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Abstract 

 

Human-robot synergy enables new developments in industrial and assistive robotics research. 

In recent years, collaborative robots can work together with humans to perform a task, while 

sharing the same workplace. However, the teachability of robots is a crucial factor, in order to 

establish the role of robots as human teammates. Robots require certain abilities, such as easily 

learning diversified tasks and adapting to unpredicted events.  The most feasible method, which 

currently utilizes human teammate to teach robots how to perform a task, is the Robot Learning 

from Demonstrations (RLfD). The goal of this method is to allow non-expert users to ‘program’ a 

robot by simply guiding the robot through a task.  

The focus of this thesis is on the development of a novel framework for Robot Learning from 

Demonstrations that enhances the robots’ abilities to learn and perform the sequences of actions 

for object manipulation tasks (high-level learning) and, simultaneously, learn and adapt the 

necessary trajectories for object manipulation (low-level learning). A method that automatically 

segments demonstrated tasks into sequences of actions is developed in this thesis. Subsequently, 

the generated sequences of actions are employed by a Reinforcement Learning (RL) from human 

demonstration approach to enable high-level robot learning. The low-level robot learning consists 

of a novel method that selects similar demonstrations (in case of multiple demonstrations of a 

task) and the Gaussian Mixture Model (GMM) method. The developed robot learning framework 

allows learning from single and multiple demonstrations.   

As soon as the robot has the knowledge of a demonstrated task, it can perform the task in 

cooperation with the human. However, the need for adaptation of the learned knowledge may 

arise during the human-robot synergy. Firstly, Interactive Reinforcement Learning (IRL) is 

employed as a decision support method to predict the sequence of actions in real-time, to keep the 

human in the loop and to enable learning the user’s preferences. Subsequently, a novel method 

that modifies the learned Gaussian Mixture Model (m-GMM) is developed in this thesis. This 

method allows the robot to cope with changes in the environment, such as objects placed in a 

different from the demonstrated pose or obstacles, which may be introduced by the human 

teammate. The modified Gaussian Mixture Model is further used by the Gaussian Mixture 

Regression (GMR) to generate a trajectory, which can efficiently control the robot.  
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The developed framework for Robot Learning from Demonstrations was evaluated in two 

different robotic platforms: a dual-arm industrial robot and an assistive robotic manipulator. For 

both robotic platforms, small studies were performed for industrial and assistive manipulation 

tasks, respectively. Several Human-Robot Interaction (HRI) methods, such as kinesthetic 

teaching, gamepad or ‘hands-free’ via head gestures, were used to provide the robot 

demonstrations. The ‘hands-free’ HRI enables individuals with severe motor impairments to 

provide a demonstration of an assistive task. The experimental results demonstrate the potential 

of the developed robot learning framework to enable continuous human–robot synergy in 

industrial and assistive applications.  

 

[1] [2] [3] 

[4] [5] [6] [7] 
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Kurzfassung 

Die Mensch-Roboter-Synergie ermöglicht neue Entwicklungen in der industriellen und 

assistiven Robotikforschung. In den letzten Jahren können kollaborative Roboter mit Menschen 

zusammenarbeiten, um eine Aufgabe zu erfüllen, während sie sich den gleichen Arbeitsplatz 

teilen. Allerdings ist die Lernfähigkeit von Robotern ein entscheidender Faktor, um die Rolle der 

Roboter als Kollegen des Menschen zu etablieren. Die Roboter benötigen die Fähigkeit, 

verschiedenartige Aufgaben leicht zu erlernen und sich an unvorhergesehene Ereignisse 

anzupassen. Die derzeit praktikabelste Methode ist das Robot Learning from Demonstrations 

(RLfD). Diese setzt menschliche Kollegen ein, um Robotern beizubringen, wie man eine Aufgabe 

erfüllt. Das Ziel dieser Methode ist es, Nicht-Experten zu ermöglichen, einen Roboter zu 

‘programmieren’, indem sie den Roboter durch eine Aufgabe führen. 

Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung eines neuartigen Frameworks für 

RLfD, das die Roboterfähigkeiten erweitert, um die Sequenzen von Aktionen für 

Objektmanipulationsaufgaben zu lernen und durchzuführen (High-Level-Learning) und 

gleichzeitig die notwendigen Trajektorien für Objektmanipulationen zu erlernen und anzupassen 

(Low-Level-Learning). In dieser Arbeit wird ein Verfahren entwickelt, das demonstrierte 

Aufgaben automatisch in eine Abfolge von Aktionen unterteilt. Anschließend werden die 

erzeugten Handlungsabläufe von einem Reinforcement-Lernen-Algorithmus (RL) aus dem 

menschlichen Demonstrationsansatz genutzt, um ein hochrangiges Robot Learning zu 

ermöglichen. Das Low-Level-Robot-Learning besteht aus einem neuartigen Verfahren, das 

ähnliche Demonstrationen auswählt (im Falle mehrerer Demonstrationen einer Aufgabe) und 

Gaussian Mixture Model (GMM) Verfahren. Das entwickelte Robot-Learning-Framework 

ermöglicht das Lernen aus einzelnen und mehreren Demonstrationen. 

Sobald der Roboter das Wissen über eine demonstrierte Aufgabe hat, kann er diese in 

Zusammenarbeit mit dem Menschen ausführen. Die Notwendigkeit einer Anpassung des 

erlernten Wissens kann jedoch während der Mensch-Roboter-Synergie entstehen. Zuerst wird 

Interaktives Reinforcement Lernen (IRL) als entscheidungsunterstützende Methode eingesetzt, 

um den Ablauf von Aktionen in Echtzeit vorherzusagen, den Menschen auf dem Laufenden zu 

halten und das Erlernen der Präferenzen des Benutzers zu ermöglichen. Anschließend wird in 

dieser Arbeit eine neuartige Methode entwickelt, die das erlernte GMM  modifiziert (m-GMM). 

Dieses Verfahren ermöglicht es dem Roboter, Veränderungen in der Umgebung zu bewältigen, 

wie z. B. Objekte, die sich in einer anderen als der gezeigten Pose befinden oder Hindernisse, die 
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vom menschlichen Kollegen eingeführt werden können. Das modifizierte GMM wird von der 

Gaussian Mixture Regression (GMR) weiterverwendet, um eine Trajektorie zu erzeugen, mit 

welcher der Roboter effizient gesteuert werden kann. 

Das entwickelte Framework für RLfD wurde mit zwei verschiedenen Roboterplattformen 

evaluiert: einem zweiarmigen Industrieroboter und einem assistiven Roboter-Manipulator. Für 

beide Roboterplattformen wurden kleine Studien für industrielle bzw. assistive 

Manipulationsaufgaben durchgeführt. Mehrere Mensch-Roboter-Interaktions-Methoden (MRI), 

wie kinästhetischer Unterricht, Gamepad oder ‘hands-free’, durch Kopfbewegungen, wurden 

eingesetzt, um die Roboterdemonstration durchzuführen. Die ‚hands-free‘ MRI-Methoden 

ermöglicht es Personen mit schweren motorischen Beeinträchtigungen eine assistive Aufgabe zu 

demonstrieren. Die experimentellen Ergebnisse zeigen ein Potenzial des entwickelten Robot-

Learning-Frameworks, um eine kontinuierliche Mensch-Roboter-Synergie in industriellen und 

assistiven Anwendungen zu ermöglichen.  
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1. Introduction 

1.1 Background 

In the last decade, there has been a growing interest in humans and robots working 

together in several fields, like manufacturing [8], search-and-rescue [9] [10], surgical 

robotics [11], and service and assistive robotics [12], [13]. In the past, robotic research 

was focused on creating machines able to perform repetitious tasks with high precision 

and speed, skills which are required by the industrial automation domain. Robotic 

manipulators were kept in isolation behind ‘cages’ and they were pre-programmed to 

perform a specific task in a well-structured and constant environment. The focus of 

robotic research today has shifted toward human-centered applications, in which the 

robots are not seen as independent ‘workers’ but rather as cooperative human partners.  

Collaborative robotic manipulators, so called Cobots, are starting to be part of the 

industrial world [14]. The main idea of human-robot synergetic work is to combine the 

advantages of both teammates. While the Cobot handles heavy lifting and performs 

repetitive actions with high precision, its human teammate simultaneously takes care of 

tasks that demand dexterity, flexibility and cognition. Some factories [15], [16], [17], [18] 

in Germany have already deployed Cobots to work alongside humans.  

An important aspect of Cobots is their teachability. In a traditional programming 

scenario, a human with expertise in programming would have to take into account all the 

possible events in advance, and would need to code the actions of the robot as a response 

to all the different events [1]. The robot has to be tested for robustness for all possible 

events. If a failure occurs or if new circumstances appear, high-skilled programmers have 
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to update the robot code. However, during human-robot synergetic work, programming 

of all the possible events is not viable. The human brings the element of uncertainty into 

the shared workspace, which is hard to predict and properly code in the robot program. 

For example, the human co-worker may position or orient some objects differently or 

may place some additional objects by mistake.  

In the last few decades, an alternative approach in robotic research has been Robot 

Learning from Demonstration [19]. The main principle is that end-users can teach the 

robots new tasks by demonstration, as opposed to time-consuming and highly technical 

skills demanding traditional robot programming methods [20]. Easily teachable robots 

learn from demonstration, which does not require any expert knowledge of robotics 

technology by the end-user, and could benefit industrial, social, service and assistive 

robots.  

1.2 Problem Statement 

The state-of-the-art in robot learning from human demonstrations is presented in 

various survey papers [21] [22] [23] [24] [25] [26]. Robot Learning from demonstration 

(RLfD) is not a record and play technique, but implies learning, and generalization [22]. 

Three processes of robot learning are defined by Bakker & Kuniyoshi in [27] and by Zhu 

& Hu in [24] as:  

 observe an action (sensing),  

 represent the action (understanding), 

 and reproduce the action (doing). 

With the rapid advancement in machine learning techniques, RLfD started 

incorporating more of those techniques to represent (i.e. how to generalize across 

demonstrations) and reproduce the demonstrated action (i.e. to generalize the movement 

to new situations) [22]. The state-of-the-art in RLfD is comprehensively discussed in 

chapter 2.  

Despite the progress in machine learning and RLfD, there are many open issues. Some 

of the ongoing challenges are summarized as follows: 
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1. Bridging the gap between high-level symbolic reasoning and low-level motor 

control learning: Current research in RLfD tends to focus either on continuous 

representations of the low-level motor control of robots (low-level skill learning 

at trajectory level
1

) or on discrete representations of the high-level task 

requirements (high-level symbolic task learning
2
) [23] [25] [26].  

2. Coping with conflicting demonstrations across teachers: Several human teachers 

may demonstrate the task with different styles. Humans may perform the same 

task with different preferences. There is limited work in RLfD in this domain as 

the demonstrations are provided with an explicit concept of the task [22]. 

3. Exploiting the social interaction in RLfD: Humans have the ability to evaluate the 

robot performance. RLfD has to cope with the questions of how and when a robot 

should request user feedback and how to use this information [23] [21].       

1.3 Contributions 

This thesis aims at contributing to the field of Robot Learning from Demonstrations 

(RLfD) by proposing a holistic approach to the RLfD for object manipulation, while 

presenting solutions for the open issues mentioned above.  

Challenge 1: Bridging the gap between high-level symbolic reasoning and low-level 

motor control learning 

The developed RLfD framework learns the sequence of actions (high-level) needed to 

perform the demonstrated task, including the trajectories (low-level). During human and 

robot synergetic work, the framework adapts the learned trajectories in real-time to 

environmental changes (new object positions and obstacles), which are introduced by the 

user, without additional training. To illustrate:  

                                                 

1
 Low-level skill learning at trajectory level:  this term represents robot learning of motor control (motion 

primitives or trajectories). 

2
 High-level symbolic task learning: this term represents robot learning of sequence of actions needed to 

perform a task (symbolic reasoning) 
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 The developed RLfD framework identifies object pick&place actions and 

associates the actions to the manipulated object (High-level learning). – Section 

3.3.1.1 

 The Gaussian Mixture Model (GMM) algorithm is used for learning the 

constraints of the demonstrated trajectories (Low-level learning). – Section 3.3.2.2 

 The novel algorithm m-GMM (modification of GMM) is developed in this thesis 

to modify the learned GMM to the environmental changes. – Section 3.4.2 

Challenge 2: Coping with conflicting demonstrations across teachers 

This thesis proposes two approaches to cope with conflicting demonstrations in high-

level and low-level learning. To Illustrate: 

 Reinforcement learning is used to learn the different sequences of actions (high-

level) demonstrated by teachers. – Sections 3.3.1.2 and 3.4.1 

 A novel algorithm is developed which selects similar demonstrated trajectories 

and deals with the variety in speed between different demonstrations (low-level). 

– Section 3.3.2.1 

Challenge 3: Exploiting the social interaction in RLfD 

To exploit social interaction, the developed RLfD framework uses interactive 

reinforcement learning to keep the human in the loop. The robot learns user’s preferences 

regarding the sequence of actions (high-level) by requesting user feedback. – Section 

3.4.3 

Other contributions of the RLfD framework developed in this thesis include:  

 Several Human-Robot Interaction (HRI) methods are used to provide the robot 

demonstrations. The HRIs are performed by hands or by head motion (‘hands-

free’) and are used to directly control the robot’s end-effector. ‘Hands-free’ HRI 

can enable individuals with severe motor impairments, such as tetraplegia
3
, to 

provide a demonstration of a desired task. – Section 3.2 

                                                 

3
 Tetraplegia (also known as quadriplegia) is the paralysis of all 4 extremities (arms and legs) due to an 

injury or illness. 
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 The RLfD framework is able to learn by single or multiple demonstrations 

depending on the user’s capabilities and the purpose of the manipulation task – 

assistive or industrial. – Section 3.1 

 The RLfD framework enables the robot to perform a new task using the gained 

knowledge from previous tasks. – Section 3.4.1 

 The RLfD framework is generic. For proof-of-concept, the framework is 

implemented in two different robotic platforms: a dual-arm industrial robot and an 

assistive robotic manipulator. For both robotic platforms, real-world experiments 

were performed for industrial and assistive manipulation tasks, respectively. – 

Chapters 4&5 

1.4 Thesis Overview 

This thesis is structured in the following chapters: 

 Chapter 2 presents the concepts of RLfD. Firstly, a brief introduction to machine 

learning techniques is given, after which the state-of-the-art algorithms in RLfD 

and its applications are described.  

 Chapter 3 presents the developed RLfD framework. Firstly, it introduces the HRI 

methods which are used in this thesis. Subsequently, it explains the offline 

learning phase and the online working phase of the RLfD framework.  

 Chapter 4 shows the real-world experiments of the RLfD framework in industrial 

applications. The robotic platform is a dual-arm industrial robot and two industrial 

assembly tasks are selected to validate the framework.  

 Chapter 5 presents the real-world experiments of the RLfD framework in an 

assistive application. The robotic platform is an assistive robot and a tetraplegic 

user provides a demonstration of a manipulation task using a ‘hands-free’ HRI. 

The results of these experiments are discussed in this chapter.  

 Chapter 6 summarizes the conclusions of this thesis and discusses new possible 

routes of research arising from the presented work.      
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2. Machine Learning Techniques for 

Robot Learning from Human 

Demonstrations 

In this chapter, an introduction to machine learning is given. Supervised and 

unsupervised machine learning techniques are presented as well as reinforcement 

learning. Moreover, the state-of-the-art in robot learning from human demonstrations is 

discussed in detail.   

2.1 Machine Learning Techniques 

The field of Machine Learning (ML) addresses the question of how a machine can 

automatically learn and improve with experience. Arthur Samuel, a pioneer in Machine 

Learning, described it as the “field of study that gives computers the ability to learn 

without being explicitly programmed” [28]. In 1997, Mitchel in [29] defined Machine 

Learning as follows: “A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P, if its performance at tasks 

on T, as measured by P, improves with experience E”. A Machine Learning algorithm 

uses as input training data, representing the experience of some tasks, and its output is 

some expertise in the tasks.   

Machine Learning techniques have various applications, including web search, email 

anti-spam, speech recognition, product recommendations, computer vision, robotics, and 

more [30]. The process of developing Machine Learning algorithms may consist of the 
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following steps [31]: data collection, data preprocessing, feature extraction from the data, 

ML training, and ML testing (validation). Machine learning can be classified into the 

following three categories [32]: supervised, unsupervised and reinforcement learning.  

2.1.1 Supervised Learning  

Supervised Learning [33] intends to learn a mapping function from examples of input-

output pairs. Supervised Learning algorithms use a labeled training dataset to predict a 

model (mapping function), which represents the patterns that exist in the training dataset. 

The goal of Supervised Learning is to approximate a model that the output data (labels) 

can accurately be predicted from new input data. The performance of the Supervised 

Learning algorithm is evaluated with testing data that do not belong in the training dataset.  

Supervised Learning algorithms can be grouped into regression and classification. In 

regression, the labels are continuous values (real values), while in classification the labels 

are a finite set of values (classes). Figure 1a illustrates an example of regression, where 

the algorithm uses as input the pairs of input-output values and it predicts a model that 

fits the data. For new inputs, the algorithm will estimate output values based on the 

learned model. Figure 1b illustrates an example of classification, where labeled data of 

two classes are given as input. The algorithm finds a model, which separates the two 

classes. For new inputs, the algorithm will predict in which class they belong based on 

the learned model.   

Linear, polynomial, logistic, and nonlinear regression, random forests, and Neural 

Networks are some machine learning techniques that solve regression problem. Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), random forests, Neural Networks, 

Hidden Markov Models, (HMM) and decision trees, are some popular classifiers.   
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Figure 1: Explanatory illustration a) Regression, b) Classification. 

2.1.2 Unsupervised Learning  

In Unsupervised Learning [32], the input data are unlabeled and the goal of the 

learning algorithm is to group the input data based on their similarity (clustering). Figure 

2 illustrates a clustering example. Some popular Unsupervised Learning algorithms are 

mixture models, Kss-means, Neural Networks, Hidden Markov Model (HMM), Density-

based spatial clustering, and hierarchical clustering. As it can be observed, some 

algorithms can be used in a supervised and unsupervised manner, depending on the 

problem that they try to solve.   

 

Figure 2: Explanatory illustration of Clustering. 
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2.1.3 Reinforcement Learning (RL) 

Reinforcement Learning (RL) is defined by Sutton & Barto in [34] as follows: 

“Reinforcement Learning is learning what to do - how to map situations to actions - so as 

to maximize a numerical reward signal. The learner is not told which actions to take, but 

instead must discover which actions yield the most reward by trying them.” In RL an 

agent (learner) discovers an optimal behavior (policy) by trial-and-error interactions 

(reward/punishment) with its environment. Reinforcement Learning in robotics suffers 

from the ‘Curse of Dimensionality’ [35], due to high dimensional states and actions of 

robots.  

The Reinforcement Learning consists of the following elements: a set of states that can 

describe the environment, a set of fixed number of actions that the agent can take, and a 

reward value that is given to the agent by the environment. At each state, the agent 

observes the environment and selects an action to take. After taking the action, the 

environment provides a reward to the agent. The interaction between the agent and the 

environment is illustrated in Figure 3.  

 

Figure 3: The agent-environment interaction in Reinforcement Learning. (adapted from [34]) 

The goal of Reinforcement Learning is to use the State – Action – Reward – State and 

learn a mapping from states to a measured long-term value, known as the optimal value 

function [36].  Several methods, such as Q-learning, SARSA, and Monte Carlo, have 

been developed to estimate the optimal value function [34].  
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2.2 Robot Learning from Human Demonstrations 

Robot learning from demonstrations (RLfD) explores techniques that enable robots to 

learn new skills by a human teacher (demonstrator). RLfD is also called Programming by 

Demonstration or Imitation Learning [19]. At the beginning of the 1980s, RLfD started 

attracting attention in manufacturing robotics, as it appeared to be a promising alternative 

to automate the tedious programming (coding) of the robots [37] [38]. The RLfD 

progressively moved from simply repeating the demonstrated movements to generalizing 

across demonstrations using machine learning techniques [19]. Several techniques 

proposed in machine learning could be applied to robotic data (sensory, actuators) to 

provide a generalized model. The applications of machine learning tools that are applied 

in RLfD are discussed in this chapter.  

The RLfD is composed of three fundamental steps: observation, representation and 

reproduction [27]. There are different methods to observe a demonstration and gather the 

datasets as summarized By Argall et al. in [21]. 

 Teleoperation: The human teacher operates the robot and the sensors of the robot 

record the execution. The recorded data by the sensors of the robot are later used 

for robot learning. One method of teleoperation is by using a joystick. The human 

uses the joystick to guide the robot through the task, while the sensors of the robot 

record the demonstration. Another method of providing the demonstration is by 

kinesthetic teaching [39] [40], where the robot is physically guided through the 

task by the human and the robot movements are recorded by the robot sensors. 

This method works for lightweight robots or robots driven by gravity-

compensation controllers. Another approach to operate the robot for a 

manipulation task is by using natural language commands [41]. The human 

teacher instructs the robot with spatial language, using object reference and 

positional and directional prepositions. ‘Hands-free’ human-robot interfaces based 

on eye gaze [42] [43], brain signals using Brain-Computer Interface (BCI) [44] 

[45], and head motion measured by an Inertial Measurement Unit (IMU) [46] can 

be potentially used to provide robot demonstrations.  
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 Sensors placed on the teacher’s body: Sensors placed on the teacher’s body are 

used to record the demonstration of a task. The teacher is equipped with wearable 

motion sensors, like IMU [47] or electromyographic (EMG) sensors [48] or 

cyber-glove [49] [50] or combination of accelerometers and EMG sensors [51]. 

The teacher’s movements are recorded from the wearable sensors and the 

recorded data can be later used for robot learning.  

 External observations: External sensors that are not placed on the teacher and the 

robot are used to record the demonstration of a task. Typically, vision-based 

external sensors [52] [53] are used to record the teacher’s movements during the 

demonstration.   

Given a dataset of a demonstration which have been acquired using one or 

combination of the above mentioned methods, the robot is able to learn the demonstrated 

task from the dataset. In some studies, instead of using one dataset, datasets of multiple 

demonstrations are used [54] [55].  

There are different approaches to represent and reproduce the demonstrated task. 

These approaches are grouped by Argall et al. in [21] and by Billard et al. in [19] into two 

categories: low-level skill learning at trajectory level (or low-level motor control learning) 

and high-level symbolic task learning (or high-level symbolic reasoning). Table 1 

summarized the advantages and drawbacks of the two categories.  

Table 1: Advantages and drawbacks of high-level and low-level robot learning. (adapted from [19]) 

Robot 

Learning 

Generalization 

Process 

Advantages Drawbacks 

High-level 

symbolic task 

learning 

Sequential 

presentation of 

pre-defined 

actions    

Allows to learn 

hierarchy and 

rules 

Requires a large amount of  

predefined actions for the 

task segmentation and 

reproduction 

 Low-level 

skill learning 

at trajectory 

level 

Generic 

representation of 

motion 

(movements) 

Allows encoding 

of very different 

types of 

signals/gestures 

No reproduction of 

complicated high-level 

tasks 
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2.2.1 High-Level Symbolic Task Learning 

In high-level symbolic task learning, the task is encoded according to the sequences of 

predefined actions. This approach allows the robot to learn the sequence of actions, so the 

robot can learn high-level tasks [19]. It relies on a priori knowledge to be able to abstract 

the important key-points of the demonstrated task [1].  

Typically, an approach for symbolic task learning is to assume a pre-defined mapping 

of sensor data to the objects involved in the task. A graph-based approach was presented 

by Nicolescu & Mataric in [56], which generalizes the transportation of an object by a 

mobile robot. The tasks were generalized in a hierarchical manner. Each node of the 

graph represented a predefined action (behavior). 

A similar graph-based approach was presented by Ekvall & Kragic in [55]. The robot 

learned the high-level constraints of manipulation tasks by multiple demonstrations in 

three steps. The proposed solution first segmented the demonstrated task into primitive 

tasks, which was a composite of predefined actions. Subsequently, the state generation 

modeled the subtasks as states and searched for similar states over multiple 

demonstrations. At last, the task generalization identified the task constraints and the 

order of the states for reaching the task goal. The approach was used to encode household 

tasks, such as setting up the table by a robot manipulator. Similarly in [57], Pardowitz et 

al. proposed task precedence graphs, which represented the sequential structure of a 

demonstrated task.     

 

Figure 4: Graph-based approach of representing high-level sequence of actions for a demonstrated task. 

Each letter represents an object manipulation. Top left: Two demonstrations given to the robot. Right: 

Extraction of the task constraints. Note that the constraints B<E and E<B are removed. Bottom left: One of 

possible sequences to follow at execution time. (adapted from [55]) 
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Besides the graph-based approaches, First-Order Predicate Logic (FOPL) provides a 

high-level representation of a task. A sentence in FOPL is presented in the form P(x), 

where P is the predicate (i.e. robot action) and x is the subject (i.e. manipulated objects). 

Complete sentences are logically built following the same rules as those used in Boolean 

algebra. In [58], Cubek et al. used FOPL to describe the goals of a manipulation task. The 

robot learning method extracted the key states from demonstrations and recognized the 

goals, which were translated to FOPL. As FOPL implementation, the Planning Domain 

Definition Language (PDDL) [59] was used. The practical applicability of the method 

was shown in a setting up table scenario. In the same fashion, PDDL was used by Qian et 

al. in [60] to model the semantics of human demonstrations for two tasks – pouring water 

and installation cartridge.  

The concept of context-free grammars has been proposed for modeling structured 

processes [61] [62].   Yang et al. in [63] proposed a computational linguistics framework 

that learns semantics of manipulation tasks. The framework was based on a Combinatory 

Categorial Grammar (CCG). A large available dataset of manipulation tasks was used to 

validate the approach.  

Machine learning approaches have been also used to represent high-level tasks in 

abstracted form. In [64], Hovland et al. adopted Hidden Markov Models (HMMs) to 

provide symbolic representations of assembly tasks. A probabilistic approach for the 

representation and learning of complex manipulation based on multi-level Hierarchical 

Hidden Markov Model (HHMM) was presented by Patel et al. in [65], where the complex 

manipulation tasks were decomposed into multiple levels of abstraction to represent the 

actions in simpler way called action primitives.  

In [66], Lu et al. proposed a framework that combines Knowledge Representation and 

Reasoning (KRR) with model-based Reinforcement Learning (RL). The robot was able to 

reason with declarative knowledge and to simultaneously learn from interaction with the 

environment. To validate the framework, experiments were conducted using a mobile 

robot on delivery tasks.  

In this thesis, a similar approach to [66] is followed. The robot learning framework 

automatically generates the sequence of actions of the demonstrated task from the human 
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demonstrations. Subsequently, Interactive Reinforcement Learning (IRL) is used to 

predict the sequence of actions in real-time, to keep the human in the loop and to enable 

learning the user’s preferences. The RL provides an ideal framework for sequential 

decision making. In the IRL, the teacher can interact with the robot and can influence or 

evaluate the robot’s decision making [67]. The combination of RLfD and RL reduces the 

exploration problem of classical RL approaches. Table 2 summarizes the above 

mentioned related work.  

Table 2: Overview of Related Work in High-Level Symbolic Task Learning. 

Method Evaluation task Reference 

Graph-based approach 
transportation of an 

object 

Nicolescu & Mataric, 2003  

[56] 

Graph-based approach setting up the table Ekvall & Kragic, 2006 [55] 

Graph-based approach setting up the table Pardowitz et al., 2007 [57] 

First-Order Predicate 

Logic (FOPL) 
setting up the table Cubek et al., 2015 [58] 

Planning Domain 

Definition Language 

(PDDL) 

pouring water and 

installation cartridge 
Qian et al., 2018 [60] 

Combinatory Categorial 

Grammar (CCG) 
object manipulation  Yang et al., 2015 [63] 

Hidden Markov Model 

(HMM) 
assembly  Hovland et al., 1996 [64] 

Hierarchical Hidden 

Markov Model (HHMM) 

pouring water, handover, 

use of hammer, spraying 

from a spray bottle, 

drinking from a mug, 

shift object, sprinkle salt  

Patel et al., 2014 [65] 

Knowledge 

Representation and 

Reasoning - 

Reinforcement Learning 

(KRR-RL) 

delivery tasks Lu et al., 2018 [66] 

Interactive Reinforcement 

Learning  

assembly, pins-into-

holes, drinking from a 

glass with a straw 

Presented in this thesis 

(Sections 3.3.1, 3.4.1 & 

3.4.3) 
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2.2.2 Low-Level Skill Learning at Trajectory Level 

The main goal of low-level skill learning at trajectory level (also called motor control 

learning) is to enable robot to learn the basic movements or gestures (motor skills). 

However, this approach does not allow reproducing of more complicated high-level tasks. 

An extensive survey on learning of robot motion has been published by Calinon & Lee in 

[25].  The most well-known methods are discussed in this section.        

A line of research has adapted a dynamical system approach to deal with the 

demonstrated trajectory, as well as to reproduce it with a new goal pose. One popular 

method is the Dynamic Movement Primitive (DMP) [68] [69] [70], which allows the 

robot to learn a non-linear differential equation based on the movement observed by a 

single demo. The equations form a control policy to generate a trajectory for a new goal 

pose. Modified DMP methods proposed by Park et al. in [71] and by Pastor et al. in [72], 

adapt the learned differential equation for different start and goal positions of a 

movement or for obstacle avoidance. Another approach to achieve generalization is the 

mixture of motor primitives (MoMP) algorithm proposed by Muelling et al. in [73]. The 

presented method generates a set of DMPs from demonstrations (each demonstration is 

represented by one DMP) and then generalizes these movements to a wide range of 

situations. To evaluate a method, striking movements in robot table tennis were selected.  

Furthermore, DMPs were combined with Reinforcement Learning (RL) for rhythmic 

primitives by Kober & Peters in [40]. The demonstration was first described by DMP. 

Subsequently, policy learning by weighting exploration with the returns (best-suited RL) 

was used by the robot to reproduce two complex motor tasks, i.e. Ball-in-a-cup and Ball-

Paddling. A similar approach was presented by Kormushev et al. in [74], where 

Expectation-Maximization based RL was exploited to modulate the DMPs of a pancake-

flipping movement initialized from human demonstration. In the same fashion, Deng et al. 

in [75] applied DMPs and RL on a dual-arm mobile manipulator. The RL was employed 

to adjust the learned DMP model to uncertain environments.    

The DMP algorithm models the motion primitive by a single demonstration. To enable 

learning from multiple demonstrations, Yin & Chen in [76] and Chen et al. in [77] 



2.2 Robot Learning from Human Demonstrations 

17 

 

combined the DMP with Gaussian Mixture Model (GMM). The GMM is used to learn the 

joint probability of the non-linear system and Gaussian Mixture Regression (GMR) is 

used to reproduce the trajectory. The proposed method was tested on a non-holonomic 

mobile robot. Another approach to model the robot motion primitives as dynamic 

systems is Stable Estimator of Dynamic Systems (SEDS) and it was proposed by 

Khansari-Zadeh & Billard in [78]. SEDS is an optimization approach for statistically 

encoding a dynamic motion as a first order autonomous non nonlinear differential 

equation with GMM. The method ensures global asymptotic stability of the autonomous 

nonlinear dynamic system.  

Machine learning techniques have been widely used for learning at trajectory level. 

Hidden Markov model (HMM) is one of the methods, which learns the time and space 

constraints of a given trajectory. Brand & Hertzmann in [79] used HMM to encode and 

synthesize common elements in a motion. In the same fashion, Calinon et al. in [80] and 

Billard et al. in [81] modeled the trajectories into HMM by decomposing them into a set 

of relevant key points and generated the trajectory using spline fitting and interpolation, 

respectively.  In [54] and [82], Calinon el al. proposed the use of GMR to obtain a 

smooth generalized trajectory. The robot reproduction satisfied the constraints of the 

demonstrated trajectories. In [83], Pignat & Calinon presented Hidden Semi-Markov 

Model (HSMM) coupled with a task-parameterized model (TP) to achieve adaptation to 

different environmental situations, such as assistive dressing of people with disabilities. 

The method requires demonstrations with different environmental conditions, so to 

achieve a generalized model of the motion.    

In [84], Calinon el al. proposed the use of Gaussian Mixture Model (GMM) to learn 

the time and space constraints of multiple demonstrations and Gaussian Mixture 

Regression (GMR) is used to reproduce the trajectory. It was shown that GMM represents 

the constraints along the trajectories continuously, while HMM represents the relevant 

key points of the trajectories. The advantage of the GMM/GMR over HMM/GMR is that 

generated trajectories are smoother. In [85] and [86], Calinon proposed the Task-

Parameterized GMM (TP-GMM) to automatically adapt the movements to new situations. 

The method requires demonstrations with different environmental conditions, so to 
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achieve a generalized model of the motion. However, how many demonstrations are 

needed for different environmental conditions is unclear. TP-GMM has been applied to 

physical human-robot collaborative movements [87]. 

In [88] and [89], Vecerik et al. and Hester et al., combined Deep Reinforcement 

Learning (DRL) with RLfD to learn robotic motion skills. The DRL algorithm was 

initialized using demonstrations. The demonstrations took over the need for carefully 

engineered rewards, and reduced the exploration problem of classical RL approaches in 

these domains. In [88], the method was evaluated on a real robot, which learned to insert 

a flexible object into a rigid object.  

In this thesis, GMM is used to model the human demonstrations, as it is a method that 

enables automatic extraction of trajectory constraints [90]. To enable adaptation to 

different environmental conditions, a GMM modification (m-GMM) algorithm is 

developed in this thesis. The m-GMM modifies the mean values of the learned GMM for 

the moving actions in order to adapt to the new pose of objects and to avoid collision 

with obstacles. GMR is then used to produce a smooth trajectory from the output of the 

m-GMM. The GMM/m-GMM/GMR method does not require demonstrations with 

different environmental conditions. Therefore, it functions with single and multiple 

demonstrations. Table 3 summarizes the robot learning at trajectory level methods, which 

are discussed in this section.  
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Table 3: Overview of Related Work in Low-Level Skill Learning at Trajectory Level. 

Method 

for 

learning 

Demos  

Method for 

reproduction 

Adaptation to 

environmental 

changes 

Reference 
S

in
g
le

 

M
u
lt

ip
le

 

D
if

fe
re

n
t 

st
ar

t 
p
o
se

 

D
if

fe
re

n
t 

g
o
al

 p
o
se

 

O
b
st

ac
le

 A
v
o
id

an
ce

 

DMP   DMP    

Ijspeert et. al, 2002 [68], 

Schaal et. al, 2005 [69], 

Schaal, 2006 [70] 

DMP   Modified DMP    
Park et al., 2008 [71],  

Pastor, et al., 2009 [72] 

DMP   MoMP    Muelling et al. 2013 [73] 

DMP   
Reinforcement 

Learning 
   

Kober&Peters,2009 [40], 

Kormushev et al., 2010 [74], 

Deng et al., 2017 [75] 

DMP/ 

GMM 
  GMR    

Yin&Chen, 2014 [76], 

Chen et al., 2017 [77] 

SEDS   SEDS    
Khansari-Zadeh&Billard, 

2011 [78] 

HMM   

trajectory 

generation 

(spline fitting/ 

interpolation) 

   

Brand&Hertzmann, 2000 

[79], 

Calinon et al., 2005 [80], 

Billard et al. 2006 [81] 

HMM   GMR    

Calinon, D’halluin el al., 2010 

[54],  

Calinon, Sauser et al., 2010 

[82]  

TP-

HSMM 
  GMR    Pignat&Calinon, 2017 [83] 

GMM   GMR    Calinon el al, 2007 [84]  

GMM   
TP-

GMM/GMR 
   

Calinon, 2016 [85], 

Calinon, 2018 [86], Rozo et 

al., 2016 [87] 

DRL + 

Demos 
  DRL    

Vecerik et al., 2017 [88],  

Hester et al., 2018 [89] 

GMM   m-GMM/GMR    
Presented approach in this 

thesis (Section 3.4.2)  
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2.2.3 High-Level Task and Low-Level Skill Robot Learning 

Current research in RLfD tends to focus either on continuous representations of the 

low-level motor control of robots or on discrete representations of the high-level task 

requirements [23] [25] [26]. It requires the development of algorithms capable of 

covering a wide variety of representations, from the continuous low-level motor control 

to sequence of actions, reasoning and symbolic representations of tasks [26]. Some 

researchers attempt to bridge the gap between symbolic task learning and skill learning at 

trajectory level by combining low-level and high-level RLfD approaches. 

Growing Hierarchical Dynamic Bayesian Network (GHDBN) is a method proposed by 

Dindo & Schillaci in [91], which is used for the representation and reproduction of 

complex actions from demonstrations. The GHDBN is a two-level Hierarchical Dynamic 

Bayesian Network (HDBN) where one level describes the high level representation of the 

task and the other describes the low level behavior of the robot. Simulation results were 

presented on a complex task of the following skills: approach-object, grasp-and-

dislocate-object, and hit-object.  

Akgun & Thomaz, in [92], proposed a framework that learns the model of actions 

(skills) and goals (task). The teacher provided demonstrations including key-frames, 

which are a sparse (in time) set of ordered points. During the human demonstration, the 

teacher defined the key-frames by speech commands (e.g. go here). Two individual 

Hidden Markov Models (HMMs) were trained; the first HMM learned the sequence of 

actions to perform the task and the second HMM learned the trajectories. To evaluate the 

proposed method, two robotic tasks were selected – close the box and pour coffee beans 

from the cup to the bowl.  In [93], Canal et al. modeled the demonstrated trajectories 

using the Hidden Semi-Markov Models (HSMM) and learns the sequence of actions using 

Markov Decision Process (MDP). The proposed framework is designed for a shoe 

dressing task and the actions are predefined and based on user reactions. Evaluation 

results on a real robot are presented.  

Hierarchical Deep Reinforcement Learning has been proposed by Yang et al. in [94], 

which learns skills and tasks simultaneously. The first level of hierarchy learned a 

particular basic skill, while the second level of hierarchy learned compound skills by 
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reusing basic skills in the first level of hierarchy to solve compound tasks. The method 

was evaluated with three different tasks (i.e. approaching object, approaching specific 

target, and doorway) in a simulated mobile robot.    

In the presented thesis, a combination of high-level and low-level RLfD techniques is 

selected, similar to [93]. Interactive Reinforcement Learning (IRL) learns the sequence of 

actions to perform the task, enables interaction with the user (human-in-the-loop), and 

learns user’s preference.  On the other hand, the GMM learns the motor skills (low-level) 

and the m-GMM/GMR adapts them to new environmental conditions. Table 4 

summarizes the related work, which is discussed in this section.  

Table 4: Overview of Related Work in Low-Level and High-Level Robot Learning. 

Symbolic 

Task 

Learning 

Skill 

Learning at 

Trajectory 

Level 

HRI during 

execution 

Robotic 

Application  
Reference 

GHDBN (two layers) No 

Robotic arm:  

Task consists of the 

skills: approach-

object, grasp-and-

dislocate-object, and 

hit-object 

Dindo & 

Schillaci, 2011 

[91] 

HMM HMM No 

Humanoid robot: 

Close the box, Pour 

coffee beans from 

the cup to the bowl 

Akgun&Thomaz, 

2016 [92] 

MDP HSMM 
Human-in-

the-Loop 

Robotic arm:  

Shoe dressing 

assistance 

Canal et al., 2018  

[93] 

Hierarchical Deep 

Reinforcement Learning 
No 

Mobile robot: 

approaching object, 

approaching specific 

target, and doorway  

Yang et al., 2018 

[94] 

IRL 
GMM/m-

GMM/GMR 

Human-in-

the-Loop, 

User 

Preferences 

Dual-arm industrial 

robot: assembly, 

pins-into-holes.  

Robotic arm: 

drinking from a glass 

with a straw 

Presented in this 

thesis (Section 3) 
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2.3 Robot Learning by Individuals with severe Motor 

Impairments 

Research for assistive robotic manipulators for motor-impaired users is focused on 

development shared control paradigms for predefined tasks [95]. Robot learning from 

motor-impaired teachers is a new area of research [96], which could enable the motor-

impaired users to teach desired tasks, without preprogramming. In [97], Argall 

highlighted how machine learning techniques could be used for learning of shared control 

for assistive robots.  

In the work presented by Goil et al. in [98], the doorway navigation of a powered 

wheelchair was learned by human demos using the statistical machine learning approach 

Gaussian Mixture Model (GMM) and Gaussian Mixture Regression (GMR). However, 

the approach was only tested in a simulated environment and it was not evaluated in a 

real scenario with an extensive user study. A natural language interface was proposed by 

Broad et al. in [99], which enabled a user to provide corrections for assistive robotic 

manipulators. The user modified properties of how the robot achieved a goal on-the-fly. 

The user could correct properties such as speed, orientation, spatial constraint and 

grasping point. However, the robot actions that can be corrected were predefined and the 

tasks were preprogrammed. Similarly, in [100], Kuhner et al. proposed a system that the 

user can select predefined actions using a Brain-Computer-Interface (BCI).  

In this thesis, the robot learning framework does not require predefined actions or pre-

programmed tasks, so to provide more freedom to the user. The motor-impaired user 

controls the robot though the desired task and the robot learning framework learns the 

sequence of actions for a demonstrated manipulation task including the moving actions.  
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3. Robot Learning of Object 

Manipulation Tasks from Human 

Demonstrations 

3.1 Overview of the Robot Learning Framework 

The overall structure of the robot learning framework [1], [4] is shown in Figure 5. 

The framework enables robots to learn object manipulation tasks from human 

demonstrations. Most robot learning frameworks [22] [21] enable learning from multiple 

human teachers (demonstrators), so the learned task is independent of the experience and 

concentration of a single human teacher. The working hypothesis of multiple 

demonstrations, as described in [1], is that learning from a single demonstration has 

limitations, as the human teacher may make mistakes during the demonstration so that the 

robot could be vulnerable to these mistakes. Additionally, the human teacher has a lower 

precision compared to the robot and may perform unnecessary movements in attempts to 

be very precise in positioning the robot’s end-effector. Furthermore, as the various human 

demonstrations lead to different demonstrated skills, an optimally learned skill could be 

the outcome of a combination of different demonstrations.  

However, multiple demonstrations are not always possible. For example, it is very 

challenging and time consuming for a person with severe motor impairments to provide a 

single demonstration of a robot manipulation task via ‘hands-free’ interaction. The 

requirement of multiple demonstrations could burden the motor-impaired user physically 
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and/or mentally. The presented robot learning framework can rely on multiple 

demonstrations of a manipulation task. However, it can also work with a single 

demonstration, even if the demonstration may not be the most optimal in terms of the 

demonstrated path of the robot’s end-effector and object grasping position. The different 

methods of Human-Robot Interaction (HRI), which enable human teachers to provide 

demonstrations, are presented in section 3.2.  One assumption in this thesis is that the 

demonstration(-s) must complete the manipulation task successfully and the final goal of 

the task has to be achieved. For instance, in an assembly manipulation task, the final 

outcome of a demonstration must complete the desired assembled object. This thesis does 

not investigate robot learning from failed demonstrations [101]. 

As illustrated in Figure 5, the presented robot learning framework is organized in two 

main phases, the learning phase (offline) and the working phase (online) [1]. The 

presented robot learning framework has been developed in the open-source Robot 

Operating System (ROS) [102].    

During the learning phase (section 3.3), all the actions needed to complete the object 

manipulation task are demonstrated once or several times by one or more human teachers. 

The robot learns the necessary sequence of actions for the demonstrated task, including 

the trajectories to manipulate the objects. 

During the working phase (section 3.4), the robot is able to suggest the necessary 

sequence of actions to complete the task and to adapt the moving actions to 

environmental changes (including obstacle avoidance) in real-time. Moreover, the user 

can provide feedback regarding the suggested sequence of actions for the identified task 

and the robot learns the user’s preferences online. In this thesis, the term ‘user’ is 

equivalent to terms human collaborator, human coworker, human teammate and end-user. 
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Figure 5: Overview of the developed robot learning framework (the main contributions of this thesis are: 

learning, decision support & adaptation and learning user’s preferences blocks). 

The Environmental Perception module is common in both phases (learning and 

working phase). A first version of this module (v1) was developed by Fang in [103] and 

by Yassin in [104]. It processes the Point Cloud Data from the vision-sensor, which 

observes the scene. Firstly, the state-of-the art YOLOv3 [105] object classifier is used to 

identify the object ID (for example: human, cup, pin, box) in the scene. Secondly, 3D-

point cloud-based processing is performed to estimate the pose and the size of the 

identified objects. The output of this module is the object ID (for example: human, cup, 

pin, box), the object size and object pose with respect to the world coordinate system. A 

second version of this module (v2) was developed by Haseeb et al. [106] and [107], 

which uses YOLOv3 to recognize objects and to extract their bounding boxes, and 

DisNet, a multi-hidden-layer neural network, to estimate the position of object with 

respect to a monocular camera (RGB). The development of the Environmental 

Perception module is not part of this thesis and the output of the Environmental 

Perception module is assumed to be accurate.  
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3.2 Human-Robot Interaction for Robot Learning 

In this section, several HRI methods for robot learning are presented, which are 

classified into two groups; ‘hand-operated’ and ‘hands-free’ HRI. The hand-operated 

HRI is operated by the user’s hands by one of two methods, kinesthetic teaching (section 

3.2.1.1) and teleoperation (section 3.2.1.2). The hands-free HRI is based on head gesture-

based recognition and there are two approaches – using motion (section 3.2.2.1) or vision 

sensor (section 3.2.2.2). The ‘hands-free’ HRI can be used for tetraplegic users or when 

the user’s hands are occupied with another task. During the demonstrations of a 

manipulation task, the initial scene is the same for every demonstration.  

3.2.1 ‘Hand-Operated’ Human-Robot Interaction for Robot Learning 

3.2.1.1 Human-Robot Interaction via Kinesthetic Teaching 

A widely-used method to provide demonstrations for robot learning is kinesthetic 

teaching. In this method, the user controls the robot by physically grasping the robot’s 

end-effector and guiding it through the task. The robot’s joints are set in gravity 

compensation mode [108], which allows the user to maneuver the robot’s end-effector. In 

the presented work, the actuation and de-actuation of the grippers (robot’s end-effectors) 

are also controlled by the user during the demonstrations.  

3.2.1.2 Human-Robot Interaction via Teleoperation  

Another method for able-bodied users to interact with the robot and provide the 

demonstrations is to control the robot via a gamepad [109], which is shown in Figure 6. 

The different buttons on the gamepad provide the following functionalities [6]: selection 

of robot arm (left and right) in case of dual-arm robots, the grippers’ actuation and de-

actuation, and control of one out of 6 dimensions at the time, specifically translation (x, y, 

z-axis) or rotation (roll, pitch, yaw) with respect to the world coordinate system.  

Robot control via gamepad is physically less demanding for the users in comparison to 

kinesthetic teaching and it is easier as the user needs to directly control the translation 
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and rotation of the robot’s end-effector without worrying about the joint configuration. 

Moreover, some of the users are already familiar with the use of gamepads.  

 

Figure 6: Gamepad. 

3.2.2 ‘Hands-free’ Human-Robot Interaction for Robot Learning 

Head gesture-based HRI is one approach that enables ‘hands-free’ interaction. 

Different sensors, motion (section 3.2.2.1) and vision sensors (section 3.2.2.2) are used to 

measure the head movement. One popular approach for head gesture recognition is to 

apply classifiers [110] [111], such as Support Vector Machines in [112] [113] and Hidden 

Markov Models in [114] [115]. In the presented thesis, Support Vector Machine (SVM) 

[116] is selected as a classification technique to recognize the head gestures [4] [5]. 

A flowchart of the robot control via head gesture-based interface is illustrated in 

Figure 7, and it is similar in both approaches (motion and vision sensor). Firstly, there is 

the training phase of the SVM, which is indicated with the red arrows in Figure 7.  

Participants performed the head gestures while wearing the sensor (motion or vision) and 

the sensor data was collected for each gesture. Features were extracted from the collected 

labeled data and the SVM was trained.  

The robot control via head gesture-based interface in real-time is shown in Figure 7 

with the blue arrows. After the data acquisition from the sensor and after the subsequent 

feature extraction, the performed head gesture is recognized with the trained SVM model. 

The user utilizes the performed and recognized head gestures to navigate through the 

state machine
4
 of the robot. Examples of the state machine of robots are shown in Figure 

9 and Figure 13. The user is able to select a state, such as to control one of the rotation 

                                                 

4
 State machine (or finite state machine) is a model of a computation system, consisting of states, 

possible inputs and a rule to map each state to another (or to itself), for any of the possible inputs [156] 
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angles (pitch, yaw, roll) or the translation axes (x-, y-, z- axis) of the robot’s end-effector, 

as well as to control the gripper’s actuation (Open/ Close) or to select different robotic 

arms, in case of dual-arm robots. The states where the user can control a dimension of the 

robot’s end-effector are called control states. The audio feedback always assists the user 

by announcing the selected state. With the audio assistance, the user can control the robot 

by directly looking at it.  

 

Figure 7: Overview of the head gesture-based HRI. (adapted from [4])  

Four head gestures that are needed to navigate through the state machine are explained 

in Table 5. The gestures are shown in Figure 9 and Figure 13. An important note is that 

the gestures were selected based on the neck motion limitations of a tetraplegic user 

suffering from multiple sclerosis. 

Table 5: Explanation of Head Gestures. 

Name of the Gesture Explanation 

Up-Gesture (UG) Up nod of the head 

Down-Gesture (DG) Down nod of the head 

Left-Gesture (LG) Left turn of the head 

Right-Gesture (RG) Right turn of the head 

After the selection of a control state, the left and right turn of the head is mapped to 

the movement of the robot in negative and positive directions of the selected dimension 

(robot control). The more the user’s head turns, the more the robot moves along the 

selected dimension. The Down-Gesture (DG) is used to stop the direct robot control and 

to return back to the state machine. As the range of the head motions may differ for each 
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user, a calibration procedure is done before the user starts interacting with the robot. 

During calibration, the user turns the head to the left and to the right, while the system 

identifies the range of the head motion.  

More details about the sensor setup, the feature extraction, the accuracy of the SVM, 

the state machine and the robot control are given in sections 3.2.2.1 and 3.2.2.2 for head 

gesture-based HRI using a motion and a vision sensor, respectively.   

3.2.2.1 Head Gesture-based Human-Robot Interaction Using a Motion Sensor 

An approach for ‘hands-free’ HRI is based on head gesture recognition using a motion 

sensor and has been presented by Haseeb, Kyrarini et al. in [5]. The myAHRS+ sensor 

[117] from WITHROBOT is selected as a motion sensor and it consists of a 3-axis 

accelerometer, gyroscope and geomagnetic sensor. Moreover, the motion sensor has on-

board data fusion to estimate the rotation in Euler angles and quaternions. The sensor is 

mounted on a headband, which is worn by the user, as shown in Figure 8a. The 

orientation of the sensor is shown in Figure 8b.  

a)  b)  

Figure 8: a) The motion sensor is worn by the user, b) Orientation of the motion sensor [5]. 

The head gesture data for training the SVM were collected from one tetraplegic and 12 

able-bodied participants. The participants wore the motion sensor on the top of their 

heads and they were asked to repeat each gesture 10 times. The recorded data consisted 

of 3-dimensional acceleration and 3-dimensional angular velocity, which were 

normalized into a range from [0,1]. The selected features, such as minimum and 

maximum values of the acceleration and angular velocity were used to train the SVM. 

The accuracy of the head gesture classification was 98.42% for the able-bodied 

participants (using k-fold cross-validation), while for the tetraplegic participant it was 
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89.72% (the data of the tetraplegic participant was included in the training and testing 

dataset) [5]. The lower accuracy for the tetraplegic user was due to the slower speed and 

the range of performing the head gestures was smaller than the range of able-bodied users. 

A user using these head gestures is able to navigate through the state machine of a 

dual-arm industrial robot with multiple grippers (more information about the robotic 

platform are given in section 4.1). The state machine of the dual-arm robot is shown in 

Figure 9.  

 

Figure 9: State machine of a dual-arm industrial robot with multiple grippers [5]. 

After the selection of a control state, the velocity of the robotic arm’s end-effector in a 

selected dimension is controlled by the rotation of the user’s head around the z-axis with 

respect to the neutral position of the head. The more the user’s head turns, the faster the 

robot moves along the selected dimension. During calibration, the maximum velocity 

along the positive axis is defined as the range of motion of the head in the right direction 

and the maximum velocity along the negative axis is defined as the range of motion in the 

left direction of the head as shown in Figure 10. 
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Figure 10: Mapping between velocity of robotic arm’s end-effector and range of head motion [5]. 

3.2.2.2 Head Gesture-based Human-Robot Interaction Using a Vision Sensor 

The head gesture-based HRI consists of a hat equipped with a low-cost miniature web-

camera [118] (vision sensor), as shown in Figure 11 and has been presented by Kyrarini 

et al. in [4]. The camera points towards the body of the user sitting still in a wheelchair. 

The working principle of this approach is that the human body is a static environment and 

the changes in the scene viewed by the camera are due to the head motion. These 

detected changes define head gestures. 

 

Figure 11: The vision sensor is worn by the user suffering from tetraplegia. (adapted from [4]) 

The first step for head gesture recognition is to collect the labeled data in order to train 

the SVM. Ten able-bodied participants were asked to perform the four gestures 

(up/down/left/right) by repeating each gesture ten times, while wearing the hat with the 

camera, during which data (video) was recorded. Each performed gesture is stored as 

image frames (video).  
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First, the Shi-Tomasi detector [119] is used for detection of corner points from the 

initial frame of the video. Subsequently, the optical flow vectors [120] of the tracked 

corner points are calculated using the Lucas-Kanade method [121] through subsequent 

continuous frames. An example of the detection of corner points and optical flow is 

shown in Figure 12. Each gesture is represented by one normalized optical flow vector 

used as a feature to train the SVM classifier offline in a supervised manner. The accuracy 

of the head gesture recognition for seven participants (6 able-bodied and 1 tetraplegic) 

who did not belong to the training set was 97.61% [4]. Moreover, the accuracy of the 

head gesture recognition for the tetraplegic participant was 95.83% [4]. 

a)  b)  

Figure 12: Example of a) detection of corner points at initial frame of the video and b) optical flow while 

performing the right head gesture. 

The user utilizes the performed and recognized head gestures to navigate through the 

state machine of an assistive robotic manipulator equipped with a gripper (more 

information about the robotic platform are given in section 5.1), which is shown in Figure 

13. After the selection of a control state, the range of head motion to the left and right is 

mapped to the movement of the robot in negative and positive directions of the selected 

dimension in position control mode. The more the user’s head is turned, the more discrete 

steps the robot takes. 
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Figure 13: The state machine of an assistive robotic manipulator [4].  

3.3 Robot Learning Phase (Offline) 

The offline robot learning phase [1] consists of the following two main modules. 

 Data Acquisition module: This module records the trajectory of the robot’s end-

effector (end-effector pose with respect to the world coordinate system and time) as 

well as the actuation status of the gripper during the human demonstrations. The 

recorded data are stored in the robot database. Each demonstration presents the 

complete object manipulation task, which is demonstrated by a user. The trajectory 

consists of data-points {s, t}, where s refers to the 7-dimensional spatial variables {x, y, 

z, qx, qy, qz, qw
5
} and t is the temporal variable. The sampling frequency is defined as 

100Hz for all the demonstrations. Additionally, this module stores the outputs of the 

Environmental Perception module in the robot database, which include the object ID, 

the object size and object pose with respect to the world coordinate system. 

 Learning module: This module enables the robot to learn the sequence of actions 

needed to complete the demonstrated object manipulation task without any pre-

programming by the user. The learning module is organized into two layers.  

                                                 

5
 qx, qy, qz, qw: quaternions 
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 Symbolic Task Learning (High-level Learning), consisting of the 

following steps: Automatic Task Segmentation into Sequence of Actions 

(ATSSA) and initialization of Reinforcement Learning from human 

demonstrations. More details are given in section 3.3.1.  

 Learning at Trajectory Level (Low-level Learning), consisting of two steps 

resulting in the learned end-effector trajectory. These steps are the 

selection of similar demonstrations and the Gaussian Mixture Model 

(GMM).  A lookup table is also generated that associates the high-level 

actions with the trajectories. More details are given in section 3.3.2. 

The outcomes of the Learning module are stored in the database and they comprise as 

follows:  

1. the initialized Q-Table for Reinforcement Learning,  

2. the object ID, size and pose for the involved objects,  

3. the learned Gaussian Mixture model (GMM) of the demonstrated end-effector’s 

trajectories, and  

4. the lookup table that associates the high-level actions with the moving actions.  

3.3.1 Symbolic Task Learning (High-level) 

3.3.1.1 Automatic Task Segmentation into Sequence of Actions (ATSSA) 

The ATSSA sub-module is responsible for generating the sequence of actions for the 

demonstrated manipulation task.  The trajectory of the robot’s end-effector, the actuation 

status of the gripper and the outputs of the Environmental Perception module for each 

demonstration are used as input to the ATSSA. The ATSSA first identifies when the 

robot is in the ‘home’ pose (home action) and detects the gripper actions. There are two 

types of gripper actions: the gripper is either actuated (close action) or not-actuated (open 

action). The gripper close action is the event when the gripper state changes from ‘open’ 

to ‘close’, and the gripper open action is when it changes from ‘close’ to ‘open’.  

Subsequently, the ATSSA associates each gripper close action with the information of 

the manipulated object (provided by the Environmental Perception module) as well as 
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each gripper open action with the information of the object, which is close to the 

placement pose of the manipulated object. Additionally, if an object manipulation does 

not start or end in the ‘home’ pose of the robot, the method detects which object is closer 

to the end-effector at the start or the end of the end-effector’s trajectory. In particular, if 

the robot is not in the ‘home’ pose at the start/end of an object manipulation, the robot 

action ‘Start/End’ is assigned by ATSSA, respectively. The output of this method is a 

sequence of high-level actions with pairs of robot action 𝑎𝑟  (𝑎𝑟 ∈{Start, End, Close, 

Open, Home}) and object information 𝑎𝑜𝑏𝑗 (ID, size, pose) for each demonstration.  

For example, in the case of a simple manipulation task, the user guides the robot to 

pick up a small box and to place it on top of a big box. The demonstration starts and ends 

in the robot home pose. The output of the ATSSA is:  

1. Home – Home
6
, 

2. Close – Small box info, 

3. Open – Big box info, 

4. Home – Home. 

To provide another example, in the case of the demonstration of a drinking task, the 

user controls the robot from a pose near the table, to pick up a cup and to deliver it close 

to their mouth. The output of the ATSSA is:  

1. Start – Table info,  

2. Close – Cup info,  

3. End – Person info.  

For dual-arm robotic platforms with multiple grippers, the robot actions can be 

updated to include information about which arm and which gripper is used. Real-world 

examples can be found in chapters 4 and 5.   

3.3.1.2 Initialization of Reinforcement Learning from Human Demonstrations  

In the presented work, Reinforcement Learning (RL) is selected to enable the learning 

of a sequence of actions. Schaal [122] proposed RL from human demonstrations, which 

is the initialization of the value-function (Q-Table) of RL by using demonstrations. The 

                                                 

6
 When robot is in the ‘home’ pose, no object is considered.  
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demonstrations are assumed to be a passive learning experience for the RL agent. The Q-

Table is initialized by the human demonstration of the manipulation tasks and converges 

to a final value quickly. The output of the ATSSA sub-module for all the demonstrations 

encompasses the actions A of the Q-Table. The states are 𝑔 =<1, …, 𝐺>
7
, where 𝐺 is the 

total number of performed actions (total number of states).  The reward 𝑅̂(𝑔𝜏, 𝑎𝜏, 𝑔𝜏+1) 

from the human demonstrations is calculated by the equation (3.1):  

𝑅̂(𝑔𝜏, 𝑎𝜏, 𝑔𝜏+1) =
𝑘

𝐷
 (3.1) 

where 𝑔𝜏 is the current state in time τ,  𝑎𝜏 is the action in time τ, 𝑔𝜏+1 is the new state in 

time τ+1,  𝐷 is the total number of human demonstrations, and 𝑘 is the number of human 

demonstrations at which action 𝑎𝜏 leads to state 𝑔𝜏+1. The equation (3.2) is used for the 

initialization of the values of the Q-Table. 

𝑄(𝑔𝜏, 𝑎𝜏) = 𝑅̂(𝑔𝜏, 𝑎𝜏, 𝑔𝜏+1) (3.2) 

For example, in the case of an assembly manipulation task in which 2 pins (one small 

and one big)  are inserted into the two holes of a holder, there are 𝐷  number of 

demonstrations, and in 𝐷1 demonstrations the teachers manipulate the small pin first and 

in 𝐷2 demonstrations they manipulate the big pin first, where 𝐷1, 𝐷2 < 𝐷 and 𝐷1 +  𝐷2 =

𝐷. The output of the ATSSA is shown in Table 6.  

Table 6: Output of the ATSSA in case of an assembly manipulation of inserting 2 pins (one small and one 

big) into two holes of a holder. 

τ D1 demonstrations D2 demonstrations 

1 Home – Home Home – Home 

2 Close – Small Pin info Close – Big Pin info 

3 Open – Holder info Open – Holder info 

4 Close – Big Pin info Close – Small Pin info 

5 Open – Holder info Open – Holder info 

6 Home – Home Home – Home 

The actions are A=< Home – Home, Close – Small Pin info, Open – Holder info, 

Close – Big Pin info> and the states are 𝑔 =<1,…,6>. Based on equations (3.1) and (3.2), 

                                                 

7
 In RL the state usually is denoted as s, but in this thesis 𝑔 is used. The reason is to avoid confusion with s 

as 7-dimensional spatial variables. 
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the initialization of the Q-table is shown in Table 7 for the assembly manipulation of 

inserting 2 pins into the two holes of a holder. The use of the initialized Q-Table in the 

online robot working phase is explained in section 3.4.1.  

Table 7: Initialization of the Q-Table for an assembly manipulation task of inserting 2 pins (one small and 

one big) into the two holes of a holder.  

 Actions a 

States 

𝑔 

Home – Home Close – Small 

Pin info 

Open – Holder 

info 

Close – Big Pin 

info 

1 (𝐷1 +  𝐷2) 𝐷⁄  0 0 0 

2 0 𝐷1 𝐷⁄  0 𝐷2 𝐷⁄  

3 0 0 (𝐷1 +  𝐷2) 𝐷⁄  0 

4 0 𝐷2 𝐷⁄  0 𝐷1 𝐷⁄  

5 0 0 (𝐷1 +  𝐷2) 𝐷⁄  0 

6 (𝐷1 +  𝐷2) 𝐷⁄  0 0 0 

3.3.2 Skill Learning at trajectory level (Low-level) 

3.3.2.1 Selection of similar demonstrations 

The human demonstrations that are given as input to the robot learning framework are 

crucial, as the learned robot behavior is based on the demonstrations. During multiple 

human demonstrations of a task, there are two main problems: the different speed of each 

demonstration and the variety of demonstrated trajectories [2] [3] [6].  

Dynamic Time Warping (DTW) [123] is a method that is used to find an optimal 

alignment between two time-series which may vary in speed and time. DTW is a widely 

used method to align human demonstrations that differ in speed and time [124] [125] [2]. 

Moreover, DTW measures the similarity between two time series and it is proposed as a 

solution for finding similar demonstrations based on the demonstrated trajectories [2] [3] 

[84]. However, one disadvantage of DTW is the high degree of complexity of the 

algorithm, which is time consuming [126].  

A novel method for alignment and selection of similar demonstrations without the use 

of DTW is presented in this section and has been presented by Kyrarini & Gräser in [6]. 
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More precisely, the presented algorithm is able to align and select similar trajectories. 

The presented method uses the complete trajectories from the D demonstrations as input, 

where D is the total number of demonstrations. A demonstrated trajectory consists of 

data-points {s, t}, where s refers to the 7-dimensional spatial variables {x, y, z, qx, qy, qz, 

qw} and t is the temporal variable (sample). Additionally, the temporal variable 𝑡𝑔 is also 

considered input, which is the time when the robot takes an action to go to state 𝑔, e.g. 

when the robot picks up an object.  

 Step 1: Splitting trajectories into sub-trajectories  

The trajectory of each demonstration is split (segmented) based on the temporal 

variable 𝑡𝑔 into 𝐺 − 1  sub-trajectories, where 𝐺  is the total number of states (section 

3.3.1.1). For example, if there are 4 states (𝐺) during the demonstrated task, the complete 

trajectory will be split in 3 sub-trajectories (𝐺 − 1). By splitting the trajectories into sub-

trajectories, the different demonstrations are spatially aligned on the Important Points (IP) 

for the demonstrated task. IP in the object manipulation tasks are the points for grasping 

(picking up) and releasing (placing) the objects, which require precision. A sub-trajectory 

is denoted as 𝑃𝑑,𝑔 where 𝑑 = 1, … , 𝐷, 𝑔 = 1, … , (𝐺 − 1). All the 𝑔-th sub-trajectories of 

the D demonstrations are organized in a group ( 𝑔 ). An example of splitting each 

demonstrated trajectory into 3 sub-trajectories is shown in Figure 14. In the case of a 

single demonstration of a task (one-shot robot learning), the rest of the steps (steps 2 – 4) 

are skipped.   

 Step 2: Resampling the sub-trajectories in a group (𝑔) 

Within a group (𝑔) of sub-trajectories, the total number of samples (time duration) 

may vary due to different speeds of performing the demonstrations. The polyline 

simplification algorithm by Ramer-Douglas-Peucker (RDP) [127], [128] is used to 

provide sub-trajectories of the same total number of samples. As described by Kyrarini et 

al. in [7] and [3], polyline simplification methods are used to automatically select the 

important ‘key-points’ of a trajectory. The RDP algorithm is explained in Appendix B.  

The inputs to the RDP algorithm are the total desired number of samples and the sub-

trajectories 𝑃𝑑,𝑔 of the 𝑔-th group. The total desired number of samples for each group is 
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equal to the smaller total number of samples among the sub-trajectories of the group. The 

outputs are the RDP sub-trajectories 𝑃̂𝑑,𝑔 of the same total number of samples 𝑇̂𝑔.  

 

Figure 14: Example of splitting two demonstrated trajectories into sub-trajectories for one spatial variable. 
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Figure 15: Example of the split sub-trajectories organized in groups (a - c) and the sub-trajectories after 

applying Ramer-Douglas-Peucker (d - f) for one spatial variable.  

 Step 3: Calculation of dissimilarity between the sub-trajectories of the 𝑔-th group 

The dissimilarity matrix dsim between the sub-trajectories of the 𝑔 -th group is 

calculated by the equation (3.3): 

𝑑𝑠𝑖𝑚𝑔(𝑖, 𝑗) = 𝑤1 ∙ 𝑑𝑖𝑠𝑡𝑃(𝑃̂𝑖,𝑔, 𝑃̂𝑗,𝑔) + 𝑤2 ∙ 𝑑𝑖𝑠𝑡𝐼𝑃(𝑃̂𝑖,𝑔, 𝑃̂𝑗,𝑔) (3.3) 

where  𝑖, 𝑗 = 1, … , 𝐷 . 𝑑𝑖𝑠𝑡𝑃  is the sum of the seven-dimensional Manhattan point-to-

point distance between the points of two sub-trajectories 𝑃̂𝑖,𝑔  and 𝑃̂𝑗,𝑔 . 𝑑𝑖𝑠𝑡𝐼𝑃  is the 

seven-dimensional Manhattan distance between the IP of the two sub-trajectories. 𝑤1 and 

𝑤2  are the weights that satisfy the following equations: 0 ≤ 𝑤1 ≤ 1, 𝑤2 = 1 − 𝑤1 , 

𝑤1 < 𝑤2. For all the data-points the dimensions {x, y, z} are normalized in the range of [-

1, 1]. The higher the value of the 𝑑𝑠𝑖𝑚𝑔(𝑖, 𝑗) for the sub-trajectories of the 𝑖-th and 𝑗-th 
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demonstrations, the less similar (in the sense of the demonstrated path and IP) the 

demonstrations are. Further, the dissimilarity vector 𝑑𝑠𝑖𝑚𝑉 of the sub-trajectories of the 

𝑔-th group is calculated by the equation (3.4):  

𝑑𝑠𝑖𝑚𝑉𝑔(𝑖) = ∑ 𝑑𝑠𝑖𝑚𝑔(𝑖, 𝑗),
𝐷

𝑗=1
∀𝑖𝜖{1, . . , 𝐷} 

(3.4) 

Manhattan distance between two data-points:  

The Manhattan distance 𝑑𝑖𝑠𝑡 between two data-points 𝛽1(𝑠), 𝛽2(𝑠), where 𝑠={x, y, z, qx, 

qy, qz, qw}, is calculated by the equation:  𝑑𝑖𝑠𝑡 = ∑ |𝛽1(𝑠) − 𝛽2(𝑠)|7
𝑠=1 .  One advantage 

of Manhattan Distance is that it is fast to compute [129].  

Manhattan distance between two trajectories:  

A trajectory consists of data-points 𝛽(𝑠, 𝑡), where 𝑡 is the temporal variable (sample). 

The Manhattan distance 𝑑𝑖𝑠𝑡𝑃  between two trajectories with data-points 𝛽1(𝑠, 𝑡)  and 

𝛽2(𝑠, 𝑡) is calculated by the equation: 𝑑𝑖𝑠𝑡𝑃 = ∑ (∑ |𝛽1(𝑠, 𝑡) −  𝛽2(𝑠, 𝑡)|)7
𝑠=1

𝑇
𝑡=1 , where 𝑇 

is the total number of samples.  

 Step 4: Selection of sub-trajectories for the 𝑔-th group 

For the 𝑔-th group, the sub-trajectory with the smallest value in the 𝑑𝑠𝑖𝑚𝑉𝑔 is selected 

as the ‘reference’ r, since this sub-trajectory has the smallest difference between all the 

demonstrated sub-trajectories. After the selection of the reference sub-trajectory r, it is 

necessary to identify the sub-trajectories that are similar to the r [3]. The sub-trajectories 

that satisfy the inequality (3.5) are similar to the r, and they can be further used as input 

to the Gaussian Mixture Model (GMM).   

𝑑𝑠𝑖𝑚𝑔(𝑟, 𝑗) ≤ 𝑐, ∀𝑗𝜖{1, . . , 𝐷} (3.5) 

where 𝑐 is a predefined threshold value.  

The aligned and selected sub-trajectories are denoted as 𝑃̂𝑑′,𝑔 , where 𝑑′ =

1, … , 𝐷𝑔
′  and 𝐷𝑔

′  is the total number of the selected sub-trajectories for the 𝑔 group. Steps 

2 – 4 are repeated for all the (𝐺 − 1) groups. Each group of sub-trajectories represents a 
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moving action between two high-level actions. A lookup table stores the association 

between the high-level actions and the groups of sub-trajectories.  

3.3.2.2 Gaussian Mixture Model (GMM) 

The input to Gaussian Mixture Model (GMM) is the above described result on the 

selection of similar sub-trajectories. The GMM is used to extract constraints of the 

aligned trajectories [84].  

The selected and aligned sub-trajectories are fed to the GMM in order to build the 

probabilistic model of the data. The sub-trajectories of a group consists of data-points 

𝛽𝛾 = {𝛽𝑠, 𝛽𝑡} , where 𝛽𝑠 ∈ 𝑅𝑑𝑖𝑚 , dim=7, 𝛽𝑡 ∈ 𝑅 , 𝛾 = 1, … , 𝛤  and 𝛤 = 𝐷𝑔
′ ∙ 𝑇̂𝑔 . In the 

learning phase, the model is created with a number N of Gaussians. Each Gaussian 

consists of the following parameters: mean vector, covariance matrix and the prior 

probability [130]. Each Gaussian has a dimensionality 8 (dim+1). The probability density 

function 𝑝(𝛽𝛾) for a mixture of N Gaussians is calculated based on the equation (3.6) 

[130]:  

𝑝(𝛽𝛾) = ∑ 𝑝(𝑛) ∙ 𝑝(𝑛|𝛽𝛾)

𝑁

𝑛=1

 
(3.6) 

where 𝑝(𝑛) is a prior and 𝑝(𝑛|𝛽𝛾) is a conditional probability density function. They are 

defined by the equations (3.7) and (3.8) for a mixture of N Gaussian distributions of 

dimensionality 8 (7 spatial and 1 temporal dimensions) [130]: 

𝑝(𝑛) =  𝜋𝑛 (3.7) 

 

𝑝(𝑛|𝛽𝛾) =
1

√(2𝜋)(𝑑𝑖𝑚+1)|𝛴𝑛|
𝑒−

1
2

[(𝛽𝛾−𝜇𝑛)
T

𝛴𝑛
−1(𝛽𝛾−𝜇𝑛)] = ℵ(𝛽𝛾; 𝜇𝑛, 𝛴𝑛) 

(3.8) 

where 𝜋𝑛 are the prior probabilities, 𝜇𝑛 = {𝜇𝑛,𝑡, 𝜇𝑛,𝑠}  are the mean vectors and 𝛴𝑛 =

(
𝛴𝑛,𝑡 𝛴𝑛,𝑡𝑠

𝛴𝑛,𝑠𝑡 𝛴𝑛,𝑠
)  are the covariance matrices of the GMM. A Gaussian distribution of 

center 𝜇 and covariance matrix 𝛴 is denoted as ℵ(𝜇, 𝛴) and the probability of a data point 
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𝛽 with respect to this Gaussian distribution as ℵ(𝛽; 𝜇, 𝛴). The parameters (prior, mean 

and covariance) of the GMM are estimated by the Expectation-Maximization (EM) 

algorithm [131]. The Figure 16 illustrates the probabilistic model of a dataset through 

GMM. For each group of selected sub-trajectories, a GMM model is learned and the 

GMM parameters are stored. 

 

Figure 16: The learned GMM for one spatial dimension using three selected sub-trajectories as input.  

 Estimation of GMM parameters using Expectation-Maximization algorithm  

The EM algorithm is a simple local search method which guarantees monotone 

increase of the likelihood during optimization [130]. The 𝑝𝑛,𝛾 is the posterior probability 

and 𝐸𝑛  is the sum of the posterior probabilities. The parameters 𝜋𝑛 , 𝜇𝑛 , 𝛴𝑛 , 𝐸𝑛  of the 

GMM are initialized by K-means [132] and then are estimated iteratively until 

convergence, as follows. 

 E-step:   

𝑝𝑛,𝛾
(𝑣+1)

=
𝜋𝑛

(𝑣)
∙ ℵ(𝛽𝛾; 𝜇𝑛

(𝑣)
, 𝛴𝑛

(𝑣)
)

∑ 𝜋𝑖
(𝑣)

∙ ℵ(𝛽𝛾; 𝜇𝑖
(𝑣)

, 𝛴𝑖
(𝑣)

)𝑁
𝑖=1

 , 
 

 

𝐸𝑛
(𝑣+1)

= ∑ 𝑝𝑛,𝛾
(𝑣+1)

𝛤

𝛾=1

. 
 

 

 



 3.3 Robot Learning Phase (Offline) 

44 

 

 M-step:   

𝜋𝑛
(𝑣+1)

 =
𝐸𝑛

(𝑣+1)

𝛤
 ,  

 

𝜇𝑛
(𝑣+1)

=
∑ 𝑝𝑛,𝛾

(𝑣+1)
∙ 𝛽𝛾

𝛤
𝛾=1

𝐸𝑛
(𝑣+1)

, 
 

 

𝛴𝑛
(𝑣+1)

=
∑ 𝑝𝑛,𝛾

(𝑣+1)
∙ (𝛽𝛾 − 𝜇𝑛

(𝑣+1)
) ∙𝛤

𝛾=1 (𝛽𝛾 − 𝜇𝑛
(𝑣+1)

)T

𝐸𝑛
(𝑣+1)

. 
 

The iterations 𝑣  stop when 
𝐿(𝛾,𝛩)(𝑣+1)

𝐿(𝛾,𝛩)(𝑣) < 𝑐1 , where 𝐿(𝛾, 𝛩) = ∑ log (𝑝(𝛽𝛾|𝛩))𝛤
𝛾=1  is 

the log-likelihood, 𝛩 = {𝜋𝑛, 𝜇𝑛, 𝛴𝑛}𝑛=1
𝑁  is the model of the GMM and 𝑝(𝛽𝛾|𝛩) is the 

probability that the data-point 𝛽𝛾 is generated by the model 𝛩. The threshold 𝑐1 is set to 

0.01, which is suggested in [130].  

 Estimation of optimal number  using Bayesian Information Criterion  

The optimal number N of the GMM components (Gaussians) is estimated using the 

Bayesian Information Criterion (BIC) [133], which is commonly used criterion [134]. 

The BIC score is defined in the equation (3.9) [130] and it is calculated for a range of  𝑁′ 

values, where 𝑁′is a number of Gaussians. 

𝐵𝐼𝐶 = − 𝐿(𝛾, 𝛩) +
𝑛𝑝

2
∙ log (𝛤) (3.9) 

where 𝐿(𝛾, 𝛩) is the log-likelihood of the GMM model, 𝑛𝑝 is the number of independent 

parameters required for a GMM of 𝑁′ components and is calculated based on equation 

(3.10) [130]  for a GMM with full covariance matrix and 𝛤 is the number of data-points 

with dimensionality 8 (dim+1).  

𝑛𝑝 = (𝑁′ − 1) + 𝑁′ ∙ [(𝑑𝑖𝑚 + 1) +
1

2
∙ (𝑑𝑖𝑚 + 1) ∙ (𝑑𝑖𝑚 + 2)] (3.10) 



3.4 Robot Working Phase (Online) 

45 

 

The first term of the equation (3.9) estimates how well the data are obtained given the 

model 𝛩, and the second term is a penalty factor with a goal to minimize the number of 

independent parameters [130] [135]. Henceforth, the BIC score of GMMs with different 

number of Gaussians 𝑁′  is estimated and the optimal number of Gaussians 𝑁 is the one 

with the minimum BIC score.  

3.4 Robot Working Phase (Online) 

During the robot working phase, the robot performs the learned task in real-time, 

collaborating with the user to complete the task. The robot working phase [1] consists of 

the following three main modules. 

 Decision Support and Adaptation (DSA) module: This module enables the robot to 

identify the sequence of actions needed to complete the learned object manipulation 

task. The DSA module is organized into two layers.  

 Decision Support (High-level) identifies the high-level actions. It consists 

of the following steps: task identification and suggestion of sequence of 

actions using Reinforcement Learning. More details are given in section 

3.4.1.  

 Adaptation at Trajectory Level (Low-level Learning) consists of a novel 

algorithm for modification of the learned GMM for the real-time 

adaptation of the learned trajectories to the new environmental conditions. 

The new environmental conditions could arise due to changes in position 

and orientation of the objects, as well as due to obstacles. The 

modification of the learned GMM is followed by the Gaussian Mixture 

Regression (GMR) method, which generates the adapted trajectory for the 

robot. The GMR trajectory enables the robot to complete the manipulation 

task. More details are given in section 3.4.2. 

 Robot Learning User’s Preference module: This module enables the robot to learn the 

preferable sequence of actions for each user in real-time. The method is based on the 

RL algorithm. More details are given in section 3.4.3.   
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 Robot Task Execution module: This module enables the robot to execute the 

manipulation task. A virtual environment has been developed using the ROS-based 

tool rviz [136] to illustrate the environmental awareness and the execution of the 

learned task by the robot. For safety reasons, the user first observes what the robot 

intends to do (moving actions, grasping or releasing an object) in the virtual 

environment. Then, if safety criteria are satisfied, the user confirms that the real robot 

can perform the visualized sequence of actions.  

3.4.1 Decision Support (High-level) 

The Decision Support (DS) sub-module initially identifies the manipulation task that 

the robot needs to perform. The DS uses the information of the objects in the scene 

(output of the environmental perception module) as input. For the sake of simplicity, 

throughout the thesis, the objects involved in the manipulation task during demonstration, 

which are stored in the database, are referred to as original objects, and the objects 

present in the scene in the working phase are referred to as current objects.  

For every manipulation task, a Q-Table is initialized and stored during the learning 

phase (section 3.3.1.2). The DS searches through the stored Q-Tables to find the 

manipulation task, in which the IDs of the current objects match the original objects in 

the stored actions. In case there are additional objects in the current scene in comparison 

to the original scene (scene during the demonstrations), these objects are considered 

obstacles. After the task identification, the DS suggests the sequence of actions using 

interactive Reinforcement Learning.  

In Interactive Reinforcement Learning, the user is the external trainer who evaluates 

how good or bad the action suggestions from the RL agent are. Two main approaches in 

interactive RL are policy and reward shaping [137]. In policy shaping, the external trainer 

can replace the proposed action by the RL agent with a more suitable action, before it is 

executed. In reward shaping, the external trainer evaluates the performed action after the 

action is executed.  

In the presented work, a policy shaping approach is selected. The user is able to select 

the action and prevent the robot from performing an action that is not preferable or even 
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safe. The reward function provides a positive reward to the RL agent every time the user 

confirms a suggested action, and a negative reward when the user rejects the suggested 

action. The reward function is shown by the equation (3.11):  

𝑅(𝑔𝜏, 𝑎𝜏, 𝑔𝜏+1) = {
1 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑠/𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑡ℎ𝑒 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 𝑎𝑡

−5 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝑡ℎ𝑒 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 𝑎𝑡                 
 (3.11) 

where 𝑔𝜏 is the current state in time 𝜏,  𝑎𝜏 is the action in time 𝜏, and 𝑔𝜏+1 is the new 

state in time 𝜏+1. The absolute value of the negative reward is higher than the value of 

the positive reward, so the reinforcement learning can converge faster.   

In the Reinforcement Learning algorithm, the Q-learning [138] method is selected. Q-

learning is an off-policy method that learns the value of taking an action 𝑎𝑡 from a given 

state 𝑔𝑡. The  𝑄(𝑔𝜏, 𝑎𝜏) value is updated based on equation (3.12) [36]:  

𝑄(𝑔𝜏, 𝑎𝜏) ← (1 − a) ∙ 𝑄(𝑔𝜏, 𝑎𝜏) + a ∙ [𝑅(𝑔𝜏, 𝑎𝜏, 𝑔𝜏+1) + 𝛿 ∙ max
𝑎𝜏+1∈𝐴

𝑄(𝑔𝜏+1, 𝑎𝜏+1)] (3.12) 

where a ∈ [0,1] is the learning rate and 𝛿 ∈ [0,1]  is the discount factor. The discount 

factor determines how important the future rewards are. The parameters used in (3.12) 

are empirically set to a = 0.3 and 𝛿 = 0.3. 

Algorithm 1 shows the interactive Reinforcement Learning approach that is 

implemented in the presented work. In line 4 of algorithm 1, the policy on finding the 

action suggestion is modified based on the work presented in [139]:  

 𝑎𝜏 ← argmax𝑎∈𝐴𝑔
𝑄(𝑔𝜏, 𝑎) (3.13) 

where 𝐴𝑔 is a subset of available actions in the current state 𝑔𝜏. The algorithm suggests 

an action 𝑎𝜏. If the Q-value of the suggested action is not positive, the robot asks the user 

to select an action (algorithm 1, lines 8 – 11). The selection of the action by the user helps 

the algorithm to converge faster. Otherwise the algorithm would have to exploit all 

possible actions and request feedback from the user for each action. An action is taken 

only if the reward has a positive value. It is not desirable to select an action that results in 

a reward that is zero or negative, as it may lead to an unwanted/dangerous state.  
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Algorithm 1: Decision support – Interactive Reinforcement Learning (Q-Learning) 

Input: 𝑄(𝑔, 𝑎) 
1. 𝑢 ← 1 //Counter of selected actions. 
2. repeat  
3.     if (𝑔𝜏 ≠ terminal ) 
4.     𝑎𝜏 ← argmax𝑎∈𝐴𝑔

𝑄(𝑔𝜏, 𝑎) //Choose an 𝑎𝜏 with maximum 𝑄(𝑔𝜏, 𝑎), 𝑎 ∈ 𝐴𝑔 

5.      if (𝑄(𝑔𝜏, 𝑎𝜏) > 0 is true) & (user rejects 𝑎𝜏) then 
6.   Update 𝑄(𝑔𝜏, 𝑎𝜏) based on the equation (3.12) 
7.     else 
8.    if (𝑄(𝑔𝜏 , 𝑎𝜏) > 0 is  not true) then 
9.      Ask user to select 𝑎𝜏 ∈ 𝐴 
10.     𝑎𝜏 ← selected by the user 
11.    end if 
12.   𝑎̂𝑢 ← selected 𝑎𝜏 
13.    if (u=1) then 
14.     Robot Initialization 
15.    else  
16.      𝜇̂𝑛 ←m-GMM // more details in Section 3.4.2.1. 

17.      𝛽̂ ←GMR // more details in Section 3.4.2.2. 
18.     Take action 𝑎̂𝑢 // including moving action. 
19.     Update 𝑄(𝑔𝜏, 𝑎𝜏) based on the equation (3.12) 
20.     𝑔𝜏 ← 𝑔𝜏+1 
21.     𝑢 ← 𝑢 + 1 
22.    end if 
23.     end if 
24.      end if 
25.      if (𝑔𝜏 = terminal ) 
26.       Ask user if 𝑔𝜏+1 is needed 
27.        if (user accepts 𝑔𝜏+1 is needed) then 
28.     𝑄(𝑔𝜏+1, 𝑎) ← 0 // ∀𝑎 ∈ 𝐴𝑔 

29.    𝑔𝜏 ← 𝑔𝜏+1 
30.         else 
31.    exit program 
32.         end if 
33.  end if 
34.  until (user exits program) 
35.  return 𝑄(𝑔, 𝑎) 

The 𝑎̂𝑢 is a vector, in which the selected actions (confirmed by the user) are stored 

(algorithm 1, line 12). If the selected action is the first one (algorithm 1, lines 13 – 14), 

which means it will be either a home action or a start action, the robot confirms that its 



3.4 Robot Working Phase (Online) 

49 

 

position is where it is expected to be. In case the robot is not in the expected position, it 

will ask the user for assistance.  

For the next actions selected by the user, the robot performs the selected action, and 

then the Q-value is updated based on the equation (3.12) and the algorithm moves 

forward to the new state (algorithm 1, lines 16 – 21). Line 18 of algorithm 1 means that 

the robot moves (moving action) and then performs the selected 𝑎̂𝑢
𝑟  action (grasp/release 

the object in case 𝑎̂𝑢
𝑟  is Close/Open, or do nothing after the moving action if 𝑎̂𝑢

𝑟  is 

Home/Start/End). For example, if the selected action is Close –Cup info, the robot has to 

move to the cup (moving action) and actuate (close) the gripper. The methodology of 

generating the moving actions (trajectories) is given in section 3.4.2. If the Q-value of the 

suggested action is positive and the user rejects the suggested action, the Q-value is 

updated and there is no change in the state of the robot (algorithm 1, lines 5 – 6).  

Moreover, when the state is terminal, the algorithm asks the user to confirm that no 

more states are needed (algorithm 1, lines 25 – 26). In case the user confirms that 

additional state is needed, the algorithm will add an additional row to the Q-Table with 

zero awards (algorithm 1, lines 27 – 29) and the whole process is repeated until the user 

confirms final state or exits the program (algorithm 1, lines 30 – 34). At the end, 

algorithm 1 stores the updated Q-Table 𝑄(𝑔, 𝑎) (algorithm 1, line 35). 

3.4.2 Adaptation at Trajectory Level (Low-level)  

This section presents the methods to generate the necessary moving actions for the 

learned task. A novel GMM modification algorithm is used for the adaptation at 

trajectory level. The GMM modification (m-GMM) algorithm is first presented by 

Kyrarini et al. in [1] and then extended by Kyrarini et al. in [4]. The m-GMM modifies 

the mean values of the learned Gaussian Mixture Model for the moving actions (sub-

trajectories) in order to adapt to the new pose of the objects and to avoid collision with 

obstacles. The output of the m-GMM is used by the Gaussian Mixture Regression (GMR) 

to generate the moving action (low-level). The generated trajectory (moving action) by 

the GMR is connected directly to the modified GMM. The m-GMM is a very crucial part 

of the presented framework.   
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3.4.2.1 Modification of the learned Gaussian Mixture Model 

In this section, the m-GMM algorithm for the modification of the mean values of 

learned Gaussians is explained in order to successfully adapt the moving actions of the 

task to the new environmental conditions. The new environmental conditions arise due to 

changes in pose of the objects or the persons, or due to obstacles. The objects are 

positioned on a working table (workspace) and rotations around the vertical axis are only 

considered. The notations for section 3.4.2.1 are summarized in Table 8.  

Table 8: Notations for section 3.4.2.1. 

Symbol Explanation 

𝑁 Total number of Gaussians in the GMM model 

𝑛 𝑛 = {1, … , 𝑁} the number of the Gaussian respectively 

𝑑𝑖𝑚 
𝑑𝑖𝑚 = {1, … ,7} represents the dimensions {x, y, z, qx, qy, qz, qw} 

respectively 

𝜇𝑛 
Mean values of the learned GMM for the 7 dimensions of the 

robot’s end-effector 

𝜇𝑛(𝑑𝑖𝑚) 
Mean values of the learned GMM for the 𝑑𝑖𝑚 dimensions of the 

robot’s end-effector 

𝜇̂𝑛 
Mean values of the modified GMM for the 7 dimensions of the 

robot’s end-effector (output of m-GMM) 

𝑢 Counter of selected actions 

𝑎̂𝑢 Selected action 𝑎̂𝑢 = {𝑎̂𝑢
𝑟 , 𝑎̂𝑢

𝑜𝑏𝑗
}  

𝑎̂𝑢
𝑟  Robot actions: {Start, End, Close, Open, Home} 

𝑎̂𝑢
𝑜𝑏𝑗

 

Information (ID, size, pose) of the related object to the selected 

action. 𝑜𝑏𝑗 = {𝑜𝑟𝑖𝑔_𝑜𝑏𝑗, 𝑐𝑢𝑟_𝑜𝑏𝑗}  for the original and current 

object respectively 

𝑜𝑏𝑠𝑡 
Information (ID, size, pose) of the obstacles – non related objects 

for the selected action 

𝑑𝑖𝑚_𝑜𝑏𝑗 
𝑑𝑖𝑚_𝑜𝑏𝑗 = {1, … ,11} represents the  information of the object 

{ID , length, width, height, x, y, z, qx, qy, qz, qw}, respectively 

𝑎̂𝑢
𝑜𝑏𝑗

(𝑑𝑖𝑚_𝑜𝑏𝑗) 
Information 𝑑𝑖𝑚_𝑜𝑏𝑗 of the related object to the selected action. 

𝑜𝑏𝑗 = {𝑜𝑟𝑖𝑔_𝑜𝑏𝑗, 𝑐𝑢𝑟_𝑜𝑏𝑗}  

𝑜𝑏𝑠𝑡(𝑑𝑖𝑚_𝑜𝑏𝑗) 
Information 𝑑𝑖𝑚_𝑜𝑏𝑗 of the obstacles – non related objects for 

the selected action 
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The m-GMM has the advantage that it does not require demonstrations with different 

environmental conditions. The m-GMM takes into consideration the constraints of the 

demonstrated trajectories which are learned by the GMM. The inputs of the m-GMM are:  

 the learned GMM (𝜇𝑑) of the sub-trajectories between the actions 𝑎̂𝑢−1 and 𝑎̂𝑢,  

 the selected actions 𝑎̂𝑢−1, 𝑎̂𝑢 which include:  

o the robot actions 𝑎̂𝑢−1
𝑟 and 𝑎̂𝑢

𝑟  (robot actions: {Start, End, Close, Open, 

Home}), 

o the information (ID, size, pose) of the related original objects 𝑎̂𝑢−1
𝑜𝑟𝑖𝑔_𝑜𝑏𝑗

, 

𝑎̂𝑢
𝑜𝑟𝑖𝑔_𝑜𝑏𝑗

 and of the related current objects 𝑎̂𝑢−1
𝑐𝑢𝑟_𝑜𝑏𝑗

, 𝑎̂𝑢
𝑐𝑢𝑟_𝑜𝑏𝑗

 to the actions 

𝑎̂𝑢−1,  𝑎̂𝑢, respectively, and  

 the information (ID, size, pose) of the non-related objects (obstacles) to the 

selected actions, denoted as obst. 

Algorithm 2 explains how the modification of Gaussian Means (m-GMM) is 

performed. It is generic and it does not depend on the number of Gaussians N (as long as 

the Gaussians are more than 3). Algorithm 2 is applied to each of the seven-dimensional 

spatial variables separately (algorithm 2, line 12) and consists of the following steps, with 

the goal of modifying the Gaussians for a specific environment.   

 Step 1: Modify the mean values of the important Gaussians (algorithm 2, lines 3  – 27) 

The algorithm modifies the mean values of the important Gaussians of the learned 

GMM. The important Gaussians are the first and the last Gaussians of the GMM, which 

represent the data-points close to the location of picking up or placing an object.  

If the robot action 𝑎̂𝑢−1
𝑟  or 𝑎̂𝑢

𝑟  is equal to ‘home’, then the new mean value of the first 

𝜇̂1 or the last 𝜇̂𝑁 Gaussian is equal to the mean value of the first 𝜇1 or the last 𝜇𝑁 learned 

Gaussian, respectively (algorithm 2, lines 14 – 15 or lines 21 – 22, respectively). 

Otherwise, the new mean values of the important Gaussians are modified based on the 

new position and orientation of the related current objects. The new mean values of the 

important Gaussians for the dimensions {x,y,z} are modified as shown in lines 16 – 18  and 

23 – 25. The new mean values of the important Gaussians for the orientation (quaternion) 
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are modified as shown in lines 2 – 11. In particular, the lines 5 and 10 calculate the 

product of two given quaternions. An example of the modification of the important 

Gaussians is shown in Figure 17b for a learned GMM (Figure 17a).  

Algorithm 2: m-GMM; Modification of Gaussian Means of the GMM  

Input: 𝜇𝑛, 𝑢, 𝑎̂𝑢−1, 𝑎̂𝑢, obst 
Output: 𝜇̂𝑛 
// the quaternion values are calculated for the first and last Gaussian. The dim=4,5,6,7  
// represents the quaternion for the mean values of the GMM and dim_obj=8,9,10,11 the  
// quaternion for the objects. 
1. if (𝑢 > 1) then 
2.  if (𝑎̂𝑢−1

𝑟 ≠ 𝐻𝑜𝑚𝑒) then 

3.         𝑞𝑥𝑢−1 ← [𝑎̂𝑢−1
𝑐𝑢𝑟_𝑜𝑏𝑗(8) − 𝑎̂𝑢−1

𝑜𝑟𝑖𝑔_𝑜𝑏𝑗(8)], 𝑞𝑦𝑢−1 ← [𝑎̂𝑢−1
𝑐𝑢𝑟_𝑜𝑏𝑗(9) −  𝑎̂𝑢−1

𝑜𝑟𝑖𝑔_𝑜𝑏𝑗(9)], 

4.         𝑞𝑧𝑢−1 ← [𝑎̂𝑢−1
𝑐𝑢𝑟_𝑜𝑏𝑗(10) − 𝑎̂𝑢−1

𝑜𝑟𝑖𝑔_𝑜𝑏𝑗(10)], 𝑞𝑤𝑢−1 ← [𝑎̂𝑢−1
𝑐𝑢𝑟_𝑜𝑏𝑗(11) −  𝑎̂𝑢−1

𝑜𝑟𝑖𝑔_𝑜𝑏𝑗(11)] 

5.        [𝜇̂1(4), 𝜇̂1(5), 𝜇̂1(6), 𝜇̂1(7)] ← [𝑞𝑥𝑢−1, 𝑞𝑦𝑢−1, 𝑞𝑧𝑢−1, 𝑞𝑤𝑢−1] ∗ [𝜇1(4), 𝜇1(5), 𝜇1(6), 𝜇1(7)] 

6.      endif 
7.   if (𝑎̂𝑢

𝑟 ≠ 𝐻𝑜𝑚𝑒) then 
8.        𝑞𝑥𝑢 ← [𝑎̂𝑢

𝑐𝑢𝑟_𝑜𝑏𝑗(8) − 𝑎̂𝑢
𝑜𝑟𝑖𝑔_𝑜𝑏𝑗(8)], 𝑞𝑦𝑢 ← [𝑎̂𝑢

𝑐𝑢𝑟_𝑜𝑏𝑗(9) −  𝑎̂𝑢
𝑜𝑟𝑖𝑔_𝑜𝑏𝑗(9)], 

9.         𝑞𝑧𝑢 ← [𝑎̂𝑢
𝑐𝑢𝑟_𝑜𝑏𝑗(10) − 𝑎̂𝑢

𝑜𝑟𝑖𝑔_𝑜𝑏𝑗(10)], 𝑞𝑤𝑢 ← [𝑎̂𝑢
𝑐𝑢𝑟_𝑜𝑏𝑗(11) −  𝑎̂𝑢

𝑜𝑟𝑖𝑔_𝑜𝑏𝑗(11)] 

10.        [𝜇̂𝑁(4), 𝜇̂𝑁(5), 𝜇̂𝑁(6), 𝜇̂𝑁(7)] ← [𝑞𝑥𝑢 , 𝑞𝑦𝑢, 𝑞𝑧𝑢 , 𝑞𝑤𝑢] ∗ [𝜇𝑁(4), 𝜇𝑁(5), 𝜇𝑁(6), 𝜇𝑁(7)] 

11.      endif 
12.   for(𝑑𝑖𝑚 = 1; 𝑑𝑖𝑚 < 8, 𝑑𝑖𝑚 + +) 
13.          𝑑𝑖𝑚_𝑜𝑏𝑗 = 𝑑𝑖𝑚 + 4  // the first 4 𝑑𝑖𝑚_𝑜𝑏𝑗 are ID, width, length, height 
14.           if (𝑎̂𝑢−1

𝑟 = 𝐻𝑜𝑚𝑒) then 
15.    𝜇̂1(𝑑𝑖𝑚) ← 𝜇1(𝑑𝑖𝑚)  
16.           else  // 𝑎̂𝑢−1

𝑟  is Start or End or Open or Close 
17.    if (𝑑𝑖𝑚 < 4) 

18.                      𝜇̂1(𝑑𝑖𝑚) ← 𝜇1(𝑑𝑖𝑚) + [𝑎̂𝑢−1
𝑐𝑢𝑟_𝑜𝑏𝑗

(𝑑𝑖𝑚_𝑜𝑏𝑗) −  𝑎̂𝑢−1
𝑜𝑟𝑖𝑔_𝑜𝑏𝑗

(𝑑𝑖𝑚_𝑜𝑏𝑗)] 

19.    endif         
20.           endif 
21.           if (𝑎̂𝑢

𝑟 = 𝐻𝑜𝑚𝑒) 
22.    𝜇̂𝑁(𝑑𝑖𝑚) ← 𝜇𝑁(𝑑𝑖𝑚)  
23.           else // 𝑎̂𝑢

𝑟  is Start or End or Open or Close 
24.    if (𝑑𝑖𝑚 < 4) 

25.                       𝜇̂𝑁(𝑑𝑖𝑚) ← 𝜇𝑁(𝑑𝑖𝑚) + [𝑎̂𝑢
𝑐𝑢𝑟_𝑜𝑏𝑗

(𝑑𝑖𝑚_𝑜𝑏𝑗) −  𝑎̂𝑢
𝑜𝑟𝑖𝑔_𝑜𝑏𝑗

(𝑑𝑖𝑚_𝑜𝑏𝑗)] 

26.    endif 
27.          endif 
28.           𝜇̂𝑛(𝑑𝑖𝑚) ←  𝑚𝑜𝑑𝑖𝑓𝑦_𝐺𝑀𝑀[𝜇𝑛(𝑑𝑖𝑚), 𝜇̂1(𝑑𝑖𝑚), 𝜇̂𝑁(𝑑𝑖𝑚), 𝑑𝑖𝑚]  
29.   endfor 
30.  𝜇̂𝑛 ←  𝑚𝑜𝑑𝑖𝑓𝑦_𝑜𝑏𝑠𝑡𝐺𝑀𝑀[𝜇̂𝑛, 𝑜𝑏𝑠𝑡, 𝑎̂𝑢−1, 𝑎̂𝑢] 
31.  endif  
32.  return 𝜇̂𝑛 
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Product of two given quaternions 

For two given quaternions  𝑞1 =  {𝑞𝑥1, 𝑞𝑦1, 𝑞𝑧1, 𝑞𝑤1} and 𝑞2 =  {𝑞𝑥2, 𝑞𝑦2, 𝑞𝑧2, 𝑞𝑤2}, the 

quaternion product 𝑞 =  {𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤} is calculated as follows:  

𝑞𝑥 = 𝑞𝑤1 ∙ 𝑞𝑥2 + 𝑞𝑥1 ∙ 𝑞𝑤2 − 𝑞𝑦1 ∙ 𝑞𝑧2 + 𝑞𝑧1 ∙ 𝑞𝑦2 

𝑞𝑦 = 𝑞𝑤1 ∙ 𝑞𝑦2 + 𝑞𝑥1 ∙ 𝑞𝑧2 + 𝑞𝑦1 ∙ 𝑞𝑤2 − 𝑞𝑧1 ∙ 𝑞𝑥2 

𝑞𝑧 = 𝑞𝑤1 ∙ 𝑞𝑧2 − 𝑞𝑥1 ∙ 𝑞𝑦2 + 𝑞𝑦1 ∙ 𝑞𝑥2 + 𝑞𝑧1 ∙ 𝑞𝑤2 

𝑞𝑤 = 𝑞𝑤1 ∙ 𝑞𝑤2 − 𝑞𝑥1 ∙ 𝑞𝑥2 − 𝑞𝑦1 ∙ 𝑞𝑦2 − 𝑞𝑧1 ∙ 𝑞𝑧2 

 

 Step 2: Modify the mean values of the remaining Gaussians (algorithm 2, line 28) 

The function 𝑚𝑜𝑑𝑖𝑓𝑦_𝐺𝑀𝑀  is used to modify the remaining Gaussians and it is 

presented in Algorithm 3. First, the function identifies and modifies the Gaussians that are 

close to the first and last (important) Gaussians. The Gaussians close to the first one are 

identified by calculating the absolute difference between the mean values of each 

Gaussian and the first Gaussian in the learned GMM. If the absolute difference between 

the Gaussians is smaller than a predefined threshold value, then the Gaussian is 

considered to be a close Gaussian and is modified (algorithm 3, lines 5 – 13). A similar 

procedure is performed for the Gaussians close to the last Gaussian (algorithm 3, lines 14 

– 22). The threshold values (algorithm 3, lines 1 – 4) are selected empirically. The 

modification of the close Gaussians enables the generation of an accurate trajectory (by 

using GMR) for object manipulation. An example of the modification of the close 

Gaussians is shown in Figure 17c. Lastly, algorithm 3 (lines 23 – 29) modifies the 

intermediate Gaussians (Gaussians between the close Gaussians) to provide a smoother 

generated trajectory by the GMR. An example of the modification of the intermediate 

Gaussians is shown in Figure 17d.  
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Algorithm 3: Function for modification of remaining Gaussian means (close and 

intermediate Gaussians) 

function 𝑚𝑜𝑑𝑖𝑓𝑦_𝐺𝑀𝑀[𝜇𝑛(𝑑𝑖𝑚), 𝜇̂1(𝑑𝑖𝑚), 𝜇̂𝑁(𝑑𝑖𝑚), 𝑑𝑖𝑚]   
//𝜇𝑛(𝑑𝑖𝑚) is a vector which consists of all the GMM values for the dimension dim   
//𝜇̂1(𝑑𝑖𝑚), 𝜇̂𝑁(𝑑𝑖𝑚) are the first and last value of the modified GMM for the 
//dimension dim   
1. if (𝑑𝑖𝑚 < 4) then 
2.   𝑐𝜇 ← 0.02 //x, y, z dimension: 2 cm 

3. else 
4.   𝑐𝜇 ← 0.015 //qx, qy, qz, qw dimension: 0.015 

5. //Find and modify close Gaussians to the first Gaussian 
6. for(𝑛 = 2; 𝑛 ≤ 𝑁, 𝑛 + +) do  
7.   if  (|𝜇𝑛(𝑑𝑖𝑚) − 𝜇1(𝑑𝑖𝑚)| < 𝑐𝜇) then 

8.           𝜇̂𝑛(𝑑𝑖𝑚) ← 𝜇𝑛(𝑑𝑖𝑚) + [𝜇̂1(𝑑𝑖𝑚) − 𝜇1(𝑑𝑖𝑚)] 
9.   else 
10.           𝑚 ← 𝑛 
11.           break 
12.   endif 
13. endfor  
14. //Find and modify close Gaussians to the last Gaussian 
15. for(𝑛 = 𝑁 − 1; 𝑛 > 1, 𝑛 − −) do  
16.   if  (|𝜇𝑛(𝑑𝑖𝑚) − 𝜇𝑁(𝑑𝑖𝑚)| < 𝑐𝜇) then 

17.           𝜇̂𝑛(𝑑𝑖𝑚) ← 𝜇𝑛(𝑑𝑖𝑚) + [𝜇̂𝑁(𝑑𝑖𝑚) −  𝜇𝑁(𝑑𝑖𝑚)] 
18.   else 
19.           𝑙 ← 𝑛 
20.           break 
21.   endif 
22. endfor  
23. //Find and modify intermediate Gaussians 
24. if  (𝑚 ≤ 𝑙) then  

25.   𝑑𝑖𝑓𝑓 ← [(𝜇̂𝑚−1(𝑑𝑖𝑚) − 𝜇𝑚−1(𝑑𝑖𝑚)) + (𝜇̂𝑙+1(𝑑𝑖𝑚) − 𝜇𝑙+1(𝑑𝑖𝑚))]/2 

26.   for(𝑛 = 𝑚; 𝑛 ≤ 𝑙, 𝑛 + +) do  
27.           𝜇̂𝑛(𝑑𝑖𝑚) ← 𝜇𝑛(𝑑𝑖𝑚) + 𝑑𝑖𝑓𝑓 
28.   endfor 
29. endif  
30. return 𝜇̂𝑛(𝑑𝑖𝑚) 
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Figure 17: Explanatory illustration of the m-GMM algorithm a) the learned GMM and the identification of 

the Gaussians, b) the modification of the first and last Gaussians, c) the modification of the close Gaussians, 

d) the modification of the remaining Gaussians. 

 Step 3: Find and Modify Gaussians that are in collision with obstacles (algorithm 2, 

line 30) 

The function 𝑚𝑜𝑑𝑖𝑓𝑦_𝑜𝑏𝑠𝑡𝐺𝑀𝑀 determines which Gaussians are in collision with the 

identified obstacles. If a mean value of the 𝜇̂𝑛 is inside the bounding box of an object, 

then this Gaussian is flagged as ‘Gaussian in obstacle’. The bounding box of the involved 
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objects is oversized by a factor (in the presented framework the oversized factor is 120%) 

to ensure safe avoidance. Furthermore, if the 𝑎̂𝑢−1
𝑟 = 𝐶𝑙𝑜𝑠𝑒  (which means the 

𝑎̂𝑢−1
𝑐𝑢𝑟_𝑜𝑏𝑗

object is grasped by the robot), the dimensions of the grasped object 𝑎̂𝑢−1
𝑐𝑢𝑟_𝑜𝑏𝑗

 are 

also taken into account to determine the possible collision with obstacles. One example of 

the Gaussians in obstacle is shown in Figure 18. 

After the Gaussians in obstacle are identified, the function modifies the Gaussians to 

avoid collision with obstacles. The mean values of Gaussians in obstacles are modified 

by adding the height of the obstacles to the z dimension of the 𝜇̂𝑛 plus a safety distance. If 

the 𝑎̂𝑢−1
𝑟 = 𝐶𝑙𝑜𝑠𝑒, then the mean values of Gaussians in obstacles are modified by adding 

the height of the obstacle plus the height of the grasped current object to the z-dimension 

of the 𝜇̂𝑛 plus a safety distance. The obstacle avoidance happens in z-dimension, which is 

the vertical axis. The assumption is that the position of obstacles does not prevent the 

completion of the task, i.e. an obstacle is not close to the target position. 

 

Figure 18: Explanatory illustration of the ‘Gaussians in Obstacle’ in 2D. 

3.4.2.2 Gaussian Mixture Regression (GMR) 

Gaussian Mixture Regression (GMR) is a method which is used to produce the 

trajectory of the end-effector and it can be used to control the robot efficiently [130]. As 

input, GMR uses the parameters of the GMM and generates a fast and optimal output 

[130].  
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The output of the m-GMM (𝜇̂𝑛) is used by the GMR to generate the trajectory 𝛽̂ that 

is adapted to the changed environments. The output 𝛽̂ is calculated by the equation (3.14) 

[130]:   

𝛽̂ = {𝛽𝑡, ∑ 𝜁𝑛𝛽̂𝑛,𝑠
′

𝑁

𝑛=1

} (3.14) 

where: 𝜁𝑛 = 𝑝(𝛽𝑡|𝑛)/ ∑ 𝑝(𝛽𝑡|𝑛)𝑁
𝑛=1 and 𝛽̂𝑛,𝑠

′ = 𝜇̂𝑛,𝑠 + 𝛴𝑛,𝑠𝑡(𝛴𝑛,𝑡)
−1

(𝛽𝑡 − 𝜇𝑛,𝑡) , ∀𝑛 =

{1, . . , 𝑁} . The trajectory generated by the GMR is given to the robot controller so the 

robot can reproduce it. The velocity at which the robot reproduces the trajectory is 

predefined. Figure 19 illustrates the generated trajectory by the GMR based on the given 

modified GMM (output of m-GMM).   

 

Figure 19: Explanatory illustration of the generated sub-trajectory by the GMR. 

3.4.3 Robot Learning User’s Preferences 

The Robot Learning User’s Preferences module is responsible for learning the 

preferable sequence of actions for a particular user. This is important when a robot 

cooperates with several users to perform a task. For example, in an assembly line, a robot 

may have to collaborate with three different users during the day. Some users may prefer 

a different sequence of actions to complete the assembly task than others. 
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Reinforcement Learning is used for personalized learning of preferences [140] [141] 

[142] [143]. A default RL agent is initially built and then adapted to each particular user 

[143]. Each user provides rewards to express satisfaction towards the suggested actions 

by the RL agent.  

In the presented framework, the RL agent (Q-table) is initialized by the human 

demonstrations (section 3.3.1.2) and it is assigned as default Q-table. During the working 

phase, it is updated by the DS sub-module (section 3.4.1). For each particular user, a 

different Q-table is updated during the working phase. Algorithm 4 shows the method 

that enables the robot to learn the preferable sequence of actions for each user. The 

algorithm initially requests the user’s name (algorithm 4, line 1). Each user has a unique 

username. Subsequently, the algorithm searches throughout the user database to retrieve 

the user’s Q-table (algorithm 4, lines 2 – 3). If the user cooperates with the robot for the 

first time, their username is added to the database and the default Q-table is used 

(algorithm 4, lines 4 – 6). The user’s Q-table is used as input to algorithm 1 (section 3.4.1) 

and the updated Q-table that is output of algorithm 1 is stored as the updated user’s Q-

table in the robot database (algorithm 4, line 8).      

Algorithm 4: Robot Learning User’s Preferences 

1. 𝑢𝑠𝑒𝑟 ← request username  
2. if (𝑢𝑠𝑒𝑟 ∈ 𝐷𝑎𝑡𝑎_𝑢𝑠𝑒𝑟) // 𝐷𝑎𝑡𝑎_𝑢𝑠𝑒𝑟 is the user database 
3.         𝑄(𝑔, 𝑎) ← 𝑄𝑢𝑠𝑒𝑟(𝑔, 𝑎)  
4. else 
5.       add 𝑢𝑠𝑒𝑟 in 𝐷𝑎𝑡𝑎_𝑢𝑠𝑒𝑟 
6.    𝑄(𝑔, 𝑎) ← 𝑄𝑑𝑒𝑓𝑎𝑢𝑙𝑡(𝑔, 𝑎)  

7. end if 
8. 𝑄𝑢𝑠𝑒𝑟(𝑔, 𝑎) ← Algorithm 1   
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4. Robot Learning of Industrial 

Assembly Tasks from Multiple Human 

Demonstrations – Application in 

Industrial Robotics 

 

In this chapter, the presented robot learning from multiple human demonstrations is 

evaluated for two industrial assembly tasks. The users were able to teach a dual-arm 

industrial robot assembly tasks. After the demonstrations and the learning, the robot 

performed the tasks, even when the positions of the objects have changed (in comparison 

to the demonstration). To demonstrate the feasibility of the RLfD framework, two 

assembly tasks were selected and three small studies were conducted. The experimental 

results are explained in detail as follows.  

4.1 Industrial Robotic Platform   

The dual-arm industrial pi4 Workerbot 3 [144] was selected as a collaborative robotic 

platform. It consists of two 6-Degrees of Freedom (DoF) UR10 robotic arms [145], 

which support kinesthetic teaching. As illustrated in Figure 20a, each robotic arm of the 

Workerbot3 is equipped with an industrial vacuum gripper. Furthermore, a two-finger 

gripper is mounted on the left robotic arm. All three grippers have two actuation states; 

“On” and “Off” denoting the actuated and not-actuated gripper state. The two-finger 
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gripper and the vacuum gripper mounted on the left arm cannot be used simultaneously. 

In Figure 20b, the world coordinate system is presented, which is located at the robot’s 

base.    

The workplace of the robot, which is shown in Figure 20a, is a table located in front of 

the Workerbot. A Kinect for Xbox One camera [146], which was produced by Microsoft, 

is mounted onto the head of the Workerbot and it is used as the vision-sensor, which 

provides information about the workplace. The Kinect contains a color camera (RGB) 

and a depth camera system, comprising an Infrared (IR) camera and an IR projector. 

a)  b)  

Figure 20: a) The collaborative robot Workerbot3 in the ‘Home’ pose, b) The world coordinate system 

located at the robot’s base.  

4.2 Robot Gripper Assembly Task (Task 1)   

For the evaluation of the presented framework, an assembly of a robot gripper is 

selected as an industrial human-robot collaborative task and has been presented by 

Kyrarini et al. in [1]. The assembly of the robot gripper consisting of 5 parts is illustrated 

in Figure 21. As shown, there are four gripper’s parts (black part, top part, left and right 

side part), which shall be assembled with the fifth part (base part), to complete the 

assembly task. Several users, firstly, demonstrated the task and the robot learned the task 

with the help of the presented RLfD framework. In working phase, the robot has the role 
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to manipulate the gripper parts so to place them in appropriate places next to each other, 

while the user (human collaborator) screws the parts together to successfully complete 

the assembly task. 

 

Figure 21: Robot Gripper Assembly Task (Task 1). (adapted from [1]) 

4.2.1 Human Demonstrations of the Robot Gripper Assembly Task 

Three participants were asked to provide demonstrations of the robot gripper assembly 

task (task 1), shown in Figure 21. The method that was selected to provide 

demonstrations is kinesthetic teaching (section 3.2.1.1), as shown in Figure 22. Out of 3 

participants, 1 is female and 2 are males. The average age was 29.6±3.2 years old. All 

participants gave their informed, signed consent for the participation.  All participants 

had ten minutes to get familiar with the kinesthetic teaching approach, before they were 

asked to demonstrate the task.  

Each demonstrator was instructed to follow the sequence of actions, shown in Figure 

21. The manipulation of each four gripper’s parts (top part, black part, left and right side 

part) is performed through the sequence of actions:  

 pick the gripper’s part, 

 place it at the base part as shown in Figure 21, and 

 move the robotic arm away from the working table. 
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The complete task was demonstrated three times by each demonstrator in the 

following order:  

1. manipulation of the top part with the left robotic arm,  

2. manipulation of the black part with the right robotic arm,  

3. manipulation of the left side part with the left robotic arm, and 

4. manipulation of the right side part with the right robotic arm.  

During the demonstrations, both robotic arms were used, but never at the same time. 

The reason was that the demonstrator used both of their hands to guide one robotic arm 

via kinesthetic teaching. Therefore, it was not physically possible to guide both robotic 

arms at the same time.  

 

Figure 22: A user demonstrates the robot gripper assembly task using kinesthetic teaching. 

4.2.2 Robot Learning and Working Phase of Robot Gripper Assembly 

Task 

The next step, after the users demonstrated the robot gripper assembly task, was the 

robot learning phase. In total, nine demonstrations (three participants providing three 

demonstrations) were used as input to the robot learning phase.  
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 Robot Learning Phase (Offline) 

The nine demonstrations were first processed by the Symbolic Task Learning (High-

level) module, presented in section 3.3.1. The ATSSA module was used to generate the 

sequence of actions. However, since the robotic platform has two arms and three grippers, 

the robot actions were updated to include information about which arm and which gripper 

is used. The robot action 𝑎𝑟 was updated to include the identification of the gripper as 

follows: 𝑎𝑟 ∈ {LV Start, L2 Start, RV Start, LV End, L2 End, RV End, LV Close, L2 Close, 

RV Close, LV Open, L2 Open, RV Open, LV Home, L2 Home, RV Home}, where LV, L2, 

RV denote vacuum gripper of the left arm, 2-finger gripper of the left arm and vacuum 

gripper of the right arm, respectively. The sequence of actions generated by the ATSSA 

sub-module for the demonstrations was:  

1. LV Home – Home,  

2. LV Close – Top part info,  

3. LV Open – Base part info, 

4. LV End – Table info, 

5. RV Home – Home, 

6. RV Close – Black part info,  

7. RV Open – Base part info, 

8. RV End – Table info,  

9. LV Start – Table info, 

10. LV Close – Left side part info,  

11. LV Open – Base part info, 

12. LV End – Table info,  

13. RV Start – Table info, 

14. RV Close – Right side part info,  

15. RV Open – Base part info, 

16. RV End – Table info. 

 

The poses of the gripper’s parts and the table during the demonstrations were 

estimated with respect to the world coordinate system by the environmental perception 

module v1 and the results are shown in Table 9. Based on equations (3.1) and (3.2), and 

the output of the ATSSA sub-module, the initialization of the Q-table for the 

demonstrated robot gripper assembly task is shown in Table 10. As it is observed, all the 

demonstrations have followed the same sequence of actions for completing the robot 

assembly task.  
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Table 9: Estimated pose of objects by the environmental perception module v1 during the demonstrations 

of the robot gripper assembly task. 

Object 

Initial Scene – Position and Orientation 

X (m) Y (m) Z (m) 

Rotation 

around Z-

axis (°) 

Top part 1.043 0.194 0.729 0.201 

Left side part 0.809 0.279 0.736 89.930 

Black part 1.041 -0.076 0.755 0.202 

Right side part 0.818 -0.196 0.736 90.200 

Base part 0.819 0.046 0.755 0.207 

Table 0.812 0.026 0.720 0.004 

Table 10: Initialization of the Q-Table for the demonstrated robot gripper assembly task. 
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1 1 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 0 0 0 0 0 0 0 

6 0 0 0 0 0 1 0 0 0 0 0 0 

7 0 0 0 0 0 0 1 0 0 0 0 0 

8 0 0 0 0 0 0 0 1 0 0 0 0 

9 0 0 0 0 0 0 0 0 1 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 0 0 

11 0 0 1 0 0 0 0 0 0 0 0 0 

12 0 0 0 1 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 1 0 

14 0 0 0 0 0 0 0 0 0 0 0 1 

15 0 0 0 0 0 0 1 0 0 0 0 0 

16 0 0 0 0 0 0 0 1 0 0 0 0 

Subsequently, the nine demonstrations were processed by the Skill Learning at 

Trajectory Level (Low-level) module, presented in section 3.3.2. Figure 23 shows the 

nine demonstrated trajectories for the end-effector of the left and right robotic arm. As it 

can be seen, there is a variety between the demonstrations.  
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a) Demonstrated end-effector’s trajectories of the left robotic arm 

 

b) Demonstrated end-effector’s trajectories of the right robotic arm 

 

Figure 23: Demonstrated end-effector’s trajectories of the robot gripper assembly task using the a) left and 

b) right robotic arm. 
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The demonstrated trajectories of the left robotic arm split into 𝐺𝐿 − 1 sub-trajectories, 

where 𝐺𝐿  is the total number of states for the left arm. Similarly, the demonstrated 

trajectories of the right robotic arm split into 𝐺𝑅 − 1 sub-trajectories, where 𝐺𝑅  is the 

total number of states for the right arm. Figure 24 presents one of the demonstrations for 

the robot gripper assembly task. The same procedure was performed for all the 

demonstrations. For each robotic arm, the trajectory was split into 7 sub-trajectories. The 

4
th

 sub-trajectory for each robotic arm was not used for further processing as the arm 

stays steady during that time (Figure 24).  

 

Figure 24: Splitting of trajectory for the demonstrated robot gripper assembly task. A) Splitting of 

trajectory into 7 sub-trajectories for left arm, b) Splitting of trajectory into 7 sub-trajectories for right arm. 

(adapted from [1]) 

The next step was to group the sub-trajectories, apply the Ramer-Douglas-Peucker 

simplification method, and select the similar sub-trajectories in a group, as explained in 

section 3.4.2.1. The threshold value 𝑐 in equation (3.5) was selected as 30. However, if no 

similar sub-trajectory was found, the threshold value increased by 10, until at least one 

similar demonstration was found. Table 11 presents the groups and the selected similar 

demonstrations for each group of sub-trajectories. Additionally, Table 11 shows the 
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association between the sub-trajectories and the high-level actions. The simplified sub-

trajectories of the groups Right 1, 2, and 3 for the manipulation of the black part using the 

right arm are shown in Figure 25, Figure 26, and Figure 27, respectively. The simplified 

sub-trajectories for the manipulation of the other gripper’s parts are shown in Appendix 

C.I.  

Table 11: Groups of sub-trajectories and selection of similar sub-trajectories for the robot gripper assembly 

task. 

Group 
Sub-trajectories between the 

high-level actions  

Reference sub-

trajectory 

(demonstration 

number) 

Similar sub-

trajectories 

(demonstration 

number) 

Threshold 

value 𝒄  from 

equation (3.5) 

Left 1 
LV Home – Home and LV 

Close – Top part info 
7 1, 3, 4 30 

Left 2 
LV Close – Top part info and 

LV Open – Base part info 
4 5, 6 30 

Left 3 
LV Open – Base part info and 

LV End – Table info 
6 3 30 

Right 1 
RV Home – Home and RV 

Close – Black part info 
6 3, 8 40 

Right 2 
RV Close – Black part info 

and RV Open – Base part info 
8 5, 6, 9 40 

Right 3 
RV Open – Base part info and 

RV End – Table info 
6 3 40 

Left 5 
LV Home – Home and LV 

Close – Left side part info 
3 5 30 

Left 6 
LV Close – Left side part info 

and LV Open – Base part info 
6 3, 5 30 

Left 7 
LV Open – Base part info and 

LV End – Table info 
6 1, 8 50 

Right 5 
RV Home – Home and RV 

Close – Right side part info 
5 2 30 

Right 6 

RV Close – Right side part 

info and RV Open – Base part 

info 

9 2, 5 30 

Right 7 
RV Open – Base part info and 

RV End – Table info 
4 3, 9 40 
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Figure 25: The sub-trajectories of the Right 1 group after Ramer-Douglas-Peucker simplification – Robot 

gripper assembly task. 

 

Figure 26: The sub-trajectories of the Right 2 group after Ramer-Douglas-Peucker simplification – Robot 

gripper assembly task. 
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Figure 27: The sub-trajectories of the Right 3 group after Ramer-Douglas-Peucker simplification – Robot 

gripper assembly task. 

The selected sub-trajectories for each group are processed by the Gaussian Mixture 

Model (GMM) method in 7-dimensions, as explained in section 3.3.2.2. In this chapter, 

the learned GMM for the manipulation of black part is presented, while the learned 

GMM for the manipulation of the other gripper’s parts is shown in Appendix C.I. The 

learned GMM of the group Right 1, which represents the moving action of the right 

robotic arm from home to the grasping pose of the black part, is shown in Figure 28a for 

the x-, y- and z- dimensions (X-, Y-, Z-axis) and in Figure 29a for the quaternions. In like 

manner, the learned GMM of the groups Right 2 and 3 are shown in Figure 30a and 

Figure 32a for the x-, y- and z- dimensions (X-, Y-, Z-axis) and in Figure 31a and Figure 

33a for the quaternions, respectively. The optimal number of Gaussians is equal to 6 for 

the groups Right 1-3.  

 Robot Working Phase (Online) 

During the robot working phase, two trials were performed. In the first trial, the pose 

of the gripper’s parts differ from the demonstration.  In the second trial, an obstacle was 

placed on the table, in a position within the demonstrated trajectory. The estimated pose 

of the parts by the environmental perception module v1 during demonstration and during 
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two trials in working phase is shown in Table 12. In the presented task, the robot 

manipulated the gripper’s parts, while the user was supposed to screw the parts together 

in order to successfully complete the assembly task. Figure 34a shows a real-time 

working environment (first trial), in which the user set up the gripper parts in poses 

different from the demonstrated ones. 

Table 12: Estimated pose of objects by the environmental perception module v1 during the demonstrations 

and the trials (working phase). 

Objects 
X (m) Y (m) Z (m) 

Rotation 

around Z-

axis (°) 

 

Initial Scene during Demonstrations 

Top part 1.043 0.194 0.729 0.201 

Left side part 0.809 0.279 0.736 89.930 

Black part 1.041 -0.076 0.755 0.202 

Right side part 0.818 -0.196 0.736 90.200 

Base part 0.819 0.046 0.755 0.207 

Table 0.812 0.026 0.720 0.004 

Objects Initial Scene during Working Phase Trial 

Top part 1.051 0.268 0.729 4.012 Trial 1 & 2 

Left side part 0.785 0.279 0.736 -82.980 Trial 1 & 2 

Black part 1.077 -0.084 0.755 6.004 Trial 1 & 2 

Right side part 0.864 -0.221 0.736 89.920 Trial 1 & 2 

Base part 0.811 0.052 0.755 0.205 Trial 1 & 2 

Table 0.804 0.032 0.720 0.002 Trial 1 & 2 

Red object 

(obstacle) 
1.062 0.061 0.813 0.001 Trial 2 

Firstly, the robot identified the task based on the objects in the scene.  Subsequently, 

the robot confirmed that it was in the Home pose (which it was) and it suggested the next 

action, which offered the maximum reward (as explained in Algorithm 1 – section 3.4.1). 

However, the user was not satisfied with the suggested sequence of actions, which was 

the same as demonstrated. The reason was that the black part was heavy (approx. 1kg) 

and the vacuum did not provide a steady grasp, causing the part to oscillate. Therefore, 

the black part was not positioned properly, making the complete assembly to fail. The 

user decided to change the sequence of actions and the Q-Table converged in two 

iterations. The sequence of actions, learned by the reinforcement learning, had the 

following order:     

1. manipulation of the left side part with the left robotic arm,  

2. manipulation of the right side part with the right robotic arm,  
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3. manipulation of the top part with the left robotic arm, and 

4. manipulation of the black part with the right robotic arm.  

One remark is that Algorithm 1 (section 3.4.1) was updated to handle the robotic 

platform, consisting of two arms and multiple grippers. In case the gripper differed 

between two subsequently selected actions, then the m-GMM/GMR was skipped and the 

algorithm moved to the next state. For example, in Figure 24 it is shown that between the 

4
th

 (LV End – Table info) and 5
th

 action (RV Home – Home), no moving action occurs.  

After each action was confirmed by the user, the m-GMM/GMR algorithm was used 

to adapt the sub-trajectory to the new environmental conditions. In this chapter, the 

modification of the learned GMM for the manipulation of black part is presented, while 

the modification of the GMM for the manipulation of the other gripper’s parts is shown 

in Appendix C.I. Table 12 shows that, during the working phase, the black part was in a 

different position along the X- and Y-axis as well as its orientation, in comparison to the 

demonstrated pose. Moreover, the base part was mounted on the table (as shown in 

Figure 34a) and the table was moved compared to the learning phase. The output of the 

m-GMM for the group Right 1, which represents the moving action of the right robotic 

arm from home to the grasping pose of the black part, is shown in Figure 28b for the x-, 

y- and z- dimensions (X-, Y-, Z-axis) and in Figure 29b for the quaternions. As it can be 

observed, the mean values of the Gaussians have been modified to accommodate the new 

pose of the black part. In like manner, the output of the m-GMM for the group Right 2, 

which is the moving action between the grasping of the black part and the placing of the 

black part next to the base, is shown in Figure 30b for the x-, y- and z- dimensions and in 

Figure 31b for the quaternions. As a result, the mean values of the Gaussians have been 

modified to satisfy the new poses of the black and base part. Furthermore, the m-GMM 

output of the group Right 3 is shown in Figure 32b for the x-, y- and z- dimensions and 

Figure 33b for the quaternions. Subsequently, the GMR method was used to generate the 

adapted sub-trajectory, which had to be followed by the robot. The generated GMR 

trajectory for the groups Right 1, 2, and 3, are presented in Figure 28c, Figure 30c, and 

Figure 32c for the x-, y- and z- dimensions and in Figure 29c, Figure 31c, and Figure 33c 

for the quaternions, respectively.  
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The robot performed the suggested sequence together with the human collaborator, as 

shown in Figure 34b. After each gripper’s part manipulation was completed by the robot 

the human screws the parts together and then confirmed then next action of the robot. 

Videos of the robot’s execution can be found in supplementary materials
8
 in [1]. 

 

Figure 28: Robot gripper assembly task. A) The learned GMM for the sub-trajectories of group Right 1 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group 

Right 1 during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 1 along the X-, Y-, and Z-axis.  

                                                 

8
 The link directly to the supplementary materials in [1] is:  

https://link.springer.com/article/10.1007/s10514-018-9725-6#SupplementaryMaterial 

https://link.springer.com/article/10.1007/s10514-018-9725-6%23SupplementaryMaterial
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Figure 29: Robot gripper assembly task. A) The learned GMM for the sub-trajectories of group Right 1 for 

the quaternions. B) The modification of the learned GMM for the sub-trajectories of group Right 1 during 

the trial 1 for the quaternions. C) The generated GMR sub-trajectory produced by the m-GMM of group 

Right 1 for the quaternions.  
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Figure 30: Robot gripper assembly task. A) The learned GMM for the sub-trajectories of group Right 2 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group 

Right 2 during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 2 along the X-, Y-, and Z-axis. 
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Figure 31: Robot gripper assembly task. A) The learned GMM for the sub-trajectories of group Right 2 for 

the quaternions. B) The modification of the learned GMM for the sub-trajectories of group Right 2 during 

the trial 1 for the quaternions. C) The generated GMR sub-trajectory produced by the m-GMM of group 

Right 2 for the quaternions. 
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Figure 32: Robot gripper assembly task. A) The learned GMM for the sub-trajectories of group Right 3 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group 

Right 3 during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 3 along the X-, Y-, and Z-axis. 



4.2 Robot Gripper Assembly Task (Task 1) 

77 

 

 

Figure 33: Robot gripper assembly task. A) The learned GMM for the sub-trajectories of group Right 3 for 

the quaternions. B) The modification of the learned GMM for the sub-trajectories of group Right 3 during 

the trial 1 for the quaternions. C) The generated GMR sub-trajectory produced by the m-GMM of group 

Right 3 for the quaternions. 
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Figure 34: Example of human–robot collaboration for the robot gripper assembly task during the trial 1. A) 

Initial scene during demonstrations (left) and during a real-time working environment (right), b) the robot 

executes the learned task with a different sequence of actions suggested by the human collaborator and 

different pose of gripper parts. (adapted from [1]) 
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Figure 35 shows a real-time execution of the manipulation of the black part, in which 

an additional object (red object) is added as an obstacle during the second trial. The 

obstacle avoidance in m-GMM is illustrated in Figure 35b and it was calculated by 

adding, the height of the obstacle plus the height of the top part plus a safety distance to 

the mean values of the Gaussians in obstacle (as explained in Section 3.4.2.1).  

The robot was able to avoid the obstacle but the picked object (black part) was not 

positioned properly, as it can be seen in Figure 35d. The reason is that the black part is 

heavy (1 kg) and it oscillated during the manipulation by the vacuum gripper which 

caused the object misplacement. Videos of the robot’s execution can be found in 

supplementary materials
9
 in [1]. 

 

Figure 35: Example of the manipulation of the black part with obstacle avoidance along the Z-axis during 

trial 2. A) Learned GMM from the selected sub-trajectories, b) modified GMM to avoid obstacle, c) 

generated sub-trajectory via GMR from the modified GMM, d) the robot executes the manipulation of the 

black part. (adapted from [1]) 

                                                 

9
 The link directly to the supplementary materials in [1] is:  

https://link.springer.com/article/10.1007/s10514-018-9725-6#SupplementaryMaterial 

https://link.springer.com/article/10.1007/s10514-018-9725-6%23SupplementaryMaterial
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4.3 ‘Pins into Holes’ Task (Task 2) 

To evaluate the proposed framework, a second industrial task was selected that 

requires high precision. The selected task ‘Pins into Holes’ (Task 2), illustrated in Figure 

36, involves different objects, a color box with holes of different sizes and pins to be 

inserted in these holes. In Figure 36a-c, three versions of the Task 2 are shown where 

different pins are inserted in different holes of the color box. The first two versions of the 

Task 2 (Figure 36a, b) were demonstrated by users. To learn the necessary sequence of 

actions to perform the task, the presented RLfD was utilized. The Decision Support sub-

module (section 3.4.1) was used to enable the robot to perform the third version of the 

Task 2 (Figure 36c) without additional training by the user. The robot used the 

knowledge gained from first two demonstrated versions of the task to perform an unseen 

version. The Figure 36d presents the pins used in the Task 2 and Figure 36e shows the 

initial scene of the task, where the pins are positioned in a wooden holder and a red 

holder is used to hold the color box. 

 

Figure 36: a), b) and c) Three versions of the ‘Pins into Holes’ task, d) Pins involved in the ‘Pins into Holes’ 

task, e) Initial scene of the ‘Pins into Holes’ task. 

4.3.1 Human Demonstrations of ‘Pins into Holes’ Task 

Nine participants were asked to provide demonstrations of the Task 2. The participants 

interacted with the Workerbot using a gamepad (section 3.2.1.2), as shown in Figure 37. 
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Out of 9 participants, 3 are females and 6 are males. The average age was 31.55±6.98 

years old. All participants gave their informed, signed consent for the participation. All 

participants had ten minutes to get familiar with the gamepad, before they were asked to 

demonstrate the task. 

 

Figure 37: A user demonstrates the task ‘Pins into Holes’ using a gamepad. 

The participants demonstrated the first two versions of the Task 2 (Figure 36a, b). For 

the demonstrations only the pins involved in particular version were present in the initial 

scene. For example, for the initial scene of the first version (Figure 36a), pins 10 and 8 

were placed in the wooden holder. The participants were informed about the goal scene 

for the two versions of the Task 2. The participants were allowed to choose the preferred 

sequence of actions (Figure 38) to achieve the goal. In Figure 38 the sequence of actions 

to perform the two versions of Task 2 is presented. For the first version of the Task 2 pin 

X could either be pin 8 or pin 10 and pin Y could either be pin 10 or pin 8 (pin Y≠pin X). 

For the second version pin X could either be pin 6 or pin 10 and pin Y could either be pin 

10 or pin 6 (pin Y≠pin X). Each participant provided one demonstration for each version 

of the Task 2. In total, 18 demonstrations were recorded.   
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Figure 38: Sequence of actions to perform the first two versions of the ‘Pins into Holes’ task 

Furthermore, a smaller study with two participants (two males of ages 24 and 27) was 

conducted, where ‘hands-free’ human-robot interaction using a motion sensor (section 

3.2.2.1) was selected for the demonstration, as shown in Figure 39. All participants had 

twenty minutes prior to providing the demonstration to get familiar with the head gesture-

based HRI.  

In this study, a different concept was examined. The goal was that the robot had to 

learn the third version of the Task 2 (Figure 36c), which included all three pins. However, 

the robot already knew how to perform the second version of the task (Figure 36b), which 

included the manipulation of the color box and the pins 6 and 10. The user demonstrated 

to the robot how to manipulate the pin 8 and the robot learned the additional 

manipulation using a single demonstration (one-shot learning).  

 

Figure 39: A user demonstrates a part of the ‘Pins into Holes’ task using head gestures.  
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4.3.2 Robot Learning and Working Phase of the ‘Pins into Holes’ Task 

The next step after the demonstrations of Task 2 was the robot learning phase. 

Eighteen demonstrations were used as input to the robot learning phase.  

 Robot Learning Phase (Offline) 

The demonstrations were first processed by the Symbolic Task Learning (High-level) 

module, presented in section 3.3.1. The ATSSA module was used to generate the 

sequence of actions. However, not all the users followed the same sequence of actions. 

The sequence of actions generated by the ATSSA sub-module for the demonstrations is 

shown in Table 13.  

 Table 13: Output of ATSSA sub-module for the demonstrations of the task ‘Pins into Holes’ 

 First Version of Task 2 Second Version of Task 2 

5 Demonstrations 4 Demonstrations 4 Demonstrations 5 Demonstrations 

1. RV Home – Home RV Home – Home RV Home – Home RV Home – Home 

2. RV Close – Color box 

info 

RV Close – Color box 

info 

RV Close – Color box 

info 

RV Close – Color box 

info 

3. RV Open – Red holder 

info 

RV Open – Red holder 

info 

RV Open – Red holder 

info 

RV Open – Red holder 

info 

4. RV Home – Home RV Home – Home RV Home – Home RV Home – Home 

5. L2 Home – Home L2 Home – Home L2 Home – Home L2 Home – Home 

6. L2 Close – Pin 10 info L2 Close – Pin 8 info L2 Close – Pin 10 info L2 Close – Pin 6 info 

7. L2 Open – Color box 

info 

L2 Open – Color box 

info 

L2 Open – Color box 

info 

L2 Open – Color box 

info 

8. L2 Home – Home L2 Home – Home L2 Home – Home L2 Home – Home 

9. L2 Close – Pin 8 info L2 Close – Pin 10 info L2 Close – Pin 6 info L2 Close – Pin 10 info 

10. L2 Open – Color box 

info 

L2 Open – Color box 

info 

L2 Open – Color box 

info 

L2 Open – Color box 

info 

11. L2 Home – Home L2 Home – Home L2 Home – Home L2 Home – Home 

 

The position of the objects and the table during the demonstrations were estimated 

with respect to the world coordinate system by the environmental perception module v1 

and the results are shown in Table 14. The initialization of the Q-table (section 3.3.1.2) 

for the demonstrated Task 2 is shown in Table 15.  
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Table 14: Estimated pose of objects by the environmental perception module v1 during the demonstrations 

of the task ‘Pins into Holes’. 

Object 

Initial Scene – Position Present in the 

initial scene of 

the Task 2 

version 

X (m) Y (m) Z (m) 

Color box 0.946 -0.257 0.752 Version 1 & 2 

Pin 10 0.960 0.245 0.822 Version 1 & 2 

Pin 8 0.850 0.245 0.827 Version 1 

Pin 6 0.740 0.245 0.827 Version 2 

Red holder 1.040 0.043 0.730 Version 1 & 2 

Wooden holder 0.737 0.277 0.769 Version 1 & 2 

Table 0.804 0.032 0.720 Version 1 & 2 

Table 15: Initialization of the Q-Table for the demonstrated task ‘Pins into Holes’. 
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1 1 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 

4 1 0 0 0 0 0 0 0 

5 0 0 0 1 0 0 0 0 

6 0 0 0 0 0.5 0 0.22 0.28 

7 0 0 0 0 0 1 0 0 

8 0 0 0 1 0 0 0 0 

9 0 0 0 0 0.5 0 0.28 0.22 

10 0 0 0 0 0 1 0 0 

11 0 0 0 1 0 0 0 0 

The demonstrations were further processed by the Skill Learning at Trajectory Level 

(Low-level) module, presented in section 3.3.2. The demonstrated trajectories of the left 

and right robotic arms split into 𝐺𝐿 − 1 and 𝐺𝑅 − 1 sub-trajectories, respectively. The 

next step was to group the sub-trajectories, resample them and select similar sub-

trajectories, as explained in section 3.4.2.1. Table 16 shows the association between the 

high-level actions and the groups of sub-trajectories. The groups Right 1 – 3 and Left 5 – 

7 consist of eighteen demonstrations, while the remaining groups consist of nine 
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demonstrations. This happens because the color box and the pin 10 were manipulated in 

both versions of the Task 2.  

The selected demonstrations were further processed by the GMM method (section 

3.4.2.2). The results of the learned GMM for the manipulation of the pin 6 are presented 

in this chapter. The results for the manipulation of the other pins and the color box are 

shown in Appendix C.II. Figure 40a shows the learned GMM for the group Left 8 – 

version 2 for the x- , y- and z-dimensions (X-, Y-, Z-axis). The group Left 8 – version 2 

is the moving action between the high-level actions L2 Home – Home and L2 Close – Pin 

6 info, as shown in Table 16. Similarly, Figure 41a and Figure 42a show the learned 

GMM for the group Left 9 – version 2 and Left 10 – version 2, respectively. The optimal 

number of Gaussians is equal to 5, 4, 3 for the groups Left 8 –, 9 –, and 10 – version 2, 

respectively. The orientation of the objects did not change between learning and working 

phase. Therefore, only the x-, y- and z- dimensions are shown in this chapter.  

Table 16: Association between the groups of sub-trajectories and high-level actions for the first and second 

version of the task ‘Pins into Holes’ (Task 2). 

First Version of Task 2 Second Version of Task 2 

Group 
Sub-trajectories between the 

high-level actions  
Group 

Sub-trajectories between the high-

level actions  

Right 1 
RV Home – Home and RV Close – 

Color box info 
Right 1 

RV Home – Home and RV Close – 

Color box info 

Right 2 
RV Close – Color box info and RV 

Open – Red holder info 
Right 2 

RV Close – Color box info and RV 

Open – Red holder info 

Right 3 
RV Open – Red holder info and 

RV Home – Home 
Right 3 

RV Open – Red holder info and RV 

Home – Home 

Left 5 
L2 Home – Home and L2 Close – 

Pin 10 info 
Left 5 

L2 Home – Home and L2 Close – Pin 

10 info 

Left 6 
L2 Close – Pin 10 info and L2 

Open – Color box info 
Left 6 

L2 Close – Pin 10 info and L2 Open – 

Color box info 

Left 7 
L2 Open – Color box info and L2 

Home – Home 
Left 7 

L2 Open – Color box info and L2 

Home – Home 

Left 8 – 

version 1 

L2 Home – Home and L2 Close – 

Pin 8 info 

Left 8 – 

version 2 

L2 Home – Home and L2 Close – Pin 

6 info 

Left 9 – 

version 1 

L2 Close – Pin 8 info and L2 Open 

– Color box info 

Left 9 – 

version 2 

L2 Close – Pin 6 info and L2 Open – 

Color box info 

Left 10 – 

version 1 

L2 Open – Color box info and L2 

Home – Home 

Left 10 – 

version 2 

L2 Open – Color box info and L2 

Home – Home 
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 Robot Working Phase (Online) 

During the robot working phase, the robot was required to perform the third version of 

the Task 2 (Figure 36c) without additional training by the user. Moreover, to evaluate the 

learning of user’s preferences, two users interacted with the robot. The initial scene 

consisted of all 3 pins (Figure 36e) and the positions of the pins are shown in Table 17. 

Firstly, the robot identified the task based on the objects in the scene as Task 2 and the Q-

Table (initialized by the demonstrations) was loaded. Subsequently, the robot confirmed 

that it was in the Home pose and it suggested the next action, which offered the 

maximum reward (as explained in Algorithm 1 – section 3.4.1).  

The robot suggested the following sequence of high-level actions: 1. Manipulation of 

the color box, 2. Manipulation of the pin10, and 3. Manipulation of the pin 10. The 

reason that the manipulation of the pin 10 was suggested twice is because the reward is 

the highest (Table 15 – state 9). The user 1 confirmed the high-level actions for the first 2 

manipulations. However, the user rejected the proposed high-level actions for third 

manipulation, and the robot suggested the manipulation of the pin 8, which was rejected 

again by the user. At the end, the user confirmed the last suggestion by the robot, which 

was the manipulation of the pin 6. After the manipulation of the pin 6, the user added 

additional states and selected the manipulation of pin 8 (Algorithm 1 – section 3.4.1). In 

the same fashion, the user 2 confirmed the following sequence of high-level actions: 1. 

Manipulation of the color box, 2. Manipulation of the pin 6, 3. Manipulation of the pin 8, 

4. Manipulation of the pin 10. For each user, the Q-Table converged after two to four 

iterations and the suggestions from the robot were accepted by the users.  

Table 17: Estimated pose of objects by the environmental perception module v1 during the demonstrations 

of the task ‘Pins into Holes’. 

Object 

Initial scene during 

learning phase 

Initial scene during working 

phase 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

Color box 0.946 -0.257 0.752 0.951 -0.258 0.752 

Pin 10 0.960 0.245 0.823 1.092 0.343 0.823 

Pin 8 0.850 0.245 0.827 0.982 0.287 0.827 

Pin 6 0.740 0.245 0.827 0.872 0.343 0.827 

Red holder 1.040 0.043 0.730 1.041 0.045 0.730 

Wooden holder 0.737 0.277 0.769 0.869 0.319 0.769 

Table 0.804 0.032 0.720 0.805 0.034 0.720 
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After each action was confirmed by the user, the m-GMM/GMR algorithm was used 

to adapt the sub-trajectory to the new environmental conditions. In this chapter, the 

modification of the learned GMM for the manipulation of pin 6 is presented, while the m-

GMM/GMR of other pins and the color box is presented in Appendix C.II. The pin 6 was 

the most challenging to be manipulated as it was the thinnest pin. Table 17 shows that 

during the working phase the pin 6 was in a different position along the X- and Y-axis, in 

comparison to the demonstrated pose. Furthermore, the red holder, on which the color 

box should be placed, was mounted on the table (as shown in Figure 36e) and the table 

was moved compared to the learning phase. The output of the m-GMM for the group Left 

8 – version 2, which represents the moving action of the left robotic arm from home to 

the grasping pose of the pin 6, is shown in Figure 40b for the x-, y- and z- dimensions. As 

it can be observed, the mean values of the Gaussians have been modified based on the 

new position of the pin 6. Moreover, the output of the m-GMM for the group Left 9 – 

version 2, which is the moving action between the grasping of the pin 6 and the placing 

of it into the color box, is presented in Figure 41b. As a result, the mean values of the 

Gaussians have been modified to satisfy the new positions of the pin 6 and the color box, 

which is placed on the red holder. Furthermore, the m-GMM output of the group Left 10 

– version 2, is shown in Figure 42b. Subsequently, the GMR method was used to 

generate the adapted sub-trajectory, which had to be followed by the robot. The generated 

GMR trajectory for the groups Left 8 –, 9 –, and 10 – version 2, are presented in Figure 

40c, Figure 41c, Figure 42c respectively. Figure 43 illustrates the robot execution of the 

‘Pins into Holes’ version 3 Task, with the sequence of actions preferred by the user 1.  
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Figure 40: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 8 – version 2 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 

8 – version 2 during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory 

produced by the m-GMM of group Left 8 – version 2 along the X-, Y-, and Z-axis. 
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Figure 41: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 9– version 2 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 

9 – version 2 during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory 

produced by the m-GMM of group Left 9 – version 2 along the X-, Y-, and Z-axis. 
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Figure 42: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 10– version 2 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 

10 – version 2 during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-

trajectory produced by the m-GMM of group Left 10 – version 2 along the X-, Y-, and Z-axis. 
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Figure 43: Robot execution of the task ‘Pins into Holes’ version 3 with the preferable sequence of actions 

for the user 1 

Moreover, a different concept was examined during the working phase. The robot had 

only learned the second version of the Task 2 (Figure 36b), i.e. how to manipulate the 

color box and the pin 6 and 10. However, there were three pins in the initial scene as 

shown in Figure 36e. The user had to teach the robot to manipulate the third pin (pin 8) 

using the head gestures-based HRI. The robot had to learn the third version of the Task 2 

(Figure 36c), which included all three pins. Nevertheless, the complete manipulation of 

pin 8 using head gestures is very challenging and time consuming as it needs high 

precision. Since the robot already knew how to manipulate pins of other sizes, the 

moving actions from home to grasping point of a pin and from releasing a pin to home 

could be easily modified using the m-GMM to manipulate the pin 8. In other words, the 

learned GMM between home and close action and between open and home action of the 

pin 10 or pin 6 can be modified for the pin 8 using the m-GMM. However, the robot had 

no knowledge of where the pin 8 had to be placed. The user guided the robot though the 

moving action between grasping of the pin 8 and releasing it into the proper hole of the 

color box. The robot learned the additional moving action using a single demonstration 

(one-shot learning).  

The first user needed 430 seconds (7.2 minutes) and 73 gestures to demonstrate the 

missing moving action and the second user needed 480 (8 minutes) and 76 gestures. The 

learned GMM for the demonstrated moving action of pin 8 from the first user is shown in 

Figure 44a for the x- , y- and z-dimensions. The GMR that is reproduced by the learned 
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GMM is shown in Figure 44b and it can be observed that the generated GMR is similar to 

the demonstration. The user did not change the orientation of the robot’s end-effector 

during the demonstration.  

  

Figure 44: Learning from ‘hands-free’ HRI for task ‘Pins into Holes’. a) The learned GMM for the 

demonstrated sub-trajectory along the X-, Y-, and Z-axis. b) The generated GMR sub-trajectory produced 

by the learned GMM along the X-, Y-, and Z-axis. 

4.4 Discussion 

In this chapter the presented RLfD framework utilizes a dual-arm industrial robot to 

learn and reproduce assembly tasks. The first human-robot synergetic task was the 

assembly of a robot gripper, and the second challenging task was to insert ‘Pins-into-

Holes’. The presented results confirm the potential of the developed RLfD framework to 

empower robots with learning abilities. The robot was able to reproduce the demonstrated 

tasks in changed environment, to suggest sequence of high-level actions, to exploit prior 
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knowledge to execute an unseen version of the task (version 3 of Task 2), and to learn 

user’s preferences. Different HRI methods were employed for the demonstrations and the 

RLfD was able to successfully learn the demonstrated tasks.  

Two participants (a male and a female), who provided demonstrations for both tasks 

using hand-operated HRIs, stated that the kinesthetic teaching approach was easier to 

learn in comparison to the gamepad. However, they pointed out that they felt physical 

tiredness on their arms due to the weight of the robotic arms. Although the robotic arms 

were in gravity-compensation mode during the kinesthetic teaching, they felt tired after 

some time.   

 Nevertheless, it is important to state the RLfD framework relies on the human 

demonstrations, and the learned trajectories depend on the quality of the demonstrations. 

In the presented RLfD framework, a first step is made by selecting similar 

demonstrations to be used as input for the robot learning at trajectory level. In future, a 

measurement to identify the quality of a demonstration is required and only 

demonstrations with high quality should further be processed by the RLfD framework.    

Furthermore, it is observed by the presented results that the generated trajectories are 

not optimal. One approach to optimize the trajectories is to modify the covariance 

matrices of the GMM. However, if the covariance matrices change, it is not guaranteed 

that the constraints of the demonstrated trajectories are fulfilled. In future, a method that 

optimizes the GMM/GMR output is required, which will respect the constraints of the 

demonstrated trajectories.  

Moreover, a ‘hands-free’ HRI concept is also presented in this chapter. Although the 

results show the potential of the ‘hands-free’ HRI to be used for teaching additional 

actions in an already learned task, the time and effort required by the user are high. One 

approach to overcome this problem would be to further segment moving actions. In other 

words, it will require the robot to recognize more detailed moving actions, such as 

moving close to an object, moving away from an object etc. For example, in the 

presented ‘hands-free’ HRI task, the robot would be able to additionally move the pin 8 

away from the wooden holder, and then close to the color box. The user would only be 

required to guide the robot for a short distance to insert the pin into the right hole. 
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However, the objects would be required to be categorized to enable the robot to 

understand how to manipulate an unseen object with similar characteristics to a known 

manipulated object.  
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5. Robot Learning of an Assistive 

Manipulation Task from One-shot 

Human Demonstration – Application in 

Assistive Robotics 

In this chapter, the presented robot learning from one-shot human demonstration is 

evaluated for an application in assistive robotics. Using a ‘hands-free’ HRI, the user is 

able to teach the robot a desired manipulation task. After the demonstration and the 

learning, the robot performs the task, even when the positions of the cup and the human 

have changed (in comparison to the demonstration). To demonstrate the feasibility of the 

RLfD framework, a small study was conducted with 13 participants; 12 able-bodied and 

1 tetraplegic suffering from multiple sclerosis. The results have been presented by 

Kyrarini et al. in [4]. The study was performed in a real-world assistive scenario, which is 

explained in detail as follows.  

5.1 Assistive Robotic Platform  

The KINOVA JACO Gen2 [147] was selected as an assistive robotic platform, which 

is a 7-DoF ultra-lightweight robotic arm with a three-finger gripper attached as the end-

effector. The JACO arm was mounted on a table, as shown in Figure 45. The JACO arm 

has been specifically designed as an assistive robot. Studies [148] [149], which have been 
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conducted with the JACO and individuals with upper-extremity disability, indicated the 

efficacy of JACO arm as an alternative to increase the autonomy of motor impaired users.  

As a vision sensor the lightweight Intel Realsense Camera D435 [150] was selected to 

provide environmental information and was mounted on the robot’s end effector between 

the gripper and the last joint using a 3D-printed attachment clamp, as illustrated in Figure 

45. The Realsense contains a color camera (RGB) and a depth camera system, 

comprising two Infrared (IR) cameras and an IR projector [151].  

The JACO arm was controlled by the head gesture-based HRI using a vision sensor 

mounted on a hat, which is presented in section 3.2.2.2. Figure 45 shows the setup of the 

assistive robotic platform and a user suffering from tetraplegia, who controlled the robot 

by head gestures. Figure 46a shows the world coordinate system, which is located at the 

robot’s base.  

 

Figure 45: Setup of the presented system with the tetraplegic end-user 

5.2 Assistive Manipulation Task for Serving a Drink  

Assistive robotic manipulators have the potential to support individuals with 

tetraplegia in regaining their independence in performing Activities of Daily Living 

(ADLs). In the pre-development survey with potential end-users of robotic manipulators 

[152], it was shown that drinking, eating and preparing meals are highly prioritized tasks. 

To evaluate the presented RLfD framework, the assistive manipulation task to serve a 

drink was selected and it is described as follows; the user controlled the robot to pick a 
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cup from the table and to bring the cup close to their mouth to drink. Figure 46 illustrates 

the sequence of actions needed to complete the task.  

a 

Y
X

Z

 

b  

c  

Figure 46: The sequence of actions for the assistive manipulation task. A) Robot is in the ‘home’ pose and 

the world coordinate system is marked, b) The user controls the robot to grasp the cup, c) The user brings 

the cup close to her. 

5.3 Human Demonstration of the Assistive Manipulation Task  

A small study was conducted, in which participants were asked to perform the 

assistive manipulation task, shown in Figure 46. Thirteen participants (12 able-bodied 

and 1 tetraplegic) took place in the study to perform one demonstration. Out of 13 
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participants, 4 are females (3 able-bodied and 1 tetraplegic) and 9 are males. The average 

age was 30.4±9.7 years old. All participants gave their informed, signed consent to 

participate in this study.   

All the participants, who took place in the study, were able to learn how to provide 

demonstration of the task effectively and to demonstrate the task successfully in the first 

attempt. The average time to demonstrate the complete assistive manipulation task for 13 

participants was 754.67±223.13 sec, while the tetraplegic user needed 738sec. The 

average number of head gestures to control successfully the robot through the task was 

76.15±17.68, while the tetraplegic user needed 72 gestures. Obviously, the time taken by 

the tetraplegic user for providing the demo and the total number of gestures were 

comparable to the able-bodied participants. Furthermore, the participants reported their 

feedback on a questionnaire based on a 5-point Likert scale [153]. The questions were 

agreement-based and the Likert scale ranges from 1 (“strongly disagree”) to 5 (“strongly 

agree”). The results are shown in Figure 47. 

 

Figure 47: Subjective user feedback on the questionnaire based on a 5-point Likert scale [4]. 
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Four of the participants (2 males and 2 females), including the participant with 

tetraplegia, had previous experience with head gesture-based HRI [154] [5]. The robot’s 

end-effector trajectories demonstrated by the four experienced users are presented in 

Figure 48. It can be seen that each user selected a different path to guide the robot 

through the task. Moreover, the grasping preference of the cup for each user was different, 

even if the cup was placed at the same position though all the demonstrations. In detail, 

some users preferred to grasp the cup closer to its top edge, while others closer to its 

bottom edge. Some participants also preferred to grasp the cup having the complete 

fingers of the gripper in contact with the cup, while others only the fingertips. 

Furthermore, the position of the grasped cup as ready for drinking varies as humans vary 

in shape and height. Also, during the study, the tetraplegic user was seated on a 

wheelchair, while the able-bodied participants on a normal chair. 

 

Figure 48: The trajectories of the end-effector in X, Y, Z-axis (3D) demonstrated by four participants 

having previous experience on head gesture-based human-robot interaction 

5.4 Robot Learning and Working Phase of the Assistive 

Manipulation Task 

The next step, after a user demonstrated the assistive manipulation task, was the robot 

learning (one-shot). In this thesis, the processing of the tetraplegic user is presented, as 

the presented RLfD has the potential to support individuals with tetraplegia in regaining 
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their independence in performing ADLs. However, the same procedure was performed 

for the demonstrations of the other users.  

 Robot Learning Phase (Offline) 

The demonstration was first processed by the Symbolic Task Learning (High-level) 

module, presented in section 3.3.1. The sequence of actions generated by the ATSSA 

sub-module was:  

1. Home – Home,  

2. Close – Cup info,  

3. End – Person info. 

The position of the cup and the person (user) during the demonstration was estimated 

with respect to the world coordinate system by the environmental perception module v2 

and the results are shown in Table 18. Based on equation (3.1) and (3.2), and the output 

of the ATSSA sub-module, the initialization of the Q-table for the demonstrated 

manipulation task is shown in Table 19. 

Table 18: Estimated position of the person and the cup during the demonstration by the environmental 

perception module v2 

Obj. 
X (m) Y (m) Z (m) 

During Demonstration 

Person 0.425 -0.773 0.372 

Cup 0.611 0.059 0.050 

Table 19: Initialization of the Q-Table for the demonstrated manipulation task 

 Actions a 

States 𝑔 Home – Home Close – Cup info End – Person info 

1 1 0 0 

2 0 1 0 

3 0 0 1 

Second, the demonstrated trajectory was split into two sub-trajectories. The first sub-

trajectory was from Home pose to the grasping point of the cup (Close) and the second 

from grasping point of the cup to the drinking point for the user (End). Figure 49a-c and 

Figure 50a-c respectively show the first and second sub-trajectory of the demonstration 

provided by the tetraplegic user and the learned GMM for the x-, y- and z- dimensions 

(X-, Y-, Z-axis). The optimal number of Gaussians was equal to 12 for the first sub-
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trajectory and 15 for the second.  The orientation of the cup and the person did not 

change between learning and working phase. Therefore, only the x-, y- and z- dimensions 

are shown in this chapter. In Appendix D, all 7 dimensions of the learned GMM are 

shown for the two sub-trajectories.  

 Robot Working Phase (Online) 

To evaluate the m-GMM algorithm, developed in this thesis, three trials were 

performed in robot working phase. In each trial, the position of the person and the cup 

differ from the demonstration, and the robot started from the Home pose.  In the third trial, 

a cubic box of dimensions 20x20x20 cm was positioned on the table, in a position within 

the demonstrated trajectory. The estimated position of the cup and the person by the 

environmental perception module v2 during demonstration and during three trials in 

working phase is shown in Table 20.  

Table 20: Estimated position of the person and the cup during the demonstration and during the automatic 

phase by the environmental perception module v2 [4] 

Obj. 
X (m) Y (m) Z (m) 

During Demonstration 

Person 0.425 -0.773 0.372 

Cup 0.611 0.059 0.050 

 During Working Phase – Trial 1 

Person 0.291 -0.599 0.372 

Cup 0.545 0.169 0.050 

 During Working Phase – Trial 2 

Person 0.335 -0.733 0.372 

Cup 0.505 0.249 0.050 

 During Working Phase – Trial 3 

Person 0.335 -0.733 0.372 

Cup 0.611 0.210 0.050 

Box 0.603 -0.050 0.011 
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Figure 49: The learned GMM for the first sub-trajectory along the a) X-axis, b) Y-axis, c) Z-axis. The 

modification of the GMM for the first sub-trajectory – Trial 3 along the d) X-axis, e) Y-axis, f) Z-axis.  The 

first GMR sub-trajectory produced by the m-GMM along the g) X-axis, h) Y-axis, i) Z-axis. 



5.4 Robot Learning and Working Phase of the Assistive Manipulation Task 

103 

 

 

Figure 50: The learned GMM for the second sub-trajectory along the a) X-axis, b) Y-axis, c) Z-axis. The 

modification of the GMM for the second sub-trajectory – Trial 3 along the d) X-axis, e) Y-axis, f) Z-axis.  

The second GMR sub-trajectory produced by the m-GMM along the g) X-axis, h) Y-axis, i) Z-axis. 
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Firstly, the robot identified the task based on the objects in the scene.  Subsequently, 

the robot confirmed that it was in the Home pose (which it was) and it suggested the next 

action, which was the Close – Cup info. In this scenario, the user confirmation had been 

disabled as only one sequence of actions was possible. The m-GMM/GMR algorithm was 

used to adapt the sub-trajectory to the new environmental conditions. In Figure 49d-f, the 

modification of the mean values of the learn GMM (output of m-GMM) is presented for 

the third trial in the working phase. The GMR method generated the adapted sub-

trajectory to be followed by the robot, as shown in Figure 49g-i. After the robot executed 

the first sub-trajectory, the next action is suggested, which is the End – Person info. 

Similarly, the m-GMM and GMR algorithms were used to adapt the sub-trajectory to the 

new environmental conditions, as shown in Figure 50d-f and Figure 50g-i, respectively. 

The obstacle avoidance in m-GMM is illustrated in Figure 50f and it was calculated by 

adding, the height of the obstacle plus the height of the picked cup plus a safety distance 

to the mean values of the Gaussians in obstacle (as explained in Section 3.4.2.1). The m-

GMM/GMR outputs for trial 1 and 2 are shown in appendix D.  

The robot’s end-effector trajectory for the demonstration during the learning phase and 

for all the three trials during the working phase is shown in Figure 51. In all three trials 

the robot completed the task successfully. The avoidance of the box (obstacle) during the 

third trial is marked in Figure 51. 

 

Figure 51: The trajectories of the end-effector in X, Y, Z-axis (3D) during the demonstration (demo) from 

the tetraplegic user in the learning phase and the three trials in the working phase [4] 
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5.5 Discussion 

In this chapter the presented RLfD framework enables an assistive robotic manipulator 

to learn from a tetraplegic user to assist in drinking. The robot was able to learn the 

necessary moving actions and to reproduce the demonstrated task in changed 

environments. A head gesture-based HRI is used to enable a tetraplegic user to provide a 

demonstration for the assistive manipulation task.   

The tetraplegic end-user was asked to fill in an additional questionnaire, the results of 

which are shown in Table 21. The questionnaire was used to evaluate the user 

acceptability of the presented system. As it can be observed, the feedback from the end-

user was very positive. One important remark was that the tetraplegic end-user was in 

favor of using the ‘hands-free’ HRI to provide the demo herself. 

However, the average time of the demonstration and the effort from the user are very 

high. The tetraplegic user needed 738sec (12.3 minutes) and 72 gestures to provide the 

demonstration, which is high. In future, head gestures could be combined with other 

modalities, such as speech to reduce the state machine for the robot control (presented in 

section 3.2.2.2). Additionally, the combination of ‘hands-free’ HRI with object 

recognition could assist the user to provide faster demonstration and with better quality.    

Table 21: Questionnaire of the tetraplegic end-user 

Questions Possible Answers 
Answer of the 

end-user 

1. What is your first impression from the 

system? 

Positive/Negative/ 

Scary/Strange 
Positive 

2. Can the system be supportive in your 

daily activities like drinking, eating? 

Very Supportive/ 

Yes/A little/No 

Very 

Supportive 

3. Who would you prefer to control the 

robot during demonstration?  

Myself/ 

Another person 
Myself 

4. Are you satisfied with the task learning 

and performing of the robot? 

Very Satisfied/ 

Yes/A little/No 
Very Satisfied 

  



 5.5 Discussion 

106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.1 Thesis Summary and Conclusions 

107 

 

  

6. Conclusions and Outlook 

 

6.1 Thesis Summary and Conclusions 

The broad vision of this thesis is to enable robots to learn object manipulation tasks 

from human demonstrations and to be personalized for their users. This thesis has 

developed a robot learning framework that endows robots with the following abilities: 

 learning the high-level sequence of actions from a demonstrated task, including 

the necessary moving actions (low-level),  

 modifying the learned moving actions to accommodate different poses of 

involved objects and obstacles, 

 performing a new task using the gain knowledge from previous learned tasks, and 

 learning user’s preferences regarding the sequence of actions for a task.   

The development of the framework included methods for Human-Robot Interaction (HRI) 

and algorithms that enhance the field of Robot Learning from Demonstration (RLfD). 

The feasibility of this framework has been evaluated on assistive and industrial robotic 

tasks.  

Chapter 1 discussed the motivation, the open topics in RLfD, and the main 

contributions of the thesis. Chapter 2 provided a theoretical background about machine 

learning techniques and discussed the state-of-the-art algorithms in RLfD. Chapter 3 

described the developed RLfD framework and emphasized its main novelties. These are: 

it is able to learn sequence of high-level actions, including the moving actions (low-level) 
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from a demonstrated task; it aligns and selects similar demonstrated trajectories; it 

supports the user during the working phase by proposing sequence of actions  and 

keeping the user in the loop; it utilizes prior knowledge to perform an unseen task 

consisting of previous learned tasks; it learns the user’s preferences; it modifies the 

learned GMM to enable the robot to adapt to changes in the environment including 

obstacle avoidance (m-GMM method); it supports several HRI methods; it enables 

learning from single and multiple demonstrations. 

Chapter 4 presented the results of the developed RLfD framework for two industrial 

manipulation tasks. The first task was a human-robot synergetic task to assemble a robot 

gripper. The robot was able to learn the sequence of actions, including the moving actions 

from multiple human demonstrations via kinesthetic teaching. The robot reproduced the 

task, even when the pose of the gripper parts were changed or an obstacle was present. 

The second task required the robot to insert pins into holes and a small study was 

conducted, where participants provided demonstrations via gamepad. The RLfD 

framework allowed the robot to use the prior knowledge to reproduce an unseen version 

of the task. Moreover, the robot learned the preferable sequence of high-level actions for 

two users. Furthermore, the ‘hands-free’ HRI concept was utilized to teach the robot 

additional moving actions needed to perform a new version of a known task. The results 

show the potential of the head gesture-based HRI to be used in future as a method to 

provide corrections in an already learned task. Both industrial tasks show the feasibility 

of the presented RLfD framework in industrial applications.  

In Chapter 5, an application of the developed RLfD framework in assistive robotics 

was presented. The head gesture-based HRI enabled a person with tetraplegia to teach the 

robot by demonstrating an object manipulation task. The selected task was the 

manipulation of a cup, picking it from the table and bringing it close to their mouth. A 

small study with 13 participants (1 tetraplegic suffering from multiple sclerosis and 12 

able-bodied) was conducted and all the participants were able to successfully provide 

demonstrations of the manipulation task. The results of the study show that a person with 

tetraplegia can effectively control assistive robotic manipulators. Furthermore, the 

presented RLfD framework enabled the robot to learn the sequence of actions from a 
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single demonstration, including the necessary moving actions for the object manipulation 

task. During the working phase, the robot successfully reproduced the learned task in 

different environmental conditions and the evaluation results were presented. The 

assistive manipulation task shows the potential of the RLfD framework to assist people 

with disabilities. Chapter 4 and 5 pointed out that the presented RLfD framework is 

generic, as it was implemented in two different robotic platforms. 

6.2 Outlook 

Although the results presented in this thesis show the feasibility of the developed 

RLfD, there are few open questions and future directions as a result of this thesis. These 

are summarized as follows.   

The experiments in this thesis were performed in laboratory settings. The next logical 

step would be to perform experiments in industrial and home environments over extended 

time periods with end-users. Furthermore, larger sets of real-world tasks and strategies 

for long-term robot learning should be considered.  

Additionally, robot vision (object recognition and pose estimation) is an important 

input to the robot learning framework. In this thesis, the robot vision was considered 

accurate. However, in the real world the robot vision is not perfect and it is a very 

challenging research topic. The presented RLfD framework would not succeed to 

manipulate an object, if the object is not accurately detected. The various HRI methods 

presented in this thesis could enable the user to control the robot whenever robot vision 

fails. For example, in an industrial synergetic task the user could perform some assembly 

actions and at the same time they could control the robot via a ‘hands-free’ HRI method 

to improve a picking position.     

However, the ‘hands-free’ HRI methods are time consuming. The combination of 

multi-sensory HRI methods with robot vision may holds the key to enable users to 

provide ‘hands-free’ demonstrations faster and more comfortable. Moreover, 

personalization of HRI to enhance the user’s performance is an important social aspect, 

which should be improved in the future.    
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Abbreviations 

 

ADL Activity of Daily Living 

ATTSA Automatic Task Segmentation into Sequence of Actions 

DG Down-Gesture 

DoF Degrees of Freedom 

DS Decision Support 

DSA Decision Support and Adaptation 

DTW Dynamic Time Warping 

GMM Gaussian Mixture Model 

GMR Gaussian Mixture Regression 

HRI Human-Robot Interaction 

IMU Inertial Measurement Unit 

IR Infrared  

IRL Interactive Reinforcement Learning 

ML Machine Learning 

LG Left-Gesture 

RG Right-Gesture 

RGB Red-Green-Blue 

RDP Ramer-Douglas-Peucker 

RL Reinforcement Learning 

RLfD Robot Learning from Demonstration 

SVM Support Vector Machine 

UG Up-Gesture 
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Appendix B: Polyline Simplification Ramer-Douglas-Peucker 

(RDP) 

The Ramer-Douglas-Peucker (RDP) Algorithm is a polyline simplification, which is 

implemented as follows:  

 initially, the first and the last point of the original trajectory creates a line and both 

points are added to simplified trajectory,  

 the perpendicular distance is calculated between the created line and each 

intermediate point of the original trajectory,  

 the intermediate point that has the maximum calculated distance from the created 

line and the calculated distance is larger than the tolerance specified by the user is 

added to the simplified points,  

 the above process will recur for every point in the current simplified polyline until 

all the points of the original trajectory are within the specified tolerance. 

In this thesis a variation of the original RDP algorithm is used, which is called 

Douglas-Peucker N [155]. The algorithm uses a point count tolerance. In other words, the 

algorithm requires as input the exact number of simplified points that are required. The 

points that have the maximum calculated distance from the created lines are the 

simplified points.  
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Appendix C: Experimental Results in Industrial Robotics 

Application 

I. Robot Gripper Assembly Task (Task 1) 

In this section, the complete results for the robot gripper assembly task (section 4.2) 

are presented. Table 22 associates the groups of sub-trajectories for the robot gripper 

assembly tasks and the figure number where the simplified sub-trajectories of each group 

are presented. In the figures, the x-,y-,z- dimensions are denoted as X-,Y-,Z-axis, 

respectively. The quaternions qx, qy, qz, qw are denoted as Quaternion-X,-Y,-Z,-W, 

respectively. 

Table 22: Association between the groups of sub-trajectories and figures for the robot gripper assembly 

task 

Group 
Sub-trajectories between 

the high-level actions  
Figure  Group 

Sub-trajectories between 

the high-level actions  
Figure  

Left 1 
LV Home – Home and LV 

Close – Top part info 
Figure 52 Left 5 

LV Home – Home and LV 

Close – Left side part info 
Figure 55 

Left 2 

LV Close – Top part info 

and LV Open – Base part 

info 

Figure 53 Left 6 

LV Close – Left side part 

info and LV Open – Base 

part info 

Figure 56 

Left 3 
LV Open – Base part info 

and LV End – Table info 
Figure 54 Left 7 

LV Open – Base part info 

and LV End – Table info 
Figure 57 

Right 1 RV Home – Home and RV 

Close – Black part info 

Figure 25 Right 5 RV Home – Home and RV 

Close – Right side part info 

Figure 58 

Right 2 RV Close – Black part info 

and RV Open – Base part 

info 

Figure 26 Right 6 RV Close – Right side part 

info and RV Open – Base 

part info 

Figure 59 

Right 3 RV Open – Base part info 

and RV End – Table info 

Figure 27 Right 7 RV Open – Base part info 

and RV End – Table info 

Figure 60 
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Figure 52: Robot gripper assembly task - The sub-trajectories of the Left 1 group after Ramer-Douglas-

Peucker simplification  

 

Figure 53: Robot gripper assembly task - The sub-trajectories of the Left 2 group after Ramer-Douglas-

Peucker simplification 
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Figure 54: Robot gripper assembly task - The sub-trajectories of the Left 3 group after Ramer-Douglas-

Peucker simplification 

 

Figure 55: Robot gripper assembly task - The sub-trajectories of the Left 5 group after Ramer-Douglas-

Peucker simplification 
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Figure 56: Robot gripper assembly task - The sub-trajectories of the Left 6 group after Ramer-Douglas-

Peucker simplification 

 

Figure 57: Robot gripper assembly task - The sub-trajectories of the Left 7 group after Ramer-Douglas-

Peucker simplification 
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Figure 58: Robot gripper assembly task - The sub-trajectories of the Right 5 group after Ramer-Douglas-

Peucker simplification 

 

Figure 59: Robot gripper assembly task - The sub-trajectories of the Right 6 group after Ramer-Douglas-

Peucker simplification 
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Figure 60: Robot gripper assembly task - The sub-trajectories of the Right 7 group after Ramer-Douglas-

Peucker simplification 

Moreover the learned GMM, the output m-GMM, and the GMR for the working phase 

are presented. Table 23 associates the groups for the robot gripper assembly tasks with 

the figure number, where the learned GMM, m-GMM and GMR are illustrated. In the 

figures, the x-, y-, z- dimensions are denoted as X-,Y-,Z-axis, respectively. The 

quaternions qx, qy, qz, qw are denoted as Quaternion-X,-Y,-Z,-W, respectively. 

Table 23: Association between the groups of sub-trajectories and figures for the robot gripper assembly 

task 

Group 

Figure 

GMM/m-

GMM/GMR 

for x-, y-, z- 

dimensions 

Figure GMM/m-

GMM/GMR for 

quaternions 

Group 

Figure 

GMM/m-

GMM/GMR 

for x-, y-, z- 

dimensions 

Figure 

GMM/m-

GMM/GMR 

for quaternions 

Left 1 Figure 61 Figure 62 Left 5 Figure 67 Figure 68 

Left 2 Figure 63 Figure 64 Left 6 Figure 69 Figure 70 

Left 3 Figure 65 Figure 66 Left 7 Figure 71 Figure 72 

Right 1 Figure 28 Figure 29 Right 5 Figure 73 Figure 74 

Right 2 Figure 30 Figure 31 Right 6 Figure 75 Figure 76 

Right 3 Figure 32 Figure 33 Right 7 Figure 77 Figure 78 
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Figure 61: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 1 along 

the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 1 

during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 1 along the X-, Y-, and Z-axis. 
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Figure 62: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 1 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Left 1 during the 

trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group Left 1 

for the quaternions. 
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Figure 63: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 2 along 

the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 2 

during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 2 along the X-, Y-, and Z-axis. 
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Figure 64: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 2 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Left 2 during the 

trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group Left 2 

for the quaternions. 
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Figure 65: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 3 along 

the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 3 

during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 3 along the X-, Y-, and Z-axis. 
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Figure 66: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 3 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Left 3 during the 

trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group Left 3 

for the quaternions. 
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Figure 67: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 5 along 

the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 5 

during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 5 along the X-, Y-, and Z-axis. 
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Figure 68: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 5 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Left 5 during the 

trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group Left 5 

for the quaternions. 
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Figure 69: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 6 along 

the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 6 

during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 6 along the X-, Y-, and Z-axis. 
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Figure 70: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 6 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Left 6 during the 

trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group Left 6 

for the quaternions. 
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Figure 71: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 7 along 

the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 7 

during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 7 along the X-, Y-, and Z-axis. 
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Figure 72: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Left 7 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Left 7 during the 

trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group Left 7 

for the quaternions. 
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Figure 73: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Right 5 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group 

Right 5 during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 5 along the X-, Y-, and Z-axis. 

 



 

148 

 

 

Figure 74: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Right 5 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Right 5 during 

the trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group 

Right 5 for the quaternions. 
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Figure 75: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Right 6 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group 

Right 6 during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 6 along the X-, Y-, and Z-axis. 
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Figure 76: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Right 6 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Right 6 during 

the trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group 

Right 6 for the quaternions. 
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Figure 77: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Right 7 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group 

Right 7 during the trial 1 along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 7 along the X-, Y-, and Z-axis. 
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Figure 78: Robot gripper assembly task. a) The learned GMM for the sub-trajectories of group Right 7 for 

the quaternions. b) The modification of the learned GMM for the sub-trajectories of group Right 7 during 

the trial 1 for the quaternions. c) The generated GMR sub-trajectory produced by the m-GMM of group 

Right 7 for the quaternions. 
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II. ‘Pins into Holes’ Task (Task 2) 

In this section, the complete results for the task ‘Pins into Holes’ (section 4.3) are 

presented. Table 24 associates the groups for the robot gripper assembly tasks with the 

figure number, where the learned GMM, m-GMM and GMR are illustrated. In the figures, 

the x-, y-, z- dimensions are denoted as X-,Y-,Z-axis, respectively. 

Table 24: Association between the groups of sub-trajectories, the high-level actions and the figures for the 

task ‘Pins into Holes’ (Task 2). 

Group 
Sub-trajectories between the high-level 

actions  

Figure GMM/m-GMM/GMR 

for x-, y-, z- dimensions 

Right 1 
RV Home – Home and RV Close – Color box 

info 
Figure 79  

Right 2 
RV Close – Color box info and RV Open – 

Red holder info 
Figure 80 

Right 3 
RV Open – Red holder info and RV Home – 

Home 
Figure 81 

Left 5 L2 Home – Home and L2 Close – Pin 10 info Figure 82 

Left 6 
L2 Close – Pin 10 info and L2 Open – Color 

box info 
Figure 83 

Left 7 
L2 Open – Color box info and L2 Home – 

Home 
Figure 84 

Left 8 – version 1 L2 Home – Home and L2 Close – Pin 8 info Figure 85 

Left 9 – version 1 
L2 Close – Pin 8 info and L2 Open – Color 

box info 
Figure 86 

Left 10 – version 1 
L2 Open – Color box info and L2 Home – 

Home 
Figure 87 

Left 8 – version 2 L2 Home – Home and L2 Close – Pin 6 info Figure 40 

Left 9 – version 2 
L2 Close – Pin 6 info and L2 Open – Color 

box info 
Figure 41 

Left 10 – version 2 
L2 Open – Color box info and L2 Home – 

Home 
Figure 42 
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Figure 79: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Right 1 along the 

X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Right 1 

during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 1 along the X-, Y-, and Z-axis. 



 

155 

 

 

Figure 80: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Right 2 along the 

X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Right 2 

during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 2 along the X-, Y-, and Z-axis. 
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Figure 81: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Right 3 along the 

X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Right 3 

during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by 

the m-GMM of group Right 3 along the X-, Y-, and Z-axis. 
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Figure 82: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 5 along the 

X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 5 during 

the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 5 along the X-, Y-, and Z-axis. 
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Figure 83: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 6 along the 

X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 6 during 

the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 6 along the X-, Y-, and Z-axis. 
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Figure 84: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 7 along the 

X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 7 during 

the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory produced by the m-

GMM of group Left 7 along the X-, Y-, and Z-axis. 



 

160 

 

 

Figure 85: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 8 – version 1 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 

8 – version 1 during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory 

produced by the m-GMM of group Left 8 – version 1 along the X-, Y-, and Z-axis. 
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Figure 86: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 9 – version 1 

along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group Left 

9 – version 1 during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-trajectory 

produced by the m-GMM of group Left 9 – version 1 along the X-, Y-, and Z-axis. 
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Figure 87: Task ‘Pins into Holes’. a) The learned GMM for the sub-trajectories of group Left 10 – version 

1 along the X-, Y-, and Z-axis. b) The modification of the learned GMM for the sub-trajectories of group 

Left 10 – version 1 during the working phase along the X-, Y-, and Z-axis. c) The generated GMR sub-

trajectory produced by the m-GMM of group Left 10 – version 1 along the X-, Y-, and Z-axis.  
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Appendix D: Experimental Results in Assistive Robotics 

Application 

In this section, the complete results for the application in assistive robotics (Chapter 5) 

are presented. Figure 88 and Figure 89 respectively show the first and second sub-

trajectory of the demonstration provided by the tetraplegic user and the learned GMM for 

all 7 dimensions. The x-,y-,z- dimensions are denoted as X-,Y-,Z-axis, respectively. The 

quaternions qx, qy, qz, qw are denoted as Quaternion-X,-Y,-Z,-W, respectively. 

 

Figure 88: Assistive Task - The learned GMM for the first sub-trajectory in 7 dimensions. 

 



 

164 

 

 
Figure 89: Assistive Task - The learned GMM for the second sub-trajectory in 7 dimensions. 

Three trials are performed in robot working phase to evaluate the presented framework. 

In each trial, the position of the person and the cup differ from the demonstration, as 

shown in Table 20. The m-GMM/GMR outputs of all 7 dimensions for each trial are 

presented as follows.  
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 Trial 1: The output of m-GMM/GMR for the first sub-trajectory  

 

Figure 90: Assistive Task - The modification of the GMM for the first sub-trajectory  –  Trial 1 

 
Figure 91: Assistive Task - The first GMR sub-trajectory produced by the m-GMM – Trial 1  
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 Trial 1: The output of m-GMM/GMR for the second sub-trajectory  

 

Figure 92: Assistive Task - The modification of the GMM for the second sub-trajectory – Trial 1 

 

Figure 93: Assistive Task - The second GMR sub-trajectory produced by the m-GMM – Trial 1 
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 Trial 2: The output of m-GMM/GMR for the first sub-trajectory  

 

Figure 94: Assistive Task - The modification of the GMM for the first sub-trajectory – Trial 2 

 
Figure 95: Assistive Task - The first GMR sub-trajectory produced by the m-GMM – Trial 2  
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 Trial 2: The output of m-GMM/GMR for the second sub-trajectory  

 

Figure 96: Assistive Task - The modification of the GMM for the second sub-trajectory – Trial 2 

 

Figure 97: Assistive Task - The second GMR sub-trajectory produced by the m-GMM – Trial 2 
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 Trial 3: The output of m-GMM/GMR for the first sub-trajectory  

 

Figure 98: Assistive Task - The modification of the GMM for the first sub-trajectory – Trial 3 

 
Figure 99: Assistive Task - The first GMR sub-trajectory produced by the m-GMM – Trial 3  
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 Trial 3: The output of m-GMM/GMR for the second sub-trajectory  

 

Figure 100: Assistive Task - The modification of the GMM for the second sub-trajectory – Trial 3 

 

Figure 101: Assistive Task - The second GMR sub-trajectory produced by the m-GMM – Trial 3 


