
ITALIAN INSTITUTE OF TECHNOLOGY

&
UNIVERSITY OF GENOVA

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Exploiting Prior Knowledge in Robot Motion
Skills Learning

by

Brian Delhaisse
(鍋鍋鍋島島島ブブブララライイイアアアンンン)

Thesis submitted for the degree of Doctor of Philosophy (31◦ cycle)

December 2019

Prof. Darwin G. Caldwell Advisor
Dr. Leonel Rozo Supervisor
Prof. Giorgio Cannata Head of the PhD program

Thesis Jury:
Dr. Luka Peternel, Delft University of Technology (TU Delft) External examiner
Prof. Dongheui Lee, Technical University of Munich (TUM) External examiner

Department of Informatics, Bioengineering, Robotics and Systems Engineering

I would like to dedicate this thesis to my parents, family, and friends for their love and
unconditional support throughout the years.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Brian Delhaisse
February 2020

Acknowledgements

My PhD journey actually began during the final year of my master’s degree, when my
then-supervisor Mauro Birattari suggested me to pursue a PhD degree. For that, I am grateful
to him as I do think pursuing a PhD was definitely the right choice for me. When I arrived to
the Istituto Italiano di Tecnologia (IIT) in November 2015, my supposed-to-be supervisor left
for another position, and 3 Postdocs (Arash, Przemek, and Jinoh) volunteered to supervise
me. While our interests didn’t really align with one another, I am really grateful to them.
I am thankful to Arash for explaining me and providing me with references in robotics.
Coming more from a computer science degree, it unquestionably helped me to fill my lack of
knowledge in that field. I am also grateful to Przemek for the various conversations we had
about robot locomotion from which I also learned a lot. While he left atfer one year of my
PhD, I definitely enjoyed our conversations about different topics.

Most importantly, I would like to thank Leonel Rozo for proposing to be my supervisor in
the field I have always been interested in, namely, robot learning. His support, guidance, and
advices helped me greatly throughout my PhD. Not only that, he provided me an environment
where I could explore and work freely on different ideas. For that, I am grateful as it allowed
me to learn so much during my PhD. I would also like to thanks my advisor Darwin Caldwell
for the opportunity to perform research at IIT, but also his support to my request for extending
one extra year my PhD.

As the last member of the learning group, I would like to acknowledge and thank as well
its past members: Leonel, Joao, Domingo, Martijn, Yanlong, and Fares. Their knowledge
about different subfields in robot learning made it very interesting to be part of this group. I
am also thankful for their valuable input during our group meetings, and our trips to various
restaurants in Genova. I would like to especially thank my friend Joao for our various
interesting conversations about different topics ranging from politics to philosophy.

I am also thankful to the various PhD friends that I made at IIT. I would like to thank
Songyan, Zeyu, Rajesh, Yangwei, Anh, Malgorzata, and Vishnu for our various conversations,
and the activities that we did together. They definitely made this PhD more joyful. I would
like to thank as well all the members from ADVR, past and present, from which I have

iv

learned so much during my PhD. They also played a key role in my personal and academic
growth. I am also grateful to the ADVR secretaries, especially Silvia and Floriana, for
handling all administration related to the travel expenses for the various conferences that I
attended to, and their support for my PhD extension. I would also like to thank Dr. Peternel,
and Prof. Dr. Lee for accepting to review my thesis, and their valuable feedback.

Finally, I would like to thank my family and friends. My parents for their unconditional
love and support, as well as providing me with an environment where I could pursue anything
I was curious about since a very young age. My brothers and cousins for their love and
support. My closest friends Melissa, Alexis, Daniele, and Ségolène; you are the best friends
I could hope for! I would especially like to thank my then-girlfriend Melissa who came to
live with me in Italy for the first year of my PhD. While it didn’t work out at the end between
us, I am indebted to you, and you will always remain one of my closest friends. Lastly, I
would like to thank my late grandmother and godmother for their past guidance; you will
always remain in my heart.

Merci pour votre soutien! 信じてくれて、ありがとうございます。

Abstract

This thesis presents a new robot learning framework, its application to exploit prior knowl-
edge by encoding movement primitives in the form of a motion library, and the transfer of
such knowledge to other robotic platforms in the form of shared latent spaces. In this abstract,
we present the motivation and objectives, the developed framework and methods, as well as
our contributions to the robot learning field.

Objectives
In robot learning, it is often desirable to have robots that learn and acquire new skills rapidly.
However, existing methods are specific to a certain task defined by the user, as well as
time consuming to train. This includes for instance end-to-end models that can require a
substantial amount of time to learn a certain skill. Such methods often start with no prior
knowledge or little, and move slowly from erratic movements to the specific required motion.
This is very different from how animals and humans learn motion skills. For instance, zebras
in the African Savannah can learn to walk in few minutes just after being born. This suggests
that some kind of prior knowledge is encoded into them. Leveraging this information may
help improve and accelerate the learning and generation of new skills. These observations
raise questions such as: how would this prior knowledge be represented? And how much
would it help the learning process? Additionally, once learned, these models often do not
transfer well to other robotic platforms requiring to teach to each other robot the same skills.
This significantly increases the total training time and render the demonstration phase a
tedious process. Would it be possible instead to exploit this prior knowledge to accelerate
the learning process of new skills by transferring it to other robots? These are some of the
questions that we are interested to investigate in this thesis. However, before examining
these questions, a pratical tool that allows one to easily test ideas in robot learning is needed.
This tool would have to be easy-to-use, intuitive, generic, modular, and would need to let
the user easily implement different ideas and compare different models/algorithms. Once
implemented, we would then be able to focus on our original questions.

vi

Framework and Methods
In research, it is often necessary to quickly test ideas and compare different methods proposed
in the literature. This requires the need for a generic, flexible, and modular framework. Mod-
ularity encourages the implementation and reuse of different components, while genericity
enables the framework to be general enough to be used in different scenarios. Finally, flexibil-
ity allows to combine different components easily and do not constraint the user on a specific
way of coding. We provide a robot learning framework, namely PyRoboLearn, that provides
and combines different learning paradigms, including imitation and reinforcement learning.
This framework already has more than 100,000 lines of Python code and include various
robots, environments, learning models, algorithms, controllers and others. Additionally, it
enables one to test a policy in simulation as well as to transfer it on a real robot through the
ROS middleware.

Once such framework is available, we can focus our attention on the questions raised
above, notably, the representation of prior knowledge for the generation of new skills.
Inspired by biological systems, such as vertebrates and invertebrates, that use a finite number
of movement primitives and superposed these to represent motions, we formulated a dynamic
motion library. This data-driven library is built using dynamic movement primitives and
spectral decomposition. It allows to represent motions in a compact way in terms of what we
refer as eigenforces. These primitives as their biological counterparts obey the superposition
principle, and any motions can be expressed as a linear combination of these primitives. We
investigate its use on movement recognition and generation, as well as its adaptability on a
reinforcement learning problem. Finally, we provide a preliminary work on how to couple
such library with a perceptual system. This last system is represented as a convolutional
neural network and combined with our library to generate trajectories.

Once a library has been built, it becomes interesting to see how such prior knowledge
can be transferred to other robots which have slightly different kinematic structures. By
realizing that most movements lie on lower dimensional submanifold as demonstrated by our
motion library, we investigated how such latent space can be shared and transferred to other
robotic platforms. This ultimately led us to use a non-linear, bayesian, and non-parametric
model namely a shared Gaussian process latent variable model. By applying this model on
our problem, we demonstrated that we could transfer knowledge between different robots,
leading to an acceleration in the learning process of new skills for other robots.

Contributions
Our contribution can be divided into two categories; a practical contribution through the

vii

implementation of a new robot learning framework1, and two theoretical contributions,
namely, the building of a dynamic motion library to encode movement primitives and its
applications, as well as the transfer of a shared latent space to accelerate the learning of
skills on other robotic platforms. Both last contributions addresses the representation of prior
knowledge and how it can be exploited to accelerate the learning process when acquiring
new skills. We review briefly each contribution in the following paragraphes.

Our first contribution addresses the robot learning framework. We provide an easy-to-use,
generic and modular framework to test different ideas in robotics and machine learning.
Compared to previous frameworks, it provides a panoply of functionalities, models and
algorithms, as well as different learning paradigms such as imitation and reinforcement
learning into one single framework. Futhermore, it is agnostic to the considered simulator
and allows to easily transfer a policy to the real robot through a middleware layer.

Our second contribution deals with the encoding of movement primitives, and the con-
struction of a dynamic motion library. This library allows to compactly encode and store
motion primitives by exploiting the superposition principle. By adapting it to the considered
task we can decouple some degrees of freedom, and learn faster certain skills.

Our third and final contribution covers the use and transfer of shared latent spaces between
similar robotic kinematic structures to speed up the learning of new kinematic skills by these
other robots.

1implemented in Python.

Notation and Symbols
This thesis mainly follows the notation guidelines described in the following table.

Notation Description Meaning
a normal case scalar value
A upper-case with style font Set
aaa bold lower-case vector
AAA bold upper-case matrix

AAA⊤ superscript script-style T matrix transpose
AAA† superscript dagger pseudo-inverse of a matrix
aaai subscript letter index indicator

The following is a list of commonly used symbols throughout the thesis.

Notation Meaning
qqq, q̇̇q̇q, q̈̈q̈q joint positions, velocities, and accelerations respectively

τττ joint torques
xxxw, ẋ̇ẋxw, ẍ̈ẍxw Cartesian positions, velocities, and accelerations with respect to world frame w

N number of data points
D dimensionality of a data point
T length of a trajectory
K number of hyperparameters
θ parameters of a model
Φ hyper-parameters of a model

ψ(.) basis function
III identity matrix
JJJ Jacobian matrix

HHH(qqq) Inertia matrix
π mathematical constant pi
R the set of real numbers

N (µµµ,ΣΣΣ) multivariate normal distribution with mean µµµ and covariance ΣΣΣ

iR
j
kiR
j
kiR
j
k rotation matrix from frame j to frame k expressed in frame i

O(.) computational time or space complexity (specified in the text which type it is)
p(.) probability density function
T space of all trajectories

Table of contents

Abstract v

Notation and Symbols viii

List of figures xii

List of tables xxiii

1 Introduction 1
1.1 Background . 1
1.2 Proposed Approaches and Contributions 2

1.2.1 Robot Learning Framework . 2
1.2.2 Dynamic Motion Library . 3
1.2.3 Transfer Learning of Shared Latent Spaces 3

1.3 Thesis Outline . 4
1.4 Supplementary Material . 5

2 A Robot Learning Framework 7
2.1 Introduction . 7
2.2 Related Work . 9
2.3 Proposed Framework . 11

2.3.1 Simulators . 13
2.3.2 Worlds . 15
2.3.3 Robots . 15
2.3.4 Quadratic Programming Control 17
2.3.5 Learning Paradigms . 21
2.3.6 Interfaces and Bridges . 25
2.3.7 Learning Models . 26

Table of contents x

2.3.8 Learning Algorithms . 31
2.3.9 Utility Functionalities . 33
2.3.10 Framework Architecture . 33

2.4 Experiments . 35
2.4.1 Quadratic Programming Control Task 35
2.4.2 Imitation Learning Task: Trajectory Tracking 38
2.4.3 Reinforcement Learning Task: Locomotion 42
2.4.4 Imitation and Reinforcement Learning 44

2.5 Discussion . 45
2.6 Conclusion . 45

3 A Dynamic Motion Library 47
3.1 Introduction . 47
3.2 Related Work . 49
3.3 Background . 53

3.3.1 SVD/PCA . 53
3.3.2 Dynamic Movement Primitives 54

3.4 Proposed Approach . 56
3.4.1 Library construction . 57
3.4.2 Adaptability and modularity . 60
3.4.3 RL extension . 62
3.4.4 Perceptual system coupling . 65

3.5 Experiments . 66
3.5.1 2D handwritten dataset . 67
3.5.2 3D motion dataset . 74

3.6 Discussion and Future work . 76
3.7 Conclusion . 77

4 Transfer Learning of Shared Latent Spaces 78
4.1 Introduction . 78
4.2 Related Work . 80
4.3 Background . 82
4.4 Proposed Approach . 85
4.5 Experiments . 87

4.5.1 Setup Description . 87
4.5.2 Results . 89

Table of contents xi

4.6 Discussion . 93
4.6.1 Challenges . 93
4.6.2 Future work . 94

4.7 Conclusion . 94

5 Conclusion and Future Work 95
5.1 Summary . 95
5.2 Future Work . 96

List of Acronyms 98

References 100

Appendix A Recursive PCA/SVD 109

List of Publications 111

List of Courses 112

List of figures

1.1 Overview of the PyRoboLearn (PRL) architecture where we abstract each
robot learning concept, adopt a modular programming approach, minimize
the modules coupling, and favor composition over inheritance [30] to in-
crease the flexibility. PRL functionalities cover seven main axes: simulators,
worlds, robots, learning paradigms, interfaces, learning models, and learning
algorithms. 3

1.2 Overview of the proposed motion library approach subdivided into 4 mod-
ules: a library construction module, an adaptation module, a reinforcement

learning (RL) module, and a perception coupling module. These modules
will be described in more details in Chapter 3. 4

1.3 A shared GP-LVM fully trained on one robot RRR(1), that is, the hyperparam-
eters ΦΦΦH , ΦΦΦR(1) , and the latent coordinates XXX (1) are jointly optimized. This
model is then transferred to another robot RRR(2) in which the latent coordinates
and the hyperparameters ΦΦΦH are maintained fixed while the hyperparameters
ΦΦΦR(2) for the new latent-to-output mapping are optimized. This process is
carried out over all the other robots RRR(j), ∀ j ∈ {3, ...,J}. Once the optimiza-
tion process is over, new human input data are given to the system which
produce the corresponding output data for each robot. 5

1.4 Graphical representation of the thesis content. 5

2.1 Overview of the PyRoboLearn architecture. Dashed bubbles are possible
additions (see the integration of some simulators for instance). Diamonds
represent the aggregation relationship between two modules (the same as the
ones used in UML diagrams). 12

2.2 Middleware module. 13

List of figures xiii

2.3 UML diagram for the Simulator module. Diamonds represents an aggrega-

tion relationship where a reference of an object is kept in the class pointed by
the diamond, while the arrow represents an inheritance relationship, where a
child class inherits the functionalities of a parent class, and has to implement
the abstract methods. 14

2.4 Middleware module. 14
2.5 UML diagram for the middleware module. Note that the Middleware is

optional and is mostly useful when the user wants to link the simulation with
the real world. 15

2.6 World module. 15
2.7 UML diagram for the world module. The World is composed of different

bodies (including robots) and is a bridge to the Simulator class. The World
will then be used by the learning environment to compute the next state of
the simulator. 15

2.8 Robot module. 16
2.9 Seven of the 60+ available robots in PRL: manipulators, wheeled and legged

robots. 16
2.10 UML diagram of the Robot class and its link with the Simulator class. The

Robot class accepts an instance of the Simulator class, and interacts with
this last one to get kinematic, dynamic and sensory information from it, and
send actuation values to it. The Robot class can possess some objects tha
inherits from the Sensor and/or Actuator class. Robots are grouped by
their types and inherits . Note that some robots might inherits from multiple
parent classes. For instance, the Centauro robot [44] is a Centaur-like robot
that has four legs (thus a quadruped) but also has a wheel attached to each
leg’s end-effector. Thus, in our framework, it inherits from both classes. . . 17

2.11 QP control module. 17

List of figures xiv

2.12 UML diagram of the priority tasks module. The RobotModel is an abstract
interface that is used by the PriorityTask and Constraint classes to
access to the various kinematic and dynamic information of the robot. An
implementation of that interface which links the Robot class introduced in
Section 2.3.3 has been implemented, enabling the use of the QP module with
any robots in the PRL framework. The PriorityTask class represents the
various QP objectives that can be used; this includes kinematic and dynamic
tasks where the optimized variables can be the joint velocities, accelerations,
torques or cartesian forces. The Constraint class implements the various
equality and inequality constraints used in robotics, including for instance the
joint limits. Tasks can be combined together using the methods or operators
provided in the PriorityTask class. The operators are the same as the ones
defined in the OpenSoT framework [94, 70]. Once the task or stack of task
has been defined, it is given to the Solver class which uses an instance of
the Optimizer interface (in our case the QP class) to solve the task. Note
that the provided Optimizers are also used in other parts of the framework
notably in the various learning algorithms, showing the benefits of adopting
a modular approach. 21

2.13 Learning task module. 22
2.14 Policy and environment interaction in the RL paradigm. In the IL and AL

paradigms, a reward function is not defined but a teacher is present to provide
demonstration to the agent in the envorinment. While being different, these
different paradigms share common features such as the states st , actions at ,
policy π , and environment. 22

2.15 State, action, and reward modules. 23
2.16 Environment module. 23
2.17 UML diagram of the Environment class and its link with other classes. This

diagram highlights the modularity of our framework where small modules
are built on top of others to build bigger modules. As it can be seen in this
diagram, composition2is favored over composition. This is represented in
the diagram by the diamonds instead of the arrows. 24

2.18 UML diagram of the learning Task (paradigm) class and its link with other
classes. 24

2.19 Interface module. 25

List of figures xv

2.20 UML diagram of the Interface and Bridge classes and their link with
other classes. 26

2.21 Model module. 26
2.22 UML diagram of the Model class and its link with other classes such as the

function Approximator, Policy, and other classes. 27
2.23 Algorithm module. 31
2.24 UML diagram of the Algo class and its link with other classes. In this

diagram, we mostly focus on the model free reinforcement learning algo-
rithms and show the many components that have been defined for these.
In line with the taxonomy described in Algo. 1, we defined an Explorer,
Evaluator, and Updater classes corresponding respectively to the 3 main
phases in model free RL algorithms. Some of these components such as the
Loss and Optimizer are re-used in other parts of the framework as well,
demonstrating the benefits of undertaking a modular approach. 32

2.25 Utility module. 33
2.26 Current UML diagram of the PyRoboLearn framework. Some functionalities

as well as classes which are less primordial are not reported here for a better
readability of the diagram. 34

2.27 Snapshots of the previously defined priority tasks. From left to right, the first
row shows the postural task at different time steps, the second row shows
the cartesian task, the third row shows the soft task built using the cartesian
and postural tasks previously defined and with weigths w1 = 1 and w2 = 0.5,
and the fourth row shows the hard task built using these same cartesian
and postural tasks. For the soft task, by setting different weights, different
behaviors can be obtained. 38

2.28 Reproduction of a trajectory learned from mouse-generated demonstrations
using a DMP . 39

List of figures xvi

2.29 Snapshots in reality and simulation of the trajectory tracking task using the
Franka robot and the ROS middleware in PRL. From left to right, the first row
shows pictures of demonstrating a simple trajectory to the manipulator. This
has for effect to move the simulated robot in simulation as well as depicted
in the second row, and record the trajectory (see line 45 in Listing 2.2). Then,
a DMP is fitted to this trajectory (see line 49 in Listing 2.2), and the robot
is resetted to its initial position. The robot then moved in the simulator (the
pictures were qualitatively similar to the ones in the second row) which has
for effect to move the real robot (see line 61 in Listing 2.2. The associated
video can be watched on the associated Youtube channel given in Section 1.4. 42

2.30 Training plots of the Bayesian optimization process applied on CPGs. The
left side depicts the distance between two consecutive set of parameters, and
the right side shows the loss value with respect to the number of iterations. . 43

2.31 Snapshots of walking robot using central pattern generators and trained for
few iterations using Bayesian optimization (see training plots in Fig. 2.30).
The policy is run in an open-loop fashion. 43

2.32 Cartpole task solved through imitation and reinforcement learning combined. 44

3.1 Movement primitives in frogs and superposition of these convergent force
fields. Stimulating a site in the spinal chord of the frog results in a convergent
force field being created which moves the frog’s leg to a specific equilibrium
point. On the left part of the figure, releasing the frog’s leg from different
initial configurations while stimulating the site results in the leg to reach
the same converging point. The length of the arrows represents the force
magnitude. Stimulating two different sites independently results in two
different convergent force fields (see right part, subfigures A and B). By
co-stimulating these two sites at the same time results in the two fields
being superposed, as shown in subfigures ‘&’ and ‘+’ (‘&’ represents the
obtained field by co-stimulation, while ‘+’ is the field obtained by adding
the magnitudes from the subfigures A and B). Note that the frog has a finite
number of sites, and that different movements are generated by stimulating at
various degrees these sites (i.e. movement primitives). These pictures were
taken from [9, 74], and are reproduced here for illustration purpose for our
biological motivation. 49

List of figures xvii

3.2 Dynamic movement primitives also represents (time-dependent) force fields.
Looking from left to right, top to bottom, we can see that depending on
the value of the phase x (x = 1 is the initial phase value, while x = 0 is the
final one) the DMP represents a force field with a converging point at any
point in time. Comparing this figure with the previous Fig. 3.1, we see that
both represents force fields. A natural question then is “can we also use the
superposition principle with DMPs?” This picture was taken from [41], and
reproduced here to motivate the link between dynamic movement primitives
and biological primitives. Note that the superposition part is not covered
in the original formulation of DMPs, as well as the number of primitives
needed to represent different possible motions. 50

List of figures xviii

3.3 The classical motion library described in [99, 82] and reproduced here for
illustration purpose. Several parts of this high-level system present different
challenges. First, the motion library is supposedly built manually and might
be unbounded. It is unclear if an automatic system that adds, removes,
updates, and/or replaces a movement primitive in the library is always present
in that framework or not. Even if that would the case, it is unclear by
which criteria the library would achieve these operations. If no such system
is present, each movement would be added to the library which would
increase unnecessarily the library size. Second, the movement recognition

consists to identify the movement being demonstrated from sensory inputs,
and matching the movement with one of the primitives being stored in the
library by querying this last one. If the demonstrated movement has to be
compared with each element in the library, this has a time complexity of
O(N) where N is the size of the library, which if unbounded could take a lot
of time. However, it is currently unclear how the movements are matched
nor how well the recognition system performs. This recognition module also
presents a disadvantage; even if the best matched movement was the first
element of the library, it would still check all the other entries as it wouldn’t
possibly know at that time, that the best matched movement has already
been discovered. This results to go through the whole library each time
a movement is recognized which is pretty ineffective. This would results
in a total time complexity of O(MN), where M is the number of times we
recognize a movement. Third, concerning the movement generation module,
it is usually assumed that a motion is generated from one of the movement
primitives present in the library, however this makes it difficult to exploit, as
it does not scale well as mentioned previously. A better approach would be to
combine the different movement primitives to represent various trajectories.
For this purpose, like biological systems, it would be interesting to exploit
the superposition principle to combine different movement primitives and
thereby reducing the number of required primitives. 51

List of figures xix

3.4 Overview of the proposed motion library subdivided into four modules.
The library construction module focuses on the construction and update
processes of the library. The adaptation module describes its adaptability
and modularity, while the reinforcement learning (RL) module shows how
we exploit our framework using a trajectory-based RL algorithm. Lastly, the
perception coupling module display how we can couple our library with a
perceptual system. 56

3.5 Movement recognition is performed by going from the force to the weight vec-
tor space, while movement generation is carried out by the inverse mapping.
The shaded color in our library highlights the importance-based ordering
of the MPs, with the most important ones being at the top of the library.
This has a direct consequence on the weight space, where the length of each
base axis represents the importance of each dimension. This further allows
to reduce the dimensionality of the weight space by considering the only
important ones. Clustering techniques can then be applied in that lower
dimensional space to group similar movements. 58

3.6 (a) Adaptability: from a library that correlates all the DoFs, we can adapt it
to account for specified correlations. In the depicted case, the full-body (FB)
library encoding the correlations of the right/left arm (RA/LA), and right/left
leg (RL/LL) can produce two smaller independent libraries that capture the
correlations of both arms (BA) and both legs (BL). (b) Modularity: from
independent libraries (represented by squares) and the 2-pair correlated
libraries (represented by rhombi), we can reconstruct different libraries
correlating the specified DoFs. 61

3.7 Trajectory-based RL applied to the motion library. 64
3.8 Perception coupled to our library. 65
3.9 (a) First fifty eigenvalues associated with our library. (b) 2D linear projection

of few samples with their corresponding classes. 67
3.10 Four most (a) and least (b) important eigenforces with their corresponding

position trajectories generated using (3.3). 68
3.11 Movement recognition and generation on a test sample. Left graph shows the

weight distribution (the first hundred weights) and the true movement. Right

graph displays the generated movement when the n first eigenforces (with
the corresponding optimized weights) are superposed, and subsequently used
to get the resulting position trajectory using (3.3). 69

List of figures xx

3.12 On the left, the 2nd most important eigenforce is approximated using 40
kernels equally distributed in time. On the right, the 50th most important
eigenforce is approximated using 2000 kernels. The eigenforce to approxi-
mate is depicted by the blue line f ∗, and the force resulting by the weighted
sum of basis functions is represented by the green line f . The other curves
represents the weighted RBFs. 69

3.13 Snapshots of Coman drawing the letter "a" with different number of eigen-
forces using the motion library and inverse kinematics. From left to right,
the first row shows the trajectory drawn when using 4 number of eigenforces
(n = 4), the second row shows with n = 8, and the third row with n = 16. . . 70

3.14 Movement recognition and generation on the same test sample as Fig. 3.11
using Fourier analysis. Top graph shows the weight distribution (the first
hundred weights) and the true movement for each degree of freedom. Bottom

graph displays the generated movement when the n first eigenforces of each
library (with the corresponding optimized weights) are superposed, and
subsequently used to get the resulting position trajectory using (3.3). 71

3.15 PoWER algorithm applied on the n most important eigenforces (a), and
applied on conventional DMPs using n kernels (b). 73

3.16 PoWER algorithm applied on the joint library (left plot) and the independent
libraries (right plot) with different number n of primitives. 73

3.17 Training (a) and test (b) samples predicted by the CNN and our motion library.
Going from left to right, taking pairs of columns, the left part represents the
ground truth and the right part the predicted trajectory. 74

3.18 (a) Most and least important movement primitives for our joint (full-body
(FB)) library, (b) our both-arms (BA) and both-legs (BL) libraries, and (c)
each independent (i.e. right-arm (RA), left-arm (LA), right-leg (RL), and
left-leg (LL)) libraries (c). 75

3.19 PoWER applied on the full-body (FB), both arms + both legs (BA+BL),
and the right/left arm/leg ({R,L}+{A,L}) libraries for the “clapping while
walking” motion for different number of the most important primitives n. . 75

4.1 The four different models: (a) GP, (b) GP-LVM, (c) Shared GP-LVM, (d)
Shared GP-LVM with back constraints. Observed variables are in a shaded
grey color. 84

List of figures xxi

4.2 A shared GP-LVM fully trained on one robot RRR(1), that is, the hyperparam-
eters ΦΦΦH , ΦΦΦR(1) , and the latent coordinates XXX (1) are jointly optimized. This
model is then transferred to another robot RRR(2) in which the latent coordinates
and the hyperparameters ΦΦΦH are maintained fixed while the hyperparameters
ΦΦΦR(2) for the new latent-to-output mapping are optimized. This process is
carried out over all the other robots RRR(j), ∀ j ∈ {3, ...,J}. The equivalent
system of the whole process is depicted on the bottom half of the figure.
Once the optimization process is over, new human input data are given to the
system which produce the corresponding output data for each robot. 85

4.3 In this multi-robot learning model, the latent coordinates and the hyperpa-
rameters of each robot are jointly optimized. This leads to a model which
is less biased to a specific initial selected robot, as it needs to compromise
between all the robots. 86

4.4 Three of the sixteen robots’ poses defined for each robot. From left to right:
WALK-MAN, COMAN and CENTAURO. 88

4.5 Mean squared error of the pretrained and fully trained models with no back
constraints for the three robots on the test dataset. 90

4.6 Mean squared error of the pretrained and fully trained models with back
constraints set on the input for the three robots on the test dataset. 90

4.7 Mean squared error showing the performance without back constraints (red),
with back constraints placed on the input (blue) or on the output (green) for
the three robots on the test dataset. 91

4.8 Trajectories in the shared latent space of a human and the WALK-MAN
robot with back constraints on the input space. The circles represent four of
the predefined key poses, while the crosses represent the positions during the
training movements. 92

4.9 Prediction plots for COMAN: Human left and right arm trajectories (left),
and corresponding predicted left and right robot arm trajectories (right).
A shared GP-LVM is trained on WALK-MAN with back constraints set
on the input, then transferred and partially trained on COMAN. The robot
trajectories are the movements performed by COMAN which result from
this transfer learning. The human trajectories are part of the test dataset, and
the corresponding latent trajectories are depicted in blue in Fig. 4.8. 92

List of figures xxii

4.10 From left to right, the top row shows snapshots of the motion performed
by the WALK-MAN robot in simulation, while the second row shows the
corresponding motion performed by COMAN after transferring and partially
training the shared GP-LVM. The corresponding trajectory plots are given in
Fig. 4.9, and the corresponding latent trajectories in Fig. 4.8. 93

List of tables

2.1 Comparisons between different robot learning frameworks that provide envi-
ronments. PL stands for perception learning, SRL for state representation
learning, AV for autonomous vehicles, Manip. for manipulation, Loc. for
locomotion, and Nav. for navigation. Note that MuJoCo [115] is not open-
source, requires a license, and depending on that last one might not be free.
Also note that while the support for Python 2.7 will end in 2020, some
simulators such as Gazebo-ROS and some libraries are still dependent on
Python 2.7. 10

2.2 Comparisons between different frameworks that provide reinforcement learn-
ing models and algorithms. Note that all these frameworks (except ours)
focus on deep neural networks as their main models, and do not take into
account other models such as movement primitives. Note that existing frame-
works mostly focus on the reinforcement learning paradigm, and not on other
paradigms such as imitation learning, active learning, transfer learning, and
others. 11

2.3 The various interfaces in PyRoboLearn . 25

List of tables xxiv

2.4 Comparison between different learning models based on different categories.
We now explain what each column represents. The first column specifies
if the model is parametric or non-parametric. Parametric models possess
parameters that are optimized during training. Once trained the dataset
can be discarded. This is not the case of non-parametric models which
remembers the dataset or statistics computed on it (such as the mean and
covariance). For these models, few hyperparameters are trained or provided.
Usually, parametric models scale well with the number of samples while non-
parametric performs extremely well with few samples. Some models such
as GMM are semi-parametric; they have parameters (the priors in GMM)
and also remember some statistics computed on the datasets (the Gaussians
in GMM). The second column describes if the model is linear or not with
respect to the parameters. Linear models are parametric models that are
linear with respect to their parameters. This usually allows them to be learned
efficiently using linear regression for instance. The third column specified if
the learning models are deterministic or probabilistic. Deterministic models
always return the same output given the same input, while probabilistic
models return not only the predictions but the associated uncertainties as
well. This is useful as it provides an estimate of how uncertain is the model
about its prediction. The fourth column states if the models are generative
or discriminative. Generative models allows to generate data by sampling
them, while discriminative models do not. The next column check if we have
step-based or trajectory-based models. Trajectory models are models that
only accepts the phase or time as an input and generate the corresponding
trajectory. Step-based model can accept other inputs as well. Interpretable
models have parameters or hyperparameters that are interpretable. Universal
models can approximate any function and are also known as general function
approximators. The last column represents the number of data points usually
required when training the corresponding model. 28

Chapter 1

Introduction

1.1 Background

Robots are expected to be part of our daily lives performing diverse tasks in unstructured
environments. To enable these robots to help us and carry out these tasks, two main schools of
thoughts have emerged. The first one consists to model mathematically as much as possible
the dynamics of the robot and its interaction with the environment, and from that, to manually
design controllers to deal with the considered task. This can be categorized as the classical

robotics/engineering approach. The second one instead consists to exploit the abundance
of data around us, and extract useful information from it using statistics, probabilities, and
machine learning, and learn a policy1 to perform the task. This is often referred as the robot

learning approach. To understand the difference between these two views, consider the task
of riding a bike. One could mathematically model the whole dynamics of the system to a
certain accuracy, and design a controller to perform this specific task. However, this often
results in designed controllers that deal with specific scenarios of the task. Additionally,
these methods make several assumptions and simplification when modeling the robot and its
interaction with the environment (such as linearization of the dynamics, selection of a certain
friction model, and others). Another way would be to let the agent try by itself to ride a bike
and learn from its failures and successes on how to ride it properly. The last approach is
mostly similar to how human beings operate. The second approach has the benefits of being
more generic and widely more applicable to different scenarios because of the available
amount of data. Learning models, such as policies, however can be time-consuming to

1In this thesis, we will refer a policy as a learnable controller which optimizes its parameters or hyperparam-
eters based on some collected data, and refer simply a controller as a manually designed one (where no data is
involved)

1.2 Proposed Approaches and Contributions 2

train requiring a huge number of samples to extract the useful pieces of information from.
End-to-end models for instance require millions even billions of data points to learn a certain
behavior. Such methods often start with no prior knowledge or little, and move slowly from
erratic movements to the specific required motion. In contrast, animals and humans, despite
their high number of degree of freedoms, display elaborated movements, learn and adapt
quickly when facing unseen situations. For instance, animals in the African Savannah like
zebras learn quickly how to walk and run as soon after they are born in order to escape
predators. This suggests that some sort of prior knowledge is encoded into them [10, 28, 64].
Leveraging this information to robot learning [5, 40, 41, 18] may help improve and accelerate
the learning process and generation of new skills. Considering multiple robots of similar
morphologies, transferring such prior knowledge between these might also accelerate the
learning process making it easier for the user to teach new skills to other robots as well.

1.2 Proposed Approaches and Contributions

Our contributions can be subdivided into two categories: practical and theoretical contribu-
tions. In each of the following subsection, we describe our contribution as well as a general
overview of the proposed framework and approaches. We start by our pratical contribution,
namely the robot learning framework, followed by our two theoretical contributions. These
last two include the building of a dynamic motion library as well as the exploitation of shared
latent space for transfer learning.

1.2.1 Robot Learning Framework

Before being able to test ideas and compare methods in robot learning, a framework is much
needed. Such framework needs to be easy-to-use, modular, generic, and flexible. Modularity
encourages the implementation and reuse of different components, while genericity enables
the framework to be general enough to be used in different scenarios. Finally, flexibility
allows to combine different components easily and do not constraint the user on a specific
way of coding. We provide a robot learning framework that provides and combines different
learning paradigms, including imitation and reinforcement learning. This framework already
has around 100,000 lines of Python code and include various robots, environments, learning
models, algorithms, controllers, simulators, and others. Additionally, it enables one to test
a policy in simulation as well as to transfer it on a real robot through the ROS middleware.

1.2 Proposed Approaches and Contributions 3

A general overview of our proposed framework is depicted in Fig. 1.1, and a more detailed
description is provided in Chapter 2.

S
im

u
la

to
r

Environment Models & Algos

S
ta

te
A

c
ti

o
n

PolicyEnv

Reward

Pybullet

Gazebo-ROS

MuJoCo

Interfaces

Mic. & SpeakerKeyboard & MouseDepth camera SpaceMouseGame controllerLeapMotion

Figure 1.1 Overview of the PyRoboLearn (PRL) architecture where we abstract each robot
learning concept, adopt a modular programming approach, minimize the modules coupling,
and favor composition over inheritance [30] to increase the flexibility. PRL functionalities
cover seven main axes: simulators, worlds, robots, learning paradigms, interfaces, learning
models, and learning algorithms.

1.2.2 Dynamic Motion Library

Incorporating prior knowledge is primordial to ease and fasten the learning of robot skills.
Inspired by how biological systems, such as vertebrates and invertebrates, learn to move using
movement primitives, we built a dynamic motion library that contains movement primitives
and exploits the superposition principle. Exploiting this principle decreases substantially
the number of independent primitives needed, and enables to represent any other primitives
by a weighted sums of these independent ones. For this purpose, we made use of dynamic
movement primitives and the spectral theorem to generate our library. A general overview of
our proposed framework is shown in Fig. 1.2, and is investigated in Chapter 3.

1.2.3 Transfer Learning of Shared Latent Spaces

Once a robot has learned a certain skill, it becomes interesting to study how this knowledge
can be transfered to another robot with a different kinematic structure. This is notably useful
in industrial robotics where instead of having an operator spending time re-teaching all the

1.3 Thesis Outline 4

Library Construction Module

Adaptation Module
RL Module

Perception Coupling
Module

Figure 1.2 Overview of the proposed motion library approach subdivided into 4 modules: a
library construction module, an adaptation module, a reinforcement learning (RL) module,
and a perception coupling module. These modules will be described in more details in
Chapter 3.

skills shown on a previous robotic platform, the acquired knowledge is transfered to the other
robots to ease and fasten the learning process of new skills. Using the dynamic motion library,
we learned that movements can be projected on a lower dimensional submanifold. Here, we
investigated the use of shared latent spaces for robot skills and how they can be transfered
from one robotic platform to another. For this purpose, we used a non-linear, bayesian, and
non-parametric dimensionality reduction model namely a shared Gaussian process latent
variable model (shared GP-LVM), and transfered the joint latent space learned between one
robot and a human operator to other robots requiring only to re-train the mapping between
the latent space to the other robot space. A general overview of the proposed methodology is
depicted in Fig. 1.3, and a deeper insight is provided in Chapter 4.

1.3 Thesis Outline

The thesis is centered around the concept of exploiting prior knowledge to enable robots to
learn faster. For this purpose, it is splitted into 3 main parts: a robot learning framework,
a dynamic motion library, and shared latent spaces for transfer learning. The first part is
our practical contribution while the two others are our theoretical contributions to the robot
learning field. A graphical representation of the thesis outline is provided in Fig. 1.4.

The thesis is structured such that each chapter can be read independently. As such, in
each chapter, we introduce the necessary background and review the corresponding state of
the art before diving into our proposed approach and contribution.

1.4 Supplementary Material 5

Figure 1.3 A shared GP-LVM fully trained on one robot RRR(1), that is, the hyperparameters ΦΦΦH ,
ΦΦΦR(1) , and the latent coordinates XXX (1) are jointly optimized. This model is then transferred
to another robot RRR(2) in which the latent coordinates and the hyperparameters ΦΦΦH are
maintained fixed while the hyperparameters ΦΦΦR(2) for the new latent-to-output mapping are
optimized. This process is carried out over all the other robots RRR(j), ∀ j ∈ {3, ...,J}. Once the
optimization process is over, new human input data are given to the system which produce
the corresponding output data for each robot.

Practical

contribution

Theoretical

contributions

Prior knowledge in Robot Learning

Figure 1.4 Graphical representation of the thesis content.

1.4 Supplementary Material

The framework, models and methods used in this work have been implemented in Python. The
framework is named pyrobolearn and can be found online on Github at https://robotlearn.
github.io/pyrobolearn/, and is currently licensed under the GPLv3 license. The repository

https://robotlearn.github.io/pyrobolearn/
https://robotlearn.github.io/pyrobolearn/

1.4 Supplementary Material 6

contains several examples, tutorials, and documentation. Videos as well as supplementary
materials associated with each chapter can also be found at the following links:

• Chapter 2: https://robotlearn.github.io/pyrobolearn/

• Chapter 3: https://sites.google.com/view/dynamic-motion-library/home

• Chapter 4: https://gitlab.com/bdelhaisse/HSGPLVM

https://robotlearn.github.io/pyrobolearn/
https://sites.google.com/view/dynamic-motion-library/home
https://gitlab.com/bdelhaisse/HSGPLVM

Chapter 2

A Robot Learning Framework

As mentioned in the Introduction section, a framework is required to test different ideas
and compare different methods. On the quest for building autonomous robots, several
robot learning frameworks with different functionalities have recently been developed. Yet,
frameworks that combine diverse learning paradigms (such as imitation and reinforcement
learning) into a common place are scarce. Existing ones tend to be robot-specific, and
often require time-consuming work to be used with other robots. Also, their architecture is
often weakly structured, mainly because of a lack of modularity and flexibility. This leads
users to reimplement several pieces of code to integrate them into their own experimental or
benchmarking work. To overcome these issues, we introduce PyRoboLearn, a new Python
robot learning framework that combines different learning paradigms into a single framework.
Our framework provides a plethora of robotic environments, learning models and algorithms.
PyRoboLearn is developed with a particular focus on modularity, flexibility, generality, and
simplicity to favor (re)usability. This is achieved by abstracting each key concept, undertaking
a modular programming approach, minimizing the coupling among the different modules,
and favoring composition over inheritance for better flexibility. We demonstrate the different
features and utility of our framework through different use cases.

2.1 Introduction

Recent advances in machine learning for robotics have produced several (free and) open-
source libraries and frameworks. These ease the understanding of new concepts, allow for the
comparison of different methods, provide testbeds and benchmarks, promote reproducible
research, and enable the reuse of existing software. Nevertheless, several frameworks suffer
from a lack of flexibility and generality due to poor design choices. Lack of abstraction and

2.1 Introduction 8

modularity with high dependency among modules hinder code reuse. This problem worsens
when the user needs to combine different incompatible codes together, or to integrate an
existing one into her own code. Some frameworks force to follow a standard, which might
not suit the user needs. However, bypassing code standards is not a good coding practice as
many useful functionalities might be missed. Complying to their standard requires to modify
the original code, interface (possibly) incompatible frameworks, and/or reimplement parts
of the framework. This creates unnecessary overheads that considerably affect the research
activities, leaving less time to create modular and flexible code, and therefore ad-hoc code
that is hardly reusable is produced.

Available frameworks in robot learning [87] can be classified into two categories:
“simulated environments” [12, 124, 45, 113, 16, 24, 37, 4, 21] and “models and algo-
rithms” [84, 31, 50, 58, 22, 88]. In both, frameworks tend to focus on specific learning
paradigms such as imitation learning (IL) [7] or reinforcement learning (RL) [111], and do
not exploit their shared features, such as an environment, trainable policies, states/actions,
and loss functions. In IL, a teacher provides demonstration data while for RL a reward signal
is returned by the environment, which results in different training algorithms. The majority of
frameworks that provide simulated environments focus either on RL [12, 124, 45, 113, 16, 24],
or to a less extent on IL [37, 4, 21], which limits their applicability. As IL and RL differ on
few aspects, their integration and design into a single learning framework provides interesting
opportunities. For example, IL can be used to initialize a policy which is then fine-tuned
using RL, leading to safer and faster policy search [18]. However, current environment
frameworks rarely exploit this feature.

To better illustrate our point, let us consider an RL setting where an environment inherits
from an OpenAI Gym environment [12], which several frameworks use [124, 45, 16, 24].
Such environment includes the definition of state-action spaces, environment, and reward
function. Also, let us consider an environment that includes an inverted pendulum on a cart.
The state consists of the cart position and velocity, and the angular position and velocity
of the pole. A simple reward function may count the number of time steps the cart could
balance the pole. Finally, let us define a neural network policy that is specified outside the
environment, which takes the 4D state vector and outputs the action. Now, assume that the
user wants to test the performance of a new model/algorithm on a double inverted pendulum
on a cart. In this case, the user would have to define manually a new environment with a new
robot, and a larger dimensional state vector. This, in turn, affects the policy representation.
Moreover, if the user wishes to experiment different reward functions, she would have to
change them directly in the environment definition.

2.2 Related Work 9

The above procedure is not efficient and does not scale. A better approach is to have the
state to change its dimensionality automatically as the robot varies, and the neural network
policy architecture to adapt accordingly. The reward function could be defined outside the
environment and then provided to it. This lack of simplicity, modularity and flexibility
along with the lack of a common framework regrouping different learning paradigms is what
motivated us to create PyRoboLearn. For this purpose, we adopted a modular and SOLID pro-
gramming approach [65], abstract important concepts, minimized the dependencies between
modules, and favored composition over inheritance to increase flexibility. PyRoboLearn

provides diverse environments, learning models and algorithms, and permits to easily and
quickly experiment ideas by combining diverse features and modules.

2.2 Related Work

To reach high usability, our framework is written in Python and uses the PyTorch library
[84] as backend. Frameworks in other languages are often prone to errors and not beginner-
friendly. As such, we do not review the literature of frameworks written in other languages.
In general, robot learning frameworks can be mainly categorized as: environment-based and
model-based. We start by reviewing the literature of environment-based frameworks.

In IL, few environments have been proposed, notably SMILE [37] and the Freiberg Robot
Simulator [4]1, but both focus on specific robotic platforms and use different programming
languages. In contrast, multiple environments have been proposed for RL. One of the most
used frameworks is OpenAI Gym [12] from which other frameworks have derived. OpenAI
Gym provides environments in games, control, and robotics. Each one inherits from the
abstract Gym environment class, and defines the world, the agents, the states-actions, and the
reward function inside its class. Inheritance is used over composition which limits flexibility
as a new environment has to be created for each combination of worlds (including the agents),
states and rewards. OpenAI Gym and the DeepMind control suite [113], use MuJoCo [115].
Since MuJoCo requires a license, Zamora et al. [124] extended the Gym framework with
Gazebo and ROS. OpenAI later released roboschool [45], a free robotic framework to test RL
algorithms. Built on the PyBullet [16] simulator, PyBullet-gym [24] was recently released.
All these frameworks focus on RL and most inherit from the OpenAI gym, following the
same protocol.

Few other frameworks such as Carla [21] and Airsim [102] support both IL and RL,
but are designed for autonomous vehicles. Another new framework closely related to ours

1We tried to find this simulator online unsuccessfully.

2.2 Related Work 10

is Surreal [25] which also supports IL and RL, but focuses only on manipulation tasks
using the Baxter and Sawyer robots in MuJoCo. Other frameworks include the Gibson
Environment [121] which focuses on perception learning and sim-to-real policy transfer,
and the S-RL toolbox [91] which focuses on state representation learning. Both are out
of the scope of the covered learning paradigms in this chapter. Recently, two new Python
robot frameworks have been introduced: PyRobot [72] and PyRep [42]. The former pro-
vides a lightweight interface built on top of Gazebo-ROS [49, 90] with a focus on robotic
manipulation and navigation, while the latter provides a Python wrapper around the V-REP
simulator [95]. As our framework, they aim to be beginner-friendly but are mainly focused
on the robotic application instead of being a complete robot learning framework. They can
be better compared to a simulator such as PyBullet or MuJoCo. A table summarizing parts of
the different characteristics of current robot learning frameworks that provide environments
is depicted in Table 2.1.

Name OS Python Simulator Paradigm Robot Problem
Open-AI Gym [12] OSX, Linux 2.7, 3.5 MuJoCo RL 3D chars Manip., Loco.
Gym-Gazebo [124] Ubuntu 18.04 3 Gazebo + ROS RL <5 robots Manip., Nav.
DeepMind Control
Suite [113]

Ubuntu
14.04/16.04

2.7, 3.5 MuJoCo RL 3D chars Loco., Control

Roboschool [45] OSX,
Ubuntu/Debian

3 Bullet RL 3D chars Loco., Control

Pybullet Gym [16,
24]

OSX, Linux,
Windows

2.7, 3.5 PyBullet RL 3d chars,
Atlas

Manip., Loco.,
Control

GibsonEnv [121] Ubuntu 3.5 Bullet PL/RL 3D chars, 5
robots

Perception, Nav.

Airsim [102] Linux, Windows 3.5+ Unreal Engine/Unity IL/RL AV Nav.
Carla [21] Ubuntu 16.04+,

Windows
2.7, 3.5 Unreal Engine IL/RL AV Nav.

Surreal Robotics
Suite [25]

OSX, Linux 3.5, 3.7 MuJoCo IL/RL Baxter,
Sawyer

Manip.

S-RL Toolbox [91] N/S 3.5+ PyBullet RL/SRL Kuka,
OmniRobot

Manip., Nav.

PyRoboLearn Ubuntu
16.04/18.042

2.7, 3.5, 3.6 Agnostic (PyBullet) IL/RL 60+ Manip., Loco.,
Control

Table 2.1 Comparisons between different robot learning frameworks that provide environ-
ments. PL stands for perception learning, SRL for state representation learning, AV for
autonomous vehicles, Manip. for manipulation, Loc. for locomotion, and Nav. for navigation.
Note that MuJoCo [115] is not open-source, requires a license, and depending on that last
one might not be free. Also note that while the support for Python 2.7 will end in 2020, some
simulators such as Gazebo-ROS and some libraries are still dependent on Python 2.7.

We now turn our attention to frameworks that provide models and algorithms. Several
libraries have been proposed such as Sklearn [85], TensorFlow [1], PyTorch [84], GPy-

2.3 Proposed Framework 11

Torch [31], among others. As they use different backends (e.g. Numpy, TensorFlow or
PyTorch), the models defined in one cannot use algorithms of the others. In our framework,
we provide a common interface to existing models, and reimplement models that were not
compatible. In RL, Garage (previously known as rllab) [22], baselines [36], and RLlib [58]
are three popular libraries that provide out-of-the-box RL algorithms. The first two are
coded in TensorFlow, while the latter is built on PyTorch. As for the environments, these
model-based frameworks define their own standard which do not fit our modular framework.
The main reasons being that learning algorithms are dependent of low-level concepts such
as the environment and policies (i.e. models) making a possible integration harder. The
next Table 2.2 summarizes the different aspects of frameworks that provides models and
algorithms.

Name OS Python Backend Flexible
rllab/garage [22] Linux, OSX 3.5+ TensorFlow No

rllib [58] Ubuntu 1[4,6,8],
OSX 10.1[1-4]

2, 3 TensorFlow, PyTorch No

stable-baselines [20, 36] Ubuntu, OSX,
Windows

3.5 TensorFlow No

PyRoboLearn Ubuntu
16.04/18.04

2.7, 3.5, 3.6 PyTorch Yes

Table 2.2 Comparisons between different frameworks that provide reinforcement learning
models and algorithms. Note that all these frameworks (except ours) focus on deep neural
networks as their main models, and do not take into account other models such as movement
primitives. Note that existing frameworks mostly focus on the reinforcement learning
paradigm, and not on other paradigms such as imitation learning, active learning, transfer
learning, and others.

2.3 Proposed Framework

PyRoboLearn (PRL) is designed to maximize modularity, flexibility, simplicity, and gen-
erality. Our first choice was the programming language. We chose Python3 because of its
simplicity to prototype new ideas, a fast learning curve, a huge amount of available libraries,
and the ability to interact with the code. We also used PyTorch and Numpy for our learning
models and algorithms. PyTorch has been selected because of its Pythonic nature, modularity
and popularity in research.

3PyRoboLearn works in Python 2.7, 3.5, and 3.6, and has been tested on Ubuntu 16.04 and 18.04. While
the support for Python 2.7 will end in 2020, many libraries used in robotics still depend on it.

2.3 Proposed Framework 12

Regarding the PyRoboLearn architecture, we abstracted each robot learning concept,
adopted a modular programming approach, minimized the modules coupling, and favored
composition over inheritance [30] to increase the flexibility [110]. Abstraction aims at identi-
fying and abstracting different concepts into objects, and building high-level concepts on top
of low-level ones. Modularity separates these concepts into independent and interchangeable
building blocks that represent or implement a particular functionality. Composition combines
different modules and thus different functionalities into a single one. Coupling measures
how different modules depend on each other. A high coupling between two modules means
they cannot work in a stand-alone fashion, while a low coupling means they depend on ab-
stractions instead of concretions [65]. The aforementioned notions increased the framework
flexibility while facilitating the reuse and integration of the various modules.

PRL functionalities cover eight main axes: simulators (with a possible middleware
interface), worlds, robots, controllers, learning paradigms (including the definition of envi-
ronments and states/actions), interfaces, learning models, and learning algorithms. Each of
these components is described next. An overview of the framework is depicted in Fig. 2.1.

Simulator

Bullet/PyBullet RaiSim/RaiSimPyMuJoCo

World

Robot
Environment

Environment

Learning Task

Policy

Environment

Algorithms

QP Controller

Utility Functionalities

Model

Figure 2.1 Overview of the PyRoboLearn architecture. Dashed bubbles are possible additions
(see the integration of some simulators for instance). Diamonds represent the aggregation
relationship between two modules (the same as the ones used in UML diagrams).

2.3 Proposed Framework 13

2.3.1 Simulators

Simulator
Common API

Bullet/PyBullet RaiSim/RaiSimPyMuJoCo

Figure 2.2 Middleware module.

The first axis is the specification of the
simulator. Different simulators have been
proposed: Gazebo [49] (with ROS [90]),
V-REP/PyRep [95, 42], Webots [69],
Bullet/PyBullet [17, 16], DART [55],
RaiSim [39, 19], and MuJoCo [115] (the
most popular). We chose to first work with
PyBullet as it works in Python, and it is free
and open-source. However, to avoid our code to be fully dependent on it, we provided an
abstract interface that lies between the simulator and our framework such that any other
simulators can inherit it, allowing for easy integration in the future (e.g., MuJoCo or RaiSim).
Due to its popularity, gym [12] was also wrapped inside PRL, to make it suitable with our
framework in RL scenarios.

The curious reader might wonder why not use one simulator and stick to it. First,
simulators differ by their physics engine, the contact model (soft contacts versus hard
contacts), as well as the solver used to solve the underlying optimization problem. Using the
same controller but in different simulators can result in different behaviors being observed.
Second, researchers around the world use sometimes different simulators than the one used
by the user. This can be problematic when comparisons with other works have to be provided.
This often require the user to learn multiple simulator APIs, and migrate the code of other
researchers into the user own’s code. To solve that problem, our framework abstracts all these
simulator by providing a common API. While currently, PyBullet is the only simulator fully
supported, integration of other popular simulators including MuJoCo, Dart, and Raisim4 are
ongoing and partial supports are provided for these.

We adopted an object-oriented programming (OOP) approach to implement the various
modules and components in PRL. The UML diagram of the simulator module is provided
in Fig. 2.3. An abstract Simulator interface from which all the simulators inherit from has
been implemented, as well as few classes that inherit from it such as the Bullet simulator
are provided. This interface allows to decouple the rest of the code in PRL with the simulator
being used. The Simulator class can also interacts with the middleware module described
in next section.

4The Python wrappers of the RaiSim simulator have also be implemented by myself, and have been adopted
by the original authors of the Raisim simulator. The wrappers are released under the MIT license and are
available on Github at the following link: https://github.com/robotlearn/raisimpy.

https://github.com/robotlearn/raisimpy

2.3 Proposed Framework 14

Simulator

Bullet

Middleware

MuJoCo...

Figure 2.3 UML diagram for the Simulator module. Diamonds represents an aggregation
relationship where a reference of an object is kept in the class pointed by the diamond,
while the arrow represents an inheritance relationship, where a child class inherits the
functionalities of a parent class, and has to implement the abstract methods.

Middleware

Figure 2.4 Middleware module.

A middleware module can be provided to
the simulator which allows it to read from
and write information on it. This module
notably enables communication with real
robotic platforms in an effortless and seam-
lessly manner. Popular middleware includes
ROS [90] and YARP [27]. By providing
the middleware to the simulator, it permits
this last one to act as a bridge between real
robotic platforms and the main control pro-

gram.
In technical terms, an abstract Middleware interface providing the different method sig-

natures used by the simulator has been implemented. A concrete middleware class only then
needs to implement that abstract interface to be used with the rest of the framework. In PRL,
we already implemented the ROS interface as this one is the most popular used middleware
in the robotics community. To use a real robotic platform, each robot has to implement the
RobotMiddleware interface which is used by the Middleware class. When the simulator
require to have access to a certain robotic platform, it sent a request to the middleware. Upon
receiving this request, the middleware then look if it has a reference to such instance of that
RobotMiddleware class. If so, it then sends and/or receives information to/from the real
robot through the middleware. The UML diagram representing the relationship between the
Middleware, Simulator, and RobotMiddleware is provided in Fig. 2.5.

A concrete example on how to use the middleware and other modules on an imitation
learning task is provided in Section 2.4.2.

2.3 Proposed Framework 15

SimulatorMiddleware

ROS

RobotMiddleware

Figure 2.5 UML diagram for the middleware module. Note that the Middleware is optional
and is mostly useful when the user wants to link the simulation with the real world.

2.3.2 Worlds

World
Main interactor with the Simulator class but
provides a higher-level API

Can easily create worlds and load 3D bodies in it

Provides access to the main Camera

Decoupled from states, actions, and rewards, but
can later be given to an (RL) Environment

Figure 2.6 World module.

Once a simulator is provided, a world where
robots and objects can interact is required.
In our framework, only the world and robot
instances interact with the simulator. The
PyBullet simulator permits to load meshes
in the world but did not provide any tool to
generate terrains. This missing feature is
important for robot locomotion tasks. We
thus addressed this issue by providing tools
to automatically generate height maps, which are subsequently used to produce meshes that
are then loaded into the simulator.

The UML diagram describing the relationships between the World and other classes is
provided in Fig. 2.7. The world will be provided to the learning environment (see Section
2.3.5).

Simulator World

Body

Env
Environment

Robot

Figure 2.7 UML diagram for the world module. The World is composed of different bodies
(including robots) and is a bridge to the Simulator class. The World will then be used by
the learning environment to compute the next state of the simulator.

2.3.3 Robots

2.3 Proposed Framework 16

Robot

Kinematics

More than 60 robots available

Dynamics

Common interface & inheritance

Figure 2.8 Robot module.

Robots are the active agents in our world,
and more than 60 robots are provided in
PRL. All inherit from a main robot class and
are split into different categories: manipula-
tors, legged robots, wheeled robots, UAVs,
among others. Each of these categories is
then divided into further subcategories. For
instance, the legged robot class is inherited
by classes representing biped, quadruped,

and hexapod robots. Kinematic and dynamic functions allowing for motion and torque
control are provided through the main interface. Notably, the user can access to the Jacobian
matrix (see eq. 2.1) and other kinematic information such as the link’s linear and angular ve-
locities as well as the joint states. The user can also access to dynamic information including
the inertia matrix, non-linear terms (such as the Coriolis and centrifugal forces, gravity, etc),
and torques (see eq. 2.2).

vvv = JJJq̇qq (2.1)

HHH(qqq)q̈qq+ccc(qqq,q̇qq)+ggg(qqq) = τττ (2.2)

Several sensors and actuators have also been implemented in the framework, including
contact sensors, cameras, IMU, force/torque sensors, and others. For legged robots, we
also provided functionalities that allows to compute and plot different indicators used in
locomotion including the support polygon, center of mass (CoM) and its projection to
the ground, zero-moment point (ZMP) [120], center of pressure (CoP) [89], foot rotation
indicator (FRI) [33], centroidal moment pivot (CMP) [89], and others. We accessed online
the URDF files of more than 60 robots, and implemented their corresponding classes through
our framework (see Fig. 2.9). This unified structure of robotic platforms allows users to
experiment rapidly with learning paradigms such as transfer learning.

Figure 2.9 Seven of the 60+ available robots in PRL: manipulators, wheeled and legged
robots.

2.3 Proposed Framework 17

The UML diagram representing the Robot class and its connection with the Simulator
class is provided in Fig. 2.10. We use inheritance to represent the different types of robot in the
framework. This permits to group robots by their types and provide the same functionalities.

Simulator

Robot

LeggedRobot WheeledRobot

Biped Quadruped

LittleDog

Body

HyQ2Max

. . .

. . .

. . .

Sensor

Actuator

Figure 2.10 UML diagram of the Robot class and its link with the Simulator class. The
Robot class accepts an instance of the Simulator class, and interacts with this last one to
get kinematic, dynamic and sensory information from it, and send actuation values to it. The
Robot class can possess some objects tha inherits from the Sensor and/or Actuator class.
Robots are grouped by their types and inherits . Note that some robots might inherits from
multiple parent classes. For instance, the Centauro robot [44] is a Centaur-like robot that has
four legs (thus a quadruped) but also has a wheel attached to each leg’s end-effector. Thus, in
our framework, it inherits from both classes.

2.3.4 Quadratic Programming Control

QP Controller

Kinematic and Dynamic Tasks

Based on the OpenSoT framework

Linear Constraints

QP Solvers

Robot Model Interface

Figure 2.11 QP control module.

Once a world and robots have been provided,
we can already define some robotic tasks to
solve. This requires the definition and use
of controllers. A particular class of tasks in-
clude priority tasks which are represented as
a constrained optimization problem, where
the task consists to minimize a certain objec-
tive function while respecting several equal-
ity and inequality constraints. Most of the

2.3 Proposed Framework 18

time, these are formulated as a quadratic
programming (QP) optimization problem,
which can be solved in real-time. Priority tasks are divided between kinematic and dynamic
tasks, where the former only takes into account position and velocity information, while the
latter also include dynamic information (such as forces and torques applied on the various
bodies). The variables that are thus optimized by the optimization problem depends on the
type of problem (kinematic or dynamic) we are dealing with. In the case of a kinematic task,
the variables are often the joint (or end-effector) positions and/or velocities, while in the
dynamic case, the variables are the joint accelerations and the (reaction) forces applied on
the robot.

Formally, a quadratic program (QP) is presented in standard form as:

xxx∗ =argmin
xxx

||AxAxAx−bbb||2WWW

subject to
GxGxGx ≤ hhh

FxFxFx = ccc

(2.3)

where xxx is the vector being optimized (which can be joint positions, velocities, torques,
or cartesian forces), (AAA,bbb) are respectively the matrix projecting the variables to another
vector space and a bias vector; these are usually defined by the system we are considering,
and WWW is the positive semidefinite (PSD) symmetric weight matrix defined by the user. The
tuples (GGG,hhh) and (FFF ,ccc) respectively define inequality and equality constraints. Inequality
constraints can include the lower bounds and upper bounds of xxx by setting GGG to be the identity
matrix or minus this one, and hhh to be the upper or minus the lower bounds.

Priority tasks can be divided into two main categories:

• Soft priority tasks: each objective function is weighted by an importance weight where
higher weights mean that we give more importance to the corresponding objective
function. For instance, we might have a humanoid robot with two arms where each
arm has to follow a specific trajectory and where we give the same importance to both
tasks. With this type of tasks, the quadratic programming problem being minimized
for n such tasks is given by:

x∗x∗x∗ = argminxxx ||A1xA1xA1x−b1b1b1||2W1W1W1
+ ||A2xA2xA2x−b2b2b2||2W2W2W2

+ ...+ ||AnxAnxAnx−bnbnbn||2WnWnWn

subject to
GxGxGx ≤ hhh

FxFxFx = ccc

2.3 Proposed Framework 19

Often, the PSD weight matrices WiWiWi are just positive scalars wi. This problem can
be solved by stacking the AiAiAi one of top of another as well as the bibibi in the same
manner, and organizing the weight matrices to be a square block diagonal matrix
WWW = diag([W1W1W1, ...,WnWnWn]), and solving ||Ax−bAx−bAx−b||2WWW . This is known as the augmented task.
When the matrices AiAiAi are Jacobians this is known as the augmented Jacobian.

• Hard priority tasks: the most important constrained optimization problem is first
solved, then the next most important one is solved with an additional (optimization)
constraint that the solution has to be in the solution space of the previous one. For
instance, it is more important for a humanoid robot to maintain its balance than to
follow perfectly a trajectory with its end-effector(s). This way of putting tasks on top
of each other is known as the stack of tasks [63]. Hard priorities exploit the null-space
of higher priority tasks. With this type of tasks, the QP problem for n tasks is defined
in a sequential manner, where the first most important task will be first optimized, and
then the subsequent tasks will be optimized one after the other. Thus, the first task to
be optimized is given by:

x∗1x∗1x∗1 =argmin
xxx

||A1xA1xA1x−b1b1b1||2

subject to
G1xG1xG1x ≤ h1h1h1

F1xF1xF1x = c1c1c1

while the second next most important task that would be solved is given by:

x∗2x∗2x∗2 =argmin
xxx

||A2xA2xA2x−b2b2b2||2

subject to G2xG2xG2x ≤ h2h2h2

F2xF2xF2x = c2c2c2

A1xA1xA1x =A1x∗1A1x∗1A1x∗1
G1xG1xG1x ≤ h1h1h1

F1xF1xF1x = c1c1c1,

2.3 Proposed Framework 20

until the n most important task, given by:

x∗nx∗nx∗n =argmin
xxx

||AnxAnxAnx−bnbnbn||2

subject to A1xA1xA1x =A1x∗1A1x∗1A1x∗1
...

An−1xAn−1xAn−1x =An−1x∗n−1An−1x∗n−1An−1x∗n−1

G1xG1xG1x ≤ h1h1h1

...

GnxGnxGnx ≤ hnhnhn

F1xF1xF1x = c1c1c1

...

FnxFnxFnx = cncncn.

By setting the previous Ai−1xAi−1xAi−1x =Ai−1x∗i−1Ai−1x∗i−1Ai−1x∗i−1 as equality constraints, the current solution
x∗ix∗ix∗i won’t change the optimality of all higher priority tasks.

Many control problems in robotics can be formulated as a quadratic programming
problem. For instance, let’s assume that we want to optimize the joint velocities q̇qq given
the end-effector’s desired position and velocity in task space. We can define the quadratic
problem as:

||JJJ(qqq)q̇qq−vcvcvc||2

where vcvcvc =KpKpKp(xdxdxd −xxx)+KdKdKd(vdvdvd − ẋ̇ẋx) (using PD control), with xdxdxd and xxx being the desired and
current end-effector’s position respectively, and vdvdvd is the desired velocity. The solution to this
optimization problem is the same solution given by inverse kinematics. By adding the extra
term ||q̇̇q̇q||25, we obtain the damped least-squares inverse kinematics (DLS IK). Other tasks
include cartesian CoM tracking, cartesian end-effector position tracking, postural positioning,
and others.

Tasks can be further separated into 4 types, depending on the variables being optimized:
velocity (xxx = q̇qq), acceleration (xxx = q̈qq), torque (xxx = τττ), and cartesian force (xxx = fff). Note
that different type of tasks can sometimes be combined together; for instance, we can
combine acceleration tasks with force tasks. This will create an optimization variable
vector xxx = [q̈qq⊤, fff⊤]⊤ which can then be used with the joint space dynamic equation τττ =

HHHq̈qq+CCC(qqq,q̇qq)q̇qq+ggg(qqq)−JJJ⊤ fff to get the equivalent joint torques to be applied on the robot.

5Note that ||q̇̇q̇q||2 can be rewritten as ||Aq̇Aq̇Aq̇−bbb||2, where AAA = III is the identity matrix and bbb = 000 is the zero/null
vector. This is equivalent to the objective function defined in eq. 2.3.4

2.3 Proposed Framework 21

The corresponding UML diagram is provided in Fig. 2.12. The design as well as
several pieces of code have been heavily inspired by the OpenSoT framework [94, 70],
however compared to their framework, it has completely been rewritten in Python with
no dependencies on other frameworks/middlewares (such as the ADVR-superbuild [2],
XBotCore [73], ROS [90], and YARP[27]). Our QP module is also completely free, open-
source, heavily documented, and can easily be used with the other modules in our framework.

Robot

Optimizer

PriorityTask Constraint

RobotModel

Solver

QP

Figure 2.12 UML diagram of the priority tasks module. The RobotModel is an abstract
interface that is used by the PriorityTask and Constraint classes to access to the various
kinematic and dynamic information of the robot. An implementation of that interface which
links the Robot class introduced in Section 2.3.3 has been implemented, enabling the use of
the QP module with any robots in the PRL framework. The PriorityTask class represents
the various QP objectives that can be used; this includes kinematic and dynamic tasks where
the optimized variables can be the joint velocities, accelerations, torques or cartesian forces.
The Constraint class implements the various equality and inequality constraints used in
robotics, including for instance the joint limits. Tasks can be combined together using the
methods or operators provided in the PriorityTask class. The operators are the same as
the ones defined in the OpenSoT framework [94, 70]. Once the task or stack of task has been
defined, it is given to the Solver class which uses an instance of the Optimizer interface (in
our case the QP class) to solve the task. Note that the provided Optimizers are also used in
other parts of the framework notably in the various learning algorithms, showing the benefits
of adopting a modular approach.

An example using the QP module on an inverse kinematics problem is provided in
Section 2.4.1. This example also shows the use case of the 3 previous modules, namely the
simulator, world, and robots.

2.3.5 Learning Paradigms

2.3 Proposed Framework 22

Learning Task
Common interface & Inheritance

Paradigms like imitation, reinforcement,
active, transfer, and others share a
common structure

Policy

Environment

Figure 2.13 Learning task module.

Robot learning [87] is usually understood
as the intersection of machine learning and
robotics. This is divided into different learn-
ing paradigms according to different scenar-
ios. The main categories are imitation learn-
ing (IL) and reinforcement learning (RL).
IL [7] envisions a teacher demonstrating to
an agent how to reproduce a task through
few examples. RL [111, 18] conceives an
agent that learns to perform a task by maxi-

mizing a total reward while interacting with its environment (see Fig. 2.14). Other paradigms
include transfer learning [78, 114] (TL) where the knowledge acquired by an agent while
solving a problem is transferred to solve a similar problem, and active learning [101] (AL)
where an agent interacts with the user by querying new information about the task (e.g.
demonstrations). While the foregoing approaches address different learning problems, they
all share some common features (e.g. states, actions, policies and environments) which are
conceptualized and abstracted in PRL. Similarly, their differences are introduced without loss
of scalability through modules and composition. Additionally, different learning paradigms
are evaluated using different metrics.

The RL paradigm is depicted in Fig. 2.14.

Policy

Environment

Figure 2.14 Policy and environment interaction in the RL paradigm. In the IL and AL
paradigms, a reward function is not defined but a teacher is present to provide demonstration
to the agent in the envorinment. While being different, these different paradigms share
common features such as the states st , actions at , policy π , and environment.

States, Actions, Rewards

2.3 Proposed Framework 23

They can be combined at runtime with the same type:
states can be combined with states, actions with actions,
and rewards with rewards.

Calling them compute the corresponding state, action,
and reward value which are then stored for further use.

They are provided to the Environment/Policy.

Figure 2.15 State, action, and reward modules.

States and actions are common components
between the different learning paradigms.
They are notably shared and used by the
agent’s policy and the environment (see
Fig. 2.14). Reward functions on the other
hand are mostly specific to the reinforcement
learning or inverse reinforcement learning

paradigm. Because they share these attributes, they have their own classes in our framework.
Different states can be combined together at runtime. The same applies for actions and
rewards providing a greater flexibility to users. It is for instance possible to define a state
that account for the joint positions, velocities, and the base link position and orientation by
just adding the states together at runtime. States and actions are among others given to the
environment, policy, value function, and dynamic transition function.

Environments

Favor composition over inheritance; the Environment is
built from different submodules:
 states (and actions)
 rewards
 terminal conditions
 initial state generators
 physics randomizers

Figure 2.16 Environment module.

The environment is one of the main con-
cept in different learning paradigms such as
imitation and reinforcement learning. As de-
picted on the right figure, the environment is
notably responsible to perform a step in the
world, compute the next state p(st+1|st ,at)

given the agent’s actions at , compute the re-
wards r(st ,at ,st+1) if provided, and others.
A key component is the dynamic transition
probability function p(st+1|st ,at) which is
might not be accessible and is often unknown. If provided or learned, this is known as a
model-based setting otherwise model-free. This distinction allows to categorize between
model-based and model-free algorithms, notably in reinforcement learning.

All environments inherit from the Env class which accepts as arguments at least the
world, the state, and a possible reward function (if we are in the reinforcement learning case).
These arguments can be provided at runtime making it easy to (re)use other modules, and
render the framework very flexible (see our discussion on composition over inheritance).
The corresponding UML diagram is provided in Fig. 2.17. Few other components that can
be provided to the environment include a StateGenerator instance which generates states
for the environment every time this one is resetted, a PhysicsRandomizer which enables

2.3 Proposed Framework 24

to randomize some physical properties of the simulation including link masses and center
of mass positions, friction, and others, making it useful when transferring policies from
simulation to reality, and a TerminalCondition which detects if an episode is over or not,
and if it ended in a success or failure of the task.

State

Action

Simulator World

Robot

RewardEnv
Environment

TerminatingConditionStateGenerator PhysicsRandomizer

Figure 2.17 UML diagram of the Environment class and its link with other classes. This
diagram highlights the modularity of our framework where small modules are built on top of
others to build bigger modules. As it can be seen in this diagram, composition6is favored
over composition. This is represented in the diagram by the diamonds instead of the arrows.

Learning Paradigms

To represent a learning paradigm, we describe it by an abstract Task class which encapsulates
the previous defined environment, and the policy. A task inheriting from this class is then
formulated for each paradigm as needed. The corresponding UML diagram is provided in
Fig. 2.18.

Policy

Env
Environment

Interface

Task

RLTask
Reinforcement

Learning

ILTask
Imitation

Learning

Bridge...

LearningAlgo

Figure 2.18 UML diagram of the learning Task (paradigm) class and its link with other
classes.

6to be more specific, it is aggregation; a weaker version of the composition relationship. The difference
between composition and aggregation boils down that in composition the object that composes another object is
destroyed when the other object is destroyed. In aggregation, the object is instantiated outside and a reference
is provided to the other object. Thus, in this case, destroying the other object does not affect the lifetime of the
original object.

2.3 Proposed Framework 25

2.3.6 Interfaces and Bridges

Figure 2.19 Interface module.

In IL, two predominant techniques are used
to teach a robot a skill in order to perform
a task: teleoperation and kinesthetic teach-

ing. Teleoperation consists of commanding
a robotic platform through a controller (from
a remote location or in a virtual environ-
ment), while kinesthetic teaching considers
a human guiding physically the robot (or a
part of it) to perform the task. While the for-
mer is popular for its simplicity and use in
simulation, it becomes difficult to use for robots with complex structures (such as humanoid
robots). Recent advances in computer vision allow us to use cameras to control the robot,
however the human-robot kinematic mapping remains a challenge. As for the latter, it has
been hardly applied in simulations due to the lack of tools and haptic feedback.

In PRL, several interfaces have been implemented to enable the user to interact with the
world and its objects, including robots. The implemented interfaces are resumed in Table 2.3.
These tools are useful for different tasks and scenarios, especially in imitation and active
learning. All the interfaces are completely independent of our framework and can be used
in other applications. They act as containers for the collected data from the corresponding
hardwares. Bridges connect an interface with a component, such as the world or an element
in that world. For instance, a game controller interface permits to get data from the hardware,
process it, and store it. The bridge can then map a specific controller event to a robot action.
Moving a joystick up could mean to move a wheeled robot forward, or make a UAV robot
ascend in the air. This separation of interfaces and bridges allows the user to only implement
the necessary bridge without reimplementing the associated interface.

Interface Instances
PC hardware keyboard and mouse, SpaceMouse
audio/speech speech recognition, synthesization, and translation

camera webcam, asus-xtion, kinect, openpose
game controllers Xbox, Playstation

sensors Leap Motion, Myo Armband

Table 2.3 The various interfaces in PyRoboLearn

The UML diagram of the interfaces and bridges is provided in Fig. 2.20. Interfaces
allows to receive or send the data from/to various I/O interfaces (such as mouse, keyboard,
3D space mouse, game controllers, webcam, depth cameras, sensors like LeapMotion, and

2.3 Proposed Framework 26

others). They all inherit from the abstract Interface class which has thread supports. If
threads are not used, the user has to call the step method such that it reads the next value
(i.e. these are not event-driven, i.e. the user controls when he/she want to get/set the data).
Interfaces are independent from the other components in the PRL framework (with maybe at
the exception of some utils methods), and as such can be used in other software. Bridges
makes the connection between an interface and another component in PRL (like a robot or
body in the world, or the world camera). Fundamentally, they accept as input an interface
and the component, and the user details what should be done in that class. This allows to
decouple the interface from the application part; e.g. the same game controller interface
could be used to move a wheeled robot or quadcopter robot by providing two bridges (one
for wheeled robots, and one for quadcopter robots). All the bridges inherit from the abstract
Bridge class, and as with interface a step method can be called.

Robot

Interface

Task

Camera

InputInterface
OutputInterface

SpeechSynthesizer

Bridge

GameController MouseKeyboard...

World

...

Figure 2.20 UML diagram of the Interface and Bridge classes and their link with other
classes.

2.3.7 Learning Models

Model

Movement Primitives (MPs) Function Approximators (FAs)

Common API & use of popular libraries

Can be divided into 2 categories

Central Pattern Generators

Dynamic Movement Primitives

Probablistic MPs

Linear functions

Gaussian Processes

Gaussian Mixture Models/Regression

Neural Networks

Polynomial functions

Kernelized MPs

Figure 2.21 Model module.

We implemented several learning models
in our framework through a modular ap-
proach. Learning models are characterized
by (hyper-)parameters that are optimized
through a training algorithm. All the im-
plemented models are decoupled from PRL
and can be used in other frameworks. To
provide a better integration with the various
modules in PRL, we build two abstraction

2.3 Proposed Framework 27

layers on top of the models. The first layer extends the models by receiving any created
state and action module as inputs and/or outputs (in addition to normal Numpy arrays or
Pytorch tensors). The second layer focuses on particular instances of these extended models,
for example, a policy that receives as input the states and outputs the actions, or a state
value-function approximator which receives a state as input and outputs a scalar value. In our
framework the learning models are separated from the learning algorithms (see section 2.3)
to avoid the models to be dependent on the training approach. We provide several learning
models in our framework including movement primitives, e.g. central pattern generators [40],
dynamic movement primitives [41], probabilistic movement primitives [80], kernelized
movement primitives [38], and general function approximators such as linear and polynomial
models, Gaussian processes [92, 31], Gaussian mixture regression [13], and deep neural
networks [32, 84]. The various learning models available in our framework are resumed in
Table 2.4. They can be subdivided into various categories based on their features. We notably
compare if the models are parametric or non-parametric, linear with respect to the param-
eters, probabilistic or deterministic, generative or discriminative, step-based (i.e. general
function approximator) or trajectory-based (i.e. movement primitive), if the parameters are
interpretable, if they are universal approximators, and their data requirements in general.

The corresponding UML diagram is depicted in Fig. 2.22. The Model is the abstract
class from which all models inherit from. The Model is provided to the Approximator class
which couples the model with the State and Action. This Approximator is then used by
the various components used in different learning paradigms, for instance, the Policy. When
using movement primitives, the Model is directly provided to the corresponding Policy

class without going through the Approximator class as movement primitives are not general
function approximators (they are time-dependent function which often only accepts the phase
or time as input).

State Action

Model
learning models

Policy Approximator

NN
Neural Network

DMP
Dynamic Movement

Primitive

GP
Gaussian Process

DynamicModelApproximator ValueApproximator

...

Figure 2.22 UML diagram of the Model class and its link with other classes such as the
function Approximator, Policy, and other classes.

2.3 Proposed Framework 28
M

od
el

s
pa

ra
m

et
ri

c
lin

ea
r

pr
ob

./d
et

.
ge

n.
/d

is
c.

st
ep

/tr
aj

.
in

te
rp

re
ta

bl
e

un
iv

er
sa

lit
y

da
ta

re
qs

C
PG

[4
0]

✓
×

de
t.

di
sc

.
tr

aj
.

✓
/×

×
+

D
M

P
[4

1]
✓

✓
de

t.
di

sc
.

tr
aj

.
✓

/×
×

+
Pr

oM
P

[7
9,

80
]

✓
✓

pr
ob

.
di

sc
.

tr
aj

.
✓

/×
×

++
K

M
P

[3
8]

×
×

pr
ob

.
di

sc
.

tr
aj

.
✓

✓
++

L
in

ea
rm

od
el

s
✓

✓
de

t.
di

sc
.

st
ep

×
×

++
Po

ly
no

m
ia

lm
od

el
s

✓
✓

de
t.

di
sc

.
st

ep
×

✓
++

+
G

M
M

/G
M

R
[1

3,
14

]
✓

/×
✓

/×
pr

ob
.

ge
n.

st
ep

✓
/×

✓
++

G
M

M
/G

M
R

[1
3,

14
]

se
m

i
✓

/×
pr

ob
.

ge
n.

st
ep

✓
/×

✓
++

G
P

[9
2]

×
×

pr
ob

.
di

sc
.

st
ep

✓
✓

++
N

N
[3

2]
✓

×
de

t./
pr

ob
.

di
sc

./g
en

.
st

ep
×

✓
++

++
+

Ta
bl

e
2.

4
C

om
pa

ri
so

n
be

tw
ee

n
di

ff
er

en
tl

ea
rn

in
g

m
od

el
s

ba
se

d
on

di
ff

er
en

tc
at

eg
or

ie
s.

W
e

no
w

ex
pl

ai
n

w
ha

te
ac

h
co

lu
m

n
re

pr
es

en
ts

.
T

he
fir

st
co

lu
m

n
sp

ec
ifi

es
if

th
e

m
od

el
is

pa
ra

m
et

ri
c

or
no

n-
pa

ra
m

et
ri

c.
Pa

ra
m

et
ri

c
m

od
el

s
po

ss
es

s
pa

ra
m

et
er

s
th

at
ar

e
op

tim
iz

ed
du

rin
g

tra
in

in
g.

O
nc

e
tra

in
ed

th
e

da
ta

se
tc

an
be

di
sc

ar
de

d.
Th

is
is

no
tt

he
ca

se
of

no
n-

pa
ra

m
et

ric
m

od
el

s
w

hi
ch

re
m

em
be

rs
th

e
da

ta
se

t
or

st
at

is
tic

s
co

m
pu

te
d

on
it

(s
uc

h
as

th
e

m
ea

n
an

d
co

va
ria

nc
e)

.F
or

th
es

e
m

od
el

s,
fe

w
hy

pe
rp

ar
am

et
er

s
ar

e
tra

in
ed

or
pr

ov
id

ed
.U

su
al

ly
,

pa
ra

m
et

ri
c

m
od

el
s

sc
al

e
w

el
lw

ith
th

e
nu

m
be

ro
fs

am
pl

es
w

hi
le

no
n-

pa
ra

m
et

ri
c

pe
rf

or
m

s
ex

tr
em

el
y

w
el

lw
ith

fe
w

sa
m

pl
es

.S
om

e
m

od
el

s
su

ch
as

G
M

M
ar

e
se

m
i-p

ar
am

et
ric

;t
he

y
ha

ve
pa

ra
m

et
er

s
(th

e
pr

io
rs

in
G

M
M

)a
nd

al
so

re
m

em
be

rs
om

e
st

at
is

tic
s

co
m

pu
te

d
on

th
e

da
ta

se
ts

(th
e

G
au

ss
ia

ns
in

G
M

M
).

Th
e

se
co

nd
co

lu
m

n
de

sc
rib

es
if

th
e

m
od

el
is

lin
ea

ro
rn

ot
w

ith
re

sp
ec

tt
o

th
e

pa
ra

m
et

er
s.

Li
ne

ar
m

od
el

s
ar

e
pa

ra
m

et
ri

c
m

od
el

s
th

at
ar

e
lin

ea
rw

ith
re

sp
ec

tt
o

th
ei

rp
ar

am
et

er
s.

T
hi

s
us

ua
lly

al
lo

w
s

th
em

to
be

le
ar

ne
d

ef
fic

ie
nt

ly
us

in
g

lin
ea

rr
eg

re
ss

io
n

fo
ri

ns
ta

nc
e.

Th
e

th
ird

co
lu

m
n

sp
ec

ifi
ed

if
th

e
le

ar
ni

ng
m

od
el

sa
re

de
te

rm
in

is
tic

or
pr

ob
ab

ili
st

ic
.D

et
er

m
in

is
tic

m
od

el
s

al
w

ay
s

re
tu

rn
th

e
sa

m
e

ou
tp

ut
gi

ve
n

th
e

sa
m

e
in

pu
t,

w
hi

le
pr

ob
ab

ili
st

ic
m

od
el

s
re

tu
rn

no
to

nl
y

th
e

pr
ed

ic
tio

ns
bu

tt
he

as
so

ci
at

ed
un

ce
rt

ai
nt

ie
s

as
w

el
l.

T
hi

s
is

us
ef

ul
as

it
pr

ov
id

es
an

es
tim

at
e

of
ho

w
un

ce
rt

ai
n

is
th

e
m

od
el

ab
ou

ti
ts

pr
ed

ic
tio

n.
T

he
fo

ur
th

co
lu

m
n

st
at

es
if

th
e

m
od

el
s

ar
e

ge
ne

ra
tiv

e
or

di
sc

rim
in

at
iv

e.
G

en
er

at
iv

e
m

od
el

s
al

lo
w

s
to

ge
ne

ra
te

da
ta

by
sa

m
pl

in
g

th
em

,w
hi

le
di

sc
rim

in
at

iv
e

m
od

el
s

do
no

t.
T

he
ne

xt
co

lu
m

n
ch

ec
k

if
w

e
ha

ve
st

ep
-b

as
ed

or
tr

aj
ec

to
ry

-b
as

ed
m

od
el

s.
Tr

aj
ec

to
ry

m
od

el
s

ar
e

m
od

el
s

th
at

on
ly

ac
ce

pt
s

th
e

ph
as

e
or

tim
e

as
an

in
pu

ta
nd

ge
ne

ra
te

th
e

co
rr

es
po

nd
in

g
tr

aj
ec

to
ry

.S
te

p-
ba

se
d

m
od

el
ca

n
ac

ce
pt

ot
he

ri
np

ut
s

as
w

el
l.

In
te

rp
re

ta
bl

e
m

od
el

s
ha

ve
pa

ra
m

et
er

s
or

hy
pe

rp
ar

am
et

er
s

th
at

ar
e

in
te

rp
re

ta
bl

e.
U

ni
ve

rs
al

m
od

el
s

ca
n

ap
pr

ox
im

at
e

an
y

fu
nc

tio
n

an
d

ar
e

al
so

kn
ow

n
as

ge
ne

ra
lf

un
ct

io
n

ap
pr

ox
im

at
or

s.
T

he
la

st
co

lu
m

n
re

pr
es

en
ts

th
e

nu
m

be
ro

fd
at

a
po

in
ts

us
ua

lly
re

qu
ir

ed
w

he
n

tr
ai

ni
ng

th
e

co
rr

es
po

nd
in

g
m

od
el

.

2.3 Proposed Framework 29

We now provide a brief description of each model available in the framework, and their
possible use.

• Linear models are discriminative deterministic models given by yyy =WxWxWx+bbb, where the
weights WWW and bias term bbb are optimized. This is the simplest learning model, which
can be used as a baseline when comparing other models.

• Polynomial models are a generalization of linear models (which has more expressive
power), where the input space is projected into a polynomial space. This is given by
yyy =WWWφφφ(xxx)+bbb. Note that the model is still linear with respect to the weights WWW .

• Principal component analysis (PCA) is a non-parametric, deterministic, linear model
which projects the data on a lower dimensional manifold such that it maximizes the
projected variance. The principal components can be computed by applying singular
value decomposition (SVD) on the data matrix.

• Central pattern generators (CPGs) [40] are movement primitives that produce rhythmic
patterns, and are for instance used in robot locomotion. In our framework, they are
modeled using the differential equations formulated in [40]. The CPG equations for a
node i are given by:

φ̇i = ωi +∑
j

a jwi j sin(φ j −φi −ϕi j)

äi = Ka(Ai −ai)−Daȧi

öi = Ko(Oi −oi)−Doȯi

θi = oi +ai cos(φi)

where φ is the phase, ω is the desired angular velocity (desired frequency), A and a

are the desired and current amplitude, O and o are the desired and current offset, K

and D are the stiffness and damping gains (which are normally related such that the
system is critically damped), wi j and ϕi j are the coupling weights and phase biases,
and finally, θ is the resulting (joint) angle (to be sent to the controller).

• Dynamic movement primitives (DMPs) [41] are a set of first and second order differ-
ential equations that model temporal-spatial trajectories. DMPs are composed of a
canonical system which produce the phase s driving the transformation system, given
by τ2ÿ = K(g− y)−Dτ ẏ+ f (s), where τ is a scaling factor that allows to slow down
or speed up the reproduced movement, K is the stiffness coefficient, D is the damping

2.3 Proposed Framework 30

coefficient, y, ẏ, ÿ are the position, velocity, and acceleration of a DoF, and f (s) is the
non-linear forcing term. The forcing term is often described as a weighted sum of
basis functions f (s) = ∑i wiψi(s)

∑ j ψ j(s)
from which the weights wi are optimized to fit a certain

trajectory.

• Probabilistic movement primitives (ProMPs) compared to DMPs encode in a proba-
bilistic way movements [79, 80]. ProMPs are formulated by ytytyt = [qt , q̇t]

⊤ =ΦtΦtΦt
⊤www+εyεyεy,

where ytytyt ∈ R2×1 is the joint state vector at time step t, ΦtΦtΦt = [φtφtφt ,φ̇ṫφṫφt] ∈ RM×2 is the
matrix containing the basis functions defined by the user and where M is the number of
these basis functions, www ∈RM×1 is the weight vector on which we put a Gaussian prior
distribution given by www ∼ N (µwµwµw,Σw)Σw)Σw), and εyεyεy ∼ N (000,ΣyΣyΣy) is the zero-mean Gaussian
noise.

• Gaussian mixture models (GMMs) and Gaussian mixture regression (GMR) [13, 14]
are semi-parametric, probabilistic and generative models. In robotics, they are often
used to model trajectories by jointly encoding the time and state (position and velocity).
They are mathematically formulated as p(xxx) = ∑

K
k=1 πkN (µkµkµk,ΣkΣkΣk) where K is the

number of components, πk are prior probabilities that sums to 1, N (µkµkµk,SigmakSigmakSigmak) is
the multivariate Gaussian (aka Normal) distribution, with mean µkµkµk and covariance
ΣkΣkΣk. Learning is performed by maximizing the likelihood and finding the parameters
θθθ = {πk,µkµkµk,ΣkΣkΣk}K

k=1. Gaussian mixture regression is obtained by conditioning the
GMM over the input state.

• Kernelized movement primitives (KMPs) [38] are probabilistic and discriminative
models that encodes a movement/trajectory using kernels. They are built by min-
imizing the Kullback-Leibler divergence between a parametric trajectory distribu-
tion N (ΘΘΘ(xxx)⊤µwµwµw,ΘΘΘ(xxx)⊤ΣwΣwΣwΘΘΘ(xxx)) (where the weights are normally distributed www ∼
N (µwµwµw,ΣwΣwΣw)) and a reference probability distribution Pr(y|x) (which can be modeled
using GMR), and using the kernel trick.

• Gaussian processes (GPs) [92] are non-parametric, probabilistic, and discriminative
models that generalize the multivariate Gaussian distribution over finite dimensional
vectors to an infinite dimensionality. This works by putting a prior distribution on the
function f ∼ G P(000,KKK(XXX ,XXX)) where K is the kernel matrix. These models are very
useful when quantifying the uncertainty is required as well as when the data is scarce.
This is notably the case in active learning.

2.3 Proposed Framework 31

• Neural networks (NNs) [32]. This includes different types of neural networks such
as multilayer perceptrons (MLPs), convolutional neural networks (CNNs), recurrent
neural networks (RNNs), autoencoders (AEs), and others. These parametric models
have been very popular these recent years due to their expressive power, the abundance
of data, and the recent computing power (due to GPUs) available to train these deep
models. These models are universal approximators and can be formulated as ŷ̂ŷy =

fNN(xxx;WWW) where xxx is the input array, ŷ̂ŷy is the output array, and WWW are the weight and
bias terms in the various layers being optimized.

2.3.8 Learning Algorithms

Algorithms

Provide various losses
used in learning. Losses

can be combined at
runtime.

Provide exploration
strategies in

discrete/continuous
spaces.

Provide experience
replay storages to
record trajectories.

Wrap popular
optimizers using
a common API.

Figure 2.23 Algorithm module.

RL algorithms [111] depend on the structure
of the environments/tasks, policies and mod-
els. Therefore, dependencies among them
are unavoidable. We implement them in a
modular way to stay consistent with PRL.
To illustrate the modularity, let us consider
the model-free PPO algorithm [100]. This
algorithm has a lot in common with many
other model-free on-policy algorithms but
uses a different loss and action-space explo-
ration strategy. This is often not exploited in
current frameworks. In PRL, the loss can be
redefined, any arithmethic operations can be

performed on these loss instances, and provided at runtime to the PPO algorithm (through
composition) without loss of generality. This results in faster experimentation to compare
loss functions.

Because of the modular programming approach we undertook, we provide a different
module for every concept, including the loss and exploration strategy. Moreover, as we favor
composition over inheritance, we can parametrize the PPO algorithm with these modules,
resulting in a more flexible framework that allows users to modify the algorithms and
experiment with a wider range of combinations. The learning algorithms available in PRL
include Bayesian optimization, evolutionary algorithms, model-free (on-/off-) policy search,
among others.

2.3 Proposed Framework 32

For model-free reinforcement learning algorithms, we follow the taxonomy and structure
of model-free policy search algorithms presented in [18]. Based on this survey, model-free
policy search algorithms can be divided into 3 big phases: exploration, evaluation, and update
of the policy (see Algo 1).

Algorithm 1 Model-free policy search algorithm
Input: Initial parameters θθθ 0

1: repeat
2: Exploration: explore in the environment using the policy and

collect samples to learn from.
3: Evaluation: evaluate the samples based on the estimator(s).
4: Update: update parameters of the approximators (policy, value)

based on loss.
5: until θθθ i+1 ≈ θθθ i

The associated UML diagram for model-free reinforcement learning algorithms is pro-
vided in Fig. 2.24. The 3 phases (exploration, evaluation, and update) presented in the
taxonomy are represented as classes in our framework.

Policy

Env
Environment

Algo

Loss

RLTask
ModelFreeRLAlgo Evaluator

Explorer

Updater

Storage
Experience storage

Estimator

ExplorationStrategy

Optimizer

ActionExploration ParameterExploration

ValueApproximator

SLAlgo RLAlgo...

Figure 2.24 UML diagram of the Algo class and its link with other classes. In this diagram,
we mostly focus on the model free reinforcement learning algorithms and show the many
components that have been defined for these. In line with the taxonomy described in Algo. 1,
we defined an Explorer, Evaluator, and Updater classes corresponding respectively to
the 3 main phases in model free RL algorithms. Some of these components such as the
Loss and Optimizer are re-used in other parts of the framework as well, demonstrating the
benefits of undertaking a modular approach.

Because we use PyTorch as a backend, multiple other reinforcement learning libraries
[36, 58] can also be used with our framework with some small extra effort.

2.3 Proposed Framework 33

2.3.9 Utility Functionalities

Utility Functionalities
Parsers for robot description files (URDF, SDF, MJCF)

Manipulation of meshes and inertias

Filters and Interpolators

Mathematical functions to transform between
different coordinate systems

Figure 2.25 Utility module.

Finally, PyRoboLearn contains also different
utility functions that for instance enables to
parse different robot description files (such
as URDFs, SDFs, MJCFs), performs differ-
ent transformation between different frames,
provides different orientation representation
(rotation matrices, quaternions, roll-pitch-

yaw, etc), defines data structures used in the framework, provides some plotting tools, and
interpolation methods. These are completely independent from the framework and can be
reused in other projects as well.

2.3.10 Framework Architecture

The whole UML diagram of the PyRoboLearn framework grouping all the previous men-
tioned modules and how they are linked is provided in Fig. 2.26. For better readability, not
all the various implemented classes are reported on the diagram. PRL is currently released
under the GPLv3 license, and has been tested on Ubuntu 16.04 and 18.047 with Python
2.7, 3.5, and 3.68. The current release has around 100k lines of Python code. The link to
the Github repository, documentation, examples, and videos are available through the main
website https://robotlearn.github.io/pyrobolearn/.

7Parts of the framework have also been tested on Mac OSX (Mojave) and Windows 10, however this is in an
experimental stage, and support for some input/output interfaces are currently not provided due to OS specific
libraries.

8While the support for Python2.7 will end in 2020, some simulators such as Gazebo-ROS still have old
libraries that are dependent on Python 2.7. The framework was designed to account for this problem.

https://robotlearn.github.io/pyrobolearn/

2.3 Proposed Framework 34

P
y
R
o
b
o
L
e
a
r
n

(
P
R
L
)

i
n

a

n
u
t
s
h
e
l
l
:

-

P
y
t
h
o
n

f
r
a
m
e
w
o
r
k

f
o
r

r
o
b
o
t

l
e
a
r
n
i
n
g

-

R
e
v
o
l
v
e
s

a
r
o
u
n
d

8

m
a
i
n

a
x
i
s
:

S
i
m
u
l
a
t
o
r
s
,

w
o
r
l
d
s
,

r
o
b
o
t
s
,

c
o
n
t
r
o
l
l
e
r
s
,

i
n
t
e
r
f
a
c
e
s
,

l
e
a
r
n
i
n
g

p
a
r
a
d
i
g
m
s
,

m
o
d
e
l
s
,

a
n
d

a
l
g
o
s
.

-

O
b
j
e
c
t

o
r
i
e
n
t
e
d
,

f
a
v
o
r
s

c
o
m
p
o
s
i
t
i
o
n

o
v
e
r

i
n
h
e
r
i
t
a
n
c
e

(
h
i
g
h
e
r

f
l
e
x
i
b
i
l
i
t
y
)
,

l
o
w
e
r

c
o
u
p
l
i
n
g

b
e
t
w
e
e
n

m
o
d
u
l
e
s
,

f
o
c
u
s
e
s

o
n

m
o
d
u
l
a
r
i
t
y
,

s
i
m
p
l
i
c
i
t
y

a
n
d

g
e
n
e
r
a
l
i
z
a
t
i
o
n
,

a
n
d

p
r
o
v
i
d
e
s

a

u
n
i
f
i
e
d

i
n
t
e
r
f
a
c
e

b
e
t
w
e
e
n

t
h
e

v
a
r
i
o
u
s

c
o
m
p
o
n
e
n
t
s

S
ta
te

A
c
ti
o
n

S
im

u
la
to
r

W
o
r
ld

R
o
b
o
t

M
o
d
e
l

le
a
rn

in
g
 m

o
d
e
ls

P
o
li
c
y

R
e
w
a
r
d

E
n
v

E
n
v
ir

o
n

m
e
n
t

In
te
r
fa
c
e

A
lg
o

L
e
g
g
e
d
R
o
b
o
t

L
o
s
s

A
p
p
r
o
x
im

a
to
r

T
a
s
k

W
h
e
e
le
d
R
o
b
o
t

B
ip
e
d

Q
u
a
d
r
u
p
e
d

B
u
ll
e
t

N
N

N
e
u
ra

l
N

e
tw

o
rk

D
M
P

D
y
n
a
m

ic
 M

o
v
e
m

e
n
t

P
ri

m
it

iv
e

G
P

G
a
u
s
s
ia

n
 P

ro
c
e
s
s

R
L
A
lg
o

E
v
a
lu
a
to
r

E
x
p
lo
r
e
r

U
p
d
a
te
r

S
to
r
a
g
e

E
x
p
e
ri

e
n
c
e
 s

to
ra

g
e

E
s
ti
m
a
to
r

T
e
r
m
in
a
lC
o
n
d
it
io
n

E
x
p
lo
r
a
ti
o
n
S
tr
a
te
g
y

C
a
m
e
r
a

In
p
u
tI
n
te
r
fa
c
e

O
u
tp
u
tI
n
te
r
fa
c
e

O
p
ti
m
iz
e
r

A
c
ti
o
n
E
x
p
lo
r
a
ti
o
n

P
a
r
a
m
e
te
r
E
x
p
lo
r
a
ti
o
n

R
LT
a
s
k

R
e
in

fo
rc

e
m

e
n

t

L
e
a
rn

in
g

IL
T
a
s
k

Im
it

a
ti

o
n

L
e
a
rn

in
g

D
y
n
a
m
ic
M
o
d
e
lA
p
p
r
o
x
im

a
to
r

V
a
lu
e
A
p
p
r
o
x
im

a
to
r

L
it
tl
e
D
o
g

S
p
e
e
c
h
S
y
n
th
e
s
iz
e
r

B
r
id
g
e

B
o
d
y H
y
Q
2
M
a
x

M
id
d
le
w
a
r
e

R
O
S

G
a
m
e
C
o
n
tr
o
ll
e
r

S
e
n
s
o
r

A
c
tu
a
to
r

P
h
y
s
ic
s
R
a
n
d
o
m
iz
e
r

S
ta
te
G
e
n
e
r
a
to
r

M
o
u
s
e
K
e
y
b
o
a
r
d

..
.

..
.

..
.

..
.

..
.

R
o
b
o
tM

id
d
le
w
a
r
e

M
u
Jo
C
o

..
.

..
.

W
h
o
l
e
-
b
o
d
y

c
o
n
t
r
o
l
l
e
r
s

P
r
io
r
it
y
T
a
s
k

C
o
n
s
tr
a
in
t

R
o
b
o
tM

o
d
e
l

S
o
lv
e
r

i
n
s
p
i
r
e
d

b
y

O
p
e
n
S
o
T

Fi
gu

re
2.

26
C

ur
re

nt
U

M
L

di
ag

ra
m

of
th

e
P

yR
ob

oL
ea

rn
fr

am
ew

or
k.

So
m

e
fu

nc
tio

na
lit

ie
s

as
w

el
la

s
cl

as
se

s
w

hi
ch

ar
e

le
ss

pr
im

or
di

al
ar

e
no

tr
ep

or
te

d
he

re
fo

ra
be

tte
rr

ea
da

bi
lit

y
of

th
e

di
ag

ra
m

.

2.4 Experiments 35

2.4 Experiments

In order to show some of the functionalities of our framework for robot learning, we demon-
strate four use cases; a classical quadratic programming control task, an IL scenario, an RL
task, and a scenario which combines these two last approaches to show the flexibility of our
framework.

2.4.1 Quadratic Programming Control Task

In this first example, we show that we can also perform some robotic tasks with our framework
without involving any learning. This is to show that the framework can also be used for
non-learning tasks as well. In this example, we perform inverse kinematics on the end-
effector of the Kuka robot where the goal is to follow a sphere moving in circle, using priority
tasks. These are solved using the quadratic programming and the approach mentioned in
Section 2.3.4. We define 4 different simple kinematic tasks, and show the obtained behavior
by changing 2 lines of code (uncommenting one and commenting another one). The code is
given in Listing 2.1, and the lines to be uncommented/commented are located between lines
[30,33].

We define the following tasks (objectives) to be optimized with respect to the joint
velocities q̇̇q̇q:

1. the Cartesian task: ||JJJ(qqq)q̇̇q̇q− (Kpeee+ ẋdẋdẋd)||2, where JJJ(qqq) ∈ R6×N is the Jacobian taken
from the base to the distal link, Kp is the stiffness gain, eee ∈ R6 is the error which
is the concatenation of the position error given by epepep = (xdxdxd −xxx) (with xdxdxd being the
desired position, and xxx the current position), and the orientation error given by (if
expressed as quaternions ooo = {s,vvv} where s is the real scalar part, and vvv is the vector
part) eoeoeo = svdvdvd − sdvvv−vdvdvd ×vvv, and ẋdẋdẋd is the desired cartesian velocity for the distal link
with respect to the base link.

2. the Postural task: ||q̇̇q̇q− (Kp(qdqdqd −qqq)+ q̇dq̇dq̇d)||2, where Kp is the stiffness gain and the
subscript d means "desired".

3. the soft task which is a weighted sum of the 2 previously defined tasks, that is:
w1||JJJ(qqq)q̇̇q̇q− (Kpeee+ ẋdẋdẋd)||2 +w2||q̇̇q̇q− (Kp(qdqdqd −qqq)+ q̇dq̇dq̇d)||2.

4. the hard task composed of the cartesian and postural tasks, with the cartesian task
having the highest priority, and the postural task having a least important priority.

2.4 Experiments 36

We also provide the lower bounds and upper bounds to the joint velocities being optimized.
This is expressed as the following inequality bound constraint: q̇lbq̇lbq̇lb ≤ q̇̇q̇q ≤ q̇ubq̇ubq̇ub, where (q̇lb, q̇ub)

are the lower and upper bound on the joint velocities.
In the example below (see Listing 2.1), we do not take into account the orientation and

the desired joint velocities for the tasks are set to 0. Therefore, the Cartesian task simplifies
to ||JJJ(qqq)q̇̇q̇q−Kp(xdxdxd −xxx)||2, and the Postural task becomes ||q̇̇q̇q−Kp(qdqdqd −qqq)||2. Snapshots of
the different tasks are provided in Fig. 2.27.

1 import numpy as np
2 import pyrobolearn as prl
3

4 # create simulator
5 sim = prl.simulators.Bullet ()
6

7 # create world
8 world = prl.worlds.BasicWorld(sim)
9

10 # create robot
11 robot = world.load_robot(’kuka_iiwa ’)
12

13 # define useful variables for IK
14 link_id = robot.get_end_effector_ids(end_effector =0)
15 joint_ids = robot.joints # actuated joint
16 wrt_link_id = None # robot.get_link_ids(’iiwa_link_1 ’)
17 q_idx = robot.get_q_indices(joint_ids)
18

19 # create sphere to follow
20 x_des = np.array ([0.5 , 0., 1.])
21 quat_des = np.array ([0., 0., 0., 1.])
22 sphere = world.load_visual_sphere(position=x_des , radius =0.05, color

=(1, 0, 0, 0.5), return_body=True)
23

24 # create priority task
25 model = prl.priorities.models.RobotModelInterface(robot)
26 cartesian_task = prl.priorities.tasks.velocity.CartesianTask(model ,

distal_link=link_id , base_link=wrt_link_id , desired_position=x_des
, kp_position =50.)

27

28 q_desired = [1.448e-03, 2.790e-01, -2.199e-03, -1.013, 5.948e-04,
-1.293, 3.882e-04]

29 postural_task = prl.priorities.tasks.velocity.PosturalTask(model ,
q_desired=q_desired , kp =50.)

2.4 Experiments 37

30 # task = cartesian_task
31 # task = postural_task
32 # task = 1 * cartesian_task + 0.5 * postural_task
33 task = cartesian_task / postural_task
34

35 # define constraint
36 dq_limits = 2 * np.ones(len(q_desired))
37 constraint = prl.priorities.constraints.velocity.

JointVelocityLimitsConstraint(model , dq_lower_bound=-dq_limits ,
dq_upper_bound=dq_limits)

38 task << constraint
39

40 # define solver
41 solver = prl.priorities.solvers.QPTaskSolver(task=task)
42

43 # define amplitude and angular velocity when moving the sphere
44 w = 0.01
45 r = 0.2
46

47 # run simulation
48 for t in prl.count():
49 # move sphere
50 sphere.position = np.array ([0.5 , r * np.cos(w*t + np.pi/2), (1.-r

) + r * np.sin(w*t + np.pi/2)])
51

52 # update task
53 cartesian_task.desired_position = sphere.position
54 task.update(update_model=True)
55

56 # solve QP task and return best solution
57 dq = solver.solve()
58

59 # set joint positions
60 q = robot.get_joint_positions ()
61 q = q[q_idx] + dq * sim.dt
62 robot.set_joint_positions(q, joint_ids=joint_ids)
63

64 # step in simulation
65 world.step(sleep_dt=sim.dt)

Listing 2.1 Inverse kinematics with the Kuka robot using QP priority tasks where the goal is
to follow a moving sphere.

2.4 Experiments 38

Figure 2.27 Snapshots of the previously defined priority tasks. From left to right, the first
row shows the postural task at different time steps, the second row shows the cartesian task,
the third row shows the soft task built using the cartesian and postural tasks previously
defined and with weigths w1 = 1 and w2 = 0.5, and the fourth row shows the hard task built
using these same cartesian and postural tasks. For the soft task, by setting different weights,
different behaviors can be obtained.

2.4.2 Imitation Learning Task: Trajectory Tracking

The goal is to reproduce a demonstrated trajectory with IL using a dynamic movement

primitive (DMP) model on a KUKA-LWR robot. The trajectories are demonstrated using the
mouse interface (see Fig. 2.28). Both the training and reproduction phases can be watched
on the PRL Youtube channel (see Section 2.6). The associated pseudo-code is given below
in Algorithm 2.

Algorithm 2 illustrates the various building blocks and how they encapsulate each other.
In this example, we first create an instance of the simulator, and then define a world in it.
After this, a robot is loaded into the world. Next, we define the states and actions that are
given to the policy and the environment. As we are in an IL setting, we need to collect and

2.4 Experiments 39

Figure 2.28 Reproduction of a trajectory learned from mouse-generated demonstrations
using a DMP

Algorithm 2 Trajectory tracking with imitation learning
1: sim = Simulator()
2: world = BasicWorld(sim)
3: robot = world.load(‘robot_name_or_class’)
4: state = PhaseState()
5: action = JointPositionAction(robot)
6: env = Env(world, state)
7: policy = Policy(state, action)
8: recorder = Recorder(state, action, rate)
9: interface = MouseKeyboardBridge(world)
10: task = ILTask(env, policy, interface, recorder)
11: task.record(signal_from_interface=True)
12: task.train()
13: task.test()

record the demonstrated data through the use of a recorder. We provide the trajectories using
the mouse interface. Finally, an IL task can be fully defined with all the previous components.
The step left is to train the policy using the demonstrated trajectory and reproduce the policy.
The last three lines can be replaced by task.run(signal_from_interface=True) where
the argument specifies that an event from the interface will send a signal to indicate when
to record the data, train, and test the policy. Note that changes in the simulator, world,
robot, state, action, policy, and/or interface would not affect the rest of the code due to the
abstractions and modularity of our framework. This confirms the flexibility of PyRoboLearn.

A Concrete Example: Trajectory Tracking using the Middleware

To give a more concrete example of Algorithm 2, we provide the corresponding Python code,
and also show how to use the middleware module to use a real robotic platform (in this case,
the Franka Emika Panda robot). This is depicted in Listing 2.2. In this task, we teleoperate

2.4 Experiments 40

the simulated robot by moving the real one through the ROS middleware, resulting in the
simulated robot to move in accordance. The real sensed data are then collected in the
simulator which is then used to train a DMP. Finally, the trained DMP is executed in the
simulator leading the simulated and real robot to move. Snapshots of the demonstration and
execution phases are provided in Fig. 2.29.

1 import pyrobolearn as prl
2

3 # variables
4 joint_ids = None # None for all the actuated joints , or you can

select which joint you want to move; e.g. [0, 1, 2]
5 num_basis = 20
6 rate = 30
7 use_real_robot = True
8

9 # create middleware
10 ros = prl.middlewares.ROS(subscribe=True , teleoperate=True)
11

12 # create simulator
13 sim = prl.simulators.Bullet(middleware=ros)
14

15 # create basic world (with gravity and floor)
16 world = prl.worlds.BasicWorld(sim)
17

18 # load Franka Emika Panda robot in the world
19 robot = prl.robots.Franka(sim)
20 world.load_robot(robot)
21 robot.print_info ()
22

23 # create state/action
24 state = prl.states.ExponentialPhaseState(ticks=rate)
25 action = prl.actions.JointPositionAndVelocityAction(robot , joint_ids=

joint_ids)
26

27 # create environment
28 env = prl.envs.Env(world , state)
29

30 # create DMP policy
31 policy = prl.policies.BioDiscreteDMPPolicy(action , state , num_basis=

num_basis , rate=rate)
32

2.4 Experiments 41

33 # create mouse -keyboard interface/bridge (used to start/stop the
recording , and start the training)

34 interface = prl.interfaces.MouseKeyboardInterface(sim)
35 bridge = prl.bridges.BridgeMouseKeyboardImitationTask(world ,

interface=interface , verbose=True)
36

37 # create recorder
38 recording_state = prl.states.JointPositionState(robot , joint_ids=

joint_ids) + prl.states.JointVelocityState(robot , joint_ids=
joint_ids)

39 recorder = prl.recorders.StateRecorder(recording_state , rate=rate)
40

41 # create imitation learning task
42 task = prl.tasks.ILTask(env , policy , interface=bridge , recorders=

recorder)
43

44 # record demonstrations in simulation/reality
45 task.record(signal_from_interface=True)
46 sim.disable_middleware () # disable the middleware (get/set info only

from/to simulation)
47

48 # train policy
49 task.train(signal_from_interface=False)
50

51 # plot what the DMP policy has learned by performing a rollout
52 policy.plot_rollout(nrows=3, ncols=3, suptitle=’DMP position

trajectories in joint space ’, titles =[’q’ + str(i) for i in range(
robot.num_actuated_joints)], show=True)

53

54 # test policy in simulation
55 task.test(num_steps=rate *100, signal_from_interface=False)
56

57 # test policy on real robot
58 if use_real_robot:
59 sim.enable_middleware () # enable the real robot
60 ros.switch_mode(subscribe=False , publish=True , teleoperate=True)
61 task.test(num_steps=rate *100, signal_from_interface=False)

Listing 2.2 Imitation learning demonstration using DMPs and ROS with the Franka robot.

By providing the middleware to the simulator, it automatically tries to communicate with
the real platform. Based on the given parameters to the middleware, it can then be used to

