177 research outputs found

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    The image ray transform for structural feature detection

    No full text
    The use of analogies to physical phenomena is an exciting paradigm in computer vision that allows unorthodox approaches to feature extraction, creating new techniques with unique properties. A technique known as the "image ray transform" has been developed based upon an analogy to the propagation of light as rays. The transform analogises an image to a set of glass blocks with refractive index linked to pixel properties and then casts a large number of rays through the image. The course of these rays is accumulated into an output image. The technique can successfully extract tubular and circular features and we show successful circle detection, ear biometrics and retinal vessel extraction. The transform has also been extended through the use of multiple rays arranged as a beam to increase robustness to noise, and we show quantitative results for fully automatic ear recognition, achieving 95.2% rank one recognition across 63 subjects

    Ear Contour Detection and Modeling Using Statistical Shape Models

    Get PDF
    Ear detection is an actively growing area of research because of its applications in human head tracking and biometric recognition. In head tracking, it is used to augment face detectors and to perform pose estimation. In biometric systems, it is used both as an independent modality and in multi-modal biometric recognition. The ear shape is the preferred feature used to perform detection because of its unique structure in both 2D color images and 3D range images. Ear shape models have also been used in literature to perform ear detection, but at a cost of a loss in information about the exact ear structure. In this thesis, we seek to address these issues in existing methods by a combination of techniques including Viola Jones Haar Cascades, Active Shape Models (ASM) and Dijkstra\u27s shortest path algorithm to devise a shape model of the ear using geometric parameters and mark an accurate contour around the ear using only 2D color images. The Viola Jones Haar Cascades classifier is used to mark a rectangular region around the ear in a left side profile image. Then a set of key landmark points around the ear including the ear outer helix, the ear anti-helix and the ear center is extracted using the ASM. This set of landmarks is then fed into Dijkstra\u27s shortest path algorithm which traces out the strongest edge between adjacent landmarks, to extract the entire ear outer contour, while maintaining a high computational efficiency

    Ear Detection and Localization with Convolutional Neural Networks in Natural Images and Videos.

    Get PDF
    [EN]The difficulty in precisely detecting and locating an ear within an image is the first step to tackle in an ear-based biometric recognition system, a challenge which increases in difficulty when working with variable photographic conditions. This is in part due to the irregular shapes of human ears, but also because of variable lighting conditions and the ever changing profile shape of an ear’s projection when photographed. An ear detection system involving multiple convolutional neural networks and a detection grouping algorithm is proposed to identify the presence and location of an ear in a given input image. The proposed method atches the performance of other methods when analyzed against clean and purpose-shot photographs, reaching an accuracy of upwards of 98%, but clearly outperforms them with a rate of over 86% when the system is subjected to non-cooperative natural images where the subject appears in challenging orientations and photographic conditions

    Shaped Wavelets for Curvilinear Structures for Ear Biometrics

    Full text link

    Ear Biometrics: A Comprehensive Study of Taxonomy, Detection, and Recognition Methods

    Get PDF
    Due to the recent challenges in access control, surveillance and security, there is an increased need for efficient human authentication solutions. Ear recognition is an appealing choice to identify individuals in controlled or challenging environments. The outer part of the ear demonstrates high discriminative information across individuals and has shown to be robust for recognition. In addition, the data acquisition procedure is contactless, non-intrusive, and covert. This work focuses on using ear images for human authentication in visible and thermal spectrums. We perform a systematic study of the ear features and propose a taxonomy for them. Also, we investigate the parts of the head side view that provides distinctive identity cues. Following, we study the different modules of the ear recognition system. First, we propose an ear detection system that uses deep learning models. Second, we compare machine learning methods to state traditional systems\u27 baseline ear recognition performance. Third, we explore convolutional neural networks for ear recognition and the optimum learning process setting. Fourth, we systematically evaluate the performance in the presence of pose variation or various image artifacts, which commonly occur in real-life recognition applications, to identify the robustness of the proposed ear recognition models. Additionally, we design an efficient ear image quality assessment tool to guide the ear recognition system. Finally, we extend our work for ear recognition in the long-wave infrared domains
    corecore