64 research outputs found

    Industrial applications of the Kalman filter:a review

    Get PDF
    International audienc

    Kodizajn arhitekture i algoritama za lokalizacijumobilnih robota i detekciju prepreka baziranih namodelu

    No full text
    This thesis proposes SoPC (System on a Programmable Chip) architectures for efficient embedding of vison-based localization and obstacle detection tasks in a navigational pipeline on autonomous mobile robots. The obtained results are equivalent or better in comparison to state-ofthe- art. For localization, an efficient hardware architecture that supports EKF-SLAM's local map management with seven-dimensional landmarks in real time is developed. For obstacle detection a novel method of object recognition is proposed - detection by identification framework based on single detection window scale. This framework allows adequate algorithmic precision and execution speeds on embedded hardware platforms.Ova teza bavi se dizajnom SoPC (engl. System on a Programmable Chip) arhitektura i algoritama za efikasnu implementaciju zadataka lokalizacije i detekcije prepreka baziranih na viziji u kontekstu autonomne robotske navigacije. Za lokalizaciju, razvijena je efikasna računarska arhitektura za EKF-SLAM algoritam, koja podržava skladištenje i obradu sedmodimenzionalnih orijentira lokalne mape u realnom vremenu. Za detekciju prepreka je predložena nova metoda prepoznavanja objekata u slici putem prozora detekcije fiksne dimenzije, koja omogućava veću brzinu izvršavanja algoritma detekcije na namenskim računarskim platformama

    A Hybrid-parallel Architecture for Applications in Bioinformatics

    Get PDF
    Since the advent of Next Generation Sequencing (NGS) technology, the amount of data from whole genome sequencing has been rising fast. In turn, the availability of these resources led to the tapping of whole new research fields in molecular and cellular biology, producing even more data. On the other hand, the available computational power is only increasing linearly. In recent years though, special-purpose high-performance devices started to become prevalent in today’s scientific data centers, namely graphics processing units (GPUs) and, to a lesser extent, field-programmable gate arrays (FPGAs). Driven by the need for performance, developers started porting regular applications to GPU frameworks and FPGA configurations to exploit the special operations only these devices may perform in a timely manner. However, applications using both accelerator technologies are still rare. Major challenges in joint GPU/FPGA application development include the required deep knowledge of associated programming paradigms and the efficient communication both types of devices. In this work, two algorithms from bioinformatics are implemented on a custom hybrid-parallel hardware architecture and a highly concurrent software platform. It is shown that such a solution is not only possible to develop but also its ability to outperform implementations on similar- sized GPU or FPGA clusters in terms of both performance and energy consumption. Both algorithms analyze case/control data from genome- wide association studies to find interactions between two or three genes with different methods. Especially in the latter case, the newly available calculation power and method enables analyses of large data sets for the first time without occupying whole data centers for weeks. The success of the hybrid-parallel architecture proposal led to the development of a high- end array of FPGA/GPU accelerator pairs to provide even better runtimes and more possibilities

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Hardware Accelerator for MIMO Wireless Systems

    Get PDF
    Ever increasing demand for higher data rates and better Quality of Service (QoS) for a growing number of users requires new transceiver algorithms and architectures to better exploit the available spectrum and to efficiently counter the impairments of the radio channel. Multiple-Input Multiple-Output (MIMO) communication systems employ multiple antennas at both transmitter and at the receiver to meet the requirements of next-generation wireless systems. It is a promising technology to provide increased data rates while not involving an equivalent increase in the spectral requirements. However, practical implementation of MIMO detectors poses a significant challenge and has been consistently identified as the major bottleneck for realizing the full potential that multiple antenna systems promise. Furthermore, in order to make judicious use of the available bandwidth, the baseband units have to dynamically adapt to different modes (modulation schemes, code rates etc) of operations. Flexibility and high throughput requirements often place conflicting demands on the Very Large Scale Integration (VLSI) system designer. The major focus of this dissertation is to present efficient VLSI architectures for configurable MIMO detectors that can serve as accelerators to enable the realization of next generation wireless devices feasible. Both, hard output and soft output detector architectures are considered

    A custom computing framework for orientation and photogrammetry

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 211-223).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.There is great demand today for real-time computer vision systems, with applications including image enhancement, target detection and surveillance, autonomous navigation, and scene reconstruction. These operations generally require extensive computing power; when multiple conventional processors and custom gate arrays are inappropriate, due to either excessive cost or risk, a class of devices known as Field-Programmable Gate Arrays (FPGAs) can be employed. FPGAs per the flexibility of a programmable solution and nearly the performance of a custom gate array. When implementing a custom algorithm in an FPGA, one must be more efficient than with a gate array technology. By tailoring the algorithms, architectures, and precisions, the gate count of an algorithm may be sufficiently reduced to t into an FPGA. The challenge is to perform this customization of the algorithm, while still maintaining the required performance. The techniques required to perform algorithmic optimization for FPGAs are scattered across many fields; what is currently lacking is a framework for utilizing all these well known and developing techniques. The purpose of this thesis is to develop this framework for orientation and photogrammetry systems.by Paul D. Fiore.Ph.D

    Adaptive Baseband Pro cessing and Configurable Hardware for Wireless Communication

    Get PDF
    The world of information is literally at one’s fingertips, allowing access to previously unimaginable amounts of data, thanks to advances in wireless communication. The growing demand for high speed data has necessitated theuse of wider bandwidths, and wireless technologies such as Multiple-InputMultiple-Output (MIMO) have been adopted to increase spectral efficiency.These advanced communication technologies require sophisticated signal processing, often leading to higher power consumption and reduced battery life.Therefore, increasing energy efficiency of baseband hardware for MIMO signal processing has become extremely vital. High Quality of Service (QoS)requirements invariably lead to a larger number of computations and a higherpower dissipation. However, recognizing the dynamic nature of the wirelesscommunication medium in which only some channel scenarios require complexsignal processing, and that not all situations call for high data rates, allowsthe use of an adaptive channel aware signal processing strategy to provide adesired QoS. Information such as interference conditions, coherence bandwidthand Signal to Noise Ratio (SNR) can be used to reduce algorithmic computations in favorable channels. Hardware circuits which run these algorithmsneed flexibility and easy reconfigurability to switch between multiple designsfor different parameters. These parameters can be used to tune the operations of different components in a receiver based on feedback from the digitalbaseband. This dissertation focuses on the optimization of digital basebandcircuitry of receivers which use feedback to trade power and performance. Aco-optimization approach, where designs are optimized starting from the algorithmic stage through the hardware architectural stage to the final circuitimplementation is adopted to realize energy efficient digital baseband hardwarefor mobile 4G devices. These concepts are also extended to the next generation5G systems where the energy efficiency of the base station is improved.This work includes six papers that examine digital circuits in MIMO wireless receivers. Several key blocks in these receiver include analog circuits thathave residual non-linearities, leading to signal intermodulation and distortion.Paper-I introduces a digital technique to detect such non-linearities and calibrate analog circuits to improve signal quality. The concept of a digital nonlinearity tuning system developed in Paper-I is implemented and demonstratedin hardware. The performance of this implementation is tested with an analogchannel select filter, and results are presented in Paper-II. MIMO systems suchas the ones used in 4G, may employ QR Decomposition (QRD) processors tosimplify the implementation of tree search based signal detectors. However,the small form factor of the mobile device increases spatial correlation, whichis detrimental to signal multiplexing. Consequently, a QRD processor capableof handling high spatial correlation is presented in Paper-III. The algorithm and hardware implementation are optimized for carrier aggregation, which increases requirements on signal processing throughput, leading to higher powerdissipation. Paper-IV presents a method to perform channel-aware processingwith a simple interpolation strategy to adaptively reduce QRD computationcount. Channel properties such as coherence bandwidth and SNR are used toreduce multiplications by 40% to 80%. These concepts are extended to usetime domain correlation properties, and a full QRD processor for 4G systemsfabricated in 28 nm FD-SOI technology is presented in Paper-V. The designis implemented with a configurable architecture and measurements show thatcircuit tuning results in a highly energy efficient processor, requiring 0.2 nJ to1.3 nJ for each QRD. Finally, these adaptive channel-aware signal processingconcepts are examined in the scope of the next generation of communicationsystems. Massive MIMO systems increase spectral efficiency by using a largenumber of antennas at the base station. Consequently, the signal processingat the base station has a high computational count. Paper-VI presents a configurable detection scheme which reduces this complexity by using techniquessuch as selective user detection and interpolation based signal processing. Hardware is optimized for resource sharing, resulting in a highly reconfigurable andenergy efficient uplink signal detector

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore