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Abstract 

The use of robots and automation levels in the industrial sector is expected to grow, and 

is driven by the on-going need for lower costs and enhanced productivity. The 

manufacturing industry continues to seek ways of realizing enhanced production, and the 

programming of articulated production robots has been identified as a major area for 

improvement. However, realizing this automation level increase requires capable 

programming and control technologies. Many industries employ offline-programming 

which operates within a manually controlled and specific work environment. This is 

especially true within the high-volume automotive industry, particularly in high-speed 

assembly and component handling. For small-batch manufacturing and small to medium-

sized enterprises, online programming continues to play an important role, but the 

complexity of programming remains a major obstacle for automation using industrial 

robots. Scenarios that rely on manual data input based on real world obstructions require 

that entire production systems cease for significant time periods while data is being 

manipulated, leading to financial losses. The application of simulation tools generate 

discrete portions of the total robot trajectories, while requiring manual inputs to link paths 

associated with different activities. Human input is also required to correct inaccuracies 

and errors resulting from unknowns and falsehoods in the environment. This study 

developed a new supported online robot programming approach, which is implemented as 

a robot control program. By applying online and offline programming in addition to 

appropriate manual robot control techniques, disadvantages such as manual pre-processing 

times and production downtimes have been either reduced or completely eliminated. The 

industrial requirements were evaluated considering modern manufacturing aspects. A cell-

based Voronoi generation algorithm within a probabilistic world model has been 

introduced, together with a trajectory planner and an appropriate human machine interface. 

The robot programs so achieved are comparable to manually programmed robot programs 

and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. 

Automated workspace analysis techniques and trajectory smoothing are used to accomplish 

this. The new robot control program considers the working production environment as a 

single and complete workspace. Non-productive time is required, but unlike previously 
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reported approaches, this is achieved automatically and in a timely manner. As such, the 

actual cell-learning time is minimal. 
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I. Glossary 

Configuration space A robot with   degrees of freedom is usually a manifold of 

dimension  . This manifold is called the configuration space 

of the robot, and is considered as a state-space. 

Kinematics The study of the motion of bodies without reference to mass 

or force. 

Manufacture assistant Manufacture assistants are clever systems, which help the 

worker to accomplish their task. 

Mission A mission defines a path-planning task with application 

information and locations. 

Octree An octree is a tree data structure in which each internal node 

has up to eight children. Octrees are most often used to 

partition a three dimensional space by recursively subdividing 

it into eight octants. 

Online programming Programming of robots by the help of the teachpendant or 

other robot control devices with the need of the real robot. 

Offline programming 

 

Programming of robots by the help of a simulation system 

without the need of the real robot. 

Quadtree A quadtree is a tree data structure in which each internal node 

has up to four children. Quadtrees are most often used for 

partitioning by recursively subdividing it into four quadrants. 

Trajectory The line or curve described by an object moving through 

space. 

World model The in-memory environment representation based on sensory 

input or external information source. 
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1 Introduction

  



  1 Introduction    

2 

Automated production is essential for industries, including the automotive, electronics, 

plastics and metal products industries. Automation can be realized by the introduction of 

industrial robots, which are efficient in terms of speed, flexibility and reliability. At the end 

of 2010, the worldwide stock of operational industrial robots numbered between 1,030,000 

and 1,305,000 units. In 2010, the worldwide market value for robot systems was estimated 

to be US$5.7 billion (International Federation of Robotics, 2011). The use of robots and 

automation levels in the industrial sector is expected to continue to grow in future, and will 

be driven by the on-going need for enhanced productivity. Manufacturing industries 

continue to be faced with shortened product life cycles, increasing dynamics of innovation, 

and continuing diversification of their product ranges. Simultaneously, they have to lower 

the costs per item and the costs of hiring skilled workers. The dynamic requirement profile 

of production must be addressed in order to ensure compliance with high quality standards 

as well as time and cost efficiency. Industrial robots are capable of meeting the emerging 

needs with regards to flexibility and productivity, but the use of these robots remains 

difficult, time consuming and expensive. There are particularly high requirements in terms 

of capable robot programming and control technologies. Industries are strongly motivated 

to improve efficiency and effectiveness of robot programming and control. Production 

engineering and automation have been developed to an advanced level, and further 

improvements may be reached using new approaches to the programming of robots. 

Therefore, the vision of the industry is to realize a completely automated production 

process without any manual intervention from the product planning stage to the 

manufactured product. This vision has not been achieved, and even under ideal conditions 

of production machines, trajectory planning remains difficult. With regard to errors that 

result from unknowns and falsehoods in the environment, realizing this vision becomes 

even more unlikely. Robot programming for a specific application may require months, 

while the cycle time of the application is executed in only a few minutes or hours. 

Therefore, robotic automation requires that significant investments be made before 

commencing production. 

While conventional online programming is simple, it is only useful for programming an 

uncomplicated application with simple geometries of the workpieces. Those workpieces 

are required to be present within the robot cell. Highly skilled operators are needed to 

execute this task, while the production is halted during online programming. Any scenario 

that relies on manual data input based on real world obstructions requires that the complete 
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production system be put offline and out of production for significant periods of time while 

the data are manipulated, e.g. upload of or programming of robot programs. This leads to 

production downtimes and financial loses. It also places a lot of pressure on the operators, 

which may have an impact on the quality of the created programs. Once the programs are 

created, it is difficult to make amendments. Nevertheless, conventional online 

programming is widely used because of its intuitiveness and low initial cost. Advances in 

online programming simplify the control of the robots, such as Master-Slave programming 

and demonstrational programming (Demiris and Billard, 2007), but have not yet led to 

crucial improvements.  

On the other hand, offline programming reduces the production downtime, creating the 

robot programs beforehand with a simulation system (Kain et al., 2008, Maletzki et al., 

2008). Many industries employ offline programming within a manually controlled and 

specified work environment. This is especially true within the high-volume automotive 

industry, particularly when it is related to high-speed assembly and component handling. 

Therefore, it is widely accepted in high volume manufacture industries with proven 

efficiencies and cost effective strategies. Its strength is in the programming of complex 

applications, and when compared to online programming, it is more reliable and allows the 

re-use of robot programs with ease. Because it relies on the modelling of the production 

cell, additional manual modifications of the generated robot programs are necessary to 

meet the accuracy requirements in production. Inaccuracies and errors resulting from 

unknowns and falsehoods in the environment have to be altered manually. The simulation 

of the production cell verifies the virtually programmed production process; subsequently, 

the robot program may be generated and uploaded to the real robot cell. An online robot 

programmer verifies and eventually modifies the programs to guarantee its actual function, 

but this task can be time consuming. Manual modifications may be made, and may involve 

a complete re-programming of the simulated robot. Possible reasons for this include 

inaccuracies of the simulation data, last minute changes in the production process, and a 

misunderstanding of the robot programs. The offline program developer and the online 

robot operator are not usually the same person, and they tend to have different skills, which 

may also be a source of misunderstanding. However, this is expensive, requires skilled 

workers, and depends on an accurate modelling of the realistic scenario, which is often not 

possible. 
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Investigations have been carried out with the aim being to optimize the robot-

programming methodology for industrial high-volume and small-batch manufacturing. To 

address this aim, two key aspects have been identified that are different but related. First, 

the reduction of financial investments required that an analysis be made of the current 

robot programming approaches in order to explore all possible cost reduction options. 

Because production cost is measured in terms of the product cost, the production volume is 

an important feature that highlights the difference in the requirements for small-batch and 

high-volume production. In particular, in the area of small-batch production, the 

investments required for offline programming are prohibitive, and attention has been 

turned to developing approaches to online robot programming. High-volume production 

would also benefit from a change to the online robot programming approach, given that 

production downtimes are within the current range, and that the functionality of the current 

offline approach is still supported. A new online robot programming approach has been 

analysed, with the focus being on the fulfilment of requirements for both production 

volumes. This has required significant investigations into existing approaches to robot 

programming, including assisted interaction with the operator to help less experienced 

operators use this system. An enhanced online robot programming support system has been 

adopted for this task.  

As the second key aspect, online robot programming is very demanding for a 

requirements-driven trajectory-planning algorithm. This also includes the ability to handle 

inaccurate information (which may be obtained by sensors) and the environment, as well as 

pre-existing information. Research has been undertaken to develop a trajectory-planning 

algorithm and to fuse inaccurate information into an in-memory occupancy grid to 

represent the production environment. It is understood that the development of large 

software systems requires a modern software development approach to integrate the entire 

system that consist of robot control devices, sensors and software components. Research 

has been carried out to implement a model-driven code generation toolchain. 

The research started with a comparison of robot programming approaches and the 

exploration of important requirements of the production industry, focusing on the 

employment of robots. The chosen robot-programming approach, including the associated 

requirements, is summarized in Chapter 5. The realization of the robot-programming 

software application requires robot control capabilities for the articulated and mobile 

robots used. Robot modelling with the ‘Denavit and Hartenberg’ formulation is applied 
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throughout this study, which enables the execution of forward and inverse calculations 

between the robot coordinate system and the world coordinate system. Robot control and 

modelling are illustrated in Section 5.7. The environment in which the robot operates is 

stored in a so-called world model, which is an in-memory occupancy grid. Information, 

such as sensor data and pre-existing models, is fused into the grid to obtain coherent data. 

The world model and information fusion are illustrated in Chapter 6. Based on robot 

control and the in-memory occupancy grid, a trajectory-planning algorithm that supports 

the chosen robot programming approach has been introduced. It also includes path finding, 

trajectory generation and automated robot program creation that is ready to be uploaded to 

the real system. The results are stated in Chapter 7. The implementation of the system 

requires the incorporation of many software and hardware components. A modern software 

development toolchain has been analysed and implemented to support the development of 

the enhanced online robot programming support system. Chapter 9 addresses the 

development toolchain. 

Chapter 2 presents a review of the whole research activity covered in this investigation, 

and it helps to collate important results that address the original aims of the study. The 

conclusions made are itemised in Chapter 12. Sample source code is presented in 

Appendix I. The investigation has highlighted particular aspects, many of which were 

unknown at the beginning of the research described herein, and which could themselves 

form the basis for additional studies. These are stated in Chapter 13.  

Significant findings of this research have already been published, and Appendix A 

presents a summary of these. The papers themselves are appended to this thesis. One 

international journal paper were subject to peer-review and have now been published. 

Selected findings have been presented by the author at international conferences, and five 

papers were published between 2006 and 2012. The research was directed to the 

enhancement of the car production at BMW AG, Munich, and discussed with the robot 

programming company Robtec GmbH. Currently, the processes and techniques developed 

are intended to be scientifically and commercially used in close co-operation with the 

University of Applied Sciences Landshut, Germany. The system will be permanently 

installed at the lab of the University of Applied Sciences Landshut, and further 

improvements are planned for future study. 
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The result of this work leads to an enhanced online robot programming system for robot 

arms. The proposed system will be a novel, rapid, convenient and flexible method to 

program industrial robots. Programming within the real environment becomes possible and 

will decrease offline programming time and render offline simulation systems unnecessary 

when physical production parts and fixtures are to hand either as real objects or as 

Computer-Aided Design (CAD) data. 

The system will have greatest benefit within the production industry, however its use 

will not be restricted to this application area. It could also assist in areas as diverse as home 

robots, surgery and health care assistant machines. 
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2.1 Industrial Manufacture 

Based on the product lifetime and production volume, Hägele et al. (2001) classifies 

industrial manufacture into conventional, pre-configured, decentralized and assisted 

manufacturing.  

Conventional manufacturing lines can be effectively employed when the product 

lifetime and the production volume are known beforehand. The degree of automation is 

based on the technological feasibility and cost of each operation.  

Pre-configured robot work cells produced in medium numbers at low cost for standard 

manufacturing processes such as welding, painting and palletising may even be cost-

effective when operated below full capacity (Westkämper et al., 1999).  

Modern decentralized paradigms restructure the production into a network of 

configurable working cells, which are connected such that they achieve flexibility in terms 

of changing products. These production cells are often called ‘holonic’ or ‘bionic’ 

manufacturing systems (Westkämper et al., 1999). 

The greatest flexibility is required in assisted manufacturing co-operating with the 

worker in handling, transporting, machining and assembly tasks (Hägele et al., 2002, 

Kristensen et al., 2001, Kristensen et al., 2002, Prassler et al., 2002, Stopp et al., 2002, 

Thiemermann, 2005, Wösch et al., 2002). 

Motion planning is required for any of the above-mentioned types of manufacturing. 

Assisted manufacturing is based on reactive motion planning, whereas conventional, pre-

configured and decentralized manufacturing processes are often based on fixed robot 

programs, and are further explained in Subsection 2.1.1. The limitation of fixed robot 

programs is reached when the task execution requires a level of perception, dexterity and 

decision making which cannot be met technically in a cost effective or robust way. To 

achieve better productivity, assisted manufacturing relies on the co-operation between the 

robot and the operator. These robots can be considered to be manufacturing assistants, and 

are further described in Subsection 2.1.2. 

2.1.1 Robot Programming 

Online and offline robot programming approaches have been established in practical 

industrial applications. Offline programming is based on a model of a complete robot 

working-cell, and it shifts the programming tasks from the robot operator to the software 
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engineer in the office. It has its strength in the programming of complex systems, and it has 

been proven to be more efficient and cost-effective for production with large volumes.  

Pan et al. (2010) reviews modern robot programming approaches and summarizes 

sensor-assisted online programming and offline programming approaches. Advancements 

in online programming have led to a simplification of the control of the robots, such as 

Master-Slave programming and demonstrational programming, but they have not yet led to 

any significant improvements. Offline programming reduces the production downtimes by 

creating the robot programs beforehand with a simulation system (Kain et al., 2008, 

Maletzki et al., 2008, Pan et al., 2010). Nevertheless, the calibration phase and the offline 

programming phase are still expensive, and result in significant programming effort, large 

capital investment and long delivery times (Pan et al., 2010). 

Online Programming 

Online programming is carried out by skilled operators in the robot working-cell, and 

requires that the production be offline. The robot is guided through the desired path using a 

teach pendant to record specific points into the robot controller, which is further utilized 

for the manual creation of movement commands (Pan et al., 2010). The robot operator 

maintains the robot programs including the positions and orientations with a teach pendant. 

Many coordinate systems like the world, tool and work piece coordinate systems have to 

be tracked by the operator. This task is difficult and not intuitive. Guiding the robot 

accurately through the working space without any collisions is usually a very difficult and 

time-consuming task, especially when the work piece has a complex geometry or the 

process itself is very complicated. The created robot program often lacks flexibility and 

reusability. Online robot programming remains the choice for low and medium volume 

production. Currently, more intuitive human machine interfaces and sensory interfaces are 

being researched to reduce the reliance on the operator skill, and to improve automation 

(Bjorn Solvang, 2008, Gonzalez-Galvan et al., 2007, Hu et al., 2007, Hui et al., 2006, 

Myoung Hwan and Woo Won, 2001, Nicholson, 2005, Pan and Zhang, Schraft and Meyer, 

2006, Sugita et al., 2004, Takarics et al., 2008). Pan et al. (2010) highlight that only the 

research outcomes from Hui et al. (2006) have led to the development of a commercial 

tool. Pan et al. also identified the limitation to specific setups as being one of the main 

reasons for the failure to commercialize the remaining approaches. In particular, small-, 

medium- and high-volume manufacture may benefit from enhanced sensor-assisted online 

programming. 
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Offline Programming 

High-volume manufacture utilises offline programming to simulate and generate robot 

programs with specialized simulation software. The software engineer evaluates the 

reachability, fine-tunes properties of robot movements, and handles the process-related 

information before generating a program that can be downloaded to the robot. The actual 

robot is not required for programming, minimizing the production downtime. Usually, 

robot programs are developed at the beginning of the product development and production 

cycle. However, a simulation and programming phase executed by skilled engineers is time 

consuming and requires specialized and expensive simulation software. Thus, small- and 

medium-volume manufacture does not benefit from this technology (Pan et al., 2010), 

whereas large companies, for example BMW AG in the automotive industry, apply offline 

programming as a standard process. High volume production justifies the costly simulation 

and programming phase in order to assure high quality production. 

Offline programming incorporates models of the work pieces, the robots and the 

environment. While the robot model is usually delivered by the manufacturer, the work 

pieces and the environment have to be created manually or, for example, with laser 

scanning (Bi and Sherman, 2007). 

Successively, application locations have to be created in a manual or automatic fashion. 

The offline programming tools often provide functions that are used to extract features, e.g. 

edges and corners, and which can be utilized to define the required robot application task. 

Additional aspects related to the application type, e.g. equipment control, have to be 

considered in order to produce the robot programs. It becomes evident that the software 

engineer also requires skills in the specific application type to produce high-quality robot 

programs. The approach proposed by Pires et al. (2004) attempts to extract robot motion 

information from the models automatically. 

The creation of the trajectory connecting all application locations and paths is often 

executed manually. Automatic solutions are usually not provided by the vendor of the 

software package, and have to be incorporated by third party tools or developments. 

Connecting large amounts of application locations and paths may result in the well-known 

‘travelling salesman’ problem, which may be solved using various approaches (Al-

Mulhem and Al-Maghrabi, 1997, Fritzke and Wilke, 1991, Kim et al., 2002).  
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The entire production cycle, or parts of it, can be simulated after robot program creation 

to verify the production process without the physical production system (Heim, 1999). 

Successively, the robot program can be uploaded and executed within the real production 

environment. Extensions have been developed, for example by Wenrui and Kampker 

(1999), to enhance the simulation and offline programming process. In practice, 

inaccuracies and errors resulting from unknowns and falsehoods in the environment have 

to be altered manually using the real production system.  

2.1.2 Manufacture  Assistants 

Hägele et al. (2002) describes manufacture assistants as clever systems which help the 

worker to accomplish their task. However, high-volume manufacturing is presently fully 

automated, and human-robot interaction is not always required. The high level of 

automation is attained through the robot-programming task, which is executed once during 

installation of the production cell. Thus, assisted robot-programming produces a robot 

program and is distinguished from manufacture assistants. Helms (2002) proposes a 

‘human centred automation’ to improve the usability of robots, with the aim being to 

combine the sensory skill, the knowledge and the skilfulness of the worker with the 

advantages of the robot, e.g. strength, endurance, speed and accuracy. Manufacturing 

assistants represent a generalization of industrial robots characterized by their advanced 

level of interaction. Nevertheless, the human-machine interface and the underlying 

technology realizing the assistance functionality also play an important role. 

The human-machine co-operation has been addressed by numerous researchers, and is 

viewed as a prime research topic by the robotics community (EURON, 2012). Haegele et 

al. (2001) also state the typical requirements for the human-machine interface. The human 

and the robot assistant should co-operate and safely interact, even in complex situations. 

This implies that the assistant understands the human intent through natural speech, haptic 

or graphical interfaces. In addition, effective cooperation depends on the recognition and 

perception of typical production environments, as well as on the understanding of tasks 

within their own contexts. Effective assistance requires the technical intelligence of the 

robot as well as the knowledge and skill transfer between the human and the robot.  

A typical example of learning is programming by demonstration (Pan et al., 2010). 

During human-machine interaction, motions have to be planned and quickly co-ordinated. 

For motions without physical human contact, skills such as avoiding obstacles, 
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approaching humans, and presenting objects have to be performed. In the more difficult 

case of physical contact with the human, typical skills would comprise compliant motion, 

anthropomorphic grasping and manipulation. A suitable safety concept has to account for 

the integrity of the system just as it must account for the integrity of its surroundings. 

External events affecting the proper function of the system and internal error conditions 

have to be identified beforehand and classified according to their inherent risk factors.  

2.2 Modelling of the Robot 

The robot manipulator is an essential tool for the development of automated 

manufacturing. A robot manipulator, also known as robot-arm, is a non-linear system with 

  rotatory joints (Craig, 2003). The motion equations of the robots are coupled, non-linear 

high-order differential equations, and the expenditure required for their evaluation is 

generally very high. Either procedures for the evaluation of the motion equations work 

numerically, or the motion equations are determined in symbolic form. An overview is 

given by Schiehlen (1990), Paul (1981), Spong et al. (2004) and Kucuk and Bingul (2006). 

The motion equations of robots may always be produced in closed form, but lead to a high 

complexity of the equations. Equations in symbolic form are usually much more efficient 

in the evaluation than the purely numeric procedures, because many simplifications can be 

employed (Craig, 2003, Fisette and Samin, 1993, Vukobratovic and Kircanski, 1982, 

Westmacott, 1989). 

The Robotics Toolbox for Matlab (Corke, 1996) allows the user to create and 

manipulate fundamental data types with ease, such as homogeneous transformations, 

quaternion and trajectories. Functions provided for arbitrary serial-link manipulators 

include forward and inverse kinematics, and forward and inverse dynamics. 

In most cases, the manipulator has to be controlled in the workspace, which is defined 

by external world coordinates and not in the configuration space, which is defined by 

internal joint coordinates. Therefore, a transformation between world and configuration 

space is required (Craig, 2003, Lenz and Pipe, 2003, Maël, 1996, Russell and Norvig, 

2002). 

The forward kinematics is a continuous mapping of the joint coordinates from the multi-

dimensional configuration space to the world coordinates, and is described in detail by 

Craig (2003). 



  2 Literature Survey      

13 

The inverse kinematics problem involves finding joint coordinates so that a desired 

world coordinate is reached. Calculating the inverse kinematics is generally hard, 

especially for robots with many degrees of freedom. This problem is ill posed because the 

solution does not have to be unique. In particular, considering an unreachable target, no 

solution exists at all (Russell and Norvig, 2002). 

The kinematics of a robot may also be seen as a non-linear system, which can be 

approximated by mapping the input space to an output space of a function. Neural 

networks have the ability to learn such mappings, and they are therefore called ‘function 

approximators’. A general example with a Continuous Self-Organizing Map is given by 

Aupetit (2000). Features of neural networks are utilized to learn the kinematics of a robot, 

which is an open- or closed-loop kinematic chain, and is not often precisely known. Maël 

(1996)  proposes a hierarchical network for visual servo coordination which is based on the 

publication of Ritter et al. (1992). The hierarchical approach allows the learning of 

geometric models of realistic robots with six or more axes. The network consists of several 

one-dimensional sub networks which learn the coordinate transform and rotation axis for 

each joint below the visual error. A dynamically-sized radial basis function Neural 

Network was developed by Lenz and Pipe (2003) to control a six-axis Puma 500 robot on a 

slow 16-bit microcontroller. Following Ge (2004), given a nonlinear robot system, model-

based control is superior to non-model-based control. On the other hand, for complex 

nonlinear systems, it is more difficult to obtain a realistic model than to design a working 

control system in reality. 

2.3 Configuration Space Discretization 

The configuration space of the robot is often used by a path-planner to solve the 

problem of finding a collision-free path. A robot with   degrees of freedom is usually a 

manifold of dimension   (LaValle, 2006). This manifold is called the configuration space 

of the robot, and is considered as a state-space. Within such a state-space, the problem of 

path finding may be abstracted to the problem of finding a path that goes through the 

manifold. Discretisation of the configuration space is also important. Often, uniform 

discretisation is used, but in the work by Reif and Wang (2000), they developed a non-

uniform discretisation approximation method with interesting properties for path planning. 

The ego-kinematic space of a robot has been defined in literature (Glavina, 1990, 

Mínguez et al., 2002). A robot can be considered a 'free-flying robot' with no constraints. 
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Thus, the path-planning algorithm does not need to take care of the configuration space of 

the robot. This is realized by ego-kinematic transformations. Because the kinematic 

constraints are embedded in the ego-kinematic transformation, the admissible paths are 

mapped onto straight lines in the transformed space, and each point of the ego-kinematic 

space may be reached by a straight-line motion of 'free-flying behaviour'.  

The state space of the robot configuration space is often infinite. Sampling-based 

planning algorithms may consider a small number of samples to reduce the running time 

(LaValle, 2006). Therefore, path planners often use sampling strategies that are based on 

the specific path planning problem and environment. Known strategies are random and 

deterministic sampling schemes (LaValle, 2006). Random sampling schemes take samples 

from the configuration space of the robot in a uniform manner; every state of the 

configuration space must have an equal opportunity to appear in the sample. Deterministic 

sampling schemes are pre-defined sampling techniques (LaValle and Kuffner, 2000). They 

have the advantages of classical grid search approaches and a good uniform coverage of 

the configuration space, but require long processing times (Branicky et al., 2001, Lavalle 

et al., 2000, Lindemann and LaValle, 2004). Reif and Wang developed (2000) an 

algorithm with non-uniform discretisation for motion planning, where the discretization is 

greater in regions that are farther from all obstacles. 

2.4 Path and Trajectory Planning 

Trajectory planning is a fundamental problem, and significant research has been 

conducted over the past few decades, either in static or in dynamic environments, for 

example in the process of spray painting (Chen et al., 2008). Trajectory planning includes 

the generation of a trajectory from the start to the target position, giving consideration to 

objectives, such as minimizing path distance or motion time, and avoiding obstacles in the 

environment and satisfying the robot kinematics. Motion planning is usually decomposed 

into path planning and trajectory tracking. The former generates a nominal trajectory, 

whereas the latter tracks that trajectory.  

In robotics, the search space is most often the configuration space (LaValle, 2006). 

Some path-planning algorithms try to compute the entire configuration space, which is 

useful for low degree-of-freedom robots to find a global path (LaValle and Kuffner, 2000). 

However, for systems with high degrees-of-freedom, the computing time rises 

exponentially. 
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 Therefore, path-planning algorithms often try to find an approximated solution to 

reduce computation time (LaValle, 2006). For example, roadmap methods (Geraerts and 

Overmars, 2002) do not compute the whole configuration space, but try to generate a 

roadmap of suitable configurations. Apart from roadmap-based techniques, the potential 

field approach (Koren and Borenstein, 1991, Warren, 1989) and cell-based method 

(Kitamura et al., 1995, Ranganathan and Koenig, 2004) are two popular path planning 

approaches. 

Path planning often includes searching the shortest path within a given graph. This can 

be accomplished with shortest-path search algorithms like the Dijkstra, A* or D* (Goto et 

al., Likhachev et al., 2005, Xiang and Daoxiong, 2011). The A* algorithm is one of the 

most important algorithms because its implemented heuristic enhances the search 

algorithm by directing the search to the target node. 

2.4.1 Graph based Path Planning 

Graph based approaches are also known as skeleton (Yang and Hong, 2007) or roadmap 

(Bhattacharya and Gavrilova, 2008) approaches. A free space, such as the set of feasible 

motions, is mapped onto a network of one-dimensional lines. The visibility (Yang and 

Hong, 2007) and cell decomposition graph (Lingelbach, 2004), Voronoi diagram 

(Bhattacharya and Gavrilova, 2008) and probabilistic roadmap (Kazemi and Mehrandezh, 

2004b) are frequently-used skeletons, and are presented in the following subsections.  

Visibility Graph 

In a visibility graph, all obstacles are formed by polygons. These may be enlarged to 

allow a minimum clearance of the robot to the obstacle. A graph is generated by 

connecting the edges of the polygons and the start and target locations with linear polygon 

lines. Subsequently, this graph is used to find an optimal path. An example is demonstrated 

in Figure 1. The algorithm can be easily extended to a three-dimensional space, but it 

requires all obstacles being available and real-time calculation of the trajectory seems 

difficult, especially when new obstacles are detected.    
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Figure 1: Illustration of the visibility graph (by author). 

Cell Decomposition Graph 

The cell decomposition graph subdivides a given free space into cells. One example of 

such subdivision is illustrated in Figure 2. The world model, which is the in-memory 

model of the surrounding, is delimited to a rectangle. For each edge of the obstacles, a 

horizontal line is included. The bisecting of each line is a point of the graph, and therefore, 

the horizontal clearance to obstacles is maximized. Extension to a three-dimensional space 

is difficult and the path obtained in this way is long. 

Obstacle

Start

Target

Obstacle

 

Figure 2: Cell decomposition graph (by author). 
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Cell decomposition methods generally divide the robot’s free space into cells. The 

connectivity graph is built by connecting adjacent cells. A channel leading from the start to 

the target configuration through the graph may then be computed. A path may be chosen 

leading through the midpoints of the intersections of two successive cells. Examples of 

grid-based approaches are cell decomposition methods, which convert the configuration 

space of the robot in discrete cells. The cell division may be either object-dependent or -

independent. Both cases are shown in Figure 3. A path is required to connect the start and 

the target node with a sequence of adjacent cells, which can be computed using a shortest-

path search algorithm. 

 

Figure 3: Cell decomposition with black obstacles and free space (by author). 

Voronoi Diagrams 

According to Hoff et al., a Voronoi diagram consists of a given set of Voronoi sites, 

which partitions space into regions, where each region consists of all points that are closer 

to one site than to any other (Hoff et al., 1999). An example of a Voronoi diagram is 

illustrated in Figure 4. 
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Figure 4: A Voronoi diagram with regions, where each region consists of all  

points that are closer to one site than to any other (by author). 

Voronoi diagrams have been shown to be powerful tools in solving seemingly unrelated 

computational problems, and therefore have increasingly attracted the attention of 

computer scientists in the last few years. Efficient and reasonably simple techniques have 

been developed for the computer construction and representation of Voronoi diagrams.  

Voronoi-based path planning methods have been studied in literature (Bhattacharya and 

Gavrilova, 2008, Fortune, 1986, Hoff et al., 2000, Hoff et al., 1999, Kim et al., 2009, 

Vleugels et al., 1993). The basic properties of a Voronoi diagram are treated by 

Aurenhammer (1991), who also recommended the publications of Preparata and Shamos 

(1985) and Edelsbrunner (1987). Hoff et al. (1999) presented a computational algorithm 

for generalized Voronoi diagrams, and did a survey of existing Voronoi computation 

algorithms for two and higher dimensions. The presented Voronoi computations are the 

divide-and-conquer algorithm (Shamos and Hoey, 1975) and the sweep line algorithm 

(Fortune, 1986). Numerically robust algorithms for constructing Voronoi diagrams have 

also been proposed in literature (Ingaki et al., 1992, Sugihara and Iri, 1994). Higher-order 

Voronoi diagram computations have been summarized by Okabe et al. (2008) based on 

incremental and divide-and-conquer techniques. The set of algorithms includes divide-and-

conquer algorithms for polygons (Lee, 1982, Martin, 1998), an incremental algorithm for 

polyhedra (Milenkovic, 1993), and three-dimensional tracing for polyhedral models 

(Culver et al., 1999, Milenkovic, 1993, Sherbrooke et al., 1995). 

Hoff et al. (1999) stated that the computation of generalized Voronoi diagrams involves 

representing and manipulating high-degree algebraic curves and surfaces and their 
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intersections, and as a result, there are no known algorithms for their computation that are 

both efficient and numerically robust. Many algorithms compute approximations of 

generalized Voronoi diagrams based on the Voronoi diagram of a point sampling of the 

sites (Sheehy et al., 1995). However, the derivation of any error bounds on the output of 

such an approach is difficult, and the overall complexity is not well understood. 

Recent work aimed at reducing the length of the path obtained from a Voronoi diagram 

was presented by Yang and Hong (2007). The method involves the construction of 

polygons at the vertices in the roadmap where more than two Voronoi edges meet. This 

results in a smoother and shorter path than that obtained directly from the Voronoi 

diagram. The authors Wein et al. (2005) created a new diagram called the Visibility-

Voronoi diagram to obtain an optimal path for a specified minimum clearance value. 

Vleugels et al. have presented an approach that adaptively subdivides space into regular 

cells, and computes the Voronoi diagram up to a given precision (Vleugels et al., 1996, 

Vleugels and Overmars, 1995). Lavender et al. (1992) used an octree representation of 

objects, and performed spatial decomposition to compute the approximation. Teichmann 

and Teller (1997) computed a polygonal approximation of Voronoi diagrams by 

subdividing the space into tetrahedral cells. All of these algorithms require considerable 

amounts of time and memory for large models that are composed of a large number of 

triangles, and therefore cannot be easily extended to handle dynamic environments 

directly. 

Probabilistic Roadmap 

Sampling-based motion planners such as probabilistic roadmap methods (Kavraki and 

Latombe, 1994) or those based on the rapidly exploring random tree (Kuffner and LaValle, 

2000) provide good results for robot path planning problems with many degrees-of-

freedom. Its success is based on the sampling method of the configuration space, e.g. the 

explicit characterization of configuration space obstacles is not required, and the aim of 

avoiding collisions is reached only by checking sample configurations of the configuration 

space. To improve the sampling efficiency and to find a path with as few configuration 

space samples as possible, several variants have been proposed to bias the sampling 

towards the most promising and difficult regions. For instance, a sample distribution is 

defined such that it increases the number of samples on the border of the configuration 

space obstacles (Boor et al., 1999) around the medial axis of the free configuration space 
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(Wilmarth et al., 1999) or around the initial and goal configurations (Sánchez and 

Latombe, 2002). In addition, the use of an artificial potential field was proposed to bias the 

sampling towards narrow passages (Aarno et al., 2004, Kazemi and Mehrandezh, 2004a).  

A probabilistic road map path planner was described by Sánchez and Latombe (2003) 

with a single query, bi-directional and systematic lazy collision-checking strategy. It is 

shown that this approach reduces planning times by ‘large factors’, making it possible to 

efficiently handle difficult planning problems, for example problems involving multiple 

robots in geometrically complex environments. This approach was successfully employed 

for several planning problems involving robots with 3 to 16 degrees-of-freedom operating 

in known static environments. 

Narrow passages in configuration space can hardly be found. Results published by Hsu 

et al. (1998) attempt to solve that problem using a new random sampling scheme. An 

initial roadmap is built in a 'dilated' free space allowing some penetration distance of the 

robot into the obstacles. This roadmap is then modified by re-sampling around the links 

that do not lie in the true free space. Experiments have shown that this strategy allows 

relatively small roadmaps to capture the free space connectivity reliably. 

2.4.2 Potential Field Based Path Planning 

Potential field methods are straightforward approaches used to calculate a vector field 

based on target and obstacle locations; the robot follows the vector field until it reaches the 

target (Khatib, 1986, Koditschek and Rimon, 1990, Waydo, 2003). These planning 

algorithms often divide the free space into a fine regular grid, and use this grid to search 

for a free path. Different potentials are assigned to the cells of the grid, where ‘attractive’ 

potentials are given to cells close to the target and ‘repulsive’ potentials are assigned to 

cells close to obstacles. A path is constructed along the most promising direction. An 

example is shown in Figure 5. 
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Figure 5: Potential field method. 

Potential field methods have given good results, although not in high-dimensional 

configuration spaces, since an approximated decomposition of the configuration space is 

usually required (Barraquand and Latombe, 1991).  

The cell-based method has been studied in combination with the potential field by 

Kitamura et al. (1995), and has been successfully applied to arbitrarily shaped robots in 

dynamic environments.  

Yang and LaValle (2003) extended potential-field based methods to higher dimensional 

configuration spaces, combined with a random sampling scheme. A similar approach  

proposes global navigation functions over a collection of spherical balls of different radius 

that cover the free configuration space (Yang and LaValle, 2004). Those balls are arranged 

as a graph that is incrementally built following sampling-based techniques. The original 

concept of potential-field navigation is summarized by Khatib (1986). The topological 

properties of navigation functions are described by Koditschek and Rimon (1990).  

The potential-field method developed by Pipe (2001) utilizes topographical cognitive 

mapping to store the locations of the robot environment, linking them with a value for 

‘pleasant’ and ‘unpleasant’ experiences. Obstacles are for negative reinforcement and 
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energy charging sites for positive reinforcement. The knowledge is stored in a Radial Basis 

Function (RBF) neural network using techniques such as temporal difference (TD) 

learning and evolution strategy (ES). Inherent features of this neural network type lead to 

the creation of a potential-field structure that exerts appetitive and aversive ‘forces’ on the 

robot while moving in the environment. Potential-field methods are powerful approaches 

which appear to be promising, especially in a mixture of neuronal nets. Much more work 

can be found in literature (Arkin, 1992, Arkin, 1989, Arkin, 1987, Arkin and Craig, 1989a, 

Arkin and Craig, 1989b, Chuang, 1998, Ge and Cui, 2000, Koren and Borenstein, 1991, 

Masoud and Masoud, 2000, Rao and Arkin, 1990a, Rao and Arkin, 1990b, Valavanis et al., 

2000). 

A three-dimensional potential field was proposed by Fujimura (1995) considering 

collision avoidance in static environments. It was demonstrated that both potential 

functions and their gradients due to polyhedral surfaces can be derived analytically, and 

this may facilitate efficient collision avoidance. The continuity and differentiability 

properties of a particular potential function were investigated. Koren and Borenstein 

(1991) discussed limitations of the mentioned potential-field methods, and Ge and Cui 

(2000) discussed solutions for non-reachable targets in potential fields, that is, when 

obstacles are near to the goal. Repulsive functions are improved by taking into 

consideration the relative distance between the robot and the goal. This ensures that the 

goal position is the global minimum of the total potential. 

The potential field approach requires the decomposition of the configuration space 

(Barraquand and Latombe, 1991) that might lead to high processing times. In addition, in a 

real-time scenario, where the obstacles are not known beforehand, a complete recalculation 

of large portions of the potential field might be unavoidable. The algorithm may get stuck 

in local minima. 

2.4.3 Harmonic Functions Based Path Planning 

Potential-field approaches based on harmonic functions have good path planning 

properties, although an explicit knowledge of the robot configuration space is required.  

Kazemi et al. (2005) applied a sensor-based probabilistic approach to build an online 

map with the use of harmonic functions for path planning. It iteratively extends the 

knowledge of the environment using laser range sensors, thereby extending the map. No 

prior knowledge of the environment is needed. 
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Connolly et al. (1990) described the application of numerical solutions of Laplace's 

equation to robot navigation, which lead to harmonic functions. These are resolution-

complete planners without local minima (Connolly, 1992). The panel method of 

hydrodynamic analysis is applied by Kim and Khosla (1992) to develop analytic 

approximations to stream functions for complex geometries. Important reference work on 

potential field navigation is given by Masoud and Masoud (2000). 

A combination of harmonic functions and sampling-based probabilistic cell 

decomposition methods for path planning is used by Rosell and Iniguez (2005) to bias cell 

sampling towards more promising regions of the configuration space. Cell classification is 

performed by evaluating a set of configurations of the cell obtained with a deterministic 

sampling sequence that provides a uniform and incremental coverage of the cell. In 

general, sampling-based methods allow the use of the harmonic functions approach 

without the explicit knowledge of the configuration space. 

An electrostatic field approach without minima is described by Valavanis et al. (2000). 

In addition to path planning in static environments, dynamic environments are also treated. 

The well-formulated and well-known laws of electrostatic fields are used to prove that the 

proposed approach generates a resolution-complete optimal path in a real-time frame. 

Harmonic functions suffer from the same disadvantages like the potential field 

approach, although they do not have local minima. Their extension to higher configuration 

spaces is reported to be difficult (Kazemi and Mehrandezh, 2004b). 

2.4.4 Neural Network Based Path Planning 

Literature for robot motion planning in unknown environments using neural networks 

has been discussed in various publications (Lebedev et al., 2003b). A situation-action map 

is introduced (Knobbe et al., 1995) for car-like robots (Latombe, 1991). New edge 

detection on the visible objects generated possible motions to escape from dead end 

situations while backtracking has been employed to choose from different possibilities.  

Vleugels et al. (1993) present a new probabilistic road map approach that combines a 

neural network and deterministic techniques with the scope of solving the path-planning 

problem with a coloured version of a Kohonen map. Random configurations of the robot 

are inputted to the network, which constructs a road map of possible motions in the 
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workspace, and approximates the obstacles. This road map is searched to find motions 

connecting the given start and target configurations of the robot.  

The sampling scheme of the presented algorithm by Vleugels et al. (1993) requires 

random configurations of the robot, which is infeasible for a real-time path planning 

approach.  

2.4.5 Movement Planning 

Movement planning usually takes the geometric and kinematic constraints of the robot 

into account. Different approaches have been developed using randomized or graph-based 

planners. Movement planners often have a constraint on the steering angle (Barraquand 

and Latombe, 1989, Fraichard, 1999). Such robots have dependent degrees-of-freedom, 

and thus, the motion is restricted. A feasible trajectory has to be found for the robot, to be 

able to route the robot position from the start to the target without collisions. In addition, 

the boundary conditions imposed and dynamics of the kinematic model of the robot have 

to be satisfied.  

In the geometric formulation of the movement problem, the robot is reduced to a point 

on a two-dimensional surface with a behaviour that is similar to Dubins car (Dubins, 

1957), which is only able to drive forward, and the radius of the steering is bounded. The 

resulting paths must be differentiable and feasible for the robot. An extension of the 

Dubins car is given with the Dubins airplane, which applies to three-dimensional spaces 

(Chitsaz and LaValle, 2007). 

2.5 World Model 

The modelling of the environment of the robot is necessary for an inner representation 

of the world. Often, this format is a boundary representation or a solid representation. 

While the former is a surface representation of the objects within the environment, the 

latter is a collection of points in space.  

A number of approaches such as memory-based techniques (Blaer and Allen, 2002, 

Matsumoto et al., 1996, Payeur, 2004), expressions by features such as line segments 

(Gutmann et al., 2001, Newman et al., 2002), parametric expressions (Brooks, 1983, Quek 

et al., 1993) and mesh modelling methods (Hilton et al., 1996, Wheeler, 1996) are suitable 

for world modelling. For example, Boada et al. (2004) combined topological and 

geometric information to model the environment. This map is obtained from a Voronoi 
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diagram using measurements of a laser telemeter. In addition, other approaches can also be 

found in literature (Kagami et al., 2003). 

Gran (1999) shows simplification algorithms for the generation of a multi-resolution 

family of solid representations from an initially polyhedral solid. Discretised polyhedral 

simplifications using space decomposition models are introduced based on a new error 

distance. This approach provides a scheme for the error-bounded simplification of 

geometry topology, preserving the validity of the model.  

Another proposed method uses trihedral discretised polyhedral simplifications and an 

octree for topology simplification and error control (Garland, 1999). This method is able to 

generate approximations that do not affect the original model. It is either completely 

contained in the input solid or bounded to it, and can handle complex objects. A brief 

overview to object simplification with various algorithms was presented. 

Knuth (1973) employed a uniform grid to store the data. The space is divided into equal 

sized cells, that is, squares and cubes for two- and three-dimensional data, respectively. 

Hierarchical data structures were also presented (Gargantini, 1982a, Gargantini, 1982b, 

Payeur et al., 1997, Schrack, 1992), and can be applied in order to save memory 

consumption. The most important approach is a linear region quadtree or octree that 

recursively subdivides the space into four or eight equal-sized space regions. Such space 

partitioning data structures are used to store geometric data in a specified resolution. In 

robotics, it is often useful to find the neighbours of a cell. Finding the neighbours either on 

the same level or on a higher or deeper level within the hierarchy is explained in literature 

(Balmelli et al., 1999, Bhattacharya, 2001, Lee and Samet, 2000, Samet, 1990, Schrack, 

1992). Among other techniques such as Binary Space Partitioning (BSP) trees or  -

Dimensional ( -D) trees, hierarchical data structures are also explained by Chang (2001). 

Of the different existing neural network types, the growing neural network type is 

discussed in many applications such as surface reconstruction (Ivrissimtzis et al., 2003) 

and robot path planning (Fritzke, 1991, Fritzke and Wilke, 1991, Vleugels et al., 1993). 

Also, a self-organizing neural network is often employed for data visualization, clustering 

and vector quantization. The main advantage lies in its ability to find a suitable network 

structure and size automatically. This ability can also be exploited to reconstruct objects 

such as obstacles in the workspace of the robot.  
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However, growing neural net adaptation rules are mostly based on different approaches 

(Blackmore and Miikkulainen, 1993, Cheng and Zell, 1999, Fritzke, 1995, Fritzke, 1991, 

Fritzke, 1993, Fritzke and Wilke, 1991, Ivrissimtzis et al., 2003, Lenz and Pipe, 2003). 

Fritzke (1995) explained in detail the power of growing neuronal nets, which are able to 

learn the important topological relations in a given set of input vectors by means of a 

simple Hebb-like learning rule. The net grows and continue to learn and add units and 

connections until a specified performance criterion has been met.  

The concept of the coloured Kohonen map introduced by Vleugels et al. (1993) uses an 

adapted version of the growing neural network presented by Fritzke (1991) to identify the 

free and occupied working space for two different colours. 

Another variant of the approach by Fritzke (1995) was proposed by Cheng and Zell 

(1999). The goal of their paper was to speed up the convergence of the learning process. A 

performance comparison between a Kohonen Feature Map and growing neural networks 

was explained in depth by Fritzke (1993).  

Blackmore and Miikkulainen (1993) presented a growing feature map that is able to 

represent the structure of high-dimensional input data. An extension has been given with 

the approach used by Rauber (2002), where a growing hierarchical self-organizing map is 

built. This is an artificial neural network model with a hierarchical architecture, which is 

composed of independent growing self-organizing maps. The motivation of the authors 

was to provide a model that adapts its architecture during its unsupervised training process 

according to the particular requirements of the input data.  

The algorithm proposed by Ivrissimtzis et al. (2003) samples a target space randomly 

and adjusts the neural network accordingly which also include the connectivity of the 

network. The speed is virtually independent from the size of the input data, making it 

particularly suitable for the reconstruction of a surface from a very large point set. 

Triangle primitives are popular in computer graphics for surface reconstruction because 

they are also used by graphics acceleration hardware (LaValle, 2006). Combining neural 

network algorithms with triangle meshes leads to an algorithm for path planning, which is 

presented by Vleugels et al. (1993). An optimization of the quadtree is presented by 

Hwang et al. (2003) using triangles instead of a quadtree to improve object approximation. 
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They presented a path-planning algorithm that simplifies the triangle mesh into a compact 

and obstacle-dependent mesh to reduce the search space. 

Data structures and algorithms of progressive triangle meshes were presented by Hoppe 

(1998). For a given mesh, this representation defines a continuous sequence of level-of-

detail approximations, which allows smooth visual transitions among them and makes an 

effective compression scheme.  

2.6 Vision and Perception 

Path planning in robotics considers model-based and sensor-based information to 

capture the environment of the robot. Perception, which is initiated by sensors, provides 

the system with information about the environment and subsequently interprets them. 

Those sensors are, among others, cameras or tactile sensors which are often used for robot 

manipulators. Gandhi and Cervera (2003) presented a sensor skin for a robot manipulator. 

An approach based on touch sensors was also mentioned by Zlajpah (1999).  

Vision-based sensing is the most useful sense for dealing with the physical world 

(Russell and Norvig, 2002). Extracting the pose and orientation of objects in images or an 

image stream and the detection of motion delivers useful information for path planning. 

Object recognition converts the features of an image into a model of known objects. This 

process consists of segmentation of the scene into distinct objects, determining the 

orientation and pose of each object relative to the camera, and determining the shape of 

each object. Those features are given with motion, binocular stereopsis, texture, shading 

and contour.  

Motion estimation algorithms are presented in literature (Hsu et al., 2002, Lippiello, 

2005) to estimate motions of obstacles online for realistic environments. An introduction 

of image processing is given by Pollefeys (2000) and Russell and Norvig (2002). Peter 

Corke's Machine Vision Toolbox for Matlab (Corke, 2005, MathWorks, 1997) allows 

developers to use professional image processing capabilities with ease. 

In many cases, the sensor data are redundant, uncertain, imprecise, inconsistent and 

contradictory. The knowledge of the spatial relationships among objects is also inherently 

uncertain (Nandi and Mitra, 2005). Those data should be considered to recognize errors. A 

review of papers on uncertainty analysis in the context of manipulator control (Di et al., 

1998, Langlois et al., 2001, Mao-Lin and Meng, 2000, Smith et al., 1990) shows that a 
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common step involved in all these systems is the interpretation of identical information 

that has been acquired through multiple sensory units. The fused information needs to be 

represented with minimized uncertainty, and the level of this minimization depends on 

task-specific applications.  

2.7 Collision Detection and Avoidance 

Path planning in a dynamic environment with moving obstacles is computationally 

hard (Hsu et al., 2002), and several solutions have been proposed in the past (Akgunduz et 

al., 2005). 

One solution is to ignore moving obstacles and to compute a collision-free path of the 

robot among the static obstacles; the robot’s velocity along this path is tuned to avoid 

colliding with moving obstacles (Kant and Zucker, 1986). However, the resulting planner 

is clearly incomplete. The planner developed by Fujimura (1995) tries to reduce 

incompleteness by generating a network of paths. The planner proposed by 

Fraichard (1999) dealt concurrently with velocity and acceleration constraints and moving 

obstacles, such as car-like robots. It extends the approach of Donald et al. (1993) and 

Erdmann and Lozano-Perez (1987) to the state-time-space, which solves the trajectory-

planning problem for velocity- and acceleration-constrained movements. It also transforms 

the problem of searching the time-optimal canonical trajectory to one of searching the 

shortest path in a directed graph embedded in the state-time-space. The concept augments 

the state space with the time dimension, and is useful for trajectory planning. 

Hsu et al. (2002) presented a randomized motion planner for robots that avoids 

collisions with moving obstacles under kinematic and dynamic constraints. The planner 

does not pre-compute the roadmap; instead, for each planning query, it generates a new 

roadmap to connect the start and target state-time points. A vision module estimates the 

obstacle motions just before planning, and the planner is then allocated a small amount of 

time to compute a trajectory. If a change in the obstacle motion is detected while the robot 

executes the planned trajectory, the planner re-computes a trajectory on the fly (Boada et 

al., 2005, Etzion and Rappoport, 2002, Kim et al., 2009, Kitamura et al., 1995, Lebedev et 

al., 2003a, Nagatani and Choset, 1999, Vleugels and Overmars, 1995). 

Another approach employed for collision detection was given by Sánchez and Latombe 

(2003). To reduce the time needed to check collisions, this strategy postpones collision 

checks until they are absolutely needed. Schwarzer et al. (2004) provided a collision-
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checking method that tests single straight-line segments, sequences of such segments, or 

more complex paths in the configuration space. It was shown that this approach is faster 

when compared to resolution-based approaches with a suitable resolution. The spatial 

potential field by Chuang (1998) shows that potential functions and their gradients can be 

derived, and may therefore facilitate efficient collision avoidance. 

2.8 Model Driven Software Development 

The object management group (OMG) (Object Management Group, 2011) is an 

international, open membership, not-for-profit computer industry consortium that provides 

modelling standards such as the Unified Modelling Language (UML), Model Driven 

Architecture (MDA), and Common Object Request Broker Architecture (CORBA). These 

standards have been applied to several projects of the eclipse development environment 

(Eclipse Foundation, 2006, Eclipse Foundation, 2011a, Eclipse Foundation, 2011b, Eclipse 

Foundation, 2011c, Eclipse Foundation, 2011d). A model-based execution system has been 

presented by the eTrice Group (2011) and Pontisso and Chemouil (2006). An overview of 

domain-specific programming, which is most often part of a model-based code generation 

framework, was given by Shani and Sela (2010). 

2.9 Summary 

Industrial manufacturing requires more intuitive human-machine interfaces and sensory 

interfaces to reduce reliance on the operator skill and to improve automation. Online robot 

programming leads to a loss of production and reduces preparation times, which are 

necessary for the counterpart of online programming, namely, offline programming. The 

offline generation of robot programs needs a simulation and programming phase executed 

by skilled engineers. This is time consuming and requires specialized and expensive 

simulation software. Thus, small- and medium-volume manufacturing do not benefit from 

this technology. Industrial production may be improved with enhanced online 

programming for industrial robots. 

This enhancement can be attained with an assisted online robot programming system, 

which can be operated with ease. The required human-machine interface is closely 

connected with the underlying trajectory-planning algorithm to support the robot-

programming task.  
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The perception of the environment and the representation of the in-memory world 

model play an important role in the efficient utilization of the environment information for 

trajectory planning. Vision and perception has to be appended by other sensor types and 

fused into the in-memory representation of the environment. Research is required, 

especially for robot programing in the industrial surrounding to utilize existing data 

sources.  

The trajectory planner has to deal with both the available information and the 

operational requirements of the enhanced programming system.  

In general, the computation time of algorithms can be reduced by introducing 

hierarchical subdivision approaches such as quadtree- and octree-based methods 

(Gargantini, 1982b).  

Cell-based planning methods often generate a path that connects the midpoints of the 

cells. The publication by Hwang et al. (Hwang et al., 2003) identifies two limitations with 

cell-based methods. First, the detection of small passages requires high accuracy of the 

octree or quadtree. Secondly, the shortest path is not always identified since the distance 

calculations of the cells often use the midpoints of the cells. Thus, the paths obtained by 

the cell-based method are not optimal because of the connectivity limitations in a grid. 

The potential-field approach has several limitations, as outlined in the work of Koren 

and Borenstein (1991). In particular, the robot may get stuck at a local minimum and the 

reported paths can be arbitrarily long.  

Trajectories that are directly obtained from Voronoi-based path planning methods are 

often long, and are not smooth. In recent years, much research has focused on improving 

the quality of the path. Masehian and Amin-Naseri (2004) combine the Voronoi diagram 

with the visibility graph and potential-field approach into a single path-planning algorithm 

to obtain a trade-off between safest and shortest paths. The algorithm is complicated, but 

the path length is shorter than the paths obtained from the potential-field method or the 

Voronoi diagram. 

Neural networks have the ability to learn from input vectors. Among its most important 

benefits are object and environment recognition, generalization to new situations, 

evaluation of situation-contexts, short and long-term memory and their real-time ability. 
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Research of trajectory planning with neural networks for real robot systems has been given 

less attention in the past.  

The literature survey shows that a large amount of scientific work has been done in the 

last decades. However, in the context of robot-program file generation for robot 

manipulators in deterministic industrial environments, other prerequisites have to be taken 

into consideration. 

The usability of the robot-program generation application is an important factor and it 

has to be analysed in detail. For example, not only the usage but also the created final robot 

program file is relevant for a good usability. It has to comply with guidelines for manually 

created robot program files to allow manual amendments. Nevertheless, the trajectory 

planning process within the production system has to be applicable by inexperienced users, 

which requires an intelligent expert system to support the user. The intelligence contains 

the human machine interaction, the path-planning algorithm and the knowledge transfer 

between the user and the expert system. An additional aspect is the trajectory planning 

process that might become easier in a deterministic production environment where only 

objects with a predictable motion may exist.  

This work is focused on an intuitive expert system for industrial use and the acquisition 

of industry requirements sets the basis for further investigations, such as the trajectory-

planning algorithm, the world model, the robot kinematics and a suitable software 

development framework. The following aims chapter summarizes the aim and specifies the 

objectives treated in this work. 
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3 Aims
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3.1 Motivation 

Industrial production systems within the high-volume automotive industry are highly 

optimized. Further advancements may be achieved through a systematic improvement of 

the production process. Existing online robot programming approaches have not been 

completely accepted because of the required production downtime. Consequently, offline 

programming is generally employed even if it requires serious financial investments in 

terms of additional personnel and equipment costs. Furthermore, offline programming 

requires expensive simulation systems and skilled operators who are able to create the 

model of the specific production environment and to produce high-quality robot programs. 

Exact modelling of the production environment is a time-consuming task, although models 

of the production machines are most often provided by the manufacturer. Simulation 

systems generally allow the use of modelled production parts and fixtures to optimize the 

offline-programming process. This represents an improvement, especially when the models 

are not available as physical objects. The quality of the robot programs is highly dependent 

on the knowledge of the operator, who must be experienced in online robot programming 

and in the use of simulation systems. Nevertheless, offline programming still requires 

installation time to upload the robot programs and to adjust inaccuracies and errors 

resulting from unknowns and inaccuracies in the environment. Finally, offline-created low-

quality robot programs are most often re-programmed online, presenting the risk of a 

production loss. This also affects the performance of the robot programmer, set under high 

pressure.  

Costs may be reduced by the development of a new robot programming system which is 

executed solely online, and which creates robot programs in a period of time that is 

comparable to the time necessary for the installation of offline programming approaches. A 

seamless integration into the existing industrial environment is required to reach a high 

acceptance level. This may be realized by combining the advantages of existing robot 

programming approaches and a new trajectory-planning algorithm, which is extended with 

an intuitive user interface.  

 Robot use and automation levels in the industrial sector will continue to grow in future, 

driven by the ever-present need for lower item costs and enhanced productivity. In order to 

support this market-driven requirement, more capable programming and control 

technologies will be necessary. Therefore, research has been undertaken to optimize the 
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robot programming process and to reduce personnel and equipment costs. Accordingly, 

this work addresses the future needs of the production industry. 

3.2 Objectives 

This work aims to present a method that can substitute the current robot programming 

approach with an enhanced robot programming system, in effect rendering offline 

programming an unnecessary technology. Offline programming is still an accepted and 

proven programming approach; the present production environment setup is well 

established in industry. Therefore, an analysis of the current key aspects regarding robot 

programming is required. The integration of those aspects into the new programming 

approach guarantees a high acceptance level and future employment of the new 

technology. 

With no offline programming phase, robot programming can only be accomplished 

online. This aspect defines the scope of the new online robot programming approach. The 

required information for online programming, like mission data and computer aided design 

data, must be managed and processed online. The complexity of a tool that executes 

information management and the robot-programming task itself requires a usable frontend 

that encapsulates the complexity. The frontend provides assistance in order to ensure the 

simple use of such a complex tool which is able to interpret information and execute the 

robot-programming task by itself. 

Online robot programming approaches are generally time critical since production 

downtimes have to be minimal. A crucial aspect that is able to support the general need to 

reduce the time lies in the development of a fast trajectory-planning algorithm. The 

knowledge acquired during the process will be efficiently employed to optimize online 

robot programming. This also includes the ability to handle inaccurate information, which 

may be obtained through sensors, the environment and pre-existing modelled information. 

The combination of the robot, the sensors and the software components requires a modern 

software development approach, which supports their integration into the proposed 

enhanced online robot programming system.  

It is the intention to introduce an enhanced robot programming system that should be 

used solely online to reduce costs by entirely omitting the offline programming phase. Its 

handling should be kept simple, and should allow less experienced workers to apply the 

programming system in a more productive way. It can also be utilized by an expert to 
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increase his or her productivity. An online robot programming system can also be easily 

applied in small-batched productions, which is a field that is very sensitive to robot 

programming speed, system flexibility and cost efficiency. The high quality results of the 

system are reproducible, and the process itself still has the potential for further 

optimization and modernization. 

Objective one: Requirements for adoption by industry of online programming. 

Important key features of current robot programming approaches have to be supported by 

an enhanced online robot programming system to reach a high acceptance level. Some of 

the key features may include the use of modelled production parts and fixtures that are 

physically unavailable, and the creation of high-quality robot programs. In addition, 

technical aspects of the industrial environment have to be considered to allow a seamless 

integration of the system. The results of the analysis are summarized in the requirements 

definition for the enhanced online robot programming system, also affecting the robot 

programming process. The results are described in Chapter 5. 

Objective two: Investigation into an efficient probabilistic world model for data 

fusion. Trajectory planning relies on inexact information about the environment in which 

the robot operates, although sensor information is almost incomplete and inaccurate. 

Additional information such as the utilization of modelled data may be incorporated to 

improve the in-memory environment representation. The information sources are fused 

according to their reliability to provide cohesive information. A probabilistic world model 

stores the information statistically, and considers the history of the information. Objective 

two is to develop an efficient data-structure and information fusion algorithm which allows 

statistical environment data to be stored. The world model and information fusion system 

are described in Chapter 6. 

Objective three: Research of the robot kinematics model and the robot control 

capabilities. The use of industrial-scale experimental machinery robot systems such as the 

Mitsubishi RV-2AJ manipulator is essential throughout the investigation to prove new 

theories. Furthermore, autonomous mobile robots such as the Festo Robotino robot may 

also be applied to verify control algorithms in a simplified two-dimensional space. This 

requires a robot communications and control framework for both robot types. In particular, 

the kinematics of the robots is required for forward and inverse calculations; they 

transform positions of the real world into the robot coordinate system. In this work, the 
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robot geometry and the joint types are applied to create a kinematic model of the utilized 

robots. The robot communications and control framework and the kinematics model of the 

used robots are described in Chapter 7. 

Objective four: Investigation into a trajectory planning algorithm to support 

intuitive use of the robot programming system. The user and the enhanced online robot 

programming system should co-operate and safely interact, even in complex situations. 

Effective assistance requires that the robot be technically intelligent, and that there is a 

knowledge and skill transfer between the human and the robot. The co-operation depends 

on the recognition and perception of typical production environments as well as on the 

understanding of tasks in their context. During human-machine interaction, robot motions 

have to be planned and quickly co-ordinated. In compliance with the requirements for the 

enhanced online robot programming system, online programming needs to be a simple and 

fast method compared to other robot programming approaches. This also applies to less 

experienced operators. This is only possible with a high level of automation of the 

trajectory-planning task. Considering that the operation of an industrial robot is restricted 

to a small set of commands, the planned trajectories consist of circular and linear 

movement primitives. The robot-program generation transforms the trajectories into robot 

programs, which are stored in the robot-type specific program syntax file. The trajectory 

planning approach is described in Chapter 8. 

Objective five: Research of a software development framework for complex 

systems. The system development and implementation of many hardware and software 

components require a clear and structured implementation approach. Model driven 

approaches have been shown to overcome this complexity, but have to be setup for their 

use in specific problem domains. Starting with the analysis of the current state-of-the-art 

technology, a model-driven code generation toolchain has been developed and 

implemented. The results derived using this analysis are presented in Chapter 9. 

Much of the results have been published and the findings are appended. 
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4 Experimental
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The executed experiments focused on human-machine interaction and trajectory 

planning algorithm development. The human-machine interface (HMI) and the trajectory 

planning are interconnected tasks, which have had an impact on the graphical user 

interface (GUI) design. A task-oriented approach was chosen to provide only relevant 

information and functions to the operator, based on a user interaction finite-state-machine. 

The user interface consists of a dynamic toolbar which proposes a standard robot 

programming workflow. It simultaneously offers extended interaction possibilities and 

maintains the effectiveness of the interface. The GUI itself provides a dynamic main screen 

that displays only task-relevant widgets. 

The experiments regarding user interaction and the GUI design concentrated on usage 

experiences and an evaluation of standard graphical interface design rules. The trajectory-

planning algorithm was first tested with an autonomous mobile robot to omit forward and 

inverse robot position calculations and robot arm constraints. In the second step, the 

experiments were extended to an industrial scenario, which includes an articulated arm. 

These experiments were designed to prove the feasibility of the user-interaction and the 

trajectory generation.  

The experiments completed as a part of this investigation were carried out using the 

Mitsubishi RV-2AJ manipulator and the autonomous mobile robot Robotino produced by 

Festo (Festo, 2011).  

The mobile robot is a platform equipped with wireless communication and infrared 

distance measurement units, and it was employed for early algorithm tests. In addition, the 

implementation of a simulated robot accelerated the algorithm development and the user-

interaction design because no direct connection to the real robot was necessary. 

The manipulator is an advanced, but mature and industrially proven machine, and its 

commercial viability has already been demonstrated in the manufacture of car sub-

assemblies, semiconductor memories and other industrial/consumer goods.  

The connection to the robots was established using C# for the mobile robot (Festo, 

2011) and a Java framework for the manipulator (Kohrt et al., 2008). The communication 

and control capabilities of the manipulator were enhanced to extend sensor measurement 

and robot movement capabilities. The Mitsubishi documentation regarding controller  

commands is not complete. However, the data sent between the controller and the 
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Mitsubishi Software Cosirop (Mitsubishi-Electric, 2011) is not encoded, which allowed 

listening to the Ethernet communication between the controller and the personal computer. 

This helped to identify undocumented commands. Cosirop is a software development and 

simulation environment from Mitsubishi, which is used to program in Melfa Basic IV 

(Mitsubishi-Electric, 2003), illustrated in Figure 6. 

  

Figure 6: The Cosirop robot programming software. 

Figure 7 shows the equipment employed, which is described in more detail in 

Appendix B. 
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Figure 7: The experimental system. 

The operator utilizes a GUI that was developed with the Java Standard Widget Toolkit 

(SWT) framework on a Windows operating system (Kohrt et al., 2006a). The buttons on 

the GUI and the Joystick were applied to indicate collisions. Vision sensors are connected 

and processed by a Matlab/Simulink generated C++ code. The GUI, the joystick and 

pointing device allow the control of the employed robots. 

The pointing device is a 50 cm long stick with a single coloured 2.5 cm-diameter red 

ball that is used as a marker for position recognition. Different marker colours were 

chosen, e.g. for the robot-arm and the pointing device, so that they can be distinguished 

from each other.  

Other sensory modalities, such as machine vision, distance measurement and ultrasonic 

sensors, may also be included through the sensor fusion framework. The choice of sensor 

types depends greatly on the application. The vision system was utilized for the recognition 

of the markers. 
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The software was installed on a mobile computer with a 32-bit Microsoft Windows 7 

operating system running on an Intel Core i5 processor with a maximum frequency of 

2.4 GHz. Other real-time capable systems, such as a PowerPC with a VxWorks operating 

system, may improve the performance of the system. 
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5 Requirements for Adoption by Industry of 
Online Programming  
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This chapter presents the findings from the investigation to the requirements for 

adoption of online programming by industry. This is objective number one, as outlined in 

Chapter 3. It identifies and specifies requirements for robot programming for small-

batched, medium sized and high-volume manufacturing industries. 

In Section 5.1, a typical production cell in the automotive industry is introduced and in 

the subsequent Section 5.2, offline programming approaches are analysed. The analysis 

identifies industry requirements for robot programming, which are summarized in 

Section 5.3. A new robot programming approach is presented in Section 5.4, which was 

researched based on the identified requirements. Section 5.5 compares the proposed 

programming approach with conventional online and offline programming. Moreover, a 

first system design which implements the new robot programming approach is introduced 

in Section 5.6. Finally, Section 5.7 summarizes the system requirements for the 

implemented enhanced robot programming support system.  

5.1 Industrial Production Environment 

A typical production environment within the automotive industry is illustrated in Figure 

8. A work object, such as the chassis of a car, may be transported into a production system 

which consists of four robots installed on two external axes. Cameras may be used to 

measure the offset position of the work object. The robots may use this information to 

calibrate their robot programs in order to compensate positioning inaccuracies of the work 

object. In industry, it is also common to transport the work object with a conveyor during 

robot operation. The robot programs have to consider these usage scenarios which are most 

often supported by the robot manufacturer with special movement commands. Typical 

applications are welding, gluing, assembling, spraying, handling and picking and placing. 
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Figure 8: Typical production cell. 

A production system usually requires a specialized communication, logic and control 

system, an example of which is shown in Figure 9. The logic component may be 

implemented using a Programmable Logic Controller (PLC), personal computer (PC) or 

one of the robot controllers to synchronize the entire production process with preceding 

and successive working tasks. The control component requires information such as 

mechanical, physical, electrical and logical data to control the production system. Robots 

are often utilized for production systems, and are usually equipped with robot control 

devices such as a teach pendant or other HMI. 
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Figure 9: Schematic view of a production cell. 

The control component may execute robot programs to control the robots. Increased 

product diversity is realized by implementing work-object dependent robot program 

execution. The identification of work objects is often achieved by bar codes or radio-

frequency identification (RFID) chips on the work objects. The increased flexibility is also 

demanding for the material flow automation, since the correct production parts have to be 

delivered just in time. 

The flexibility of robots makes them important for production applications, especially 

within the automotive industry. For example, Mercedes Benz uses robots for rear-axle 

assembly tasks of their C-Class car (Kiefer et al., 2010). The analysis of a robot program in 

Figure 10 indicates that 68% of the program is related to the production task (movement 

instructions, variable declarations and syntactical instructions), while 32% are related to 

external communication and assembly procedures (plausibility checks).   
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Figure 10: Robot program structure. 

The automation of robot programming implies the automatic creation of the robot 

program structure which is illustrated in Figure 10. The life cycle of a production cell from 

the initial design to the operation stage is illustrated in Figure 11. To create and modify 

robot programs, research focused on the ‘Installation & Initial Setup‘ and the ‘Operation 

and Maintenance‘ phases. 
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Figure 11: Production cell life cycle. 

5.2 Analysis of Existing Robot Programming Approaches 

The analysis of existing robot programming approaches focused on conventional online 

teach-in programming and offline programming amended by online teach-in programming. 

These two programming approaches are frequently employed in industry, for example at 

BMW AG Munich, Germany. A general description is given for each approach to allow 

the derivation of industry needs. A new programming approach was examined based on the 

identified needs, and it is then compared with the existing robot programming approaches 

in Section 5.5.  

5 

28 
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5% External control to PLC etc.

28% Simple movement
instructions (PTP, LIN, CIRC)

40% Variable declarations and
syntactical instructions

27% Program modules for task
procedures
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5.2.1 Conventional Online Teach-In Programming 

 

Figure 12: Online teach-in programming. 

Conventional online teach-in programming is carried out within a real robot cell without 

any preparation. However, some robot programmers attempt to create the program 

structure beforehand to speed up the programming task, and to minimize the production 

downtimes. Nevertheless, this programming approach is often used when the expected 

production downtimes are acceptable and all physical parts are available. This approach 

may result in high production downtimes, and leads to high costs. All work objects have to 

be available, and thus robot programming may not commence until these objects are 

physically available. In contrast, this approach is simple, and has been approved and 

widely accepted. It may be cost efficient when downtimes are acceptable, that is, when 

robot programming is performed during regular production breaks. 

5.2.2 Offline-Programming Amended by Online Teach-In 

 

Figure 13: Offline-programming amended by online teaching. 
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Offline-programming amended by online teach-in utilizes Computer-Aided Software 

Engineering (CASE) tools to simulate the robot cell beforehand. All work objects have to 

be modelled to enable offline robot programming. Models of work objects often exist 

before the real prototype, and they may be adopted during offline programming. Offline 

programming tools are usually complex and time consuming. To produce high-quality 

results, the operator is required to be experienced in the use of both, CASE tools and online 

robot programming.  

The online programmer modifies the programs created offline within the real robot cell 

to compensate for inaccuracies. If the offline robot program is not sufficiently accurate, or 

if the program structure does not satisfy the online programmer, the entire robot program is 

often created manually without the use of the offline program. This results in duplicate 

costs for both offline and online programming of the whole program. Nevertheless, this 

approach is mainly approved in industries because of the generally shorter production 

downtimes, even though greater capital is required for robot-programming investments. 

5.3 Identification of Industry Robot Programming Requirements 

An up-to-date industry requires a modern production system which is able to combine 

and support flexibility, high-speed and optimization (International Federation of Robotics, 

2005); the overall production time available must be maximized to guarantee the highest 

productivity possible.  

The high level of complexity of typical robot-programming tasks for human operators 

has to be considered; consequently, the robot application-software presented in this study 

takes over the most complicated task, which is robot motion planning. The remaining 

manageable tasks which are related to the given mission, e.g. spraying, handling and 

painting, remain the responsibility of the operator. For example, in a handling mission, the 

operator provides information about what the robot has to do, e.g. placing objects in 

specific positions in a specified order, while the online robot software application knows 

how to control the robot. 

Modifications to the existing industrial environment in order to execute the robot 

programming software should be minimized. In addition, permanently installed hardware 

and software should not be required. 
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Supported online programming must be fast and flexible to reduce possible production 

downtimes. The generated trajectories must conform to the given requirements in terms of 

quality, such as the smoothness and shortness, and the possible speed of the robot 

movement.  

Physical production parts and fixtures are often not available during online robot 

programming, and the support system must therefore handle such situations to permit its 

use.  

Nevertheless, robot programs may be modified manually during their lifecycles due to 

changes that may occur during production. Those robot programs are usually stored as 

robot program files in a specific robot programming language on the robot controller. 

Therefore, the generated programs must be readable and maintainable. The proposed 

method helps to generate such robot programs, and it is therefore easy for these programs 

to be manually changed by the human operator.  

Using the robot application-software presented here, there is still some non-productive 

time, but unlike previously reported approaches, this is mostly achieved automatically, and 

therefore rapidly. As such, the actual cell-learning time is minimal, and consequently, 

offline systems become unnecessary, leading to reduced costs for the offline preparation of 

robot programs. 

5.4 The Proposed Enhanced Online Robot Programming Approach 

Mitsubishi RV-2AJ

Visual feedback

Operator

Pre-Existing Data

(e.g. Model Data) Enhanced Robot

Programming

Support System

 

Figure 14: The enhanced online robot programming approach. 

The main disadvantages of offline programming are the investments that are required 

for programming within the simulation system, including the required skilled operators, 

computers and infrastructure. Therefore, online programming was further studied, leading 

to the combination of online and offline programming properties. This required an expert 
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support system that is able to support the operator in robot programming. To enable online 

robot programming, it should be simple to use and efficient. The support system is required 

to lead the operator through the required steps to produce high quality robot programs. The 

approach has to combine the flexibility of online programming and the speed of offline 

programming. Additional aspects, which include a simple integration into the existing 

environment, short production downtimes and high quality results have also had to be 

considered. These aspects required a complete system solution, specialized path planning 

and robot programming algorithms.  

The proposed support system is used within the real robot cell. Changes within the 

environment or to the equipment are considered immediately. The turnaround time to 

produce robot programs with such changes is shorter compared to offline programming.  

In offline programming, small changes are often made directly online, while the 

corresponding offline simulation remains unsynchronized to the real production cell. Then, 

changes to the robot program within the simulation system often require an additional task 

to merge the robot program with the simulation. This task requires special skills and is not 

reliable. Because the proposed system eliminates the simulation, this aspect is no longer 

relevant.  

A single robot operator is required to perform the online robot-programming task 

without the need for any special skills. The available CAD data information is utilized to 

speed up the automatic programming procedure and to enable the use of model data. The 

system is semi-autonomous, takes over the complicated low-level tasks, and leaves the 

high-level tasks to the operator. This approach is simple and cost effective. Without the 

need for offline programming the company no longer needs the offline programmer, the 

required hardware and infrastructure. Nevertheless, the integration of the approach into the 

existing offline-programming systems may also be possible to simplify the offline robot-

programming task. The online integration is also helpful when robot program inaccuracies 

are to be corrected. 

This leads to fewer investments for skilled online and offline programmers, rendering 

offline programming unnecessary. In the automotive industry, offline programming may 

take up to several weeks. For example, the offline programming of a single robot cell with 

two robots, each of which is installed on a conveyor for a painting application requires 

about 10 person-days for offline simulation, 1 day for online programming, and a few days 
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for CAD data preparation. The cost incurred by ten person-days of a skilled online 

programmer is about 7000 EUR plus the cost for equipment, infrastructure, offline 

simulation systems and CAD data preparation.  

5.5 Comparison of Programming Approaches 

A comparison of the presented robot programming approaches and the required robot 

programming steps is stated in Table 1. Only the first and last programming approaches 

omit offline programming, which was identified as the main research objective.  

No. 
Programming 

Approach 
Steps 

1 
Online Teach-In 

Programming 
Online-programming within the real cell 

2 

Offline-

Programming 

Amended by Online 

Teaching 

Offline simulation 
Creation of the offline 

robot programs 

Uploading of the 
programs into the real 

cell 

Manual amendment 

of the robot program  

3 

S
u

p
p

o
rt

ed
 P

ro
g

ra
m

m
in

g
 

Offline 

integration 
Offline simulation 

Run the assistant 

within the simulated 
cell 

Uploading of the 

programs into the real 
cell 

Manual amendment 

of the robot program 

4 
Online 

integration 
Offline simulation 

Creation of the offline 

robot programs 
Calibration of the cell 

Run the assistant 
within the real cell 

with simulation data 

5 

Enhanced 

online 

programming 

Optional preparation 

of data, that is, robot 
kinematic or model 

data 

Start the assistant 
within the real cell 

Calibration of model 

data, teaching of the 

locations 

Run the assistant in 
the real cell 

Table 1: The robot programming scenarios. 

Approach 1, online teach-in, has already been evaluated as being insufficient with 

respect to production downtimes for high-volume production.  

The second approach requires high investments but it can be applied to reduce 

downtimes of the production system.  

It was assumed that offline integration, approach 3, would help the offline programming 

expert to generate suitable trajectories automatically, while built-in special features of the 

simulation tools are still applicable.  

An online integration would take the results of the offline-programming phase to 

modify the generated program automatically in approach 4. This may simplify the process 

of amending the online programming, although tool development costs that are incurred 

may reduce its benefit.  
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Although the integration of enhanced programming into existing programming 

approaches would be beneficial, research has focused on the programming approach 5, 

enhanced online programming, while the remaining approaches may be researched in 

future. 

An evaluation considering the previously defined requirements has produced the results 

in Table 2 for high-volume production. The summary column also supports the enhanced 

online programming approach. 

No. 
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1 

Online Teach-In Programming -2 -2 +1 +1 -2 -2 -6 

2 

Offline-Programming Amended by Online Teach-In -2 +1 0 +1 +2 -1 +1 

3 Offline integration 

-1 +1 0 +2 +2 0 +4 

4 Online integration 

-1 +1 +1 +2 +1 +1 +5 

5 Enhanced online programming 

+2 +1 +2 +2 +1 +2 +10 

Table 2: Comparison of scenarios. 

(+ positive  - negative  o neutral) 

5.6 The General Design of the Enhanced Online Programming System 

A general overview of the integration of the enhanced online robot programming 

support system software into the system is given in Figure 15. The system is connected to 

the robot system, receives input from the environment and the operator, who also creates a 

mission plan with the support system which in turn generates a robot program file. 
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Figure 15: Overview of the enhanced online programming system. 

Model-based and sensor-based information were considered to capture the environment 

of the robot within the system. Those sensors include vision systems, input devices and 

tactile sensors, which are often used for path planning and control of robots. The robot, 

work objects, and the obstacles are available within the robot cell. Model data may also be 

utilized when the physical objects are not available. The logical diagram in Figure 16 

shows a typical system architecture and the robot control loop, which consists of the sensor 

input, actuator output and control functions. Those control functions were implemented as 

mission and motion planners, based on a world model that stores the in-memory model of 

the environment. 
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Figure 16: Path planning system: a logical view. 

The overview in Figure 17 shows the interconnected system components and devices. 

The proposed support system is executed on a personal computer which is connected to the 

robot controller via an Ethernet or serial connection, depending on the robot type and its 

communication capabilities. In addition, a teach pendant and the robot are connected to the 

controller. A vision system, a pointing device, and a joystick are plugged into the personal 

computer. Model data may be imported from files. The hardware and devices are 

introduced in detail in Appendix B. 
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Figure 17: System overview of parts and devices. 

5.7 Summary 

The development of large software systems requires a structured and homogeneous 

development strategy to cover aims like reusability, maintainability and testing. This 

should be accomplished using a model-driven development toolchain. The toolchain 

should allow the integration of hardware devices such as robots, joysticks, mice, keyboards 

and pointing devices. Artefacts produced by other tools and toolchains, such as 

Matlab/Simulink, should be integrable by dynamic link libraries.   

The HMI should be simple and easy for inexperienced users to use. It should control all 

parts of the software system including start and stop procedures, installation procedures 

and life-cycle management of the connected software components. The GUI should be 

easily extendable. 

The world mode stores a model of the environment, especially the robot cell and the 

working space of the robot. Information in the form of CAD and robot joint-space data 

should be handled. Additional requirements are the access delay times to the stored 

information and the storage size in memory. The information input should be fused to 

overcome inaccuracies of the data and to provide cohesive information. 
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The mission planner is responsible for storing the mission data provided by the HMI 

with several input possibilities. Each mission consists of a start and a target location, and 

may have multiple application trajectories with application data such as for painting and 

gluing. Those application trajectories should be connected to control the robot from the 

start to the target position, including all application trajectories in a path-length optimized 

manner. Known algorithms for the travelling-salesman-problem (TSP) should also be 

considered. 

The path planner should be controlled by the mission planner, and should create a 

trajectory with given start and goal positions. Real robot control should be considered to 

direct the robot from the start to the target position. Inputs from the operator and the 

sensors should be possible during trajectory planning to incorporate collision indications. 

The process of planning should also be fast, and the planned trajectories should have a 

short trajectory length and the generated program should be readable, changeable and 

similar to those that are manually programmed. Virtual objects should also be considered. 

Vision should be incorporated using webcams to recognize the pointing device and the 

robot-tool-centre-point. Further developments of image processing algorithms using 

specialized tools such as Matlab/Simulink should be enabled. 

A robot model is used throughout the software system. It should provide forward and 

inverse calculations of the robot kinematic of the Mitsubishi RV2-AJ robot. Those 

calculations should be based on the ideal, theoretic geometry of the robot.  
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6 Investigation into a Probabilistic Data Fusion 
World Model
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Path planning is based on data of the physical environment, as illustrated in Figure 18. 

Information of the environment was retrieved with internal and external sensor perception 

amended by pre-existing model data and stored within an in-memory model, the world 

model. It is a hierarchically structured data storage which saves position and collision 

information. A position can be given either in Cartesian (position and orientation) or robot 

joint space (with   joints of the robot). In addition, model data has to be stored as well. The 

presented probabilistic data fusion world model is the data basis for the enhanced robot 

programming system and it is illustrated in Figure 18 as ‘World Model’. 

Robot Cell

Environment

Motion Planning

Enhanced Online Robot 

Programming System

World Model
Cartesian Storage

Joint Storage

Model Data Storage

External Sensors

Internal Sensors

RobotRobot-Control-CommandsMission Planning

Model Data

 

Figure 18: The logical view of the path planning system  

with the highlighted flow of sensor information. 

The Cartesian storage was realized by a linear octree which was introduced by 

Gargantini (1982b), and detailed in Section 6.1. The robot joint space positions are stored 

in a specialized hierarchical binary tree structure, which is presented in Section 6.2. Both 

the octree and the joint position storage are able to deliver information with a specified 

level of detail. Sensors such as vision systems, ultra-sonic detectors, and laser-distance 

measurement systems can be employed to retrieve dynamic information. The proposed 

system is equipped with a specific button for the operator on the control panel and a 

joystick button to indicate collision points. The model data storage was implemented using 

a Java3D scene graph, which is presented in Section 6.3. The model data was retrieved 

utilizing CAD drawings of the working-cell construction process.  
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In general, real robot applications have demonstrated that sensors may deliver wrong 

information (Hall and Llinas, 1997). The world model combines the different data sources 

using a data fusion architecture. It includes sensor abstraction, algorithms and architectures 

(Hall and Llinas, 1997), and was implemented as a voting system.  

The data fusion architecture presented in Section 6.4 filters the data sources through a 

simple moving average (SMA) filter and incorporates the reliability of the data sources. A 

value is defined for each data source to reflect the reliability. Thus, the averaged weighted 

sum of the sensor values was applied to deliver cohesive information.  

The vision system presented in Section 6.5 both delivers information about the 

environment and interprets the markers presented in Subsection 6.5.3. However, object 

recognition is a major problem in path planning because of the sparseness of information. 

A solely vision-based recognition system may not be capable of delivering enough 

information within an industrial environment, and model data was incorporated into the 

world model to utilize additional data, although models are often inaccurate.  

Results obtained contributed to a journal publication and a conference paper. This 

chapter corresponds with objective three. 

6.1 Cartesian Position Storage 

A linear octree presented by Gargantini (1982b) was implemented to store spatial 

coordinates of the robot environment. The implemented octree is a region octree type. 

Compared to conventional methods for storing octrees, where the access delay time to 

certain subdivisions is exponentially increasing (  ) with the level of accuracy  , special 

properties of a certain index assignment scheme were utilized, and provides linearity in 

terms of the access delay time to cells of an arbitrary accuracy. The linear octree allows 

high-speed access to the cells lying on the movement path of the robot. Finer resolutions of 

the octree may be reached by more subdivisions, which increases the relative speed (cells 

per second) of the robot and thus requires shorter access delay times. The use of an octree 

structure significantly decreases the required storage space, since only fully- and partly-

occupied cells are stored. A detailed description of the properties and structure has been 

presented in various papers (Bhattacharya, 2001, Chang, 2001, Frisken and Perry, 2002, 

Gargantini, 1982b, Globus, 1991, Gran, 1999, Hwang et al., 2003, Kitamura et al., 1995, 

Mahler, 2003, Merkle, 2004, Payeur, 2004, Payeur et al., 1997, Peng et al., 2005, Samet, 

1994, Schrack, 1992). 
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The implemented linear octree is initialized with its octree size and accuracy. The 

required number of subdivisions is automatically determined. Using this representation, the 

encoding, decoding and determination of adjacent voxels within a specified radius are 

implemented basic operations that can also be found in literature (Bhattacharya, 2001, 

Samet, 1994, Schrack, 1992).  

6.1.1 Index Assignment 

A linear octree stores points using equally sized cubic cells. Each cell represents an 

element (I, J, K) of a spatial array. The three dimensions also represent the coordinate 

system normalized to integer values, which denote the number of cell steps in each 

direction. An octree with two subdivisions is illustrated in Figure 19 to illustrate the basic 

concept of the index assignment. The accuracy of the octree cell grid increases with the 

number of subdivisions. 

  

Figure 19: A linear octree with two subdivisions. 

The indexing scheme is recursive from the root to the child cells. Child cells inherit the 

index from their parent voxel and extend it by one digit. The cells may also be represented 

in two dimensions, as illustrated in Figure 20, where the cells may be either empty, partly 

or fully occupied. 
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Figure 20: Octree data structure representation. 

Thus, for the example above, the cells were stored in an array with the octal code 

indexing scheme entries as {                                }. Because of the strict 

order of the indices, a fully occupied parent cell can be combined by encoding it with  . 

The array has therefore been shortened to {           }, and is denoted as a mixed-octal 

representation of octal digits {      } and  . Only fully and partly occupied cells of the 

octree need to be stored. From the left to right, the octal digits within those indices 

determine the path from the root to certain leafs of the octree, respectively.  

6.1.2 Neighbour and Parent-Child Relations 

A position is added to the octree by converting it to the octree indexing scheme and 

adding the cell. Each cell may store additional information, for example to indicate the 

occupancy probability. Each parent of an added voxel is created with the correct 

occupancy value derived from its children. However, if the parent already exists with a 

collision probability value, the highest collision probability of its children is applied. In 

this way, a parent cell always has the highest collision probability value of its children. 

When a non-existing voxel is selected by neighbour relationships, this neighbour will 

inherit the collision probability of the next existing parent node. 

Each voxel has neighbour relations to adjacent voxels if they do not exceed the 

boundary of the robot world, that is, the borders of the root cell. Neighbours exist in 

perpendicular and diagonal directions at each subdivision level.  

In a uniform grid, the transition between cells may be considered to occur at edges 

within a graph. This may be utilized to find the shortest path from a start to a goal cell, for 

example with the A* search algorithm (Likhachev et al., 2005, Russell and Norvig, 2002).  
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Figure 21: Four neighbours. 

The neighbourhood relationships define the connectivity. The Manhattan metric in 

Figure 21 defines four neighbours in two-dimensional space. The chessboard metric in 

Figure 22 defines eight neighbours, which are also in diagonal directions.  

 

Figure 22: Eight neighbours. 

The robot path-planning scenario demonstrated in Figure 23 results in a wrong 

connectivity since the robot may always have physical dimensions, and therefore, direct 

diagonal movements through the cells P to Q (left) have to be forbidden, although it is 

mathematically correct. 

 

Figure 23: The problem with eight neighbours. 

In three-dimensional space, 26 directions are possible from the middle cell, leading to 

Figure 24. The special case demonstrated in Figure 23 also applies in three dimensions. 
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Figure 24: Spatial space neighbour relationship of an octree cell, shown by the arrows. 

6.1.3 Digitalization of the Robot Environment  

The octree midpoint was defined to the robot base position, which is shown in Figure 

25, and which may be arbitrarily positioned in the world space. Therefore, points in the 

world space have to be converted to the local coordinate system of the octree. This was 

accomplished using a simple shift operation since the orientation of the world and local 

coordinate systems are identical. 

  

Figure 25: The robot environment and relation of world and octree representation. 

Cells may be represented by their world coordinate, (I, J, K) coordinate or index scheme 

representation. All types may be converted into each of the other types, although the 

conversion from world to (I, J, K) or index scheme representation leads to a loss of 

accuracy. The reason for this is the fixed voxel sizes and the defined octree accuracy.  
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The octal point class is a sophisticated and intelligent data structure that was used 

internally. This class provides a wide scope of knowledge about its environment, and 

encapsulates a representation of the octal number as array structure. Within this structure, 

child relations of the encapsulated points and all its neighbour relations in every direction 

are stored by their respective octal representations. The necessary calculations were 

executed during the creation of the octal point to minimize computational costs. The 

neighbour relations are stored for all neighbours independent from their existence. 

6.2 Robot Joint Position Storage 

The octree stores spatial Cartesian coordinates, but a robot arm position is an  

 -dimensional vector of joint angles. A single Cartesian world coordinate may be reached 

using multiple robot arm positions. Collisions of the robot arm with obstacles may occur 

anywhere at the robot arm. Therefore, the whole robot arm position (not only the Cartesian 

world position) has to be considered within an  -dimensional storage system, where   is 

the number of robot arm joints.  

0j

1j

2j

 

Figure 26: Example robot. 

A high-performance and memory-efficient storage system was implemented, and allows 

information to be requested on a specified accuracy level. Each position consists of the 

angle values of each robot joint, as illustrated in Figure 26. Robot arm joints are usually 

limited to a specific range, which is given by a minimum and maximum value. An example 

is given in equation (1). Mechanical sensors are often installed to check the robot arm 

ranges.  

(1)  

    [        ] 

    [     ] 

    [        ] 
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The joint angle ranges may also overlap, which is the case here for   . The storage 

system implements a binary tree with an accuracy that is defined by its depth 𝑡 . The 

absolute angle range is subdivided by two on each depth level, as illustrated in Figure 27.  

0
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Figure 27: General joint angle binary tree for a joint 𝑗 with depth 𝑡   . 

The depth 𝑡 for each joint   is calculated based on the required minimum accuracy   

and the absolute joint range   in equation (2). 𝑡 is rounded up to a natural number, which 

increases the accuracy  . 

(2)    
 

   
 

Therefore, the depth 𝑡  for a joint   is calculated using the absolute range length in 

equation (3). 

(3)     ⌈    (
 

 
)⌉ 

For joint 𝑗 , an accuracy of         and an absolute range length     ‖𝑗 ‖      , 

         and          may be given as an example in (4). 

(4)  

    ⌈    (
    

    
)⌉  ⌈     ⌉     

    ⌈    (
    

    
)⌉  ⌈    ⌉     

    ⌈    (
    

    
)⌉  ⌈     ⌉     

An illustration may be given in equation (5) using the calculation of an example point  

   (         )  in a binary tree with a simplified example accuracy of        for 

the joints 𝑗   𝑗 . 

(5)      ⌈    (
    

    
)⌉    
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    ⌈    (
    

    
)⌉    

    ⌈    (
    

    
)⌉    

The resulting binary tree position    𝑡    of the example positions      are graphically 

shown in Figure 28. 
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Figure 28: Joint angles binary tree. 

(𝑗    binary tree for    (         )  and accuracy      ) 

The resulting binary tree index positions         for      are stated in equation (6). 

(6)  

       {   (         ) }  [         ] 

       {   (         ) }  [         ] 

       {   (          ) }  [         ] 

Because every position         represents a collision point with an occupancy value  , 

these values are stored and updated along the position using the update rule provided in 

equation (7). 

(7)             
     (        

    ) 

The external interface to this component defines methods to obtain and store robot arm 

positions, including their occupancy values in the requested accuracy. If the requested 

position does not exist within the binary tree, an occupancy value of zero is returned. 

Positions are stored when they do not yet exist in the binary tree. Existing positions update 

their occupancy values with the formula given in (7).  

Storing joint positions in the presented way reduces the number of joint positions stored 

per octree cell and allows storing the joint positions in a ‘natural’ way. Thus, joint 

positions that are near together, and also their occupancy information can be summed up to 

one binary tree cell. The joint positions are normalized. 
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6.3 Model Data Storage 

Although a Cartesian and a joint storage have already been implemented based on space 

partitioning, a model storage was implemented to additionally store the modelling elements 

as objects. The model storage was implemented as a Java3D scene graph (Sun-

Microsystems, 2012), which is structured as a tree containing several elements that are 

needed to display the objects. It can be directly visualized, as illustrated in Figure 30, using 

an implemented Java3D viewer. The user is able to interact with the viewer using the 

mouse and the keyboard. Information about the visualized objects can be obtained by 

clicking on the objects. Storing moving obstacles within the Cartesian storage requires the 

processing of intensive octree transformations. Therefore, models were stored within the 

model storage. 

The geometric models were imported from files with the Drawing-Exchange-Format 

(DXF), which is a widely accepted format utilized by many computer-aided design 

programs. This file consists of pre-existing static model information, which may either be 

imported into the world model or directly be used within it. The import has been 

accomplished with the help of Java3D by using collision test methods and storing each 

position within the world model.  

The model information was imported using a rasterization step with a predefined raster 

size    with        . The raster size    was set to                 . Although 

pre-processing was not necessary, it was employed to reduce the running times of the 

algorithm. Modelled obstacle data does not need to be complete, and it has been employed 

to add already existing information to the in-memory world model. 
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Figure 29: Experimental scenario (2D example in 

3D world), with obstacle O3 being unknown. 

 

Figure 30: Illustration of the experimental scenario in the 

3D world.  

The Java3D scene graph also supports collision detection, but only within the visualized 

frames, and does not detect interpenetrating objects between two frames. The Open-

Dynamics-Engine (ODE) physical simulation engine supports collision detection between 

frames (Smith, 2012). ODE is a free, industrial-quality library that is used for simulating 

articulated rigid body dynamics in virtual reality environments. It was used for collision 

detection of basic geometric objects, but collision detection with complex CAD data is 

only supported at a basic level. The detection can be manually enhanced by implementing 

the calculation of collision points and vectors. Nevertheless, for this work, the 

requirements are fulfilled since only basic geometric objects are required. The Java binding 

ODEJava (Comunity, 2012) was employed to implement a graphics engine to combine 

ODEJava with Java3D.  

6.4 Data Fusion Framework 

The world model handles Cartesian and  -dimensional collision positions as well as 

model data. The employed data sources provide information about the position of the 

robot, the obstacles and the collision positions. Data fusion was required to acquire 

consistent information to allow accurate representation of the in-memory world model. 

Sensors tend to deliver imprecise data, such as the occupation of the robot working space, 

which is required during the trajectory planning process. The general sensor fusion 

architecture is represented in Figure 31. 
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Figure 31:Data sources of the information fusion system. 
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Figure 32: Sensor fusion architecture. 

The raw data of commensurate sensors (that is, when the sensors measure the same 

physical phenomena, such as two visual image sensors) can be directly combined. 

Unfortunately, the sensors used in this work are not commensurate. Thus, data fusion is 

required on a higher level.  
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The interpretation of the raw data of the applied sensors results in a single value, the 

sensor occupancy         
, which is normalized between           

  . Information 

about the occupancy is directly obtained using two sensor types, namely the modelled 

obstacle data and the collision indication button.  

Each sensor has a manually defined reliability value,           
  . For example, 

modelled data may be less reliable than collision indications of the operator. The reliability 

values of the applied sensors, modelled obstacle data and the collision indication button 

have been predefined based on experience.  

The employed data fusion strategy calculates the averaged weighted sum of the sensor 

occupancy values         
 according to their reliability, and applies the history of the so-

achieved values        with an SMA. The advantage of the applied strategy is the fusion of 

multiple sensors with different reliabilities by averaging and smoothing of the sensor 

measurements. The fused sensor values are persistent in the in-memory world model, and 

are ready for subsequent reuse. 

      
  in equation (8) represents the cell occupancy at the actual time step, and it is the 

averaged weighted sum of the sensor occupancy values with a given number of sensors  . 

(8)        
  

 

∑         
 
   

 ∑(        
         

)

 

   

 

 The cell occupancy probability      
  (       

   ) is calculated by the equation 

given in (9). The history of the cell is considered by calculating the SMA with an order of 

   . The experimentally chosen order of the SMA filter defines the window size. 

(9)       
  

 

 
 ∑       

 

    

   

 

The index ‘0’ always belongs to the actual values, ‘-1, -2 ...’ etc. to former values. 

Sensor values are centred on the mean for static obstacles, and the lag behind the latest 

sensor value may therefore be neglected. 

Sensor values and the corresponding fused sensor values are illustrated in Figure 33 and 

Figure 34. Three sensors were measured, with sensors 1 and 3 having a low (false) value in 
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measurements 3 and 4, respectively. In Figure 34, the fused average values for the cell 

values were compared with the unfiltered sensor values. 

 

Figure 33: Sensor values derived from real sensors. 

 

Figure 34: Fused sensor data. 

The reliability of the fused sensor data for static obstacles was computed by the 

similarity of the fused sensor data values, as described in equation (10) and equation (11). 

Similar occupancies result in a probability of      , where        . 
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(10)     
   |       

        
 | 

(11)     
 

 
 ∑    

    

   

 

Altogether, the cell occupancies      
  and the reliabilities    of the cell occupancies 

were applied as a product      
     of those cells, and equation (9) is redefined as 

equation (12). The impact of the cell occupancies on path planning will be shown in 

Chapter 8. 

(12)             
     

Attention has to be given to the sensor information type, which can be in configuration 

space or world space. World coordinates are only relevant for the cell occupancy while 

configuration space coordinates are additionally stored within the cell. 

6.5 Vision System 

Vision was employed to recognize markers in picture coordinates. The pointing device 

and the manipulator tool-centre-point (TCP) were equipped with those markers to execute 

first tests with visual servo control using a neural network. Subsection 8.3.2 is dedicated to 

the pointing device as part of the human-machine-interface. 

Active and passive marker types were evaluated for recognition. It was expected that 

active ones would deliver good recognition results. Therefore, the luminescence emitter 

diodes in the visible wavelength range and in the infrared wavelength range were 

evaluated. The recognition of markers in the visible light range was difficult because of 

interferences in the background which had to be filtered. Infrared markers showed promise 

with respect to simplifying the recognition, but the camera required an additional infrared 

filter to be able to detect only the infrared markers. The tested infrared filters also reduced 

the intensity of the infrared light range, and therefore required strong active infrared 

markers. The light emission of the luminescence emitter diodes is often directional for both 

luminescence-emitter-diode types that emit infrared and visible light. Lampshades were 

tested to produce a diffuse light source, but did not improve the recognition capabilities.  

Therefore, passive markers have been further evaluated, and wooden balls with the 

colours red, green, blue and yellow delivered acceptable results, even with background 

interference, which was filtered. 
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The filter required image stream processing implemented with Matlab/Simulink (see 

also Subsection 6.5.3) to generate a dynamic link library (DLL). The implemented image 

stream processing chain is illustrated in Figure 35. The image stream source was a web-

camera.  

Image Stream Source

(Web-Camera)
Image processing

Extracted Position 

Data

Dynamic Link Library  

Figure 35: Image stream processing chain. 

6.5.1 Colour Recognition 

Colour recognition requires an in-memory representation of colours to encode a series 

of images into an image stream. The representation of colours is defined through the colour 

space, which may vary according to its purpose, that is, some colour spaces may encode 

and compress the colour information based on measurements of human colour perception. 

The colour spaces RGB, YCbCr and HSV are often used by Matlab.  

The RGB colour space describes each colour as a combination of the base colours red, 

green and blue. Each base colour value ranged from 0 to 255. The YCbCr colour-space 

also has three values, but ranges from 0.0 to 1.0. The Y defines the luma component, and 

Cb and Cr define the blue-difference and red-difference chroma components. The HSV 

colour space encodes colours in a cylindrical space, as shown in Figure 36. As hue H 

varies from 0.0 to 1.0, the corresponding colours vary from red through yellow, green, 

cyan, blue, magenta, and back to red. As the saturation S varies from 0.0 to 1.0, the 

corresponding colours (hues) vary from unsaturated (shades of grey) to fully saturated (no 

white component). As the brightness value V varies from 0.0 to 1.0, the corresponding 

colours become increasingly brighter. 
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Figure 36: The HSV colour space. 

(Source: Matlab documentation) 

Therefore, the HSV colour space defines colours using only the hue and saturation. The 

brightness influences the maximum saturation of a colour, but it was shown that this effect 

may be omitted when a minimum brightness is achieved.  

An implemented colour calibration allowed the definition of the colours to be 

recognized manually. The definition of the colour area in the hue-saturation space is stored 

as minimum and maximum values of hue and saturation. This was accomplished using a 

preview image of the employed camera. An elliptical space was selected on the preview to 

create an image mask and to crop unimportant image regions. The selected region was 

analysed pixel by pixel to store the minimum and maximum hue and saturation values.  

Preview Create Mask Store HSV values

 

Figure 37: Colour calibration process. 

6.5.2 Image Stream Source 

The Simulink image acquisition block illustrated in Figure 38 (left block) acquires 

image and video data streams from devices, such as cameras and frame grabbers, in order 

to deliver image data within a Simulink model. The block directly previews the acquisition 

in Simulink, and opens, initializes and configures the resolution of the input device. The 

output signal is an array with the width and height of the image size in pixels. Each array 
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element identifies a colour value in the device-dependent colour space, such as RGB, HSV 

and YCbCr.  

 

Figure 38: Simulink image acquisition block and colour conversion. 

The developed image processing chain uses the HSV colour space. Because the image 

acquisition block provides the stream in the YCbCr colour space, a colour space 

conversion was required to convert the image stream from the YCbCr to the HSV colour 

space. 

6.5.3 Marker Recognition 

An image stream processing chain was implemented to segment, detect and track the 

position of markers with a specific colour in an image stream. This processing was 

performed for red and blue coloured markers. Segmentation was also applied to select 

regions in the image which comply with the calibrated colour values. Detection recognizes 

blobs of the selected regions which were further utilized for tracking with a Kalman filter. 

The tracking block delivers the extracted position data of the markers. 

 

Figure 39: Image stream processing chain. 

Segmentation 

Segmentation is realized by filtering the images of the image stream regarding their hue, 

saturation and brightness colour-space component. Each pixel that complies with the 

calibrated colour component ranges for hue, saturation and a minimum brightness are 

labelled. Pixel labelling sets labelled pixels in the binary image stream output to 1 and 
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unlabelled pixels to 0. Pixel labelling leads to a conversion of the coloured image stream to 

a binary image stream containing a single calibrated colour. 

 

Figure 40: Image stream segmentation. 

Detection 

The binary image stream (BW) contains noise that is filtered by a median filter. The 

filtered image stream may still contain gaps within objects that are closed with the closing 

algorithm. The resulting image stream allows blob analysis to detect objects, for example 

balls. It takes a given filtered binary image stream as the input, and outputs quantities such 

as the Centroid, major and minor axis. The Centroid signal is a 2-by-N matrix, where the 

columns represent the coordinates of the centroid of each blob and N is the number of 

blobs. 

 

Figure 41: Blob analysis block. 

There is still noise in the image stream that leads to false recognitions. Further 

improvements were realized by utilizing an additional property of the ‘ball‘ markers. Their 

projection onto the picture plane results in a circular shape from any direction and has been 

taken into account. The major and minor axes of the blob analysis for each blob were 

utilized to calculate the circularity                       of each blob, where a value 

of        was used as a threshold to indicate the circular shape of the blob. 
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Tracking 

The identified blobs were sorted within the indexer block of Figure 43 to match the blob 

positions of the previous iteration. This was realized by a distance measurement of each 

new blob to all previous blobs to find its previous matching blob. Two blobs with the 

shortest distances are assumed to be the same blob. It was shown that this method is only 

valid when the movement of the blobs in each frame is sufficiently slow. In addition, blobs 

were buffered so that missing blobs always keep their last position within a maximum 

period of 1 second. This smoothed the recognized marker positions, especially when they 

were not detected in several frames. 

The sorted and buffered blob positions were sent to a Kalman filter, which reduces the 

noise of the measurement data and outputs a vector with position and velocity information 

in the   and   directions. Only the position information is utilized, and the selector block 

therefore rebuilds the output vector. The indexer block may also utilize the predicted 

position output X_prd of the Kalman filter to sort the blobs and to optimize the results.  

Figure 42: Blob analysis block. 

 

Figure 43: Blob analysis block. 

6.6 Summary 

This chapter addresses objective three and it presented an in-memory world model that 

stores fused collision information regarding the collision indication button, the model data 

and the robot. Collision points may be delivered in the Cartesian or robot joint space, 

which are both handled by the world model.  

The implemented SMA filter for the data fusion algorithm may lead to over-smoothing 

of the sensor values, and there may therefore be a recognition delay for sudden events. 

This depends mainly on the order of the SMA filter, which can be set individually for each 

information source. Important sensors with a high reliability have a low SMA order. 
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Because the operator uses a collision indication button with a low order of the SMA filter, 

collisions are always detected.  

The image processing chain recognizes markers in an image stream. The colours to be 

recognized were manually chosen during a pre-processing step. Coloured balls were used 

as markers to differentiate the markers, e.g. to distinguish the pointing device and robot-

arm markers. The implementation in Matlab/Simulink allowed further improvements of the 

algorithms without any necessary modifications to the remaining software system. The 

image processing algorithms were compiled into a DLL for system integration. The 

developed algorithm may deliver false results when the markers are moved too fast or 

when the markers leave the camera view. Nevertheless, the marker recognition capabilities 

are sufficient for the implementation of a prototypical robot-programming assistant. 

The presented probabilistic data fusion world model was utilized as data basis for the 

enhanced robot programming system, especially for the path and trajectory planning 

algorithms. It was established to turn relevant information about the physical environment 

into a cohesive and processible information source. 

The outcome of this chapter was subject for various publications and the addressed 

objective three has been met.  
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7 Research of the Robot Kinematics Model and 
the Robot Control Capabilities
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Research into the enhanced online robot programming approach was accomplished 

using two types of robots. The first type is the industrial articulated manipulator, which is 

described in Section 7.1, and which is also the intended target system for the enhanced 

online robot programming system. The second robot type, which is detailed in Section 7.3, 

is an autonomous mobile robot. The hardware of both robots is described in Appendix B. 

Simulation of the two robot types and of a free-flying point robot is described in 

Section 7.5.  

The trajectory generation algorithm of the robot manipulator uses a “free flying point 

robot” in one of the first steps to calculate the motion (see also Section 7.2.3 for the robot 

model). The autonomous mobile robot can also be seen as a free flying robot in two 

dimensions and it has therefore been used to test early implementations of the first 

calculation steps of the algorithm. 

The investigation shows that remote control of the industrial manipulator Mitsubishi 

RV-2AJ and the mobile robot Festo Robotino is possible and has been published at a 

conference. Forward and inverse calculations with the robot kinematics were analysed. 

This chapter corresponds with objective two. 

7.1 Mitsubishi RV-2AJ Manipulator Control 

The industrial articulated manipulator Mitsubishi RV-2AJ is well documented, and 

communication with a personal computer is possible. Its commercial viability has already 

been industrially proven in the manufacture of car sub-assemblies, semiconductor 

memories and other industrial/consumer goods (Mitsubishi-Electric, 2008). The main areas 

of application are assembly, manufacture, pick & place and handling. The ability to use 

industrial robots without the need to modify the robot and its controller is important to 

facilitate its rollout in industry.  

A robot control framework described by Kohrt et al. (2008) was developed to control 

the Mitsubishi RV-2AJ robot manipulator and to exchange information such as sensor data 

and the robot arm position. The framework enables direct robot control, serial/Ethernet 

connection, robot parameter editing/reading/writing, program uploading and downloading, 

real-time movement control, robot system backup/restore, external control over user 

datagram protocol (UDP) and equipment control. The initial configuration of the robot was 

automated on start-up of the system.  
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This section discusses the built-in communication modes Real-Time External Control 

Mode, Controller Link Mode and a Data Link Mode. An additional, extended 

communication mode was implemented with the Data Link Control Mode. The 

development was based on the built-in communication modes to overcome the real-time 

control limitations now being discussed. 

The Data Link Control Mode allows bi-directional communication for control 

commands and sensor information exchange at any time. Usually, the robot system allows 

the sending of motion commands which have to be executed and finished before the next 

command can be processed. Therefore, applications such as real-time joystick control of a 

robot are not possible. This framework overcomes this limitation by installing a 

communication server on the CR1 controller, which manages the communication to the 

personal computer.  

7.1.1 The Built-In Robot Control Modes 

The built-in communication modes Controller Link Mode, Data Link Mode and Real-

Time External Control Mode were utilized to create the extended Data Link Control Mode 

that is described in this subsection.   

Controller Link Mode 

The Controller Link Mode was used to set parameters, send robot control commands 

and read the robot status. Receiving status information during movement of the robot and 

controlling the robot in real-time is not possible. The data is sent in plain text over an 

Ethernet, and it was therefore possible to monitor the Ethernet communication between the 

controller and the personal computer. The protocol format for sending commands is shown 

in Listing 1.  

[<Robot No.>];[<Slot No.>];<Command> <Argument> 

Listing 1: Command protocol format. 

Each command is followed by a message that is sent by the controller, and contains status 

information and the result. Table 3 states the pattern of the returning status information, 

where each star stands for one digit. The framework verifies the correct transmission of the 

robot command with the returned status information. 
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Commands Contents 

QoK**** Normal status 

Qok**** Error status 
QeR**** Illegal data with error number 

Qer**** Error status and illegal data with error number 

Table 3: Status of sent commands. 

Real-Time External Control Mode 

Real-Time External Control of the robot was employed for direct robot control, where 

the trajectory is calculated manually by the personal computer. The real-time external 

control mode is based on the UDP networking protocol (Flanagan, 2002), which is a 

simple and low-level network communication protocol that sends arrays of bytes over the 

network. Even though UDP transmission is not reliable, the low protocol overhead allows 

quick datagram transmission. The sending and receiving of packets is monitored, and a 

timeout exception is triggered if the communication does not meet the cycle-time 

requirement. Runtime is crucial, since every communication cycle has a period of 7.1ms 

(Mitsubishi-Electric, 2002a), depending on the robot hardware. It was discovered that a 

plain Java port is not capable of communicating with the robot controller in the required 

time, and leads to a loss of UDP packages. Thus, movement of the robot was no longer 

smooth. A DLL written in C solved the cycle-time issue. This library may also be used in 

Matlab/Simulink to build a ‘hardware-in-the-loop‘ low-level robot control application. 

However, the library was not utilized because on the one hand, the tested Java robot 

control component had already been implemented and tested, while on the other hand, the 

component required to execute the DLL function had not yet been completed. 

Data Link Mode 

The Data Link Mode connects a controller to a personal computer. Usually, it is utilised 

to send robot status information from internal robot sensors to the receiver. 

7.1.2 Overview of the built-in Communication Modes 

The three built-in communications modes are outlined in Table 4, and in Table 5, actual 

case results are identified to highlight their usage. Because it was not possible to send 

control commands and information requests over one connection, a second connection was 

always required to receive actual status information during robot motion.  
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Mode 
Phys. 

Layer 
Command type 

Feed

back 

type 

U 

C 

1 

U 

C 

2 

U 

C 

3 

U 

C 

4 

U 

C 

5 

U 

C 

6 

RTEC ETH SDO SDO X - - - - - 
DL ETH SD SD - - - X X X 

DL RS232 SD SD - - - X X X 

CL ETH Robot command  - X - - - - 
CL RS232 Robot command  - - X - - - 

CL ETH Robot program  - - - X - - 

CL RS232 Robot program  - - - - X - 

(RTEC – Real Time External Control; DL – Data Link; CL – Control Link; 

ETH – Ethernet; SDO – Serialized Data Object; SD – Serialized Data;  
UC – Use Case) 

Table 4: Built-in robot communication modes. 

 

Use- 

case 
Description 

1 Direct robot control over Ethernet with feedback. Either the mentor or the path planning 

system may move the robot manually. No controller calculations are involved.  
2 Robot operation with single movement commands over Ethernet. The controller 

calculates the path. Feedback data may be retrieved by Ethernet connection after 

finishing movement. 
3 Robot operation with single movement commands over serial port. The controller 

calculates the path. Feedback data may be retrieved by serial port connection after 

finishing movement. 
4 Robot operation with robot programs over Ethernet. The controller calculates the path. 

Feedback data may be retrieved either by Ethernet or by serial port connection. 

5 Robot operation with robot programs over serial port. The controller calculates the path. 
Feedback data may be retrieved either by Ethernet or by serial port connection. 

6 Robot operation with two data-link channels. One sending channel over serial port and 

one receiving channel over Ethernet. The robot has to be programmed so that it is 
possible to send movement-type and data.  

Table 5: Use cases. 

The most important requirements are the reception of the robot sensor information 

during robot movement and the real-time controllability of the robot, mentioned in use 

case 1. The extended Data Link Control mode explained in Subsection 7.1.3 was 

developed to provide the required functionality defined in use case 1. 

7.1.3 The Extended Data Link Control Mode 

The Data Link Mode was extended through a control component, which gives the 

opportunity to control the robot and simultaneously receive status information. The 

personal computer and the robot controller were arranged in a cascaded control system, 

where the robot controller calculates the trajectory given by the personal computer in the 

form of piecewise ‘MoveTo‘ commands. This allowed to control the robot manipulator 

along the trajectory without stopping. Commands are sent over the Ethernet or the serial 

port.  

Multitasking was employed to run the Data Link Control Mode programs in parallel, 

placed in program slots of the CR1 controller. Communication between the programs 
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running in parallel was realized using program external variables and user defined external 

variables. 

The main control program MULTITASK in Listing 2 is executed first in slot 1. It sets 

the variables M_01 and M_02 to zero and starts the programs DATALINK and 

CONTROLLINK in slot 2 and slot 3. The program waits for the variables M_01 and M_02 

to be set from the other programs to stop execution in lines 80 and 90.  

10 RELM 

20 M_01=0 

25 XLOAD 2,"DATALINK" 

30 XRUN 2,"DATALINK" 

40 WAIT M_RUN(2)=1 

50 M_02=0 

55 XLOAD 3,"CONTROLLINK" 

60 XRUN 3,"CONTROLLINK" 

70 WAIT M_RUN(3)=1 

80 WAIT M_01=1 

90 WAIT M_02=1 

100 XSTP 2 

110 WAIT M_WAI(2)=1 

120 XSTP 3 

130 WAIT M_WAI(3)=1 

140 GETM 1 

180 HLT 

190 END 

Listing 2: Multitask management program. 

The DATALINK program in slot 3 (Listing 3) sends the timestamp, current joint 

position, current speed of the tool centre point and current Cartesian position. Sending is 

looped over lines 100 to 130, and is executed until a zero value is received. After closing 

the communication port, the program notifies the MULITASK program by setting the 

external variable M_02. 
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10 WAIT M_02=0 

20 M_TIMER(1)=0 

30 OPEN "COM2:" AS #2 

35 INPUT #2,DATA 

40 IF DATA = "0" THEN 160 

100 PRINT#2, M_TIMER(1), "|", P_CURR, "|", J_FBC, "|", J_CURR, "|",M_RSPD(3) 

130 GOTO 100 

160 M_02=1 

170 WAIT M_02=0 

180 END 

Listing 3: Datalink communication. 

The CONTROLLINK program moves the robot manipulator by receiving and executing 

movement commands. This program runs in cycle mode, and no user interaction, such as 

moving the robot with the teach pendant, or by robot commands in controller 

communication mode, is possible. Communication control is performed over the RS232 

port, which results in a slow connection. However, it was still fast enough to directly send 

and execute robot control commands. The movement control program is shown in Listing 

4. The CNT command enables the robot to move to multiple movement positions 

continuously without stopping at each movement position. 

10 WAIT M_01=0 

20 OVRD 100 

30 GETM 1 

40 CNT 1, 300 

50 SERVO ON 

60 OPEN "COM1:" AS #1 

70 DEF JNT JNTPOS 

80 INPUT #1, JNTPOS 

90 MOV JNTPOS 

100 GOTO 80 

Listing 4: Control link communication. 

7.2 Mitsubishi RV-2AJ Kinematics 

According to Kucuk and Bingul (2006), kinematics is described as the motion of bodies 

without consideration of the forces or moments that cause their motion. Robot kinematics 

refers to the analytical study of the motion of a robot manipulator. The formulation of the 

kinematics model for the employed robot is crucial for robot position calculation. The 

Cartesian space is often employed in kinematics modelling of manipulators, and the 

transformation between two coordinate systems may be decomposed into a rotation and a 

translation. Homogenous transformations based on 4x4 orthonormal matrices are most 
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frequently applied in robotics. Denavit and Hartenberg (1955) showed that a general 

transformation between two joints requires four parameters. These parameters, known as 

the Denavit-Hartenberg (DH) parameters, have become the standard for describing robot 

kinematics. Kinematics is classified as forward and inverse kinematics. The forward 

kinematics problem is straightforward, and it is not complex to derive the equations. 

Hence, a manipulator always has a forward kinematics solution. The calculation of the 

inverse kinematics is computationally difficult, and generally takes a long time when 

compared to real-time control contexts. Singularities, nonlinearities and multiple solutions 

render the calculation more difficult. Thus, only a small class of manipulators with a 

simple kinematics have complete analytical solutions (Kucuk and Bingul, 2004). The 

relationship between forward and inverse kinematics is illustrated in Figure 44.  
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Figure 44: Schematic representation of forward and inverse kinematics 

The two main solution techniques for inverse kinematics calculations are analytical and 

numerical methods. In the first type, the joint variables are solved analytically according to 

given configuration data. In the second type, the joint variables are obtained on the basis of 

numerical techniques.  

Craig (2003) states that due to mechanical design considerations, manipulators are 

generally constructed with joints which exhibit just one degree of freedom. Most 

manipulators, like the employed Mitsubishi RV-2AJ, have revolute joints or have sliding 

prismatic joints. 

 

Figure 45: Revolute (left) and prismatic (right) joints 

The analytical solution of the employed manipulator in terms of geometric and 

algebraic solutions was applied throughout this study. The geometric approach was applied 
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to simple robot structures such as the arm segments 1-3 of the employed robot in Figure 46 

and Figure 47. The arm segments 4 – 6 of the most industrial articulated robots require 

algebraic solutions. The joint axes cross at a single point, and geometric solutions are 

therefore difficult. 

 

Figure 46: Mitsubishi RV-2AJ joints (from Mitsubishi documentation). 
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Figure 47: Mitsubishi RV-2AJ dimensions 
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The DH-parameters and the corresponding coordinate systems are shown in Table 6 and 

Figure 48, respectively. The robot flange is the mechanical interface used to mount tools. 

The tool centre point defines the application point of the tool. For example, a mechanical 

hand may have its tool centre point in between its grippers. In the absence of tools, the tool 

centre point is usually located in the middle of the flange surface. All calculations in this 

subsection are executed without tools. The rules to derive the DH-parameters from the 

robot geometry and variable explanations are stated in Appendix C. 

Robot Arm 

Link Number 

d 

[mm] 

Θ 

[rad] 

a 

[mm] 

α 

[rad] 

1 300 π 0 π/2 

2 0 π/2 250 0 

3 0 0 160 0 

4 0 π/2 0 π/2 

5 72 π/2 0 0 

Tool t 0 0 0 0 

Table 6: DH-parameters (see also Appendix C). 
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Figure 48: Robot coordinate systems. 



7 Research of the Robot Kinematics Model and the Robot Control Capabilities 

89 

(Home position:                  ) 

7.2.1 The Geometric Solution 

The geometric solution was applied for the manipulator arm joints 1-3. The 

trigonometric functions  𝑡    and the cosine law were employed to solve the geometric 

calculations analytically, as illustrated in Figure 49 and equations (13) and (14).  𝑡    is 

generally applied using the    /    function of an angle to increase the accuracy of angle 

calculations, instead of calculating angles with      or      directly.  

 

Figure 49: Law of cosine 

(13)                   ( ) 

(14)     ( )   
 

    
 (   (     ))  

 

   
 (         ) 

Calculation of    

 

Figure 50: Geometric inverse calculation for joint 1 

From the robot dimensions in Figure 47, the values                   and 

     are given. As illustrated in Figure 50, the coordinate of the tool centre point on the 
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x/y layer is   (  ) .    is calculated in equation (18) using the  𝑡    function and 

the    /    of    to improve the accuracy.  

(15)    √      

(16)     (  )   
 

 
 

(17)     (  )   
 

 
 

(18)           (   (  )     (  ))       (
 

√     
 

 

√     
) 

Calculation of    

The angle    of joint 2 is calculated by considering   , respectively arm segments b 

and c.  

 

Figure 51: Geometric inverse calculation for joint 2 and 3 
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Additional factors    and     with      {    }  are introduced to incorporate the 

unconsidered sign of the square root. The combined factor   was applied to the addition 

theorem for angles in equations (25) and (26).  

(19)    √   (   )  

(20)     ( )      
 

 
 

(21)     ( )  (   )  
 

 
 

(22)     ( )  (         )  
 

     
 

(23)     ( )  √      ( ) 

(24)          

(25)     (  )     ( )     ( )       ( )      ( ) 

(26)     (  )     ( )     ( )       ( )     ( ) 

(27)       𝑡   (   (  )     (  ) ) 

The joint angle    must also consider the home position of the robot, as illustrated in 

Figure 48. Thus, the angle   
   must be subtracted from the angle value of     to comply 

with the defined home position of the robot.  

(28)           
           (   (  )     (  ) ) 

Calculation of    

   is calculated by applying the  𝑡    function. The angle     has to be subtracted 

from the angle value of      to comply with the defined home position of the robot. 

(29)     (   )  (        )   
 

   
 

(30)     (   )    √      (   ) 

(31)           (   (   )     (   )) 

(32)              
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7.2.2 Algebraic Solution 

The algebraic solution is based on the common transformation equation (33), which 

considers the rotation and translation between two joints. The DH parameters identified in 

Table 6 are applied to the common transformation equation (33). The common 

transformation   
  for all joints is stated in (34). 

(33)      
  (

   (  )     (  )     (  )    (  )     (  )       (  )

   (  )    (  )     (  )     (  )     (  )       (  )

    (  )    (  )   

    

) 

(34)    
    

    
    

    
    

    
    

    
    

  

The tool coordinate system equals the coordinate system of the robot flange since no 

tool is attached. It is given by equation (35). 

(35)    
  (

    
    
    
    

) 

The angles    to    are already known from the geometric calculations above, and the 

tool transformation   
  is also known. Therefore, the transformation   

  may be 

calculated using equation (36) to achieve the angles    and   .   is the computed target 

matrix, which is also known. Generally,   
  is given by equation (37). 

(36)    
    

 
     

    
 
      

(37)  

  
  (

   (  )     (  )  

    (  )       (  )  
    
    

)  (

   (  )     (  )   

    (  )     (  )   
    
    

)   

 (

   (  )     (  )     (  )     (  )    (  )  

   (  )     (  )     (  )     (  )     (  )  

   (  )    (  )   
    

)     

 (

            

            

            

    

) 

The joints     and    were found through comparison in equations (38) and (39). 

(38)          (        ) 
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(39)      𝑡   (       ) 

The angles    and    are independent of the manipulator position, and they are only 

dependent on the orientation of the tool centre point. Thus, those angles have to be set 

correctly in order to reach a specified target location. 

To calculate the reachability of a location, its orientation must be known. Otherwise, the 

solution space may be large and an appropriate manipulator configuration must be chosen. 

This is application dependent, and will be further discussed in Subsection 8.5.3. 

7.2.3 Application of the Dubins Airplane Model 

In the geometric formulation of the movement problem, the robot has been reduced to a 

point on a two dimensional surface with similar behaviour to Dubins car (Dubins, 1957). 

This car is able to drive only forward and the radius of steering is bounded. An extension 

of the Dubins car is given with the Dubins airplane, which applies to    spaces (Chitsaz 

and LaValle, 2007). The robot position is uniquely defined by the position and orientation. 

The quadruple (       )     and   [    [  represents the configuration and the 

coordinates (     )  represent the midpoint, while   represents the orientation of the 

airplane, as shown in Figure 52.   is the angle between the x-axis of the frame and the 

airplane’s local longitudinal axis in the     plane. Thus, the Dubins airplane is the Dubins 

car with an additional configuration variable for altitude z. This is a simplified model of a 

real airplane. 

 

Figure 52: Dubins airplane model. 

An industrial manipulator can ‘fly’ curves in any direction, thus, a second parameter   

was added for the orientation. The 5
th

-tupel (         )     with   [    [  and 

  [    [ represents the configuration, while   and   represent the orientation, as shown 
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in Figure 53.   is the angle between the x-axis of the frame and the airplane’s local 

longitudinal axis in the     plane. The orientation is equal to spherical coordinates 

(Papula, 1998). 

 

Figure 53: Industrial manipulator ‘free flying’ model. 

Industrial articulated robots do not have good movement capabilities when compared to 

the industrial manipulator model. They most often provide joint, linear and circular 

movement primitives. The circular movement is restricted to have a static radius during 

circular movement. The restrictions on the steering angle are higher than on the classic 

non-holonomic movement constraint.  

Nevertheless, the industrial manipulator model, coupled with the restriction on the static 

curvature radius were applied. Equally, the autonomous mobile robot has to meet the 

constraints of the Dubins car coupled with the restriction to the static curvature radius to 

allow direct comparison with the manipulator movements. 

7.3 Robotino Mobile Robot Control 

The autonomous mobile robot Robotino allows research on trajectory planning in a two-

dimensional world space without the restrictions of the robot arm. The developed path 

planning algorithms were first tested on this robot before they have been applied to the 

industrial robot arm.  

The provided robot control framework supports wireless local area network connections 

to command the robot and to obtain sensor information. Commands, for example driving 

commands, are generally sequentially executed until the end of the robot movement. 

Driving commands allow the speed of each wheel of the Omni drive to be controlled. The 
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Omni drive controller also supports interpolated movement types such as linear and 

circular movements by setting the linear speed in the plane, the 𝑡 and  ⃗⃗ direction, and a 

rotational speed about the plane normal  ⃗, as illustrated in Figure 56.  

 

t


n


e


R

front

 

Figure 54: A Robotino robot from the company 

Festo. 

Figure 55: Local coordinate axes of the Robotino 

robot. 

7.4 Robotino Kinematics 

The kinematics of a car-like robot is also valid for the employed mobile Robotino robot, 

although a car-like robot has two rear wheels and two directional front wheels. The 

movement controller of the Robotino imitates this behaviour through circular interpolation. 

The robot moves on the plane    and its configuration is uniquely defined by the position 

and orientation. The triple (     )     and   [    [  represents the configuration, 

where (   ) are the coordinates of the midpoint and   is the orientation of the robot, as 

depicted in Figure 56. 
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Figure 56: Kinematics of a car like robot. 

As illustrated in Figure 57, the simulator is a point   in three-dimensional space, where 

the local robot coordinate system 𝑡,  ⃗⃗ and  ⃗ is given with the origin  , which is the centre 

of the robot. Linear movements can only be executed along the 𝑡 axis of the local robot 

coordinate system, although an Omni drive may also be able to move in the  ⃗⃗  axis 

direction. Because the trajectory of the industrial manipulator was compared to a free-

flying car-like robot, sideway movements were forbidden and set as a constraint. 

 

Figure 57: Robotino calculations. 



7 Research of the Robot Kinematics Model and the Robot Control Capabilities 

97 

Circular movements may be executed using an angular speed    that results in a circular 

speed   . The robot turns around the given local  ⃗ axis and moves forward along the 𝑡 axis 

at the same time. It drives linearly forward when       and     . Equations (41) and 

(42) are obtained with the given parameters  𝑡,   ,  ,   ,  ⃗⃗⃗ and  , which are further  

described in (40).  

(40)          
 

 
 

     
 

 
 

 ⃗   (   )  

  (   )   

(41)         𝑡  

(42)     
  

  

 

The orientation calculation of   to the new orientation    was carried out by computing 

equation (43). The parameter   is the actual orientation and position,   𝑡 is the Rotation   

around the given axis  ⃗⃗⃗,       is the translation of  , so that    ( )   (   )  and 

        is the back translation. 

(43)                𝑡          

Additional constraints are given in equations (44) and (45). The tangent direction is 

continuous and the turning radius respects a minimum constraint. These paths may be 

followed by a real vehicle without stopping, and therefore have a continuous curvature 

profile in their motion. 

(44)        
 ̇
 ̇

 

(45)         

These relations are non-holonomic (Barraquand and Latombe, 1989) and restrict the 

shape of the paths of the mobile robot. Autonomous mobile robots with these constraints 

applied are called Dubins car in    (Dubins, 1957).  
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7.5 Robot Simulation 

Simulation of the employed robot types was introduced to speed up algorithm test and 

development. The simulation of the robot arm is restricted to forward and inverse 

kinematic calculations. The mobile robot simulation utilizes an extended kinematics of the 

Robotino robot, and allows linear and circular movements in   . Now, the local  ⃗⃗ and 𝑡 

axes are used to rotate the robot, which leads to the industrial manipulator model. In 

addition, the simulator supports linear movements. 

7.6 Summary 

Robot control applications require a connection to the real robot system. Sending robot 

control commands as well as receiving information from the robot, such as the position, 

speed and orientation, is necessary, especially for path-planning applications that focus on 

algorithm development. This framework enables the utilization of a standard industry robot 

system, an autonomous mobile robot, and a simulated robot. The kinematics computation 

for each supported robot, including the simulated robot, was implemented. 

The framework extends the Mitsubishi CR1 controller family robot system and employs 

a new communication mode. It receives robot information during movement, and sends 

robot commands during movement of the robot manipulator without stopping between the 

commands. 
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8 Investigation into a Trajectory Planning 
Algorithm to Support Intuitive Use of the 
Robot Programming System
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This chapter corresponds to objective four, which is the research and development of an 

enhanced online robot programming support system that generates static robot programs 

for industrial robot manipulators. The most important findings have been published in one 

journal paper and one conference paper. 

From the requirements described in Chapter 5, a method was researched to combine the 

maintainability of the robot program and the shortness of the robot trajectory. In terms of 

the clarity and changeability of the generated robot program, the maintainability is 

important in industry, and enables the flexibility to modify existing robot programs 

manually. The system provides the connection to external devices such as the robot, the 

vision system, the joystick and the pointing device, and also integrates the required 

software components. 

Section 8.1 explains the usage scenarios of the robot programming system which has to 

be supported by the developed system. An overview of the main components of the system 

is described in Section 8.2. The probabilistic world model and the robot kinematics and 

control framework have already been introduced in Chapters 6 and 7. The interaction with 

the operator required assistance leading through the necessary steps to generate the robot 

program. This assistance is based on a suitable HMI, which is described in Section 8.3, to 

enable inexperienced operators to work with the system. The mission defines the overall 

aim of the robot task, which can include gluing, handling or pick-and-place tasks. The 

mission planner presented in Section 8.4 controls the trajectory planner, enabling it to fulfil 

the given mission. Existing trajectory planning algorithms often execute path smoothing 

after path finding, although these tasks are competitive. The proposed trajectory planner in 

Section 8.5 allows the simultaneous execution of both tasks. In subsequent steps, these 

trajectories have to be generated to a robot program file, which can be directly employed to 

the industrial production system. Section 8.6 describes a geometric approach to 

accomplishing this transformation step. The most important findings are summarized in 

Section 8.7.  

8.1 Usage Scenarios 

The usage scenarios are described as use cases (Balzert, 1999). A use case is a list of 

steps that defines interactions between the operator and the system to achieve the goal of 

generating a robot program. All of the use cases were realized with the aim of an intuitive 
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execution to reduce the need for special knowledge. The diagram in Figure 58 shows a 

graphical representation of the considered use cases. 
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Figure 58: The use cases of the support system. 

Use Case 1: Import/Export Pre-Existing Data 

During data import and export, data of models, the mission and the robot, including the 

robot specific kinematics, are loaded from or saved to a disk. The mission parameters 

contain mission application paths and locations, as well as other planning parameters. 

Use Case 2: Create Mission 

Missions including start and target locations can be created manually or by importing the 

model data. Information for the application type is entered within the GUI or is also 

included within the model data. 
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Use Case 3: Place Modelled Objects 

Modelled objects are required to be placed within the workspace so that the world model 

can be updated. This positioning process may be done with the robot or directly with the 

pointing device. The applied four-point method uses four locations to define the position 

and orientation of the modelled object. 

Use Case 4: Robot Control 

The robot is controllable with input devices such as a joystick, pointing device, teach 

pendant, keyboard, and a GUI. 

Use Case 5: Workspace Exploration 

Exploration of the workspace may help to reduce the time taken to generate the trajectory. 

This can be done either manually or automatically. Manual exploration utilizes manual 

robot control, while automatic exploration is done by random movements or by the 

execution of pre-existing robot programs.  

Use Case 6: Plan Mission 

Planning the mission includes mission and path planning as well as robot program 

generation to a textual robot program file. The output represents the result of the enhanced 

online robot programming system in the form of a file, and it may be exported directly to 

the robot or as a text file to the hard disk. 

The use cases have to be subsequently executed in order to generate the robot program. 

Thus, the workflow in Listing 5 has been defined to summarize the use cases. 

1. Set up an online path planning and the enhanced online robot programming system 

including hardware. 

2. Importation of pre-existing data such as robot geometry and CAD data. 

3. Create a mission using import, robot movements, CAD locations, pointing devices 

or simulations. 

4. Execution of the support system. 

5. Robot program generation. 

6. Uploading of the robot program file to the robot. 

7. Removal of the support system. 

Listing 5: Summary of the use cases. 
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8.2 System Overview 

The overview of the enhanced online robot programming support system illustrated in 

Figure 59 shows the involved software components, devices and sensors. The software 

components were developed to support the defined operator use cases stated in Section 8.1. 
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Figure 59: Support system overview. 

In general, the system provides an HMI that consists of a GUI, a joystick and a pointing 

device. The main task of the system is to generate a robot program file from a given 

mission. The definition of the mission still relies on the operator, who provides knowledge 

of the application such as painting, gluing or pick-and-place tasks. A mission consists of 

application locations and paths that include application information, such as the colour for 

painting. Both can be provided within the model data or may be amended within the 

support system. The application locations can be manually determined. 

The robot control component controls the manipulator, the mobile robot and the 

simulated robot. The robot kinematic component provides forward and inverse 

calculations. Both components are described in Chapter 7. The robot system is equipped 

with a teach pendant to control the robot movement manually. Additional input devices, 

e.g. joystick, GUI of the robot programming system, visual servo-control, mouse and 

keyboard, have been connected to simplify manual robot control.  
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The visual servo-control applies a pointing device to indicate the target location to the 

robot using the marker recognition component. The robot moves automatically towards the 

given location with the help of a neural network, and stores the position. Subsequently, the 

network transforms picture coordinates into robot control commands, as described in 

Subsection 8.3.2. 

The importation of model-based CAD data was employed to represent the world model 

more accurately. CAD data from simulation systems, such as RobCAD (Tecnomatix, 

2011), can be exported as DXF files including all locations attached. Usually, CAD data 

already exist in simulation tools and modelling software. They are taken from laser-scan- 

or construction-processes. This model data was placed within the real robot cell, hence 

improving the accuracy of the world model. In addition, these objects allow the use of 

physically unavailable objects.  

Data fusion combines all information sources to deliver cohesive data to the world 

model. The data sources also include the robot positions from existing robot programs to 

explore the working space. It was also explored by random or manually controlled 

movements. Collisions are always processed during exploration so that free and occupied 

areas of the workspace are explored throughout its movements by manual collision 

indications. Thus, the world model becomes more accurate during the exploration process. 

The mission and path planner presented in Sections 8.4 and 8.5 together handle the 

planning of a motion in real-time, including shortest-path calculation and collision 

avoidance. Finally, the entire robot motion is stored within the support system in the form 

of a trajectory that consists of connected particles. Its transfer to a robot-specific program 

file is achieved in two steps: first, the translation into a robot program of solely the 

provided trajectory; secondly, the generation of the specific robot program enriched by 

additional configuration commands and specific linguistic syntaxes. The two-step 

generation, described in Section 8.6, also supports other robot types and languages.  

All software components were created with the developed code generation toolchain 

presented in Chapter 9. Each of those components is an independent component with a 

clear interface to the software framework. This simplified the use of third party work, such 

as for DLL integration. All components may be developed independently as soon as the 

interface and information exchange are specified. Each component provides life-cycle and 
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message-based communication functionalities as well as a run-time behaviour, which is 

called an execution model and it is detailed in Appendix E. A graphical model specifies the 

communication flow and message types, which were subsequently generated into source 

code, including additional libraries that are required to execute the software system.  

8.3 Human Machine Interface 

This section gives a detailed overview regarding the concept, functionality and structure 

of the HMI of the system. The interface was kept simple and it provides a GUI in addition 

to external robot control devices and a pointing device. The pointing device delivers its 

position information, which was processed together with the robot arm position to realize 

visual servo control. 

8.3.1 Graphical User Interface 

The GUI was created in a generic and flexible way to guide the robot-program-file 

generation process. A finite state machine was exploited to ensure valid system behaviour 

and to improve the system robustness as it relates to wrong user entries and undefined 

states. The GUI adapts its toolbar and workflow to the state machine, which acts as a 

controller. It provides a defined set of states, which help to reduce the risk of GUI errors. 
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Figure 60: Design of the Graphical-User-Interface. 

The GUI is structured into five main components, as shown in Figure 60. During the 

development phase of the system, debugging was required to implement the user 

interaction. The debugging-related widgets, the attributes, the commands, and the log 

window are not shown in the final version. 

The robot program generation-related widgets are placed within the ‘Composites’ area 

in Figure 60. A composite is a Java class containing SWT widgets that are required by a 

software component to allow user input with a GUI. Each individual software component 

that requires user input encapsulates its own composite, which is dynamically integrated 

into the GUI. The fixed tab ‘Workflow’ dynamically displays all state dependent 

composites. For each state change, the appropriate composite is displayed. The ‘Vision’ 

tab shows the camera views and the ‘Scene’ tab contains a graphical representation of the 

world model, which is visualized by a Java 3D viewer. 

Each connected software component may provide attributes which are displayed within 

the ‘Attributes’ area. The message-based communication of these components allows the 
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display of all allowed messages within the ‘Commands’ area, and can be directly executed 

during debugging.  

The Finite-State-Machine 

The Finite-State-Machine was realized using UniMod (eVelopers Corporation, 2011), 

which is an open-source application. It allows the developer to design an application 

logically with the help of state-chart diagrams and the generation of Finite-State-Machine 

Extensible Markup Language (XML) description files. The XML-description files are 

executed using a Finite-State-Machine runtime framework. 

Figure 61 provides an overview of the communication structure of the GUI software 

component. Messages to other software components may be sent during an event of a 

widget, such as a button click. The Event Provider is the interface for incoming messages 

from other software components and from internal messages. 
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Figure 61: Communication system of the Graphical-User-Interface. 

The UniMod resource of the GUI consists of three parts. The event provider transforms 

received messages into events that can be processed. The controlled object connects the 

Finite-State-Machine with the ‘GUI Adapter’ to control the GUI. The ‘GUI Adapter’ is a 

Java class that was required to decouple the GUI source code from the user code. The 

Jigloo SWT/Swing GUI builder (Cloudgarden, 2011) was utilized to create the user 

interface.  
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As shown in Figure 62, the finite state machine was employed to control the GUI. 

Buttons on the GUI send messages to the finite state machine and cause a state change. 

This leads to a GUI change in the toolbar and the composites.  
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Figure 62: Graphical-User-Interface controller Finite-State-Machine.
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Dynamic Toolbar 

The toolbar is dependent on the underlying finite state machine and presents three fixed 

elements on its left: ‘Exit’, ‘Previous state’ and ‘Next state’. These elements are fixed for 

all states. The buttons ‘Previous state’ and ‘Next state’ lead the user through predefined 

usage guidelines. The ‘Exit’ button shuts down the robot programming system and closes 

the GUI.  

State dependent buttons are dynamically added to the toolbar. They represent the 

possible state transitions to connected states from the current state. If one of these buttons 

is clicked, the trigger activates the transition to the desired state. All buttons are 

represented by a symbol and the associated name of the state as tool tip text. 

An important aspect of the finite state machine concept is the parsing of the state 

machine for connected main states to display the workflow in the toolbar, as illustrated in 

Figure 63.  

Connected StatesPrevious and 

Next States
 

Figure 63: The dynamic toolbar. 

The finite state machine is separated into main states (‘ms_’) which represent individual 

composites, and general states (‘s_’) which have internal functions. Every main state has a 

state number that is defined by the standard path through the finite state machine, which is 

proposed to the user as a standard workflow. Within each parent state, its child states are 

numbered starting from zero, as demonstrated in Figure 64. The operator may leave the 

proposed workflow, for example by following the dashed path. The next and previous 

states along the proposed workflow have to be calculated in order to lead the operator 

along the proposed path.  

This was done for the previous state by obtaining the previous state with the highest 

number which is smaller than the current state number. For the calculation of the state prior 

to the first state within a parent state, the previous state of the parent state is calculated in 

the same manner. 
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The next state is calculated by obtaining the subsequent state number that is greater than 

the current state number. For the next state calculation of the last state within a parent state, 

the next state of the parent state is calculated. 

ms_0_state_a

ms_0_state_b

ms_2_state_d

ms_1_state_c

ms_0_state_e

ms_1_state_f

ms_1_state_g

  

Figure 64: The dynamic toolbar. 

8.3.2 Visual Servo Robot Control 

The visual servo-control component employs the pointing device to indicate the target 

locations in space. Both the pointing device and the robot-arm are equipped with markers. 

To achieve information regarding the position of the objects in space, the robot cell is 

equipped with a vision system which monitors the space within the robot cell. The vision 

system recognizes the picture coordinates of the markers to enable the visual servo-control 

component to control the robot-arm towards the pointing device. Subsequently, a neural 

network transforms the picture coordinates into robot control commands, as described by 

Ritter (1994) with a Kohonen network and Lenz and Pipe (2003) with a radial basis 
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function network. The robot moves automatically towards the given location. An overview 

of the visual servo control application is given in Figure 65. 

Robot

Joint angles

Processing unit

 

Figure 65: Visual servo control application. 

The neural network is trained with randomly chosen target locations. The target location 

is monitored from the cameras and their signals are applied to the neural net. Each neuron 

is responsible for a subspace of the robot cell. An activated neuron provides control signals 

to the robot controller. Each camera of the vision system delivers a two-dimensional image 

coordinate of the viewing pane, and the neural network learns the transformation to control 

signals for the five robot joints. The robot moves to incorrect robot positions at the 

beginning of the learning process, but the accuracy is improved with each learning position 

and the difference between the robot positions and the target positions. There was no need 

for more information about the robot, the cell, the cameras or its positions in space. This is 

the typical behaviour of an autonomous learnable system.  

8.4 Mission Planner  

Robot programs in industrial settings often include several application tasks for the 

robot, which are summarized in a mission. The order of the task execution can be limited 

by tasks of other robots or humans, and results in interaction between the participants. In 

this study, the planning of the mission tasks resulted in the well-known ‘travelling 

salesman problem’ (Russell and Norvig, 2002). The movement distance of the robot was 

utilized to define a cost and optimization function for path planning. The distance 

information of the mission task is extended during path planning using sensor data. Thus, 



8 Investigation into a Trajectory Planning Algorithm to Support 

Intuitive Use of the Robot Programming System 

113 

the mission planner and the path planer are interconnected to exchange mission planning-

related data. 

8.4.1 The General Path Planning Control Loop 

The mission and path planning control loop depicted in Figure 66 shows the interaction 

of the mission and path planner with the robot system and its environment. The mission 

and path planner component computes trajectories for a given mission. The mission and 

path planner subsequently calculates a path and controls the robot manipulator along that 

path. The robot interacts physically with the environment, and its movement is monitored 

by internal and external sensors which provide its position and velocity to the path planner. 

Local obstacles and workpieces may also exist within the workspace and have to be 

recognized. Collisions were detected by sensors or by the in-memory world model. Their 

positions and velocities are provided to the mission and path planner and to the world 

model, which creates an in-memory map of the environment. All of these components are 

executed in real-time. 
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Figure 66: The Mission and path planning control loop. 

Path planning in robotics considers model-based and sensor-based information to 

capture the environment of the robot. Perception, which is initiated by sensors, provides 

the system with information about the environment and interprets them. Those sensors 

include cameras or tactile sensors that are often used for robot manipulators. The 

application of the control loop to the real environment results in the general overview 

given in Figure 67. 
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Figure 67: Logical view of the support system. 

8.4.2 Mission Planning 

For a given mission, the mission planner plans multiple application trajectories. Any 

algorithm that is used to solve the travelling salesman problem (Russell and Norvig, 2002) 

may be utilised to calculate the order in which each application path is processed. The 

mission planner delegates the task of trajectory planning to the path planner. Both the 

mission and path planner have to establish an interconnection for the exchange of 

information which is the length of the actual planned path, as shown in Figure 68. 
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Figure 68: Path length information exchange. 

The applied mission-planning algorithm has to be capable of handling path length 

information during path planner execution, and it has to react by instructing the path 
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planner. In the proposed system, a brute-force algorithm was used, and as such, it is 

desirable for a demonstration system, although it is limited to operation with few 

application paths.  

Mission and path planning was based on the object model presented in Figure 69. A 

mission consists of one start and one target location as well as a number of application 

paths. A path is subdivided into roads that connect the start and the target, in addition to 

crossing locations and application locations. The final trajectory is the result of the path 

and trajectory planning calculations. An application path may also contain application 

information, e.g. movement type, application type, colour and other information required 

for spraying, painting or other tasks.  
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Figure 69: Definition of the roadmap elements. A1 and A2 set the start and end location of the application path. 

To accomplish a mission, the optimal route must be found that connects each 

application path from the start to the target location, as illustrated in Figure 70.  
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Figure 70: Illustration of possible path connecting three application path for mission task planning. 

Because no exact data is known beforehand, the path distances between each sub-goal 

are not known, and may be estimated and subsequently calculated by trying to connect 

each sub-goal with each other using robot movements. In the case of lines, the end of the 

application lines must be fully connected to the target location and starting locations of 

other application lines. An example can be given with a mission that consists of three lines 

for a welding application (  ,    and   ). The resulting combinations (in this case 12 

connections) have to be planned to achieve the connection length for mission planning, as 

illustrated in Table 7.   

                            to 

            from 

Goal        
        

        
 

Start O X X X 

     
 X O X X 

     
 X X O X 

     
 X X X O 

Table 7: Path combinations. 

The lengths of linear and circular application paths are known beforehand. The 

connection length is the length of the trajectory that connects two locations. This is found 

with the path planner, which tries to connect these locations. Once a path is connected, 

complete path length information is available, which can be utilized for mission planning.  
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8.5 Trajectory Planner 

The industry requirements, which were defined in Chapter 5, specify a path-planning 

system that produces readable and changeable robot programs. Industrial robot programs 

often consist of circular, linear and joint movement primitives. The robot program itself 

consists of a minimum number of locations and movement primitives, as well as 

changeovers of movement primitives. Usually, the joint movement is the most desired one 

because it represents a short and fast movement type. All axes are in motion at the same 

time, and the motion is coordinated so that the movements of all axes end at the same time. 

Although this is the most favourable form of movement, it has a disadvantage in that it is 

not predictable for the operator during robot programming. The joint movement primitive 

has not yet been considered, and has been included in future work. Therefore, focus has 

been given to the circular and linear movement types.  

Path planning generally relies on inexact data of the robot and the environment, which 

are stored into the in-memory world model with the help of sensor information. Vision 

may help to increase the knowledge of the world model. The world model employed in this 

study was introduced in Chapter 6. The mathematical treatment of forward and inverse 

kinematics, as well as the control of the employed robots was presented in Chapter 7.  

The interaction of the path planner and the mission planner are described in Section 8.4. 

While the path planner focuses on the creation of the trajectory, the mission planner 

handles a higher level of path planning. The path planner calculates a path, and controls the 

robot along that path until a collision is detected, the kinematics constraints are not met or 

until the target is reached. In each case, the updated path length information is delivered to 

the mission planner, which re-plans the mission on a higher level. 

A robot trajectory is a path in the working space of the robot. Each point on the path is 

described as a vector with the position and the time. The trajectory planning task is to find 

a collision-free movement of the robot from the start to the target location, considering the 

motion constraints of the robot (e.g. a car that cannot move sideways), while also 

satisfying the requirements for readability, maintainability and changeability of the derived 

robot program.  

The presented algorithm is executed in three steps. First, it analyses the topology of the 

working space to create a roadmap with the Voronoi-based approach described in 
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Section 8.5.5, which also considers obstacles and the reachability of the utilized robot. This 

roadmap is employed in the second step to find the shortest path connecting the start and 

target locations. At this stage, the found solution path does not fulfil the requirements of 

the robot program features. Thus, in the third step, the solution path is adapted, modified 

and smoothed to represent a trajectory with basic circular and linear movement primitives.  

The general trajectory planning workflow is presented in Subsection 8.5.1. The robot 

manipulator reachability and discretization of its configuration space are discussed in the 

Sections 8.5.1 and 8.5.3, respectively. Path planning with exact search algorithms are 

generally time consuming, and approximation methods have therefore become more 

important. Neural networks have demonstrated good approximation capabilities and are 

analysed in Section 8.5.4 to be employed for path planning. Neural network path planning 

results have shown that the principles identified in this way may also be employed for a 

cell-based path planning approach, which is detailed in Section 8.5.5. For path planning 

with dynamic obstacles, the state time space was considered, and is detailed in 

Section 8.5.7. The transformation of a given path to a trajectory by concatenating circular 

and linear movement primitives with the help of particles is explained in Section 8.5.8. 

8.5.1 The General Trajectory Planning Workflow 

The robot manipulator was considered based on the manipulator model, which is 

described in Subsection 7.2.3. The robot is steered from the start to the target location by 

real robot movements along trajectories. 

The trajectories were generated by calculating the shortest path within the roadmap joint 

positions from the start to the goal. In a subsequent step, the identified path was 

transformed to a trajectory consisting of movement primitives. Transformation into a 

trajectory was achieved by applying equidistance, rotation and shrink forces on the joint 

space positions (Kohrt et al., 2006b). This lead to a trajectory formed by canonically 

ordered movement primitives, which had linear and circular movements. The trajectory 

generated in this way avoids obstacles and reduces their clearance. 

A linear octree (Gargantini, 1982b) was utilized to represent the working space of the 

robot and a roadmap in a spatial    in-memory world representation. Information 

concerning the environment in which the robot operates, including obstacles, was captured 

within the octree. The octree was improved during trajectory planning with real sensory 
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information, which is delivered in the form of collision locations. The improvement 

resulted in an adaptation process of the octree, which was primarily aimed at the 

generation of a roadmap approximating the Voronoi form.  

Finally, the robot was moved along the found trajectory until either a collision or a 

robot kinematic constraint violation occurs, a shorter path is found by the search algorithm, 

or the target is reached. This often triggers a re-planning of the trajectory if a shorter path 

is recognised. Because real robot movements are involved, this should not happen too 

often. To prevent this, a hysteresis is applied. The hysteresis was also utilized to employ an 

additional exploration of the workspace, which improves the knowledge of the world 

model. 
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The general workflow of path planning is illustrated in Listing 6. 

1) Create connectivity in the form of an approximated Voronoi form 

2) Explore the workspace and update the world model 

a) Automatic random exploration 

b) Exploration by existing robot programs 

c) Exploration by following the Voronoi lines to the target without path smoothing 

3) Apply the path-searching algorithm in joint space 

4) Apply the elastic net algorithm to generate the trajectory 

5) Move along the trajectory from the start to the target until a constraint violation occurs 

(collision or robot kinematic constraint), a shorter path is found by the path searching 

algorithm or the target is reached 

a) On collision or kinematic constraint violation 

i) Update the roadmap and generate new roads 

ii) Take back the last movement to the last common trajectory position that is 

unchanged 

b) On the shorter path found in the roadmap 

i) Continue the movement to explore the workspace along the possible trajectory 

solution until the path length difference is larger than a hysteresis value 

ii) When the path length difference is larger than the hysteresis value, do an 

automatic random exploration 

iii) Take back movement to the last common trajectory position of the old and new 

trajectory and continue with 5) 

Listing 6: The support system execution tasks. 

8.5.2 Discretization of the Configuration Space 

The configuration space of an articulated robot is often discretized in order to execute a 

path-searching algorithm on the discretized search space. The discretization plays an 

important role since the accuracy of the search algorithm is often coupled with the 

accuracy of the discretization.  

An example graph of a discretized configuration space is shown in Figure 71. The 

discretization of the movement range without constraints of the axes are practically 

feasible only for robots with a low number of axes, for example less than four joints.  
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Figure 71: Graph of a discretized configuration space. 

Various approaches for discretizing the configuration space have been reported in 

literature. The approaches reported by Reif and Wang (2000), Yang et al. (2011) and 

Zacharias et al. (2007) use hierarchical structures, capability maps or non-uniform 

discretization to optimize the search space to enable efficient searching. Thus, optimization 

can generally be reached by minimizing or ordering the search space specifically for the 

applied search algorithm. 

The planning algorithm described here was executed in the constrained configuration 

space to improve the search algorithm. The reachability of the robot was required to 

calculate these constraints. In addition, the mechanically valid positions were utilized to 

minimize the discretized space. 

Henrich et al. () and Reif and Wang (2000) describe an optimal discretization approach 

that sets the resolution along each configuration coordinate (robot axis) according to the 

maximum movement of the robot end-effector for each step that the robot moves along this 

coordinate. The discretization resolution is determined with  

   (         ) of a  -dimensional configuration space. A uniform discretization for 

all joints of the robot manipulator can be defined with       for some constant  .  

With a reasonable joint resolution of   , the uniform discretization results in very large 

configuration spaces. For example, a discretization of the joints of the Mitsubishi RV-2AJ 

with    (              ) results in a configuration space with            states. 
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The algorithm presented in this work is based on equation (46), where    is the distance 

between the centre of joint   to the farthest point to which the end-effector can reach, and 

        is a pre-set distance that the robot may move for one step along the coordinate. 

(46)              
       

    
 

The optimal discretization results in Cartesian movements     of joint  , which meet the 

condition              , where          {      }. For              

of a Mitsubishi RV-2AJ, the optimal discretization equals to equation (47). 

(47)     (                             ) 

The size of the corresponding configuration space obtained considering the mechanical 

constraints of the utilized Mitsubishi robot is           states. This is      times less 

than the uniform discretization with    (                        )  and             

states. 

To apply an octree with a length   of    , a depth of    , and a cell size of  

          on the highest accuracy level, the         parameter must be set 

accordingly. Because each cell should have at least     points, the         parameter 

was set to                    . The calculation results in          states for 

the optimal discretization, as opposed to           states for the uniform discretization. 

Table 8 compares the non-uniform and uniform discretization values. 

Robot Arm 

Link Number 

i 

Link Length 

[m] 

   
[m] 

Optimal 

Discretization 

[°] 

Uniform 

Discretization 

[°] 

1 0.13 0.712 2.51 2.51 

2 0.25 0.582 3.08 2.51 

3 0.16 0.332 5.40 2.51 

4 not available 

5 0.072 0.172 10.42 2.51 

6 0.1 0.1 17.98 2.51 

Table 8: Optimal discretization compared to uniform discretization. 

8.5.3 Reachability Calculation 

The reachability of a robot in world space can be calculated by transforming the robot 

configurations from the tool centre point coordinates to world coordinates, or vice versa. 

This transformation can be applied with forward or inverse calculations of the robot 

kinematics. An efficient inverse calculation can only be achieved for world coordinates 
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with given information regarding its position and orientation. Because the orientation can 

be arbitrarily chosen, inverse calculations lead to intensive computation.  

This problem was studied in (Yang et al., 2011, Zacharias et al., 2007), and a simple 

pre-calculation step was proposed to generate and to preserve the required information in a 

look-up table by performing forward calculations of the robot arm configuration to the 

points in space. The look-up table may generally be used if the robot kinematics is static 

and known beforehand. However, since this algorithm is used in an industrial environment, 

both statements are fulfilled. The aim of the look-up table is to represent the reachability 

using a limited number of joint positions     to reduce the search space for a path-

searching algorithm. The number of joint positions     has a direct impact on the running 

time of the path-searching algorithm and the required pre-calculation time of the look-up 

table. The limitation exists because of the employed search algorithm described in 

Subsection 8.5.6.  

The implemented linear octree   - the world model - has a defined depth  , which 

enables the calculation of the smallest octree cell size. This can be further employed to 

estimate the robot link dependent accuracies   , which have to be carefully chosen. To 

guarantee that the path-searching algorithm will successfully complete the search task, a 

sufficient number of discretized positions     are ensured to be stored for each octree cell 

on the deepest level. 

The octree accuracy does not need to be very high because the employed trajectory 

planning approach discussed in Subsection 8.5.6 only applies to the octree for path 

searching. The trajectory generation algorithm actively requests additional positions, and 

operates almost independently from the octree. 

8.5.4 The Neural Network Based Roadmap Approach 

Neural networks have the ability to approximate, which may be utilized to produce a 

new path-planning system by combining roadmap generation and path finding algorithms. 

Problem dependent neural network types such as feed forward, self-organizing and Radial 

Basis Function networks were analysed (Russell and Norvig, 2002). However, the 

Kohonen map (see also Appendix F) was chosen because it is an unsupervised learning 

self-organizing map which directly maps the neurons to the configuration space of the 

robot, producing a similarity graph of input data. It represents the connectivity and the 
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probability distribution with its topology-preserving feature. The weight vectors are 

adapted and moved towards the input vector. This unfolds in an approximated robot 

configuration-space model represented by the neural network. 

The Coloured Kohonen Map 

An extension to the self-organizing map is proposed in literature with the Coloured 

Kohonen Map (Vleugels et al., 1993), which approximates the obstacles and the free 

working space using two node types. One type of node approximates the obstacles while 

the other type approximates a roadmap in the free space. The free space is represented by 

connected points within the free space, and form a roadmap on which the robot may move 

along the connected edges. The roadmap is optimized to reduce the complexity and to 

compute a topological map in Voronoi form. Obstacles and non-reachable areas in the 

configuration space, which exist due to mechanical and geometrical constraints of the 

robot, were stored within the world model, and they are automatically considered in 

roadmap generation. The neural network consists of neurons that are generated at the 

beginning with an initial position distribution. During learning, the weight vectors are 

adapted and nodes are added. Thus, it is a growing neural net changing its architecture 

during runtime. 

Extensions to the Coloured Kohonen Map 

The aim of the neural network is to approximate the obstacles, generate a roadmap, find 

the shortest path and create a trajectory. This may be achieved by modifying the Coloured 

Kohonen Map algorithm, which also has to be extended to allow its application in 

multidimensional spaces for robot arms. 

The visualization of the in-memory computer model of the workspace is shown in 

Figure 72. The outer box and the grey polygons inside the figure are assumed obstacles, 

and the dots are locations of the robot in the configuration space. 
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Figure 72: Workspace approximation of the obstacles and the free space with robot configuration locations. 

Integration of Forces 

In general, the weight adaptation rules of the Colored Kohonen Map are applied on the 

winner node including its neighbouring nodes (Blackmore and Miikkulainen, 1993, Cheng 

and Zell, 1999, Fritzke, 1995, Fritzke, 1991, Fritzke, 1993, Fritzke and Wilke, 1991, 

Ivrissimtzis et al., 2003, Vleugels et al., 1993). 

The weight adaptation equation (48) (see also equation (120) in Appendix F) has been 

extended by Vleugels et al. (1993) to create a coloured version of the neural network. This 

has mainly been accomplished by modifying the weight adaptation term (      
 ) of 

equation (48). 

(48)      
        

   (𝑡) (      
 )(      

 ) 

This extension was further used to integrate additional weight adaptations which 

represent forces on the nodes. Thus, the first extension by Vleugels et al. (1993) is a force 

to generate a roadmap in the Voronoi form, which is used to find a shortest path from the 

start to the target location. The second extension is a force to approximate the obstacles. 

As illustrated in Figure 73, the Coloured Kohonen map applies only forces on unsafe 

nodes if the input vector, which is illustrated as a cross in the figure, is safe, so that the 
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nodes move towards the safe position without violating the obstacle boundary. If the input 

vector is unsafe, forces on safe nodes are applied so that the particle moves away from the 

unsafe position. 

An update mechanism iterates through the neurons in the original Kohonen-map 

learning algorithm, which was optimized by iterating only through nodes, where changes 

are noted. Because the calculation of all neurons was computationally intensive, further 

improvements may be achieved by local calculations to allow parallel processing of the 

nodes.  

 

Figure 73: Forces on the safe and unsafe nodes for random inputs, marked as crosses. 

Additional developed forces, explained in Subsection 8.5.8, were applied to transform 

the so derived shortest path to a trajectory. Trajectory generation is performed using the 

path, and by modifying this path to conform to non-holonomic movement constraints for 

the manipulator model described in Subsection 7.2.3. 

Node Movement 

Weight adaptation results in movements of the particles and may violate constraints, 

e.g. when a roadmap node collides with an obstacle. Care was taken for collisions of safe 

nodes with approximated obstacles, which are represented by unsafe nodes. Collision 

checks were performed by simple vector-vector (2D) or vector-polygon (3D) collision 

checks. The movement of a node does not violate the border of its neighbouring nodes. 

Those checks have only been applied on edges and polygons of adjacent nodes to reduce 

processing time. The movement vector that collides with an edge or polygon must be 

recalculated so that its direction is parallel to the edge or polygon surface, allowing a drift 

along the obstacle boundary. The calculations can be found in Appendix G. 
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Architectural Node Adaptations 

Architectural adaptations within the neural net, following the rules given in literature 

(Fritzke, 1995, Fritzke and Wilke, 1991), change the connectivity and the number of 

neurons. Nodes are added in areas having low accuracy of environment approximation, and 

edges are adapted to fit the new architecture.  

The architectural changes also include edge removal and addition. An edge is removed 

if two unsafe nodes are connected and have no common neighbour. If the safe node loses 

all of its edges, it is also removed. If new nodes are added, the connectivity to its 

neighbours is built by new edges. 

The adaptations of the neural net were separated into scene-based and error-based 

modifications. Black nodes are generally unsafe nodes, white nodes are safe nodes and 

grey nodes are the new nodes. Error-based modifications are executed after   iterations 

during the neural network learning process. A new node is generally placed between the 

node with the highest error and its furthest safe neighbour. A second node is generally 

placed between the node with the highest error and its furthest unsafe neighbour. 

 

Figure 74: Error-based safe node addition. 

A new node is placed on long edges between the node with the highest error and its 

furthest safe neighbour with two common safe neighbours (Figure 74). The new node is 

also connected to all common neighbours. 

 

Figure 75: Error-based safe node addition. 

If no such neighbour exists, a safe node is added on the edge to its furthest unsafe 

neighbour. It is connected to both unsafe and safe nodes (Figure 75). Nodes that are near to 

the boundary are not changed (Figure 76). 
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¼ Sampling

 

Figure 76: Unsafe nodes on the boundary. 

¼ ½

 

Figure 77: Error-based safe node addition. 

An unsafe node is added at the ½ position and is connected to all neighbours when 

the ¼ and ½ samplings are both unsafe (Figure 77). 

¼

½

 

Figure 78: Error-based safe node addition. 

A new unsafe node is added at ½ to the furthest unsafe node that has at least one 

common safe neighbour when the node is located on the boundary. Nodes are on the 

boundary when the ¼ sampling is safe (Figure 78). The new unsafe node is connected to 

all neighbours. If the node is not on the boundary, an edge is added halfway to the furthest 

safe neighbour when that configuration is located in the unsafe space. 
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Figure 79: Scene-based unsafe node addition. 

Scene-based unsafe node addition takes place at the collision configuration when a safe 

node is pulled by a safe node into forbidden space. The new unsafe node is connected to all 

neighbours. 

 

Figure 80: Scene-based unsafe node addition. 

 

Figure 81: Scene-based unsafe node addition. 

If a safe node is pulled by an unsafe node into forbidden space, an unsafe node is added 

at the collision configuration and it is connected to all neighbours. 

 

Figure 82: Scene based safe node addition. 

If an edge between two unsafe neighbours is partially within safe space, a safe node is 

added. This is tested with three random tests along their connection. 

Roadmap Simplification Forces 

The resulting complex roadmap is illustrated in Figure 83. However, no robot 

constraints are considered, and it is assumed that the robot is a freely navigable point robot.  
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Figure 83: Workspace approximation of the obstacles and the free space. 

Roadmap generation forces simplify the roadmap with the aim of reducing the number 

of nodes and straightening the roads. The roadmap then represents the connectivity of the 

space and forms the topological map, as shown in Figure 84. The Voronoi form was 

installed with the aim to maximize the clearance of the robot to all obstacles during robot 

movement. 

  

Figure 84: Simplification of a complex roadmap. 

An improvement to the trajectory generation may be achieved by shrinking the 

connections of the nodes, and by application of the trajectory generation elastic net forces. 

Then, the path no longer follows the Voronoi diagram, and moves nearer to obstacles. 

Again, the nodes are not allowed to change their type (safe/unsafe).  
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Figure 85: The shrinking forces. 

Shrinking forces apply on all nodes with either more or less than two connections, but 

not exactly two connections. Nodes with two connections are in the desired form, and do 

not need to be further collapsed. This will shrink nodes that are either alone or individually 

connected, such as end points or multiple connected nodes. Simplification is realized by 

collapsing nodes until only two connections remain for every node. Nodes that represent 

mission locations such as the starting location of an application path are excluded. 

For each safe node that has exactly two unsafe neighbours, the vector   is calculated 

with the equation (49) to move the particle in the middle of two unsafe particles. 

(49)    
  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗

    (  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗)
   

The two vectors   ⃗⃗⃗⃗⃗       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and   ⃗⃗⃗⃗⃗       

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , which represent the vectors to the two unsafe 

nodes, were added and normalized, and finally multiplied with a small constant      .  

Summary 

In fact, implementation tests of the algorithm presented by Vleugels et al. (1993) have 

shown that the Voronoi form is rarely reached. Adjustments of the parameters by trial and 

error, as suggested by the authors of (Vleugels et al., 1993), have also not led to any 

improved results. In addition, real-time robot control with this kind of neural network 

requires processing of the neurons to adapt to the environment including the obstacles. 

Because random positions are not available in real environments, the proposed approach 

was no longer applied here. 
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8.5.5 The Cell Based Roadmap Approach 

Roadmap methods generally identify a set of roads which may be safely travelled 

without incurring collisions with obstacles. The method adopted here was inspired by the 

approach presented in Subsection 8.5.4, which is based on the Voronoi form (Bhattacharya 

and Gavrilova, 2008, Garga and Bose, 1994). This choice was taken after considering two 

important aspects. First, the Voronoi form may be applied either in the world space or in 

the configuration space of the robot. Secondly, it maximizes the clearance of obstacles, so 

that the path-planning algorithms do not have to be particularly accurate. The second point 

may also be perceived as a negative characteristic, since the derived roads are not short, 

smooth or continuous enough to guarantee an enhancement (Bhattacharya and Gavrilova, 

2007, Masehian and Amin-Naseri, 2004).  

The octree stores its cells in a predefined maximum accuracy defined by the octree 

depth. Each cell stores a reachability value, which indicates whether or not the robot can 

move its tool-centre-point (e.g. the robot hand) into the cell area. The general reachability 

is stored in a pre-calculation step described in Subsection 8.5.3. 

In addition, each cell also stores an occupancy value. Cells are defined as fully 

occupied, partially occupied or free, depending on the obstacles within the working space. 

This information is input by external sensors through the data fusion framework presented 

in Section 6.4. A collision button and CAD data for the construction process of the 

working cell were utilized in the test environment to detect obstacles. The choice was 

made because model data is often available, and the operator itself is a reliable source that 

can detect collisions. Additionally, more advanced sensors such as machine vision can also 

be applied to increase the recognition performance. 

The occupancy and the reachability information are incorporated to create a roadmap 

within the reachable free space of the octree. The roadmap forms a Voronoi diagram, 

which is created by a cell-based algorithm within the octree. 

Hence, the concept on which the Voronoi form is based was extended and applied to a 

grid-based algorithm. First, the obstacle and border cells are added to an open list. Then, 

all neighbour cells are iterated for all elements in the open list in order to mark them with 

the obstacle number based on the currently examined element of the open list. The 
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currently examined element is moved from the open to the closed list, and extended cells 

are added to the open list to be examined in the next iteration. 

1. Store all border, obstacle and extended cells   in the open list 

2. While open list element count > 0 

2.1. Take first cell    from the open list 

2.2. Inspect all neighbour cells of    and mark each extended neighbour 

cell according to the following conditions: 

2.2.1. If the extended cell is located between two or more obstacles 

2.2.1.1. If the cell is not reachable it is marked ‘0’ 

2.2.1.2. Else it is marked ‘-1’ 

2.2.2. Else copy the mark from cell     

2.3. Add all neighbour cells of   , which are not in the closed list, to 

the open list 

2.4. Move cell    from the open list to the closed list 

3. Wend 

Listing 7: Cell extension algorithm. 

The general grid-based algorithm described in Listing 7 produces the approximated 

Voronoi diagram shown in Figure 86. The primary aim is to approximate the Voronoi form 

between the obstacles and the border cells in configuration space.  

Figure 86 represents several obstacles, unreachable configuration space cells, as well as 

start and target cells. The unreachable configuration space cells are equally treated as 

obstacle cells. The light grey cells ‘-1’ represent the Voronoi approximation. The dark grey 

cells represent the unreachable configuration space. White cells denote expanded nodes, 

cells 1-7 denote expanded obstacle node cells, black cells denote border nodes, and cells 

21-23 denote obstacles. 
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Figure 86: Voronoi approximation in a two-dimensional uniform grid. 

With three obstacles 21- 23 and with the extended cells named 1-3. 

The grid used in the implementation is a three-dimensional octree, which allows the 

addition of obstacles during runtime, while recalculation is only necessary for their 

neighbouring areas. The octree also provides the opportunity to use its hierarchy to speed 

up the algorithm. Application of this cell extension approach builds a roadmap that 

supports the real-time development of the topology and connectivity of the robot 

workspace. 

This algorithm is applied to the tool centre point of the robot. The maximum clearance 

of the whole robot arm to the obstacles is indirectly considered because reported collision 

indication positions are stored as robot posture data in the cell. The cell occupancy is 
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always calculated based on all postures, and its occupancy value is therefore calculated 

accordingly. 

As described in Chapter 6, the octree exhibited two limitations (Hwang et al., 2003) in 

path planning. First, the detection of small passages requires a highly accurate 

octree/quadtree. Secondly, the shortest path is not always identified since the distance 

calculations of the cells always use the midpoints of the cells. 

The first aspect requires the involvement of many cells; consequently, the planning 

stage may have a long processing time. Hwang et al. (2003) proposed the use of an 

obstacle dependent grid to overcome this limitation. However, the octree representation is 

used here to interface between world and joint space coordinates. The number of cells is 

reduced by the transition to the not occupied joint positions which are assigned to each 

cell, and by only subdividing needed cells. 

The second aspect is solved using joint positions within a cell and the joint distance 

metric for the A* search. The joint positions deliver exact distance lengths, even on higher 

levels of the octree. The octree cell size is therefore decoupled from distance 

measurements. 

Structure Based Performance Increase 

The octree is a hierarchical data structure that allows the speeding up of the proposed 

cell extension algorithm. The cell extension algorithm is executed on each accuracy level, 

starting from the lowest resolution. Extended white cells on an accuracy level may be 

omitted for the next higher accuracy levels, and large areas of the working space are 

therefore quickly extended. Figures 5-9 represent the accuracy levels of each working 

space and the adopted cell extension method. The octree stores only the necessary cells, 

while the Voronoi approximation (‘-1’ cells), which is described in the following sections, 

is executed.  
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Figure 87: Level 1, edge 

length:     . 

Figure 88: Level 2, edge 

length:     . 

Figure 89: Level 3, edge 

length:     . 
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Figure 90: Level 4, edge length:      . Figure 91: Level 5, edge length:      . 

Obstacle Addition Mechanism 

During the execution of the path-planning algorithm, new information regarding the 

working space and the obstacles is provided by the employed sensors and information 

sources, which are the collision button and the CAD model. New joint position information 

is added to the data structure in the steps described in Listing 8.  
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1. Get the robot posture for a collision indication 

2. Execute forward calculation to get the world position 

3. Store the joint position to the responsible octree cell binary tree 

4. Calculate the occupation value for the cell 

5. Update the parent cells 

6. Recalculate the cell region   to obtain the updated Voronoi diagram 

Listing 8: Obstacle addition algorithm. 

The world coordinate of the position is determined by the subsequent forward 

kinematics calculation that stores the joint position into the octree cell that is responsible 

for the world position region.  

The cell is marked by an occupation value according to the reported and fused sensor 

value      . A probability threshold of        is applied in equation (50) to transform the 

cell occupancy value to the binary value            
 required by the Voronoi roadmap 

generation algorithm.  

(50)             
 {

      𝑡  
     

  

Parent cells are either updated to partly or fully occupied, depending on the occupation 

of the child cells of the parent. Parts of the Voronoi roadmap have to be recalculated if new 

collision information is processed. A minimum distance      of the robot TCP is 

introduced to those obstacles, and is used to clear surrounding extended groups of cells 

within the distance     . An example is illustrated in Figure 92. 



8 Investigation into a Trajectory Planning Algorithm to Support 

Intuitive Use of the Robot Programming System 

139 

10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4

1 1 1 4

1

5

4 4 4 4 4 4 4

5 5 5 5 5 5 5

4

2

2

2 3

3

2 55

5

5

5

5

4 4 4

4 4 4

4

1 1 4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

-1-1-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1-1 -1 -1

-1-1

-1

-1

-1

-1

-1

-1

21 1

-1

-1

-1

-1-1-1-1

-1

-1-1

-1

-1-1-1

22

24

-1-1-1-1-1-1-1-1-1-1

-1

23

23

-1 -1

-1

-1

-1-1 25

25

25

25

-1

-1-1-1

-1-1

-1-1

-1-1

            

 

Figure 92: Dynamic and fast cell extension example (before and after update). 

The cell in position (9, 6) is updated and marked as occupied (see second figure, cell 

number 26). A radius of        cells is considered. As a result, the group information 

and the Voronoi path are recalculated.  

The second example in Figure 93 focuses on the defined distance and shows how the 

distance affects the Voronoi path generation. The distance to the occupied cells should be 

maximised within the given boundary of     . The occupied cell ‘27’ (only its extended 

cells ‘7’ are visible) is next to the newly added occupied cell ‘26’, and the Voronoi path is 

therefore adapted. The guaranteed space between the Voronoi path and the newly added 
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cell is      ⁄  because the cell extension mechanism starts from the given distance and 

grows from both sides in order to meet in the middle of     . 
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 Figure 93: Defined distance influence on Voronoi path generation. 

The algorithm is summed up in Listing 9, where the group information is updated for 

each obstacle addition. 

1. Add new obstacle cell to open list 

2. Reset and move cells within the distance      from the closed to the open 

list 

3. Apply the algorithm from Listing 7 

Listing 9: Cell addition for obstacles. 
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Figure 94: Roadmap elements. 

The roadmap elements are represented in Figure 94. A mission provides specific 

mission data, such as start and target locations of application paths and additional 

application specific information. The roadmap consists of roads, paths and nodes. A road is 

a connection of two nodes that have to be start, target or cross nodes. An application node 

location is defined in the mission data, and is the start or target location of an application 

path. The connection between two nodes is a path, where two types of paths are possible: 

an application path and a transfer path, which is not a part of an application. An application 

road consists of application paths. A trajectory may be calculated from a route between 

two nodes. A route consists of roads. Trajectory segments are roads that are transformed 

into a trajectory. The roadmap was utilized to calculate the trajectory during the execution 

of the path planning system.  

8.5.6 Search within the Roadmap 

In robotics, the A* algorithm (Russell and Norvig, 2002) can be used to solve the given 

task of planning the shortest path in a graph. The A* always expands nodes that are 

considered to be the best nodes regarding its distance to the goal. It uses a heuristic that 

will not overestimate the distance to the target node. The A* finds the shortest path if there 

exists one at the given level of knowledge. The knowledge is expressed as the connectivity 
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of the working space. The calculation of the heuristic directly influences the calculation 

time of the algorithm.  

The A* search algorithm is utilized to search within the joint positions of the Voronoi 

roadmap in order to connect the start to the target locations. During the planning of a 

trajectory, an improvement of the roadmap takes place with collision information to 

improve the approximation of the obstacles within the working space. 

The start and target locations are handled as obstacles and the Voronoi roads are 

generated around them. The extended cells of the start and target cells are added to the 

search space to connect the location with the Voronoi roads. 

The employed algorithm finds the shortest path with the help of heuristics to direct the 

search towards the target. The heuristic should not overestimate the distance to the goal. 

Therefore, the joint distance metric is utilized as the heuristic for the A* algorithm. The 

connectivity of the joint positions is given by the octree cell connectivity. All joint 

positions of one octree cell are connected to all joint positions of the neighbouring octree 

cells. This may result in high running search times if too many joint positions are stored 

within the octree cells. The discretization calculation described in Subsection 8.5.2 has to 

consider this by choosing the parameter         within the equation (46) accordingly. 

This is highly dependent on the robot geometry. 

As mentioned in Chapter 6, the occupancy probabilities of the cells and of the binary 

tree joint positions are considered as movement costs during path planning. Because the 

search is not executed within the cells, but within the joint positions, each joint position is 

allocated the probability given by       (                                 ).  

The connectivity of the octree cells includes direct and diagonal neighbours so that each 

non-boundary cell has 26 neighbours. The octree is an extension of the quadtree, which has 

highlighted two limitations (Hwang et al., 2003) in path planning. First, the detection of 

small passages requires high accuracy of the octree/quadtree. Secondly, the shortest path is 

not always identified since the distance calculations of the cells always use the midpoints 

of the cells. 
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The first aspect requires the involvement of many cells. Consequently, the planning 

stage may take a great deal of processing time. Hwang et al. (2003) proposed the use of an 

obstacle-dependent grid to overcome this limitation. However, in the newly proposed 

approach, the octree representation is used to interface between world and joint space 

coordinates. The number of cells is reduced by the transition to the joint positions which 

are assigned to each cell, and by only subdividing the required cells. 

The second aspect is solved using joint positions within a cell and the joint distance 

metric for the A* search. The joint distance between two joint positions is directly 

computed by the difference of these joint positions. The distance measurement is executed 

on the joint positions and not on the cells; therefore the octree cell size is decoupled from 

the distance measurements.  

The roadmap itself is not changed during the trajectory calculation process, except for 

additional knowledge that has been gained during the exploration process of the robot. 

Exploration is always carried out when the robot moves within the working space, and 

additional information is stored within the world model. 

The trajectory is calculated based on the found route, and it is followed by the robot. It 

is the most optimal trajectory based on the level of knowledge in the world model. The 

global optimality of the path is not yet assured, since forces are still applied to the nodes of 

the routes and obstacles may still be found, making the re-planning of the trajectory 

necessary. The system always tracks the estimated distances to the target.  

Moreover, the application of the A* algorithm to a real robot results in the re-planning 

of the path itself each time a collision occurs. Collisions force the robot to undo its 

movement to the start location. Because real robot movements are involved, this should not 

happen too often. Therefore, an additional exploration of the working space is executed. 

Consequently, the system obtains environment information stored within the world model. 

Together with the probabilistic occupancy map projected on joint positions, the A* path 

planning method always delivers the shortest roadmap Voronoi road, if one exists. The 

search space is reduced by the Voronoi form in world space, and the reachability 

calculation is dependent on the robot geometry. The joint positions are carefully distributed 
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along the roadmap paths. By applying this approach, good performance of the search stage 

is assured.  

8.5.7 Obstacle Types 

The proposed path planning system is based mainly on collision information from path 

planning during online programming with collision sensors, which could also include 

vision. Collision detection depends on the observed objects within the robot cell. Obstacle 

avoidance is based on the roadmap of the octree, which contains possible paths and 

trajectories to connect the start and target locations.  

Kant and Zucker (1986) suggest the separation of obstacle types into static and dynamic 

obstacles. Dynamic obstacles within a robot cell were further subdivided considering their 

state-time within a production cycle. The state of an object describes its position and 

orientation. The state-time space is the combination of the time dimension, measured from 

the start of the production cycle, with the state of the object.  

An object may have a predictable and defined trajectory, which may also be 

programmed. If this trajectory is controlled by the production control logic in a coordinated 

manner with the robot program, this object is timely synchronized. For example, such an 

object can be the door of the body of a car that is opened by the robot at a specified time in 

the program cycle. The production control logic normally takes input signals, e.g. when a 

robot escapes a defined robot cell space or from production devices, to control the 

workflow. These events are synchronization points, and are depicted in Figure 95. 

Start Program 

Event

Stop Program 

Event

Synchronization 

Point

Obstacle 1 

Movement

Obstacle 2 

Movement

 

Figure 95: Obstacle synchronization. 

The trajectory of an object may also be unsynchronized or not controlled by the 

production control logic. Together with non-deterministic obstacles, these objects are not 

synchronized with the robot program, and are therefore unpredictable. 
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Static obstacles are a special case, and are derived from dynamic, timely synchronized 

obstacles with predictable movements. An overall object-type definition is given in  

Table 9. 

1. Predictable movement 

a. Timely synchronized 

i. Static obstacles 

ii. Dynamic obstacles 

b. Timely unsynchronized 

i. Dynamic obstacles 

2. Unpredictable movement 

Table 9: Object type definition. 

The support of obstacles with unpredictable movement requires real-time collision 

avoidance and a permanent installation of the support system. The requirements of 

Chapter 5 define that the robot programming system should be removed after the 

generation of the program, which is static once it is generated. Therefore, obstacles with 

unpredictable movements are not the focus of this study. 

The state time space is introduced by Fraichard (1999). It allows the transfer of the 

roadmap in state space into a graph in state time space by considering the time dimension. 

A reproducible movement can be transferred to the state-time space, and can be considered 

by the mission planner during path planning. Therefore, the static- and timely synchronized 

obstacles with predictable movements can be mapped into the state-time space. The static 

obstacles do not require the time dimension. The timely synchronized obstacles with 

predictable movements always occupy the same states in state-time space relative to the 

synchronization point. An additional collision indication button for dynamic obstacles 

could be added to the GUI for the operator to separate those two obstacle types. The state-

time space may be further extended by multi-robot-operation support. Other robots may be 

seen as timely synchronized obstacles with predictable movements. 

Timely synchronized obstacles with predictable movement require time 

synchronization, which may be performed automatically or manually by the operator 

during online programming. 
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8.5.8 Elastic Net Trajectory Generation 

The transformation of the path to a trajectory is a necessary step that is carried out by 

the application of the elastic net. The path within the roadmap found by the A* algorithm 

consists of connected joint space positions. The transformation of the path into a trajectory 

was realized by applying equidistance, rotation and shrink forces on the joint space 

positions in world space. Thus, both the forward and inverse kinematics calculations were 

required.  

The calculations for each particle were locally performed with no global knowledge of 

the trajectory. The generated result consists of canonically ordered movement primitives, 

which are linear and circular movements. The transformation automatically considers the 

reachability and obstacles. 

The topology of the free working space is obtained and stored within the roadmap and 

its cells (including joint positions). The path-searching algorithm calculates a path that 

consists of particles, which are linked joint-space coordinates. Those particles have been 

transformed into world coordinates by simple forward kinematic calculations. The path of 

connected particles in world space forms the trajectory. 

The Dubins car (Dubins, 1957) model (see also Subsection 7.2.3) of the robot with a 

bounded maximum steering angle   (see Figure 96) was employed for the two dimensional 

case. The robot is able to move around curves with a minimum radius of  , and along lines 

which represents a linear movement. No other manoeuvres are allowed. Furthermore, the 

robot moves only in a forward direction. 
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Figure 96: Correlation between e and the radius r in a 

circle (2D). 

Figure 97: Correlation between e and the radius r in a 

polygon (2D). 

Correlation between the radius of a curve and the steering angle e 

The correlation between   and the radius   is shown for two cases involving a regular 

polygon and a circle. The former will be used later, where   corresponds to g1, g2 and g3 in 

the ideal case. In Figure 97, the steering angle e of the real robot from Figure 96 may be 

compared. The formulas for the correlation of e and r are stated in (51), (52) and (53).  

(51)                

(52)          𝑡  (
 

   
) 

(53)    
 

  𝑡  (
 
 
)
 

Installed forces 

As shown in Figure 98, three forces are installed on the particle path illustrated in 

Figure 99. The first force               keeps the distances between the particles 

equidistant. The second force          , which is actually the average of the four forces 

            
,             

,             
 and             

, moves the particles on a circle with 

the neighbouring ‘particle’ as the midpoint. The last force,        , allows the path to 



8 Investigation into a Trajectory Planning Algorithm to Support 

Intuitive Use of the Robot Programming System 

148 

shrink in the direction of a straight line. The direction and value of the forces are 

influenced by the three neighbouring angles   ,    and    (see Figure 97 and Figure 98). 

 

Figure 98: Installed forces. 

Equidistance forces 

These forces push the particles in a tangential direction.               influences the 

other forces, especially the rotational forces, as little as possible. To reach the equidistance 

of all points, the tangential force is utilized. The absolute value of the force is the 

difference in the distance to the neighbouring points (54). 

(54)               
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (  ̅̅ ̅̅    ̅̅ ̅̅ )  

        
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

        
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 

Rotational forces 

The steering angle   (see Figure 96) may be changed at any time within its boundaries. 

Curves with a fixed   would result in circular curves. To build a circle of particles, it may 

be seen as a polyhedron, as shown in Figure 97. A polyhedron has straight lines between 

the neighbours, and a circle may be approximated by more particles.           attempts to 
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keep the angles of three neighbouring particles equal. Every line tries to minimize the 

difference of the angles   ,    and    with a small rotation (see Figure 99). 

  

Figure 99: Angles of the rotational force. 

The force of the rotation is orthogonal to its rotation axis. This leads to the formulas for 

the motion of point B in Figure 98: 

(55)     
     

 
 

(56)     
     

 
  

(57)              
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  (

   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

)  (     )     

(58)              
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  (

   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

)  (     )     

(59)              
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  (

   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

)  (     )     

(60)              
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  (

   
⃗⃗ ⃗⃗ ⃗⃗

|   
⃗⃗ ⃗⃗ ⃗⃗ |

)  (     ) 

(61)           
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗              

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗              
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗              

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗              
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

Shrink forces 

        is a constructed force at each ‘particle’ to build a straight line. This may be 

achieved by a simple vector addition of the two position vectors of the neighbours of each 

particle (see Figure 98) while considering the equidistance constraint. 
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(62)         
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗⃗⃗⃗⃗    ⃗⃗⃗⃗ ⃗⃗  

Forming lines 

Every particle’s position lies on an edge of the polyhedron. The overall force leads to a 

curved connection, where all ‘particles’ are ordered as equidistant and the steering angle e 

always lies within its boundaries. The path does not yet have straight lines. If the steering 

angle e is very small, the radius of the curve is very large and may be considered to be a 

straight line. The algorithm considers this to be a switch for the calculation of the positions 

of each particle. Shrink forces may be used to form a line. It is a simple vector addition of 

the two neighbouring lines of B to A and C (see (62) and Figure 98). A radius threshold 

     is introduced, which controls when the formulas for a line or a curve are used.      is 

the value for the maximum radius. The angle threshold 𝑡      was obtained from equation 

(52). If the statement |  |  𝑡      is true for        , the particles will be shrunk to a 

line. Otherwise, the rotational forces are applied.  

Overall force 

It is possible to construct a path from a start position to a target position with straight lines 

and curves with equal radius for each curve automatically. The threshold 𝑡      is the only 

parameter which is responsible for the decision of whether a line or a curve is to be built. If 

the formula (63) is applied, the path construction algorithm is divergent. 

(63)   ⃗                  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  {

            
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    |  |  𝑡     

          
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    |  |  𝑡     

   

          is identified to produce incorrect results if the particles have not yet been ordered. 

The order may be measured in terms of particle movement, which is defined as a particle 

movement error. The overall elastic net movement error   of the elastic net was 

introduced. The term responsible for rotational forces is modified to order the particles 

dependent to the error  . The factor  , with      , calculated using equation (64) is 

dependent on the error  . For high error values, the factor   is near 1, while for low values, 

  is near 0. 

(64)      
 

   | |   
 



8 Investigation into a Trajectory Planning Algorithm to Support 

Intuitive Use of the Robot Programming System 

151 

The overall formula is shown in (65), which considers the error   and it applies either the 

shrink forces or the rotational forces. The shrink forces order the particles while the 

rotational forces move them to form a circular line. 

(65)   ⃗                  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  {

(    )            
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (   )              

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    |  |  𝑡     

          
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    |  |  𝑡     

 

Results 

   are parameters used to normalize and measure each force. Throughout the 

experiments, the following values showed good results (Table 10): 

Parameter                

Value 0.8 4.0 0.1 0.1 200.0 

Table 10: Parameter values. 

The topology of the map is obtained by another algorithm, such as a Voronoi diagram. 

An A* algorithm can be used to find a suitable path. Often, the shortest path is chosen. In 

these examples, a path is found within the topology map, which has to be optimized from a 

random state of the ‘particles’.  

In Figure 100, ta,min is set to zero, and the minimal steering angle e is therefore zero. The 

path is a smooth curve and there is no straight line. In contrast to Figure 100, the parameter 

ta,min in Figure 101 is set to a value greater than zero. Thus, the path tends to have more 

straight lines and narrow curves. 

 

Figure 100: Path with ta,min = 0. 
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Figure 101: Path with ta,min > 0. 

8.6 Robot Program Generation 

To solve tasks such as handling, welding, gluing or cutting, industrial robots have to be 

programmed. Robot programs consist of different commands for movement and equipment 

control, and are usually stored in a robot program file. The development of the robot 

program may be carried out manually by teach-in or with tool support. The program is 

written in a specific robot language, such as Melfa Basic IV for Mitsubishi robots. Special 

knowledge is required for each type of robot, and the development of robot programs itself 

is complex. 

For the enhanced online robot programming system, the robot is controlled along the 

trajectory described by movement commands. In this study, fixed body dynamics was 

assumed, and trajectories are therefore independent of the speed of the movement. The 

trajectory is required to be continuous and smooth to conform to the physical nature of the 

robot’s movement possibilities. As described in Section 8.5.7, a robot trajectory is 

assembled from path segments with assigned movement types. The standard movement 

primitives of industrial robots are usually linear, circular and joint movements.  

Finding a path is accomplished by the path planning system. It sends a linked list of 

nodes forming the movement primitives. The nodes store their Cartesian and joint space 

positions, and they are equidistant to their neighbouring nodes. The robot program 

generator constructs a trajectory from a list of nodes, and considers node position 

tolerances that may be delivered by the path planner. It further transforms the trajectory to 

robot program files in a specific robot programming language or direct movement 

commands transferred to the robot controller. It was accomplished by the separation of the 
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trajectory into movement primitives. The movement primitive extraction from a trajectory 

is implemented as a Matlab script, and it is generated to a shared library. Joint movements 

are deferred until a later stage because it is assumed that these kinds of movements are 

somewhat more complicated, but are manageable as an extension to the actual 

functionality.  

Line and curve matching is the foremost challenge of the trajectory generation 

algorithm. Furthermore, the optimal calculation of junction points between the movement 

primitives is important for the line and curve-matching algorithm. A junction point 

connects two movement primitives so that the end node of a geometric figure is the start 

node of the next figure in a differentiable way.  

The concatenation of movement primitives, as explained in Section 8.6.3, is not simple, 

because all combinations of linear, circular and later also joint movement types are 

allowed. For example, when two circular movements are concatenated, the connection 

must be smooth. At the time of computation, not all necessary data may be available. The 

next movement segment must be analysed, and the resulting information may then be used 

to construct a smooth connection between the two movement primitives. 

The following subsections describe the transformation of the path to a trajectory by the 

approximation and alignment of the movement primitives. Subsequently, the trajectory was 

utilized for robot program generation, which is the final artefact of the enhanced online 

robot programming system. The robot programming language used for the Mitsubishi RV-

2AJ robot is Mitsubishi Melfa Basic IV (Mitsubishi-Electric, 2002b). A simple command 

example may be given by Listing 10, where the MVR command is used for circular 

movements (where P1 and P2 are the start and end points and M is the midpoint), and 

MVS is used for linear movements (where P3 is the end point). 

MVR P1, P2, M 

MVS P3  

Listing 10: Simple movement commands. 

Code generation is achieved with the modelling framework introduced in Chapter 9 by 

using the Java Emitter Template (JET) mechanism (Eclipse Foundation, 2011b). Templates 

are used to separate dynamic and fixed file contents, for example comments and copyright 

information. 



8 Investigation into a Trajectory Planning Algorithm to Support 

Intuitive Use of the Robot Programming System 

154 

8.6.1 Calculating Linear Movements 

The extraction of linear movement primitives from the node list was implemented by 

defining a line through the node positions so that the number of nodes touching the line is 

maximized. The node positions have tolerances which were considered by the introduction 

of a maximum node-line distance. The maximum distance was applied to the nodes by 

enlarging each node to a sphere with the radius of the maximum distance. In this way, a 

line is defined through the node spheres so that the number of node spheres touching the 

line is maximized. The line origin is always set to the calculated final point of the 

preceding movement primitive, or, if no such movement primitive exists, to the start node 

position of the new movement primitive. 

In the following steps, the construction of a linear movement line is shown in the case 

of two dimensions. It was extended to three dimensions in the implemented algorithm. 

Figure 102 shows three points, which, regarding the tolerance, are lying on a line.    is the 

start node and is fixed. The circles around    and    display the tolerance sphere, and the 

red area is a corridor that have to be touched by all nodes. The corridor describes all 

allowed positions of the line, and it is recalculated for each new sphere. Furthermore, the 

figure shows the angles which were used to calculate the corridor.  

As shown in Figure 103, node    does not touch the corridor and is therefore not a part 

of the line. The algorithm stops, and the calculation of a new movement type starts from 

node   . 
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Figure 102: Linear Movement corridor (highlighted in red) calculation with three points P0-2. 

A point is calculated in polar coordinates, and may be transformed from Cartesian 

coordinates. Here,    is the radius and    
,    

and    
are the coordinates of a given point. 

Furthermore,   and    are the two angles required to describe a polar coordinate, and the 

 𝑡    function is defined in equation (69). 
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The distance of point   
⃗⃗⃗⃗⃗⃗  to a line may be calculated by equation (70). 

(70)     
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| ⃗|
 

Because the distance must not be greater than a given  , the maximum allowed distance 

between a node and the resulting linear movement line is defined in equation (71) with 

�⃗�  (     )  as 
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Because the line goes through the first node, and the line is only given as a unit vector with 

| ⃗⃗⃗|   , the declaration in equation (72) was defined as 
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The direction is calculated for both angles    and    in the x-z and the x-y planes. 
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Figure 103: New node not touching the corridor. 

Corridor Calculation 

The allowed corridor was calculated by the intersection of all sectors, and was formed 

by the direction angles   and   of the tangents of each sphere through   .       and       

are the two upper angles which consider the new corridor. Analogue,      
 and      

are 

for the lower angles.    and    are the two angles that count for the actual corridor, and    

and   are the angles of the tangents of the actual node.   
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The allowed corridor is calculated iteratively for each new node as follows, with      
, 

     
 and      

,      
being new possible corridor bounds.   
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(83)       
    ( 
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Each new node is first checked to be within the corridor. On subsequent checks, the 

corridor is recalculated using the new node. The corridor size decreases with each iteration. 

The iteration stops when a new node is not lying within the allowed corridor. In this case, 

the final node is calculated and a new movement primitive is started from the final point. 

Movement Primitive Final Point Calculation 

The final direction of the movement line is calculated only at the last node by 

equations (84) and (85). 
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The Cartesian coordinate of the endpoint is calculated using the resulting final direction, 

which is actually the bisecting line of the corridor between    and   . The length   of the 

line is the distance between the start point and the last valid point. Thus, the end-point is 

calculated by equation (86). 

(86)            ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  (

     (  )     ( 
 
)
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)

     ( 
 
)
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If the start node is not the origin, the vector to the start node must be regarded. In 

addition, if there is no third node within the corridor, the final point is set to the second 

node.  

8.6.2 Calculating Circular Movements 

This chapter describes the calculation for a circular movement primitive. The nodes of a 

circular movement are always on a plane. An algorithm was developed which determines 

the number of nodes located on a common plane, considering the node position tolerances. 

In the next subsection, all identified nodes are checked to be on a circular line. The final 

point for circular movement primitives is calculated. 
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Nodes on a Plane 

The framework calculates circular movement primitives that are located on a three-

dimensional plane. The nodes have to be located on a plane with a pre-defined tolerance. 

The tolerance for constructing the plane is given with a tolerance on the normal vectors of 

each plane, which is constructed with every new node, allowing little rotation when 

compared to the subsequent normal vectors. The rotation is calculated using the angle 

between the normal vector and the subsequent normal vector, as explained in the next 

paragraph. 

Three connected non-collinear nodes are required to construct a normal vector. The 

initial plane was constructed by the first three nodes, including the plane normal. In the 

following iterations, each normal vector is compared to its successor normal vector. Figure 

104 shows four nodes and the three normal planes spanned from the points. The angles 

between the normal vectors   ,    and    and their respective unit vectors   ,    and    are 

used to calculate the corridor. 

 

Figure 104: Planes calculated from connected nodes. 

The tolerance of the nodes on the plane is added by allowing the unit normal vector    

to be within a defined angle   . For each new plane, the normal   is calculated by 

equations (87) and (88). 

(87)                   

(88)     
  

    (  )
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The resulting plane is obtained by the last bisecting vector   , where   is the last node of 

the movement segment. In Figure 105,    is the resulting vector of the actual iteration 

(calculated from      and   ) and      is the resulting normal vector of the last iteration. 

Furthermore,    is the actual normal vector. Because only the angle between the normal 

vectors    and    is relevant, the calculation is also valid in three-dimensional space. The 

normal of the resulting plane is   , and is used for the calculation in the next iteration. 

Let      be the corridor angle, which equals to equation (89), and let    be the angle 

between     and     . For each   , the allowed corridor is checked, corresponding to the 

inequality in equation (90).  

(89)       |        
|  |        

| 

(90)          

 

Figure 105: Calculation of the allowed corridor in two dimensions. 

If the inequality in equation (90) is true, the bisecting vector between    and      is 

calculated in equation (91).  

(91)     
       

    (       )
 

The angle     between    and      is applied to calculate the new tolerance    with  
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(92)          
   

 
 

Nodes in a Circular Segment 

It is assumed that all nodes building a circular movement section are on a plane, which 

results in calculations in a two-dimensional space. The first three nodes, including the 

starting node, perform a curve if the angles between the nodes are within a certain 

tolerance. Figure 106 demonstrates the situation.  

 

Figure 106: Nodes in a circular segment. 

In Figure 106, the nodes   (     ),   (     ), the normal vector  ⃗⃗⃗  (     ), and the 

tolerance   are given.    and    are calculated in the next paragraph. 

Calculation of    

To calculate the minimum tolerance, which is the minimum radius    in a two-

dimensional space, the position of   is given by equation (93). 
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(93)   ⃗⃗⃗⃗    
⃗⃗⃗⃗⃗      ⃗⃗ 

(94)        
       

(95)   
 

  
  

     
 
 

Referring to Figure 106, equation (96) was applied.  

(96)  (     )  (     )  (    )  

Equation (97) results in    and    from applying the equations (94) and (95) to 

equation (96). 
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Considering that | ⃗⃗⃗|    the following assumption was made: 

(98)    
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(100)     
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Calculation of    

To calculate the maximum tolerance, which is the maximum radius    in two-

dimensional space, the position of   is given by equation (101). 

(101)   ⃗    
⃗⃗⃗⃗⃗      ⃗ 

(102)              

(103)              

With respect to Figure 106, the equation (104) was applied.  

(104)  (     )  (     )  (    )  
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Equation (105) results in    and    from applying equations (102) and (103) to 

equation (104). 

(105)  
  

  (  
    

   )       (   (     )     (     )   )  (     )
  (     )

 

      

Considering that | ⃗⃗⃗|   , the following assumption was made: 

(106)    
    

    

(107)    
  (  

    
   )    

(108)     
(     )

  (     )
    

  (   (     )     (     )   )
 

Local Coordinate System Calculation 

All circular movement calculations were accomplished in the two-dimensional space. 

The plane described by    is three-dimensional in world space, and a local coordinate 

system was calculated by an arbitrary coordinate system with    being the z-axis. The x- 

and y-axis were randomly generated. Subsequently, the transformation matrix from the 

world to the local coordinate system was computed so that all circular movement 

calculations could be calculated within the local coordinate system. 

Circular Movement Corridor Calculation 

Corresponding to Figure 107,         and         are used to calculate the 

resulting corridor for the allowed radius   in equations (109) and (110), where       
 and 

      
 are the calculated radii from the last iteration. 

(109)             
     (           

) 

(110)             
     (           

) 

When the calculated radius is not within the corridor, and thus does not satisfy the 

inequalities stated in equations (111) and (112), a new movement segment is started. 

(111)             
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(112)             
      

Movement Primitive Final Point Calculation 

 

Figure 107: Final point calculation. 

Figure 6 shows the final point calculation for a circular movement section. For the 

vector      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, the vector  ⃗⃗⃗⃗ is calculated using equation (113) with   being given by the 

radius calculation previously presented. 

(113)   ⃗⃗⃗   
    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

    (     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

   

For a given normalized  ⃗⃗⃗ and  ,     ⃗⃗⃗⃗⃗⃗ , which is the rotation around the  ⃗⃗⃗- axis with an 

approximated angle of        , was first calculated. The approximation was established 

because    may eventually be off the circle. The final point was therefore calculated by the 

equations in (114). 
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(114)  

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   ⃗   ⃗⃗⃗ 

 ⃗   𝑡  | |⃗⃗⃗⃗⃗⃗    

           𝑡               

For a given normalized   ⃗⃗⃗ ⃗, the vector  ⃗⃗⃗ and radius   were calculated in equations (115) 

and (116). 

(115)   ⃗⃗⃗       ⃗⃗⃗⃗⃗ 

(116)    ‖ ⃗⃗⃗‖     𝑡(    ) 

8.6.3 Connecting Movement Primitives 

At the beginning of a new movement, the movement type is unknown, and calculations 

for all movement primitives are therefore started until the movement type is identified. The 

identification method used considers the movement type that covers the most nodes. 

However, care is taken to allocate the nodes to the right movement primitive on transition 

points of two movement primitives, which may be a combination of linear and circular 

movement primitives. 

Figure 108 illustrates the transition of two linear movement primitives. To ensure that 

the path is continuous and smooth, two linear movement primitives were connected using a 

circular movement primitive. Calculations were omitted because the Mitsubishi robot 

system has an option for smooth robot position transitions and ensures a continuous path. 
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Figure 108: Connecting two linear movement primitives. 

The remaining combinations are illustrated in Figure 109, Figure 110 and Figure 111. 
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Figure 109: Connecting a linear and a circular 

Movement. 

 

Figure 110: Connecting a circular and a linear 

movement. 

 

 

Figure 111: Connecting two circular movements. 

8.7 Summary 

The development of the enhanced online robot programming system driven by the 

requirements presented in Chapter 5 began with an evaluation of usage scenarios. The 

scenarios demonstrated that it should be easy to utilize the system, and it has to be 

removed after generating the robot program. The aim of the system was to generate a static 

robot program that is comparable to manually programmed robot programs. 

The ease of utilization of the system was guaranteed by an expert system that supports 

the operator during robot programming. In practice, the ability to control the robot 

manually has become very important to the execution of manual exploration, in order to 

define the mission and to place virtual objects in the working cell. The expert system itself 

is efficiently employed only when the mission is at least defined, which can either be done 

online or offline using a simulation system or with known locations.  
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The presented online robot programming approach is different when compared to 

existing approaches. First, the human operator reports collisions, and it is therefore 

generally available and cost efficient. Second, the applied trajectory-planning algorithm is 

able to handle efficiently the provided information, and it intelligently controls the robot 

within the robot cell to compute the robot trajectory with the help of the interconnected 

mission and trajectory planner in collaboration with the generation of the robot program. 

The mission planner plans the mission and controls the path planner, which provides 

trajectory length information to the mission planner. The mission planner in turn re-plans 

the mission with an applied hysteresis. Planning a trajectory online always utilizes the real 

production system, which is executed throughout the robot-program generation process. 

Thus, the hysteresis on the trajectory length was applied to prevent the production system 

from executing re-planning too often. 

The trajectory planner connects two given locations, and reports the trajectory length to 

the mission planner. The in-memory world model plays an important role because it also 

provides the roadmap that was, in the first instance, planned to store just geometric data for 

the trajectory planning neural network.  

The trajectory planning neural network approximated the obstacles and created a 

roadmap within the free space. Obstacle approximation was optimized by object 

simplification, surface reconstruction and progressive mesh algorithms. The road map 

generation is easy to calculate, the possibility of parallel computing is presented, and 

higher dimension calculations are possible. The roads are simplified to a topological map 

and forces are applied to straighten and shrink the roads.  

Calculation of the node movement was computationally intensive because many nodes 

have had to be considered for each calculation iteration. In addition, the calculation of 

collisions also produced a high processor load. The calculations of node movements 

depended on random inputs, which are hard to generate for online systems. Random inputs 

lead to a slow convergence of the neural network, even in a simulation environment. The 

proposed Coloured Kohonen map rarely formed a Voronoi diagram, and required further 

improvements. 
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Nevertheless, the basic principle was transferred to a cell-based approach, which stored 

joint locations within the roadmap cells. In fact, the combination of the cell-based roadmap 

with joint locations together with the Elastic Net trajectory generation approach realized 

the proposed enhanced online robot programing system. The generation to a robot program 

was accomplished by analysing the created trajectory. 

The new motion-planning algorithm plans with only local knowledge smooth 

trajectories that consist of linear and circular movement primitives and generates a static 

robot program. The system considers objects with predictable movements. Timely 

synchronized objects that support the generation of events were also supported within the 

generated (static) robot program. 
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9 Research of a Software Development 
Framework for Complex Systems 

  



9 Research of a Software Development Framework for Complex Systems 

171 

The motivation for the model driven code generation framework is based on the 

requirement to rapidly connect distributed software components which are written in 

different programming languages. They also required to run on different platforms, sensors 

and third party tools such as Matlab (TheMathworks, 2011) across a network without the 

need for the time-consuming development of data communication and tool connection 

infrastructure.  

This was accomplished using model-based software development including code 

generation, which entails the composition of applications from pre-designed hull software 

components enriched with the business logic of the application. The details regarding the 

implementation of the components are hidden behind well-defined interfaces. Thus, much 

improved software quality becomes realistic. Moreover, previous experiences with 

component-based software development in other application domains have resulted in 

drastically improved software development productivity, which is sometimes more than 

one order of magnitude greater than conventional software development (Sutherland, 1998, 

Zincke, 1997). 

Matlab/Simulink is often adopted as a development environment because of its fast 

modelling and code generation capabilities as well as its valuable library functions. 

Connecting such a tool to a distributed software system supports the developer during 

software development by enabling communication with existing components.  

The run-time architecture consists of interconnected components, communicating 

through message passing, which is executed by a communication middleware. Each 

component is typically a process running on a node such as a computer or an embedded 

device. An evaluation of existing communication middlewares was carried out in 

Section 9.2. 

A model-driven approach was chosen in order to increase the usability of the framework 

with a domain specific modelling language which was derived from the Real-Time Object-

Oriented Modelling (ROOM) language (Selic, 1996a, Selic, 1996b, Selic et al., 1994). This 

language also defines the run-time behaviour of the generated software components.  

The commercial tool Rational Rose Real-Time from IBM (IBM Corp., 2011), formerly 

known as ObjecTime, was a toolset supporting the ROOM language. Unfortunately, this 

toolset is no longer available, and therefore makes it necessary to re-implement the code-
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execution-model, which is described in Appendix E. The eclipse project eTrice (eTrice 

Group, 2011) was recently shifted from the proposal phase to the incubation phase, and 

aims to implement the ROOM language together with code generators and tooling for 

model editing. 

A major goal of the proposed framework is to enable sensor-based robot control 

applications to be built from libraries of reusable software components. For this purpose, 

the framework provides standard interface specifications for implementing reusable 

components. A well-written and debugged library of software components facilitates the 

rapid development of reliable sensor-based control systems. 

Existing robot control frameworks introduce re-configurable software components as 

well as special communication and code execution models (Griph et al., 2004, Lee and 

Yangsheng, 1998, Wason and Wen, 2011). These approaches attempt to enhance the 

configuration of the components for re-use and the running system itself. However, this 

chapter also proposes to enhance the usability through graphical modelling and code 

generation. 

9.1 System Modelling 

ROOM defines a visual modelling language with formal semantics and a code 

execution model, which is a set of rules defining the system behaviour (Selic, 1996a, Selic, 

1996b, Selic et al., 1994). The visual modelling language is optimized for specifying, 

visualizing, documenting and automating the construction of complex, event-driven, and 

potentially distributed real-time systems. By connecting several components, an interaction 

flow via messages may be established between them.  

In the proposed framework, a component can be developed in Java, C#, C++ and C, and 

can be deployed on different processing units. The processing unit may be a general-

purpose processor, digital signal processor or a field-programmable gate array (FPGA), 

where each processing unit may have its special system architecture that influences, for 

example, the handling of threads. 

In addition, a component may also be a complete development environment, which 

allows direct communication with existing components during development. The 

integration of tools is explained in Section 9.5. 
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The component behaviour is described as a hierarchical state machine which provides a 

number of powerful features, including group transitions, transitions to history, state 

variables, initial points, and synchronous message communications.  

The developer writes user programs for state transitions where the component has to 

perform an action. Additionally, each state may have an entry and an exit function, which 

are executed when the component enters or exits the state, respectively. Advantages are 

that components may be distributed on different nodes with ease and better encapsulation 

is reached, because only the component interfaces, and not the type of the component, are 

required in order to interact with it. 

ROOM also defines a message service that controls the logical message flow within a 

physical thread, while a middleware, which is further described in Section 9.2, is 

responsible for transmitting the messages. The implemented message service is optimized 

for speed in the local delivery of messages through the utilization of operating-system 

specific communication mechanisms. It should be sufficiently abstract to be used by any 

operating system, and should be concrete enough to fulfil requirements of speed, code size 

and memory consumption. The implemented message service is included together with the 

code execution model in a runtime library. An instantiated message service is identified by 

the network port number and the internet protocol (IP) address of the host. 

Comp. 
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D
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Thread 1

Thread 2

Thread 3

Processing Unit 1 Processing Unit 2

 

Figure 112: Communication overview: Message passing  

from component A to component C (dashed arrow). 

The ROOM communication system illustrated in Figure 112 consists of processing 

units, threads, components and message services (MS) along with its connectivity. The 

ports of each component may communicate with other components via connections to the 
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message service, which handles local and remote message passing. A message from the 

port of component A to the port of component C (see dashed arrow) may be passed 

through both message services until it gets to the target port. In this example, messages 

from component B may only be sent to component A. 

9.2 Communication Middleware 

Currently available communication mechanisms may generally be separated into three 

categories: transport level, message passing and remote procedure calls. 

The transport level is simply a pipe to send data streams or packets without any 

formatting specification, such as serial ports or TCP/IP. Direct socket communication 

requires the development of a proprietary protocol and exception handling, which involves 

significant effort. Furthermore, marshalling and de-marshalling have to be implemented, 

and this is particularly complex because of the requested compatibility between the 

different programming languages. For example, if it is required that a C++ object be 

transformed into a Java object.  

Message passing adds structure to the packets to define the content, but it still requires 

the user software to build and send the messages. ZeroC Ice (ZeroC  Inc., 2011) and 

CORBA are middleware systems that build an abstract communication layer.  

Remote-procedure-calls attempt to expose functions or full objects across a process or 

network boundary without the user software being aware of the boundary. Remote method 

invocation may be given as an example.  

A comparison of the different communication middlewares supports the choice of the 

ZeroC Ice middleware. Its implementation is available on various platforms, including 

embedded systems, and for different programming languages such as Java, C++ and C#. 

While CORBA may be an alternative, it appears to be complex and does not have the 

ability to transmit objects, therefore allowing only primitive data types, while ZeroC Ice 

may handle object transmission. In addition, ZeroC provides Eclipse support, which 

simplifies the usage of ZeroC Slice, which is the interface definition language. 

9.3 The Toolchain 

A general overview of the workflow is given in Figure 113. The toolchain creates and 

synchronizes source code from a given graphical model which includes the modelled 
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behaviour of each component. The visual modelling language ROOM is represented as 

graphical elements in the commercial off-the-shelf editor Enterprise Architect from 

SparxSystems (Sparx Systems, 2011). This graphical model is utilized to create source 

code with the help of the eclipse modelling framework (EMF) and its code generation 

capabilities (Eclipse Foundation, 2011a). The runtime library provides a communication 

layer, the implementation of the code execution model and the message service. 

Run-Time 

Library

Code

Generation

Model

(ROOM)

Source Code

Runnable 

System

User Code

Behaviour

(State-Machines)

 

Figure 113: Code generation workflow. 

The generated source code can be synchronized with the written source code of the user 

to simultaneously allow modelling and code implementation. Finally, the source code can 

be compiled to a runnable application for the target system, e.g. a personal computer with a 

Windows operating system or an embedded system with a PowerPC operating system. 

9.4 Toolchain Implementation 

A more detailed description of the toolchain is given in Figure 114. The graphical 

notation elements of ROOM were integrated into Enterprise Architect (Sparx Systems, 

2011) with the help of an Enterprise Architect specific model driven generation (MDG) 

technology file. These modelling elements are utilized to create visual models of 

executable software systems.  

A C# to Java application communication channel was implemented with a direct socket 

connection to the Java model repository application. It is utilized to store the visual model 

into the model repository, which was defined with the eclipse ecore editor.  

The template-based code generator application based on JET (Eclipse Foundation, 

2011c) transforms the model to Java source code. 
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The Code Merger tool utilizes JMerge (Eclipse Foundation, 2011a), and runs as a 

headless eclipse application, which starts a minimal eclipse framework in the background. 

It merges the generated source code with the existing one.  

The toolchain supports the automatic generation of eclipse Java projects for each 

component and the runnable system. These projects may be imported into the eclipse 

workspace. All link dependencies including the link to the run-time library were 

automatically set, and a UniMod state machine (eVelopers Corporation, 2011) was 

generated using each component project to define the behaviour of the component. 

The runtime library was implemented in a platform-dependent manner, and includes the 

ROOM code execution model and the middleware from ZeroC Ice (ZeroC  Inc., 2011). 

The middleware supports a target abstraction layer, which simplifies the creation of the 

platform specific library. This framework also enables the use of specialized tools such as 

Matlab/Simulink, as further described in Section 9.5. 
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Figure 114: Toolchain implementation. 
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Figure 115: Execution environment. 

 

 

Figure 116: Node. 

 

 

Figure 117: Actor deployment. 

9.5 Connecting Specialized Tools 

Specialized tools usually have enhanced functionality, which enables them to solve 

domain-specific development tasks. They may also have been established as common tools 

within these domains. The integration of such tools into the communication framework 

adds communication capabilities to other components, e.g. for sensor or control 

functionality, during development. The development may be finalized by generating a 

DLL or an executable, which may successively be used within the communication 

network. DLLs can always be utilized with the help of visual modelling elements that 

support such libraries and generate the necessary code to incorporate the libraries. The 

dyncall library (Adler and Philipp, 2011) was employed within the run-time library for this 

purpose.  

A direct integration of specialized development tools was reached through tool specific 

integration technologies. For example, Matlab may be connected through the Microsoft 

Component Object Model (COM) or Dynamic Data Exchange (DDE) technology for 

message passing, which is described by Kohrt et al. (2006a). The middleware can also be 

directly utilized with an S-function to establish communication with the distributed 

components. 
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A ‘Plugin Manager’ software component was developed to utilize shared libraries with 

Java in a generic manner. The component allows the generic use of shared libraries, DLLs 

on Windows machines and libraries on Linux machines. The component encapsulates the 

Java/DLL intercommunication as well as the usable functions of the libraries. A function 

call is initiated by a synchronous message. The message contains all of the data that is 

necessary to call the library function, e.g. function name and parameters.  The call-back 

functionality allows the native libraries to call Java functions. The calling sequence is 

illustrated in Figure 118. The Plugin Manager is further described in Appendix H. 

Java
Plugin 

Manager
dll / lib

load

load dll / lib file

execute function

pass result from

function call
transfer result

to Java data types  

execute callback 

functiontransfer and execute 

callback in Java

pass result from

callback transfer result to 

native data types

 

Figure 118: Plugin manager communication. 

9.6 Code Generation Example 

As depicted in Figure 7, a robot control application with a joystick for the articulated 

Mitsubishi RV-2AJ robot demonstrates modelling and code generation. Applications are 

defined by the instantiation of an ‘Execution Environment’, which is named ‘Robot 

Control’ in Figure 115. Although a single ‘Win Robot Control’ node is deployed to the 

execution environment for the entire application, several additional nodes may be 
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deployed. Physical threads are modelled to allow thread deployment. Components are 

finally deployed to those threads (Figure 117), while their connectivity is modelled in a 

thread-independent manner, as illustrated in Figure 119. The interface definition of the 

‘Manual Movement Deployable Component’ in Figure 120 describes the provided and 

required interfaces, which are fixed to component ports. The ‘Control Port’ provides 

component life-cycle interfaces such as ‘Control In’ in Figure 121 to start, stop, initialize, 

release and locate the component. Additional component property management is 

implemented with the set and update property signals. Synchronous and asynchronous 

message passing is supported. Each interface defines allowed signals that have to be 

modelled in the UniMod finite state machine, as depicted in Figure 122. A message is 

received via the port interfaces through the port to the state machine of the component, 

which fires a transition. 

The executed transition method contains the user code. The generation process 

generates methods such as the initialization methods shown in Listing 11, which was 

derived from the ‘Init’ transition. JMerge uses code tags such as ‘@generated not’, or is 

overwritten by the code generation process. 

 

Figure 119: Component connections. 
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Figure 120: Component interfaces. 

 

Figure 121: Interface definition. 
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Figure 122: UniMod state machine diagram example. 

 

/** 

* Init the component. 

* @generated 

*/ 

protected void init() 

{ } 

Listing 11: Generated Java code. 

Other tags such as ‘@unmodifiable’ may also be used to control the merge 

functionality. 

9.7 Summary 

This chapter highlights important aspects in the development of the proposed model 

driven toolchain. The various model-to-model transformation stages and tools are 

presented from graphical ROOM models to the runnable application. The toolchain may 

generally be used for software development, and for specific problem domains such as 

robotics. The extensibility of the domain specific language allows domain-oriented 

engineering. The level of abstraction is a significant issue for the handling of large 

software systems. The abstraction level is raised by using a model driven toolchain. 

Standard designs and concepts may be easily integrated and used by the developers who 

need only the graphical front end to such extensions. Encapsulation results in the reuse of 

the so-called black box, which is a favourable form of it, since the economics of scale 

allow more focus to be made on software design, software reviews and software testing. 
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The integration of specialized tools and development environments enhanced the 

development process.  

The proposed model-based code generation framework has a significant productivity 

benefit, although implementation of the toolchain requires that significant investments be 

made. However, once a toolchain is developed, it can easily be applied. 

ROOM is a message-based system that is based on state machines, and it requires 

training for inexperienced developers. The message service is an additional layer that 

interprets and transfers messages to the target component port, which may lead to a delay 

in the message delivery. The delay must be considered, especially for time-critical systems. 

Therefore, it plays a key role in the performance of the system. Nevertheless, such a 

toolchain can be valuable for large software development projects, and allows a strict 

encapsulation into components with clearly defined interfaces. The intention is to continue 

with this approach, and to further enhance the modelling and code generation features, 

especially for debugging purposes and the implementation of a state machine (with a 

graphical editor) alternative to the slow UniMod state machine. The Simulink Stateflow 

state machines may also be used in the Simulink context, but it requires adaptation to be 

made usable in non-Simulink contexts. 

The main advantages of model-driven development include better maintainability, a 

uniform programming model, reusable model parts, simple but efficient communication, 

higher abstraction, code generation, system-wide optimization possibilities and focused 

development in relation to the business logic. 
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10 System Implementation 
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The online path planning and programming support system is an approach that can 

reduce the robot programming time, including preparation and installation. It generates 

acceptable robot programs and considers the modern industrial basic goals of flexibility, 

speed and optimization, which are mentioned in Chapter 8. It finds a trade-off between 

shortest-path finding and trajectory forming and maintainability. Finally, it generates a 

downloadable robot program file.  

In this section, the general execution of the programming assistant is described, and a 

scenario (see Figure 126 and Figure 127) was chosen to demonstrate the proposed 

approach. The system is executed with a real five-axis industrial scale, articulated 

Mitsubishi RV-2AJ robot (Kohrt et al., 2008). The algorithm utilizes an octree as the world 

model (as described in Chapter 6) and joint positions attached to the octree cells. During 

implementation, the algorithm was tested in simulated two-dimensional space using a 

quadtree as world model and world positions attached to the quadtree cells. The proposed 

algorithm works in real surroundings. The illustrations shown in this section are simplified 

to support the understanding of the algorithm. 

In the chosen real scenario, the two obstacles O1 and O2 are provided as CAD objects, 

and they have been imported into the in-memory environment model. The obstacle O3 

should be unknown to the system, and was therefore not imported. The chosen scenario 

consists of a mission with the start and target positions P1 and P10. 

First, the general workflow of online robot programming is described in Section 10.1, 

followed by the data import in Section 10.2 and mission preparation in Section 10.3. 

Subsequently, the roadmap was generated within the world model in Section 10.4, and is 

utilized as a corridor for the configuration space positions of the robot. Shortest-path 

planning is applied for those positions in Section 10.5, which may lead to a path from the 

start to the target, which is transformed to a trajectory. Section 10.7 illustrates the path 

planning behaviour with an additional obstacle, which leads to the re-planning of the path. 

Finally, the robot program is generated in Section 10.8 and the robot programming 

durations are compared to manual programming in Section 10.9. 
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10.1 General Workflow 

In general, the operator executes the robot-program generation system after it is set up. 

Collisions are detected with connected sensors such as the cameras or the collision 

indication buttons. The operator indicates collisions with static or dynamic obstacles. The 

support system automatically controls the movements of the robot until a suitable robot 

trajectory is found, if one exists. High accuracy is not needed, since the used trajectory 

generation algorithms and strategies may handle low accuracies. One strategy is the 

adoption of the Voronoi features, which maximize the clearance to obstacles.  

The system first tries to explore the working space to build the in-memory topology. 

Subsequently, a robot path to the target position is computed. Target positions are either 

application locations or are part of an application path, which may be a part of a mission. A 

mission may have multiple application paths and locations, which results in the well-

known travelling-salesman-problem. The planning problem is solved in order to minimize 

the overall path length. This also includes the path-planning algorithm. 

The movement of the robot is slow enough to allow the operator to detect collisions. 

The environment is stored within a world model, which is capable of storing collision 

positions. It creates a roadmap in the Voronoi form, and supports path searching and 

trajectory generation by combining the world and joint spaces. The robot movement 

benefits from the roadmap generation by maximizing the clearance to the obstacles using 

collision detection. A hysteresis that reduces re-planning is applied to reduce real robot 

movements. In addition, this hysteresis also increases the knowledge of the environment by 

adding sensor data to the world model. 

10.2 Pre-Existing Data Import 

In the chosen scenario, the two obstacles, O1 and O2, are given as drawing exchange 

format files, and are imported either with the robot or with the pointing device by placing 

virtual objects or by absolute data of the DXF file to the environment model. One obstacle, 

O3, is ‘unknown’ to the system (not imported).  

10.3 Mission Preparation 

The chosen scenario consists of a mission with positions P1 and P10 and the application 

path P7 to P8, which is a straight line with the hand tool equipment of the robot closed. The 

pointing device was used to store the locations of the application paths together with the 

support system.  



10 System Implementation 

186 

P1: Start
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Figure 123: Experimental scenario (2D example in 3D world). 

 

Figure 124: Screenshot of the experimental scenario. 

10.4 Roadmap Generation 

The scenario in Figure 123 is processed using the roadmap shown in Figure 125. Each 

cell of the roadmap contains the produced robot positions in the configuration space, as 

explained in Subsection 8.5.3. 
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Figure 125: Roadmap of the scenario (without obstacle O3). 

10.5 Path-Planning Application 

Using the roadmap generated in Section 10.4, the resulting corridor is illustrated in  

Figure 126, including the indicated configuration space positions. The search is executed 

on these positions, and it finds a path, as illustrated in the figure. Configuration space 

positions are also added to the start and target positions including their extended cells, as 

explained in Subsection 8.5.6.  
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 Figure 126: Roadmap corridor including configuration space positions. 

10.6 Elastic Net Trajectory Generation 

As shown in Figure 128, the found path is processed and adapted to a feasible 

trajectory. 
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Figure 127: Trajectory through the roadmap without obstacle O3. 
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Figure 128: Elastic net trajectory generation. 

The elastic net algorithm is parameterized with respect to its shrink forces. These forces 

(shown as arrows in Figure 128) move the particles on a straight line, and thus push the 

trajectory to the obstacles. The stronger the force, the more the trajectory is moved towards 

the obstacles, and the greater will be the number of collisions that may occur. The path-

planning system first controls the real robot along a trajectory with low shrink forces 

applied to reduce the number of collision indications until either a collision is indicated or 

the target is reached. After the final trajectory is found, the shrink force may be raised to 

optimize the trajectory.  

10.7 Re-planning of the Robot Path 

As mentioned in Section 10.4, the search is executed within the roadmap corridor 

containing configuration space positions of the robot. During the movement execution of a 

solution, new information about the workspace and the obstacles may be added to the 

world model. This normally happens when collisions are indicated. With a dynamic update 

of the world model, a new search is initiated. The real robot stops its previous movements, 

moves back to the last common trajectory position and follows the new trajectory. Figure 

129 illustrates the environment exploration; the resulting world model is updated to 

recognize obstacle O3. As a result, the Voronoi roadmap plans a new trajectory around the 

newly added obstacle location. It turns out that these locations are also occupied, and 

therefore, a completely new trajectory is found, as shown in Figure 130, which is further 

modified as described in Section 10.4. 
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Figure 129: Adding collision indication positions (part of obstacle O3). 
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Figure 130: New re-planned path. 

The path-planning algorithm searches within the robot configuration space of an 

articulated robot, which is located within the corridor. A configuration space is a part of 

the working space with a specific setting of the robot arm parameters ARM, ELBOW and 

FLIP (Abramowski, 1989, Siegert and Bocionek, 1996). The transition from one class into 

another class is not trivial. A solution would be to combine all configurations into a single 

configuration graph, and to detect neighbouring nodes of each configuration graph, adding 

an edge between them. Two positions within the configuration space graph may be 

connected, if there is a continuous function between them which is kinematically valid. 
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Robot arm parameters were not considered in this approach and illegal positions were 

considered as collisions. 

10.8 Robot Program Generation 

The scenario in  Figure 126 was created with a mission containing the start and target 

locations as well as a single application path from P7 to P8. Once the mission is 

successfully planned, the robot program file may be generated. 

P1: Start

P7 P8

P10: Target

O1

O2

O3

 

Figure 131: Experimental scenario. 

The trajectory planning results are depicted in Figure 132, and are compared to the 

manually-programmed trajectory. The duration of the robot programming task is 

summarized in Section 10.9. 

P1: Start
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Figure 132: Automatically planned path. 
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Figure 133: Manually planned path. 

The program generation of the automatically planned path is template-based. Thus, only 

the dynamic content of the file is shown in Listing 12 and Listing 13:  
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10 MOV P2 

20 MVR P2,P3,P7 

30 HOPEN 1 

40 MVS P8 

50 MVR P8,P9,P10 

 

 

Listing 12: Manually-programmed Melfa Basic IV 

file. 

10 MOV P2 

20 MVR P2,P3,P4 

30 MVS P5 

40 MVR P5,P6,P7 

50 HOPEN 1 

60 MVS P8 

40 MVR P8,P9,P10 

Listing 13: Automatically generated Melfa Basic 

IV robot program file. 

The movement primitives circular and linear are respectively identified as MVR and 

MVS robot commands. The program, which is composed of 6-movement primitives, is still 

readable by a human. The final movements of the robot are comparable to the manually 

programmed ones. Manual modifications may still be carried out within the program, even 

for larger missions. 

10.9 Robot Programming Duration 

The overall time taken for the proposed system to generate a robot program file for the 

scenario was about 20 minutes (see Table 11, row 9), including mission preparation, data 

import and program file generation. The proposed system was compared with offline 

programming and conventional online programming methods. Both programming methods 

include the use of tools such as the Mitsubishi programming tool COSIROP/MELSOFT 

(Mitsubishi-Electric, 2008) or RobCAD. Offline programming and conventional online 

programming requires highly-skilled operators, while only a basic knowledge is required 

for supported robot programming. Online programming only considers the available 

physical objects, whereas offline and supported programming support models of these 

objects. The time taken for each step in the process is given in Table 11. 
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Id 

 

 

Program execution time** 

 

Online 

[seconds] 

 

Supported 

[seconds] 

 

Offline 

[seconds] 

    Task 

0    Offline programming 0 0 7200 

1    System installation 10 600 10 

2    DXF import 0 30 0 

3    DXF placement 0 300 0 

4    Set start/goal locations 60 60/0* 0-60 

5    Set application locations 60 60/0* 0-60 

6    Program or modify path 240 60 0-240 

7    Save/upload program 20 10 20 

8    Sum (online) 390 1120/1000 30-390 

9    Sum (overall) 390 1120/1000 7230-7590 

Table 11: Path planning execution times. 

(* if locations are stored within DXF; ** for extrapolated times). 

The times shown in Table 11 may be divided into fixed and task-dependent times. 

Usually, within an industrial setting, it is not required to place numerous models into the 

workspace; therefore, they may be seen as fixed.  

Moreover, it should not be necessary to set the locations, although program generation 

is highly dependent on the size of the program (see rows 4-6 in Table 11).  

 

Table 12: Comparison of the online programming times. 
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Table 13: Comparison of the overall programming times. 

 Table 12 illustrates the online programming time only and Table 13 represents the 

overall programming time for each programming method. Offline programming must be 

separated into minimum, maximum and normal values, which represent the online 

modification of the offline-generated program within the robot cell. The normal values 

may vary within the minimum and maximum values, depending on the quality of the 

offline generated robot program. Online programming can be applied very quickly, and 

should be used for small program sizes since the programming time significantly increases 

relative to the program size. Supported online programming requires an equal amount of 

time and a small fixed installation time when compared to normal values of the offline 

programming method.  

Table 13 illustrates the online programming time including the preparation times, and it 

shows an additional preparation time for offline programming also mentioned in Table 11, 

row 0. The offline preparation time can be omitted entirely to save offline programming 

expenses, since the speed of programming for offline and supported online programming is 

equal. This is highly dependent on the quality of offline-generated programs, and may 

affect the ‘offline (normal)’ values in Tables 2 and 3. In the small example scenario 

presented, a total of 2 hours of offline programming, including the operator and the 

simulation tool, could be omitted, leading to cost savings. Therefore, supported online 

programming is recommended, especially for small batched manufacturing and high-

volume production.  
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10.10 Summary 

A trajectory planning approach has been presented based on the properties of the 

roadmap generation algorithm and the elastic net. The pre-calculated configuration space is 

deterministically sampled and stored within the octree cells. To reduce the search space, 

only configurations within the roadmap are considered during the A* search. The 

generated roadmap is based on the maximization of the clearance to obstacles in world 

space. It can be calculated simply and quickly, applying the proposed cell-based algorithm. 

New obstacle locations are dynamically added to the world model, which allows re-

planning of the path. The elastic net optimizes the robot configurations of the found path to 

generate a manageable trajectory consisting of circular and linear movement primitives. It 

adapts itself to obstacles and to unreachable regions. Through the applied forces of the 

elastic net algorithm, the extent of adaptation is controlled. The presented algorithm is 

applicable for mobile and articulated robots working in a high-dimensional space.  

One of the main benefits derived from this approach resides in the real time capability, 

which enables online robot programming. The Voronoi creation algorithm optimizes the 

Voronoi edges during real-time, which is an important aspect for practical use. Compared 

to offline programming, the presented approach does not require any pre-processing of 

information. The presented robot programming support system utilizing the trajectory-

planning approach takes over the most complicated tasks, considering the basic knowledge 

of the operator. It renders offline systems as unnecessary, and helps to minimize robot-

programming costs. 
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11 Discussion 
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Manufacture on an industrial scale may require the programming of robotic manipulator 

devices. In such cases, precise and accurate programming is necessary if error free 

production and high quality products are to be assured. Online robot programming is a 

time consuming and complicated task, and requires that the entire production system be put 

out of production for significant time periods while data is being entered. Only well trained 

operators are able to execute this step in a satisfying way with respect to obtaining quality 

outcomes and short durations. Thus, the outcome and duration are closely linked to the 

experience of the worker.  

The complexity of programming remains one of the major hurdles preventing 

automation using industrial robots for small to medium sized manufacturing. Offline 

programming with a simulation system has been introduced for large volume 

manufacturing but the additional efforts in offline programming makes it inefficient for 

small to medium sized manufacturing. Although online programming methods have been 

researched in the past to make online programming more intuitive, less reliant on operator 

skill and more automatic, most of the research outcomes have not become commercially 

available. 

The general research aim was to establish an enhanced online robot programming 

system, which helps the robot operator to create robot programs in an industrial production 

environment. Its use must be kept simple for the operator and it has to function with the 

delivered sensor data. The created robot program has to be manually changeable and 

maintainable. The framework is defined by the employed algorithm and the usage of the 

robot programming support system in real environments, together with the limited sensory 

input.  

This work helps operators to improve their productivity. The acceptance of the robot 

programming system is dependent on its usability. The techniques applied in the system 

are of a complex nature, but are not transparent to the user. The interface only offers up 

front the information that is really needed and what is considered to be the most valuable 

information. The robot programming system is designed in such a way that it guides the 

operator throughout the process, and gives advice regarding the optimum manufacturing 

strategy and mission and trajectory planning. 

The development of the system started by evaluating key requirements for the 

production industry to enhance online robot programming, especially when compared to 
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the offline programming approach. One important outcome of this work was the 

connection of the Mitsubishi RV-2AJ manipulator, together with its kinematics 

calculations and control. It also introduced a probabilistic world model which fuses sensor 

information required for automated path planning. The world model generates a roadmap 

that allows path planning in real-time, even with inaccurate and less sensor information. 

The found path is further transformed by an elastic net algorithm into a robot trajectory, 

and is subsequently generated into a robot program. A model-driven code generation 

framework helps to overcome the software implementation complexity. 

The identified requirements for industrial robot programming include a fast robot 

programming approach that delivers high-quality results, and which is paired with intuitive 

usage. Considering the additional requirements of maintainability and reusability, a 

software design was proposed and implemented in this study. 

Commanding the robot manipulator and receiving position information in a real-time 

manner is indispensable for the robot-programming framework. It has been shown that the 

employed Mitsubishi robot can be controlled in real-time using manually written software 

extensions. The integration of the programming system into the existing manufacture 

environment has been proven for the employed robot. 

The developed probabilistic world model is optimized for Cartesian space, 

configuration space and CAD data. Each source type is stored in its own storage, and is 

queried by the roadmap generation algorithm. This was necessary because collisions of the 

robot manipulator are indicated by sensors, and the collision points have to be stored in the 

configuration space of the robot. Cartesian space and CAD data can be stored directly 

without any transformation. The CAD data is stored within Java3D, which is also used for 

visualization and collision checks. This approach considers CAD data, world and robot 

joint coordinates (obstacles and collision indication postures), and joins them in the octree. 

The transition is an important step, since inverse calculations of target positions for 

articulated robots often result in non-singular robot postures. Reported collisions occur in a 

single posture, and postures have therefore been stored within the octree cells for obstacle 

avoidance. 

The achieved algorithm employs Voronoi roadmaps in the first instance. This allows a 

high probability for collision-free movements of the robot through the workspace, 

considering a minimum knowledge of obstacles within the environment. The Voronoi 
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roadmap supports path planning with only little sensory input, which is most often 

obtainable in real environments. While the robot is moving along the Voronoi path, 

collision information indicated by the operator or other sensors is used to improve the 

roadmap, and exploration of the environment therefore takes place. A trajectory planning 

approach has been presented based on the properties of the roadmap generation algorithm 

and the elastic net for the planning of missions with multiple goals. The pre-calculated 

configuration space is deterministically sampled and stored within the world space. Only 

configurations within the roadmap are considered during path searching to reduce the 

search space. The generated roadmap is based on the maximization of the clearance to 

obstacles in world space; thereby reducing the requirements for accuracy. It can be 

calculated quickly and easily by applying the proposed cell-based algorithm. New obstacle 

and collision locations are dynamically added to the world model, which allows the re-

planning of the path. 

Shortest path planning is executed on points along the Voronoi edges, and is optimized 

in the second stage to generate the trajectory. Although other solution candidates may be 

shorter after optimization, this approach presents a good approximation. This two-stage 

approach allows the use of low accuracies in the search stage, which speeds up the 

algorithm. The accuracy of the octree controls the capability of the path-searching 

algorithm to find small passages. The creation of discrete configuration-space elements is 

optimised for accuracy. An excess of discrete positions may lead to increased path 

planning times, whereas too few positions prevent the path planner from finding a solution.  

The application of the elastic net both transforms the found path into a trajectory and 

optimizes that trajectory. It deforms and stretches the path to reduce the clearance to the 

obstacles, and the world model is thereby updated. This is an important feature to stretch or 

shorten the generated trajectories along Voronoi edges, which are otherwise not short and 

smooth.  

The developed elastic net moves the robot configurations of the found path so that a 

trajectory consisting of circular and linear movement primitives is generated. It adapts 

itself to obstacles and to unreachable regions. Through the applied forces of the elastic net 

algorithm, the extent of the adaptation is controlled. Together with the Voronoi based 

roadmap, this path-planning approach provides a customised solution that handles 

inaccurate information. 
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The movement primitives are stored within the robot program file which considers the 

special syntax of the target robot programming language and can be uploaded directly to 

the robot system. 

The tool is applicable to real industrial scenarios where articulated robots work in multi-

dimensional spaces. One of the main benefits derived from this application is its real-time 

capability. By creating the opportunity to work successfully online, offline simulation 

systems become unnecessary; moreover, the overall time required for larger missions 

decreases. This support system is based on two specifics: the Voronoi roadmap and the 

elastic net, which both target the planning of missions with multiple goals. The new 

approach transforms the user interaction into a simplified task that generates acceptable 

trajectories which are applicable for industrial robot programming. In addition, it works 

successfully with only a basic knowledge of the operator, and requires the use of only the 

software application. The trade-off’s optimality, path planning & smoothing, and 

maintainability are considered in the new approach. The new criteria maintainability and 

reusability were introduced, and the experiment has demonstrated that the system 

successfully addresses and satisfies the modern requirements emanating from the industrial 

market. The process is optimized, offline programming time may be saved, and online 

programming becomes easier. 
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The general research aim was to establish an enhanced online robot programming 

system, which helps the robot operator to create robot program files in an industrial 

production environment and which renders offline robot programming unnecessary.  

The adoption of online programming by industry, objective one, was addressed in 

Chapter 5 and the results showed that a system for online robot programming was required 

which is able to generate robot programs online with a minimum production downtime. A 

fast robot program creation can only be realized with a simple HMI and an intelligent 

trajectory planning algorithm. The intelligent trajectory planning algorithm requires both, 

the availability of an efficient world model and a robot control framework as well as a 

robot model. A comparison with offline programming in Section 5.5 showed that the use of 

CAD data is important because real objects are not always at hand. The current offline 

system capabilities have to be met to replace the offline with online programming systems. 

Objective two was addressed in Chapter 6 and the results showed that besides 

processing of the inexact sensor data to make them consistent, the types of information 

sources were important. Not only six dimensional position and orientation data in spatial 

space was required, but also robot joint space coordinates and CAD model data. In fact, 

this lead to three different world models merged into one. The merged world model 

provides the occupancy information to the trajectory planning system. 

Objective three was addressed in Chapter 7 and the results showed the control of the 

Mitsubishi RV-2AJ robot manipulator and the Festo Robotino robots were possible. The 

robot control capability was important because the mission and trajectory planning 

algorithm moves the robots during online robot programming to explore the environment 

and to find a shortest trajectory. The robot kinematic model was important for the 

trajectory planner for forward and backward calculations during trajectory computations. 

Objective four was addressed in Chapter 8 and the results showed that the required 

simple and efficient use of the system and the feasibility of trajectory planning within a 

real industrial environment were successfully solved with a cell based trajectory planning 

algorithm. It is based on Voronoi diagram approximation within a hierarchical data 

structure for the world model that also combines the robot joint and Cartesian space. The 

so found paths were transformed to particles in order to create trajectories, which were 

then transformed with templates to a robot program file. By combining the robot joint and 

Cartesian space, the search space was reduced to the cells only in order to allow the 
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Voronoi diagram approximation. The robot joint coordinates were then further used for the 

shortest path-finding algorithm. 

Objective five was addressed in Chapter 9 and the results showed that domain specific 

modelling might simplify complex software systems but require a large amount of time for 

its implementation. In this work, the time for its implementation was larger than its benefit, 

thus, it will become more important for large projects and development teams or recurring 

projects in a specific domain. 

In summary, the investigation has produced a new approach to the programming of 

robots in industry. The techniques developed in this study benefit an improvement in the 

speed of online robot programming and can render offline programming unnecessary. At 

the same time the quality of the automatic generated robot programs is equal compared to 

manually written or offline generated programs and it may still be improved in future. The 

costs for the equipment and infrastructure as well as the skilled workers for offline 

programming can be saved. The amount of time for pre-processing has been reduced 

drastically and helps to reduce costs. Overall, it is considered that the research has 

accomplished its stated aims. This study has provided a new and important contribution to 

the development of techniques for trajectory planning and assisted robot programming.  

Finally, on a general scientific level, this work shows that technical solutions require a 

good usability in order to be practically applicable. The knowledge transfer between the 

human operator and the expert system has been implemented through a fluent workflow 

with a graphical user interface to guide the operator. The developed algorithms are targeted 

to an application in the real production system, but they can also be applied to offline robot 

programming systems to help the offline simulation expert to generate feasible and high 

quality robot trajectories. The implemented software development system for complex 

systems is not restricted to robotic applications and can be used for software development 

in general. The generic results of this research may be used in a wide variety of alternative 

applications in which trajectory planning is required. Not only in small to medium sized 

and high volume production industry but also in the diverse fields of research and 

development for further investigations into robot trajectory planning, home robots, surgery 

and health care assistant machines. 
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The investigations introduced new findings in the field of assisted online robot 

programming, and proposed a new robot programming approach in the production 

industry. Further works can be undertaken based on the results of this study and in related 

areas. 

This study introduced a new system for the enhancement of assisted robot 

programming. The operator benefits by obtaining advice regarding all robot programming 

tasks including trajectory planning, and the throughput is therefore increased. Further work 

is still required to enable the system to be applicable in different areas than manufacturing. 

The enhanced online robot programming system should be integrated in the entire 

process as tightly as possible. One possibility would be the enhancement of the HMI to 

improve manual robot control and the pointing device. Manual robot control functionalities 

should be further developed, including the use of neural networks. For example, the 

joystick may be extended to move the robot, while unreachable portions of the world space 

may be automatically avoided. 

The handling of dynamic obstacles should be further researched and the synchronization 

with the support system should be automated. Other cooperating robots are types of 

dynamic obstacles, which support information exchange for further integration into the 

mission-planning algorithm and the world model. This may enable the formation of a 

single, holistic world model of the production cell including all robots sharing their local 

world model and multi-robot control. This requires the exchange of world models and 

planning information. Because every robot has its own world model, these models have to 

be calibrated to obtain the absolute positions of each of the models. 

Dynamic collision avoidance may lead to the permanent use of the proposed system. 

The flexibility of industrial robots can be optimized by allowing production robots to avoid 

moving obstacles while executing their pre-programmed task. Therefore, the identified 

obstacle types mentioned in Subsection 8.5.7 come into play. While this thesis handles 

only static and timely synchronized objects with predictable movement, other obstacle 

types such as timely unsynchronized obstacles or obstacles with unpredictable movement 

may also be considered. 

The standard A* algorithm used may be extended in the future to the Anytime Dynamic 

A* (AD*) algorithm (Likhachev et al., 2005). The uniform sampling scheme that was 
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applied in this work tends to have more joint coordinates within the corridor than are 

necessary. This has a direct impact on the performance of the path-finding algorithm. The 

proposed algorithm should be extended to use a non-uniform configuration space-sampling 

scheme. 

The robot kinematic may be provided using a software module. However, it is not 

always possible to access those software modules. A learnable robot kinematic module 

may be employed to use any robot type, regardless of its geometry. Function approximator 

neural networks have also shown good results. Through supervised and unsupervised 

online learning, the input and output of the kinematic learning module may be optimized 

during runtime. 

Mission- and task-specific extensions to the software have not yet been incorporated. 

These include application path information for welding, adhesive bonding and handling. 

The definition of the robot application path, e.g. spraying, gluing, painting, handling and 

cutting, should be further investigated to provide additional application-specific 

configurability. This gives the operator the ability to modify the outcome. 

The complete software package was developed as a mixture of Java and C++ code, and 

required an additional communication layer, for example to call native functions directly 

from Java. For the integration of GUIs, only the middleware is sufficient, and it renders the 

communication layer obsolete. Therefore, it is intended to transfer the remaining software 

to Matlab/Simulink in order to improve the quality of the software. 
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A. List of Publications

The following is a list of publications produced by the author during the course of the 

investigations outlined in this thesis. 

1. KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. 2012. 

A Flexible Model Driven Robotics Development Framework. The 43rd 

International Symposium on Robotics (ISR). Taipei, Taiwan. 

This publication is based on investigations accomplished as part of objective five. 

 

Abstract - A flexible robotics development framework has been established to 

allow rapid development of high-performance real-time applications from 

distributed software components. The framework interconnects software 

components and hardware devices as well as specialized third party software 

applications to allow integration into the communication system with ease. A 

model driven approach has been chosen in order to raise the usability of the 

framework using a visual modeling language. A communication middleware has 

been evaluated for the interconnection of the components. This paper introduces the 

required tools, proposes a model driven development framework for robotic 

applications and provides experiences in the development and use of such 

frameworks. 

 

2. KOHRT, C., PIPE, A. G., KIELY, J., STAMP, R. and SCHIEDERMEIER, G. 

2012. A cell based voronoi roadmap for motion planning of articulated robots using 

movement primitives. International Conference on Robotics and Biomimetics 

(ROBIO). Guangzhou, China: IEEE. 

This publication is based on investigations accomplished as part of the objectives 

two and four. 

 

Abstract - The manufacturing industry today is still focused on the maximization of 

production. A possible development able to support the global achievement of this 

goal is the implementation of a new support system for trajectory planning, specific 

for industrial robots. This paper describes the trajectory-planning algorithm, able to 

generate trajectories manageable by human operators, consisting of linear and 

circular movement primitives. First, the world model and a topology preserving 
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roadmap are stored in a probabilistic occupancy octree by applying a cell extension 

based algorithm. Successively, the roadmap is constructed within the free reachable 

joint space maximizing the clearance to the obstacles. A search algorithm is applied 

on robot configuration positions within the roadmap to identify a path avoiding 

static obstacles. Finally, the resulting path is converted through an elastic net 

algorithm into a robot trajectory, which consists of canonical ordered linear and 

circular movement primitives. The algorithm is demonstrated in a real industrial 

manipulator context. 

 

3. KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. 2011. 

An Online Robot Trajectory Planning and Programming Support System for 

Industrial Use. Journal of Robotics and Computer-Integrated Manufacturing. 

This publication is based on investigations accomplished as part of objective one. 

 

Abstract - The manufacturing industry today is still looking for enhancement of 

their production. Programming of articulated production robots is a major area for 

improvement. Today, offline simulation modified by manual programming is 

widely used to reduce production downtimes but requires financial investments in 

terms of additional personnel and equipment costs. The requirements have been 

evaluated considering modern manufacturing aspects and a new online robot 

trajectory planning and programming support system is presented for industrial use. 

The proposed methodology is executed solely online, rendering offline simulation 

obsolete and thereby reduces costs. To enable this system, a new cell-based 

Voronoi generation algorithm, together with a trajectory planner, is introduced. The 

robot trajectories so achieved are comparable to manually programmed robot 

programs. The results for a Mitsubishi RV-2AJ five axis industrial robot are 

presented. 

 

4. KOHRT, C., PIPE, A., SCHIEDERMEIER, G., STAMP, R. and KIELY, J. 2008. 

A robot manipulator communications and control framework. Proc. IEEE Int. Conf. 

on Mechatronics and Automation ICMA. 

This publication is based on investigations accomplished as part of objective three. 
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Abstract - The use of industrial scale experimental machinery robot systems such as 

the Mitsubishi RV-2AJ manipulator in research to experimentally prove new 

theories is a great opportunity. The robot manipulator communications and control 

framework written in Java simplifies the use of Mitsubishi robot manipulators and 

provides communication between a personal computer and the robot. Connecting a 

personal computer leads to different communication modes each with specific 

properties, explained in detail. Integration of the framework for scientific use is 

shown in conjunction with a graphical user-interface and within Simulink as a 

Simulink block. An example application for assisted robot program generation is 

described. 

 

5. KOHRT, C., SCHIEDERMEIER, G., PIPE, A. G., KIELY, J. and STAMP, R. 

2006. Nonholonomic Motion Planning by Means of Particles. International 

Mechatronics and Automation Conference. Luoyang, China: IEEE. 

This publication is based on investigations accomplished as part of objective four. 

 

Abstract - In this article a new approach to planning of a nonholonomic motion is 

presented. A flexible, intelligent planner based on a static map and the topology of 

the robot’s environment has been developed. The approach uses ‘particles’ to 

construct automatically a path between two given locations. The generated path is a 

smooth trajectory, where the length of the path is kept at a minimum and obstacles 

are avoided. This concept applies to robots meeting the restrictions of a Dubin’s car 

(nonholonomic robot that can only move forward). After the basic concepts of the 

approach has been described, simulations will be presented. 

 

6. KOHRT, C., ROJKO, R., REICHER, T. and SCHIEDERMEIER, G. 2006. With 

Model Based Design To Productive Solutions Professional GUIs For Simulink By 

Utilizing The Java SWT Library. WEKA  FACHZEITSCHR.-VERLAG, KFZ-

Elektronik. 

This publication is based on investigations accomplished as part of the objectives 

four and five. 

 

Abstract - The Model-Based Design (MBD) approach is a widely used method to 

solve sci-entific engineering challenges [1]. Matlab/Simulink as a representative of 
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MBD is a tool capable of exploiting the advantageous aspects of a graphical user 

inter-face (GUI). The latter is created with a tool named GUIDE, which is shipped 

with the Matlab/Simulink software. Unfortunately, user interfaces created with 

GUIDE have some drawbacks. Thus, new approaches are needed to overcome 

these draw-backs to improve the design of the GUI. It is surprising, that the Java 

SWT library (Standard Widget Toolkit) is not used for such user interfaces. 

Although not sup-ported by Mathworks, this article compares the features of an 

SWT based GUI to the GUIDE, explains the practical implementation of SWT 

GUIs by examples and gives an outlook to the wide field of applications taking 

benefit. 
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B. Materials & Equipment 

The proposed support system is applied on a 5-axis industrial-scale, articulated 

Mitsubishi RV-2AJ robot with an additional Ethernet card installed. It is a nonlinear 

system with five rotary joints. The robot is equipped with the Mitsubishi CR1 controller 

and a teach pendant. The main areas of the robot are assembly, manufacture, pick & place 

and handling tasks. Communication between this system and a personal computer is 

possible (Kohrt et al., 2008); the commercial viability has already been demonstrated 

(Mitsubishi-Electric, 2008). The equipment is shown in Figure 134.  

       

Figure 134: Devices overview.  

The robot manipulator communications and control framework is executed on the 

personal computer, which has an Ethernet and serial port connection to the robot 

controller. The teach pendant and the robot are connected to the controller. The vision 

system and the pointing device are plugged in to the personal computer. The framework is 

verified with a visual servo-control application including collision detection and 

Matlab/Simulink integration.  

The Industrial Robot Manipulator Mitsubishi RV-2AJ  

A  Mitsubishi RV-2AJ robot as shown in Figure 135 is used with an additional Ethernet 

card installed throughout this work. It is a typical industrial robot widely used. The robot is 

installed at the lab of the Computer Sciences Department at the University of Applied 
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Sciences Landshut, Germany. The robot is equipped with the Mitsubishi CR1 controller 

and a teach pendant. 

 

Figure 135: The Robot manipulator Mitsubishi RV-2AJ. 

These robots are advanced, but mature and industrially proven machines; their 

commercial viability has already been demonstrated in the manufacture of car sub-

assemblies, semiconductor memories and other industrial/consumer goods within 

companies such as Jaguar and Audi. The main areas of application are: 

 Assembling / manufacturing, 

 handling in laboratories, 

 semiconductor manufacturing and monitoring, 

 blank manufacturing and monitoring, 

 pick and place and 

 robot training. 

The robot type RV-2AJ is an articulated robot (R) that operates vertically (V) with 

maximum payload of 2 kg. It is the Mitsubishi robot series S with 5 joints. Data of the 

robot arm RV-2AJ: 

 Repeatability   0.02 mm 

 Max. payload   2 kg 

 Max. velocity   2,100 mm/s 

 Reach    410 mm 
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 robot weight   17 kg 

The robot has the following functions: 

 Compliance Control function 

 Multitasking operating system  

 Load-based acceleration optimization  

 Individual axis torque monitoring  

 Sensor less crash detection 

 Control functions for additional axes  

 IP65 protection rating (axes 4-6) 

The Controller 

The controller Mitsubishi CR1 Mitsubishi CR1 is a New Architecture Robot 

Controller (NARC).  

 

Figure 136: CR1 Controller. 

Standard functions of the robot controller are: 

 Easy-to-learn control instruction set, 

 axis, linear and three dimensional circular interpolation, 

 subroutines, 

 execute up to 32 programs simultaneously, 

 integrated math functions, 

 integrated palletizing functions, 

 interrupt handling, 

 compliance Control function and 

 tracking (conveyor belt synchronization). 
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The Mobile Robot Robotino 

The mobile robot Robotino in Figure 137, produced by the company Festo (Festo, 

2011), is employed as an experimental framework to research on path planning algorithm 

development. The Robotino robot is featured with different sensors like a camera and 

twelve infrared proximity sensors, which have been utilized for sensor fusion development. 

It provides a Java robot control framework that can directly be employed. The provided 

robot control framework supports wireless local area network connections to command the 

robot and to obtain sensor information.  

 

Figure 137: A Robotino robot from the company Festo. 
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C. Robot Control

This appendix summarizes the protocol format of the Mitsubishi CR1 Controller for 

transmitting and receiving. 

Controller Parameters 

Table 14 has been used to set up the controller for each communication mode. 
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Parameter 

name 

Details Number 

of 

elements 

Default value Controller  

commnuni- 

cation mode 

Data 

link 

mode 

Real-time 

external 

control 

mode 

NETIP IP address of robot controller Character 

string 1 

192.168.0.1 X X X 

NETMSK Sub-net-mask Character 

string 1 

255.255.255.255 X X X 

NETPORT Port No. 

Range 0 to 32767 

For function expansion (reserved) 
 

Correspond to OPT 11-19 of COMDEV 

----------- 
 (OPT11) 

(OPT12) 

(OPT13) 
(OPT14) 

(OPT15) 

(OPT16) 
(OPT17) 

(OPT18) 

(OPT19) 

Numerical 

value 10 

 

 

 

 
 

 

10000, 
10001, 

10002, 

10003, 
10004, 

10005, 

10006, 
10007, 

10008, 

10009 

X X X 

CPRCE11 

CPRCE12 

CPRCE13 
CPRCE14 

CPRCE15 

CPRCE16 
CPRCE17 

CPRCE18 

CPRCE19 
 

Protocol  

0: No-procedure 

1: Procedure 
2: Data link 

(1: Procedure has currently no function.) 

 
Correspond to OPT 11-19 of COMDEV 

 

(OPT11) 
(OPT12) 

(OPT13) 

(OPT14) 
(OPT15) 

(OPT16) 

(OPT17) 
(OPT18) 

(OPT19) 

Numerical 

value 9 

 

 

 

 
 

 

 
 

 

0, 
0, 

0, 

0, 
0, 

0, 

0, 
0, 

0 

- X - 

COMDEV 
 

Definition of device corresponding to COM1: to 
8: 

 

Definition of device corresponding to COM1: 
Definition of device corresponding to COM2: 

Definition of device corresponding to COM3: 

Definition of device corresponding to COM4: 
Definition of device corresponding to COM5: 

Definition of device corresponding to COM6: 

Definition of device corresponding to COM7: 
Definition of device corresponding to COM8: 

 

When the data link is applied, setting is 
necessary. 

OPT11 to OPT19 are allocated. Here, 

RS-232C of the controller is previously allocated 
to COM1: . 

 

 
 

Character 
string 8 

 

 
 

 

RS232C, 
, 

, 

,  
,  

,  

, 
, 

- X - 

Table 14: Controller communication mode set up. 
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NETMODE 
 

Server designation (1: Server, 0: Client) 
(OPT11) 

(OPT12) 

(OPT13) 
(OPT14) 

(OPT15) 

(OPT16) 
(OPT17) 

(OPT18) 

(OPT19) 
 

Numerical 
value 9 

 

 
1, 

1, 

1, 
1, 

1, 

1, 
1, 

1, 

1 
 

- X - 

NETHSTIP 

 

The IP address of the data communication 

destination server. 
* It is valid if specified as the client by 

NETMODE only. 

(OPT11) 
(OPT12) 

(OPT13) 

(OPT14) 
(OPT15) 

(OPT16) 

(OPT17) 
(OPT18) 

(OPT19) 

Character 

string 9 . 
 

 

 
 

 

192.168.0.2, 
192.168.0.3, 

192.168.0.4, 

192.168.0.5, 
192.168.0.6, 

192.168.0.7, 

192.168.0.8, 
192.168.0.9, 

192.168.0.10 

- X - 

MXTTOUT 
 

Timeout time for executing real-time external 
control command 

(Multiple of 7.1msec, Set -1 to disable timeout) 

Value 1 
(0-32767) 

 

-1 
 

- - X 

Table 15: Controller communication mode set up (continued). 

The default parameters for the Ethernet card are: 

 COM1 

 9600 baud 

 8 data bits 

 even parity 

 stop bits 

 DTR on 

 RTS/CTS on 

 XON/XOFF off 

Controller Protocol Format 

Transmit data 

[< Robot No.>];[< Slot No>];<Command> <Argument> 

< Robot No.> 

The robot number to be operated is specified to 1, 2 or 3. It is possible to 

omit it. The standard value is 1.  

< Slot No> 

The slot number to be operated can be specified to 1 - 33.  Parameter 

'TASKMAX' is a number of task slots used by the multitask program. 
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When the program is edited from the PC, the edit slot is used. The slot 

number of the edit slot is parameter TASKMAX+1. In this case, because 

an initial value of TASKMAX is 8, the number of the edit slot is 9. It is 

possible to omit it. The standard value is 1. 

<Command> <Argument> 

These arguments are command specific. 

Receive data 
Commands Contents 

QoK**** Normal status 

Qok**** Error status 

QeR**** Illegal data.(with error number (4 digit)) 

Qer**** Error status and illegal data. (with error number (4 digit)) 

Table 16: Receive command pattern. 

QoK<Answer> 

This argument differs in each command. Refer to the explanation of each 

command. 

Qok<Error status> 

This argument replies the error number when the command may not be 

executed. Refer to the troubleshooting manual of the robot for the 

description of the error number. 

QeR<Illegal data with 4-digit error number> 

This argument replies the error number when the command may not be 

executed. Refer to the troubleshooting manual of the robot for the 

description of the error number. 

Qer<Error status and illegal data with 4-digit error number> 

This argument replies the error number when the command may not be 

executed. Refer to the troubleshooting manual of the robot for the 

description of the error number. 
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D. Denavit-Hartenberg-Parameter

The DH-parameters are the standard method used to define the direct kinematics of a 

manipulator (Paul, 1981). A robot model is described with four DH-parameters for each 

rotational or translational joint. The joint axis for a rotational or translational degree-of-

freedom is always defined by the z-axis of the coordinate system. The transformation   
    

defined with the DH-parameter is a combination of the following four successive 

transformations: 

 Rotation around axis      by the angle    

 Translation along axis      by the distance    

 Translation along axis    by the distance    

 Rotation around axis    by the angle    

The parameter    for a rotational joint, and    is non-constant for a translational joint. 

The final transformation matrix that depends on the four parameters is as follows: 

(117)  

  
   (           )   

     
  (

   (  )     (  )     (  )    (  )     (  )       (  )

   (  )    (  )     (  )     (  )     (  )       (  )

    (  )    (  )   

    

) 

The DH-parameters are defined by construction rules for the joint coordinate system 

and their relations.  

Jointi

Armi-1

Armi Armi+1

Jointi+1

xi

αi

θi

xi-1
Oi-1

di

zi-1

θi

ai

ai-1

Oi

zi

θi+1

 

Figure 138: Constructed coordinate systems. 
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Basic rules for constructing the coordinate systems and the DH-parameters: 

 Arm   is the connection between the  -th and the (   )-th articulation. 

 The coordinate system    is dedicated to the i-th arm. 

 The coordinate system    is the fixed basic-coordinate system. 

 The   - axis is applied along the movement-axis of the (   )-th articulation. 

 The   - axis is the normal to the      axis and is pointed away from it. 

 The   - axis is defined such that a  legal framework is produced.   

Special Cases: 

   - axis and      axis cross each other. 

 There are two possibilities for setting    to be as perpendicular on the   - or 

    - axis. Either of them may be chosen.  

   - axis and      axis are parallel. 

The origin    may be arbitrary. 

   - axis and      axis cross each other. 

Both the    axis and the origin    may be arbitrary. 

The coordinate system’s attitude is described as follows: 

    Distance along the      axis between the origin      and the intercept of the 

     axis and the    axis. 

    Articulation angle around the      axis from the      axis to the projection 

of the    axis towards the     ,      plane.     

    Shortens the connection between      axis and    axis. 

    Angle of rotation around the    axis which levels the      axis with the    

axis.  
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E. Execution Model

An execution model consists of a set of rules that define the system behaviour. The 

execution model described in the ROOM standard (Selic, 1996a, Selic, 1996b, Selic et al., 

1994) was employed. ROOM is a visual modelling language with formal semantics and it 

was developed by ObjecTime. It is optimized for the specification, visualization, 

documentation and automation of the construction of complex, event-driven and 

potentially distributed real-time systems. The actor is the basic building block used to 

describe the structural design of a distributed system.  

Internal Structure of an Actor 

Simple functionality can be realized by an actor, which has no inner structure. Actors 

that are more complex have an internal structure, which is a network of collaborating sub-

actors joined by connectors. Therefore, the actor may delegate complex functionalities to 

sub-actors. Both the sub-actors and their connections are hidden from external observers. 

Sub-actors are actors in their own right, and can themselves be further decomposed into 

sub-actors. This type of decomposition can be carried on to any depth necessary, enabling 

the modelling of arbitrarily complex structures using only this basic set of modelling 

constructs.  

Ports of an Actor 

An actor communicates with its environment only via ports, as described in Figure 139. 

Ports are used to define dedicated points of interaction between the actor and its 

environment. Ports may either provide or require a service, which is specified by an 

interface. By connecting the ports of several actors, an interaction flow via messages can 

be established between them. The service provided by a port may either be realized by the 

actor itself (EndPort) or delegated to the port of a contained actor (RelayPort). The port of 

the contained actor has to provide the same service as the port of the (outer) actor. 

Communication via ports may be either synchronous or asynchronous. However, 

synchronous communication limits the ability of the port to deploy the actor. 

Communication or delegation between actors is allowed only via ports.  

By employing ports, the actors can be more easily distributed on different nodes, and 

the role of an actor is clearly defined and better encapsulation (to interact with it, only the 

port is required, and not the type of the actor) has been accomplished.. 
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Figure 139: Actor with ports. 

Behaviour of an Actor 

An actor defines behaviour that is specified by operations and optionally by a UniMod 

state machine. A state machine represents one part of the implementation of the actor, 

which is hidden from external observers. Operations can be either hidden or public, based 

on their usage. Direct synchronous calls can be executed on that actor operation when the 

method is public. Because the operation is called within the thread of the calling actor, the 

call has to be thread-safe. This has to be verified by the user. If the method is called 

synchronously over the ports, no additional synchronization is required because it is 

handled by the execution model. A complex actor may combine the state machine with an 

internal network of collaborating sub-actors that are joined by connectors. 

Message Service 

The message service manages communication between processing units for real-time 

applications either on single or distributed processors. It is a middleware between software 

components that communicate synchronously or asynchronously with other message 

services or actors.  

For distributed real-time applications, efficient system communication is needed. The 

distributed application may consist of components deployed on different processing units. 

The processing unit may be a general-purpose processor (GPP), digital signal processor 

(DSP) or a FPGA. Each processing unit may have its own special system architecture that 

influences different processes, for example the handling of threads. Threads can be either 

pre-emptive or co-operative, depending on the processing unit architecture. The deployed 

application may use one or more threads, and it may be programmed in languages such as 
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C, C++ or Java. The introduced Message Service has a runtime library for each processing 

unit/programming language combination that is used by the software components to 

communicate with other components in the same thread, between threads on the same 

processing unit or between processing units either synchronously or asynchronously. 

Message Service Communication Types 

Because different protocols can be used with Ethernets, depending on the requirements 

of the system, there should be flexibility with respect to the choice of the appropriate 

protocol. In addition, each processing unit may have different communication methods for 

inter-thread and intra-thread communication. This significantly affects the architecture of 

the Message Service, which has to be sufficiently abstract that it can be utilized by any 

processing unit and any programming language, and sufficiently concrete to fulfil the 

requirements of speed, code size and memory consumption that exist when using the 

processing unit and language specific methods. The following aspects have to be 

considered in the middleware: 

 Node 

 Thread 

 Programming language 

 Java Runtime Environment 

 Operating system (Windows, Linux, PowerPC and Integrity) 

 Synchronous/asynchronous method calls 

A comparison of the middlewares that were evaluated to implement the logical 

communication framework is given in Section 9.2. 

Logical Communication Framework 

Figure 140 shows the logical communication framework in its complete stage of 

expansion. Each processing unit has at least one thread with a message service. A thread 

uses pre-emptive scheduling with no memory protection. Therefore, there is exactly one 

message service in a thread and a thread may have one or more actors. The message 

service provides the middleware for communicating within a thread, between the threads 

on one node and between threads on different nodes.  
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Processing Unit 1 (DSP)

Thread 1

Message 

Service

Thread 2

Message 

Service

Thread 3

Message 

Service

Actor 1 Actor 2

Processing Unit 2 (PC)

Thread 1

Message 

Service

Thread 2

Message 

Service

Thread 3

Message 

Service

Actor 1 Actor 2

ICE

(full connected)

 

Figure 140: Communication overview. 

Running Loop 

Within a thread, the endless loop is controlled by a while loop which has a blocking call 

to read from one or more external queues. ‘Blocking’ means that it waits for a message on 

the external queue. If there are no messages, the thread sleeps and does not consume 

processing time. 

Thread {

   Init();

   while (1){

      Receive (…..,WAIT_FOREVER);

      switch(msg){

      case 1:

         ...

      break;

      case 2:

         …

      break;

   }

}

Statemachine

    Blocking read of 

one or more external 

queues
Endles loop

 

Figure 141: Running loop of a thread. 
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Scheduling 

The scheduling is illustrated in Figure 142. First, internal events are processed, followed 

by external events. This execution model provides a ‘run to completion’ feature in order to 

first complete the internal state machine before processing external events. 

Check internal 

queue

Empty
No

Yes

Check external 

queue

Process 

message

Process 

message

 

Figure 142: Event scheduling. 

Thread Priorities  

The priorities of threads may be settable on a processing unit. Within the execution 

model, thread priorities are used to allow more control over the runtime behaviour of the 

system. Threads with higher priorities are always executed first, and then the processing 

time is given to other threads. This complies with the pre-emptive threading model. 
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Operating system (DSP, PC)

HW

RT-Lib

Thread 2Thread 1 Thread 3

Actorclass

Actorclass

Actorreference

Actorclass

Actorreference

RT-LibDriver Driver

Thread {

   Init();

   while (1){           

      Receive(..,WAIT_FOREVER);

      switch(msg){

      case 1:

         ...

      break;

      case 2:

         …

      break;

   }

}

OS Queue

Priority control of the operating system

OS Queue (optional)

Internal Queue

M
s
g

 P
rio

OS Queue (optional)

Internal Queue

M
s
g

 P
rio

run to completion run to completionrun to completion

 

Figure 143: Thread priorities. 

Hardware events 

Hardware events, for example from the joystick, have to be transformed into a message 

format which conforms to the execution model. This is realized in interrupt routines. In 

Windows, the Java programming language has a hardware abstraction layer, which usually 

uses a listener concept. The listener implementation is then used to transform the event to a 

message. The message is processed either in an interrupt routine or in an event listener, 

which sends the message to a predefined port of an actor (see Figure 144). 
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Runtime-Library

Thread 2

Actorclass

„Driver 1“

- Port myPort;

+ config()

+ registerPort()

External Queue
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rio

run to completion

Operating System (DSP, PC)

InterruptPort

Driver1.config();

Driver1.registerPort(interruptPort);

ISR

...
myPort.raise();

myPort = interruptPort;

 

Figure 144: Interrupt handling. 

Message concept 

Messages are passed instead of calling methods directly. These messages have the 

required information to be delivered to the receiver. This makes the system more generic, 

and message handling is executed only within the sender, receiver and the message service. 

The message service routes the messages to the right receiver. A message service runs in 

its own thread and it is identified by the IP address and the port of the host.  

Thread-Internal-Communication 

A thread contains one or more actors that may communicate either synchronously or 

asynchronously. For communication, messages are sent to the message service, which 

routes the message to the receiver port. Only programming language specifics are utilized. 

Inter-Thread-Communication 

Between two different threads on one node, the message services have to be able to 

exchange messages, and this is accomplished by adding messages to the external message 

queue of the receiver message service. This approach therefore considers inter thread 

timing.  
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If the two actors are written in different programming languages, marshalling is 

required to convert messages, such as the conversion from the C++ to the Java format and 

vice versa. The evaluated internet communication engine (ICE) middleware is capable of 

accomplishing this. 

Inter-Node-Communication 

The most complex work was carried out for inter node communication, where the nodes 

have to be capable of connecting to other nodes. CORBA is a famous communication 

middleware that was developed for such cases. However, since CORBA is quite complex, 

the ICE middleware was chosen. When compared to CORBA, it was found to be simpler 

to use and faster, although it is not standardized. 

Message Sending Examples 

The communication between actors is controlled by the message service. The external 

communication between actors passes through the ports of the deployable actors, but 

messages are also passed within an actor and may execute a self-trigger to its own state 

machine. The message service defines communication mechanisms, which differentiate 

between internal, external, synchronous and asynchronous communication. The message 

data types are defined in the ICE middleware project. Table 17 shows the parameters of the 

messages. Below, some examples are used to explain internal and external message 

sending. 

Parameter Description 

Signal The signal name is the minimal information that has to be sent within a message 
and is provided by the ports. 

Message 

Data 

Additional data may be sent with the message. This data may be structured 

individually. 

Table 17: Message parameters. 

Internal messages are used for the communication within the actor. These messages 

may be sent from anywhere within this actor. The construction of a simple internal 

message is shown in Listing 14. A new internal message with message data is created 

using the signal ‘StartIn’. It is sufficient to know the message service that is available for 

each actor. The message is sent directly to the Finite-State-Machine without using any 

ports to the internal queue. 

msgService.sendMessage(_JoystickDeviceControlPort._StartIn, msgData); 

Listing 14: Simple internal message. 
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External messages are used for communication with other deployable actors. An 

example of a broadcast external message is shown in Listing 15. This message is sent to all 

the deployable actors that are connected to the port. In this example, the signal ‘StartIn’ is 

sent. Moreover, the sending port is selected through port definitions. This asynchronous 

message does not contain message data. 

_JoystickDevicePort.sendBroadcast(_JoystickDeviceControlPort._StartIn); 

Listing 15: Broadcasting external message. 

Listing 16 shows an external message sent both asynchronously and synchronously 

through a port. The receiver is defined within the Enterprise Architect UML model and 

does not need to be specified. This allows the re-use of actors.  

_JoystickDevicePort.sendMessage(_JoystickDeviceControlPort._DeviceInitFailedOu

t); 

_JoystickDevicePort.invokeMessage(_JoystickDevicePort._SetStatus); 

Listing 16: Pointed external message. 
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F. Kohonen Map

The neural network algorithm performs a search for each data input vector to find the 

best matching unit     , which is the neuron with the minimum distance to the input 

vector.      and its neighbouring neurons    are adapted by learning rules and update 

their weights. The network was designed as a two-layered network consisting of an input 

layer of neurons that are directly and entirely connected to an output layer. The output 

layer was organized as a two-dimensional grid, as depicted in Figure 145.    is the weight 

vector associated to the neuron placed at position   on the grid. 

 

Figure 145: The Kohonen Map. 

The network is trained by unsupervised learning on an input vector   {          }. 

For each vector   presented to the input layer, a competition between the neurons takes 

place. Each neuron calculates the distance  (    ).  

(118)   (    )  ‖    ‖
 . 

The neuron      with the closest weight vector to   is the best matching unit of the 

competition. 

(119)           ( (    )) 

     learns the input vector by moving closer to it.  

(120)      
        

   (𝑡) (      
 )(      

 ) 
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Figure 145 illustrates the weight change process of neuron      in the original input 

space. In equation (120),  (𝑡) is the learning rate, a real parameter that decreases linearly 

with the learning process with equation (121). 

(121)   (𝑡)   ( )(  𝑡   ) 

 (      
 )  defines the Gaussian or Mexican hut kernel weight of  

‖    
   ‖. The learning step is also extended to the neighbours of the winner neuron 

    . The neighbours of      are the output elements whose distance to the     , as 

measured on the grid, is not greater than the decreasing neighbourhood parameter over 

time. 
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G. Node Movement Calculation 

The two-dimensional case is calculated in equation (122) with the illustration in Figure 

146, where    ⃗⃗ ⃗⃗ ⃗⃗⃗ is the movement vector,  ⃗  is the movement result vector and   ⃗⃗⃗⃗⃗  is the 

obstacle node connection vector. 

 

Figure 146: Vectors of movement. 

(122)   ⃗  (|   ⃗⃗ ⃗⃗ ⃗⃗ ⃗|  |  ⃗⃗⃗⃗⃗|      )    ⃗⃗⃗⃗⃗         𝑡        (                          )  

For the three-dimensional case, the collision is between a vector and a polygon. A 

vector that collides with a polygon must be recalculated so that its direction is parallel to 

the polygon surface. 
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Figure 147: Recalculation of the node movement vector. 

Below, the projection of a vector onto a polygon is calculated. The formulas for the 

parametric form of a layer and a straight line are given in equation (123) and (124), 

respectively. 

(123)      ⃗⃗ ⃗⃗⃗       ⃗⃗ ⃗⃗ ⃗⃗ ⃗       ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

(124)     ⃗       ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

where  ⃗⃗⃗    the normal vector of the layer. Two helping straight lines are defined in (125) 

and (126). The intersection of the helping straight lines with the layer are named    and   . 

(125)     ⃗     ⃗⃗ 

(126)     ⃗     ⃗⃗ 

Point   is calculated in (127). 

(127)   ⃗   ⃗       ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

The normal form of the layer E is given in (128) and (129). 

(128)   ⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗ ⃗     ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 
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(129)   ⃗⃗  (    ⃗⃗ ⃗⃗⃗)    

The intersection    of the auxiliary straight line 1 given in (125), and the layer given in 

(129) is calculated using the formulas (130) and (131): 

(130)   ⃗⃗  ( ⃗     ⃗⃗    ⃗⃗ ⃗⃗⃗)     ⃗⃗  ( ⃗    ⃗⃗ ⃗⃗⃗)     ⃗⃗      
  ⃗⃗  ( ⃗    ⃗⃗ ⃗⃗⃗)

 ⃗⃗ 
 

(131)    
⃗⃗ ⃗⃗   ⃗⃗       ⃗⃗ 

The intersection    of the auxiliary straight line 2 given by (126) and the layer given in 

(129) is calculated in the formulas (132) and (133). 

(132)   ⃗⃗  ( ⃗     ⃗⃗    ⃗⃗ ⃗⃗⃗)     ⃗⃗  ( ⃗    ⃗⃗ ⃗⃗⃗)     ⃗⃗      
  ⃗⃗  ( ⃗    ⃗⃗ ⃗⃗⃗)

 ⃗⃗ 
 

(133)    
⃗⃗ ⃗⃗   ⃗       ⃗⃗ 

Finally, the resulting vector  ⃗ is calculated by (134): 

(134)   ⃗   ⃗     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

Finally, the node moves in the direction of  ⃗. 
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H. Plugin Manager

The Java side ‘Plugin Manager’ component includes four functions, and is a Java 

component that is able to call C/C++ functions of DLLs, which allowed source code reuse. 

The init function is responsible for setting the library path and loading the 

PPA_Plugin_Manager.dll, which is the gateway between Java and native libraries. 

Additional methods are provided to execute a library function call, and the choice of 

function to be used depends on the expected return type. ‘Invoke(…)’ is used when a single 

value is expected (e.g. int). If an array or a two-dimensional array is expected 

‘invokeArray(…)’ and ‘invoke2DArray(…)’ are used, respectively. Each of these functions 

has almost the same parameters. Listing 17 shows the ‘invoke(…)’ method.  

public static Object invoke(PPA_TYPES returnType, String dllName, String 

methodName, LinkedList<Object> params, Object jobj) 

Listing 17: Invoke method from Plugin Manager. 

The parameter returnType shows which type of data is expected as return value. The 

possibilities are VOID, INT, FLOAT, DOUBLE, STRING, INT_1D, FLOAT_1D, 

DOUBLE_1D, INT_2D, DOUBLE_2D, FLOAT_2D and BOOLEAN. Each of the functions 

expects three parameters. The first and the second ones are the name of the library file to 

load and the function name to be called (String dllName, String function), respectively. The 

third parameter is a linked list from the Java collection framework (LinkedList<Object> 

params), and contains the parameters that are passed to the library function. The generic 

type is ‘Object’, because the list may contain different variable types. To allow the native 

method to do a call back, an instance of the calling class is passed as the final argument 

(Object jobj).  

The Plugin Manager (PPA_Plugin_Manager.dll) buffers loaded functions to increase 

performance. The two functions addDll(String dllName) and releaseDll(String dllName) 

are responsible for loading and unloading libraries, respectively. Each of them takes a 

String as the parameter that contains the path to the library.  

A function call is executed as follows. First, a linked list with arguments is created, and 

second, the library file is loaded. After these two steps, one or more functions from the 

library can be executed. Finally, the library file is again unloaded to de-allocate the used 

recourses.  
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The ‘dyncall’ (Adler and Philipp, 2011) library provides a clear and portable C application 

interface to dynamically issue calls to foreign code using small call kernels written in 

assembler. It was utilized within the plugin manager. 

JNI Usage 

The Java Native Interface (JNI) is a programming framework that allows Java code 

running in a Java Virtual Machine (JVM) to call and to be called by native applications. 

The latter are programs specific to a hardware operating system platform as well as 

libraries written in other languages, such as C++. 

The JNI framework lets a native method utilize Java objects in the same way in which 

Java code uses these objects. A native method may create Java objects and then inspect and 

use these objects to perform its tasks.  

Because JNI should communicate with the GenericRuntimeLib, it is used to create C++ 

header files with javah. Within a C++ development environment such as Visual Studio, 

they then define the interfaces required to implement the main program. During the build, 

the post build event copies the dll and pdb (debug information for debugging) to the Java 

project root directory, where they may be used with JNI. 

Marshalling of data types 

Different data types that are exchanged by function calls have to be considered. All 

native data types are mapped with Java data types, and may be directly converted by JNI. 

For compound types such as objects, arrays and strings, the program must explicitly 

convert the data before passing them to methods, and vice versa. Table 18 shows the 

mapping of native types between Java and native code. 

Native Type Java Language Type Description 

unsigned char jboolean unsigned 8 bits 

signed char jbyte signed 8 bits 

unsigned short jchar unsigned 16 bits 

Short jshort signed 16 bits 

Long jint signed 32 bits 

long long int64 jlong signed 64 bits 

Float jfloat 32 bits 

double jdouble 64 bits 

Table 18: Mapping of Java data types to native types. 
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JNIEnv* 

A JNI interface pointer (JNIEnv*) is passed as an argument to each native function. 

This allows interaction with the JNI environment within the native method. For example, it 

may be used to determine the class name of a passed object or to create new Java objects 

from native code. The JNI interface pointer remains valid only in the current thread. Other 

threads must first call AttachCurrentThread() to attach themselves to the JVM and obtain a 

valid JNI interface pointer. Once attached, a native thread works like a regular Java thread 

running within a native method, and remains attached to the JVM until it calls 

DetachCurrentThread(). Listing 18 and Listing 19 show how threads are attached to, and 

detached from the JVM. 

JNIEnv *env; 

(*g_vm)->AttachCurrentThread (g_vm, (void **) &env, NULL); 

Listing 18: Attach native thread to JVM. 

 

(*g_vm)->DetachCurrentThread (g_vm); 

Listing 19: Detach native thread from JVM. 

Implementation 

This subsection describes the implementation of the call chain shown in Figure 118. 

The Java program uses the Plugin Manager, which is a library file, and was developed in 

C++ using Visual Studio. It implements the header files that were generated by javah, and 

has the ability to load further library files containing functions for execution. After 

execution, the result is passed back to the java program. The plugin manager contains the 

interface between Java and the native code shown in Listing 20.  

private static native Object pluginManagerInvoke(int returnType,  

String dllName, String methodName, LinkedList<Object> parameters,  

int resultArrayFirstDim, int resultArraySecondDim); 

Listing 20: Native method definition in java class. 

The arguments that are passed to the function are listed in Table 19. 
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Name Type Description 

returnType Int The excepted return type  

dllName String Name of the dll-ile to load 

methodName String Name of the method to call 

parameters LinkedList<Object> The parameters that should be 

pushed to the method 

resultArrayFirstDim Int Size of the return array (if expected) 

resultArraySecDim Int Size of the second dimension of the 

return array (if expected) 

Table 19: Data types. 

The plugin manager may perform a successful execution only if it knows of the data 

types of the arguments and the result. While this is required to allow the allocation of 

sufficient memory for the native function, the result has to be converted to a correct Java 

object before it is passed back. Because the allocation of dynamic arrays is not possible in 

C or C++, the array length also has to be passed. To determine which data type to use, 

these are mapped to a predefined integer value, and can thus be correctly instantiated. 

Table 20 shows the mapping from the integer value to the data type.  

Int type Interpretation 

0 int  

1 float 

2 double 

3 string 

4 int[] 

5 float[] 

6 double[] 

7 Int[][] 

8 float[][] 

9 double[][] 

Table 20: Return types. 

Arguments are passed within a LinkedList<Object>, which should contain the type of 

the argument, as shown in the table above, and then the argument. For example, a string 

and an integer array are passed in the linked list, as shown in Listing 21.  

LinkedList<Object> testList = new LinkedList<Object>(); 

int[] intArray = {      }; 

testList.add(3); 

testList.add(new String(“Hallo”)); 

testList.add(4); 

testList.add(intArray); 

Listing 21: Creating a linked list. 
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Before executing the native function, the plugin manager first determines the size of the 

passed argument list, which has to be a multiple of two because there is always a pair 

containing the data type definition and data given. After this, each object from the passed 

LinkedList<Object> is changed to the corresponding native type, depending on the type 

given in the LinkedList. The native types are saved in a structure (‘struct st_param’), and 

they are then pushed to the native method using ‘dyncall’.  

After the execution, the return value is changed back to the expected type, and it is 

passed back to the Java Program. 

The header file used by the PPA_Plugin_Manager.cpp is auto-generated by JNI, and so 

the following functions have to be implemented: 

 The function pluginManagerAddDll loads a library file.  

 The corresponding function pluginManagerReleaseDll unloads a given library file. 

 The function pluginManagerInvoke was used as discussed above.  

The Plugin Manager also throws exceptions, which are passed back to the java program, 

so that the user is informed about errors that occurred. Exceptions are thrown when the 

library file or the function may not be found. Furthermore, the size of the argument list has 

to be a multiple of two (always a pair of return type and argument), and it is detected when 

there is an incorrect argument number, either at the return type or in the argument list. An 

exception may also be thrown when the maximum number of loadable library files is 

reached. The plugin manager is now capable of loading up to 10 library files. 
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I. Sample Source Code  

I.1 Message Service 

package de.kohrt.ppa.common.messageservice; 

import java.net.InetAddress; 

... 

 

public class MessageService extends _ITransmitIceDisp implements IMessageService, 

Runnable { 

 private static final long serialVersionUID = -8864537422336502554L; 

 private static Logger log = Logger.getLogger(MessageService.class); 

 private static Vector<MessageService> messageServices = new 

Vector<MessageService>(); 

 private HashMap<String, ITransmitIcePrx> iceProxies = new HashMap<String, 

ITransmitIcePrx>(); 

 public Ice.Communicator serverIceCommunicator = Ice.Util.initialize(); 

 private String internetAdress = "localhost"; 

 private String internetPort = "10000"; 

 

 private void destructConnections() { 

  for (ITransmitIcePrx proxy : iceProxies.values()) { 

   proxy.ice_getCommunicator().destroy(); 

  } 

 } 

 

 @Override 

 public String getInternetAdress() { 

  return internetAdress; 

 } 

 

 private void setInternetAdress(String internetAdress) { 

  this.internetAdress = internetAdress; 

 } 

 

 @Override 

 public String getInternetPort() { 

  return internetPort; 

 } 

 

 private void setInternetPort(String internetPort) { 

  this.internetPort = internetPort; 

 } 

 

 private EventListenerList messageServiceListeners = new EventListenerList(); 

 

 private ActorPriorityQueue apq = new ActorPriorityQueue(100); 

 

 public Boolean disposed = false; 

 

 public boolean isDisposed() { 

  return disposed; 

 } 

 

 private HashMap<String, IMessageServiceListener> addressbook = new HashMap<String, 

IMessageServiceListener>(); 

 

 private Vector<DeployableActor> deployableActors; 

 

 private boolean running = false; 

 

 private ObjectAdapter iceAdapter; 

 

 private MessageService iceObject; 

 

 public Object lock = new Object(); 

 

 @Override 

 public int hashCode() { 

  final int prime = 31; 

  int result = 1; 

  result = prime * result + ((this.internetAdress == null) ? 0 : 

this.internetAdress.hashCode()); 
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  result = prime * result + ((this.internetPort == null) ? 0 : 

this.internetPort.hashCode()); 

 

  return result; 

 } 

 

 @Override 

 public boolean equals(Object obj) { 

  if (this == obj) 

   return true; 

  if (obj == null) 

   return false; 

  if (getClass() != obj.getClass()) 

   return false; 

  MessageService other = (MessageService) obj; 

  if (this.internetAdress == null) { 

   if (other.internetAdress != null) 

    return false; 

  } else if (!this.internetAdress.equals(other.internetAdress)) 

   return false; 

  if (this.internetPort == null) { 

   if (other.internetPort != null) 

    return false; 

  } else if (!this.internetPort.equals(other.internetPort)) 

   return false; 

  return true; 

 } 

 

 private MessageService(String ip, int port, Vector<DeployableActor> 

deployableActors) throws Exception { 

  init(ip, port, deployableActors); 

 } 

 

 private void init(String ip, int port, Vector<DeployableActor> deployableActors) 

throws Exception { 

  this.deployableActors = deployableActors; 

  setInternetPort(new Integer(port).toString()); 

  setInternetAdress(ip); 

 

  try { 

 

   iceAdapter = 

serverIceCommunicator.createObjectAdapterWithEndpoints("Adapter" + ip + port, "tcp -h " 

+ ip + " -p " + port); 

   iceObject = this; 

   iceAdapter.add(iceObject, serverIceCommunicator.stringToIdentity(ip + 

port)); 

   iceAdapter.activate(); 

  } catch (Ice.LocalException e) { 

   e.printStackTrace(); 

  } catch (Exception e) { 

   System.err.println(e.getMessage()); 

  } 

 

 } 

 

 public void connect() throws Exception { 

 

  for (int i = 0; i < this.deployableActors.size(); i++) { 

   deployableActors.get(i).connect(iceProxies); 

  } 

 } 

 

 private void close() throws MessageServiceIceException { 

  this.running = false; 

 

  this.apq.stop(); 

 

  if (serverIceCommunicator != null) { 

   serverIceCommunicator.shutdown(); 

   serverIceCommunicator.destroy(); 

   // iceAdapter.destroy(); 

   iceObject = null; 

  } 

 

  this.destructConnections(); 
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  if (MessageService.messageServices.contains(this)) 

   MessageService.messageServices.remove(this); 

 } 

 

 private static long id = 0; 

 

 private MessageService(Vector<DeployableActor> deployableActors) throws Exception { 

  init(InetAddress.getLocalHost().getHostAddress(), new Integer(internetPort), 

deployableActors); 

 } 

 

 private static void startMsgServiceThread(MessageService msgService) throws 

Exception { 

 

  if (MessageService.messageServices.contains(msgService)) { 

   String mes = "It is not allowed to create multiple message services 

(more than one) on a single node."; 

   log.error(mes); 

   throw new Exception(mes); 

  } else 

   MessageService.messageServices.add(msgService); 

 

  Thread tid = new Thread(msgService); 

  tid.setName("MsgService: " + msgService.internetAdress + ":" + 

msgService.internetPort); 

  tid.start(); 

 

  while (!msgService.running) 

   Thread.sleep(100); 

 } 

 

 public synchronized static MessageService createMessageService(String ip, int port, 

Vector<DeployableActor> deployableActors) throws Exception { 

  // create msgservice in new thread 

  MessageService msgService = new MessageService(ip, port, deployableActors); 

 

  if (deployableActors != null) { 

   // Init deployable actors 

   for (DeployableActor deployableActor : deployableActors) { 

    deployableActor.init(msgService); 

   } 

  } 

   

  startMsgServiceThread(msgService); 

 

  return msgService; 

 } 

 

 @Override 

 public void addMessageServiceListener(IMessageServiceListener listener, String name) 

{ 

  addressbook.put(name, listener); 

  messageServiceListeners.add(IMessageServiceListener.class, listener); 

 } 

 

 @Override 

 public void run() { 

  try { 

   this.running = true; 

 

   while (true) { 

    if (disposed == true) { 

     if (apq.size() == 0) 

      break; 

    } 

    pollMessage(); 

   } 

 

   close(); 

 

  } catch (Exception e) { 

   e.printStackTrace(); 

  } 

 } 

  

 @Override 
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 public void removeMessageServiceListener(IMessageServiceListener listener) throws 

Exception { 

  messageServiceListeners.remove(IMessageServiceListener.class, listener); 

  addressbook.remove(listener.getMessageServiceId()); 

 

  if (addressbook.size() == 0) // shutdown connections and message service 

  { 

   apq.stop(); 

   disposed = true; 

   synchronized(lock) 

   {  

    lock.notify(); 

   } 

  } 

 } 

 

 private boolean isSentToOtherNode(MsgIce msg) { 

  MsgIce m = msg; 

   

  if(msg.receiverPort==null) return false; 

   

  String ip = msg.receiverPort.netIp; 

  String ownIp = getInternetAdress(); 

  return !(msg.receiverPort==null || ip.equalsIgnoreCase(ownIp) || 

ip.equalsIgnoreCase("")); 

 } 

 

 private boolean isSentToSameThread(MsgIce msg) { 

  String ownIp = getInternetAdress(); 

  String ip = msg.receiverPort.netIp; 

  String port = msg.receiverPort.netPort; 

  String ownPort = getInternetPort(); 

  return (ip.equalsIgnoreCase(ownIp) || ip.equalsIgnoreCase("")) && 

(port.equalsIgnoreCase(ownPort) || port.equalsIgnoreCase("")); 

 } 

 

 private boolean isSentToOtherThreadOnSameNode(MsgIce msg) { 

  String port = msg.receiverPort.netPort; 

  String ip = msg.receiverPort.netIp; 

  String ownIp = getInternetAdress(); 

  String ownPort = getInternetPort(); 

  return ((ip.equalsIgnoreCase(ownIp) || ip.equalsIgnoreCase("")) && 

!(port.equalsIgnoreCase(ownPort) || port.equalsIgnoreCase(""))); 

 } 

 

 private void pollMessage() { 

  MsgIce msg = apq.pollMessage(); 

 

  if (msg == null) 

   return; 

 

  try { 

    

   if (msg.receiverPort == null || msg.receiverPort.portName == null || 

msg.receiverPort.portName == "") { 

    log.error("Receiver port must be provided!"); 

   } else  

   { 

 

    IMessageServiceListener listener = 

addressbook.get(msg.receiverPort.portName); 

 

    if (listener != null) { 

     /* 

      * Send message through listener notification. 

      */ 

     listener.asyncMessageArrived(msg); 

    } else { 

 

     log.warn("Port '" + msg.receiverPort.portName + "' is 

not ready. Waiting 100ms... and retry."); 

     Thread.sleep(100); 

 

     listener = addressbook.get(msg.receiverPort.portName); 

 

     if (listener != null) { 

      listener.asyncMessageArrived(msg); 
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     } else { 

      /* 

       * ERROR 

       */ 

      log.error("Receiver '" + 

msg.receiverPort.portName + "' not found!"); 

     } 

    } 

 

   } 

  } catch (MessageServiceOverrun e) { 

   e.printStackTrace(); 

  } catch (Exception e) { 

   e.printStackTrace(); 

  } 

 } 

 

 @Override 

 public MsgData processMsg(MsgIce msg, Ice.Current current) throws Error { 

  try { 

   return invokeMessage(msg); 

  } catch (Exception e) { 

   throw new Error(e.getStackTrace().toString()); 

  } 

 } 

 

 private MsgData invokeMessage(MsgIce msg) throws Exception { 

  log.debug("Invoke message " + msg.signalName + "    MessageService: " + 

this.internetAdress + ", " + this.internetPort); 

 

  if(isSentToOtherNode(msg) || isSentToOtherThreadOnSameNode(msg)) { 

   return doInterThreadCall(msg); 

  } else if (isSentToSameThread(msg)) { 

   return doInnerThreadCall(msg); 

  } else { 

   throw new Exception("Unknown message service error!"); 

  } 

 } 

 

 @Override 

 public MsgData invokeMessage(SignalInOut signalName, PortId senderPort, 

Vector<PortId> receiverActorPorts, MsgData msgData) throws Exception { 

 

  if (receiverActorPorts.size() > 1) 

   throw new Exception("Sync methods do not support multiple target 

ports! (" + senderPort.portName + ")"); 

 

  if (receiverActorPorts.size() == 0) 

   throw new Exception("No target port connected! (" + 

senderPort.portName + ")"); 

 

  MsgIce msg = new Msg(signalName, senderPort, receiverActorPorts.get(0), 

ECommunicationMode.SYNC, msgData); 

  return invokeMessage(msg); 

 } 

 

 @Override 

 public void sendMessage(SignalOut signalName, PortId senderPort, Vector<PortId> 

receiverActorPorts, MsgData msgData) throws Exception { 

  if(receiverActorPorts.size()==0) 

   log.warn("The port " + senderPort.portName + " ("+signalName.name+") 

has no receiver. Is a receiver connected?"); 

   

  for (PortId receiverActorPort : receiverActorPorts) { 

   MsgIce msg = new Msg(signalName, senderPort, receiverActorPort, 

ECommunicationMode.ASYNC, msgData); 

   invokeMessage(msg); 

  } 

 } 

 

 private MsgData doInterThreadCall(MsgIce msg) throws Exception { 

  ITransmitIcePrx proxy = null; 

  String proxyIdent = ""; 

 

  try { 

   proxyIdent = msg.receiverPort.netIp + msg.receiverPort.netPort; 

   proxy = iceProxies.get(proxyIdent); 
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  } catch (Exception e) { 

   System.out.println(e); 

  } 

 

  if (proxy == null) 

   throw new Exception("Could not find the proxy " + proxyIdent + "!"); 

 

  if (msg.comMode.equals(ECommunicationMode.SYNC)) { 

   return proxy.processMsg(msg); 

  } else if (msg.comMode == ECommunicationMode.ASYNC) { 

   Ice.AsyncResult r = proxy.begin_processMsg(msg); 

   try { 

    return proxy.end_processMsg(r); 

   } catch (Error e) { 

    e.printStackTrace(); 

    return null; 

   } 

 

  } else if (msg.comMode.equals(ECommunicationMode.FSMSYNC)) { 

   return proxy.processMsg(msg); 

  } else { 

   return null; 

  } 

 } 

 

 private MsgData doInnerThreadCall(MsgIce msg) throws Exception { 

 

  if (msg.comMode == ECommunicationMode.FSMSYNC) { 

   // Synchron 

   if (msg.receiverPort.portName == null || msg.receiverPort.portName == 

"") { 

    throw new Exception("Broadcast sync Message is not 

allowed!"); 

   } 

 

   IMessageServiceListener listener = 

addressbook.get(msg.receiverPort.portName); 

   if (listener != null) { 

    /* 

     * Send message through listener notification. 

     */ 

    return listener.fsmSyncMessageArrived(msg); 

   } else { 

    /* 

     * ERROR 

     */ 

    throw new Exception("Receiver '" + msg.receiverPort.portName 

+ "' not found!"); 

   } 

 

  } else if (msg.comMode == ECommunicationMode.ASYNC) { 

 

   apq.pushMessage(msg); 

   return null; 

 

  } else if (msg.comMode == ECommunicationMode.SYNC) { 

 

   if (msg.receiverPort.portName == null || msg.receiverPort.portName == 

"") { 

    throw new Exception("Broadcast sync Message is not 

allowed!"); 

   } 

 

   /* 

    * Receiver is known 

    */ 

   IMessageServiceListener listener = 

addressbook.get(msg.receiverPort.portName); 

 

   if (listener != null) { 

    return listener.invokeMethod(msg); 

   } else { 

    /* 

     * ERROR 

     */ 

    throw new Exception("Receiver '" + msg.receiverPort.portName 

+ "' not found!"); 
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   } 

 

  } else { 

   log.warn("Communication mode " + msg.comMode + " is unknown!"); 

   return null; 

  } 

 } 

 

 @Override 

 public void releasePort(ActorPort port) throws Exception { 

   

  removeMessageServiceListener(port); 

 } 

 

 @Override 

 public Communicator getCommunicator() { 

  return serverIceCommunicator; 

 } 

 

 @Override 

 public void sendMessage(SignalOut signalName, PortId senderPort, Vector<PortId> 

receiverActorPorts) throws Exception { 

  for (PortId receiverActorPort : receiverActorPorts) { 

   MsgIce msg = new Msg(signalName, senderPort, receiverActorPort, 

ECommunicationMode.ASYNC, null); 

   invokeMessage(msg); 

  } 

 } 

 

 @Override 

 public void sendMessage(SignalIn signalName) throws Exception { 

  MsgIce msg = new Msg(signalName, signalName.port, null); 

  invokeMessage(msg); 

 } 

 

 @Override 

 public void sendMessage(SignalIn signalName, MsgData msgData) throws Exception { 

  MsgIce msg = new Msg(signalName, signalName.port, msgData); 

  invokeMessage(msg); 

 } 

 

 @Override 

 public MsgData invokeFsmMessage(SignalInOut signalName, PortId senderPort, 

Vector<PortId> receiverActorPorts, MsgData msgData) throws Exception { 

 

  if (receiverActorPorts.size() > 1) 

   throw new Exception("Sync methods do not support multiple target 

ports! (" + senderPort.portName + ")"); 

 

  if (receiverActorPorts.size() == 0) 

   throw new Exception("No target port connected! (" + 

senderPort.portName + ")"); 

 

  MsgIce msg = new Msg(signalName, senderPort, receiverActorPorts.get(0), 

ECommunicationMode.FSMSYNC, msgData); 

  return invokeMessage(msg); 

 } 

 

 @Override 

 public void sendReplyMessage(SignalOut signalName, PortId replyPort, PortId 

senderPort) throws Exception { 

  sendReplyMessage(signalName, replyPort, senderPort, null); 

 } 

 

 @Override 

 public void sendReplyMessage(SignalOut signalName, PortId replyPort, PortId 

senderPort, MsgData msgData) throws Exception { 

  MsgIce msg = new Msg(signalName, senderPort, replyPort, 

ECommunicationMode.ASYNC, msgData); 

  invokeMessage(msg); 

 } 

 

 public void waitForDispose() throws Exception { 

  waitForDispose(0); 

 } 

  

 public void waitForDispose(int i) throws Exception { 
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  if (disposed != true) 

  { 

   synchronized (lock) { 

    try { 

     lock.wait(i*1000); 

      

     if(disposed==false) 

      throw new Exception("MessageService not 

disposed in '" + i + "' seconds!"); 

      

    } catch (InterruptedException e) { 

     e.printStackTrace(); 

     System.exit(1); 

    } 

   } 

  } 

 } 

} 

I.2 Robot Kinematics 

Forward Calculation 
public CartesianWorldPosition forwardKinematic(JointPosition position) { 

 double j1 = (position.joints.get(0)) * 180. / M.PI; 

 double j2 = (position.joints.get(1)) * 180. / M.PI; 

 double j3 = position.joints.get(2) * 180. / M.PI; 

 double j5 = (position.joints.get(4)) * 180. / M.PI; 

 double j6 = (position.joints.get(5)) * 180. / M.PI; 

 

 if (false == checkRobotJointRangesGrad(j1, j2, j3, j5, j6)) 

  return null; 

 

 j1 = position.joints.get(0) + Math.PI; 

 j2 = position.joints.get(1) + Math.PI / 2.; 

 j3 = position.joints.get(2) + 0; 

 j5 = position.joints.get(4) + Math.PI / 2.; 

 j6 = position.joints.get(5) + Math.PI / 2.; 

 

 Matrix4d m = MitsubishiRV2AJ.getAi(300., j1, 0., M.PI / 2.); 

 m.mul(MitsubishiRV2AJ.getAi(0., j2, 250., 0)); 

 m.mul(MitsubishiRV2AJ.getAi(0., j3, 160., 0.)); 

 m.mul(MitsubishiRV2AJ.getAi(0., j5, 0., M.PI / 2.)); 

 m.mul(MitsubishiRV2AJ.getAi(72., j6, 0., 0.)); 

 m.mul(MitsubishiRV2AJ.getAi(0., 0., 0., 0.)); 

 

CartesianWorldPosition pos = new CartesianWorldPosition(m.m03, m.m13, m.m23, m.m00,  

m.m10, m.m20, m.m01, m.m11, m.m21, m.m02, m.m12, m.m22); 

 return pos; 

} 
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Inverse Calculation 
 

public Vector<JointPosition> inverseKinematic(CartesianWorldPosition p) { 

 int z = 10; 

 

 if (p == null) { 

  log.error("Cartesian world position is NULL!"); 

  return new Vector<JointPosition>(); 

 } 

 

 Point position = calculateMainAxesPositionFromTCPPosition(p); 

 

 Vector<JointPosition> v = new Vector<JointPosition>(); 

 

 int[] c1 = { 1, -1 }; 

 int[] c2 = { 1, -1 }; 

 

 double[] tetas = new double[] { 0, 0, 0, 0, 0 }; 

 

 for (int i = 0; i < c1.length; i++) { 

  for (int j = 0; j < c2.length; j++) { 

 

   boolean error = calculateMainAxes(tetas, position, c1[i], c2[j]); 

 

   if (!error) 

    continue; 

 

   calculateAuxilaryAxes(tetas, p); 

 

   // Prepare output variable 

   JointPosition ro = new JointPosition(new ArrayList<Double>()); 

   ro.joints.add(0, convertAngle(tetas[0])); 

   ro.joints.add(1, convertAngle(tetas[1])); 

   ro.joints.add(2, convertAngle(tetas[2])); 

   ro.joints.add(3, 0d); 

   ro.joints.add(4, convertAngle(tetas[3])); 

   ro.joints.add(5, convertAngle(tetas[4])); 

   ro.joints.add(6, 0d); 

   ro.joints.add(7, 0d); 

 

   tetas = new double[] { 0, 0, 0, 0, 0 }; 

 

   if (!contains(v, ro)) { 

    printAllRobotJoints(ro); 

      

   if (checkRobotJointRanges(ro.joints.get(0), ro.joints.get(1), 

ro.joints.get(2), ro.joints.get(4), ro.joints.get(5))) { 

    v.add(ro); 

   } else 

    log.info("Position not allowed!"); 

 

   } 

  } 

 } 

 

 return v; 

 

}
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Common Transformation Equation  
public static Matrix4d getAi(double d, double teta, double a, double alpha) { 

 

 Matrix4d m = new Matrix4d(); 

 m.setElement(0, 0, M.cos(teta)); 

 m.setElement(0, 1, -M.cos(alpha) * M.sin(teta)); 

 m.setElement(0, 2, M.sin(alpha) * M.sin(teta)); 

 m.setElement(0, 3, a * M.cos(teta)); 

 

 m.setElement(1, 0, M.sin(teta)); 

 m.setElement(1, 1, M.cos(alpha) * M.cos(teta)); 

 m.setElement(1, 2, -M.sin(alpha) * M.cos(teta)); 

 m.setElement(1, 3, a * M.sin(teta)); 

 

 m.setElement(2, 0, 0); 

 m.setElement(2, 1, M.sin(alpha)); 

 m.setElement(2, 2, M.cos(alpha)); 

 m.setElement(2, 3, d); 

 

 m.setElement(3, 0, 0); 

 m.setElement(3, 1, 0); 

 m.setElement(3, 2, 0); 

 m.setElement(3, 3, 1); 

 

 return m; 

} 
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I.3 Program Export 

public void exportProgram(StateMachineContext context) throws Exception { 

 log.info("exportProgram"); 

 

 MsgIce arrivedMsg = getMessage(context); 

  

 nodes = ((MsgDataExportProgram) arrivedMsg.msgData).nodesVector; 

 pOutputType.value = ((MsgDataExportProgram) arrivedMsg.msgData).mode.name(); 

 pRobotType.value = ((MsgDataExportProgram) arrivedMsg.msgData).robotType.name(); 

 

 if (pOutputType.value.equals(EOutputType.FILE.name())) { 

  if (pRobotType.value.equals(ERobotType.MITSUBISHI.name())) { 

generateFile(new T_mitsubishi_program_bas(), "MitsubishiProgram.bas",  

pFilePath.value, trajectory); 

   generateFile(new T_mitsubishi_positions_bas(),  

"MitsubishiPositions.bas", pFilePath.value, trajectory); 

   } else if (pRobotType.value.equals(ERobotType.PSEUDO.name())) { 

    generateFile(new T_pseudo_program_bas(), "PseudoProgram.bas",  

pFilePath.value, trajectory); 

    generateFile(new T_pseudo_positions_bas(),  

"MitsubishiPositions.bas", pFilePath.value,  

trajectory); 

   } else if (pRobotType.value.equals(ERobotType.SIMULATOR.name())) { 

    generateFile(new T_simulator_program_bas(),  

"SimulatorProgram.bas", pFilePath.value, trajectory); 

    generateFile(new T_simulator_positions_bas(),  

"SimulatorPositions.bas", pFilePath.value,  

trajectory); 

   } else { 

    fireEvent(_RaiseError, new MsgDataRaiseError("Robot type '" +  

pRobotType.value + "' not defined!")); 

   } 

 

  } else if (pOutputType.value.equals(EOutputType.DIRECTCONTROL.name())) { 

   // TODO 

  } else { 

fireEvent(_RaiseError, new MsgDataRaiseError("Output type not  

defined!")); 

  } 

 

  fireEvent(_FinishExport); 

 } 

 



I. Sample Source Code 

   

 

I.4 Linear Octree and Trajectory Planning 

@Override 

public void init(StateMachineContext context) throws Exception { 

log.info("Init the octree."); 

// Create linear octree 

linearOctree = new LinearOctree(Type.OCTAL_JOINT, 2., 2 * 62.5); 

} 

 

public Trajectory LinearOctreePort_PlanTrajectory() throws Exception { 

 Trajectory t = null; 

 

 try { 

  

log.info("Start planning the trajectory."); 

 

 log.info("Get the start and goal robot joint/Cartesian positions."); 

 Pose startPose = ConvertPosition.parseXYZPosition(startRobotPosition.cartPosition); 

 JointPosition startJointPosition =  

ConvertPosition.parseJOINTPosition(startRobotPosition.jointPosition); 

 

 Pose goalPose = ConvertPosition.parseXYZPosition(goalRobotPosition.cartPosition); 

 JointPosition goalJointPosition =  

ConvertPosition.parseJOINTPosition(goalRobotPosition.jointPosition); 

 

 

 log.info("Store positions to the octree.”); 

 OctreePoint sOctreePoint = new OctreePoint(1, new Point(startPose.x, startPose.y,  

startPose.z)); 

 OctreePoint gOctreePoint = new OctreePoint(1, new Point(goalPose.x, goalPose.y,  

goalPose.z)); 

    

 OctalPoint start = linearOctree.convertOctreePointToOctalPoint(sOctreePoint); 

 OctalPoint goal = linearOctree.convertOctreePointToOctalPoint(gOctreePoint); 

 

 linearOctree.points.put(start.getOctalCode(), start); 

 linearOctree.points.put(goal.getOctalCode(), goal); 

    

 AbstractDataStructure.createTopology(linearOctree.getVoxelsFromDeepestLevel()); 

 

 start.setCollisionProbability(0); 

 goal.setCollisionProbability(0); 

   

 sOctreePoint.colisionProbability=0; 

 gOctreePoint.colisionProbability=0; 

       

 JointNode startJointCell = new JointNode(start, startJointPosition); 

 JointNode goalJointCell = new JointNode(goal, goalJointPosition); 

 

 start.jointNodes.add(startJointCell); 

 goal.jointNodes.add(goalJointCell); 

 

 

 log.info("Do search with the A* algorithm within the octree.”); 

 List<AbstractAStarNode> l = linearOctree.search(startJointCell, goalJointCell); 

 

 Object[] o = l.toArray(); 

 

 int i = 0; 

 for (Object obj : o) { 

  i++; 

  NPoint op1 = ((JointNode) obj).op; 

  OctalPoint op = (OctalPoint)op1; 

  Point cp = op.getNormalizedPosition(); 

 } 

 

 // Get nodes from path (Convert octree cells to nodes) 

 ArrayList<Node> nodes = LinearOctree.convertOctreeCellsToNodes((JointNode)  

l.get(o.length - 1)); 

 

 // Create path from nodes via roads 

 Road road1 = new Road(nodes); 

 



I. Sample Source Code 

   

 

 ArrayList<Road> roads = new ArrayList<Road>(); 

 roads.add(road1); 

 

 Path path = new Path(roads, 0); 

 

 // Execute EN to get the trajectory 

 ElasticNet net = new ElasticJointNet(); 

 t = net.formTrajectory(path, 0.0000000001, linearOctree, startJointCell,  

goalJointCell ); 

      

 } catch (Exception e) { 

  e.printStackTrace(); 

  System.exit(1); 

 } 

 

 return t; 

 } 
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Abstract— A flexible robotics development framework 

has been established to allow rapid development of 

high-performance real-time applications from distributed 

software components. The framework interconnects soft-

ware components and hardware devices as well as special-

ized third party software applications to allow integration 

into the communication system with ease. A model driven 

approach has been chosen in order to raise the usability of 

the framework using a visual modeling language. A com-

munication middleware has been evaluated for the inter-

connection of the components. This paper introduces the 

required tools, proposes a model driven development 

framework for robotic applications and provides experi-

ences in the development and use of such frameworks. 

Keywords: control, framework, robot, model. 

I. INTRODUCTION 

The motivation for the robotics framework is based on 

the requirement to rapidly connect distributed software 

components written in different programming languages 

and running on different platforms, sensors and third 

party tools such as Matlab [1] across a network without 

time consuming development of data communication and 

tool connection infrastructure. The presented framework 

is especially designed for large development teams in 

heterogeneous software environments. An example of 

such an environment is given in Fig. 1. 

 

Software System

Vision

Manipulator

Mobile Robot

Joystick

Graphical User

Interface

Operator

 
Fig. 1.  The experimental system. 

 

An operator utilizes a graphical user interface that is 

developed with the Java SWT framework [2] on a Win-

dows operating system. Vision sensors are connected and 

processed by a Matlab/Simulink generated C++ code. 

The connection to the robots has been established using 

C# for the mobile robot [19] and a Java framework for the 

manipulator [20]. A Linux operating system may be used 

on mobile robots. Thus, the integration of heterogeneous 

systems becomes important. 

This has been accomplished by a model based soft-

ware development including code generation, which en-

tails the composition of applications from pre-designed 

hull software components enriched with the business 

logic of the application. The details of the implementa-

tion of the components are hidden behind well-defined 

interfaces. Thus, much improved software quality be-

comes realistic. Moreover, previous experiences with 

component based software development in other appli-

cation domains have resulted in drastically improved 

software development productivity - sometimes more 

than one order of magnitude above conventional software 

development [3, 4].  

Matlab/Simulink is often adopted as a development 

environment because of its fast modeling and code gen-

eration capabilities as well as its valuable library func-

tions. Connecting such a tool to a distributed software 

system supports the developer during software devel-

opment by enabling communication with existing com-

ponents.  

The run-time architecture consists of interconnected 

components, communicating through message passing, 

which is executed by a communication middleware. Each 

component is typically a process running on a node such 

as a computer or an embedded device. An evaluation of 

existing communication middlewares has been carried 

out in chapter III. 

A model driven approach has been chosen in order to 

raise the usability of the framework through the use of a 

domain specific modeling language, derived from the 

Real-Time Object-Oriented Modeling (ROOM) language 

[5-7]. This language also defines the run-time behavior of 

the generated software components. 

The commercial tool Rational Rose Real-Time from 

IBM [8], formerly known as ObjecTime, was a toolset 

supporting the ROOM language. Unfortunately, this 

toolset is not available anymore and, consequently, it 

makes re-implementation of the code execution model 

and the modeling tool necessary. The eclipse project 

eTrice [9] has recently shifted from the proposal phase to 

the incubation phase and aims at an implementation of the 
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ROOM language together with code generators and 

tooling for model editing. 

A major goal of the proposed framework is to enable 

sensor-based robot control applications to be built from 

libraries of reusable software components. For this pur-

pose, the framework provides standard interface speci-

fications for implementing reusable components. A 

well-written and debugged library of software compo-

nents facilitates rapid development of reliable sen-

sor-based control systems. 

Existing robot control frameworks introduce 

re-configurable software components as well as special 

communication and code execution models [10-12]. 

While these approaches try to enhance configuration of 

the components for re-use and the running system itself, 

this paper proposes additionally to enhance the usability 

by graphical modeling and code generation. 

II. SYSTEM MODELING 

ROOM defines a visual modeling language with for-

mal semantics and a code execution model, which is a set 

of rules defining the system behavior [5-7]. The visual 

modeling language is optimized for specifying, visual-

izing, documenting and automating the construction of 

complex, event-driven, and potentially distributed re-

al-time systems. By connecting several components, an 

interaction flow via messages may be established be-

tween them.  

In the proposed framework, a component can be de-

veloped in Java, C#, C++ and C, deployed on different 

processing units. A processing unit may be a gen-

eral-purpose processor, digital signal processor or a 

field-programmable gate array, where each processing 

unit may have its special system architecture that influ-

ences for example the handling of threads. 

In addition, a component may also be a complete de-

velopment environment, which allows direct communi-

cation to existing components during development time. 

The integration of tools is explained in chapter VI. 

The component behavior is described as a hierarchical 

state machine, which provides a number of powerful 

features, including group transitions, transitions to his-

tory, state variables, initial points, and synchronous 

message communications.  

The developer writes user programs for state transi-

tions, where the component has to perform an action. 

Additionally, each state may have an entry and an exit 

function, which are executed when the component enters 

or exits the state respectively. This presents various ad-

vantages: components may be distributed on different 

nodes with ease and better encapsulation is reached, be-

cause only the component interfaces, not the type of the 

component, are required in order to interact with it. 

ROOM also defines a message service that controls 

the logical message flow within a physical thread, while a 

middleware, further described in chapter III, is respon-

sible to transmit the messages. The implemented message 

service is optimized for speed in the local delivery of 

messages through the utilization of operating-system 

specific communication mechanisms. It must be abstract 

enough to be used by any operating system, but fur-

thermore concrete enough to fulfill requirements in 

speed, code size and memory consumption. The imple-

mented message service is included together with the 

code execution model in a runtime library. An instanti-

ated message service is identified by the network port 

number and the IP of the host. 

 

Comp.

A MSMS

MS

Comp.

C

Comp.

D
Comp.

B

Thread 1

Thread 2

Thread 3

Processing Unit 1 Processing Unit 2

 
Fig. 2.  Communication overview and message passing. 

 

The ROOM communication system illustrated in  

Fig. 2 consists of processing units, threads, components 

and message services (MS) along with its connectivity. 

The ports of each component may communicate with 

other components via connections to the message service, 

which handles local and remote message passing. A 

message from the port of component A to the port of 

component C (see dashed arrow) may be passed through 

both message services until it gets to the target port. In 

this example, messages from component B may only be 

sent to component A.  

III. COMMUNICATION MIDDLEWARE 

Currently available communication mechanisms may 

generally be separated into three categories: transport 

level, message passing and remote procedure calls. 

Transport level is simply a pipe to send data streams or 

packets without any formatting specification, such as 

serial ports or TCP/IP. Direct socket communication 

requires the development of an own protocol and excep-

tion handling which entails large effort. Furthermore, 

marshaling and de-marshaling have to be implemented: 

this is particularly complex because of the requested 

compatibility between the different programming lan-

guages. For example, it is required that a C++ object may 

be transformed into a Java object.  

Message passing adds structure to the packets to de-

fine the content but still requires the user software to 

build and send the messages. ZeroC Ice [13] and CORBA 

are middleware systems that build an abstract commu-

nication layer.  

Remote-procedure-calls attempt to expose functions 

or full objects across a process or network boundary 

without the user software being aware of the boundary. 

Remote method invocation may be given as an example.  

A comparison among the different communication 

middlewares supports the choice of the ZeroC Ice mid-

dleware. Its implementation is available on various 
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platforms, including embedded systems, and for different 

programming languages such as Java, C++ and C# as 

well. CORBA might be an alternative but it seems to be 

complex and it does not have the ability of transmitting 

objects and therefore allows only primitive data types, 

while ZeroC Ice may handle object transmission. In ad-

dition, ZeroC provides Eclipse support, which simplifies 

the usage of ZeroC Slice, the interface definition lan-

guage. 

IV. THE TOOLCHAIN 

Run-Time

Library

Code

Generation

Model

(ROOM)

Source Code

Runnable

System

User Code

Behaviour

(State-Machines)

 
Fig. 3.  Code generation workflow. 

 

A general overview of the workflow is given in Fig. 3. 

The toolchain creates and synchronizes source code from 

a given graphical model, which includes the modeled 

behavior of each component. The visual modeling lan-

guage ROOM is represented as graphical elements in the 

commercial off-the-shelf editor Enterprise Architect from 

SparxSystems [14]. This graphical model is utilized to 

create source code with the help of the eclipse modeling 

framework (EMF) [15] and its code generation capabili-

ties. The runtime library provides a communication layer, 

the implementation of the code execution model and the 

message service. 

The generated source code can be synchronized with 

the written source code of the user to allow modeling and 

code implementation at the same time. Finally, the source 

code can be compiled to a runnable application for the 

target system, e.g. a personal computer with a Windows 

operating system or an embedded system with a PowerPC 

operating system. 

V. TOOLCHAIN IMPLEMENTATION 

A more detailed description of the toolchain is given in 

Fig. 4. The graphical notation elements of ROOM have 

been integrated into Enterprise Architect [14] with the 

help of an Enterprise Architect specific MDG Technol-

ogy file. These modeling elements are utilized to create 

visual models of executable software systems. 

A C# to Java application communication channel has 

been implemented with a direct socket connection to the 

Java model repository application. It is utilized to store 

the visual model into the model repository, which has 

been defined with the eclipse ecore editor.  

The template based code generator application based 

on Java Emitter Templates (JET) [16] transforms the 

model to Java source code. 

The Code Merger tool utilizes JMerge [15] and runs as 

headless eclipse application, which starts a minimal 

eclipse framework in the background. It merges the 

generated source code with the existing one.  

The toolchain supports automatic generation of 

eclipse Java projects for each component and the runna-

ble system. These projects may be imported into the 

eclipse workspace. All link dependencies including the 

link to the run-time library have been automatically set 

and a UniMod state machine [17] is generated with each 

component project to define the behavior of the compo-

nent. 

The runtime library has been implemented in a plat-

form dependent manner and includes the ROOM code 

execution model and the middleware from ZeroC 

Ice [13]. 

The middleware supports a target abstraction layer, 

which simplifies the creation of the platform specific 

library. This framework also enables the use of special-

ized tools such as Matlab/Simulink as further described in 

chapter VI. 
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Fig. 4.  Toolchain implementation. 
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Fig. 5.  Execution environment. 

 

 
Fig. 6.  Node. 

 

 
Fig. 7.  Component deployment. 

VI. CONNECTING SPECIALIZED TOOLS 

Specialized tools have usually enhanced functionality 

to solve domain specific development tasks and they may 

have been established as common tools within these 

domains. Integration of such tools into the communica-

tion framework adds communication capabilities to other 

components, e.g. for sensor or control functionality, 

during development. The development may be finalized 

by generating a dynamic link library or an executable, 

which may successively be used within the communica-

tion network. Dynamic link libraries may always be uti-

lized with the help of visual modeling elements that 

support such libraries and generate the necessary code to 

incorporate the libraries. The dyncall library [18] has 

been employed within the run-time library for this pur-

pose.  

A direct integration of specialized development tools 

has been reached through tool specific integration tech-

nologies. For example, Matlab may be connected through 

the Microsoft COM (Component Object Model) or DDE 

(Dynamic Data Exchange) technology for message 

passing, which is described in [2]. The middleware can 

also be directly utilized with an S-function to establish 

communication to the distributed components.  

VII. CODE GENERATION EXAMPLE 

As depicted in Fig. 1, a robot control application with 

a joystick for the articulated Mitsubishi RV-2AJ robot 

demonstrates modeling and code generation. Applica-

tions are defined by instantiation of an “Execution En-

vironment”, which is named “Robot Control” in Fig. 5. 

Although a single “Win Robot Control” node is deployed 

to the execution environment for the whole application, 

several additional nodes may be deployed. Physical 

threads are modeled to allow thread deployment. Com-

ponents are finally deployed to those threads (Fig. 7), 

while their connectivity is modeled in a thread inde-

pendent manner, as illustrated in Fig. 8. The interface 

definition of the “Manual Movement Deployable Com-

ponent” in Fig. 9 describes provided and required inter-

faces, fixed to component ports. The “Control Port” 

provides component life-cycle interfaces such as “Con-

trol In” in Fig. 10 to start, stop, initialize, release and 

locate the component. Additional component properties 

management is implemented with the set and update 

property signals. Synchronous and asynchronous mes-

sage passing is supported. Each interface defines allowed 

signals that have to be modeled in the UniMod finite state 

machine, as depicted in Fig. 11. A message is received via 

port interfaces through the port to the state machine of the 

component, which fires a transition. 

The executed transition method contains the user 

code. The generation process generates for example the 

initialization methods shown in Listing 1, derived from 

the “Init” transition. JMerge uses code tags like 

„@generated“ to indicate that this method is generated 

and overwritten until the tag is manually changed into 

„@generated not“ or just deleted. 

 

 
Fig. 8.  Component connections. 

 

 
Fig. 9.  Component interfaces. 

 

 
Fig. 10.  Interface definition. 
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Fig. 11.  UniMod state machine diagram example. 

 
/** 

* Init the component. 

* @generated 

*/ 

protected void init() 

{…} 
Listing 1.  Generated Java code. 

 

Other tags such as “@unmodifiable” may also be used to 

control the merge functionality. 

VIII. CONCLUSION 

This paper highlights important aspects in the devel-

opment of the proposed model driven toolchain. The 

various model-to-model transformation stages and tools 

are presented from graphical ROOM models to the run-

nable application. The toolchain may be used for soft-

ware development in general and for specific problem 

domains such as robotics. Extensibility of the domain 

specific language allows domain-oriented engineering. 

The level of abstraction is a significant aspect for the 

handling of large software systems. Using a model driven 

toolchain the abstraction level is raised. Standard designs 

and concepts may be integrated and used with ease by the 

developers who only need the graphical front end to such 

extensions. Encapsulation result in the so-called black 

box reuse, a favorable form of it, since the economics of 

scale allows spending more effort on software design, 

software reviews and software testing. Integration of 

specialized tools and development environments en-

hanced the development process.  

The proposed model based code generation frame-

work adds a significant productivity benefit, although 

implementation of the toolchain requires high invest-

ments. However, once a toolchain is developed, it may be 

applied with ease. 

ROOM is a message based system based on state 

machines and it requires training for inexperienced de-

velopers. The message service is an additional layer that 

interprets and transfers messages to the target component 

port, which may lead to a delay in the message delivery. 

The delay must be considered, especially for time critical 

systems. Therefore, it plays a key role regarding per-

formance of the system. Nevertheless, such a toolchain 

can be valuable for large software development projects 

and allows a strict encapsulation into components with 

clearly defined interfaces. It is intended to continue with 

this methodology and further enhance the modeling and 

code generation features, especially for debugging pur-

poses and implementation of a state machine (with a 

graphical editor) alternative to the slow UniMod state 

machine. The Simulink Stateflow state machines might 

be used in Simulink context, but it requires adaptation to 

be usable in non-Simulink contexts. 

The main advantages of model driven development 

are for example better maintainability, a uniform pro-

gramming model, reusable model parts, simple but effi-

cient communication, higher abstraction, code genera-

tion, system wide optimization possibilities and focused 

development in relation to the business logic. 
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Abstract— The manufacturing industry today is still focused 
on the maximization of production. A possible development 
able to support the global achievement of this goal is the 
implementation of a new support system for trajectory-
planning, specific for industrial robots. This paper describes 
the trajectory-planning algorithm, able to generate trajectories 
manageable by human operators, consisting of linear and 
circular movement primitives. First, the world model and a 
topology preserving roadmap are stored in a probabilistic 
occupancy octree by applying a cell extension based algorithm. 
Successively, the roadmap is constructed within the free 
reachable joint space maximizing the clearance to the obstacles. 
A search algorithm is applied on robot configuration positions 
within the roadmap to identify a path avoiding static obstacles. 
Finally, the resulting path is converted through an elastic net 
algorithm into a robot trajectory, which consists of canonical 
ordered linear and circular movement primitives. The 
algorithm is demonstrated in a real industrial manipulator 
context. 

I. INTRODUCTION 

OBOT use and automation levels in the industrial 
sector will inexorably grow in future, driven by the 
present need for lower item costs and enhanced 

productivity. Synonymous with this projected increase will 
be the requirement for capable programming and control 
technologies. Many industries employ offline programming 
within a manually controlled and specified work 
environment. This is especially true within the high-volume 
automotive industry, particularly when related to high-speed 
assembly and component handling, but also in the case of 
medium sized and small batch manufacture. Any scenarios, 
reliant on manual data input, based on real world 
obstructions, necessitate the complete production system 
being offline for an appreciable time while data is input. 
These production downtimes consequently cause financial 
losses. Published research appears to be concentrated on the 
application of simulation tools to generate discrete portions 
of the total robot trajectories [1, 2], whilst necessitating 
manual input to link paths associated with one particular 
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activity with those of another. Human input to correct 
inaccuracies as well as errors resulting from unknowns and 
falsehoods in the environment is needed. In addition, 
simulation tools are complex and require highly skilled 
workers. Offline robot program generation is time intensive 
also due to inaccuracies; even then its correct operation is 
not guaranteed.  

This has led to the vision of an enhanced online robot 
programming software application to support the robot 
programmer. An overview for online robot programming is 
given in [3] and it is stated there that only one approach has 
led to a commercial tool. 

Investigations have been undertaken with the aim of 
developing an online robot software application, by 
considering the working production environment as a single 
whole workspace. Use is made of automated workspace 
analysis techniques and a trajectory planning algorithm, 
described in this paper, to realize the robot software 
application.   

In this article, we consider the high level of complexity of 
typical robot-programming tasks for human operators; 
consequently, the robot application-software we present 
here, takes over the most complicated task, which is robot 
motion planning. The remaining manageable tasks related to 
the given mission, e.g. spraying, handling or painting, 
continue to be the responsibility of the operator. In a 
handling mission for example, the operator provides 
information about what the robot has to do, e.g. placing 
objects to specific positions in a specified order, while the 
online robot software application knows how to control the 
robot. This is accomplished with the help of the trajectory 
planning algorithm presented here. 

This trajectory planning algorithm is an important integral 
part of the enhanced online robot programming application 
to find suitable robot trajectories in order to generate the 
robot program with the required features. A robot trajectory 
is a path in the working space of the robot. Each point on the 
path is described as a vector with the position and the time. 
The trajectory planning task here is to find a collision free 
movement of the robot from the start to the target location 
considering the motion constraints of the robot (e.g. a car 
that cannot move sideways), whilst also satisfying the 
requirements for readability, maintainability and 
changeability of the derived robot program.  

Laboratory tests in Section IV have demonstrated that the 
so achieved trajectory represents a trade-off between path 
shortness of the trajectory and readability, maintainability 
and changeability of the resulting robot program. 

A Cell Based Voronoi Roadmap for Motion Planning of Articulated 
Robots Using Movement Primitives 

C. Kohrt, A. G. Pipe, J. Kiely, R. Stamp, G. Schiedermeier 

R 

1542

Proceedings of the 2012 IEEE
International Conference on Robotics and Biomimetics

December 11-14, 2012, Guangzhou, China



  

II. LITERATURE OVERVIEW 
Trajectory planning is a fundamental problem and 

significant research has been conducted during the last 
decades either in static or in dynamic environments [4]. For 
example, roadmap methods [5] do not compute the whole 
configuration space, they rather try to generate a roadmap of 
suitable configurations. Apart from roadmap based 
techniques, the potential field approach [6, 7] and cell based 
methods [8] are two popular path planning approaches.  

The cell based method in combination with the potential 
field has been studied in [8] and has been successfully 
applied to arbitrary shaped robots in dynamic environments. 
The computation time of the potential field has been reduced 
by introducing hierarchical subdivision approaches such as 
quadtree and octree based methods [9]. Cell based methods 
often generate a path connecting the midpoints of the cells. 
The publication [10] identifies two limitations with cell 
based methods. First, the detection of small passages 
requires high accuracy of the octree or quadtree. Second, the 
shortest path is not always identified since the distance 
calculations of the cells often use the midpoints of the cells. 
Thus, the paths obtained by the cell based method are not 
optimal because of the connectivity limitations in a grid. 

The potential field approach has several limitations as 
outlined in [6]. In particular, the robot may get stuck at a 
local minimum and the reported paths can be arbitrarily 
long.  

Voronoi based path planning methods have been studied 
in [11-17]. However, the quality of the path obtained directly 
from the Voronoi diagram is long and not smooth. In the 
recent years, improving the quality of the path has been an 
active area of research. In [18], the Voronoi diagram was 
combined with the visibility graph and potential field 
approach to path planning into a single algorithm to obtain a 
trade-off between safest and shortest paths. The algorithm is 
fairly complicated but the path length is shorter than those 
obtained from the potential field method or the Voronoi 
diagram.  

Most of the algorithms have limitations in real-time path 
planning where the world model with unknown obstacles is 
updated during runtime. These algorithms work best on 
given maps including full knowledge of all obstacles. 

III. TRAJECTORY PLANNING 
The trajectory-planning algorithm plans a trajectory 

between two given joint positions. A linear octree [9] is used 
to represent the working space of the robot in a spatial world 
space. The octree stores its cells in a predefined maximum 
accuracy defined by the octree depth. Each cell contains a 
binary tree to store the robot joint positions and stores a 
reachability value, which describes if the robot can move its 
tool-center-point (e.g. the robot hand) into the cell area 
without collision. The general reachability is stored in a pre-
calculation step described in Section III.B. 

 In addition, each cell stores an occupancy value as well. 
Cells are defined as fully, partly or not occupied, depending 

on the obstacles within the working space. This information 
is input by external sensors through a sensor fusion 
framework. A collision button and computer-aided design 
data of a construction process of the working cell have been 
utilized in the test environment to detect obstacles. The 
choice is based on the fact that model data is often available 
and the operator itself is a reliable source to detect collisions. 
Additional more advanced sensors, such as machine vision 
can be applied as well to increase the recognition 
performance, but this work is beyond the scope of this 
article. 

The occupancy and the reachability information are 
employed to create a roadmap within the reachable free 
space of the octree. The roadmap forms a Voronoi diagram, 
which is created by a cell-based algorithm within the octree. 

A search algorithm is executed on the joint positions 
located within the roadmap to identify the shortest path from 
the start to the target position. Subsequently, the so derived 
path is turned into a trajectory through the application of the 
elastic net, presented in [19].  

The employed algorithm facilitates only kinematic 
forward calculations to avoid ambiguities and to reduce 
computation time of the inverse kinematic calculation. 

A. World Model 
Path planning is based on data about the physical 

environment stored within the world model. It is 
implemented as a linear octree [9] that stores pre-existing 
and dynamic information of the environment. 

The computer-aided design data of a construction process 
of the working cell is adopted as information source whereas 
a collision indication button, held by a human operator, is 
utilized as a real-time sensor. During the execution of the 
path planner, the operator indicates upcoming collisions not 
predicted by the automated system through the real-time 
sensor. Robot type information is particularly important 
allowing the use of a simulation model of the robot to afford 
forward and inverse kinematic pre-calculations. 

The world model handles the information and combines 
the CAD data and real-time data mentioned above. The 
deriving data fusion is carried out as a voting system [4]. 
Real robot applications have demonstrated that sensors may 
deliver wrong information [20]. Therefore, each sensory 
source is classified through the reliability weight between 
0.0 and 1.0 and an applied simple moving average filter 
delivers cohesive information. 

B. Reachability Calculation 
The configuration space of an articulated robot is often 

discretized in order to execute a path searching algorithm on 
the discretized search space. The discretization plays an 
important role since the accuracy of the search algorithm is 
often coupled with the accuracy of the discretization. The 
approaches in [21-23] use hierarchical structures, capability 
maps or non-uniform discretization to optimize the search 
space to enable efficient searching. 

Optimization can in general be reached by minimizing or 
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ordering the search space specifically for the applied search 
algorithm. The planning algorithm described here is 
executed in the constrained configuration space to improve 
the search algorithm, as will be seen in the next sections. 
The reachability of the robot is required to calculate these 
constraints.   

The reachability of a robot in world space can be 
calculated by transforming the robot configurations from the 
tool center point coordinates to world coordinates or vice 
versa. This transformation can be applied with forward or 
inverse calculations of the robot kinematics. An efficient 
inverse calculation can only be achieved for world 
coordinates with given information about its position and 
orientation. Since the orientation can be arbitrarily chosen, 
inverse calculations lead to intensive computation.  

This problem has been studied in [21, 22] and a simple 
pre-calculation step is proposed to generate and persist the 
required information in a look-up table by forward 
calculations of the robot arm configuration to the points in 
space. The look-up table may, in general, be used if the 
robot kinematics are static and known beforehand. Since this 
algorithm is used in an industrial environment, both 
statements are fulfilled. The aim of the look-up table is to 
represent the reachability with a limited number of joint 
positions  to reduce the search space for a path-searching 
algorithm. The number of joint positions  has direct 
impact on the running time of the path searching algorithm 
and the required pre-calculation time of the look-up table. 

The limitation is possible because of the employed search 
algorithm described in Section III.E. The discretization of 
the configuration space has been implemented with a robot 
link dependent accuracy  (with  is the link number), 
which identifies the link importance and considers the sweep 
occupation volume of the robot links as well as the 
mechanical constraints of the robot joints. 

The implemented linear octree  - the world model - has a 
defined depth , which allows calculation of the smallest 
octree cell size. This can be further employed to estimate the 
robot link dependent accuracies , which have to be 
carefully chosen. In order to guarantee that the path-
searching algorithm will complete the search task 
successfully, it has to be ensured that enough discretized 
positions  are stored per octree cell on the deepest level. 

The octree accuracy does not need to be very high 
because the employed trajectory planning methodology 
discussed in Section III.E only applies to the octree for path 
searching. The trajectory generation algorithm actively 
requests additional positions and operates almost 
independently from the octree. 

Various methodologies for discretizing the configuration 
space are presented in the literature. An optimal 
discretization methodology that sets the resolution along 
each configuration coordinate (robot axis) according to the 
maximum movement of the robot end-effector at each step 
that the robot moves along this coordinate is described in 
[24]. The discretization resolution is determined with 

 of a -dimensional configuration 
space. A uniform discretization for all joints of the robot 
manipulator can be defined with  for some constant 
.  

With a reasonable joint resolution of , the uniform 
discretization results in huge configuration spaces. For 
example, a discretization of the joints of the Mitsubishi RV-
2AJ with  results in a configuration 
space with  states. 

The algorithm presented in this article is based on 
equation (1), where  is the distance between the centers of 
joint  to the farthest point the end-effector can reach, and 

 is a pre-set distance the robot may move at one 
step along the coordinate. 

 (1)  
The optimal discretization results in Cartesian movements 
 of the joint , which meets the condition  

 where .  
For  of a Mitsubishi RV-2AJ 

industrial robot, the optimal discretization equals to  
.  

The size of the corresponding configuration space 
considering the mechanical constraints for the utilized 
Mitsubishi robot is  states. This is  
magnitudes less compared to the uniform discretization with 

 and  states. 
The configuration space is computed with forward 
calculations of the robot manipulator and the joint positions 

 are stored within the octree. This calculation has to be 
done once per robot. 

C. Occupancy Calculation 
The occupancy calculation is done beforehand and online 

by sensors during path planning to update the world model. 
The first information source is modeled data, which has been 
applied to the in-memory world model and handled as a 
sensor. This information source is amended by a binary 
collision indication button of the operator and it has turned 
out to be sufficient for the proposed trajectory planning 
algorithm. 

D. Voronoi Based Roadmap Generation 
Roadmap methods generally identify a set of roads, which 

may be safely travelled along without incurring collisions 
with obstacles. The method here adopted has been inspired 
by [16], based on the Voronoi form [25, 26]. This choice has 
been taken after considering two important aspects. First, the 
Voronoi form may be applied either in the world space or in 
the joint space of the robot. Second, it maximizes the 
clearance of obstacles, so that the path-planning algorithms 
do not have to be particularly accurate. The second point 
may be perceived as a negative characteristic too, since the 
derived roads are not short, smooth or continuous enough to 
guarantee an enhancement [18, 27] (see Section III.E). In 
fact, implementation tests of [16] have shown that a Voronoi 
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form is rarely reached. Adjustments of the parameters by 
trial and error, as suggested by the authors of [16], have not 
led to any improved results either. In addition, real-time 
robot control with this kind of neural network requires 
processing of the neurons to adapt to the environment 
including the obstacles. Since random positions are not 
available in real environments the proposed approach has 
not been followed here any further. 

Hence, the concept at the basis of the Voronoi form has 
been extended and applied to a grid-based algorithm. First, 
the obstacle and border cells are added to an open list. 
Successively, all neighbor cells are iterated for all elements 
in the open list in order to mark them with the obstacle 
number according to the currently examined element of the 
open list. The currently examined element is moved from the 
open to the closed list and extended cells are added to the 
open list to be examined in the next iteration.  

The general grid-based algorithm described in Listing 1 
produces the approximated Voronoi diagram. The primary 
aim is to approximate a Voronoi form between the obstacles 
and the border cells in joint space.  

The grid used in the implementation is an octree in three 
dimensions. It allows adding obstacles during runtime while 
recalculation is only necessary for neighboring 
areas (see III.D). The octree also provides the opportunity to 
utilize its hierarchy to speed up the algorithm to efficiently 
store environment information. Application of this cell 
extension methodology builds a roadmap that supports real 
time development of the topology and connectivity of the 
robot workspace.  

This algorithm is applied to the tool center point of the 
robot. The maximum clearance of the whole robot arm to the 
obstacles is indirectly considered because reported collision 
indication positions are stored as robot joint positions into 
the cell. The cell occupancy is always calculated based on all 
postures and thus, its occupancy value is accordingly 
calculated. 

During the execution of the path-planning algorithm, new 
information of the working space and the obstacles is 
provided by the employed sensors and information sources, 
which are the collision button and the computer aided design 
model. New joint position information is added to the data 
structure in the steps described in Listing 2.  

The world coordinate of the position is determined by 
forward kinematics calculation successively storing the joint 
position into the octree cell that is responsible for the world 
position region.  

The cell is marked with an occupation value in 
accordance to the reported and fused sensor value . A 
probability threshold of  is applied in equation (2) to 
transform the cell occupancy value to the binary value 

 required by the Voronoi roadmap generation 
algorithm. 

                      (2) 

1. Store all border, obstacle and extended 
cells  in the open list 

2. While open list element count > 0 
2.1. Take first cell  from the open list 
2.2. Inspect all neighbour cells of  and 

mark each extended neighbour cell 
according to the following conditions: 
2.2.1. If the extended cell is located 

between two or more obstacles 
2.2.1.1. If the cell is not reachable 

it is marked ‘0’ 
2.2.1.2. Else it is marked ‘-1’ 

2.2.2. Else copy the mark from cell   
2.3. Add all neighbour cells of , which are 

not in the closed list, to the open list 
2.4. Move cell  from the open list to the 

closed list 
3. Wend 

Listing 1. Cell extension algorithm. 

1. Get the robot posture for a collision 
indication 

2. Execute forward calculation to get the world 
position 

3. Store the joint position to the responsible 
octree cell 

4. Calculate the occupation value for the cell 
5. Update the parent cells 
6. Recalculate the cell region  to obtain the 

updated Voronoi diagram 
Listing 2. Obstacle addition algorithm. 
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Figure 1. Dynamic and fast cell extension example (before and after 

update). 

Parent cells are updated to either partly or fully occupied 
depending on the occupation of the child cells of the parent. 
Parts of the Voronoi roadmap have to be recalculated if new 
collision information is processed. A minimum distance  
of the robot TCP is introduced to those obstacles, which is 
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used to clear surrounding extended groups of cells within the 
distance . An example is illustrated in Figure 1. 

The cell in position (9, 6) is updated and marked as 
occupied (see second figure, cell number 26). A radius of 

 cells is considered. As a result, the group 
information and the Voronoi path are recalculated.  

The second example in Figure 2 focuses on the defined 
distance and shows how the distance influences the Voronoi 
path generation. The distance to the occupied cells shall be 
maximized within the given boundary of . The occupied 
cell ‘27’ (only its extended cells ‘7’ are visible) is next to the 
newly added occupied cell ‘26’ and, thus, the Voronoi path 
is adapted. The guaranteed space between the Voronoi path 
and the newly added cell is  because the cell 
extension mechanism starts from the given distance and 
grows from both sides in order to meet in the middle of 

. 
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Figure 2: Defined distance influence on Voronoi path generation. 

The algorithm is summed up in Listing 3, where the 
group information is updated for each obstacle addition. 

1. Add new obstacle cell to open list 
2. Reset and move cells within the distance  

from the closed to the open list 
3. Apply the algorithm from Listing 1 

Listing 3. Cell addition for obstacles. 

E. Search within the Roadmap 
The robot may be seen as a Dubin’s car [28] in three 

dimensions that may be steered from the start to the target 
location by real robot movements. During each movement, 
the world model gets updates in the form of obstacle joint 
positions. The algorithm finds a path to the target location 

based on the roadmap and accuracy of the octree, 
considering all the joint positions within the cells of the 
roads. The accuracy of the road cells are uniformly at the 
highest level. This also defines the minimum size of small 
passages that may be captured. 

Path planning consists of two steps. First, within the 
roadmap the shortest path from the start to the goal is 
calculated within the joint space. As a second step, the 
algorithm transforms the identified path into a trajectory 
consisting of movement primitives, described in Section 
III.F. The trajectory avoids obstacles and reduces the 
clearance to them. This is done by forces applied on the 
roads within the map [19]. 

Information about the environment in which the robot 
operates and about the objects it has to avoid is captured 
within the roadmap. The roadmap is improved during 
trajectory planning. Real sensory information is delivered to 
the roadmap in the form of collision locations. This leads to 
an adaptation process of the roadmap, which primarily 
targets the approximation of the Voronoi form. 

The A* search algorithm [29] is first used to conduct a 
local search and connect the start and target locations to the 
roadmap and, second, to search within the joint positions of 
the Voronoi roadmap. The start and target locations are 
handled as obstacles: this means that Voronoi roads are 
generated around them. The extended cells are added to the 
search space to connect the location with the Voronoi roads. 

The joint distance metric is utilized as heuristic for the 
A* algorithm. The connectivity of the joint positions is 
given by the octree cell connectivity. All joint positions of 
one octree cell are connected to all joint positions of the 
neighboring octree cell. This may result in high running 
search times if too many joint positions are stored within the 
octree cells. The reachability calculation described in 
Section III.B has to consider this by choosing the accuracy  
accordingly. This is highly dependent on the robot geometry. 

The octree is an extension of the quadtree, which has 
shown two limitations [10] in path planning: first, the 
detection of small passages requires high accuracy of the 
octree/quadtree. Second, the shortest path is not always 
identified since the distance calculations of the cells always 
use the midpoints of the cells. 

The first aspect requires the involvement of many cells; 
consequently, the planning stage may take a great deal of 
processing time. It is proposed in [10] to overcome this 
limitation using an obstacle dependent grid. However, in the 
now proposed approach the octree representation is used to 
interface between world and joint space coordinates. The 
number of cells is reduced by the transition to the joint 
positions, which are assigned to each cell, and by only 
subdividing needed cells. 

The second aspect is solved using joint positions within a 
cell and the joint distance metric for the A* search. The joint 
distance between two joint positions is directly computed by 
the difference of these joint positions. The distance 
measurement is executed on the joint positions and not on 
the cells; therefore the octree cell size is decoupled from the 
distance measurements.  

1546



  

As mentioned in III.C, the occupancy probabilities for 
the cells are considered as movement costs during path 
planning. Since the search is not conducted within the cells 
but within the joint positions, each joint position is allocated 
the probability given by the containment cell [30]. The 
connectivity of the octree cells includes direct and diagonal 
neighbors so that each non-boundary cell has 26 neighbors.  

Moreover, the application of the A* algorithm to a real 
robot in order to identify the shortest path often leads to re-
planning of the path itself each time a shorter path is found. 
Since real robot movements are involved, this should not 
happen too often. A hysteresis on the path length is applied 
in order to prevent this and to allow an additional 
exploration of the working space: consequently, the system 
achieves environment information stored within the world 
model. 

The A* path planning method together with the 
probabilistic occupancy map projected on joint positions 
always delivers the shortest roadmap Voronoi road, if one 
exists. The search space is reduced by the Voronoi form in 
world space and the reachability calculation is dependent on 
the robot geometry. The joint positions are carefully 
distributed along the roadmap paths. Through the application 
of this methodology, good performance of the search stage is 
assured. 

F. Elastic Net Trajectory Generation 
As mentioned before, transformation of the path to a 

trajectory is a necessary step carried out by the application 
of the elastic net. The path within the roadmap found by the 
A* algorithm consists of connected joint space positions. 
Transformation of the path into a trajectory is reached by 
applying equidistance, rotation and shrink forces on the joint 
space positions [19] in world space. For these positions, both 
forward and inverse kinematic calculations are used. The 
generated trajectory consists of canonically ordered 
movement primitives, which are linear and circular 
movements. The joint movement type is not of interest for 
the online path planning application and it is therefore 
omitted. The transformation considers the reachability and 
obstacles automatically, as shown in Section 3. 

IV. EXPERIMENTAL RESULTS 
In this section, the general execution of the programming 

assistant is described and a scenario (see Figure 3) has been 
chosen to demonstrate the proposed approach. The system is 
executed with a real five axis industrial scale, articulated 
Mitsubishi RV-2AJ robot [31]. The algorithm utilizes an 
octree as world model (as described in Section III.A) and 
joint positions attached to the octree cells. During 
implementation, the algorithm has been tested in simulated 
two-dimensional space using a quadtree as world model and 
world positions attached to the quadtree cells. The proposed 
algorithm works in real surroundings. The illustrations 
shown in this section are simplified to support understanding 
of the algorithm. 

In the chosen real scenario, the two obstacles O1 and O2 
are given as computer-aided design (CAD) objects and 
imported into the in-memory environment model. One 
obstacle O3 shall be unknown to the system and is therefore 

not imported. The chosen scenario consists of a mission with 
the start and target positions P1 and P10.  

A. The Generated Roadmap 
The scenario in Figure 3 is processed to the roadmap 

shown in Figure 6. Each cell of the roadmap contains the 
produced robot positions in configuration space, as 
explained in Section III.B. 

 
Figure 3: Illustration of the experimental scenario in the 3D world. 

B. Corridor of Robot Space Positions 
Using the generated roadmap in IV.A, the resulting 

corridor is given in  

Figure 4, including the indicated configuration space 
positions. The search is executed on those positions and it 
finds a path, as illustrated. Configuration space positions are 
also added to the start and target positions including their 
extended cells, as explained in Section III.B.  

C. Elastic Net Trajectory Generation 
In Figure 5, the found path is processed and adapted to a 

feasible trajectory, shown in Figure 6. The elastic net 
algorithm is parameterized regarding its shrink forces. Those 
forces (shown as arrows in Figure 5) move the particles on a 
straight line and, thus, push the trajectory to the obstacles. 
The stronger the force, the more the trajectory is moved 
towards the obstacles and the more collisions may occur. 
The path planning system first controls the real robot along a 
trajectory with low shrink forces applied to reduce the 
number of collision indications. The real robot may now be 
controlled along the generated trajectory until a collision is 
indicated or the target is reached. After the final trajectory is 
found, the shrink force may be raised to optimize the 
trajectory. 

D. Re-planning on Collision Indications 
As mentioned in IV.A, the search is executed within the 

roadmap corridor containing configuration space positions 
of the robot. During the movement execution of a solution, 
new information about the workspace and the obstacles may 
be added to the world model. This normally happens when 
collisions are indicated. With a dynamic update of the world 
model, a new search is initiated.  

The real robot stops its previous movements, moves back 
to the last common trajectory position and follows the new 
trajectory. Figure 7 illustrates the environment exploration 
and the resulting world model updates to recognize obstacle 
O3. As a result, the Voronoi roadmap plans a new trajectory 
around the newly added obstacle location. It turns out that 
those locations are also occupied and therefore a completely 
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new trajectory is found, as shown in Figure 8, which is 
further modified as described in IV.A. 
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Figure 4: Roadmap corridor including configuration space positions. 
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Figure 5: Elastic net trajectory generation. 

E. Trajectory Planning Workflow and Robot Behaviour 
The Mitsubishi RV-2AJ robot moves slowly along the 

planned trajectories in real time. The world model is updated 
on each collision indication (for dynamic and static 
obstacles) and does not interrupt the trajectory planning 
workflow. The clearance of the generated trajectories to 
obstacles is kept, and time consuming re-planning is rarely 
executed. Although unknown obstacles require re-planning 
more often, it still does not interrupt the workflow. It may be 
optimized by introducing occupancy probabilities to 
neighboring octree cells to reduce the number of re-planning 
occasions and required collision indications. 

V. DISCUSSION AND CONCLUSION 
The general research aim was to establish a robot 

programming support system which helps the robot operator 
to generate robot programs in an industrial production 
environment. The trajectory planning system is an important 
component and it has to satisfy all requirements as stated in 
the introduction. The framework is defined by the employed 
algorithm and the usage of the robot programming support 
system in real environments, together with the limited 
sensory input. The achieved algorithm employs Voronoi 
roadmaps in the first instance. This allows a high probability 
for collision free movements of the robot through the 
workspace considering a minimum knowledge of obstacles 
within the environment. The Voronoi roadmap supports path 
planning with only little sensory input, which is most often 
obtainable in real environments. While the robot is moving 
along the Voronoi path, collision information indicated by 

the operator or other sensors is used to improve the roadmap 
and, thus, exploration of the environment takes place. 
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Figure 6: Trajectory through the roadmap without obstacle O3. 
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Figure 7: Every collision indication position (part of obstacle O3) is added to 
the roadmap. 

The application of the elastic net not only transforms the 
found path into a trajectory, it also optimizes that trajectory. 
It deforms and stretches the path to reduce the clearance to 
the obstacles and thereby the world model is updated. This is 
an important feature to stretch or shorten the generated 
trajectories along Voronoi edges, which are otherwise not 
short and smooth. The operator might directly control the 
elastic stretching process in future work and has been chosen 
by experiment in the proposed approach. 
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Figure 8: The new trajectory. 

 
Shortest path planning is executed on points along the 

Voronoi edges and optimized in a second stage to generate 
the trajectory. Although other solution candidates might be 
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shorter after optimization, this approach presents a good 
approximation. This two stage approach allows the use of 
low accuracies in the search stage, which speeds up the 
algorithm. The accuracy of the octree controls the capability 
of the path searching algorithm to find small passages. The 
robot configuration space discretization in the pre-
calculation step is optimized for the accuracy. Too many 
discretization positions lead to long path planning times, 
whereas too few positions prevent the path planner to find a 
solution.  

This approach considers world and joint coordinates and 
joins them in the octree. The transition is an important step, 
since inverse calculations of target positions for articulated 
robots often result in non-singular robot postures. Reported 
collisions occur in a single posture and, thus, postures have 
been stored within the octree cells for obstacle avoidance. 

The presented methodology considers static obstacles. 
An extension to dynamic obstacles requires two collision 
indication buttons to classify dynamic and static obstacles. 
Dynamic obstacles that have the same state in each time step 
for each production cycle can be supported. These are the 
only obstacle types required for the defined industrial 
production scenario. 
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a b s t r a c t

The manufacturing industry today is still looking for enhancement of their production. Programming of

articulated production robots is a major area for improvement. Today, offline simulation modified by

manual programming is widely used to reduce production downtimes but requires financial invest-

ments in terms of additional personnel and equipment costs. The requirements have been evaluated

considering modern manufacturing aspects and a new online robot trajectory planning and program-

ming support system is presented for industrial use. The proposed methodology is executed solely

online, rendering offline simulation obsolete and thereby reduces costs. To enable this system, a new

cell-based Voronoi generation algorithm, together with a trajectory planner, is introduced. The robot

trajectories so achieved are comparable to manually programmed robot programs. The results for a

Mitsubishi RV-2AJ five axis industrial robot are presented.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Robot use and automation levels in the industrial sector will
grow in future, driven by the ever-present need for lower item costs
and enhanced productivity. Synonymous with this projected
increase will be the requirement for capable programming and
control technologies. Many industries employ offline programming
within a manually controlled and specified work environment. This
is especially true within the high-volume automotive industry,
particularly when related to high-speed assembly and component
handling. Any scenario, reliant on manual data input, based on real
world obstructions, necessitates the complete production system
being offline, out of production, for appreciable time-periods while
data is input. A consequent financial loss ensues.

The two main categories of robotic programming methods are
online programming and offline programming. Usually, the teach
pendant is used to manually move the end-effector to the desired
position and orientation at each stage of the robot task. Relevant
robot configurations are recorded by the robot controller and a
robot program is successively written to command the robot to
move through the recorded end-effector postures. Offline

programming is based on models of the complete robot work cell
and the robot is simulated.

Published research appears to be concentrated on the applica-
tion of simulation tools to generate discrete portions of the total
robot trajectories [17], whilst necessitating manual input to link
paths associated with one particular activity with those of another.
Human input is needed also to correct inaccuracies and errors
resulting from unknowns and falsehoods in the environment.

Investigations have been undertaken with the aim of generat-
ing a robot control program, by considering the working produc-
tion environment as a single, whole, workspace. Use is made of
automated workspace analysis techniques and trajectory smooth-
ing. Some non-productive time is necessitated, but unlike pre-
viously reported approaches, this is, for the most part, achieved
automatically and consequently rapidly. As such, the actual cell-
learning time is minimal.

2. Industry requirements to an online robot trajectory
planning and programming support system

An up-to-date industry requires a modern production system,
able to combine and support flexibility, high-speed and optimization
[11]: the overall production time available must be maximized to
guarantee the highest productivity possible. Considering the high
level of complexity of several robot-programming tasks for human
operators, the proposed solution consists in a support system that
takes over all the most complicated sub-tasks. The left manageable
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sub-tasks related to the given mission remain responsibility of the
operator. The proposed methodology is executed solely online
rendering offline simulation obsolete and thereby reduces costs for
the offline preparation of robot programs. Supported online pro-
gramming must be fast and flexible to reduce possible production
downtimes. The generated trajectories must conform to the given
requirements in quality and speed. Physical production parts and

fixtures are often not available during online robot programming,
thus, the support system must handle such situations to permit its
use. Nevertheless, the human component still remains important and
necessary: robot programs may be modified by human operators
during their lifecycle because of possible changes. The so generated
programs must be readable, maintainable and changeable.

3. Support system overview and architecture

The proposed support system is applied on a 5-axis industrial-
scale, articulated Mitsubishi RV-2AJ robot with an additional
Ethernet card installed. It is a nonlinear system with five rotary
joints. The robot is equipped with the Mitsubishi CR1 controller
and a teach pendant. The main areas of the robot are assembly,
manufacture, pick & place and handling tasks. Communication
between this system and a personal computer is possible [12]; the
commercial viability has already been demonstrated [16]. The
equipment is shown in Fig. 1. Both model-based and sensor-based
data are considered in order to define the environment of the
robot: perception functions, initiated by sensors (cameras or
tactile sensors), provide the system with information about the
environment. A general overview is given in Figs. 2 and 3.

The Object Recognition component converts the features of an
image into a model of known objects. First, the scene is segmen-
ted into distinct objects. An analysis deriving from motion,
binocular stereopsis, texture, shading and contour follows, so
that orientation, shape and position of each object may be
determined relative to the camera. Peter Corke’s Machine Vision
Toolbox for Matlab [4,5] allows the developer to use professional
image processing capabilities [20] with ease. In addition, model-
based data such as computer-aided design (CAD) data is used to
present the world model more accurately. Computer-aided design
derived data from simulation systems, such as RobCAD [24], are
exported as drawing exchange format (DXF) files, including all
locations attached and they are stored within the world model.
The attached locations of computer-aided design objects are
employed to acquire information concerning start, target and
application paths locations.Fig. 1. Devices overview.

Fig. 2. Logical view of the support system.
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Target locations may also be determined by a manual move-
ment of the robot or by visual servo-control. The first is possible
with the support of a joystick or a teach pendant. The visual
servo-control applies a pointing device to indicate the target
location to the robot. The robot moves automatically towards
the given location with the help of a neural network and stores
the position. Successively, the network transforms picture
coordinates into robot control commands as described in [18].

The Workspace Exploration component gathers additional
environmental information, by direction of the robot to move
within the workspace. This is realised through manual move-
ments, random movements and existing robot programs. Colli-
sions are always processed during exploration. Throughout its
movements, the robot ascertains which parts of the space are free
within its coordinate system, by either visual feedback or manual
collision indication. This information becomes more accurate
during the planning process.

The Robot Control component [12] grants the direct commu-
nication with the robot and enables direct robot control, serial/
Ethernet connection, robot parameter editing/reading/writing,
program uploading and downloading, real-time movement con-
trol, robot system backup/restore, external control over the user
datagram protocol (UDP) and equipment control.

The robot path is completely stored within the support system
in form of a trajectory that consists of connected particles. Its
transfer to a robot specific program is achieved within the Robot

Program Generation component in two steps: first, translation into
a robot program of solely the provided trajectory; second, gen-
eration of the specific robot program enriched with additional
configuration commands and specific linguistic syntax. The here
described two-step generation may also be applied to support
other robot types.

4. The online path planning and programming support
system

Deriving from the requirements described in Section 2,
a method is necessary to combine maintainability and optimality,

i.e., shortest path finding and path smoothing. The proposed path
planning system identifies a trade-off between both. Path finding
and smoothing are actually two competitive tasks, considering
also that smoothing is generally applied after the definition of the
path itself. The proposed path planner allows on the contrary the
concurrent execution of both tasks. Optimality here is identified
in form of the trajectory length.The so generated trajectory
consists only of a small number of locations and movement
primitives (linear, joint and circular movements). This approx-
imation renders the robot program maintainable, clearly struc-
tured and understandable by human robot programmers.

4.1. Overall algorithm

The content of the following paragraphs is based on the path
planning workflow shown below:

(1) Set up online path planning and program generation support
system including hardware.

(2) Import pre-existing data (robot geometry and computer-
aided design data).

(3) Create a mission by robot movements, computer-aided design
locations, pointing device or simulation.

(4) Execution of the support system.
a. Create connectivity in form of an approximated Voronoi

form.
b. Explore the workspace and update the world model.

i. Automatic random exploration.
ii. Exploration by existing robot programs.

iii. Exploration by following the Voronoi lines to the target
without path smoothing.

c. Apply the path searching algorithm in joint space.
d. Apply the elastic net algorithm to generate the trajectory.
e. Move along the trajectory from start to the target until

either a constraint violation occurs (collision or robot
kinematic constraint), a shorter path is found by the path
searching algorithm or the target is reached.
i. On collision or kinematic constraint violation.

1. Update the roadmap and generate new roads.

Fig. 3. Online path planning and programming system overview.
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2. Take back the last movement to the last common
trajectory position that is unchanged.

ii. On a shorter path found in the roadmap.
1. Continue the movement to explore the workspace

along the possible trajectory solution until the path
length difference is larger than a hysteresis value.

2. When the path length difference is larger than the
hysteresis value, do an automatic random
exploration.

3. Take back movement to the last common trajectory
position of the old and new trajectory and continue
with 4e).

(5) Robot program generation.
(6) Robot program file upload to the robot.
(7) Remove the support system.

4.2. General workflow

A general case of the workflow is illustrated in Fig. 4 and will
be described in the following sections. It may be recognised
within the world model, but also within the online robot
trajectory planning and programming support system (Fig. 3).

The workflow consists mainly of four actions: the linear octree
[9] stores robot environment data. The application of the data
creates a roadmap in form of a Voronoi diagram, in three-
dimensional space and with a new cell-based methodology. The
A* search algorithm is applied on joint space positions within the
roadmap. It is a famous shortest path-finding algorithm [19] that
uses heuristics to direct the search towards the target. The
heuristic shall never overestimate the distance to the goal. There-
fore, the joint distance is appropriate. With the support of the
trajectory generation module (within the elastic net), a so deriv-
ing path is transformed into a trajectory.

4.3. World model

Path planning is based on data about the physical environ-
ment, the so-called world model. Pre-existing and dynamic
sensor-information of the environment is stored into this specific
model, defined by three main sources: computer-aided design
data of a construction process of the working cell, a vision-system
and the human operator. During the execution of the path
planner, the operator is given the possibility to indicate a collision
point through a specific button for example on the control panel
or the joystick.

Both, the positions in the world model and their occupations
are of interest, therefore a flag shows whether a position is safe or
not. Real robot applications have demonstrated that sensors may
deliver wrong information [10]: in this model, a reliability weight
between 0.0 and 1.0 is defined for each information source. The
world model is able to handle this additional information and
combines the information types mentioned above.

The deriving sensor fusion includes sensor abstraction, algo-
rithms and architectures [3]. Fusion is carried out as a voting
system. Each sensory source is filtered through a simple moving
average (SMA) filter, which delivers cohesive information. The

reliability weight of each source affects the calculation of the
coordinates occupation with the averaged weighted sum of the
sensor values. The resulting probability of the occupation value
rises with every check. Not only real obstacles are considered, but
also the kinematic of the robot, consequently involving areas in
space otherwise unconsidered.

4.3.1. Pre-existing and dynamic information

The world model stores information concerning the robot cell,
the used robot and the environment in form of computer-aided
design data. Such pre-existing information is considered before-
hand. The robot type information is particularly important since it
allows the use of a simulation model of the robot to afford
forward and inverse kinematic calculations. These calculations
and computer-aided design data stored in the world model
become usable for the path planning system. Both pre-existing
and dynamic information deriving from the sensors is adopted:
the operator gives valuable information about upcoming colli-
sions; a vision system delivers information about the robot
position and possible collisions. Obviously, not only collisions
are interesting, but also information about the position of obsta-
cles and ‘holes’ in the configuration space not recognisable from
the robot itself.

4.3.2. Voronoi based roadmap generation

Roadmap methods generally identify a set of roads, in graphic
form, which may be safely travelled along without incurring into
obstacles. The method here adopted has been inspired by the
approach presented by Vleugels, Kok and Overmars [21], based on
the Voronoi form [2,8]. This choice has been taken also consider-
ing two important aspects: first, the Voronoi form may be applied
either in the workspace or in the configuration space of the robot.
Second, it maximizes the clearance of obstacles, so that the path-
planning algorithms have not to be particularly accurate. This
second point may be perceived as a negative characteristic too,
since the so deriving roads are not short, smooth and continuous
enough to guarantee an enhancement [1,15]. In fact, implementa-
tion tests of [21] have shown that a Voronoi form is rarely
reached. Adjustments of the parameters by trial and error, as
suggested by the authors of [21], have not led to any different
results too.

Hence, the concept at the basis of the Voronoi form has been
extended and applied to a grid-based algorithm. A simplified,
two-dimensional space is illustrated in Fig. 5: several obstacles, a
configuration space ‘hole’, start and target cells are represented.
The light grey cells ‘�1’ reproduce the Voronoi approximation.
The dark grey cells represent the configuration space ‘hole’. White
cells denote expanded nodes, 1–7 denotes expanded obstacle
node cells, black cells denote border nodes, and 21–23 denote
obstacles. The general grid-based algorithm consists of a simple
rule, applied to produce the approximated Voronoi diagram. The
primary aim is to approximate a Voronoi form between
the obstacles and the border cells in the configuration space.
The configuration space ‘holes’ are considered as obstacles which
preclude the Voronoi form the possibility to maximize the
clearance to physical objects.

Fig. 4. General path planning workflow.
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4.3.2.1. Rule

All direct neighbours of the cells Ci are extended. If the
extended cell is located between two or more obstacles or
border cells and cannot be reached by the robot, its number is
set to ‘0’. If the extended cell is located between two or more
obstacles but it is reachable by the robot, its number is set to
‘�1’, the Voronoi approximation. In any other case, the
extended cell is set to the number of the originating cell Ci.

The grid used in the implementation is an octree in three
dimensions. It allows adding obstacles during runtime while only
the neighbouring areas will be necessary to recalculate. The
octree also provides the opportunity to use its hierarchy to speed
up the algorithm. Applying this cell extension methodology,
roadmaps are built so that an on-going, real time development
of the topology and connectivity of the robot workspace is
possible.

Roadmaps are employed by the path planning system during
the mission planning in order to identify paths between two
positions (see Section 4.4) and to define the trajectory (see
Section 4.5) [13].

4.4. Mission planner

Given a mission, the mission planner plans multiple possible
trajectories. This choice has been taken for two main reasons.
First, the industry today requires a support system able to
accomplish different tasks and contemporary requirements.
Second, applying the here presented path planner, the system
results highly optimized. Distances are calculated in shorter
time (see also Section 5), the range of collected information
used by the mission planner is higher and the multiplicity of
possible trajectories is maintained. Any algorithm for solving the
travelling salesman problem [19] may be utilised to calculate the
order in which each application path is processed. The mission
planner delegates the task of trajectory planning to the path
planner. Both, mission and path planner have to establish an
interconnection for the exchange of information that is the length
of the actual planned path. The algorithm here used must be
able to handle path length information during path planner
execution and react to this by commanding the path planner.
In the system now discussed, a simple brute force algorithm
has been used and as such, it is admirable for a demonstration

Fig. 5. Voronoi approximation in a two-dimensional uniform grid.
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system, although it is limited to operation with few
application paths.

4.5. Path planner

As described in Section 4.4, path planner and mission planner
must interact. While the path planner is focused on the creation
of the trajectory, the mission planner handles a higher level of the
planning. A mission is defined by the start- and target-locations of
the paths, combined with path application information, for
example handling, adhesive bonding or painting. The path plan-
ner calculates a path and controls the robot along that path until a
collision is detected, the kinematic constraints are not met or the
target is reached. In each case, the mission planner is informed by
sensor inputs and acts appropriately by initiating the roadmap
and trajectory generation algorithm.

Fig. 6 shows the path planner together with its interfaces. It is
defined in the Enterprise Architect UML tool and the hull includ-
ing the connection to the communication framework is automa-
tically generated as Java code.

The path planner interfaces with the following systems:
control port (component life cycle), robot position (actual robot
position), mission planner (mission information), environment
model (sensor input), robot kinematic (forward and inverse robot
geometry calculations) control application (path planning user
control), robot movement control (direct movement execution)
and world model (topology of the workspace through connected
roads).

The robot is considered as a Dubins airplane [7], steered from
the start to the target by real robot movements. Given the target,
the path planner identifies the shortest path within the roadmap.
During the planning of the trajectory, an improvement of the
roadmap takes place: data about the environment are collected
and obstacles within the configuration space are better approxi-
mated. Finally, a joint distance metric is determined as heuristic
for the An algorithm and the path is converted into a trajectory
able to avoid static obstacles and to reduce the clearance to them.

Transformation is therefore a necessary step and it is realised
through the application of an elastic net. The roads of the road-
map, identified by the An algorithm, consist of connected config-
uration space positions. Those positions create a Voronoi diagram
(considering the free area in the joint space) and the elastic net.
Transformation of the elastic net into a trajectory is achieved by
applying equidistance, rotation and shrink forces on the joint
space positions [13]. The result is a trajectory formed by canoni-
cally ordered movement primitives, which are linear, circular or
joint movements. Joint movements are not of interest in this
study and are therefore omitted. Moreover, the transformation

process takes the configuration space ‘holes’ (by kinematic
calculations) and the obstacles (by collision detection) into
consideration.

Finally, the An algorithm leads to the identification of the
shortest path and this often generates a re-planning of the path
itself if a shorter path is recognised. Since real robot movements
are involved, this should not happen too often. A hysteresis is
applied in order to prevent this. This application has been
included in order to allow an additional exploration of the
workspace: consequently, the system may rely on a wider knowl-
edge provided to the world model.

4.6. Robot program generator

As described in Section 4.5, a trajectory is composed of move-
ment primitives. Movement primitives are in its turn composed of
a list of particles, mainly linear, circular and joint movements.
Each particle forming the movement primitive knows its own
position (stored in Cartesian coordinates) and orientation. Suc-
cessively the robot program generator transfers the given set of
particles to a robot readable format, either robot program files, for
example in Melfa Basic language, or direct movement commands
transferred to the robot controller.

5. Experiment

The online path planning and programming support system
proposes an approach able to reduce the robot programming time
including preparation and installation. It generates acceptable
robot programs and regards the modern industrial basic goals
(flexibility, speed and optimization; see also Section 2). It finds a
trade-off between shortest path finding and trajectory forming
and maintainability. Finally, it generates a downloadable robot
program file.

In this section, the general execution of the support system is
described and a scenario (see Fig. 7) has been chosen to illustrate
the proposed approach.

5.1. Pre-existing data import

In the chosen scenario the two obstacles, O1 and O2, are given
as drawing exchange format files and imported to the environ-
ment model. One obstacle O3 is ‘unknown’ for the system (not
imported).

Fig. 6. Path planner interfaces. Fig. 7. Experimental scenario (2D example in 3D world).
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5.2. Mission preparation

The chosen scenario consists of a mission with positions P1 and
P10 and the application path P7 to P8, a straight line with the hand
tool equipment of the robot closed. The pointing device has been
used to store the locations of the application paths in co-
operation with the support system.

5.3. Robot program generation

Once the mission has been planned successfully, the robot
program file may be generated. The program generation is
template-based. Thus, only the dynamic content of the file is
shown in Listings 1 and 2 and Listing . The results are shown in
Figs. 8 and 9.

The movement primitives circular and linear are identified,
respectively as MVR and MVS robot commands. The program in
Listing 2, composed of 6-movement primitives, is still readable by
a human. The final movements of the robot are comparable to the
manually programmed ones. Manual modifications may still be
carried out within the program even on larger missions.

The overall time for the proposed system to generate a robot
program file for the scenario was about 20 min (see Table 1, row 9),
including mission preparation, data import and program file
generation. The proposed system has been compared with offline
programming and conventional online programming. Both pro-
gramming methods include the use of tools such as the Mitsubishi
programming tool COSIROP/MELSOFT [16] or RobCAD. Offline
programming and conventional online programming requires
highly skilled operators, while only a basic knowledge is required

for supported robot programming. Online programming only
considers available physical objects whereas offline and supported
programming support models of these objects. The time for each
process step is given in Table 1:

The times within Table 1 may be divided into fixed and task-
dependent times. Usually within an industrial setting, there is not
the necessity to place numerous models into the workspace;
therefore, they may be seen as fixed. Moreover, setting the
locations should not be relevant too, though program generation
is highly dependent on the size of the program (see rows 4–6 in
Table 1).

Table 2 illustrates the online programming time only and
Table 3 represents the overall programming time for each
programming method. Offline programming must be separated
into minimum, maximum and normal values, which represent the
online modification of the offline generated program within the
robot cell. The normal values may vary within the minimum and
maximum values, depending from the quality of the offline
generated robot program. Online programming can be applied
very quickly and should be used for small program sizes since the
programming time deeply increases compared to the program
size. Supported online programming requires an equal amount of
time and a small fixed installation time compared to normal
values of the offline programming method.

Table 3 focused on the preparation times and it shows an
additional preparation time for offline programming also men-
tioned in Table 1, row 0. The offline preparation time can be
omitted entirely to save offline programming expenses, since the
speed of programming, comparing offline and supported online
programming is equal. Certainly, this is highly dependent from
the quality of offline generated programs and may affect the
‘‘offline (normal)’’ values in Tables 2 and 3. In the given small
example scenario, 2 h offline programming including the operator
and the simulation tool could be omitted saving costs. Therefore,
supported online programming is recommended especially for
small batched manufacturing but also for high-volume
production.

6. Discussion

The complexity of programming remains one of the major
hurdles preventing automation using industrial robots for small
to medium sized manufacturing. Offline programming with a
simulation system has been introduced for large volume manu-
facturing but the additional efforts in offline programming makes
it inefficient for small to medium sized manufacturing. Although
online programming methods have been researched in the past
[25] to make online programming more intuitive, less reliant on

Listing 1. Melfa Basic IV programmed file created online .

Listing 2. Melfa Basic IV robot program file created with the support system .

Fig. 8. Manually planned path (schematic).

Fig. 9. Automatically planned path (schematic).
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operator skill and more automatic, most of the research outcomes
have not become commercially available. This is partially because
most of these methods are limited to their specific setups and are
yet to be applied to general applications. Compared to those
methods, the presented methodology differs in two points. First,
the human operator reports collisions and, thus, it is generally
available and cost efficient. Second, the applied trajectory plan-
ning algorithm is able to handle the information type and
intelligently controls the robot within the robot cell to compute
the robot trajectory.

7. Conclusion

Aim of this paper was to introduce a new online path planning
and programming support system. The tool is applicable to real
industrial scale, where articulated robots work in multi-
dimensional space. One of the main benefits deriving from this
application is its real time capability. Creating the opportunity to
work successfully online, offline simulation systems becomes

obsolete; moreover, the overall time required for larger missions
decreases. This support system is based on two specifics: the
Voronoi roadmap and the elastic net, both co-operating for the
planning of missions with multiple goals. The new approach
transforms the user interaction into a simplified task that gen-
erates acceptable trajectories, applicable for industrial robot
programming. In addition, it works successfully with basic knowl-
edge of the operator and asks to use the software application only.
The trade-offs optimality, path planning & smoothing and main-
tainability are considered in the new approach. The new criteria
maintainability and reusability have been introduced and the
shown experiment has demonstrated that the system successfully
faces and satisfies the modern requirements coming from the
industrial market. The process is optimized, offline programming
time may be saved and online programming becomes easier.
Nevertheless, there is still space for further development, con-
cerning dynamic obstacle avoidance and application of the
system to multiple robots working conjunctly. The standard A*

algorithm here used may, in the future, be extended to the AD*

algorithm [14]. Mission and task specific extensions to the soft-
ware have not been incorporated yet. These are for example
application path information for welding, adhesive bonding or
handling.
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Abstract— The use of industrial scale experimental machinery 

robot systems such as the Mitsubishi RV-2AJ manipulator in 
research to experimentally prove new theories is a great 
opportunity. The robot manipulator communications and control 
framework written in Java simplifies the use of Mitsubishi robot 
manipulators and provides communication between a personal 
computer and the robot. Connecting a personal computer leads 
to different communication modes each with specific properties, 
explained in detail. Integration of the framework for scientific 
use is shown in conjunction with a graphical user-interface and 
within Simulink as a Simulink block. An example application for 
assisted robot program generation is described.  

Index Terms—Manipulator, communication, robot 
programming, manipulator motion-planning 

I. INTRODUCTION 

ATH-PLANNING for industrial robots in complex 
environments where collision avoidance, in cooperation 

with the presence of a human worker in the robot work space 
is a research area which merits significant attention. The 
levels of automation within the automotive industry are 
expected to increase in future, so as to enhance the economics 
of manufacture. It is to be expected that in a future factory, 
human employees will co-exist alongside active industrial 
robots, to perform such tasks as body-part assembly and 
sealant application. For example, in car industry a moving 
conveyor is often used and separation of human employees 
and robot systems can hardly be realized. An increase in 
productivity can only be gained with either shorter production 
cycles or longer production times. Manufacturing industry 
must have a flexible production to offer highly diversified 
product mixes in a short delivery time, based on just-in-time 
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small batched production [13]. With changing products 
production robots must also be programmed more often while 
the overall production time must be maximized to guarantee a 
high productivity. 

The proposed framework is used in an ongoing project 
leading to foundations and algorithms for the industrial path-
planning task which is the creation of a robot program within 
static industrial surroundings. The programming task will 
change from explicit to implicit programming.  

A system overview in the next section gives a brief 
summary of physical devices involved. Section III describes 
the assisted robot program generation application, which 
makes use of this framework. Subsection IV.A gives detailed 
information of the communication modes possible with a 
Mitsubishi robot system connected to a CR 1 controller. An 
extension to the built-in communication modes is the data link 
control mode explained in subsection B. An overview of 
communication modes and their use is given in subsection C. 
The next subsection shows how the framework interacts with 
Matlab/Simulink followed by the Visualization component 
with collision detection and a visual servo control example. A 
conclusion is given in section V, showing the main use of the 
presented framework and important results. 

II. SYSTEM OVERVIEW

The equipment is shown in Fig. 1. External devices are the 
pointing device, vision system, robot controller, 
Teachpendant, robot and personal computer.  

Fig. 1.  System overview. 

The robot manipulator communications and control 
framework is executed on the personal computer, which has 
an Ethernet and serial port connection to the robot controller. 
The Teachpendant and the robot are connected to the 
controller. The vision system and the pointing device are 
plugged in to the personal computer. The framework is 
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verified with a visual servo control application including 
collision detection and Matlab/Simulink integration. 

III. IMPLEMENTATION OF THE FRAMEWORK

The operation of an industrial robot is generally restricted 
to a small set of commands. Research was undertaken to 
integrate those commands that control movement with data 
from the path planning system.  

Fig. 2.  Programming assistant overview. 

An overview of this approach is given in Fig. 2. A 
programming assistant is proposed, which aims at creating a 
robot program for industrial robots.  

Path-planning in robotics considers model-based and 
sensor-based information to capture the environment of the 
robot. Perception, initiated by sensors, provides the system 
with information about the environment and also interprets 
them. Those sensors are, among others, cameras or tactile 
sensors often used for robot manipulators.  

The Object Recognition component converts the features of 
an image into a model of known objects. This process consists 
of segmentation of the scene into distinct objects, determining 
the orientation and pose of each object relative to the camera 
and determining the shape of each object. Those features are 
given with motion, binocular stereopsis, texture, shading and 
contour. Peter Corke's Machine Vision Toolbox for Matlab 
[10, 11] allows the user to easily use professional image 
processing capabilities of Matlab. In addition to the detection 
of the real environment, model-based data such as CAD-data 
is used to render the world model more accurate. CAD 
derived data from simulation systems for example RobCAD 
are exported as DXF files with all physical locations attached 
and stored within the world model. Attached locations of 
CAD-objects are employed so as to acquire information 
concerning the start and target locations. The path 
information, such as gluing, painting etc. must be given within 
the programming assistant. Target locations can also be 
defined by manual movement of the robot and visual servo 
control. The latter uses a pointing device to show the robot 
system the target location. The robot automatically moves to 
the shown location and stores the position. 

The Working Space Exploration component gathers 

information of the environment by moving the robot by 
manual movement, by random movement with collision 
indication and by running a robot program, also with collision 
indication. During motion, the robot ascertains which parts of 
the space are free in the robot coordinate system either with 
visual feedback or manual collision indication. This 
knowledge will become more accurate during the planning 
process.  

The kinematic of a robot is often not precisely known. A 
neural network based approach is employed to ascertain the 
dynamic model of a robot by the adoption of a learning 
process. Visual servo control and working space exploration is 
used to autonomously learn the robot kinematic. 

The Robot Control component communicates with the robot 
and provides direct robot control, serial/Ethernet connection, 
parameter edit/read/write, program upload and download, 
real-time movement control, robot system backup/restore, 
external control over UDP1 and equipment control. 

The robot program is implicitly stored within the robot 
programming assistant as a trajectory. A transfer to a robot 
specific program is done in the Robot Program component in 
two steps: First, translation to a pseudo robot program with no 
other information than the provided trajectory, and, second, 
generation of the specific robot program with additional 
configuration commands and specific syntax of the robot 
programming language. The two step transfer can also be 
adopted to support other robot types and manufacturers. 

The employment of industrial robots without modification 
of the robot and its controller is necessary for a rollout in 
industry. The Mitsubishi industrial scale experimental 
machinery robot system used is the RV-2AJ robot connected 
to a CR1 controller. It is well documented, industrially proven 
and communication with a personal computer is possible. Its 
commercial viability has already been demonstrated in the 
manufacture of car sub-assemblies, semiconductor memories 
and other industrial/consumer goods [12]. The main areas of 
application are assembly, manufacture, pick & place and 
handling. 

The robot control framework is used to verify a path 
planning algorithm developed at the University of Applied 
Sciences Landshut in cooperation with the University of the 
West of England.  

The Mitsubishi CR1 controller employed is equipped with a 
built-in RS232 communication port and an external Ethernet 
extension box. Both ports are used for communication in the 
framework.  

The tool Matlab/Simulink from TheMathworks [17] is often 
used in the area of robot control. To use the robot control 
framework in Simulink it must be encapsulated in Simulink 
blocks. This brings the benefit to have all of the control within 
the model and opens the use of Matlab/Simulink for robot 
control applications in a model driven architecture design. 

1 User Datagram Protocol 
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IV. THE FRAMEWORK

The aim of the robot control framework is to simplify the 
usage of robot control and to cover all of the needs originated 
from robot control applications. It consists of the components 
described in the sections robot communication, data link 
control mode, overview of communication modes and their 
use, connecting the framework to Matlab/Simulink and 
visualization.  An example is given in section F. 

A. Robot communication 

The available communication modes are controller link 
mode (CL), data link mode (DL) and real-time external 
control mode (RTEC).  

Controller communication mode (CL)  
The controller communication mode is used to set 

parameters, send robot control commands and read the robot 
status. Getting the status information during movement of the 
robot and controlling the robot in real time is not possible in 
this mode. The data sent over Ethernet is not encoded and can 
be read in plain text. Thus, it is possible to listen to the 
Ethernet communication between the controller and the 
personal computer. Generally, the protocol format for sending 
commands is the following:  

[<Robot No.>];[<Slot No.>];<Command> <Argument> 

Each command is followed by a message sent by the 
controller with status information and the result. Table I states 
the pattern of such returning messages, where each star stands 
for a digit:  

TABLE I
STATUS OF SENT COMMANDS

Commands Contents 

QoK**** Normal status 
Qok**** Error status 
QeR**** Illegal data with error number 
Qer**** Error status and illegal data with error number 

Real-time external control mode (RTEC) 
Real-time external control of the robot is useful for direct 

robot control, where the trajectory is calculated manually. The 
real-time external control mode is based on the UDP 
networking protocol. A UDP datagram is a simple and very 
low-level networking interface, which sends an array of bytes 
over the network. Even though they are not reliable their low 
overhead protocol makes datagram transmission very fast. 
Since the connection is a single point to point connection 
between personal computer and controller, UDP can be 
handled easier. Sending and receiving of packets is monitored 
and a timeout exception is thrown if the communication does 
not meet the requirement in time.  

Mitsubishi provides a simple C communication program 
example. Running time is crucial, since every communication 
cycle has a time period of 7.1ms, which is dependent of the 
robot hardware. A plain Java port is not capable to 

communicate with the robot controller in time and leads to a 
loss of UDP packages. Movement of the robot was not 
continuous any more. 

A dynamic link library for RTEC mode created in C is 
connected with JNI to Java. The library could also be used in 
Simulink to build a “hardware-in-the-loop” low level robot 
control application. This gives full control of the robot and 
code generation from Matlab/Simulink is possible. 

Data link mode (DL)
The data link mode connects a controller with a personal 

computer or vice versa. Usually, it is used to send robot status 
information from internal robot sensors or other data to its 
receiver. 

B. Data link control mode 

The data link mode is extended by a control component, 
which gives the opportunity to control the robot while getting 
status information. The personal computer and the robot 
controller are arranged in a cascaded control system, where 
the robot controller calculates the trajectory given by the 
personal computer in form of movement commands. Those 
commands can be sent at any time over Ethernet or the serial 
port and the robot manipulator follows the trajectory without 
stopping between the buffered movement commands.  

Multitasking 
Multitasking is used to run the data link control programs in 

parallel. Multitasking is executed by placing the parallel 
running programs in slots. Data is passed between programs 
being executed in multitask operation via program external 
variables and user defined external variables. 

Multitasking configuration 
The main control program MULTITASK is executed first 

in slot 1. It sets the variable M_01 and M_02 to zero and starts 
the programs DATALINK and CONTROLLINK in slot 2 and 
slot 3. In line 80 and 90 the program waits for the variables 
M_01 and M_02 to be set from the other programs to stop 
execution. The main program multitask.mb4: 

10 RELM 
20 M_01=0 
25 XLOAD 2,"DATALINK" 
30 XRUN 2,"DATALINK" 
40 WAIT M_RUN(2)=1 
50 M_02=0 
55 XLOAD 3,"CONTROLLINK" 
60 XRUN 3,"CONTROLLINK" 
70 WAIT M_RUN(3)=1 
80 WAIT M_01=1 
90 WAIT M_02=1 
100 XSTP 2 
110 WAIT M_WAI(2)=1 
120 XSTP 3 
130 WAIT M_WAI(3)=1 
140 GETM 1 
180 HLT 
190 END 

The DATALINK program in slot 3 shown below sends the 
timestamp, current joint position, current speed of the tool 
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center point and current position.  
Sending is looped over lines 100 to 130 and it sends until a 

zero value is received. After closing the communication port, 
the program notifies the MULITASK program in slot 1 that 
the signal is turned on by means of the external variable 
M_02. The communication program datalink.mb4: 

10 WAIT M_02=0 
20 M_TIMER(1)=0 
30 OPEN "COM2:" AS #2 
35 INPUT #2,DATA 
40 IF DATA = "0" THEN 160 
100 PRINT#2, M_TIMER(1), "|", P_CURR, "|", J_FBC, 
"|", J_CURR, "|",M_RSPD(3) 
130 GOTO 100 
160 M_02=1 
170 WAIT M_02=0 
180 END 

The CONTROLLINK program moves the robot 
manipulator by receiving and executing movement 
commands. This program runs in a cyclic mode and no user 
interaction such as moving the robot with the Teachpendant or 
by robot commands in controller communication mode is 
possible. For control communication the RS232 port is used, 
which is a slow connection but fast enough for direct robot 
control commands. The data link mode is extended by a 
movement command and leads to the data link control mode. 
The movement program controllink.mb4: 

10 WAIT M_01=0 
20 OVRD 100 
30 GETM 1 
40 CNT 1, 300 
50 SERVO ON 
60 OPEN "COM1:" AS #1 
70 DEF JNT JNTPOS 
80 INPUT #1, JNTPOS 
90 MOV JNTPOS 
100 GOTO 80 

With the CNT command, the robot continuously moves to 
multiple movement positions without stopping at each 
movement position. 

C. Overview of communication modes and their use 

Use cases for robot control are defined in table III. Since it 
is not possible to send control commands and information 
requests over one connection, a second connection is always 
needed to get actual status information during motion.  

TABLE II 
COMMUNICATION MODES

Mode
Phys. 
layer 

Command type 
Feed
back 
type 

U
C
1

U
C
2

U
C
3

U
C
4

U
C
5

U
C
6

RTEC ETH SDO SDO X - - - - - 
DL ETH SD SD - - - X X X 
DL RS232 SD SD - - - X X X 
CL ETH Robot command  - X - - - - 
CL RS232 Robot command  - - X - - - 
CL ETH Robot program  - - - X - - 
CL RS232 Robot program  - - - - X - 

(RTEC – Real Time External Control; DL – Data Link; CL – Control Link; 
ETH – Ethernet; SDO – Serialized Data Object; SD – Serialized Data; UC – 
Use Case)

An overview of communication modes and use cases of 
table III is given in table II. 

TABLE III
USE CASES

Use- 
case 

Description 

1 Direct robot control over Ethernet with feedback. Either the 
mentor or the path-planning-system can move the robot manually. 
No controller calculations are involved.

2 Robot operation with singular movement commands over 
Ethernet. The controller calculates the path. Feedback data can be 
retrieved by Ethernet connection after finishing movement. 

3 Robot operation with singular movement commands over serial 
port. The controller calculates the path. Feedback data can be 
retrieved by serial port connection after finishing movement. 

4 Robot operation with robot programs over Ethernet. The 
controller calculates the path. Feedback data can be retrieved 
either by Ethernet or by serial port connection. 

5 Robot operation with robot programs over serial port. The 
controller calculates the path. Feedback data can be retrieved 
either by Ethernet or by serial port connection. 

6 Robot operation by two data-link channels. One sending channel 
over serial port and one receiving channel over Ethernet. The 
robot has to be programmed so that it is possible to send 
movement-type and data.  

D. Connecting the framework to Matlab/Simulink 

This section shows the mature steps and important key 
issues to integrate the Java framework with a SWT2 user 
interface to Matlab/Simulink. 

Matlab/Simulink integration 
The framework must be executed in its own thread to avoid 

a freeze of the Matlab thread. The implementation as a 
singleton of the framework GUI3 guarantees that only one 
single instance of the GUI is running per Matlab instance.  

Communication must be established between Matlab and 
Java. Calling Java classes from Matlab is supported by 
default. To communicate back to Matlab/Simulink, two cases 
of software usage are possible: As a standalone client and as a 
plug-in. A standalone client is running outside of 
Matlab/Simulink, whereas a plug-in is started within. This has 
a great impact on the communication of Matlab and Java. 
While the standalone client must have interprocess 
communication, a plug-in does not require this. 

Fig. 3.  Interprocess communication. 

Generally, DLL4 libraries of Matlab/Simulink can always 
be called by native system calls. JNI5 is a wrapper for such 

2 Standard Widget Toolkit 
3 Graphical user interface 
4 Dynamic Link Library 
5 Java Native Interface 
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system calls and thus can be used. A more convenient 
possibility is COM6 or DDE7 communication. Matlab supports 
both, the COM and the DDE technology. COM technology is 
to be used, because the DDE communication server must be 
switched on in newer versions of Matlab (R14 onwards). In 
contrast, a plug-in does not need an interface for interprocess 
communication. In fig. 3 COM/DDE communications is 
illustrated for standalone clients. 

The graphical user interface 
Simulink is a platform for multidomain simulation and 

model based design for dynamic systems. It provides a 
customizable set of block libraries. Models are built from 
these blocks that can be connected to solve a given 
engineering challenge. Usually such systems are quite 
complex and users not familiar with the model will have 
difficulties to modify model parameters and to control the 
model. Therefore, a centralized user input to the model can be 
realized through a GUI. A GUI development environment 
(GUIDE) is shipped with Matlab and, thus, becomes the 
standard tool for GUI creation. A Java application within 
Matlab/Simulink has greater functionality, i.e. interconnection 
to a server. It also allows the use of another GUI library such 
as SWT or Swing for standardized development of complex 
GUIs. 

Fig. 4.  The GUI editors GUIDE and SWT. 

SWT-based applications integrate seamlessly into the host 
environment. The library is an adapter to the native widgets. 
The design of SWT as an adapter makes a small library 
possible. These libraries must be available on the target 
computers.  

The Simulink Blockset 
To allow experiments in model based design methodology 

the Java robot control framework is integrated into a Simulink 
blockset. However, code generation is not possible with those 
blocks. For simulation, additional blocks for forward and 
backward calculation are needed. A Simulink block usually 
supports simulation and code generation. Since Java is used, 
this feature cannot be supported. 

The blockset consists of the blocks listed in table IV. It is 
not possible to use more than one robot control block at the 
same time because every block needs its own explicit 

6 Component Object Model 
7 Dynamic Data Exchange 

connection. 
A stopped robot movement is a movement with stops 

between two movement commands. It is also a blocking 
command, which means movement finish must be awaited to 
send the next command. A non blocking continuous 
movement is a movement that can do continuous movements 
also between two commands and the movement command can 
be sent at any time. The status block always uses the data link 
communication mode. 

TABLE IV 
SIMULINK BLOCKS

Block name Operation mode Description 

Status data link continuous measurement 
RelJoint data link control continuous, non blocking 
RelCart data link control continuous, non blocking 
CircularMov controller operation stopped, blocking 
LinMovJoint controller operation stopped, blocking 
LinMovCart controller operation stopped, blocking 
JointMovJoint controller operation stopped, blocking 
JointMovCart controller operation stopped, blocking 

E. Visualization 

Visualization is done with a Java3D scenegraph. But not 
only viewing the robot but also collision testing should be 
done combined with ODEJava, a physical simulation system. 

Collision detection 
The built-in Java3D testing does only tests in every frame. 

Collisions of fast moving objects could take place between 
two frames that leads to an unrecognized collision. The Open 
Dynamics Engine (ODE) library written in C and its Java 
binding ODEJava is used to do collision detection. The 
ODEJava project allows using ODE with Java. ODE is a free, 
industrial quality library for simulating articulated rigid body 
dynamics in virtual reality environments. It has built-in 
collision detection. The Project also contains tools for binding 
ODEJava into Xith3D, jME and Openmind scenegraph 
projects. Since Java3D scenegraph is used, development of a 
graphics engine is necessary to combine ODEJava with 
Java3D.  

The Viewing component also supports visual display of 
DXF CAD-data as well as any Java3D object. The ODEJava 
library is used for collision detection of basic geometric 
objects. DXF-data cannot be used with ODEJava, but can be 
viewed with Java3D. Collision detection with complex DXF 
data is therefore rudimentary supported. Collision points and 
vectors are hard to calculate from DXF-data, but can be done 
manually. The requirements for DXF-data collision detection 
are fulfilled. The basic geometric objects are fully supported 
and have higher requirements in terms of accuracy, because 
the neural net used in the Path Planner component is 
simulated by those objects [14]. 

F. Visual servo control 

Visual servo control is used for user interaction with the 
robot system by a pointing device for example used in the 
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Working Space Exploration or Location Positioning
components.  

The transformation of picture coordinates of the camera 
views to robot coordinates by a neural net is learned. The 
system interprets then the pointing device of the mentor and 
controls the robot so that it moves in the direction of that 
point. 

Fig. 5.  Example application 

An extension to Kohonen’s model [9] is implemented to 
autonomously learn the positioning of a robot arm to a 
visually given point (Fig. 5). To get information of the 
position of the objects in space, the robot cell is equipped with 
two cameras, which monitor the robot cell. During training, 
the position of the target location within the working-space is 
randomly chosen. The target location is monitored from the 
cameras and their signals are applied to the neural net. Every 
neuron is responsible for a subspace of the robot cell. If a 
target location is chosen, this neuron becomes activated and 
provides control signals to the robot controller. The position 
of a robot arm with five joints is not only a five dimensional 
vector, but every camera delivers its two dimensional point of 
the viewing pane. The neural net has to transform that position 
information to control signals for the five robot joints. 

More information about the robot, the cell, the cameras or 
its positions in space is not needed. Moreover, this must be 
learned by the neural net. 

At the beginning, the robot will move to incorrect robot 
positions. The difference to the target position is used to train 
the net. Then the robot will be given the next target position 
which gives the system the opportunity to learn a second time 
and so on. The robot is an autonomous learnable system. 

V. CONCLUSION

Robot control applications need a connection to the real 
robot system. Sending robot control commands as well as 
receiving information of the robot status and position is 
necessary especially for path-planning applications, where the 
focus is on algorithm development. This framework offers the 
possibility use a standard industry robot system. The 
framework extends the Mitsubishi CR1 controller family robot 
system to send robot commands during movement of the robot 
manipulator without stopping between two commands and to 

receive robot information during movement. All 
communication modes over serial port and Ethernet are 
discussed. Besides the use of the robot control framework as a 
standalone application, it can also be used with 
Matlab/Simulink and interconnected within Simulink models 
to support a wide range of robot control applications.  
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Abstract - In this article a new approach to planning of a 
nonholonomic motion is presented. A flexible, intelligent planner 
based on a static map and the topology of the robot’s 
environment has been developed. The approach uses ‘particles’ 
to construct automatically a path between two given locations. 
The generated path is a smooth trajectory, where the length of 
the path is kept at a minimum and obstacles are avoided. This 
concept applies to robots meeting the restrictions of a Dubin’s 
car (nonholonomic robot that can only move forward). After the 
basic concepts of the approach has been described, simulations 
will be presented.  

Index Terms – Pathplanning, autonomous, nonholonomic, 
particles, elastic. 

I.  INTRODUCTION

 This paper presents a new motion planner for 
nonholonomic mobile robots. Such robots have dependent 
degrees of freedom so that the motion is restricted. In this 
paper, nonholonomic mobile robots refers to car-like robots. 
The problem is to find a feasible trajectory for the robot, 
enroute from its start position to its goal position, without 
collision with static obstacles. Boundary conditions imposed 
and dynamics of the robot’s kinematic model must be 
satisfied.  

In the geometric formulation of this problem, the robot is 
reduced to a point on the two dimensional surface with the 
behavior similar to Dubin’s car [7]. This car is able to drive 
forward only and the radius of steering is bounded. 
The resulting paths must be smooth (differentiable) and 
feasible for a car-like robot. The tangent direction is 
continuous and they respect a minimum turning radius 
constraint. These paths can be followed by a real vehicle 
without stopping and thus have a continuous curvature profile 
in their motion. 

Existing path-planning methods can be found in [3]. 
Roadmap methods calculate a collection of path segments 
around static obstacles. This path is calculated by connecting 
the initial and the goal configuration of the robot with a 
roadmap that can be built in several ways. For example, the 
Visibility Graph is built by connecting the initial and target 
configuration with the edges of all obstacles in the given map. 

The Voronoi diagram leads through the middle of available 
corridors between obstacles.  

Cell Decomposition methods divide the robot’s free space 
into several regions, so called cells. The connectivity graph is 
built by connecting adjacent cells. A channel leading from 
initial to goal configuration through the graph can then be 
computed. A path can be chosen as, for example, leading 
through the midpoints of the intersections of two successive 
cells. 

Potential field methods divide the free space into a fine 
regular grid and search this grid for a free path. Different 
potentials are assigned to the cells of the grid, 
where ’attractive’ potentials are given to cells close to the 
robot’s goal, ’repulsive’ potentials are assigned to obstacles. 
A path is constructed along the most promising direction. 

In a nonholonomic planner, the path is created as a set of 
maneuvers, which take into account the geometric and 
kinematic constraints of the robot. Different approaches have 
been developed using a random planner [4] or nonholonomic 
graphs. 

The main contribution of this paper is to form the paths of 
an already connected roadmap to conform to the robot’s 
constraints. This goal will be captured by means of ‘particles’. 
The calculations will be done locally with no global 
knowledge. 

The remainder of the paper is organized as follows. In 
Section II, assumptions are formulated for the path-planning 
problem. In Section III, the new path-planning concept is 
explained in detail. Section IV proposes a strategy for how to 
vary the parameters to achieve good results. Examples are 
given in section V. And finally the paper is concluded with 
brief remarks in Sections VI and VII. 

II.  ASSUMPTIONS 

 With a predefined roadmap, generated by another path-
planner, a Voronoi diagram can be created (see Fig. 1). Thus, 
the topology of the working space can be obtained. The robot 
under consideration is shown in Fig. 2. The steering angle is 
bounded to a maximum absolute angle of  e. The car is able to 
drive around curves with a minimum radius of r. No other 
maneuvers are allowed and the car can drive forward only.  
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Fig. 1 Voronoi diagram.

Fig. 2 The mobile robot

 The robot operates in a two dimensional environment 
with static obstacles. Obstacles are represented by polygons. 
These obstacles are stored in the roadmap. The robot knows 
its start and goal positions. 

III.  THEORY

A. Correlation between the radius of a curve and the 
steering angle e
 The correlation of e and the radius r is shown for two 
cases, a regular polygon and a circle. The former will be used 
later, where e corresponds to g1, g2 and g3 in the ideal case. In 
Fig. 4, the steering angle e of the real robot from Fig. 2 can be 
compared.  
 The formulas for the correlation of e and r are mentioned 
in (1), (2) and (3). 

engda 2  (1) 

r
lge n 2

atan2  (2) 

2
tan2 e

lr  (3) 

B. Installed forces 
 ‘Particles’, forming a Voronoi diagram of the working 
space, are utilized to solve a planning problem of a car-like 
mobile robot. By minimization of newly installed forces at the  

Fig. 3 Correlation of e and the radius r in a polyhedron. 

Fig. 4 Correlation of e and the radius r in a circle. 

‘particles’, a path-planning solution can be found. 
 As can be seen in Fig. 5, three forces are installed. The 
first force ceEquidistanF keeps the distances between the 
‘particles’ equidistant. The second force RotationF , actually the 
summary of the four forces 

1gotationRF ,
3gotationRF ,

4gotationRF
and 

6gotationRF , moves the ‘particles’ on a circle with the 
neighboring ‘particle’ as the midpoint. The last one, ShrinkF ,
lets the path shrink in the direction of a straight line.  
 The direction and value of the forces are influenced by 
the three neighboring angles g1, g2 and g3 (see Fig. 3 and 5). 

C. Equidistance forces 
 These forces push the ‘particles’ in a tangential direction. 

ceEquidistanF  influences the other forces, especially the 
rotational forces as little as possible. To reach equidistance of 
all points the tangential force is utilized. The absolute value of 
the force is the difference of the distance to the neighboring 
points (4). 
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Tangent

Tangent
ceEquidistan

F

F
ABBCF  (4) 

D. Rotational forces 
 The steering angle e (see Fig. 2) can be changed at any 
time within its boundaries. Curves with a fixed e would result 
in circular curves. To build a circle of ‘particles’, it can be 
seen as a polyhedron, such as shown in Fig. 3. A polyhedron 
has straight lines between the neighbors and a circle can be 
approximated by more ‘particles’. RotationF  tries to keep the 
angles of three neighboring ‘particles’ the same. 
 Every line tries to minimize the difference of the angles 
g1 ,  g2 and g3 with a small rotation (see Fig. 6). 

Fig. 6 Angles of the rotational force. 

The force of the rotation is orthogonal to its rotation axis. 
This leads to the formulas for the motion of point B: 
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E. Shrink forces
ShrinkF  is a constructed force at each ‘particle’ to build a 

straight line. This can be done by a simple vector addition of 

Fig. 5 Installed forces.
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the two position vectors of the neighbors of each ‘particle’ 
(see Fig. 5) while keeping the equidistance constraint. 

ABBCFShrink      (12) 

F. Forming lines 
Every ‘ particle’s ’  position lies on an edge of the 

polyhedron. The overall force leads to a curved connection, 
where all ‘particles’ are ordered equidistant and the steering 
angle e always lies within its boundaries. The path has no 
straight line, yet. 

 If the steering angle e is very small, the radius of the 
curve is very large and can be seen as a straight line. The 
algorithm considers this with a switch for the calculation of 
the positions of each ‘particle’: Shrink forces can be used to 
form a line. It is a simple vector addition of the two 
neighboring lines of  B to A and C (see (12) and Fig. 5). 

A radius threshold rmax is introduced, which controls 
when the formulas for a line or a curve are used. rmax is the 
value for the maximum radius. The angle threshold ta,min can 
be obtained from (2). If min,an tg  for n=1,2,3 then the 
‘particles’ will be shrunk to a line. Otherwise the rotational 
forces take place. 

To enhance the algorithm, a second constraint leads to 
faster convergence: If the absolute value of the angles ng
exceeds ta,max , calculated with (2) from the threshold rmin, the 
shrink algorithm can be used.  

G. Overall force 
With both types of motions, it is possible to construct a 

path from a start position to a goal position with straight lines 
and curves automatically. The only parameter which is 
responsible for the decision of whether a line or a curve has to 
be build is the threshold ta,min. The overall formula is now: 

min,Shrink3

min,Rotation2
ceEquidistan1 if,

if,

an

an

tgFC
tgFC

FCF   (13)

Cn are parameters to normalize each of the forces and can be 
utilized to weight each force dependent to the stage of 
planning. This is utilized in the strategy in section IV. 

IV.  STRATEGY

The best strategy is first to start with a high shrink force 
ShrinkF  and set the rotational force to zero while using (14). 

No threshold is applied, yet. 

Shrink3ceEquidistan1 FCFCF   (14) 

 The connections will be as short as possible and the 
‘particles’ are aligned on a line. The motion constraints are 
not fulfilled at this stage.  

On the second stage, ShrinkF is getting smaller and the 
other forces start to grow up to a defined value. Now, the 
threshold ta,min is applied and (13) is used, which causes the 
‘particles’ to form a canonical path of linear and circular 
motions. 

V.  EXAMPLES

The topology of the map is obtained by another 
algorithm, such as a Voronoi diagram. An A* algorithm can 
be used to find a suitable path. Often, the shortest path is 
chosen. In these examples a path has been found within the 
topology map, which has to be optimized from a random state 
of the ‘particles’.  

In Fig. 7 ta,min is set to zero and therefore the minimal 
steering angle e is zero. The path is a smooth curve and there 
is no straight line. In contrast to Fig. 7, the parameter ta,min in 
Fig. 8 is set to a value greater than zero. Thus, the path tends 
to have more straight lines and narrow curves. 

Fig. 7 Path with ta,min = 0. 

Fig. 8 Path with ta,min > 0. 

VI.  CONCLUSION

In this paper a new motion planning algorithm is 
presented for nonholonomic mobile robots in two dimensional 
configuration space. Planned trajectories are smooth and 
feasible for car-like robots with a continuous curvature 
profile. The algorithm works with only local knowledge and 
can be extended for higher degrees of freedom.  

VII.  FUTURE WORK

The ‘particles’ have the tendency to build up if the 
number of ‘particles’ is high enough. Also, a large number of 
‘particles’ converges very slowly. One of the proposed ideas 
are additional forces on the equidistance force of straight lines 
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to lengthen the distance between two ‘particles’. An additional 
effect could be used if the distance is a function of the 
velocity of the robot. Another idea is the injection of new 
‘particles’ so as to start with a low number of ‘particles’ and 
increase this number as required by the algorithm.  

REFERENCES

[1] H. Jaouni, M. Khatib, J. P. Laumond, “Elastic Bands For Nonholonomic 
Car-Like Robots: Algorithms and Combinatorial Issues,” 3rd 
International Workshop on the Algorithmic Foundations of Robotics, 
Houston, 1998. 

[2] Jiang, Kaichun, L. D. Seneviratne, PP. W. E. Earles: “A shortest Path 
Based Path Planning Algorithm for Nonholonomic Mobile Robots,” 
Journal of Intelligent and Robotic Systems, 24th Ed, pp. 347-366, 1999. 

[3] J.-C. Latombe,  “Robot Motion Planning”, Kluwer Academic Publishers, 
UK, 1996. 

[4] S. M. LaValle, J. J. Kuffner, ”Rapidly Exploring Random Trees: Progress 
and Prospects,” Proceedings of the Workshop on the Algorithmic 
Foundation, 2000. 

[5] S. Quinlan, O. Khatib, “Elastic bands: connecting path planning and 
control,”, vol. 2, pp. 802-807, 1993. 

[6] B. Graf, J. M. Hostalet Wandosell, C. Schaeffer, “Flexible Path Planning 
for Nonholonomic Mobile Robots,” Fourth European Workshop on 
Advanced Mobile Robots, EUROBOT '01, Lund, Sweden, September 
2001.  

[7] L. E. Dubins, “On curves of minimal length with a constraint on average 
curvature and with prescribed initial and terminal positions and tangents,” 
American  Journal of Mathermatics, vol. 79, pp. 497-516, 1957. 

[8] A. Scheuer, T. Fraichard, “Collision-free and continuous-curvature path 
planning for car-likerobots,”, vol. 1, pp. 867-873, 1997. 

733



J. Attachments 

   

 

KOHRT, C., ROJKO, R., REICHER, T. and SCHIEDERMEIER, G. 2006. With Model 

Based Design To Productive Solutions Professional GUIs For Simulink By Utilizing The 

Java SWT Library. In: FACHZEITSCHR.-VERLAG, W. (ed.) KFZ-Elektronik. 

  



With Model-Based Design to Productive Solutions: Professional GUIs 

for Simulink by Utilizing the Java SWT Library 
 

Authors 

Dipl.-Ing(FH) Christian Kohrt
1
, Dr. Thomas Reicher, Dr. Roman Rojko 

Christian.Kohrt/Thomas.Reicher/Roman.Rojko@berata.com 

Berata GmbH 

Frankfurter Ring 127 

80807 Munich, Germany 

Tel: +49-89143259-0 

Fax: +49-89143259-59 
 

Abstract 

The Model-Based Design (MBD) approach is a widely used method to solve sci -

entific engineering challenges [1]. Matlab/Simulink as a representative of MBD 

is a tool capable of exploiting the advantageous aspects of a graphical user inter -

face (GUI). The latter is created with a tool named GUIDE, which is shipped with 

the Matlab/Simulink software. Unfortunately, user interfaces created with GUIDE 

have some drawbacks. Thus, new approaches are needed to overcome these draw-

backs to improve the design of the GUI. It is surprising, that the Java SWT library 

(Standard Widget Toolkit) is not used for such user interfaces. Although not sup-

ported by Mathworks, this article compares the features of an SWT based GUI to 

the GUIDE, explains the practical implementation of SWT GUIs by examples and 

gives an outlook to the wide field of applications taking benefit.  
 

1    Introduction 

The V-Modell [2] is a standard IT product development method publicly available and is used 

by many companies. It manages required tasks and outcomes, defines methods and functional 

tool requirements and guarantees a uniform procedure for software development. The functional 

tool requirements define the functional properties of the tools for software development. These 

tools are usually organized in a toolchain, that is a set of tools linked together. On each stage 

in the toolchain, software tools are used, which are designed specifically for the given task. 

For example, Matlab/Simulink as a representative for the Model-Based Design approach is used 

frequently to solve modern engineering challenges in the field of Technical Computing, Control 

Design, Signal Processing and Communications, Image Processing, Test and Measurement, Anal-

ysis, etc. [3]. 

The requirements of the tools used in such toolchains are of course different from those used as 

standalone software. While in standalone software input of information are explicitely given to 

solve a task (and therefore are mostly related to the task), tools in a toolchain must also be able 

to manage not task related information. They also have to provide suitable interfaces to allow 

communication to other tools. 

Simulink is a platform for multidomain simulation and Model-Based Design for dynamic systems. 

It provides a customizable set of block libraries. Models are built of these blocks that can be 

connected to solve a given engineering challenge. 

Usually such systems are quite complex and users not familiar with the model will have difficulties 

to modify model parameters and to control the model. Therefore, a centralized user input to the 

model can be realized through a GUI. A GUI development environment (GUIDE) is shipped with 

Matlab and, thus, becomes the standard tool for GUI creation. 

 
1also lecturer 



 
Although GUIDE covers simple graphical objects for GUI design, customer requirements go far 

beyond this. GUIDE also does not support a seamless transition from Simulink GUIs to those of 

software developed in another programming language such as Java. Further, the use of the same 

technology would result in GUIs that are easily exchangeable. Unfortunately, third party tools are 

not available on market. 

The aim of our customer project was to have GUIs with the same 'Look & Feel' in both Simulink and 

Java developed software and to integrate Simulink in a toolchain. A further aim was to have 

the right tools to design complex GUIs, i.e. to control a robot path-planning model. We identified 

the Standard Widget Toolkit as a possible way to achieve those aims. The Java SWT library uses 

native library calls to create the GUIs. The appearance is indistinguishable from user interfaces 

of native applications and the user is already familiar to those graphics.  

 

2    Related Work 

Although it is possible to embed ActiveX documents into GUIDE and thus extending its func-

tionality, we decided not to use it. Matlab Version R13 does not support ActiveX by default. It 

is supported since version R14, but we found that it is not flexible enough to satisfy our ex-

pectations in GUI design. Usually, the GUI is of a highly complex structure. Compared to the 

Model-View-Control (MVC) concept, the Model and the View are not separated, which leads to 

unstructured code. 

 

3    Theory 

The Standard Widget Toolkit is an open source framework for developing graphical user interfaces in 

Java. Matlab/Simulink supports Java by default. Calling Java classes can be done on the 

command line as well as in a Matlab script. Some options must be set in order to  run Java 

classes. 

First, the path to the Java classes must be specified. This can be done in a static or dynamic 

way. Through dynamic loading of Java classes, also known as 'Hot Deployment', software devel-

opment is much improved. In the development process, this results in significant time savings. 

The user is not forced to restart Matlab after each development iteration. Unfortunately, Hot 

Deployment has got some restrictions in Matlab version R14SP2 whereas other versions such as 

R14SP1 and R14SP3 work properly. 

Second, the Java classes must be copied to a specified location within the file system, where Mat-

lab's Java Path can be directed to. While in development process, these changes can be deployed to 

Matlab automatically by ANT ('Another Neat Tool') after each development iteration. 



ANT is also useful to control the ej-technologies tool exe4j (Java Exe Maker) or an installer 

such as the Nullsoft Scriptable Install System (NSIS). The requirements to be installed on other 

'clean' machines is a suitable Matlab and Java version installed. 

As mentioned in section 1, SWT-based applications integrates seamless into the host environ-

ment. The library is an adapter to the native widgets. Swing for example emulates the native 

user interface and, thus, mimic it. Sometimes, the right skins are not available and differences 

between the native and Swing based user interfaces are apparent. 

The design of SWT as an adapter makes a small library possible in contrast to the Swing library. 

These libraries must be available on the target Computers. Therefore, the installer has to copy 

those files to the host computer and thus has greater size. 

Another advantage of the SWT design is the improved interaction compared to Swing. Since 

SWT uses native event processing, the inner structure does not vary from the native system and 

the behavior is thus comparable to the native system. In addition, SWT is less resource-hungry 

than Swing. 

Because SWT is only an adapter to the native host, a more robust and tolerant system can be 

expected in regard to heterogeneous hardware and the various accelerator settings of the 

graphics subsystem. 

All in all, compared to other GUI libraries SWT has got the greatest advantages.  

 

4    Practical implementation 
This section shows the mature steps and important key issues to integrate SWT interfaces to 

Matlab/Simulink. 

 

4.1    Key issues 
 

4.1.1 Threads 
The SWT interface must be run in an own thread. The reason is quite simple: Matlab hangs in 

its thread waiting for the GUI to end. Thus, no user input in Matlab/Simulink is possible. 

Dependent to the application and customer requirements, the implementation as a Singleton of 

the GUI guarantees that only one single instance of the GUI is running in one Matlab instance.  

 

4.1.2 Calling Matlab/Simulink 
Communication must be established between Matlab and Java. Calling Java classes from Mat-

lab is supported by default. But, more investigations were needed to communicate back to 

Matlab/Simulink. The results are explained in this section.  

Two cases of Software usage are possible: As a Standalone-Client and as a Plug-In. A Standalone-

Client is running outside of Matlab/Simulink, whereas a Plug-In is started within. This has great 

impact on the communication of Matlab and Java. While the Standalone-Client must have in-

terprocess communication, a Plug-In does not require this. 

 



Generally, DLL libraries (Dynamic Link Library) can always be called by native system calls. 

The Java Native Interface (JNI) is a wrapper for such system calls and thus can be used. A more 

convenient possibility is COM (Component Object Model) or DDE (Dynamic Data Exchange) 

communication. 

Matlab supports both, the COM and the DDE technology for communication. It is planned 

in future releases to drop DDE and to support COM, only. The DDE communication server 

must be switched on in newer versions of Matlab (R14 onwards). Only COM communication 

will be supported in future, so we decided to use this technology. In contrast, a Plug-In does not 

need an interface for interprocess communication. In figure 2 on the preceding page, COM/DDE 

communication is illustrated for Standalone-Clients. 

 

4.2    Example applications 
In this section, two examples, namely the integration of Simulink into a toolchain and controlling a 

robot with a complex user interface, will be introduced to give an idea how to implement the 

mentioned technologies and methods. 

 

5 Conclusion 

The application of SWT interfaces is very widespread. Besides the normal use as interfaces for 

complex models or applications, it also applies to interfaces of Simulink blocks or offer the op-

portunity to integrate Simulink into a toolchain. 

Thus, Simulink is prepared to be used in a toolchain linked to a set of other tools. Those tools 

maybe deliver information not used by the model. But nevertheless, these data must be given in 

the correct format to the following tool in the toolchain to guarantee a seamless transition along 

the toolchain. 

The used type of GUI technology is dependent to the kind of data, complexity of the user inter -

face and other requirements. 

Using professional SWT interfaces in Simulink is easily possible, once everything is configured. 

We found, that the benefit of having professional user interfaces, that satisfy customer require-

ments outweigh the additional time needed for configuration. 
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