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Abstract

Automated Guided Vehicles (AGVs) are autonomous vehicles used mostly in material handling
applications. In today’s industrial world, system flexibility is very desirable, that is, being able to
quickly change system variables to adapt to presented challenges or production capacity changes.
Due to technology advancements, highly capable robotic systems are available, and every year the
adoption of AGV solutions increase. In spite of this yearly increase, the cost of AGV systems is
still too high for some companies to fully commit to an AGV based solution.

In this dissertation, some ways of optimizing AGV costs are explored. In one way, the setup
process of AGVs, which is currently done by the company selling the AGV, with proprietary
solutions being the norm in the market. By shifting the setup process to the company adopting the
AGV solution, the setup costs could be greatly reduced.

Other ways of optimizing costs are related to the technological advancements in AGVs, with
increased flexibility when defining paths. By using positioning sensors such as the laser rangefinder
and adopting the appropriate algorithms, the overall cost can be reduced in the setup and operating
processes.

Lastly, the impact of layout choice and number of AGVs in a system is studied. For this pur-
pose, a real world scenario of material handling is analyzed, and a simulation model is developed
using the software Simio.

Today’s industrial market is always looking for more cost effective solutions, where not only
low resources but also high performance is necessary in performing every day’s tasks.
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Chapter 1

Introduction

1.1 Context and motivation

Nowadays, many industries see the benefits of using automated guided vehicles, known as AGVs.

The AGV international market is growing and is predicted to reach a value of over $2000 million

by 2020 [1].

Market competitiveness drives companies to strive for lower waste1, high flexibility and pro-

ductivity, long term benefits that usually come with the implementation of an AGV system, for

instance in logistic applications. When correctly implemented, this kind of system comes with

many advantages, such as continuous operation, with only the smallest deviations from the opti-

mal work plan. In logistics, AGVs can also reduce the number of work accidents that often occur

with manually operated forklifts, also lowering costs with damages to loads, infrastructure, vehicle

and staff.

Nevertheless, the market share of AGV systems in transportation is still low, as many barriers

to implementing AGV systems to transport of materials exist. The initial investment necessary

to achieve precision, robustness and low maintenance and operation costs often means that these

systems can only be implemented by companies with high profit and market share already. Of-

tentimes, the proposed solution isn’t optimized to the goals of the particular system, resulting

in a needlessly expensive solution when lower performance would meet the requirements. This

happens because the AGV company usually has low flexibility in the solutions and no interest in

developing optimized solutions for its clients, since it results in increased cost. In order to im-

plement an optimized solution, there has to be a previous study of the requirements and possible

solutions, especially when it comes to the number of AGVs to be used. This should include logis-

tic simulations of the proposals, and deciding based on quantified criteria. This study is of greater

interest to the client than the company selling the solution. For instance, the number of AGV

vehicles sold is often higher than effectively necessary.

It is difficult to say what the overall cost of implementing an AGV system will be. Among

other costs, the initial setup and operators’ training costs are high. Depending on the technology

1Activities that do not add value to the final product
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2 Introduction

for localization used by the AGV, the setup costs can increase even more, such as a high number of

artificial beacons. Robot configuration is often done by a specialized operator from the company

selling the AGV. There is also a need for a connection with management software (e.g. MES

and ERP), usually proprietary. There are different mechanical solutions to transporting materials,

which encompass different traction solutions. For instance, an AGV can carry loads on top of

it, or haul the materials, at different costs. All these costs add up and increase the final cost of

implementing an AGV system substantially, especially for lower numbers of vehicles.

There is a need to lower all the previously mentioned costs, increasing the confidence of small

and medium-sized companies in implementing AGV systems. The difficulties arise from the need

of precision, robustness and safety, without sacrificing the flexibility in trajectory and workstation

definition. The result is usually a need for higher cost technology and more complex navigation

and localization systems.

The previously mentioned needs and challenges they present are motivation for this disser-

tation, which will explore ways for optimizing costs in AGV applications, especially in logistic

applications.

1.2 Goals and scope

Different areas of knowledge are integrated when it comes to designing industrial mobile robots.

Localization and navigation demand knowledge of computer algorithms, information theory, arti-

ficial intelligence and probability theory [2].

This dissertation concerns the exploration of ways to lower costs in setup and operation of

AGV systems. Due to the scope of this challenge, there must be a selection of precise goals for

this project, taking into consideration the background knowledge of the author. The work’s focus

will be on optimizing the cost of the robot’s navigation system and the setup process of an AGV

system implementation. Thus, the following goals are defined:

• Develop a configuration and operation interface for Human-Robot Interaction (HRI) that

does not require a heavily specialized worker to operate and setup the system. Examples of

operations are: map creation, waypoint and trajectory definition;

• Briefly study the impact of choosing more cost effective sensors for an AGV solution, from

robustness to applicability in the industry;

• Analyze and evaluate the impact of adopting an AGV solution in a logistics application case

study, with a simulation approach.

1.3 Document structure

This document is organized in six chapters.

The current chapter presents a short context for the topic, as well as the motivation to justify

the scope and objectives of the project.



1.3 Document structure 3

Chapter 2 provides an overview of the relevant software and hardware technologies, followed

by the state of the art of localization and mapping techniques used in AGVs.

In chapter 3, the different possibilities for developing a human-machine interface are explored,

and the development of a web-based user interface is presented.

Then, chapter 4 includes a brief study of the impact in choosing the positioning sensor and

localization algorithms in an AGV system.

The impact of selecting a layout and the number of AGVs to be used in a system is studied in

chapter 5, using simulation to present the case of a real world scenario.

Finally, chapter 6 presents the conclusions of this project.
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Chapter 2

State of the Art

This chapter will be focused on the most adopted systems in the industry for indoor applications, as

it would be impossible to cover every new system, technology or technique developed for mobile

robots, and most will not have any application in the AGV industry.

2.1 Related software

Developing systems for mobile robots is a multidisciplinary problem that requires complex soft-

ware and hardware systems to work together. In order to speed up development and deployment

of new systems, frameworks and simulation environments are required.

2.1.1 Robot Operating System

The Robot Operating System1 (ROS) is an open-source software framework that enables easier

development for robot systems [3]. It is a widely adopted framework by the mobile robotics

community.

ROS is based on a modular architecture and provides a structured communications layer above

the host operating system, meaning code sharing and re-using is easier. Packages are software

modules that can be written in different programming languages and, together with the hardware

abstraction provided by ROS, can be shared and reused in robotic research and development. For

this reason, there is an extensive list of open-source packages2 and meta-packages3 with examples

to assist in development.

2.1.2 Operation and configuration interfaces

Most interfaces found in industrial AGV are proprietary and require configuration by a specialized

operator. In research and development, most of the work is done by command-line interfaces or

complex and hard to use software.

1http://www.ros.org/
2http://www.ros.org/browse/list.php?package_type=package
3http://www.ros.org/browse/list.php?package_type=metapackage

5
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6 State of the Art

The MiR1004 robot shown in Fig.2.1 is an AGV aimed at the logistics and healthcare industries

for small transportation tasks. It also provides a web-based interface to control the robot, define

waypoints for trajectories and view the map. This kind of interface is much simpler to the operator

than what is usually found in the industry.

Figure 2.1: Left: The MiR100 robot. Right: Overview of a map in a tablet interface.

Relating to section 2.1.1, Crick et al. present in [4] the rosbridge5 middleware between ROS

and web services via websockets. This allows the developer to create interfaces in programming

languages for web development.

The same author used this tool to allow easier collection of data in a large-scale experiment

[5]. Older experiments that do not use this tool but use web-based interfaces have been done, but

the layer of abstraction provided by this one is valuable in speeding up development.

Robot Web Tools6 builds on rosbridge for its communication layer and provides a core set

of libraries granting abstraction from ROS functionality. This enables development of interfaces

without much knowledge of the ROS architecture. In contrast with other tools like wviz7, Robot

Web Tools focuses on lightweight and efficient communication with little overhead. An overview

of the Robot Web Tools architecture can be found in [6], also showcasing different use cases.

2.1.3 System simulation software

Material handling efficiency has severe impact in production costs. Since this activity does not add

value to the final product, it can be viewed as waste, and therefore the goal should be to minimize

its execution time.

Implementing a flexible solution, such as an AGV system, can increase the efficiency of ma-

terial handling. This requires development of a complex high level control system to coordinate

4http://mobile-industrial-robots.com/en/mir100-2/
5http://wiki.ros.org/rosbridge_suite
6http://robotwebtools.org/
7http://wiki.ros.org/wviz

http://mobile-industrial-robots.com/en/mir100-2/
http://wiki.ros.org/rosbridge_suite
http://robotwebtools.org/
http://wiki.ros.org/wviz
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robot scheduling and routing, that is, which robot does some route at any time. The optimal

solution to this problem is often not achieved online8, and an heuristic approach is taken [7].

Moreover, the cost of an AGV system means that the problem of estimating the number of

robots required in a production process is also non-trivial. Approaches to this problem are usually

model-based, these divided in two types: using analytical models or simulation models [8]. Simu-

lation approaches present several advantages over analytical approaches for large-scale processes.

Although it may not provide the most optimal solution, it is easier to use simulation models when

the number of variables is very high.

The main benefits of using simulation in this case are: 1) finding hidden and unforeseen mis-

takes in the scheduling and coordination systems that are cheaper to solve before implementing a

solution; 2) having an estimated improvement value of the production rate.

In order to investigate material handling solutions with AGV, the simulation software should

be based on the discrete event simulation paradigm [9], provide support for automated material

handling operations and preferably include AGV vehicle models. Examples of software having

these characteristics are: Simio9, FlexSim10, Arena11 and Witness12.

Although all of the previously mentioned software systems should accomplish these tasks,

each of them has diversified features and programming language support. These programming

languages are usually divided in general-purpose programming languages and special-purpose

simulation languages [9].

The choice of the simulation software is an important task in the simulation process. There

isn’t a clearly better tool for every situation, and so it requires some effort to make a direct com-

parison of products. Choosing the wrong tool may critically impact the success of the simulation

process. Although there can be found work on quantitative comparison of simulation tools, such as

[10], this information can become quickly outdated when simulation software developers continu-

ously bring new updates, features and performance improvements to their software. Furthermore,

a qualitative comparison is usually not complete without trying out the software itself and its

features, as many of the application websites don’t provide enough information for this kind of

comparison.

Due to the applicability in this case and the fact that a license is already available for use, the

Simio simulation software will be used. An overview of this software can be found in section 5.1.

2.2 AGV technology

AGV have been in development for over 50 years. New technologies have been developed, with

some having a permanent effect on the market. The following sections review what is mostly used

in the industry.

8When the system is running
9http://www.simio.com

10http://www.flexsim.com
11http://www.arenasimulation.com
12http://www.lanner.com/en/witness.cfm

http://www.simio.com
http://www.flexsim.com
http://www.arenasimulation.com
http://www.lanner.com/en/witness.cfm


8 State of the Art

2.2.1 Material handling solutions

Load size and weight can vary greatly in industrial environments. Both in traditional and AGV

systems, the material handling technology must be suited for the purpose.

Traditional systems often rely on common forklifts or hauling trucks as a transportation sys-

tem, despite the higher throughput realized by rollers or chain conveyors. The reasons for this are

usually the reduced investment and flexibility when integrating the solution in an existing environ-

ment or moving to another facility [11].

AGV systems available in the industry use mostly standardized material handling solutions.

Solutions that require the vehicle to directly carry loads usually increase the vehicle’s cost and

safety concerns, especially for heavier loads. The most common of these systems is the forklift

AGV, with variations depending on load weight, such as: straddle, narrow and counterbalanced.

For horizontal movement of loads, there are AGV with roller, chain or belt conveyors that can

be used to transfer loads between conveyors or end-of-line transfer to stock. A simpler solution

is the unit load AGV, which carries a load on top of it. This can improve the response time but

requires automatic external solutions to place the load on top of the vehicle in order to be fully

autonomous.

Figure 2.2: Left: The forklift AGV. Right: The unit load AGV. In [12].

Material handling solutions where the vehicle does not carry the load directly are usually

cheaper, but with their own inconveniences such as occupying a greater area on the floor. Examples

of these solutions are the tugger AGV and the tunnel AGV. While the tugger AGV can move a train

of multiple trolleys, the tunnel AGV is used to move individual trolleys by placing the vehicle

under trolley and using a hooking system to guide it to its destination. In these solutions, the

load’s weight is on the ground and is not directly carried by the vehicle. Thus, a similarly robust

tugger or tunnel AGV can usually carry more weight than forklift or unit load AGV.

Recently, companies have focused on selling custom made solutions, with modular and flexible

systems. These systems can be made exactly according to the application needs. This can lead

to a more optimized solution, reducing cost and wasted space, and increasing efficiency. These

solutions are in line with lean thinking, creating more value for the customer while using fewer

resources.
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2.2.2 Positioning sensors and techniques

An extensive and comprehensive description of indoor positioning technologies can be found in

[13]. The sensors for positioning are usually either used for relative or absolute localization.

When using sensors and techniques for relative localization, also known as dead-reckoning, the

robot’s position is given by constantly measuring and integrating successive position differences.

This leads to unbounded error accumulation over time. The signal output can be, for instance, lin-

ear velocity, acceleration or angular velocity. An inertial measurement unit (IMU) is a device that

uses gyroscopes, accelerometers and magnetometers to estimate changes in acceleration, velocity

and position of a moving vehicle [2] and is almost a requirement in aerial navigation. They are

also important as providing redundant data to check for inaccuracies with other techniques.

The most widely adopted technique for relative localization, however, is odometry [14]. The

fundamental principle in odometry is using wheel sensors such as encoders, potentiometers or

resolvers to measure changing wheel data, with high sampling rates and good short-term accuracy.

Because of the high sampling rate, it is usually fused with data from global positioning sensors.

Borenstein et al. [15] classifies errors in odometry into systematic errors and non-systematic

errors.

Examples of systematic error sources in odometry are differences between the measured and

real values of wheel radius and distance between wheels. Systematic errors can be minimized with

calibration, usually conducting different experiments with the robot.

On the other hand, non-systematic errors are random and their effect could only be minimized

by averaging, which is unwanted in odometry. Sources of non-systematic errors are: floor ir-

regularities, unexpected obstacles, wheel slippage and finite encoder resolution. Other relative

positioning techniques can be used to detect non-systematic errors such as wheel slippage. For

instance, suppose a robot is rotating on itself. If the wheels were to slip, odometry sensors would

register very disparate values when compared to the output of a gyroscope.

Overall, the errors in odometry and other techniques for relative positioning mean the estima-

tion will not be accurate over a long period of time. Since the position is obtained by integrating,

the errors will also be cumulative and lead to uncertainty in the robot’s positioning. This is espe-

cially the case for the estimation of the robot’s orientation.

Global positioning techniques estimate the robot’s position in the world referential. To achieve

this goal, a robot can detect known landmarks or beacons. These can be active or passive, natural

or artificial. Landmarks usually refer to objects near the robot which can be identified. When

near a landmark, the robot can update one or more variables of its global pose. This update is

inherently intermittent, and can only be done when in the presence of landmarks. Beacons, on the

other hand, can usually be detected at higher distances. A robot can measure its orientation and/or

distance relative to a beacon. In order to update its global pose, the robot needs to simultaneously

(or in quick succession) detect various beacons. The most common techniques to update a robot’s

pose when using beacons are: 1) trilateration (when measuring distances); 2) triangulation (when

measuring angles); 3) filtering measurements (e.g. using a Kalman Filter).
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Some sensors only allow the robot to move in fixed trajectories, many times not knowing its

global position. In those cases, the robot may detect a marker so it knows where to stop, and

continues to follow its trajectory when commanded. Guiding systems for fixed trajectories are

usually magnet or wire guided. In magnet guiding systems either magnets are embedded in the

floor or a magnetic tape can be placed above it. In wire guiding systems, an inductive wire is

embedded in the floor and the robot uses its sensors to follow the wire’s path. Other systems use

optical tracking, either along lines or using ground markers such as QR codes. All the previous

systems require the environment to be modified, and have increased costs, based on how extensive

the trajectories are. The cost of changing the trajectories is also high. In the case of magnetic tape

or ground markers being used, there is a risk of damaging the equipment.

On the other hand, sensors that allow measurements of distance and/or orientation can be

used for flexible trajectories, either using acoustic or optical sensors. The most widely adopted of

these sensors for indoor positioning is the laser rangefinder. Other techniques exist, such as visual

positioning, but it is not widely adopted in the industry so far.

2.2.3 Laser rangefinder

The laser rangefinder can be used for global positioning of a robot, as well as obstacle detection.

The advantages over other sensors with the same application are increased accuracy, sample rate

and range. It uses a narrow laser beam to determine the distance to an object. The most common

form of this sensor operates on the time of flight principle, by sending a short laser pulse towards

an object and measuring the time it took for the pulse to be sent and received again [16]. Fig.2.3

shows a simplified block diagram of a time of flight laser rangefinder. Using this technique, the

sensor can often achieve centimeter or millimeter accuracy, and tens of meters in range. Other

specifications for laser rangefinders are the frequency and angular resolution.

Figure 2.3: Block diagram of a TOF laser rangefinder. Adapted from [16].

The operation of a laser rangefinder consists of taking a measurement, then rotating the laser

for a fraction of its full scan range, and taking a new measurement. Due to mechanical constraints,

the laser isn’t able to take measurements in its dead zone, also known as blind region, as depicted

in Fig.2.4.
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Figure 2.4: Left: Laser rangefinder Hokuyo URG-04LX-UG01. Right: Laser rangefinder scan-
ning and dead zone. In [17].

2.3 Indoor localization techniques and algorithms

Due to the issue of unbounded error in odometry, as explained in section 2.2.2, robust techniques

for localization must use sensors for global positioning, usually fusing data from both sensors.

Although there is an extensive list of localization techniques for mobile robots, this review will

focus on those which are used in the AGV industry and use laser rangefinders.

The localization problem is the problem of estimating a robot’s pose relative to a known map,

and usually techniques are based on the Markov assumption, that is, a static world and independent

noise assumption. While some techniques can show robustness even in dynamic environments,

others fail in the solution to the localization problem. The map of the environment is a list of

objects along with their properties. Maps can usually be indexed in one of two categories: feature-

based and location-based [18]. The latter can be, for instance, a point cloud map or a occupancy

grid map. Localization techniques can also be divided in that way.

Siegwart et al. [2] state that the multiple-hypothesis belief representation is the key to enabling

robots with limited sensory information to navigate robustly in a varied array of environments.

Multiple-hypothesis belief is the representation of multiple possible solutions for the robot’s pose.

The most common approach to the uncertainty is representing it explicitly using probability theory

- probabilistic robotics.

There is no single technique that solves every localization problem, and there are many recent

works on the subject. By now, the most common approaches are: Extended Kalman Filters (EKF)

and map matching for landmark-based maps; particle filters and map matching for grid maps.

In [19] a laser scanner is used, along with indistinguishable artificial landmarks for global

localization, with a matching technique. Fig.2.5 illustrates this scenario. Relating to the setup

of this solution, the artificial landmarks, especially with numbers in hundreds as is the case, can

increase setup costs dramatically, mostly in installation costs. The work in [20] explores the perfect

match algorithm [21] using natural features of the environment. The robot’s pose is estimated by

minimizing the fitting error between the data acquired by sensors and the known map. The result
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Figure 2.5: Localization using artificial landmarks. In [19].

was a repeatability of 5 mm in a laboratory environment. Other matching related work can be

found in [22, 23].

The Monte Carlo Localization (MCL) family of algorithms is presented in [24]. Building on

the basic algorithm, a more robust one is developed. In MCL, the robot’s belief is represented as

a set of weighted particles. The AMCL13 (Adaptive MCL) algorithm is an implementation of the

KLD-Sampling, an adaptive particle filter described in [25]. This adaptive approach increases the

efficiency of particle filters by adapting the particle count depending on the approximation error

in the localization procedure.

Usually, AGV have laser scanners above the robot (see Fig.2.5), making it easier to detect arti-

ficial landmarks and harder to be obstructed by obstacles. One interesting approach in an industrial

environment is [26] which uses an AGV security laser scanner (required for safety in obstacle de-

tection, or other methods) as the laser for localization. It uses artificial beacons placed in the

environment. The localization algorithm is the EKF with unknown correspondences as described

by Thrun et al. in [18]. This algorithm estimates landmark correspondences via a maximum

likelihood estimator, though there are alternatives, such as based on the Euclidean distance [19].

The data from landmark correspondences and odometry sensors is fused in an EKF. The chal-

lenges presented by the use of a laser scanner near the ground are related to obstacle and outlier

detection, and thus a filter was used.

2.4 Autonomous map building

Section 2.3 had an overview of different techniques used for robot localization. All the discussed

strategies require the existence of a map of the environment. This map can either be built by

hand or autonomously by the robot. Building a map by hand can be costly and time-consuming,

especially for large environments such as a warehouse. When a robot is capable of sensing its

13http://wiki.ros.org/amcl

http://wiki.ros.org/amcl
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environment through exteroceptive sensors, it makes sense for the robot to build its own map. The

goal of autonomous map building can be expressed as follows: “starting from an arbitrary initial

point, a mobile robot should be able to explore autonomously the environment with its on-board

sensors, gain knowledge about it, interpret the scene, build an appropriate map, and localize itself

relative to this map” [2].

The previous sentence exposes the main challenge with autonomous map building. Indeed, the

robot must build a map at the same time as positioning itself in the environment. This is known

as the Simultaneous Localization and Mapping (SLAM) problem. A mathematical definition of

SLAM can be found in [2] and an in-depth study of the problem in [18].

Comparing SLAM algorithms is important both from a perspective of map accuracy and the

computational cost. The choice of the right method depends on the the type and number of features

in the environment, the desired resolution of the map - which is directly related to localization

accuracy -, computational time, and other factors [2].

EKF-SLAM is the most popular approach to SLAM [27]. This approach represents discrete

landmarks as part of a state-space framework. Many successful implementations of this approach

in indoor applications are reported. EKF-SLAM inherently has some problems for a large num-

ber of landmarks, as the computational complexity increases quadratically with the number of

landmarks. Another shortcoming in their application is high sensitivity to failures in landmark

association. Efforts to increase the efficiency of this approach are: working in local sub-maps [28]

and Extended Information Filters [29], with results for outdoor environments in [30] achieving

constant-time update steps.

The previous techniques are known as filters and address the online SLAM problem, where

only the current pose and the map is estimated at any given time. Smoothing approaches such as

graph-based SLAM techniques [31, 32] address the full SLAM problem, where the full trajectory

is estimated. These approaches are also known as optimization-based approaches.

Particle Filters (PF) are another approach to SLAM. Here, the posterior probability is repre-

sented by a set of weighted particles and each particle is given an importance factor. Montemerlo

et al. presents the FastSLAM technique in [33], where each particle uses N Kalman Filters to

estimate the position of theN landmark locations. This approach has complexity O(P log(N)),

where P is the number of particles used. The map created by this approach is a feature-based map.

An approach based on PF that creates an occupancy grid map is [34], building on the grid-based

FastSLAM algorithm as described in [18]. This algorithm is due to the work of Hähnel et al. in

[35].

Relating to ROS, Santos et al. [36] provide an evaluation of 2D SLAM techniques available

in ROS. The laser rangefinder used was an Hokuyo URG-04LX-UG01. Results for two indoor

environments using a metric based on map accuracy show that the most promising algorithms are

HectorSLAM14, gmapping15 and KartoSLAM16.

14http://wiki.ros.org/hector_slam
15http://wiki.ros.org/gmapping
16http://wiki.ros.org/karto

http://wiki.ros.org/hector_slam
http://wiki.ros.org/gmapping
http://wiki.ros.org/karto
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HectorSLAM is based on robust scan matching from sensor data, thus taking advantage of

better performance laser scanners. Gmapping is an implementation of the algorithm described in

[34], using PFs to create an occupancy grid map and getting different results depending of the

number of particles used. Finally, KartoSLAM is a graph-based SLAM algorithm which creates a

landmark-based map.



Chapter 3

Human-Machine Interface

In service robotics, interfaces are created so the user can fully utilize the robot’s features. Due to

the diversity of the robot’s features, every interface tends to be unique and is made for a specific

robot model.

When it comes to industrial AGV, the robot’s purpose is usually to transport loads, although

much more complex goals exist, such as carrying a robot manipulator for wielding purposes.

For most mobile robot purposes, such as material handling, the robot’s control scheme is usually

similar to the one in Fig.3.1. If both the robot’s purpose and it’s internal control scheme are

standardized, then building a unified setup and operating interface is facilitated and advised.

Figure 3.1: Reference control scheme for mobile robot systems. In [2].

15
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This chapter concerns the problem of the high initial costs of configuring one or more AGV,

which is related to the usually proprietary interfaces bundled with AGV in the market.

Section 3.1 provides an analysis on this problem, while characterizing the environment for

which the interface will be created.

In section 3.2 the different solutions to the problem at hand are discussed.

Then, section 3.3 consists of a description and overview of using web technologies for building

interfaces in the ROS environment.

The development process of a tool for remote process launching using ROS is presented in

section 3.4.

Finally, section 3.5 concludes the chapter presenting the results.

3.1 Problem analysis

The interfaces for industrial AGV are created by the manufacturer and proprietary, which ensures

the buyer will be tied to their software, and potentially only compatible hardware. This increases

the total initial cost of an AGV solution. Furthermore, configuring the robot(s) is usually done by

the manufacturing company, and not by the less expensive company operator and/or engineering

staff. A more standardized interface could potentially decrease these costs, but it must also be

easy enough to learn and use, achieving the previously stated goals. In order to provide a setup

and operating environment in these conditions, a simple interface will be presented, achieving the

basic goals of interaction with an AGV.

For the purposes of the development of an interface, the following scenario is considered. An

AGV with material handling capabilities is available. The positioning sensors available are wheel

encoders and a laser rangefinder. The wheel encoders are used for relative positioning through

odometry, and the laser rangefinder is used to obtain a global position within the environment,

by making use of different mapping and localization algorithms (see 2.2 and 2.3). The robot’s

software is built on ROS, using its standard data types and communication layers.

The robot needs a map of the environment to obtain a position relative to it. This map should

be created by the robot itself, in order to reduce costs. After the map is created, the user should

define a trajectory for the robot to follow indefinitely. In this scenario, the map is two-dimensional

and a trajectory is defined by curved lines between 2d points. Thus, the initial setup consists of

the following steps:

1. Starting the robot;

2. Initializing the mapping algorithm;

3. Moving the robot manually, if required; 1

4. Ending the mapping algorithm;

5. Making manual changes to the output map, if necessary;

6. Creating, editing and deleting waypoints in trajectories;

1If the algorithm is an Active SLAM one, for instance, the robot will create the map by itself
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7. Saving the trajectory.

The operation process is simpler: the operator should choose the map of the environment and

trajectory to follow, and begin the execution of that path.

The scenario and processes described lead to a requirement analysis, resulting in Table 3.1,

where the primary and secondary requirements are presented, respectively, with P* and S* IDs.

ID Name Description

P1 Mapping
Interact with the robot’s mapping algorithms in order to build a
map of the environment and save it for future use

S1 Visualize mapping Provide updates of the current map being built

P2 Trajectory editor Add, edit and remove trajectories and points in trajectories

P3 Execution Choose one from the available trajectories and execute it

S2
Visualize
execution

Show the robot’s position within the map of the environment and
the path it’s executing

S3 State Provide information on the robot’s state, as well as alerts

P4 Ease of use The setup and operating processes should be easy to complete
Table 3.1: Interface requirements.

While using the interface should be made simpler, it is the robot’s software which will dic-

tate how complex the processes behind the interface are. The main challenge and ultimate goal

in creating an interface is putting all the hard work in its designer and programmer, while letting

its use be simple and straightforward. The background processes will depend on the robot’s soft-

ware applications. In the case of ROS, a framework developed from the ground up to encourage

collaborative robotics development, many of the background processes necessary for an HMI are

already available, as will be seen in section 3.3.

3.2 Possible solutions

When designing an user interface (UI), one is faced with a decision concerning the technologies

and programming languages to be used. There are mainly two kinds of UIs: web based and

desktop based interfaces. The decision on which type of interface to design will be based on many

factors, such as:

• The application goal;

• The convenience and applicability of the programming languages;

• Internet access availability;

• Specific hardware connection requirement;
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• Update frequency requirement;

• Complexity of the setup process;

• Cross-platform access requirement;

• Who will use the interface.

Most UIs built to use with ROS applications are desktop type interfaces. The main reason

for this is the existence of tools such as rviz2, a visualization tool for ROS with custom plugin

support. With rviz, most tasks of system debugging by watching the robot’s internal state can be

accomplished. It is mostly used by researchers in robotics, and does not easily solve the problem

of making the interface friendlier to an operator. Other interfaces are developed as desktop appli-

cations, making it easier to use system processes. These are also very versatile, but suffer from

one critical disadvantage: they are OS dependent.

The other kind of interfaces to be used with ROS applications are web-based interfaces. Web

development has been on the rise for years, both on client and server side applications. In the

ROS community, some applications and frameworks to work with web applications have been

built, as mentioned in section 2.1.2. Unlike the previous type of interfaces, web interfaces are

not OS dependent, and a developer can more easily create an interface to be used, for instance,

in mobile devices with a modern web browser. Web development also increases scalability in

high-performance network programs with Node.JS server-side applications [37].

Developing a web-based interface will allow the operator to use any modern device and not

be restricted to an OS supported by ROS. Additionally, it allows the developer to take advantage

of the wide array of high-performance Javascript graphics libraries available. Furthermore, the

flexibility and robustness of the network layers in web applications will mean the web interface

can easily be stored in a web server and be easily accessed either locally or remotely. As such, a

web-based interface will be designed for this problem.

3.3 Web development for ROS

The integration of web applications and ROS is facilitated by rosbridge (see 2.1.2), which pro-

vides ROS API functionality to non-ROS programs. It works by converting JavaScript Object

Notation (JSON) based commands to ROS functionality. Using this tool, any application that

can send JSON commands will be able to take advantage of the ROS middleware. As of version

0.7.14, rosbridge is distributed in the form of the rosbridge_suite3 meta-package, consisting of the

following packages:

• rosbridge_library4, which provides the core JSON to ROS API functionality;

2http://wiki.ros.org/rviz
3http://wiki.ros.org/rosbridge_suite
4http://wiki.ros.org/rosbridge_library

http://wiki.ros.org/rviz
http://wiki.ros.org/rosbridge_suite
http://wiki.ros.org/rosbridge_library
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• rosbridge_server5, providing a websocket transport layer to rosbridge;

• rosapi6, which exposes core ROS functionality to rosbridge clients. Examples are: getting

and setting parameters, getting the existing topics and services list.

If desired, other servers providing the transport layer in different forms can be developed and

used with rosbridge.

With the core functionality of ROS available to web browsers via rosbridge, the roslibjs7

Javascript library will allow interaction with ROS from a web browser, providing most functions

available to standard ROS programs, such as publishing topics, calling services and performing ac-

tions. Although still under development, this library is used by hierarchically higher level libraries

to perform high-performance tasks in robotics.

The basic system communications of a robot with ROS and a rosbridge server connected via

websockets to a client using the roslibjs library as its API is shown in Fig.3.2. The ROS Master is

the main program in a ROS based system, enabling all the core ROS functionality.

Figure 3.2: Rosbridge server and client connections in a ROS based system.

When it comes to tools that have similar purpose to rviz, there are various libraries under

development. Two of the most important libraries are ros2djs8 and ros3djs9, both part of the Robot

Web Tools effort. Both libraries are standard Javascript visualization tools for ROS, one focusing

on 2D visualization, while the other focuses on 3D visualization. HTML5 support is required to

use any of these libraries, making its use restricted to modern web browsers. Using these libraries

usually doesn’t require any additional non-web development, although there are exceptions such

5http://wiki.ros.org/rosbridge_server
6http://wiki.ros.org/rosapi
7http://wiki.ros.org/roslibjs
8http://wiki.ros.org/ros2djs
9http://wiki.ros.org/ros3djs

http://wiki.ros.org/rosbridge_server
http://wiki.ros.org/rosapi
http://wiki.ros.org/roslibjs
http://wiki.ros.org/ros2djs
http://wiki.ros.org/ros3djs
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as using tf2_web_republisher10 to throttle the high frequency tf 11http://wiki.ros.org/tf updates to

rosbridge clients.

The ros2djs library features map and image visualization tools and uses EaselJS12 as its graph-

ics library, allowing to build high-performance interactive 2D content in HTML5. Building on

ros2djs, nav2djs13 adds interaction with mobile robots by rendering the robot’s current position

over a map. The user can also send navigation goals to the robot by double clicking a position on

the map.

On the other hand, ros3djs uses the three.js14 library to create interactive 3D graphics in a

browser using the WebGL API. This allows for interaction with ROS interactive markers, as well

as displaying a 2D map in a 3D space.

While using the previously mentioned libraries should require little to no knowledge of Javascript

to the developer, adding more advanced features certainly will. Some contributions were made to

both the ros2djs and ros3djs repositories. In ros2djs, continuous map updates were fixed and an

example of this feature was added to show how this library can be used for mapping visualization

purposes. This feature was also added to ros3djs. Using this feature, the HTML5 canvas contain-

ing the map will be regularly updated as the robot builds its map of the environment using some

mapping algorithm and sends map updates. Other minor fixes were pushed to the latter library’s

repository.

Recent developments in the ROS community have brought a Node.js implementation of ROS

which allows Node.js applications to take advantage of the ROS API directly. This library is named

rosnodejs15 and is available for the latest ROS release, Kinetic Kame16.

Node.js is a runtime environment for developing server-side web applications, with inherent

asynchronous I/O capability and an event-driven architecture. It is a very promising tool which

allows Javascript frameworks to be developed for robotics. Although unrelated to ROS, it is impor-

tant to mention the most widely known robotics framework using the Node.js runtime: Cylon.js17.

3.4 Remote Launch

The available tools in the ROS community facilitate the development of web user interfaces, but

building the interface still requires moderate Javascript and HTML knowledge, at least.

One of the most basic tasks consists of launching processes in the server, such as the mapping

process. In ROS, this is usually accomplished via roslaunch18, a tool which allows for launching

multiple ROS nodes, specifying their parameters, among other features. Many ROS packages

10http://wiki.ros.org/tf2_web_republisher
11\unskip\penalty\@M\vrulewidth\z@height\z@depth\dp¸
12http://createjs.com/easeljs
13http://wiki.ros.org/nav2djs
14http://threejs.org/
15http://wiki.ros.org/rosnodejs
16http://wiki.ros.org/kinetic
17https://cylonjs.com/
18http://wiki.ros.org/roslaunch

http://wiki.ros.org/tf2_web_republisher
\unskip \penalty \@M \vrule width\z@ height\z@ depth\dp 
http://createjs.com/easeljs
http://wiki.ros.org/nav2djs
http://threejs.org/
http://wiki.ros.org/rosnodejs
http://wiki.ros.org/kinetic
https://cylonjs.com/
http://wiki.ros.org/roslaunch
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come with launch files, which specify the ROS nodes to run. These files are read by roslaunch

with a system command similar to: roslaunch package_name file.launch. These launch files can

be chained hierarchically to allow for more complex configurations, a very useful feature when

setting up advanced processes such as mapping and self-localization.

In order to allow quicker web development for ROS in the future, a tool for using launch files

via web browsers is proposed. The purpose of this tool is to give a ROS Node the capability to

have both typical ROS node and desktop based interface capabilities. Due to the limited ROS

API functionality concerning launch files, that is, the inability for a ROS node to launch other

nodes, the procedure for running processes will be using system commands directly. Using this

method, it is possible for the user to call any system commands as if running them from a basic

command-line terminal. Thus, a user can interact with ROS via commands such as roslaunch and

rosservice.

Fig.3.3 illustrates how this tool accomplishes system-level process launching while retaining

ROS functionality. The ROS Master communicates with every ROS node to give it ROS func-

tionality. The Remote Launch Server receives commands to either start or stop specific processes

through system commands sent to the operating system. These commands can be either ROS re-

lated commands, which communicate with the ROS Master, or other software related commands.

In the figure, two types of Remote Launch Clients are depicted: a ROS node client, and a web

client. Due to the way ROS standardizes its messages, both clients will use the same API to com-

municate with the Remote Launch Server. As the purpose of this work is to build a web-based

interface, only the web client will be developed.

Figure 3.3: The Remote Launch tool’s architecture within ROS.

The method for launching processes to be used results in a big disadvantage for the Remote

Launch tool, which is the fact that the remote process launcher ROS node will not be able to easily

view the state of the process launched using system calls, by parsing the output of the application.

The program has no knowledge of the process being executed, and as such can’t communicate

with it. That functionality is sacrificed in order to make the tool more generic, achieving both

faster and easier development and usage. In future work, one could define special processes such

as ROS node launching and parse their output in a specific way, which would provide information

of its state to clients.
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The remote_launch package was developed as a result of this work and made available in an

open-source repository19 to be used by the ROS community. It consists of a server package and a

web-based client library with a working example provided. In the following sections, the Remote

Launch Server and Remote Launch Client applications are described in more detail.

3.4.1 Remote Launch Server

In this section, the Remote Launch Server is described, a ROS package developed in the course of

this work that has process execution capabilities and is fully adapted to ROS standards.

Most ROS packages are written either in C++ or Python. The former is preferred when a high-

performance task is to be accomplished, such as robot self-localization. Python was preferred for

the development of the remote launch server due to the subprocess20 and psutil21 modules being

available to accomplish the system process execution tasks. As the tool in development does not

require high-performance execution, special attention to its performance was not required.

In terms of security, it is defined that the clients (web or ROS) should not be able to launch

any process in the server, and instead should choose from a list of available processes. The server

is configured by modifying a CSV file, where each line corresponds to a process and a process is

defined by three properties:

• Name - which will be the title presented to the clients;

• Command - the command that will be executed by the operating system;

• Working directory - used by some processes for relative paths.

Using this method, the server is easily configurable by the developer and although multiple

configuration files can be created, only one can be read by the server when launching. In spite

of this method, when launching a process, the client can choose to add custom arguments to the

default command.

Custom arguments are necessary when specifying an input file to a process, for instance. These

arguments are filtered by the server to disallow chaining multiple commands, even though com-

mand chaining is allowed in the configuration file. Examples of argument filtering can be found

in Table 3.2. If the filtered argument is different from the argument, the argument itself is ignored

and only the command is used. If the filtered argument is the same as the original argument, then

the argument is concatenated at the end of the default command. Although this results in less

flexibility when setting custom arguments, this method proved to satisfy the requirements for this

project. In future work, allowing commands to be entirely modified could prove valuable, although

the security concerns would increase. One example of a method to achieve this purpose would be

to define the arguments a list of strings, each taking a position defined by a special character in

19https://github.com/guilhermelawless/remote_launch
20https://docs.python.org/2/library/subprocess.html
21https://github.com/giampaolo/psutil

https://github.com/guilhermelawless/remote_launch
https://docs.python.org/2/library/subprocess.html
https://github.com/giampaolo/psutil
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the defined command. The decisions taken for the purpose of this project proved to achieve the

desired versatility while having a moderate level of security.

In a situation where security is not an issue, the security measures imposed to the clients could

be removed to allow for further flexibility in arguments and allowing custom process chaining.

Command Argument Resulting filtered command

roslaunch example_package example_launch arg1:=value1 arg2:=value2 roslaunch example_package exam-
ple_launch arg1:=value1 arg2:=value2

rosrun map_server map_saver -f map_name rosrun map_server map_saver -f map_name

rosrun example_package example_node & rosrun example2_package
example2_node rosrun example_package example_node

find example_file / | grep example_text find example_file /

qtcreator ; rosrun rviz rviz qtcreator

Table 3.2: Example of filtering arguments in the Remote Launch Server.

The server periodically publishes (using ROS topics) a list of the processes available for clients

to launch, including its execution state (either running or not). A client can execute the desired

process using a custom ROS service where the process identification number (available in the

published process list) is specified. Feedback of the state of the process is sent to the client after

starting or stopping a process execution. The client can then check the process state periodically

using the published process list.

Table 3.3 summarizes the use of standard and custom ROS data types and definitions. The

triple dashes in the service definitions separate the input arguments from the return arguments.

The server publishes periodically to the list_launch_files topic an array of RemoteLaunchFile

message types, each containing a specific process information. Using information from this list,

the client can use the StartLaunchFile or StopLaunchFile to start or stop, respectively, a process

in the server. In the case of the StartLaunchFile service, a string of arguments is accepted, as

previously described.

The process termination task is accomplished as follows: first, the server finds, recursively,

any child processes that have been created by the original one. Then, it sends the UNIX interrupt

signal (SIGINT) to each child process, as ROS nodes are prepared to receive this signal and safely

terminate. For non-ROS processes, the server then tries to send the termination signal (SIGTERM).

Finally, if any processes remain, the kill signal (SIGKILL) is sent, ending the termination task.

This application was tested in Ubuntu 14.04 using ROS Indigo22, being proven to initiate

and terminate any process successfully. Furthermore, custom arguments sent with the purpose of

chaining multiple commands were filtered by the server.

As a result of being developed for ROS, this tool can be used not only for the purposes of

developing a web interface, but for any application requiring basic process management. In order

to make use of this tool, the developer needs no knowledge of system processes. When developing

an application on top of ROS, it can be a powerful tool while requiring little configuration.

22http://wiki.ros.org/indigo

http://wiki.ros.org/indigo
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Name Type Definition

RemoteLaunchFile ROS message

uint8 id

string name

string command

string working_directory

bool running

RemoteLaunchFileArray ROS message RemoteLaunchFile[] rlf_array

list_launch_files ROS topic RemoteLaunchFileArray msg

StartLaunchFile ROS service

RemoteLaunchFile rlf

string args

- - -

bool success

StopLaunchFIle ROS service

RemoteLaunchFile rlf

- - -

bool success
Table 3.3: ROS standard definitions used by the remote launch server.

The name, remote launch server, was the initial name thought for this application, as it would

serve the purpose of using ROS launch files remotely. Even later, as its scope changed to include

any kind of system process, the name remained.

3.4.2 Remote Launch Client

The remote launch server previously discussed can be used in three ways: using ROS command-

line tools, using the ROS API in developed nodes or using a user interface. The remote launch

client was built as a Javascript library to use with the web interface, as discussed in 3.2. This

library can be found in the same open-source repository23, created by the author of this work, as

the server. It follows the ROS Javascript style guide24 and is named remotelaunchjs. This library

was developed to be used by developers with little web development experience, and is meant to

be used with the remote launch server described in 3.4.1.

The core Javascript library for web development with ROS, roslibjs, depends on EventEmit-

ter225. This library is an implementation of the NodeJS EventEmitter module that is browser

compatible. It allows to fully decouple the producers and consumers of events, providing more

flexibility in development than the usual callback pattern. Thus, the remote launch client was also

developed using this library.

23https://github.com/guilhermelawless/remote_launch
24http://wiki.ros.org/JavaScriptStyleGuide
25https://github.com/asyncly/EventEmitter2

https://github.com/guilhermelawless/remote_launch
http://wiki.ros.org/JavaScriptStyleGuide
https://github.com/asyncly/EventEmitter2
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Furthermore, as the standard Javascript libraries that provide ROS 2D visualization, ros2djs,

uses EaselJS to power its graphics, the remote launch client will make use of it. The goal is to

make the setup for this library as easy as possible. Importantly, EaselJS also provides support for

touch-type devices such as modern mobile phones.

The interaction is achieved through on/off buttons displayed using EaselJS. The buttons are

displayed automatically in an HTML5 canvas, which can be configured simply by setting the

number of buttons per column property. The client will display the buttons arranged correctly, as

long as there is a connection to ROS through rosbridge. More advanced features can also be used,

such as scaling the whole canvas to change the button’s size, setting a variable to define which of

the process IDs available should be shown, and setting a list of tooltips to show when mousing

over each button. Choosing only some process IDs to be shown is useful to build a user interface

with different tabs associated to different tasks.

Fig.3.4 shows how each HTML element is displayed in this library. Each button has a name,

state and arguments properties. The name is set by the remote launch server’s published processed

list, the state changes when the button is clicked, and the arguments can be set at any time. In this

example, the property dictating how many buttons should be displayed in each column is set to 3,

although only one process information is being sent by the remote launch server, resulting in only

one button being displayed. On the bottom, a sample tooltip text is shown when the user mouses

over the button.

When the web page is loaded, the client verifies if any process is already running by analyzing

the first message sent with the list of available processes. For each process already in execution,

an event is emitted using the EventEmitter2 library. This event, as well as a stopping event, is also

emitted when clicking a button to start or stop a given process, respectively. This feature is what

allows other Javascript objects to know when a process is started or stopped, and will be proven

useful when setting up other components of the full interface.

The developed library can be used by any web developer in need of a way to remotely launch

processes, as long as ROS is being used. Some flexibility was achieved, although some improve-

ments are necessary for future work. Some examples for improvements are: setting different

button sizes and color pallets; changing the order the buttons are displayed.

Finally, a complete working example of this library can be seen in its open-source repository. It

is not shown in this section as its behavior is similar to what will be accomplished in the complete

user interface.

3.5 Results

Given the scope of this project, the user interface was developed for an AGV with a fully working

mapping, navigation and self-localization system - Jarvis. This robot uses standard ROS data types

and algorithms to accomplish its tasks. As such, these tasks can also be accomplished with a web

user interface, using the previously described libraries such as ros3djs.
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Figure 3.4: Displaying the HTML elements in remotelaunchjs.
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The user interface is split in four pages, one is the initial setup page, and the others are used

for each of the P1, P2 and P3 requirements in Table 3.1. In order to help a first-time user, all the

buttons show tooltips that guide the user through every process.

The connection page is the landing page of the interface, which guides the user towards a

successful connection setup. This page is represented in figure 3.5. The only step necessary to

start using the user interface is using roslaunch to execute a launch file on the robot’s system.

Alternatively, one could execute this process as the robot’s system initiates and no additional

steps would be necessary for the user. The connection status is shown, which will be either "Not

connected" or "Connected", meaning the page can or can’t connect to the rosbridge_server ROS

node.

Figure 3.5: The interface’s Connection page.

For mapping purposes, the robot has several working algorithms, and an example was chosen

for demonstration purposes. The mapping process is standard in ROS, thus visualization can be

accomplished with either ros2djs or ros3djs. Here, ros2djs was chosen as the map being built is

two-dimensional. Within the interface’s Mapping page, the user can start and end the mapping

process, as well as save the map currently being built using only two buttons. When the mapping

process is started, it also loads the joystick drivers so it can be used to move the robot through

the environment. Fig.3.6 includes several steps of the mapping process within the interface, and

Fig.3.7 shows the built map which is saved after pressing the "Save Map" button.

For trajectory editing, the robot has a fully developed trajectory editor which uses the inter-

active_ markers26 system from rviz. This system is also featured in ros3djs, thus this library is

used for the same purpose. The Trajectories page within the interface is shown in Fig.3.8. In this
26http://wiki.ros.org/interactive_markers

http://wiki.ros.org/interactive_ markers


28 Human-Machine Interface

Figure 3.6: Mapping process visualization, from left to right, top to bottom
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Figure 3.7: Map saved using the "Save Map" button.

page, the user begins by pressing the "Editor" button, which executes a launch file containing the

ROS node configuration for using the trajectory editor. If existent, the previously saved trajectory

is loaded and the user can edit it by adding, removing or changing the position of waypoints using

the menu accessible with a mouse right-click. This system is already fully developed in the robot

for use with a native interface, and only adapting it to web interfaces was required. At this point,

the user can also load another trajectory using the "Load Traj." button and specifying the file name.

The Trajectories page is shown in Fig.3.8. The black arrow represents the robot’s position. After

building the desired trajectory, the user can set the robot to follow it using the "Start Jarvis" and

"Stop Jarvis" buttons. If satisfied with the result, the user can proceed to save the trajectory using

the "Save Traj." button, and a custom name can be set for the saved file. The process of building a

new trajectory is shown in Fig.3.9.

Finally, the robot’s execution process involves self-localization, for which it uses standard

ROS algorithms. Viewing the robot’s state can be accomplished with either ros2djs or ros3djs.

Currently, ros3djs features zooming and panning, which can prove useful when the constructed

map increases in size, and thus this library was used. The execution process is visualized in

the interface’s View page. To use this page, the user has to press the "View" button, which will

show the canvas and map of the environment. Then, the user can press either the "Joystick" or

"Decision" buttons. By pressing the "Joystick" button, the user can then use a pre-configured

joystick to control the robot. Alternatively, by pressing the "Decision" button, the robot’s decision
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Figure 3.8: The interface’s Trajectories page.

Figure 3.9: The process of building a new trajectory, from top to bottom, left to right.
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process is launched and the default trajectory is loaded. As with the Trajectories page, the robot’s

trajectory is shown, although in this case it is shown in a minimal, non-editable state. The robot’s

position is also shown using a black arrow. Finally, the user can press the "Start Jarvis" and

"Stop Jarvis" buttons to make the robot follow the represented trajectory. Fig.3.10 shows the View

page with a loaded trajectory and the robot’s position immediately after pressing the "Start Jarvis"

button. As such, the robot is not yet following the desired trajectory, though as updates are received

concerning the robot’s position, it will be updated on the interface.

Figure 3.10: The interface’s View page.

The developed interface satisfies most of the requirements previously proposed in 3.1. The

ease of use is accomplished by using simple buttons to accomplished complex tasks. By putting

most of the work in the user interface’s development, the user can complete both setup and opera-

tion tasks even when not familiarized with the background processes behind the robot’s systems.

Table 3.4 summarizes the requirements and their fulfillment. The only requisite unfulfilled

by the developed interface is providing alerts concerning the robot’s state. This feature should be

considered for future work. The situations where an alert message should be shown vary greatly

with the application, but some examples are:

• The robot does not know or is not confident in its position relative to the environment. In

the case of an industrial AGV, the robot should immediately stop and wait for human action.

Here, an alert could be provided to the operator;

• The robot’s systems are malfunctioning. It’s important that operators know about malfunc-

tions as soon as possible, to prevent stopping the robot’s operation for a long time.
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ID Name Fulfillment

P1 Mapping Total

S1 Visualize mapping Total

P2 Trajectory editor Total

P3 Execution Total

S2 Visualize execution Total

S3 State Partial

P4 Ease of use Total
Table 3.4: Interface requirements fulfillment. Described in Table 3.1.



Chapter 4

Global positioning using laser
rangefinders

After reviewing the technology, localization and mapping algorithms in Chapter 2, this chapter

will present a small discussion on how the choice of the positioning sensors impact the overall

cost of the AGV.

One of the main reasons for an increased cost in industrial AGVs is the equipment used to

determine its location within the environment, that is, its positioning sensors and associated land-

marks. As flexibility becomes more and more an issue in adopting AGV solutions, robust and

cost-effective sensors need to be used to reduce the overall costs. The laser rangefinder is the most

widely used global positioning sensor which allows for flexible trajectory definition.

In order to preserve accuracy and robustness, a laser rangefinder is usually paired together

with artificial landmarks which help in self-localization. These are often highly reflective beacons

so they can be distinguished from other objects in the environment. The number of artificial

landmarks can range from a few to several hundred, increasing setup costs greatly, mostly due to

installation and calibration of the landmark’s position. The number of necessary landmarks vary

with environment conditions, trajectory length, desired accuracy and other variables. Thus, there

is an incentive to performing self-localization based on natural landmarks or features.

It can be seen that cost analysis for AGV applications depends greatly on the application itself.

Besides the setup, the laser itself can also represent a significant percentage of the whole system’s

cost. Having more cost optimized laser rangefinders is important in an application where the AGV

technology used is a greater percentage of the overall costs. Lower cost sensors will compromise

in several ways, such as the following laser characteristics:

• Lack of an inherent localization algorithm;

• Lack of a reflection intensity measurement feature;

• Lower maximum measurement range;

• Higher minimum measurement range;

33
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• Lower accuracy and accuracy decrease with distance to object;

• Lower angular scanning range;

• Lower scanning frequency;

• Lower angular resolution;

• Higher power consumption;

• Lower resistance to vibration and impact;

• Higher measurement noise;

• Higher sensitivity to lighting, temperature and humidity conditions.

However, there are cases, although mostly in research, where more cost optimized laser sensors

are used and the application requirements are met by using appropriate localization algorithms and

a lower number of artificial landmarks, or even using only natural features of the environment.

The widely used AMCL algorithm, available for ROS, uses a particle filter to track the robot’s

position relative to the environment. This algorithm does not need artificial landmarks to perform

accurately in many environment conditions. It takes the laser measurements, known map and

particles and estimates the robot’s position while adapting the number of particles in use. In

order to be accurate, the algorithm requires a great amount of particles, often hundreds. This

causes the algorithm to be particularly computationally heavy. With an increase in complexity and

computational weight there is a need to use a faster processor. Besides increasing the cost of the

robot, a faster processor usually requires more power, increasing the cost of operating the robot

and causing battery charging or changing to occur more frequently. Alternatively, batteries with

more capacity or a higher number of batteries can be used, also increasing the cost. Even if the

power usage difference in two processors does not seem like it makes an impact in the overall

power usage of the robot, it should be noted that a processor is always in use when the robot is

operating. In opposite, functions such as moving are not always in use. As such, a more efficient

processor is preferred.

An attempt on self-localization that is computationally light weight and does not need arti-

ficial landmarks is presented in [38], where position tracking is achieved without modifying the

environment with artificial landmarks or beacons. The used algorithm is a fusion of the EKF with

the Perfect Match algorithm. This results in a computationally lightweight algorithm that does not

need any artificial landmarks. The reason for it being a fast algorithm is the use of precomputed

gradient and distance matrices.

The localization algorithm was tested in two applications: a robot designed to use in football

robot games, and a surveillance robot. In the first application, a camera with a 360 degree field

of view is used to obtain visual information from the environment. The second application makes

use of a tilting laser rangefinder to obtain a 3D occupancy grid. Overall, experimental results show

distance errors lower than 25 cm and angle errors lower than 9 degrees between the localization
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algorithm and the position obtained from a robust Sick NAV350 sensor’s inherent localization

algorithm as the ground truth. More recent results show errors lower than 10 cm and 4 degrees.

While the results prove the algorithm to be sufficiently accurate for both applications, it is not

accurate enough to be used in most industrial applications with AGVs such as docking and load

transferring, where usually an accuracy of a few millimeters is required. The resulting accuracy is,

though, sufficient for less demanding tasks such as path following between waypoints. As such, a

lower number of artificial landmarks can be used in locations where more accuracy is required. In

conclusion, the research shows promise and works towards a future where the number of artificial

landmarks to be installed is vastly reduced in industrial applications, thus reducing the overall

setup costs.

At this point the author would like to propose an application where some of the mentioned

laser characteristics can be artificially simulated by using a high performance laser and affecting

its measurements with different methods. For instance, measurements could be affected according

to a lower cost laser’s accuracy characteristics. Another way to impact the measurements would be

to throttle the scanning frequency and angular resolution by accepting every other measurement,

as an example.

The proposed application could provide some insight on how more cost optimized lasers would

perform in an application or when testing different algorithms. If a widely used and fully featured

tool was to be developed, for instance to use with ROS, it could provide better comparison results

between different research papers, especially research which differs in the self-localization or

mapping algorithm used. If laser characteristics could be set as standard for algorithm comparison,

the algorithm choice may become an easier task.

It is however impossible to artificially affect all laser characteristics. Non linear characteristics

are difficult to reproduce. In spite of this fact, some results could be achieved with a laser com-

parison application. An interesting result would be a study of localization algorithms robustness

to laser choice in different applications and environment conditions.
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Chapter 5

Layout simulation with AGV

In big and complex production systems, the number of variables which cause an impact on the sys-

tem’s performance is extensive. Often, the most appropriate method for previewing the resulting

performance is using a simulation-based approach. In the case of an AGV system, some examples

of variables that can cause an impact on the performance are: the layout, the number and type of

AGV, their speed and capacity, the load and unload mechanism, and more. The resulting impact

is often too complex to analyze using a non-simulation based approach.

This chapter analyzes the impact of layout choice and AGV characteristics in an industrial

system’s performance. To accomplish this, a real material handling scenario will be studied and,

using real input data, the resulting performance will be analyzed. Using data obtained from the

real system is of major importance in simulation, as it greatly reduces the expected simulation

error. The simulation error is defined as the performance difference between the system modeled

in the simulation application and the resulting performance in the real system.

The underlying scenario is a push-pull system inside a factory, where between a raw mate-

rials warehouse and the production center a buffer is located. The transport system is currently

accomplished by common forklifts, and it is desirable to study the effect of changing to an AGV-

based transport solution. Furthermore, some study is required concerning the buffer size and how

reducing it would affect the system’s performance.

As will be seen in section 5.2.1, the current layout causes some problems in the system for

an AGV solution. An alternate layout will be designed and presented, while briefly discussing

mechanical solutions for the storage spaces.

The main tool of analysis in this case study will be computer simulation. To accomplish this,

the Simio software will be used. The developed simulation will be used in the future for other

material handling related studies.

Firstly, the simulation software to be used in modeling this application is presented in section

5.1.

Then, the case study description, goals, as well as the simulation approach and results are

presented in section 5.2.
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5.1 Overview of Simio

In this section the reader can find a brief introduction to the Simio simulation software. For a more

comprehensive introduction, there are free resource available on the product’s website1.

Simio, an acronym for Simulation Modeling framework based on Intelligent Objects, is a

simulation software package initially released in 2009. The founder and creator of Simio also led

the creation of the simulation products ARENA and SIMAN.

The software is available in a free edition for evaluation and training, as it is limited in the

number of models, objects and process steps. Other commercial editions are available which

remove these limitations and extend the software’s features. The version used for the purposes of

this work is 8.136.13569.0.

As with other simulation software applications, Simio can be used to preview a system’s be-

havior when multiple variables are changed, allowing the user to see the impact of business ideas,

decisions and rules prior to their implementation. Simio is presented in an interface similar to

Microsoft Office products, with ribbon-style tabs system.

Simio models are usually built using object oriented programming. Typically, simulation mod-

els are built using a modeling paradigm known as process orientation. It is the case of the widely

used ARENA software and other products. In process oriented models, the model is built by defin-

ing elements which define the state of the system, and then building process flow blocks that take

actions on these elements. Usually, the process flow can be described with flowcharts. In the case

of Simio, however, an object oriented approach is supported. Objects are built with logic and can

interact with other objects, even of different types. They are then placed in a model and the actions

are defined completely by the objects’ internal logic. Objects are characterized by their properties

and states. Properties are static; their initial value can be changed prior to running the simulation

and does not change during execution. On the other hand, states specify dynamic values, which

change while the model is running and are also defined by an initial value. Overall, object oriented

programming is a different approach to simulation, not well suited for every application, but can

prove to be useful in building elegantly designed models with hierarchically organized objects.

The facility window, where objects are placed to interact with each other, is presented in either

a 2D or 3D graphics environment, which can be changed on the fly. An example of a model

viewed from a 2D and 3D perspective can be seen in Fig.5.1 The collection of objects and how

they are placed form the facility model. Besides having internal logic, an object is also defined

by its graphical symbol and, if desired, animation. An object’s animation is defined by several

symbols and a variable whose state value defines the current symbol being displayed. Simio

has an extensive symbol library for graphical visualization, but also accepts typical 3D modeling

objects and has Google 3D Warehouse integrated directly in the software, providing thousands of

symbols to be used. After placing an object with a drag and drop method, the user can then modify

an object’s properties which will define the interaction with other objects. It should be said that

1http://www.simio.com/index.php

http://www.simio.com/index.php
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the facility view does not exist purely for viewing purposes. In fact, the distance and organization

of objects within the modeling environment will also dictate the objects’ interactions.

Figure 5.1: A Simio model. Left: 2D perspective. Right: 3D perspective.

Objects that are placed in the facility model are user-defined and stored in libraries that can be

interchanged with other models. These objects are defined by other objects and their interaction,

forming a small model that can be placed in the facility view. The limitations in modeling are then

imposed by the most basic objects which come with the software, also called object classes. The

following object classes are defined:

• Fixed objects - they have a fixed location in the model and represent machines, work sta-

tions, anything with inputs, outputs and some kind of processing that takes actions on objects

that visit it;

• Entities - these objects are dynamically created and destroyed during the simulation run and

move through the simulation 3D space. They usually represent people, materials and similar

objects;

• Transporters - they are a special type of entity that can be used to carry other entities between

locations. AGV are modeled using this object class;

• Links - objects used to move entities over a pathway, either a basic entity or a transporter

carrying another entity. AGV paths are modeled using links;

• Nodes - they define the starting and ending point of a link, and are used to transfer to and

from objects of the fixed class.

It should be noted that an object definition builds on its class and adds internal logic to cus-

tomize its behavior. An object is built just like the main model, and can be used in other models

as an object definition. After objects are defined, they can be placed in the facility model. Simio

includes two object libraries, the standard library and the flow library. The flow library contains

objects to model flow processing systems. The standard library contains the basic Simio objects.
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For many applications, the standard library of Simio objects can be sufficient. Table 5.1 sum-

marizes the function of each object in the standard library, while Fig.5.2 contains the graphical

representation of these objects in Simio. There are no objects of the entity class besides the entity

object itself which is part of Simio and not present in this library.

Name Class Function

Source Fixed Create entities to arrive in the system

Sink Fixed Destroy entities

Server Fixed Process entities, with queues and processing time logic

Workstation Fixed
Process entities, with added logic for setup and tear-down activi-
ties

Combiner Fixed Batch entities together and match with a different type of entity

Separator Fixed Separate batched entities or make copies of an entity

Resource Fixed
To be seized and released by other objects as a resource in the
system

Vehicle Transporter Transport entities between nodes

Worker Transporter A mobile resource which can also transport entities

BasicNode Node
Transfer entities to and from other objects, and provide link inter-
sections

TransferNode Node Route an entity to a destination and reserve transports

Connector Link Directly connect two nodes with zero travel time for entities

Path Link
Model a pathway with speed limit, passing rules and travel time
defined by its length

TimePath Link Same as a Connector, but with user-specified travel time

Conveyor Link
Model the properties of conveyors where entities can accumulate
on its end

Table 5.1: The standard library’s objects in Simio

To create new objects, the user can choose between creating objects by using existing object

definitions, sub-classing an existing object definition or creating a base object which is defined

using a set of processes. Processes define Simio’s process oriented programming capabilities.

They encompass the most basic tasks Simio can perform, and even user-defined processes can be

used, but these must be created outside Simio with other, .NET programming languages. Outside

programming is also used to build custom data integration for importing or exporting data auto-

matically, or creating complex algorithms and rules. Processes are comprised of steps, elements

and tokens. A token is the traveling entity between steps, which perform a certain action. Ele-

ments are the object’s basic components that perform tasks such as generating queues, failures and

statistics, as well as data importing and exporting operations.



5.1 Overview of Simio 41

Figure 5.2: Simio’s standard library objects and default symbols.

The role of processes is to extend object definition capabilities. In fact, all objects in the stan-

dard library are built using Simio’s available elements and processes, and their behavior processes

can be viewed by sub-classing the object, facilitating debugging tasks. Process steps can range

from decision-making and locating a specific object in the model, to resource seizing and trans-

ferring entities between objects. As an example, consider the process in Fig.5.3. This process is

used to transfer the first item of a station’s ranking queue to its output buffer. In case of transfer

failure, the process token is assigned with an error value. Here, the process token is the default

Simio token, as no state variables are required within the process scope. Other processes may use

different, more advanced tokens with multiple state variables.

Figure 5.3: An example of a Simio process.

For data integration, Simio can inherently import and export to Microsoft Excel spreadsheets.

As previously mentioned, the user can build custom data integration using .NET programming

languages.



42 Layout simulation with AGV

It is important to mention one other feature of Simio, which is randomness. Using random

numbers is important in a study with simulation, allowing not only to approximate real life variable

behavior, but also to see the impact of the general variance of a variable. It is possible to define non-

random and random variables individually. The distributions used are varied, both discrete and

continuous distributions, and the parameters are configurable. Examples of random distributions

are the normal, bell, poisson, uniform and triangular distribution functions. In Simio, the user can

run the model with a replication number which all random variables will look at to know their

next value. This, in turn, means that the user can re-run the model with the same characteristics

for debugging, or run the model several times with different replication numbers.

The previous feature applies to Simio’s experiments, which are comprised of scenarios, that

is, runs of the model without any animation to increase simulation speed. When running an ex-

periment, the user can specify how many replications should be ran, for which the results will not

only display the average of all replications, but also measurements of confidence intervals for a

given confidence level. Also, when running multiple scenarios in an experiment, the same repli-

cation numbers will be used in each scenario for consistency. The experiment’s results - known as

responses in Simio - can be presented in a multitude of ways, such as charts with statistical data,

histograms, pivot grids, and extensive reports. The response sensitivity and sample size error of

certain input variables can also be analyzed. On the other hand, when running a specific scenario

in the facility view, feedback is given to the user in the form of dynamic graphs and dynamic labels

with state values. An example of a dynamic graph can be seen in Fig.5.4. Interactive controls are

also available which can be useful for debugging the model. At the end of the run, output data can

be organized in a dashboard-based report.

Figure 5.4: An example of a dynamic graph in Simio.

The overview in this section should provide enough background information to understand

the methodologies which will be mentioned in later sections. Furthermore, the author refers to

the resources located on the product’s website and all the support tools in the free version of

the product, such as the reference guide, a vast collection of examples, e-books and introductory

videos.
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5.2 Case study

5.2.1 System description

The target application of this work is based in a real scenario where raw materials are moved, in

pallets and by forklifts, to a buffer zone, in a push-type system. On the other hand, the production

side gets the materials necessary from this buffer zone, in a pull-type system. This is described

in Fig.5.5 It is of great importance that material requests by the production side are fulfilled as

quickly as possible, as delaying this delivery would potentially stop production temporarily.

Figure 5.5: Description of the case study underlying system.

The material types are not of interest in this study, though, instead the focus is on how the pal-

lets are transported, and how the buffer usable area is being utilized. At the moment, 39 different

material types populate the system, some being used much more often than others. The material

utilization varies monthly, and changes can occur both in the warehouse and buffer layouts and

material distributions. Currently, the material handling task is accomplished by common forklifts,

using pallets standardized in size.

Materials are requested by the production side to fulfill the production needs. Requests refer

to a particular material type and weight. Two forklift vehicles owned by the production side, from

here on called production vehicles, pull materials from the buffer in a LIFO order system. It is

desirable to change to a FIFO order system. The overall system does not stop at any time, and

requests may be generated at any time and with any material weight.

On the other hand, the warehouse side is tasked with replenishing the buffer zone with ma-

terials. As requests are generated, the system keeps track of the buffer capacities and orders to

replenish are generated accordingly. The material handling tasks are also handled by forklifts,

from here on called warehouse vehicles. Currently, a single forklift is tasked with all the material

handling tasks.
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There is enough space in the transporter zone lanes for two vehicles to travel on it in both

directions without any traffic being blocked.

The buffer zone is characterized by a free space system with pallets. Most materials can be

stacked to a maximum of two pallets, though some can’t be stacked. In the middle of the area

is a shared zone for transporters, both production are warehouse vehicles. A specific material is

designated to any storage space. There are also specific storage spaces for compounds and empty

pallets, although the desire is to not use these in the future.

5.2.2 Goals

Given the system’s description in the previous section, it is desired to study the possibility of

changing the warehouse transportation system to an AGV based system, as well as the effect

of using more vehicles than currently. The results should thus include a comparison of using

common forklifts or AGV and a varied number of vehicles. On the other hand, the production

vehicle system will not be analyzed as it is not the scope of this project.

For the reasons described in the next section, a new buffer layout will be developed and the

results should include a comparison based on the performance using either system layout. The

layout’s utilization, that is, the storage space maximum utilization, will be used as an input to

the system, as it is desirable to decrease the overall utilization, both to keep stocking costs down

and to allow the resulting available space to be used for new materials, empty pallets that require

unplanned storage space, or even other installing other equipment. Essentially, having free space

in the layout benefits the overall system’s performance, although a quantitative index isn’t used in

this case.

The system performance is described mainly by the time a request order from the production

takes to be fulfilled. Examples of relevant measurements are the average time to fulfill all requests

and the maximum time it took to complete any request order. Other descriptions of the system’s

performance is the vehicle utilization, that is, the time warehouse vehicles are tasked with a mate-

rial handling task.

5.2.3 Buffer layout - current and new proposal

As mentioned in section 5.2.1, the system’s process is a push-pull type process of material han-

dling between a warehouse, a buffer and the production zone. A simplified representation of the

current system’s layout is presented in Fig.5.6, as well as the material distribution and available

pallet capacity in each storage location. The real layout can be seen in Fig.5.7, where the buffer,

warehouse and production zones are marked, and the assigned vehicle lanes are marked in gray

but are not to scale.

The issues verified in the current system layout are the following:

• The layout is not uniform, that is, the different storage spaces hold different amounts of

pallets and their location is irregular, because of doors, passageways and others;
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• The shared transporter zone between the production and warehouse vehicles (grey area in

Fig.5.6) is undesirable, as AGV must have a lower operating speed in a shared zone;

• There is a great amount of unused volume space as some materials can’t be stacked.

Figure 5.6: Original layout, simplified and showing the material distribution.

The referred issues will make the adoption of an AGV solution harder. The irregular space

will increase traffic blocking time, and the shared transporter zone, where AGV would share space

with forklifts, will mean the maximum speed of the AGV will have to be reduced. Finally, the

unused volume is an obvious problem as it is desired to increase the usable volume in the buffer,

allowing for more capacity.

In an attempt to solve or at least diminish the effect of the mentioned issues, a new layout is

proposed and presented in Fig.5.8. The simplified version of this layout with material distribution

can be found in Fig.5.9. The storage locations available are 34, each with 2 levels for pallets. Table

5.2 specifies how many pallets can be stored in each storage location in the new layout. Storage

locations can be assigned either one or two material types, as depicted in Fig.5.10.

Storage Type Capacity Available (pallets)

One material 16

Two materials 8 (each)
Table 5.2: Storage location capacity in the new layout.
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Figure 5.7: Original buffer layout. The assigned vehicle lanes are marked in gray.
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Figure 5.8: Proposed buffer layout. The assigned vehicle lanes are marked in gray.
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Figure 5.9: Proposed layout, simplified and showing the material distribution.

Figure 5.10: Top: Storage location with one material type assigned. Bottom: Storage location
with two material types assigned.
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The total storage capacity, in pallets, is calculated as follows:

capacitytotal = capacitystorage ∗ levels∗ locations = 544 (5.1)

The material distribution is a result of a study based on the material requests that occurred

in the course of a month. The percentage of requests was calculated for each material, which is

proportional to the calculated capacity. This capacity was manually adjusted to conform to the

restrictions of a minimum capacity of 8 per material, as only one material should be assigned to

each storage location level. Also, capacities must be a multiple of 8 as that is the storage capacity

per storage location. The results are presented in Table 5.3.

The approach taken in this study takes into consideration the requests of one month, thus

being only temporarily valid. Also, this approach does not reflect the burst effect of requests.

That is, even for a material that does not have many requests over a month, those requests may

happen non-uniformly, for instance, during a single hour, and the storage capacity available for

this material may prove to be inadequate. That said, this is the exact purpose of having a buffer, so

this effect should be minimized as long as new material quantities are provided by the warehouse

immediately. To conclude, it should be said that this study should not be considered sufficient for

a change in the layout, and a more in depth study is required. For the purposes of this project, this

study was deemed adequate.

The proposed layout encompasses two non-shared transporter zones, effectively separating the

warehouse vehicles from the production vehicles entirely. This will facilitate the introduction of

AGV vehicles on the warehouse side. Furthermore, the uniformity achieved with the storage loca-

tion disposition will also provide benefits when setting paths for an AGV. Finally, the introduction

of a fixed two-level system for each storage location, the effective volume of the buffer increases.

The two-level system can’t be achieved by keeping the free space stacking method currently

in use, and a different mechanical solution should be adopted. The solution should provide a FIFO

order system, as it is desirable that the older materials are consumed first. The proposed solution

is a pallet flow racking system, also known as gravity flow. This solution is AGV-friendly, as it

does not require the AGV to leave the main transporter zone and go inside the storage location. An

alternate solution would be a drive-through racking system. Although much cheaper and requiring

less maintenance, as it does not require movable parts like the pallet flow system, using a drive-

through system would imply a change of the material distribution for the storage locations. With a

two-level system, unused materials in the lower level can block the vehicle’s path, and the top-row

materials may become unavailable from the other side. This is only a problem when that storage

location is assigned to two different material types. Fig.5.11 provides an example of this situation,

where the production side is unable to retrieve material B until material A is consumed. As seen

from this figure, the pallet-flow system circumvents this problem. During the model development

it is assumed that the pallet flow system is adopted.

In order to find if the new layout can satisfy the system’s performance needs, simulation mod-

els for the old and new layouts will be developed. In the next section, the simulation modeling
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Material Type Percentage of
Requests (%)

Calculated
Capacity

Corrected
Capacity

Storage
Locations

CE16100518 12.58% 68.44 56 7
CN20371418 12.25% 66.65 56 7
CE10010218 10.08% 54.82 40 5
CN20071518 6.49% 35.29 32 4
CE16010518 5.86% 31.89 24 3
CN20491018 5.66% 30.81 24 3
CE26020118 3.49% 18.99 16 2
CE26040818 4.02% 21.86 16 2
CE33021818 4.15% 22.57 16 2
CE34600118 3.42% 18.63 16 2
CE34710118 4.03% 21.95 16 2
CE36060818 4.33% 23.56 16 2
CN20490418 3.69% 20.07 16 2
CE10070114 0.12% 0.63 8 1
CE16050218 0.68% 3.67 8 1
CE16060318 0.68% 3.67 8 1
CE25010718 0.56% 3.05 8 1
CE33011818 1.35% 7.35 8 1
CE34010718 0.13% 0.72 8 1
CE34181118 1.05% 5.73 8 1
CE34300318 0.99% 5.37 8 1
CE34330618 1.71% 9.32 8 1
CE34460118 1.91% 10.39 8 1
CE34630118 0.12% 0.63 8 1
CE34700118 0.07% 0.36 8 1
CE34940118 1.70% 9.23 8 1
CE36050318 0.40% 2.15 8 1
CE38350518 0.46% 2.51 8 1
CE38360118 0.16% 0.90 8 1
CE38390118 0.23% 1.25 8 1
CE38430118 0.48% 2.60 8 1
CE38540118 0.99% 5.37 8 1
CE38600118 0.26% 1.43 8 1
CN20071418 2.11% 11.47 8 1
CN20490218 0.43% 2.33 8 1
CR41010712 1.88% 10.21 8 1
CR41130414 1.48% 8.06 8 1
CZ16860912 0.02% 0.09 8 1

Sum 100.00% 544.00 544 68
Table 5.3: Study results for material distribution in the new layout.
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Figure 5.11: The problem of using a drive-through racking system when a storage location is
assigned to two different material types. Top: drive-through system. Bottom: pallet-flow system.

approach, as well as the application’s inputs and outputs, are presented.

5.2.4 Simulation approach

The model has been developed and tested using Simio version 8.136.13569.0. Although future

versions will usually support the developed model, older version may not have all available fea-

tures and thus may not be able to run the model. The reader should refer to section 5.1 for some

background concepts which will be discussed here.

Due to the project’s scope of analyzing the buffer system’s performance, many simplifications

are made in order to streamline the model’s development. These simplifications will be discussed

during this section when relevant.

The most significant simplification in the developed model is assuming all materials in the

warehouse are in a single location and all the production destinations are also in one location.

This simplifies the model development, although an extension could be made to include a realistic

model of the warehouse and production’s systems. In order to not increase the simulation error,

the time to grab a material in the warehouse is assumed constant during the model run, but varies

with the type of vehicle. A number in the upper bound of the time to grab any material is used.

The time to deliver a material to the production side is also assumed constant. In order to not have

this simplification, the model would have to extend to the real warehouse and production systems,

an effort that will be the next step of the project if required, but outside the scope of this work.
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5.2.4.1 Model entities

The main entity in the model is a material pallet, and the model’s base material measurement is one

pallet. This approach is used to prevent dealing with material weight while running the model. As

a consequence, it may require additional pre-computation to the input parameters before running

the model, if the arriving request refers to material weight instead of pallets. A material entity
is created in the warehouse, from where a warehouse vehicle should carry the entity to a storage

location reserved for that entity’s material type. The destination storage is immediately decided

when the entity is created, since it is the storage space itself that generates the creation of the entity,

which is possible due to Simio’s object oriented modeling approach. This process is described in

more detail in section 5.2.4.2. After transporting to the storage space and being stored, when a

request order is generated for the same material type, the entity (or any other of the same type) is

carried to the production, where it is batched together with the request and, when the request is

fulfilled, all entities involved are destroyed.

Figure 5.12: The material entity from a 3D perspective.

The other entity which populates the model is a request. A request entity is created according

to the input request table, which consists of a set of rows, each specifying which material type

the request is for, the necessary quantity, and the date it arrives. This input is taken from the real

system and used to generate the simulation results. Since the real system only provides the day a

request arrived, and the request can arrive at any time during the day, the arrival time is generated

as any number from a uniform distribution between 0 and 24 hours. It should be noted that not

only the hour of arrival is randomly generated, but also the minute and second. This approach,

paired with the randomness factor available in Simio’s simulation runs, should provide reasonably

accurate results over many replications. When the request entity is created, it goes to a combiner

object where it is then processed. It should be noted that the combiner is fictitious and only exists

in the simulation model to simulate the request being fulfilled.

Processing a request consists of searching all storage locations for material availability of that

request’s material type. The search considers a ranking queue of materials, ordered by an entity’s

time in system, that is, the time the entity has spent in the model since its creation. The material

with the higher time in system is chosen to exit its storage location and a production vehicle is

tasked with carrying it to the combiner. This process is repeated concurrently until the request
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quantity is fulfilled. When there aren’t any available materials in stock, the request waits for a new

material arrival, as the re-stocking task is done by the warehouse side.

A priority system is defined for requests, so that higher priorities can be assigned to requests

requiring large amounts of materials instead of the ones already or close to being fulfilled. Thus,

the warehouse vehicles will be aware of request priorities when choosing which material pallets

to take to the buffer first. Simio’s priority state values are required to be integers. Requests of the

same material type all have the same priority, defined by the maximum priority of all requests of

that material type. All priorities are updated whenever a new request arrives or is destroyed. A

request’s priority, rp, of a material type m was defined as in equation 5.2, after which all requests

of the same type take the maximum value of all those requests’ priorities.

rp = round(α.rT IS +β .Rmremaining − γ.mavailable) (5.2)

Where round(x) rounds x to the closest integer, rT IS is the request’s time in system (in hours),

Rmremaining are the remaining quantity to be fulfilled of all requests of type m, mavailable are the

materials in stock (in the buffer) of material type m, and α,β ,γ are constants.

By using positive α,β ,γ constants, the request’s priority will increase with its time in system

and unfulfilled orders of its material type, while also decreasing with material availability. When

the time in system is not considered, a case where material availability is greater than the material

needs, the resulting priority is lower than zero. On the other hand, if the request needs materials not

currently in stock, the resulting priority is greater than zero. Thus, by considering higher priority

requests firstly, and re-stocking materials according to those priorities, the system’s response time

should decrease, increasing overall performance, specifically the maximum fulfillment time. The

request’s time in system is considered when computing priority in order to prioritize those with

greater time in system when multiple requests of the same material type exist.

Fig.5.13 shows the request processing queue with 4 different request entities. For animation

purposes, labels are used to show the material type, time in system, priority and order amount,

respectively from to to bottom.

Figure 5.13: The processing queue for requests, with dynamic labels.
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5.2.4.2 Storage locations

In order to model storage locations, usually the server object from the standard is library is used.

This is the case of the simple "WarehouseExample" model available in Simio. The material stays

in the storage location for a certain amount of time - which is the processing time in the server’s

properties. However, this kind of approach is adequate only to pure push type systems, in which

the entities - in this case, the material pallets -, would be sent to the production without request

orders happening. The reason for this difference is that the server object does not accept an infinite

processing time and a triggering event to release the object. In this case, it is required that the

material entity stay in the storage object until a request order requires that specific material.

The storage location modeling was accomplished with a new object definition, called storage.

A storage object consists of four main elements, which are all stations. Stations are used to hold

discrete items and define an internal capacity. The four stations consist of two storing stations,

an input buffer serving as a deciding station, and an output buffer. To access the object, two

external nodes are defined in the model, for input and output of entities to the object. Material

entities (that is, the material pallets) are dropped by vehicles at the input node and transfered to

the deciding station, after which the vehicle has completed its task. When entities are set to exit

the object by a request order, they are firstly transfered to the output buffer where they wait for a

production vehicle to arrive. In the deciding station, the entity is analyzed to decide which storage

station to move it to. Although there are two storage station elements, station 1 and station2, the

object can be setup to have one or two material types. When one material type is selected, only

station 1 is used. On the other hand, if two material types are selected, both station 1 and station

2 are used, but each have half their original capacity. The storage capacity is a property of the

object. Other properties include the initial WIP for each station, that is, the initial stock when the

model run begins, and the limit utilization property.

The limit utilization property is defined for each storage object individually, although a general

model property is used in this work, corresponding to the buffer utilization which will be one of

the variable inputs for which the performance impact is to be analyzed. When the property is set

to 100%, the object will use all its capacity to store materials. However, if a lower number is used,

the object will have a lower effective capacity during the model run. During the course of this

project, the initial WIP was set to the expected steady state material stock, according to effective

capacity. For instance, in a storage location with a capacity of 8 and limit utilization of 75%, the

effective capacity is 6, as is the initial WIP.

The effective capacity is used together with a monitor element for each storage station. The

monitor triggers a process whenever the station’s capacity goes above the target effective capacity.

This process creates new material entities in the warehouse system in order to re-stock the station,

assigning the entity’s destination to the storage itself. Also, the entity’s priority is assigned so that

warehouse vehicles can rank material entities in a queue by their priority. The priority assigned is

the maximum priority of any request with that material type currently processing. It is important

to recall that the request priority is set according to equation 5.2. Thus, with these two priority sys-
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tems, the warehouse vehicles will effectively prioritize urgent request orders with larger amounts

of materials.

It is important to mention that the process of creating new material entities to re-stock a storage

location is not a request, as the production order. Instead, it is a modeling approach that does not

reflect on the real system. As previously mentioned, the warehouse-buffer system is a push-type

system, that is, the warehouse replenishes the buffer when necessary. In the model, however, it

is the storage object that creates a material in the warehouse and sets its destination. After the

entity creation, the entity is carried from the warehouse to the storage object in the buffer, by a

warehouse vehicle. The result is, thus, the same as if it was the warehouse creating the entity, but

due to the object oriented modeling approach in Simio, it is simpler to use this method.

Fig.5.14 shows the external definition of the storage object, from a 2D perspective. Some

dynamic labels are used to give feedback to the user. On the left, the bottom station stock and

assigned material type, and on the right, the top station stock and assigned material type. The nodes

to the left and right of the storage object are the input and output external nodes, respectively, for

transferring material pallets in and out. Fig.5.15 shows the storage object from a 3D perspective,

both empty and socked with material entities.

Figure 5.14: The implemented storage location object, from a 2D perspective

5.2.4.3 Vehicles and paths

Vehicles in Simio are standard objects which can accomplish mostly all of the tasks required for

this project. Capacity, load time and unload time properties can be set. All properties - and this

extends to all objects - can have an expression value, which is evaluated every time the property

is referenced, instead of a constant value, giving properties more flexibility. The default Simio’s

vehicle can be seen in Fig.5.16 carrying two material entities.

A vehicle can be set to travel either in free space or in networks. Networks consist of a

set of paths, and are important for traveling network modeling. Traveling in free space is more

appropriate for workers and, in general, people. When it comes to vehicles, especially AGV, the

path traveling mode should be used, so that specific trajectories are followed. The downside to

this traveling mode is that many nodes and paths have to defined. In this model, hundreds of paths

and nodes were used, increasing the total model running time as the complexity of the model also

increases. Another disadvantage of the path traveling is that acceleration is not used to model the

vehicle’s speed, although Simio features acceleration in free space traveling. This results in further

simplification of the model. The adopted solution was to use a lower vehicle speed to obtain the

results.
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Figure 5.15: The implemented storage location object, from a 3D perspective. Top: empty storage
location. Bottom: storage location with 2 material types and different stock amounts.

Paths can be either unidirectional or bidirectional. In both the defined layouts, there are always

two vehicle lanes available, one for crossing in each direction. As such, unidirectional paths were

used. It was considered that all vehicles, including AGV, can cross between lanes at defined

crossing points along the lane. Thus, a vehicle does not have to go to the end of the buffer space

to begin traveling in the opposite direction.

Simio’s vehicles have resource logic capabilities, that is, a work schedule can be defined for

busy and working states. A schedule was defined for operators according to the real system.

On the other hand, AGV resource logic isn’t usually defined by a work schedule, but by battery

state. In the model, the vehicle can be defined as an AGV, in which case it will go to a battery

station located in the warehouse. Two different solutions to battery management are considered:

automatic replacement and charging. Both these cases can be modeled by the time it takes for

this process to complete. A battery charging/replacement station is defined in the warehouse. A

simplification of a potentially real system was made here, as it is assumed the time it takes until

the AGV needs to go to the battery station is constant. A more accurate solution would be to define

a battery charge level which decreases at different rates according to the AGV current task. When

it is not moving or loading/unloading materials, the battery level would decrease at a slower rate.

This implementation is proposed as future work to further decrease the model’s simulation error.

It is possible to develop such an implementation in Simio.
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Figure 5.16: A production vehicle carrying two material entities.

5.2.4.4 Deadlock prevention

As previously stated, the modeling approach in Simio is mostly object oriented. Effectively, the

model logic is distributed along its objects, which can make previously unforeseen issues occur.

The most common issue that occurs due to this modeling paradigm is deadlocks.

A deadlock consists of a model state in which the objects are simultaneously waiting for any

other object to perform a task and no object can change its current state. Effectively, this locks the

model and the complete simulation does not occur.

Two situations where a deadlock could occur were detected in the model. The first is vehicle

access to storage locations. Initially, vehicles would access storage locations through a bidirec-

tional path with unit capacity so that only one vehicle could cross that path at any time. As hinted

in Simio’s reference guide, this can often result in a deadlock situation where a vehicle is cross-

ing the path in one direction and another vehicle is waiting on the other end to cross and there

is no space for the first vehicle to exit the path. This deadlock would never be resolved during

the simulation run. To prevent this situation, two unidirectional paths were defined instead of one

bidirectional path. This results in a simplification of the real system, increasing the simulation

error. However, this situation is rare when a low number of vehicles is used.

The other situations where deadlocks would occur is when production requests are being pro-

cessed. As previously mentioned, processing requests consists of searching storage locations in

the buffer for available materials to fulfill the request. When a material is found, the corresponding

entity is transferred to the storage location’s output buffer. When multiple requests of the same ma-

terial type are being processed, often a deadlock would occur in that a request would try to transfer

a material to the output buffer, but since another request was already executing that action, the first

request would enter a state of permanently trying to transfer the material and being unsuccessful.

This situation happens in Simio because when a Transfer step is used in a process, the simulation

schedules that action to the next simulation step. Before the action completes, the other request’s

process begins and also tries to transfer the same material. To prevent this situation, it was defined
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that requests of the same material type can’t be processed simultaneously, effectively preventing

the deadlock situation with little to no impact in the simulation error.

5.2.5 Results and discussion

The simulation of this application was designed to study the effects of changing to the new pro-

posed layout and using AGV, as well as the impact of changing the buffer utilization, that is, the

global storage space utilization, and the number of vehicles. Recalling, the storage space utiliza-

tion artificially reduces the capacity of its station (top and bottom stations) in the storage. For

instance, when buffer utilization is set to 50%, all storage locations are used, but each only have

half effective capacity. Deciding the way in which reducing buffer utilization would reflect on the

real system is out of the scope of this project. However, if a lower buffer utilization scenario seems

more advantageous, a new buffer layout revision can be studied to increase the free space in the

buffer zone.

Firstly, it is important to mention the constant model variables, that is, the characteristics that

model the real system and do not change over all the results. These characteristics can be found in

Table 5.4. The table mentions that the time to replace the battery is 10 minutes. Thus, it is implied

that the choice of the battery management system is a replacement system. Using a charging

system would greatly impact performance when only one AGV is used. In addition to the table,

there is the operator’s work schedule, which consists of two 10 minute breaks and a 110 minute

break every 8 hours, for a total 130 minutes of break every 480 minutes. Moreover, relating to

equation 5.2, the values used throughout the different model runs were α = 10,β = 1,γ = 1.

Using manufacturers’ information on real AGV characteristics, the AGV speed was fixed at

1.3 meters per second in the buffer zone, taking into account that other AGV can cross between

lanes and thus a lower speed should be used. However, when traveling to and from the warehouse,

as the lane is reserved for the AGV, its speed can go up to 1.5 m/s. Since this path is modeled as

a time path, the travel time is affected by the increased speed, although lower than the operator

vehicles at 1.8 m/s. The travel time of the AGV is obtained from the travel time of the operator

vehicle and the ratio between both vehicle’s speeds.

The first part of the study consists in validating the model, ideally by using the current sys-

tem’s characteristics in the model and comparing the resulting performance to the real system’s.

Although real input data is available, no performance measurements exist from the real system.

Thus, a qualitative analysis is made to validate the model. The measured statistics are the average

and maximum request fulfillment time and the average warehouse vehicle utilization. The request

fulfillment time, in Simio, is equivalent to the request’s time in system. Vehicle utilization is mea-

sured as the percentage of the run in which the vehicle was operating. As the operator break times

consist of 130 minutes for every 480 minutes, the theoretical maximum individual vehicle utiliza-

tion is 73%. Acceptable measurements for the average request fulfillment time should be lower

than 20 minutes; this is the most important measurement when comparing different scenarios.

The request orders used as input to the model are taken from the real system’s orders generated

during the whole month of May, 2016. As it is desired to study the buffer’s performance, and it is
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unknown what the system bottleneck is, the number of production vehicles was set to 10, although

in the real system, the number of vehicles is 2. The number of vehicles was chosen to make sure

there wouldn’t be a bottleneck created by lack of vehicles. The results of running the simulation

with the current layout, using operators, can be seen in table 5.5. Buffer utilization ranges from

20% to 100% and the number of warehouse vehicles goes from 1 to 5. The simulation duration

was a whole month, starting on the 1st of May.

The overall results are consistent in the sense that with a higher number of vehicles and/or

a higher buffer utilization result in lower request fulfillment times. Expected minimum request

fulfillment times are about 7 minutes considering the 3 minutes it takes to travel from production

to the buffer, as well as material loading and unloading times.

It can be seen that with the actual system’s configuration, that is, 100% buffer utilization and

1 warehouse vehicle, the results are acceptable with an average of 13 minutes for the requests’

fulfillment time. However, from the simulation results, increasing the number of vehicles to 2

further improves this measurement. Vehicle utilization is high, although not reaching the expected

maximum, meaning there are times where re-stocking is not necessary. The maximum request

fulfillment time measurement is impacted mostly by request order bursts, that is, a larger number

of request orders happening during a smaller period of time. Alternatively, large request quanti-

ties can impact this measurement. It can be seen that going from 1 to 2 vehicles decreases this

measurement by about 260%.

In order to lower the buffer’s utilization below 90% with acceptable results, at least 2 vehicles

would have to be used, and buffer utilization can go down as low as 40%. On the other hand, using

3 vehicles means even a 20% buffer utilization is close to being acceptable. It is in fact a trade-off

between free space in the buffer, and the number of vehicles. The performance gains obtained

from going over 3 vehicles are very minimal.

Overall, the system bottleneck in this situation is a combination of the following factors:

• High traveling distance between the warehouse, buffer and production locations;

• Low number of warehouse vehicles;

• Limited buffer capacity, causing a lack of materials in some scenarios.

For the second part of the study, it is desirable to see the impact of using the new layout. In

this case, since the base capacity is 8 per storage location, the buffer utilization is varied to result

in an effective capacity of 1,2,...,8. Other variables kept the same value as when using the first

layout. The results are presented in Table 5.6.

It is clear that using the new layout, performance has improved considerably along all scenar-

ios. In this case, a buffer utilization of 25% and 2 vehicles are sufficient to achieve acceptable

results, compared to the 40% in the old layout. Comparing the current system’s characteristics at

100% utilization and 1 vehicle, the average fulfillment time decreases by 4 minutes to 9 minutes.

This number is fairly close to the expected minimum of 7 minutes for any request. With the new

layout, having more than 1 vehicle results in negligible performance gains until buffer utilization
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Buffer
Utilization

(%)

Warehouse
Vehicles

Average Vehicle
Utilization (%)

Average Request
Fulfillment Time (min)

Maximum Request
Fulfillment Time (min)

20% 1 69% 118.683 481.738
20% 2 30% 27.4893 190.914
20% 3 18% 21.3234 125.403
20% 4 12% 19.6987 102.709
20% 5 10% 19.232 88.0494
30% 1 67% 101.078 453.646
30% 2 33% 23.9132 192.142
30% 3 20% 18.118 129.142
30% 4 14% 16.56 102.154
30% 5 11% 16.0731 91.467
40% 1 66% 75.8325 426.584
40% 2 29% 18.625 148.049
40% 3 17% 14.179 92.0095
40% 4 12% 13.0824 70.2803
40% 5 9% 12.6493 55.5369
50% 1 66% 52.9089 388.298
50% 2 29% 15.4579 131.967
50% 3 19% 12.304 79.9495
50% 4 13% 11.4266 58.3405
50% 5 10% 11.1389 47.3046
60% 1 65% 36.6893 368.33
60% 2 29% 13.611 127.601
60% 3 18% 11.3664 77.1737
60% 4 13% 10.7204 57.1993
60% 5 10% 10.5019 45.0108
70% 1 65% 31.1351 340.926
70% 2 29% 12.6619 124.947
70% 3 18% 10.8516 70.003
70% 4 12% 10.3509 51.5235
70% 5 10% 10.1574 41.4387
80% 1 65% 21.4133 280.55
80% 2 29% 11.1695 122.073
80% 3 18% 10.1007 68.6795
80% 4 12% 9.74237 48.9583
80% 5 10% 9.61827 39.6145
90% 1 65% 18.4014 269.168
90% 2 29% 10.6906 117.566
90% 3 18% 9.84534 62.788
90% 4 13% 9.52643 42.6215
90% 5 10% 9.43095 34.8935
100% 1 66% 13.3057 218.048
100% 2 29% 9.67323 83.4089
100% 3 18% 9.27159 54.5416
100% 4 13% 9.17127 39.9749
100% 5 10% 9.13494 33.2097

Table 5.5: Results of the current layout using operators, in May.
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is lower than 62.5%, when considering only the average fulfillment time. If the maximum time is

considered, the performance impact is considerable even at 100% utilization.

An important note for the previous study is that the study of material distribution, presented

in section 5.2.3, was made according to the request orders of May, the same request orders which

were used to obtain the results of Table 5.6. The results can thus be misleading if later months

have different request order distributions. However, the case in study has a fairly uniform monthly

distribution of requests. Later in this section, another study uses the request orders of June, and

the results will be compared to the the previous month.

The third part of the study consists of analyzing the impact of adopting an AGV-based system

in the new layout. The same characteristics of the previous study are used, except for the work

schedule, as previously defined. The AGV characteristics are presented in Table 5.4. The results

for the new layout using AGV, for the month of May, can be seen in Table 5.7.

The results show an overall decrease in performance, due to the AGV slower speed. The

decrease is greater when lower buffer utilizations are used, meaning that an AGV system using

the same amount of vehicles as the current system would require a higher buffer utilization to

achieve the same performance. A comparison is shown in Fig.5.17 for the more interesting results

of using 1 and 2 vehicles. It can be seen that although there is a considerable hit in performance

when 1 vehicle is used for a buffer utilization lower than 75%, adding another AGV brings both

scenarios’ performance much closer. In fact, it shows that the performance gains from using more

than 1 vehicle are much greater in the AGV solution. However, this is true only when using a

lower buffer utilization. Overall, acceptable performance can be reached with 2 vehicles and 25%

buffer utilization, similarly to the case of using operators in the new layout. Using a single vehicle,

the buffer utilization can be as low as 62.5% to achieve acceptable performance, a worse result

than the previous study’s 50% (in the new layout, using operators, for the month of May).

Moreover, the results show that using a single AGV may not satisfy the system’s performance

requirements when the maximum request fulfillment time is considered. They point to a possible

choice between 2 and 3 AGV, deciding based on the trade-off between free space and the number

of vehicles.

As previously mentioned, a fourth part of the study refers to testing the new layout with the

same model characteristics, in the month of June. Table 5.8 shows the results and comparison

to the month of May, focusing only on the main performance measurement which is the average

request fulfillment time. Moreover, only the measurements for 1, 2 and 3 warehouse vehicles are

presented; as seen from previous results, having over 3 vehicles yields negligible performance

gains.

The results show some variation in performance, mostly increasing it, when 2 or 3 vehicles

are used. However, when one vehicle is used, the performance lowers. As the results do not

point to a strict increase or decrease in performance, the previous results for the month of May

are considered valid. The differences in the results from May to June are attributed to different

request distributions over the month and variable burst request quantities. Some differences are,

however, considerably large, especially for a single vehicle and buffer utilization lower than 75%.
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Buffer
Utilization

(%)

Warehouse
Vehicles

Average Vehicle
Utilization (%)

Average Request
Fulfillment Time

(min)

Maximum Request
Fulfillment Time

(min)
12.5% 1 68% 103.521 500.7
12.5% 2 31% 23.9854 168.091
12.5% 3 19% 18.4669 105.565
12.5% 4 14% 17.0442 86.0684
12.5% 5 11% 16.5431 80.2622
25.0% 1 65% 52.9219 405.496
25.0% 2 28% 14.5647 129.745
25.0% 3 17% 12.2041 74.423
25.0% 4 12% 11.5316 54.7798
25.0% 5 9% 11.2993 49.0395
37.5% 1 65% 26.5355 294.345
37.5% 2 30% 11.6554 103.212
37.5% 3 18% 10.5082 55.8937
37.5% 4 13% 10.163 40.1364
37.5% 5 10% 10.0228 36.0311
50.0% 1 65% 13.2257 188.752
50.0% 2 29% 9.74233 61.5411
50.0% 3 17% 9.44654 40.9837
50.0% 4 12% 9.30627 33.0646
50.0% 5 10% 9.27794 30.0149
62.5% 1 65% 10.8855 126.626
62.5% 2 29% 9.40742 45.1471
62.5% 3 18% 9.20946 35.4714
62.5% 4 13% 9.11596 29.6651
62.5% 5 10% 9.09725 29.0918
75.0% 1 65% 9.40209 65.2924
75.0% 2 29% 9.03003 34.9275
75.0% 3 18% 8.95432 30.9633
75.0% 4 12% 8.92815 29.6034
75.0% 5 10% 8.90104 29.129
87.5% 1 65% 9.23228 61.566
87.5% 2 29% 8.98862 33.198
87.5% 3 18% 8.91631 30.2416
87.5% 4 13% 8.89676 29.2563
87.5% 5 10% 8.87167 28.6155
100.0% 1 65% 8.89308 49.6534
100.0% 2 29% 8.79642 28.9554
100.0% 3 17% 8.77742 28.3034
100.0% 4 12% 8.76942 28.0282
100.0% 5 10% 8.76871 27.9991

Table 5.6: Results of the new layout using operators, in May.
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Buffer
Utilization

(%)

Warehouse
Vehicles

Average Vehicle
Utilization (%)

Average Request
Fulfillment Time

(min)

Maximum Request
Fulfillment Time

(min)
12.5% 1 84% 248.453 946.387
12.5% 2 38% 32.8581 243.703
12.5% 3 18% 22.3395 149.019
12.5% 4 11% 19.7792 111.703
12.5% 5 6% 18.8503 99.837
25.0% 1 82% 126.536 766.373
25.0% 2 34% 18.6008 182.918
25.0% 3 17% 13.8572 101.515
25.0% 4 10% 12.6474 70.4766
25.0% 5 6% 12.2277 62.0771
37.5% 1 82% 65.1777 556.318
37.5% 2 37% 13.5335 146.835
37.5% 3 19% 11.4557 79.1313
37.5% 4 11% 10.8902 54.6059
37.5% 5 7% 10.6449 46.1087
50.0% 1 82% 22.3654 311.07
50.0% 2 34% 10.4954 85.6129
50.0% 3 17% 9.96179 55.1737
50.0% 4 11% 9.71048 42.5198
50.0% 5 6% 9.66027 37.3283
62.5% 1 82% 16.42 341.358
62.5% 2 34% 9.94018 59.9048
62.5% 3 18% 9.63393 45.9519
62.5% 4 11% 9.47678 35.9846
62.5% 5 6% 9.43772 33.1193
75.0% 1 82% 10.7933 174.29
75.0% 2 34% 9.39243 43.2565
75.0% 3 18% 9.2847 36.6492
75.0% 4 11% 9.22865 32.059
75.0% 5 6% 9.18921 30.4668
87.5% 1 82% 10.0925 117.03
87.5% 2 34% 9.33796 39.0057
87.5% 3 18% 9.23337 34.9949
87.5% 4 11% 9.19041 32.1741
87.5% 5 6% 9.14889 29.5679

100.0% 1 82% 9.26938 72.031
100.0% 2 34% 9.07059 31.4976
100.0% 3 18% 9.04709 30.4892
100.0% 4 11% 9.03144 28.73
100.0% 5 6% 9.02918 28.8277

Table 5.7: Results of the new layout using AGVs, in May.
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Figure 5.17: Comparison of using operator and AGV vehicles in the new layout.

Buffer Utilization (%) Warehouse Vehicles Average Request Fulfillment Time (min)
May June

12.5% 1 248.453 137.347
12.5% 2 126.536 33.3363
12.5% 3 65.1777 25.0214
25.0% 1 22.3654 77.942
25.0% 2 16.42 19.5896
25.0% 3 10.7933 15.3326
37.5% 1 10.0925 49.5609
37.5% 2 9.26938 15.7075
37.5% 3 32.8581 12.8774
50.0% 1 18.6008 29.0468
50.0% 2 13.5335 12.6158
50.0% 3 10.4954 11.2015
62.5% 1 9.94018 21.9827
62.5% 2 9.39243 11.6917
62.5% 3 9.33796 10.7523
75.0% 1 9.07059 13.3629
75.0% 2 22.3395 10.4498
75.0% 3 13.8572 10.0836
87.5% 1 11.4557 12.5253
87.5% 2 9.96179 10.2843
87.5% 3 9.63393 9.99203
100.0% 1 9.2847 10.5775
100.0% 2 9.23337 9.79094
100.0% 3 9.04709 9.70941

Table 5.8: Results of the new layout using AGVs, in June, comparing to the results of May.
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These differences can probably be attributed to request order bursts. Previously it was stated that

using a single vehicle, a buffer utilization of 62.5% would be sufficient. However, for the month

of June, the results show it is not enough.

The difference in performance over two months show that, when deciding on the final appli-

cation’s characteristics, data from more months should be used to make sure the results are valid

over every month. One can also use a smaller time frame and perform more simulation runs to

have more results. Alternatively, the system can be somewhat over-dimensioned to accommodate

performance variability and uncertainty. It should also be noted that the simulation error in this

model is unknown.

Up until this point, the model characteristics from Table 5.4 have been used. Specifically, 10

vehicles have been used in the production side in order to not create a potential bottleneck in that

side of the system.

The final part of this study consists of running the model while setting the number of produc-

tion vehicles to the real system’s number, which is 2. This model is run for the month of June, as

the previous part of the study, and all other model characteristics are maintained. The results are

shown in Table 5.9.

The results show there is a clear bottleneck in the system created by the production side, where

the system can’t get an average request fulfillment time lower than 19 minutes, for scenarios where

the previous results showed an average of 10 minutes was easily possible. Recalling, 20 minutes

for the average request fulfillment time is the number chosen as the maximum time for a scenario

to be considered acceptable.

Given the previous results, there seems to be essentially two options. One option is to target the

system’s performance so that the average request fulfillment time is at 20 minutes, while retaining

a low maximum request fulfillment time as well. Looking at the results from Table 5.8 where

there isn’t a bottleneck, this can be achieved consistently over the months of May and June with

scenarios using 2 vehicles and at least 50% buffer utilization. The other option is to further improve

the production side’s performance, for instance by using one more vehicle. However, in order to

have more accurate results on the performance bottleneck created by the production side, the

model should be extended to simulate not only the buffer layout but also the production and,

potentially, the warehouse layout. Moreover, the simulation error should be taken into account.

With this project it has been shown that an AGV based system with 2 vehicles is capable of

generating acceptable performance for this case study when using the proposed layout. It was

previously stated that companies often sell an over-estimated number of vehicles to make sure it

meets the system’s performance goals, while many times not generating a similar study to have

conclusive data. In this case, the number of vehicles acquired could easily have been 3, while

it was shown that at a maximum of 2 vehicles shows acceptable performance in different buffer

utilization scenarios.
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Buffer
Utilization

(%)

Warehouse
Vehicles

Average Vehicle
Utilization (%)

Average Request
Fulfillment Time

(min)

Maximum Request
Fulfillment Time

(min)
12.5% 1 82% 138.316 695.81
12.5% 2 37% 35.9184 256.723
12.5% 3 23% 29.9063 188.992
25.0% 1 78% 80.8175 556.163
25.0% 2 34% 24.9913 156.758
25.0% 3 20% 22.5458 134.109
37.5% 1 78% 55.3365 479.689
37.5% 2 36% 24.0239 151.411
37.5% 3 22% 22.382 155.028
50.0% 1 78% 35.9849 394.455
50.0% 2 34% 21.0873 128.822
50.0% 3 21% 20.4058 128.478
62.5% 1 78% 30.738 330.007
62.5% 2 35% 21.3046 145.646
62.5% 3 22% 20.8592 146.234
75.0% 1 77% 22.8363 179.163
75.0% 2 34% 20.3957 130.017
75.0% 3 21% 20.2464 134.822
87.5% 1 78% 22.5891 181.549
87.5% 2 35% 20.6486 151.962
87.5% 3 21% 20.4692 159.071
100.0% 1 77% 20.3693 146.706
100.0% 2 34% 19.8546 137.742
100.0% 3 21% 19.817 139.473

Table 5.9: Results of the new layout using AGVs, in June, with 2 production vehicles.
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Chapter 6

Conclusions

This dissertation is tri-fold. First, the exploration of the new web technologies applied to robots

and ROS applications allowed to create a simple and clear user interface to allow non-proficient

operators to execute the setup and operating processes with AGV. Although the back-end technol-

ogy in web-based ROS interfaces are still under developed when compared to the usual interfaces,

it was interesting to use programming languages created for this exact purpose instead of the more

common - in robotics - desktop application programming languages. Some contributions were

made to the repositories of official ROS web related libraries, to be used by the ROS community.

The advantages that come from building a web-based application are several, but more movement

towards this paradigm is required to achieve the same results as desktop-based interfaces.

The initial hypothesis was that setup costs in AGV-based solutions can be reduced by allowing

operators to execute this process instead of the manufacturer or company selling the solution. In

fact, a simpler interface can be built by putting most of the work on its developer, and finding an

appropriate balance between flexibility and simplicity is a step in the way towards this goal.

The second, smaller part of this dissertation consisted of a study of more cost effective posi-

tioning sensors to be used in an AGV’s self-localization solution. Robustness and applicability in

the industry is important, as more flexibility and greater accuracy requirements become the norm.

It was found that there has been an effort towards lowering the setup costs by using a lower number

of artificial landmarks, which are commonly found to be installed in dozens or even hundreds in

AGV applications. The concern with using more efficient processors, which in turn needs efficient

and applicable localization algorithms to be used.

The final part of this dissertation focused on evaluating the performance impacts of adopting

an AGV solution for a logistics application, as well as a focus on keeping the solution cost effective

by choosing an appropriate number of AGV, among other variables. To this end, a real material

handling scenario was analyzed.

Modeling was accomplished through computer simulation using Simio. As it was seen from

the system’s complexity, a simulation approach was definitely adequate. Besides giving results to

the study in this dissertation, the developed model can be used in the future as a platform to study

the implication of material changes, layout changes, and other situations.

69
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It was decided to use real input data on the simulation application. Despite the extra effort

this imposes when it comes to model development, this decision has the benefit of providing much

more accurate results and reducing the overall simulation error, and it is advised to use real data

whenever possible for simulation of complex systems.

Working together with people experienced in industrial environments and applications proved

to be a rewarding experience, certainly one that will be useful in the future. As the market gets

more competitive everyday, sharing knowledge and experiences in improving systems’ perfor-

mance with cost effective solutions also grows in importance.
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