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Abstract We present an intuitive
programming of industrial robots using markerless gesture

system for the

recognition and mobile augmented reality in terms of
programming by demonstration. The approach covers
gesture-based task definition and adaption by human
demonstration, as well as
augmented reality. A 3D motion tracking system and a
handheld device establish the basis for the presented spatial

task evaluation through

programming system. In this publication, we present a
prototype toward the programming of an assembly
sequence consisting of several pick-and-place tasks. A scene
reconstruction provides pose estimation of known objects
with the help of the 2D camera of the handheld. Therefore,
the programmer is able to define the program through
natural bare-hand manipulation of these objects with the
help of direct visual feedback in the augmented reality
application. The program can be adapted by gestures and
transmitted subsequently to an arbitrary industrial robot
controller using a unified interface. Finally, we discuss an
application of the presented spatial programming approach
toward robot-based welding tasks.

Keywords Industrial Robot, Augmented Reality, Gestures,
Programming by Demonstration, Object Recognition
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1. Introduction

The demographic change and a general shortage of skilled
workers are key challenges for manufacturing in western
industrialized countries. In contrast to an ageing society is
a new generation of "digital natives", young people who
are familiar with using new technologies (e.g., computers
and handhelds) intuitively and highly efficiently. One can
meet the challenges of an ageing workforce both by taking
preventive measures and through intelligent assistance
systems, which support the worker in manual production
processes toward ergonomics and efficiency. Hence,
assistance systems could enable sustainable design of
manual tasks. Regarding industrial robotics, manual online
programming requires a high degree of expertise. Due to
the time-consuming and complex programming process,
small and medium-sized enterprises (SME) have
reservations about investing in an industrial robot [1].
Accordingly, a recent report initiated by the European
Union on robotic application [2] identifies human
interaction as key technology for research with high
likelihood of wuse in application. Furthermore, robot
programming for everyone is presented as a main demand
from SMEs for new robot advances. Thus, communication
through human-like natural interfaces has increasingly
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become the subject of scientific approaches for novel
programming techniques in industrial robotics. Similar to
human-to-human communication, most approaches use
methods of communication, which are multimodal and
more abstract than the robot language of classic
programming approaches. High level programming aims
at programming by teaching a task solution to the robot.
The term programming by demonstration (PbD) refers to a
task solution executed by a human operator, which is
sensory observed by the robotic system. The
demonstration is mapped into native robot commands and
can be imitated by the robot [3]. Multimodal human robot
interaction includes human-like communication, which
mostly consists of speech (auditory) and gestures (visual).
In terms of ergonomics, the main objectives of using
natural communication channels are a shortening of both
training times and operating cycles. Multimodality, i.e., a
use of multiple communication channels simultaneously or
successively, plays an important role in the design of
intuitive control systems. Scientific publications in the field
of industrial robotics, e.g., [4, 5], showed that multimodal
control systems are more efficient and user friendly in
comparison to conventional systems.
essential requirement is an adequate system design, which

However, an

is related to the target application and the target user.
Multimodal control systems typically use gestures, e.g.,
hand and finger gestures, haptics and speech for
communication. Relevant publications in the field of
gestural control of robots can be found in [6-9]. Another
type of interaction between humans and machines is
visualization of information through user interfaces. Unlike
conventional forms of visualization, augmented reality
(AR) enhances a camera image by adding spatially related
information. In the field of industrial robotics, the user can
be supported, e.g., by providing spatial information about
robot programs. This means that poses, trajectories and
information at the task level of the robot can be visualized
in a real robot environment. Similar to simulation systems,
a virtual robot can run the program with regard to
accessibility and collision control. Thus, simulation-based
features are carried out in a real environment [10]. Besides
industrial robotics, some recent systems in research
combine both modalities: AR and gestures. Huang and
Alem created a wearable system for collaborative remote
support in the mining industry [11]. Igarashi et al. [12]
developed a control and programming system for mobile
robots using touch gestures in an AR application.
Regarding both approaches, empirical results toward
usability appear to be promising. A more precise
introduction of technically related systems and research
projects using AR and gestures in the field of industrial
robotic is given in section 2.

In this manuscript, we introduce a programming system
for industrial robots using markerless gesture recognition
and mobile AR in terms of programming by
demonstration (PbD). The approach covers gesture-based
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task definition and adaption by human demonstration.
This is achieved through the manipulation of real or
virtual objects. Additionally, the system covers program
evaluation in a mobile AR applications on modern
handheld devices. Because of 3D interaction through both
gestures approach ’spatial
programming’. We developed an exemplary application of
the spatial programming approach toward PbD of pick-
and-place tasks. Furthermore, we discuss an application
toward welding tasks which is part of ongoing work. A
precise introduction of technically related systems and
research projects using AR and gestures in the field of
industrial robotic is given in section 2.

and AR, we call our

Beyond the state of the art, the paper is organized as
follows: section 3 presents the objective of our spatial
robot programming system. Section 4 introduces methods
and experiments for an implementation towards a PbD of
an assembly task. Finally, section 5 presents our
outlook  for robot
programming in additional fields of application.

conclusions and an spatial

2. Related Work

In this section, we introduce related programming
systems and projects using gestures and AR in the field of
industrial robotics. The main criteria for the delimitation
of our approach are 3D bare-hand gestural interaction
and mobile AR on modern handheld devices.

In 2003 the research project Morpha was completed [13].
The project was funded by the German Federal Ministry
of Education and Research, and consisted of a broad
consortium of robot manufacturers, research facilities and
application companies. The main research focused on the
development of interactive and innovative technologies
for ~ human-robot interaction  through  natural
communication. The research results are still the basis for
many research projects in the domain of multimodal
control for service and industrial robots. The consortium
introduced a rudimentary gesture-based motion control,
task-oriented programming, as well as a static AR
application for visualization of coordinate systems and
axial moving directions. Within this project Dillmann et
al. [8] evaluated different methods for interactive natural
programming of robots and implemented a programming
by demonstration system for dual-arm manipulation
tasks using petri nets for task coordination [14]. The work
on imitation learning of dual-arm manipulation continues
in the Collaborative Research Center (SFB) 588 on

humanoid robots [15].

The project SMErobot [1] within the 6th Framework
Program of the EC aspired to develop new robot solutions
tailored to the demands of SMEs in manufacturing. The
main fields of research was automatic programming and
understanding of human-like instructions, as well as safe
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and productive human-robot cooperation. In addition to
his previous and further work on robot programming [3,
6], within this project J. N. Pires of the University of
Coimbra addressed natural high-level and multimodal
programming by gestures and speech.

Meanwhile, many international research projects dealt
with the application of AR to industrial environments.
For a broad overview of industrial AR applications,
technical requirements and implementations, refer to [16].
In the following we give an overview on recent scientific
publications strongly related to our project.

W. Vogl [17] addressed the gesture-based definition of
trajectories as well as AR-based evaluation of welding
tasks. Moreover, a spatial interface was created to interact
with virtual displays, which are projected onto material
surfaces by means of a laser projector. This has been used
to adjust parameters for welding tasks. From our point of
view, the disadvantages of this system are: the definition
of trajectories by an additional tool ("Magic Pen"); and the
use of an expensive motion-tracking system tracking
fiducial markers. Furthermore, spatial program adaption
is limited to these 2D displays.

In 2011, Akan et al. [4] introduced an AR application with
the objective of task-oriented programming of industrial
robots. The camera is fixed in the workspace of the robot
or mounted to the robot. Moving virtual objects in a
graphical user interface enables the definition of assembly
tasks. Further programming methods and gestures are
not considered. The Augmented Reality and Assistive
Technology Laboratory at the National University of
Singapore studied different AR applications. They have
dealt with AR-based programming of a virtual robot for
arc welding by using a marker tool for spatial
demonstration of trajectories [18]. In 2009, an approach of
a marker cube-based teaching of trajectories and stereo
vision-based methods for virtual object registration was
used for programming virtual and real robots [19].
Recently, the research group developed a bare-hand
gesture-based interaction with virtual 3D objects for AR
applications [20]. The gesture recognition is based on 2D
data from a single camera. A possible extension of 2D to
3D gesture interaction through a stereo camera system is
mentioned, but not as yet implemented. Other
publications of this research group consider a gesture-
based definition of complex assembly tasks in an AR
application [21, 22].

3. Interaction System

In this section we present the objective of our project,
introducing the conditions and main challenges, as well
as general solution statements. The first subsection is
about the desired interaction system, while the last

subsection describes the sensory and algorithmic
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requirements  toward  perception. A specific
implementation with a detailed description of the
implemented methodologies can be found in the next
section.

3.1 Spatial Programming

The overall objective is to establish a modular system for
intuitive industrial robot programming. The presented
spatial programming system provides an efficient
assistance system for online programming with the help
of gestures and AR (see Fig. 1). In contrast to current state
of the art technologies, our spatial programming system
comprises the support for different phases of the
programming process, as well as different levels of robot
programming. Single programming modules are also
applicable in combination with conventional online and
offline programming methods. More distinguishing
features are the use of 3D bare-hand gestural interaction
and a mobile AR-based application on common handheld
devices such as smartphones or tablet PCs.

Evaluation Definition

Augmented Reality Gestures

Interactive Manipulation

Augmented Reality and
Gestures

Figure 1. Modalities for spatial online programming.

In this paper, we put an emphasis on gesture-based task
definition and adaption of robot tasks. In order to achieve
this goal, the user can interact naturally in 3D space with
a real or virtual object through bare-hand gestures, i.e.,
the programmer can translate and rotate the virtual
objects lying in front of him on a table in the robot
workspace. Subsequently the robot program is adapted
automatically according to the changes through spatial
interaction. A further
programming level, e.g., gesture-based definition of
poses and trajectories, is also part of the system, but will
be considered in detail in another publication. To achieve
flexibility in task definition, we aim for a multi-level

interaction on a lower

programming approach to enable the skilled user to
task representations by sequences of
commands and parameters. The human demonstration of
the task should be mapped into the high-level commands
by a unified user interface. In terms of spatial evaluation
of the robot program, we aim for a mobile AR solution on
conventional handheld devices. Thus, the programmer is
not confined to a fixed computer workstation but can

define new
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define poses, trajectories and tasks, on-the-move, as well
as watching the spatial arrangement of the program
components and manipulate single objects.

3.2 Perception

The perception of the system can be divided into two
scopes: on the one hand, we have to recognize the
procedure of task definition and adaption. Prerequisite
for this work is a hand recognition and tracking, as well
as a recognition of finger gestures. In addition to finger
gestures, which can be recognized in 2D images, we
intend to use 3D trajectory information of the hand to
carry out precise spatial interactions.

On the other hand, we need a scene reconstruction to
recognize objects for enabling the evaluation of the
programming process in the AR application. For this
reason, we aim to determine object class and pose. In
terms of visual object recognition, the camera could be
mounted to the end effector of the robot or could be
positioned in the robot workspace. Another solution is to
use the camera of the handheld device. Besides the
advantage of no need for a additional camera, the use of
the handheld camera has a high error susceptibility and
requires more robustness of the image processing
algorithms. Nevertheless, within our project we aim for a
mobile solution for object recognition to be more flexible,
regardless of location, robot position or additional
Sensors.

There is still no broad supply and demand for industrial
machine vision on mobile devices. Additionally, currently
in the field of robotics no software tools exist for high
quality 3D scene reconstruction under free camera
motion, which have an adequate usability for usage in

arbitrary scenarios. Common machine vision tools are
optimized for specific environmental conditions and
require high computing power to fit industrial demands.

In recent years, related work on the topic of 3D scene
reconstruction has made great progress toward general
applicability. The multi-view-stereo algorithm’s demand
for computation power is the reason for the relatively
long history of publications until the first applications
were capable of everyday use. The state of the art in
structure from motion [24, 25] software is able to
reconstruct the surfaces of many environments. The
computation time of these algorithms is also high for
current available consumer handheld devices. A
possibility to overcome this limitation could be a cloud
computing approach. Against this background, we
decided to develop a simple 3D pose recognition
algorithm for a limited set of easily distinguishable and
predefined objects, which runs in real-time on a mobile
device. This resulted in the object recognition algorithm
presented in section 4.3.

4. Methodologies

In this section, we introduce methods to implement the
spatial approach
assembly task. Fig. 2 illustrates the basic steps of the
programming process: object recognition, bare-hand
interaction, i.e., translation and rotation, task mapping of
interaction, visualization of the task in AR, and the
execution of the task through the real robot. In the first
subsections, we describe the basic hardware components,
conceivable methods of spatial object manipulation, as
well as the implementation of the gesture recognition and
AR application. In the experiments section, we present
results and a discussion of the specific assembly scenario.

programming toward a robotic

Program

Perception of Scene

Interaction

»

0 L%
O

»

Objects

7
Figure 2. Steps of spatial programming for an assembly task.
4.1 Setup

To implement the proposed spatial

approach, our system consists of the following basic

programming

hardware components: industrial robot, handheld device
and motion tracking sensor (Fig. 3). The application of a
motion tracking system enables the tracking of human
hands. We wuse TCP/IP sockets for communication
between the components of the system. A unified control
layer for vendor independent control and programming
of industrial robots via arbitrary input device was
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presented in [23]. This control layer is also used in this
project for program execution and

adaption. Within our application, it is necessary to

representation,

transform pose information to different coordinate
systems, e.g., from motion tracking system to robot.

Fig. 4 illustrates the most important coordinate systems
and some examples for related homogeneous
transformations. A marker coordinate system is used to
provide the pose information of the handheld device for
the AR application and to determine object poses in the
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robot coordinate system. In order to transform pose
information between the different coordinate systems,
one has to calibrate the marker, motion tracking and
robot coordinate system.

Industrial Robot

3D Camera

.,
System ?
Handheld ‘54

Workpieces

Figure 3. Basic components of the spatial interaction system.

Optical Motion Tracking System

Robot
A
P2

Handheld
l D

Figure 4. Relevant coordinate systems.

Marker

c

4.2 Spatial Programming System

In terms of a holistic approach toward robot
programming, we consider different programming levels
for spatial interaction. Thus, the forms of interaction
presented in this paper are applicable to different levels
of programming: low-level and high-level programming.
With regard to the task level, virtual objects cover task
representations, e.g., workpieces for pick-and-place tasks.
These virtual workpieces can be manipulated, e.g., by
gestural snapping and moving in space. The robot
program, which puts these gestural changes into practice,
is created automatically. Besides pick-and-place tasks, an
extension of graphical tasks’ level representation and
spatial interaction principles are possible due to a
modular structure. The evaluation of the robot program is
made possible through an AR application on the
handheld device using a fiducial marker. Therefore, the

programmer is capable of moving freely in the robot cell,
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while the camera image is extended by spatial
representations of the interpreted robot program. The
spatial programming system can be divided into the AR
application, gesture and hand trajectory recognition, a
multi-level robot program representation and interfaces
between these single modules. The module for object
recognition is specific to task and application. In the
following, it is considered separately.

4.2.1 Mobile Augmented Reality

Prerequisite for a spatially adequate visualization of
poses, coordinate systems, trajectories and task
information in AR applications is the pose information of
the camera. This means translational and rotational
displacement between the camera coordinate system and
a reference coordinate system must be known. There are
various approaches using different sensor concepts for
the determination of pose information for AR on
handheld devices. Outdoor applications often use GPS in
addition to internal rotation determination. Another
approach uses fiducial markers with known dimensions.
The markers are recognized by a pose estimation
algorithm. Based on the marker position and orientation
in the 2D camera image and its known dimensions, the
algorithm estimates the pose information of the handheld
in the marker coordinate system. Several frameworks and
popular applications, e.g., ARToolKit, follow this
approach. In this project we use a multi-marker approach
using ARToolKit on an Android device as a general
framework for marker tracking and visualization.

4.2.2 Gesture-based Interaction

Gesture recognition for spatial interaction with virtual
objects can be put into practice via 3D as well as 2D
motion tracking. Enabling adequate 3D interaction based
on 2D images from a single camera works only under
fixed constraints. Otherwise, the algorithms are
inaccurate because of the missing depth information.
However, a rough determination of 3D movements for
hands with known dimensions still is possible, e.g., see
[21]. Due to the fact that finger gesture recognition based
on 3D optical motion tracking data is complex (see
application for MS Kinect [26]), we choose a novel
approach to provide generic gestural interaction. For the
manipulation of the virtual objects in AR, we combine 2D
gestures recognized through the camera image of the
handheld with 3D hand trajectories information, tracked
by the external motion tracking system.

Fig. 5 illustrates the flow of information combining 2D
command gesture recognition with 3D motion tracking.
The reasoning and processing unit provides feedback
about the gestural manipulation via AR and vibration on
the handheld device. Finally, it adapts the robot task
according to the gestural manipulation. In the following,
we give a closer insight into finger gesture recognition.
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The recognition of finger gestures contains the
segmentation of skin colour region, extraction of
fingertips as
classification. Segmentation is done through skin colour
tracking. The main challenge is to make the application
robust to different skin colours and lighting variations.
This is a difficult task due to limited computational effort

features and a shape-based pattern

and poor camera parameter handling on the handheld,
e.g., it is not possible to completely turn off brightness
and colour control. As a result, we follow a probability-
based approach for robust and fast skin colour detection
in [27]. First of all, we convert the image to HSV colour
space ignoring the V channel. For a sample skin image,
we determine a histogram, which is used as a calibration
model for skin colour. For segmentation, we finally
compute backprojection, i.e., the probability that a pixel
has skin colour, threshold and smooth detected skin
regions. For the purpose of features, we consider the
fingertips, which are determined through convex hull
according to the principle in [28]. For the classification of
gestures, we implemented an algorithm for 2D shape
analysis. For this purpose, we consider Procrustes
analysis [29]. The algorithm compares a trajectory with a
reference trajectory by translation, uniform scaling,
rotation and finally shape comparison. Therefore, we are
able to detect snap and release gestures based on the
trajectories of the fingertips. In order to achieve a robust
interaction for rotation and translation of virtual objects,
we consider further constraints toward collision control
of fingertips and object in the 2D camera image and
spatial distance of hand and object.

4.2.3 Task-oriented Programming

We implemented a basic robot programming system on a
handheld device in [23]. This approach is enhanced by a
task level. A task is represented by a subprogram
containing a template for a motion structure of the robot,
which can be parameterized by pose information. We
enable the experienced user to define new motion
sequence through drag and drop operations of
conventional robot motion and action commands. Fig. 6
illustrates the structure of a simple pick-and-place task
definition by pseudo-code including Point-to-Point (PTP)
and linear (LIN) motion commands, as well as commands
for the gripper control. The pose parameters can be set
through a classic Teach-In approach, object definition or
the spatial demonstration process. In order to map the
demonstration of a pick-and-place task into this
subprogram, we define the object pose as the start pose of
the pick-and-place task. To determine the target pose, we
incorporate pose displacements from 3D motion tracking.
Depending on the specific robot task, the mapping of
interaction poses has to be adapted. Demonstrating
various tasks one after another creates a sequence of
tasks, which is displayed on the handheld textually and
spatially in AR. The sequence can also be adapted by
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drag and drop operations with the help of touch gestures
on the handheld device.

Yo e
2D IMAGE 3D HAND TRACKING
| .
o
HAND o g
SEGMENTATION AND 9 =
FEATURE 2 o
EXTRACTION 4 a
GESTURE
FINGER GESTURE RGN OBJECT

CLASSIFICATION HANDLER

K

FEEDBAC

OBJECTLIST

AR-APPLICATION

ADAPTION

ROBOT PROGRAM

Figure 5. Interaction based on gestures and AR consisting of 1)
2D gesture recognition using the camera of the handheld, 2)
tracking of 3D trajectories of the hand tracked by a motion
tracking system, and 3) reasoning and processing unit.

4.3 Object Recognition

The following subsection explains the particular steps of
the successive image processing in more detail (see Fig.
7). The aim is to reconstruct the position and orientation
of known geometrical objects out of 2D images on the
handheld device. We assume the handheld pose to be
known due to marker tracking of the AR application.
Hence, we could determine object poses in the robot
coordinate system. For the implemented algorithm, the
following assumptions are considered: the objects and
their geometrical dimensions have to be known. This
means that only prespecified objects can be recognized
and thus be located. In addition, the floor plate should be
unicoloured, optimally matt white, and the ambient light
conditions should be diffuse. The position and the
orientation of the handheld integrated camera are given
by marker tracking and the algorithm only handles
acquisitions without partly hidden objects.

4.3.1 Feature Detection

At the beginning of the algorithm, the acquired image
(Fig. 8a) needs to be undistorted. Subsequently, an edge
detection (Fig. 8b) is performed, followed by a closing to
eliminate gaps (Fig. 8c). This enables the segmentation of
all surfaces (Fig. 8d) that can be seen by the camera. Now
it is possible to identify the single corners of each
segment, here done by the calculation of the intersection
points after detecting the segment borders with the
Hough transform for line detection (Fig. 8e).
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4.3.2 3D Reconstruction

With the help of the resulting separate point list for each
object, it is possible to solve the 3D position and
orientation out of 2D data by using a perspective
transformation. All in all, the computation is based on the
following optical connection:

s~mT:A-[RH~MT

s is the scale factor, m a vector with the coordinates of the
projection point in pixels, A the camera matrix, [R‘t] the
camera motion and M the coordinates of the 3D point in
the world coordinate space. The colouring of the object
surfaces ensures a correct association between the 2D and
their corresponding 3D points in the algorithm.

The additionally required information (focal lengths,
principal point) are given with the camera matrix A and
the used method is based on a paper by Gao et al. [30].

Teach-In Object Recognition Spatial Interaction
ST Real Robot Object Pose Start Pose
a) Methods of pose definition
MualiRebetin Gripping Pose End Pose
AR
. Poses
b) Pose list P1 P2 ObjectA.Grip Interaction.Delta
Task (P1, P2)
PTP P1.Z+100 | ——F—> LIN P1 —l
|—> CLOSE GRIPPER —F > LIN P1.Z +100
c) Task template _|
'—) PTP P2Z+100 | ———> LIN P2 —I
|—> OPEN GRIPPER —— > LIN P2.Z+100

Figure 6. Structure of flexible task definition with the help of a robot program template and the mapping of specific poses from Teach-
In, object recognition or spatial interaction. The sample template represents a simple pick-and-place task covering point-to-point (PTP)

and linear (LIN) motion commands, as well as gripper commands.
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/ 7
/ pointlists with pixel /
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Figure 7. Scheme of object recognition.
‘ . \ ."\
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Figure 8. Workflow of image processing: a) acquired image, b) edge detection, c) closing d) segmentation of surfaces and e) line detection.
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In order to maximize the precision, the distance between
object and handheld should be of low values. Sporadic
in the 2D to 3D transform are
compensated with over-determined point lists and outlier
detection methods such as RANSAC.

association errors

4.4 Experiments

In this subsection, we present an implementation of
spatial programming toward a specific assembly task,
show results and discuss further work. We developed an
Android App for the ASUS Eee Pad Transformer Prime
TF201, enabling an AR application based on the
framework ARToolKit for the fiducial marker tracking
and OpenGL ES for further visualization. For 2D gesture
and object recognition, we use OpenCV 24.0 Java
bindings for the Android 4.0.3 platform. 3D hand
tracking is carried out by Kinect sensor and OpenNi
Framework. To illustrate the intended use of our system,
we consider a simple assembly task with initial situation
(see Fig. 9a) and target situation (virtual objects in Fig.
11). All objects and dimensions are known and their CAD
models are implemented in the AR application on the
handheld. In order to support the robustness of the object
recognition algorithm by additional colour segmentation,
we assume the surface of a single object to be of a
different colour. Fig. 9b illustrates the acquired scene
image after edge detecting and closing algorithm. Since
not all object edges are detected in a single image, one has
to record several images for recognition of all objects.
Based on the object pose estimation, virtual objects, which
represent the real objects for interaction, are implemented
into the AR application. Fig. 10a shows the skin colour
segmentation and extracting of the fingertips for bare-
hand interaction and Fig. 10b shows the gestural
displacement of a virtual object for the demonstration of a
assembly step. Fig. 11 shows the processing of the
obtained robot program.

= - :
‘u; ‘(G‘ ‘\

u“/ -

(a) (b)

Figure 9. Initial situation (a) and image processing for object
recognition (b).

4.4.1 Results and Discussion

Currently, we achieve low frame rates in the finger
gesture recognition process for high resolution images.
This results in a decrease of the intuitiveness within the
task demonstrating and simultaneous evaluation in AR.
Object recognition is unaffected by this effect, because it
is carried out before interaction on single images.
Nevertheless, it is possible to increase the frame rate

Int J Adv Robotic Sy, 2013, Vol. 10, 254:2013

through code optimization and the use of C++ OpenCV.
Initial project results show that the accuracies of object
recognition are strongly dependent on the distances
between the handheld device, marker and object. In most
instances, this is still appropriate for the realization of
robotic pick-and-place tasks, but there is potential for
optimization regarding the sensor concept and object
recognition algorithm. Insufficient accuracies may be
compensated with the help of additional sensors, e.g.,
visual servoing using the eye-in-hand principle.

Figure 10. Skin colour segmentation and extraction of fingertips
(a) for bare-hand interaction with virtual objects. Demonstration
of assembly task (b).

T

Figure 11. Assembly task representation through virtual objects
(a) and semi-finished program execution (b).

Despite low absolute accuracies of the Kinect sensor, we
consider the relative 3D translation to be adequate for
robust and intuitive 3D interaction regarding pick-and-
place tasks. Furthermore, vibration feedback about the
recognition of command gestures and a continuous visual
feedback about the object displacement during the
demonstration process makes it possible to detect and
avoid errors. Nevertheless, we aspire to replace the
Kinect sensor with a more precise multi-camera-system.
Hence, one can replace fiducial marker tracking for AR
by a dynamic object tracking of the handheld device.
Further work will also compare different object tracking
principles and filtering methods, as well as resulting
tracking accuracy and visualization errors in AR. Thus,
we aim to identify an adequate sensor concept for broad
applicability. Furthermore, novel gestures and interaction
methods for spatial programming will be examined.

Further work is also on mobile
programming system into software tools of the digital
factory. CAD files of workpieces could be transmitted to
the handheld device automatically for recognition or
manipulation purposes. Subsequently, the extraction of
the dimensions for object could be
automated. In accordance with the latest trend toward
cyber-physical systems, data between handheld, robot
and a central server or cloud architecture could be

integrating our

recognition

www.intechopen.com



exchanged, e.g., to provide fast information about robot
programs and programming processes to enhance
process planning and operating.

Figure 12. Robot-based path welding by demonstration.

The possible fields of application are numerous. A
gesture-based definition of complex tasks could be
particularly interesting regarding spray painting, arc
welding and adhesive bonding tasks. Within an ongoing
project, we are currently examining an arc welding
scenario which consists of a gestural demonstration of
infeed and welding path through finger movements.
Subsequently, the welding path and poses are visualized
in the AR application on the handheld, where the user
can manipulate the virtual objects, e.g., to manipulate tool
orientation of single poses. Fig. 12 illustrates the principle
of robot-based path welding by demonstration. AR-based
spatial evaluation of programs on ubiquitous handheld
could potentially fit robotic
application. Among the definition of pick-and-place
tasks, a gesture-based definition of more complex tasks
may demand additional sensors to achieve a required
accuracy which currently cannot be reached by most
markerless motion tracking systems and algorithms.
Further limits of the applicability are caused by the
complexity of special robot tasks, e.g., in-process path
planning for dynamic environments.

devices nearly any

5. Conclusion

In this paper, we presented an intuitive programming
system for industrial robots on modern smartphones and
tablet PCs. Programming by demonstration of the task
was carried out by motion tracking of gestural bare-hand
through AR provides
simultaneous information about the interaction and

interaction. The evaluation
programming process. The overall potential of spatial
programming lies in a reduction of programming times
and of use. By means of spatial robot programming, the
programmer is supported by the help of a highly efficient
assistance system for online programming. The intuitive
usage of spatial
simplification ~ for

interaction represents a

robot

major

industrial programming

www.intechopen.com

compared to conventional methods. Our system enables
non-specialists to define, evaluate and manipulate robot
tasks without broad practice and experience.
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