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Ear Biometrics: A Comprehensive Study of Taxonomy, Detection,

and Recognition Methods

Susan El-Naggar

ABSTRACT

Due to the recent challenges in access control, surveillance and security, there is an increased

need for efficient human authentication solutions. Ear recognition is an appealing choice

to identify individuals in controlled or challenging environments. The outer part of the ear

demonstrates high discriminative information across individuals and has shown to be robust

for recognition. In addition, the data acquisition procedure is contactless, non-intrusive,

and covert. This work focuses on using ear images for human authentication in visible and

thermal spectrums. We perform a systematic study of the ear features and propose a taxon-

omy for them. Also, we investigate the parts of the head side view that provides distinctive

identity cues. Following, we study the different modules of the ear recognition system. First,

we propose an ear detection system that uses deep learning models. Second, we compare

machine learning methods to state traditional systems’ baseline ear recognition performance.

Third, we explore convolutional neural networks for ear recognition and the optimum learn-

ing process setting. Fourth, we systematically evaluate the performance in the presence of

pose variation or various image artifacts, which commonly occur in real-life recognition ap-

plications, to identify the robustness of the proposed ear recognition models. Additionally,

we design an efficient ear image quality assessment tool to guide the ear recognition system.

Finally, we extend our work for ear recognition in the long-wave infrared domains.
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Chapter 1

Introduction

With the advancements in communication and the digital world, secure and convenient hu-

man authentication is critical. Various situations require identifying uncooperative subjects

in public spaces, including semi-constrained and unconstrained environments, such as those

encountered in surveillance applications. Furthermore, various daily activities, from access

control and border crossing to personal access to mobile devices, require efficient, fast, and

secure human recognition solutions. Biometrics provides a practical approach to personal

authentication. They refer to the automatic measurement and the analysis of individuals’

distinctive physical and/or behavioral characteristics, such as the face, voice, iris and fin-

gerprints to support human authentication [1, 2]. Face and fingerprints are among the most

popular biometric modalities [3]. They are widely used in multiple security, surveillance, bor-

der control, and commercial applications. However, the ongoing COVID-19 pandemic and

the safety measures taken (such as wearing a mask to cover the nose and mouth and limiting

contact with commonly touched surfaces) raised several concerns when using them. For ex-

ample, the use of face masks has presented a serious challenge to face recognition systems [4].

Also, contact-based fingerprint scanners are not always preferable due to hygiene concerns

1
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[5]. Thus, ear recognition can provide a suitable alternative for human authentication in

certain situations, even at low light or no light conditions [152].

Ear recognition has its advantages; it is passive, non-intrusive, and expressionless. It demon-

strates high discriminative information across individuals and has shown to be robust for

recognition, even when used to distinguish identical twins [7]. Additionally, in real-life

applications, when identifying non-cooperative subjects in public spaces or unconstrained

environments, like those encountered in surveillance applications, the pose angle (in terms

of yaw, roll, and pitch) represents another challenge for face recognition systems. Most

face recognition systems typically detect pose variation as one of the preprocessing steps,

and only when it is acceptable (frontal or close to frontal) does the system further process

these images to establish human identity. Ear recognition systems can effectively extend the

capabilities of stand-alone face recognition systems in case of severe yaw pose angles.

Assuming that profile face images are available and image quality allows for ear or profile-

based authentication (either directly or via restoration), here is a list of conditions/scenarios

where our proposed recognition system can be used:

1. Recognition of subjects with facial masks.

2. Non-cooperative subjects in uncontrolled environments (surveillance systems).

3. Mugshot, where databases consist of one frontal face image and one side view face

image per subject.

4. Drivers are passing through security checkpoints.

5. Mobile users.

6. Recognition of people entering rooms for home safety applications.
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An automatic ear recognition system is mainly a pattern recognition system that consists

of three modules [1]. First, the ear image preprocessing and detector module provides the

bounding box(s) of the ear(s) to localize them in images or videos. Second is the ear de-

scriptor module that generates an ear representation. The ear representation encodes the

identity information from the detected and localized ear images. Last is the decision-making

module that identifies or verifies the subject that the query ear belongs to.

1.1 What is new in this thesis?

This thesis introduces new approaches for different stages of ear recognition systems. The

results of the research conducted in this thesis are (as discussed later in detail):

� An analysis of the ear structure and its discriminative features focusing on the ear

anthropometry and morphology to build a formal organization for ear features. Inves-

tigation of the effects of ear image resolution on ear recognition performance. Establish

an ear recognition methodology that will be more beneficial for scenarios of different

scales and sizes of ear images.

� A performance comparison (identification and verification) of various machine learn-

ing techniques, namely shape-based techniques such as Scale Invariant Feature Trans-

form(SIFT), Speeded Up Robust Features (SURF); and texture-based techniques such

as Multi scale Local Binary Patterns (MLBP), Local Ternary Patterns (LTP).

� An evaluation of the part(s) of the head side view concluding which is/are more ben-

eficial for recognition:

(i) full side view of the head (including hair),

(ii) full side view of the head without the hair region,
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(iii) full side view of the head without the hair and the ear regions

(iv) ear only

� An assessment of various fusion scenarios, namely the fusion of face profile and ear traits

at the image, feature, or score level, to determine which results in better performance

when using full or partial head-side view images of subjects.

� An ear detection system that uses a Faster Region-based Convolutional Neural Network

(Faster R-CNN) architecture. We adjusted the architecture and used a two-phase

training procedure to teach the proposed ear detection system. The system operates

in real-time and does not rely on detecting the front or side face to localize the ear

in an image. It accomplishes improved performance for ear detection on a set of ear

images captured under uncontrolled settings.

� A comprehensive analysis of ear recognition performance (identification and verifica-

tion) using convolutional neural network models and a study of the optimum learning

process setting.

� An investigation of the performance of the proposed deep ear models in the presence

of various image artifacts, which commonly occur in real-life recognition applications,

to identify their robustness in controlled and uncontrolled conditions.

� The introduction of an automatic Ear Image Quality Assessment tool for improving

ear recognition accuracy. Quality labels are obtained from scores yielded by an ear

recognition matcher.

� An evaluation of the ear recognition performance in the long-wave infrared domain.

That is beneficial for recognition applications at night or when there is no control over



1.2. Problem Statement 5

illumination. The experiments were performed using a dual-band dataset, recently

collected for multi-pose (full frontal to full profile) face recognition applications.

1.2 Problem Statement

In pursuit of our research effort on developing a research prototype of an automated Ear

Recognition system, we identify the following challenging problems:

1.2.1 Problem One: Ear Taxonomy

An analysis of the ear morphological structure and its discriminative features to organize

the salient information in 2D Ear images into feature categories.

Given

� Different images of the ear region manually detected, cropped, and resized to the spatial

resolution of 120×80 pixels for ground truth.

Goal

� Which characteristic ear features are used by humans, and which are used by machines

for recognition?

� Which algorithms can be more beneficial for ear recognition at different scales and ear

image sizes

� What is sufficient resolution for ear images to achieve reliable ear recognition?
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1.2.2 Problem Two: Ear Recognition Using Machine Learning

Techniques

The identification or verification of the subject using his ear biometric.

Given

Head side view images.

Goal

� Investigate which part of the head side view is more beneficial in either identification

or verification applications.

� Examine various feature extraction methods to evaluate head side view and auricle

recognition performances. Feature extraction methods used can be divided into shape

based, and texture based.

� Evaluate the effect of different fusion schemes, at the image, feature, and score levels,

on the recognition performance.

1.2.3 Problem Three: Ear Detection

An ear detector is expected to localize the ear region automatically and accurately (if there

is any) in controlled and uncontrolled image settings and within a facial pose range. The

output of such a detector provides the bounding boxes of the ears in the image, which can

then be used for human authentication.

Given

� An image or video sequence with single/multiple ear segments.
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� Images that are captured under uncontrolled settings with a noisy background.

� Ear segments that suffer from different levels of pose variation, and occlusion.

Goal

� To segment an ear bounding box, in the presence of noise, pose and occlusion.

� The output determines a predicted bounding box (x, y, width, height).

� The method must be fast and operates in real-time.

1.2.4 Problem Four: Deep Ear Recognition

Comprehensive analysis of deep models for ear classification and feature extraction for recog-

nition.

Given

Cropped ear images at different poses or yaw angles.

Goal

� Which convolutional neural network (CNN) architectures is more effective for ear recog-

nition problem?

� What is the best setting for the learning process with the impediment of limited sized

ear data sets?
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1.2.5 Problem Five: Ear Recognition Performance in the Presence

of Image Artifacts

Study the impact of yaw pose angles and image covariates (such as blurring) on the ear

recognition performance.

Given

Cropped ear images at different poses or yaw angles.

Goal

� Evaluate the ear recognition performance, with a wide range of yaw pose angles.

� Investigate the performance of deep ear models in the presence of various image arti-

facts.

1.2.6 Problem Six: Assessment for Quality of Ear Images for

Recognition

Design a tool for ear image quality assessment

Given

� Ear Images of different qualities with their quality labels.

� Ear Images of different qualities to predict quality labels.

Goal Develop a system that assess the quality of an ear input image. Quality label should

be a prediction of the recognition system performance.
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1.2.7 Problem Seven: Thermal Ear Recognition

The usage of deep models for ear recognition in the thermal domain.

Given Ear Images in the thermal domain.

Goal

� Which convolutional neural network (CNN) architectures is more effective for thermal

ear recognition problem?

� What is the best setting for the learning process?

1.3 Thesis Organization

The thesis is organized as follows:

� Chapter1 is titled “Introduction,” gives a general introduction to Ear recognition sys-

tems and illustrates the different problems that we will present in this thesis.

� Chapter2 is titled “On a Taxonomy of Ear Features,” presents the history of Ear

identification and the development of automated Ear recognition systems. Then it

presents an organization for ear features into levels, comparing features used by humans

and those used by machines for recognition.

� Chapter3 is titled “Automated Ear Recognition,” includes performance comparison of

the different parts of the head side view for recognition. It also presents an evaluation

of descriptor-based techniques for ear recognition.

� Chapter4 is titled “Ear Detection,” presents an ear detection system based on, Faster

Region-based Convolutional Neural Network (Faster R-CNN).
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� Chapter5 is titled “Deep Ear Recognition with Image Quality Assessment,” proposes a

set of efficient deep learning models for ear recognition. It also includes a quantitative

assessment of the image artifacts on the performance of the deep ear models.

� Chapter6 is titled “Exploring Deep Learning Ear Recognition In Thermal Images”,

gives a brief background about infrared thermal imaging and overviews the work related

to the thermal ear recognition. It also provides a description of new thermal dataset

to be used for thermal ear recognition experiments.

� Chapter7 is titled “Conclusions and Future Work,” concludes the thesis and gives some

suggested future work as extension to our presented work.
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On a Taxonomy of Ear Features

2.1 Introduction

With the rising interest in ear biometrics and its increasing number of applications, there

is a shortage of an elaborate description of the ear and its unique characteristics; neither a

precise attributive statement of the ear specific

information used by human experts, nor does there exist a systematic study on the most

pertinent ear-based features that the machines can use.

An analysis of the ear structure and its discriminative features can be beneficial to researchers

and biometric system operators for the following reasons i.e.,

� Gain an understanding of ear features that human examiners use to determine a per-

son’s identity.

� Examine the individuality of such features.

� Determine the features that can enhance the performance of automated ear recognition

11
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systems.

This chapter is an exploratory study that examines ear characteristics and provides a clari-

fication on the importance of ear-based different features. It is based on the same principles

used on a facial features taxonomy study reported in [15]. To validate our proposed classi-

fication scheme, we examined multiple ear recognition algorithms on different scales of ear

images. The main objectives of this chapter are to:

1. Buildup a formal organization for ear features.

2. Provide an analysis focused on ear anthropometry and morphology.

3. Investigate the effects on ear recognition performance when using low-resolution ear

images.

4. Conclude recommendations for:

(a) Sufficient resolution for reliable ear recognition.

(b) Ear recognition methodology that will be more beneficial for scenarios of different

scales and sizes of ear images.

2.2 Background & Ear Recognition History

The visible portion of the ear, known as the auricle, has rich structure with numerous

characteristic ridges and valleys as well as many shape variations. These distinguishing

features are suggested to be distinct and differentiable among individuals and thus, can be

used for personal authentication.
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Figure 2.1: External anatomy of the ear: (1) Helix Rim (2) Lobule (3) Antihelix (4) Concha
(5) Tragus (6) Antitragus (7) Crus of Helix (8) Triangular Fossa (9) Incisure Intertragica

� Ear Anatomy and Development

The ear starts to appear between the fifth and seventh weeks of pregnancy. The

auricular hillocks begin to enlarge, differentiate, and fuse, producing the final shape

of the ear. The external anatomy of the ear is illustrated in Figure 2.1.The forensic

science literature reports that ear growth after the first four months of birth is highly

linear [8]. After that, the stretching rate is approximately five times greater than usual,

from four months to the age of eight, after which it is constant until around the age of

seventy, when the earlobe’s height increases due to gravity [9, 10].

� Ear Recognition History

In the science of identification, Alfonso Bertillon was probably the first scientist to

use the ear for personal authentication [11]. Alphonse Bertillon (1852-1914) was a
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French police officer who pioneered using physical measurements to identify criminals.

Bertillon combined qualitative and quantitative descriptions of various body parts,

including the ear, in what he called anthropometry, as shown in Fig. 2.2. In his proce-

dure, he used the length of the right ear as one of the head measurements, accompanied

by a description of the shape with its folds, lobes, and edges.

American police officer Alfred Iannarelli proposed one of the first ear recognition sys-

tems in 1949 [8]. He collected and analyzed more than 10,000 ear images for his studies.

In his method, shown in figure2.3 he first used a standardized vertical guide to align ear

images. Then, he drew vertical, horizontal, diagonal, and anti-diagonal lines, and used

their intersection with ear curves to drive his measurements. These 12 measurements

were used to represent the ear.

For machine ear recognition, Burge et al. proposed one of the first ear recognition

systems in [12]. They used a mathematical graph model to represent and match the

curves and edges in a 2D ear image, but they didn’t report the performance of their

system. Moreno et al. described a fully automated ear recognition system based

on various features such as ear shape and wrinkles [13]. Since then, researchers have

proposed numerous feature extraction and matching schemes based on computer vision

and image processing algorithms [14].

2.3 Related Research

There are two techniques related to a morphology-based or anthropometry-based analysis

that is typically used to examine and describe the anatomy of human body parts (based on

the work discussed at [16]):
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1. Anthropometry Analysis : It is based on a quantitative technique, where landmarks

corresponding to key features are first located. These landmarks are then used to

determine characteristic measures such as lengths, dimensions, and angles.

2. Morphology Analysis : It is based on a qualitative technique, where the ear evaluation is

accomplished by classifying the general ear shape and subdividing it into components.

Such components are compared to obtain degrees of similarity and proportionality.

Expert examiners usually incorporate a mixture of anthropometry and morphology features

analysis to achieve recognition. The ear anatomy includes edges, lobe, folds, and particular-

ities that are shown in Figure 2.1.

2.3.1 Fingerprint and Face Taxonomy

There have been several detailed studies related to fingerprint taxonomy and classification

based on their distinctive features, which motivated our work on ear taxonomy. Fingerprint

characteristic features are organized into three levels [17]:

� Level one features include ridge flows and pattern configurations, which are useful for

classification but not sufficient for recognition.

� Level two features : minutiae formations, which are unique and sufficient for identifica-

tion.

� Level three features : captured in high resolution and include all dimensional attributes

of the ridges and micro details such as pores, scares, creases, and warts. This orga-

nization of fingerprint characteristic features provides discriminatory information to
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increase the accuracy and robustness of fingerprint recognition systems. Such orga-

nization has been well established and widely accepted in the biometrics community

[2].

Inspired by fingerprint taxonomy, Klare and Jain established taxonomy categorization for

facial features in [15]. They organized facial features into three levels also:

� Level one features represent the general nature of the face’s appearance. Such fea-

tures, which include face shape, gender, and ethnicity, are not accurate enough to be

independently used for identification.

� Level two features : include the anthropometric-based facial features, namely the de-

tailed structure and the local components of the face. These are the most discriminative

facial features and are utilized for face recognition.

� Level three features : consists of the micro-features of the face, which include scars,

moles, and facial marks. This level of features can be useful to enhance the accuracy

of face recognition and are also used in the identification of monozygotic or identical

twins [15].

2.4 Ear Feature Levels

Following the analogy for face characteristics directory made in [15], we categorized ear

features into three levels shown in Figure 2.4:



2.4. Ear Feature Levels 17

2.4.1 Level One Features

Human ears consist of cartilage, which gives the ear its original shape and dimensions. This

level of ear features represents the overall characters and morphology of the ear. They are

useful for general description of the ear characteristics. This level of features includes the

following:

1. Ear Size

2. Skin color

3. Ear type: short and broad, short and narrow, long and narrow, or long and broad

4. Earlobe type: attached or free

5. Shape: round, oval, triangular, or rectangular.

Level one features can be extracted from low-resolution ear images. For automated ear

recognition, intensity based representation derived by intensity based methods such as PCA

and LDA form level one features.

PCA was used for ear recognition by Chang et al. [18], where they introduced the concept

of Eigen-Ear. Their technique was widely used in the literature. Yuan et al. [19] used

Full-space Linear Discriminant Analysis (FSLDA) to perform ear recognition.

Although level one features provide an aggregate representation of the ear, they are insuf-

ficient for successful recognition. Therefore, this level of information is mainly useful for

classification or during a subject elimination process.
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2.4.2 Level Two Features

The ear has a rich structure of curvatures, edges, and folds. This structure is what dif-

ferentiates the ears of different persons. Level two features are what represent the ear’s

individuality. In forensic ear recognition, the anthropometric measurement of key features of

human ears and the distances and angles between these features have been used for ear recog-

nition. Ear width, ear length, tragus length, tragus height, concha length, concha width,

lobular length, and lobular width are the most common anthropometric ear-based features

that are measured in forensic-related studies. These features are defined with respect to their

particular spatial coordinate reference for the ear and local patches. The local descriptors

from the multiple sub-locations are combined to describe the ear comprehensively. This level

of the detailed description of the ears cannot be captured in low-resolution ear images. In

automated ear recognition systems, features provided by local descriptor methods, repre-

sent the level two of ear features, such as wavelet transformation [24], Gabor filters [25],

histograms of oriented gradients [27], sift [26] and local binary patterns [152].

The uniqueness of ear modality among the human population has been discussed in the

literature. However, to the best of our knowledge, there is still no systematic statistical large-

scale testing available to support such a claim. The limited experimental studies related to

ear uniqueness are one of the main motivations of this study.

In the studies reported on ear uniqueness, Iannarelli [8] suggested ear uniqueness, even

in the case of identical twins. In another recent study, Zulkifli et al. [28], performed an

anthropometric comparison of external ears between monozygotic twins. The authors used

the same landmarks and ear measurements used in [10] to determine the differences between

both individual ears from the same pair of monozygotic twins. Their statistical analysis

when using the dimensions between inter-landmarks showed that there are no significant
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differences between ears of monozygotic twins for almost all of the dimensions considered.

For authentication, individualization has to be established based on precisely defined charac-

teristics and points or measurements by the examiners. The studies mentioned above proved

that extra careful examination needed to uphold that morphological and anthropometrical

measurements deployed for ear recognition are adequate to establish uniqueness.

2.4.3 Level Three Features

Detailed observations of unstructured micro ear characteristics can provide supplementary

information for ear-based identification. Such characteristics can include but are not limited

to moles, birthmarks, and piercings. Therefore, such characteristics are expected to be

beneficial for recognition studies.

Abbas and Rutty performed a study [30] on the role of piercings, which are permanent body

marks but are more popular for ears, on ear identification. The authors suggested that

piercing can be useful for identification, especially the ones that are not located in the ear

lobe due to their relative rarity.

Increasing resolution for ear images is less likely to improve recognition results when utilizing

level two features, but it is needed to identify level three features that are useful to investi-

gated, and they are also easy for human examiners to observe and locate. While level three

features can be extracted automatically, to our knowledge, there are no studies reported.

2.5 Experiments

In our experiments, we generated and used a mixed ear-based dataset that consists of ear

images from 460 subjects, where each subject is represented with one gallery and one probe
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ear image. In the dataset generated, we have used images from the UND-F (left-ear images

from 285 subjects), FERET (left ear images from 115 subjects) and WVU (left ear images

from 60 subjects) datasets. The result is a mixed ear dataset that consists of 920 left ear

images, in which the ear region is manually detected, cropped, and resized to the spatial

resolution of 120×80 pixels for ground truth.

The main objectives of our experiments are to:

1. Validate our proposed classification for ear features represented by automated ear

recognition systems.

2. Experiment the effect of different levels of ear features in recognition performance.

3. Infer the sufficient resolution for reliable ear recognition.

4. Examine which methodology will be more beneficial for ear recognition in scenarios

where different scales and ear image sizes are used.

For level one features, intensity based methods are used, while local image descriptors are

used as level two features.

For the appearance/intensity based representation, we used:

� Principle Component Analysis (PCA) [18] and

� Linear Discriminant Analysis (LDA) [31].

For local feature representations, we used:

� Multi-Scale Local Binary Patterns (MLBP) [32]and

� Scale Invariant Feature Transform (SIFT) [67].
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Table 2.1: Parameters used in MLBP

Parameter Value
Region Size 24× 24

OverLap 12
Neighborhood Pixels 8

Radius 1,3,5,7

Appearance-based methods are useful in classifying prevailing ear characteristics such as

skin color and exterior shape. While local image descriptors give more insight into the

characteristic elements of the ear’s structure and the relationship among these elements that

are useful for personal authentication. Upon investigating various recognition methods, we

used a different ear data set, which is the USTB to compare and tune the different ear

parameters needed for our studies.

Principle component analysis (PCA) is a linear projection method that is used to capture

the underlying structure in the feature space of the data. It uses eigen decomposition to

compute basis vectors representing the directions where the data has the most variation

and brings out the most discriminative data patterns. While Linear Discriminant Analysis

(LDA) is also an eigen decomposition method, it is different than PCA because it tries to

find the projection vectors that will separate classes. The goal of LDA is to maximize the

between-subjects variance and minimize the within-subjects variance.

Our experiments use local descriptors, MLBP and SIFT, as level-two features. In the case

of the MLBP feature extraction, the ear image is first divided into overlapping regions. The

basic LBP operator assigns a decimal value to each pixel in the region by thresholding the

pixel’s neighborhood. Then, a histogram of these decimal values is derived. The Chi-Squared

dissimilarity metric was used to generate the match scores, as originally proposed in [69].

Table 2.1 provides the MLPB parameters were used for our studies.

The scale-invariant feature transform (SIFT) [67] is a shape-based learning algorithm for
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Table 2.2: Down scale with 0.5 factor and final image sizes.

Down scale factor Image size
Original 120× 80

1/2 60× 40
1/4 30× 20
1/8 15× 10

extracting highly distinctive invariant features. Landmarks invariant to scale and orien-

tation are first located using the difference-of-Gaussian function, and low contrast marks

are rejected. What follows is the computation of the gradient orientation histogram in the

neighborhood of each key point, where histogram peaks correspond to dominant orientations.

Finally, a feature descriptor is computed as a set of orientation histograms for each selected

key-point orientation.

In our experiments, we down-scaled ear images with a factor of 0.5 recursively as shown in

Table 2.2.

Figures 2.6, 2.7, 2.8, and 2.9 show the Cumulative Match Characteristic (CMC) curves

when intensity based (PCA and LDA) and the local descriptors methods are used (MLBP

and SIFT). In those figures, the x-axis represents rank, while the y-axis represents the

probability of obtaining the correct identity in the top n positions. Table 2.3 provides an

overview of the rank one identification rate for different feature levels with multiple scales.

2.5.1 Discussion

From the results shown in Figures 2.6 and 2.7, we conclude that, in appearance based

methods, although rank-one identification accuracy is relatively low; the identification per-

formance is stable across different scales of ear images. Our experimental study concludes

that appearance-based methods can be used to exploit level one ear features. They are use-
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Table 2.3: Rank one identification rate for different feature levels with multiple scales

Image Size PCA LDA SIFT MLBP
120× 80 0.3696 0.3783 0.3935 0.8913
60× 40 0.3652 0.3913 0.3870 0.8565
30× 20 0.3630 0.3739 0.3022 0.6913
15× 10 0.3413 0.3413 0.0326 0.3913

ful for global illustration of the ear even though their identification power is low. Thus, it

is suggested that they can be used as an elimination procedure to remove subjects from a

match list but are insufficient for full ear recognition.

We also examined the identification efficiency of local image descriptors. Experimental re-

sults are shown in Figures 2.8 and 2.9, where we can see that the SIFT performance is low

for ear recognition and hence, may not be the best local image descriptor when using ear

images. However, our studies determined that MLBP provides satisfactory identification

performance when ear images are used and have a spatial resolution of 120× 80 pixels. Ex-

perimental results, see Figures 2.8 and 2.9, show that when spatial resolution decreases from

its original size, both SIFT and MLBP performance decreases significantly, e.g., we notice

more than 60% difference in rank-one identification for MLBP when the spatial resolution

used is 15 × 10 compared to 120 × 80. Such results support our original hypothesis that

level two ear features can achieve a higher rank-1 identification rate compared to level one

features, given that high-resolution ear images are available.
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Figure 2.2: The Bertillon’s Identification anthropométrique [11], demonstrating the mea-
surements needed for his anthropometric identification system
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Figure 2.3: Iannarelli’s measurements

Figure 2.4: Examples of the proposed taxonomy for ear features. Level one features contain
low-dimensional appearance information. Such information is useful for subject elimination.
Level two features include the ear’s rich structure and require detailed processing for the
ear. Information is used for an accurate authentication of the subject’s identity. Level three
features include moles, birthmarks, and piercings.
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Figure 2.5: An example of a 120×80 Ear image down sampled to lower sizes.

Figure 2.6: Cumulative Match Characteristic (CMC) curve of PCA performance for ear
images at different scales.

Figure 2.7: Cumulative Match Characteristic (CMC) curve of LDA performance for ear
images at different scales.
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Figure 2.8: Cumulative Match Characteristic (CMC) curve of MLBP performance for ear
images at different scales.

Figure 2.9: Cumulative Match Characteristic (CMC) curve of SIFT performance for ear
images at different scales.



Chapter 3

Automated Ear Recognition

3.1 Introduction

Most the commercial face recognition systems typically detect pose variation as one of the

preprocessing steps, and only when it is acceptable (frontal or close to frontal) does the

system further process these images to establish human identity. For example, PittPatt

version 4 does not process face images with roll angles beyond 18 degrees, while in version

5, this capability is extended to 36 degrees 1. Unfortunately, in real-life situations, when

identifying non-cooperative subjects in public spaces or unconstrained environments, like

those encountered in surveillance applications, frontal face images may not be available.

The only biometric that may be available for recognition is partial biometric information,

like head-side view.

While both face profile and ear-based recognition systems are important and have multiple

applications, there is no clear definition for what a face profile is, or which features in the

1PittPatt (Pittsburgh Pattern Recognition) was a software project that develops facial recognition tech-
nology spawned from Carnegie Mellon University until acquired by Google.
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Figure 6.7: ROC for Thermal Right & Left ear before fine-tuning the CNNs.

Table 6.5: Identification rate (Rank-1 %) for thermal ear recognition of multiple CNNs,
before & after fine-tuning.

Network Right Left Avg.

GoogleNet
before 84.78 92.96 88.870
after 92.39 95.77 94.080

Vgg19
before 89.13 94.37 91.750
after 92.39 92.96 92.675

Xception
before 89.13 87.32 88.225
after 91.30 97.18 94.240

MobileNetV2
before 92.39 92.96 92.675
after 85.87 95.77 90.82

DenseNet
before 93.48 85.92 89.700
after 96.74 98.59 97.665

EfficientNet
before 93.48 85.92 89.700
after 93.48 97.18 95.330

NasNetMobile
before 82.61 78.87 80.740
after 90.22 87.32 88.770

accuracy. Notice that we used different datasets for fine-tuning rather than using parts

of the target dataset to avoid introducing dataset bias in the networks [183], [184]. The

effect is more observable in the thermal domain than in the visible domain, although the

dataset used for fine-tuning for the thermal domain is an ear dataset in MWIR and not in
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Figure 6.8: ROC for Thermal Right & Left ear after fine-tuning the CNNs.

Table 6.6: Verification Results (EER %) for visible ear recognition of multiple CNNs, before
& after fine-tuning.

Network Right Left Avg.

GoogleNet
before 3.59 5.92 4.75
after 2.34 1.67 2.01

Vgg19
before 3.13 4.79 3.96
after 2.25 6.91 4.58

Xception
before 6.84 4.53 5.69
after 3.24 3.29 3.27

MobileNetV2
before 2.02 1.82 1.92
after 2.25 0.79 1.52

DenseNet
before 2.53 3.94 3.24
after 1.01 0.51 0.76

EfficientNet
before 3.51 4.28 3.89
after 1.82 0.74 1.28

NasNetMobile
before 8.36 9.53 8.94
after 2.04 2.31 2.18

the LWIR. In visible ear recognition, fine-tuning enhanced the matching accuracies for the

networks by about 1: 2%. This was applicable for all models except for the VGG and the

MobileNet, which can be attributed to the lightweight nature of the networks, making them

more prone to over-fitting. In thermal ear recognition, fine-tuning increased the identification
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Table 6.7: Verification Results (EER %) for thermal ear recognition of multiple CNNs, before
& after fine-tuning.

Network Right Left Avg.

GoogleNet
before 6.85 5.61 6.23
after 5.03 2.96 3.99

Vgg19
before 4.32 5.85 5.09
after 5.46 3.67 4.56

Xception
before 7.14 7.04 7.09
after 5.74 3.61 4.68

MobileNetV2
before 5.51 6.69 6.09
after 7.55 2.57 5.06

DenseNet
before 6.63 3.96 5.29
after 3.59 1.31 2.45

EfficientNet
before 5.36 6.26 5.81
after 5.98 4.24 5.12

NasNetMobile
before 9.84 8.97 9.40
after 5.64 5.17 5.40

performance of DenseNet, & NasNetMobile by about 8%. It also increased the identification

performance of Xception,& EfficientNet by about 5%.

For visible ear recognition, both the DenseNet and MobileNet models achieved the best

Rank-1 accuracy of 98.915%. Additionally, the EER value was the least for the DenseNet,

0.7596%. In contrast, the VGG model performed the least in the examined models, with

Rank-1 accuracy of 96.195% and EER of 4.7593%. For thermal ear recognition, the DenseNet

attained 97.665% Rank-1 accuracy and 2.4541% EER, followed by Xception and GoogleNet.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis provided a detailed study of using ear images for human authentication in visible

and thermal spectrums and related aspects, which can be summarized into the following

points:

First, the proposal of a taxonomy for ear features follows the same principles used in features

taxonomy when using other biometric modalities, namely face and fingerprints. The ear

characteristics computed by humans can be organized into three levels:

1. Level one represents the ear’s global nature, such as size, shape, and skin color.

2. Level two represents the inner details of the ear curvatures and their measurements.

3. Level three represents micro features such as birthmarks, moles, and piercing.

The analogy of such features for machine ear recognition was provided, and experiments

were performed to validate the proposed classification scheme. The experimental results
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showed that appearance-based ear recognition methods exploit well level-one ear features.

They can be used for the elimination process since they do not have distinctive power for

recognition. Level-two features exploited by local image descriptors can be used for ear

recognition (identification and verification).

Second, a detailed study on the face-side view and ear for recognition by comparing the

performance of several machine learning methods using different parts of the face-side view

versus using the ear alone. The performance was evaluated for multiple scenarios, compo-

nents, approaches, and databases. Moreover, the investigation of various scenarios for the

fusion of the face profile and ear traits at the sensor/image, feature, and score levels. The

experimental results indicated that the ear provides the main features in the side view re-

garding identity cues. The Multilevel Local Binary Patrons (MLBP) yielded the best ear

recognition performance for the machine learning methods examined. Additionally, the suit-

able fusion of side profile and ear has a synergic power (i.e., it yielded an overall performance

better than the simple addition of the two modalities).

Third, the proposal of an ear detection system that uses a Faster RCNN detection framework

and the AlexNet classifier. The training was performed using a collection of images from

various databases with uncontrolled ear images to avoid over-fitting and make the system

robust in the presence of noise, pose variation, and partial ear occlusion. The proposed real-

time ear detection system yields a 98% correct detection when tested on various databases.

Additionally, the system performed reasonably accurately when tested on sample images from

the Internet representing world situations for ears at different scales with pose variation and

partial occlusion.

Fourth, the examination of multiple convolutional neural network architectures for the ear

recognition task (identification/verification), namely four deep CNN models: SqueezeNet,

GoogLeNet, MobileNetV2, and DenseNet. Transfer learning and data augmentation were
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performed for the learning to overcome the limited training data. The DenseNet yielded

the highest identification rate of 99.00% and 99.35% for the WVU and the USTB datasets,

respectively.

Fifth, the evaluation of the performance of deep ear recognition models across angels. The

recognition performance was relatively stable across a wide range of angles, with the highest

performance achieved when the ear pose is 0°(full profile), which has a Rank-1 recognition

rate of 98.33% across all models, vs. the lowest being when using 60°ear poses, which has a

Rank-1 recognition rate of 76.67% with AlexNet and SqueezeNet. MobileNetV2 yields the

most stable performance across the with angles -10°and up to 45°pose angle; there is only

a slight degradation in recognition performance (about 2% decrease in Rank-1 recognition

rate). Whereas image artifacts, such as blurriness or degradation in contrast and brightness,

affected the performance of the studied models to different degrees. The limited brightness,

contrast, and blur alteration resulted in slight degradation, but the performance declined

with significant artifacts. The DenseNet model was the most robust in the presence of image

artifacts, followed by the MobileNetV2 model, then GoogLeNet and SqueezeNet models.

Sixth, the development of a tool for the automatic detection of low-quality ear images for

recognition. Detection of low-quality ear images have advantages. It prevents spoofing,

recommends re-capture, or initiates sample preprocessing. The proposed approach uses a

CNN classifier model to automatically predict ear quality before matching. The experiments

on extended degraded ear datasets manifest that the proposed tool can predict low-quality ear

images and improve ear recognition performance. It increased the recognition performance

by 38.53 % and 29.31 % for the USTB and the FERET degraded datasets, respectively.

Finally, the proposal of the first deep ear recognition system in the long-wave infrared do-

main. Multiple convolutional neural network architectures were investigated, and different

learning strategies were examined. The identification and verification results demonstrated
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the feasibility of utilizing CNNs for ear recognition in the thermal domain. The experiments

were performed using a recent LWIR dataset with head yaws (y-axis) angles ranging from

+/-90°to +/-30°. The best recognition performance was achieved using the DenseNet CNN

with Rank-1 accuracy of 96.93% Rank-1 identification rate and EER of 2.4541% for ear

recognition in the thermal domain.

7.2 Future Research

Ear recognition has much potential for human recognition. The results in this thesis demon-

strate the viability of the ear for biometric recognition. However, it also reflects the challenges

of utilizing ear recognition in commercial systems. Although the proposed algorithms for ear

detection and matching have yielded promising performance, large-scale public evaluation

for ear recognition algorithms must be conducted. There is a need for an enlarged dataset

of ear images for real-world situations in uncontrolled settings to expand the capabilities of

the proposed algorithms to handle such variations.

The research presented in this thesis can be expanded in the following points:

� Generate an ear external curve segmentation technique after ear region detection to

exclude noisy parts from hair and earrings.

� Utilize algorithms for ear alignment to improve recognition performance.

� Develop deep learning methods for holistic face profile recognition and component-

based representation.

� Modify the CNNs architecture by alternating the network layers, examine different loss

functions, and customizing the training iterations.
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� Enhance neural network learning using contrastive representation and domain adapta-

tion functions.

� Measure other ear image quality components and use them to alternate the ear recog-

nition models, i.e., changing the ear recognition model based on the detected artifact.

� Examine super-resolution algorithms to enhance the performance when using low-

resolution ear images.

� Perform studies for face profile thermal recognition on holistic and component-based

representation.

� Build a cross-spectral ear recognition system where images acquired in the visible (VIS)

domain are matched against images acquired in the thermal domain and vice versa.
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