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Abstract

Ear detection is an actively growing area of research because of its applications in human

head tracking and biometric recognition. In head tracking, it is used to augment face detectors and

to perform pose estimation. In biometric systems, it is used both as an independent modality and in

multi-modal biometric recognition. The ear shape is the preferred feature used to perform detection

because of its unique structure in both 2D color images and 3D range images. Ear shape models

have also been used in literature to perform ear detection, but at a cost of a loss in information

about the exact ear structure. In this thesis, we seek to address these issues in existing methods by

a combination of techniques including Viola Jones Haar Cascades, Active Shape Models (ASM) and

Dijkstra’s shortest path algorithm to devise a shape model of the ear using geometric parameters

and mark an accurate contour around the ear using only 2D color images. The Viola Jones Haar

Cascades classifier is used to mark a rectangular region around the ear in a left side profile image.

Then a set of key landmark points around the ear including the ear outer helix, the ear anti-helix

and the ear center is extracted using the ASM. This set of landmarks is then fed into Dijkstra’s

shortest path algorithm which traces out the strongest edge between adjacent landmarks, to extract

the entire ear outer contour, while maintaining a high computational efficiency.
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Chapter 1

Introduction

Ear detection has been an active area of research in recent years due to a multitude of

applications in two main fields: biometrics and head tracking. In the biometrics community, the ear

has been used independently as a modality as well as a supplementary cue in multimodal biometric

systems. For example, when used in conjunction with face recognition systems, it has been proven

to improve the performance significantly [14]. In the tracking community, ear detection has been

used with face detection to track head movements and to perform pose estimation [19], [26]. For a

biological trait to qualify as a modality, it must satisfy four main constraints [13], [12].

• Universality: This means that it should be present in all the individuals. In biometrics, unlike

other modalities like fingerprints, the ear is much less prone to wear and tear and so is mostly

present in all individuals.

• Distinctiveness: This means that it should be unique to every individual. In biometrics re-

search, this is an extremely important constraint since the modality needs to be uniquely

associated with an individual. In tracking, though the constraint is not as strict, the object

to be tracked should be distinctive enough to be able to extract features which distinguish it

from the background. The ear performs extremely well in this regard. The ear shape is unique

to the extent that even the left and the right ear of the same individual are not symmetric.

• Permanence: This means that the trait should be invariant over a long period of time. In

biometrics research, it is important that the features don’t change over time since while per-

forming recognition, it could result in mismatches. As for tracking applications, it simply
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means that it is easier to track a rigid object or an object that does not deform, than an

object that undergoes large amounts of shape variation. The ear has been proven to be mostly

invariant over a person’s lifetime. The change in the size of the ear is much lesser compared

to the rest of the body [25], [15].

• Collectability: This means that the trait should be quantifiable and easy to collect. For the ear,

in spite of some issues with occlusion by hair and accessories, especially in women, collecting

ear images is still much easier than getting iris scans or fingerprints, especially if the subject is

not co-operative. This makes it extremely vital for security and forensic applications. In both

biometric research and tracking, the features that are extracted should be measureable. The

ear features are much easier to measure than the minutiae of fingerprints or iris features [1], [21].

According to Iannarelli, next to fingerprints, the ear has the most unique design, character-

istic features and peculiarities for the purpose of identification [10]. The earliest known record of the

ear being proposed as a viable biometric was given in 1890 by Bertillon [24], who wrote, ‘The ear,

thanks to these multiple small valleys and hills which furrow across it, is the most significant factor

from the point of view of identification’ [10]. As in a typical biometric system, the first and the

foremost step to create an ear recognition system is ear detection. The accuracy of the whole system

is extremely dependent on the accuracy of the detection step. Therefore, accurate ear detection is

vital to improve the performance of the system. A typical ear recognition system is shown in Fig

1.1

Figure 1.1: A typical ear recognition system

2



To understand the motivation behind this thesis, it is important to know a little bit about

the structure of the ear. The outer ear anatomy consists of the outer helix, the antihelix, the lobe,

the antitragus and the concha as shown in Fig 1.2. It is quite clear that the ear certainly has a very

unique and distinctive shape. The main features used for ear based tracking and recognition are the

helix, antihelix, the lobe and the ear center.

Figure 1.2: Structure of the ear[21]

1.0.1 Challenges in ear detection

There are many issues in formulating an accurate ear detection system. The most obvious

ones are in the data collection stage, where it is difficult to even extract an image containing an ear.

This could be because the ear is occluded by hair or accessories. Another one is where the ear is not

visible because of the head orientation of the subject. This thesis does not deal with these issues.

We assume that the ear is fully visible in the image and the pose does not change too much. This

thesis deals with two other challenges in ear detection: devising a robust geometrical model for the

ear and detecting an accurate contour around the ear. As will be explained in the next chapter, most

of the current segmentation techniques don’t address these two issues. The importance of having an

ear shape model and an accurate ear contour is explained in the next section.
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1.1 Motivation

Though ear detection has been an area of research for quite a long time, it is only in recent

years that ear shape has been used as a feature. Traditionally, color and texture were the primary

features which were used to perform detection. But there are inherent problems in using these

features for the ear since there is not much color variation in the ear region. The shape of the ear,

on the other hand, has been proven to be extremely unique. Currently, there are two kinds of ear

shape features that can be leveraged to perform detection.

• 2D Shapes: The ear shape in RGB images consists of the contours caused by the high gradient

variation due to depth changes. The ear helix and the anti-helix are the most prominent edges

in a 2D image. Both are very distinctive curves whose shape properties can be used to perform

detection and recognition.

• 3D Shapes: The shapes in 3D images consists of surface curvatures formed by the hills and

ridges in the ear. The 3D surface of the ear contains a lot more information which can be used

to perform recognition and with recent improvements in 3D sensors, 3D shape based detection

is generating a lot of interest in the tracking and biometrics community. The importance of

an accurate contour around the ear can be gauged by the fact that the Iterative Closest Point

algorithm (ICP), the favored algorithm for 3D ear recognition is extremely sensitive to outliers.

Most of the algorithms which use ICP tend to do some preprocessing to eliminate outliers.

Another very active area of research is in ear modeling. There are many reasons to devise a ear

model. It reduces the feature vector dimensions used to represent the ear. It can be used to perform

coarse biometric recognition and quickly eliminate non-ears or false matches in a sliding window

detection scheme. A model can also be devised which can extract the important features of the

ear like the ear helix, anti-helix and the ear center in constant time. A model enables a top down

approach to detection where global constraints can be used to offset local errors.

Inherently, a model and an accurate ear contour are difficult to achieve simultaneously since they

both have different objectives. A model attempts to capture the maximum information possible using

the fewest possible parameters. An accurate ear contour depends on the fine and local details present

around the ear edges. But since both are important in a modern detection scenario, this thesis is

an attempt to devise a parametric model for the ear using statistical models while simultaneously

4



extracting an accurate ear contour in a computationally efficient manner. The model that we have

chosen to represent ears is Active Shape Models (ASM). Using Active Shape Models enables us

to control the feature points and devise a comprehensive and robust geometric model for the ear.

Every ear in an ASM based model can be described by a set of eigenvectors and eigenvalues. The

parametric model also enables us to segment out the different features like the ear outer helix,

anti-helix and the ear center without any additional processing. This could be very useful in part

based detection and recognition schemes. Using parametric models to approximate the shape has

the drawback that some of the fine details of the exact shape will be lost. Therefore, this thesis also

describes a way to improve the accuracy of the shape models by augmenting it with an interpolation

technique resulting in a more accurate contour around the ear boundary.

1.2 Layout of the thesis

This thesis is divided into three main chapters. In the next chapter, we will give a brief

introduction about the history of ear detection focusing mainly on the shape based techniques and

explain some of the issues in the current techniques which are addressed by our method. Then

in chapter 3, we will proceed with the background theory and the underlying concepts behind the

technique proposed in this thesis. Finally in the last two chapters we will present the results, the

future work and the conclusions drawn from the experiments performed by us.

5



Chapter 2

Related Work

We saw in the previous chapter how the ear shape is an extremely unique and important

feature and the need for an accurate ear contour detector and shape model in modern applications.

In this chapter we will describe some of the ear detection techniques present in literature with

special focus on the shape based detection and recognition methods. We will cover both 2D and 3D

detection techniques, though in this thesis, the scope is limited to 2D ear shape detection.

2.1 Hough Transform

A paper by Arbab-Zavar and Nixon described a method which used an elliptical Hough

transform to model the ear [3]. This was based on the basic premise that the ear is almost an ellipse

and can be detected by using elliptical parameters. This technique had a huge advantage that it also

gave a model for the ear in terms of the ellipse parameters, which could then be used for recognition.

Some sample results are shown in Fig 2.1.

Figure 2.1: Ear detection using an elliptical Hough Transform

They achieved an enrolment rate of 100% on the XM2VTS database and 91% on the UND
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database. While the detection rate is really great, it does not accurately capture the exact shape of

the ear and a lot of information about the exact structure is lost.

2.2 Image Ray Transform

In this paper, Cummings et al. proposed an ear detection technique based on an analogy

to light rays [8]. Here, the image is modeled as a medium with every pixel having a refractive index

proportional to its intensity. Then thousands of light rays are simulated at random locations around

the image and a path is traced out as the ray passes from one medium to another following the laws

of optics. Every time a ray enters a pixel, an accumulator array is incremented. The idea was that

all the tubular features, like the ear helix, would act as a waveguide and more light rays would enter

the structure and remain within it, giving rise to a higher value in the accumulator array. They

achieved a 99% detection rate on the XM2VTS database with 252 images. Some sample results

are shown in Fig 2.2. While the detection rate is very impressive, it does not always detect the

whole ear and it is also prone to errors when the subject is wearing spectacles and other things.

Also, the XM2VTS database is of a very high quality with the images taken against a uniform blue

background. So it remains to be seen how effective this technique will be in more natural conditions.

Figure 2.2: Ear detection using Image Ray Transform

2.3 Active Contours

Active Contours are deformable models which operate under internal and external forces

to fit object boundaries. Since ears have a very strong gradient around the helix, Yan and Bowyer

devised an approach to fit an active contour around the ear boundary [29]. The first step was

7



detecting the ear pit by first detecting the nose tip, then using skin detection to segment out

the face and the ear and then doing surface curvature estimation followed by segmentation and

classification. Once the ear pit is detected, an active contour algorithm is initialized with the ear pit

as the starting point. The contour operates under the influence of the internal and external forces

and moves towards the ear boundary. Some sample results on 2D images are shown in Fig 2.3.

Figure 2.3: Ear detection using Active Contours on RGB images

Since the segmentation on 2D images was not satisfactory, they used a combination of both

the depth image and the 2D image to restrict the contour to the ear boundary. The results are

shown in Fig 2.4.

Figure 2.4: Ear detection using active contours on RGB and depth images

Using only the depth image, they achieved a detection rate of 85% and using only the color

image, they achieved a detection rate of 79%. But combining both the depth and color information

improves the detection rate to almost a 100%. Once again, while the detection rate is very impressive,

it requires both 3D and 2D data to achieve this rate.
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2.4 Outer Helix Shape Based Detection

Ansari and Gupta used a combination of edge detection and curvature estimation to crop

out the outer boundary of the ear [2]. After edge detection on a side face image, the edges are

segmented into concave and convex edges. Then to localize possible helix curves, certain conditions

are imposed. A curve is said to be a candidate helix if it has some curve running parallel to it within

a certain distance. After this certain angular constraints are used to detect the correct ear helix. A

sample result is shown in Fig 2.5.

Figure 2.5: Ear detection using outer helix

They achieved a localization accuracy of 93.3% on 700 images on the IIT-K database. But

this method is extremely sensitive to the threshold parameter, which decides the distance between

the ear outer and inner helix.

2.5 3D Model Based Detection

Chen and Bhanu devised a model based ear detection scheme for 3D images [5]. The model

they used was a set of 3D (x,y,z) co-ordinates of landmark points around the ear helix and anti-helix.

The step edge magnitude in a side profile image was computed to find a set of candidate pixels for

the ear helix and anti-helix. They made use of the fact that in a depth image, there will be lots of

discontinuities around the ear because of its valleys and hills. A step edge is an edge which is caused

by large depth discontinuities, rather than by illumination or color changes. They detected the ear

outer and inner helix as shown in Fig 2.6. Then dilation and connected components labelling was

used to divide the edge pixels into clusters, with each cluster considered as a candidate ear. Then

using a modified Iterative Closest Point algorithm, the mean square error was computed between a

model ear built from a person and the set of clusters. The cluster which gave the least error was

9



designated as the correct ear. They achieved a 92.6% detection rate on 312 range images. A sample

result is shown in Fig 2.6

Figure 2.6: Ear detection using step edges

2.6 Histogram of Categorized Shapes

This technique was developed by Zhou et al. for 3D ear detection [31]. Here they compute

features which capture the 3D features like the saddle and ridges around the ear helix and anti-

helix, and the hills and valleys in the inner ear region. These features are parameterized using shape

index and curvedness values. Then using a sliding window approach and a Support Vector Machine

classifier, the ear is segmented as shown in Fig 2.7. They achieved a detection rate of 100% on 142

range images. This was also one of the most computationally efficient methods to detect ears in 3D

images. The average processing time per image was 2.8 seconds.

Figure 2.7: Ear detection using Histogram of Categorized Shapes
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2.7 Graph Connected Components

In 2012 Prakash and Gupta devised a 3D ear detection scheme based on connectivity

graphs [22]. The edges are extracted on a range image to get a list of the possible candidates

for the ear contours. The outliers are pruned and a connectivity graph is created. A pre-computed

shape distribution created from a training set is then compared with a candidate list and a match

is found. A sample result is shown in Fig 2.8.

Figure 2.8: Ear detection using Connected Components in 3D images

2.8 Problems with current ear detection techniques

As mentioned before, all the techniques described until now either come up with an accurate

ear boundary [2], [8], [29] or have a model based detection scheme [3], [5], [31]. And except for [31],

which works only on range images, the rest of the models are very weak approximations of the actual

shape. A lot of information is lost about the actual structure of the ear. Both the shape model

and an accurate ear contour are very essential in modern applications as was explained in Chapter

1, where we described the motivation behind this thesis. In the next section we will describe the

technical and the implementation details of the combination of techniques we used to address both

the aforementioned issues.
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Chapter 3

Approach: Ear Contour Detection

and Modeling

We have seen that the techniques discussed in the previous chapter have either one of the two

following shortcomings; they either detect the ear contour accurately, or they develop a geometrical

model for the ear. The importance of having a shape model and an accurate ear contour has already

been discussed at length in the last two chapters. In this chapter, a technique is described which

addresses both these issues. Our approach uses a combination of different algorithms to implement

a fully automatic ear contour detection and shape modeling system. In a nutshell, the Viola Jones

Haar Cascades classifier is used to get a bounding box around the ear. Then Active Shape Models

are used to extract distinguishing landmark points around the ear. The output of the Active Shape

Model is then fed into a modified form of Dijkstra’s shortest path algorithm which draws a smooth

contour around the ear outer boundary. In the subsequent sections, the underlying concepts and

the implementation details of the methods used in this thesis are explained.

3.1 Viola Jones Haar Cascades

In a landmark paper in 2001, Viola Jones devised one of the most popular supervised

learning algorithms to detect objects [27]. It was based on an analogy of Haar wavelets which

captures structural information about the object. To select relevant Haar features, Adaboost was
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used after which to improve the computation time, a cascade of classifiers was used to eliminate non-

ears quickly. They have been successfully used to detect a wide range of items, the most popular

being the face detector.

3.1.1 Haar features

Haar features are similar to Haar wavelets which mimic the patterns interpreted by the

human visual system. Just like any other filter, they extract structures which look similar to the

filter from an image. There are different types of features as shown in Fig 3.1, each corresponding

to a particular structure in the image.

Figure 3.1: Some standard Haar features used in Viola Jones[27]

The different structures, orientations and scales of the features capture different kinds of

structural information within an image window. A filter response is a just single scalar which is

the difference of the sum of the pixel intensities under the bright elements and the sum of the pixel

intensities under the dark elements of the filter. An example structure element evaluated at the ear

center is shown in Fig 3.2. But since there are a large number of permutations possible for these

features, evaluating these filter responses is extremely expensive computationally. To overcome this

problem, Viola Jones used the concept of integral images.
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Figure 3.2: An example of a Haar feature evaluated at the center of the ear

3.1.2 Integral image

Integral images have been used extensively in the vision community to quickly compute

rectangular filter responses. The integral image computation is a pre-processing step which takes

O(mn) time, where m and n are the width and height of the image. The entire Integral image can

be computed by a single pass through the image using dynamic programming. The value at (x, y)

for the integral image is given by Eq 3.1

I(x, y) = i(x, y) + I(x− 1, y) + I(x, y − 1)− I(x− 1, y − 1) (3.1)

where i(x, y) is the grayscale pixel value of the original image at (x, y). Therefore, every pixel in an

integral image contains the sum of the intensity values of all pixels to the upper left region of that

pixel. It is possible to know the total intensity of any rectangle of any size in constant time using

only four lookups.

Figure 3.3: Computing the area using integral image[23]
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As shown in Fig 3.3, the sum of the shaded area can be computed by Eq 3.2

Sum = I(C) + I(A)− I(B)− I(D) (3.2)

Thus for the different rectangular Haar filters, to compute the total intensity of the area

under the bright or the dark pixels, only a constant amount of lookups will be required irrespective

of the filter size.

3.1.3 Adaboost

Even with an improved computation time for the filter responses, there are still thousands

of Haar features that need to be evaluated. But not all features will be relevant for ear detection.

Therefore it is important to select features which actually capture useful structural information

about the ear. Adaboost is a machine learning algorithm which is used to create a strong classifier

by combining a bunch of weak classifiers A weak classifier is a classifier which performs better than

random guessing, which means that it correctly detects the ear more than 50% of the time. Every

weak classifier uses a single Haar feature, evaluates a filter response and gives a binary output based

on the response. The output of a weak classifier is given by Eq 3.3

fi = Sum(ri,white)− Sum(ri,black)

hi =

 1 if fi > threshold

−1 if fi ≤ threshold

(3.3)

where hi is the decision, fi is the response of the ith classifier, ri,white and ri,black are the

sum of the areas under the white filter elements and the black filter elements.

Adaboost helps in selecting the best features out of the huge number of features available.

A feature is included if it detects the object correctly more than 50% of the time. It then uses a

linear combination of weighted classifiers, where the weight is the misclassified error, to come up

with the final output. A visual representation of the algorithm is depicted in Fig 3.4.
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Figure 3.4: Adaboost overview[9]

Adaboost Algorithm [9]

1. The input is a set of training images (x1, y1)...(xn, yn) where yi is a flag to indicate the positive

and negative examples.

2. Initially the weights are distributed uniformly as w1,i=
1

2m , 1
2n for yi = 0, 1 where m and n are

number of positive and negative examples respectively.

3. For t = 1, ...T , where T is the number of features required

(a) Normalize the weights

wt,i ←
n∑
j=1

(wi,j)

(b) For each feature j train a classifier hj . The error, εj=
∑
i (wi(hj(xi)− yi)). This gives a

weighted error of the misclassification using the classifier hj .

(c) Choose the classifier ht with the lowest error εt

(d) Update the weights

wt+1,i = wt,iβ
1−ei
t

where ei=0 if xi is classified correctly, ei=1 otherwise and βt = εt
1−εt
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4. The final strong classifier gives a binary output depending on the conditions described below.

h(x) =
1 if

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 otherwise

where αt=log
1
βt

3.1.4 Cascading

In any sliding window detection scenario, using the strong classifier at every sub window is a

very expensive process, since there will definitely be more non-ears than ears. Therefore to improve

the computation time, a cascaded approach is used where every stage consists of collection of weak

classifiers together forming a strong classifier. The early stages are chosen such that they have a

weak threshold for a positive detection. Therefore anything which does not look like an ear at all

will be rejected by these stages. This way, the non-ears are eliminated quickly, with the threshold

for detection becoming stricter at every stage. Any window which successfully goes through the

whole cascade has a very high probability of being an ear. This process leads to a vast improvement

in computational efficiency since all the classifiers do not operate on all the windows. A simple

flowchart illustrating the algorithm is shown in Fig 3.5.

Figure 3.5: Cascading flowchart

The main challenge in implementing the cascading algorithm is to figure out the number of

stages in the cascade, the set of features required for every stage and the threshold for every stage.

Viola and Jones came up with a heuristic algorithm to implement the cascading stage.
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Cascading Algorithm [9]

Input: FP i is the maximum false positive rate/stage, TP i is the minimum true

positive rate/stage, Ffinal is the overall false positive rate

while Fcurrent ≥ Ffinal do

Add new stage

while FP i,TP i for this stage is not achieved do

Add features and retrain using adaboost

end

end

Algorithm 1: Cascading for Viola Jones

3.1.5 Implementation description

The VJ detector that was used for this thesis has been described in [27]. OpenCv already

had trained features for eyes, nose and mouth. Recently, features for the ear were also added.

The next section briefly describes the implementation details of the trained Haar features for ear

detection as described by [4]

Training

The authors of [4] used the FERET dataset to do the training and evaluation. They trained the VJ

detector to detect ears in profile or almost profile images .The classifier was created with 5000 positive

images and 15000 negative samples. The negative samples were basically images of wallpapers that

did not contain the target pattern. Three different sets of classifiers were created, one to detect left

ears, one to detect right ears and one to detect a generic ear. But for our experiments we used only

the left ear classifier.

Evaluation

In the evaluation phase, they created a test set from a different subset of the FERET database and

manually annotated the ear. A detection was classified as true positive if the detected window had

at least a 50% overlap with the ground truth or if the detected window center was within a distance

of 0.25 ∗ wg, where wg is the width of the ground truth window. The sliding window size used for

every feature was 12X20 and it used 20 stages in the cascading step. Some sample outputs are shown

in Fig 3.6
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Figure 3.6: Sample outputs from the Viola Jones Haar Cascades detector

3.2 Active Shape Models

The output of the Haar Cascades stage is a rectangular window marked around the ear. It

contains no information about the shape or geometry of the ear. The next step in our algorithm is

to devise a shape model and extract the exact ear contour. Active Shape Models (ASM) are derived

from Point Distribution Models (PDM), which represents the mean geometry of an object. The

PDM is built from a set of training shapes and principal component analysis is used to determine a

set of parameters to represent the shape.

ASMs are statistical distribution models where the landmark points undergo local displacements

based on image evidence while confirming to an overall shape structure determined by the shape

model. They have been extensively used in the past to model faces, mechanical assemblies and

medical images [7], and more recently to normalize ears by modeling the ear outer helix [30]. It

consists of two sub models: TheProfileModel and TheShapeModel. The profile model consists

of a gradient vector and a gradient covariance matrix for each landmark point. The shape model

consists a set of eigen vectors describing the geometric correlation between the landmark points and

a set of eigen values which define the allowable deformations that the model can undergo.

3.2.1 Building the model

The model is built by manually annotating the landmark points in the training image.

Landmark points are distinctive features like corners or edges in the ear. A sample template of the

annotated ear is shown in Fig 3.7
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Figure 3.7: A sample annotated ear

Once the points have been annotated, the next step is to bring all the points in all the

training images into a common co-ordinate frame. This is important since the model is attempting

to capture the shape and the geometrical structure of the object. The position and scale of the

object is not important. An iterative algorithm was used for this [7].

Algorithm to align shapes

1. Choose the first shape as the reference shape.

2. Translate the shapes so its centroid is at the origin.

3. Scale the reference shape such that |x| = 1.

4. Align all shapes with the mean shape as reference.

5. Recompute the mean shape by taking the mean of the current set of shapes.

6. Scale the updated mean shape such that |x| = 1.

7. Repeat until convergence.

3.2.1.1 The profile model

The profile model suggests local displacements for every landmark point, based on the image

properties around the current landmark. Every landmark point is associated with a profile vector,

20



which is a sample of the normalized gradient along the normal to the model boundary at that point

as shown in Fig 3.8 .

Figure 3.8: The profile model [6]

A sample image showing the profile models at some of the landmark points is shown in Fig

3.9

Figure 3.9: The profile model marked around the landmarks

In other words, the profile element at each position i along the profile vector, is replaced

with the difference in gray level intensity between it and the element at i− 1, and then normalized.

The normalized gradient is used instead of the absolute gray values to offset the effect of illumination

changes. During training, the profile model is built by creating a mean profile vector by averaging the

profile vector values at the corresponding landmarks for all the training images. Then a covariance

matrix is created using the profile vectors of all the landmarks of the entire training set. Every

landmark is modeled as a Gaussian with a mean profile vector and a covariance matrix associated
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with it. These two together make up the profile model. The profile model suggests new positions

for every landmark at every iteration. These are calculated at displacements of ±3 along the normal

to the model boundary. As shown in the figure above, the new suggested position is the one which

is most similar to the model profile at that landmark. The Mahalanobis distance D is used to

compute the similarity between a profile vector g and the corresponding mean profile vector ḡ and

the covariance matrix at that landmark Sg .

D = (g − ḡ)
T
S−1
g (g − ḡ)

3.2.1.2 The shape model

The shape model constricts shape suggested by the profile model to the shape of the ear

and ensures that the shape is not distorted beyond recognition. It is represented by the following

equation.

x̂ = x̄+ φb

where x̂ is the final shape vector with the following format



x1

·

·

xn

y1

·

·

yn


where x1,y1. . . xn,yn are the n co-ordinates of the landmark points marked around the ear, n is

the number of landmark points in the model.

Also, x̄ is the mean shape generated by the training set,

x̄ =
1

nshapes

nshapes∑
i

xi

where nshapes is the number of training examples.
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And φ is the matrix of the eigenvectors of the covariance matrix Ss of the training shape

points.

Ss =
1

nshapes − 1

nshapes∑
i=1

(xi − x̄)(xi − x̄)
T

The eigenvectors are sorted according to the corresponding eigenvalues and only those eigenvectors

corresponding to the largest eigenvalues are used. Each eigenvalue measures the variance present

along the corresponding eigenvector.

φ gives the principal directions in which the data is distributed. The final shape is given as a weighted

sum of the principal components and the mean shape. b is the set of weights which controls how

much weight to assign to a particular eigenvector. By keeping the limits of b within a range of −3
√
λ

to +3
√
λ it is ensured that the model confirms to the shape of the ear. Now as mentioned above,

the algorithm iteratively uses both the profile and the shape model to come up with a best fit for

the ear. The profile model suggests local displacements and the shape model ensures that the model

restricts the deformations so that the overall shape confirms to the shape of the ear.

3.2.2 ASM algorithm description

This is an optimization problem where we have a set of global constraints imposed by the

shape model and a suggested displacement of the model points given by the profile model. The goal

is to find the closest shape in the model space, defined by its eigenvectors, of the shape suggested

by the profile model. This shape exists in the image co-ordinates system.

Multi resolution search

To enable the algorithm to converge faster while searching for the ideal fit, the search process

is carried out at different scales. Here a Gaussian pyramid is used with each subsequent level

obtained by smoothing the previous level and subsampling the result. Though the number of pixels

is reduced by half in each dimension at every level, the profile vector length is still kept as same.

When searching within a level, if the best fit is found within half of the profile length for more than

90% of the landmark points, then the search moves on to the next level and the whole process is

repeated until we reach the final resolution.
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Figure 3.10: Multi-resolution search[17]

ASM search algorithm

Input: The start shape which is the mean shape around the initial position

Output: The final shape fitted around the object

repeat

for every model point do

for a displacement of ±3 along the gradient at that point do

1. Compute the profile model at different offsets.

2. Compute the distance between the computed profile model and the mean

model of the corresponding point obtained during training.

3. Shift the point to the offset with the least error.

end

end

Impose the global constraints of the shape model so that the shape does not get

distorted.

until convergence;

Algorithm 2: Algorithm for ASM search

Fitting the profile model to the shape model

At every iteration, the profile model suggests a new position for every landmark point. The shape

model then applies the global constraints to ensure that the shape is not distorted. An iterative

algorithm is described to fit the shape model parameters to the shape suggested by the profile

model [7].
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Algorithm

Initialize the shape to the mean shape.

repeat

1. Align the model points to the points suggested by the profile model. x̂ = x̄+ Pb

2. The suggested shape by the profile model Y is in the image co-ordinate frame.

To convert this into the model co-ordinate frame, the inverse of the

transformation matrix from the previous step is used.

y = T−1
Xt,Yt,s,θ

(Y )

3. Project y into the tangent plane to x̄ by scaling: y = y
(y·x̄)

4. Update the model parameters to match to y

b = PT (y − x̄)

5. Truncate b wherever necessary

until convergence;

Algorithm 3: Fitting suggested shape to ear model

3.2.3 Implementation details

Once the Viola Jones detector has cropped out the ear from the profile image, the next step

is to fit the ASM to the ear. The basic theory behind the Active Shape Model has already been

described in the previous section. For our experiments we used an ASM library called the Stacked

Active Shape Model (STASM) [16], [17].

Training

The training set consisted of 82 images picked from the UND-Class J-2 database. All the images

were of the left side profiles of different subjects. This was to ensure that the training set adequately

captured the variation present in the database. A number of different locations for the landmarks

were tried, but the best fit seemed to come from choosing 16 points around the ear marked as shown

in Fig 3.7. The 16 key points consisted of 1 ear center, 9 points around the ear helix, 4 points around
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the ear anti-helix and 2 additional points around the ear outer contour. The points are normalized

with respect to the center of the image.

Testing

The testing was done on the 331 images for which Viola Jones correctly detected the rectangular

region around the ear. Some of the sample outputs for ASM is shown in Fig.3.11.

Figure 3.11: Sample outputs from ASM

3.3 Interpolation using Dijkstra’s Algorithm

The output of the ASM is a set of landmark points around the ear contour with the adjacent

points connected by straight edges. While the ASM provides an excellent geometrical model for the

ear, the contour detected by the model is not very accurate. There is a need to interpolate between

the landmark points which accurately captures the ear contour as shown in Fig 3.12.

Figure 3.12: ASM output depicting the issues with the contour detection by the model

There are two ways this problem can be solved. One is the heuristic approach, where we

keep approximate a curve by increasing the number of landmark points until a certain degree of

accuracy is reached. This would involve clicking a lot of points manually and it would also increase

the computational complexity for the ASM algorithm. The other way is to use Dijkstra’s algorithm

which automatically adapts to the image evidence and traces the strongest edge between two pixels.

This leverages the fact that the ear has very strong gradients along the outer contour and in most

26



cases, the strongest edge between two points on the contour will be along the contour. In the vision

community, Dijkstras algorithm has been used before to find the strongest edge between two pixels

[18]. Here the problem is modeled as one of finding the lowest cost path between two nodes in a

weighted graph. The image is modeled as a graph with the pixels representing the nodes which are

connected by edges with its 8 neighbors as shown in Fig 3.13

Figure 3.13: A pixel connected by weighted edges to its 8 neighbors

In the next section, a detailed description of the algorithm is given.

3.3.1 Local costs

The local cost of an edge between pixels p and q is defined by l(p, q) which is the weighted

sum of the following features.

Feature Symbol

Canny Edges lc

Gradient Magnitude lg

Gradient Direction ld

Table 3.1: Local costs used in Dijkstra’s algorithm

A linear combination of the features gives the total cost of an edge between the two pixels
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as shown in Eq 3.4

l(x1,x2) = wclc(x2) + wglg(x2) + wdld(x1,x2) (3.4)

wc, wg and wd are the weights assigned to the individual features. In our implementation, we have

assigned equal weights to all the parameters. The Canny edge detector is used to give a higher

weight to strong edges. But since the output of an edge detector is a binary image, the information

about how strong the edge is at the pixel is lost. Therefore, the Gradient Magnitude cost which gives

an indication of the strength of the edge at that point is also included. We need to assign a low cost

to the strong edges. To do this, the gradient magnitude is normalized and inverted. Therefore, the

cost of an edge is inversely proportional to the strength of the gradient at that point. The gradient

direction is another parameter which is used to smooth the curve by assigning a high cost to sharp

contours. If there is a large difference in the gradient direction between two pixels then a high cost

is assigned to it. The gradient direction cost is also normalized.

lc(xi) =

 0 if canny(xi) = 1

1 if canny(xi) = 0

G =

√
Ix

2 + Iy
2

lg = 1− G

max(G)

ld(x1, x2) =
|arctangent( Iy1

Ix1
)− arctangent( Iy2

Ix2
)|

2π

(3.5)

where Ix and Iy are the gradients in the x and y directions, G is the gradient magnitude at (x,y)

3.3.2 Implementation details

The output from the ASM is fed into the Dijkstra’s algorithm in a sequence. The standard

Dijkstra’s algorithm traces the shortest path between a node and every other node in the graph.

We stop the search when the destination pixel is reached. The strongest edge is marked between

adjacent landmark points as shown in Fig 3.14

28



Figure 3.14: Sequence showing Dijkstra’s interpolation between landmark points

3.3.3 Single source multiple destinations shortest path algorithm using

dynamic programming

Here we implement the Dijkstra’a algorithm for finding the shortest path between two nodes

in an undirected weighted graph [27] . The pixels here are modeled as the nodes and the edge weights

are the ones calculated in the previous section.

Dijkstra’s Algorithm

Initialize a list with the seed pixel

while the list is not empty do

Remove the minimum cost point from the list

Flag the point as processed

for every neighbor of the current point that has not been processed do

Compute the total cost to the neighbor

if neighbor is in the list and the total cost is less than the current cost at the

neighbor then

Remove the neighbor from the list

end

if neighbor is not on the list then

Assign the total cost to the neighbor

Set the pointer of the neighbor to point to the center pixel

Push back the neighbor on the list

end

end

end

Algorithm 4: Dijkstra’s shortest path algorithm
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The Dijkstra’s algorithm improves the detection accuracy in two ways. It helps offset the errors

caused by incorrect ASM landmarks and provides a smoother fit to the ear contour as shown in Fig

3.15. Some sample results are provided in Fig 3.16

Figure 3.15: Improvement in output using Dijsktra’s algorithm

Figure 3.16: Sample outputs from Dijkstra’s algorithm

3.3.4 Extracting the ear

Once the ear boundary has been detected, the next step is to extract the entire ear lying

within the ear boundary. A number of point-in-polygon algorithms like ray casting, angle summation

were considered but since the shape under consideration is a smooth curve and not a regular polygon,

they were all computationally very expensive. Therefore, an inverted floodfill algorithm was used

to find the set of points enclosed by the ear contour. A floodfill algorithm gives a set of connected

components having the same color as the seed pixel. In this case, the only pixels that will not form

a part of the connected components set will be the set of ear pixels since they are enclosed by the

ear boundary. Thereby by selecting the set of all the pixels which are not common to the set of all

image pixels and the set of connected component pixels, we can directly extract the ear pixels.
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Inverted Floodfill Algorithm

Input: A binary image with a shape mask

Output: A binary image with the ear pixels highlighted

1. Input the image with the outer ear boundary.

2. Starting with pixel (0,0) as the seed pixel, initiate a floodfill algorithm

3. Invert the image.

4. Output binary image with the ear pixels highlighted.

Figure 3.17: Extracted ear using floodfill

In the next chapter, we will analyze and discuss some of the ear segmentation results that we

obtained using the techniques described in this chapter.
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Chapter 4

Results

The ear contour modeling and detection technique described in Chapter 3 was implemented

using OpenCV 2.3, Blepo computer vision library, Microsoft Visual C++ and Matlab. It was tested

on an Intel(R) Core(TM)2 Quad CPU 2.66 GHz with 8GB RAM. The detected ear contour was

compared with manually annotated ear contours. The results are presented in this chapter.

4.1 Database

The database used for evaluation was the HID-J2 collection from the University of Notre

Dame. The dataset we used had 413 subjects with varying ethnicity, gender, skin color and illu-

mination. The average resolution of the original image was 640 X 480 and the resolution of the

cropped ear image was between 94 X 132 to 125 X 182. The images we chose for our experiments

were of the left side profile of the subjects.

4.2 Ground Truth

To get the ground truth data, we manually marked the contours around the ear using an

interactive version of the Dijkstras algorithm. The number of landmark points varied from image to

image depending on the image quality. For low quality images, more number of points were required

for a better representation of the ear contour. The manual contour was marked on 331 images. Out

of the 413 images, we used 82 images as the ASM training set. This consisted of 40 images selected
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initially and 42 images in which the Viola Jones detector could not detect an ear.

4.3 Computing the Detection Rate

The next step is to devise a metric to detect how accurately the algorithm detected the ear

shape. This section describes the detection criterion we used to classify a result as a true or false

detection. Let, Sg be the set of all pixels in the ear mask in the ground truth data, Sd, the set of

all ear pixels in the detected ear.

Then

S = Sd ∩ Sg

where S is the set of common pixels between the ground truth and the detected ear.

Ds =
cardinality(S)

cardinality(Sg)

E = Sd�∩ S

De =
cardinality(E)

cardinality(Sd)

Ds gives a measure of the accuracy of the detector. It is the fraction of the ground truth data that

was correctly detected by the algorithm. De gives a measure of the error in the detected ear. It is

the fraction of pixels that was present in the detected ear, but not in the ground truth. These two

measures together give a good indication of the detection accuracy. Ideally we need a high value for

S and a low value for E, which means for a perfect detection, Ds = 1,De = 0

4.4 Final Results

Viola Jones Haar Cascades correctly detected 331 ears out of 373 images with a detection

rate of 88.7%. The ASM and Dijkstra’s algorithm was only evaluated on these 331 images. On an

average 90.62% of the total ear was captured by the ASM and Dijkstra’s interpolation. The average

error was 4.2%. In terms of the number of correct detections, depending on different thresholds we

will get different detection rates. In about 93.35% of the images, more than 80% of the ear was

detected. In 92.86% of the images the error was less than 10%. The results are summarized in the
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subsequent figures. A graph of the error rate and detection rate according to the different thresholds

in shown in Fig 4.3. Another graph showing the error rate and detection rate for every image is

plotted in Fig 4.4

Figure 4.1: Images corresponding to downward peaks

Figure 4.2: Images corresponding to upward peaks

Figure 4.3: Detection and Error Rates

As can be seen, for the detection rate, if we consider the overlap threshold as 75% for true

detection, then about 96.35% of the ears are correctly detected. As we increase the overlap threshold,

the detection rate falls. Similarly for the error rate, if we keep the error threshold as 5%, then about
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80% of the images have an error less than 5%. As we relax the error threshold, the detection rate

increases. In Fig 4.4, the percentage overlap and the error for every image is plotted. The peaks

correspond to the bad detections. The upward peaks indicate that the detected ear is much larger

than the ground truth giving a large error and the downward peaks indicate that the detected ear

is smaller than the ground truth giving a small error but a very low detection overlap. A good

detection will have no upward or downward peak. Different thresholds for the detection and error

percentages will give different detection rates.

Figure 4.4: Detection and Error plot for all images

Some sample results for a low overlap is shown in Fig 4.1 and for a high error is shown in

Fig 4.2.

4.4.1 Effects of illumination

Our algorithm was also tested on images with two kinds of illumination. One set of images

consisted of images which were well illuminated and another set which was darker and lesser lit.

The accuracy for both kinds of images was found to be comparable, with the lower illuminated
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set performing only slightly worse than the bright images. The main reason for this robustness

is that the Active Shape Model, which marks the key landmark points, is robust to variations in

illumination. This is because the profile model is normalized to offset the effect of illumination. The

results are summarized in Fig 4.5 to Fig 4.10.

Figure 4.5: Detection and Error plot for bright images

Figure 4.6: Detection and Error Rates for bright images
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Figure 4.7: Detection and Error plot for dark images

Figure 4.8: Detection and Error Rates for dark images

For the bright images, in Fig 4.8 it can be seen that the overlap accuracy is almost at 96%

and stays stable until a threshold of 85%. The error rate is quite low too with around 92% having an

error of less than 10%. As can be seen in Fig 4.8, the overlap accuracy is also quite high at around

98% for a threshold of 75-83% even for low lit images. The error is also quite low with over 95%

having an error of less than 10%.
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Figure 4.9: Sample results with different illumination

Figure 4.10: Results summary for different illumination

4.4.2 Effect of skin color

The algorithm was also tested with subjects having different skin color tones. It was found

that overall, the detection rate and accuracy was much higher for light skinned individuals compared

to dark skinned individuals. This could be attributed to the fact that the Dijkstra’s algorithm has

a harder time detecting the strong contours in dark skinned subjects than light skinned subjects.
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This is because of the low gradient variation in the ear region in dark skinned subjects. The results

are summarized in Fig 4.11 to Fig 4.16

Figure 4.11: Detection and Error plot for light skinned subjects

Figure 4.12: Detection and Error Rates for light skinned subjects

As can be observed from the detection rate plot in Fig 4.14, the overlap accuracy is quite

low at around 81% with a threshold of 75%. The overall mean detection accuracy was only 79.24%
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as compared to 90.96% for light skinned individuals. This is one of the areas where there is quite

a lot of scope for improvement. The sample size for the dark skinned subjects was only 23. More

experiments have to be performed on a larger database before devising any method to overcome this

problem.

Figure 4.13: Detection and Error plot for dark skinned subjects

Figure 4.14: Detection and Error Rates for dark skinned subjects
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Figure 4.15: Sample results with different skin

Figure 4.16: Results summary for different skin
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4.4.3 Computation time

The computational time for our algorithm was computed by the adding the times taken for

the Viola Jones Haar Cascades detector, the Active Shape Model and the Dijkstra’s algorithm.

Ttotal = Tvj + Tasm + Tdijkstra

Our algorithm was found to be much faster than other similar algorithms though it provides

both a shape model for the ear and an accurate ear contour using only 2D color images. On an

average it took about 1.77 seconds per image for the entire process. A table showing the time taken

for some other ear detection methods is shown in the table below . Our approach also provides an

accurate ear contour and a robust shape model for the ear, while the rest only provide one or the

other. The image ray transform provides an ear contour but does not provide any ear model, the

cascaded adaboost only gives a bounding box around the ear, the method using the histogram of

categorized shapes requires 3D data and provides a robust shape model, but does not give mark

the ear outer contour and the 3D model based approach provides a very weak geometrical model in

terms of the 3D co-ordinates of the ear helix and anti-helix.

Method Used Time in seconds Detection Rate

Image Ray Transform [8] 5.45 99.6% (252 2D images)

Cascaded Adaboost using Matlab [11] 26.4 100% (203 2D images)

Histogram of Categorized Shapes [31] 2.8 100% (142 3D images)

3D Model Based [5] 6.5 92.6% (312 3D images)

Our Approach(with ≥ 75% overlap) 1.77 96.35% (331 2D images)

Table 4.1: Computation time per image

4.4.4 Sample results

Some sample outputs of the various stages of the algorithm with high detection rates are

shown in Fig 4.17 to Fig 4.24. Some more sample examples with poor detection rates and accuracy

are shown in Fig 4.25 and Fig 4.26.

42



Original Image

Viola Jones

Output ASM Output

Dijkstra’s

Output

Figure 4.17: UND J2 Ear Segmentation Results - I [20]
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Original Image
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Output ASM Output

Dijkstra’s

Output

Figure 4.18: UND J2 Ear Segmentation Results - II [20]
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Original Image
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Figure 4.19: UND J2 Ear Segmentation Results- III [20]

45



Original Image
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Figure 4.20: UND J2 Ear Segmentation Results- IV [20]
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Original Image
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Figure 4.21: UND J2 Ear Segmentation Results- V [20]
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Original Image
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Figure 4.22: UND J2 Ear Segmentation Results- VI [20]
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Original Image
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Figure 4.23: UND J2 Ear Segmentation Results- VII [20]
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Figure 4.24: UND J2 Ear Segmentation Results- VIII [20]
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Figure 4.25: UND J2 Ear Segmentation Poor Results- I [20]
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Original Image
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Figure 4.26: UND J2 Ear Segmentation Poor Results- II [20]
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Chapter 5

Conclusions and Future Work

Ear detection is extremely important for various applications in Computer Vision and Bio-

metric systems. In the tracking community, it has applications in head tracking and pose estimation.

In the biometrics community, ear detection is an extremely important step in an ear recognition sys-

tem. It has also been used to improve the accuracy of face detectors. Recent literature has focused

on using the ear shape as a modality instead of the color and texture based features because of

the unique and distinctive contours in the ear in both 2D and 3D data. In this thesis, we have

proposed an end to end ear contour detection and modeling technique using a combination of Viola

Jones Haar Cascades, Active Shape Models(ASM) and Dijkstras shortest path algorithm. The ASM

provides a robust geometrical model which captures the variations in the ear shape using a set of pa-

rameters. Dijkstra’s algorithm gives an accurate ear contour around the ear outer boundary. Apart

from providing a shape based parametric model and an accurate ear outer contour, our algorithm

has the additional advantage that the ear helix and the anti-helix can be extracted directly without

any processing. This could be very important in part-based recognition schemes. It also gives a set

of pre-established correspondences in the form of landmarks around the ear. In spite of providing a

lot of information about the ear structure and shape, our algorithm still outperforms many similar

algorithms in terms of computational efficiency while not compromising too much on the detection

accuracy.

In the future, we hope to extend the work presented here to include the following features.

1. Use the ASM to perform biometric recognition. The ASM gives a set of basis vectors as the
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mean shape model. Every ear shape is just a linear combination of these basis vectors. The

set of coefficients for these basis vectors could be used as features for matching.

2. Use 3D active shape models to fit the ear in 3D space. Here, instead of profile models at the

landmark points, we would have to compute surface models along the surface normal. It would

also involve having more landmark points and a more complicated deformation model.

3. To use the 3D shape extracted here to perform recognition using 3D shape recognition tech-

niques like the Iterative Closest Point [28]. We have already extracted the 3D shape from the

2D contour using the corresponding points in the HID-J2 3D database as shown in Fig 5.1.

Figure 5.1: 3D ear shape extracted by our method

4. Use snakes and active contours instead of Dijkstra’s algorithm to get the accurate ear contour [29].

This could be done by using the output of the ASM model as a starting point for the active

contours, which can then deform and fit the ear outer contour.
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