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Ear Biometrics: A Comprehensive Study of Taxonomy, Detection,

and Recognition Methods

Susan El-Naggar

ABSTRACT

Due to the recent challenges in access control, surveillance and security, there is an increased

need for efficient human authentication solutions. Ear recognition is an appealing choice

to identify individuals in controlled or challenging environments. The outer part of the ear

demonstrates high discriminative information across individuals and has shown to be robust

for recognition. In addition, the data acquisition procedure is contactless, non-intrusive,

and covert. This work focuses on using ear images for human authentication in visible and

thermal spectrums. We perform a systematic study of the ear features and propose a taxon-

omy for them. Also, we investigate the parts of the head side view that provides distinctive

identity cues. Following, we study the different modules of the ear recognition system. First,

we propose an ear detection system that uses deep learning models. Second, we compare

machine learning methods to state traditional systems’ baseline ear recognition performance.

Third, we explore convolutional neural networks for ear recognition and the optimum learn-

ing process setting. Fourth, we systematically evaluate the performance in the presence of

pose variation or various image artifacts, which commonly occur in real-life recognition ap-

plications, to identify the robustness of the proposed ear recognition models. Additionally,

we design an efficient ear image quality assessment tool to guide the ear recognition system.

Finally, we extend our work for ear recognition in the long-wave infrared domains.
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Chapter 1

Introduction

With the advancements in communication and the digital world, secure and convenient hu-

man authentication is critical. Various situations require identifying uncooperative subjects

in public spaces, including semi-constrained and unconstrained environments, such as those

encountered in surveillance applications. Furthermore, various daily activities, from access

control and border crossing to personal access to mobile devices, require efficient, fast, and

secure human recognition solutions. Biometrics provides a practical approach to personal

authentication. They refer to the automatic measurement and the analysis of individuals’

distinctive physical and/or behavioral characteristics, such as the face, voice, iris and fin-

gerprints to support human authentication [1, 2]. Face and fingerprints are among the most

popular biometric modalities [3]. They are widely used in multiple security, surveillance, bor-

der control, and commercial applications. However, the ongoing COVID-19 pandemic and

the safety measures taken (such as wearing a mask to cover the nose and mouth and limiting

contact with commonly touched surfaces) raised several concerns when using them. For ex-

ample, the use of face masks has presented a serious challenge to face recognition systems [4].

Also, contact-based fingerprint scanners are not always preferable due to hygiene concerns

1
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[5]. Thus, ear recognition can provide a suitable alternative for human authentication in

certain situations, even at low light or no light conditions [152].

Ear recognition has its advantages; it is passive, non-intrusive, and expressionless. It demon-

strates high discriminative information across individuals and has shown to be robust for

recognition, even when used to distinguish identical twins [7]. Additionally, in real-life

applications, when identifying non-cooperative subjects in public spaces or unconstrained

environments, like those encountered in surveillance applications, the pose angle (in terms

of yaw, roll, and pitch) represents another challenge for face recognition systems. Most

face recognition systems typically detect pose variation as one of the preprocessing steps,

and only when it is acceptable (frontal or close to frontal) does the system further process

these images to establish human identity. Ear recognition systems can effectively extend the

capabilities of stand-alone face recognition systems in case of severe yaw pose angles.

Assuming that profile face images are available and image quality allows for ear or profile-

based authentication (either directly or via restoration), here is a list of conditions/scenarios

where our proposed recognition system can be used:

1. Recognition of subjects with facial masks.

2. Non-cooperative subjects in uncontrolled environments (surveillance systems).

3. Mugshot, where databases consist of one frontal face image and one side view face

image per subject.

4. Drivers are passing through security checkpoints.

5. Mobile users.

6. Recognition of people entering rooms for home safety applications.
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An automatic ear recognition system is mainly a pattern recognition system that consists

of three modules [1]. First, the ear image preprocessing and detector module provides the

bounding box(s) of the ear(s) to localize them in images or videos. Second is the ear de-

scriptor module that generates an ear representation. The ear representation encodes the

identity information from the detected and localized ear images. Last is the decision-making

module that identifies or verifies the subject that the query ear belongs to.

1.1 What is new in this thesis?

This thesis introduces new approaches for different stages of ear recognition systems. The

results of the research conducted in this thesis are (as discussed later in detail):

� An analysis of the ear structure and its discriminative features focusing on the ear

anthropometry and morphology to build a formal organization for ear features. Inves-

tigation of the effects of ear image resolution on ear recognition performance. Establish

an ear recognition methodology that will be more beneficial for scenarios of different

scales and sizes of ear images.

� A performance comparison (identification and verification) of various machine learn-

ing techniques, namely shape-based techniques such as Scale Invariant Feature Trans-

form(SIFT), Speeded Up Robust Features (SURF); and texture-based techniques such

as Multi scale Local Binary Patterns (MLBP), Local Ternary Patterns (LTP).

� An evaluation of the part(s) of the head side view concluding which is/are more ben-

eficial for recognition:

(i) full side view of the head (including hair),

(ii) full side view of the head without the hair region,
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(iii) full side view of the head without the hair and the ear regions

(iv) ear only

� An assessment of various fusion scenarios, namely the fusion of face profile and ear traits

at the image, feature, or score level, to determine which results in better performance

when using full or partial head-side view images of subjects.

� An ear detection system that uses a Faster Region-based Convolutional Neural Network

(Faster R-CNN) architecture. We adjusted the architecture and used a two-phase

training procedure to teach the proposed ear detection system. The system operates

in real-time and does not rely on detecting the front or side face to localize the ear

in an image. It accomplishes improved performance for ear detection on a set of ear

images captured under uncontrolled settings.

� A comprehensive analysis of ear recognition performance (identification and verifica-

tion) using convolutional neural network models and a study of the optimum learning

process setting.

� An investigation of the performance of the proposed deep ear models in the presence

of various image artifacts, which commonly occur in real-life recognition applications,

to identify their robustness in controlled and uncontrolled conditions.

� The introduction of an automatic Ear Image Quality Assessment tool for improving

ear recognition accuracy. Quality labels are obtained from scores yielded by an ear

recognition matcher.

� An evaluation of the ear recognition performance in the long-wave infrared domain.

That is beneficial for recognition applications at night or when there is no control over
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illumination. The experiments were performed using a dual-band dataset, recently

collected for multi-pose (full frontal to full profile) face recognition applications.

1.2 Problem Statement

In pursuit of our research effort on developing a research prototype of an automated Ear

Recognition system, we identify the following challenging problems:

1.2.1 Problem One: Ear Taxonomy

An analysis of the ear morphological structure and its discriminative features to organize

the salient information in 2D Ear images into feature categories.

Given

� Different images of the ear region manually detected, cropped, and resized to the spatial

resolution of 120×80 pixels for ground truth.

Goal

� Which characteristic ear features are used by humans, and which are used by machines

for recognition?

� Which algorithms can be more beneficial for ear recognition at different scales and ear

image sizes

� What is sufficient resolution for ear images to achieve reliable ear recognition?
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1.2.2 Problem Two: Ear Recognition Using Machine Learning

Techniques

The identification or verification of the subject using his ear biometric.

Given

Head side view images.

Goal

� Investigate which part of the head side view is more beneficial in either identification

or verification applications.

� Examine various feature extraction methods to evaluate head side view and auricle

recognition performances. Feature extraction methods used can be divided into shape

based, and texture based.

� Evaluate the effect of different fusion schemes, at the image, feature, and score levels,

on the recognition performance.

1.2.3 Problem Three: Ear Detection

An ear detector is expected to localize the ear region automatically and accurately (if there

is any) in controlled and uncontrolled image settings and within a facial pose range. The

output of such a detector provides the bounding boxes of the ears in the image, which can

then be used for human authentication.

Given

� An image or video sequence with single/multiple ear segments.
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� Images that are captured under uncontrolled settings with a noisy background.

� Ear segments that suffer from different levels of pose variation, and occlusion.

Goal

� To segment an ear bounding box, in the presence of noise, pose and occlusion.

� The output determines a predicted bounding box (x, y, width, height).

� The method must be fast and operates in real-time.

1.2.4 Problem Four: Deep Ear Recognition

Comprehensive analysis of deep models for ear classification and feature extraction for recog-

nition.

Given

Cropped ear images at different poses or yaw angles.

Goal

� Which convolutional neural network (CNN) architectures is more effective for ear recog-

nition problem?

� What is the best setting for the learning process with the impediment of limited sized

ear data sets?
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1.2.5 Problem Five: Ear Recognition Performance in the Presence

of Image Artifacts

Study the impact of yaw pose angles and image covariates (such as blurring) on the ear

recognition performance.

Given

Cropped ear images at different poses or yaw angles.

Goal

� Evaluate the ear recognition performance, with a wide range of yaw pose angles.

� Investigate the performance of deep ear models in the presence of various image arti-

facts.

1.2.6 Problem Six: Assessment for Quality of Ear Images for

Recognition

Design a tool for ear image quality assessment

Given

� Ear Images of different qualities with their quality labels.

� Ear Images of different qualities to predict quality labels.

Goal Develop a system that assess the quality of an ear input image. Quality label should

be a prediction of the recognition system performance.
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1.2.7 Problem Seven: Thermal Ear Recognition

The usage of deep models for ear recognition in the thermal domain.

Given Ear Images in the thermal domain.

Goal

� Which convolutional neural network (CNN) architectures is more effective for thermal

ear recognition problem?

� What is the best setting for the learning process?

1.3 Thesis Organization

The thesis is organized as follows:

� Chapter1 is titled “Introduction,” gives a general introduction to Ear recognition sys-

tems and illustrates the different problems that we will present in this thesis.

� Chapter2 is titled “On a Taxonomy of Ear Features,” presents the history of Ear

identification and the development of automated Ear recognition systems. Then it

presents an organization for ear features into levels, comparing features used by humans

and those used by machines for recognition.

� Chapter3 is titled “Automated Ear Recognition,” includes performance comparison of

the different parts of the head side view for recognition. It also presents an evaluation

of descriptor-based techniques for ear recognition.

� Chapter4 is titled “Ear Detection,” presents an ear detection system based on, Faster

Region-based Convolutional Neural Network (Faster R-CNN).
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� Chapter5 is titled “Deep Ear Recognition with Image Quality Assessment,” proposes a

set of efficient deep learning models for ear recognition. It also includes a quantitative

assessment of the image artifacts on the performance of the deep ear models.

� Chapter6 is titled “Exploring Deep Learning Ear Recognition In Thermal Images”,

gives a brief background about infrared thermal imaging and overviews the work related

to the thermal ear recognition. It also provides a description of new thermal dataset

to be used for thermal ear recognition experiments.

� Chapter7 is titled “Conclusions and Future Work,” concludes the thesis and gives some

suggested future work as extension to our presented work.
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On a Taxonomy of Ear Features

2.1 Introduction

With the rising interest in ear biometrics and its increasing number of applications, there

is a shortage of an elaborate description of the ear and its unique characteristics; neither a

precise attributive statement of the ear specific

information used by human experts, nor does there exist a systematic study on the most

pertinent ear-based features that the machines can use.

An analysis of the ear structure and its discriminative features can be beneficial to researchers

and biometric system operators for the following reasons i.e.,

� Gain an understanding of ear features that human examiners use to determine a per-

son’s identity.

� Examine the individuality of such features.

� Determine the features that can enhance the performance of automated ear recognition

11
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systems.

This chapter is an exploratory study that examines ear characteristics and provides a clari-

fication on the importance of ear-based different features. It is based on the same principles

used on a facial features taxonomy study reported in [15]. To validate our proposed classi-

fication scheme, we examined multiple ear recognition algorithms on different scales of ear

images. The main objectives of this chapter are to:

1. Buildup a formal organization for ear features.

2. Provide an analysis focused on ear anthropometry and morphology.

3. Investigate the effects on ear recognition performance when using low-resolution ear

images.

4. Conclude recommendations for:

(a) Sufficient resolution for reliable ear recognition.

(b) Ear recognition methodology that will be more beneficial for scenarios of different

scales and sizes of ear images.

2.2 Background & Ear Recognition History

The visible portion of the ear, known as the auricle, has rich structure with numerous

characteristic ridges and valleys as well as many shape variations. These distinguishing

features are suggested to be distinct and differentiable among individuals and thus, can be

used for personal authentication.
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Figure 2.1: External anatomy of the ear: (1) Helix Rim (2) Lobule (3) Antihelix (4) Concha
(5) Tragus (6) Antitragus (7) Crus of Helix (8) Triangular Fossa (9) Incisure Intertragica

� Ear Anatomy and Development

The ear starts to appear between the fifth and seventh weeks of pregnancy. The

auricular hillocks begin to enlarge, differentiate, and fuse, producing the final shape

of the ear. The external anatomy of the ear is illustrated in Figure 2.1.The forensic

science literature reports that ear growth after the first four months of birth is highly

linear [8]. After that, the stretching rate is approximately five times greater than usual,

from four months to the age of eight, after which it is constant until around the age of

seventy, when the earlobe’s height increases due to gravity [9, 10].

� Ear Recognition History

In the science of identification, Alfonso Bertillon was probably the first scientist to

use the ear for personal authentication [11]. Alphonse Bertillon (1852-1914) was a
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French police officer who pioneered using physical measurements to identify criminals.

Bertillon combined qualitative and quantitative descriptions of various body parts,

including the ear, in what he called anthropometry, as shown in Fig. 2.2. In his proce-

dure, he used the length of the right ear as one of the head measurements, accompanied

by a description of the shape with its folds, lobes, and edges.

American police officer Alfred Iannarelli proposed one of the first ear recognition sys-

tems in 1949 [8]. He collected and analyzed more than 10,000 ear images for his studies.

In his method, shown in figure2.3 he first used a standardized vertical guide to align ear

images. Then, he drew vertical, horizontal, diagonal, and anti-diagonal lines, and used

their intersection with ear curves to drive his measurements. These 12 measurements

were used to represent the ear.

For machine ear recognition, Burge et al. proposed one of the first ear recognition

systems in [12]. They used a mathematical graph model to represent and match the

curves and edges in a 2D ear image, but they didn’t report the performance of their

system. Moreno et al. described a fully automated ear recognition system based

on various features such as ear shape and wrinkles [13]. Since then, researchers have

proposed numerous feature extraction and matching schemes based on computer vision

and image processing algorithms [14].

2.3 Related Research

There are two techniques related to a morphology-based or anthropometry-based analysis

that is typically used to examine and describe the anatomy of human body parts (based on

the work discussed at [16]):
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1. Anthropometry Analysis : It is based on a quantitative technique, where landmarks

corresponding to key features are first located. These landmarks are then used to

determine characteristic measures such as lengths, dimensions, and angles.

2. Morphology Analysis : It is based on a qualitative technique, where the ear evaluation is

accomplished by classifying the general ear shape and subdividing it into components.

Such components are compared to obtain degrees of similarity and proportionality.

Expert examiners usually incorporate a mixture of anthropometry and morphology features

analysis to achieve recognition. The ear anatomy includes edges, lobe, folds, and particular-

ities that are shown in Figure 2.1.

2.3.1 Fingerprint and Face Taxonomy

There have been several detailed studies related to fingerprint taxonomy and classification

based on their distinctive features, which motivated our work on ear taxonomy. Fingerprint

characteristic features are organized into three levels [17]:

� Level one features include ridge flows and pattern configurations, which are useful for

classification but not sufficient for recognition.

� Level two features : minutiae formations, which are unique and sufficient for identifica-

tion.

� Level three features : captured in high resolution and include all dimensional attributes

of the ridges and micro details such as pores, scares, creases, and warts. This orga-

nization of fingerprint characteristic features provides discriminatory information to
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increase the accuracy and robustness of fingerprint recognition systems. Such orga-

nization has been well established and widely accepted in the biometrics community

[2].

Inspired by fingerprint taxonomy, Klare and Jain established taxonomy categorization for

facial features in [15]. They organized facial features into three levels also:

� Level one features represent the general nature of the face’s appearance. Such fea-

tures, which include face shape, gender, and ethnicity, are not accurate enough to be

independently used for identification.

� Level two features : include the anthropometric-based facial features, namely the de-

tailed structure and the local components of the face. These are the most discriminative

facial features and are utilized for face recognition.

� Level three features : consists of the micro-features of the face, which include scars,

moles, and facial marks. This level of features can be useful to enhance the accuracy

of face recognition and are also used in the identification of monozygotic or identical

twins [15].

2.4 Ear Feature Levels

Following the analogy for face characteristics directory made in [15], we categorized ear

features into three levels shown in Figure 2.4:
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2.4.1 Level One Features

Human ears consist of cartilage, which gives the ear its original shape and dimensions. This

level of ear features represents the overall characters and morphology of the ear. They are

useful for general description of the ear characteristics. This level of features includes the

following:

1. Ear Size

2. Skin color

3. Ear type: short and broad, short and narrow, long and narrow, or long and broad

4. Earlobe type: attached or free

5. Shape: round, oval, triangular, or rectangular.

Level one features can be extracted from low-resolution ear images. For automated ear

recognition, intensity based representation derived by intensity based methods such as PCA

and LDA form level one features.

PCA was used for ear recognition by Chang et al. [18], where they introduced the concept

of Eigen-Ear. Their technique was widely used in the literature. Yuan et al. [19] used

Full-space Linear Discriminant Analysis (FSLDA) to perform ear recognition.

Although level one features provide an aggregate representation of the ear, they are insuf-

ficient for successful recognition. Therefore, this level of information is mainly useful for

classification or during a subject elimination process.
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2.4.2 Level Two Features

The ear has a rich structure of curvatures, edges, and folds. This structure is what dif-

ferentiates the ears of different persons. Level two features are what represent the ear’s

individuality. In forensic ear recognition, the anthropometric measurement of key features of

human ears and the distances and angles between these features have been used for ear recog-

nition. Ear width, ear length, tragus length, tragus height, concha length, concha width,

lobular length, and lobular width are the most common anthropometric ear-based features

that are measured in forensic-related studies. These features are defined with respect to their

particular spatial coordinate reference for the ear and local patches. The local descriptors

from the multiple sub-locations are combined to describe the ear comprehensively. This level

of the detailed description of the ears cannot be captured in low-resolution ear images. In

automated ear recognition systems, features provided by local descriptor methods, repre-

sent the level two of ear features, such as wavelet transformation [24], Gabor filters [25],

histograms of oriented gradients [27], sift [26] and local binary patterns [152].

The uniqueness of ear modality among the human population has been discussed in the

literature. However, to the best of our knowledge, there is still no systematic statistical large-

scale testing available to support such a claim. The limited experimental studies related to

ear uniqueness are one of the main motivations of this study.

In the studies reported on ear uniqueness, Iannarelli [8] suggested ear uniqueness, even

in the case of identical twins. In another recent study, Zulkifli et al. [28], performed an

anthropometric comparison of external ears between monozygotic twins. The authors used

the same landmarks and ear measurements used in [10] to determine the differences between

both individual ears from the same pair of monozygotic twins. Their statistical analysis

when using the dimensions between inter-landmarks showed that there are no significant
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differences between ears of monozygotic twins for almost all of the dimensions considered.

For authentication, individualization has to be established based on precisely defined charac-

teristics and points or measurements by the examiners. The studies mentioned above proved

that extra careful examination needed to uphold that morphological and anthropometrical

measurements deployed for ear recognition are adequate to establish uniqueness.

2.4.3 Level Three Features

Detailed observations of unstructured micro ear characteristics can provide supplementary

information for ear-based identification. Such characteristics can include but are not limited

to moles, birthmarks, and piercings. Therefore, such characteristics are expected to be

beneficial for recognition studies.

Abbas and Rutty performed a study [30] on the role of piercings, which are permanent body

marks but are more popular for ears, on ear identification. The authors suggested that

piercing can be useful for identification, especially the ones that are not located in the ear

lobe due to their relative rarity.

Increasing resolution for ear images is less likely to improve recognition results when utilizing

level two features, but it is needed to identify level three features that are useful to investi-

gated, and they are also easy for human examiners to observe and locate. While level three

features can be extracted automatically, to our knowledge, there are no studies reported.

2.5 Experiments

In our experiments, we generated and used a mixed ear-based dataset that consists of ear

images from 460 subjects, where each subject is represented with one gallery and one probe
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ear image. In the dataset generated, we have used images from the UND-F (left-ear images

from 285 subjects), FERET (left ear images from 115 subjects) and WVU (left ear images

from 60 subjects) datasets. The result is a mixed ear dataset that consists of 920 left ear

images, in which the ear region is manually detected, cropped, and resized to the spatial

resolution of 120×80 pixels for ground truth.

The main objectives of our experiments are to:

1. Validate our proposed classification for ear features represented by automated ear

recognition systems.

2. Experiment the effect of different levels of ear features in recognition performance.

3. Infer the sufficient resolution for reliable ear recognition.

4. Examine which methodology will be more beneficial for ear recognition in scenarios

where different scales and ear image sizes are used.

For level one features, intensity based methods are used, while local image descriptors are

used as level two features.

For the appearance/intensity based representation, we used:

� Principle Component Analysis (PCA) [18] and

� Linear Discriminant Analysis (LDA) [31].

For local feature representations, we used:

� Multi-Scale Local Binary Patterns (MLBP) [32]and

� Scale Invariant Feature Transform (SIFT) [67].
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Table 2.1: Parameters used in MLBP

Parameter Value
Region Size 24× 24

OverLap 12
Neighborhood Pixels 8

Radius 1,3,5,7

Appearance-based methods are useful in classifying prevailing ear characteristics such as

skin color and exterior shape. While local image descriptors give more insight into the

characteristic elements of the ear’s structure and the relationship among these elements that

are useful for personal authentication. Upon investigating various recognition methods, we

used a different ear data set, which is the USTB to compare and tune the different ear

parameters needed for our studies.

Principle component analysis (PCA) is a linear projection method that is used to capture

the underlying structure in the feature space of the data. It uses eigen decomposition to

compute basis vectors representing the directions where the data has the most variation

and brings out the most discriminative data patterns. While Linear Discriminant Analysis

(LDA) is also an eigen decomposition method, it is different than PCA because it tries to

find the projection vectors that will separate classes. The goal of LDA is to maximize the

between-subjects variance and minimize the within-subjects variance.

Our experiments use local descriptors, MLBP and SIFT, as level-two features. In the case

of the MLBP feature extraction, the ear image is first divided into overlapping regions. The

basic LBP operator assigns a decimal value to each pixel in the region by thresholding the

pixel’s neighborhood. Then, a histogram of these decimal values is derived. The Chi-Squared

dissimilarity metric was used to generate the match scores, as originally proposed in [69].

Table 2.1 provides the MLPB parameters were used for our studies.

The scale-invariant feature transform (SIFT) [67] is a shape-based learning algorithm for
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Table 2.2: Down scale with 0.5 factor and final image sizes.

Down scale factor Image size
Original 120× 80

1/2 60× 40
1/4 30× 20
1/8 15× 10

extracting highly distinctive invariant features. Landmarks invariant to scale and orien-

tation are first located using the difference-of-Gaussian function, and low contrast marks

are rejected. What follows is the computation of the gradient orientation histogram in the

neighborhood of each key point, where histogram peaks correspond to dominant orientations.

Finally, a feature descriptor is computed as a set of orientation histograms for each selected

key-point orientation.

In our experiments, we down-scaled ear images with a factor of 0.5 recursively as shown in

Table 2.2.

Figures 2.6, 2.7, 2.8, and 2.9 show the Cumulative Match Characteristic (CMC) curves

when intensity based (PCA and LDA) and the local descriptors methods are used (MLBP

and SIFT). In those figures, the x-axis represents rank, while the y-axis represents the

probability of obtaining the correct identity in the top n positions. Table 2.3 provides an

overview of the rank one identification rate for different feature levels with multiple scales.

2.5.1 Discussion

From the results shown in Figures 2.6 and 2.7, we conclude that, in appearance based

methods, although rank-one identification accuracy is relatively low; the identification per-

formance is stable across different scales of ear images. Our experimental study concludes

that appearance-based methods can be used to exploit level one ear features. They are use-
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Table 2.3: Rank one identification rate for different feature levels with multiple scales

Image Size PCA LDA SIFT MLBP
120× 80 0.3696 0.3783 0.3935 0.8913
60× 40 0.3652 0.3913 0.3870 0.8565
30× 20 0.3630 0.3739 0.3022 0.6913
15× 10 0.3413 0.3413 0.0326 0.3913

ful for global illustration of the ear even though their identification power is low. Thus, it

is suggested that they can be used as an elimination procedure to remove subjects from a

match list but are insufficient for full ear recognition.

We also examined the identification efficiency of local image descriptors. Experimental re-

sults are shown in Figures 2.8 and 2.9, where we can see that the SIFT performance is low

for ear recognition and hence, may not be the best local image descriptor when using ear

images. However, our studies determined that MLBP provides satisfactory identification

performance when ear images are used and have a spatial resolution of 120× 80 pixels. Ex-

perimental results, see Figures 2.8 and 2.9, show that when spatial resolution decreases from

its original size, both SIFT and MLBP performance decreases significantly, e.g., we notice

more than 60% difference in rank-one identification for MLBP when the spatial resolution

used is 15 × 10 compared to 120 × 80. Such results support our original hypothesis that

level two ear features can achieve a higher rank-1 identification rate compared to level one

features, given that high-resolution ear images are available.
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Figure 2.2: The Bertillon’s Identification anthropométrique [11], demonstrating the mea-
surements needed for his anthropometric identification system
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Figure 2.3: Iannarelli’s measurements

Figure 2.4: Examples of the proposed taxonomy for ear features. Level one features contain
low-dimensional appearance information. Such information is useful for subject elimination.
Level two features include the ear’s rich structure and require detailed processing for the
ear. Information is used for an accurate authentication of the subject’s identity. Level three
features include moles, birthmarks, and piercings.
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Figure 2.5: An example of a 120×80 Ear image down sampled to lower sizes.

Figure 2.6: Cumulative Match Characteristic (CMC) curve of PCA performance for ear
images at different scales.

Figure 2.7: Cumulative Match Characteristic (CMC) curve of LDA performance for ear
images at different scales.
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Figure 2.8: Cumulative Match Characteristic (CMC) curve of MLBP performance for ear
images at different scales.

Figure 2.9: Cumulative Match Characteristic (CMC) curve of SIFT performance for ear
images at different scales.



Chapter 3

Automated Ear Recognition

3.1 Introduction

Most the commercial face recognition systems typically detect pose variation as one of the

preprocessing steps, and only when it is acceptable (frontal or close to frontal) does the

system further process these images to establish human identity. For example, PittPatt

version 4 does not process face images with roll angles beyond 18 degrees, while in version

5, this capability is extended to 36 degrees 1. Unfortunately, in real-life situations, when

identifying non-cooperative subjects in public spaces or unconstrained environments, like

those encountered in surveillance applications, frontal face images may not be available.

The only biometric that may be available for recognition is partial biometric information,

like head-side view.

While both face profile and ear-based recognition systems are important and have multiple

applications, there is no clear definition for what a face profile is, or which features in the

1PittPatt (Pittsburgh Pattern Recognition) was a software project that develops facial recognition tech-
nology spawned from Carnegie Mellon University until acquired by Google.

28
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Figure 3.1: Samples of multiple parts of the head side view used for recognition performance
evaluation: (i) full side view of the head, (ii) side view of the head without the hair part,
(iii) side view of the head without the hair and the ear parts, and (iv) ear only. The gallery
images are on the left, while the probe images are on the right. Top: Sample from FERET
dataset, middle: Sample from UND dataset, bottom: Sample from WVU dataset.

head side view provides the most discriminant identity cues. The objectives of this chapter

are to:

� Examine which part(s) of the head side view is/are more beneficial for recognition: (i)

full side view of the head (including hair), (ii) side view of the head without the hair

region, (iii) side view of the head without the hair and the ear regions, or (iv) ear only

(see Figure 3.1).

� Compare the performance of various feature extraction techniques that are commonly

used for face recognition, namely shape-based techniques such as Scale Invariant Fea-

ture Transform(SIFT) [23], Speeded Up Robust Features (SURF) [22]; and texture

based techniques such as Multi scale Local Binary Patterns (MLBP) [68], Local Ternary

Patterns (LTP) [47].

� Determiner which of the various fusion scenarios of face profile and ear traits: at the

image/sensor level, feature level, or score level yield the best performance results.
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� Evaluate system performance (identification and verification) for all the aforementioned

studies.

Performance evaluation studies are conducted using a set of popular head side and ear

datasets, including the USTB dataset I [53], the UND dataset (collections E, and F) [54],

the FERET [70, 72], and the WVU [36] datasets.

The rest of this chapter is organized as follows: Section 3.2 highlights some previous work

on 2D ear recognition, face profile recognition, and the fusion of face profile with ears to

establish recognition. Section 3.3 provides a brief overview of several feature extraction

techniques that are used for ear and face recognition. Experimental results are presented in

Section 3.4. Section 3.5 gives an outline of our proposed approach for side view recognition.

3.2 Related Research

In the literature, there is no clear definition for what a face profile is, or which features in

the head side view provide the identity cues. This section discusses existing techniques for

face profile recognition, ear recognition and an gives an overview of the existing research in

fusion of face profile and ear for recognition.

3.2.1 Face Profile Recognition

Face profile recognition has been handled in the literature in two main approaches [55]:

First, the probe image is a side view face image, and the gallery image is a front view face

image. In such case, the problem is a severe case of face recognition across pose, where

the pose is 90o, Zhang and Gao [71] reviewed the problem with a survey of the techniques

that had been proposed/used to handle it. Regardless, of the various attempts to overcome
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Figure 3.2: Overview of the different scenarios experientially evaluated. The recognition
performance was evaluated for multiple parts of the head side view: (i) full side view of the
head, (ii) side view of the head without the hair part, (iii) side view of the head without
the hair and the ear parts, and (iv) ear only. Multiple feature extraction techniques were
tested: (i) SIFT, (ii) SURF, (iii) MLBP. (iv) LTP. Fusion applied at: (i) sensor/image level,
(ii) feature level, and (iii) score level.

such a problem, it is still an unsolved challenge since the performance of face recognition

systems degrade excessively with such pose angles. Second, the gallery and the probe images

are side view face images. In this case the problem is considered a case of multi-view face

recognition. Most of the face profile recognition methods utilize only the face profile contour

line (silhouette) [64].
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Silhouette based methods were first used for face profile recognition by Kaufman et al. [66]

in 1967. Their work was followed by a lot of research for face profile recognition using

silhouettes. Some determined fiducial points and used them to extract lines, angles, and

areas as features [42, 65, 73]. Others used profile curve segments for matching [34, 52]. Ding

et al. [35] used discrete wavelet transform to decompose the curve of the face silhouette.

Then, they generated random forest models and used them for authentication.

Techniques that use only profile line have their advantages such as less complicity, memory

usage, and maybe more robust to illumination changes. Unfortunately, they don’t tolerate

any pose variation and depend on clear images only. Additionally, they do not take advantage

of the facial features or the texture information in the images [59].

Deep learning algorithms have been recently deployed in many artificial intelligence appli-

cations, including but not limited to, image classification, object detection/recognition, and

face recognition. Deep learning algorithms demonstrated distinguished performance, which

surpassed the state of the art for the above mentioned applications [86]. Krizhevsky et al.

[104] developed a deep convolutional neural network for image classification that won the

ImageNet challenge ILSVRC-2012.

Taigman et al. [87] developed a deep learning neural network for face recognition, they

named it DeepFace. In a preprocessing step, they perform 3D alignment based on fiducial

points. They used a large dataset of Facebook images includes 4.4 million labeled faces

from 4,030 people for training their neural network. Their experiments showed 97.35%

accuracy using Labeled Faces in the Wild (LFW) dataset and 92.5% using the YouTube

Faces (YTF) dataset. Schroff et al. [88] introduced FaceNet a ConvNet for face verification,

recognition, and clustering. To train their network they used a Google dataset of 200 million

face thumbnails for about 8 million identities. Their experiments showed 99.63% accuracy

using (LFW) dataset and 95.12% using the (YTF) dataset. Parkhi et al. [89] assembled



3.2. Related Research 33

a dataset of 2.6 million face images for over 2.6 K people of which approximately 95% are

frontal and 5% profile face images. They used the ConvNet of [90] for face recognition and

performed the triplet loss training. Their experiments showed 98.95% accuracy using (LFW)

dataset and 97.40% using the (YTF) dataset.

In a recent application of convolutional neural networks, Zhang and Mu [84] proposed a

technique involving Multiple Scale Faster Region-based Convolutional Neural Network for

ear detection. They used information related to ear location context to locate the ear ac-

curately and eliminate the false positives. They tested their system on three datasets: web

ear, UBEAR, and UND-J2. Their experiments showed 98.01, 97.61, and 100% accuracy, re-

spectively. They also examined the system with a test set of 200 web images (with variable

photographic conditions), and achieved a detection rate of approximately 98%.

3.2.2 Ear Recognition

For ear recognition, Abaza et al. provided an overview of the existing ear recognition tech-

niques [14]. The popular Principal Component Analysis (PCA) representation was first used

for ear recognition by Chang et al. [18] who introduced the concept of Eigen-Ear. Following,

PCA had been widely used in the literature as a base reference.

Dewi and Yahagi [26] used Scale-Invariant Feature Transform (SIFT) [67] feature descriptor

for ear recognition. In their work, they classified the owner of an ear by calculating the

number of matched key points and their average square distance. While Kisku et al. [40]

used SIFT for colored ear images. They segmented the ears in decomposed color slice regions

of ear images, then they extracted SIFT key-points and fused them from all color slice regions.

Local Binary Patterns (LBP) were combined with wavelet transform for ear recognition in

[37]. Wang et al. [49] decomposed ear images by a Haar wavelet transform and then applied
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Uniform LBP simultaneously with block-based and multi-resolution methods to describe the

texture features.

3.2.3 Face Profile and Ear

There has been a low amount of attention in the literature for face profile and ear fusion

for authentication. Gentile et al. [38] introduced a multi-biometric detection system that

detects ear and profile candidates independently. For all profile candidates if an ear exists,

that is contained inside the profile, that profile region is labeled as a true profile.

While for identification, Yuan et al. [51] used face profile images that includes the ear

(assuming fusion at the sensor/ image level). They applied Full Space Linear Discriminant

analysis (FSLDA). Xu and Mu [50] used the same technique FSLDA for face profile as a uni-

modal and the ear as another uni-modal. They carried out decision fusion using combination

methods of Product, Sum, and Median rules according to the Bayesian theory and a modified

vote rule for two classifiers. Later, Pan et al. [44] modified the FSLDA technique by using

kernels of the feature vectors. They fused the face profile and ear at the feature level and

applied the Fisher Discriminant Analysis (FDA). Face profile and ear were used in a PCA-

based recognition system for robotic vision [46]. In the system, if either the ear or the face

of a person was recognized successfully, it is considered a correct identification of the subject

in a decision level fusion.

In a close work, Rathorea et al. [21] proposed fusing ear information with profile face

information to enhance recognition performance. They used SURF for feature extraction.

In their method, for each of the face profile and the ear they extracted three sets of SURF

features. Each set was obtained after applying one of three image enhancement techniques.

They reported their results on three data bases individually UND-E, UND-J2 and IITK.
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3.3 Face Side /Ear Recognition Methodology

The goal of this work is to investigate challenging biometric scenarios when only images of

face side view are available for recognition rather than frontal face images captured under

controlled conditions. Our objective was to assess the following, (a) Which part of the

head side provides the identity cues? (b) Which part of the side view image contains the

discriminative information necessary for identification or verification different scenarios?

We developed an automated system for ear detection using Haar features arranged in a

cascaded Adaboost classifier [57]. The system is fast and robust for partial occlusion and

rotation. We tested the system using 2113 profile images for 448 different cases and achieved

95% correct ear detection. In this study, and to avoid error carried from the detection stage,

we manually cropped multiple parts from the head side view image which are:

1. Full side view of the head.

2. Side view of the head without the hair part.

3. Side view of the head without the hair and the ear parts.

4. Ear only.

(a)Complete (b)WEar (c)W/OEar (d)Ear

Figure 3.3: Examples of head side part and the ear.

In our study we are also experimenting, which feature extraction method will provide the

most distinctive representation for each of the fragments of the head side view?
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The face side view provides salient and texture rich information in counter to the external ear

that has morphological components. Such structure motivated us to examine both, shape

based and texture based, standard feature descriptors that are commonly used for frontal

face images.

1. Shape based examined techniques are:

� Scale invariant feature transform (SIFT).

� Speeded-Up Robust Features (SURF).

2. Texture based description techniques:

� Multilevel Local Binary Patterns (MLBP).

� Local Ternary Patterns (LTP).

The performance of the aforementioned techniques was evaluated for identification and recog-

nition scenarios. Moreover, we evaluated biometric fusion methods at various levels. First,

face profile/ear fusion at the image or sensor level in the full side view images and the face

side view images without the hair part. Second, fusion at the feature level using simple

concatenation rule of face profile-ear features. Third, fusion at the score level which was

accomplished by consolidating scores for face profile-ear using both normal average rule and

weight sum rule. An over-view of the evaluation studies performed with different combina-

tions is shown in Figure 3.2.

3.3.1 SIFT Description

The scale invariant feature transform (SIFT) is a shape-based algorithm for extracting highly

distinctive invariant features. Lowe’s SIFT algorithm [67], consists of four major stages:
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� Scale-space extreme detection: where a difference-of-Gaussian function is applied to

the image to identify candidate points that are invariant to scale and orientation, as

follows:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (3.1)

where I(x, y) is the original image, and kσ, σ refer to different Gaussian-blur separated

by a constant multiplicative factor k.

� Key point localization: it rejects points having low contrast (sensitive to noise) or

are poorly localized along an edge. The initial implementation of SIFT approach [43]

located key-points at the location and scale of the central sample point. Lowe [67] used

the Taylor expansion (up to the quadratic terms):

D(x) = D +
∂DT

∂x
x+ 0.5xT

∂2D

∂x2
x, (3.2)

where D and its derivatives are evaluated at the sample point and x = (x, y, σ)T is the

offset from this point.

For stability, edge responses are eliminated. A poorly defined peak in the difference-

of-Gaussian function will have a large principal curvature across the edge but a small

one in the perpendicular direction. The principal curvatures can be computed from a

2× 2 Hessian matrix H, computed at the location and scale of the key-point:

H =

Dxx Dxy

Dxy Dyy

 , (3.3)

The eigenvalues of H are proportional to the principal curvatures of D.

� Orientation assignment : where a gradient orientation histogram is computed in the



38 Chapter 3. Automated Ear Recognition

neighborhood of each key-point, where histogram peaks correspond to dominant ori-

entations.

� Key point descriptor : for each selected key-point orientation, a feature descriptor is

computed as a set of orientation histograms.

Dense SIFT [48] extracts local feature descriptors at regular image grid points yielding a

dense description of the face images, while normal sift extract feature descriptions at the

locations determined by Lowe’s algorithm [43]. Dense SIFT yielded inferior performance

compared to SIFT; hence we decided to proceed with the original SIFT technique.

3.3.2 SURF Description

Speeded-Up Robust Features (SURF) is based on similar properties to SIFT. Bay et al.

[60] used basic Hessian-matrix approximation for interest point detection. They detected

blob-like structures at locations where the Hessian-matrix determinant is maximum. Given

a point x = (x, y) in an image I, the Hessian matrix is defined as:

H(x, σ) =

Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

 , (3.4)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂x2 with the image

I in point x , and similarly for Lxy(x, σ) and Lyy(x, σ).

SURF descriptor [60], describes the distribution of the intensity content within the interest

point neighborhood as follows:

� Orientation Assignment: To be invariant to image rotation, a reproducible orientation

for the interest points is identified.
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� Descriptor based on Sum of Haar Wavelet Responses: The region is split up regularly

into smaller 4 × 4 square sub-regions. For each sub-region, dx the Haar wavelet re-

sponse in horizontal direction and dy the Haar wavelet response in vertical direction

respectively is calculated. Then, the wavelet responses dx and dy are summed up over

each sub-region. To bring in information about the polarity of the intensity changes,

the sum of the absolute values of the responses, |dx| and |dy| are also extracted.

3.3.3 MLBP Based Description

Local Binary Patterns (LBP) operator is a texture descriptor that quantifies the intensity

patterns in local pixel neighborhood patches which have been used for face recognition in

[69]. They have shown the LBP operator to be highly discriminative and computationally

efficient. Using the LBP operator for ear recognition is based on the description of ears as

a composition of micro-patterns. The basic LBP operator assigns a decimal value to each

pixel in the image by thresholding (P = 8) neighbor pixels at a distance (R = 1), as follows:

� For a given input image pixel Ic and its 8 neighbors Ip,

� Each neighbor pixel greater than or equal to the center pixel is assigned 1 otherwise it

is assigned 0:

LBPP,R =
P−1∑
p=0

s(Ip − Ic)2P , (3.5)

where s(x) =


1 if x ≥ 0,

0 if otherwise.

� These binary values are arranged to form a binary number (01110010), which is trans-

ferred to a decimal equivalent (114).
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� The histogram (H) of these decimal values represents the feature vector.

Ojala et al. [68] defined a local binary pattern uniform if the binary number contains at most

two bitwise transitions from 0 to 1 or vice versa. For example: 00000000, and 11000011 are

considered uniform. This feature selection method reduced the number of features, in case of

8-bin histogram, from 28 to 59. Multi-Scale Local Binary Patterns (MLBP) concatenated the

histogram computed by LBP descriptors at four different radii R = 1, 3, 5, 7, while keeping

P = 8, to yield better performance. Block-based Local Binary Patterns divided the face or

ear image into a set of blocks that can be overlapped2.

To measure the similarity between the probe histogram Hp and gallery histogram Hg gen-

erated by LBP operator, the Chi-square distance was used:

SChi(H
p, Hg) = Σj,iωj ∗

(Hp
i,j −H

g
i,j)

2

(Hp
i,j +Hg

i,j)
(3.6)

where i and j refer to the ith bin in histogram corresponding to the jth block, and ωj is the

weight for block j.

3.3.4 LTP Based Ear Description

Local Ternary Patterns (LTP) operators extends LBP to 3-valued codes [47], in which gray

levels, in a zone of width ±t around a centered value, are quantized to zero; ones above this

are quantized to +1 and ones below it to −1, i.e. the indicator s(u) is replaced by a 3-valued,

as follows:

� For a given input image pixel Ic and its 8 neighbors Ip,

2Experimentally overlapped MLBP, 24x24 pixels patches that overlap by 12 pixels, was proven to yield
the best performance
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� Each neighbor pixel greater than the center pixel Ic plus t is assigned to 1, or less than

the center pixel minus t is assigned to -1, otherwise it is assigned 0:

LTPP,R =
P−1∑
p=0

s(Ip − Ic)2P , (3.7)

where s(x) =


1 if x > t

0 if − t ≤ x ≤ t

−1 if x < −t

� These ternary values are arranged to form a ternary number (01“-1”“-1”1110). This

ternary number is transferred into two binary numbers (01001110, 00110000), which

are then transferred into two decimal equivalents (92, 48).

� Two separate channels of LBP descriptors, for which separate histograms of these

decimal values, forms the feature vector3.

To measure the similarity between the probe histogram Hp and gallery histogram Hg gen-

erated by LTP operator, the Chi-square distance was also used.

3.4 Experimental Results

This section starts with a description of various face side and ear datasets that we used

in our experiments, followed by an explanation of the experiments performed, the results

obtained, and a discussion of the results. We designed the experiments to examine:

3Experimentally overlapped LTP, 24x24 pixels patches that overlap by 12 pixels, was proven to yield the
best performance
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Table 3.1: Datasets used in our experiments.

Data set Left face side Right face side

UND, Collection E - 102
UND, Collection F 285 -
FERET 115 125
WVU 60 58
Test set 460 285
Training USTB - 60

1. Which part of the face side should be used for recognition and whether the ear should

be included?

2. Which feature extraction method is more effective for face side/ear recognition?

3. Which fusion scenario for ear and side face biometrics can improve the identification

performance?

3.4.1 Ear Datasets

We composed a heterogeneous test dataset that consists of images from three different

datasets, UND, FERET, and WVU. This was to overcome the limited size of the available

datasets. Additionally, we used a fourth dataset, the USTB dataset, for parameter estima-

tion of those feature extraction methods that required training phase. Table 4.1 shows the

components of the test/training dataset that we used:

1. The University of Notre Dame (UND) dataset4: The UND dataset consists of multiple

collections for face and ear modalities.

� Collection E contains 464 left face profile(ear) images of 114 subjects. From this

collection, we used the images of 102 subjects to maintain 2 images per subject.

4http://www3.nd.edu/ cvrl/CVRL/Data Sets.html
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� Collection F contains 907 right face profile(ear) images of 286 subjects. From this

collection, we used images of 285 subjects to maintain 2 images per subject.

2. FERET dataset [70, 72]: The FERET dataset was part of the Face Recognition Tech-

nology Evaluation (FERET) program. The dataset was collected in 15 sessions between

August 1993 and July 1996. It contains 1564 sets of images for a total of 14126 images

that includes 1199 individuals and 365 duplicate sets of images. For some individuals,

images were collected at right and left profile (labeled pr and pl). From this dataset,

we used left face profile(ear) images of 115 subjects, and right face profile(ear) images

of 125 subjects to maintain 2 images per subject.

3. WVU dataset [36]: The WVU ear dataset consists of 460 video sequences for about

400 different subjects and multi-sequences for 60 subjects. Each video begins at the

left profile of a subject (0 degrees) and terminates at the right profile (180 degrees)

in about 2 minutes. This dataset has 55 subjects with eyeglasses, 42 subjects with

earrings, 38 subjects with partially occluded ears, and 2 fully occluded ears. We used

60 left face profile(ear) images of 60 human subjects, and 58 right face profile (ear)

images of 58 human subjects.

4. The University of Science and Technology Beijing (USTB) datasets5: The USTB

Dataset consists of several ear image datasets. Image Dataset I contains 180 images

of 60 subjects. The ear images in the USTB dataset I are vertically aligned. We used

this dataset for estimating the parameters of the feature extraction techniques; we call

it a training set. For example, for the MLBP, the USTB was used for the estimation of

the size of the local windows, the overlap between the local windows, and the number

of sample points.

5http://www1.ustb.edu.cn/resb/en/index.htm
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3.4.2 Performance of various feature extraction methods

Using the test dataset, we evaluated the following feature extraction methods for the various

parts of the face side view:

� Scale Invariant Feature Transform (SIFT).

� Speeded Up Robust Features (SURF).

� Multi-scale Local Binary Patterns (MLBP).

� Local Ternary Patterns (LTP).

Biometric systems typically operate in either identification mode or verification mode. In

identification, it determines the identity from a database while in verification it confirms the

identity claimed. The performance of a biometric matcher in identification mode is based

on the Cumulative Match Characteristic (CMC) curve [6]. The CMC curve depicts the

probability of obtaining the correct identity in the top n ranks cumulatively. Differently, the

performance of a biometric matcher in verification mode is based on the Receiver Operating

Characteristic (ROC) curve. The ROC curve depicts the percentage of False Accept Rate

(FAR) versus the percentage of False Reject Rate (FRR) at varying threshold. We utilized

the matching scores of the different feature extractors to generate the CMC and ROC curves

for performance comparison, as well as assessment of which part in the face side view is more

useful for personal authentication. Figure 3.3 shows the different representations of the face

side view including (full side view of the face, side view without hair, and side view without

ear) as well as ear only. Table 3.2 shows rank-1 of the identification experiment. Figures

3.4, 3.6, 3.8 and 3.10 show the CMC curves of the SIFT, SURF, MLBP and LTP feature

extraction techniques, respectively, for various parts of the face side view. Figures 3.5, 3.7,
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Table 3.2: Comparison of identification (Rank-1) rate several techniques.

Left set (R1%) SIFT SURF MLBP (O) LTP (O)
Side 71.30 69.13 52.39 51.30
Profile (W Ear) 72.61 75.65 65.00 59.13
Profile (W/O Ear) 61.30 56.74 60.87 54.78
Ear 33.48 44.35 88.48 81.30

Right set (R1%) SIFT SURF MLBP (O) LTP (O)
Side 87.37 87.37 80.70 80.70
Profile (W Ear) 85.61 87.72 82.81 81.40
Profile (W/O Ear) 76.14 73.68 81.40 80.00
Ear 63.86 65.96 92.98 91.93

Average (R1%) SIFT SURF MLBP (O) LTP (O)
Side 77.45 76.11 63.09 62.55
Profile (W Ear) 77.58 80.27 71.81 67.65
Profile (W/O Ear) 66.98 63.22 68.46 64.43
Ear 45.10 52.6 90.20 85.37

3.9 and 3.11 show the ROC of SIFT, SURF, MLBP and LTP feature extraction techniques,

respectively.

The findings of these experiments are as follows:

� We attribute the performance difference between the right and the left side views to the

variance in the size of the dataset and the variance in the lighting conditions between

the gallery and probes for the UND dataset.

� Face side view images that include the ears, which can be considered as fusion of face

profile and ear at the image level, provides better identification accuracy than that of

the face profile images without the ears; hence it is recommended to keep the ear region

when using the face side view for recognition. We lay the enhancement in performance

to the morphological components of the ear, which make the ear shape information

retrievable from the shadow information.

� Side view face, including the ear and without the hair part, outperforms the complete



46 Chapter 3. Automated Ear Recognition

(a)
(b)

Figure 3.4: Cumulative Match Characteristic (CMC) curve of several techniques (SIFT,
SURF, MLBP, and LTP) for (a) left side images and (b) right side images. The horizontal
axis of the CMC represents rank n and the vertical axis represents the probability of obtaining
the correct identity in the top n positions cumulatively.

head side view, including the hair region; hence it is recommended to crop out the hair

region when using the face side view for recognition. We attribute the decrease in the

performance to the noise provided by the hair region; plus, it is easy to change the

haircut/style, which may mislead the system.

� The performance of the ear region alone using MLBP and LTP provides better identi-



3.4. Experimental Results 47

(a)
(b)

Figure 3.5: Receiver Operating Characteristic (ROC) curve several techniques (SIFT, SURF,
MLBP, and LTP) for (a) left side images and (b) right side images. The horizontal axis of
the ROC represents False Accept Rate (%), and the vertical axis represents the False Reject
Rate (%).

fication performance compared to side view including the ear.

We attribute the low performance of the SIFT and SURF techniques to failure in

enrollment (in other words ear images has no or insufficient extracted SIFT/SURF

points), which explains the cut off in the ROC curves in Figures 3.5,3.7,3.9 and 3.11.
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(a)
(b)

Figure 3.6: CMC curves for (a) left profile images with ear and (b) right profile images with
ear

3.4.3 Performance of Face Profile and Ear Fusion

Fusion is combining information from multiple biometric modalities or biometric systems.

The integration of the information from multiple sources is more likely to provide better

performance to the biometric system, which means more stable systems that match real-

world applications. Fusion can be applied at the sensor/image, feature, match score, and
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(a)
(b)

Figure 3.7: ROC curves for (a) left profile images with ear and (b) right profile images with
ear

decision levels, as well as rank level in case of identification mode [56]. In this experiment,

we consider the following fusion levels:

� Side view image including ear can be considered as fusion of face profile and ear at the

image/sensor level.

� Fusion at the feature level using simple concatenation rule, where we consider the same
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(a)
(b)

Figure 3.8: CMC curves for (a) left profile images without ear and (b) right profile images
without ear

features from face profile and ear, i.e., MLBP for both modalities. Table 3.3 shows

rank-1 performance for fusion at the feature level.

� Fusion at the score level, match scores output by face profile and ear matchers are

consolidated. This approach has been widely used since match scores are easy to

access and combine. However, match scores output by different biometric matchers

need a normalization step. Several integration rules can be used to implement score



3.4. Experimental Results 51

(a)
(b)

Figure 3.9: ROC curves for (a) left profile images without ear and (b) right profile images
without ear

level fusion. A fusion rule which is commonly used in the literature is the simple mean

formulated by the following formula Smean = (
∑

k=1 sk)/K, where sk is the match score

output by the kth matcher. Another integration rule is the Weighted-Sum (WS) rule,

where equal weights correspond to a simple mean. To tune the weights employed in

the weighted-sum rule, an experiment is carried out to find the amount of contribution

of face profile and ear in the identification procedure SWS = αSfp + βSear, where α is
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(a)
(b)

Figure 3.10: CMC curves for (a) left ear images and (b) right ear images.

the face profile weight and β is the ear weight and α + β = 1.

The findings of these experiments are as follows:

� Fusion at the score level, which is the most common approach in multibiometric systems

[56], proved to yield better performance compared to fusion at the sensor/image and

feature levels. We attribute the worse performance at the feature level to the inferior

performance of the selected fusion rule (simple concatenation).
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Table 3.3: Fusion at the feature level

Left set (R1%) SIFT SURF MLBP (O) LTP (O)
Profile (W/O) Ear 61.30 56.74 60.87 54.78
Ear 33.48 44.35 88.48 81.30
Fusion 29.35 70.65 64.13 59.57

Right set (R1%) SIFT SURF MLBP (O) LTP (O)
Profile (W/O) Ear 76.14 73.68 80.70 80.00
Ear 63.86 65.96 92.98 91.93
Fusion 60.35 83.16 82.11 81.75

Average (R1%) SIFT SURF MLBP (O) LTP (O)
Profile (W/O) Ear 66.98 63.22 68.46 64.43
Ear 45.10 52.62 90.20 85.37
Fusion 41.21 75.44 71.01 68.06

Table 3.4: Fusion at the Score level

Left set (R1%) SIFT SURF MLBP (O) LTP (O)
Profile (W/O) Ear 61.30 56.74 60.87 54.78
Ear 33.48 44.35 88.48 81.30
Simple Mean 56.74 65.43 86.52 77.83
WS(α = 0.25, β = 0.75) 50.22 55.00 89.78 83.48
WS(α = 0.75, β = 0.25) 66.30 69.13 78.04 66.52

Right set (R1%) SIFT SURF MLBP (O) LTP (O)
Profile (W/O) Ear 76.14 73.68 80.70 80.00
Ear 63.86 65.96 92.98 91.93
Simple Mean 77.89 78.95 92.28 90.18
WS(α = 0.25, β = 0.75) 76.14 73.68 93.33 92.63
WS(α = 0.75, β = 0.25) 81.75 83.51 89.82 86.32

Average (R1%) SIFT SURF MLBP (O) LTP (O)
Profile (W/O) Ear 66.98 63.22 68.46 64.43
Ear 45.10 52.62 90.20 85.37
Simple Mean 64.83 70.60 88.72 82.55
WS(α = 0.25, β = 0.75) 60.14 62.15 91.14 86.98
WS(α = 0.75, β = 0.25) 72.21 74.63 82.55 74.09
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(a)
(b)

Figure 3.11: ROC curves for (a) left ear images and (b) right ear images.

� Table 3.4 shows that (i) for the texture-based techniques (MLBP and LTP), assigning

more weight to the ear score enhances the overall system performance; (ii) for the

shape-based techniques (SIFT and SURF), assigning more weight to the face profile

score enhances the overall system performance; and (iii) suitable fusion of ear and

face profile has synergy (i.e., it yielded an overall performance better than the simple

addition of the two modalities).
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3.5 Case Study

Figure 3.12: An overview of the proposed side-view face recognition system

The objective of this section is to present an outline of the suggested approach for biometric

authentication in the scenarios when only face side view is available, based on the analysis

of the previous performance evaluation experiments. The suggested approach is as follows:

1. Detect the ear region and the face profile without the hair/ear region, then crop them

from the original image.

2. Use MLBP for each component feature’s representation. Calculate the distance be-

tween the input pattern and the patterns enrolled in the database to generate the

score matrix for each component individually.

3. Perform Weighted-Sum fusion with giving high weight to the ear scores (W = 0.75)

and low weight to the face profile score (W = 0.25). Use the final output determine

the identity of the candidate.

Figure 3.12 shows an overview of the proposed side-view face recognition approach. Figure

3.13 shows the CMC curves for the proposed approach on our dataset and Table 3.4 shows

rank-1 results.
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Figure 3.13: CMC curves for (a) left ear images and (b) right ear for different fusion scenarios.



Chapter 4

Ear Detection

4.1 Introduction

An automatic ear recognition system consists mainly of three modules: An ear detector that

localizes ears in images or videos. Second, a feature descriptor that encodes the identity

information from the ear image. Third, the ear representation module that is used to identify

or verify who is the subject that the ear belongs to. An ear detector is expected to localize

the ear region automatically and accurately (if there is any) in controlled and uncontrolled

image settings and within a facial pose range. The output of such a detector provides the

bounding boxes of the ears in the image, which can then be used for human authentication.

In this chapter, we propose an ear detection system that uses a Faster Region-based Convolu-

tional Neural Network (Faster R-CNN) architecture. We experimented with this architecture

using a two-phase training procedure to evaluate our proposed ear detection system. First,

we train the AlexNet CNN based model [104] for classifying ear vs. non-ear segments.

Second, for ear detection, we train the complete Faster R-CNN detection system, unified

57
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Region Proposal Network (RPN) with the AlexNet, which has five sharable convolutional

layers. The system operates in real-time and does not rely on detecting the front or side

face to localize the ear in an image. The system accomplishes a 98% detection rate on a test

set composed of data from different ear datasets. In addition, the system’s ear detection

performance is high even when the test images are from un-controlled settings with a wide

variety of images in terms of image quality, illumination, and ear occlusion.

4.2 Related Research

For conventional ear detection, cascaded Adaboost classifiers that uses Haar basis features,

widely known as Viola-Jones [74], had demonstrated good detection performance and had

been widely used for ear detection. The Adaboost classifier combines a set of weakly effective

classifiers to form a strong classifier. The advantage of a cascaded approach is that early

stages can reject most of the irrelevant segments, creating a faster classifier. Islam et al. [75]

used it for ear detection, but the technique was reported to be relatively slow. Abaza et al.

[57] modified the Adaboost algorithm to reduce the training time. Their system was fast

and robust for partial occlusion, and they achieved 95% detection rate. Yuan and Mu [76]

enhanced the original cascaded Adaboost classifier to achieve high ear detection rates when

the input ears are captured under complex background.

While conventional machine learning algorithms have been primarily used for ear detection,

deep convolutional neural networks (CNNs), seem to be an attractive alternative solution

due to their success in solving many similar computer vision problems. CNNs have been

deployed in many computer vision applications, including but not limited to image-based

object recognition, object detection, and classification. One of the targets of interest has also

been human faces, and thus, since 2013, we have seen an increasing number of publications
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on face detection and recognition. CNNs demonstrate advanced performance when compared

to conventional machine learning approaches. They receive an input (image) and transform

it through a series of convolutional, nonlinear activation, pooling (downsampling), and fully

connected layers, and provide an output. A CNN architecture, in the simplest case, consists

of a list of layers that transform an image volume (in our case, a biometric image) into

an output volume. This volume is holding the class (biometric identities) scores, namely

the probabilities of that biometric image belonging to each of the individuals enrolled into

the human recognition system. In terms of object detection techniques, recent publications

report that region-based CNNs detection algorithms achieve superior detection performance

on various detection benchmark studies, including those on face detection [81], [80], [82].

There has also been recent work on ear detection using a deep learning-based framework.

Emeršič et al. [83] proposed an approach for ear segmentation in face images. Their method

first applies a face detection algorithm to localize the ears before ear detection. Next, it uses

a convolutional encoder-decoder network (CED) based on the SegNet, to classify the pixels

of the input image into either an ear or a non-ear class. In that study, the authors performed

their experiments using the Annotated Web (AWE) dataset [106]. The main drawback of

that method is that it can only be used on images where only a single face is present in the

field of view.

In another related work, Zhang and Mu [84] proposed a method involving Multiple Scale

Faster R-CNN for ear detection. In that study the authors detect three regions of interest,

namely the head (human profile), the pan-ear region, and, finally, the ear. Their approach

uses the information of the ear spatial related context to locate the ear region accurately and

eliminate false positives. Since, the main advantage for ear recognition is when a captured

face image is not usable for recognition, due to pose variation or occlusion factors that cannot

be corrected, using frontal/profile face localization prior to ear detection gives away the main
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advantage for ear recognition. There is a need for robust ear detection that successfully detect

the ears in profile face images (where the part or ideally the whole ear is visible), even if

part of the face is not visible or occluded.

4.3 Proposed Approach

In this work we used the Faster RCNN framework [77] for ear detection. The Faster RCNN is

the third generation of region proposal detection methods preceded by RCNN [78] and Fast

RCNN [79]. The RCNN, Regions with Convolutional Neural Network Features, introduced

in [78], had boosted the detection performance in many applications. The approach has

three main stages:

1. Run an object proposal method, commonly selective search, to extract the regions of

the image that are likely to have the object/s of interest in them.

2. Wrap the regions generated from stage one and run them through a convolutional

network to compute their features.

3. Classify each region with SVM/s and optimize the bounding box/s.

The main drawback for this method is extracting the features for each region independently

without sharing computation.

Later, Ren et al. in [79] proposed the Fast RCNN approach for object detection which

extracted the convolutional features for the complete image instead of computing them for

each individual region. The system was faster than the RCNN and easier to train, but

still the region proposal using selective search was a bottle neck process that consumed a

lot of time. So later, Faster RCNN was introduced to overcome that problem. It replaced
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Figure 4.1: Faster RCNN has a region proposal network (RPN) after the last convolutional
layer of the CNN that shares the convolutional features and produce region proposals for
the object to be detected. The convolutional features of these regions are processed for
object classification, classify the content in the bounding box, and a regressor to adjust the
bounding box coordinates.

the selective search for region proposal with a Region Proposal Network (RPN) that shares

convolutional layers with state-of-the-art object detection networks, which made the system

much faster than its original version.

Thus, in summary, the first step of Faster RCNN uses a Region Proposal Network that runs

an image to propose a set of boxes/regions that are likely to have the object of interest

detected within each of these bounding boxes.

Next, the convolutional features of these boxes/regions are processed for object classification

and regression of the bounding boxes. The main advantage of the Faster RCNN method is

that it trains CNNs end-to-end to generate region proposals (see example in Figure 4.1) and
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classify them into different object categories or the background in a unified object detection

system.

What follows is a step-by-step algorithmic process that demonstrates how Faster RCNN is

adapted to be able to perform ear detection efficiently:

1. An input image is processed through the convolutional neural network, and thus, a

convolutional feature map for that image is generated.

2. This feature map is processed through a separate network called the Region Proposal

Network (RPN). A sliding window moves spatially across the feature map and maps

it to a lower dimension (256-d). For each sliding window, nine anchors are generated,

all with the same center but with three different aspect ratios and three different

scales. Each anchor is processed through the convolutional layers of the RPN, and the

network outputs the probability that this anchor represents an object or an ”object-

based” score and a predicted bounding box. If an anchor box has an object-based

score that falls above a certain threshold, that box’s coordinates get passed forward as

a region proposal.

3. In this step, region proposals pass through a Region of Interest (ROI) pooling layer,

fully connected layers, and, finally, a softmax classification layer and a bounding box

regressor to obtain the most accurate coordinates to fit the object. The output of

the regressor determines a predicted bounding box (x, y, width, height). Finally, the

output of the classifier is the probability p indicating that the predicted box contains

the object of interest.

In this work, and in order to perform ear detection in the wild, we used the AlexNet model

[104] in the Faster R-CNN detection framework as shown in Figure 4.1. A discussion of all

the experiments performed using our approach is discussed below, in Section 5.4.



4.4. Experiments 63

4.4 Experiments

An ear detector should automatically locate the ear region (if there is any) in controlled and

uncontrolled image setting, regardless of the face pose. At the last step, the detector will

provide the bounding boxes of the ears in the image.

4.4.1 Ear Data Sets

An ensemble of images from four different face and ear data sets was formed to overcome

the limited size of the available ear data sets. Two non-overlapping sets were formed, one

for training the proposed ear detection system and the other set was used for testing it. The

images used are from the following data sets:

1. The University of Notre Dame (UND) databases1: The UND database consists of

multiple collections for face and ear modalities.

� Collection E contains 464 left face side profile(ear) images from 114 subjects.

� Collection F contains 907 right face side profile(ear) images from 286 subjects.

Please note that within the ear image collection sets, there is a number of subjects

that are wearing earrings and also some in which hair is covering the area around the

ear (minor occlusion).

2. FERET database [72]: The FERET database was part of the Face Recognition Tech-

nology Evaluation (FERET) program. The database was collected in 15 sessions be-

tween August 1993 and July 1996. For some individuals, images were collected at right

and left profile (labeled pr and pl).

1https://sites.google.com/a/nd.edu/public-cvrl/data-sets
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Figure 4.2: Sample images from the Annotated Web Ears (AWE) data set. Images demon-
strate an extended variability in shape, color, pose, illumination, and partial occlusion.

3. WVU database [36]: The WVU ear database consists of 460 video sequences for about

400 different subjects and multi-sequence for 60 subjects. Each video begins at the

left profile of a subject and terminates at the right profile. This database has subjects

with eyeglasses, earrings, and partially occluded ears.

4. Annotated Web Ears (AWE) database [106]: The AWE dataset contains images of

100 subjects. For each subject there are 10 ear images that vary in terms of quality

and size. The AWE dataset was collected from web images for popular figures such as

actors, musicians, and politicians. Figure 4.2 shows a sample of ear images from the

AWE dataset.

Table 4.1 shows the components of the data set used.

4.4.2 Setup and Training

The detection system consists of two main modules:

1. The Region Proposal Network: that proposes the regions that are likely to be ear

regions.
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Table 4.1: Various databases used in our study.

Data set Train Test

UND, Collection E 102 102
UND, Collection F 285 285
FERET 240 240
WVU 118 118
AWE 679 -

Mixed Test set 1424 745

2. The Classifier Network: that classify the candidate regions to an ear or a non-ear

category.

The training of the system was accomplished in two stages:

1. AlexNet model train: We used AlexNet Convolutional Neural Network as the core of

the Faster R-CNN ear detection system. The AlexNet was pre-trained on about 1.2

million images from the ImageNet Dataset2 to classify 1000 object categories. The

model has 23 layers, (five convolutional layers, max-pooling layers, dropout layers,

and three fully connected layers) and uses ReLU for the nonlinearity functions. The

AlexNet was trained to classify the ear vs. non-ear regions. In this stage, we manually

segmented the ears from the original ear databases used as discussed above in Section

4.4.1. We used the original ear pose segment as well as synthesized angles to generate

additional ear segments. Then, we added the bilateral mirror image of each ear segment

for a total of 1700 segments. For the non-ear segments, we used 13,500 segments that

were randomly segmented from side view face images with various background and

face parts other than ear related image regions.

2. Faster RCNN based train: the unified Region Proposal Network (RPN) with the

AlexNet, that shares the convolutional features, end to end detector was trained using

2http://image-net.org/index
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the whole train set mentioned above in Table 4.1. Ears in the dataset images were

manually annotated. The system was trained in an alternating process similar to [77].

First, the RPN is trained with the ear region candidates. Second, the detection net-

work is trained using the region proposals from the last step. Third, re-training RPN

using weight sharing for the network to tune the RPN. Fourth, the fully connected

layers of the detection network are fine-tuned, utilizing the proposals of the last step.

The network training algorithm uses Stochastic Gradient Descent with Momentum (SGDM)

with an initial learning rate of 106. We resized the input images based on the ratio

min(600/min(w, h), 1024/max(w, h)).

For the RPN, we used the top 2,000 ear-based region candidates. For each sliding window,

a set of nine anchors is generated, which all have the same center (xa, ya) but with three

different aspect ratios and three different scales. For each of these anchors, a value p∗ is

computed which indicated how much these anchors overlap with the ground-truth bounding

boxes:

p∗ =


1 if IoU > 0.7

−1 if IoU < 0.3

0 otherwise

where IoU is intersection over union and is defined below:

IoU = Anchor
⋂

GroundTruthBox
Anchor

⋃
GroundTruthBox

The loss function is defined as in [77]:
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L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )

+λ
1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ).

Here, i is the index of an anchor in a mini-batch and pi is the predicted probability of anchor

i being an ear, ti and t∗i are the vectors representing the 4 parameterized coordinates of the

predicted bounding box and the ground-truth box associated with a positive anchor. Lcls

denote probability prediction loss function and Lreg bounding-box regression loss function.

Ncls and Nreg are the normalization parameters and λ = 10 is a balancing weight. The

output of the regressor determines a predicted bounding box (x, y, width, height). For

bounding box regression, we adopt the parameterizations of the 4 coordinates following [78]:

tx = (x− xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha)

t∗x = (x∗−a)/wa, t
∗
y = (y∗ − ya)/ha

t∗w = log(w∗/wa), t
∗
h = log(h∗/ha)

where x and y denote the two coordinates of the box center,

w width of the box,

and h height of the box.

The variables x, xa, and x∗ are for the predicted box, proposal box, and ground truth box,

respectively.
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4.4.3 Ear Detection

In order to detect the ears of an input image with profile face, the original image is processed

using the fully convolutional RPN to produce the strongest 2,000 region ear-based candidates.

Non-maximum suppression (NMS) is performed on the candidate regions to discard the

less confident ones using the Intersection Over Union (IoU) that reduces the number of

candidates. Next, all the ear-based region candidates are classified to ear or non-ear related

regions. The output of the ear detection includes the coordinates of the bounding box of the

ear regions with a score that represents the level of the detection confidence.

4.4.4 Experimental Results

Each of the candidate regions that result from the ear detection system is labeled as: True

Positive (TP), True Negative (TN), False Positive (FP) or False Negative (FN). To analyze

the detection results, the False Accept Rate (FAR) and False Reject Rate (FRR) results are

used, where:

� False Accept Rate (FAR) is the number of regions falsely detected (FP) over the total

number of ear segments presented in the images.

� False Reject Rate (FRR) is the number of non-detected ear segments in the images

(FN) over the total number of the ear segments presented in the images.

We tested the detection system using 745 profile images as mentioned in Table 4.1.

Figure 4.4 shows some examples of the true positives without any false positives, while Figure

4.5 shows examples of falsely accepted ear images.

The results are summarized in Table 4.2 where we can see that the system works well,
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Table 4.2: Detection Results

Data set TP FP FN FAR FRR R-1%

All detections 729 159 16 21.34 2.81 97.85
Detections with score 0.75 712 36 33 4.8 4.4 95.57
Detections with score 0.8 707 22 38 2.9 5.1 94.89
Detections with score 0.85 695 14 51 1.88 6.84 93.28
Detections with score 0.9 674 5 71 0.67 9.53 90.47
Detections with score 0.99 410 0 335 0 44.96 55.03

Figure 4.3: Precision/Recall curve for IoU of 0.1, 0.3, 0.5, 0.7, 0.9.

Figure 4.4: Examples of successful ear detection.
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Figure 4.5: Examples of false accept errors.

demonstrating a 729/745 98% detection rate. The main drawback is that the false accep-

tance rate is about 21%. By varying the threshold of detection scores, we can balance the

tradeoff between the FAR and the FRR according to the application in mind. When using

a threshold of 0.99 for the detection score, the output of the detection system has zero False

positives or zero FAR, but the rate of detection decreases to 55%. On the other hand, a

threshold of 0.75 increases the detection rate to about 96% and decreases the FAR to 5%.

The table shows the trade of between the true positive and the false positives by varying the

threshold for the detection scores.

Precision and Recall are another measures of detection accuracy where, Precision is the

fraction of True Positives among all the detections, while Recall is the fraction of True

Positives that have been retrieved over the total amount of all positive examples ranked

above a given rank.

Precision =
TP

TP + FP
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Figure 4.6: Examples of ear detection in an uncontrolled setting (pose variation, different
acquisition devices, low resolution, illumination variations, crowded backgrounds, and occlu-
sions).

Recall =
TP

TP + FN

For a given task, the Precision/Recall curve is computed from a method’s ranked output. By

varying the Intersection-over-Union (IoU) threshold, the larger the threshold the fewer the

detections that are considered to be true positives. Figure 4.3 shows the Precision/Recall

curves at different values of the IoU.

Additionally, we examined our proposed ear detection system on a few sample images from

the internet that were captured under uncontrolled settings. These images suffer from dif-

ferent levels of pose variation, and occlusion or have multiple subjects (profile faces) within

each image as shown in Figure 4.6.
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Deep Ear Recognition with Image

Quality Assessment

5.1 Introduction

Although conventional-based ear recognition systems are still being used and result in accept-

able (dataset-dependent) recognition performance, deep learning methods have the potential

to improve the current state-of-the-art further. Deep learning methods have already dramat-

ically improved the efficiency of various computer vision systems and brought breakthrough

solutions in processing images, videos, speech, and audio [90, 91, 92, 93, 94, 95, 96, 97].

Specifically, in biometrics, there has been progress in using deep learning-based models for

different biometric applications such as face, fingerprint, periocular, and gait recognition

[88, 89, 98, 99, 100]. Therefore, employing deep models for ear description and feature

extraction became an attractive area of research.

In this chapter, we propose deep ear recognition models and evaluate their performance. We

72
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first establish a baseline for the performance; then, we perform detailed experiments to quan-

titatively evaluate the performance of the different ear recognition models in the presence of

image artifacts, which commonly occur in real-life recognition applications, to identify their

shortcomings and draw conclusions for enhancement. Yaw pose angle, is another obstacle

that impacts the performance of ear recognition systems. For this purpose, we used a unique

ear data set, offering a wide range of yaw pose angles, to evaluate the effectiveness of the deep

ear recognition models we investigate. The experimental results show that image artifacts

significantly affect recognition performance and can cause an efficiency loss in the biometric

system. Consequently, evaluating the quality of ear images before processing can benefit ear

recognition systems.

There has been limited discussion on the quality assessment of ear images for recognition

applications. A quality assessment algorithm evaluates an input sample to determine if

it is suitable for automated matching [142]. This is also related to the recognition scenario

(constrained vs. unconstrained), the biometric recognition system (COTS vs. academic) and

cannot necessarily be aligned with the human perspective of ear image quality assessment.

In this work, we develop a system for holistic ear image quality assessment. The system

serves as a guide for ear recognition systems to enhance recognition accuracy.

Hence, we propose a set of efficient deep ear recognition models that offer high recognition

accuracy under variable conditions when supported by an ear image quality assessment tool.

The contributions are summarized as follows:

� We provide a comparative evaluation of the performance of four deep CNN models:

SqueezeNet, GoogLeNet, MobileNet, and DenseNet, for ear identification and veri-

fication tasks. For that purpose, we use an ear dataset with a wide range of pose

angles.
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� We quantitatively assess the impact of the quality of the ear image on the performance

of deep ear models. In order to further explore the strengths and weaknesses of our

proposed deep ear models, we evaluate the recognition performance in the presence of

multiple ear image degradation factors, including blurriness, brightness, and contrast

variations, to obtain if the performance of certain CNNs is more prone to degradation

in response to specific grades of artifacts.

� We propose an automatic ear image quality assessment tool to act as a guide for

improving ear recognition accuracy. Quality labels are obtained from scores yielded by

an ear recognition matcher. Using predicted quality labels improves ear recognition

performance and reduces error rates.

5.2 Background:

What follows is a discussion and literature review on the subject from the perspective of

image quality assessment and ear recognition technologies.

5.2.1 Introduction to Biometric Quality:

A quality of a biometric sample is an indicator of how suitable it is for automated matching.

The environmental image distortions such as noise, blur, and illumination variation are

primary reasons for the deterioration in biometric identification accuracy. Therefore, there

is a need for a quality assessment algorithm to produce a target quality that predicts the

recognition performance of the biometric system when employing the sample regardless of

human judgment. In some cases, comparing two biometric samples of low quality can produce

high genuine similarity scores [118]; therefore, the biometric sample’s quality needs to be
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evaluated without a reference or comparison with a second sample.

The two modes of operation of a typical ear biometric system are enrollment and recognition

(verification or identification). In the enrollment mode of operation, a user’s ear biometric is

captured to generate the template(s) to be stored in the system’s database. In the recognition

mode of operation, an input ear sample is processed to identify a subject or verify his/her

identity. An ear image quality assessment can be helpful for one or more but not limited to

the following scenarios:

� During enrollment, when the system determines that an enrollment (input) sample is

of low quality; it can guide the user and recapture the sample.

� During verification, when genuine users are expected to provide an input ear biometric

sample of high quality for recognition, ear image quality needs to be established as

good before verification. The quality examination can be used to guide the recapture

of the biometric sample or to prevent spoofing by the presentation of a deliberately

poor biometric sample from an imposter.

� In preprocessing of biometric samples, the evaluation of a biometric sample’s quality

can be used to initiate certain preprocessing algorithms.

� In surveillance or video-based ear recognition applications, the quality assessment is

useful for the frame selection for the recognition operation.

� In the fusion of multiple images and/or biometric modalities, quality assessment can

provide a guide for sample selection.

The target quality value can be a scaler prediction of the genuine score, a bin indicating that

an image is poor/fair/good for matching or a binary value of low-quality vs. high-quality
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images [142]. In this work, we develop a holistic ear image quality assessment without

measuring individual factors. In most biometric applications, it is sufficient to detect low-

quality biometric samples to reject them and initiate the proper action. The proposed system

produces a binary value indicating whether an image is good or bad for matching.

5.2.2 Related Research

In this section, we provide a brief review of relative work on ear recognition and the usage

of image quality assessment in biometric applications.

Ear Recognition

The potential of the human ear for personal identification was recognized by Alphonse

Bertillon as early as 1890 [143]. In 1949, Alfred Iannarelli developed one of the first ear

recognition systems. He used twelve measurements from the ear image to represent the ear

[8]. Since then, multiple machine learning methods and conventional matchers have been

used for ear recognition research studies. There have been multiple detailed reviews of ear

recognition history, techniques, and their progress [14, 106], with a recent one [109].

After developing deep learning models and their improved performance for many machine

vision applications, the ear recognition research shifted toward employing them for ear recog-

nition systems. There have been multiple efficient systems based on CNNs for ear detection

[84, 85, 102, 103] and ear segmentation [126], which is an important step that can be used to-

wards deep learning-based ear recognition approaches. For recognition, the limited ear train-

ing data was the main obstacle in utilizing convolutional neural networks for ear recognition

applications. Emeršič et al. [110] addressed this problem. They collected an uncontrolled

ear dataset from the internet. The team presented the Unconstrained Ear Recognition Chal-
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lenge (UERC), which was held twice in 2017 [112] and 2019 [113] to evaluate the state of

the ear recognition technology for unconstrained ear images. Eyiokur et al. [115] presented

a detailed ear recognition study using the UERC 2019 dataset. Whereas Dodge et al. [116]

used a hybrid deep and shallow learning approach for ear recognition.

Zhang et al. [119] used three CNNs with different scales of ear images to obtain multi-

scale ear representations for ear verification. They did their experiments on their new ear

database named USTB-Helloear. Khaldi et al.[125] proposed a two-phase training method

for the VGG16 architecture for ear classification. They also used Generative Adversarial

Network to color the USTB II dataset images. The inceptionV3 deep learning model was

used in [124] for recognition of the AMI ear database. They used the network as a feature

extractor and principal component analysis to reduce the feature vector size. Alshazly et al.

[120] achieved Rank-1 recognition accuracy of 93.45% for the EarVN1.0 dataset using the

ResNeXt CNN, and they used the t-SNE algorithm to visualize the learned features. They

also built ensembles of ResNet models with various depths for feature extraction, followed

by SVM classifiers [121]. Finally, Meng et al. presented a study on distinctiveness and

symmetry in Ear Biometrics [122]. In their experiments, they recognized the gender with a

90.9% success rate and confirmed the existence of symmetry between a subject’s ears. Table

5.1 provides a comparative summary of ear recognition techniques in terms of Rank-1 (%)

identification rate.

Biometrics Quality

There has been plenty of studies that investigated the quality of face images for biometric

recognition and the performance of face recognition algorithms concerning different covari-

ates, on the contrary, there has been minimal work that analyzes the quality of ear images

for recognition.
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Table 5.1: Comparative summary of 2D ear recognition performances in terms of identifica-
tion rate at Rank-1 (in %).

Method Year Dataset Rank-1

LBP [20] 2014 UND-J2 97.22
LPQ [20] 2014 UND-J2 98.73
HOG [20] 2014 UND-J2 97.85
BSIF [20] 2014 UND-J2 98.67
SqueezeNet [110] 2017 AWE + CVLE 62.00
GoogLeNet [115] 2017 Multi-PIE 99.32
VGG-16 + GoogLeNet [115] 2017 UERC 67.53
PHOG + LDA [101] 2017 IITD-I 92.76
PHOG + LDA [101] 2017 IITD-II 95.77
PHOG + LDA [101] 2017 UND-E 96.60
BSIF [107] 2017 USTB-I 98.97
BSIF [107] 2017 IITD-I 97.39
BSIF [107] 2017 IITD-II 97.63
SIFT [128] 2018 FERET + WVU + UND + USTB 45.10
SURF [128] 2018 FERET + WVU + UND + USTB 52.60
MLBP [128] 2018 FERET + WVU + UND + USTB 90.20
LTP [128] 2018 FERET + WVU + UND + USTB 85.37
Multiband PCA [129] 2018 USTB-II 51.95
Multiband PCA [129] 2018 IITD-II 93.21
VGG-M + SVM [108] 2018 USTB-I 99.40
VGG-M + SVM [108] 2018 USTB-II 99.60
VGG-M + SVM [108] 2018 IITD-I 99.90
VGG-M + SVM [108] 2018 IITD-II 99.80
ResNet18 [116] 2018 USTB-Helloear 97.40
VGG-Face [119] 2018 AWE + CVLE 80.03
MLBP [130] 2019 USTB-I 98.33
MLBP [130] 2019 IITD-I 98.40
MLBP [130] 2019 IITD-II 98.64
inceptionV3 [124] 2020 AMI 98.1
VGG16 [111] 2020 AWEx(Male) 43.70
ResNet [111] 2020 AWEx(Male) 29.50
SqueezeNet [111] 2020 AWEx(Male) 52.60
ResNeXt [120] 2020 EarVN1.0 93.45
VGG16 [125] 2021 AMI 98.33
VGG16 [125] 2021 USTB-II 100.00
VGG16 [125] 2021 AWE 51.25
ResNet + SVM [121] 2021 AMI 99.64
ResNet + SVM [121] 2021 AMIC 98.57
ResNet + SVM [121] 2021 WPUT 81.89
ResNet + SVM [121] 2021 AWE 67.25
Our proposed approach 2022 WVU, USTB-III 99.67, 99.35
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In the field of quality assessment for face recognition, Abaza et al. [131] examined the

influence of face images’ quality factors, such as contrast, brightness, sharpness, focus, and

illumination, on recognition performance. They evaluated quality measures for each factor

and proposed a face image quality index that combines multiple quality measures which

reflects the changes of input quality factors in correlation with face recognition performance.

In another work, Best-Rowden et al. [118] proposed a model for the automatic prediction

of face image quality. They used two techniques for face image quality assessments: human

ratings of face image quality and quality values computed from similarity scores from face

matchers. For matcher-dependent face quality values, they used the normalized comparison

of a sample’s genuine score with its impostor distribution when compared to a gallery of

samples. For both techniques, each face image was represented with a 320-dimensional

feature vector extracted from face images using the ConvNet for face recognition. Using the

face representations, they trained a support vector regression (SVR) model with a radial basis

kernel function (RBF) to predict the normalized comparison scores from the face matcher or

the human quality rating. In their experiments, they used the predicted face image quality

to reject low-quality face samples, which reduced FRR at 1% FAR error rates by at least

13% for different face matchers.

Ortega et al. [132] [133] proposed the FaceQnet for face image quality assessment for recog-

nition purposes. The FaceQnet is based on the ResNet-50 architecture. The network was

trained to output a quality measure between 0 and 1 related to face recognition accuracy.

The authors labeled a subset from the VGGFace2 face database with quality scores for train-

ing. For each subject of the dataset, they used one face image with the highest compliance

with ICAO (standards for machine-readable travel documents) as the perfect quality face

image. The comparison scores between the other sample images of the subject with the high-

quality face images were used as quality values for these face images. The FaceQnet was



80 Chapter 5. Deep Ear Recognition with Image Quality Assessment

trained using the pairs of face images and their quality values. To evaluate their proposed

system, they obtained the quality values for a test set of face images and performed verifica-

tion. Their experiments showed a correlation between their quality measure and verification

accuracy.

For the quality of ear images for ear recognition, in an earlier study, Pflug et al. [127] inves-

tigated the impact of signal degradation on ear recognition performance. Their experiments

examined the effect of noise and blur on descriptor-based ear recognition, including LBP,

LPQ, and HOG. More recently, Emeršič et al. [111] performed a detailed study of the ef-

fect of subject-related covariates, including ethnicity, head rotation, gender and presence of

occlusions, and accessories on the performance of ear recognition techniques.

Figure 5.1: An overview of the deep learning-based ear recognition system. The proposed
CNN is pre-trained on the ImageNet dataset and then fine-tuned using an ear dataset [134].
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5.3 Methodology

Our experiments examine multiple Convolutional Neural Network architectures to find the

appropriate model for the ear recognition task. An overview of the models examined, the

learning strategies implemented, and the ear image artifacts explored follows.

5.3.1 Convolutional Neural Network Models learning

A Convolutional Neural Network is a deep learning algorithm that processes input data, such

as an image, to learn their spatial hierarchies and determine a set of distinguishing charac-

teristics. The CNN consists of multiple layers (convolutional, pooling & fully connected) to

filter images, extract their informative features, and classify them. Although Convolutional

neural networks were introduced by LeCun et al. [135] in the 1980s, for the recognition

of handwritten zip code digits, they became popular after the breakthrough they brought

for image classification in 2014. Since then, Convolutional neural networks have emerged

as a leading algorithm in computer vision. Advancements in computer hardware and larger

datasets supported that advancement. In addition, there have been multiple studies to

improve CNNs’ architecture and enhance their performance for multiple machine learning

applications, including biometrics. We examined multiple CNN models which represent the

various developments in general CNN architectures and tuned them for ear recognition.

Table 6.2 summarizes the main properties for each network.

For the model learning to overcome the limited size of the ear datasets available, we used

multiple learning strategies, including data augmentation and transfer learning. For data

augmentation, although we explored various data augmentation techniques, we concluded

that the following ones resulted in improved accuracy of our models, namely rotation at

random angles up to 40°in both directions (clockwise and counterclockwise) and translation
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I

Table 5.2: Comparison of convolutional neural networks used. Note that parameters are in
millions.

Network Depth Parameters Size Input Size Conv. layers

SqeezeNet [136] 18 1.24 4.6 MB 227×227×3 2 conv.
and 8 fire

GoogLeNet [137] 22 7 27 MB 224×224×3 2 conv.
and 9 inception

MobileNetV2 [139] 53 3.5 13 MB 224×224×3 1 conv.
and 19 bottleneck res.

DenseNet [140] 201 20.0 77 MB 224×224×3 4 conv
and 4 dense blocks

horizontally or vertically with a random number of pixels in the range (-30°to +30°).

We also performed two phases of transfer learning:

1. ImageNet transfer learning: All CNN models used in this work are pre-trained on the

ImageNet dataset [141].

2. Ear dataset transfer learning: In the second phase of transfer learning, ear dataset was

used to fine-tune the CNNs. We fine-tuned our CNN models using the training part

of the AWE ear image data set [106]. The(AWE) dataset is an annotated ear dataset

that was collected from web images of various quality and spatial resolution.

Fig. 5.1 presents an overview of the training for the deep learning models used for ear

recognition.
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5.3.2 Image degradations

The accuracy of Image-based biometric recognition systems is highly dependent on the qual-

ity of the input biometric images. Image degradation factors, such as out-of-focus, noise,

and light alteration, commonly occur in real-life recognition applications and can affect the

performance of biometric recognition systems. Therefore, assessing the conditions that can

result in biometric image degradation manifested by the property of capture devices and

conditions is helpful. In this work, we evaluate the impact of the variation of a set of image

degradation factors on the performance of deep learning-based ear recognition systems. We

systematically altered good quality ear probe images and, thus, generated a set of synthetic

lower quality ear datasets. This was accomplished by adjusting the contrast, brightness, and

blurriness of good quality ear images at different levels:

� Contrast: To adjust the contrast of ear probe images, we saturated ear images at low

and high intensities in a 10% intensity degradation step.

� Brightness: The brightness of the probe ear images was artificially adjusted via a

brightness (gamma γ) factor. This factor specifies the shape of the curve, describing

the relationship between the values of the input and output images after the brightness

level is manually adjusted. In case γ < 1, the mapping is weighted towards higher

(brighter) output values, and if γ > 1, the mapping is weighted toward lower (darker)

output values. We used γ values in the range [0.5, 1.4] with a uniform step size of 0.1

to generate nine probe sets for our brightness-related experiments.

� Blurriness: To generate the blurriness in probe ear images, we convolved them with a

circular averaging filter and border replication. The value of diameter is in the range

[3, 19] pixels with a uniform step value of 2 pixels.
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5.4 Experimental Setup and Results

In this section, first, we describe the data sets used in our experiments. Second, we explain

the setup and the training procedure. Third, we present the performance of different deep

models for ear recognition, including identification and verification. Afterward, we compare

the ear recognition performance in the presence of image distortions.

5.4.1 Datasets

� WVU Ear Dataset: For our experiments, we used the West Virginia University

(WVU) Ear Dataset [36]. It was collected using a unique custom-made device. It

consists of a moving arm holding a camera that captures video sequences. Each video

begins at the left profile of a subject (0°) and terminates at the right profile (180°) in

about 2 minutes. The WVU ear database consists of 460 video sequences for about

400 different subjects and multi-sequence for 60 subjects with an elapsed time period

between them. We used the multiple sequences for our experiments. We used left ear

images from one video sequence for each subject to generate the gallery ear dataset

and images from the second video sequence as the probe ear dataset. For the gallery

set, we extracted 20 ear images from the profile faces at different angles ranging from

-10°passing by 0°(full profile) to about 60°(where the face is visible enough for face

recognition). This process resulted in a training set of 1200 images for 60 subjects.

For the probe set, we used five ear images per subject at about (-10°, 0°, 20°, 45°and

60°), which resulted in a testing set of 300 images.

� USTB Ear Dataset: The University of Science and Technology Beijing (USTB)

collected multiple ear image datasets [53]. Dataset III contains ear images at multiple

angles. Each subject rotates his/her head from 0°to 60°toward the right side, and
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from 0°to 45°toward the left side; two images were recorded at each angle. For our

experiments, we used the ten left ear images for 77 subjects. The ear images were at

angles 0°, 5°, 10°, 15°, and 20°. For each subject, eight images were used in the gallery

set and two in the probe set.

� FERET Dataset: The FERET dataset [72] was part of the Face Recognition Tech-

nology Evaluation (FERET) program. For some individuals, images were collected at

the right and left profiles (labeled pr and pl). From this dataset, we used left face

profile(ear) images of 115 subjects to maintain two images per subject.

5.4.2 Setup and Training for Ear Recognition

We trained ear recognition CNN-based models using Stochastic Gradient Descent with Mo-

mentum (SGDM), learning rate 3×10−4, and 20 maximum epochs. To speed up the network

training and prevent it from overfitting to the new dataset, we froze the weights of the earlier

layers in the network by setting the learning rates in those layers to zero. Specifically, we

froze the weights for the first 5, 10, &17 layers of the network models. We trained the CNN

models for ear identification that each subject represents a class. The final two layers were

replaced with new layers to adapt to the new dataset. In SqueezeNet, the last convolutional

layer was replaced with a new convolutional layer with the number of filters equal to the

number of classes. For the other networks, the fully connected layers were replaced with new

fully connected layers with outputs equal to the number of subjects in the dataset. A classi-

fication layer computes the cross-entropy loss for classification. When an unknown ear image

(probe) is introduced to the network, the output is the subject (class) to which it is most

likely the probe ear belongs, according to the probability from the SoftMax function. This

was implemented for the WVU and the USTB datasets due to the availability of multiple
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samples per subject for training.

For the FERET dataset and verification experiments, we used the CNNs after fine-tuning

to extract features for each ear image and generate image descriptors.

y = f(x), (5.1)

where x is the input image, f(.) represents the CNN, and y is the image descriptor. The

dimensionality of the image descriptor varies from model to model and depends on the design

choices made during network construction.

5.4.3 Ear recognition performance

Our first experiment assesses the performance of the different CNN architectures for ear

identification and verification tasks using the WVU and the USTB ear datasets. The Rank-

1 identification scores for the four models examined are presented in Table 5.3.

Table 5.3: Ear Identification performance for multiple models using Rank-1% scores.

Dataset SqueezeNet GoogLeNet MobileNet DenseNet
WVU 92.67 93.33 96.33 99.00
USTB 73.38 79.22 89.61 99.35

As shown in Table 5.3, the DenseNet model has the best identification performance for both

the WVU & the USTB datasets, whereas SqueezeNet has the least Rank-1 scores.

For verification, each ear probe image descriptor is compared against each of the gallery

images descriptors’ using cosine similarity match scores. The match scores can be either

genuine scores or imposter scores. Genuine scores are the scores when the gallery and probe

ear images belong to the same subject, whereas imposter scores are when the gallery and
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Figure 5.2: ROC comparison of four models SqeezeNet, GoogLeNet, MobileNet, and
DenseNet, for the WVU ear dataset.

probe ear images belong to different subjects. Match scores are compared against a numerical

threshold. If the match score exceeds the threshold, it is classified as a match. Each input is

either: True Positive (TP), True Negative (TN), False Positive (FP) or False Negative (FN).

To analyze the verification performance, the False Accept Rate (FAR) and False Reject Rate

(FRR) results are used, where:

� False Accept Rate (FAR): denotes the percentage of imposter ear images falsely rec-

ognized (FP) over the dataset’s total number of ear images.

� False Reject Rate (FRR): denotes the percentage of genuine ear images (FN) falsely

rejected over the total number of ear images in the dataset.

The Receiver Operating Characteristic (ROC) curves [56] relates the FAR to FRR at different

thresholds to measure the verification performance of a biometric recognition system. Fig.

5.2 shows the ROC curves for the different ear recognition models. The MobileNet model

has the best verification performance, followed by DenseNet. GoogLeNet and SqueezeNet

has comparable verification performance.
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The second objective of our work is to conduct experiments to examine how stable our

proposed deep learning-based ear recognition approach is across different yaw poses. Table

5.4 shows the detailed performance of each network at certain angles.

Table 5.4: Ear Recognition across pose SqeezeNet

Angle -10° 0° 20° 45° 60°

AlexNet 95.00% 98.33% 98.33% 93.33% 88.33%
SqeezeNet 96.67% 98.33% 98.33% 93.33% 76.67%
GoogLeNet 93.33% 98.33% 96.67% 91.67% 86.67%

MobileNetV2 96.67% 98.33% 98.33% 96.67% 88.33%

As the results show, recognition performance is stable with slight pose angle. It is 98.33%

at full profile and up to 20°pose angle. From the four examined CNN models, MobileNetV2

yields the most stable performance across the different pose angles. At angles -10°and

45°there is only a slight degrade in recognition performance. The recognition performance de-

teriorates further at extreme pose angles (angle 60°) especially the performance of SqueezeNet.

Nevertheless, at such extreme poses, which is close to front view, it is more likely to use front

face for authentication rather than the ear.

5.4.4 Ear recognition with image degradations

For each of the datasets used for the recognition and quality experiments (WVU, USTB,

and FERET), we kept the gallery part of the original ear images of the dataset. We applied

image degradations to the ear images in the probe part of the datasets. That increased the

probe part of the dataset, consisting of the combination of the original and degraded ear

images. Table 5.5 shows the number of ear images in the original dataset and after adding

the degraded images to the probe part of the dataset.
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Table 5.5: Ear Recognition Datasets

Dataset Gallery Probe Probe with degradations
WVU 60 × 20 = 1200 60 × 5 =300 60 × 150 = 9000
USTB 77 × 8 = 616 77 × 2 = 154 77 × 60 = 4620

FERET 115 115 115 × 30 = 3450

(a)
Original

(b) 10% (c) 20% (d) 30% (e) 40%

(f) 50% (g) 60% (h) 70% (i) 80% (j) 90%

Figure 5.3: Contrast changes, where the percentage of the ear image intensity values are
saturated.

Table 5.6: Ear recognition performance (Rank-1 %) using images where contrast was changed

SqueezeNet GoogLeNet MobileNet DenseNet201

Normal 93.00 93.67 96.00 99.00
10% (0.05-0.95) 91.67 90.67 95.33 99.33
20% (0.1-0.9) 73.00 80.00 93.00 97.00
30% (0.15-0.85) 53.00 65.33 79.67 89.00
40% (0.2-0.8) 34.67 43.67 56.67 70.67
50% (0.25-0.75) 22.33 28.33 32.67 46.00
60% (0.3-0.7) 14.67 13.33 18.33 28.00
70% (0.35-0.65) 9.67 6.00 8.67 18.66
80% (0.4-0.6) 7.33 3.33 5.00 12.33
90% (0.45-0.55) 6.00 2.33 3.00 10.33

In our experiments, we explore the impact of the degradation of the ear probe images on

the Rank-1 identification accuracy of the different models examined in the previous section.

First, we examine the effect of contrast alteration on ear recognition performance; the Rank-
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1 identification results are shown in Table 5.6. Fig. 5.3 shows sample images generated with

different levels of contrast alteration. The results show that contrast increments affect the

performance of all deep models. The DenseNet model performs the best, the performance

with the 10% contrast increase gets better, and then accuracy decreases but remains accept-

able with up to 30% of the contrast increase. However, the performance of all models falls

fast after the 50% contrast increment, which can result from the clipping in pixel values,

leading to image information loss.

(a)
Original

(b) γγγ =
1.1

(c) γγγ =
1.2

(d) γγγ =
1.3

(e) γγγ =
1.4

(f) γγγ =
0.5

(g) γγγ =
0.6

(h) γγγ =
0.7

(i) γγγ =
0.8

(j) γγγ =
0.9

Figure 5.4: Brightness changes, where ear image intensity values are mapped to new values
in the output image.

Second, we examine the impact of brightness variation of the ear images. Fig. 5.4 shows

sample images generated with different levels of brightness alteration. As the identification

results in Table 5.7 show, the performance of the DenseNet is relatively robust, as well as

the performance of the MobileNet. On the other hand, the SqueezeNet suffers the most

deterioration with the alteration of the brightness levels.

Third, the effect of image blurring was explored. Fig. 5.5 shows sample images generated

with different levels of image blurring. As presented in Table 5.8, the performance is relatively

robust with minor blurring, especially for the DenseNet model. With the increase in the
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Table 5.7: Ear recognition performance (Rank-1 %) using images where brightness was
changed.

SqueezeNet GoogLeNet MobileNet DenseNet

γγγ = 0.5 17.67 33.33 71.67 62.67
γγγ = 0.6 29.67 58.67 88.67 83.67
γγγ = 0.7 52.33 78.33 94.33 97.33
γγγ = 0.8 74.67 88.67 95.67 99.33
γγγ = 0.9 89.00 93.00 96.67 99.33
Normal 93.00 93.67 96.00 99.00
γγγ = 1.1 90.33 91.33 95.00 98.67
γγγ = 1.2 77.00 88.67 92.67 99.00
γγγ = 1.3 59.00 82.67 88.67 98.00
γγγ = 1.4 45.00 77.67 83.00 93.67

radius of the blurriness, the performance of all four CNN models degrades. MobileNet &

GoogLeNet performances decline rapidly with the blurring increase of the ear probe images.

(a)
Original

(b)
Disk=3

(c)
Disk=5

(d)
Disk=7

(e) Disk=9

(f)
Disk=11

(g)
Disk=13

(h)
Disk=15

(i)
Disk=17

(j)
Disk=19

Figure 5.5: Blurring of the input ear images using a circular averaging filter with various
diameters.
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Table 5.8: Ear recognition performance (Rank-1 %) using images where blurriness intensity
was changed.

SqueezeNet GoogLeNet MobileNet DenseNet201

Normal 95.67 94.67 98.00 99.00
Disk = 3 95.33 93.00 97.33 99.33
Disk = 5 89.33 84.67 92.67 99.33
Disk = 7 79.00 66.67 77.67 93.67
Disk = 9 54.67 45.67 51.00 86.00
Disk = 11 40.67 27.33 30.00 72.33
Disk = 13 26.33 21.33 18.67 58.00
Disk = 15 21.33 18.00 12.00 42.67
Disk = 17 16.33 13.67 8.00 31.67
Disk = 19 13.33 11.67 7.00 25.33

5.5 Ear Image Quality

A quality metric in biometrics is a function that takes a biometric sample as its input and

returns an estimation of its quality level. Biometric quality measurement should be an

indicator of recognition performance. A sample should be of good quality if it is suitable

for automated matching. Automatic prediction of biometric quality (prior to matching and

recognition) can be useful for several practical applications. A system with the ability to

detect poor-quality images can subsequently process them, accordingly, as explained in 5.2.1.

In this work, we develop an ear image quality assessment. The target quality value is a binary

value indicating that an image is good or bad for matching. The process of building a model

for automated biometric quality evaluation consists of two main steps:

1. The generation of ear quality ground truth labels for an ear dataset to train the model.

2. Train the model using pairs of images and quality labels to predict the quality of new

unseen ear images automatically.
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Figure 5.6: An overview of the tool for ear image quality evaluation. We used the scores from
the MobileNetV2 model to generate the quality ground truth labels. The dataset is composed
of a combination of the original and the degraded images of the WVU ear dataset. Using
the training set containing ear images and their respective ground truth quality labels, we
trained a classifier(AlexNet) to predict the quality label (good/bad) for an input ear image.

5.5.1 Ground truth labels

A quality model’s role is to estimate new images’ quality. The first step is the generation of

quality ground truth labels for the images of the training dataset to serve as a reference for

the model. A quality measure should be an indicator of the automated biometric matching

performance for an input sample, which can be distinct from the human conception of quality.

The recognition operation is based mainly on comparing the gallery and the probe images.

As mentioned in [133], image feature vectors contain quality information as well as identity

information. Hence, when the gallery image is of good quality, the gallery/probe comparison

outcome can be utilized to generate ground-truth quality labels for probe images. Since the

comparison of two bad images can produce high genuine similarity scores, it is essential that
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the gallery images are of good quality to ensure that low genuine scores are not produced

because of the low quality of gallery images [118].

For training, we generated the ground truth labels for the images of the WVU ear dataset.

The gallery set consists of the original ear images of the dataset, and the probe set consists

of the combination of the original and degraded images. The original dataset was collected

with standard high-quality elements for biometric datasets. Also, the ear identification rate

for the WVU is 99.00%, as shown in Table 5.3. Accordingly, we consider the original gallery

images as good quality images. The last layer of a CNN is an activation function that

gives us a discrete probability distribution over all the classes. We used these values to

determine the ground truth quality labels for the training dataset. We used the output

from the MobileNet model. The ear images correctly classified to their subject have a high

probability value to the correct class. The probe dataset is binned into (good/bad) according

to the probability of the input image being classified as its subject using multiple thresholds.

A high threshold is most likely to decrease the recognition errors but will increase the number

of samples classified as bad, which may be challenging or inconvenient for some applications.

Conversely, decreasing the threshold reduces the number of samples classified as bad but

may increase the recognition errors, which may comprise the security. Therefore, according

to the application, the user should balance the system’s errors and the amount of rejected

samples. In our experiments, we examined multiple thresholds (0.8, 0.85, 0.9, and 0.95) to

find a suitable threshold for rejecting low-quality samples. That gave us the ground truth

labels for the probe set of the dataset that contains original and degraded ear images.
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5.5.2 Quality estimation and assessment

To develop a quality assessment tool for ear images, we used pairs of ear images with their

ground truth quality class (good/bad)) generated in 5.5.1. We tuned the pre-trained AlexNet

classifier [104] to predict the quality labels for the images in the test dataset. We replaced

the last three layers of the pre-trained network (the last fully connected layer, the SoftMax

layer, and the final classification layer) to adapt the neural network for the ear image quality

prediction task. Since we examined multiple thresholds for binning the matching scores for

the training dataset, that gave us four sets of labeled ear images for classifier training. We

trained the classifier using pairs of ear images with their quality class. We had four classifiers;

each classifier was trained with one of the sets. A higher threshold is expected to keep ear

images of high quality but may reject additional input ear images. Fig. 5.6 presents an

overview of the tool for ear image quality evaluation.

To evaluate the efficiency of our ear quality system, we used it to predict the quality of the

ear images from the USTB and the FERET ear datasets, which were not used during the

training phase. We performed the image degradations to both datasets to expand them that

the test dataset consists of a combination of the original standard quality ear images and

the degraded quality ear images.

The evaluation methodology for the performance of the ear quality system proposed included

two main sets of results:

1. The Receiver Operating Characteristic (ROC) curves.

2. The recognition accuracy for the dataset with and without using the quality labels

before performing the recognition.

We used our ear quality evaluation model to assess each image of the test dataset and generate
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a quality label for it. According to the quality labels of the test samples, we divided the test

dataset into three groups: The good quality ear images test set, the bad quality ear images

test set, and the total ear images test set, which is the combination of the two other groups.

Fig. 5.7 shows the ROCs curves of the DenseNet for the three test groups. The verification

performance improves when using the group of good quality ear images and the correlation

between the quality estimation and the verification performance is apparent.

For the second set of results, we used the recognition accuracy for the dataset with and

without using the quality labels before performing the recognition. Table 5.9 shows the

recognition accuracy for the USTB & FERET ear datasets for the whole probe set (original +

degraded), and after rejecting the bad probe images according to the quality labels generated

using each of the four classifiers with the fraction of probes removed. As mentioned in Table

5.5, the degraded ear images form 96.67% of the probe test set. The recognition accuracy is

close for the multiple classifiers but the accuracy overall increased by 38.53 % and 29.31 %

for the USTB and the FERET datasets, respectively. This shows that the quality assessment

tool is beneficial, and the quality labels are correlated with the recognition performance.

Table 5.9: Recognition accuracy for the USTB & FERET ear datasets for the whole probe
set (original + degraded), and after rejecting the bad probe images using target quality
labels generated using each of the four classifiers with the fraction of probes removed.

USTB FERET
Accuracy Rejected % Accuracy Rejected %

All 58.72% 45.80%
Classifier1 94.75% 48.85% 73.47% 52.57%
Classifier2 94.70% 48.52% 75.60% 52.00%
Classifier3 96.01% 52.27% 74.44% 52.21%
Classifier4 97.25% 59.09% 75.11% 54.57%
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(a) USTB (b) FERET

Figure 5.7: ROC curves obtained with the DenseNet for the quality subsets of data (Bad,
Good, and All) of the USTB & the FERET ear datasets.



Chapter 6

Exploring Deep Learning Ear

Recognition In Thermal Images

6.1 Introduction

Thermal imaging represents an attractive alternative sensing modality to visible imaging for

human recognition in the dark. It has its benefits for authentication in scenarios when there

is no control over illumination, like security, law enforcement, army operations, and border

control [144]. Thermal sensors record the skin’s thermal radiation, and the images provide

valuable ear recognition data, but these images are blurry and carry fewer edges/features

than visible images. Regardless of the broad applications for ear recognition in the thermal

band, it has received little attention in the literature. The scarcity of ear data sets in the

thermal domain can be one of the main reasons for this shortage.

Various machine learning methods and conventional descriptors have been used to support

ear recognition research studies. Nowadays, deep learning methods offer a significant benefit

98
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over conventional machine learning approaches. Deep learning methods have improved the

efficiency of various computer vision systems and brought breakthroughs solutions in pro-

cessing images [90], videos [92], speech [94], and audio [96], [97]. Especially in the area of

biometrics, deep learning-based models are used for different biometric applications such as

face [88], [89], fingerprint [98], periocular, [99] and gait recognition [100]. This work uses a

deep learning framework for ear recognition in the visible and long-wave infrared domains.

The research questions for this chapter are: 1) in the dark or when there is no control over

illumination, can a person be identified using thermal ear images via deep learning methods;

2) what are the best strategies for the learning process to adapt the convolutional neural

networks for recognition in the thermal domain to overcome the limitations of the thermal

data, and 3) how is ear recognition accuracy in the thermal domain compared to the ear

recognition accuracy in the visible domain. We use multiple ear datasets, specifically the

AWE visible Ear Dataset & the WVU MIWR Profile Face Dataset, for visible and thermal

fine-tuning, respectively. The main contribution of this work is the extensive experiments

on the DEVCOM Army Research Laboratory Visible-Thermal Face (ARL-VTF) dataset

comparing ear recognition in the visible and thermal domains, reaching new state-of-the-

art results using deep learning methods. The recognition performance is assessed using

Rank-1 identification accuracies and Receiver Operating Characteristic (ROC) curves. Our

experiments achieve a 98.76% Rank-1 ear identification rate for the visible domain and

96.93% for the thermal domain.

The rest of the chapter is organized as follows. Section 6.2 gives a brief background about

infrared thermal imaging and overviews the work related to the visible and thermal ear

recognition tasks. Section 6.3 includes a description of the CNN models examined and the

techniques used for the learning process. Section 6.4 presents the datasets utilized in the

study, the experiments, and their results.
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Figure 6.1: Overview of a visible/ thermal ear recognition system.

6.2 Background:

6.2.1 Introduction to Infrared Thermal Imaging:

Infrared radiation (IR), also known as thermal radiation, is the band in the electromagnetic

radiation spectrum with longer wavelengths (lower frequency) than the visible red light. The

visible spectral (Vis) covers the range of wavelengths from 0.38 to 0.78µm. The wavelength

range for infrared radiation is between 0.78 µm and 1mm, equating to an approximately 1

and 430 THz frequency range. This region of the IR spectrum is split into spectral subranges

that are shown in Table6.1. Objects generally emit electromagnetic radiation; the amount of

radiation and its distribution as a function of wavelength depends upon both the temperature

and the material properties [145].

In Infrared thermal imaging, thermography, the camera senses the temperature variations
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in an object at a distance to produce a thermogram in the form of 2D images. Sensors are

designed to collect radiation within a particular bandwidth for IR imaging. Typical spectral

ranges for thermography are the short-wave (SW) region from 0.9 to 1.7 µm, the mid-wave

region (MW) from around 3 to 5 µm, and the long-wave (LW) from about 7 to 14 µm.

Commercial cameras are available for these three ranges [146]. The spectral distribution

emitted by an object is characterized using Planck’s distribution. Given that human body

temperature is 37 °C, the Planck distribution has a maximum value in the Long Wavelength

Infrared (LWIR) of around 9µm and is approximately one-sixth of this maximum in the Mid

Wavelength Infrared (MWIR). The emissivity of human skin in the MWIR is at least 0.91

and at least 0.97 in the LWIR. Therefore, face recognition in the thermal infrared favors the

LWIR since the emission is higher than that in the MWIR [147].

Although thermal Imagery can be more challenging due to specific characteristics such as

blurring and smooth representation, it offers some benefits such as:

1. It can be acquired without any external illumination in the day or night environments.

2. It is nearly invariant to changes in ambient illumination and less affected by smoke or

dust.

3. It measures the anatomical features instead of the reflectance information of the object.

4. It usually does not suffer from background clutter.

6.2.2 Related Research:

The potential of the human ear for personal identification was recognized by Alphonse

Bertillon as early as 1890 [143], while Alfred Iannarelli developed one of the first ear recogni-

tion systems in 1949. He used twelve measurements derived from the ear image to represent
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Table 6.1: Electromagnetic spectrum separated into different sub-bands from Visible to
InfraRed.

Spectrum Wavelength range

Visible Spectrum 0.4-0.7µm
Near InfraRed (NIR) 0.7-1.0µm
Short Wavelength InfraRed (SWIR) 1-3µm
Mid Wavelength InfraRed (MWIR) 3-5µm
Long Wavelength InfraRed (LWIR) 8–14µm
Far InfraRed (FIR) 15-1000µm

the ear [8]. Since then, ear recognition was studied, and there have been multiple research

initiatives and publications in the ear recognition field.

Visible Ear Recognition:

Various machine learning methods and conventional matchers have been used for visible

ear recognition research studies, including Intensity-based, geometric, textural, and local

descriptors. Intensity-based techniques, such as Principal Component Analysis (PCA), use

the entire ear image to extract global features and generate representations that encode the

ear structure. Chang et al. [26] used Principal Component Analysis (PCA) and introduced

the concept of Eigen-Ear. Then, Zhang et al. [156] combined an Independent Component

Analysis (ICA) and a Radial Basis Function (RBF) network to perform ear recognition. Full-

space Linear Discriminant Analysis (FSLDA) [19] and Local Linear Embedding (LLE) [157]

were also applied to perform ear recognition. Zrachoff et al. [129] used a two-dimensional

multi-band PCA (2D-MBPCA) method. Hurley et al. [158] used force field transformation

for ear recognition, while AbdelMottaleb and Zhou [159] constructed contours from force

field features for recognition. Dong and Mu [160] developed a two-stage approach that is

composed of a force field transformation, combined with a Null-space-based Kernel Fisher

Discriminant Analysis (NKFDA). Geometric ear measurements were used for ear recognition
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in [161], [162], [163] and [164].

Moreover, local descriptors were used for ear recognition. Such techniques detect key-point

locations in the ear images, and then extract descriptors around these key points. Scale-

invariant Feature Transform (SIFT) descriptors were used in [26], [40], [165], [166] and [167].

While Speeded-Up Robust Feature (SURF) features are extracted in [168] and [169], followed

by nearest neighbor classifiers. Texture descriptors were extensively used for ear recognition

as well. Sana et al. [24] used discrete Haar wavelets to extract the textural features of the

ear. Kumar et al.[170] and Meraoumia et al. [171] used Log-Gabor wavelets. Nosrati et

al. [172] applied a 2D wavelet to generate a feature matrix followed by PCA for dimen-

sionality reduction and classification. LBP was also combined with wavelet transform [37],

[174], and [175]. Pflug et al. [20] compared various texture and surface descriptors for ear

recognition, including Local Binary Patterns (LBP), Local Phase Quantization (LPQ), His-

tograms of Oriented Gradients (HOG), Binarized Statistical Image Features (BSIF), followed

by LDA for dimensionality reduction methods. Sarangi et al. [101] used Pyramid Histogram

of Oriented Gradients (PHOG) for feature extraction followed by LDA for dimensionality

reduction. El-Naggar et al. [128] compared the performance of different feature descrip-

tors, including the Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features

(SURF), Multiscale Local Binary Pattern (MLBP) and Local Ternary Pattern (LTP) on

an extended, multi-source ear dataset. The authors concluded that the MLBP descriptor

provided the highest ear recognition performance, i.e., a 91.14% rank-1 identification rate.

There had been multiple detailed reviews of ear recognition history, techniques, and their

progress [14], [106], with a recent one [109].

The development of convolutional neural networks and their advancements in computer vi-

sion applications motivated utilizing them for ear recognition. Emeršič et al. [110] had

addressed the problem of training CNNs with limited ear training data. They used a dataset
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collected from the internet with images of variable quality. Moreover, the same team pre-

sented the Unconstrained Ear Recognition Challenge (UERC), which was held twice in 2017

[112] and 2019 [113] respectively, to evaluate the state of the ear recognition technology when

the images are captured under unconstrained conditions. Eyiokur et al. [115] presented a

detailed ear recognition study when using the UERC 2019 dataset. Whereas Dodge et al.

[116] used a hybrid approach of deep and shallow learning for ear recognition. Another ear

database named USTB-Helloear was introduced in [119] that contains 612,661 profile images

from 1570 subjects. The authors used three CNNs with different scales of ear images to

obtain multi-scale ear representations for ear verification. InceptionV3 deep learning model

was used for recognition of the AMI ear database in [124]. Khaldi et al.[125] proposed a

two-phase training method for the VGG16 architecture for ear classification. They also used

Generative Adversarial Network to color the USTB II dataset images.

Thermal Ear Recognition:

There have been multiple publications discussing the face recognition task in the thermal

domain [148] [149] and its challenges, such as eye detection [150] [151]. On the contrary,

little research has been done on ear recognition in the thermal domain. Abaza & Bourlai

examined human recognition from ear images in the MWIR spectrum[152]. They compared

multiple machine learning algorithms, including (ICA, PCA, LDA, SIFT, LBP, and LTP) on

the thermal ear images of 45 subjects. Their results showed that the Local ternary pattern

(LTP) method performed the best. They achieved an 80.86% Rank 1 recognition rate on

manually detected ear images.

Another work was proposed by Ariffin et al. [153]. They investigated the effect of fusing

thermal and visible ear images at the pixel level for ear recognition in different illumination

conditions. They collected a dataset of visible and thermal ear images taken simultaneously,
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changing illumination conditions ranging from bright to dark. They used the histogram

of oriented gradients (HOG) for feature extraction and support vector machine (SVM) for

classification. Their experiments showed that the fusion of ear images taken in average and

bright illumination conditions with thermal ear images enhanced the recognition accuracy.

Kacar et al. [154] collected an ear dataset in the long-wave infrared (LWIR) band for

81 subjects. They examined different feature extraction algorithms followed by dimension

reduction methods. The best recognition rate was for HOG, followed by LDA, which achieved

Rank-1 of 94.71%. They also performed score-level fusion to increase accuracy. Although

there had been some work on uncontrolled ear recognition using deep learning methods in

the visible domain, to the best of our knowledge, this is the first study for ear recognition in

the thermal band using convolutional neural networks (CNNs).

6.3 Methodology:

An automatic ear recognition system mainly consists of three modules: an ear detector,

a feature extractor, and a matcher. First, an ear detector provides the bounding box(s)

of the ear(s) to localize them in images or videos. Second, an extractor generates an ear

representation that encodes the identity information from the detected ear image. Third,

a decision-maker module (matcher) identifies or verifies the person that the ear belongs

to. This work investigates several Convolutional Neural Network architectures to find the

appropriate model for the ear recognition task in the visible and the thermal domains. A

description of the deep learning models examined, the learning strategies implemented, and

the ear features presentation follows.
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6.3.1 Deep Learning models:

Deep learning algorithms analyze data with a logic structure similar to how a human would

draw conclusions [86]. They process the images to learn their spatial hierarchies and deter-

mine a set of distinguishing characteristics. The CNN consists of multiple layers (convolu-

tional, pooling & fully connected) to filter images, extract their informative features, and

classify them.

The design of CNNS was inspired by the biological neural network of the human brain.

Multiple neurons are organized in a columnar to produce visual perception. Similarly, the

neural network layers work. The early layers detect low-level features such as edges and

curves of particular orientations. The deep layers of the network amplify aspects of the

thermal input ear that are important for discrimination among the different subjects and

suppress irrelevant variations [176]. CNNs are trained on huge datasets to learn directly

from the data how to make useful interpretations and extract features that are data-driven

to optimize the performance rather than the handcrafted features extracted using traditional

descriptor-based techniques.

Although Convolutional neural networks were introduced by LeCun et al. [135] in the 1980s,

for the recognition of handwritten zip code digits, they became popular after the break-

through they brought for image classification in 2014. The AlexNet [104] Convolutional

Neural Network was the winning model of the ILSVRC 2012 challenge for classifying the 1.2

million images in the ImageNet into the 1000 different classes [141]. Since then, Convolutional

neural networks have emerged as a leading algorithm in computer vision. Advancements in

computer hardware, larger datasets, and improved network structures supported that ad-

vancement. In addition, there have been multiple studies to improve CNNs’ architecture and

enhance their performance for multiple machine learning applications, including biometrics.
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A brief description of the main characteristics of the examined networks explored to support

ear-based recognition follows.

Vgg19:

Vgg19 [90] is a 19-layer deep convolutional neural network that was introduced to report

the effect of increasing the convolutional network depth on its accuracy. The model has 16

convolutional layers, five max-pooling layers, and three fully connected layers and uses the

Rectified (ReLU) activation function for nonlinearity. The network utilizes small convolution

filters in all layers, 3×3, which is the smallest filter size capable of encoding directional

information. The model stacks 3×3 filter with max-pooling layers interspersed. Stacking

3×3 convolutional layers, without spatial pooling in between, has the performance of larger

receptive fields with fewer parameters and increases the number of ReLU layers. The small

filter size decreases the number of parameters in the network.

GoogLeNet:

GoogLeNet [137] is a 22-layer deep convolutional neural network, which proposed the Incep-

tion module to improve the utilization of the computing resources inside the network. The

inception module has different sizes and types of convolutions for the same input and per-

forms the convolution and pooling operations in parallel. It uses 1×1 convolution operation,

before the 3×3 and 5×5 layers, as a dimensionality reduction module. This results in a wide

and deep network. It also makes the network less prone to overfitting. The architecture

consists of nine inception modules, a global average pooling, a dropout layer, and a fully

connected layer with 1024 units. It uses rectified linear activation.



108Chapter 6. Exploring Deep Learning Ear Recognition In Thermal Images

Xception:

The Xception network [177] employs an enhanced Inception module, depth-wise separable

convolutions. First, it applies different filters on each channel of the depth map, followed by

compression of the input space using 1×1 convolutions (point-wise convolutions). It does

not utilize intermediate RELU non-linearity after point-wise convolutions. The Xception

architecture stacks depth-wise separable convolution layers with residual connections. It has

36 convolutional layers structured into fourteen modules with one fully connected layer.

MobileNetV2:

MobileNets are efficient CNNs for mobile vision applications [138], i.e., optimized to bring

deep neural networks closer to mobile devices. They are based on a streamlined architecture,

which uses depth-wise separable convolutions to build lightweight deep neural networks.

There are two versions:

In the first one, MobileNetV1, the separable convolutions are used as efficient building blocks

to reduce the model size and complexity without compromising accuracy. These blocks

consist of a depth-wise convolution layer that filters the input, followed by a point-wise

(1×1) convolution layer that combines these filtered values to create new features.

In MobileNetV2 [139], another module was introduced, which consists of bottleneck residual

blocks, which have three convolutional layers. The first layer expands the number of channels

in the data before it goes into the depth-wise convolution. The depth-wise layer is followed by

a layer that projects data into a lower-dimensional subspace. This type of layer is also called

a bottleneck layer because it reduces the amount of data that flows through the network.

Nonlinearities in narrow layers are removed to prevent significantly impacting information.

Residual connections or shortcuts between the bottlenecks enable faster training and better
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accuracy. The network’s input layer receives input images of the size of 224×224×3. Then,

there is an initial fully convolution layer with 32 filters, followed by 19 residual bottleneck

layers. It uses the ReLU activation function. Dropout and batch normalization is also

applied after each convolution.

DenseNet:

With the progress in deep neural networks, there was a common trend in the research commu-

nity that the network’s architecture needs to go deeper. However, as CNNs become increas-

ingly deep, the information about the input or gradient passes through many layers, making

the gradient infinitely small, and the performance gets saturated or even starts degrading

rapidly. Therefore, in 2015 Highway Networks [178] and Residual Networks (ResNets) [91],

which have surpassed the 100-layer barrier, were introduced. To overcome the vanishing

gradient problem, they used shortcut connections, ”identity connections,” that skip one or

more layers. DenseNet [140] is a convolutional neural network that connects each layer of

the neural network to every other layer in a feed-forward fashion. The primary purpose

is to keep the original data through the network. For each layer, the feature maps of all

preceding layers are concatenated and used as input, and its feature maps are used as input

into all subsequent layers. Hence, the final classifier decides based on all the feature maps

of the convolutional blocks in the network. This increases the number of connections but

reduces the parameters and computational complexity compared to traditional convolutional

networks. Table 6.2 summarizes the main characteristics of each network architecture.
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NasNetMobile:

The NasNet was proposed in [180]. The overall architecture is predefined, but the building

blocks are searched by reinforcement learning search on a small dataset. Then the block is

applied to the ImageNet dataset using a new regularization technique called ScheduledDrop-

Path to improve the generalization in the NASNet models. The building blocks consist of

normal and reduction cells. The NASNet network does not consist of a linear sequence of

modules.

EfficientNet:

EfficientNet [179] is a convolutional neural network architecture and scaling method. It

uniformly scales up network width, depth, and resolution with fixed scaling coefficients to

achieve better accuracy and efficiency. The compound scaling method is justified by the

intuition that if the input image is bigger, then the network needs more layers to increase

the receptive field and more channels to capture more fine-grained patterns on the bigger

image. The resulting architecture uses mobile inverted bottleneck convolution (MBConv),

similar to MobileNetV2, as a building block with squeeze-and-excitation optimization.

6.3.2 Model learning:

Neural networks rely on training data to learn the parameters that best accomplish the

required task. Huge datasets are required for the training process to optimize Millions of

parameters. The main objective of the training process is to teach the network to learn

and extract powerful and informative features from images. For ear recognition assignment,

the network needs to learn identity information from ear images. With the limited size of

available visible/ thermal ear datasets, multiple learning strategies are employed to overcome
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Table 6.2: Comparison of convolutional neural networks used. Note that parameters are in
millions.

Network Year Depth Parameters Size Output Conv. layers

Vgg19 2014 19 144 535 MB 4096 16 conv.
3 fully connected

GoogLeNet 2014 22 7 27 MB 1024 2 conv., 9 inception,
and 1 fully connected

Xception 2017 71 22.9 85 MB 2048 2 conv. & 14 module
and 1 fully connected

MobileNetV2 2018 53 3.5 13 MB 1280 1 conv.
and 19 bottleneck res.

DenseNet 2017 201 20.0 77 MB 1920 4 conv
and 4 dense blocks

NasNetMobile 2018 * 5.3 20 MB 1056 4 normal
and 4 reduction cells

EfficientNet 2019 82 5.3 20 MB 1280 2 conv.
and 7 MBConv blocks
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this obstacle, specifically transfer learning and data augmentation.

Transfer Learning:

Transfer learning makes use of the knowledge gained from a pre-trained neural network while

solving one problem and fine-tune it to learn a different but related problem. For example,

the weights learned to recognize one object can be used to recognize a different object.

Specifically, an image classification network learns to extract meaningful and informative

features from images during the training process. These features can generalize to similar

data sets and become a starting point for learning a new task. Transfer learning has several

benefits,

� it reduces the number of parameters that need to be estimated,

� it does not require many data for training,

� it saves training time, and

� It improves neural network system performance.

First, the CNN models are trained on the ImageNet dataset [141] which consists of more than

1.4 million images to learn to classify images into 1000 object categories. Second, the CNN

models are fine-tuned for the ear recognition problem. Since the distribution of the data in

the target domain (ear images) is different from the distribution of the data in the source

domain (ImageNet images) [117], the networks need adaptation to extract embeddings that

capture the subtle differences in the ear features for a specific domain (visible or thermal).

For this purpose, we separately fine-tuned the CNN models for ear recognition in the visible

domain and ear recognition in the thermal domain.
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Data Augmentation:

Data augmentation is a process that significantly increases the diversity of data, which is

available for training models, avoiding at the same time the collection of new data. Var-

ious data augmentation techniques, including cropping, padding, and horizontal flipping,

are commonly used to train large-scale neural networks. An additional benefit of data aug-

mentation is that it helps avoid network overfitting (i.e., when the network memorizes the

exact details of the training images and does not generalize well on new data and, therefore,

becomes less efficient). In this work, while we explored various data augmentation tech-

niques to increase the amount of available training data, we concluded that the following

ones resulted in improved accuracy of our models:

� rotation at random angles up to 40°in both directions (clockwise and counterclockwise).

� translation horizontally or vertically with a random number of pixels in the range

(-30°to +30°).

6.3.3 Deep Ear Representation:

There are two approaches for utilizing CNNs in recognition. First, CNN is employed as a

classifier. In this approach, each subject enrolled in the system represents a class. Ear images

for each subject/class are used to train the CNN. The outcome of the training process is

a network that classifies an input ear image to one of the subjects enrolled in the system.

To classify a new ear image (probe image), the network (classifier) processes the image to

determine the correct identity (class) which is most likely that the ear belongs to, according

to the probability from the softmax function. This process is slow and requires a large

number of instances per class to reach acceptable accuracy. Additionally, it can be used only
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for closed-set recognition of subjects, that their samples were used for the training. Enrolling

new subjects in the system requires re-training the network, which is time-consuming and

not practical for real-life applications. Second, CNN is employed for feature extraction. The

pre-trained CNNs are used as feature extractors to generate deep representations (feature

vectors) for the ear regions in visible and thermal ear images. User profiles for subjects

enrolled in the system are represented as a list of feature vectors calculated from the training

images. The dimensionality of the feature vectors varies from model to model. In this

approach, the network processes an input ear image (probe) to generate its feature vector.

The matching is performed based on the cosine similarity between the vector representations

of the gallery and probe images.

Cosine similarity is a metric that is used to determine the similarity between two vectors. It

measures the cosine of the angle between two vectors projected in multi-dimensional space to

estimate whether the two vectors are pointing in roughly the same direction. It is calculated

as follows:

Cos θ = G.P
‖G‖‖P‖ =

n∑
i=1

GiPi
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n∑

i=1

G2
i

√√√√√√
n∑

i=1

P 2
i

Where G is the feature vector of the gallery image, P is the feature vector of the probe

image, ‖G‖ is the norm of the gallery image, ‖P‖ is the norm of the probe image, and n is

the feature vector size that describes the gallery or the probe image. The dimensionality of

the image descriptor varies from model to model and depends on the design choices made

during network construction.
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6.4 Experimental Setup and Results:

In this section, we present experiments to evaluate:

� The ear recognition performance using several CNNs in the visible and the thermal

bands,

� The effect of ear recognition specific fine-tuning on the ear recognition performance.

We start this section by describing the databases used, the training process, the evaluation

metrics, and the recognition performance.

6.4.1 Data Sets:

We used the Army Research Laboratory Visible-Thermal Face (ARL-VTF) dataset for our

experiments in ear recognition. The dataset consists of simultaneously acquired face images

in the visible and the LWIR bands. Additionally, we used two other ear datasets (one in the

thermal band and one in the visible band), to fine-tune the CNNs.

AWE Ear Dataset:

For visible domain fine-tune, we used the Annotated Web Ears (AWE) dataset [106], which

is an annotated ear dataset that was collected from web images for famous public figures

such as actors, musicians, and politicians. The ear images in this dataset vary quality and

spatial resolution.
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The WVU Visible-Thermal Profile Face (VTPF) Dataset:

This dataset [152] was collected using a high-definition mid-wave infrared (MWIR) camera

with a spectral range of 3–5 µm. For thermal fine-tuning, we used the ear images for 42

subjects from one session, ten left ear images, and ten right ear images for each subject.

The DEVCOM Army Research Laboratory Visible-Thermal Face (ARL-VTF)

Dataset:

This dataset [155] was collected for thermal face recognition research. The data collection

occurred in November 2019. The released dataset contains 395 subjects. It is composed of

two separate collections; both simultaneously acquired visible and LWIR data using multiple

visible cameras for stereo 3D vision and one LWIR sensor. Three image sequences capturing

baseline, expression, and pose conditions for each subject are collected. For the pose sequence

of images, subjects were asked to turn their heads slowly from left to right. Since face

modality was the primary objective for data collection, ear images were unavailable in some

sequences due to complete/ severe hair occlusion or severe head angle. The LWIR data is

captured by a FLIR Boson uncooled VOx microbolometer with a spectral band of 7.5 µm

to 13.5 µm and thermal sensitivity of < 50 mk.

Twenty timestamps were selected from each subject’s pose sequence for most subjects. The

first timestamp should represent the left full profile/ear image (+90°head yaw). Following

that, timestamps represent the left profile/ear at different angles up to full-face image (0°head

yaw) where ears are not available for recognition. The rest of the sequence is for the right

profile /ear images at different angles to the full right profile/ear image at right (-90°head

yaw). While the target was to collect only full profile images (+/-90°head yaw), some

subjects did not follow the exact data collection protocol, which resulted that full profile was
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not available for these subjects. Figure 6.2 shows the distribution of head image angles by

the estimated yaw angles for the pose sequences.

This dataset was used to examine the deep thermal ear recognition proposed. Two sets were

constructed, the gallery and probe sets. The gallery set consists of the ear images for the

subjects enrolled in the system, and the probe set consists of the ear images for recognition.

For each subject, the gallery for the left ear is two images from the full profile image (-90°, -

50°) and a probe ear image with pose (-30°, -10°). The same is applied to the right ear. The

average size of an ear region is 54 × 38 pixels. Examples of visible and thermal ear images

from the dataset are presented in Figure 6.3.

Figure 6.2: Distribution of head poses in terms of estimated yaw angles from the pose image
sequence [155].

6.4.2 Model Training:

Two methods of generating deep ear feature representation are compared. First, the CNNs

are used as fixed feature extractors without fine-tuning for the ear recognition task. The

fully connected and the classification layers are removed, and the rest of the network is
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Figure 6.3: Sample from the (ARL-VTF) dataset in the visible and thermal domains.

maintained. The activations of the new last layer represent the ear’s feature vector.

In the second set of experiments, fine-tuning is performed before utilizing the CNNs. The

pre-trained CNNs are fine-tuned using ear images of the same domain (visible or thermal)

to teach the network to tailor generic features to be more informative and representative of

the ear for recognition. It is performed by training the network on the visible/thermal ear

datasets, using the pre-trained network as a starting point.

The training of the CNN models for ear recognition model is implemented using Stochas-

tic Gradient Descent with Momentum (SGDM), learning rate (3*10̂-4), and maximum 20

epochs. The early layers of the CNNs are anticipated to detect low-level features such as

edges and curves, whereas later layers learn more specific features to a particular dataset

or task. The weights of the earlier layers are frozen to speed up the network training and

prevent the network from overfitting to the new dataset by setting the learning rates in those

layers to zero [181]. The classification layer computes the cross-entropy loss for classification.

Data augmentation is performed during the training. Each neural network is fine-tuned for

visible and thermal domains separately. The net is trained to classify visible ear images from
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Figure 6.4: An overview of training deep learning models for ear recognition. The CNNs are
pre-trained on the ImageNet dataset, and then fine-tuned for ear recognition in visible/ther-
mal domains.

the AWE dataset for visible fine-tuning. It is trained to classify the WVU VTPF dataset

thermal ear images for thermal fine-tuning. The outcome of this training process is two

versions of each convolutional neural network model for ear recognition in visible/ thermal

domains as illustrated in Figure 6.4.

6.4.3 Performance metrics & protocols:

The ear recognition performance is examined using the dataset partitions from the DEVCOM(ARL-

VTF) dataset. The study includes identification and verification experiments for images
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Table 6.3: Details of the dataset used for the experiments.

Mode no. subjects Gallery Probe
Visible Left images 69 138 69

Visible Right images 92 184 92
Thermal Left images 71 142 71

Thermal Right images 92 184 92

obtained in the visible and thermal domains. The Convolutional neural networks produce

vector representations for each image.

Multiple detectors were utilized earlier for ear detection in the visible [85] and thermal [182]

domains that perform reasonably well. However, since the success of ear recognition directly

depends on the segmentation accuracy, for our work, we located ears manually to establish

recognition baseline performance and to avoid the accumulative error of the ear segmentation

step. For every subject, the first two instances from the pose sequence (closest to the full

profile) were used as a gallery, and the last one was employed as a probe. This was applied

to both the right and left ears. The gallery instances were used to create personal profiles via

feature extraction for enrollment in the system, and the probe images were used to determine

ear recognition accuracy. An overview of the modes, numbers of subjects, and images used

in the experiments are provided in Table 6.3.

A block diagram of the ear recognition system is presented in Figure 6.1. For identification

experiments, the feature vectors are compared in a probe-to-gallery manner, using the cosine

similarity measure for the representative feature vectors, to yield a ranked set of matches,

with Rank-1 being the best match. Rank-1 identification rate represents the cases when

Rank-1 subject is a true match. While for the verification experiments, the feature vec-

tors were compared against each other, genuine and impostor scores were generated using

similarity threshold. Genuine scores are the scores when the gallery and probe ear images

belong to the same subject, while imposter scores are when the gallery and probe ear images
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belong to different subjects. The generated scores are utilized for computing performance

metrics and plotting the performance curves. Each input is either: True Positive (TP), True

Negative (TN), False Positive (FP), or False Negative (FN).

� False Accept Rate (FAR): The probability that the system incorrectly matches an

imposter to a gallery in the data set. It denotes the percentage of imposter ear images

falsely recognized (FP) over the total number of ear images in the dataset.

� False Reject Rate (FRR): The probability that the system incorrectly rejects a genuine

subject. It denotes the percentage of genuine ear images (FN) falsely rejected over the

total number of ear images in the dataset.

The Receiver Operating Characteristic (ROC) curves [56], relates the FAR to FRR at dif-

ferent thresholds to measure the verification performance of a biometric recognition system.

The Equal Error Rate (EER) is the location on the ROC curve where the false acceptance

rate and false rejection rate are equal. In general, the lower the equal error rate value, the

higher the accuracy of the biometric system.

There are two broad classes for ear recognition: right ears and left ears. For a typical

ear recognition system, it is known which ear is introduced for recognition. Additionally,

a classifier can be added to the system to automate right/ left ear classification before

recognition. For matching in our experiments, the side information was retained. Right

probe ear images are matched only against the right gallery images, and left probe ear

images are matched only against the left gallery images. The two recognition accuracies are

averaged to summarize the performance.
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6.4.4 Recognition Results & Discussion:

In the first series of experiments, we evaluate the CNN-based models recognition performance

with transfer learning only (i.e., without fine-tuning). In comparison, we evaluate the CNN-

based models’ recognition performance with fine-tuning in the second series of experiments.

Tables 6.4 & 6.5 report the Rank-1 accuracies for ear identification experiments in the visible

and thermal domains. Tables 6.6 & 6.7 report the EER values for ear verification experiments

in the visible and the thermal domains. Figures 6.5, 6.6, 6.7, & 6.8 show the ROC curves

for the different ear recognition models in the visible and the thermal domains before and

after fine-tuning the CNNs.

Figure 6.5: ROC for Visible Right & Left ear before fine-tuning the CNNs.

The recognition experiments on the ARL-VTF dataset indicate high recognition performance

for deep learning models for ears in both visible and thermal domains, with visible ear

recognition slightly superior to thermal ear recognition. The dataset has a pose difference

between gallery and probe images. The gallery images are closer to the full side, and the

probe images are closer to the frontal pose in both visible and thermal ear images.
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Figure 6.6: ROC for Visible Right & Left ear after fine-tuning the CNNs.

Table 6.4: Identification rate (Rank-1 %) for visible ear recognition of multiple CNNs, before
& after fine-tuning.

Network Right Left Avg.

GoogleNet
before 97.83 94.20 96.015
after 98.91 97.10 98.005

Vgg19
before 96.74 95.65 96.195
after 95.65 92.75 94.200

Xception
before 95.65 100.0 97.825
after 97.83 98.55 98.190

MobileNetV2
before 97.83 98.55 98.190
after 97.83 100.0 98.915

DenseNet
before 96.74 98.55 97.645
after 97.83 100.0 98.915

EfficientNet
before 98.91 98.55 98.730
after 97.83 100.0 98.915

NasNetMobile
before 90.22 88.41 89.315
after 97.83 98.55 98.190

The differences in performance between the multiple models for visible ear recognition are

marginal (in the range of 2%). On the other hand, the variability in models’ performance

for thermal ear recognition is more noticeable.

Fine-tuning the CNNs for the ear recognition task improved most networks’ recognition



124Chapter 6. Exploring Deep Learning Ear Recognition In Thermal Images

Figure 6.7: ROC for Thermal Right & Left ear before fine-tuning the CNNs.

Table 6.5: Identification rate (Rank-1 %) for thermal ear recognition of multiple CNNs,
before & after fine-tuning.

Network Right Left Avg.

GoogleNet
before 84.78 92.96 88.870
after 92.39 95.77 94.080

Vgg19
before 89.13 94.37 91.750
after 92.39 92.96 92.675

Xception
before 89.13 87.32 88.225
after 91.30 97.18 94.240

MobileNetV2
before 92.39 92.96 92.675
after 85.87 95.77 90.82

DenseNet
before 93.48 85.92 89.700
after 96.74 98.59 97.665

EfficientNet
before 93.48 85.92 89.700
after 93.48 97.18 95.330

NasNetMobile
before 82.61 78.87 80.740
after 90.22 87.32 88.770

accuracy. Notice that we used different datasets for fine-tuning rather than using parts

of the target dataset to avoid introducing dataset bias in the networks [183], [184]. The

effect is more observable in the thermal domain than in the visible domain, although the

dataset used for fine-tuning for the thermal domain is an ear dataset in MWIR and not in
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Figure 6.8: ROC for Thermal Right & Left ear after fine-tuning the CNNs.

Table 6.6: Verification Results (EER %) for visible ear recognition of multiple CNNs, before
& after fine-tuning.

Network Right Left Avg.

GoogleNet
before 3.59 5.92 4.75
after 2.34 1.67 2.01

Vgg19
before 3.13 4.79 3.96
after 2.25 6.91 4.58

Xception
before 6.84 4.53 5.69
after 3.24 3.29 3.27

MobileNetV2
before 2.02 1.82 1.92
after 2.25 0.79 1.52

DenseNet
before 2.53 3.94 3.24
after 1.01 0.51 0.76

EfficientNet
before 3.51 4.28 3.89
after 1.82 0.74 1.28

NasNetMobile
before 8.36 9.53 8.94
after 2.04 2.31 2.18

the LWIR. In visible ear recognition, fine-tuning enhanced the matching accuracies for the

networks by about 1: 2%. This was applicable for all models except for the VGG and the

MobileNet, which can be attributed to the lightweight nature of the networks, making them

more prone to over-fitting. In thermal ear recognition, fine-tuning increased the identification
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Table 6.7: Verification Results (EER %) for thermal ear recognition of multiple CNNs, before
& after fine-tuning.

Network Right Left Avg.

GoogleNet
before 6.85 5.61 6.23
after 5.03 2.96 3.99

Vgg19
before 4.32 5.85 5.09
after 5.46 3.67 4.56

Xception
before 7.14 7.04 7.09
after 5.74 3.61 4.68

MobileNetV2
before 5.51 6.69 6.09
after 7.55 2.57 5.06

DenseNet
before 6.63 3.96 5.29
after 3.59 1.31 2.45

EfficientNet
before 5.36 6.26 5.81
after 5.98 4.24 5.12

NasNetMobile
before 9.84 8.97 9.40
after 5.64 5.17 5.40

performance of DenseNet, & NasNetMobile by about 8%. It also increased the identification

performance of Xception,& EfficientNet by about 5%.

For visible ear recognition, both the DenseNet and MobileNet models achieved the best

Rank-1 accuracy of 98.915%. Additionally, the EER value was the least for the DenseNet,

0.7596%. In contrast, the VGG model performed the least in the examined models, with

Rank-1 accuracy of 96.195% and EER of 4.7593%. For thermal ear recognition, the DenseNet

attained 97.665% Rank-1 accuracy and 2.4541% EER, followed by Xception and GoogleNet.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis provided a detailed study of using ear images for human authentication in visible

and thermal spectrums and related aspects, which can be summarized into the following

points:

First, the proposal of a taxonomy for ear features follows the same principles used in features

taxonomy when using other biometric modalities, namely face and fingerprints. The ear

characteristics computed by humans can be organized into three levels:

1. Level one represents the ear’s global nature, such as size, shape, and skin color.

2. Level two represents the inner details of the ear curvatures and their measurements.

3. Level three represents micro features such as birthmarks, moles, and piercing.

The analogy of such features for machine ear recognition was provided, and experiments

were performed to validate the proposed classification scheme. The experimental results

127
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showed that appearance-based ear recognition methods exploit well level-one ear features.

They can be used for the elimination process since they do not have distinctive power for

recognition. Level-two features exploited by local image descriptors can be used for ear

recognition (identification and verification).

Second, a detailed study on the face-side view and ear for recognition by comparing the

performance of several machine learning methods using different parts of the face-side view

versus using the ear alone. The performance was evaluated for multiple scenarios, compo-

nents, approaches, and databases. Moreover, the investigation of various scenarios for the

fusion of the face profile and ear traits at the sensor/image, feature, and score levels. The

experimental results indicated that the ear provides the main features in the side view re-

garding identity cues. The Multilevel Local Binary Patrons (MLBP) yielded the best ear

recognition performance for the machine learning methods examined. Additionally, the suit-

able fusion of side profile and ear has a synergic power (i.e., it yielded an overall performance

better than the simple addition of the two modalities).

Third, the proposal of an ear detection system that uses a Faster RCNN detection framework

and the AlexNet classifier. The training was performed using a collection of images from

various databases with uncontrolled ear images to avoid over-fitting and make the system

robust in the presence of noise, pose variation, and partial ear occlusion. The proposed real-

time ear detection system yields a 98% correct detection when tested on various databases.

Additionally, the system performed reasonably accurately when tested on sample images from

the Internet representing world situations for ears at different scales with pose variation and

partial occlusion.

Fourth, the examination of multiple convolutional neural network architectures for the ear

recognition task (identification/verification), namely four deep CNN models: SqueezeNet,

GoogLeNet, MobileNetV2, and DenseNet. Transfer learning and data augmentation were
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performed for the learning to overcome the limited training data. The DenseNet yielded

the highest identification rate of 99.00% and 99.35% for the WVU and the USTB datasets,

respectively.

Fifth, the evaluation of the performance of deep ear recognition models across angels. The

recognition performance was relatively stable across a wide range of angles, with the highest

performance achieved when the ear pose is 0°(full profile), which has a Rank-1 recognition

rate of 98.33% across all models, vs. the lowest being when using 60°ear poses, which has a

Rank-1 recognition rate of 76.67% with AlexNet and SqueezeNet. MobileNetV2 yields the

most stable performance across the with angles -10°and up to 45°pose angle; there is only

a slight degradation in recognition performance (about 2% decrease in Rank-1 recognition

rate). Whereas image artifacts, such as blurriness or degradation in contrast and brightness,

affected the performance of the studied models to different degrees. The limited brightness,

contrast, and blur alteration resulted in slight degradation, but the performance declined

with significant artifacts. The DenseNet model was the most robust in the presence of image

artifacts, followed by the MobileNetV2 model, then GoogLeNet and SqueezeNet models.

Sixth, the development of a tool for the automatic detection of low-quality ear images for

recognition. Detection of low-quality ear images have advantages. It prevents spoofing,

recommends re-capture, or initiates sample preprocessing. The proposed approach uses a

CNN classifier model to automatically predict ear quality before matching. The experiments

on extended degraded ear datasets manifest that the proposed tool can predict low-quality ear

images and improve ear recognition performance. It increased the recognition performance

by 38.53 % and 29.31 % for the USTB and the FERET degraded datasets, respectively.

Finally, the proposal of the first deep ear recognition system in the long-wave infrared do-

main. Multiple convolutional neural network architectures were investigated, and different

learning strategies were examined. The identification and verification results demonstrated
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the feasibility of utilizing CNNs for ear recognition in the thermal domain. The experiments

were performed using a recent LWIR dataset with head yaws (y-axis) angles ranging from

+/-90°to +/-30°. The best recognition performance was achieved using the DenseNet CNN

with Rank-1 accuracy of 96.93% Rank-1 identification rate and EER of 2.4541% for ear

recognition in the thermal domain.

7.2 Future Research

Ear recognition has much potential for human recognition. The results in this thesis demon-

strate the viability of the ear for biometric recognition. However, it also reflects the challenges

of utilizing ear recognition in commercial systems. Although the proposed algorithms for ear

detection and matching have yielded promising performance, large-scale public evaluation

for ear recognition algorithms must be conducted. There is a need for an enlarged dataset

of ear images for real-world situations in uncontrolled settings to expand the capabilities of

the proposed algorithms to handle such variations.

The research presented in this thesis can be expanded in the following points:

� Generate an ear external curve segmentation technique after ear region detection to

exclude noisy parts from hair and earrings.

� Utilize algorithms for ear alignment to improve recognition performance.

� Develop deep learning methods for holistic face profile recognition and component-

based representation.

� Modify the CNNs architecture by alternating the network layers, examine different loss

functions, and customizing the training iterations.
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� Enhance neural network learning using contrastive representation and domain adapta-

tion functions.

� Measure other ear image quality components and use them to alternate the ear recog-

nition models, i.e., changing the ear recognition model based on the detected artifact.

� Examine super-resolution algorithms to enhance the performance when using low-

resolution ear images.

� Perform studies for face profile thermal recognition on holistic and component-based

representation.

� Build a cross-spectral ear recognition system where images acquired in the visible (VIS)

domain are matched against images acquired in the thermal domain and vice versa.
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[69] T. Ojala, M. Pietikäinen, and D. Harwood, “A Comparative Study of Texture Measures

with Classification based on Featured Distributions,” Pattern Recognition, vol. 29, no.

1, pp. 51–59, 1996.



140 BIBLIOGRAPHY

[70] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET Evaluation Method-

ology for Face Recognition Algorithms,” IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), vol. 22, no. 10, pp. 1090–1104, 2000.

[71] X. Zhang, and Y. Gao, “Face Recognition Across Pose: A Review,” Pattern Recognition,

vol. 42, pp. 2876–2896, 2009.

[72] P.J. Phillips, H. Wechsler, J. Huang, and P.J. Rauss, “The FERET Database and

Evaluation Procedure for Face Recognition Algorithms,” Image and Vision Computing

(IVCJ), vol. 16, pp. 295 – 306, 1998.

[73] C. Wu, and J. Huang, “Human Face Profile Recognition by Computer,” Pattern Recog-

nition, vol. 23, pp. 255 – 259, 1990.

[74] P. A. Viola, and M. J. Jones, “Robust Real-Time Face Detection,” International Journal

of Computer Vision, vol.57, no.2, pp.137—154, 2004.

[75] S. Islam, M. Bennamoun, and R. Davies, “Fast and Fully Automatic Ear Detection Us-

ing Cascaded Adaboost,” IEEE Workshop on Application of Computer Vision (WACV),

2008.

[76] L. Yuan, and Z. Mu, “Ear Recognition Based on Gabor Features and KFDA,” The

Scientific World Journal, vol. 2014, 2014.

[77] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 39, no.6, pp. 1137–1149, 2017.

[78] R. Girshick, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object De-

tection and Semantic Segmentation,” IEEE Conference on Computer Vision and Pattern

Recognition, pp. 580–587, 2014.



BIBLIOGRAPHY 141

[79] R. Girshick, “Fast R-CNN,” IEEE International Conference on Computer Vision, pp.

1440–1448, 2015.

[80] P. Hu, and D. Ramanan, “Finding Tiny Faces,” IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp.1522 –1530, 2017.

[81] H. Jiang, and E. Learned-Miller, “Face Detection with the Faster R-CNN,” 12th IEEE

International Conference on Automatic Face & Gesture Recognition, pp.650–657, 2017.

[82] C. Zhu, Y. Zheng, K. Luu, and M. Savvides, “CMS-RCNN: Contextual Multi-Scale

Region-Based CNN for Unconstrained Face Detection,” Deep Learning for Biometrics,

pp. 57–79, 2017.
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[113] Ž. Emeršič, A. Kumar S. V., B. S. Harish, W. Gutfeter, J. N. Khiarak, A. Pacut,

E. Hansley, M. Pamplona Segundo, S. Sarkar, H. Park , G. Pyo Nam, I.J. Kim, S.G.

Sangodkar, U. Kacar, M. Kirci, L. Yuan, J. Yuan, H. Zhao, F. Lu, J. Mao, X. Zhang, D.

Yaman, F.I. Eyiokur, K.B. Ozler, H.K. Ekenel, D. Paul Chowdhury, S. Bakshi, P.K. Sa,
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[161] M. Choraś, “Human Ear Identification Based on Image Analysis,” International Con-

ference on Artificial Intelligence and Soft Computing, pp. 688–693, 2004.
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