world model.

6 Investigation into a Probabilistic Data Fusion World Model

68

P1: Start

P10: Target
O1

O2

O3

0-10 10

0-10 10

0

10

-10

0

10

-10

Figure 29: Experimental scenario (2D example in

3D world), with obstacle O3 being unknown.

Figure 30: Illustration of the experimental scenario in the

3D world.

The Java3D scene graph also supports collision detection, but only within the visualized

frames, and does not detect interpenetrating objects between two frames. The Open-

Dynamics-Engine (ODE) physical simulation engine supports collision detection between

frames (Smith, 2012). ODE is a free, industrial-quality library that is used for simulating

articulated rigid body dynamics in virtual reality environments. It was used for collision

detection of basic geometric objects, but collision detection with complex CAD data is

only supported at a basic level. The detection can be manually enhanced by implementing

the calculation of collision points and vectors. Nevertheless, for this work, the

requirements are fulfilled since only basic geometric objects are required. The Java binding

ODEJava (Comunity, 2012) was employed to implement a graphics engine to combine

ODEJava with Java3D.

6.4 Data Fusion Framework

The world model handles Cartesian and -dimensional collision positions as well as

model data. The employed data sources provide information about the position of the

robot, the obstacles and the collision positions. Data fusion was required to acquire

consistent information to allow accurate representation of the in-memory world model.

Sensors tend to deliver imprecise data, such as the occupation of the robot working space,

which is required during the trajectory planning process. The general sensor fusion

architecture is represented in Figure 31.

6 Investigation into a Probabilistic Data Fusion World Model

69

In
fo

rm
a

ti
o

n
 F

u
s
io

n

Operator W
o

rl
d

 M
o

d
e

l

Figure 31:Data sources of the information fusion system.

Sensor

a

Sensor

b

Sensor

i

Preprocessing

Detection &

Estimation

Preprocessing

Preprocessing

Sensor Fusion
OCell

Figure 32: Sensor fusion architecture.

The raw data of commensurate sensors (that is, when the sensors measure the same

physical phenomena, such as two visual image sensors) can be directly combined.

Unfortunately, the sensors used in this work are not commensurate. Thus, data fusion is

required on a higher level.

6 Investigation into a Probabilistic Data Fusion World Model

70

The interpretation of the raw data of the applied sensors results in a single value, the

sensor occupancy
, which is normalized between

 . Information

about the occupancy is directly obtained using two sensor types, namely the modelled

obstacle data and the collision indication button.

Each sensor has a manually defined reliability value,
 . For example,

modelled data may be less reliable than collision indications of the operator. The reliability

values of the applied sensors, modelled obstacle data and the collision indication button

have been predefined based on experience.

The employed data fusion strategy calculates the averaged weighted sum of the sensor

occupancy values
 according to their reliability, and applies the history of the so-

achieved values with an SMA. The advantage of the applied strategy is the fusion of

multiple sensors with different reliabilities by averaging and smoothing of the sensor

measurements. The fused sensor values are persistent in the in-memory world model, and

are ready for subsequent reuse.

 in equation (8) represents the cell occupancy at the actual time step, and it is the

averaged weighted sum of the sensor occupancy values with a given number of sensors .

(8)

∑

 ∑(

)

 The cell occupancy probability
 (

) is calculated by the equation

given in (9). The history of the cell is considered by calculating the SMA with an order of

 . The experimentally chosen order of the SMA filter defines the window size.

(9)

 ∑

The index ‘0’ always belongs to the actual values, ‘-1, -2 ...’ etc. to former values.

Sensor values are centred on the mean for static obstacles, and the lag behind the latest

sensor value may therefore be neglected.

Sensor values and the corresponding fused sensor values are illustrated in Figure 33 and

Figure 34. Three sensors were measured, with sensors 1 and 3 having a low (false) value in

6 Investigation into a Probabilistic Data Fusion World Model

71

measurements 3 and 4, respectively. In Figure 34, the fused average values for the cell

values were compared with the unfiltered sensor values.

Figure 33: Sensor values derived from real sensors.

Figure 34: Fused sensor data.

The reliability of the fused sensor data for static obstacles was computed by the

similarity of the fused sensor data values, as described in equation (10) and equation (11).

Similar occupancies result in a probability of , where .

6 Investigation into a Probabilistic Data Fusion World Model

72

(10)
 |

 |

(11)

 ∑

Altogether, the cell occupancies
 and the reliabilities of the cell occupancies

were applied as a product
 of those cells, and equation (9) is redefined as

equation (12). The impact of the cell occupancies on path planning will be shown in

Chapter 8.

(12)

Attention has to be given to the sensor information type, which can be in configuration

space or world space. World coordinates are only relevant for the cell occupancy while

configuration space coordinates are additionally stored within the cell.

6.5 Vision System

Vision was employed to recognize markers in picture coordinates. The pointing device

and the manipulator tool-centre-point (TCP) were equipped with those markers to execute

first tests with visual servo control using a neural network. Subsection 8.3.2 is dedicated to

the pointing device as part of the human-machine-interface.

Active and passive marker types were evaluated for recognition. It was expected that

active ones would deliver good recognition results. Therefore, the luminescence emitter

diodes in the visible wavelength range and in the infrared wavelength range were

evaluated. The recognition of markers in the visible light range was difficult because of

interferences in the background which had to be filtered. Infrared markers showed promise

with respect to simplifying the recognition, but the camera required an additional infrared

filter to be able to detect only the infrared markers. The tested infrared filters also reduced

the intensity of the infrared light range, and therefore required strong active infrared

markers. The light emission of the luminescence emitter diodes is often directional for both

luminescence-emitter-diode types that emit infrared and visible light. Lampshades were

tested to produce a diffuse light source, but did not improve the recognition capabilities.

Therefore, passive markers have been further evaluated, and wooden balls with the

colours red, green, blue and yellow delivered acceptable results, even with background

interference, which was filtered.

6 Investigation into a Probabilistic Data Fusion World Model

73

The filter required image stream processing implemented with Matlab/Simulink (see

also Subsection 6.5.3) to generate a dynamic link library (DLL). The implemented image

stream processing chain is illustrated in Figure 35. The image stream source was a web-

camera.

Image Stream Source

(Web-Camera)
Image processing

Extracted Position

Data

Dynamic Link Library

Figure 35: Image stream processing chain.

6.5.1 Colour Recognition

Colour recognition requires an in-memory representation of colours to encode a series

of images into an image stream. The representation of colours is defined through the colour

space, which may vary according to its purpose, that is, some colour spaces may encode

and compress the colour information based on measurements of human colour perception.

The colour spaces RGB, YCbCr and HSV are often used by Matlab.

The RGB colour space describes each colour as a combination of the base colours red,

green and blue. Each base colour value ranged from 0 to 255. The YCbCr colour-space

also has three values, but ranges from 0.0 to 1.0. The Y defines the luma component, and

Cb and Cr define the blue-difference and red-difference chroma components. The HSV

colour space encodes colours in a cylindrical space, as shown in Figure 36. As hue H

varies from 0.0 to 1.0, the corresponding colours vary from red through yellow, green,

cyan, blue, magenta, and back to red. As the saturation S varies from 0.0 to 1.0, the

corresponding colours (hues) vary from unsaturated (shades of grey) to fully saturated (no

white component). As the brightness value V varies from 0.0 to 1.0, the corresponding

colours become increasingly brighter.

6 Investigation into a Probabilistic Data Fusion World Model

74

Figure 36: The HSV colour space.

(Source: Matlab documentation)

Therefore, the HSV colour space defines colours using only the hue and saturation. The

brightness influences the maximum saturation of a colour, but it was shown that this effect

may be omitted when a minimum brightness is achieved.

An implemented colour calibration allowed the definition of the colours to be

recognized manually. The definition of the colour area in the hue-saturation space is stored

as minimum and maximum values of hue and saturation. This was accomplished using a

preview image of the employed camera. An elliptical space was selected on the preview to

create an image mask and to crop unimportant image regions. The selected region was

analysed pixel by pixel to store the minimum and maximum hue and saturation values.

Preview Create Mask Store HSV values

Figure 37: Colour calibration process.

6.5.2 Image Stream Source

The Simulink image acquisition block illustrated in Figure 38 (left block) acquires

image and video data streams from devices, such as cameras and frame grabbers, in order

to deliver image data within a Simulink model. The block directly previews the acquisition

in Simulink, and opens, initializes and configures the resolution of the input device. The

output signal is an array with the width and height of the image size in pixels. Each array

6 Investigation into a Probabilistic Data Fusion World Model

75

element identifies a colour value in the device-dependent colour space, such as RGB, HSV

and YCbCr.

Figure 38: Simulink image acquisition block and colour conversion.

The developed image processing chain uses the HSV colour space. Because the image

acquisition block provides the stream in the YCbCr colour space, a colour space

conversion was required to convert the image stream from the YCbCr to the HSV colour

space.

6.5.3 Marker Recognition

An image stream processing chain was implemented to segment, detect and track the

position of markers with a specific colour in an image stream. This processing was

performed for red and blue coloured markers. Segmentation was also applied to select

regions in the image which comply with the calibrated colour values. Detection recognizes

blobs of the selected regions which were further utilized for tracking with a Kalman filter.

The tracking block delivers the extracted position data of the markers.

Figure 39: Image stream processing chain.

Segmentation

Segmentation is realized by filtering the images of the image stream regarding their hue,

saturation and brightness colour-space component. Each pixel that complies with the

calibrated colour component ranges for hue, saturation and a minimum brightness are

labelled. Pixel labelling sets labelled pixels in the binary image stream output to 1 and

6 Investigation into a Probabilistic Data Fusion World Model

76

unlabelled pixels to 0. Pixel labelling leads to a conversion of the coloured image stream to

a binary image stream containing a single calibrated colour.

Figure 40: Image stream segmentation.

Detection

The binary image stream (BW) contains noise that is filtered by a median filter. The

filtered image stream may still contain gaps within objects that are closed with the closing

algorithm. The resulting image stream allows blob analysis to detect objects, for example

balls. It takes a given filtered binary image stream as the input, and outputs quantities such

as the Centroid, major and minor axis. The Centroid signal is a 2-by-N matrix, where the

columns represent the coordinates of the centroid of each blob and N is the number of

blobs.

Figure 41: Blob analysis block.

There is still noise in the image stream that leads to false recognitions. Further

improvements were realized by utilizing an additional property of the ‘ball‘ markers. Their

projection onto the picture plane results in a circular shape from any direction and has been

taken into account. The major and minor axes of the blob analysis for each blob were

utilized to calculate the circularity of each blob, where a value

of was used as a threshold to indicate the circular shape of the blob.

6 Investigation into a Probabilistic Data Fusion World Model

77

Tracking

The identified blobs were sorted within the indexer block of Figure 43 to match the blob

positions of the previous iteration. This was realized by a distance measurement of each

new blob to all previous blobs to find its previous matching blob. Two blobs with the

shortest distances are assumed to be the same blob. It was shown that this method is only

valid when the movement of the blobs in each frame is sufficiently slow. In addition, blobs

were buffered so that missing blobs always keep their last position within a maximum

period of 1 second. This smoothed the recognized marker positions, especially when they

were not detected in several frames.

The sorted and buffered blob positions were sent to a Kalman filter, which reduces the

noise of the measurement data and outputs a vector with position and velocity information

in the and directions. Only the position information is utilized, and the selector block

therefore rebuilds the output vector. The indexer block may also utilize the predicted

position output X_prd of the Kalman filter to sort the blobs and to optimize the results.

Figure 42: Blob analysis block.

Figure 43: Blob analysis block.

6.6 Summary

This chapter addresses objective three and it presented an in-memory world model that

stores fused collision information regarding the collision indication button, the model data

and the robot. Collision points may be delivered in the Cartesian or robot joint space,

which are both handled by the world model.

The implemented SMA filter for the data fusion algorithm may lead to over-smoothing

of the sensor values, and there may therefore be a recognition delay for sudden events.

This depends mainly on the order of the SMA filter, which can be set individually for each

information source. Important sensors with a high reliability have a low SMA order.

6 Investigation into a Probabilistic Data Fusion World Model

78

Because the operator uses a collision indication button with a low order of the SMA filter,

collisions are always detected.

The image processing chain recognizes markers in an image stream. The colours to be

recognized were manually chosen during a pre-processing step. Coloured balls were used

as markers to differentiate the markers, e.g. to distinguish the pointing device and robot-

arm markers. The implementation in Matlab/Simulink allowed further improvements of the

algorithms without any necessary modifications to the remaining software system. The

image processing algorithms were compiled into a DLL for system integration. The

developed algorithm may deliver false results when the markers are moved too fast or

when the markers leave the camera view. Nevertheless, the marker recognition capabilities

are sufficient for the implementation of a prototypical robot-programming assistant.

The presented probabilistic data fusion world model was utilized as data basis for the

enhanced robot programming system, especially for the path and trajectory planning

algorithms. It was established to turn relevant information about the physical environment

into a cohesive and processible information source.

The outcome of this chapter was subject for various publications and the addressed

objective three has been met.

79

7 Research of the Robot Kinematics Model and
the Robot Control Capabilities

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

80

Research into the enhanced online robot programming approach was accomplished

using two types of robots. The first type is the industrial articulated manipulator, which is

described in Section 7.1, and which is also the intended target system for the enhanced

online robot programming system. The second robot type, which is detailed in Section 7.3,

is an autonomous mobile robot. The hardware of both robots is described in Appendix B.

Simulation of the two robot types and of a free-flying point robot is described in

Section 7.5.

The trajectory generation algorithm of the robot manipulator uses a “free flying point

robot” in one of the first steps to calculate the motion (see also Section 7.2.3 for the robot

model). The autonomous mobile robot can also be seen as a free flying robot in two

dimensions and it has therefore been used to test early implementations of the first

calculation steps of the algorithm.

The investigation shows that remote control of the industrial manipulator Mitsubishi

RV-2AJ and the mobile robot Festo Robotino is possible and has been published at a

conference. Forward and inverse calculations with the robot kinematics were analysed.

This chapter corresponds with objective two.

7.1 Mitsubishi RV-2AJ Manipulator Control

The industrial articulated manipulator Mitsubishi RV-2AJ is well documented, and

communication with a personal computer is possible. Its commercial viability has already

been industrially proven in the manufacture of car sub-assemblies, semiconductor

memories and other industrial/consumer goods (Mitsubishi-Electric, 2008). The main areas

of application are assembly, manufacture, pick & place and handling. The ability to use

industrial robots without the need to modify the robot and its controller is important to

facilitate its rollout in industry.

A robot control framework described by Kohrt et al. (2008) was developed to control

the Mitsubishi RV-2AJ robot manipulator and to exchange information such as sensor data

and the robot arm position. The framework enables direct robot control, serial/Ethernet

connection, robot parameter editing/reading/writing, program uploading and downloading,

real-time movement control, robot system backup/restore, external control over user

datagram protocol (UDP) and equipment control. The initial configuration of the robot was

automated on start-up of the system.

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

81

This section discusses the built-in communication modes Real-Time External Control

Mode, Controller Link Mode and a Data Link Mode. An additional, extended

communication mode was implemented with the Data Link Control Mode. The

development was based on the built-in communication modes to overcome the real-time

control limitations now being discussed.

The Data Link Control Mode allows bi-directional communication for control

commands and sensor information exchange at any time. Usually, the robot system allows

the sending of motion commands which have to be executed and finished before the next

command can be processed. Therefore, applications such as real-time joystick control of a

robot are not possible. This framework overcomes this limitation by installing a

communication server on the CR1 controller, which manages the communication to the

personal computer.

7.1.1 The Built-In Robot Control Modes

The built-in communication modes Controller Link Mode, Data Link Mode and Real-

Time External Control Mode were utilized to create the extended Data Link Control Mode

that is described in this subsection.

Controller Link Mode

The Controller Link Mode was used to set parameters, send robot control commands

and read the robot status. Receiving status information during movement of the robot and

controlling the robot in real-time is not possible. The data is sent in plain text over an

Ethernet, and it was therefore possible to monitor the Ethernet communication between the

controller and the personal computer. The protocol format for sending commands is shown

in Listing 1.

[<Robot No.>];[<Slot No.>];<Command> <Argument>

Listing 1: Command protocol format.

Each command is followed by a message that is sent by the controller, and contains status

information and the result. Table 3 states the pattern of the returning status information,

where each star stands for one digit. The framework verifies the correct transmission of the

robot command with the returned status information.

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

82

Commands Contents

QoK**** Normal status

Qok**** Error status
QeR**** Illegal data with error number

Qer**** Error status and illegal data with error number

Table 3: Status of sent commands.

Real-Time External Control Mode

Real-Time External Control of the robot was employed for direct robot control, where

the trajectory is calculated manually by the personal computer. The real-time external

control mode is based on the UDP networking protocol (Flanagan, 2002), which is a

simple and low-level network communication protocol that sends arrays of bytes over the

network. Even though UDP transmission is not reliable, the low protocol overhead allows

quick datagram transmission. The sending and receiving of packets is monitored, and a

timeout exception is triggered if the communication does not meet the cycle-time

requirement. Runtime is crucial, since every communication cycle has a period of 7.1ms

(Mitsubishi-Electric, 2002a), depending on the robot hardware. It was discovered that a

plain Java port is not capable of communicating with the robot controller in the required

time, and leads to a loss of UDP packages. Thus, movement of the robot was no longer

smooth. A DLL written in C solved the cycle-time issue. This library may also be used in

Matlab/Simulink to build a ‘hardware-in-the-loop‘ low-level robot control application.

However, the library was not utilized because on the one hand, the tested Java robot

control component had already been implemented and tested, while on the other hand, the

component required to execute the DLL function had not yet been completed.

Data Link Mode

The Data Link Mode connects a controller to a personal computer. Usually, it is utilised

to send robot status information from internal robot sensors to the receiver.

7.1.2 Overview of the built-in Communication Modes

The three built-in communications modes are outlined in Table 4, and in Table 5, actual

case results are identified to highlight their usage. Because it was not possible to send

control commands and information requests over one connection, a second connection was

always required to receive actual status information during robot motion.

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

83

Mode
Phys.

Layer
Command type

Feed

back

type

U

C

1

U

C

2

U

C

3

U

C

4

U

C

5

U

C

6

RTEC ETH SDO SDO X - - - - -
DL ETH SD SD - - - X X X

DL RS232 SD SD - - - X X X

CL ETH Robot command - X - - - -
CL RS232 Robot command - - X - - -

CL ETH Robot program - - - X - -

CL RS232 Robot program - - - - X -

(RTEC – Real Time External Control; DL – Data Link; CL – Control Link;

ETH – Ethernet; SDO – Serialized Data Object; SD – Serialized Data;
UC – Use Case)

Table 4: Built-in robot communication modes.

Use-

case
Description

1 Direct robot control over Ethernet with feedback. Either the mentor or the path planning

system may move the robot manually. No controller calculations are involved.
2 Robot operation with single movement commands over Ethernet. The controller

calculates the path. Feedback data may be retrieved by Ethernet connection after

finishing movement.
3 Robot operation with single movement commands over serial port. The controller

calculates the path. Feedback data may be retrieved by serial port connection after

finishing movement.
4 Robot operation with robot programs over Ethernet. The controller calculates the path.

Feedback data may be retrieved either by Ethernet or by serial port connection.

5 Robot operation with robot programs over serial port. The controller calculates the path.
Feedback data may be retrieved either by Ethernet or by serial port connection.

6 Robot operation with two data-link channels. One sending channel over serial port and

one receiving channel over Ethernet. The robot has to be programmed so that it is
possible to send movement-type and data.

Table 5: Use cases.

The most important requirements are the reception of the robot sensor information

during robot movement and the real-time controllability of the robot, mentioned in use

case 1. The extended Data Link Control mode explained in Subsection 7.1.3 was

developed to provide the required functionality defined in use case 1.

7.1.3 The Extended Data Link Control Mode

The Data Link Mode was extended through a control component, which gives the

opportunity to control the robot and simultaneously receive status information. The

personal computer and the robot controller were arranged in a cascaded control system,

where the robot controller calculates the trajectory given by the personal computer in the

form of piecewise ‘MoveTo‘ commands. This allowed to control the robot manipulator

along the trajectory without stopping. Commands are sent over the Ethernet or the serial

port.

Multitasking was employed to run the Data Link Control Mode programs in parallel,

placed in program slots of the CR1 controller. Communication between the programs

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

84

running in parallel was realized using program external variables and user defined external

variables.

The main control program MULTITASK in Listing 2 is executed first in slot 1. It sets

the variables M_01 and M_02 to zero and starts the programs DATALINK and

CONTROLLINK in slot 2 and slot 3. The program waits for the variables M_01 and M_02

to be set from the other programs to stop execution in lines 80 and 90.

10 RELM

20 M_01=0

25 XLOAD 2,"DATALINK"

30 XRUN 2,"DATALINK"

40 WAIT M_RUN(2)=1

50 M_02=0

55 XLOAD 3,"CONTROLLINK"

60 XRUN 3,"CONTROLLINK"

70 WAIT M_RUN(3)=1

80 WAIT M_01=1

90 WAIT M_02=1

100 XSTP 2

110 WAIT M_WAI(2)=1

120 XSTP 3

130 WAIT M_WAI(3)=1

140 GETM 1

180 HLT

190 END

Listing 2: Multitask management program.

The DATALINK program in slot 3 (Listing 3) sends the timestamp, current joint

position, current speed of the tool centre point and current Cartesian position. Sending is

looped over lines 100 to 130, and is executed until a zero value is received. After closing

the communication port, the program notifies the MULITASK program by setting the

external variable M_02.

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

85

10 WAIT M_02=0

20 M_TIMER(1)=0

30 OPEN "COM2:" AS #2

35 INPUT #2,DATA

40 IF DATA = "0" THEN 160

100 PRINT#2, M_TIMER(1), "|", P_CURR, "|", J_FBC, "|", J_CURR, "|",M_RSPD(3)

130 GOTO 100

160 M_02=1

170 WAIT M_02=0

180 END

Listing 3: Datalink communication.

The CONTROLLINK program moves the robot manipulator by receiving and executing

movement commands. This program runs in cycle mode, and no user interaction, such as

moving the robot with the teach pendant, or by robot commands in controller

communication mode, is possible. Communication control is performed over the RS232

port, which results in a slow connection. However, it was still fast enough to directly send

and execute robot control commands. The movement control program is shown in Listing

4. The CNT command enables the robot to move to multiple movement positions

continuously without stopping at each movement position.

10 WAIT M_01=0

20 OVRD 100

30 GETM 1

40 CNT 1, 300

50 SERVO ON

60 OPEN "COM1:" AS #1

70 DEF JNT JNTPOS

80 INPUT #1, JNTPOS

90 MOV JNTPOS

100 GOTO 80

Listing 4: Control link communication.

7.2 Mitsubishi RV-2AJ Kinematics

According to Kucuk and Bingul (2006), kinematics is described as the motion of bodies

without consideration of the forces or moments that cause their motion. Robot kinematics

refers to the analytical study of the motion of a robot manipulator. The formulation of the

kinematics model for the employed robot is crucial for robot position calculation. The

Cartesian space is often employed in kinematics modelling of manipulators, and the

transformation between two coordinate systems may be decomposed into a rotation and a

translation. Homogenous transformations based on 4x4 orthonormal matrices are most

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

86

frequently applied in robotics. Denavit and Hartenberg (1955) showed that a general

transformation between two joints requires four parameters. These parameters, known as

the Denavit-Hartenberg (DH) parameters, have become the standard for describing robot

kinematics. Kinematics is classified as forward and inverse kinematics. The forward

kinematics problem is straightforward, and it is not complex to derive the equations.

Hence, a manipulator always has a forward kinematics solution. The calculation of the

inverse kinematics is computationally difficult, and generally takes a long time when

compared to real-time control contexts. Singularities, nonlinearities and multiple solutions

render the calculation more difficult. Thus, only a small class of manipulators with a

simple kinematics have complete analytical solutions (Kucuk and Bingul, 2004). The

relationship between forward and inverse kinematics is illustrated in Figure 44.

Forward Kinematics

(straight forward)

Inverse Kinematics

(complex)

1

2

3

4

5

n

x
y

z
a
b
c

Cartesian

Space

Joint

Space

Figure 44: Schematic representation of forward and inverse kinematics

The two main solution techniques for inverse kinematics calculations are analytical and

numerical methods. In the first type, the joint variables are solved analytically according to

given configuration data. In the second type, the joint variables are obtained on the basis of

numerical techniques.

Craig (2003) states that due to mechanical design considerations, manipulators are

generally constructed with joints which exhibit just one degree of freedom. Most

manipulators, like the employed Mitsubishi RV-2AJ, have revolute joints or have sliding

prismatic joints.

Figure 45: Revolute (left) and prismatic (right) joints

The analytical solution of the employed manipulator in terms of geometric and

algebraic solutions was applied throughout this study. The geometric approach was applied

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

87

to simple robot structures such as the arm segments 1-3 of the employed robot in Figure 46

and Figure 47. The arm segments 4 – 6 of the most industrial articulated robots require

algebraic solutions. The joint axes cross at a single point, and geometric solutions are

therefore difficult.

Figure 46: Mitsubishi RV-2AJ joints (from Mitsubishi documentation).

d=72 c=160

b
=

2
5

0
a

=
3

0
0

Figure 47: Mitsubishi RV-2AJ dimensions

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

88

The DH-parameters and the corresponding coordinate systems are shown in Table 6 and

Figure 48, respectively. The robot flange is the mechanical interface used to mount tools.

The tool centre point defines the application point of the tool. For example, a mechanical

hand may have its tool centre point in between its grippers. In the absence of tools, the tool

centre point is usually located in the middle of the flange surface. All calculations in this

subsection are executed without tools. The rules to derive the DH-parameters from the

robot geometry and variable explanations are stated in Appendix C.

Robot Arm

Link Number

d

[mm]

Θ

[rad]

a

[mm]

α

[rad]

1 300 π 0 π/2

2 0 π/2 250 0

3 0 0 160 0

4 0 π/2 0 π/2

5 72 π/2 0 0

Tool t 0 0 0 0

Table 6: DH-parameters (see also Appendix C).

x0

y0z0

y2

z2x2

y1

z1x1

z3
x3

z4

x4

y5

x5

yt

zt

xt

z5

0

y4

y3

d=72

0

c=160

b=250

a=300

Figure 48: Robot coordinate systems.

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

89

(Home position:)

7.2.1 The Geometric Solution

The geometric solution was applied for the manipulator arm joints 1-3. The

trigonometric functions 𝑡 and the cosine law were employed to solve the geometric

calculations analytically, as illustrated in Figure 49 and equations (13) and (14). 𝑡 is

generally applied using the / function of an angle to increase the accuracy of angle

calculations, instead of calculating angles with or directly.

Figure 49: Law of cosine

(13) ()

(14) ()

 (())

 ()

Calculation of

Figure 50: Geometric inverse calculation for joint 1

From the robot dimensions in Figure 47, the values and

 are given. As illustrated in Figure 50, the coordinate of the tool centre point on the

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

90

x/y layer is () . is calculated in equation (18) using the 𝑡 function and

the / of to improve the accuracy.

(15) √

(16) ()

(17) ()

(18) (() ()) (

√

√
)

Calculation of

The angle of joint 2 is calculated by considering , respectively arm segments b

and c.

Figure 51: Geometric inverse calculation for joint 2 and 3

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

91

Additional factors and with { } are introduced to incorporate the

unconsidered sign of the square root. The combined factor was applied to the addition

theorem for angles in equations (25) and (26).

(19) √ ()

(20) ()

(21) () ()

(22) () ()

(23) () √ ()

(24)

(25) () () () () ()

(26) () () () () ()

(27) 𝑡 (() ())

The joint angle must also consider the home position of the robot, as illustrated in

Figure 48. Thus, the angle
 must be subtracted from the angle value of to comply

with the defined home position of the robot.

(28)
 (() ())

Calculation of

 is calculated by applying the 𝑡 function. The angle has to be subtracted

from the angle value of to comply with the defined home position of the robot.

(29) () ()

(30) () √ ()

(31) (() ())

(32)

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

92

7.2.2 Algebraic Solution

The algebraic solution is based on the common transformation equation (33), which

considers the rotation and translation between two joints. The DH parameters identified in

Table 6 are applied to the common transformation equation (33). The common

transformation
 for all joints is stated in (34).

(33)
 (

 () () () () () ()

 () () () () () ()

 () ()

)

(34)

The tool coordinate system equals the coordinate system of the robot flange since no

tool is attached. It is given by equation (35).

(35)
 (

)

The angles to are already known from the geometric calculations above, and the

tool transformation
 is also known. Therefore, the transformation

 may be

calculated using equation (36) to achieve the angles and . is the computed target

matrix, which is also known. Generally,
 is given by equation (37).

(36)

(37)

 (

 () ()

 () ()

) (

 () ()

 () ()

)

 (

 () () () () ()

 () () () () ()

 () ()

)

 (

)

The joints and were found through comparison in equations (38) and (39).

(38) ()

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

93

(39) 𝑡 ()

The angles and are independent of the manipulator position, and they are only

dependent on the orientation of the tool centre point. Thus, those angles have to be set

correctly in order to reach a specified target location.

To calculate the reachability of a location, its orientation must be known. Otherwise, the

solution space may be large and an appropriate manipulator configuration must be chosen.

This is application dependent, and will be further discussed in Subsection 8.5.3.

7.2.3 Application of the Dubins Airplane Model

In the geometric formulation of the movement problem, the robot has been reduced to a

point on a two dimensional surface with similar behaviour to Dubins car (Dubins, 1957).

This car is able to drive only forward and the radius of steering is bounded. An extension

of the Dubins car is given with the Dubins airplane, which applies to spaces (Chitsaz

and LaValle, 2007). The robot position is uniquely defined by the position and orientation.

The quadruple () and [[represents the configuration and the

coordinates () represent the midpoint, while represents the orientation of the

airplane, as shown in Figure 52. is the angle between the x-axis of the frame and the

airplane’s local longitudinal axis in the plane. Thus, the Dubins airplane is the Dubins

car with an additional configuration variable for altitude z. This is a simplified model of a

real airplane.

Figure 52: Dubins airplane model.

An industrial manipulator can ‘fly’ curves in any direction, thus, a second parameter

was added for the orientation. The 5
th

-tupel () with [[and

 [[represents the configuration, while and represent the orientation, as shown

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

94

in Figure 53. is the angle between the x-axis of the frame and the airplane’s local

longitudinal axis in the plane. The orientation is equal to spherical coordinates

(Papula, 1998).

Figure 53: Industrial manipulator ‘free flying’ model.

Industrial articulated robots do not have good movement capabilities when compared to

the industrial manipulator model. They most often provide joint, linear and circular

movement primitives. The circular movement is restricted to have a static radius during

circular movement. The restrictions on the steering angle are higher than on the classic

non-holonomic movement constraint.

Nevertheless, the industrial manipulator model, coupled with the restriction on the static

curvature radius were applied. Equally, the autonomous mobile robot has to meet the

constraints of the Dubins car coupled with the restriction to the static curvature radius to

allow direct comparison with the manipulator movements.

7.3 Robotino Mobile Robot Control

The autonomous mobile robot Robotino allows research on trajectory planning in a two-

dimensional world space without the restrictions of the robot arm. The developed path

planning algorithms were first tested on this robot before they have been applied to the

industrial robot arm.

The provided robot control framework supports wireless local area network connections

to command the robot and to obtain sensor information. Commands, for example driving

commands, are generally sequentially executed until the end of the robot movement.

Driving commands allow the speed of each wheel of the Omni drive to be controlled. The

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

95

Omni drive controller also supports interpolated movement types such as linear and

circular movements by setting the linear speed in the plane, the 𝑡 and ⃗⃗ direction, and a

rotational speed about the plane normal ⃗, as illustrated in Figure 56.

t

n

e

R

front

Figure 54: A Robotino robot from the company

Festo.

Figure 55: Local coordinate axes of the Robotino

robot.

7.4 Robotino Kinematics

The kinematics of a car-like robot is also valid for the employed mobile Robotino robot,

although a car-like robot has two rear wheels and two directional front wheels. The

movement controller of the Robotino imitates this behaviour through circular interpolation.

The robot moves on the plane and its configuration is uniquely defined by the position

and orientation. The triple () and [[represents the configuration,

where () are the coordinates of the midpoint and is the orientation of the robot, as

depicted in Figure 56.

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

96

P

y

xz

R

n
 t

e

Figure 56: Kinematics of a car like robot.

As illustrated in Figure 57, the simulator is a point in three-dimensional space, where

the local robot coordinate system 𝑡, ⃗⃗ and ⃗ is given with the origin , which is the centre

of the robot. Linear movements can only be executed along the 𝑡 axis of the local robot

coordinate system, although an Omni drive may also be able to move in the ⃗⃗ axis

direction. Because the trajectory of the industrial manipulator was compared to a free-

flying car-like robot, sideway movements were forbidden and set as a constraint.

Figure 57: Robotino calculations.

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

97

Circular movements may be executed using an angular speed that results in a circular

speed . The robot turns around the given local ⃗ axis and moves forward along the 𝑡 axis

at the same time. It drives linearly forward when and . Equations (41) and

(42) are obtained with the given parameters 𝑡, , , , ⃗⃗⃗ and , which are further

described in (40).

(40)

 ⃗ ()

 ()

(41) 𝑡

(42)

The orientation calculation of to the new orientation was carried out by computing

equation (43). The parameter is the actual orientation and position, 𝑡 is the Rotation

around the given axis ⃗⃗⃗, is the translation of , so that () () and

 is the back translation.

(43) 𝑡

Additional constraints are given in equations (44) and (45). The tangent direction is

continuous and the turning radius respects a minimum constraint. These paths may be

followed by a real vehicle without stopping, and therefore have a continuous curvature

profile in their motion.

(44)
 ̇
 ̇

(45)

These relations are non-holonomic (Barraquand and Latombe, 1989) and restrict the

shape of the paths of the mobile robot. Autonomous mobile robots with these constraints

applied are called Dubins car in (Dubins, 1957).

7 Research of the Robot Kinematics Model and the Robot Control Capabilities

98

7.5 Robot Simulation

Simulation of the employed robot types was introduced to speed up algorithm test and

development. The simulation of the robot arm is restricted to forward and inverse

kinematic calculations. The mobile robot simulation utilizes an extended kinematics of the

Robotino robot, and allows linear and circular movements in . Now, the local ⃗⃗ and 𝑡

axes are used to rotate the robot, which leads to the industrial manipulator model. In

addition, the simulator supports linear movements.

7.6 Summary

Robot control applications require a connection to the real robot system. Sending robot

control commands as well as receiving information from the robot, such as the position,

speed and orientation, is necessary, especially for path-planning applications that focus on

algorithm development. This framework enables the utilization of a standard industry robot

system, an autonomous mobile robot, and a simulated robot. The kinematics computation

for each supported robot, including the simulated robot, was implemented.

The framework extends the Mitsubishi CR1 controller family robot system and employs

a new communication mode. It receives robot information during movement, and sends

robot commands during movement of the robot manipulator without stopping between the

commands.

99

8 Investigation into a Trajectory Planning
Algorithm to Support Intuitive Use of the
Robot Programming System

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

100

This chapter corresponds to objective four, which is the research and development of an

enhanced online robot programming support system that generates static robot programs

for industrial robot manipulators. The most important findings have been published in one

journal paper and one conference paper.

From the requirements described in Chapter 5, a method was researched to combine the

maintainability of the robot program and the shortness of the robot trajectory. In terms of

the clarity and changeability of the generated robot program, the maintainability is

important in industry, and enables the flexibility to modify existing robot programs

manually. The system provides the connection to external devices such as the robot, the

vision system, the joystick and the pointing device, and also integrates the required

software components.

Section 8.1 explains the usage scenarios of the robot programming system which has to

be supported by the developed system. An overview of the main components of the system

is described in Section 8.2. The probabilistic world model and the robot kinematics and

control framework have already been introduced in Chapters 6 and 7. The interaction with

the operator required assistance leading through the necessary steps to generate the robot

program. This assistance is based on a suitable HMI, which is described in Section 8.3, to

enable inexperienced operators to work with the system. The mission defines the overall

aim of the robot task, which can include gluing, handling or pick-and-place tasks. The

mission planner presented in Section 8.4 controls the trajectory planner, enabling it to fulfil

the given mission. Existing trajectory planning algorithms often execute path smoothing

after path finding, although these tasks are competitive. The proposed trajectory planner in

Section 8.5 allows the simultaneous execution of both tasks. In subsequent steps, these

trajectories have to be generated to a robot program file, which can be directly employed to

the industrial production system. Section 8.6 describes a geometric approach to

accomplishing this transformation step. The most important findings are summarized in

Section 8.7.

8.1 Usage Scenarios

The usage scenarios are described as use cases (Balzert, 1999). A use case is a list of

steps that defines interactions between the operator and the system to achieve the goal of

generating a robot program. All of the use cases were realized with the aim of an intuitive

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

101

execution to reduce the need for special knowledge. The diagram in Figure 58 shows a

graphical representation of the considered use cases.

Operator

Generate

Robot Program

Teach Start & Target

Locations and Path Data

Input

Im-/Export Pre-

Existing Data

Place

Modelled

Objects

Create Mission

Robot Control

Import Start & Target

Locations and Path Data

Joystick

Control

Teachpendant

Control

Keyboard

Control

GUI

Control

Plan Mission

Pointing

Device

Model Data

Import

Robot Data

Import

Mission

Import

Workspace

Exploration

<
<

extends>

>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>><<exte
nds>

>

<<
ex

te
nd

s>
>

<<extends>>

<<extends>>

Auto

Exploration

<<extends>>

Manual

Exploration

<<extends>>

Random

Exploration
<<extends>>

Robot Program

Exploration

<<extends>>

<<extends>>

<
<

ex
te

nd
s>

>

Show

Locations
<<extends>>

<<extends>>

Figure 58: The use cases of the support system.

Use Case 1: Import/Export Pre-Existing Data

During data import and export, data of models, the mission and the robot, including the

robot specific kinematics, are loaded from or saved to a disk. The mission parameters

contain mission application paths and locations, as well as other planning parameters.

Use Case 2: Create Mission

Missions including start and target locations can be created manually or by importing the

model data. Information for the application type is entered within the GUI or is also

included within the model data.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

102

Use Case 3: Place Modelled Objects

Modelled objects are required to be placed within the workspace so that the world model

can be updated. This positioning process may be done with the robot or directly with the

pointing device. The applied four-point method uses four locations to define the position

and orientation of the modelled object.

Use Case 4: Robot Control

The robot is controllable with input devices such as a joystick, pointing device, teach

pendant, keyboard, and a GUI.

Use Case 5: Workspace Exploration

Exploration of the workspace may help to reduce the time taken to generate the trajectory.

This can be done either manually or automatically. Manual exploration utilizes manual

robot control, while automatic exploration is done by random movements or by the

execution of pre-existing robot programs.

Use Case 6: Plan Mission

Planning the mission includes mission and path planning as well as robot program

generation to a textual robot program file. The output represents the result of the enhanced

online robot programming system in the form of a file, and it may be exported directly to

the robot or as a text file to the hard disk.

The use cases have to be subsequently executed in order to generate the robot program.

Thus, the workflow in Listing 5 has been defined to summarize the use cases.

1. Set up an online path planning and the enhanced online robot programming system

including hardware.

2. Importation of pre-existing data such as robot geometry and CAD data.

3. Create a mission using import, robot movements, CAD locations, pointing devices

or simulations.

4. Execution of the support system.

5. Robot program generation.

6. Uploading of the robot program file to the robot.

7. Removal of the support system.

Listing 5: Summary of the use cases.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

103

8.2 System Overview

The overview of the enhanced online robot programming support system illustrated in

Figure 59 shows the involved software components, devices and sensors. The software

components were developed to support the defined operator use cases stated in Section 8.1.

Workspace

Exploration

Robot Control

Robot Program

Generation

Marker

Recognition

Model Data

Import/

Positioning

Locations from

Positioning

Enhanced On-Line Robot Programming Support System

Mission Plan

(Locations,

application

information)

Collision

Indication

Operator

Locations

from Model

Data

Mission Planner

Trajectory

Planner
Model Data

Environment

W
o

rl
d

 M
o

d
e

l

Robot Program

File

Robot

Kinematic

Manual Robot

Control

Robot(s)

H
u

m
a

n
-M

a
c
h

in
e
-I

n
te

rf
a

c
e

Visual Robot

Control
D

a
ta

 F
u

s
io

n

Figure 59: Support system overview.

In general, the system provides an HMI that consists of a GUI, a joystick and a pointing

device. The main task of the system is to generate a robot program file from a given

mission. The definition of the mission still relies on the operator, who provides knowledge

of the application such as painting, gluing or pick-and-place tasks. A mission consists of

application locations and paths that include application information, such as the colour for

painting. Both can be provided within the model data or may be amended within the

support system. The application locations can be manually determined.

The robot control component controls the manipulator, the mobile robot and the

simulated robot. The robot kinematic component provides forward and inverse

calculations. Both components are described in Chapter 7. The robot system is equipped

with a teach pendant to control the robot movement manually. Additional input devices,

e.g. joystick, GUI of the robot programming system, visual servo-control, mouse and

keyboard, have been connected to simplify manual robot control.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

104

The visual servo-control applies a pointing device to indicate the target location to the

robot using the marker recognition component. The robot moves automatically towards the

given location with the help of a neural network, and stores the position. Subsequently, the

network transforms picture coordinates into robot control commands, as described in

Subsection 8.3.2.

The importation of model-based CAD data was employed to represent the world model

more accurately. CAD data from simulation systems, such as RobCAD (Tecnomatix,

2011), can be exported as DXF files including all locations attached. Usually, CAD data

already exist in simulation tools and modelling software. They are taken from laser-scan-

or construction-processes. This model data was placed within the real robot cell, hence

improving the accuracy of the world model. In addition, these objects allow the use of

physically unavailable objects.

Data fusion combines all information sources to deliver cohesive data to the world

model. The data sources also include the robot positions from existing robot programs to

explore the working space. It was also explored by random or manually controlled

movements. Collisions are always processed during exploration so that free and occupied

areas of the workspace are explored throughout its movements by manual collision

indications. Thus, the world model becomes more accurate during the exploration process.

The mission and path planner presented in Sections 8.4 and 8.5 together handle the

planning of a motion in real-time, including shortest-path calculation and collision

avoidance. Finally, the entire robot motion is stored within the support system in the form

of a trajectory that consists of connected particles. Its transfer to a robot-specific program

file is achieved in two steps: first, the translation into a robot program of solely the

provided trajectory; secondly, the generation of the specific robot program enriched by

additional configuration commands and specific linguistic syntaxes. The two-step

generation, described in Section 8.6, also supports other robot types and languages.

All software components were created with the developed code generation toolchain

presented in Chapter 9. Each of those components is an independent component with a

clear interface to the software framework. This simplified the use of third party work, such

as for DLL integration. All components may be developed independently as soon as the

interface and information exchange are specified. Each component provides life-cycle and

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

105

message-based communication functionalities as well as a run-time behaviour, which is

called an execution model and it is detailed in Appendix E. A graphical model specifies the

communication flow and message types, which were subsequently generated into source

code, including additional libraries that are required to execute the software system.

8.3 Human Machine Interface

This section gives a detailed overview regarding the concept, functionality and structure

of the HMI of the system. The interface was kept simple and it provides a GUI in addition

to external robot control devices and a pointing device. The pointing device delivers its

position information, which was processed together with the robot arm position to realize

visual servo control.

8.3.1 Graphical User Interface

The GUI was created in a generic and flexible way to guide the robot-program-file

generation process. A finite state machine was exploited to ensure valid system behaviour

and to improve the system robustness as it relates to wrong user entries and undefined

states. The GUI adapts its toolbar and workflow to the state machine, which acts as a

controller. It provides a defined set of states, which help to reduce the risk of GUI errors.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

106

Commands Composites

Toolbar

Attributes

Figure 60: Design of the Graphical-User-Interface.

The GUI is structured into five main components, as shown in Figure 60. During the

development phase of the system, debugging was required to implement the user

interaction. The debugging-related widgets, the attributes, the commands, and the log

window are not shown in the final version.

The robot program generation-related widgets are placed within the ‘Composites’ area

in Figure 60. A composite is a Java class containing SWT widgets that are required by a

software component to allow user input with a GUI. Each individual software component

that requires user input encapsulates its own composite, which is dynamically integrated

into the GUI. The fixed tab ‘Workflow’ dynamically displays all state dependent

composites. For each state change, the appropriate composite is displayed. The ‘Vision’

tab shows the camera views and the ‘Scene’ tab contains a graphical representation of the

world model, which is visualized by a Java 3D viewer.

Each connected software component may provide attributes which are displayed within

the ‘Attributes’ area. The message-based communication of these components allows the

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

107

display of all allowed messages within the ‘Commands’ area, and can be directly executed

during debugging.

The Finite-State-Machine

The Finite-State-Machine was realized using UniMod (eVelopers Corporation, 2011),

which is an open-source application. It allows the developer to design an application

logically with the help of state-chart diagrams and the generation of Finite-State-Machine

Extensible Markup Language (XML) description files. The XML-description files are

executed using a Finite-State-Machine runtime framework.

Figure 61 provides an overview of the communication structure of the GUI software

component. Messages to other software components may be sent during an event of a

widget, such as a button click. The Event Provider is the interface for incoming messages

from other software components and from internal messages.

Application

Finite-State-

Machine

Framework

GUI

Adapter

Graphical-

User-

Interface

Event

Provider

Controlled

Object

Finite-

State-

Machine

Incoming message

Outgoing message

External software component

Internal message

Internal data flow

Figure 61: Communication system of the Graphical-User-Interface.

The UniMod resource of the GUI consists of three parts. The event provider transforms

received messages into events that can be processed. The controlled object connects the

Finite-State-Machine with the ‘GUI Adapter’ to control the GUI. The ‘GUI Adapter’ is a

Java class that was required to decouple the GUI source code from the user code. The

Jigloo SWT/Swing GUI builder (Cloudgarden, 2011) was utilized to create the user

interface.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

108

As shown in Figure 62, the finite state machine was employed to control the GUI.

Buttons on the GUI send messages to the finite state machine and cause a state change.

This leads to a GUI change in the toolbar and the composites.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

109

Figure 62: Graphical-User-Interface controller Finite-State-Machine.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

110

Dynamic Toolbar

The toolbar is dependent on the underlying finite state machine and presents three fixed

elements on its left: ‘Exit’, ‘Previous state’ and ‘Next state’. These elements are fixed for

all states. The buttons ‘Previous state’ and ‘Next state’ lead the user through predefined

usage guidelines. The ‘Exit’ button shuts down the robot programming system and closes

the GUI.

State dependent buttons are dynamically added to the toolbar. They represent the

possible state transitions to connected states from the current state. If one of these buttons

is clicked, the trigger activates the transition to the desired state. All buttons are

represented by a symbol and the associated name of the state as tool tip text.

An important aspect of the finite state machine concept is the parsing of the state

machine for connected main states to display the workflow in the toolbar, as illustrated in

Figure 63.

Connected StatesPrevious and

Next States

Figure 63: The dynamic toolbar.

The finite state machine is separated into main states (‘ms_’) which represent individual

composites, and general states (‘s_’) which have internal functions. Every main state has a

state number that is defined by the standard path through the finite state machine, which is

proposed to the user as a standard workflow. Within each parent state, its child states are

numbered starting from zero, as demonstrated in Figure 64. The operator may leave the

proposed workflow, for example by following the dashed path. The next and previous

states along the proposed workflow have to be calculated in order to lead the operator

along the proposed path.

This was done for the previous state by obtaining the previous state with the highest

number which is smaller than the current state number. For the calculation of the state prior

to the first state within a parent state, the previous state of the parent state is calculated in

the same manner.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

111

The next state is calculated by obtaining the subsequent state number that is greater than

the current state number. For the next state calculation of the last state within a parent state,

the next state of the parent state is calculated.

ms_0_state_a

ms_0_state_b

ms_2_state_d

ms_1_state_c

ms_0_state_e

ms_1_state_f

ms_1_state_g

Figure 64: The dynamic toolbar.

8.3.2 Visual Servo Robot Control

The visual servo-control component employs the pointing device to indicate the target

locations in space. Both the pointing device and the robot-arm are equipped with markers.

To achieve information regarding the position of the objects in space, the robot cell is

equipped with a vision system which monitors the space within the robot cell. The vision

system recognizes the picture coordinates of the markers to enable the visual servo-control

component to control the robot-arm towards the pointing device. Subsequently, a neural

network transforms the picture coordinates into robot control commands, as described by

Ritter (1994) with a Kohonen network and Lenz and Pipe (2003) with a radial basis

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

112

function network. The robot moves automatically towards the given location. An overview

of the visual servo control application is given in Figure 65.

Robot

Joint angles

Processing unit

Figure 65: Visual servo control application.

The neural network is trained with randomly chosen target locations. The target location

is monitored from the cameras and their signals are applied to the neural net. Each neuron

is responsible for a subspace of the robot cell. An activated neuron provides control signals

to the robot controller. Each camera of the vision system delivers a two-dimensional image

coordinate of the viewing pane, and the neural network learns the transformation to control

signals for the five robot joints. The robot moves to incorrect robot positions at the

beginning of the learning process, but the accuracy is improved with each learning position

and the difference between the robot positions and the target positions. There was no need

for more information about the robot, the cell, the cameras or its positions in space. This is

the typical behaviour of an autonomous learnable system.

8.4 Mission Planner

Robot programs in industrial settings often include several application tasks for the

robot, which are summarized in a mission. The order of the task execution can be limited

by tasks of other robots or humans, and results in interaction between the participants. In

this study, the planning of the mission tasks resulted in the well-known ‘travelling

salesman problem’ (Russell and Norvig, 2002). The movement distance of the robot was

utilized to define a cost and optimization function for path planning. The distance

information of the mission task is extended during path planning using sensor data. Thus,

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

113

the mission planner and the path planer are interconnected to exchange mission planning-

related data.

8.4.1 The General Path Planning Control Loop

The mission and path planning control loop depicted in Figure 66 shows the interaction

of the mission and path planner with the robot system and its environment. The mission

and path planner component computes trajectories for a given mission. The mission and

path planner subsequently calculates a path and controls the robot manipulator along that

path. The robot interacts physically with the environment, and its movement is monitored

by internal and external sensors which provide its position and velocity to the path planner.

Local obstacles and workpieces may also exist within the workspace and have to be

recognized. Collisions were detected by sensors or by the in-memory world model. Their

positions and velocities are provided to the mission and path planner and to the world

model, which creates an in-memory map of the environment. All of these components are

executed in real-time.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

114

Local Obstacles &

Workpieces

Position &

Velocity

Path Tracking &

Control

Robot &

Environment

Mission

(including Tasks)

Mission

Planner

&

 Trajectory

Planner

World Model

Sensor

Input

Figure 66: The Mission and path planning control loop.

Path planning in robotics considers model-based and sensor-based information to

capture the environment of the robot. Perception, which is initiated by sensors, provides

the system with information about the environment and interprets them. Those sensors

include cameras or tactile sensors that are often used for robot manipulators. The

application of the control loop to the real environment results in the general overview

given in Figure 67.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

115

Robot Cell

Environment

Motion

Planning

Enhanced Online Robot

Programming System (Win7 PC)

World

Model
External Sensors

Internal Sensors

(position/velocity)

Obstacles

Workpieces

Robot

Manipulator

Effector

Robot-Control-

Commands

Mission

Planning
Robot

Program

En-

hanced

Online

Robot

Program-

ming

System

GUI

Figure 67: Logical view of the support system.

8.4.2 Mission Planning

For a given mission, the mission planner plans multiple application trajectories. Any

algorithm that is used to solve the travelling salesman problem (Russell and Norvig, 2002)

may be utilised to calculate the order in which each application path is processed. The

mission planner delegates the task of trajectory planning to the path planner. Both the

mission and path planner have to establish an interconnection for the exchange of

information which is the length of the actual planned path, as shown in Figure 68.

Mission

Planner

Path

Planner

control

path length

Figure 68: Path length information exchange.

The applied mission-planning algorithm has to be capable of handling path length

information during path planner execution, and it has to react by instructing the path

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

116

planner. In the proposed system, a brute-force algorithm was used, and as such, it is

desirable for a demonstration system, although it is limited to operation with few

application paths.

Mission and path planning was based on the object model presented in Figure 69. A

mission consists of one start and one target location as well as a number of application

paths. A path is subdivided into roads that connect the start and the target, in addition to

crossing locations and application locations. The final trajectory is the result of the path

and trajectory planning calculations. An application path may also contain application

information, e.g. movement type, application type, colour and other information required

for spraying, painting or other tasks.

Start

Target

Application

Path P1

 Location

LS

L1 C1

A1

A2

L2
LT

Application

Node
Crossing

Location

Road R4

Road R1

R2

R3

Obstacle
Obstacle

O2

O1

C1

L3

L4

L5
L6

L7

L9

Road R5

L8

Road R6

Figure 69: Definition of the roadmap elements. A1 and A2 set the start and end location of the application path.

To accomplish a mission, the optimal route must be found that connects each

application path from the start to the target location, as illustrated in Figure 70.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

117

Start

Target

Application

Path L1

L2

Application

Node

Obstacle
Obstacle

L3

Figure 70: Illustration of possible path connecting three application path for mission task planning.

Because no exact data is known beforehand, the path distances between each sub-goal

are not known, and may be estimated and subsequently calculated by trying to connect

each sub-goal with each other using robot movements. In the case of lines, the end of the

application lines must be fully connected to the target location and starting locations of

other application lines. An example can be given with a mission that consists of three lines

for a welding application (, and). The resulting combinations (in this case 12

connections) have to be planned to achieve the connection length for mission planning, as

illustrated in Table 7.

 to

 from

Goal

Start O X X X

 X O X X

 X X O X

 X X X O

Table 7: Path combinations.

The lengths of linear and circular application paths are known beforehand. The

connection length is the length of the trajectory that connects two locations. This is found

with the path planner, which tries to connect these locations. Once a path is connected,

complete path length information is available, which can be utilized for mission planning.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

118

8.5 Trajectory Planner

The industry requirements, which were defined in Chapter 5, specify a path-planning

system that produces readable and changeable robot programs. Industrial robot programs

often consist of circular, linear and joint movement primitives. The robot program itself

consists of a minimum number of locations and movement primitives, as well as

changeovers of movement primitives. Usually, the joint movement is the most desired one

because it represents a short and fast movement type. All axes are in motion at the same

time, and the motion is coordinated so that the movements of all axes end at the same time.

Although this is the most favourable form of movement, it has a disadvantage in that it is

not predictable for the operator during robot programming. The joint movement primitive

has not yet been considered, and has been included in future work. Therefore, focus has

been given to the circular and linear movement types.

Path planning generally relies on inexact data of the robot and the environment, which

are stored into the in-memory world model with the help of sensor information. Vision

may help to increase the knowledge of the world model. The world model employed in this

study was introduced in Chapter 6. The mathematical treatment of forward and inverse

kinematics, as well as the control of the employed robots was presented in Chapter 7.

The interaction of the path planner and the mission planner are described in Section 8.4.

While the path planner focuses on the creation of the trajectory, the mission planner

handles a higher level of path planning. The path planner calculates a path, and controls the

robot along that path until a collision is detected, the kinematics constraints are not met or

until the target is reached. In each case, the updated path length information is delivered to

the mission planner, which re-plans the mission on a higher level.

A robot trajectory is a path in the working space of the robot. Each point on the path is

described as a vector with the position and the time. The trajectory planning task is to find

a collision-free movement of the robot from the start to the target location, considering the

motion constraints of the robot (e.g. a car that cannot move sideways), while also

satisfying the requirements for readability, maintainability and changeability of the derived

robot program.

The presented algorithm is executed in three steps. First, it analyses the topology of the

working space to create a roadmap with the Voronoi-based approach described in

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

119

Section 8.5.5, which also considers obstacles and the reachability of the utilized robot. This

roadmap is employed in the second step to find the shortest path connecting the start and

target locations. At this stage, the found solution path does not fulfil the requirements of

the robot program features. Thus, in the third step, the solution path is adapted, modified

and smoothed to represent a trajectory with basic circular and linear movement primitives.

The general trajectory planning workflow is presented in Subsection 8.5.1. The robot

manipulator reachability and discretization of its configuration space are discussed in the

Sections 8.5.1 and 8.5.3, respectively. Path planning with exact search algorithms are

generally time consuming, and approximation methods have therefore become more

important. Neural networks have demonstrated good approximation capabilities and are

analysed in Section 8.5.4 to be employed for path planning. Neural network path planning

results have shown that the principles identified in this way may also be employed for a

cell-based path planning approach, which is detailed in Section 8.5.5. For path planning

with dynamic obstacles, the state time space was considered, and is detailed in

Section 8.5.7. The transformation of a given path to a trajectory by concatenating circular

and linear movement primitives with the help of particles is explained in Section 8.5.8.

8.5.1 The General Trajectory Planning Workflow

The robot manipulator was considered based on the manipulator model, which is

described in Subsection 7.2.3. The robot is steered from the start to the target location by

real robot movements along trajectories.

The trajectories were generated by calculating the shortest path within the roadmap joint

positions from the start to the goal. In a subsequent step, the identified path was

transformed to a trajectory consisting of movement primitives. Transformation into a

trajectory was achieved by applying equidistance, rotation and shrink forces on the joint

space positions (Kohrt et al., 2006b). This lead to a trajectory formed by canonically

ordered movement primitives, which had linear and circular movements. The trajectory

generated in this way avoids obstacles and reduces their clearance.

A linear octree (Gargantini, 1982b) was utilized to represent the working space of the

robot and a roadmap in a spatial in-memory world representation. Information

concerning the environment in which the robot operates, including obstacles, was captured

within the octree. The octree was improved during trajectory planning with real sensory

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

120

information, which is delivered in the form of collision locations. The improvement

resulted in an adaptation process of the octree, which was primarily aimed at the

generation of a roadmap approximating the Voronoi form.

Finally, the robot was moved along the found trajectory until either a collision or a

robot kinematic constraint violation occurs, a shorter path is found by the search algorithm,

or the target is reached. This often triggers a re-planning of the trajectory if a shorter path

is recognised. Because real robot movements are involved, this should not happen too

often. To prevent this, a hysteresis is applied. The hysteresis was also utilized to employ an

additional exploration of the workspace, which improves the knowledge of the world

model.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

121

The general workflow of path planning is illustrated in Listing 6.

1) Create connectivity in the form of an approximated Voronoi form

2) Explore the workspace and update the world model

a) Automatic random exploration

b) Exploration by existing robot programs

c) Exploration by following the Voronoi lines to the target without path smoothing

3) Apply the path-searching algorithm in joint space

4) Apply the elastic net algorithm to generate the trajectory

5) Move along the trajectory from the start to the target until a constraint violation occurs

(collision or robot kinematic constraint), a shorter path is found by the path searching

algorithm or the target is reached

a) On collision or kinematic constraint violation

i) Update the roadmap and generate new roads

ii) Take back the last movement to the last common trajectory position that is

unchanged

b) On the shorter path found in the roadmap

i) Continue the movement to explore the workspace along the possible trajectory

solution until the path length difference is larger than a hysteresis value

ii) When the path length difference is larger than the hysteresis value, do an

automatic random exploration

iii) Take back movement to the last common trajectory position of the old and new

trajectory and continue with 5)

Listing 6: The support system execution tasks.

8.5.2 Discretization of the Configuration Space

The configuration space of an articulated robot is often discretized in order to execute a

path-searching algorithm on the discretized search space. The discretization plays an

important role since the accuracy of the search algorithm is often coupled with the

accuracy of the discretization.

An example graph of a discretized configuration space is shown in Figure 71. The

discretization of the movement range without constraints of the axes are practically

feasible only for robots with a low number of axes, for example less than four joints.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

122

Figure 71: Graph of a discretized configuration space.

Various approaches for discretizing the configuration space have been reported in

literature. The approaches reported by Reif and Wang (2000), Yang et al. (2011) and

Zacharias et al. (2007) use hierarchical structures, capability maps or non-uniform

discretization to optimize the search space to enable efficient searching. Thus, optimization

can generally be reached by minimizing or ordering the search space specifically for the

applied search algorithm.

The planning algorithm described here was executed in the constrained configuration

space to improve the search algorithm. The reachability of the robot was required to

calculate these constraints. In addition, the mechanically valid positions were utilized to

minimize the discretized space.

Henrich et al. () and Reif and Wang (2000) describe an optimal discretization approach

that sets the resolution along each configuration coordinate (robot axis) according to the

maximum movement of the robot end-effector for each step that the robot moves along this

coordinate. The discretization resolution is determined with

 () of a -dimensional configuration space. A uniform discretization for

all joints of the robot manipulator can be defined with for some constant .

With a reasonable joint resolution of , the uniform discretization results in very large

configuration spaces. For example, a discretization of the joints of the Mitsubishi RV-2AJ

with () results in a configuration space with states.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

123

The algorithm presented in this work is based on equation (46), where is the distance

between the centre of joint to the farthest point to which the end-effector can reach, and

 is a pre-set distance that the robot may move for one step along the coordinate.

(46)

The optimal discretization results in Cartesian movements of joint , which meet the

condition , where { }. For

of a Mitsubishi RV-2AJ, the optimal discretization equals to equation (47).

(47) ()

The size of the corresponding configuration space obtained considering the mechanical

constraints of the utilized Mitsubishi robot is states. This is times less

than the uniform discretization with () and

states.

To apply an octree with a length of , a depth of , and a cell size of

 on the highest accuracy level, the parameter must be set

accordingly. Because each cell should have at least points, the parameter

was set to . The calculation results in states for

the optimal discretization, as opposed to states for the uniform discretization.

Table 8 compares the non-uniform and uniform discretization values.

Robot Arm

Link Number

i

Link Length

[m]

[m]

Optimal

Discretization

[°]

Uniform

Discretization

[°]

1 0.13 0.712 2.51 2.51

2 0.25 0.582 3.08 2.51

3 0.16 0.332 5.40 2.51

4 not available

5 0.072 0.172 10.42 2.51

6 0.1 0.1 17.98 2.51

Table 8: Optimal discretization compared to uniform discretization.

8.5.3 Reachability Calculation

The reachability of a robot in world space can be calculated by transforming the robot

configurations from the tool centre point coordinates to world coordinates, or vice versa.

This transformation can be applied with forward or inverse calculations of the robot

kinematics. An efficient inverse calculation can only be achieved for world coordinates

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

124

with given information regarding its position and orientation. Because the orientation can

be arbitrarily chosen, inverse calculations lead to intensive computation.

This problem was studied in (Yang et al., 2011, Zacharias et al., 2007), and a simple

pre-calculation step was proposed to generate and to preserve the required information in a

look-up table by performing forward calculations of the robot arm configuration to the

points in space. The look-up table may generally be used if the robot kinematics is static

and known beforehand. However, since this algorithm is used in an industrial environment,

both statements are fulfilled. The aim of the look-up table is to represent the reachability

using a limited number of joint positions to reduce the search space for a path-

searching algorithm. The number of joint positions has a direct impact on the running

time of the path-searching algorithm and the required pre-calculation time of the look-up

table. The limitation exists because of the employed search algorithm described in

Subsection 8.5.6.

The implemented linear octree - the world model - has a defined depth , which

enables the calculation of the smallest octree cell size. This can be further employed to

estimate the robot link dependent accuracies , which have to be carefully chosen. To

guarantee that the path-searching algorithm will successfully complete the search task, a

sufficient number of discretized positions are ensured to be stored for each octree cell

on the deepest level.

The octree accuracy does not need to be very high because the employed trajectory

planning approach discussed in Subsection 8.5.6 only applies to the octree for path

searching. The trajectory generation algorithm actively requests additional positions, and

operates almost independently from the octree.

8.5.4 The Neural Network Based Roadmap Approach

Neural networks have the ability to approximate, which may be utilized to produce a

new path-planning system by combining roadmap generation and path finding algorithms.

Problem dependent neural network types such as feed forward, self-organizing and Radial

Basis Function networks were analysed (Russell and Norvig, 2002). However, the

Kohonen map (see also Appendix F) was chosen because it is an unsupervised learning

self-organizing map which directly maps the neurons to the configuration space of the

robot, producing a similarity graph of input data. It represents the connectivity and the

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

125

probability distribution with its topology-preserving feature. The weight vectors are

adapted and moved towards the input vector. This unfolds in an approximated robot

configuration-space model represented by the neural network.

The Coloured Kohonen Map

An extension to the self-organizing map is proposed in literature with the Coloured

Kohonen Map (Vleugels et al., 1993), which approximates the obstacles and the free

working space using two node types. One type of node approximates the obstacles while

the other type approximates a roadmap in the free space. The free space is represented by

connected points within the free space, and form a roadmap on which the robot may move

along the connected edges. The roadmap is optimized to reduce the complexity and to

compute a topological map in Voronoi form. Obstacles and non-reachable areas in the

configuration space, which exist due to mechanical and geometrical constraints of the

robot, were stored within the world model, and they are automatically considered in

roadmap generation. The neural network consists of neurons that are generated at the

beginning with an initial position distribution. During learning, the weight vectors are

adapted and nodes are added. Thus, it is a growing neural net changing its architecture

during runtime.

Extensions to the Coloured Kohonen Map

The aim of the neural network is to approximate the obstacles, generate a roadmap, find

the shortest path and create a trajectory. This may be achieved by modifying the Coloured

Kohonen Map algorithm, which also has to be extended to allow its application in

multidimensional spaces for robot arms.

The visualization of the in-memory computer model of the workspace is shown in

Figure 72. The outer box and the grey polygons inside the figure are assumed obstacles,

and the dots are locations of the robot in the configuration space.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

126

Obstacle

Obstacle

Ob-

stacle

Location

Location

Figure 72: Workspace approximation of the obstacles and the free space with robot configuration locations.

Integration of Forces

In general, the weight adaptation rules of the Colored Kohonen Map are applied on the

winner node including its neighbouring nodes (Blackmore and Miikkulainen, 1993, Cheng

and Zell, 1999, Fritzke, 1995, Fritzke, 1991, Fritzke, 1993, Fritzke and Wilke, 1991,

Ivrissimtzis et al., 2003, Vleugels et al., 1993).

The weight adaptation equation (48) (see also equation (120) in Appendix F) has been

extended by Vleugels et al. (1993) to create a coloured version of the neural network. This

has mainly been accomplished by modifying the weight adaptation term (
) of

equation (48).

(48)

 (𝑡) (
)(

)

This extension was further used to integrate additional weight adaptations which

represent forces on the nodes. Thus, the first extension by Vleugels et al. (1993) is a force

to generate a roadmap in the Voronoi form, which is used to find a shortest path from the

start to the target location. The second extension is a force to approximate the obstacles.

As illustrated in Figure 73, the Coloured Kohonen map applies only forces on unsafe

nodes if the input vector, which is illustrated as a cross in the figure, is safe, so that the

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

127

nodes move towards the safe position without violating the obstacle boundary. If the input

vector is unsafe, forces on safe nodes are applied so that the particle moves away from the

unsafe position.

An update mechanism iterates through the neurons in the original Kohonen-map

learning algorithm, which was optimized by iterating only through nodes, where changes

are noted. Because the calculation of all neurons was computationally intensive, further

improvements may be achieved by local calculations to allow parallel processing of the

nodes.

Figure 73: Forces on the safe and unsafe nodes for random inputs, marked as crosses.

Additional developed forces, explained in Subsection 8.5.8, were applied to transform

the so derived shortest path to a trajectory. Trajectory generation is performed using the

path, and by modifying this path to conform to non-holonomic movement constraints for

the manipulator model described in Subsection 7.2.3.

Node Movement

Weight adaptation results in movements of the particles and may violate constraints,

e.g. when a roadmap node collides with an obstacle. Care was taken for collisions of safe

nodes with approximated obstacles, which are represented by unsafe nodes. Collision

checks were performed by simple vector-vector (2D) or vector-polygon (3D) collision

checks. The movement of a node does not violate the border of its neighbouring nodes.

Those checks have only been applied on edges and polygons of adjacent nodes to reduce

processing time. The movement vector that collides with an edge or polygon must be

recalculated so that its direction is parallel to the edge or polygon surface, allowing a drift

along the obstacle boundary. The calculations can be found in Appendix G.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

128

Architectural Node Adaptations

Architectural adaptations within the neural net, following the rules given in literature

(Fritzke, 1995, Fritzke and Wilke, 1991), change the connectivity and the number of

neurons. Nodes are added in areas having low accuracy of environment approximation, and

edges are adapted to fit the new architecture.

The architectural changes also include edge removal and addition. An edge is removed

if two unsafe nodes are connected and have no common neighbour. If the safe node loses

all of its edges, it is also removed. If new nodes are added, the connectivity to its

neighbours is built by new edges.

The adaptations of the neural net were separated into scene-based and error-based

modifications. Black nodes are generally unsafe nodes, white nodes are safe nodes and

grey nodes are the new nodes. Error-based modifications are executed after iterations

during the neural network learning process. A new node is generally placed between the

node with the highest error and its furthest safe neighbour. A second node is generally

placed between the node with the highest error and its furthest unsafe neighbour.

Figure 74: Error-based safe node addition.

A new node is placed on long edges between the node with the highest error and its

furthest safe neighbour with two common safe neighbours (Figure 74). The new node is

also connected to all common neighbours.

Figure 75: Error-based safe node addition.

If no such neighbour exists, a safe node is added on the edge to its furthest unsafe

neighbour. It is connected to both unsafe and safe nodes (Figure 75). Nodes that are near to

the boundary are not changed (Figure 76).

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

129

¼ Sampling

Figure 76: Unsafe nodes on the boundary.

¼ ½

Figure 77: Error-based safe node addition.

An unsafe node is added at the ½ position and is connected to all neighbours when

the ¼ and ½ samplings are both unsafe (Figure 77).

¼

½

Figure 78: Error-based safe node addition.

A new unsafe node is added at ½ to the furthest unsafe node that has at least one

common safe neighbour when the node is located on the boundary. Nodes are on the

boundary when the ¼ sampling is safe (Figure 78). The new unsafe node is connected to

all neighbours. If the node is not on the boundary, an edge is added halfway to the furthest

safe neighbour when that configuration is located in the unsafe space.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

130

Figure 79: Scene-based unsafe node addition.

Scene-based unsafe node addition takes place at the collision configuration when a safe

node is pulled by a safe node into forbidden space. The new unsafe node is connected to all

neighbours.

Figure 80: Scene-based unsafe node addition.

Figure 81: Scene-based unsafe node addition.

If a safe node is pulled by an unsafe node into forbidden space, an unsafe node is added

at the collision configuration and it is connected to all neighbours.

Figure 82: Scene based safe node addition.

If an edge between two unsafe neighbours is partially within safe space, a safe node is

added. This is tested with three random tests along their connection.

Roadmap Simplification Forces

The resulting complex roadmap is illustrated in Figure 83. However, no robot

constraints are considered, and it is assumed that the robot is a freely navigable point robot.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

131

Figure 83: Workspace approximation of the obstacles and the free space.

Roadmap generation forces simplify the roadmap with the aim of reducing the number

of nodes and straightening the roads. The roadmap then represents the connectivity of the

space and forms the topological map, as shown in Figure 84. The Voronoi form was

installed with the aim to maximize the clearance of the robot to all obstacles during robot

movement.

Figure 84: Simplification of a complex roadmap.

An improvement to the trajectory generation may be achieved by shrinking the

connections of the nodes, and by application of the trajectory generation elastic net forces.

Then, the path no longer follows the Voronoi diagram, and moves nearer to obstacles.

Again, the nodes are not allowed to change their type (safe/unsafe).

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

132

Figure 85: The shrinking forces.

Shrinking forces apply on all nodes with either more or less than two connections, but

not exactly two connections. Nodes with two connections are in the desired form, and do

not need to be further collapsed. This will shrink nodes that are either alone or individually

connected, such as end points or multiple connected nodes. Simplification is realized by

collapsing nodes until only two connections remain for every node. Nodes that represent

mission locations such as the starting location of an application path are excluded.

For each safe node that has exactly two unsafe neighbours, the vector is calculated

with the equation (49) to move the particle in the middle of two unsafe particles.

(49)
 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗

 (⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗)

The two vectors ⃗⃗⃗⃗⃗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and ⃗⃗⃗⃗⃗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , which represent the vectors to the two unsafe

nodes, were added and normalized, and finally multiplied with a small constant .

Summary

In fact, implementation tests of the algorithm presented by Vleugels et al. (1993) have

shown that the Voronoi form is rarely reached. Adjustments of the parameters by trial and

error, as suggested by the authors of (Vleugels et al., 1993), have also not led to any

improved results. In addition, real-time robot control with this kind of neural network

requires processing of the neurons to adapt to the environment including the obstacles.

Because random positions are not available in real environments, the proposed approach

was no longer applied here.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

133

8.5.5 The Cell Based Roadmap Approach

Roadmap methods generally identify a set of roads which may be safely travelled

without incurring collisions with obstacles. The method adopted here was inspired by the

approach presented in Subsection 8.5.4, which is based on the Voronoi form (Bhattacharya

and Gavrilova, 2008, Garga and Bose, 1994). This choice was taken after considering two

important aspects. First, the Voronoi form may be applied either in the world space or in

the configuration space of the robot. Secondly, it maximizes the clearance of obstacles, so

that the path-planning algorithms do not have to be particularly accurate. The second point

may also be perceived as a negative characteristic, since the derived roads are not short,

smooth or continuous enough to guarantee an enhancement (Bhattacharya and Gavrilova,

2007, Masehian and Amin-Naseri, 2004).

The octree stores its cells in a predefined maximum accuracy defined by the octree

depth. Each cell stores a reachability value, which indicates whether or not the robot can

move its tool-centre-point (e.g. the robot hand) into the cell area. The general reachability

is stored in a pre-calculation step described in Subsection 8.5.3.

In addition, each cell also stores an occupancy value. Cells are defined as fully

occupied, partially occupied or free, depending on the obstacles within the working space.

This information is input by external sensors through the data fusion framework presented

in Section 6.4. A collision button and CAD data for the construction process of the

working cell were utilized in the test environment to detect obstacles. The choice was

made because model data is often available, and the operator itself is a reliable source that

can detect collisions. Additionally, more advanced sensors such as machine vision can also

be applied to increase the recognition performance.

The occupancy and the reachability information are incorporated to create a roadmap

within the reachable free space of the octree. The roadmap forms a Voronoi diagram,

which is created by a cell-based algorithm within the octree.

Hence, the concept on which the Voronoi form is based was extended and applied to a

grid-based algorithm. First, the obstacle and border cells are added to an open list. Then,

all neighbour cells are iterated for all elements in the open list in order to mark them with

the obstacle number based on the currently examined element of the open list. The

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

134

currently examined element is moved from the open to the closed list, and extended cells

are added to the open list to be examined in the next iteration.

1. Store all border, obstacle and extended cells in the open list

2. While open list element count > 0

2.1. Take first cell from the open list

2.2. Inspect all neighbour cells of and mark each extended neighbour

cell according to the following conditions:

2.2.1. If the extended cell is located between two or more obstacles

2.2.1.1. If the cell is not reachable it is marked ‘0’

2.2.1.2. Else it is marked ‘-1’

2.2.2. Else copy the mark from cell

2.3. Add all neighbour cells of , which are not in the closed list, to

the open list

2.4. Move cell from the open list to the closed list

3. Wend

Listing 7: Cell extension algorithm.

The general grid-based algorithm described in Listing 7 produces the approximated

Voronoi diagram shown in Figure 86. The primary aim is to approximate the Voronoi form

between the obstacles and the border cells in configuration space.

Figure 86 represents several obstacles, unreachable configuration space cells, as well as

start and target cells. The unreachable configuration space cells are equally treated as

obstacle cells. The light grey cells ‘-1’ represent the Voronoi approximation. The dark grey

cells represent the unreachable configuration space. White cells denote expanded nodes,

cells 1-7 denote expanded obstacle node cells, black cells denote border nodes, and cells

21-23 denote obstacles.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

135

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

10 -1 2 2 2 2 2 2

-1

-1 10

10 1010

1010

10

10 -1 -1 -1 2 2 2 2 2 2 2 -1 -1 10

10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10

10 -1 22 10

10 -1 10

10 -1 10

10 -1 -1 -1 -1 10

10 -1 10

10 -1 -1 -1 -1 -1 -1 -1 -1 10

10 10

10 10

10 10

10 10

10 -1 3 3 3 3 10

10 -1 10

10 -1 10

10 -1 10

10 -1 23 10

10 -1 -1 -1 -1 -1 10

10 -1 2 2 2 -1 10

10 -1 2 2 2 -1 -1 -1 10

10 -1 2 2 2 2 2 -1 10

10 -1 2 2 2 2 2 -1 -1 10

3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

3

3

3

3

3

3

3

3

3

3

3

-1 -1

-1

2

1010

-1

-1

-1

-1

-1

-1-1

10 10

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2

2 222

10 10

10 10 10

10 10 10

10 10 10 21

10 10 10

10 10 10

Figure 86: Voronoi approximation in a two-dimensional uniform grid.

With three obstacles 21- 23 and with the extended cells named 1-3.

The grid used in the implementation is a three-dimensional octree, which allows the

addition of obstacles during runtime, while recalculation is only necessary for their

neighbouring areas. The octree also provides the opportunity to use its hierarchy to speed

up the algorithm. Application of this cell extension approach builds a roadmap that

supports the real-time development of the topology and connectivity of the robot

workspace.

This algorithm is applied to the tool centre point of the robot. The maximum clearance

of the whole robot arm to the obstacles is indirectly considered because reported collision

indication positions are stored as robot posture data in the cell. The cell occupancy is

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

136

always calculated based on all postures, and its occupancy value is therefore calculated

accordingly.

As described in Chapter 6, the octree exhibited two limitations (Hwang et al., 2003) in

path planning. First, the detection of small passages requires a highly accurate

octree/quadtree. Secondly, the shortest path is not always identified since the distance

calculations of the cells always use the midpoints of the cells.

The first aspect requires the involvement of many cells; consequently, the planning

stage may have a long processing time. Hwang et al. (2003) proposed the use of an

obstacle dependent grid to overcome this limitation. However, the octree representation is

used here to interface between world and joint space coordinates. The number of cells is

reduced by the transition to the not occupied joint positions which are assigned to each

cell, and by only subdividing needed cells.

The second aspect is solved using joint positions within a cell and the joint distance

metric for the A* search. The joint positions deliver exact distance lengths, even on higher

levels of the octree. The octree cell size is therefore decoupled from distance

measurements.

Structure Based Performance Increase

The octree is a hierarchical data structure that allows the speeding up of the proposed

cell extension algorithm. The cell extension algorithm is executed on each accuracy level,

starting from the lowest resolution. Extended white cells on an accuracy level may be

omitted for the next higher accuracy levels, and large areas of the working space are

therefore quickly extended. Figures 5-9 represent the accuracy levels of each working

space and the adopted cell extension method. The octree stores only the necessary cells,

while the Voronoi approximation (‘-1’ cells), which is described in the following sections,

is executed.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

137

10

-1

-1-1

23

10

10 22

10

23

10

21

10

-1-1

-1-1

-1

-1

-1 -1 -1 -1

-11-1

3

-1

-1

-1

-1

-1 2

-1 -1

Figure 87: Level 1, edge

length: .

Figure 88: Level 2, edge

length: .

Figure 89: Level 3, edge

length: .

10

10

10

10

10

10

10

10

10

10

10 10

10 10

10 10

10

10

10

10

10

10

10

10

10

10

10

1010 10

-1 -1 -1 -1

-1 -1

-122

-1 -1 -1

-1

-1-1-1-1-1

-1

-1

-1

-1

-1

-1

-1

-1-1-1-1

23

3 3 3 3

33

3

3

3

3

3

3

3

3

3

3

3

3

3 3

-1 1 -1 1 -1

2 2 2 2

2 2

-1-1

-1

222-1

-1

-1

-1 -1

-1

-1 -1 -1 -1

-1

-1-1

-1

2

2 2

Not reachable

Omitted

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

10 -1 2 2 2 2 2 2

-1

-1 10

10 1010

1010

10 -1 -1 -1 2 2 2 2 2 2 2 -1 -1 10

10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10

10 -1 22 10

10 -1 10

10 -1 10

10 -1 -1 -1 -1 10

10 -1 10

10 -1 -1 -1 -1 -1 -1 -1 -1 10

10 10

10 10

10 10

10 10

10 -1 3 3 3 3 10

10 -1 10

10 -1 10

10 -1 10

10 -1 23 10

10 -1 -1 -1 -1 -1 10

10 -1 2 2 2 -1 10

10 -1 2 2 2 -1 -1 -1 10

10 -1 2 2 2 2 2 -1 10

10 -1 2 2 2 2 2 -1 -1 10

3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

3

3

3

3

3

3

3

3

3

3

3

-1 -1

-1

2

1010

-1

-1

-1

-1

-1

-1-1

10 10

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2

2 222

10 10

10 10 10

10 10 21

10 10 10

10 10 10

10 10 10

Not reachable

Omitted

Omitted

Figure 90: Level 4, edge length: . Figure 91: Level 5, edge length: .

Obstacle Addition Mechanism

During the execution of the path-planning algorithm, new information regarding the

working space and the obstacles is provided by the employed sensors and information

sources, which are the collision button and the CAD model. New joint position information

is added to the data structure in the steps described in Listing 8.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

138

1. Get the robot posture for a collision indication

2. Execute forward calculation to get the world position

3. Store the joint position to the responsible octree cell binary tree

4. Calculate the occupation value for the cell

5. Update the parent cells

6. Recalculate the cell region to obtain the updated Voronoi diagram

Listing 8: Obstacle addition algorithm.

The world coordinate of the position is determined by the subsequent forward

kinematics calculation that stores the joint position into the octree cell that is responsible

for the world position region.

The cell is marked by an occupation value according to the reported and fused sensor

value . A probability threshold of is applied in equation (50) to transform the

cell occupancy value to the binary value
 required by the Voronoi roadmap

generation algorithm.

(50)
 {

 𝑡

Parent cells are either updated to partly or fully occupied, depending on the occupation

of the child cells of the parent. Parts of the Voronoi roadmap have to be recalculated if new

collision information is processed. A minimum distance of the robot TCP is

introduced to those obstacles, and is used to clear surrounding extended groups of cells

within the distance . An example is illustrated in Figure 92.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

139

10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4

1 1 1 4

1

5

4 4 4 4 4 4 4

5 5 5 5 5 5 5

4

2

2

2 3

3

2 55

5

5

5

5

4 4 4

4 4 4

4

1 1 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

-1-1-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1-1 -1 -1

-1-1

-1

-1

-1

-1

-1

-1

21 1

-1

-1

-1

-1-1-1-1

-1

-1-1

-1

-1-1-1

22

24

-1-1-1-1-1-1-1-1-1-1

-1

23

23

-1 -1

-1

-1

-1-1 25

25

25

25

-1

-1-1-1

-1-1

-1-1

-1-1

Figure 92: Dynamic and fast cell extension example (before and after update).

The cell in position (9, 6) is updated and marked as occupied (see second figure, cell

number 26). A radius of cells is considered. As a result, the group information

and the Voronoi path are recalculated.

The second example in Figure 93 focuses on the defined distance and shows how the

distance affects the Voronoi path generation. The distance to the occupied cells should be

maximised within the given boundary of . The occupied cell ‘27’ (only its extended

cells ‘7’ are visible) is next to the newly added occupied cell ‘26’, and the Voronoi path is

therefore adapted. The guaranteed space between the Voronoi path and the newly added

10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4

1 1 1 4

1

4

2

2

2 3

3

2 55

5

5

5

5

4 4 4

4 4 4

4

1 1 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4

-1-1-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1-1 -1 -1

-1-1

-1

-1

-1

-1

-1

-1

21 1

-1

-1

-1

-1-1-1-1

-1

-1-1

-1

-1-1-1

22

24

-1

-1-1

-1-1-1

-1

-1

-1

23

23

-1

-1

-1

-1-1 25

25

25

25 -1-1

-1-1

-1-1

-1-1

264

3

-1 -1 -1

6 6 6

-1

-1

-1-1-1-1-1-1-1

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

140

cell is ⁄ because the cell extension mechanism starts from the given distance and

grows from both sides in order to meet in the middle of .

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

4 4 4 4 4

4 7

4 4

4

4

4

-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1

-1

-1

-1

-1-1-1

-1

-1

-1-1 -1 -1

7

4 4 4 44 4

4 4 4 44 4

7

7

7

7

7

7

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1

7 7 7

7 7 7

7 7 7

7 7

7

5

-1-1

-1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1

-1

5

5

5

-1 -1-1-1

5 5 5

55

5

4

4

4

4

4

-1

4 4 44 44

4 44 44

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

6 6 6 6 6 64 6

-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1

-1

-1

-1

-1-1-1

-1

-1

-1

6

4

4

6

7

7

-1

-1 -1

-1 -1

-1 -1

-1 -1

-1

7 7

7 7 7

7 7 7

7 7

7

5

-1 -1

-1 -1

-1 -1

-1 -1 -1 -1

-1

-1

-1

-1

5

5

5

-1

-1

-1

-1

5

5

5

4

4

4

4

4

-1

4

4

-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1-1 -1 -1-1 -1

-1

-1

26

6 6 6 6 6 66 6 6

6 6 6 6 6 66 6 6

6 6 6 6 6 66 6 6

6 6 6 6 6 66 6 6

6 6 6 6 6 66 6 6

6 6 6 6 6 6 6 6

 Figure 93: Defined distance influence on Voronoi path generation.

The algorithm is summed up in Listing 9, where the group information is updated for

each obstacle addition.

1. Add new obstacle cell to open list

2. Reset and move cells within the distance from the closed to the open

list

3. Apply the algorithm from Listing 7

Listing 9: Cell addition for obstacles.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

141

Roadmap Elements

Start

Node

Target

Node

Obstacle

Obstacle

Node

Road

Application

Path

Transfer Path

Application

Node

Cross

Node

Application

Road

Trajectory

Route

Trajectory

Segment

Figure 94: Roadmap elements.

The roadmap elements are represented in Figure 94. A mission provides specific

mission data, such as start and target locations of application paths and additional

application specific information. The roadmap consists of roads, paths and nodes. A road is

a connection of two nodes that have to be start, target or cross nodes. An application node

location is defined in the mission data, and is the start or target location of an application

path. The connection between two nodes is a path, where two types of paths are possible:

an application path and a transfer path, which is not a part of an application. An application

road consists of application paths. A trajectory may be calculated from a route between

two nodes. A route consists of roads. Trajectory segments are roads that are transformed

into a trajectory. The roadmap was utilized to calculate the trajectory during the execution

of the path planning system.

8.5.6 Search within the Roadmap

In robotics, the A* algorithm (Russell and Norvig, 2002) can be used to solve the given

task of planning the shortest path in a graph. The A* always expands nodes that are

considered to be the best nodes regarding its distance to the goal. It uses a heuristic that

will not overestimate the distance to the target node. The A* finds the shortest path if there

exists one at the given level of knowledge. The knowledge is expressed as the connectivity

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

142

of the working space. The calculation of the heuristic directly influences the calculation

time of the algorithm.

The A* search algorithm is utilized to search within the joint positions of the Voronoi

roadmap in order to connect the start to the target locations. During the planning of a

trajectory, an improvement of the roadmap takes place with collision information to

improve the approximation of the obstacles within the working space.

The start and target locations are handled as obstacles and the Voronoi roads are

generated around them. The extended cells of the start and target cells are added to the

search space to connect the location with the Voronoi roads.

The employed algorithm finds the shortest path with the help of heuristics to direct the

search towards the target. The heuristic should not overestimate the distance to the goal.

Therefore, the joint distance metric is utilized as the heuristic for the A* algorithm. The

connectivity of the joint positions is given by the octree cell connectivity. All joint

positions of one octree cell are connected to all joint positions of the neighbouring octree

cells. This may result in high running search times if too many joint positions are stored

within the octree cells. The discretization calculation described in Subsection 8.5.2 has to

consider this by choosing the parameter within the equation (46) accordingly.

This is highly dependent on the robot geometry.

As mentioned in Chapter 6, the occupancy probabilities of the cells and of the binary

tree joint positions are considered as movement costs during path planning. Because the

search is not executed within the cells, but within the joint positions, each joint position is

allocated the probability given by ().

The connectivity of the octree cells includes direct and diagonal neighbours so that each

non-boundary cell has 26 neighbours. The octree is an extension of the quadtree, which has

highlighted two limitations (Hwang et al., 2003) in path planning. First, the detection of

small passages requires high accuracy of the octree/quadtree. Secondly, the shortest path is

not always identified since the distance calculations of the cells always use the midpoints

of the cells.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

143

The first aspect requires the involvement of many cells. Consequently, the planning

stage may take a great deal of processing time. Hwang et al. (2003) proposed the use of an

obstacle-dependent grid to overcome this limitation. However, in the newly proposed

approach, the octree representation is used to interface between world and joint space

coordinates. The number of cells is reduced by the transition to the joint positions which

are assigned to each cell, and by only subdividing the required cells.

The second aspect is solved using joint positions within a cell and the joint distance

metric for the A* search. The joint distance between two joint positions is directly

computed by the difference of these joint positions. The distance measurement is executed

on the joint positions and not on the cells; therefore the octree cell size is decoupled from

the distance measurements.

The roadmap itself is not changed during the trajectory calculation process, except for

additional knowledge that has been gained during the exploration process of the robot.

Exploration is always carried out when the robot moves within the working space, and

additional information is stored within the world model.

The trajectory is calculated based on the found route, and it is followed by the robot. It

is the most optimal trajectory based on the level of knowledge in the world model. The

global optimality of the path is not yet assured, since forces are still applied to the nodes of

the routes and obstacles may still be found, making the re-planning of the trajectory

necessary. The system always tracks the estimated distances to the target.

Moreover, the application of the A* algorithm to a real robot results in the re-planning

of the path itself each time a collision occurs. Collisions force the robot to undo its

movement to the start location. Because real robot movements are involved, this should not

happen too often. Therefore, an additional exploration of the working space is executed.

Consequently, the system obtains environment information stored within the world model.

Together with the probabilistic occupancy map projected on joint positions, the A* path

planning method always delivers the shortest roadmap Voronoi road, if one exists. The

search space is reduced by the Voronoi form in world space, and the reachability

calculation is dependent on the robot geometry. The joint positions are carefully distributed

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

144

along the roadmap paths. By applying this approach, good performance of the search stage

is assured.

8.5.7 Obstacle Types

The proposed path planning system is based mainly on collision information from path

planning during online programming with collision sensors, which could also include

vision. Collision detection depends on the observed objects within the robot cell. Obstacle

avoidance is based on the roadmap of the octree, which contains possible paths and

trajectories to connect the start and target locations.

Kant and Zucker (1986) suggest the separation of obstacle types into static and dynamic

obstacles. Dynamic obstacles within a robot cell were further subdivided considering their

state-time within a production cycle. The state of an object describes its position and

orientation. The state-time space is the combination of the time dimension, measured from

the start of the production cycle, with the state of the object.

An object may have a predictable and defined trajectory, which may also be

programmed. If this trajectory is controlled by the production control logic in a coordinated

manner with the robot program, this object is timely synchronized. For example, such an

object can be the door of the body of a car that is opened by the robot at a specified time in

the program cycle. The production control logic normally takes input signals, e.g. when a

robot escapes a defined robot cell space or from production devices, to control the

workflow. These events are synchronization points, and are depicted in Figure 95.

Start Program

Event

Stop Program

Event

Synchronization

Point

Obstacle 1

Movement

Obstacle 2

Movement

Figure 95: Obstacle synchronization.

The trajectory of an object may also be unsynchronized or not controlled by the

production control logic. Together with non-deterministic obstacles, these objects are not

synchronized with the robot program, and are therefore unpredictable.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

145

Static obstacles are a special case, and are derived from dynamic, timely synchronized

obstacles with predictable movements. An overall object-type definition is given in

Table 9.

1. Predictable movement

a. Timely synchronized

i. Static obstacles

ii. Dynamic obstacles

b. Timely unsynchronized

i. Dynamic obstacles

2. Unpredictable movement

Table 9: Object type definition.

The support of obstacles with unpredictable movement requires real-time collision

avoidance and a permanent installation of the support system. The requirements of

Chapter 5 define that the robot programming system should be removed after the

generation of the program, which is static once it is generated. Therefore, obstacles with

unpredictable movements are not the focus of this study.

The state time space is introduced by Fraichard (1999). It allows the transfer of the

roadmap in state space into a graph in state time space by considering the time dimension.

A reproducible movement can be transferred to the state-time space, and can be considered

by the mission planner during path planning. Therefore, the static- and timely synchronized

obstacles with predictable movements can be mapped into the state-time space. The static

obstacles do not require the time dimension. The timely synchronized obstacles with

predictable movements always occupy the same states in state-time space relative to the

synchronization point. An additional collision indication button for dynamic obstacles

could be added to the GUI for the operator to separate those two obstacle types. The state-

time space may be further extended by multi-robot-operation support. Other robots may be

seen as timely synchronized obstacles with predictable movements.

Timely synchronized obstacles with predictable movement require time

synchronization, which may be performed automatically or manually by the operator

during online programming.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

146

8.5.8 Elastic Net Trajectory Generation

The transformation of the path to a trajectory is a necessary step that is carried out by

the application of the elastic net. The path within the roadmap found by the A* algorithm

consists of connected joint space positions. The transformation of the path into a trajectory

was realized by applying equidistance, rotation and shrink forces on the joint space

positions in world space. Thus, both the forward and inverse kinematics calculations were

required.

The calculations for each particle were locally performed with no global knowledge of

the trajectory. The generated result consists of canonically ordered movement primitives,

which are linear and circular movements. The transformation automatically considers the

reachability and obstacles.

The topology of the free working space is obtained and stored within the roadmap and

its cells (including joint positions). The path-searching algorithm calculates a path that

consists of particles, which are linked joint-space coordinates. Those particles have been

transformed into world coordinates by simple forward kinematic calculations. The path of

connected particles in world space forms the trajectory.

The Dubins car (Dubins, 1957) model (see also Subsection 7.2.3) of the robot with a

bounded maximum steering angle (see Figure 96) was employed for the two dimensional

case. The robot is able to move around curves with a minimum radius of , and along lines

which represents a linear movement. No other manoeuvres are allowed. Furthermore, the

robot moves only in a forward direction.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

147

Figure 96: Correlation between e and the radius r in a

circle (2D).

Figure 97: Correlation between e and the radius r in a

polygon (2D).

Correlation between the radius of a curve and the steering angle e

The correlation between and the radius is shown for two cases involving a regular

polygon and a circle. The former will be used later, where corresponds to g1, g2 and g3 in

the ideal case. In Figure 97, the steering angle e of the real robot from Figure 96 may be

compared. The formulas for the correlation of e and r are stated in (51), (52) and (53).

(51)

(52) 𝑡 (

)

(53)

 𝑡 (

)

Installed forces

As shown in Figure 98, three forces are installed on the particle path illustrated in

Figure 99. The first force keeps the distances between the particles

equidistant. The second force , which is actually the average of the four forces

,

,
 and

, moves the particles on a circle with

the neighbouring ‘particle’ as the midpoint. The last force, , allows the path to

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

148

shrink in the direction of a straight line. The direction and value of the forces are

influenced by the three neighbouring angles , and (see Figure 97 and Figure 98).

Figure 98: Installed forces.

Equidistance forces

These forces push the particles in a tangential direction. influences the

other forces, especially the rotational forces, as little as possible. To reach the equidistance

of all points, the tangential force is utilized. The absolute value of the force is the

difference in the distance to the neighbouring points (54).

(54)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (̅̅ ̅̅ ̅̅ ̅̅)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

Rotational forces

The steering angle (see Figure 96) may be changed at any time within its boundaries.

Curves with a fixed would result in circular curves. To build a circle of particles, it may

be seen as a polyhedron, as shown in Figure 97. A polyhedron has straight lines between

the neighbours, and a circle may be approximated by more particles. attempts to

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

149

keep the angles of three neighbouring particles equal. Every line tries to minimize the

difference of the angles , and with a small rotation (see Figure 99).

Figure 99: Angles of the rotational force.

The force of the rotation is orthogonal to its rotation axis. This leads to the formulas for

the motion of point B in Figure 98:

(55)

(56)

(57)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

) ()

(58)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

) ()

(59)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

) ()

(60)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (

⃗⃗ ⃗⃗ ⃗⃗

|
⃗⃗ ⃗⃗ ⃗⃗ |

) ()

(61)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

Shrink forces

 is a constructed force at each ‘particle’ to build a straight line. This may be

achieved by a simple vector addition of the two position vectors of the neighbours of each

particle (see Figure 98) while considering the equidistance constraint.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

150

(62)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗

Forming lines

Every particle’s position lies on an edge of the polyhedron. The overall force leads to a

curved connection, where all ‘particles’ are ordered as equidistant and the steering angle e

always lies within its boundaries. The path does not yet have straight lines. If the steering

angle e is very small, the radius of the curve is very large and may be considered to be a

straight line. The algorithm considers this to be a switch for the calculation of the positions

of each particle. Shrink forces may be used to form a line. It is a simple vector addition of

the two neighbouring lines of B to A and C (see (62) and Figure 98). A radius threshold

 is introduced, which controls when the formulas for a line or a curve are used. is

the value for the maximum radius. The angle threshold 𝑡 was obtained from equation

(52). If the statement | | 𝑡 is true for , the particles will be shrunk to a

line. Otherwise, the rotational forces are applied.

Overall force

It is possible to construct a path from a start position to a target position with straight lines

and curves with equal radius for each curve automatically. The threshold 𝑡 is the only

parameter which is responsible for the decision of whether a line or a curve is to be built. If

the formula (63) is applied, the path construction algorithm is divergent.

(63) ⃗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ {

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | | 𝑡

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | | 𝑡

 is identified to produce incorrect results if the particles have not yet been ordered.

The order may be measured in terms of particle movement, which is defined as a particle

movement error. The overall elastic net movement error of the elastic net was

introduced. The term responsible for rotational forces is modified to order the particles

dependent to the error . The factor , with , calculated using equation (64) is

dependent on the error . For high error values, the factor is near 1, while for low values,

 is near 0.

(64)

 | |

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

151

The overall formula is shown in (65), which considers the error and it applies either the

shrink forces or the rotational forces. The shrink forces order the particles while the

rotational forces move them to form a circular line.

(65) ⃗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ {

()
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ()

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | | 𝑡

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | | 𝑡

Results

 are parameters used to normalize and measure each force. Throughout the

experiments, the following values showed good results (Table 10):

Parameter

Value 0.8 4.0 0.1 0.1 200.0

Table 10: Parameter values.

The topology of the map is obtained by another algorithm, such as a Voronoi diagram.

An A* algorithm can be used to find a suitable path. Often, the shortest path is chosen. In

these examples, a path is found within the topology map, which has to be optimized from a

random state of the ‘particles’.

In Figure 100, ta,min is set to zero, and the minimal steering angle e is therefore zero. The

path is a smooth curve and there is no straight line. In contrast to Figure 100, the parameter

ta,min in Figure 101 is set to a value greater than zero. Thus, the path tends to have more

straight lines and narrow curves.

Figure 100: Path with ta,min = 0.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

152

Figure 101: Path with ta,min > 0.

8.6 Robot Program Generation

To solve tasks such as handling, welding, gluing or cutting, industrial robots have to be

programmed. Robot programs consist of different commands for movement and equipment

control, and are usually stored in a robot program file. The development of the robot

program may be carried out manually by teach-in or with tool support. The program is

written in a specific robot language, such as Melfa Basic IV for Mitsubishi robots. Special

knowledge is required for each type of robot, and the development of robot programs itself

is complex.

For the enhanced online robot programming system, the robot is controlled along the

trajectory described by movement commands. In this study, fixed body dynamics was

assumed, and trajectories are therefore independent of the speed of the movement. The

trajectory is required to be continuous and smooth to conform to the physical nature of the

robot’s movement possibilities. As described in Section 8.5.7, a robot trajectory is

assembled from path segments with assigned movement types. The standard movement

primitives of industrial robots are usually linear, circular and joint movements.

Finding a path is accomplished by the path planning system. It sends a linked list of

nodes forming the movement primitives. The nodes store their Cartesian and joint space

positions, and they are equidistant to their neighbouring nodes. The robot program

generator constructs a trajectory from a list of nodes, and considers node position

tolerances that may be delivered by the path planner. It further transforms the trajectory to

robot program files in a specific robot programming language or direct movement

commands transferred to the robot controller. It was accomplished by the separation of the

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

153

trajectory into movement primitives. The movement primitive extraction from a trajectory

is implemented as a Matlab script, and it is generated to a shared library. Joint movements

are deferred until a later stage because it is assumed that these kinds of movements are

somewhat more complicated, but are manageable as an extension to the actual

functionality.

Line and curve matching is the foremost challenge of the trajectory generation

algorithm. Furthermore, the optimal calculation of junction points between the movement

primitives is important for the line and curve-matching algorithm. A junction point

connects two movement primitives so that the end node of a geometric figure is the start

node of the next figure in a differentiable way.

The concatenation of movement primitives, as explained in Section 8.6.3, is not simple,

because all combinations of linear, circular and later also joint movement types are

allowed. For example, when two circular movements are concatenated, the connection

must be smooth. At the time of computation, not all necessary data may be available. The

next movement segment must be analysed, and the resulting information may then be used

to construct a smooth connection between the two movement primitives.

The following subsections describe the transformation of the path to a trajectory by the

approximation and alignment of the movement primitives. Subsequently, the trajectory was

utilized for robot program generation, which is the final artefact of the enhanced online

robot programming system. The robot programming language used for the Mitsubishi RV-

2AJ robot is Mitsubishi Melfa Basic IV (Mitsubishi-Electric, 2002b). A simple command

example may be given by Listing 10, where the MVR command is used for circular

movements (where P1 and P2 are the start and end points and M is the midpoint), and

MVS is used for linear movements (where P3 is the end point).

MVR P1, P2, M

MVS P3

Listing 10: Simple movement commands.

Code generation is achieved with the modelling framework introduced in Chapter 9 by

using the Java Emitter Template (JET) mechanism (Eclipse Foundation, 2011b). Templates

are used to separate dynamic and fixed file contents, for example comments and copyright

information.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

154

8.6.1 Calculating Linear Movements

The extraction of linear movement primitives from the node list was implemented by

defining a line through the node positions so that the number of nodes touching the line is

maximized. The node positions have tolerances which were considered by the introduction

of a maximum node-line distance. The maximum distance was applied to the nodes by

enlarging each node to a sphere with the radius of the maximum distance. In this way, a

line is defined through the node spheres so that the number of node spheres touching the

line is maximized. The line origin is always set to the calculated final point of the

preceding movement primitive, or, if no such movement primitive exists, to the start node

position of the new movement primitive.

In the following steps, the construction of a linear movement line is shown in the case

of two dimensions. It was extended to three dimensions in the implemented algorithm.

Figure 102 shows three points, which, regarding the tolerance, are lying on a line. is the

start node and is fixed. The circles around and display the tolerance sphere, and the

red area is a corridor that have to be touched by all nodes. The corridor describes all

allowed positions of the line, and it is recalculated for each new sphere. Furthermore, the

figure shows the angles which were used to calculate the corridor.

As shown in Figure 103, node does not touch the corridor and is therefore not a part

of the line. The algorithm stops, and the calculation of a new movement type starts from

node .

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

155

Figure 102: Linear Movement corridor (highlighted in red) calculation with three points P0-2.

A point is calculated in polar coordinates, and may be transformed from Cartesian

coordinates. Here, is the radius and
,

and
are the coordinates of a given point.

Furthermore, and are the two angles required to describe a polar coordinate, and the

 𝑡 function is defined in equation (69).

(66) √

(67)

 (

)

(68) 𝑡 (

)

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

156

(69) 𝑡 ()

{

 𝑡 (

)

 𝑡 (

)

 𝑡 (

)

The distance of point
⃗⃗⃗⃗⃗⃗ to a line may be calculated by equation (70).

(70)
| ⃗ (

⃗⃗ ⃗⃗ 𝑡)|

| ⃗|

Because the distance must not be greater than a given , the maximum allowed distance

between a node and the resulting linear movement line is defined in equation (71) with

�⃗� () as

(71)
| ⃗⃗ (

⃗⃗ ⃗⃗ ⃗)|

| ⃗⃗|

Because the line goes through the first node, and the line is only given as a unit vector with

| ⃗⃗⃗| , the declaration in equation (72) was defined as

(72) | ⃗⃗
⃗⃗⃗⃗⃗|

(73) | ⃗⃗| |
⃗⃗⃗⃗⃗| ()

(74) |
⃗⃗⃗⃗⃗| ()

(75)

(

√

)

The direction is calculated for both angles and in the x-z and the x-y planes.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

157

Figure 103: New node not touching the corridor.

Corridor Calculation

The allowed corridor was calculated by the intersection of all sectors, and was formed

by the direction angles and of the tangents of each sphere through . and

are the two upper angles which consider the new corridor. Analogue,
 and

are

for the lower angles. and are the two angles that count for the actual corridor, and

and are the angles of the tangents of the actual node.

(76)

(77)

(78)

(79)

The allowed corridor is calculated iteratively for each new node as follows, with
,

 and

,
being new possible corridor bounds.

(80)
 (

)

(81)
 (

)

(82)
 (

)

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

158

(83)
 (

)

Each new node is first checked to be within the corridor. On subsequent checks, the

corridor is recalculated using the new node. The corridor size decreases with each iteration.

The iteration stops when a new node is not lying within the allowed corridor. In this case,

the final node is calculated and a new movement primitive is started from the final point.

Movement Primitive Final Point Calculation

The final direction of the movement line is calculated only at the last node by

equations (84) and (85).

(84)

|

|

(85)

|

|

The Cartesian coordinate of the endpoint is calculated using the resulting final direction,

which is actually the bisecting line of the corridor between and . The length of the

line is the distance between the start point and the last valid point. Thus, the end-point is

calculated by equation (86).

(86) ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (

 () (

)

 () (

)

 (

)

)

If the start node is not the origin, the vector to the start node must be regarded. In

addition, if there is no third node within the corridor, the final point is set to the second

node.

8.6.2 Calculating Circular Movements

This chapter describes the calculation for a circular movement primitive. The nodes of a

circular movement are always on a plane. An algorithm was developed which determines

the number of nodes located on a common plane, considering the node position tolerances.

In the next subsection, all identified nodes are checked to be on a circular line. The final

point for circular movement primitives is calculated.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

159

Nodes on a Plane

The framework calculates circular movement primitives that are located on a three-

dimensional plane. The nodes have to be located on a plane with a pre-defined tolerance.

The tolerance for constructing the plane is given with a tolerance on the normal vectors of

each plane, which is constructed with every new node, allowing little rotation when

compared to the subsequent normal vectors. The rotation is calculated using the angle

between the normal vector and the subsequent normal vector, as explained in the next

paragraph.

Three connected non-collinear nodes are required to construct a normal vector. The

initial plane was constructed by the first three nodes, including the plane normal. In the

following iterations, each normal vector is compared to its successor normal vector. Figure

104 shows four nodes and the three normal planes spanned from the points. The angles

between the normal vectors , and and their respective unit vectors , and are

used to calculate the corridor.

Figure 104: Planes calculated from connected nodes.

The tolerance of the nodes on the plane is added by allowing the unit normal vector

to be within a defined angle . For each new plane, the normal is calculated by

equations (87) and (88).

(87)

(88)

 ()

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

160

The resulting plane is obtained by the last bisecting vector , where is the last node of

the movement segment. In Figure 105, is the resulting vector of the actual iteration

(calculated from and) and is the resulting normal vector of the last iteration.

Furthermore, is the actual normal vector. Because only the angle between the normal

vectors and is relevant, the calculation is also valid in three-dimensional space. The

normal of the resulting plane is , and is used for the calculation in the next iteration.

Let be the corridor angle, which equals to equation (89), and let be the angle

between and . For each , the allowed corridor is checked, corresponding to the

inequality in equation (90).

(89) |
| |

|

(90)

Figure 105: Calculation of the allowed corridor in two dimensions.

If the inequality in equation (90) is true, the bisecting vector between and is

calculated in equation (91).

(91)

 ()

The angle between and is applied to calculate the new tolerance with

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

161

(92)

Nodes in a Circular Segment

It is assumed that all nodes building a circular movement section are on a plane, which

results in calculations in a two-dimensional space. The first three nodes, including the

starting node, perform a curve if the angles between the nodes are within a certain

tolerance. Figure 106 demonstrates the situation.

Figure 106: Nodes in a circular segment.

In Figure 106, the nodes (), (), the normal vector ⃗⃗⃗ (), and the

tolerance are given. and are calculated in the next paragraph.

Calculation of

To calculate the minimum tolerance, which is the minimum radius in a two-

dimensional space, the position of is given by equation (93).

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

162

(93) ⃗⃗⃗⃗
⃗⃗⃗⃗⃗ ⃗⃗

(94)

(95)

Referring to Figure 106, equation (96) was applied.

(96) () () ()

Equation (97) results in and from applying the equations (94) and (95) to

equation (96).

(97)

 (

) (()

 (

)) ()

 (

)

Considering that | ⃗⃗⃗| the following assumption was made:

(98)

(99)
 (

)

(100)
()

 ()

 (() ())

Calculation of

To calculate the maximum tolerance, which is the maximum radius in two-

dimensional space, the position of is given by equation (101).

(101) ⃗
⃗⃗⃗⃗⃗ ⃗

(102)

(103)

With respect to Figure 106, the equation (104) was applied.

(104) () () ()

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

163

Equation (105) results in and from applying equations (102) and (103) to

equation (104).

(105)

 (

) (() ()) ()
 ()

Considering that | ⃗⃗⃗| , the following assumption was made:

(106)

(107)
 (

)

(108)
()

 ()

 (() ())

Local Coordinate System Calculation

All circular movement calculations were accomplished in the two-dimensional space.

The plane described by is three-dimensional in world space, and a local coordinate

system was calculated by an arbitrary coordinate system with being the z-axis. The x-

and y-axis were randomly generated. Subsequently, the transformation matrix from the

world to the local coordinate system was computed so that all circular movement

calculations could be calculated within the local coordinate system.

Circular Movement Corridor Calculation

Corresponding to Figure 107, and are used to calculate the

resulting corridor for the allowed radius in equations (109) and (110), where
 and

 are the calculated radii from the last iteration.

(109)
 (

)

(110)
 (

)

When the calculated radius is not within the corridor, and thus does not satisfy the

inequalities stated in equations (111) and (112), a new movement segment is started.

(111)

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

164

(112)

Movement Primitive Final Point Calculation

Figure 107: Final point calculation.

Figure 6 shows the final point calculation for a circular movement section. For the

vector
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, the vector ⃗⃗⃗⃗ is calculated using equation (113) with being given by the

radius calculation previously presented.

(113) ⃗⃗⃗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 (
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)

For a given normalized ⃗⃗⃗ and , ⃗⃗⃗⃗⃗⃗ , which is the rotation around the ⃗⃗⃗- axis with an

approximated angle of , was first calculated. The approximation was established

because may eventually be off the circle. The final point was therefore calculated by the

equations in (114).

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

165

(114)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗ ⃗⃗⃗

 ⃗ 𝑡 | |⃗⃗⃗⃗⃗⃗

 𝑡

For a given normalized ⃗⃗⃗ ⃗, the vector ⃗⃗⃗ and radius were calculated in equations (115)

and (116).

(115) ⃗⃗⃗ ⃗⃗⃗⃗⃗

(116) ‖ ⃗⃗⃗‖ 𝑡()

8.6.3 Connecting Movement Primitives

At the beginning of a new movement, the movement type is unknown, and calculations

for all movement primitives are therefore started until the movement type is identified. The

identification method used considers the movement type that covers the most nodes.

However, care is taken to allocate the nodes to the right movement primitive on transition

points of two movement primitives, which may be a combination of linear and circular

movement primitives.

Figure 108 illustrates the transition of two linear movement primitives. To ensure that

the path is continuous and smooth, two linear movement primitives were connected using a

circular movement primitive. Calculations were omitted because the Mitsubishi robot

system has an option for smooth robot position transitions and ensures a continuous path.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

166

Figure 108: Connecting two linear movement primitives.

The remaining combinations are illustrated in Figure 109, Figure 110 and Figure 111.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

167

Figure 109: Connecting a linear and a circular

Movement.

Figure 110: Connecting a circular and a linear

movement.

Figure 111: Connecting two circular movements.

8.7 Summary

The development of the enhanced online robot programming system driven by the

requirements presented in Chapter 5 began with an evaluation of usage scenarios. The

scenarios demonstrated that it should be easy to utilize the system, and it has to be

removed after generating the robot program. The aim of the system was to generate a static

robot program that is comparable to manually programmed robot programs.

The ease of utilization of the system was guaranteed by an expert system that supports

the operator during robot programming. In practice, the ability to control the robot

manually has become very important to the execution of manual exploration, in order to

define the mission and to place virtual objects in the working cell. The expert system itself

is efficiently employed only when the mission is at least defined, which can either be done

online or offline using a simulation system or with known locations.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

168

The presented online robot programming approach is different when compared to

existing approaches. First, the human operator reports collisions, and it is therefore

generally available and cost efficient. Second, the applied trajectory-planning algorithm is

able to handle efficiently the provided information, and it intelligently controls the robot

within the robot cell to compute the robot trajectory with the help of the interconnected

mission and trajectory planner in collaboration with the generation of the robot program.

The mission planner plans the mission and controls the path planner, which provides

trajectory length information to the mission planner. The mission planner in turn re-plans

the mission with an applied hysteresis. Planning a trajectory online always utilizes the real

production system, which is executed throughout the robot-program generation process.

Thus, the hysteresis on the trajectory length was applied to prevent the production system

from executing re-planning too often.

The trajectory planner connects two given locations, and reports the trajectory length to

the mission planner. The in-memory world model plays an important role because it also

provides the roadmap that was, in the first instance, planned to store just geometric data for

the trajectory planning neural network.

The trajectory planning neural network approximated the obstacles and created a

roadmap within the free space. Obstacle approximation was optimized by object

simplification, surface reconstruction and progressive mesh algorithms. The road map

generation is easy to calculate, the possibility of parallel computing is presented, and

higher dimension calculations are possible. The roads are simplified to a topological map

and forces are applied to straighten and shrink the roads.

Calculation of the node movement was computationally intensive because many nodes

have had to be considered for each calculation iteration. In addition, the calculation of

collisions also produced a high processor load. The calculations of node movements

depended on random inputs, which are hard to generate for online systems. Random inputs

lead to a slow convergence of the neural network, even in a simulation environment. The

proposed Coloured Kohonen map rarely formed a Voronoi diagram, and required further

improvements.

8 Investigation into a Trajectory Planning Algorithm to Support

Intuitive Use of the Robot Programming System

169

Nevertheless, the basic principle was transferred to a cell-based approach, which stored

joint locations within the roadmap cells. In fact, the combination of the cell-based roadmap

with joint locations together with the Elastic Net trajectory generation approach realized

the proposed enhanced online robot programing system. The generation to a robot program

was accomplished by analysing the created trajectory.

The new motion-planning algorithm plans with only local knowledge smooth

trajectories that consist of linear and circular movement primitives and generates a static

robot program. The system considers objects with predictable movements. Timely

synchronized objects that support the generation of events were also supported within the

generated (static) robot program.

170

9 Research of a Software Development
Framework for Complex Systems

9 Research of a Software Development Framework for Complex Systems

171

The motivation for the model driven code generation framework is based on the

requirement to rapidly connect distributed software components which are written in

different programming languages. They also required to run on different platforms, sensors

and third party tools such as Matlab (TheMathworks, 2011) across a network without the

need for the time-consuming development of data communication and tool connection

infrastructure.

This was accomplished using model-based software development including code

generation, which entails the composition of applications from pre-designed hull software

components enriched with the business logic of the application. The details regarding the

implementation of the components are hidden behind well-defined interfaces. Thus, much

improved software quality becomes realistic. Moreover, previous experiences with

component-based software development in other application domains have resulted in

drastically improved software development productivity, which is sometimes more than

one order of magnitude greater than conventional software development (Sutherland, 1998,

Zincke, 1997).

Matlab/Simulink is often adopted as a development environment because of its fast

modelling and code generation capabilities as well as its valuable library functions.

Connecting such a tool to a distributed software system supports the developer during

software development by enabling communication with existing components.

The run-time architecture consists of interconnected components, communicating

through message passing, which is executed by a communication middleware. Each

component is typically a process running on a node such as a computer or an embedded

device. An evaluation of existing communication middlewares was carried out in

Section 9.2.

A model-driven approach was chosen in order to increase the usability of the framework

with a domain specific modelling language which was derived from the Real-Time Object-

Oriented Modelling (ROOM) language (Selic, 1996a, Selic, 1996b, Selic et al., 1994). This

language also defines the run-time behaviour of the generated software components.

The commercial tool Rational Rose Real-Time from IBM (IBM Corp., 2011), formerly

known as ObjecTime, was a toolset supporting the ROOM language. Unfortunately, this

toolset is no longer available, and therefore makes it necessary to re-implement the code-

9 Research of a Software Development Framework for Complex Systems

172

execution-model, which is described in Appendix E. The eclipse project eTrice (eTrice

Group, 2011) was recently shifted from the proposal phase to the incubation phase, and

aims to implement the ROOM language together with code generators and tooling for

model editing.

A major goal of the proposed framework is to enable sensor-based robot control

applications to be built from libraries of reusable software components. For this purpose,

the framework provides standard interface specifications for implementing reusable

components. A well-written and debugged library of software components facilitates the

rapid development of reliable sensor-based control systems.

Existing robot control frameworks introduce re-configurable software components as

well as special communication and code execution models (Griph et al., 2004, Lee and

Yangsheng, 1998, Wason and Wen, 2011). These approaches attempt to enhance the

configuration of the components for re-use and the running system itself. However, this

chapter also proposes to enhance the usability through graphical modelling and code

generation.

9.1 System Modelling

ROOM defines a visual modelling language with formal semantics and a code

execution model, which is a set of rules defining the system behaviour (Selic, 1996a, Selic,

1996b, Selic et al., 1994). The visual modelling language is optimized for specifying,

visualizing, documenting and automating the construction of complex, event-driven, and

potentially distributed real-time systems. By connecting several components, an interaction

flow via messages may be established between them.

In the proposed framework, a component can be developed in Java, C#, C++ and C, and

can be deployed on different processing units. The processing unit may be a general-

purpose processor, digital signal processor or a field-programmable gate array (FPGA),

where each processing unit may have its special system architecture that influences, for

example, the handling of threads.

In addition, a component may also be a complete development environment, which

allows direct communication with existing components during development. The

integration of tools is explained in Section 9.5.

9 Research of a Software Development Framework for Complex Systems

173

The component behaviour is described as a hierarchical state machine which provides a

number of powerful features, including group transitions, transitions to history, state

variables, initial points, and synchronous message communications.

The developer writes user programs for state transitions where the component has to

perform an action. Additionally, each state may have an entry and an exit function, which

are executed when the component enters or exits the state, respectively. Advantages are

that components may be distributed on different nodes with ease and better encapsulation

is reached, because only the component interfaces, and not the type of the component, are

required in order to interact with it.

ROOM also defines a message service that controls the logical message flow within a

physical thread, while a middleware, which is further described in Section 9.2, is

responsible for transmitting the messages. The implemented message service is optimized

for speed in the local delivery of messages through the utilization of operating-system

specific communication mechanisms. It should be sufficiently abstract to be used by any

operating system, and should be concrete enough to fulfil requirements of speed, code size

and memory consumption. The implemented message service is included together with the

code execution model in a runtime library. An instantiated message service is identified by

the network port number and the internet protocol (IP) address of the host.

Comp.

A MSMS

MS

Comp.

C

Comp.

D
Comp.

B

Thread 1

Thread 2

Thread 3

Processing Unit 1 Processing Unit 2

Figure 112: Communication overview: Message passing

from component A to component C (dashed arrow).

The ROOM communication system illustrated in Figure 112 consists of processing

units, threads, components and message services (MS) along with its connectivity. The

ports of each component may communicate with other components via connections to the

9 Research of a Software Development Framework for Complex Systems

174

message service, which handles local and remote message passing. A message from the

port of component A to the port of component C (see dashed arrow) may be passed

through both message services until it gets to the target port. In this example, messages

from component B may only be sent to component A.

9.2 Communication Middleware

Currently available communication mechanisms may generally be separated into three

categories: transport level, message passing and remote procedure calls.

The transport level is simply a pipe to send data streams or packets without any

formatting specification, such as serial ports or TCP/IP. Direct socket communication

requires the development of a proprietary protocol and exception handling, which involves

significant effort. Furthermore, marshalling and de-marshalling have to be implemented,

and this is particularly complex because of the requested compatibility between the

different programming languages. For example, if it is required that a C++ object be

transformed into a Java object.

Message passing adds structure to the packets to define the content, but it still requires

the user software to build and send the messages. ZeroC Ice (ZeroC Inc., 2011) and

CORBA are middleware systems that build an abstract communication layer.

Remote-procedure-calls attempt to expose functions or full objects across a process or

network boundary without the user software being aware of the boundary. Remote method

invocation may be given as an example.

A comparison of the different communication middlewares supports the choice of the

ZeroC Ice middleware. Its implementation is available on various platforms, including

embedded systems, and for different programming languages such as Java, C++ and C#.

While CORBA may be an alternative, it appears to be complex and does not have the

ability to transmit objects, therefore allowing only primitive data types, while ZeroC Ice

may handle object transmission. In addition, ZeroC provides Eclipse support, which

simplifies the usage of ZeroC Slice, which is the interface definition language.

9.3 The Toolchain

A general overview of the workflow is given in Figure 113. The toolchain creates and

synchronizes source code from a given graphical model which includes the modelled

9 Research of a Software Development Framework for Complex Systems

175

behaviour of each component. The visual modelling language ROOM is represented as

graphical elements in the commercial off-the-shelf editor Enterprise Architect from

SparxSystems (Sparx Systems, 2011). This graphical model is utilized to create source

code with the help of the eclipse modelling framework (EMF) and its code generation

capabilities (Eclipse Foundation, 2011a). The runtime library provides a communication

layer, the implementation of the code execution model and the message service.

Run-Time

Library

Code

Generation

Model

(ROOM)

Source Code

Runnable

System

User Code

Behaviour

(State-Machines)

Figure 113: Code generation workflow.

The generated source code can be synchronized with the written source code of the user

to simultaneously allow modelling and code implementation. Finally, the source code can

be compiled to a runnable application for the target system, e.g. a personal computer with a

Windows operating system or an embedded system with a PowerPC operating system.

9.4 Toolchain Implementation

A more detailed description of the toolchain is given in Figure 114. The graphical

notation elements of ROOM were integrated into Enterprise Architect (Sparx Systems,

2011) with the help of an Enterprise Architect specific model driven generation (MDG)

technology file. These modelling elements are utilized to create visual models of

executable software systems.

A C# to Java application communication channel was implemented with a direct socket

connection to the Java model repository application. It is utilized to store the visual model

into the model repository, which was defined with the eclipse ecore editor.

The template-based code generator application based on JET (Eclipse Foundation,

2011c) transforms the model to Java source code.

9 Research of a Software Development Framework for Complex Systems

176

The Code Merger tool utilizes JMerge (Eclipse Foundation, 2011a), and runs as a

headless eclipse application, which starts a minimal eclipse framework in the background.

It merges the generated source code with the existing one.

The toolchain supports the automatic generation of eclipse Java projects for each

component and the runnable system. These projects may be imported into the eclipse

workspace. All link dependencies including the link to the run-time library were

automatically set, and a UniMod state machine (eVelopers Corporation, 2011) was

generated using each component project to define the behaviour of the component.

The runtime library was implemented in a platform-dependent manner, and includes the

ROOM code execution model and the middleware from ZeroC Ice (ZeroC Inc., 2011).

The middleware supports a target abstraction layer, which simplifies the creation of the

platform specific library. This framework also enables the use of specialized tools such as

Matlab/Simulink, as further described in Section 9.5.

ecore Editor

Code Generator

(JET)

Socket

connection

Specialized

Tool

(Matlab/

Simulink)

Runnable Application

Enterprise Architect

Plug-In

Code Merger

(JMerge)

Model Repository

UniMod FSM

eclipse actor

project(s)

User Code

and State

Machine

Modelling

Create Vizual

Model

Runtime Library

ROOM

Execution Model

ZeroC Ice

Middleware

Tool

connection

Figure 114: Toolchain implementation.

9 Research of a Software Development Framework for Complex Systems

177

Figure 115: Execution environment.

Figure 116: Node.

Figure 117: Actor deployment.

9.5 Connecting Specialized Tools

Specialized tools usually have enhanced functionality, which enables them to solve

domain-specific development tasks. They may also have been established as common tools

within these domains. The integration of such tools into the communication framework

adds communication capabilities to other components, e.g. for sensor or control

functionality, during development. The development may be finalized by generating a

DLL or an executable, which may successively be used within the communication

network. DLLs can always be utilized with the help of visual modelling elements that

support such libraries and generate the necessary code to incorporate the libraries. The

dyncall library (Adler and Philipp, 2011) was employed within the run-time library for this

purpose.

A direct integration of specialized development tools was reached through tool specific

integration technologies. For example, Matlab may be connected through the Microsoft

Component Object Model (COM) or Dynamic Data Exchange (DDE) technology for

message passing, which is described by Kohrt et al. (2006a). The middleware can also be

directly utilized with an S-function to establish communication with the distributed

components.

9 Research of a Software Development Framework for Complex Systems

178

A ‘Plugin Manager’ software component was developed to utilize shared libraries with

Java in a generic manner. The component allows the generic use of shared libraries, DLLs

on Windows machines and libraries on Linux machines. The component encapsulates the

Java/DLL intercommunication as well as the usable functions of the libraries. A function

call is initiated by a synchronous message. The message contains all of the data that is

necessary to call the library function, e.g. function name and parameters. The call-back

functionality allows the native libraries to call Java functions. The calling sequence is

illustrated in Figure 118. The Plugin Manager is further described in Appendix H.

Java
Plugin

Manager
dll / lib

load

load dll / lib file

execute function

pass result from

function call
transfer result

to Java data types

execute callback

functiontransfer and execute

callback in Java

pass result from

callback transfer result to

native data types

Figure 118: Plugin manager communication.

9.6 Code Generation Example

As depicted in Figure 7, a robot control application with a joystick for the articulated

Mitsubishi RV-2AJ robot demonstrates modelling and code generation. Applications are

defined by the instantiation of an ‘Execution Environment’, which is named ‘Robot

Control’ in Figure 115. Although a single ‘Win Robot Control’ node is deployed to the

execution environment for the entire application, several additional nodes may be

9 Research of a Software Development Framework for Complex Systems

179

deployed. Physical threads are modelled to allow thread deployment. Components are

finally deployed to those threads (Figure 117), while their connectivity is modelled in a

thread-independent manner, as illustrated in Figure 119. The interface definition of the

‘Manual Movement Deployable Component’ in Figure 120 describes the provided and

required interfaces, which are fixed to component ports. The ‘Control Port’ provides

component life-cycle interfaces such as ‘Control In’ in Figure 121 to start, stop, initialize,

release and locate the component. Additional component property management is

implemented with the set and update property signals. Synchronous and asynchronous

message passing is supported. Each interface defines allowed signals that have to be

modelled in the UniMod finite state machine, as depicted in Figure 122. A message is

received via the port interfaces through the port to the state machine of the component,

which fires a transition.

The executed transition method contains the user code. The generation process

generates methods such as the initialization methods shown in Listing 11, which was

derived from the ‘Init’ transition. JMerge uses code tags such as ‘@generated not’, or is

overwritten by the code generation process.

Figure 119: Component connections.

9 Research of a Software Development Framework for Complex Systems

180

Figure 120: Component interfaces.

Figure 121: Interface definition.

9 Research of a Software Development Framework for Complex Systems

181

Figure 122: UniMod state machine diagram example.

/**

* Init the component.

* @generated

*/

protected void init()

{ }

Listing 11: Generated Java code.

Other tags such as ‘@unmodifiable’ may also be used to control the merge

functionality.

9.7 Summary

This chapter highlights important aspects in the development of the proposed model

driven toolchain. The various model-to-model transformation stages and tools are

presented from graphical ROOM models to the runnable application. The toolchain may

generally be used for software development, and for specific problem domains such as

robotics. The extensibility of the domain specific language allows domain-oriented

engineering. The level of abstraction is a significant issue for the handling of large

software systems. The abstraction level is raised by using a model driven toolchain.

Standard designs and concepts may be easily integrated and used by the developers who

need only the graphical front end to such extensions. Encapsulation results in the reuse of

the so-called black box, which is a favourable form of it, since the economics of scale

allow more focus to be made on software design, software reviews and software testing.

9 Research of a Software Development Framework for Complex Systems

182

The integration of specialized tools and development environments enhanced the

development process.

The proposed model-based code generation framework has a significant productivity

benefit, although implementation of the toolchain requires that significant investments be

made. However, once a toolchain is developed, it can easily be applied.

ROOM is a message-based system that is based on state machines, and it requires

training for inexperienced developers. The message service is an additional layer that

interprets and transfers messages to the target component port, which may lead to a delay

in the message delivery. The delay must be considered, especially for time-critical systems.

Therefore, it plays a key role in the performance of the system. Nevertheless, such a

toolchain can be valuable for large software development projects, and allows a strict

encapsulation into components with clearly defined interfaces. The intention is to continue

with this approach, and to further enhance the modelling and code generation features,

especially for debugging purposes and the implementation of a state machine (with a

graphical editor) alternative to the slow UniMod state machine. The Simulink Stateflow

state machines may also be used in the Simulink context, but it requires adaptation to be

made usable in non-Simulink contexts.

The main advantages of model-driven development include better maintainability, a

uniform programming model, reusable model parts, simple but efficient communication,

higher abstraction, code generation, system-wide optimization possibilities and focused

development in relation to the business logic.

183

10 System Implementation

10 System Implementation

184

The online path planning and programming support system is an approach that can

reduce the robot programming time, including preparation and installation. It generates

acceptable robot programs and considers the modern industrial basic goals of flexibility,

speed and optimization, which are mentioned in Chapter 8. It finds a trade-off between

shortest-path finding and trajectory forming and maintainability. Finally, it generates a

downloadable robot program file.

In this section, the general execution of the programming assistant is described, and a

scenario (see Figure 126 and Figure 127) was chosen to demonstrate the proposed

approach. The system is executed with a real five-axis industrial scale, articulated

Mitsubishi RV-2AJ robot (Kohrt et al., 2008). The algorithm utilizes an octree as the world

model (as described in Chapter 6) and joint positions attached to the octree cells. During

implementation, the algorithm was tested in simulated two-dimensional space using a

quadtree as world model and world positions attached to the quadtree cells. The proposed

algorithm works in real surroundings. The illustrations shown in this section are simplified

to support the understanding of the algorithm.

In the chosen real scenario, the two obstacles O1 and O2 are provided as CAD objects,

and they have been imported into the in-memory environment model. The obstacle O3

should be unknown to the system, and was therefore not imported. The chosen scenario

consists of a mission with the start and target positions P1 and P10.

First, the general workflow of online robot programming is described in Section 10.1,

followed by the data import in Section 10.2 and mission preparation in Section 10.3.

Subsequently, the roadmap was generated within the world model in Section 10.4, and is

utilized as a corridor for the configuration space positions of the robot. Shortest-path

planning is applied for those positions in Section 10.5, which may lead to a path from the

start to the target, which is transformed to a trajectory. Section 10.7 illustrates the path

planning behaviour with an additional obstacle, which leads to the re-planning of the path.

Finally, the robot program is generated in Section 10.8 and the robot programming

durations are compared to manual programming in Section 10.9.

10 System Implementation

185

10.1 General Workflow

In general, the operator executes the robot-program generation system after it is set up.

Collisions are detected with connected sensors such as the cameras or the collision

indication buttons. The operator indicates collisions with static or dynamic obstacles. The

support system automatically controls the movements of the robot until a suitable robot

trajectory is found, if one exists. High accuracy is not needed, since the used trajectory

generation algorithms and strategies may handle low accuracies. One strategy is the

adoption of the Voronoi features, which maximize the clearance to obstacles.

The system first tries to explore the working space to build the in-memory topology.

Subsequently, a robot path to the target position is computed. Target positions are either

application locations or are part of an application path, which may be a part of a mission. A

mission may have multiple application paths and locations, which results in the well-

known travelling-salesman-problem. The planning problem is solved in order to minimize

the overall path length. This also includes the path-planning algorithm.

The movement of the robot is slow enough to allow the operator to detect collisions.

The environment is stored within a world model, which is capable of storing collision

positions. It creates a roadmap in the Voronoi form, and supports path searching and

trajectory generation by combining the world and joint spaces. The robot movement

benefits from the roadmap generation by maximizing the clearance to the obstacles using

collision detection. A hysteresis that reduces re-planning is applied to reduce real robot

movements. In addition, this hysteresis also increases the knowledge of the environment by

adding sensor data to the world model.

10.2 Pre-Existing Data Import

In the chosen scenario, the two obstacles, O1 and O2, are given as drawing exchange

format files, and are imported either with the robot or with the pointing device by placing

virtual objects or by absolute data of the DXF file to the environment model. One obstacle,

O3, is ‘unknown’ to the system (not imported).

10.3 Mission Preparation

The chosen scenario consists of a mission with positions P1 and P10 and the application

path P7 to P8, which is a straight line with the hand tool equipment of the robot closed. The

pointing device was used to store the locations of the application paths together with the

support system.

10 System Implementation

186

P1: Start

P10: Target
O1

O2

O3

0-10 10

0-10 10

0

10

-10

0

10

-10

Figure 123: Experimental scenario (2D example in 3D world).

Figure 124: Screenshot of the experimental scenario.

10.4 Roadmap Generation

The scenario in Figure 123 is processed using the roadmap shown in Figure 125. Each

cell of the roadmap contains the produced robot positions in the configuration space, as

explained in Subsection 8.5.3.

10 System Implementation

187

10 10

10 1010

1010

10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

1010

10 10

10 10 10

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1-1

-1-1 -1 -1 -1 -1 -1-1 -1-1 -1-1

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24

4-1

-1 -1

-1 -1

-1

-1 -1 2

2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

2 2 2 2 2 2

2222 22 22

22

22

22

222222

22

22

22

22

22

22

22 22 22

22

22

22

222222

22

22

22

22

22

22

-1

-1

-1

-1

-1

-1

-1

2 2

22

2 2

22

2 2

22

2 2 2

222

2 2

22

2 2

22

2 2

-1 -1 -1 -1 -1 -1-1

1 1

1 1

1 1

1 1

1 1

1 1

21

1 21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

-1 -1

-11

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21 21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1 -1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

2

2

-1

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

-1

-1 -1

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1

-1-1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

-1-1-1

2

2

2

2

-1

-1

2

2

-1

-1

-1

-1

-1

-1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1 -1

3 3 3 3 3 -1

-1

-1

-1

-1

-1

-1

-1

23

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3

3 3 3

P1: Start

P10: Target

Figure 125: Roadmap of the scenario (without obstacle O3).

10.5 Path-Planning Application

Using the roadmap generated in Section 10.4, the resulting corridor is illustrated in

Figure 126, including the indicated configuration space positions. The search is executed

on these positions, and it finds a path, as illustrated in the figure. Configuration space

positions are also added to the start and target positions including their extended cells, as

explained in Subsection 8.5.6.

10 System Implementation

188

-1-1

-1-1 -1 -1 -1 -1 -1-1 -1-1 -1-1

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24

4-1

-1 -1

-1 -1

-1

-1 -1 2

2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

2 2 2 2 2 2

2222 22 22

22

22

22

222222

22

22

22

22

22

22

22 22 22

22

22

22

222222

22

22

22

22

22

22

-1

-1

-1

-1

-1

-1

-1

2 2

22

2 2

22

2 2

22

2 2 2

222

2 2

22

2 2

22

2 2

-1 -1 -1 -1 -1 -1-1

1 1

1 1

1 1

1 1

1 1

1 1

21

1 21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

2 2

2 2

2 2

2 2

-1

-1

-1

-1

3 3 3 3

23

3 3 3 3

3 3 3 3

3 3 3

P1: Start

P10: Target

 Figure 126: Roadmap corridor including configuration space positions.

10.6 Elastic Net Trajectory Generation

As shown in Figure 128, the found path is processed and adapted to a feasible

trajectory.

10 System Implementation

189

10 10

10 1010

1010

10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

1010

10 10

10 10 10

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1-1

-1-1 -1 -1 -1 -1 -1-1 -1-1 -1-1

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24

4-1

-1 -1

-1 -1

-1

-1 -1 2

2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

2 2 2 2 2 2

2222 22 22

22

22

22

222222

22

22

22

22

22

22

22 22 22

22

22

22

222222

22

22

22

22

22

22

-1

-1

-1

-1

-1

-1

-1

2 2

22

2 2

22

2 2

22

2 2 2

222

2 2

22

2 2

22

2 2

-1 -1 -1 -1 -1 -1-1

1 1

1 1

1 1

1 1

1 1

1 1

21

1 21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

-1 -1

-11

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21 21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1 -1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

2

2

-1

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

-1

-1 -1

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1

-1-1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

-1-1-1

2

2

2

2

-1

-1

2

2

-1

-1

-1

-1

-1

-1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1 -1

3 3 3 3 3 -1

-1

-1

-1

-1

-1

-1

-1

23

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3

3 3 3

P1: Start

P10: Target

Figure 127: Trajectory through the roadmap without obstacle O3.

10 System Implementation

190

-1-1

-1-1 -1 -1 -1 -1 -1-1 -1-1 -1-1

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24

4-1

-1 -1

-1 -1

-1

-1 -1 2

2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

2 2 2 2 2 2

2222 22 22

22

22

22

222222

22

22

22

22

22

22

22 22 22

22

22

22

222222

22

22

22

22

22

22

-1

-1

-1

-1

-1

-1

-1

2 2

22

2 2

22

2 2

22

2 2 2

222

2 2

22

2 2

22

2 2

-1 -1 -1 -1 -1 -1-1

1 1

1 1

1 1

1 1

1 1

1 1

21

1 21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

2 2

2 2

2 2

2 2

-1

-1

-1

-1

3 3 3 3

23

3 3 3 3

3 3 3 3

3 3 3

P1: Start

P10: Target

Figure 128: Elastic net trajectory generation.

The elastic net algorithm is parameterized with respect to its shrink forces. These forces

(shown as arrows in Figure 128) move the particles on a straight line, and thus push the

trajectory to the obstacles. The stronger the force, the more the trajectory is moved towards

the obstacles, and the greater will be the number of collisions that may occur. The path-

planning system first controls the real robot along a trajectory with low shrink forces

applied to reduce the number of collision indications until either a collision is indicated or

the target is reached. After the final trajectory is found, the shrink force may be raised to

optimize the trajectory.

10.7 Re-planning of the Robot Path

As mentioned in Section 10.4, the search is executed within the roadmap corridor

containing configuration space positions of the robot. During the movement execution of a

solution, new information about the workspace and the obstacles may be added to the

world model. This normally happens when collisions are indicated. With a dynamic update

of the world model, a new search is initiated. The real robot stops its previous movements,

moves back to the last common trajectory position and follows the new trajectory. Figure

129 illustrates the environment exploration; the resulting world model is updated to

recognize obstacle O3. As a result, the Voronoi roadmap plans a new trajectory around the

newly added obstacle location. It turns out that these locations are also occupied, and

therefore, a completely new trajectory is found, as shown in Figure 130, which is further

modified as described in Section 10.4.

10 System Implementation

191

2

2

2

2 2

-1 -1 -1

-1

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21

21

21

1 1

1 1

1 1

4

1 1 1

1

1 1

1

1

1-1

-1 -1 -1

-1

-122

22

22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

2

2 2

2 2

-1

-1

-1

3 3

23

3 3 3

3 3 3 3

3 3 3

P10: Target

24

-1

-1

4

4

4 4

4 -1

-1-1

-1-1

-1-1-1

4

-1

4

4-1 -1

-1

-1

-1

-12

22

2

22

2 2

-1 -1 -1 -1 -1

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1222

22

22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

2 2

2 2

2 2

2 2

-1

-1

-1

-1

3 3 3 3

23

3 3 3 3

3 3 3 3

3 3 3

P10: Target

22

2

22

2 2

22

22

22

22

22

22

22

22

-1

-1 -1-1 -1222

22

22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

2 2

2 2

2 2

2 2

-1

-1

-1

-1

3 3 3

23

3 3 3 3

3 3 3 3

3 3 3

P10: Target

22 22

22 22

22 22 22 2

22 2

22

22 222 22

22 22 22

22

2

2

2

2

2

2

2

2

22

22

22

22

22

22

22

22

22 22 22 22

22 22 22 22

22 22 22 22

22 22 22

22 22 22

2

Figure 129: Adding collision indication positions (part of obstacle O3).

10

10 1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24 -1 -1

-1 -1

-1 -1 2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

222 2 2

2

2

2

222222

2

2

2

2

2

2

22 22 22

22

22

22

222222

22

22

22

22

22

22

2 2

22

2 2

22

2 2

22

2 2

222

2 2

22

2 2

22

2 2

22

22

22

22

22

22

22

22

-1

-1 -1-1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

2

2

-1

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

-1

-1 -1

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1

-1-1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

-1-1-1

2

2

2

2

-1

-1

2

2

-1

-1

-1

-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1 -1

3 3 3

23

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3

3 3 3

P1: Start

P10: Target

222 22 22

222 22 22

222 22 22 22 2

22 2

22

22 2

22 2

22 2

22 222 22

22 22 22

22

2

2

2

2

2

2

2

2

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22 22 22 22

22

22

22

22

22

22

22

22

22 22 22

22

22

22

22

22

22

2

Figure 130: New re-planned path.

The path-planning algorithm searches within the robot configuration space of an

articulated robot, which is located within the corridor. A configuration space is a part of

the working space with a specific setting of the robot arm parameters ARM, ELBOW and

FLIP (Abramowski, 1989, Siegert and Bocionek, 1996). The transition from one class into

another class is not trivial. A solution would be to combine all configurations into a single

configuration graph, and to detect neighbouring nodes of each configuration graph, adding

an edge between them. Two positions within the configuration space graph may be

connected, if there is a continuous function between them which is kinematically valid.

10 System Implementation

192

Robot arm parameters were not considered in this approach and illegal positions were

considered as collisions.

10.8 Robot Program Generation

The scenario in Figure 126 was created with a mission containing the start and target

locations as well as a single application path from P7 to P8. Once the mission is

successfully planned, the robot program file may be generated.

P1: Start

P7 P8

P10: Target

O1

O2

O3

Figure 131: Experimental scenario.

The trajectory planning results are depicted in Figure 132, and are compared to the

manually-programmed trajectory. The duration of the robot programming task is

summarized in Section 10.9.

P1: Start

P2

P5 P8

P10: Target

O1

O2

O3

P4

P9

P3

P6 P7

Figure 132: Automatically planned path.

P1: Start

P2

P7 P8

P10: Target

O1

O2

O3

P3

P9

Figure 133: Manually planned path.

The program generation of the automatically planned path is template-based. Thus, only

the dynamic content of the file is shown in Listing 12 and Listing 13:

10 System Implementation

193

10 MOV P2

20 MVR P2,P3,P7

30 HOPEN 1

40 MVS P8

50 MVR P8,P9,P10

Listing 12: Manually-programmed Melfa Basic IV

file.

10 MOV P2

20 MVR P2,P3,P4

30 MVS P5

40 MVR P5,P6,P7

50 HOPEN 1

60 MVS P8

40 MVR P8,P9,P10

Listing 13: Automatically generated Melfa Basic

IV robot program file.

The movement primitives circular and linear are respectively identified as MVR and

MVS robot commands. The program, which is composed of 6-movement primitives, is still

readable by a human. The final movements of the robot are comparable to the manually

programmed ones. Manual modifications may still be carried out within the program, even

for larger missions.

10.9 Robot Programming Duration

The overall time taken for the proposed system to generate a robot program file for the

scenario was about 20 minutes (see Table 11, row 9), including mission preparation, data

import and program file generation. The proposed system was compared with offline

programming and conventional online programming methods. Both programming methods

include the use of tools such as the Mitsubishi programming tool COSIROP/MELSOFT

(Mitsubishi-Electric, 2008) or RobCAD. Offline programming and conventional online

programming requires highly-skilled operators, while only a basic knowledge is required

for supported robot programming. Online programming only considers the available

physical objects, whereas offline and supported programming support models of these

objects. The time taken for each step in the process is given in Table 11.

10 System Implementation

194

Id

Program execution time**

Online

[seconds]

Supported

[seconds]

Offline

[seconds]

 Task

0 Offline programming 0 0 7200

1 System installation 10 600 10

2 DXF import 0 30 0

3 DXF placement 0 300 0

4 Set start/goal locations 60 60/0* 0-60

5 Set application locations 60 60/0* 0-60

6 Program or modify path 240 60 0-240

7 Save/upload program 20 10 20

8 Sum (online) 390 1120/1000 30-390

9 Sum (overall) 390 1120/1000 7230-7590

Table 11: Path planning execution times.

(* if locations are stored within DXF; ** for extrapolated times).

The times shown in Table 11 may be divided into fixed and task-dependent times.

Usually, within an industrial setting, it is not required to place numerous models into the

workspace; therefore, they may be seen as fixed.

Moreover, it should not be necessary to set the locations, although program generation

is highly dependent on the size of the program (see rows 4-6 in Table 11).

Table 12: Comparison of the online programming times.

10 System Implementation

195

Table 13: Comparison of the overall programming times.

 Table 12 illustrates the online programming time only and Table 13 represents the

overall programming time for each programming method. Offline programming must be

separated into minimum, maximum and normal values, which represent the online

modification of the offline-generated program within the robot cell. The normal values

may vary within the minimum and maximum values, depending on the quality of the

offline generated robot program. Online programming can be applied very quickly, and

should be used for small program sizes since the programming time significantly increases

relative to the program size. Supported online programming requires an equal amount of

time and a small fixed installation time when compared to normal values of the offline

programming method.

Table 13 illustrates the online programming time including the preparation times, and it

shows an additional preparation time for offline programming also mentioned in Table 11,

row 0. The offline preparation time can be omitted entirely to save offline programming

expenses, since the speed of programming for offline and supported online programming is

equal. This is highly dependent on the quality of offline-generated programs, and may

affect the ‘offline (normal)’ values in Tables 2 and 3. In the small example scenario

presented, a total of 2 hours of offline programming, including the operator and the

simulation tool, could be omitted, leading to cost savings. Therefore, supported online

programming is recommended, especially for small batched manufacturing and high-

volume production.

10 System Implementation

196

10.10 Summary

A trajectory planning approach has been presented based on the properties of the

roadmap generation algorithm and the elastic net. The pre-calculated configuration space is

deterministically sampled and stored within the octree cells. To reduce the search space,

only configurations within the roadmap are considered during the A* search. The

generated roadmap is based on the maximization of the clearance to obstacles in world

space. It can be calculated simply and quickly, applying the proposed cell-based algorithm.

New obstacle locations are dynamically added to the world model, which allows re-

planning of the path. The elastic net optimizes the robot configurations of the found path to

generate a manageable trajectory consisting of circular and linear movement primitives. It

adapts itself to obstacles and to unreachable regions. Through the applied forces of the

elastic net algorithm, the extent of adaptation is controlled. The presented algorithm is

applicable for mobile and articulated robots working in a high-dimensional space.

One of the main benefits derived from this approach resides in the real time capability,

which enables online robot programming. The Voronoi creation algorithm optimizes the

Voronoi edges during real-time, which is an important aspect for practical use. Compared

to offline programming, the presented approach does not require any pre-processing of

information. The presented robot programming support system utilizing the trajectory-

planning approach takes over the most complicated tasks, considering the basic knowledge

of the operator. It renders offline systems as unnecessary, and helps to minimize robot-

programming costs.

197

11 Discussion

11 Discussion

198

Manufacture on an industrial scale may require the programming of robotic manipulator

devices. In such cases, precise and accurate programming is necessary if error free

production and high quality products are to be assured. Online robot programming is a

time consuming and complicated task, and requires that the entire production system be put

out of production for significant time periods while data is being entered. Only well trained

operators are able to execute this step in a satisfying way with respect to obtaining quality

outcomes and short durations. Thus, the outcome and duration are closely linked to the

experience of the worker.

The complexity of programming remains one of the major hurdles preventing

automation using industrial robots for small to medium sized manufacturing. Offline

programming with a simulation system has been introduced for large volume

manufacturing but the additional efforts in offline programming makes it inefficient for

small to medium sized manufacturing. Although online programming methods have been

researched in the past to make online programming more intuitive, less reliant on operator

skill and more automatic, most of the research outcomes have not become commercially

available.

The general research aim was to establish an enhanced online robot programming

system, which helps the robot operator to create robot programs in an industrial production

environment. Its use must be kept simple for the operator and it has to function with the

delivered sensor data. The created robot program has to be manually changeable and

maintainable. The framework is defined by the employed algorithm and the usage of the

robot programming support system in real environments, together with the limited sensory

input.

This work helps operators to improve their productivity. The acceptance of the robot

programming system is dependent on its usability. The techniques applied in the system

are of a complex nature, but are not transparent to the user. The interface only offers up

front the information that is really needed and what is considered to be the most valuable

information. The robot programming system is designed in such a way that it guides the

operator throughout the process, and gives advice regarding the optimum manufacturing

strategy and mission and trajectory planning.

The development of the system started by evaluating key requirements for the

production industry to enhance online robot programming, especially when compared to

11 Discussion

199

the offline programming approach. One important outcome of this work was the

connection of the Mitsubishi RV-2AJ manipulator, together with its kinematics

calculations and control. It also introduced a probabilistic world model which fuses sensor

information required for automated path planning. The world model generates a roadmap

that allows path planning in real-time, even with inaccurate and less sensor information.

The found path is further transformed by an elastic net algorithm into a robot trajectory,

and is subsequently generated into a robot program. A model-driven code generation

framework helps to overcome the software implementation complexity.

The identified requirements for industrial robot programming include a fast robot

programming approach that delivers high-quality results, and which is paired with intuitive

usage. Considering the additional requirements of maintainability and reusability, a

software design was proposed and implemented in this study.

Commanding the robot manipulator and receiving position information in a real-time

manner is indispensable for the robot-programming framework. It has been shown that the

employed Mitsubishi robot can be controlled in real-time using manually written software

extensions. The integration of the programming system into the existing manufacture

environment has been proven for the employed robot.

The developed probabilistic world model is optimized for Cartesian space,

configuration space and CAD data. Each source type is stored in its own storage, and is

queried by the roadmap generation algorithm. This was necessary because collisions of the

robot manipulator are indicated by sensors, and the collision points have to be stored in the

configuration space of the robot. Cartesian space and CAD data can be stored directly

without any transformation. The CAD data is stored within Java3D, which is also used for

visualization and collision checks. This approach considers CAD data, world and robot

joint coordinates (obstacles and collision indication postures), and joins them in the octree.

The transition is an important step, since inverse calculations of target positions for

articulated robots often result in non-singular robot postures. Reported collisions occur in a

single posture, and postures have therefore been stored within the octree cells for obstacle

avoidance.

The achieved algorithm employs Voronoi roadmaps in the first instance. This allows a

high probability for collision-free movements of the robot through the workspace,

considering a minimum knowledge of obstacles within the environment. The Voronoi

11 Discussion

200

roadmap supports path planning with only little sensory input, which is most often

obtainable in real environments. While the robot is moving along the Voronoi path,

collision information indicated by the operator or other sensors is used to improve the

roadmap, and exploration of the environment therefore takes place. A trajectory planning

approach has been presented based on the properties of the roadmap generation algorithm

and the elastic net for the planning of missions with multiple goals. The pre-calculated

configuration space is deterministically sampled and stored within the world space. Only

configurations within the roadmap are considered during path searching to reduce the

search space. The generated roadmap is based on the maximization of the clearance to

obstacles in world space; thereby reducing the requirements for accuracy. It can be

calculated quickly and easily by applying the proposed cell-based algorithm. New obstacle

and collision locations are dynamically added to the world model, which allows the re-

planning of the path.

Shortest path planning is executed on points along the Voronoi edges, and is optimized

in the second stage to generate the trajectory. Although other solution candidates may be

shorter after optimization, this approach presents a good approximation. This two-stage

approach allows the use of low accuracies in the search stage, which speeds up the

algorithm. The accuracy of the octree controls the capability of the path-searching

algorithm to find small passages. The creation of discrete configuration-space elements is

optimised for accuracy. An excess of discrete positions may lead to increased path

planning times, whereas too few positions prevent the path planner from finding a solution.

The application of the elastic net both transforms the found path into a trajectory and

optimizes that trajectory. It deforms and stretches the path to reduce the clearance to the

obstacles, and the world model is thereby updated. This is an important feature to stretch or

shorten the generated trajectories along Voronoi edges, which are otherwise not short and

smooth.

The developed elastic net moves the robot configurations of the found path so that a

trajectory consisting of circular and linear movement primitives is generated. It adapts

itself to obstacles and to unreachable regions. Through the applied forces of the elastic net

algorithm, the extent of the adaptation is controlled. Together with the Voronoi based

roadmap, this path-planning approach provides a customised solution that handles

inaccurate information.

11 Discussion

201

The movement primitives are stored within the robot program file which considers the

special syntax of the target robot programming language and can be uploaded directly to

the robot system.

The tool is applicable to real industrial scenarios where articulated robots work in multi-

dimensional spaces. One of the main benefits derived from this application is its real-time

capability. By creating the opportunity to work successfully online, offline simulation

systems become unnecessary; moreover, the overall time required for larger missions

decreases. This support system is based on two specifics: the Voronoi roadmap and the

elastic net, which both target the planning of missions with multiple goals. The new

approach transforms the user interaction into a simplified task that generates acceptable

trajectories which are applicable for industrial robot programming. In addition, it works

successfully with only a basic knowledge of the operator, and requires the use of only the

software application. The trade-off’s optimality, path planning & smoothing, and

maintainability are considered in the new approach. The new criteria maintainability and

reusability were introduced, and the experiment has demonstrated that the system

successfully addresses and satisfies the modern requirements emanating from the industrial

market. The process is optimized, offline programming time may be saved, and online

programming becomes easier.

202

12 Conclusions

12 Conclusions

203

The general research aim was to establish an enhanced online robot programming

system, which helps the robot operator to create robot program files in an industrial

production environment and which renders offline robot programming unnecessary.

The adoption of online programming by industry, objective one, was addressed in

Chapter 5 and the results showed that a system for online robot programming was required

which is able to generate robot programs online with a minimum production downtime. A

fast robot program creation can only be realized with a simple HMI and an intelligent

trajectory planning algorithm. The intelligent trajectory planning algorithm requires both,

the availability of an efficient world model and a robot control framework as well as a

robot model. A comparison with offline programming in Section 5.5 showed that the use of

CAD data is important because real objects are not always at hand. The current offline

system capabilities have to be met to replace the offline with online programming systems.

Objective two was addressed in Chapter 6 and the results showed that besides

processing of the inexact sensor data to make them consistent, the types of information

sources were important. Not only six dimensional position and orientation data in spatial

space was required, but also robot joint space coordinates and CAD model data. In fact,

this lead to three different world models merged into one. The merged world model

provides the occupancy information to the trajectory planning system.

Objective three was addressed in Chapter 7 and the results showed the control of the

Mitsubishi RV-2AJ robot manipulator and the Festo Robotino robots were possible. The

robot control capability was important because the mission and trajectory planning

algorithm moves the robots during online robot programming to explore the environment

and to find a shortest trajectory. The robot kinematic model was important for the

trajectory planner for forward and backward calculations during trajectory computations.

Objective four was addressed in Chapter 8 and the results showed that the required

simple and efficient use of the system and the feasibility of trajectory planning within a

real industrial environment were successfully solved with a cell based trajectory planning

algorithm. It is based on Voronoi diagram approximation within a hierarchical data

structure for the world model that also combines the robot joint and Cartesian space. The

so found paths were transformed to particles in order to create trajectories, which were

then transformed with templates to a robot program file. By combining the robot joint and

Cartesian space, the search space was reduced to the cells only in order to allow the

12 Conclusions

204

Voronoi diagram approximation. The robot joint coordinates were then further used for the

shortest path-finding algorithm.

Objective five was addressed in Chapter 9 and the results showed that domain specific

modelling might simplify complex software systems but require a large amount of time for

its implementation. In this work, the time for its implementation was larger than its benefit,

thus, it will become more important for large projects and development teams or recurring

projects in a specific domain.

In summary, the investigation has produced a new approach to the programming of

robots in industry. The techniques developed in this study benefit an improvement in the

speed of online robot programming and can render offline programming unnecessary. At

the same time the quality of the automatic generated robot programs is equal compared to

manually written or offline generated programs and it may still be improved in future. The

costs for the equipment and infrastructure as well as the skilled workers for offline

programming can be saved. The amount of time for pre-processing has been reduced

drastically and helps to reduce costs. Overall, it is considered that the research has

accomplished its stated aims. This study has provided a new and important contribution to

the development of techniques for trajectory planning and assisted robot programming.

Finally, on a general scientific level, this work shows that technical solutions require a

good usability in order to be practically applicable. The knowledge transfer between the

human operator and the expert system has been implemented through a fluent workflow

with a graphical user interface to guide the operator. The developed algorithms are targeted

to an application in the real production system, but they can also be applied to offline robot

programming systems to help the offline simulation expert to generate feasible and high

quality robot trajectories. The implemented software development system for complex

systems is not restricted to robotic applications and can be used for software development

in general. The generic results of this research may be used in a wide variety of alternative

applications in which trajectory planning is required. Not only in small to medium sized

and high volume production industry but also in the diverse fields of research and

development for further investigations into robot trajectory planning, home robots, surgery

and health care assistant machines.

205

13 Future Work

13 Future Work

206

The investigations introduced new findings in the field of assisted online robot

programming, and proposed a new robot programming approach in the production

industry. Further works can be undertaken based on the results of this study and in related

areas.

This study introduced a new system for the enhancement of assisted robot

programming. The operator benefits by obtaining advice regarding all robot programming

tasks including trajectory planning, and the throughput is therefore increased. Further work

is still required to enable the system to be applicable in different areas than manufacturing.

The enhanced online robot programming system should be integrated in the entire

process as tightly as possible. One possibility would be the enhancement of the HMI to

improve manual robot control and the pointing device. Manual robot control functionalities

should be further developed, including the use of neural networks. For example, the

joystick may be extended to move the robot, while unreachable portions of the world space

may be automatically avoided.

The handling of dynamic obstacles should be further researched and the synchronization

with the support system should be automated. Other cooperating robots are types of

dynamic obstacles, which support information exchange for further integration into the

mission-planning algorithm and the world model. This may enable the formation of a

single, holistic world model of the production cell including all robots sharing their local

world model and multi-robot control. This requires the exchange of world models and

planning information. Because every robot has its own world model, these models have to

be calibrated to obtain the absolute positions of each of the models.

Dynamic collision avoidance may lead to the permanent use of the proposed system.

The flexibility of industrial robots can be optimized by allowing production robots to avoid

moving obstacles while executing their pre-programmed task. Therefore, the identified

obstacle types mentioned in Subsection 8.5.7 come into play. While this thesis handles

only static and timely synchronized objects with predictable movement, other obstacle

types such as timely unsynchronized obstacles or obstacles with unpredictable movement

may also be considered.

The standard A* algorithm used may be extended in the future to the Anytime Dynamic

A* (AD*) algorithm (Likhachev et al., 2005). The uniform sampling scheme that was

13 Future Work

207

applied in this work tends to have more joint coordinates within the corridor than are

necessary. This has a direct impact on the performance of the path-finding algorithm. The

proposed algorithm should be extended to use a non-uniform configuration space-sampling

scheme.

The robot kinematic may be provided using a software module. However, it is not

always possible to access those software modules. A learnable robot kinematic module

may be employed to use any robot type, regardless of its geometry. Function approximator

neural networks have also shown good results. Through supervised and unsupervised

online learning, the input and output of the kinematic learning module may be optimized

during runtime.

Mission- and task-specific extensions to the software have not yet been incorporated.

These include application path information for welding, adhesive bonding and handling.

The definition of the robot application path, e.g. spraying, gluing, painting, handling and

cutting, should be further investigated to provide additional application-specific

configurability. This gives the operator the ability to modify the outcome.

The complete software package was developed as a mixture of Java and C++ code, and

required an additional communication layer, for example to call native functions directly

from Java. For the integration of GUIs, only the middleware is sufficient, and it renders the

communication layer obsolete. Therefore, it is intended to transfer the remaining software

to Matlab/Simulink in order to improve the quality of the software.

208

References

AARNO, D., KRAGIC, D. and CHRISTENSEN, H.-I. (2004) Artificial Potential Biased

Probabilistic Roadmap Method. IEEE International Conference on Robotics and

Automation. 461–466.

ABRAMOWSKI, S. 1989. Exakte Algorithmen zur Bewegung gelenkgekoppelter Objekte

zwischen festen Hindernissen (Exact algorithms for the movement of joint-coupled

objects between static obstacles). PhD, TU Dortmund.

ADLER, D. and PHILIPP, T. 2011. Dyncall Library [Online]. Available: www.dyncall.org

[Accessed 1.6.2011].

AKGUNDUZ, A., BANERJEE, P. and MEHROTRA, S. (2005) A Linear Programming

Solution for Exact Collision Detection. Computing and Information Science in

Engineering. 5, 48-55.

AL-MULHEM, M. and AL-MAGHRABI, T. (1997) An efficient algorithm to solve the E

TSP. IEEE Conference on Electrical and Computer Engineering. 1, 269 - 272.

ARKIN, R. C. 1987. Towards cosmopolitan robots: Intelligent navigation in extended

man-made environments. University of Massachusetts, Dept. of Computer and

Information Science.

ARKIN, R. C. (1989) Navigational path planning for a vision-based mobile robot.

Robotica. 7, 49-63.

ARKIN, R. C. (1992) Behavior-Based Robot Navigation for Extended Domains. Journal

of Adaptive Behavior. 1, 201-225.

ARKIN, R. C. and CRAIG, R. (1989a) Motor Schema-Based Mobile Robot Navigation.

The International Journal of Robotics Research. 8, 92-112.

AUPETIT, M., COUTURIER, P. and MASSOTTE, P. Function Approximation with

Continuous Self Organizing Maps using Neighboring Influence Interpolation.

Proceedings of Neural Computation, 2000, Berlin, Germany.

AURENHAMMER, F. (1991) Voronoi diagrams-a survey of a fundamental geometric data

structure. ACM Comput. Surv. 23, 345-405.

BALMELLI, L., KOVAVEVI, J. and VETTERLI, M. (1999) Quadtrees for Embedded

Surface Visualization: Constraints and Efficient Data Structures. International

Conference on Image Processing. 2, 487-491.

BALZERT, H. 1999. Lehrbuch der Objektmodellierung (Workbook for Object Modelling),

3827402859, Spektrum Verlag.

http://www.dyncall.org/

References

209

BARRAQUAND, J. and LATOMBE, J. C. (1991) Robot motion planning: A distributed

representation approach. International Journal of Robotics Research. 10, 628–649.

BHATTACHARYA, P. 2001. Efficient Neighbor Finding Algorithms in Quadtree and

Octree. Master Thesis, India Inst. Technology, Kanpur.

BHATTACHARYA, P. and GAVRILOVA, M. L. (2008) Roadmap-Based Path Planning -

Using the Voronoi Diagram for a Clearance-Based Shortest Path. IEEE Robotics

and Automation Magazine. 15, 58-66.

BI, Z. M. and SHERMAN, Y. T. L. (2007) A Framework for CAD- and Sensor-Based

Robotic Coating Automation. Industrial Informatics, IEEE Transactions on. 3, 84-

91.

CECCARELLI, M. (ed.) BJORN SOLVANG, G. S. A. P. K. 2008. Robot Programming in

Machining Operations, Robot Manipulators. In: Robot Manipulators. InTech.

BOADA, B. L., BLANCO, D. and MORENO, L. (2004) Symbolic Place Recognition in

Voronoi-Based Maps by Using Hidden Markov Models. Journal of Intelligent and

Robotic Systems. 39, 173-197.

BROOKS, R. A. (1983) Model-Based Three Dimensional Interpretations of Two

Dimensional Images. IEEE Transactions on Pattern Analysis and Machine

Intelligence. 5, 140 - 150.

CHENG, G. and ZELL, A. (1999) Multiple Growing Cell Structures. Neural Network

World. 5, 425-452.

CHUANG, J.-H. (1998) Potential-based modeling of three dimensional workspace for

obstacle avoidance. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION.

14, 778 - 785.

CLOUDGARDEN (2011) Jigloo [Online]. Available: www.cloudgarden.com/jigloo

[Accessed 27.6.2013].

COMUNITY (2012) ODEJava [Online]. Available: http://java.net/projects/odejava

[Accessed 13.6.2013].

CONNOLLY, C. I. (1992) Applications of harmonic functions to robotics. Proceedings of

the 1992 IEEE International Symposium on Intelligent Control. 498-502.

CORKE, P. I. (1996) A Robotics Toolbox for Matlab. IEEE Robotics and Automation

Magazine. 3, 24-32.

CORKE, P. I. (2005) Machine Vision Toolbox. IEEE Robotics and Automation Magazine.

12, 16-25.

CRAIG, J. J. 2003. Introduction to Robotics: Mechanics and Control, 0201543613,

Prentice Hall.

http://www.cloudgarden.com/jigloo
http://java.net/projects/odejava

References

210

DEMIRIS, Y. and BILLARD, A. (2007) Special Issue on Robot Learning by Observation,

Demonstration, and Imitation. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics. 37, 254-255.

DENAVIT, J. and HARTENBERG, R. S. (1955) A kinematic notation for lower-pair

mechanisms based on matrices. Journal of Applied Mechanics. 1, 215-221.

DI, X., GHOSH, B. K., NING, X. and TZYH, J. T. (1998) Intelligent robotic manipulation

with hybrid position/force control in an uncalibrated workspace. Proceedings IEEE

International Conference on Robotics and Automation. 2, 1671–1676.

DONALD, B.-R., XAVIER, P.-G., CANNY, J.-F. and REIF, J.-H. (1993) Kinodynamic

Motion Planning. Journal of the ACM. 40, 1048-1066.

DUBINS, L. E. (1957) On Curves of Minimal Length with a Constraint on Average

Curvature, and with Prescribed Initial and Terminal Positions and Tangents.

American Journal of Mathematics. 79, 497-516.

ECLIPSE FOUNDATION. 2006. eclipse IDE [Online]. Available: http://www.eclipse.org

[Accessed 2.5.2013].

ECLIPSE FOUNDATION. 2011a. Eclipse Modelling Framework (EMF) [Online].

Available: http://www.eclipse.org/modeling/emf [Accessed 24.3.2011].

ECLIPSE FOUNDATION. 2011b. GMF [Online]. Available:

http://www.eclipse.org/modeling/gmp [Accessed 5.6.2011].

ECLIPSE FOUNDATION. 2011c. Java Emitter Templates (JET) [Online]. Available:

http://www.eclipse.org/modeling/m2t/?project=jet [Accessed 13.6.2013].

ECLIPSE FOUNDATION. 2011d. Xtext [Online]. Available: http://www.eclipse.org/Xtext

[Accessed 5.7.2011].

EDELSBRUNNER, H. 1987. Algorithms in Combinatorial Geometry, Berlin, Heidelberg,

978-3540137221, Springer

ERDMANN, M. and LOZANO-PEREZ, T. (1987) On Multiple Moving Objects.

Algorithmica. 2, 477-521.

ETRICE GROUP. 2011. Eclipse eTrice project page [Online]. Available:

http://www.eclipse.org/etrice [Accessed 13.6.2013].

EURON. 2012. Web Page of the European Robotics Research Network (EURON)

[Online]. Available: http://www.euron.org [Accessed 13.6.2013].

EVELOPERS CORPORATION. 2011. UniMod [Online]. Available:

http://unimod.sourceforge.net [Accessed 13.6.2013].

FESTO. 2011. Robotino [Online]. Festo. Available: www.robotino.de [Accessed

13.6.2013].

http://www.eclipse.org/
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/gmp
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/Xtext
http://www.eclipse.org/etrice
http://www.euron.org/
http://unimod.sourceforge.net/
http://www.robotino.de/

References

211

SCHIEHLEN, W. (ed.) FISETTE, P. and SAMIN, J. C. 1993. In: Advanced Multibody

System Dynamics. Kluwer Academic Publishers, 373-378.

FLANAGAN, D. 2002. Java in a Nutshell, 389721332X, O'Reilly Media.

FRAICHARD, T. (1999) Trajectory Planning in a Dynamic Workspace: a 'State-Time

Space' Approach. Advanced Robotics. 13, 75-94.

FRITZKE, B. (1991) Let It Grow: Self-Organizing Feature Maps with Problem Dependent

Cell Structure. Proceedings of ICANN. 403-308.

FRITZKE, B. (1995) A Growing Neural Gas Network Learns Topologies. Advances in

Neural Information Processing Systems. 625–632.

FRITZKE, B. and WILKE, P. (1991) FLEXMAP A Neural Network for the Traveling

Salesman Problem with Linear Time and Space Complexity. IEEE International

Joint Conference on Neural Networks. 2, 929 - 934.

FUJIMURA, K. (1995) Time-minimum routes in time-dependent networks. IEEE

TRANSACTIONS ON ROBOTICS AND AUTOMATION. 11(3), 343-351.

GANDHI, D. and CERVERA, E. (2003) Sensor covering of a robot arm for collision

avoidance. IEEE International Conference on Systems, Man and Cybernetics. 5,

4951 - 4955.

GARGA, A. K. and BOSE, N. K. (1994) A neural network approach to the construction of

Delaunay tessellation of points in Rd. Circuits and Systems I: Fundamental Theory

and Applications, IEEE Transactions on. 41, 611 -613.

GARGANTINI, I. (1982a) An Effective Way to Represent Quadtrees. Commun. ACM. 25,

905-910.

GARGANTINI, I. (1982b) Linear octtrees for fast processing of three-dimensional objects.

Computer Graphics and Image Processing. 20(4), 363-374.

GARLAND, M. (1999) Multiresolution Modeling Survey and Future Opportunities.

Eurographics '99 -- State of the Art Reports. 111-131.

GE, S. S. (2004) Differential neural networks for robust nonlinear control. International

Journal of Adaptive Control and Signal Processing. 18, 315–316.

GE, S. S. and CUI, Y. J. (2000) New potential functions for mobile robot path planning.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. 16.

GLAVINA, B. 1990. Planung kollisionsfreier Bewegungen für Manipulatoren durch

Kombination von zielgerichteter Suche und zufallsgesteuerter

Zwischenzielerzeugung (Planning of collisions free movements for manipulators

through combination of target directed search and random controlled intermediate

target creation). Thesis, Technische Universitat München.

GLOBUS, A. Octree Optimization. Symposium on Electronic Imaging Science and

Technology, 1991.

References

212

GONZALEZ-GALVAN, E. J., LOREDO-FLORES, A., LABORICO-AVILES, E. D.,

PAZOS-FLORES, F. and CERVANTES-SANCHEZ, J. J. An algorithm for

optimal closed-path generation over arbitrary surfaces using uncalibrated vision.

IEEE International Conference on Robotics and Automation, 10-14 April 2007

2007. 2465-2470.

GOTO, T., KOSAKA, T. and NOBORIO, H. On the heuristics of A* or A algorithm in

ITS and robot path-planning. Intelligent Robots and Systems, 27-31 Oct. 2003.

1159-1166.

GRAN, C. A. 1999. Octree-based Simplifications of Polyhedral Solids. Thesis, Universitat

Politècnica de Catalunya.

GRIPH, F. S., HOGBEN, C. H. A. and BUCKLEY, M. A. (2004) A generic component

framework for real-time control. IEEE Transactions on Nuclear Science. 51, 558-

564.

GUTMANN, J. S., WEIGEL, T. and NEBEL, B. (2001) A fast, accurate, and robust

method for self-localization in polygonial environments using laser-range-fingers.

Advanced Rabotica. 14, 651-668.

HAEGELE, M., NEUGEBAUER, J. and SCHRAFT, R.-D. (2001) From Robots to Robot

Assistants. International Symposium on Robotics.

HÄGELE, M., SCHAAF, W. and HELMS, E. (2002) Robot Assistants at Manual

Workplaces: Effective Co-operation and Safety Aspects. International Symposium

on Robotics.

HALL, D. L. and LLINAS, J. (1997) An introduction to multisensor data fusion.

PROCEEDINGS OF THE IEEE. 85, 6 -23.

HEIM, A. 1999. Modellierung, Simulation und optimale Bahnplanung bei

Industrierobotern (Modelling, simulation and optimal path planning for industrial

robots), 3896754629, 9783896754622, Herbert Utz Verlag.

HENRICH, D., WURLL, C. and WORN, H. Online path planning with optimal C-space

discretization. IEEE/RSJ International Conference on Intelligent Robots and

Systems, 13-17 Oct 1998. 1479-1484.

HILTON, A., STODDART, A. J., ILLINGWORTH, J. and WINDEATT, T. (1996)

Reliable surface reconstruction from multiple range images. Lecture Notes in

Computer Science. 1064, 117-126.

HOFF, K., CULVER, T., KEYSER, J., LIN, M. C. and MANOCHA, D. Interactive motion

planning using hardware-accelerated computation of generalized Voronoi

diagrams. International Conference on Robotics and Automation, 2000. IEEE,

2931-2937.

HOFF, K. E., CULVER, T., KEYSER, J., LIN, M. and MANOCHA, D. Fast Computation

of Generalized Voronoi Diagrams Using Graphics Hardware. SIGGRAPH '99,

1999. ACM Press/Addison-Wesley Publishing Co.

References

213

HOPPE, H. (1998) Efficient Implementation of Progrssive Meshes. Computers &

Graphics. 22, 27-36.

HSU, D., KINDEL, R., LATOMBE, J. and ROCK, S. (2002) Randomized kinodynamic

motion planning with moving obstacles. The International Journal of Robotics

Research. 21, 233-255.

HU, Z., MARSHALL, C., BICKER, R. and TAYLOR, P. (2007) Automatic surface

roughing with 3D machine vision and cooperative robot control. Robotics and

Autonomous Systems. 55, 552-560.

HUI, Z., HEPING, C., NING, X., ZHANG, G. and JIANMIN, H. On-Line Path Generation

for Robotic Deburring of Cast Aluminum Wheels. International Conference on

Intelligent Robots and Systems, 2006. IEEE/RSJ, 2400-2405.

HWANG, J. Y., KIM, J. S., LIM, S. S. and PARK, K. H. (2003) A fast path planning by

path graph optimization. IEEE Transactions on Systems, Man and Cybernetics,

Part A. 33, 121-129.

IBM CORP. 2011. Rational Rose Real-Time [Online]. Available: http://www.ibm.com

[Accessed 27.6.2013].

INGAKI, H., SUGIHARA, K. and SUGIE, N. Numerically robust incremental algorithm

for constructing three-dimensional Voronoi diagrams. Proc. 4th Canad. Conf.

Comput. Geom., 1992. 334--339.

INTERNATIONAL FEDERATION OF ROBOTICS 2005. World Robotics 2005, New

York/Geneva, United Nations Publications.

INTERNATIONAL FEDERATION OF ROBOTICS 2011. World Robotics 2011, United

Nations Publications.

IVRISSIMTZIS, L. P., JEONG, W. K. and SEIDEL, H. P. Using Growing Cell Structures

for Surface Reconstruction. Shape Modeling International, 2003. 78 - 86.

KAGAMI, S., KUFFNER, J. J., NISHIWAKI, K., OKADA, K., INABA, M. and INOUE,

H. Humanoid arm motion planning using stereo vision and RRT search. Intelligent

Robots and Systems, 2003. IEEE/RSJ, 2167 - 2172.

KAIN, S., HEUSCHMANN, C. and SCHILLER, F. (2008) Von der virtuellen

Inbetriebnahme zur Betriebsparallelen Simulation (From the virtual setup to

production parallel simulation). Atp-Edition. 8, 48-52.

KANT, K. and ZUCKER, S. W. (1986) Toward efficient trajectory planning: The path-

velocity decomposition. Int. I. of Robotics Research. 5(3), 72-89.

KAZEMI, M. and MEHRANDEZH, M. (2004a) Robotic Navigation Using Harmonic

Function-based Probabilistic Roadmaps. Proceedings of IEEE International

Conference on Robotics and Automation. 4765-4770.

KAZEMI, M., MEHRANDEZH, M. and GUPTA, K. (2005) An Incremental Harmonic

Function-based Probabilistic Roadmap Approach to Robot Path Planning.

http://www.ibm.com/

References

214

Proceedings of IEEE International Conference on Robotics and Automation. 2148-

2153.

KHATIB, O. (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int.

J. Rob. Res. 5, 90-98.

KIEFER, J., BERGERT, M. and ROSSDEUTSCHER, M. (2010) Mechatronic objects in

production engineering. Atp-Edition. 12, 36-45.

KIM, J. O. and KHOSLA, P. K. (1992) Real-time obstacle avoidance using harmonic

potential functions. IEEE Transactions on Robotics and Automation. 8, 338-349.

KIM, K.-Y., KIM, D.-W. and NNAJI, B. O. (2002) Robot arc welding task sequencing

using genetic algorithms. IIE Transactions. 34, 865-880.

KNUTH, D. E. 1973. The Art of Computer Programming - Sorting and Searching,

Reading, MA, Addison-Wesley.

KODITSCHEK, D. E. and RIMON, E. (1990) Robot navigation functions on manifolds

with boundary. Adv. Appl. Math. 11, 412-442.

KRISTENSEN, S., HORSTMANN, S., KLANDT, J., LOHNERT, F. and STOPP, A.

Human-Friendly Interaction for Learning and Cooperation. Robotics and

Automation, 2001. IEEE, 2590 - 2595.

KRISTENSEN, S., NEUMANN, M., HORSTMANN, S., LOHNERT, F. and STOPP, A.

(2002) Tactile Man-Robot Interaction for an Industrial Service Robot. Lecture

Notes in Computer Science. 2238, 177-194.

KUCUK, S. and BINGUL, Z. (2004) The Inverse Kinematics Solutions of Industrial Robot

Manipulators. IEEE Conferance on Mechatronics. 274-279.

CUBERO, S. (ed.) KUCUK, S. and BINGUL, Z. 2006. Robot Kinematics: Forward and

Inverse Kinematics. In: Industrial-Robotics-Theory-Modelling-Control. Pro

Literatur Verlag, 964.

LANGLOIS, D., ELLIOTT, J. and CROFT, E. A. (2001) Sensor uncertainty management

for an encapsulated logical device architecture Part II: A control policy for sensor

uncertainty. American Control Conference.

LATOMBE, J.-C. 1991. Robot Motion Planning, Kluwer Academic Publishers.

LAVALLE, S. and KUFFNER, J. J. Rapidly-exploring random trees: Progress and

prospects. Algorithmic Foundations of Robotics, 2000.

LAVALLE, S. M. 2006. Planning Algorithms, Cambridge University Press.

LAVENDER, D., BOWYER, A., DAVENPORT, J., WALLIS, A. and WOODWARK, J.

(1992) Voronoi diagrams of set-theoretic solid models. Computer Graphics and

Applications, IEEE. 12, 69-77.

References

215

LEBEDEV, D. V., STEIL, J. J. and RITTER, H. Real-time path planning in dynamic

environments a comparison of three neural network models. Systems, Man and

Cybernetics, 2003b. 3408 - 3413.

LEE, D. T. (1982) Medial Axis Transformation of a Planar Shape. Pattern Analysis and

Machine Intelligence, IEEE Transactions on. PAMI-4, 363-369.

LEE, M. and SAMET, H. (2000) Navigating through triangle meshes implemented as

linear quadtrees. ACM Trans. Graph. 19, 79-121.

LENZ, A. and PIPE, A. G. (2003) A dynamically sized radial basis function neural

network for joint control of a puma 500 manipulator. IEEE International

Symposium on Intelligent Control. 170 - 175.

LIPPIELLO, V. (2005) Real-time visual tracking based on BSP-tree representations of

object boundary. Robotica. 23, 365-375.

MAËL, E. (1996) A Hierarchical Network for Learning Robust Models of Kinematic

Chains. ICANN.

MAHLER, S. 2003. Erzeugung und Evaluierung von Oktalbaumstrukturen als Schnittstelle

zu CAD-Programmen (Creation and evaluation of Octal tree structures as interface

for CAD applications). Master Thesis, Institut für Parallele und Verteilte Systeme

Universität Stuttgart.

MALETZKI, G., PAWLETTA, T., DÜNOW, P. and LAMPE, B. (2008)

Simulationsmodellbasiertes Radpid Prototyping von komplexen

Robotersteuerungen. Atp-Edition. 8, 54-60.

MAO-LIN, N. and MENG, J. E. (2000) Decentralized control of robot manipulators with

couplings and uncertainties. American Control Conference. 3326–3330.

MARTIN, H. (1998) Voronoi diagrams and offset curves of curvilinear polygons.

Computer-Aided Design. 30, 287-300.

MASEHIAN, E. and AMIN-NASERI, M. R. (2004) A voronoi diagram-visibility graph-

potential field compound algorithm for robot path planning. J. Robot. Syst. 21, 275-

300.

MASOUD, S. A. and MASOUD, A. A. (2000) Constrained Motion Control Using Vector

Potential Fields. IEEE transactions on systems, MAN, and Cybernetics-Part A:

Systems and Humans. 30.

MATHWORKS 1997. Image Processing Toolbox Version 2, Mathworks.

MERKLE, P. E. 2004. Entwicklung eines Octree-Verfahrens zur 3D-

Volumenrekonstruktion auf Voxelbasis (Development of an octree procedure for

the 3D volume reconstruction on the basis of voxel). Technische Universitätä

Berlin.

MILENKOVIC, V. (1993) Robust polygon modelling. Computer-Aided Design. 25, 546-

566.

References

216

MÍNGUEZ, J., MONTANO, L. and SANTOS-VICTOR, J. (2002) Reactive Navigation for

Non-holonomic Robots using the Ego-Kinematic Space. IEEE lntemational

Conference on Robotics \& Automation.

MITSUBISHI-ELECTRIC (2002a) MELFA Industrial Robots Instruction Manual

Controller CR1 (Mitsubishi-Electric, Ratingen, Germany) [Online]. Available:

http://www.mitsubishi-automation.com [Accessed 27.6.2013].

MITSUBISHI-ELECTRIC (2002b) MELFA Industrial Robots Instruction Manual

Controller CR1/CR2/CR2A (Mitsubishi-Electric, Ratingen, Germany) [Online].

Available: http://www.mitsubishi-automation.com [Accessed 27.6.2013].

MITSUBISHI-ELECTRIC (2003) MELFA Industrial Robots Instruction Manual

(Functions and Operations) CR1/CR2/CR3/CR4/CR7/CR8 Controller (Mitsubishi-

Electric, Ratingen, Germany) [Online]. Available: http://www.mitsubishi-

automation.com [Accessed 27.6.2013].

MITSUBISHI-ELECTRIC (2011) COSIROP and COSIMIR [Online]. Available:

www.mitsubishi.com [Accessed 27.6.2013].

MYOUNG HWAN, C. and WOO WON, L. A force/moment sensor for intuitive robot

teaching application. Robotics and Automation, 2001. Proceedings 2001 ICRA.

IEEE International Conference on, 2001 2001. 4011-4016 vol.4.

NANDI, G. C. and MITRA, D. (2005) Fusion Strategies for Minimizing Sensing-Level

Uncertainty in Manipulator Control. Journal of Intelligent and Robotic Systems. 43,

1-32.

NICHOLSON, A. 2005. Rapid adaptive programming using image data. PhD, University

of Wollongong.

OKABE, A., BOOTS, B., SUGIHARA, K., CHIU, S. N. and KENDALL, D. G. 2008.

References. In: Spatial Tessellations. John Wiley & Sons, Inc., 585-655.

PAN, Z., POLDEN, J., LARKIN, N., DUIN, S. V. and NORRISH, J. (2010) Recent

Progress on Programming Methods for Industrial Robots. Robotics (ISR), 2010 41st

International Symposium on and 2010 6th German Conference on Robotics

(ROBOTIK). 1-8.

PAN, Z. and ZHANG, H. Robotic programming for manufacturing industry. International

Conference on Mechanical Engineering and Mechanics, 5-7 Nov. 2007, Wuxi,

China.

PAPULA, L. 1998. Mathematische Formelsammlung (Mathematical formulary),

Braunschweig, 3-528-44442-8, Vieweg.

PAUL, R. P. 1981. Robot Manipulators: Mathematics, Programming and Control,

026216082X, MIT Press.

PAYEUR, P. Improving robot path planning efficiency with probabilistic virtual

environment models. Virtual Environments, Human-Computer Interfaces and

Measurement Systems, 2004. IEEE 13 - 18.

http://www.mitsubishi-automation.com/
http://www.mitsubishi-automation.com/
http://www.mitsubishi-automation.com/
http://www.mitsubishi-automation.com/
http://www.mitsubishi.com/

References

217

PIPE, A. G. (2001) An architecture for learning 'potential field' cognitive maps with an

application to mobile robot navigation. Journal of Adaptive Behaviour. 8(2), 173-

204.

PIRES, J. N., GODINHO, T. and FERREIRA, P. (2004) CAD interface for automatic

robot welding programming. Industrial Robot: An International Journal. 31, 71 -

76.

POLLEFEYS, M. (2000) Tutorial on 3D Modeling from Images (ECCV 2000) [Online].

Available: http://www.cs.unc.edu/~marc/tutorial.pdf.

PRASSLER, E., BANK, D. and KLUGE, B. (2002) Key Technologies in Robot

Assistants: Motion Coordination between a Human and a Mobile Robot.

PREPARATA, F. P. and SHAMOS, M. I. 1985. Computational geometry: an introduction,

0387961313, Springer.

QUEK, F., JAIN, R. and WEYMOUTH, T. E. (1993) An abstraction-based approach to 3-

D pose determination from range images. Pattern Analysis and Machine

Intelligence, IEEE Transactions on. 15, 722-736.

RANGANATHAN, A. and KOENIG, S. PDRRTs: Integrated Graph Based and Cell Based

planning. Intelligent Robots and Systems, 2004. IEEE/RSJ, 2799 - 2806.

RAO, T. M. and ARKIN, R. C. (1990a) 3D Navigational Path Planning. Robotica. 8, 195-

205.

RAO, T. M. and ARKIN, R. C. 3D path planning for flying crawling Robots. SPIE 1195,

1990b.

RAUBER, A., MERKL, D. and DITTENBACH, M. (2002) The Growing Hierarchical Self

Organizing Map Exploratory Analysis of High-Dimensional Data. IEEE

Transactions on Neural Networks. 13, 1331 - 1341.

REIF, J. H. and WANG, H. (2000) Nonuniform Discretization for Kinodynamic Motion

Planning and its Applications. SIAM Journal on Computing. 30, 161-190.

RITTER, H., MARTINETZ, T. and SCHULTEN, K. 1992. Neural Computation and Self-

Organizing Maps, Addison-Wesley.

RITTER, H., MARTINETZ, T. and SCHULTEN, K. 1994. Neuronale Netze (Neural

Networks), Oldenbourg.

ROSELL, J. and INIGUEZ, P. (2005) Path planning using Harmonic Functions and

Probabilistic Cell Decomposition. Proceedings of the 2005 IEEE International

Conference on Robotics and Automation. 1803- 1808.

RUSSELL, S.-J. and NORVIG, P. 2002. Artificial Intelligence: A Modern Approach (2nd

Edition), Prentice Hall.

SAMET, H. 1990. Applications of Spatial Data Structures: Computer Graphics, Image

Processing, and GIS, Reading, MA, Addison-Wesley Longman.

http://www.cs.unc.edu/~marc/tutorial.pdf

References

218

SAMET, H. 1994. The Design and Analysis of Spatial Data Structures, 0201502550,

Addison Wesley.

SÁNCHEZ, G. and LATOMBE, J.-C. (2003) A Single Query Bi Directional Probabilistic

Road map Planner with Lazy Collision Checking. Springer Tracts in Advanced

Robotics. 6, 403-417.

SÁNCHEZ, G. and LATOMBE, J. C. (2002) On delaying collision checking in PRM

planning: application to multi-robot coordination. Int. Journal of Robotics

Research. 21, 5-26.

SCHIEHLEN, W. O. 1990. Multibody Systems Handbook, 978-3-642-50997-1, Springer.

SCHRACK, G. (1992) Finding neighbors of equal size in linear quadtrees and octrees in

constant time. CVGIP: Image Underst. 55, 221-230.

SCHWARZER, F., SAHA, M. and LATOMBE, J. C. (2004) Exact Collision Checking of

Robot Paths. Algorithmic Foundations of Robotics. 5, 25-42.

SELIC, B., GULLEKSON, G. and WARD, P. T. 1994. Real-time object-oriented

modeling, 0471599174, Wiley Professional Computing.

SHAMOS, M. I. and HOEY, D. Closest-point problems. Foundations of Computer

Science, 1975., 16th Annual Symposium on, 13-15 Oct. 1975 1975. 151-162.

SIEGERT, H.-J. and BOCIONEK, S. 1996. Robotik, Programmierung intelligenter

Roboter (Robotics, programming of intelligent robots), Springer, Berlin.

SMITH, R. 2012. Open Dynamics Engine [Online]. Available: http://www.ode.org/

[Accessed 26.07.2012].

SMITH, R., SELF, M. and CHEESEMAN, P. 1990. Estimating Uncertain Spatial

Relationships in Robotics. In: Autonomous Robot Vehicles. Springer, Berlin, 167–

193.

SPARX SYSTEMS. 2011. Enterprise Architect [Online]. Available:

http://www.sparxsystems.com.

SPONG, M. W., HUTCHINSON, S. and VIDYASAGAR, M. 2004. Robot Dynamics and

Control.

STOPP, A., BALDAUF, T., HANTSCHE, R., HORSTMANN, S., KRISTENSEN, S.,

LOHNERT, F., PRIEM, C. and RIISCHER, B. The Manufacturing Assistant: Safe,

Interactive Teaching of Operation Sequences. Robot and Human Interactive

Communication, 2002. Proceedings. 11th IEEE International Workshop on, 2002.

386 - 391.

SUGIHARA, K. and IRI, M. (1994) A robust Topology-Oriented Incremental algorithm

for Voronoi diagrams. International Journal of Computational Geometry and

Applications. 179-228.

http://www.ode.org/
http://www.sparxsystems.com/

References

219

SUGITA, S., ITAYA, T. and TAKEUCHI, Y. (2004) Development of robot teaching

support devices to automate deburring and finishing works in casting. The

International Journal of Advanced Manufacturing Technology. 23, 183-189.

SUN-MICROSYSTEMS. 2012. Java 3D [Online]. Available: http://java3d.java.net/

[Accessed 25.07.2012].

SUTHERLAND, J. (1998) Why I love the OMG: emergence of a business object

component architecture. StandardView. 6, 4-13.

TAKARICS, B., SZEMES, P. T., NEMETH, G. and KORONDI, P. Welding trajectory

reconstruction based on the Intelligent Space concept. Human System Interactions,

2008 Conference on, 25-27 May 2008 2008. 791-796.

THEMATHWORKS. 2011. Matlab/Simulink [Online]. Available:

http://www.mathworks.de.

THIEMERMANN, S. 2005. Direkte Mensch-Roboter-Kooperation in der

Kleinteilemontage mit einem SCARA-Roboter (Direct human robot cooperation for

small pieces assembing with a SCARA robot). Thesis, Universität Stuttgart.

VALAVANIS, K. P., HEBERT, T., KOLLURU, R. and TSOURVELOUDIS, N. (2000)

Mobile robot navigation in 2 D dynamic environments using an electrostatic

potential field. IEEE Transactions on Systems, MAN, and Cybernetics—Part A:

Systems and Humans. 30.

VLEUGELS, J. M., KOK, J. N. and OVERMARS, M. H. (1993) Motion Planning Using a

Colored Kohonen Network. RUU-CS.

VUKOBRATOVIC, M. and KIRCANSKI, N. 1982. Real-Time Dynamics of Manipulation

Robots, Springer Verlag.

WARREN, C. W. Global path planning using artificial potential fields. Robotics and

Automation, 1989. 316 - 321.

WAYDO, S. Vehicle motion planning using stream functions. Robotics and Automation,

2003. IEEE, 2484 - 2491.

WENRUI, D. and KAMPKER, M. PIN-a PC-based robot simulation and offline

programming system using macro programming techniques. Industrial Electronics

Society, 1999. IECON '99 Proceedings. The 25th Annual Conference of the IEEE,

1999 1999. 442-446 vol.1.

WESTKÄMPER, E., SCHRAFT, R. D., NEUGEBAUER, J.-G. and RITTER, A. (1999)

Holonic Task Generation for Mobile Robots. 30th International Symposium on

Robotics. 553-560.

WHEELER, M. 1996. Automatic modeling and localization for object recognition.

Carnegie Mellon University.

http://java3d.java.net/
http://www.mathworks.de/

References

220

WÖSCH, T., NEUBAUER, W., V. WICHERT, G. and KEMÉNY, Z. Robot Motion

Control for Assistance Tasks. Robot and Human Interactive Communication,

2002. IEEE, 524 - 529.

XIANG, L. and DAOXIONG, G. A comparative study of A-star algorithms for search and

rescue in perfect maze. Electric Information and Control Engineering (ICEICE),

2011 International Conference on, 15-17 April 2011 2011. 24-27.

YANG, D.-H. and HONG, S.-K. (2007) A roadmap construction algorithm for mobile

robot path planning using skeleton maps. Advanced Robotics. 21, 51-63.

CETTO, J. A., FILIPE, J. & FERRIER, J.-L. (eds.). YANG, J., DYMOND, P. and

JENKIN, M. 2011. Exploiting Hierarchical Probabilistic Motion Planning for

Robot Reachable Workspace Estimation. In: Informatics in Control Automation

and Robotics. Springer Berlin Heidelberg, 229-241.

YANG, L. and LAVALLE, S. M. (2003) The sampling-based neighborhood graph: An

approach to computing and executing feedback motion strategies. IEEE Trans. on

Robotics and Automation. 20, 419– 432.

YANG, L. and LAVALLE, S. M. (2004) The sampling-based neighborhood graph: an

approach to computing and executing feedback motion strategies. Robotics and

Automation, IEEE Transactions on. 20, 419-432.

ZEROC INC. 2011. ZeroC Ice [Online]. Available: http://www.zeroc.com [Accessed

27.6.2013].

ZLAJPAH, L. (1999) On-line obstacle avoidance control for redundant robots using tactile

sensors. IASTED Int. Conf. Control and Applications. 533-538.

http://www.zeroc.com/

221

A. List of Publications

The following is a list of publications produced by the author during the course of the

investigations outlined in this thesis.

1. KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. 2012.

A Flexible Model Driven Robotics Development Framework. The 43rd

International Symposium on Robotics (ISR). Taipei, Taiwan.

This publication is based on investigations accomplished as part of objective five.

Abstract - A flexible robotics development framework has been established to

allow rapid development of high-performance real-time applications from

distributed software components. The framework interconnects software

components and hardware devices as well as specialized third party software

applications to allow integration into the communication system with ease. A

model driven approach has been chosen in order to raise the usability of the

framework using a visual modeling language. A communication middleware has

been evaluated for the interconnection of the components. This paper introduces the

required tools, proposes a model driven development framework for robotic

applications and provides experiences in the development and use of such

frameworks.

2. KOHRT, C., PIPE, A. G., KIELY, J., STAMP, R. and SCHIEDERMEIER, G.

2012. A cell based voronoi roadmap for motion planning of articulated robots using

movement primitives. International Conference on Robotics and Biomimetics

(ROBIO). Guangzhou, China: IEEE.

This publication is based on investigations accomplished as part of the objectives

two and four.

Abstract - The manufacturing industry today is still focused on the maximization of

production. A possible development able to support the global achievement of this

goal is the implementation of a new support system for trajectory planning, specific

for industrial robots. This paper describes the trajectory-planning algorithm, able to

generate trajectories manageable by human operators, consisting of linear and

circular movement primitives. First, the world model and a topology preserving

A. List of Publications

222

roadmap are stored in a probabilistic occupancy octree by applying a cell extension

based algorithm. Successively, the roadmap is constructed within the free reachable

joint space maximizing the clearance to the obstacles. A search algorithm is applied

on robot configuration positions within the roadmap to identify a path avoiding

static obstacles. Finally, the resulting path is converted through an elastic net

algorithm into a robot trajectory, which consists of canonical ordered linear and

circular movement primitives. The algorithm is demonstrated in a real industrial

manipulator context.

3. KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. 2011.

An Online Robot Trajectory Planning and Programming Support System for

Industrial Use. Journal of Robotics and Computer-Integrated Manufacturing.

This publication is based on investigations accomplished as part of objective one.

Abstract - The manufacturing industry today is still looking for enhancement of

their production. Programming of articulated production robots is a major area for

improvement. Today, offline simulation modified by manual programming is

widely used to reduce production downtimes but requires financial investments in

terms of additional personnel and equipment costs. The requirements have been

evaluated considering modern manufacturing aspects and a new online robot

trajectory planning and programming support system is presented for industrial use.

The proposed methodology is executed solely online, rendering offline simulation

obsolete and thereby reduces costs. To enable this system, a new cell-based

Voronoi generation algorithm, together with a trajectory planner, is introduced. The

robot trajectories so achieved are comparable to manually programmed robot

programs. The results for a Mitsubishi RV-2AJ five axis industrial robot are

presented.

4. KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. 2008.

A robot manipulator communications and control framework. Proc. IEEE Int. Conf.

on Mechatronics and Automation ICMA.

This publication is based on investigations accomplished as part of objective three.

A. List of Publications

223

Abstract - The use of industrial scale experimental machinery robot systems such as

the Mitsubishi RV-2AJ manipulator in research to experimentally prove new

theories is a great opportunity. The robot manipulator communications and control

framework written in Java simplifies the use of Mitsubishi robot manipulators and

provides communication between a personal computer and the robot. Connecting a

personal computer leads to different communication modes each with specific

properties, explained in detail. Integration of the framework for scientific use is

shown in conjunction with a graphical user-interface and within Simulink as a

Simulink block. An example application for assisted robot program generation is

described.

5. KOHRT, C., SCHIEDERMEIER, G., PIPE, A. G., KIELY, J. and STAMP, R.

2006. Nonholonomic Motion Planning by Means of Particles. International

Mechatronics and Automation Conference. Luoyang, China: IEEE.

This publication is based on investigations accomplished as part of objective four.

Abstract - In this article a new approach to planning of a nonholonomic motion is

presented. A flexible, intelligent planner based on a static map and the topology of

the robot’s environment has been developed. The approach uses ‘particles’ to

construct automatically a path between two given locations. The generated path is a

smooth trajectory, where the length of the path is kept at a minimum and obstacles

are avoided. This concept applies to robots meeting the restrictions of a Dubin’s car

(nonholonomic robot that can only move forward). After the basic concepts of the

approach has been described, simulations will be presented.

6. KOHRT, C., ROJKO, R., REICHER, T. and SCHIEDERMEIER, G. 2006. With

Model Based Design To Productive Solutions Professional GUIs For Simulink By

Utilizing The Java SWT Library. WEKA FACHZEITSCHR.-VERLAG, KFZ-

Elektronik.

This publication is based on investigations accomplished as part of the objectives

four and five.

Abstract - The Model-Based Design (MBD) approach is a widely used method to

solve sci-entific engineering challenges [1]. Matlab/Simulink as a representative of

A. List of Publications

224

MBD is a tool capable of exploiting the advantageous aspects of a graphical user

inter-face (GUI). The latter is created with a tool named GUIDE, which is shipped

with the Matlab/Simulink software. Unfortunately, user interfaces created with

GUIDE have some drawbacks. Thus, new approaches are needed to overcome

these draw-backs to improve the design of the GUI. It is surprising, that the Java

SWT library (Standard Widget Toolkit) is not used for such user interfaces.

Although not sup-ported by Mathworks, this article compares the features of an

SWT based GUI to the GUIDE, explains the practical implementation of SWT

GUIs by examples and gives an outlook to the wide field of applications taking

benefit.

225

B. Materials & Equipment

The proposed support system is applied on a 5-axis industrial-scale, articulated

Mitsubishi RV-2AJ robot with an additional Ethernet card installed. It is a nonlinear

system with five rotary joints. The robot is equipped with the Mitsubishi CR1 controller

and a teach pendant. The main areas of the robot are assembly, manufacture, pick & place

and handling tasks. Communication between this system and a personal computer is

possible (Kohrt et al., 2008); the commercial viability has already been demonstrated

(Mitsubishi-Electric, 2008). The equipment is shown in Figure 134.

Figure 134: Devices overview.

The robot manipulator communications and control framework is executed on the

personal computer, which has an Ethernet and serial port connection to the robot

controller. The teach pendant and the robot are connected to the controller. The vision

system and the pointing device are plugged in to the personal computer. The framework is

verified with a visual servo-control application including collision detection and

Matlab/Simulink integration.

The Industrial Robot Manipulator Mitsubishi RV-2AJ

A Mitsubishi RV-2AJ robot as shown in Figure 135 is used with an additional Ethernet

card installed throughout this work. It is a typical industrial robot widely used. The robot is

installed at the lab of the Computer Sciences Department at the University of Applied

B. Materials & Equipment

226

Sciences Landshut, Germany. The robot is equipped with the Mitsubishi CR1 controller

and a teach pendant.

Figure 135: The Robot manipulator Mitsubishi RV-2AJ.

These robots are advanced, but mature and industrially proven machines; their

commercial viability has already been demonstrated in the manufacture of car sub-

assemblies, semiconductor memories and other industrial/consumer goods within

companies such as Jaguar and Audi. The main areas of application are:

 Assembling / manufacturing,

 handling in laboratories,

 semiconductor manufacturing and monitoring,

 blank manufacturing and monitoring,

 pick and place and

 robot training.

The robot type RV-2AJ is an articulated robot (R) that operates vertically (V) with

maximum payload of 2 kg. It is the Mitsubishi robot series S with 5 joints. Data of the

robot arm RV-2AJ:

 Repeatability 0.02 mm

 Max. payload 2 kg

 Max. velocity 2,100 mm/s

 Reach 410 mm

B. Materials & Equipment

227

 robot weight 17 kg

The robot has the following functions:

 Compliance Control function

 Multitasking operating system

 Load-based acceleration optimization

 Individual axis torque monitoring

 Sensor less crash detection

 Control functions for additional axes

 IP65 protection rating (axes 4-6)

The Controller

The controller Mitsubishi CR1 Mitsubishi CR1 is a New Architecture Robot

Controller (NARC).

Figure 136: CR1 Controller.

Standard functions of the robot controller are:

 Easy-to-learn control instruction set,

 axis, linear and three dimensional circular interpolation,

 subroutines,

 execute up to 32 programs simultaneously,

 integrated math functions,

 integrated palletizing functions,

 interrupt handling,

 compliance Control function and

 tracking (conveyor belt synchronization).

B. Materials & Equipment

228

The Mobile Robot Robotino

The mobile robot Robotino in Figure 137, produced by the company Festo (Festo,

2011), is employed as an experimental framework to research on path planning algorithm

development. The Robotino robot is featured with different sensors like a camera and

twelve infrared proximity sensors, which have been utilized for sensor fusion development.

It provides a Java robot control framework that can directly be employed. The provided

robot control framework supports wireless local area network connections to command the

robot and to obtain sensor information.

Figure 137: A Robotino robot from the company Festo.

229

C. Robot Control

This appendix summarizes the protocol format of the Mitsubishi CR1 Controller for

transmitting and receiving.

Controller Parameters

Table 14 has been used to set up the controller for each communication mode.

C. Robot Control

230

Parameter

name

Details Number

of

elements

Default value Controller

commnuni-

cation mode

Data

link

mode

Real-time

external

control

mode

NETIP IP address of robot controller Character

string 1

192.168.0.1 X X X

NETMSK Sub-net-mask Character

string 1

255.255.255.255 X X X

NETPORT Port No.

Range 0 to 32767

For function expansion (reserved)

Correspond to OPT 11-19 of COMDEV

 (OPT11)

(OPT12)

(OPT13)
(OPT14)

(OPT15)

(OPT16)
(OPT17)

(OPT18)

(OPT19)

Numerical

value 10

10000,
10001,

10002,

10003,
10004,

10005,

10006,
10007,

10008,

10009

X X X

CPRCE11

CPRCE12

CPRCE13
CPRCE14

CPRCE15

CPRCE16
CPRCE17

CPRCE18

CPRCE19

Protocol

0: No-procedure

1: Procedure
2: Data link

(1: Procedure has currently no function.)

Correspond to OPT 11-19 of COMDEV

(OPT11)
(OPT12)

(OPT13)

(OPT14)
(OPT15)

(OPT16)

(OPT17)
(OPT18)

(OPT19)

Numerical

value 9

0,
0,

0,

0,
0,

0,

0,
0,

0

- X -

COMDEV

Definition of device corresponding to COM1: to
8:

Definition of device corresponding to COM1:
Definition of device corresponding to COM2:

Definition of device corresponding to COM3:

Definition of device corresponding to COM4:
Definition of device corresponding to COM5:

Definition of device corresponding to COM6:

Definition of device corresponding to COM7:
Definition of device corresponding to COM8:

When the data link is applied, setting is
necessary.

OPT11 to OPT19 are allocated. Here,

RS-232C of the controller is previously allocated
to COM1: .

Character
string 8

RS232C,
,

,

,
,

,

,
,

- X -

Table 14: Controller communication mode set up.

C. Robot Control

231

NETMODE

Server designation (1: Server, 0: Client)
(OPT11)

(OPT12)

(OPT13)
(OPT14)

(OPT15)

(OPT16)
(OPT17)

(OPT18)

(OPT19)

Numerical
value 9

1,

1,

1,
1,

1,

1,
1,

1,

1

- X -

NETHSTIP

The IP address of the data communication

destination server.
* It is valid if specified as the client by

NETMODE only.

(OPT11)
(OPT12)

(OPT13)

(OPT14)
(OPT15)

(OPT16)

(OPT17)
(OPT18)

(OPT19)

Character

string 9 .

192.168.0.2,
192.168.0.3,

192.168.0.4,

192.168.0.5,
192.168.0.6,

192.168.0.7,

192.168.0.8,
192.168.0.9,

192.168.0.10

- X -

MXTTOUT

Timeout time for executing real-time external
control command

(Multiple of 7.1msec, Set -1 to disable timeout)

Value 1
(0-32767)

-1

- - X

Table 15: Controller communication mode set up (continued).

The default parameters for the Ethernet card are:

 COM1

 9600 baud

 8 data bits

 even parity

 stop bits

 DTR on

 RTS/CTS on

 XON/XOFF off

Controller Protocol Format

Transmit data

[< Robot No.>];[< Slot No>];<Command> <Argument>

< Robot No.>

The robot number to be operated is specified to 1, 2 or 3. It is possible to

omit it. The standard value is 1.

< Slot No>

The slot number to be operated can be specified to 1 - 33. Parameter

'TASKMAX' is a number of task slots used by the multitask program.

C. Robot Control

232

When the program is edited from the PC, the edit slot is used. The slot

number of the edit slot is parameter TASKMAX+1. In this case, because

an initial value of TASKMAX is 8, the number of the edit slot is 9. It is

possible to omit it. The standard value is 1.

<Command> <Argument>

These arguments are command specific.

Receive data
Commands Contents

QoK**** Normal status

Qok**** Error status

QeR**** Illegal data.(with error number (4 digit))

Qer**** Error status and illegal data. (with error number (4 digit))

Table 16: Receive command pattern.

QoK<Answer>

This argument differs in each command. Refer to the explanation of each

command.

Qok<Error status>

This argument replies the error number when the command may not be

executed. Refer to the troubleshooting manual of the robot for the

description of the error number.

QeR<Illegal data with 4-digit error number>

This argument replies the error number when the command may not be

executed. Refer to the troubleshooting manual of the robot for the

description of the error number.

Qer<Error status and illegal data with 4-digit error number>

This argument replies the error number when the command may not be

executed. Refer to the troubleshooting manual of the robot for the

description of the error number.

233

D. Denavit-Hartenberg-Parameter

The DH-parameters are the standard method used to define the direct kinematics of a

manipulator (Paul, 1981). A robot model is described with four DH-parameters for each

rotational or translational joint. The joint axis for a rotational or translational degree-of-

freedom is always defined by the z-axis of the coordinate system. The transformation

defined with the DH-parameter is a combination of the following four successive

transformations:

 Rotation around axis by the angle

 Translation along axis by the distance

 Translation along axis by the distance

 Rotation around axis by the angle

The parameter for a rotational joint, and is non-constant for a translational joint.

The final transformation matrix that depends on the four parameters is as follows:

(117)

 ()

 (

 () () () () () ()

 () () () () () ()

 () ()

)

The DH-parameters are defined by construction rules for the joint coordinate system

and their relations.

Jointi

Armi-1

Armi Armi+1

Jointi+1

xi

αi

θi

xi-1
Oi-1

di

zi-1

θi

ai

ai-1

Oi

zi

θi+1

Figure 138: Constructed coordinate systems.

D. Denavit-Hartenberg-Parameter

234

Basic rules for constructing the coordinate systems and the DH-parameters:

 Arm is the connection between the -th and the ()-th articulation.

 The coordinate system is dedicated to the i-th arm.

 The coordinate system is the fixed basic-coordinate system.

 The - axis is applied along the movement-axis of the ()-th articulation.

 The - axis is the normal to the axis and is pointed away from it.

 The - axis is defined such that a legal framework is produced.

Special Cases:

 - axis and axis cross each other.

 There are two possibilities for setting to be as perpendicular on the - or

 - axis. Either of them may be chosen.

 - axis and axis are parallel.

The origin may be arbitrary.

 - axis and axis cross each other.

Both the axis and the origin may be arbitrary.

The coordinate system’s attitude is described as follows:

 Distance along the axis between the origin and the intercept of the

 axis and the axis.

 Articulation angle around the axis from the axis to the projection

of the axis towards the , plane.

 Shortens the connection between axis and axis.

 Angle of rotation around the axis which levels the axis with the

axis.

235

E. Execution Model

An execution model consists of a set of rules that define the system behaviour. The

execution model described in the ROOM standard (Selic, 1996a, Selic, 1996b, Selic et al.,

1994) was employed. ROOM is a visual modelling language with formal semantics and it

was developed by ObjecTime. It is optimized for the specification, visualization,

documentation and automation of the construction of complex, event-driven and

potentially distributed real-time systems. The actor is the basic building block used to

describe the structural design of a distributed system.

Internal Structure of an Actor

Simple functionality can be realized by an actor, which has no inner structure. Actors

that are more complex have an internal structure, which is a network of collaborating sub-

actors joined by connectors. Therefore, the actor may delegate complex functionalities to

sub-actors. Both the sub-actors and their connections are hidden from external observers.

Sub-actors are actors in their own right, and can themselves be further decomposed into

sub-actors. This type of decomposition can be carried on to any depth necessary, enabling

the modelling of arbitrarily complex structures using only this basic set of modelling

constructs.

Ports of an Actor

An actor communicates with its environment only via ports, as described in Figure 139.

Ports are used to define dedicated points of interaction between the actor and its

environment. Ports may either provide or require a service, which is specified by an

interface. By connecting the ports of several actors, an interaction flow via messages can

be established between them. The service provided by a port may either be realized by the

actor itself (EndPort) or delegated to the port of a contained actor (RelayPort). The port of

the contained actor has to provide the same service as the port of the (outer) actor.

Communication via ports may be either synchronous or asynchronous. However,

synchronous communication limits the ability of the port to deploy the actor.

Communication or delegation between actors is allowed only via ports.

By employing ports, the actors can be more easily distributed on different nodes, and

the role of an actor is clearly defined and better encapsulation (to interact with it, only the

port is required, and not the type of the actor) has been accomplished..

E. Execution Model

236

Figure 139: Actor with ports.

Behaviour of an Actor

An actor defines behaviour that is specified by operations and optionally by a UniMod

state machine. A state machine represents one part of the implementation of the actor,

which is hidden from external observers. Operations can be either hidden or public, based

on their usage. Direct synchronous calls can be executed on that actor operation when the

method is public. Because the operation is called within the thread of the calling actor, the

call has to be thread-safe. This has to be verified by the user. If the method is called

synchronously over the ports, no additional synchronization is required because it is

handled by the execution model. A complex actor may combine the state machine with an

internal network of collaborating sub-actors that are joined by connectors.

Message Service

The message service manages communication between processing units for real-time

applications either on single or distributed processors. It is a middleware between software

components that communicate synchronously or asynchronously with other message

services or actors.

For distributed real-time applications, efficient system communication is needed. The

distributed application may consist of components deployed on different processing units.

The processing unit may be a general-purpose processor (GPP), digital signal processor

(DSP) or a FPGA. Each processing unit may have its own special system architecture that

influences different processes, for example the handling of threads. Threads can be either

pre-emptive or co-operative, depending on the processing unit architecture. The deployed

application may use one or more threads, and it may be programmed in languages such as

E. Execution Model

237

C, C++ or Java. The introduced Message Service has a runtime library for each processing

unit/programming language combination that is used by the software components to

communicate with other components in the same thread, between threads on the same

processing unit or between processing units either synchronously or asynchronously.

Message Service Communication Types

Because different protocols can be used with Ethernets, depending on the requirements

of the system, there should be flexibility with respect to the choice of the appropriate

protocol. In addition, each processing unit may have different communication methods for

inter-thread and intra-thread communication. This significantly affects the architecture of

the Message Service, which has to be sufficiently abstract that it can be utilized by any

processing unit and any programming language, and sufficiently concrete to fulfil the

requirements of speed, code size and memory consumption that exist when using the

processing unit and language specific methods. The following aspects have to be

considered in the middleware:

 Node

 Thread

 Programming language

 Java Runtime Environment

 Operating system (Windows, Linux, PowerPC and Integrity)

 Synchronous/asynchronous method calls

A comparison of the middlewares that were evaluated to implement the logical

communication framework is given in Section 9.2.

Logical Communication Framework

Figure 140 shows the logical communication framework in its complete stage of

expansion. Each processing unit has at least one thread with a message service. A thread

uses pre-emptive scheduling with no memory protection. Therefore, there is exactly one

message service in a thread and a thread may have one or more actors. The message

service provides the middleware for communicating within a thread, between the threads

on one node and between threads on different nodes.

E. Execution Model

238

Processing Unit 1 (DSP)

Thread 1

Message

Service

Thread 2

Message

Service

Thread 3

Message

Service

Actor 1 Actor 2

Processing Unit 2 (PC)

Thread 1

Message

Service

Thread 2

Message

Service

Thread 3

Message

Service

Actor 1 Actor 2

ICE

(full connected)

Figure 140: Communication overview.

Running Loop

Within a thread, the endless loop is controlled by a while loop which has a blocking call

to read from one or more external queues. ‘Blocking’ means that it waits for a message on

the external queue. If there are no messages, the thread sleeps and does not consume

processing time.

Thread {

 Init();

 while (1){

 Receive (…..,WAIT_FOREVER);

 switch(msg){

 case 1:

 ...

 break;

 case 2:

 …

 break;

 }

}

Statemachine

 Blocking read of

one or more external

queues
Endles loop

Figure 141: Running loop of a thread.

E. Execution Model

239

Scheduling

The scheduling is illustrated in Figure 142. First, internal events are processed, followed

by external events. This execution model provides a ‘run to completion’ feature in order to

first complete the internal state machine before processing external events.

Check internal

queue

Empty
No

Yes

Check external

queue

Process

message

Process

message

Figure 142: Event scheduling.

Thread Priorities

The priorities of threads may be settable on a processing unit. Within the execution

model, thread priorities are used to allow more control over the runtime behaviour of the

system. Threads with higher priorities are always executed first, and then the processing

time is given to other threads. This complies with the pre-emptive threading model.

E. Execution Model

240

Operating system (DSP, PC)

HW

RT-Lib

Thread 2Thread 1 Thread 3

Actorclass

Actorclass

Actorreference

Actorclass

Actorreference

RT-LibDriver Driver

Thread {

 Init();

 while (1){

 Receive(..,WAIT_FOREVER);

 switch(msg){

 case 1:

 ...

 break;

 case 2:

 …

 break;

 }

}

OS Queue

Priority control of the operating system

OS Queue (optional)

Internal Queue

M
s
g

 P
rio

OS Queue (optional)

Internal Queue

M
s
g

 P
rio

run to completion run to completionrun to completion

Figure 143: Thread priorities.

Hardware events

Hardware events, for example from the joystick, have to be transformed into a message

format which conforms to the execution model. This is realized in interrupt routines. In

Windows, the Java programming language has a hardware abstraction layer, which usually

uses a listener concept. The listener implementation is then used to transform the event to a

message. The message is processed either in an interrupt routine or in an event listener,

which sends the message to a predefined port of an actor (see Figure 144).

E. Execution Model

241

HW

Runtime-Library

Thread 2

Actorclass

„Driver 1“

- Port myPort;

+ config()

+ registerPort()

External Queue

Internal Queue

M
s
g

 P
rio

run to completion

Operating System (DSP, PC)

InterruptPort

Driver1.config();

Driver1.registerPort(interruptPort);

ISR

...
myPort.raise();

myPort = interruptPort;

Figure 144: Interrupt handling.

Message concept

Messages are passed instead of calling methods directly. These messages have the

required information to be delivered to the receiver. This makes the system more generic,

and message handling is executed only within the sender, receiver and the message service.

The message service routes the messages to the right receiver. A message service runs in

its own thread and it is identified by the IP address and the port of the host.

Thread-Internal-Communication

A thread contains one or more actors that may communicate either synchronously or

asynchronously. For communication, messages are sent to the message service, which

routes the message to the receiver port. Only programming language specifics are utilized.

Inter-Thread-Communication

Between two different threads on one node, the message services have to be able to

exchange messages, and this is accomplished by adding messages to the external message

queue of the receiver message service. This approach therefore considers inter thread

timing.

E. Execution Model

242

If the two actors are written in different programming languages, marshalling is

required to convert messages, such as the conversion from the C++ to the Java format and

vice versa. The evaluated internet communication engine (ICE) middleware is capable of

accomplishing this.

Inter-Node-Communication

The most complex work was carried out for inter node communication, where the nodes

have to be capable of connecting to other nodes. CORBA is a famous communication

middleware that was developed for such cases. However, since CORBA is quite complex,

the ICE middleware was chosen. When compared to CORBA, it was found to be simpler

to use and faster, although it is not standardized.

Message Sending Examples

The communication between actors is controlled by the message service. The external

communication between actors passes through the ports of the deployable actors, but

messages are also passed within an actor and may execute a self-trigger to its own state

machine. The message service defines communication mechanisms, which differentiate

between internal, external, synchronous and asynchronous communication. The message

data types are defined in the ICE middleware project. Table 17 shows the parameters of the

messages. Below, some examples are used to explain internal and external message

sending.

Parameter Description

Signal The signal name is the minimal information that has to be sent within a message
and is provided by the ports.

Message

Data

Additional data may be sent with the message. This data may be structured

individually.

Table 17: Message parameters.

Internal messages are used for the communication within the actor. These messages

may be sent from anywhere within this actor. The construction of a simple internal

message is shown in Listing 14. A new internal message with message data is created

using the signal ‘StartIn’. It is sufficient to know the message service that is available for

each actor. The message is sent directly to the Finite-State-Machine without using any

ports to the internal queue.

msgService.sendMessage(_JoystickDeviceControlPort._StartIn, msgData);

Listing 14: Simple internal message.

E. Execution Model

243

External messages are used for communication with other deployable actors. An

example of a broadcast external message is shown in Listing 15. This message is sent to all

the deployable actors that are connected to the port. In this example, the signal ‘StartIn’ is

sent. Moreover, the sending port is selected through port definitions. This asynchronous

message does not contain message data.

_JoystickDevicePort.sendBroadcast(_JoystickDeviceControlPort._StartIn);

Listing 15: Broadcasting external message.

Listing 16 shows an external message sent both asynchronously and synchronously

through a port. The receiver is defined within the Enterprise Architect UML model and

does not need to be specified. This allows the re-use of actors.

_JoystickDevicePort.sendMessage(_JoystickDeviceControlPort._DeviceInitFailedOu

t);

_JoystickDevicePort.invokeMessage(_JoystickDevicePort._SetStatus);

Listing 16: Pointed external message.

244

F. Kohonen Map

The neural network algorithm performs a search for each data input vector to find the

best matching unit , which is the neuron with the minimum distance to the input

vector. and its neighbouring neurons are adapted by learning rules and update

their weights. The network was designed as a two-layered network consisting of an input

layer of neurons that are directly and entirely connected to an output layer. The output

layer was organized as a two-dimensional grid, as depicted in Figure 145. is the weight

vector associated to the neuron placed at position on the grid.

Figure 145: The Kohonen Map.

The network is trained by unsupervised learning on an input vector { }.

For each vector presented to the input layer, a competition between the neurons takes

place. Each neuron calculates the distance ().

(118) () ‖ ‖
 .

The neuron with the closest weight vector to is the best matching unit of the

competition.

(119) (())

 learns the input vector by moving closer to it.

(120)

 (𝑡) (
)(

)

F. Kohonen Map

245

Figure 145 illustrates the weight change process of neuron in the original input

space. In equation (120), (𝑡) is the learning rate, a real parameter that decreases linearly

with the learning process with equation (121).

(121) (𝑡) ()(𝑡)

 (
) defines the Gaussian or Mexican hut kernel weight of

‖
 ‖. The learning step is also extended to the neighbours of the winner neuron

 . The neighbours of are the output elements whose distance to the , as

measured on the grid, is not greater than the decreasing neighbourhood parameter over

time.

246

G. Node Movement Calculation

The two-dimensional case is calculated in equation (122) with the illustration in Figure

146, where ⃗⃗ ⃗⃗ ⃗⃗⃗ is the movement vector, ⃗ is the movement result vector and ⃗⃗⃗⃗⃗ is the

obstacle node connection vector.

Figure 146: Vectors of movement.

(122) ⃗ (| ⃗⃗ ⃗⃗ ⃗⃗ ⃗| | ⃗⃗⃗⃗⃗|) ⃗⃗⃗⃗⃗ 𝑡 ()

For the three-dimensional case, the collision is between a vector and a polygon. A

vector that collides with a polygon must be recalculated so that its direction is parallel to

the polygon surface.

G. Node Movement Calculation

247

Figure 147: Recalculation of the node movement vector.

Below, the projection of a vector onto a polygon is calculated. The formulas for the

parametric form of a layer and a straight line are given in equation (123) and (124),

respectively.

(123) ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

(124) ⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

where ⃗⃗⃗ the normal vector of the layer. Two helping straight lines are defined in (125)

and (126). The intersection of the helping straight lines with the layer are named and .

(125) ⃗ ⃗⃗

(126) ⃗ ⃗⃗

Point is calculated in (127).

(127) ⃗ ⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

The normal form of the layer E is given in (128) and (129).

(128) ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

G. Node Movement Calculation

248

(129) ⃗⃗ (⃗⃗ ⃗⃗⃗)

The intersection of the auxiliary straight line 1 given in (125), and the layer given in

(129) is calculated using the formulas (130) and (131):

(130) ⃗⃗ (⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗) ⃗⃗ (⃗ ⃗⃗ ⃗⃗⃗) ⃗⃗
 ⃗⃗ (⃗ ⃗⃗ ⃗⃗⃗)

 ⃗⃗

(131)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

The intersection of the auxiliary straight line 2 given by (126) and the layer given in

(129) is calculated in the formulas (132) and (133).

(132) ⃗⃗ (⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗) ⃗⃗ (⃗ ⃗⃗ ⃗⃗⃗) ⃗⃗
 ⃗⃗ (⃗ ⃗⃗ ⃗⃗⃗)

 ⃗⃗

(133)
⃗⃗ ⃗⃗ ⃗ ⃗⃗

Finally, the resulting vector ⃗ is calculated by (134):

(134) ⃗ ⃗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

Finally, the node moves in the direction of ⃗.

249

H. Plugin Manager

The Java side ‘Plugin Manager’ component includes four functions, and is a Java

component that is able to call C/C++ functions of DLLs, which allowed source code reuse.

The init function is responsible for setting the library path and loading the

PPA_Plugin_Manager.dll, which is the gateway between Java and native libraries.

Additional methods are provided to execute a library function call, and the choice of

function to be used depends on the expected return type. ‘Invoke(…)’ is used when a single

value is expected (e.g. int). If an array or a two-dimensional array is expected

‘invokeArray(…)’ and ‘invoke2DArray(…)’ are used, respectively. Each of these functions

has almost the same parameters. Listing 17 shows the ‘invoke(…)’ method.

public static Object invoke(PPA_TYPES returnType, String dllName, String

methodName, LinkedList<Object> params, Object jobj)

Listing 17: Invoke method from Plugin Manager.

The parameter returnType shows which type of data is expected as return value. The

possibilities are VOID, INT, FLOAT, DOUBLE, STRING, INT_1D, FLOAT_1D,

DOUBLE_1D, INT_2D, DOUBLE_2D, FLOAT_2D and BOOLEAN. Each of the functions

expects three parameters. The first and the second ones are the name of the library file to

load and the function name to be called (String dllName, String function), respectively. The

third parameter is a linked list from the Java collection framework (LinkedList<Object>

params), and contains the parameters that are passed to the library function. The generic

type is ‘Object’, because the list may contain different variable types. To allow the native

method to do a call back, an instance of the calling class is passed as the final argument

(Object jobj).

The Plugin Manager (PPA_Plugin_Manager.dll) buffers loaded functions to increase

performance. The two functions addDll(String dllName) and releaseDll(String dllName)

are responsible for loading and unloading libraries, respectively. Each of them takes a

String as the parameter that contains the path to the library.

A function call is executed as follows. First, a linked list with arguments is created, and

second, the library file is loaded. After these two steps, one or more functions from the

library can be executed. Finally, the library file is again unloaded to de-allocate the used

recourses.

H. Plugin Manager

250

The ‘dyncall’ (Adler and Philipp, 2011) library provides a clear and portable C application

interface to dynamically issue calls to foreign code using small call kernels written in

assembler. It was utilized within the plugin manager.

JNI Usage

The Java Native Interface (JNI) is a programming framework that allows Java code

running in a Java Virtual Machine (JVM) to call and to be called by native applications.

The latter are programs specific to a hardware operating system platform as well as

libraries written in other languages, such as C++.

The JNI framework lets a native method utilize Java objects in the same way in which

Java code uses these objects. A native method may create Java objects and then inspect and

use these objects to perform its tasks.

Because JNI should communicate with the GenericRuntimeLib, it is used to create C++

header files with javah. Within a C++ development environment such as Visual Studio,

they then define the interfaces required to implement the main program. During the build,

the post build event copies the dll and pdb (debug information for debugging) to the Java

project root directory, where they may be used with JNI.

Marshalling of data types

Different data types that are exchanged by function calls have to be considered. All

native data types are mapped with Java data types, and may be directly converted by JNI.

For compound types such as objects, arrays and strings, the program must explicitly

convert the data before passing them to methods, and vice versa. Table 18 shows the

mapping of native types between Java and native code.

Native Type Java Language Type Description

unsigned char jboolean unsigned 8 bits

signed char jbyte signed 8 bits

unsigned short jchar unsigned 16 bits

Short jshort signed 16 bits

Long jint signed 32 bits

long long int64 jlong signed 64 bits

Float jfloat 32 bits

double jdouble 64 bits

Table 18: Mapping of Java data types to native types.

H. Plugin Manager

251

JNIEnv*

A JNI interface pointer (JNIEnv*) is passed as an argument to each native function.

This allows interaction with the JNI environment within the native method. For example, it

may be used to determine the class name of a passed object or to create new Java objects

from native code. The JNI interface pointer remains valid only in the current thread. Other

threads must first call AttachCurrentThread() to attach themselves to the JVM and obtain a

valid JNI interface pointer. Once attached, a native thread works like a regular Java thread

running within a native method, and remains attached to the JVM until it calls

DetachCurrentThread(). Listing 18 and Listing 19 show how threads are attached to, and

detached from the JVM.

JNIEnv *env;

(*g_vm)->AttachCurrentThread (g_vm, (void **) &env, NULL);

Listing 18: Attach native thread to JVM.

(*g_vm)->DetachCurrentThread (g_vm);

Listing 19: Detach native thread from JVM.

Implementation

This subsection describes the implementation of the call chain shown in Figure 118.

The Java program uses the Plugin Manager, which is a library file, and was developed in

C++ using Visual Studio. It implements the header files that were generated by javah, and

has the ability to load further library files containing functions for execution. After

execution, the result is passed back to the java program. The plugin manager contains the

interface between Java and the native code shown in Listing 20.

private static native Object pluginManagerInvoke(int returnType,

String dllName, String methodName, LinkedList<Object> parameters,

int resultArrayFirstDim, int resultArraySecondDim);

Listing 20: Native method definition in java class.

The arguments that are passed to the function are listed in Table 19.

H. Plugin Manager

252

Name Type Description

returnType Int The excepted return type

dllName String Name of the dll-ile to load

methodName String Name of the method to call

parameters LinkedList<Object> The parameters that should be

pushed to the method

resultArrayFirstDim Int Size of the return array (if expected)

resultArraySecDim Int Size of the second dimension of the

return array (if expected)

Table 19: Data types.

The plugin manager may perform a successful execution only if it knows of the data

types of the arguments and the result. While this is required to allow the allocation of

sufficient memory for the native function, the result has to be converted to a correct Java

object before it is passed back. Because the allocation of dynamic arrays is not possible in

C or C++, the array length also has to be passed. To determine which data type to use,

these are mapped to a predefined integer value, and can thus be correctly instantiated.

Table 20 shows the mapping from the integer value to the data type.

Int type Interpretation

0 int

1 float

2 double

3 string

4 int[]

5 float[]

6 double[]

7 Int[][]

8 float[][]

9 double[][]

Table 20: Return types.

Arguments are passed within a LinkedList<Object>, which should contain the type of

the argument, as shown in the table above, and then the argument. For example, a string

and an integer array are passed in the linked list, as shown in Listing 21.

LinkedList<Object> testList = new LinkedList<Object>();

int[] intArray = { };

testList.add(3);

testList.add(new String(“Hallo”));

testList.add(4);

testList.add(intArray);

Listing 21: Creating a linked list.

H. Plugin Manager

253

Before executing the native function, the plugin manager first determines the size of the

passed argument list, which has to be a multiple of two because there is always a pair

containing the data type definition and data given. After this, each object from the passed

LinkedList<Object> is changed to the corresponding native type, depending on the type

given in the LinkedList. The native types are saved in a structure (‘struct st_param’), and

they are then pushed to the native method using ‘dyncall’.

After the execution, the return value is changed back to the expected type, and it is

passed back to the Java Program.

The header file used by the PPA_Plugin_Manager.cpp is auto-generated by JNI, and so

the following functions have to be implemented:

 The function pluginManagerAddDll loads a library file.

 The corresponding function pluginManagerReleaseDll unloads a given library file.

 The function pluginManagerInvoke was used as discussed above.

The Plugin Manager also throws exceptions, which are passed back to the java program,

so that the user is informed about errors that occurred. Exceptions are thrown when the

library file or the function may not be found. Furthermore, the size of the argument list has

to be a multiple of two (always a pair of return type and argument), and it is detected when

there is an incorrect argument number, either at the return type or in the argument list. An

exception may also be thrown when the maximum number of loadable library files is

reached. The plugin manager is now capable of loading up to 10 library files.

254

I. Sample Source Code

I.1 Message Service

package de.kohrt.ppa.common.messageservice;

import java.net.InetAddress;

...

public class MessageService extends _ITransmitIceDisp implements IMessageService,

Runnable {

 private static final long serialVersionUID = -8864537422336502554L;

 private static Logger log = Logger.getLogger(MessageService.class);

 private static Vector<MessageService> messageServices = new

Vector<MessageService>();

 private HashMap<String, ITransmitIcePrx> iceProxies = new HashMap<String,

ITransmitIcePrx>();

 public Ice.Communicator serverIceCommunicator = Ice.Util.initialize();

 private String internetAdress = "localhost";

 private String internetPort = "10000";

 private void destructConnections() {

 for (ITransmitIcePrx proxy : iceProxies.values()) {

 proxy.ice_getCommunicator().destroy();

 }

 }

 @Override

 public String getInternetAdress() {

 return internetAdress;

 }

 private void setInternetAdress(String internetAdress) {

 this.internetAdress = internetAdress;

 }

 @Override

 public String getInternetPort() {

 return internetPort;

 }

 private void setInternetPort(String internetPort) {

 this.internetPort = internetPort;

 }

 private EventListenerList messageServiceListeners = new EventListenerList();

 private ActorPriorityQueue apq = new ActorPriorityQueue(100);

 public Boolean disposed = false;

 public boolean isDisposed() {

 return disposed;

 }

 private HashMap<String, IMessageServiceListener> addressbook = new HashMap<String,

IMessageServiceListener>();

 private Vector<DeployableActor> deployableActors;

 private boolean running = false;

 private ObjectAdapter iceAdapter;

 private MessageService iceObject;

 public Object lock = new Object();

 @Override

 public int hashCode() {

 final int prime = 31;

 int result = 1;

 result = prime * result + ((this.internetAdress == null) ? 0 :

this.internetAdress.hashCode());

I. Sample Source Code

255

 result = prime * result + ((this.internetPort == null) ? 0 :

this.internetPort.hashCode());

 return result;

 }

 @Override

 public boolean equals(Object obj) {

 if (this == obj)

 return true;

 if (obj == null)

 return false;

 if (getClass() != obj.getClass())

 return false;

 MessageService other = (MessageService) obj;

 if (this.internetAdress == null) {

 if (other.internetAdress != null)

 return false;

 } else if (!this.internetAdress.equals(other.internetAdress))

 return false;

 if (this.internetPort == null) {

 if (other.internetPort != null)

 return false;

 } else if (!this.internetPort.equals(other.internetPort))

 return false;

 return true;

 }

 private MessageService(String ip, int port, Vector<DeployableActor>

deployableActors) throws Exception {

 init(ip, port, deployableActors);

 }

 private void init(String ip, int port, Vector<DeployableActor> deployableActors)

throws Exception {

 this.deployableActors = deployableActors;

 setInternetPort(new Integer(port).toString());

 setInternetAdress(ip);

 try {

 iceAdapter =

serverIceCommunicator.createObjectAdapterWithEndpoints("Adapter" + ip + port, "tcp -h "

+ ip + " -p " + port);

 iceObject = this;

 iceAdapter.add(iceObject, serverIceCommunicator.stringToIdentity(ip +

port));

 iceAdapter.activate();

 } catch (Ice.LocalException e) {

 e.printStackTrace();

 } catch (Exception e) {

 System.err.println(e.getMessage());

 }

 }

 public void connect() throws Exception {

 for (int i = 0; i < this.deployableActors.size(); i++) {

 deployableActors.get(i).connect(iceProxies);

 }

 }

 private void close() throws MessageServiceIceException {

 this.running = false;

 this.apq.stop();

 if (serverIceCommunicator != null) {

 serverIceCommunicator.shutdown();

 serverIceCommunicator.destroy();

 // iceAdapter.destroy();

 iceObject = null;

 }

 this.destructConnections();

I. Sample Source Code

256

 if (MessageService.messageServices.contains(this))

 MessageService.messageServices.remove(this);

 }

 private static long id = 0;

 private MessageService(Vector<DeployableActor> deployableActors) throws Exception {

 init(InetAddress.getLocalHost().getHostAddress(), new Integer(internetPort),

deployableActors);

 }

 private static void startMsgServiceThread(MessageService msgService) throws

Exception {

 if (MessageService.messageServices.contains(msgService)) {

 String mes = "It is not allowed to create multiple message services

(more than one) on a single node.";

 log.error(mes);

 throw new Exception(mes);

 } else

 MessageService.messageServices.add(msgService);

 Thread tid = new Thread(msgService);

 tid.setName("MsgService: " + msgService.internetAdress + ":" +

msgService.internetPort);

 tid.start();

 while (!msgService.running)

 Thread.sleep(100);

 }

 public synchronized static MessageService createMessageService(String ip, int port,

Vector<DeployableActor> deployableActors) throws Exception {

 // create msgservice in new thread

 MessageService msgService = new MessageService(ip, port, deployableActors);

 if (deployableActors != null) {

 // Init deployable actors

 for (DeployableActor deployableActor : deployableActors) {

 deployableActor.init(msgService);

 }

 }

 startMsgServiceThread(msgService);

 return msgService;

 }

 @Override

 public void addMessageServiceListener(IMessageServiceListener listener, String name)

{

 addressbook.put(name, listener);

 messageServiceListeners.add(IMessageServiceListener.class, listener);

 }

 @Override

 public void run() {

 try {

 this.running = true;

 while (true) {

 if (disposed == true) {

 if (apq.size() == 0)

 break;

 }

 pollMessage();

 }

 close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 @Override

I. Sample Source Code

257

 public void removeMessageServiceListener(IMessageServiceListener listener) throws

Exception {

 messageServiceListeners.remove(IMessageServiceListener.class, listener);

 addressbook.remove(listener.getMessageServiceId());

 if (addressbook.size() == 0) // shutdown connections and message service

 {

 apq.stop();

 disposed = true;

 synchronized(lock)

 {

 lock.notify();

 }

 }

 }

 private boolean isSentToOtherNode(MsgIce msg) {

 MsgIce m = msg;

 if(msg.receiverPort==null) return false;

 String ip = msg.receiverPort.netIp;

 String ownIp = getInternetAdress();

 return !(msg.receiverPort==null || ip.equalsIgnoreCase(ownIp) ||

ip.equalsIgnoreCase(""));

 }

 private boolean isSentToSameThread(MsgIce msg) {

 String ownIp = getInternetAdress();

 String ip = msg.receiverPort.netIp;

 String port = msg.receiverPort.netPort;

 String ownPort = getInternetPort();

 return (ip.equalsIgnoreCase(ownIp) || ip.equalsIgnoreCase("")) &&

(port.equalsIgnoreCase(ownPort) || port.equalsIgnoreCase(""));

 }

 private boolean isSentToOtherThreadOnSameNode(MsgIce msg) {

 String port = msg.receiverPort.netPort;

 String ip = msg.receiverPort.netIp;

 String ownIp = getInternetAdress();

 String ownPort = getInternetPort();

 return ((ip.equalsIgnoreCase(ownIp) || ip.equalsIgnoreCase("")) &&

!(port.equalsIgnoreCase(ownPort) || port.equalsIgnoreCase("")));

 }

 private void pollMessage() {

 MsgIce msg = apq.pollMessage();

 if (msg == null)

 return;

 try {

 if (msg.receiverPort == null || msg.receiverPort.portName == null ||

msg.receiverPort.portName == "") {

 log.error("Receiver port must be provided!");

 } else

 {

 IMessageServiceListener listener =

addressbook.get(msg.receiverPort.portName);

 if (listener != null) {

 /*

 * Send message through listener notification.

 */

 listener.asyncMessageArrived(msg);

 } else {

 log.warn("Port '" + msg.receiverPort.portName + "' is

not ready. Waiting 100ms... and retry.");

 Thread.sleep(100);

 listener = addressbook.get(msg.receiverPort.portName);

 if (listener != null) {

 listener.asyncMessageArrived(msg);

I. Sample Source Code

258

 } else {

 /*

 * ERROR

 */

 log.error("Receiver '" +

msg.receiverPort.portName + "' not found!");

 }

 }

 }

 } catch (MessageServiceOverrun e) {

 e.printStackTrace();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 @Override

 public MsgData processMsg(MsgIce msg, Ice.Current current) throws Error {

 try {

 return invokeMessage(msg);

 } catch (Exception e) {

 throw new Error(e.getStackTrace().toString());

 }

 }

 private MsgData invokeMessage(MsgIce msg) throws Exception {

 log.debug("Invoke message " + msg.signalName + " MessageService: " +

this.internetAdress + ", " + this.internetPort);

 if(isSentToOtherNode(msg) || isSentToOtherThreadOnSameNode(msg)) {

 return doInterThreadCall(msg);

 } else if (isSentToSameThread(msg)) {

 return doInnerThreadCall(msg);

 } else {

 throw new Exception("Unknown message service error!");

 }

 }

 @Override

 public MsgData invokeMessage(SignalInOut signalName, PortId senderPort,

Vector<PortId> receiverActorPorts, MsgData msgData) throws Exception {

 if (receiverActorPorts.size() > 1)

 throw new Exception("Sync methods do not support multiple target

ports! (" + senderPort.portName + ")");

 if (receiverActorPorts.size() == 0)

 throw new Exception("No target port connected! (" +

senderPort.portName + ")");

 MsgIce msg = new Msg(signalName, senderPort, receiverActorPorts.get(0),

ECommunicationMode.SYNC, msgData);

 return invokeMessage(msg);

 }

 @Override

 public void sendMessage(SignalOut signalName, PortId senderPort, Vector<PortId>

receiverActorPorts, MsgData msgData) throws Exception {

 if(receiverActorPorts.size()==0)

 log.warn("The port " + senderPort.portName + " ("+signalName.name+")

has no receiver. Is a receiver connected?");

 for (PortId receiverActorPort : receiverActorPorts) {

 MsgIce msg = new Msg(signalName, senderPort, receiverActorPort,

ECommunicationMode.ASYNC, msgData);

 invokeMessage(msg);

 }

 }

 private MsgData doInterThreadCall(MsgIce msg) throws Exception {

 ITransmitIcePrx proxy = null;

 String proxyIdent = "";

 try {

 proxyIdent = msg.receiverPort.netIp + msg.receiverPort.netPort;

 proxy = iceProxies.get(proxyIdent);

I. Sample Source Code

259

 } catch (Exception e) {

 System.out.println(e);

 }

 if (proxy == null)

 throw new Exception("Could not find the proxy " + proxyIdent + "!");

 if (msg.comMode.equals(ECommunicationMode.SYNC)) {

 return proxy.processMsg(msg);

 } else if (msg.comMode == ECommunicationMode.ASYNC) {

 Ice.AsyncResult r = proxy.begin_processMsg(msg);

 try {

 return proxy.end_processMsg(r);

 } catch (Error e) {

 e.printStackTrace();

 return null;

 }

 } else if (msg.comMode.equals(ECommunicationMode.FSMSYNC)) {

 return proxy.processMsg(msg);

 } else {

 return null;

 }

 }

 private MsgData doInnerThreadCall(MsgIce msg) throws Exception {

 if (msg.comMode == ECommunicationMode.FSMSYNC) {

 // Synchron

 if (msg.receiverPort.portName == null || msg.receiverPort.portName ==

"") {

 throw new Exception("Broadcast sync Message is not

allowed!");

 }

 IMessageServiceListener listener =

addressbook.get(msg.receiverPort.portName);

 if (listener != null) {

 /*

 * Send message through listener notification.

 */

 return listener.fsmSyncMessageArrived(msg);

 } else {

 /*

 * ERROR

 */

 throw new Exception("Receiver '" + msg.receiverPort.portName

+ "' not found!");

 }

 } else if (msg.comMode == ECommunicationMode.ASYNC) {

 apq.pushMessage(msg);

 return null;

 } else if (msg.comMode == ECommunicationMode.SYNC) {

 if (msg.receiverPort.portName == null || msg.receiverPort.portName ==

"") {

 throw new Exception("Broadcast sync Message is not

allowed!");

 }

 /*

 * Receiver is known

 */

 IMessageServiceListener listener =

addressbook.get(msg.receiverPort.portName);

 if (listener != null) {

 return listener.invokeMethod(msg);

 } else {

 /*

 * ERROR

 */

 throw new Exception("Receiver '" + msg.receiverPort.portName

+ "' not found!");

I. Sample Source Code

260

 }

 } else {

 log.warn("Communication mode " + msg.comMode + " is unknown!");

 return null;

 }

 }

 @Override

 public void releasePort(ActorPort port) throws Exception {

 removeMessageServiceListener(port);

 }

 @Override

 public Communicator getCommunicator() {

 return serverIceCommunicator;

 }

 @Override

 public void sendMessage(SignalOut signalName, PortId senderPort, Vector<PortId>

receiverActorPorts) throws Exception {

 for (PortId receiverActorPort : receiverActorPorts) {

 MsgIce msg = new Msg(signalName, senderPort, receiverActorPort,

ECommunicationMode.ASYNC, null);

 invokeMessage(msg);

 }

 }

 @Override

 public void sendMessage(SignalIn signalName) throws Exception {

 MsgIce msg = new Msg(signalName, signalName.port, null);

 invokeMessage(msg);

 }

 @Override

 public void sendMessage(SignalIn signalName, MsgData msgData) throws Exception {

 MsgIce msg = new Msg(signalName, signalName.port, msgData);

 invokeMessage(msg);

 }

 @Override

 public MsgData invokeFsmMessage(SignalInOut signalName, PortId senderPort,

Vector<PortId> receiverActorPorts, MsgData msgData) throws Exception {

 if (receiverActorPorts.size() > 1)

 throw new Exception("Sync methods do not support multiple target

ports! (" + senderPort.portName + ")");

 if (receiverActorPorts.size() == 0)

 throw new Exception("No target port connected! (" +

senderPort.portName + ")");

 MsgIce msg = new Msg(signalName, senderPort, receiverActorPorts.get(0),

ECommunicationMode.FSMSYNC, msgData);

 return invokeMessage(msg);

 }

 @Override

 public void sendReplyMessage(SignalOut signalName, PortId replyPort, PortId

senderPort) throws Exception {

 sendReplyMessage(signalName, replyPort, senderPort, null);

 }

 @Override

 public void sendReplyMessage(SignalOut signalName, PortId replyPort, PortId

senderPort, MsgData msgData) throws Exception {

 MsgIce msg = new Msg(signalName, senderPort, replyPort,

ECommunicationMode.ASYNC, msgData);

 invokeMessage(msg);

 }

 public void waitForDispose() throws Exception {

 waitForDispose(0);

 }

 public void waitForDispose(int i) throws Exception {

I. Sample Source Code

261

 if (disposed != true)

 {

 synchronized (lock) {

 try {

 lock.wait(i*1000);

 if(disposed==false)

 throw new Exception("MessageService not

disposed in '" + i + "' seconds!");

 } catch (InterruptedException e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 }

 }

}

I.2 Robot Kinematics

Forward Calculation
public CartesianWorldPosition forwardKinematic(JointPosition position) {

 double j1 = (position.joints.get(0)) * 180. / M.PI;

 double j2 = (position.joints.get(1)) * 180. / M.PI;

 double j3 = position.joints.get(2) * 180. / M.PI;

 double j5 = (position.joints.get(4)) * 180. / M.PI;

 double j6 = (position.joints.get(5)) * 180. / M.PI;

 if (false == checkRobotJointRangesGrad(j1, j2, j3, j5, j6))

 return null;

 j1 = position.joints.get(0) + Math.PI;

 j2 = position.joints.get(1) + Math.PI / 2.;

 j3 = position.joints.get(2) + 0;

 j5 = position.joints.get(4) + Math.PI / 2.;

 j6 = position.joints.get(5) + Math.PI / 2.;

 Matrix4d m = MitsubishiRV2AJ.getAi(300., j1, 0., M.PI / 2.);

 m.mul(MitsubishiRV2AJ.getAi(0., j2, 250., 0));

 m.mul(MitsubishiRV2AJ.getAi(0., j3, 160., 0.));

 m.mul(MitsubishiRV2AJ.getAi(0., j5, 0., M.PI / 2.));

 m.mul(MitsubishiRV2AJ.getAi(72., j6, 0., 0.));

 m.mul(MitsubishiRV2AJ.getAi(0., 0., 0., 0.));

CartesianWorldPosition pos = new CartesianWorldPosition(m.m03, m.m13, m.m23, m.m00,

m.m10, m.m20, m.m01, m.m11, m.m21, m.m02, m.m12, m.m22);

 return pos;

}

I. Sample Source Code

262

Inverse Calculation

public Vector<JointPosition> inverseKinematic(CartesianWorldPosition p) {

 int z = 10;

 if (p == null) {

 log.error("Cartesian world position is NULL!");

 return new Vector<JointPosition>();

 }

 Point position = calculateMainAxesPositionFromTCPPosition(p);

 Vector<JointPosition> v = new Vector<JointPosition>();

 int[] c1 = { 1, -1 };

 int[] c2 = { 1, -1 };

 double[] tetas = new double[] { 0, 0, 0, 0, 0 };

 for (int i = 0; i < c1.length; i++) {

 for (int j = 0; j < c2.length; j++) {

 boolean error = calculateMainAxes(tetas, position, c1[i], c2[j]);

 if (!error)

 continue;

 calculateAuxilaryAxes(tetas, p);

 // Prepare output variable

 JointPosition ro = new JointPosition(new ArrayList<Double>());

 ro.joints.add(0, convertAngle(tetas[0]));

 ro.joints.add(1, convertAngle(tetas[1]));

 ro.joints.add(2, convertAngle(tetas[2]));

 ro.joints.add(3, 0d);

 ro.joints.add(4, convertAngle(tetas[3]));

 ro.joints.add(5, convertAngle(tetas[4]));

 ro.joints.add(6, 0d);

 ro.joints.add(7, 0d);

 tetas = new double[] { 0, 0, 0, 0, 0 };

 if (!contains(v, ro)) {

 printAllRobotJoints(ro);

 if (checkRobotJointRanges(ro.joints.get(0), ro.joints.get(1),

ro.joints.get(2), ro.joints.get(4), ro.joints.get(5))) {

 v.add(ro);

 } else

 log.info("Position not allowed!");

 }

 }

 }

 return v;

}

I. Sample Source Code

Common Transformation Equation
public static Matrix4d getAi(double d, double teta, double a, double alpha) {

 Matrix4d m = new Matrix4d();

 m.setElement(0, 0, M.cos(teta));

 m.setElement(0, 1, -M.cos(alpha) * M.sin(teta));

 m.setElement(0, 2, M.sin(alpha) * M.sin(teta));

 m.setElement(0, 3, a * M.cos(teta));

 m.setElement(1, 0, M.sin(teta));

 m.setElement(1, 1, M.cos(alpha) * M.cos(teta));

 m.setElement(1, 2, -M.sin(alpha) * M.cos(teta));

 m.setElement(1, 3, a * M.sin(teta));

 m.setElement(2, 0, 0);

 m.setElement(2, 1, M.sin(alpha));

 m.setElement(2, 2, M.cos(alpha));

 m.setElement(2, 3, d);

 m.setElement(3, 0, 0);

 m.setElement(3, 1, 0);

 m.setElement(3, 2, 0);

 m.setElement(3, 3, 1);

 return m;

}

I. Sample Source Code

I.3 Program Export

public void exportProgram(StateMachineContext context) throws Exception {

 log.info("exportProgram");

 MsgIce arrivedMsg = getMessage(context);

 nodes = ((MsgDataExportProgram) arrivedMsg.msgData).nodesVector;

 pOutputType.value = ((MsgDataExportProgram) arrivedMsg.msgData).mode.name();

 pRobotType.value = ((MsgDataExportProgram) arrivedMsg.msgData).robotType.name();

 if (pOutputType.value.equals(EOutputType.FILE.name())) {

 if (pRobotType.value.equals(ERobotType.MITSUBISHI.name())) {

generateFile(new T_mitsubishi_program_bas(), "MitsubishiProgram.bas",

pFilePath.value, trajectory);

 generateFile(new T_mitsubishi_positions_bas(),

"MitsubishiPositions.bas", pFilePath.value, trajectory);

 } else if (pRobotType.value.equals(ERobotType.PSEUDO.name())) {

 generateFile(new T_pseudo_program_bas(), "PseudoProgram.bas",

pFilePath.value, trajectory);

 generateFile(new T_pseudo_positions_bas(),

"MitsubishiPositions.bas", pFilePath.value,

trajectory);

 } else if (pRobotType.value.equals(ERobotType.SIMULATOR.name())) {

 generateFile(new T_simulator_program_bas(),

"SimulatorProgram.bas", pFilePath.value, trajectory);

 generateFile(new T_simulator_positions_bas(),

"SimulatorPositions.bas", pFilePath.value,

trajectory);

 } else {

 fireEvent(_RaiseError, new MsgDataRaiseError("Robot type '" +

pRobotType.value + "' not defined!"));

 }

 } else if (pOutputType.value.equals(EOutputType.DIRECTCONTROL.name())) {

 // TODO

 } else {

fireEvent(_RaiseError, new MsgDataRaiseError("Output type not

defined!"));

 }

 fireEvent(_FinishExport);

 }

I. Sample Source Code

I.4 Linear Octree and Trajectory Planning

@Override

public void init(StateMachineContext context) throws Exception {

log.info("Init the octree.");

// Create linear octree

linearOctree = new LinearOctree(Type.OCTAL_JOINT, 2., 2 * 62.5);

}

public Trajectory LinearOctreePort_PlanTrajectory() throws Exception {

 Trajectory t = null;

 try {

log.info("Start planning the trajectory.");

 log.info("Get the start and goal robot joint/Cartesian positions.");

 Pose startPose = ConvertPosition.parseXYZPosition(startRobotPosition.cartPosition);

 JointPosition startJointPosition =

ConvertPosition.parseJOINTPosition(startRobotPosition.jointPosition);

 Pose goalPose = ConvertPosition.parseXYZPosition(goalRobotPosition.cartPosition);

 JointPosition goalJointPosition =

ConvertPosition.parseJOINTPosition(goalRobotPosition.jointPosition);

 log.info("Store positions to the octree.”);

 OctreePoint sOctreePoint = new OctreePoint(1, new Point(startPose.x, startPose.y,

startPose.z));

 OctreePoint gOctreePoint = new OctreePoint(1, new Point(goalPose.x, goalPose.y,

goalPose.z));

 OctalPoint start = linearOctree.convertOctreePointToOctalPoint(sOctreePoint);

 OctalPoint goal = linearOctree.convertOctreePointToOctalPoint(gOctreePoint);

 linearOctree.points.put(start.getOctalCode(), start);

 linearOctree.points.put(goal.getOctalCode(), goal);

 AbstractDataStructure.createTopology(linearOctree.getVoxelsFromDeepestLevel());

 start.setCollisionProbability(0);

 goal.setCollisionProbability(0);

 sOctreePoint.colisionProbability=0;

 gOctreePoint.colisionProbability=0;

 JointNode startJointCell = new JointNode(start, startJointPosition);

 JointNode goalJointCell = new JointNode(goal, goalJointPosition);

 start.jointNodes.add(startJointCell);

 goal.jointNodes.add(goalJointCell);

 log.info("Do search with the A* algorithm within the octree.”);

 List<AbstractAStarNode> l = linearOctree.search(startJointCell, goalJointCell);

 Object[] o = l.toArray();

 int i = 0;

 for (Object obj : o) {

 i++;

 NPoint op1 = ((JointNode) obj).op;

 OctalPoint op = (OctalPoint)op1;

 Point cp = op.getNormalizedPosition();

 }

 // Get nodes from path (Convert octree cells to nodes)

 ArrayList<Node> nodes = LinearOctree.convertOctreeCellsToNodes((JointNode)

l.get(o.length - 1));

 // Create path from nodes via roads

 Road road1 = new Road(nodes);

I. Sample Source Code

 ArrayList<Road> roads = new ArrayList<Road>();

 roads.add(road1);

 Path path = new Path(roads, 0);

 // Execute EN to get the trajectory

 ElasticNet net = new ElasticJointNet();

 t = net.formTrajectory(path, 0.0000000001, linearOctree, startJointCell,

goalJointCell);

 } catch (Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 return t;

 }

J. Attachments

J. Attachments

KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. 2012. A

Flexible Model Driven Robotics Development Framework. The 43rd Intl. Symp. on

Robotics (ISR2012). Taipei, Taiwan.

The 43
rd

 Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

Abstract— A flexible robotics development framework

has been established to allow rapid development of

high-performance real-time applications from distributed

software components. The framework interconnects soft-

ware components and hardware devices as well as special-

ized third party software applications to allow integration

into the communication system with ease. A model driven

approach has been chosen in order to raise the usability of

the framework using a visual modeling language. A com-

munication middleware has been evaluated for the inter-

connection of the components. This paper introduces the

required tools, proposes a model driven development

framework for robotic applications and provides experi-

ences in the development and use of such frameworks.

Keywords: control, framework, robot, model.

I. INTRODUCTION

The motivation for the robotics framework is based on

the requirement to rapidly connect distributed software

components written in different programming languages

and running on different platforms, sensors and third

party tools such as Matlab [1] across a network without

time consuming development of data communication and

tool connection infrastructure. The presented framework

is especially designed for large development teams in

heterogeneous software environments. An example of

such an environment is given in Fig. 1.

Software System

Vision

Manipulator

Mobile Robot

Joystick

Graphical User

Interface

Operator

Fig. 1. The experimental system.

An operator utilizes a graphical user interface that is

developed with the Java SWT framework [2] on a Win-

dows operating system. Vision sensors are connected and

processed by a Matlab/Simulink generated C++ code.

The connection to the robots has been established using

C# for the mobile robot [19] and a Java framework for the

manipulator [20]. A Linux operating system may be used

on mobile robots. Thus, the integration of heterogeneous

systems becomes important.

This has been accomplished by a model based soft-

ware development including code generation, which en-

tails the composition of applications from pre-designed

hull software components enriched with the business

logic of the application. The details of the implementa-

tion of the components are hidden behind well-defined

interfaces. Thus, much improved software quality be-

comes realistic. Moreover, previous experiences with

component based software development in other appli-

cation domains have resulted in drastically improved

software development productivity - sometimes more

than one order of magnitude above conventional software

development [3, 4].

Matlab/Simulink is often adopted as a development

environment because of its fast modeling and code gen-

eration capabilities as well as its valuable library func-

tions. Connecting such a tool to a distributed software

system supports the developer during software devel-

opment by enabling communication with existing com-

ponents.

The run-time architecture consists of interconnected

components, communicating through message passing,

which is executed by a communication middleware. Each

component is typically a process running on a node such

as a computer or an embedded device. An evaluation of

existing communication middlewares has been carried

out in chapter III.

A model driven approach has been chosen in order to

raise the usability of the framework through the use of a

domain specific modeling language, derived from the

Real-Time Object-Oriented Modeling (ROOM) language

[5-7]. This language also defines the run-time behavior of

the generated software components.

The commercial tool Rational Rose Real-Time from

IBM [8], formerly known as ObjecTime, was a toolset

supporting the ROOM language. Unfortunately, this

toolset is not available anymore and, consequently, it

makes re-implementation of the code execution model

and the modeling tool necessary. The eclipse project

eTrice [9] has recently shifted from the proposal phase to

the incubation phase and aims at an implementation of the

Christian Kohrt Richard Stamp, Anthony Pipe,

Janice Kiely

Gudrun Schiedermeier

Bristol Institute of Technology, Bristol Institute of Technology, Faculty of Informatics,

University of the West of England, University of the West of England, University of Applied Sciences

Bristol, UK Bristol, UK Landshut, Landshut, Germany

e-mail: christian@kohrt.org e-mail: richard.stamp, anthony.pipe, e-mail: gschied@fh-landshut.de

 janice.kiely@uwe.ac.uk

A Flexible Model Driven

Robotics Development Framework

590

The 43rd Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

The 43
rd

 Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

ROOM language together with code generators and

tooling for model editing.

A major goal of the proposed framework is to enable

sensor-based robot control applications to be built from

libraries of reusable software components. For this pur-

pose, the framework provides standard interface speci-

fications for implementing reusable components. A

well-written and debugged library of software compo-

nents facilitates rapid development of reliable sen-

sor-based control systems.

Existing robot control frameworks introduce

re-configurable software components as well as special

communication and code execution models [10-12].

While these approaches try to enhance configuration of

the components for re-use and the running system itself,

this paper proposes additionally to enhance the usability

by graphical modeling and code generation.

II. SYSTEM MODELING

ROOM defines a visual modeling language with for-

mal semantics and a code execution model, which is a set

of rules defining the system behavior [5-7]. The visual

modeling language is optimized for specifying, visual-

izing, documenting and automating the construction of

complex, event-driven, and potentially distributed re-

al-time systems. By connecting several components, an

interaction flow via messages may be established be-

tween them.

In the proposed framework, a component can be de-

veloped in Java, C#, C++ and C, deployed on different

processing units. A processing unit may be a gen-

eral-purpose processor, digital signal processor or a

field-programmable gate array, where each processing

unit may have its special system architecture that influ-

ences for example the handling of threads.

In addition, a component may also be a complete de-

velopment environment, which allows direct communi-

cation to existing components during development time.

The integration of tools is explained in chapter VI.

The component behavior is described as a hierarchical

state machine, which provides a number of powerful

features, including group transitions, transitions to his-

tory, state variables, initial points, and synchronous

message communications.

The developer writes user programs for state transi-

tions, where the component has to perform an action.

Additionally, each state may have an entry and an exit

function, which are executed when the component enters

or exits the state respectively. This presents various ad-

vantages: components may be distributed on different

nodes with ease and better encapsulation is reached, be-

cause only the component interfaces, not the type of the

component, are required in order to interact with it.

ROOM also defines a message service that controls

the logical message flow within a physical thread, while a

middleware, further described in chapter III, is respon-

sible to transmit the messages. The implemented message

service is optimized for speed in the local delivery of

messages through the utilization of operating-system

specific communication mechanisms. It must be abstract

enough to be used by any operating system, but fur-

thermore concrete enough to fulfill requirements in

speed, code size and memory consumption. The imple-

mented message service is included together with the

code execution model in a runtime library. An instanti-

ated message service is identified by the network port

number and the IP of the host.

Comp.

A MSMS

MS

Comp.

C

Comp.

D
Comp.

B

Thread 1

Thread 2

Thread 3

Processing Unit 1 Processing Unit 2

Fig. 2. Communication overview and message passing.

The ROOM communication system illustrated in

Fig. 2 consists of processing units, threads, components

and message services (MS) along with its connectivity.

The ports of each component may communicate with

other components via connections to the message service,

which handles local and remote message passing. A

message from the port of component A to the port of

component C (see dashed arrow) may be passed through

both message services until it gets to the target port. In

this example, messages from component B may only be

sent to component A.

III. COMMUNICATION MIDDLEWARE

Currently available communication mechanisms may

generally be separated into three categories: transport

level, message passing and remote procedure calls.

Transport level is simply a pipe to send data streams or

packets without any formatting specification, such as

serial ports or TCP/IP. Direct socket communication

requires the development of an own protocol and excep-

tion handling which entails large effort. Furthermore,

marshaling and de-marshaling have to be implemented:

this is particularly complex because of the requested

compatibility between the different programming lan-

guages. For example, it is required that a C++ object may

be transformed into a Java object.

Message passing adds structure to the packets to de-

fine the content but still requires the user software to

build and send the messages. ZeroC Ice [13] and CORBA

are middleware systems that build an abstract commu-

nication layer.

Remote-procedure-calls attempt to expose functions

or full objects across a process or network boundary

without the user software being aware of the boundary.

Remote method invocation may be given as an example.

A comparison among the different communication

middlewares supports the choice of the ZeroC Ice mid-

dleware. Its implementation is available on various

591

The 43rd Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

The 43
rd

 Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

platforms, including embedded systems, and for different

programming languages such as Java, C++ and C# as

well. CORBA might be an alternative but it seems to be

complex and it does not have the ability of transmitting

objects and therefore allows only primitive data types,

while ZeroC Ice may handle object transmission. In ad-

dition, ZeroC provides Eclipse support, which simplifies

the usage of ZeroC Slice, the interface definition lan-

guage.

IV. THE TOOLCHAIN

Run-Time

Library

Code

Generation

Model

(ROOM)

Source Code

Runnable

System

User Code

Behaviour

(State-Machines)

Fig. 3. Code generation workflow.

A general overview of the workflow is given in Fig. 3.

The toolchain creates and synchronizes source code from

a given graphical model, which includes the modeled

behavior of each component. The visual modeling lan-

guage ROOM is represented as graphical elements in the

commercial off-the-shelf editor Enterprise Architect from

SparxSystems [14]. This graphical model is utilized to

create source code with the help of the eclipse modeling

framework (EMF) [15] and its code generation capabili-

ties. The runtime library provides a communication layer,

the implementation of the code execution model and the

message service.

The generated source code can be synchronized with

the written source code of the user to allow modeling and

code implementation at the same time. Finally, the source

code can be compiled to a runnable application for the

target system, e.g. a personal computer with a Windows

operating system or an embedded system with a PowerPC

operating system.

V. TOOLCHAIN IMPLEMENTATION

A more detailed description of the toolchain is given in

Fig. 4. The graphical notation elements of ROOM have

been integrated into Enterprise Architect [14] with the

help of an Enterprise Architect specific MDG Technol-

ogy file. These modeling elements are utilized to create

visual models of executable software systems.

A C# to Java application communication channel has

been implemented with a direct socket connection to the

Java model repository application. It is utilized to store

the visual model into the model repository, which has

been defined with the eclipse ecore editor.

The template based code generator application based

on Java Emitter Templates (JET) [16] transforms the

model to Java source code.

The Code Merger tool utilizes JMerge [15] and runs as

headless eclipse application, which starts a minimal

eclipse framework in the background. It merges the

generated source code with the existing one.

The toolchain supports automatic generation of

eclipse Java projects for each component and the runna-

ble system. These projects may be imported into the

eclipse workspace. All link dependencies including the

link to the run-time library have been automatically set

and a UniMod state machine [17] is generated with each

component project to define the behavior of the compo-

nent.

The runtime library has been implemented in a plat-

form dependent manner and includes the ROOM code

execution model and the middleware from ZeroC

Ice [13].

The middleware supports a target abstraction layer,

which simplifies the creation of the platform specific

library. This framework also enables the use of special-

ized tools such as Matlab/Simulink as further described in

chapter VI.

ecore Editor

Code Generator

(JET)

Socket

connection

Specialized

Tool

(Matlab/

Simulink)

Runnable Application

Enterprise Architect

Plug-In

Code Merger

(JMerge)

Model Repository

UniMod FSM

eclipse actor

project(s)

User Code

and State

Machine

Modelling

Create Vizual

Model

Runtime Library

ROOM

Execution Model

ZeroC Ice

Middleware

Tool

connection

Fig. 4. Toolchain implementation.

592

The 43rd Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

The 43
rd

 Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

Fig. 5. Execution environment.

Fig. 6. Node.

Fig. 7. Component deployment.

VI. CONNECTING SPECIALIZED TOOLS

Specialized tools have usually enhanced functionality

to solve domain specific development tasks and they may

have been established as common tools within these

domains. Integration of such tools into the communica-

tion framework adds communication capabilities to other

components, e.g. for sensor or control functionality,

during development. The development may be finalized

by generating a dynamic link library or an executable,

which may successively be used within the communica-

tion network. Dynamic link libraries may always be uti-

lized with the help of visual modeling elements that

support such libraries and generate the necessary code to

incorporate the libraries. The dyncall library [18] has

been employed within the run-time library for this pur-

pose.

A direct integration of specialized development tools

has been reached through tool specific integration tech-

nologies. For example, Matlab may be connected through

the Microsoft COM (Component Object Model) or DDE

(Dynamic Data Exchange) technology for message

passing, which is described in [2]. The middleware can

also be directly utilized with an S-function to establish

communication to the distributed components.

VII. CODE GENERATION EXAMPLE

As depicted in Fig. 1, a robot control application with

a joystick for the articulated Mitsubishi RV-2AJ robot

demonstrates modeling and code generation. Applica-

tions are defined by instantiation of an “Execution En-

vironment”, which is named “Robot Control” in Fig. 5.

Although a single “Win Robot Control” node is deployed

to the execution environment for the whole application,

several additional nodes may be deployed. Physical

threads are modeled to allow thread deployment. Com-

ponents are finally deployed to those threads (Fig. 7),

while their connectivity is modeled in a thread inde-

pendent manner, as illustrated in Fig. 8. The interface

definition of the “Manual Movement Deployable Com-

ponent” in Fig. 9 describes provided and required inter-

faces, fixed to component ports. The “Control Port”

provides component life-cycle interfaces such as “Con-

trol In” in Fig. 10 to start, stop, initialize, release and

locate the component. Additional component properties

management is implemented with the set and update

property signals. Synchronous and asynchronous mes-

sage passing is supported. Each interface defines allowed

signals that have to be modeled in the UniMod finite state

machine, as depicted in Fig. 11. A message is received via

port interfaces through the port to the state machine of the

component, which fires a transition.

The executed transition method contains the user

code. The generation process generates for example the

initialization methods shown in Listing 1, derived from

the “Init” transition. JMerge uses code tags like

„@generated“ to indicate that this method is generated

and overwritten until the tag is manually changed into

„@generated not“ or just deleted.

Fig. 8. Component connections.

Fig. 9. Component interfaces.

Fig. 10. Interface definition.

593

The 43rd Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

The 43
rd

 Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

Fig. 11. UniMod state machine diagram example.

/**

* Init the component.

* @generated

*/

protected void init()

{…}
Listing 1. Generated Java code.

Other tags such as “@unmodifiable” may also be used to

control the merge functionality.

VIII. CONCLUSION

This paper highlights important aspects in the devel-

opment of the proposed model driven toolchain. The

various model-to-model transformation stages and tools

are presented from graphical ROOM models to the run-

nable application. The toolchain may be used for soft-

ware development in general and for specific problem

domains such as robotics. Extensibility of the domain

specific language allows domain-oriented engineering.

The level of abstraction is a significant aspect for the

handling of large software systems. Using a model driven

toolchain the abstraction level is raised. Standard designs

and concepts may be integrated and used with ease by the

developers who only need the graphical front end to such

extensions. Encapsulation result in the so-called black

box reuse, a favorable form of it, since the economics of

scale allows spending more effort on software design,

software reviews and software testing. Integration of

specialized tools and development environments en-

hanced the development process.

The proposed model based code generation frame-

work adds a significant productivity benefit, although

implementation of the toolchain requires high invest-

ments. However, once a toolchain is developed, it may be

applied with ease.

ROOM is a message based system based on state

machines and it requires training for inexperienced de-

velopers. The message service is an additional layer that

interprets and transfers messages to the target component

port, which may lead to a delay in the message delivery.

The delay must be considered, especially for time critical

systems. Therefore, it plays a key role regarding per-

formance of the system. Nevertheless, such a toolchain

can be valuable for large software development projects

and allows a strict encapsulation into components with

clearly defined interfaces. It is intended to continue with

this methodology and further enhance the modeling and

code generation features, especially for debugging pur-

poses and implementation of a state machine (with a

graphical editor) alternative to the slow UniMod state

machine. The Simulink Stateflow state machines might

be used in Simulink context, but it requires adaptation to

be usable in non-Simulink contexts.

The main advantages of model driven development

are for example better maintainability, a uniform pro-

gramming model, reusable model parts, simple but effi-

cient communication, higher abstraction, code genera-

tion, system wide optimization possibilities and focused

development in relation to the business logic.

REFERENCES

[1] TheMathworks, Matlab/Simulink. 2011; Available from:

http://www.mathworks.de.

[2] Kohrt C, Rojko R, Reicher T, Schiedermeier G, "With Model

Based Design To Productive Solutions Professional GUIs For

Simulink By Utilizing The Java SWT Library," in:

KFZ-Elektronik, WEKO Verlag, May 2006, pp. 265-272.

[3] Zincke G, "How to achieve 7.52 function-points per person-day

with object technology," in: Addendum to the 1997 ACM

SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, Atlanta, Georgia, United States,

274572: ACM, 1997, pp. 21-26.

[4] Sutherland J, "Why I love the OMG: emergence of a business

object component architecture," StandardView, vol. 6(1), pp.

4-13, 1998.

[5] Selic B, "Real-Time Object-Oriented Modeling (ROOM)," in:

IEEE Real Time Technology and Applications Symposium: IEEE

Computer Society, 1996.

[6] Selic B, "Modeling real-time distributed software systems," in:

Proc 4th Int Parallel and Distributed Real-Time Systems Work-

shop1996, pp. 11-18.

[7] Selic B, Gullekson G, Ward PT. Real-time object-oriented mod-

eling: Wiley Professional Computing, 1994, pp.

[8] IBM Corp., Rational Rose Real-Time. 2011; Available from:

http://www.ibm.com.

[9] eTrice Group, Eclipse eTrice project page. 2011; Available from:

http://www.eclipse.org/etrice/.

[10] Wason JD, Wen JT, "Robot Raconteur: A communication ar-

chitecture and library for robotic and automation systems," in:

IEEE Conference on Automation Science and Engineering

(CASE), 24-27 Aug. 2011, pp. 761-766.

[11] Griph FS, Hogben CHA, Buckley MA, "A generic component

framework for real-time control," in: IEEE Transactions on Nu-

clear Science, vol. 51(3), pp. 558-564, 2004.

[12] Lee C, Yangsheng X, "Message-based evaluation for high-level

robot control," in: Proceedings IEEE International Conference on

Robotics and Automation, 16-20 May 1998, pp. 844-849 vol.1.

[13] ZeroC Inc., ZeroC Ice. 2011; Available from:

http://www.zeroc.com.

[14] Sparx Systems, Enterprise Architect. 2011; Available from:

http://www.sparxsystems.com.

[15] Eclipse Foundation, Eclipse Modelling Framework (EMF). 2011;

Available from: http://www.eclipse.org.

[16] Eclipse Foundation, Java Emitter Templates (JET). 2011;

Available from: http://www.eclipse.org.

[17] eVelopers Corporation, UniMod. 2011; Available from:

http://unimod.sourceforge.net.

[18] Adler D, Philipp T, Dyncall Library. 2011; Available from:

http://www.dyncall.org.

[19] Festo, Robotino. 2012; Available from: http://www.festo.de.

[20] Kohrt C, Stamp R, Pipe A, et al, “A robot manipulator commu-

nications and control framework,” in: Proc. IEEE Int. Conf.

Mechatronics and Automation (ICMA), 2008, 846-851.

594

The 43rd Intl. Symp. on Robotics (ISR2012),Taipei, Taiwan, Aug. 29-31, 2012

J. Attachments

KOHRT, C., PIPE, A., KIELY, J., STAMP, R. and SCHIEDERMEIER, G. (2012) A

Cell Based Voronoi Roadmap for Motion Planning of Articulated Robots Using Movement

Primitives. International Conference on Robotics and Biomimetics.

�

Abstract— The manufacturing industry today is still focused
on the maximization of production. A possible development
able to support the global achievement of this goal is the
implementation of a new support system for trajectory-
planning, specific for industrial robots. This paper describes
the trajectory-planning algorithm, able to generate trajectories
manageable by human operators, consisting of linear and
circular movement primitives. First, the world model and a
topology preserving roadmap are stored in a probabilistic
occupancy octree by applying a cell extension based algorithm.
Successively, the roadmap is constructed within the free
reachable joint space maximizing the clearance to the obstacles.
A search algorithm is applied on robot configuration positions
within the roadmap to identify a path avoiding static obstacles.
Finally, the resulting path is converted through an elastic net
algorithm into a robot trajectory, which consists of canonical
ordered linear and circular movement primitives. The
algorithm is demonstrated in a real industrial manipulator
context.

I. INTRODUCTION

OBOT use and automation levels in the industrial
sector will inexorably grow in future, driven by the
present need for lower item costs and enhanced

productivity. Synonymous with this projected increase will
be the requirement for capable programming and control
technologies. Many industries employ offline programming
within a manually controlled and specified work
environment. This is especially true within the high-volume
automotive industry, particularly when related to high-speed
assembly and component handling, but also in the case of
medium sized and small batch manufacture. Any scenarios,
reliant on manual data input, based on real world
obstructions, necessitate the complete production system
being offline for an appreciable time while data is input.
These production downtimes consequently cause financial
losses. Published research appears to be concentrated on the
application of simulation tools to generate discrete portions
of the total robot trajectories [1, 2], whilst necessitating
manual input to link paths associated with one particular

Manuscript received October 15, 2012.
Christian Kohrt is with UWE - University of the West of England,

Bristol, UK (e-mail: christian@kohrt.org).
Anthony G. Pipe is with UWE - University of the West of England,

Bristol, UK (e-mail: anthony.pipe@uwe.ac.uk).
Gudrun Schiedermeier is with UASL – University of Applied Sciences

Landshut, Germany (e-mail: gschied@fh-landshut.de).
Richard Stamp is with UWE - University of the West of England,

Bristol, UK (e-mail: richard.stamp@uwe.ac.uk).
 Janice Kiely is with UWE - University of the West of England, Bristol,

UK (e-mail: janice.kiely@uwe.ac.uk).

activity with those of another. Human input to correct
inaccuracies as well as errors resulting from unknowns and
falsehoods in the environment is needed. In addition,
simulation tools are complex and require highly skilled
workers. Offline robot program generation is time intensive
also due to inaccuracies; even then its correct operation is
not guaranteed.

This has led to the vision of an enhanced online robot
programming software application to support the robot
programmer. An overview for online robot programming is
given in [3] and it is stated there that only one approach has
led to a commercial tool.

Investigations have been undertaken with the aim of
developing an online robot software application, by
considering the working production environment as a single
whole workspace. Use is made of automated workspace
analysis techniques and a trajectory planning algorithm,
described in this paper, to realize the robot software
application.

In this article, we consider the high level of complexity of
typical robot-programming tasks for human operators;
consequently, the robot application-software we present
here, takes over the most complicated task, which is robot
motion planning. The remaining manageable tasks related to
the given mission, e.g. spraying, handling or painting,
continue to be the responsibility of the operator. In a
handling mission for example, the operator provides
information about what the robot has to do, e.g. placing
objects to specific positions in a specified order, while the
online robot software application knows how to control the
robot. This is accomplished with the help of the trajectory
planning algorithm presented here.

This trajectory planning algorithm is an important integral
part of the enhanced online robot programming application
to find suitable robot trajectories in order to generate the
robot program with the required features. A robot trajectory
is a path in the working space of the robot. Each point on the
path is described as a vector with the position and the time.
The trajectory planning task here is to find a collision free
movement of the robot from the start to the target location
considering the motion constraints of the robot (e.g. a car
that cannot move sideways), whilst also satisfying the
requirements for readability, maintainability and
changeability of the derived robot program.

Laboratory tests in Section IV have demonstrated that the
so achieved trajectory represents a trade-off between path
shortness of the trajectory and readability, maintainability
and changeability of the resulting robot program.

A Cell Based Voronoi Roadmap for Motion Planning of Articulated
Robots Using Movement Primitives

C. Kohrt, A. G. Pipe, J. Kiely, R. Stamp, G. Schiedermeier

R

1542

Proceedings of the 2012 IEEE
International Conference on Robotics and Biomimetics

December 11-14, 2012, Guangzhou, China

II. LITERATURE OVERVIEW
Trajectory planning is a fundamental problem and

significant research has been conducted during the last
decades either in static or in dynamic environments [4]. For
example, roadmap methods [5] do not compute the whole
configuration space, they rather try to generate a roadmap of
suitable configurations. Apart from roadmap based
techniques, the potential field approach [6, 7] and cell based
methods [8] are two popular path planning approaches.

The cell based method in combination with the potential
field has been studied in [8] and has been successfully
applied to arbitrary shaped robots in dynamic environments.
The computation time of the potential field has been reduced
by introducing hierarchical subdivision approaches such as
quadtree and octree based methods [9]. Cell based methods
often generate a path connecting the midpoints of the cells.
The publication [10] identifies two limitations with cell
based methods. First, the detection of small passages
requires high accuracy of the octree or quadtree. Second, the
shortest path is not always identified since the distance
calculations of the cells often use the midpoints of the cells.
Thus, the paths obtained by the cell based method are not
optimal because of the connectivity limitations in a grid.

The potential field approach has several limitations as
outlined in [6]. In particular, the robot may get stuck at a
local minimum and the reported paths can be arbitrarily
long.

Voronoi based path planning methods have been studied
in [11-17]. However, the quality of the path obtained directly
from the Voronoi diagram is long and not smooth. In the
recent years, improving the quality of the path has been an
active area of research. In [18], the Voronoi diagram was
combined with the visibility graph and potential field
approach to path planning into a single algorithm to obtain a
trade-off between safest and shortest paths. The algorithm is
fairly complicated but the path length is shorter than those
obtained from the potential field method or the Voronoi
diagram.

Most of the algorithms have limitations in real-time path
planning where the world model with unknown obstacles is
updated during runtime. These algorithms work best on
given maps including full knowledge of all obstacles.

III. TRAJECTORY PLANNING
The trajectory-planning algorithm plans a trajectory

between two given joint positions. A linear octree [9] is used
to represent the working space of the robot in a spatial world
space. The octree stores its cells in a predefined maximum
accuracy defined by the octree depth. Each cell contains a
binary tree to store the robot joint positions and stores a
reachability value, which describes if the robot can move its
tool-center-point (e.g. the robot hand) into the cell area
without collision. The general reachability is stored in a pre-
calculation step described in Section III.B.

 In addition, each cell stores an occupancy value as well.
Cells are defined as fully, partly or not occupied, depending

on the obstacles within the working space. This information
is input by external sensors through a sensor fusion
framework. A collision button and computer-aided design
data of a construction process of the working cell have been
utilized in the test environment to detect obstacles. The
choice is based on the fact that model data is often available
and the operator itself is a reliable source to detect collisions.
Additional more advanced sensors, such as machine vision
can be applied as well to increase the recognition
performance, but this work is beyond the scope of this
article.

The occupancy and the reachability information are
employed to create a roadmap within the reachable free
space of the octree. The roadmap forms a Voronoi diagram,
which is created by a cell-based algorithm within the octree.

A search algorithm is executed on the joint positions
located within the roadmap to identify the shortest path from
the start to the target position. Subsequently, the so derived
path is turned into a trajectory through the application of the
elastic net, presented in [19].

The employed algorithm facilitates only kinematic
forward calculations to avoid ambiguities and to reduce
computation time of the inverse kinematic calculation.

A. World Model
Path planning is based on data about the physical

environment stored within the world model. It is
implemented as a linear octree [9] that stores pre-existing
and dynamic information of the environment.

The computer-aided design data of a construction process
of the working cell is adopted as information source whereas
a collision indication button, held by a human operator, is
utilized as a real-time sensor. During the execution of the
path planner, the operator indicates upcoming collisions not
predicted by the automated system through the real-time
sensor. Robot type information is particularly important
allowing the use of a simulation model of the robot to afford
forward and inverse kinematic pre-calculations.

The world model handles the information and combines
the CAD data and real-time data mentioned above. The
deriving data fusion is carried out as a voting system [4].
Real robot applications have demonstrated that sensors may
deliver wrong information [20]. Therefore, each sensory
source is classified through the reliability weight between
0.0 and 1.0 and an applied simple moving average filter
delivers cohesive information.

B. Reachability Calculation
The configuration space of an articulated robot is often

discretized in order to execute a path searching algorithm on
the discretized search space. The discretization plays an
important role since the accuracy of the search algorithm is
often coupled with the accuracy of the discretization. The
approaches in [21-23] use hierarchical structures, capability
maps or non-uniform discretization to optimize the search
space to enable efficient searching.

Optimization can in general be reached by minimizing or

1543

ordering the search space specifically for the applied search
algorithm. The planning algorithm described here is
executed in the constrained configuration space to improve
the search algorithm, as will be seen in the next sections.
The reachability of the robot is required to calculate these
constraints.

The reachability of a robot in world space can be
calculated by transforming the robot configurations from the
tool center point coordinates to world coordinates or vice
versa. This transformation can be applied with forward or
inverse calculations of the robot kinematics. An efficient
inverse calculation can only be achieved for world
coordinates with given information about its position and
orientation. Since the orientation can be arbitrarily chosen,
inverse calculations lead to intensive computation.

This problem has been studied in [21, 22] and a simple
pre-calculation step is proposed to generate and persist the
required information in a look-up table by forward
calculations of the robot arm configuration to the points in
space. The look-up table may, in general, be used if the
robot kinematics are static and known beforehand. Since this
algorithm is used in an industrial environment, both
statements are fulfilled. The aim of the look-up table is to
represent the reachability with a limited number of joint
positions to reduce the search space for a path-searching
algorithm. The number of joint positions has direct
impact on the running time of the path searching algorithm
and the required pre-calculation time of the look-up table.

The limitation is possible because of the employed search
algorithm described in Section III.E. The discretization of
the configuration space has been implemented with a robot
link dependent accuracy (with is the link number),
which identifies the link importance and considers the sweep
occupation volume of the robot links as well as the
mechanical constraints of the robot joints.

The implemented linear octree - the world model - has a
defined depth , which allows calculation of the smallest
octree cell size. This can be further employed to estimate the
robot link dependent accuracies , which have to be
carefully chosen. In order to guarantee that the path-
searching algorithm will complete the search task
successfully, it has to be ensured that enough discretized
positions are stored per octree cell on the deepest level.

The octree accuracy does not need to be very high
because the employed trajectory planning methodology
discussed in Section III.E only applies to the octree for path
searching. The trajectory generation algorithm actively
requests additional positions and operates almost
independently from the octree.

Various methodologies for discretizing the configuration
space are presented in the literature. An optimal
discretization methodology that sets the resolution along
each configuration coordinate (robot axis) according to the
maximum movement of the robot end-effector at each step
that the robot moves along this coordinate is described in
[24]. The discretization resolution is determined with

 of a -dimensional configuration
space. A uniform discretization for all joints of the robot
manipulator can be defined with for some constant
.

With a reasonable joint resolution of , the uniform
discretization results in huge configuration spaces. For
example, a discretization of the joints of the Mitsubishi RV-
2AJ with results in a configuration
space with states.

The algorithm presented in this article is based on
equation (1), where is the distance between the centers of
joint to the farthest point the end-effector can reach, and

 is a pre-set distance the robot may move at one
step along the coordinate.

 (1)
The optimal discretization results in Cartesian movements
 of the joint , which meets the condition

 where .
For of a Mitsubishi RV-2AJ

industrial robot, the optimal discretization equals to
.

The size of the corresponding configuration space
considering the mechanical constraints for the utilized
Mitsubishi robot is states. This is
magnitudes less compared to the uniform discretization with

 and states.
The configuration space is computed with forward
calculations of the robot manipulator and the joint positions

 are stored within the octree. This calculation has to be
done once per robot.

C. Occupancy Calculation
The occupancy calculation is done beforehand and online

by sensors during path planning to update the world model.
The first information source is modeled data, which has been
applied to the in-memory world model and handled as a
sensor. This information source is amended by a binary
collision indication button of the operator and it has turned
out to be sufficient for the proposed trajectory planning
algorithm.

D. Voronoi Based Roadmap Generation
Roadmap methods generally identify a set of roads, which

may be safely travelled along without incurring collisions
with obstacles. The method here adopted has been inspired
by [16], based on the Voronoi form [25, 26]. This choice has
been taken after considering two important aspects. First, the
Voronoi form may be applied either in the world space or in
the joint space of the robot. Second, it maximizes the
clearance of obstacles, so that the path-planning algorithms
do not have to be particularly accurate. The second point
may be perceived as a negative characteristic too, since the
derived roads are not short, smooth or continuous enough to
guarantee an enhancement [18, 27] (see Section III.E). In
fact, implementation tests of [16] have shown that a Voronoi

1544

form is rarely reached. Adjustments of the parameters by
trial and error, as suggested by the authors of [16], have not
led to any improved results either. In addition, real-time
robot control with this kind of neural network requires
processing of the neurons to adapt to the environment
including the obstacles. Since random positions are not
available in real environments the proposed approach has
not been followed here any further.

Hence, the concept at the basis of the Voronoi form has
been extended and applied to a grid-based algorithm. First,
the obstacle and border cells are added to an open list.
Successively, all neighbor cells are iterated for all elements
in the open list in order to mark them with the obstacle
number according to the currently examined element of the
open list. The currently examined element is moved from the
open to the closed list and extended cells are added to the
open list to be examined in the next iteration.

The general grid-based algorithm described in Listing 1
produces the approximated Voronoi diagram. The primary
aim is to approximate a Voronoi form between the obstacles
and the border cells in joint space.

The grid used in the implementation is an octree in three
dimensions. It allows adding obstacles during runtime while
recalculation is only necessary for neighboring
areas (see III.D). The octree also provides the opportunity to
utilize its hierarchy to speed up the algorithm to efficiently
store environment information. Application of this cell
extension methodology builds a roadmap that supports real
time development of the topology and connectivity of the
robot workspace.

This algorithm is applied to the tool center point of the
robot. The maximum clearance of the whole robot arm to the
obstacles is indirectly considered because reported collision
indication positions are stored as robot joint positions into
the cell. The cell occupancy is always calculated based on all
postures and thus, its occupancy value is accordingly
calculated.

During the execution of the path-planning algorithm, new
information of the working space and the obstacles is
provided by the employed sensors and information sources,
which are the collision button and the computer aided design
model. New joint position information is added to the data
structure in the steps described in Listing 2.

The world coordinate of the position is determined by
forward kinematics calculation successively storing the joint
position into the octree cell that is responsible for the world
position region.

The cell is marked with an occupation value in
accordance to the reported and fused sensor value . A
probability threshold of is applied in equation (2) to
transform the cell occupancy value to the binary value

 required by the Voronoi roadmap generation
algorithm.

 (2)

1. Store all border, obstacle and extended
cells in the open list

2. While open list element count > 0
2.1. Take first cell from the open list
2.2. Inspect all neighbour cells of and

mark each extended neighbour cell
according to the following conditions:
2.2.1. If the extended cell is located

between two or more obstacles
2.2.1.1. If the cell is not reachable

it is marked ‘0’
2.2.1.2. Else it is marked ‘-1’

2.2.2. Else copy the mark from cell
2.3. Add all neighbour cells of , which are

not in the closed list, to the open list
2.4. Move cell from the open list to the

closed list
3. Wend

Listing 1. Cell extension algorithm.

1. Get the robot posture for a collision
indication

2. Execute forward calculation to get the world
position

3. Store the joint position to the responsible
octree cell

4. Calculate the occupation value for the cell
5. Update the parent cells
6. Recalculate the cell region to obtain the

updated Voronoi diagram
Listing 2. Obstacle addition algorithm.

10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4

1 1 1 4

1

5

4 4 4 4 4 4 4

5 5 5 5 5 5 5

4

2

2

2 3

3

2 55

5

5

5

5

4 4 4

4 4 4

4

1 1 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

-1-1-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1-1 -1 -1

-1-1

-1

-1

-1

-1

-1

-1

21 1

-1

-1

-1

-1-1-1-1

-1

-1-1

-1

-1-1-1

22

24

-1-1-1-1-1-1-1-1-1-1

-1

23

23

-1 -1

-1

-1

-1-1 25

25

25

25

-1

-1-1-1

-1-1

-1-1

-1-1

10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4

1 1 1 4

1

4

2

2

2 3

3

2 55

5

5

5

5

4 4 4

4 4 4

4

1 1 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4

-1-1-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1-1 -1 -1

-1-1

-1

-1

-1

-1

-1

-1

21 1

-1

-1

-1

-1-1-1-1

-1

-1-1

-1

-1-1-1

22

24

-1

-1-1

-1-1-1

-1

-1

-1

23

23

-1

-1

-1

-1-1 25

25

25

25 -1-1

-1-1

-1-1

-1-1

264

3

-1 -1 -1

6 6 6

-1

-1

-1-1-1-1-1-1-1

Figure 1. Dynamic and fast cell extension example (before and after

update).

Parent cells are updated to either partly or fully occupied
depending on the occupation of the child cells of the parent.
Parts of the Voronoi roadmap have to be recalculated if new
collision information is processed. A minimum distance
of the robot TCP is introduced to those obstacles, which is

1545

used to clear surrounding extended groups of cells within the
distance . An example is illustrated in Figure 1.

The cell in position (9, 6) is updated and marked as
occupied (see second figure, cell number 26). A radius of

 cells is considered. As a result, the group
information and the Voronoi path are recalculated.

The second example in Figure 2 focuses on the defined
distance and shows how the distance influences the Voronoi
path generation. The distance to the occupied cells shall be
maximized within the given boundary of . The occupied
cell ‘27’ (only its extended cells ‘7’ are visible) is next to the
newly added occupied cell ‘26’ and, thus, the Voronoi path
is adapted. The guaranteed space between the Voronoi path
and the newly added cell is because the cell
extension mechanism starts from the given distance and
grows from both sides in order to meet in the middle of

.

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

4 4 4 4 4

4 7

4 4

4

4

4

-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1

-1

-1

-1

-1-1-1

-1

-1

-1-1 -1 -1

7

4 4 4 44 4

4 4 4 44 4

7

7

7

7

7

7

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1

7 7 7

7 7 7

7 7 7

7 7

7

5

-1-1

-1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1

-1

5

5

5

-1 -1-1-1

5 5 5

55

5

4

4

4

4

4

-1

4 4 44 44

4 44 44

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

6 6 6 6 6 64 6

-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1

-1

-1

-1

-1-1-1

-1

-1

-1

6

4

4

6

7

7

-1

-1 -1

-1 -1

-1 -1

-1 -1

-1

7 7

7 7 7

7 7 7

7 7

7

5

-1 -1

-1 -1

-1 -1

-1 -1 -1 -1

-1

-1

-1

-1

5

5

5

-1

-1

-1

-1

5

5

5

4

4

4

4

4

-1

4

4

-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1-1 -1 -1-1 -1

-1

-1

26

6 6 6 6 6 66 6 6

6 6 6 6 6 66 6 6

6 6 6 6 6 66 6 6

6 6 6 6 6 66 6 6

6 6 6 6 6 66 6 6

6 6 6 6 6 6 6 6

Figure 2: Defined distance influence on Voronoi path generation.

The algorithm is summed up in Listing 3, where the
group information is updated for each obstacle addition.

1. Add new obstacle cell to open list
2. Reset and move cells within the distance

from the closed to the open list
3. Apply the algorithm from Listing 1

Listing 3. Cell addition for obstacles.

E. Search within the Roadmap
The robot may be seen as a Dubin’s car [28] in three

dimensions that may be steered from the start to the target
location by real robot movements. During each movement,
the world model gets updates in the form of obstacle joint
positions. The algorithm finds a path to the target location

based on the roadmap and accuracy of the octree,
considering all the joint positions within the cells of the
roads. The accuracy of the road cells are uniformly at the
highest level. This also defines the minimum size of small
passages that may be captured.

Path planning consists of two steps. First, within the
roadmap the shortest path from the start to the goal is
calculated within the joint space. As a second step, the
algorithm transforms the identified path into a trajectory
consisting of movement primitives, described in Section
III.F. The trajectory avoids obstacles and reduces the
clearance to them. This is done by forces applied on the
roads within the map [19].

Information about the environment in which the robot
operates and about the objects it has to avoid is captured
within the roadmap. The roadmap is improved during
trajectory planning. Real sensory information is delivered to
the roadmap in the form of collision locations. This leads to
an adaptation process of the roadmap, which primarily
targets the approximation of the Voronoi form.

The A* search algorithm [29] is first used to conduct a
local search and connect the start and target locations to the
roadmap and, second, to search within the joint positions of
the Voronoi roadmap. The start and target locations are
handled as obstacles: this means that Voronoi roads are
generated around them. The extended cells are added to the
search space to connect the location with the Voronoi roads.

The joint distance metric is utilized as heuristic for the
A* algorithm. The connectivity of the joint positions is
given by the octree cell connectivity. All joint positions of
one octree cell are connected to all joint positions of the
neighboring octree cell. This may result in high running
search times if too many joint positions are stored within the
octree cells. The reachability calculation described in
Section III.B has to consider this by choosing the accuracy
accordingly. This is highly dependent on the robot geometry.

The octree is an extension of the quadtree, which has
shown two limitations [10] in path planning: first, the
detection of small passages requires high accuracy of the
octree/quadtree. Second, the shortest path is not always
identified since the distance calculations of the cells always
use the midpoints of the cells.

The first aspect requires the involvement of many cells;
consequently, the planning stage may take a great deal of
processing time. It is proposed in [10] to overcome this
limitation using an obstacle dependent grid. However, in the
now proposed approach the octree representation is used to
interface between world and joint space coordinates. The
number of cells is reduced by the transition to the joint
positions, which are assigned to each cell, and by only
subdividing needed cells.

The second aspect is solved using joint positions within a
cell and the joint distance metric for the A* search. The joint
distance between two joint positions is directly computed by
the difference of these joint positions. The distance
measurement is executed on the joint positions and not on
the cells; therefore the octree cell size is decoupled from the
distance measurements.

1546

As mentioned in III.C, the occupancy probabilities for
the cells are considered as movement costs during path
planning. Since the search is not conducted within the cells
but within the joint positions, each joint position is allocated
the probability given by the containment cell [30]. The
connectivity of the octree cells includes direct and diagonal
neighbors so that each non-boundary cell has 26 neighbors.

Moreover, the application of the A* algorithm to a real
robot in order to identify the shortest path often leads to re-
planning of the path itself each time a shorter path is found.
Since real robot movements are involved, this should not
happen too often. A hysteresis on the path length is applied
in order to prevent this and to allow an additional
exploration of the working space: consequently, the system
achieves environment information stored within the world
model.

The A* path planning method together with the
probabilistic occupancy map projected on joint positions
always delivers the shortest roadmap Voronoi road, if one
exists. The search space is reduced by the Voronoi form in
world space and the reachability calculation is dependent on
the robot geometry. The joint positions are carefully
distributed along the roadmap paths. Through the application
of this methodology, good performance of the search stage is
assured.

F. Elastic Net Trajectory Generation
As mentioned before, transformation of the path to a

trajectory is a necessary step carried out by the application
of the elastic net. The path within the roadmap found by the
A* algorithm consists of connected joint space positions.
Transformation of the path into a trajectory is reached by
applying equidistance, rotation and shrink forces on the joint
space positions [19] in world space. For these positions, both
forward and inverse kinematic calculations are used. The
generated trajectory consists of canonically ordered
movement primitives, which are linear and circular
movements. The joint movement type is not of interest for
the online path planning application and it is therefore
omitted. The transformation considers the reachability and
obstacles automatically, as shown in Section 3.

IV. EXPERIMENTAL RESULTS
In this section, the general execution of the programming

assistant is described and a scenario (see Figure 3) has been
chosen to demonstrate the proposed approach. The system is
executed with a real five axis industrial scale, articulated
Mitsubishi RV-2AJ robot [31]. The algorithm utilizes an
octree as world model (as described in Section III.A) and
joint positions attached to the octree cells. During
implementation, the algorithm has been tested in simulated
two-dimensional space using a quadtree as world model and
world positions attached to the quadtree cells. The proposed
algorithm works in real surroundings. The illustrations
shown in this section are simplified to support understanding
of the algorithm.

In the chosen real scenario, the two obstacles O1 and O2
are given as computer-aided design (CAD) objects and
imported into the in-memory environment model. One
obstacle O3 shall be unknown to the system and is therefore

not imported. The chosen scenario consists of a mission with
the start and target positions P1 and P10.

A. The Generated Roadmap
The scenario in Figure 3 is processed to the roadmap

shown in Figure 6. Each cell of the roadmap contains the
produced robot positions in configuration space, as
explained in Section III.B.

Figure 3: Illustration of the experimental scenario in the 3D world.

B. Corridor of Robot Space Positions
Using the generated roadmap in IV.A, the resulting

corridor is given in

Figure 4, including the indicated configuration space
positions. The search is executed on those positions and it
finds a path, as illustrated. Configuration space positions are
also added to the start and target positions including their
extended cells, as explained in Section III.B.

C. Elastic Net Trajectory Generation
In Figure 5, the found path is processed and adapted to a

feasible trajectory, shown in Figure 6. The elastic net
algorithm is parameterized regarding its shrink forces. Those
forces (shown as arrows in Figure 5) move the particles on a
straight line and, thus, push the trajectory to the obstacles.
The stronger the force, the more the trajectory is moved
towards the obstacles and the more collisions may occur.
The path planning system first controls the real robot along a
trajectory with low shrink forces applied to reduce the
number of collision indications. The real robot may now be
controlled along the generated trajectory until a collision is
indicated or the target is reached. After the final trajectory is
found, the shrink force may be raised to optimize the
trajectory.

D. Re-planning on Collision Indications
As mentioned in IV.A, the search is executed within the

roadmap corridor containing configuration space positions
of the robot. During the movement execution of a solution,
new information about the workspace and the obstacles may
be added to the world model. This normally happens when
collisions are indicated. With a dynamic update of the world
model, a new search is initiated.

The real robot stops its previous movements, moves back
to the last common trajectory position and follows the new
trajectory. Figure 7 illustrates the environment exploration
and the resulting world model updates to recognize obstacle
O3. As a result, the Voronoi roadmap plans a new trajectory
around the newly added obstacle location. It turns out that
those locations are also occupied and therefore a completely

1547

new trajectory is found, as shown in Figure 8, which is
further modified as described in IV.A.

-1-1

-1-1 -1 -1 -1 -1 -1-1 -1-1 -1-1

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24

4-1

-1 -1

-1 -1

-1

-1 -1 2

2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

2 2 2 2 2 2

2222 22 22

22

22

22

222222

22

22

22

22

22

22

22 22 22

22

22

22

222222

22

22

22

22

22

22

-1

-1

-1

-1

-1

-1

-1

2 2

22

2 2

22

2 2

22

2 2 2

222

2 2

22

2 2

22

2 2

-1 -1 -1 -1 -1 -1-1

1 1

1 1

1 1

1 1

1 1

1 1

21

1 21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

2 2

2 2

2 2

2 2

-1

-1

-1

-1

3 3 3 3

23

3 3 3 3

3 3 3 3

3 3 3

P1: Start

P10: Target
Figure 4: Roadmap corridor including configuration space positions.

-1-1

-1-1 -1 -1 -1 -1 -1-1 -1-1 -1-1

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24

4-1

-1 -1

-1 -1

-1

-1 -1 2

2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

2 2 2 2 2 2

2222 22 22

22

22

22

222222

22

22

22

22

22

22

22 22 22

22

22

22

222222

22

22

22

22

22

22

-1

-1

-1

-1

-1

-1

-1

2 2

22

2 2

22

2 2

22

2 2 2

222

2 2

22

2 2

22

2 2

-1 -1 -1 -1 -1 -1-1

1 1

1 1

1 1

1 1

1 1

1 1

21

1 21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

2 2

2 2

2 2

2 2

-1

-1

-1

-1

3 3 3 3

23

3 3 3 3

3 3 3 3

3 3 3

P1: Start

P10: Target

Figure 5: Elastic net trajectory generation.

E. Trajectory Planning Workflow and Robot Behaviour
The Mitsubishi RV-2AJ robot moves slowly along the

planned trajectories in real time. The world model is updated
on each collision indication (for dynamic and static
obstacles) and does not interrupt the trajectory planning
workflow. The clearance of the generated trajectories to
obstacles is kept, and time consuming re-planning is rarely
executed. Although unknown obstacles require re-planning
more often, it still does not interrupt the workflow. It may be
optimized by introducing occupancy probabilities to
neighboring octree cells to reduce the number of re-planning
occasions and required collision indications.

V. DISCUSSION AND CONCLUSION
The general research aim was to establish a robot

programming support system which helps the robot operator
to generate robot programs in an industrial production
environment. The trajectory planning system is an important
component and it has to satisfy all requirements as stated in
the introduction. The framework is defined by the employed
algorithm and the usage of the robot programming support
system in real environments, together with the limited
sensory input. The achieved algorithm employs Voronoi
roadmaps in the first instance. This allows a high probability
for collision free movements of the robot through the
workspace considering a minimum knowledge of obstacles
within the environment. The Voronoi roadmap supports path
planning with only little sensory input, which is most often
obtainable in real environments. While the robot is moving
along the Voronoi path, collision information indicated by

the operator or other sensors is used to improve the roadmap
and, thus, exploration of the environment takes place.

10 10

10 1010

1010

10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

1010

10 10

10 10 10

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1-1

-1-1 -1 -1 -1 -1 -1-1 -1-1 -1-1

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24

4-1

-1 -1

-1 -1

-1

-1 -1 2

2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

2 2 2 2 2 2

2222 22 22

22

22

22

222222

22

22

22

22

22

22

22 22 22

22

22

22

222222

22

22

22

22

22

22

-1

-1

-1

-1

-1

-1

-1

2 2

22

2 2

22

2 2

22

2 2 2

222

2 2

22

2 2

22

2 2

-1 -1 -1 -1 -1 -1-1

1 1

1 1

1 1

1 1

1 1

1 1

21

1 21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

-1 -1

-11

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21 21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1 -1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

2

2

-1

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

-1

-1 -1

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1

-1-1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

-1-1-1

2

2

2

2

-1

-1

2

2

-1

-1

-1

-1

-1

-1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1 -1

3 3 3 3 3 -1

-1

-1

-1

-1

-1

-1

-1

23

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3

3 3 3

P1: Start

P10: Target

Figure 6: Trajectory through the roadmap without obstacle O3.

2

2

2

2 2

-1 -1 -1

-1

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21

21

21

1 1

1 1

1 1

4

1 1 1

1

1 1

1

1

1-1

-1 -1 -1

-1

-122

22

22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

2

2 2

2 2

-1

-1

-1

3 3

23

3 3 3

3 3 3 3

3 3 3

P10: Target

24

-1

-1

4

4

4 4

4 -1

-1-1

-1-1

-1-1-1

4

-1

4

4-1 -1

-1

-1

-1

-12

22

2

22

2 2

-1 -1 -1 -1 -1

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21 21

21

21

21

21

21

21

21

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

-1

2

-1 -1 -1 -1-1 -1222

22

22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

2 2

2 2

2 2

2 2

-1

-1

-1

-1

3 3 3 3

23

3 3 3 3

3 3 3 3

3 3 3

P10: Target

22

2

22

2 2

22

22

22

22

22

22

22

22

-1

-1 -1-1 -1222

22

22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

2 2

2 2

2 2

2 2

-1

-1

-1

-1

3 3 3

23

3 3 3 3

3 3 3 3

3 3 3

P10: Target

22 22

22 22

22 22 22 2

22 2

22

22 222 22

22 22 22

22

2

2

2

2

2

2

2

2

22

22

22

22

22

22

22

22

22 22 22 22

22 22 22 22

22 22 22 22

22 22 22

22 22 22

2

Figure 7: Every collision indication position (part of obstacle O3) is added to
the roadmap.

The application of the elastic net not only transforms the
found path into a trajectory, it also optimizes that trajectory.
It deforms and stretches the path to reduce the clearance to
the obstacles and thereby the world model is updated. This is
an important feature to stretch or shorten the generated
trajectories along Voronoi edges, which are otherwise not
short and smooth. The operator might directly control the
elastic stretching process in future work and has been chosen
by experiment in the proposed approach.

10

10 1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

4-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

24 -1 -1

-1 -1

-1 -1 2

2

2

2

2

22 22 22 2

22

22

22

2

2

2

222222

22

22

22

22

22

22

222222

2

2

2

2

2

2

2

2

2 2

2

2

222 2 2

2

2

2

222222

2

2

2

2

2

2

22 22 22

22

22

22

222222

22

22

22

22

22

22

2 2

22

2 2

22

2 2

22

2 2

222

2 2

22

2 2

22

2 2

22

22

22

22

22

22

22

22

-1

-1 -1-1 -1222

222222

2222 22

222222

2222 22

222222

2222

22

22

22

22

2

2

-1

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

222222

2222 22

222222

2222

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

-1

-1 -1

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1

-1-1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

-1-1-1

2

2

2

2

-1

-1

2

2

-1

-1

-1

-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1 -1

3 3 3

23

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3

3 3 3

P1: Start

P10: Target

222 22 22

222 22 22

222 22 22 22 2

22 2

22

22 2

22 2

22 2

22 222 22

22 22 22

22

2

2

2

2

2

2

2

2

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22

22 22 22 22

22

22

22

22

22

22

22

22

22 22 22

22

22

22

22

22

22

2

Figure 8: The new trajectory.

Shortest path planning is executed on points along the

Voronoi edges and optimized in a second stage to generate
the trajectory. Although other solution candidates might be

1548

shorter after optimization, this approach presents a good
approximation. This two stage approach allows the use of
low accuracies in the search stage, which speeds up the
algorithm. The accuracy of the octree controls the capability
of the path searching algorithm to find small passages. The
robot configuration space discretization in the pre-
calculation step is optimized for the accuracy. Too many
discretization positions lead to long path planning times,
whereas too few positions prevent the path planner to find a
solution.

This approach considers world and joint coordinates and
joins them in the octree. The transition is an important step,
since inverse calculations of target positions for articulated
robots often result in non-singular robot postures. Reported
collisions occur in a single posture and, thus, postures have
been stored within the octree cells for obstacle avoidance.

The presented methodology considers static obstacles.
An extension to dynamic obstacles requires two collision
indication buttons to classify dynamic and static obstacles.
Dynamic obstacles that have the same state in each time step
for each production cycle can be supported. These are the
only obstacle types required for the defined industrial
production scenario.

REFERENCES
[1] Y. Demiris, A. Billard, Special Issue on Robot Learning by

Observation, Demonstration, and Imitation, 37 (2007) 254-255.
[2] L. Qi, X. Yin, H. Wang, L. Tao, Virtual engineering: challenges and

solutions for intuitive offline programming for industrial robot, in:
Proc. IEEE Conf. Robotics, Automation and Mechatronics, 2008, pp.
12-17.

[3] Z. Pan, J. Polden, N. Larkin, S.V. Duin, J. Norrish, Recent Progress
on Programming Methods for Industrial Robots, Robotics (ISR), 2010
41st International Symposium on and 2010 6th German Conference
on Robotics (ROBOTIK), (2010) 1-8.

[4] H. Chen, T. Fuhlbrigge, X. Li, Automated industrial robot path
planning for spray painting process: A review, in: Proc. IEEE Int.
Conf. Automation Science and Engineering CASE 2008, 2008, pp.
522-527.

[5] R. Geraerts, M.H. Overmars, A comparative study of probabilistic
roadmap planners, in: IN: WORKSHOP ON THE ALGORITHMIC
FOUNDATIONS OF ROBOTICS, 2002, pp. 43-57.

[6] Y. Koren, J. Borenstein, Potential Field Methods and Their Inherent
Limitations for mobile robot navigation, in: Proceedings of the IEEE
Conference on Robotics and Automation, Sacramento, California,
1991, pp. pp. 1398-1404.

[7] C.W. Warren, Global path planning using artificial potential fields,
(1989).

[8] Y. Kitamura, T. Tanaka, F. Kishino, M. Yachida, 3-D path planning in
a dynamic environment using an octree and an artificial potential
field, in: Intelligent Robots and Systems 95. 'Human Robot
Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ
International Conference on, 1995, pp. 474 -481 vol.472.

[9] I. Gargantini, Linear octtrees for fast processing of three-dimensional
objects, Computer Graphics and Image Processing, 20(4) (1982) 363-
374.

[10] J.Y. Hwang, J.S. Kim, S.S. Lim, K.H. Park, A fast path planning by
path graph optimization, Systems, Man and Cybernetics, Part A, IEEE
Transactions on, 33 (2003) 121-129.

[11] P. Bhattacharya, M.L. Gavrilova, Roadmap-Based Path Planning -
Using the Voronoi Diagram for a Clearance-Based Shortest Path,
IEEE Robotics \& Automation Magazine, 15 (2008) 58-66.

[12] K. Hoff, III, T. Culver, J. Keyser, M.C. Lin, D. Manocha, Interactive
motion planning using hardware-accelerated computation of
generalized Voronoi diagrams, in: Robotics and Automation, 2000.

Proceedings. ICRA '00. IEEE International Conference on, 2000, pp.
2931-2937 vol.2933.

[13] H. Ingaki, K. Sugihara, N. Sugie, Numerically robust incremental
algorithm for constructing three-dimensional Voronoi diagrams, in:
Proc. 4th Canad. Conf. Comput. Geom., 1992, pp. 334--339.

[14] J. Kim, F. Zhang, M. Egerstedt, An Exploration Strategy Based on the
Constructing Voronoi Diagrams, in: IEEE Conference on Decision
and Control \& Chinese Control Conference, 2009.

[15] J. Vleugels, M. Overmars, Approximating Generalized Voronoi
Diagrams in Any Dimension, in, 1995.

[16] J.M. Vleugels, J.N. Kok, M.H. Overmars, Motion Planning Using a
Colored Kohonen Network, (1993).

[17] S. Fortune, A sweepline algorithm for Voronoi diagrams, in:
Proceedings of the second annual symposium on Computational
geometry, ACM, Yorktown Heights, New York, United States, 1986,
pp. 313-322.

[18] E. Masehian, M.R. Amin-Naseri, A voronoi diagram-visibility graph-
potential field compound algorithm for robot path planning, J. Robot.
Syst., 21 (2004) 275-300.

[19] C. Kohrt, G. Schiedermeier, A.G. Pipe, J. Kiely, R. Stamp,
Nonholonomic Motion Planning by Means of Particles, in: Proc.
IEEE Int Mechatronics and Automation Conf, 2006, pp. 729-733.

[20] D.L. Hall, J. Llinas, An introduction to multisensor data fusion,
Proceedings of the IEEE, 85 (1997) 6 -23.

[21] J. Yang, P. Dymond, M. Jenkin, Exploiting Hierarchical Probabilistic
Motion Planning for Robot Reachable Workspace Estimation, in: J.A.
Cetto, J. Filipe, J.-L. Ferrier (Eds.) Informatics in Control Automation
and Robotics, Springer Berlin Heidelberg, 2011, pp. 229-241.

[22] F. Zacharias, C. Borst, G. Hirzinger, Capturing robot workspace
structure: representing robot capabilities, in: Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on,
2007, pp. 3229 -3236.

[23] J.H. Reif, H. Wang, Nonuniform Discretization for Kinodynamic
Motion Planning and its Applications, SIAM Journal on Computing,
30 (2000) 161-190.

[24] D. Henrich, C. Wurll, H. Worn, Online path planning with optimal C-
space discretization, in: Intelligent Robots and Systems, 1998.
Proceedings., 1998 IEEE/RSJ International Conference on, 1998, pp.
1479-1484 vol.1473.

[25] P. Bhattacharya, M.L. Gavrilova, Roadmap-Based Path Planning -
Using the Voronoi Diagram for a Clearance-Based Shortest Path,
IEEE Robotics & Automation Magazine, 15 (2008) 58-66.

[26] A.K. Garga, N.K. Bose, A neural network approach to the
construction of Delaunay tessellation of points in Rd, Circuits and
Systems I: Fundamental Theory and Applications, IEEE Transactions
on, 41 (1994) 611 -613.

[27] P. Bhattacharya, M.L. Gavrilova, Voronoi diagram in optimal path
planning, in: Proc. 4th Int. Symp. Voronoi Diagrams in Science and
Engineering ISVD '07, 2007, pp. 38-47.

[28] L.E. Dubins, On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents, American Journal of Mathematics, 79 (1957) 497-516.

[29] S.-J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach
(2nd Edition), Prentice Hall, 2002.

[30] P. Payeur, Improving robot path planning efficiency with probabilistic
virtual environment models, (2004).

[31] C. Kohrt, A. Pipe, G. Schiedermeier, R. Stamp, J. Kiely, A robot
manipulator communications and control framework, in: Proc. IEEE
Int. Conf. Mechatronics and Automation ICMA, 2008, pp. 846-851.

1549

J. Attachments

KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. (2011) An

Online Robot Trajectory Planning and Programming Support System for Industrial Use.

Journal of Robotics and Computer-Integrated Manufacturing.

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

An online robot trajectory planning and programming support system
for industrial use

C. Kohrt a,b,n, R. Stamp a, A.G. Pipe a, J. Kiely a, G. Schiedermeier b

a Department of Engineering, Design and Mathematics, UWE—University of the West of England, BS16 1QY Bristol, UK
b Department of Computer Sciences, UASL—University of Applied Sciences Landshut, 84036 Landshut, Germany

a r t i c l e i n f o

Article history:

Received 26 September 2011

Received in revised form

3 June 2012

Accepted 26 July 2012

Keywords:

Robot

Path

Planning

Support

Program

Generation

a b s t r a c t

The manufacturing industry today is still looking for enhancement of their production. Programming of

articulated production robots is a major area for improvement. Today, offline simulation modified by

manual programming is widely used to reduce production downtimes but requires financial invest-

ments in terms of additional personnel and equipment costs. The requirements have been evaluated

considering modern manufacturing aspects and a new online robot trajectory planning and program-

ming support system is presented for industrial use. The proposed methodology is executed solely

online, rendering offline simulation obsolete and thereby reduces costs. To enable this system, a new

cell-based Voronoi generation algorithm, together with a trajectory planner, is introduced. The robot

trajectories so achieved are comparable to manually programmed robot programs. The results for a

Mitsubishi RV-2AJ five axis industrial robot are presented.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Robot use and automation levels in the industrial sector will
grow in future, driven by the ever-present need for lower item costs
and enhanced productivity. Synonymous with this projected
increase will be the requirement for capable programming and
control technologies. Many industries employ offline programming
within a manually controlled and specified work environment. This
is especially true within the high-volume automotive industry,
particularly when related to high-speed assembly and component
handling. Any scenario, reliant on manual data input, based on real
world obstructions, necessitates the complete production system
being offline, out of production, for appreciable time-periods while
data is input. A consequent financial loss ensues.

The two main categories of robotic programming methods are
online programming and offline programming. Usually, the teach
pendant is used to manually move the end-effector to the desired
position and orientation at each stage of the robot task. Relevant
robot configurations are recorded by the robot controller and a
robot program is successively written to command the robot to
move through the recorded end-effector postures. Offline

programming is based on models of the complete robot work cell
and the robot is simulated.

Published research appears to be concentrated on the applica-
tion of simulation tools to generate discrete portions of the total
robot trajectories [17], whilst necessitating manual input to link
paths associated with one particular activity with those of another.
Human input is needed also to correct inaccuracies and errors
resulting from unknowns and falsehoods in the environment.

Investigations have been undertaken with the aim of generat-
ing a robot control program, by considering the working produc-
tion environment as a single, whole, workspace. Use is made of
automated workspace analysis techniques and trajectory smooth-
ing. Some non-productive time is necessitated, but unlike pre-
viously reported approaches, this is, for the most part, achieved
automatically and consequently rapidly. As such, the actual cell-
learning time is minimal.

2. Industry requirements to an online robot trajectory
planning and programming support system

An up-to-date industry requires a modern production system,
able to combine and support flexibility, high-speed and optimization
[11]: the overall production time available must be maximized to
guarantee the highest productivity possible. Considering the high
level of complexity of several robot-programming tasks for human
operators, the proposed solution consists in a support system that
takes over all the most complicated sub-tasks. The left manageable

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/rcim

Robotics and Computer-Integrated Manufacturing

0736-5845/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.rcim.2012.07.010

n Corresponding author at: University of the West of England, Department of

Computer Sciences, Faculty of Computing, Engineering & Mathematical Sciences,

Coldharbour Lane, Bristol BS16 1QY, UK

E-mail addresses: christian@kohrt.org (C. Kohrt),

richard.stamp@uwe.ac.uk (R. Stamp), anthony.pipe@uwe.ac.uk (A.G. Pipe),

janice.kiely@uwe.ac.uk (J. Kiely), gschied@fh-landshut.de (G. Schiedermeier).

Robotics and Computer-Integrated Manufacturing 29 (2013) 71–79

Author's personal copy

sub-tasks related to the given mission remain responsibility of the
operator. The proposed methodology is executed solely online
rendering offline simulation obsolete and thereby reduces costs for
the offline preparation of robot programs. Supported online pro-
gramming must be fast and flexible to reduce possible production
downtimes. The generated trajectories must conform to the given
requirements in quality and speed. Physical production parts and

fixtures are often not available during online robot programming,
thus, the support system must handle such situations to permit its
use. Nevertheless, the human component still remains important and
necessary: robot programs may be modified by human operators
during their lifecycle because of possible changes. The so generated
programs must be readable, maintainable and changeable.

3. Support system overview and architecture

The proposed support system is applied on a 5-axis industrial-
scale, articulated Mitsubishi RV-2AJ robot with an additional
Ethernet card installed. It is a nonlinear system with five rotary
joints. The robot is equipped with the Mitsubishi CR1 controller
and a teach pendant. The main areas of the robot are assembly,
manufacture, pick & place and handling tasks. Communication
between this system and a personal computer is possible [12]; the
commercial viability has already been demonstrated [16]. The
equipment is shown in Fig. 1. Both model-based and sensor-based
data are considered in order to define the environment of the
robot: perception functions, initiated by sensors (cameras or
tactile sensors), provide the system with information about the
environment. A general overview is given in Figs. 2 and 3.

The Object Recognition component converts the features of an
image into a model of known objects. First, the scene is segmen-
ted into distinct objects. An analysis deriving from motion,
binocular stereopsis, texture, shading and contour follows, so
that orientation, shape and position of each object may be
determined relative to the camera. Peter Corke’s Machine Vision
Toolbox for Matlab [4,5] allows the developer to use professional
image processing capabilities [20] with ease. In addition, model-
based data such as computer-aided design (CAD) data is used to
present the world model more accurately. Computer-aided design
derived data from simulation systems, such as RobCAD [24], are
exported as drawing exchange format (DXF) files, including all
locations attached and they are stored within the world model.
The attached locations of computer-aided design objects are
employed to acquire information concerning start, target and
application paths locations.Fig. 1. Devices overview.

Fig. 2. Logical view of the support system.

C. Kohrt et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 71–7972

Author's personal copy

Target locations may also be determined by a manual move-
ment of the robot or by visual servo-control. The first is possible
with the support of a joystick or a teach pendant. The visual
servo-control applies a pointing device to indicate the target
location to the robot. The robot moves automatically towards
the given location with the help of a neural network and stores
the position. Successively, the network transforms picture
coordinates into robot control commands as described in [18].

The Workspace Exploration component gathers additional
environmental information, by direction of the robot to move
within the workspace. This is realised through manual move-
ments, random movements and existing robot programs. Colli-
sions are always processed during exploration. Throughout its
movements, the robot ascertains which parts of the space are free
within its coordinate system, by either visual feedback or manual
collision indication. This information becomes more accurate
during the planning process.

The Robot Control component [12] grants the direct commu-
nication with the robot and enables direct robot control, serial/
Ethernet connection, robot parameter editing/reading/writing,
program uploading and downloading, real-time movement con-
trol, robot system backup/restore, external control over the user
datagram protocol (UDP) and equipment control.

The robot path is completely stored within the support system
in form of a trajectory that consists of connected particles. Its
transfer to a robot specific program is achieved within the Robot

Program Generation component in two steps: first, translation into
a robot program of solely the provided trajectory; second, gen-
eration of the specific robot program enriched with additional
configuration commands and specific linguistic syntax. The here
described two-step generation may also be applied to support
other robot types.

4. The online path planning and programming support
system

Deriving from the requirements described in Section 2,
a method is necessary to combine maintainability and optimality,

i.e., shortest path finding and path smoothing. The proposed path
planning system identifies a trade-off between both. Path finding
and smoothing are actually two competitive tasks, considering
also that smoothing is generally applied after the definition of the
path itself. The proposed path planner allows on the contrary the
concurrent execution of both tasks. Optimality here is identified
in form of the trajectory length.The so generated trajectory
consists only of a small number of locations and movement
primitives (linear, joint and circular movements). This approx-
imation renders the robot program maintainable, clearly struc-
tured and understandable by human robot programmers.

4.1. Overall algorithm

The content of the following paragraphs is based on the path
planning workflow shown below:

(1) Set up online path planning and program generation support
system including hardware.

(2) Import pre-existing data (robot geometry and computer-
aided design data).

(3) Create a mission by robot movements, computer-aided design
locations, pointing device or simulation.

(4) Execution of the support system.
a. Create connectivity in form of an approximated Voronoi

form.
b. Explore the workspace and update the world model.

i. Automatic random exploration.
ii. Exploration by existing robot programs.

iii. Exploration by following the Voronoi lines to the target
without path smoothing.

c. Apply the path searching algorithm in joint space.
d. Apply the elastic net algorithm to generate the trajectory.
e. Move along the trajectory from start to the target until

either a constraint violation occurs (collision or robot
kinematic constraint), a shorter path is found by the path
searching algorithm or the target is reached.
i. On collision or kinematic constraint violation.

1. Update the roadmap and generate new roads.

Fig. 3. Online path planning and programming system overview.

C. Kohrt et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 71–79 73

Author's personal copy

2. Take back the last movement to the last common
trajectory position that is unchanged.

ii. On a shorter path found in the roadmap.
1. Continue the movement to explore the workspace

along the possible trajectory solution until the path
length difference is larger than a hysteresis value.

2. When the path length difference is larger than the
hysteresis value, do an automatic random
exploration.

3. Take back movement to the last common trajectory
position of the old and new trajectory and continue
with 4e).

(5) Robot program generation.
(6) Robot program file upload to the robot.
(7) Remove the support system.

4.2. General workflow

A general case of the workflow is illustrated in Fig. 4 and will
be described in the following sections. It may be recognised
within the world model, but also within the online robot
trajectory planning and programming support system (Fig. 3).

The workflow consists mainly of four actions: the linear octree
[9] stores robot environment data. The application of the data
creates a roadmap in form of a Voronoi diagram, in three-
dimensional space and with a new cell-based methodology. The
A* search algorithm is applied on joint space positions within the
roadmap. It is a famous shortest path-finding algorithm [19] that
uses heuristics to direct the search towards the target. The
heuristic shall never overestimate the distance to the goal. There-
fore, the joint distance is appropriate. With the support of the
trajectory generation module (within the elastic net), a so deriv-
ing path is transformed into a trajectory.

4.3. World model

Path planning is based on data about the physical environ-
ment, the so-called world model. Pre-existing and dynamic
sensor-information of the environment is stored into this specific
model, defined by three main sources: computer-aided design
data of a construction process of the working cell, a vision-system
and the human operator. During the execution of the path
planner, the operator is given the possibility to indicate a collision
point through a specific button for example on the control panel
or the joystick.

Both, the positions in the world model and their occupations
are of interest, therefore a flag shows whether a position is safe or
not. Real robot applications have demonstrated that sensors may
deliver wrong information [10]: in this model, a reliability weight
between 0.0 and 1.0 is defined for each information source. The
world model is able to handle this additional information and
combines the information types mentioned above.

The deriving sensor fusion includes sensor abstraction, algo-
rithms and architectures [3]. Fusion is carried out as a voting
system. Each sensory source is filtered through a simple moving
average (SMA) filter, which delivers cohesive information. The

reliability weight of each source affects the calculation of the
coordinates occupation with the averaged weighted sum of the
sensor values. The resulting probability of the occupation value
rises with every check. Not only real obstacles are considered, but
also the kinematic of the robot, consequently involving areas in
space otherwise unconsidered.

4.3.1. Pre-existing and dynamic information

The world model stores information concerning the robot cell,
the used robot and the environment in form of computer-aided
design data. Such pre-existing information is considered before-
hand. The robot type information is particularly important since it
allows the use of a simulation model of the robot to afford
forward and inverse kinematic calculations. These calculations
and computer-aided design data stored in the world model
become usable for the path planning system. Both pre-existing
and dynamic information deriving from the sensors is adopted:
the operator gives valuable information about upcoming colli-
sions; a vision system delivers information about the robot
position and possible collisions. Obviously, not only collisions
are interesting, but also information about the position of obsta-
cles and ‘holes’ in the configuration space not recognisable from
the robot itself.

4.3.2. Voronoi based roadmap generation

Roadmap methods generally identify a set of roads, in graphic
form, which may be safely travelled along without incurring into
obstacles. The method here adopted has been inspired by the
approach presented by Vleugels, Kok and Overmars [21], based on
the Voronoi form [2,8]. This choice has been taken also consider-
ing two important aspects: first, the Voronoi form may be applied
either in the workspace or in the configuration space of the robot.
Second, it maximizes the clearance of obstacles, so that the path-
planning algorithms have not to be particularly accurate. This
second point may be perceived as a negative characteristic too,
since the so deriving roads are not short, smooth and continuous
enough to guarantee an enhancement [1,15]. In fact, implementa-
tion tests of [21] have shown that a Voronoi form is rarely
reached. Adjustments of the parameters by trial and error, as
suggested by the authors of [21], have not led to any different
results too.

Hence, the concept at the basis of the Voronoi form has been
extended and applied to a grid-based algorithm. A simplified,
two-dimensional space is illustrated in Fig. 5: several obstacles, a
configuration space ‘hole’, start and target cells are represented.
The light grey cells ‘�1’ reproduce the Voronoi approximation.
The dark grey cells represent the configuration space ‘hole’. White
cells denote expanded nodes, 1–7 denotes expanded obstacle
node cells, black cells denote border nodes, and 21–23 denote
obstacles. The general grid-based algorithm consists of a simple
rule, applied to produce the approximated Voronoi diagram. The
primary aim is to approximate a Voronoi form between
the obstacles and the border cells in the configuration space.
The configuration space ‘holes’ are considered as obstacles which
preclude the Voronoi form the possibility to maximize the
clearance to physical objects.

Fig. 4. General path planning workflow.

C. Kohrt et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 71–7974

Author's personal copy

4.3.2.1. Rule

All direct neighbours of the cells Ci are extended. If the
extended cell is located between two or more obstacles or
border cells and cannot be reached by the robot, its number is
set to ‘0’. If the extended cell is located between two or more
obstacles but it is reachable by the robot, its number is set to
‘�1’, the Voronoi approximation. In any other case, the
extended cell is set to the number of the originating cell Ci.

The grid used in the implementation is an octree in three
dimensions. It allows adding obstacles during runtime while only
the neighbouring areas will be necessary to recalculate. The
octree also provides the opportunity to use its hierarchy to speed
up the algorithm. Applying this cell extension methodology,
roadmaps are built so that an on-going, real time development
of the topology and connectivity of the robot workspace is
possible.

Roadmaps are employed by the path planning system during
the mission planning in order to identify paths between two
positions (see Section 4.4) and to define the trajectory (see
Section 4.5) [13].

4.4. Mission planner

Given a mission, the mission planner plans multiple possible
trajectories. This choice has been taken for two main reasons.
First, the industry today requires a support system able to
accomplish different tasks and contemporary requirements.
Second, applying the here presented path planner, the system
results highly optimized. Distances are calculated in shorter
time (see also Section 5), the range of collected information
used by the mission planner is higher and the multiplicity of
possible trajectories is maintained. Any algorithm for solving the
travelling salesman problem [19] may be utilised to calculate the
order in which each application path is processed. The mission
planner delegates the task of trajectory planning to the path
planner. Both, mission and path planner have to establish an
interconnection for the exchange of information that is the length
of the actual planned path. The algorithm here used must be
able to handle path length information during path planner
execution and react to this by commanding the path planner.
In the system now discussed, a simple brute force algorithm
has been used and as such, it is admirable for a demonstration

Fig. 5. Voronoi approximation in a two-dimensional uniform grid.

C. Kohrt et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 71–79 75

Author's personal copy

system, although it is limited to operation with few
application paths.

4.5. Path planner

As described in Section 4.4, path planner and mission planner
must interact. While the path planner is focused on the creation
of the trajectory, the mission planner handles a higher level of the
planning. A mission is defined by the start- and target-locations of
the paths, combined with path application information, for
example handling, adhesive bonding or painting. The path plan-
ner calculates a path and controls the robot along that path until a
collision is detected, the kinematic constraints are not met or the
target is reached. In each case, the mission planner is informed by
sensor inputs and acts appropriately by initiating the roadmap
and trajectory generation algorithm.

Fig. 6 shows the path planner together with its interfaces. It is
defined in the Enterprise Architect UML tool and the hull includ-
ing the connection to the communication framework is automa-
tically generated as Java code.

The path planner interfaces with the following systems:
control port (component life cycle), robot position (actual robot
position), mission planner (mission information), environment
model (sensor input), robot kinematic (forward and inverse robot
geometry calculations) control application (path planning user
control), robot movement control (direct movement execution)
and world model (topology of the workspace through connected
roads).

The robot is considered as a Dubins airplane [7], steered from
the start to the target by real robot movements. Given the target,
the path planner identifies the shortest path within the roadmap.
During the planning of the trajectory, an improvement of the
roadmap takes place: data about the environment are collected
and obstacles within the configuration space are better approxi-
mated. Finally, a joint distance metric is determined as heuristic
for the An algorithm and the path is converted into a trajectory
able to avoid static obstacles and to reduce the clearance to them.

Transformation is therefore a necessary step and it is realised
through the application of an elastic net. The roads of the road-
map, identified by the An algorithm, consist of connected config-
uration space positions. Those positions create a Voronoi diagram
(considering the free area in the joint space) and the elastic net.
Transformation of the elastic net into a trajectory is achieved by
applying equidistance, rotation and shrink forces on the joint
space positions [13]. The result is a trajectory formed by canoni-
cally ordered movement primitives, which are linear, circular or
joint movements. Joint movements are not of interest in this
study and are therefore omitted. Moreover, the transformation

process takes the configuration space ‘holes’ (by kinematic
calculations) and the obstacles (by collision detection) into
consideration.

Finally, the An algorithm leads to the identification of the
shortest path and this often generates a re-planning of the path
itself if a shorter path is recognised. Since real robot movements
are involved, this should not happen too often. A hysteresis is
applied in order to prevent this. This application has been
included in order to allow an additional exploration of the
workspace: consequently, the system may rely on a wider knowl-
edge provided to the world model.

4.6. Robot program generator

As described in Section 4.5, a trajectory is composed of move-
ment primitives. Movement primitives are in its turn composed of
a list of particles, mainly linear, circular and joint movements.
Each particle forming the movement primitive knows its own
position (stored in Cartesian coordinates) and orientation. Suc-
cessively the robot program generator transfers the given set of
particles to a robot readable format, either robot program files, for
example in Melfa Basic language, or direct movement commands
transferred to the robot controller.

5. Experiment

The online path planning and programming support system
proposes an approach able to reduce the robot programming time
including preparation and installation. It generates acceptable
robot programs and regards the modern industrial basic goals
(flexibility, speed and optimization; see also Section 2). It finds a
trade-off between shortest path finding and trajectory forming
and maintainability. Finally, it generates a downloadable robot
program file.

In this section, the general execution of the support system is
described and a scenario (see Fig. 7) has been chosen to illustrate
the proposed approach.

5.1. Pre-existing data import

In the chosen scenario the two obstacles, O1 and O2, are given
as drawing exchange format files and imported to the environ-
ment model. One obstacle O3 is ‘unknown’ for the system (not
imported).

Fig. 6. Path planner interfaces. Fig. 7. Experimental scenario (2D example in 3D world).

C. Kohrt et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 71–7976

Author's personal copy

5.2. Mission preparation

The chosen scenario consists of a mission with positions P1 and
P10 and the application path P7 to P8, a straight line with the hand
tool equipment of the robot closed. The pointing device has been
used to store the locations of the application paths in co-
operation with the support system.

5.3. Robot program generation

Once the mission has been planned successfully, the robot
program file may be generated. The program generation is
template-based. Thus, only the dynamic content of the file is
shown in Listings 1 and 2 and Listing . The results are shown in
Figs. 8 and 9.

The movement primitives circular and linear are identified,
respectively as MVR and MVS robot commands. The program in
Listing 2, composed of 6-movement primitives, is still readable by
a human. The final movements of the robot are comparable to the
manually programmed ones. Manual modifications may still be
carried out within the program even on larger missions.

The overall time for the proposed system to generate a robot
program file for the scenario was about 20 min (see Table 1, row 9),
including mission preparation, data import and program file
generation. The proposed system has been compared with offline
programming and conventional online programming. Both pro-
gramming methods include the use of tools such as the Mitsubishi
programming tool COSIROP/MELSOFT [16] or RobCAD. Offline
programming and conventional online programming requires
highly skilled operators, while only a basic knowledge is required

for supported robot programming. Online programming only
considers available physical objects whereas offline and supported
programming support models of these objects. The time for each
process step is given in Table 1:

The times within Table 1 may be divided into fixed and task-
dependent times. Usually within an industrial setting, there is not
the necessity to place numerous models into the workspace;
therefore, they may be seen as fixed. Moreover, setting the
locations should not be relevant too, though program generation
is highly dependent on the size of the program (see rows 4–6 in
Table 1).

Table 2 illustrates the online programming time only and
Table 3 represents the overall programming time for each
programming method. Offline programming must be separated
into minimum, maximum and normal values, which represent the
online modification of the offline generated program within the
robot cell. The normal values may vary within the minimum and
maximum values, depending from the quality of the offline
generated robot program. Online programming can be applied
very quickly and should be used for small program sizes since the
programming time deeply increases compared to the program
size. Supported online programming requires an equal amount of
time and a small fixed installation time compared to normal
values of the offline programming method.

Table 3 focused on the preparation times and it shows an
additional preparation time for offline programming also men-
tioned in Table 1, row 0. The offline preparation time can be
omitted entirely to save offline programming expenses, since the
speed of programming, comparing offline and supported online
programming is equal. Certainly, this is highly dependent from
the quality of offline generated programs and may affect the
‘‘offline (normal)’’ values in Tables 2 and 3. In the given small
example scenario, 2 h offline programming including the operator
and the simulation tool could be omitted saving costs. Therefore,
supported online programming is recommended especially for
small batched manufacturing but also for high-volume
production.

6. Discussion

The complexity of programming remains one of the major
hurdles preventing automation using industrial robots for small
to medium sized manufacturing. Offline programming with a
simulation system has been introduced for large volume manu-
facturing but the additional efforts in offline programming makes
it inefficient for small to medium sized manufacturing. Although
online programming methods have been researched in the past
[25] to make online programming more intuitive, less reliant on

Listing 1. Melfa Basic IV programmed file created online .

Listing 2. Melfa Basic IV robot program file created with the support system .

Fig. 8. Manually planned path (schematic).

Fig. 9. Automatically planned path (schematic).

C. Kohrt et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 71–79 77

Author's personal copy

operator skill and more automatic, most of the research outcomes
have not become commercially available. This is partially because
most of these methods are limited to their specific setups and are
yet to be applied to general applications. Compared to those
methods, the presented methodology differs in two points. First,
the human operator reports collisions and, thus, it is generally
available and cost efficient. Second, the applied trajectory plan-
ning algorithm is able to handle the information type and
intelligently controls the robot within the robot cell to compute
the robot trajectory.

7. Conclusion

Aim of this paper was to introduce a new online path planning
and programming support system. The tool is applicable to real
industrial scale, where articulated robots work in multi-
dimensional space. One of the main benefits deriving from this
application is its real time capability. Creating the opportunity to
work successfully online, offline simulation systems becomes

obsolete; moreover, the overall time required for larger missions
decreases. This support system is based on two specifics: the
Voronoi roadmap and the elastic net, both co-operating for the
planning of missions with multiple goals. The new approach
transforms the user interaction into a simplified task that gen-
erates acceptable trajectories, applicable for industrial robot
programming. In addition, it works successfully with basic knowl-
edge of the operator and asks to use the software application only.
The trade-offs optimality, path planning & smoothing and main-
tainability are considered in the new approach. The new criteria
maintainability and reusability have been introduced and the
shown experiment has demonstrated that the system successfully
faces and satisfies the modern requirements coming from the
industrial market. The process is optimized, offline programming
time may be saved and online programming becomes easier.
Nevertheless, there is still space for further development, con-
cerning dynamic obstacle avoidance and application of the
system to multiple robots working conjunctly. The standard A*

algorithm here used may, in the future, be extended to the AD*

algorithm [14]. Mission and task specific extensions to the soft-
ware have not been incorporated yet. These are for example
application path information for welding, adhesive bonding or
handling.

References

[1] Bhattacharya P, Gavrilova ML. Voronoi diagram in optimal path planning, In:
Proceedings of the fourth international symposium Voronoi diagrams in
science and engineering ISVD, 2007, pp. 38–47.

[2] Bhattacharya P, Gavrilova ML. Roadmap-based path planning—using the
Voronoi diagram for a clearance-based shortest path. IEEE Robotics and
Automation Magazine 2008;15:58–66.

[3] Chen H, Fuhlbrigge T, Li X. Automated industrial robot path planning for
spray painting process: a review. In: Proceedings of the IEEE international
conference automation science and engineering CASE, 2008, pp. 522–527.

[4] Corke PI. A Robotics Toolbox for Matlab. IEEE Robotics and Automation
Magazine 1996;3:24–32.

[5] Corke PI. Machine vision toolbox. IEEE Robotics and Automation Magazine
2005;12:16–25.

[7] Dubins LE. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of Mathematics 1957;79:497–516.

[8] Garga AK, Bose NK. A neural network approach to the construction of
Delaunay tessellation of points in Rd. In: IEE transactions on circuits and
systems I: fundamental theory and applications, Vol. 41, 1994, pp. 611–613.

[9] Gargantini I. Linear octtrees for fast processing of three-dimensional objects.
Computer Graphics and Image Processing 1982;20(4):363–74.

[10] Hall DL, Llinas J. An introduction to multisensor data fusion. Proceedings of
the IEEE, 1997; 85: 6–23.

[11] S.D. IFR, World Robotics Report, /http://www.worldrobotics.orgS, 2005.
[12] Kohrt C, Pipe A, Schiedermeier G, Stamp R, Kiely J. A robot manipulator

communications and control framework. In: Proceedingsof the IEEE interna-
tional. conference mechatronics and automation ICMA, 2008, pp. 846–851.

[13] Kohrt C, Schiedermeier G, Pipe AG, Kiely J, Stamp R. Nonholonomic motion
planning by means of particles. In: Proceedings of the IEEE internetional
mechatronics and automation conference, 2006, pp. 729–733.

Table 1
Path planning execution times (n if locations are stored within DXF).

Id Program execution timennTask Online [s] Supported [s] Offline [s]

0 Offline programming 0 0 7200

1 System installation 10 600 10

2 DXF import 0 30 0

3 DXF placement 0 300 0

4 Set start/goal locations 60 60/0n 0–60

5 Set application locations 60 60/0n 0–60

6 Program or modify path 240 60 0–240

7 Save/upload program 20 10 20

8 Sum (online): 390 1120/1000 30–390

9 Sum (overall): 390 1120/1000 7230–7590

Table 2
Comparison of the online programming times.

Table 3
Comparison of the overall programming times.

C. Kohrt et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 71–7978

Author's personal copy

[14] Likhachev M, Ferguson D, Gordon G, Stentz A, Thrun S. Anytime dynamic An:
An anytime, replanning algorithm. In: Proceedings of the international
conference on automated planning and scheduling (ICAPS), 2005.

[15] Masehian E, Amin-Naseri MR. A voronoi diagram-visibility graph-potential
field compound algorithm for robot path planning. In: Journal of Robotic
Systems, Vol. 21 (6), 2004, pp. 275–300.

[16] Mitsubishi-Electric, /http://www.mitsubishi-automation.comS, 2008.
[17] Qi L, Yin X, Wang H, Tao L. Virtual engineering: challenges and solutions for

intuitive offline programming for industrial robot. In: Proceedings of the IEEE
Conference robotics, automation and mechatronics, 2008, pp. 12–17.

[18] Ritter H, Martinetz T, Schulten K. Neuronale Netze 1994:3486243446.

[19] Russell S-J, Norvig P. Artificial Intelligence: a modern approach (2nd Edition),
0-13-080302-2, 2002.

[20] TheMathworks, /http://www.mathworks.deS, 2006.
[21] Vleugels JM, Kok JN, Overmars MH. Motion planning using a Colored

Kohonen Network, in: technical report RUU-CS, Issue 93-38, 1993.
[24] Siemens, RobCad Simulation Software, in, /http://www.plm.automation.sie

mens.comS, 2011.
[25] Pan Z, Polden J, et al., 2010. Recent progress on programming methods for

industrial robots, in: 41st international symposium on robotics and sixth

German conference on robotics, 2010, pp. 1–8.

C. Kohrt et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 71–79 79

J. Attachments

KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. 2008. A

robot manipulator communications and control framework. Proc. IEEE Int. Conf.

Mechatronics and Automation ICMA.

Proceedings of 2008 IEEE International Conference on
Mechatronics and Automation

FA1-1

978-1-4244-2632-4/08/$25.00 ©2008 IEEE

�
Abstract— The use of industrial scale experimental machinery

robot systems such as the Mitsubishi RV-2AJ manipulator in
research to experimentally prove new theories is a great
opportunity. The robot manipulator communications and control
framework written in Java simplifies the use of Mitsubishi robot
manipulators and provides communication between a personal
computer and the robot. Connecting a personal computer leads
to different communication modes each with specific properties,
explained in detail. Integration of the framework for scientific
use is shown in conjunction with a graphical user-interface and
within Simulink as a Simulink block. An example application for
assisted robot program generation is described.

Index Terms—Manipulator, communication, robot
programming, manipulator motion-planning

I. INTRODUCTION

ATH-PLANNING for industrial robots in complex
environments where collision avoidance, in cooperation

with the presence of a human worker in the robot work space
is a research area which merits significant attention. The
levels of automation within the automotive industry are
expected to increase in future, so as to enhance the economics
of manufacture. It is to be expected that in a future factory,
human employees will co-exist alongside active industrial
robots, to perform such tasks as body-part assembly and
sealant application. For example, in car industry a moving
conveyor is often used and separation of human employees
and robot systems can hardly be realized. An increase in
productivity can only be gained with either shorter production
cycles or longer production times. Manufacturing industry
must have a flexible production to offer highly diversified
product mixes in a short delivery time, based on just-in-time

Manuscript received May 31, 2008. This work was supported in part by
the Bavarian Research Foundation.

Christian Kohrt is with Berata GmbH, Munich, Germany (phone: +49-179-
2921307; e-mail: christian.kohrt@berata.com).

Anthony G. Pipe is with UWE - University of the West of England, Bristol,
UK (e-mail: anthony.pipe@uwe.ac.uk).

Gudrun Schiedermeier is with UASL – University of Applied Sciences
Landshut, Germany (e-mail: gschied@fh-landshut.de).

Richard Stamp is with UWE - University of the West of England, Bristol,
UK (e-mail: richard.stamp@uwe.ac.uk).

 Janice Kiely is with UWE - University of the West of England, Bristol,
UK (e-mail: janice.kiely@uwe.ac.uk).

small batched production [13]. With changing products
production robots must also be programmed more often while
the overall production time must be maximized to guarantee a
high productivity.

The proposed framework is used in an ongoing project
leading to foundations and algorithms for the industrial path-
planning task which is the creation of a robot program within
static industrial surroundings. The programming task will
change from explicit to implicit programming.

A system overview in the next section gives a brief
summary of physical devices involved. Section III describes
the assisted robot program generation application, which
makes use of this framework. Subsection IV.A gives detailed
information of the communication modes possible with a
Mitsubishi robot system connected to a CR 1 controller. An
extension to the built-in communication modes is the data link
control mode explained in subsection B. An overview of
communication modes and their use is given in subsection C.
The next subsection shows how the framework interacts with
Matlab/Simulink followed by the Visualization component
with collision detection and a visual servo control example. A
conclusion is given in section V, showing the main use of the
presented framework and important results.

II. SYSTEM OVERVIEW

The equipment is shown in Fig. 1. External devices are the
pointing device, vision system, robot controller,
Teachpendant, robot and personal computer.

Fig. 1. System overview.

The robot manipulator communications and control
framework is executed on the personal computer, which has
an Ethernet and serial port connection to the robot controller.
The Teachpendant and the robot are connected to the
controller. The vision system and the pointing device are
plugged in to the personal computer. The framework is

A Robot Manipulator Communications and
Control Framework

Christian Kohrt, Anthony Pipe, Gudrun Schiedermeier, Richard Stamp, Janice Kiely

P

846

verified with a visual servo control application including
collision detection and Matlab/Simulink integration.

III. IMPLEMENTATION OF THE FRAMEWORK

The operation of an industrial robot is generally restricted
to a small set of commands. Research was undertaken to
integrate those commands that control movement with data
from the path planning system.

Fig. 2. Programming assistant overview.

An overview of this approach is given in Fig. 2. A
programming assistant is proposed, which aims at creating a
robot program for industrial robots.

Path-planning in robotics considers model-based and
sensor-based information to capture the environment of the
robot. Perception, initiated by sensors, provides the system
with information about the environment and also interprets
them. Those sensors are, among others, cameras or tactile
sensors often used for robot manipulators.

The Object Recognition component converts the features of
an image into a model of known objects. This process consists
of segmentation of the scene into distinct objects, determining
the orientation and pose of each object relative to the camera
and determining the shape of each object. Those features are
given with motion, binocular stereopsis, texture, shading and
contour. Peter Corke's Machine Vision Toolbox for Matlab
[10, 11] allows the user to easily use professional image
processing capabilities of Matlab. In addition to the detection
of the real environment, model-based data such as CAD-data
is used to render the world model more accurate. CAD
derived data from simulation systems for example RobCAD
are exported as DXF files with all physical locations attached
and stored within the world model. Attached locations of
CAD-objects are employed so as to acquire information
concerning the start and target locations. The path
information, such as gluing, painting etc. must be given within
the programming assistant. Target locations can also be
defined by manual movement of the robot and visual servo
control. The latter uses a pointing device to show the robot
system the target location. The robot automatically moves to
the shown location and stores the position.

The Working Space Exploration component gathers

information of the environment by moving the robot by
manual movement, by random movement with collision
indication and by running a robot program, also with collision
indication. During motion, the robot ascertains which parts of
the space are free in the robot coordinate system either with
visual feedback or manual collision indication. This
knowledge will become more accurate during the planning
process.

The kinematic of a robot is often not precisely known. A
neural network based approach is employed to ascertain the
dynamic model of a robot by the adoption of a learning
process. Visual servo control and working space exploration is
used to autonomously learn the robot kinematic.

The Robot Control component communicates with the robot
and provides direct robot control, serial/Ethernet connection,
parameter edit/read/write, program upload and download,
real-time movement control, robot system backup/restore,
external control over UDP1 and equipment control.

The robot program is implicitly stored within the robot
programming assistant as a trajectory. A transfer to a robot
specific program is done in the Robot Program component in
two steps: First, translation to a pseudo robot program with no
other information than the provided trajectory, and, second,
generation of the specific robot program with additional
configuration commands and specific syntax of the robot
programming language. The two step transfer can also be
adopted to support other robot types and manufacturers.

The employment of industrial robots without modification
of the robot and its controller is necessary for a rollout in
industry. The Mitsubishi industrial scale experimental
machinery robot system used is the RV-2AJ robot connected
to a CR1 controller. It is well documented, industrially proven
and communication with a personal computer is possible. Its
commercial viability has already been demonstrated in the
manufacture of car sub-assemblies, semiconductor memories
and other industrial/consumer goods [12]. The main areas of
application are assembly, manufacture, pick & place and
handling.

The robot control framework is used to verify a path
planning algorithm developed at the University of Applied
Sciences Landshut in cooperation with the University of the
West of England.

The Mitsubishi CR1 controller employed is equipped with a
built-in RS232 communication port and an external Ethernet
extension box. Both ports are used for communication in the
framework.

The tool Matlab/Simulink from TheMathworks [17] is often
used in the area of robot control. To use the robot control
framework in Simulink it must be encapsulated in Simulink
blocks. This brings the benefit to have all of the control within
the model and opens the use of Matlab/Simulink for robot
control applications in a model driven architecture design.

1 User Datagram Protocol

847

IV. THE FRAMEWORK

The aim of the robot control framework is to simplify the
usage of robot control and to cover all of the needs originated
from robot control applications. It consists of the components
described in the sections robot communication, data link
control mode, overview of communication modes and their
use, connecting the framework to Matlab/Simulink and
visualization. An example is given in section F.

A. Robot communication

The available communication modes are controller link
mode (CL), data link mode (DL) and real-time external
control mode (RTEC).

Controller communication mode (CL)
The controller communication mode is used to set

parameters, send robot control commands and read the robot
status. Getting the status information during movement of the
robot and controlling the robot in real time is not possible in
this mode. The data sent over Ethernet is not encoded and can
be read in plain text. Thus, it is possible to listen to the
Ethernet communication between the controller and the
personal computer. Generally, the protocol format for sending
commands is the following:

[<Robot No.>];[<Slot No.>];<Command> <Argument>

Each command is followed by a message sent by the
controller with status information and the result. Table I states
the pattern of such returning messages, where each star stands
for a digit:

TABLE I
STATUS OF SENT COMMANDS

Commands Contents

QoK**** Normal status
Qok**** Error status
QeR**** Illegal data with error number
Qer**** Error status and illegal data with error number

Real-time external control mode (RTEC)
Real-time external control of the robot is useful for direct

robot control, where the trajectory is calculated manually. The
real-time external control mode is based on the UDP
networking protocol. A UDP datagram is a simple and very
low-level networking interface, which sends an array of bytes
over the network. Even though they are not reliable their low
overhead protocol makes datagram transmission very fast.
Since the connection is a single point to point connection
between personal computer and controller, UDP can be
handled easier. Sending and receiving of packets is monitored
and a timeout exception is thrown if the communication does
not meet the requirement in time.

Mitsubishi provides a simple C communication program
example. Running time is crucial, since every communication
cycle has a time period of 7.1ms, which is dependent of the
robot hardware. A plain Java port is not capable to

communicate with the robot controller in time and leads to a
loss of UDP packages. Movement of the robot was not
continuous any more.

A dynamic link library for RTEC mode created in C is
connected with JNI to Java. The library could also be used in
Simulink to build a “hardware-in-the-loop” low level robot
control application. This gives full control of the robot and
code generation from Matlab/Simulink is possible.

Data link mode (DL)
The data link mode connects a controller with a personal

computer or vice versa. Usually, it is used to send robot status
information from internal robot sensors or other data to its
receiver.

B. Data link control mode

The data link mode is extended by a control component,
which gives the opportunity to control the robot while getting
status information. The personal computer and the robot
controller are arranged in a cascaded control system, where
the robot controller calculates the trajectory given by the
personal computer in form of movement commands. Those
commands can be sent at any time over Ethernet or the serial
port and the robot manipulator follows the trajectory without
stopping between the buffered movement commands.

Multitasking
Multitasking is used to run the data link control programs in

parallel. Multitasking is executed by placing the parallel
running programs in slots. Data is passed between programs
being executed in multitask operation via program external
variables and user defined external variables.

Multitasking configuration
The main control program MULTITASK is executed first

in slot 1. It sets the variable M_01 and M_02 to zero and starts
the programs DATALINK and CONTROLLINK in slot 2 and
slot 3. In line 80 and 90 the program waits for the variables
M_01 and M_02 to be set from the other programs to stop
execution. The main program multitask.mb4:

10 RELM
20 M_01=0
25 XLOAD 2,"DATALINK"
30 XRUN 2,"DATALINK"
40 WAIT M_RUN(2)=1
50 M_02=0
55 XLOAD 3,"CONTROLLINK"
60 XRUN 3,"CONTROLLINK"
70 WAIT M_RUN(3)=1
80 WAIT M_01=1
90 WAIT M_02=1
100 XSTP 2
110 WAIT M_WAI(2)=1
120 XSTP 3
130 WAIT M_WAI(3)=1
140 GETM 1
180 HLT
190 END

The DATALINK program in slot 3 shown below sends the
timestamp, current joint position, current speed of the tool

848

center point and current position.
Sending is looped over lines 100 to 130 and it sends until a

zero value is received. After closing the communication port,
the program notifies the MULITASK program in slot 1 that
the signal is turned on by means of the external variable
M_02. The communication program datalink.mb4:

10 WAIT M_02=0
20 M_TIMER(1)=0
30 OPEN "COM2:" AS #2
35 INPUT #2,DATA
40 IF DATA = "0" THEN 160
100 PRINT#2, M_TIMER(1), "|", P_CURR, "|", J_FBC,
"|", J_CURR, "|",M_RSPD(3)
130 GOTO 100
160 M_02=1
170 WAIT M_02=0
180 END

The CONTROLLINK program moves the robot
manipulator by receiving and executing movement
commands. This program runs in a cyclic mode and no user
interaction such as moving the robot with the Teachpendant or
by robot commands in controller communication mode is
possible. For control communication the RS232 port is used,
which is a slow connection but fast enough for direct robot
control commands. The data link mode is extended by a
movement command and leads to the data link control mode.
The movement program controllink.mb4:

10 WAIT M_01=0
20 OVRD 100
30 GETM 1
40 CNT 1, 300
50 SERVO ON
60 OPEN "COM1:" AS #1
70 DEF JNT JNTPOS
80 INPUT #1, JNTPOS
90 MOV JNTPOS
100 GOTO 80

With the CNT command, the robot continuously moves to
multiple movement positions without stopping at each
movement position.

C. Overview of communication modes and their use

Use cases for robot control are defined in table III. Since it
is not possible to send control commands and information
requests over one connection, a second connection is always
needed to get actual status information during motion.

TABLE II
COMMUNICATION MODES

Mode
Phys.
layer

Command type
Feed
back
type

U
C
1

U
C
2

U
C
3

U
C
4

U
C
5

U
C
6

RTEC ETH SDO SDO X - - - - -
DL ETH SD SD - - - X X X
DL RS232 SD SD - - - X X X
CL ETH Robot command - X - - - -
CL RS232 Robot command - - X - - -
CL ETH Robot program - - - X - -
CL RS232 Robot program - - - - X -

(RTEC – Real Time External Control; DL – Data Link; CL – Control Link;
ETH – Ethernet; SDO – Serialized Data Object; SD – Serialized Data; UC –
Use Case)

An overview of communication modes and use cases of
table III is given in table II.

TABLE III
USE CASES

Use-
case

Description

1 Direct robot control over Ethernet with feedback. Either the
mentor or the path-planning-system can move the robot manually.
No controller calculations are involved.

2 Robot operation with singular movement commands over
Ethernet. The controller calculates the path. Feedback data can be
retrieved by Ethernet connection after finishing movement.

3 Robot operation with singular movement commands over serial
port. The controller calculates the path. Feedback data can be
retrieved by serial port connection after finishing movement.

4 Robot operation with robot programs over Ethernet. The
controller calculates the path. Feedback data can be retrieved
either by Ethernet or by serial port connection.

5 Robot operation with robot programs over serial port. The
controller calculates the path. Feedback data can be retrieved
either by Ethernet or by serial port connection.

6 Robot operation by two data-link channels. One sending channel
over serial port and one receiving channel over Ethernet. The
robot has to be programmed so that it is possible to send
movement-type and data.

D. Connecting the framework to Matlab/Simulink

This section shows the mature steps and important key
issues to integrate the Java framework with a SWT2 user
interface to Matlab/Simulink.

Matlab/Simulink integration
The framework must be executed in its own thread to avoid

a freeze of the Matlab thread. The implementation as a
singleton of the framework GUI3 guarantees that only one
single instance of the GUI is running per Matlab instance.

Communication must be established between Matlab and
Java. Calling Java classes from Matlab is supported by
default. To communicate back to Matlab/Simulink, two cases
of software usage are possible: As a standalone client and as a
plug-in. A standalone client is running outside of
Matlab/Simulink, whereas a plug-in is started within. This has
a great impact on the communication of Matlab and Java.
While the standalone client must have interprocess
communication, a plug-in does not require this.

Fig. 3. Interprocess communication.

Generally, DLL4 libraries of Matlab/Simulink can always
be called by native system calls. JNI5 is a wrapper for such

2 Standard Widget Toolkit
3 Graphical user interface
4 Dynamic Link Library
5 Java Native Interface

849

system calls and thus can be used. A more convenient
possibility is COM6 or DDE7 communication. Matlab supports
both, the COM and the DDE technology. COM technology is
to be used, because the DDE communication server must be
switched on in newer versions of Matlab (R14 onwards). In
contrast, a plug-in does not need an interface for interprocess
communication. In fig. 3 COM/DDE communications is
illustrated for standalone clients.

The graphical user interface
Simulink is a platform for multidomain simulation and

model based design for dynamic systems. It provides a
customizable set of block libraries. Models are built from
these blocks that can be connected to solve a given
engineering challenge. Usually such systems are quite
complex and users not familiar with the model will have
difficulties to modify model parameters and to control the
model. Therefore, a centralized user input to the model can be
realized through a GUI. A GUI development environment
(GUIDE) is shipped with Matlab and, thus, becomes the
standard tool for GUI creation. A Java application within
Matlab/Simulink has greater functionality, i.e. interconnection
to a server. It also allows the use of another GUI library such
as SWT or Swing for standardized development of complex
GUIs.

Fig. 4. The GUI editors GUIDE and SWT.

SWT-based applications integrate seamlessly into the host
environment. The library is an adapter to the native widgets.
The design of SWT as an adapter makes a small library
possible. These libraries must be available on the target
computers.

The Simulink Blockset
To allow experiments in model based design methodology

the Java robot control framework is integrated into a Simulink
blockset. However, code generation is not possible with those
blocks. For simulation, additional blocks for forward and
backward calculation are needed. A Simulink block usually
supports simulation and code generation. Since Java is used,
this feature cannot be supported.

The blockset consists of the blocks listed in table IV. It is
not possible to use more than one robot control block at the
same time because every block needs its own explicit

6 Component Object Model
7 Dynamic Data Exchange

connection.
A stopped robot movement is a movement with stops

between two movement commands. It is also a blocking
command, which means movement finish must be awaited to
send the next command. A non blocking continuous
movement is a movement that can do continuous movements
also between two commands and the movement command can
be sent at any time. The status block always uses the data link
communication mode.

TABLE IV
SIMULINK BLOCKS

Block name Operation mode Description

Status data link continuous measurement
RelJoint data link control continuous, non blocking
RelCart data link control continuous, non blocking
CircularMov controller operation stopped, blocking
LinMovJoint controller operation stopped, blocking
LinMovCart controller operation stopped, blocking
JointMovJoint controller operation stopped, blocking
JointMovCart controller operation stopped, blocking

E. Visualization

Visualization is done with a Java3D scenegraph. But not
only viewing the robot but also collision testing should be
done combined with ODEJava, a physical simulation system.

Collision detection
The built-in Java3D testing does only tests in every frame.

Collisions of fast moving objects could take place between
two frames that leads to an unrecognized collision. The Open
Dynamics Engine (ODE) library written in C and its Java
binding ODEJava is used to do collision detection. The
ODEJava project allows using ODE with Java. ODE is a free,
industrial quality library for simulating articulated rigid body
dynamics in virtual reality environments. It has built-in
collision detection. The Project also contains tools for binding
ODEJava into Xith3D, jME and Openmind scenegraph
projects. Since Java3D scenegraph is used, development of a
graphics engine is necessary to combine ODEJava with
Java3D.

The Viewing component also supports visual display of
DXF CAD-data as well as any Java3D object. The ODEJava
library is used for collision detection of basic geometric
objects. DXF-data cannot be used with ODEJava, but can be
viewed with Java3D. Collision detection with complex DXF
data is therefore rudimentary supported. Collision points and
vectors are hard to calculate from DXF-data, but can be done
manually. The requirements for DXF-data collision detection
are fulfilled. The basic geometric objects are fully supported
and have higher requirements in terms of accuracy, because
the neural net used in the Path Planner component is
simulated by those objects [14].

F. Visual servo control

Visual servo control is used for user interaction with the
robot system by a pointing device for example used in the

850

Working Space Exploration or Location Positioning
components.

The transformation of picture coordinates of the camera
views to robot coordinates by a neural net is learned. The
system interprets then the pointing device of the mentor and
controls the robot so that it moves in the direction of that
point.

Fig. 5. Example application

An extension to Kohonen’s model [9] is implemented to
autonomously learn the positioning of a robot arm to a
visually given point (Fig. 5). To get information of the
position of the objects in space, the robot cell is equipped with
two cameras, which monitor the robot cell. During training,
the position of the target location within the working-space is
randomly chosen. The target location is monitored from the
cameras and their signals are applied to the neural net. Every
neuron is responsible for a subspace of the robot cell. If a
target location is chosen, this neuron becomes activated and
provides control signals to the robot controller. The position
of a robot arm with five joints is not only a five dimensional
vector, but every camera delivers its two dimensional point of
the viewing pane. The neural net has to transform that position
information to control signals for the five robot joints.

More information about the robot, the cell, the cameras or
its positions in space is not needed. Moreover, this must be
learned by the neural net.

At the beginning, the robot will move to incorrect robot
positions. The difference to the target position is used to train
the net. Then the robot will be given the next target position
which gives the system the opportunity to learn a second time
and so on. The robot is an autonomous learnable system.

V. CONCLUSION

Robot control applications need a connection to the real
robot system. Sending robot control commands as well as
receiving information of the robot status and position is
necessary especially for path-planning applications, where the
focus is on algorithm development. This framework offers the
possibility use a standard industry robot system. The
framework extends the Mitsubishi CR1 controller family robot
system to send robot commands during movement of the robot
manipulator without stopping between two commands and to

receive robot information during movement. All
communication modes over serial port and Ethernet are
discussed. Besides the use of the robot control framework as a
standalone application, it can also be used with
Matlab/Simulink and interconnected within Simulink models
to support a wide range of robot control applications.

ACKNOWLEDGMENT

We thank Stefan Holzer for his support and valuable work
of an earlier project at the UASL University of Applied
Sciences Landshut.

REFERENCES

[1] Jim Tung, “The impact of model based design on product development,”
in Model-Based Design Conference, 2005.

[2] Mitsubishi-Electric Manual, Connection with personal computer, 2005.
[3] Mitsubishi-Electric MELFA Industrial Robots Instruction Manual

(Functions and Operations) CR1/CR2/CR3/CR4/CR7/CR8 Controller,
Mitsubishi-Electric, 2003.

[4] Mitsubishi-Electric MELFA Industrial Robots Instruction Manual CRn-
500 Expansion Serial Interface, Mitsubishi-Electric, 2003.

[5] Mitsubishi-Electric Mitsubishi Industrial Robot CRn-500 Series
Personal Computer Support Software Instruction Manual, Mitsubishi-
Electric, 2003.

[6] Mitsubishi-Electric MELFA Industrial Robots Instruction Manual
Controller CR1, Mitsubishi-Electric, 2002.

[7] Mitsubishi-Electric Ethernet Interface CRn-500 series Manual,
Mitsubishi-Electric, 2002.

[8] Mitsubishi-Electric MELFA Industrial Robots Instruction Manual RV-
1A/2AJ Series, Mitsubishi-Electric, 2002.

[9] H. Ritter, T. Martinetz, K. Schulten, “Neuronale Netze,” Oldenbourg,
1994.

[10] P. I. Corke, “The Machine Vision Toolbox,” in IEEE Robotics and
Automation Magazine, 12(4), pp 16-25, November 2005.

[11] Programming - Matlab Image Processing Toolbox Version 2,
Mathworks, 1997.

[12] http://www.mitsubishi-automation.com, 2008.
[13] University of Karlsruhe, “EURON II Research Roadmap,”

www.euron.org, 2005.
[14] C. Kohrt, G. Schiedermeier, A. G. Pipe, J. Kiely, R. Stamp,

“Nonholonomic Motion Planning by Means of Particles,” in IEEE
International Conference on Mechatronics and Automation, Luoyang,
China, pp 729-732, June 2006.

[15] C. Kohrt, T. Reicher, R. Rojko, “With Model-Based Design to
Productive Solutions: Professional GUIs for Simulink by Utilizing the
Java SWT Library,” in Design & Elektronik, Stuttgart, Germany, May
2006.

[16] P. I. Corke, “Visual Control of Robots: High-Performance Visual
Servoing,” New York: Wiley, 1996.

[17] http://www.mathworks.com, 2008.

851

J. Attachments

KOHRT, C., SCHIEDERMEIER, G., PIPE, A. G., KIELY, J. and STAMP, R. 2006.

Nonholonomic Motion Planning by Means of Particles. International Mechatronics and

Automation Conference. Luoyang, China: IEEE.

Nonholonomic Motion Planning
by Means of Particles

C. Kohrt*, G. Schiedermeier**, A. G. Pipe***, J. Kiely***, R. Stamp***

* Berata GmbH,
80807 Munich, Germany christian.kohrt@berata.com

** Department of Computer Sciences, UASL – University of Applied Sciences Landshut,
84036 Landshut, Germany gschied@fh-landshut.de

*** Faculty of Computing, Engineering & Mathematical Sciences, UWE – University of the West of England,
BS16 1QY Bristol, UK {anthony.pipe, janice.kiely, richard.stamp}@uwe.ac.uk

Abstract - In this article a new approach to planning of a
nonholonomic motion is presented. A flexible, intelligent planner
based on a static map and the topology of the robot’s
environment has been developed. The approach uses ‘particles’
to construct automatically a path between two given locations.
The generated path is a smooth trajectory, where the length of
the path is kept at a minimum and obstacles are avoided. This
concept applies to robots meeting the restrictions of a Dubin’s
car (nonholonomic robot that can only move forward). After the
basic concepts of the approach has been described, simulations
will be presented.

Index Terms – Pathplanning, autonomous, nonholonomic,
particles, elastic.

I. INTRODUCTION

 This paper presents a new motion planner for
nonholonomic mobile robots. Such robots have dependent
degrees of freedom so that the motion is restricted. In this
paper, nonholonomic mobile robots refers to car-like robots.
The problem is to find a feasible trajectory for the robot,
enroute from its start position to its goal position, without
collision with static obstacles. Boundary conditions imposed
and dynamics of the robot’s kinematic model must be
satisfied.

In the geometric formulation of this problem, the robot is
reduced to a point on the two dimensional surface with the
behavior similar to Dubin’s car [7]. This car is able to drive
forward only and the radius of steering is bounded.
The resulting paths must be smooth (differentiable) and
feasible for a car-like robot. The tangent direction is
continuous and they respect a minimum turning radius
constraint. These paths can be followed by a real vehicle
without stopping and thus have a continuous curvature profile
in their motion.

Existing path-planning methods can be found in [3].
Roadmap methods calculate a collection of path segments
around static obstacles. This path is calculated by connecting
the initial and the goal configuration of the robot with a
roadmap that can be built in several ways. For example, the
Visibility Graph is built by connecting the initial and target
configuration with the edges of all obstacles in the given map.

The Voronoi diagram leads through the middle of available
corridors between obstacles.

Cell Decomposition methods divide the robot’s free space
into several regions, so called cells. The connectivity graph is
built by connecting adjacent cells. A channel leading from
initial to goal configuration through the graph can then be
computed. A path can be chosen as, for example, leading
through the midpoints of the intersections of two successive
cells.

Potential field methods divide the free space into a fine
regular grid and search this grid for a free path. Different
potentials are assigned to the cells of the grid,
where ’attractive’ potentials are given to cells close to the
robot’s goal, ’repulsive’ potentials are assigned to obstacles.
A path is constructed along the most promising direction.

In a nonholonomic planner, the path is created as a set of
maneuvers, which take into account the geometric and
kinematic constraints of the robot. Different approaches have
been developed using a random planner [4] or nonholonomic
graphs.

The main contribution of this paper is to form the paths of
an already connected roadmap to conform to the robot’s
constraints. This goal will be captured by means of ‘particles’.
The calculations will be done locally with no global
knowledge.

The remainder of the paper is organized as follows. In
Section II, assumptions are formulated for the path-planning
problem. In Section III, the new path-planning concept is
explained in detail. Section IV proposes a strategy for how to
vary the parameters to achieve good results. Examples are
given in section V. And finally the paper is concluded with
brief remarks in Sections VI and VII.

II. ASSUMPTIONS

 With a predefined roadmap, generated by another path-
planner, a Voronoi diagram can be created (see Fig. 1). Thus,
the topology of the working space can be obtained. The robot
under consideration is shown in Fig. 2. The steering angle is
bounded to a maximum absolute angle of e. The car is able to
drive around curves with a minimum radius of r. No other
maneuvers are allowed and the car can drive forward only.

1-4244-0466-5/06/$20.00 ©2006 IEEE
729

Proceedings of the 2006 IEEE
International Conference on Mechatronics and Automation

June 25 - 28, 2006, Luoyang, China

Fig. 1 Voronoi diagram.

Fig. 2 The mobile robot

 The robot operates in a two dimensional environment
with static obstacles. Obstacles are represented by polygons.
These obstacles are stored in the roadmap. The robot knows
its start and goal positions.

III. THEORY

A. Correlation between the radius of a curve and the
steering angle e
 The correlation of e and the radius r is shown for two
cases, a regular polygon and a circle. The former will be used
later, where e corresponds to g1, g2 and g3 in the ideal case. In
Fig. 4, the steering angle e of the real robot from Fig. 2 can be
compared.
 The formulas for the correlation of e and r are mentioned
in (1), (2) and (3).

engda 2 (1)

r
lge n 2

atan2 (2)

2
tan2 e

lr (3)

B. Installed forces
 ‘Particles’, forming a Voronoi diagram of the working
space, are utilized to solve a planning problem of a car-like
mobile robot. By minimization of newly installed forces at the

Fig. 3 Correlation of e and the radius r in a polyhedron.

Fig. 4 Correlation of e and the radius r in a circle.

‘particles’, a path-planning solution can be found.
 As can be seen in Fig. 5, three forces are installed. The
first force ceEquidistanF keeps the distances between the
‘particles’ equidistant. The second force RotationF , actually the
summary of the four forces

1gotationRF ,
3gotationRF ,

4gotationRF
and

6gotationRF , moves the ‘particles’ on a circle with the
neighboring ‘particle’ as the midpoint. The last one, ShrinkF ,
lets the path shrink in the direction of a straight line.
 The direction and value of the forces are influenced by
the three neighboring angles g1, g2 and g3 (see Fig. 3 and 5).

C. Equidistance forces
 These forces push the ‘particles’ in a tangential direction.

ceEquidistanF influences the other forces, especially the
rotational forces as little as possible. To reach equidistance of
all points the tangential force is utilized. The absolute value of
the force is the difference of the distance to the neighboring
points (4).

730

Tangent

Tangent
ceEquidistan

F

F
ABBCF (4)

D. Rotational forces
 The steering angle e (see Fig. 2) can be changed at any
time within its boundaries. Curves with a fixed e would result
in circular curves. To build a circle of ‘particles’, it can be
seen as a polyhedron, such as shown in Fig. 3. A polyhedron
has straight lines between the neighbors and a circle can be
approximated by more ‘particles’. RotationF tries to keep the
angles of three neighboring ‘particles’ the same.
 Every line tries to minimize the difference of the angles
g1 , g2 and g3 with a small rotation (see Fig. 6).

Fig. 6 Angles of the rotational force.

The force of the rotation is orthogonal to its rotation axis.
This leads to the formulas for the motion of point B:

2
21

1
gge (5)

2
32

2
gge (6)

11

1

1
1

ge
F

F
F

g

g
Rotation g (7)

21

3

3
3

ge
F

F
F

g

g
Rotation g (8)

22

4

4
4

ge
F

F
F

g

g
Rotation g (9)

32

6

6
6

ge
F

F
F

g

g
Rotation g (10)

64

31

Rotation gRotation g

Rotation gRotation gRotation

FF

FFF
 (11)

E. Shrink forces
ShrinkF is a constructed force at each ‘particle’ to build a

straight line. This can be done by a simple vector addition of

Fig. 5 Installed forces.

731

the two position vectors of the neighbors of each ‘particle’
(see Fig. 5) while keeping the equidistance constraint.

ABBCFShrink (12)

F. Forming lines
Every ‘ particle’s ’ position lies on an edge of the

polyhedron. The overall force leads to a curved connection,
where all ‘particles’ are ordered equidistant and the steering
angle e always lies within its boundaries. The path has no
straight line, yet.

 If the steering angle e is very small, the radius of the
curve is very large and can be seen as a straight line. The
algorithm considers this with a switch for the calculation of
the positions of each ‘particle’: Shrink forces can be used to
form a line. It is a simple vector addition of the two
neighboring lines of B to A and C (see (12) and Fig. 5).

A radius threshold rmax is introduced, which controls
when the formulas for a line or a curve are used. rmax is the
value for the maximum radius. The angle threshold ta,min can
be obtained from (2). If min,an tg for n=1,2,3 then the
‘particles’ will be shrunk to a line. Otherwise the rotational
forces take place.

To enhance the algorithm, a second constraint leads to
faster convergence: If the absolute value of the angles ng
exceeds ta,max , calculated with (2) from the threshold rmin, the
shrink algorithm can be used.

G. Overall force
With both types of motions, it is possible to construct a

path from a start position to a goal position with straight lines
and curves automatically. The only parameter which is
responsible for the decision of whether a line or a curve has to
be build is the threshold ta,min. The overall formula is now:

min,Shrink3

min,Rotation2
ceEquidistan1 if,

if,

an

an

tgFC
tgFC

FCF (13)

Cn are parameters to normalize each of the forces and can be
utilized to weight each force dependent to the stage of
planning. This is utilized in the strategy in section IV.

IV. STRATEGY

The best strategy is first to start with a high shrink force
ShrinkF and set the rotational force to zero while using (14).

No threshold is applied, yet.

Shrink3ceEquidistan1 FCFCF (14)

 The connections will be as short as possible and the
‘particles’ are aligned on a line. The motion constraints are
not fulfilled at this stage.

On the second stage, ShrinkF is getting smaller and the
other forces start to grow up to a defined value. Now, the
threshold ta,min is applied and (13) is used, which causes the
‘particles’ to form a canonical path of linear and circular
motions.

V. EXAMPLES

The topology of the map is obtained by another
algorithm, such as a Voronoi diagram. An A* algorithm can
be used to find a suitable path. Often, the shortest path is
chosen. In these examples a path has been found within the
topology map, which has to be optimized from a random state
of the ‘particles’.

In Fig. 7 ta,min is set to zero and therefore the minimal
steering angle e is zero. The path is a smooth curve and there
is no straight line. In contrast to Fig. 7, the parameter ta,min in
Fig. 8 is set to a value greater than zero. Thus, the path tends
to have more straight lines and narrow curves.

Fig. 7 Path with ta,min = 0.

Fig. 8 Path with ta,min > 0.

VI. CONCLUSION

In this paper a new motion planning algorithm is
presented for nonholonomic mobile robots in two dimensional
configuration space. Planned trajectories are smooth and
feasible for car-like robots with a continuous curvature
profile. The algorithm works with only local knowledge and
can be extended for higher degrees of freedom.

VII. FUTURE WORK

The ‘particles’ have the tendency to build up if the
number of ‘particles’ is high enough. Also, a large number of
‘particles’ converges very slowly. One of the proposed ideas
are additional forces on the equidistance force of straight lines

732

to lengthen the distance between two ‘particles’. An additional
effect could be used if the distance is a function of the
velocity of the robot. Another idea is the injection of new
‘particles’ so as to start with a low number of ‘particles’ and
increase this number as required by the algorithm.

REFERENCES

[1] H. Jaouni, M. Khatib, J. P. Laumond, “Elastic Bands For Nonholonomic
Car-Like Robots: Algorithms and Combinatorial Issues,” 3rd
International Workshop on the Algorithmic Foundations of Robotics,
Houston, 1998.

[2] Jiang, Kaichun, L. D. Seneviratne, PP. W. E. Earles: “A shortest Path
Based Path Planning Algorithm for Nonholonomic Mobile Robots,”
Journal of Intelligent and Robotic Systems, 24th Ed, pp. 347-366, 1999.

[3] J.-C. Latombe, “Robot Motion Planning”, Kluwer Academic Publishers,
UK, 1996.

[4] S. M. LaValle, J. J. Kuffner, ”Rapidly Exploring Random Trees: Progress
and Prospects,” Proceedings of the Workshop on the Algorithmic
Foundation, 2000.

[5] S. Quinlan, O. Khatib, “Elastic bands: connecting path planning and
control,”, vol. 2, pp. 802-807, 1993.

[6] B. Graf, J. M. Hostalet Wandosell, C. Schaeffer, “Flexible Path Planning
for Nonholonomic Mobile Robots,” Fourth European Workshop on
Advanced Mobile Robots, EUROBOT '01, Lund, Sweden, September
2001.

[7] L. E. Dubins, “On curves of minimal length with a constraint on average
curvature and with prescribed initial and terminal positions and tangents,”
American Journal of Mathermatics, vol. 79, pp. 497-516, 1957.

[8] A. Scheuer, T. Fraichard, “Collision-free and continuous-curvature path
planning for car-likerobots,”, vol. 1, pp. 867-873, 1997.

733

J. Attachments

KOHRT, C., ROJKO, R., REICHER, T. and SCHIEDERMEIER, G. 2006. With Model

Based Design To Productive Solutions Professional GUIs For Simulink By Utilizing The

Java SWT Library. In: FACHZEITSCHR.-VERLAG, W. (ed.) KFZ-Elektronik.

With Model-Based Design to Productive Solutions: Professional GUIs

for Simulink by Utilizing the Java SWT Library

Authors

Dipl.-Ing(FH) Christian Kohrt
1
, Dr. Thomas Reicher, Dr. Roman Rojko

Christian.Kohrt/Thomas.Reicher/Roman.Rojko@berata.com

Berata GmbH

Frankfurter Ring 127

80807 Munich, Germany

Tel: +49-89143259-0

Fax: +49-89143259-59

Abstract

The Model-Based Design (MBD) approach is a widely used method to solve sci -

entific engineering challenges [1]. Matlab/Simulink as a representative of MBD

is a tool capable of exploiting the advantageous aspects of a graphical user inter -

face (GUI). The latter is created with a tool named GUIDE, which is shipped with

the Matlab/Simulink software. Unfortunately, user interfaces created with GUIDE

have some drawbacks. Thus, new approaches are needed to overcome these draw-

backs to improve the design of the GUI. It is surprising, that the Java SWT library

(Standard Widget Toolkit) is not used for such user interfaces. Although not sup-

ported by Mathworks, this article compares the features of an SWT based GUI to

the GUIDE, explains the practical implementation of SWT GUIs by examples and

gives an outlook to the wide field of applications taking benefit.

1 Introduction

The V-Modell [2] is a standard IT product development method publicly available and is used

by many companies. It manages required tasks and outcomes, defines methods and functional

tool requirements and guarantees a uniform procedure for software development. The functional

tool requirements define the functional properties of the tools for software development. These

tools are usually organized in a toolchain, that is a set of tools linked together. On each stage

in the toolchain, software tools are used, which are designed specifically for the given task.

For example, Matlab/Simulink as a representative for the Model-Based Design approach is used

frequently to solve modern engineering challenges in the field of Technical Computing, Control

Design, Signal Processing and Communications, Image Processing, Test and Measurement, Anal-

ysis, etc. [3].

The requirements of the tools used in such toolchains are of course different from those used as

standalone software. While in standalone software input of information are explicitely given to

solve a task (and therefore are mostly related to the task), tools in a toolchain must also be able

to manage not task related information. They also have to provide suitable interfaces to allow

communication to other tools.

Simulink is a platform for multidomain simulation and Model-Based Design for dynamic systems.

It provides a customizable set of block libraries. Models are built of these blocks that can be

connected to solve a given engineering challenge.

Usually such systems are quite complex and users not familiar with the model will have difficulties

to modify model parameters and to control the model. Therefore, a centralized user input to the

model can be realized through a GUI. A GUI development environment (GUIDE) is shipped with

Matlab and, thus, becomes the standard tool for GUI creation.

1also lecturer

Although GUIDE covers simple graphical objects for GUI design, customer requirements go far

beyond this. GUIDE also does not support a seamless transition from Simulink GUIs to those of

software developed in another programming language such as Java. Further, the use of the same

technology would result in GUIs that are easily exchangeable. Unfortunately, third party tools are

not available on market.

The aim of our customer project was to have GUIs with the same 'Look & Feel' in both Simulink and

Java developed software and to integrate Simulink in a toolchain. A further aim was to have

the right tools to design complex GUIs, i.e. to control a robot path-planning model. We identified

the Standard Widget Toolkit as a possible way to achieve those aims. The Java SWT library uses

native library calls to create the GUIs. The appearance is indistinguishable from user interfaces

of native applications and the user is already familiar to those graphics.

2 Related Work

Although it is possible to embed ActiveX documents into GUIDE and thus extending its func-

tionality, we decided not to use it. Matlab Version R13 does not support ActiveX by default. It

is supported since version R14, but we found that it is not flexible enough to satisfy our ex-

pectations in GUI design. Usually, the GUI is of a highly complex structure. Compared to the

Model-View-Control (MVC) concept, the Model and the View are not separated, which leads to

unstructured code.

3 Theory

The Standard Widget Toolkit is an open source framework for developing graphical user interfaces in

Java. Matlab/Simulink supports Java by default. Calling Java classes can be done on the

command line as well as in a Matlab script. Some options must be set in order to run Java

classes.

First, the path to the Java classes must be specified. This can be done in a static or dynamic

way. Through dynamic loading of Java classes, also known as 'Hot Deployment', software devel-

opment is much improved. In the development process, this results in significant time savings.

The user is not forced to restart Matlab after each development iteration. Unfortunately, Hot

Deployment has got some restrictions in Matlab version R14SP2 whereas other versions such as

R14SP1 and R14SP3 work properly.

Second, the Java classes must be copied to a specified location within the file system, where Mat-

lab's Java Path can be directed to. While in development process, these changes can be deployed to

Matlab automatically by ANT ('Another Neat Tool') after each development iteration.

ANT is also useful to control the ej-technologies tool exe4j (Java Exe Maker) or an installer

such as the Nullsoft Scriptable Install System (NSIS). The requirements to be installed on other

'clean' machines is a suitable Matlab and Java version installed.

As mentioned in section 1, SWT-based applications integrates seamless into the host environ-

ment. The library is an adapter to the native widgets. Swing for example emulates the native

user interface and, thus, mimic it. Sometimes, the right skins are not available and differences

between the native and Swing based user interfaces are apparent.

The design of SWT as an adapter makes a small library possible in contrast to the Swing library.

These libraries must be available on the target Computers. Therefore, the installer has to copy

those files to the host computer and thus has greater size.

Another advantage of the SWT design is the improved interaction compared to Swing. Since

SWT uses native event processing, the inner structure does not vary from the native system and

the behavior is thus comparable to the native system. In addition, SWT is less resource-hungry

than Swing.

Because SWT is only an adapter to the native host, a more robust and tolerant system can be

expected in regard to heterogeneous hardware and the various accelerator settings of the

graphics subsystem.

All in all, compared to other GUI libraries SWT has got the greatest advantages.

4 Practical implementation
This section shows the mature steps and important key issues to integrate SWT interfaces to

Matlab/Simulink.

4.1 Key issues

4.1.1 Threads
The SWT interface must be run in an own thread. The reason is quite simple: Matlab hangs in

its thread waiting for the GUI to end. Thus, no user input in Matlab/Simulink is possible.

Dependent to the application and customer requirements, the implementation as a Singleton of

the GUI guarantees that only one single instance of the GUI is running in one Matlab instance.

4.1.2 Calling Matlab/Simulink
Communication must be established between Matlab and Java. Calling Java classes from Mat-

lab is supported by default. But, more investigations were needed to communicate back to

Matlab/Simulink. The results are explained in this section.

Two cases of Software usage are possible: As a Standalone-Client and as a Plug-In. A Standalone-

Client is running outside of Matlab/Simulink, whereas a Plug-In is started within. This has great

impact on the communication of Matlab and Java. While the Standalone-Client must have in-

terprocess communication, a Plug-In does not require this.

Generally, DLL libraries (Dynamic Link Library) can always be called by native system calls.

The Java Native Interface (JNI) is a wrapper for such system calls and thus can be used. A more

convenient possibility is COM (Component Object Model) or DDE (Dynamic Data Exchange)

communication.

Matlab supports both, the COM and the DDE technology for communication. It is planned

in future releases to drop DDE and to support COM, only. The DDE communication server

must be switched on in newer versions of Matlab (R14 onwards). Only COM communication

will be supported in future, so we decided to use this technology. In contrast, a Plug-In does not

need an interface for interprocess communication. In figure 2 on the preceding page, COM/DDE

communication is illustrated for Standalone-Clients.

4.2 Example applications
In this section, two examples, namely the integration of Simulink into a toolchain and controlling a

robot with a complex user interface, will be introduced to give an idea how to implement the

mentioned technologies and methods.

5 Conclusion

The application of SWT interfaces is very widespread. Besides the normal use as interfaces for

complex models or applications, it also applies to interfaces of Simulink blocks or offer the op-

portunity to integrate Simulink into a toolchain.

Thus, Simulink is prepared to be used in a toolchain linked to a set of other tools. Those tools

maybe deliver information not used by the model. But nevertheless, these data must be given in

the correct format to the following tool in the toolchain to guarantee a seamless transition along

the toolchain.

The used type of GUI technology is dependent to the kind of data, complexity of the user inter -

face and other requirements.

Using professional SWT interfaces in Simulink is easily possible, once everything is configured.

We found, that the benefit of having professional user interfaces, that satisfy customer require-

ments outweigh the additional time needed for configuration.

6 Acknowledgment

We thank Phillip Ewert for reviewing this proposal and giving valuable comments.

References

[1] Jim Tung. The impact of model based design on product development. In Model-Based

Design Conference, 2005.

[2] Koordinierungs-und Beratungsstelle der Bundesregierung fur Informationstechnik in der Bun-

desverwaltung KBSt. http://www.v-modell-xt.de. 2006.

[3] TheMathworks. http://www.mathworks.de. 2006.

[4] Berthold Daum. Professional Eclipse 3 for Java Developers. Wrox, 2004.

	Abstract
	Acknowledgment
	Contents
	I. Glossary
	II. List of Abbreviations
	III. List of Figures
	IV. List of Tables
	V. List of Listings
	1 Introduction
	2 Literature Survey
	2.1 Industrial Manufacture
	2.1.1 Robot Programming
	Online Programming
	Offline Programming

	2.1.2 Manufacture Assistants

	2.2 Modelling of the Robot
	2.3 Configuration Space Discretization
	2.4 Path and Trajectory Planning
	2.4.1 Graph based Path Planning
	Visibility Graph
	Cell Decomposition Graph
	Voronoi Diagrams
	Probabilistic Roadmap

	2.4.2 Potential Field Based Path Planning
	2.4.3 Harmonic Functions Based Path Planning
	2.4.4 Neural Network Based Path Planning
	2.4.5 Movement Planning

	2.5 World Model
	2.6 Vision and Perception
	2.7 Collision Detection and Avoidance
	2.8 Model Driven Software Development
	2.9 Summary

	3 Aims
	3.1 Motivation
	3.2 Objectives

	4 Experimental
	5 Requirements for Adoption by Industry of Online Programming
	5.1 Industrial Production Environment
	5.2 Analysis of Existing Robot Programming Approaches
	5.2.1 Conventional Online Teach-In Programming
	5.2.2 Offline-Programming Amended by Online Teach-In

	5.3 Identification of Industry Robot Programming Requirements
	5.4 The Proposed Enhanced Online Robot Programming Approach
	5.5 Comparison of Programming Approaches
	5.6 The General Design of the Enhanced Online Programming System
	5.7 Summary

	6 Investigation into a Probabilistic Data Fusion World Model
	6.1 Cartesian Position Storage
	6.1.1 Index Assignment
	6.1.2 Neighbour and Parent-Child Relations
	6.1.3 Digitalization of the Robot Environment

	6.2 Robot Joint Position Storage
	6.3 Model Data Storage
	6.4 Data Fusion Framework
	6.5 Vision System
	6.5.1 Colour Recognition
	6.5.2 Image Stream Source
	6.5.3 Marker Recognition
	Segmentation
	Detection
	Tracking

	6.6 Summary

	7 Research of the Robot Kinematics Model and the Robot Control Capabilities
	7.1 Mitsubishi RV-2AJ Manipulator Control
	7.1.1 The Built-In Robot Control Modes
	Controller Link Mode
	Real-Time External Control Mode
	Data Link Mode

	7.1.2 Overview of the built-in Communication Modes
	7.1.3 The Extended Data Link Control Mode

	7.2 Mitsubishi RV-2AJ Kinematics
	7.2.1 The Geometric Solution
	7.2.2 Algebraic Solution
	7.2.3 Application of the Dubins Airplane Model

	7.3 Robotino Mobile Robot Control
	7.4 Robotino Kinematics
	7.5 Robot Simulation
	7.6 Summary

	8 Investigation into a Trajectory Planning Algorithm to Support Intuitive Use of the Robot Programming System
	8.1 Usage Scenarios
	8.2 System Overview
	8.3 Human Machine Interface
	8.3.1 Graphical User Interface
	The Finite-State-Machine
	Dynamic Toolbar

	8.3.2 Visual Servo Robot Control

	8.4 Mission Planner
	8.4.1 The General Path Planning Control Loop
	8.4.2 Mission Planning

	8.5 Trajectory Planner
	8.5.1 The General Trajectory Planning Workflow
	8.5.2 Discretization of the Configuration Space
	8.5.3 Reachability Calculation
	8.5.4 The Neural Network Based Roadmap Approach
	The Coloured Kohonen Map
	Extensions to the Coloured Kohonen Map
	Integration of Forces
	Node Movement
	Architectural Node Adaptations
	Roadmap Simplification Forces

	Summary

	8.5.5 The Cell Based Roadmap Approach
	Structure Based Performance Increase
	Obstacle Addition Mechanism
	Roadmap Elements

	8.5.6 Search within the Roadmap
	8.5.7 Obstacle Types
	8.5.8 Elastic Net Trajectory Generation
	Correlation between the radius of a curve and the steering angle e
	Installed forces
	Equidistance forces
	Rotational forces
	Shrink forces
	Forming lines
	Overall force
	Results

	8.6 Robot Program Generation
	8.6.1 Calculating Linear Movements
	Corridor Calculation
	Movement Primitive Final Point Calculation

	8.6.2 Calculating Circular Movements
	Nodes on a Plane
	Nodes in a Circular Segment
	Movement Primitive Final Point Calculation

	8.6.3 Connecting Movement Primitives

	8.7 Summary

	9 Research of a Software Development Framework for Complex Systems
	9.1 System Modelling
	9.2 Communication Middleware
	9.3 The Toolchain
	9.4 Toolchain Implementation
	9.5 Connecting Specialized Tools
	9.6 Code Generation Example
	9.7 Summary

	10 System Implementation
	10.1 General Workflow
	10.2 Pre-Existing Data Import
	10.3 Mission Preparation
	10.4 Roadmap Generation
	10.5 Path-Planning Application
	10.6 Elastic Net Trajectory Generation
	10.7 Re-planning of the Robot Path
	10.8 Robot Program Generation
	10.9 Robot Programming Duration
	10.10 Summary

	11 Discussion
	12 Conclusions
	13 Future Work
	References
	A. List of Publications
	B. Materials & Equipment
	C. Robot Control
	D. Denavit-Hartenberg-Parameter
	E. Execution Model
	F. Kohonen Map
	G. Node Movement Calculation
	H. Plugin Manager
	I. Sample Source Code
	I.1 Message Service
	I.2 Robot Kinematics
	I.3 Program Export
	I.4 Linear Octree and Trajectory Planning
	J. Attachments

