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Zusammenfassung

Seit der Einfithrung der Next Generation Sequencing (NGS)-Technologie
steigen die Datenmengen aus der Sequenzierung von Genomen besonders
schnell. Die Verfiigbarkeit dieser Daten fiihrt wiederum zu der Erschlie-
Bung neuer Felder in der Molekular- und Zellbiologie, sowie der Genetik,
die wiederum neue Daten erzeugen. Andererseits steigt die verfiigbare
Rechenleistung in Rechenzentren nur linear. In den letzten Jahren zeigte
sich jedoch, dass neue Spezialhardware in Rechenzentren Einzug nimmt,
insbesondere Grafikprozessoren (GPUs) und, weniger verbreitet, FPGAs
(field-programmable gate arrays). Durch den Leistungsbedarf angetrieben be-
gannen Entwickler Standardsoftware auf diese neuen Systeme zu portieren,
um die speziellen Fahigkeiten ausnutzen zu konnen. Systeme, die GPUs
und FPGAs gemeinsam nutzen, sind jedoch selten zu finden. Besonde-
re Herausforderungen stellt dabei einerseits der Bedarf an tiefgehendem
Know-How in zwei diametral verschiedenen Programmierparadigmen dar,
sowie das notige Ingeneurswissen um das fiir heterogene Systeme typische
Nadelshr in der Kommunikation zwischen den beteiligten Geréaten.

Fiir diese Arbeit wurden zwei Algorithmen aus der Bioinformatik fiir
die Implementierung auf einer neuen, hybrid-parallelen Rechnerarchitektur
und Softwareplattform ausgewdhlt, die die Vorztige von GPUs, FPGAs
und CPUs auf besonders effiziente Weise nutzt. Es wird gezeigt, dass ei-
ne solche Entwicklung nicht nur moglich ist, sondern die Rechenleistung
homogener FPGA- oder GPU-Systeme vergleichbarer Grofe tibertrifft und
dennoch weniger Energie benotigt. Beide Methoden werden genutzt, um
Fall-Kontroll-Daten aus Assoziationsstudien auszuwerten und auf Interak-
tionen zwischen zwei oder drei Genen zu analysieren. Insbesondere bei
letzterem zeigt sich, dass die neu gewonnene Rechenleistung es erstmals
ermoglicht, grolere Datenmengen zu untersuchen, ohne ganze Rechenzen-
tren tiber Wochen auszulasten. Der Erfolg der Architektur fiihrt schliellich
zu der Entwicklung eines Hochleistungsrechners auf Basis des vorliegenden
Konzeptes.






Abstract

Since the advent of Next Generation Sequencing (NGS) technology, the
amount of data from whole genome sequencing has been rising fast. In turn,
the availability of these resources led to the tapping of whole new research
fields in molecular and cellular biology, producing even more data. On the
other hand, the available computational power is only increasing linearly.
In recent years though, special-purpose high-performance devices started
to become prevalent in today’s scientific data centers, namely graphics
processing units (GPUs) and, to a lesser extent, field-programmable gate
arrays (FPGAs).

Driven by the need for performance, developers started porting regular
applications to GPU frameworks and FPGA configurations to exploit the
special operations only these devices may perform in a timely manner.
However, applications using both accelerator technologies are still rare.
Major challenges in joint GPU/FPGA application development include the
required deep knowledge of associated programming paradigms and the
efficient communication both types of devices.

In this work, two algorithms from bioinformatics are implemented on
a custom hybrid-parallel hardware architecture and a highly concurrent
software platform. It is shown that such a solution is not only possible
to develop but also its ability to outperform implementations on similar-
sized GPU or FPGA clusters in terms of both performance and energy
consumption. Both algorithms analyze case/control data from genome-
wide association studies to find interactions between two or three genes
with different methods. Especially in the latter case, the newly available
calculation power and method enables analyses of large data sets for the
first time without occupying whole data centers for weeks. The success of
the hybrid-parallel architecture proposal led to the development of a high-
end array of FPGA /GPU accelerator pairs to provide even better runtimes
and more possibilities.
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Chapter 1

Introduction

Regular desktop computers have been heterogeneous systems since the
advent of integrated processors. Every computer chip within such a system
has a clearly defined responsibility. For example, a microcontroller processes
readings from fan speeds and temperature sensors and moves them to a
dedicated system management bus controller (SMBus). Then, they are
moved to the central processor for evaluation. If an application decides
that a temperature might be too high, a command is issued to the SMBus
controller, which in turn instructs the sensor processing controller to raise
the fan speed. Additionally, this change in temperature is recorded to the
hard disk by first instructing the hard disk bus controllers to move data
to the hard disk-integrated firmware controller which writes data on the
physical platters though a multitude of intermediate devices.

Most parts of this ecosystem are somehow integrated and encapsulated
in a way that the user rarely even knows about their existence. Micro-
controllers, bus controllers and other small-scale processors are usually
dedicated to certain purposes and have just enough computational power
to handle their workloads on time.

Later that time, accelerators were added to perform certain computations
that could have been done on the CPU but that the accelerator is specifically
designed to perform. The purpose of a CPU is to do all kinds of work but
specializations usually outperform generalizations with their respective
operations. However, they do not automatically accelerate applications.
Instead, these applications have to be specifically designed to exploit the
available features.

Certainly the most prominent accelerator is the graphics processing unit
(GPU). Originally, they have been implemented to help computer-aided
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design software (CAD) and video games in calculating transformations in
affine and euclidean 2D and 3D spaces and draw a projection of the vector
space to a rasterized display, such as computer screens. GPU functions were
soon enriched with texture filtering, lighting through radiosity, ray tracing
and other complex processes in fixed pipelines. After adding more and more
functions, the fixed function pipeline became too static and vendors chose
to expose the GPU instruction set to the system, and the concept of general-
purpose graphics processing units was born (GPGPU). Scientists started
to move climate prediction models, protein folding methods and genome
analyses to GPUs to exploit the vectored and parallelized instruction sets
and achieved speed-ups that can be reasonably measured in orders of
magnitude.

1.1 Motivation

Although GPUs open the world of high performance computing to regular
computers, their specialization still lies on graphics. The above mentioned
functions typically require low-precision floating-point calculations in dot
products, matrix multiplication, and generally multiply/add-heavy algo-
rithms. Field programmable gate arrays (FPGAs), although less popular
and more complex, can be used as accelerators to enhance a vastly different
type of computation. Their strength lies in the flexibility of configuration.
No instruction sets, no scheduler and (almost) no fixed-function entities
restrain the kind of work FPGAs can perform. The developer directly im-
bues combinational and/or sequential logic into the device to connect the
different pins and peripherals with each other. This great flexibility comes
at a cost. Development time and debugging difficulty tend to be very high
while the achievable clock frequency is rather low when compared to GPUs
or CPUs. However, this also allows developing applications that could not
be run on CPUs and GPUs efficiently, such as systolic structures where large
numbers of primitive nodes concurrently work on data streams. One popu-
lar example is the development of polynomial evaluators. Using Horner’s
Rule, building an FPGA configuration to evaluate a several-thousand-degree
polynomial every clock cycle is trivial (see Section 2.3.2 for details), while it
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Figure 1.1. Human genome sequencing costs in USD [Wet16]

is hardly possible to do on GPUs and certainly impossible on CPUs in the
same time frame.

After all, the relatively low frequencies achievable on FPGAs also reduce
energy consumption but the flexibility and concurrency potential can easily
make up for it as this work shows. This, however, requires the developer
to extensively exploit this potential. Plain sequential processes, complex
arithmetical issues or dynamic programming solutions will not perform well
but if they can be translated into more suitable structures, FPGA designs
become able to generate results faster than any other platform while still
keeping the energy footprint low.

Problems that can be partitioned into suitable workloads for GPUs,
FPGAs and CPUs will therefore be extremely efficient when compared to
implementations on any of these alone. Bioinformatics, for example, is a
field where large amounts of data, typically DNA, are analyzed in pipelines
with clearly defined stages and therefore provides a workable field for
acceleration through the hybrid-parallel architecture proposed in this work.
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Next-Generation Sequencing (NGS) revolutionized biotechnology by
making fast and economical profiling of genomes possible. Since its intro-
duction, the trend continues as can bee seen in Figure 1.1 and the acquired
amounts of data rise faster than the available computing power. Empow-
ered by these new methods, scientists in medicine, genetics and molecular
biology discovered genetic features that might be responsible for certain
diseases — and created the field of personal medicine and, of course, com-
pletely new workloads for already busy data centers.

The rich field of bioinformatics is therefore a grateful target for the
development of novel high-efficiency architectures. Although many meth-
ods and solutions exist that focus on data centers and GPU clusters, no
single implementation is known to exploit the best of all three acceleration
models. Graphics cards set high standards for computational power, their
commercial and academic communities are vibrant and the programming
APIs exceptionally well-designed. FPGA cards, however, do not provide
standardized interfaces, simple programming mechanisms and communi-
ties with pre-built libraries for all kinds of tasks. The major challenge in
developing a hybrid system to cherry-pick from all architectures are the pro-
grammability and interconnection and this is exactly what the work at hand
focuses on. Moving data between threads or programs on a single device
alone often becomes a bottleneck in an application’s performance. Mov-
ing data between devices requires sophisticated threading models, highly
efficient buffer management, extensive knowledge of communication pro-
tocols and deep integration with all involved operating system drivers.
However, this work aims to prove that it is not only possible implement.
Instead, it is shown that the hybrid realization of two methods for analysis
of genome-wide association studies outperforms all known methods on
performance-wise comparable, non-hybrid devices.

A genome-wise association study (GWAS) is often designed by selecting
a particular disease, e.g. ulcerative colitis, and collecting human samples
that are known to be healthy with respect to this disorder, the control group,
and samples that do possess colitis, the case group. Each individual has
its genome sampled at specific places, loci, where each locus has one of
two or more types. The methods discussed and used in this work try to
discover combinations of loci where certain values within the combination
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lead to a shift in the case/control distribution. These analyses are performed
on contingency tables, i.e. multi-dimensional data points where one table
shows the distribution of sampled values of a single locus with respect to
the group membership. Therefore, a simple, first-order analysis requires
P contingency tables to be created and evaluated. With the number of
loci P quickly raising towards millions, even simple statistical tests can
become a computational burden for conservative architectures. The superior
power of the proposed hybrid system becomes obvious when not only
analyzing single contingency tables but all two-combinations. The demand
in computational resources rises exponentially in the order of interaction,
i.e. P evaluations for single order become almost P? evaluations for second
order, and so on. For third and higher order interactions, it is almost
impossible to find established methods as only very few scientists have
access to the computational power required to do these kinds of analyses.
For comparison, a sufficiently modern CPU-based system requires a little
more than 115 hours for our first method on a reference data set. The
implementation of the same method on the hybrid system is faster by a
factor of 595, requiring only 12 minutes. For third order analysis, a novel
method to model gene-gene-gene interactions based in approaches from
information theory is presented and implemented for comparison. Here,
due to technical reasons, the speed-up is limited to 72 with respect to a
highly optimized CPU-based implementation but should easily achieve
higher numbers when these hardware limitations are lifted.

1.2 Related Work

Although hybrid architectures of this type have not been observed in these
studies, they have already been proposed in other scientific fields. In 2014,
Kocz et al. presented a similar system consisting of CPUs, FPGAs and GPUs
to analyze cross-correlation between signals from numerous radio antennas
used in astronomics [KGB+14]. The FPGA part in their system samples
analog signals from antennas through external analog-digital-converter and
applies bandwidth filters through stream-oriented real-time Fourier trans-
forms before sending data to a GPU for the creation of cross-correlation
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matrices. Architecture-wise, the design is similar to the proposed bioinfor-
matics platform. Regarding the data flow, though, the throughput require-
ments are different. Most importantly, the FPGA nodes are solely used for
data acquisition, yielding a real-time data rate requirement of less than
50kiB/s, whereas the data rates between CPU and GPU reaches 51 GiB/s
(approx. 6 GiB/s). Due to this asymmetric design, both architectures are
solely comparable on a conceptual level.

In [IBS12], Inta et. al. propose an interesting “Off-The-Shelf CPU/GP-
GPU/FPGA Hybrid Computing Platform.” They show how algorithms
might be implemented on hybrid platforms, e.g. Monte-Carlo classification
for approximations of 7 or Fast Fourier Transform, and describe their hard-
ware components in detail. Also, the interconnect between the individual
components is presented to be the central bottleneck when it comes to
performance. Unfortunately, they decided to explicitly ignore this limitation
as future communication solutions would solve this kind of problem. There-
fore, algorithm performance is predicted while assuming the interconnect
keeping up, although precisely the communication link has always been
known to be the bottleneck in all scales of distributed systems. Addition-
ally, the data and sampling rates are extrapolated from measurement time
frames in the order of microseconds and nanoseconds without analysing
its uncertainty, making comparisons to actual implementations hard. The
authors state that a high-performance backplane is being developed to
directly connect FPGAs and GPUs, in addition to a suite of custom kernel
drivers to provide an easy-to-use interface. However, by the time of this
writing, no follow-up article has been published.

In the field of cryptanalysis, [KL10], clusters of FPGA/GPU computing
nodes are used to crack a range of hashes, i.e. finding a plain text that leads
to a specific cryptographic hash value. The cluster nodes are connected via
Microsoft’s Message Passing Interface (MPI) and high-bandwidth Infiniband
links, allowing for Remote Direct Memory Access (RDMA). Regarding the
concept, FPGAs and GPUs are both used to perform the same task while a
CPU dispatches units of work to the locally connected FPGA and/or GPU
accelerators on demand. In this work specifically as well as in cryptanalysis
generally, the typical workload consists of distributing a hash value to one
or more computation devices and waiting for at least one node to produce
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a result. Hence, the communication between nodes is non-existent while
communication demand between host systems and their accelerators is at
a low level. As with [IBS12], the authors state that the cluster is not fully
operational yet, as only GPUs can be used due to problems with FPGA
designs. Therefore, no performance measurements or predictions have been
published.

Another field with a high demand on computational power is physics
simulation. In [KDH+06], Kelmelis et. al. propose a desktop-type hybrid
computer to model signal propagation through large three-dimensional
meshes. The authors put much work into problem separation and achieved
runtimes of two days where a standard computer “would have required
over a month.” However, the problem data is transmitted to the devices in a
slow transmission process before the actual calculation starts and does not
require device-level concurrency or communication while the calculation is
running. As parallelism is only used within a single device, the higher-level
process can better be described as sequential.

In [BRF14] and [Gil15], the focus is brought to a sub-aspect of hybrid
computing, specifically, the communication part that has not been discussed
in great detail in the previously mentioned publications. The authors reverse-
engineered the DMA modules of proprietary NVIDIA driver software,
modified PCI Express drivers and implemented OpenCL-based interfaces to
access the newly-implemented functionality. Using these techniques, Gillert
established a direct link between an FPGA and a GPU using standard
motherboard features. Thanks to his highly specific knowledge of hardware
and software drivers, the achieved data rates from FPGA to GPU and GPU
to FPGA were 740 MiB/s and 525MiB/s, respectively. The theoretically
achievable net data rates in corresponding technical specifications is approx.
3800 MiB/s, in both directions (full duplex).

Regarding the field targeted by this work, bioinformatics, available
computational resources are dominated by traditional CPU clusters, while
CPU/GPU and GPU-only solutions are gaining momentum. In an exten-
sive 2016 survey, [NCT+16] lists 12 CPU/GPU implementations of vari-
ous methods from molecular biology over sequence alignment to systems
medicine with speed-ups ranging from 5 to 50 with respect to a contempo-
rary CPU-based computing node. GPU-only solutions in the same fields
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with comparable methods yield speed-ups up to 39. With regard to FP-
GA/CPU hybrids, only few implementations exist, notably [CSM12]. Chen,
Schmidt and Maskell proposed a short read mapping method based on the
popular banded Needleman-Wunsch algorithm[NW?70]. In optimal global
alignments like this, the alignment step is a computationally intensive task
where the transmission of data (i.e. nucleotide or amino acid sequences) is
runtime-wise negligible.

In 2016, Lars Wienbrandt published an extensive evaluation of FPGAs
in bioinformatics, providing implementations of sequence alignment, gene-
gene interactions and SNP imputation [Wiel6]. It is shown that FPGAs
and clusters thereof are capable of outperforming CPU clusters both perfor-
mance and energy-wise. In fact, Wienbrandt covers the groundwork that
lead to the development of early prototypes of parts of the hybrid-parallel
computer proposed in this work. Specifically, many thoughts and processes
were implemented on the Xilinx KC705 Development Board described in
Chapter 4.1.3.

1.3 Structure of This Work

The remaining chapters of this thesis are summarized as follows.

The second chapter, Architecture Essentials, aims to impart thorough
knowledge about architectural components that form the basis of the pro-
posed hybrid computer. Therefore, a deep understanding of the program-
ming of CPUs, GPUs and FPGAs is built up. As the focus in this work
does not lie on these fundamentally individual devices, but on the actual
interconnects, several programming paradigms and hardware interfaces are
discussed. This includes levels of parallel programming, from the low-
est in CPU microcode to mid-level many-core applications, and extends
to GPU warp scheduling and systolic structure descriptions on FPGAs.
Hardware-wise, techniques are presented that enable the above components
to interchange data in very efficient ways by using embedded controllers
and low-overhead communication protocols, most notably Direct Mem-
ory Access (DMA) and PCI Express (PCle), that form the backbone of the
proposed system.



1.3. Structure of This Work

Before the actual implementation can be described, Chapter 3 provides
an introduction to the biomedical background that is essential to an un-
derstanding of the methods involved. As this work covers two almost
diametrically opposed fields of science, it begins with an introductory-
level primer on genetics, specifically DNA, chromosomes and genes, and
continues with allele configurations, association study design and types
of interactions between genes. The second part describes an approach to
extract information from said studies by employing methods from statis-
tics and information theory, and therefore, the nature of the applications
that have been developed for the proposed hybrid computer. Furthermore,
the computational challenges and burdens that need to be addressed are
emphasized, such as the large amount of statistical model evaluations.

This continues into the first part of the following main chapter, The
Hybrid Architecture Prototype, where these challenges are projected to the ar-
chitectural level. The general strategy in hybrid design, divide-and-conquer,
and the actual problem partitioning model is presented, along with the
problems that need to be faced, such as the high volumes of data that
need to be moved just in time. This indeed becomes a major aspect that is
present in all levels of the implementation and emphasizes the need for the
most sophisticated communication handling, algorithms, and lead to the
spawning of novel data structures such as the fixed-capacity fine binary min
max heap and the page-locked buffer stack. The overall structure of this chapter
can best be described as bottom-up. First, the detailed implementations
of the GPU kernels and FPGA cores are discussed, including the required
transformations of mathematical models and technical structures. Second,
the driver and API modules are described that provide low-level interfaces
between the operating system kernel, GPUs, FPGAs and the application
layer which is presented in the final part. Here, all application subsystems
are implemented, from the loading of data files to memory management
and eventually the post-processing of results where new data structures
and algorithms are shown to be correct and efficient.

Chapter 5, Evaluation, with a discussion about how performance can
actually be measured across platform boundaries. The various established
metrics are presented, including the popular FLOPs (floating-point oper-
ations per second), and why these are not sufficient for the special case
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of hybrid-parallel FPGA /GPU computers. Very specific measurements are
introduced to guide the evaluation of performances with respect and in
relation to other components, methods and architectures. The proposed
implementations are evaluated in parts to identify possible bottlenecks
and establish results that allow deep analyses on the general concept of
FPGA/GPU hybrid computing and the specific implementation of the
second-order and third-order interaction methods. It is shown that although
no other hybrid computer is able to maintain the achieved data rates, the
usual bottleneck of communication does not need to be a boundary in
hybrid computing when transmission handling is done in a thoughtful and
sensible way, even when it comes to data rates in the order of 3 GiB/s. More-
over, significant performance increases could be observed over CPU-based
reference implementations. However, due to the lack of available architec-
tures that enable third-order interaction analysis, the prototype system is
compared against a hypothetical high-performance system.

In the remaining chapter, the previously established results are summa-
rized and the general suitability for hybrid computers for these types of
problems assessed. A preview is given on ongoing work with the successor
of the prototype design, a server-grade computer with four high-end FPGA
and GPU boards, large amounts of memory and two state-of-the-art 8-core
SMT CPUs. Additionally, extensions and future work items are discussed
that may enhance the driver interfaces and device communication patterns
or raise the quality of results produced by the newly designed third-order
implementation of mutual information.
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Chapter 2

Architecture Essentials

In this section, an overview of the various architectures and their underlying
technologies is provided. Before describing and analyzing the concepts and
implementation of the methods, a certain knowledge about the hardware
composition and developed software is necessary. The following sections
help providing this knowledge, focusing on the parts that are relevant for
later chapters.

Although most parts of the computational workload does not lie on the
system’s CPU but on GPUs and FPGAs, it is responsible for managing the
memory-intensive data flows, a highly sensitive component as the overall
performance superiority rises and falls with the stability and throughput of
these data channels. Therefore, short historical overviews are given as an
introduction to CPU, GPU and FPGA design and the more delicate matters
such as Direct Memory Access to understand why the selected devices are the
devices of choice for this task and how they can be programmed to provide
data operations and memory throughput in the range of several gigabytes
per second. Additionally, a few methods and paradigms used in parallel
programming are introduced to allow a much more thorough knowledge
base on the general practices performed during the course of this work.

Finally, more insights into the inner workings of the most important
communication interface in the hybrid architecture, PCI Express, are pre-
sented.

11



2. Architecture Essentials

2.1 Architectures Overview

2.1.1 Central Processing Units (CPUs)

When the first microprocessors for consumer electronics emerged, block
diagrams describing all the functional units could be drawn on a single
piece of paper. One representative example, Intel’s popular 8080 processor
released in 1974 and often described as the “first truly useful microproces-
sor”, only contained a register bank, an arithmetic logic unit (ALU), an
instruction decoder and a few multiplexers and flip-flops. Two bus systems,
a data bus and an address bus, connect this CPU to peripheral hardware. In
the following architectures, the operating frequencies rose while more and
more functionality was added. The most interesting extensions are shown
in Table 2.1. Notable developments are the introduction of a memory man-
agement unit (MMU) in the mid-1980s, and the rise of vectoring instruction
sets such as SSE and AVX from 1993 onward. Until the year 2000, CPU core
frequencies were increased.

By then, processors had approached the 4 GHz line. Due to switching
characteristics of transistors, the power dissipation of a CPU is approxi-
mately proportional to the clock speed and (electrical) capacitance, and
quaderatic to its supply voltage [Cor04]. For achieving high clock rates, de-
velopers therefore tried to reduce the voltage and capacitance by choosing
special low power transistors and increasing the integration density, thus
reducing the capacitance by narrowing and shortening wires. With higher
densities though, more heat has to be moved away from the chip per unit of
area. The total limits of stable operating frequencies are therefore given by
the heat dissipation and conduction of the chip and its package as well as
the lowest possible voltage for its transistors. As these limits have recently
been approached, developers have moved from increasing the clock rates
to reducing the number of cycles per instruction, increasing the number of
instructions per second by other means than frequency, and increasing the
data width per instruction. These techniques are explained in the following
sections.

12
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Table 2.1. CPU Technology Timeline

Year Microarchitecture = New features

1974  Intel 8080 ALU, register bank

1976  Zilog Z80 DRAM refresh controller, interrupt han-
dling

1982  Intel 80286 Microcoded multiplier, protected mode,
memory segmentation

1985 Intel 80386 Paged memory

1989 Intel i486 Floating-point unit

1993 Intel P5 Instruction-level parallelism (superscalar-
ity)

1997 Intel P6 SIMD instruction sets (MMX and SSE)

2000 Intel Netburst SSE2, SSE3, multi-core, symmetric multi-
threading (SMT), virtualization

2008 Intel Nehalem PCI Express and DDR3 SDRAM controllers,
integrated GPU

2013 Intel Haswell SSE4, BMI1-3, FMA3, AVX2 SIMD instruc-
tion sets, 3D accelerator

2015 Intel Skylake USB 3.1, DDR4 controllers, integrated volt-
age regulators

2016 Intel Xeon Phi x200 Many-core architecture (up to 72 per chip),

Hybrid Memory Cube (HMC) controller

Instruction Set Architecture (ISA)

General-purpose as well as special-purpose processors are generally classi-
fied and defined upon their set of supported instructions. Before the year
2000, instruction set architectures could be divided into two design philoso-
phies, Complex Instruction Set Computers (CISC) and Reduced Instruction Set
Computers (RISC) [PS81]. RISC designs tried to keep instructions as simple
as possible but allow the scheduling of more than one instruction per clock
cycle by the introduction of a superscalar instruction pipeline. Here, mul-
tiple independant operations are carried out in the same pipeline stage in
a parallel way. The constraint of simplicity also mandated that memory-
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accessing instructions be separated from calculation instructions. Therefore,
RISC-based architectures are often called Load/Store-Architectures [Fly95].
Complex Instruction Set Computers instead used instructions that com-
bined these functions. For example, the ADD instruction in a CISC system
typically allows the specification of a memory address as shown in the
Listings 2.1 and 2.2.

Listing 2.1. In-memory addition in RISC systems

MOV rl1, [y] ; load from memory locations y and z
MOV r2, [z] ; into registers rl and r2

ADD r3, rl, r2 ; r3:=rl1+r2

MOV [x], r3 ; store r3 into location x

Listing 2.2. In-memory addition in CISC systems

MOV rl1, [y] ; load from memory locations y to rl
ADD r3, [z], r2 ; load first operand and add r2
MOV [x], r3 ; store r3 into location x

In this case, the CISC ADD instruction allows one operand to be a memory
location (or a register containing a memory location), while this is generally
not implemented in RISC systems. Although the CISC program is one
instruction shorter, the added complexity in an instruction with memory
access may or may not be able to be processed in one clock cycle. Hence,
the runtime or efficiency cannot simple be deduced from the number of
instructions in a program.

Modern processors through, can usually not be clearly distinguished into
RISC and CISC anymore. Many RISC processors implement more complex
instructions and allow memory operations within arithmetic operations
while CISC processors support more simple but fast instructions and use
RISC-like superscalarity concepts:

> Instructions are conceptually processed from a sequential instruction
stream

14
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> Processors check for data dependencies between eligible instructions
during runtime (as opposed to compile-time checking)

Although these terms are still used in many recent articles, the lines
between CISC and RISC become increasingly blurred. This lead to complex,
fast and efficient processors that have built-in concepts for automatic par-
allelization through superscalarity, simple instructions fused together (i.e.
fused multiply /add) and wide data instructions.

In many applications, it is necessary to count the number of set bits in
a vector, including cryptography/cryptanalysis and hash table operations.
This number is also called the Hamming weight of a bit string, or population
count. Although many more sophisticated algorithms exist to determine the
Hamming weight, it might be implemented in the naive way as shown in
Listing 2.3.

Listing 2.3. Naive implementation of Hamming Weight in C

unsigned NaiveHamming(unsigned value) {
unsigned count;
for(count = 0; value != 0; value >>= 1)
count += value & 1;
return count;

Listing 2.4. Naive Hamming Weight (compiled)

XOR %hamming, %hamming ; zero hamming weight counter

loop:
AND $1, %value ; stores lowest bit in %result
ADD %hamming, %result ; add %result to %count
SHR %value ; shift %svalue by one to the right
JINZ loop ; jump to beginning if %value is not zero

The x86 assembly code shown in Listing 2.4 has been obtained by
compiling the C code block in Listing 2.3 with GNU GCC 5.4 and all
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general and processor-specific optimizations enabled. For easier reading,
the instructions have been annotated. It can be seen that even if we (quite
unrealistically) assume that every instruction takes exactly one clock cycle,
evaluating a 32-bit value would take 128 clock cycles. Better runtimes can
be achieved by using binary counter trees, large look-up tables and other
skillful implementations [TAOCP]. However, none of these methods reach
the performance of the POPCNT instruction that has been introduced to
current processors in the SSE 4.2 instruction set (see Sect. 2.1.1) and taking
only one clock cycle with a latency of two clock cycles for any 64-bit integer
word on an Intel Skylake architecture [Fog16].

While POPCNT is one of the simpler instructions, SSE 4.2 (and any other
version, for that matter) introduced much more complex ones, such as DPPS.
To speed up matrix multiplication that is often used in graphics processing,
DPPS allows performing four fused multiply-and-add operations in a single
instruction [IA32, page 293]. Many of these combined and/or vectored
instructions make use of special vectoring registers. With the various ver-
sions of SSE and AVX, additional registers have been introduced to support
128-bit, 256-bit and 512-bit registers (xmm, ynm and zmm, respectively).

Unfortunately, many compilers, including GCC 5.4, are not able to detect
situations where the usage of these extensions would be appropriate, as
can be seen in the above Listings 2.3 and 2.4. For these cases, most C/C++
compilers allow the emission of inline assembly code so the software devel-
oper may force the respective instruction’s usage. One large disadvantage
is that the software developer is required to know the exact semantics and
instruction sets of the underlying processor where the compiler generally
tries to keep the language abstract from these hardware details, for the sake
of platform independency. The resulting code is not only less readible and
thus less maintainable, the program compiled from Listing 2.5 will not run
on processors pre-dating SSE4.2 introduction without changing the source
code and recompiling.

Listing 2.5. The POPCNT instruction in inline assembly

unsigned InlinePopcount(unsigned value) {
unsigned count = 0;
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__asm__ (
"POPCNT %buffer, %count;"
[count] "=&r" (count)
: "value" (value));
return count;

As many others, the GCC authors introduced so-called intrinsics. These
special functions are not kept pre-compiled in any standard libraries as
regular functions but the compiler itself has an intimate knowledge about
what these functions do and may create them on-the-fly. This allows com-
pilers for much better integration and is one of the few ways to place a hint
on the semantics of the source code.

Listing 2.6. Intrinsic population count function

unsigned IntrinsicPopcount(unsigned value) {
return __builtin_popcount(value);

When Listing 2.6 is compiled by GCC 5.4, a POPCNT instruction is emitted
if the target processor supports it, a library implementation otherwise.
Although this resolves the problem of processor dependency, it is still
compiler-dependent.

GCC supports a large number of built-in functions to aid its detection
of semantics. Some of them are of the “instruction type” as POPCNT is,
and others are functions that are not covered by library functions and/or
language standards:

> __builtin_cpu_supports: allows querying for specific instruction set sup-
port, i.e. __builtin_cpu_supports(”sse4.2”).

> __builtin_ia32_crc32si: uses SSE 4.2’s instruction to compute the 32-bit
Cyclic Redudancy Check (CRC32) checksum

> __builtin_mul_overflow: multiplies two integers and reports whether the
multiplication lead to an integer overflow
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> __builtin_expect: places a hint on a conditional statement to let the
CPU'’s branch prediction unit know what outcome a boolean expression
is likely to have

> memcpy: copies memory from one region to another, exploiting vector
copying instructions, if possible. This is an example of a function shad-
owed by an intrinsic. It is non-standard behavior and the compiler will
fall back to the library function if it is run in strict standards compliance
mode.

Althrough population count is a rather recent addition to modern in-
struction sets, it is also rather simple when compared to other recent addi-
tions. VRSQRT28PD from the “AVX-512” instruction set, for example, computes
reciprocals of square roots of 16 single-precision floating-point numbers in
a single instruction. There also exist instructions for fused multiply/add
operation, dot product computation, comparison and copying for 512-bit
vectored numbers. For simplicity, this section only showed the usage of
these instructions for POPCNT but the same principles basically apply for any
other (more complex) instruction.

Simultaneous Multi-Threading and Many-core Architectures

In the previous section, the term “superscalarity” has been used to describe
a type of instruction-level parallelism (ILP) where several instructions taken
from a sequential stream are executed in parallel in the same pipeline stage
in a processor. Due to the high complexity of implementing a superscalar in-
struction pipeline, efforts have been made to find alternatives for a hardware
implementation.

Very Long Instruction Word (VLIW) processors support custom, variable-
length instructions. These can be used by compiler software to analyze the
instruction stream that would be executed and pack multiple instructions
into a single instruction (instruction group) where the parts can be processed
in parallel. This technique moves the burden of dependency checking
and scheduling from the processor hardware to the compiler software. As
simpler hardware is less expensive and may consume less energy, this type
of architectures is becoming popular in embedded systems [Fis83]. 12 years
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after the introduction of VLIW, a partnership of HP and Intel introduced
the Explicitly Parallel Instruction Computing (EPIC) architecture [SR00].
Directly evolved from VLIW, EPIC overcomes some of its short-comings
and adds new features from other architectures. Today, as with CISC and
RISC, VLIW and EPIC architectures have a large set of features in common
and it is becoming increasingly hard to differentiate one from the other.

In general-purpose server and consumer hardware, VLIW or EPIC is
not widely used. Instead, simultaneous multithreading (SMT) is popular
among wide ranges of current processors. In this technique, a CPU core is
presented to the operating system as two or more (to some extent) indepen-
dent CPU cores. This happens in a way that it is generally not trivial for a
computer program to detect whether the underlying hardware uses several
physical CPUs or several virtual cores from a single physical CPU. Although
all virtual cores do provide the same functions and same instruction sets,
putting them under maximum load, measurements show that the overall
performance gain over a single core is approx. 30 % with two-way SMT. This
number highly depends in the workload, though [MBH+02]. The explana-
tion is simple. Virtual cores are emulated by single superscalar instruction
pipeline. To support the high level of parallelism on the instruction-level
and thread-level, many hardware modules are available several times. On
the other hand, being a single physical module, all simultaneous threads
of execution share caches, main memory, system buses and external pe-
ripherals through a shared communication endpoint. Therefore, the highest
performance outcome can achieved by running programs on these cores
that are as different as possible regarding the instruction characteristics.
For example, one thread may be a memory-heavy program while the other
focuses in arithmetic problems. Hence, a part of the speed-up through SMT
usage may be accounted for I/O and memory latency hiding.

Thread-level parallelism is also brought to a higher level by introduc-
ing additional physical processors which, in turn, provide superscalar
instruction pipelines by themselves, and therefore more virtual cores. Most
processor architectures that have been developed in the last few years have
implemented more pipelines by housing several fully independent physical
CPUs within the same integrated circuit. Typically, a processor package
also houses several controllers, instruction caches, data caches, and other
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Figure 2.1. Intel Xeon Phi standalone host processor [X200]

peripherals. While cores in a multi-core processor are indeed independent,
they usually share higher-level caching memories and bus interfaces. This
separates multi-core processors from actual separate CPU chips where each
package contains a full set of cache hierarchies, frequency and voltage regu-
lators and memory controllers. The amount of cores per package ranges up
to several hundreds of cores where multi-core processors become many-core
processors [Vajl1].

One notable example is the Intel Xeon Phi many-core series. Starting
as a PCI Express-connected add-on co-processor cards, on June 2016 Intel
launched the “Xeon Phi x200” product line of standalone host proces-
sors [X200]. Each device, depending on the model, supports up to 72 cores
with four-way SMT and a clock frequency of 1.5 GHz, resulting in 288
AVX-512-capable virtual cores. Additionally, it is typically possible to use
more than one of these processors in a single system.

Memory

Most of the vectoring extensions and other forms of parallelism introduced
earlier are useless if the choke point of the system is memory access. Hence,
it is crucial to understand how and when memory can be accessed efficiently.
This knowledge is discussed in the following section.

Most modern general-purpose computers support multi-tasking. Several
processes share the same CPU and the same main memory, usually with
a high degree of transparency to the application. Each process, or more
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Figure 2.2. Virtual memory translation

specifically, each thread of execution, possesses its own set of virtual CPU
registers that can almost arbitrarily be saved and restored by the operating
system’s task scheduler. These context switching operations are often di-
rectly supported by specialized CPU instructions. Sharing main memory is
different and conceptually more complex. However, the following sections
require a thorough understanding of memory organization as the proposed
components make heavy use of the various memory abstraction layers
involved.

Operating system kernels and CPUs that implement virtual memory allow
the same level of transparency for memory as well. Each process is therefore
presented its own, private main memory and may assume that neither other
processes can read or manipulate these ranges, nor the process itself can
manipulate foreign memory. Notable exceptions to the principle of process
separation are threads, i.e. separate threads of execution that live within
the same process context and thus share the memory range, and dynamic
library injections, where shared objects (“DLLs” in Microsoft Windows) are
injected into a process context through debugging interfaces.

Now that a process is allowed to assume that the whole memory is
exclusively reserved, the operating system is required to employ a mech-
anism to translate virtual memory addresses to actual physical addresses.
Information on actual translations and memory mappings are stored into
the respective process context block that resides in the scheduler. Different
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operating systems implement virtual memory handling in different ways
but the abstract concept stays the same. Figure 2.2 shows how two processes
may share the system’s main memory.

A central part of virtual memory translation is the per-process page table.
Although memory is generally addressable with byte granularity, memory
controllers and operating systems typically fetch larger regions at once for
better efficiency and caching behavior. In many Linux-based systems, the
page size is set to 4096 bytes, or 212 bytes. If a process issues a read request
of a single byte, a larger section surrounding that byte is actually read
and made ready to subsequent read requests without additional memory
controller utilization. Translation tables therefore do not need to store single
addresses but may hold whole pages of memory.

Accordingly, access to physical memory might be implemented as fol-
lows:

1. An application requests a block of memory from the operating system
but does not actually access it yet. It is allocated a block defined by the
virtual addresses 4096 to 8191 (4 096 bytes).

2. Address 5000 is written to.

3. Now that the memory is actually accessed, the processor shifts the
address 5000 to the right by 12 bits as the system’s page size is 4096
bytes. This yields 1 as the page table index which is then used to retrieve
the corresponding physical address.

4. The page table entry for index 1 is still unpopulated, i.e. no corresponding
physical memory location has been assigned yet. This is now done.

5. The page table look-up yields a physical memory address with respect
to the whole page. Hence, the offset into the page (5000 — 4096) is added
to the physical address.

6. The newly calculated physical memory address is now issued to the
memory controller.

In this example, it is assumed that the CPU contains a memory manage-
ment unit (MMU) that the current process’ page table is loaded into upon
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the scheduler’s context switch. Otherwise, the translation would have to be
done in software, incurring a large computational overhead. It also shows
other relevant properties of virtual memory. Even if an application requests
a large amount of memory, there does not need to be a corresponding
physical location until it is actually accessed. Hence, there might be large
differences between the allocated virtual memory size (VMS) and the actual
resident set size (RSS). This allows for over-commitment among the processes
in the system and can lead to out-of-memory situations even if the memory
allocations themselves might have been successful.

Another use case of virtual memory not depicted in the above figure is
paging. Operating systems keep lists about most frequently used pages, last
recently used pages and a few more. These can be used to automatically
optimize memory access behavior by re-ordering physical pages to match
virtual pages if a sequential access pattern has been detected. If pages have
been found that have been allocated and used but some time has passed
since then, they can be evicted from physical memory and instead stored to
a secondary storage, such as hard disks. This technique called paging is used
to reduce memory fragmentation and delaying out-of-memory conditions
on overcommitted memory systems. Moving a page from memory to hard
disk is called paging out or swapping, while moving a page back into memory
is called paging in. A virtual memory location may therefore be in one of
the following statuses:

> Not allocated. On access, the application is terminated for illegally ac-
cessing un-allocated memory.

> Allocated but not backed by actual storage (physical memory or sec-
ondary storage).

> Allocated and backed by physical memory. These pages are said to be
resident.

> Allocated and backed by secondary storage. These pages are also resident
but will have to be transparently paged in to be accessed.

Additionally, certain situations require memory to be allocated, resident
and prevented from being moved or paged. These pages are called page-
locked or pinned and, once locked, are bound to constant physical memory
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locations until unlocked. This is often a central requirement in tightly
coupled software/hardware constellations such as the applications that
are presented in this work. Obviously, locked memory cannot benefit from
memory reordering and overcommitment but will never suffer from the
latencies generated by slow hard disk accesses during page-in and first-time
physical memory allocations.

Energy Consumption

Energy consumption in CPUs is usually expressed through power dissipation.
It is generally composed of dynamic power consumption, which originates
from logic gate activity, short-circuit consumption during transistor switch-
ing and transistor leakage currents. The dynamic power and short-circuit
power consumed is approximately proportional to the clock frequency, and
to the square of the CPU operating voltage, while the leakage current is
only dependent on the voltage [04].

An obvious solution to reduce power consumption is to lower the
operating voltage. The main requirement for a certain voltage is the size of
a transistor. Therefore, lowering the structure size also lowers the minimum
voltage. As a result, several microprocessor vendors, such as Samsung
Electronics and Intel, started commercial production of integrated circuits
with transistor sizes of 10nm with a target voltage of less than 0.5 Volts.

In data sheets of desktop processors, a measure often found is Thermal
Design Power (TDP). It expresses the maximum supported thermal discharge
which, however, does not necessarily correspond to the maximum power
consumption but gives a good indication. While the TDP is certainly a good
specification when designing cooling systems and energy supplies, actual
consumption rates in averaged work load conditions are rarely specified,
possibly due to the lack of standardized measurement procedures. Table 2.2
gives an overview of selected processors showing the structure size, clock
rate, core count and thermal design power from their respective data sheets.
Evaluating the efficiency by these figures is almost impossible though, as
different architectures may require a different number of clock cycles for
a single instruction rendering common ratios such as “Watts per GHz”
virtually useless.
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Table 2.2. Power dissipation of selected processors

Model Lithography Clock Speed  TDP
Intel Pentium IIT 1400 130nm 140GHz 31W
Intel Pentium M 780 90 nm 226GHz 27W
Intel Core 2 Quad Q6700 65nm  4x2.66GHz 95W
Intel Core 2 Extreme X9100 45nm  2x3.06GHz 44W
Intel Core i7-6950X 14nm 10x3.00GHz 140W
Intel Atom D525 45nm  2x1.83GHz 13W

Figure 2.3. Atari 2600 home entertainment system [Ken01]

2.1.2 Graphics Processing Units (GPUs)

Although the term Graphics Processing Unit was popularized when NVIDIA
introduced its GeForce 256 game graphics accelerator card, the first dedi-
cated video hardware dates back to the 1970s. Usually dated from 1978 to
1983, the “Golden Age of Arcade Video Games” took place where North
America, Europe and Asia saw a rapid spread of video arcade games, both
in video game arcade halls and home entertainment systems [Ken01], such
as the popular Atari 2600 (Figure 2.3).

Although conceptually the same, a multitude of video hardware had
emerged under various names, for example “Video Shifter”, “Television
Interface Adaptor” or “Video Display Controller.” The basic idea has been to
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move the burden of memory manipulation, such as drawing simple shapes
and textures into the video memory, off the CPU to conserve resources.
Over time, video hardware became more and more complex and began
including special function units for blitting, i. e. the copying of regions from
a texture to the screen, color space transformation, and even 3D polygons.
Eventually, video controllers moved from simple display units to actual
co-processors by exposing own primitive instruction sets.

In the 1990s decade, when home computers were on the rise and
graphical work environments such as Microsoft Windows became pop-
ular, graphics devices were also used to enhance and accelerate the drawing
of 2D surfaces in day-to-day work environments in addition to specialized
computer-aided design (CAD) or gaming tasks. By this time, GPUs intro-
duced so-called transform & lighting (T&L) support, the foundation for 3D
hardware and later developments. The T&L units were able to extract a
viewport from a vectored 3D scene and transformed it into a rasterized
2D image to be shown on screen. Operations, from simple object rotations
to complex virtual camera calibrations and ray casting in computer vi-
sion, evolve around matrix multiplications in the affine 3D space. Thus,
the idea for general purpose arithmetic co-processing arose to exploit the
computational resources on graphics hardware for non-graphics purposes.

Eventually, frameworks were created to specifically facilitate the uti-
lization of graphics cards for general purpose computation. This mode of
computation is often named general-purpose computing on graphics process-
ing units (GPGPU). The most notable frameworks are the Khronos Group’s
OpenCL programming language, Microsoft’s DirectCompute and NVIDIA’s
CUDA [DWL+12]. While OpenCL and DirectCompute may run programs
on almost all recent graphics cards, NVIDIA’s proprietary, closed-source
CUDA system is restricted to NVIDIA hardware. One notable advantage is
the missing abstraction layer. This way, specialized features can be exposed
by the CUDA interface without requiring specific support from other ven-
dors. In the evolution of OpenCL and its predecessors, this has constantly
been a major hindrance and results in CUDA to be usually faster when
compared on supported hardware [DWL+12]. As the general graphics hard-
ware architectures of various vendors have mostly converged, the following
sections describe the functions and units of NVIDIA devices as well as the
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CUDA programming model, without loss of generality.

NVIDIA traditionally maintains three major product lines. Although the
actual processing units are the same in all lines, the peripheral equipment,
such as on-board memories, as well as the host system’s drivers may differ
significantly.

GeForce The GeForce series is built for the low-cost consumer market and
is mainly targeted at gaming computer setups. When compared to
other series, its products are optimized towards high-performance low-
precision computing as needed for gaming.

Quadro NVIDIA Quadro boards are intended to be used for workstations
running professional computer-aided design (CAD) and digital content
creation (DCC) software. The drivers and API modules are designed for
tight interaction with design software suites and the cards themselves
typically contain large amounts of memory.

Tesla The Tesla product brand features devices that are specifically built for
general purpose computing and target the high performance computing
market. Their physical format specifications allow operation in data
centers. Compared to the GeForce series, Tesla devices often feature a
four-fold increase in double precision floating-point arithmetics perfor-
mance and is therefore often used in scientific computing, for example
in large scale weather simulations, machine leaning applications and
bioinformatics. With the exception of the Tesla C-Series, these devices
do not even provide display ports.

The CUDA Programming Model

The NVIDIA CUDA framework aims at opening the GPU’s instruction sets
to established programming languages such as C, C++ and Fortran and
can be seen as an extension to their compilers. Since the introduction of 3D
space transformations, GPUs have evolved into capable multi-processing
systems.

In the NVIDIA Pascal microarchitecture, specifically the GP100 micro-
processor used in the most recent Tesla series additions, 54 independent
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GPU x1
Streaming Multiprocessor x54
Thread x3584

Figure 2.4. NVIDIA GP100 processing hierarchy

so-called streaming multiprocessors (SMs) are implemented. Each SM fur-
ther contains 64 cores, totalling to a GPU-wide multiprocessing capability
of 3584 parallel threads of execution called CUDA cores. The architecture
hierarchy with respect to computation units is shown in Figure 2.4.

The CUDA cores in a streaming multiprocessor are organized in warps
of fixed sizes between 32 and 64 threads, depending on the device model.
Every warp receives a single instruction stream, which leads to a lock-step
SIMD-style of computation where each thread in the same warp has to
execute the same instructions. Sometimes, this is not possible, especially
in data-dependent branch instructions. Modern devices permit splitting
up the instruction stream to allow executing a small number of branches
to be executed in parallel but generally, the different branches are taken
sequentially. Then, only the diverged threads are running while others
not taking this branch are stalled until the streams are joined again. This
can lead to performance impacts when larger parts of a warp are idling.
Therefore, when programming with massive parallelism on CUDA-enabled
devices, keeping the warp divergence on a low level is essential.

Despite executing the same instructions, cores usually operate on differ-
ent data and therefore require access to thread-local storage. To overcome
this issue, each core is allocated a slice of the SM-local register file. This
comes with the downside that the number of processes running in parallel
is not only limited by the availability of physical cores but also by the
size of the register file. If the number of required registers exceeds the
amount of available registers, cores are not scheduled instructions for until
the workload can be executed. A streaming multiprocessor also keeps a
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Figure 2.5. Streaming multiprocessor overview

certain amount of SM-local memory that is shared among threads and thus
is called shared memory. Additionally, cores share special external units for
double-precision floating-point arithmetics (“DP Units”), special function
units (“SFUs”) for transcendental instructions such as sine, cosine and oth-
ers, and load/store units to access the GPU-global memory. Figure 2.5 gives
a simplified overview of a single SM with only a few cores and peripherals.

A larger-scale overview is given in Figure 2.6 and shows how the stream-
ing multiprocessors are embedded in the whole system. Before a program,
the kernel, is launched to the GPU, a grid has be defined. It contains in-
formation about how the programmer intends to run the program among
the streaming multiprocessors. In particular, it defines how many threads
are to be executed by each SM (the block size) and how many of such a set
of threads should be executed (the grid size). In recent developments, if
resources allow, several blocks may be scheduled on the same SM concur-
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Figure 2.6. GPU overview

rently, much like in the CPU’s simultaneous multi-threading engine (see
Section 2.1.1).
The execution of a GPU program (“kernel”) therefore works as follows:

1. A CUDA program is compiled on the CPU into device code. The pro-
grammer defines a grid to describe the ordering of threads for the global
scheduler.

2. The kernel is launched to the GigaThread Engine, which schedules one
or more blocks to the available and idle SMs. Often, more blocks are
defined than SMs are available. In this case, they are scheduled on a
first-in first-out (FIFO) style of execution and a streaming multiprocessor
receives a new block as soon the old block is processed. Each block is
accompanied by the same kernel.

3. Each SM then multiplies the instruction stream according to the number
of threads to execute as defined by the grid and allocates register bank
slices to the individual cores.

4. The SM-local warp schedulers dispatch instructions to the threads which
are then executed in a SIMD-style.
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Apart from registers and shared memories that are local to threads
or streaming multiprocessors, threads may also access a global memory.
Although many implementations provide one or more layers of data caching
for global memory, only a very limited number of threads may access the
memory concurrently. To prevent global memory accesses to be a bottleneck,
several techniques have been developed. For example, the load/store units
within a thread warp try to reduce the total number of memory transactions
by coalescing requests. This is especially efficient if threads in a warp access
consecutive addresses in the global memory and no single thread exceeds
the memory transaction’s maximum data width. In a similar approach,
if memory addresses can be easily predicted, the programmer may copy
a portion of global memory to the SM-local shared memory and hence
reduces memory bus collisions when other SMs issue requests to memory.

Energy Consumption

Kasichayanula et al. show that while energy consumption on GPUs gener-
ally follows the same principles as in CPUs, current NVIDIA processors
allow precise measurement and prediction of consumption rates with re-
spect to the utilization of double precision units, memory accesses and
general-purpose cores [KTL+12]. They further show that under optimal
utilization, average power consumption is typically well within 20 % of the
specified thermal design power while due to efficient power management,
idle power consumption quickly drops to 15 % in total.

2.1.3 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays are, on the architecture side, hardly com-
parable with CPUs or GPUs as there is no central unit that executes pro-
grams based on a defined instruction set. A program for an FPGA is called
configuration and does not contain sequential or parallel statements that
are somehow executed in a certain order, but precisely describes how the
circuitry shall connect external pins and internal devices. Hence, a more
appropriate name for an FPGA program is hardware description. Being a
much lower design level paradigm than high-level languages such as C++
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or Java, whole processors may certainly be implemented through hardware
descriptions that do execute regular compiled program code. In fact, this is
one of the reasons FPGAs exist.

When highly integrated circuits are designed, transistors and their inter-
connections are edged into silicon wafers in a highly complex and expensive
process. In higher level functions, circuitry tends to be recurring. For ex-
ample, a 64 bit adder circuit might be built from 64 1 bit adders, each of
them in turn build using two half-adders. A half-adder can be built out
of an XOR and an AND gate and these consist of a number of transistors.
The sum of a 64 bit adder could be stored in a register, which consists
of a number of flip-flops and the pattern repeats down to the transistor
again. Adders and registers are fairly trivial and their developers can often
identify semantic errors by taking a close look. Larger systems, such as
microprocessors built of millions of transistors or logic gates, become virtu-
ally impossible to debug by the naked eye. Although sophisticated circuit
design tools may provide design checks and electrical check to rule out
wiring errors, semantic and logic errors may only be found by full-coverage
simulations.

Instead of building circuits from part libraries, they might instead be de-
scribed by a formal language, such as Verilog or VHDL, and then simulated
by a suitable tool. The simulation scripts might be annotated with input
values and expected output values to automatically detect errors. Waveform
diagrams can be used to evaluate timing requirements on wires. When
designs become complex enough, providing full code coverage through
simulations also becomes increasingly difficult. Some errors even show
up for the first time in the finished products but edged silicon cannot be
changed anymore. Indeed, early microprocessors have a long history of
faulty hardware where operating system designers and compiler builders
had to deploy workarounds, such as the infamous “Pentium FDIV Bug,”
where an error in the floating-point unit of the Intel Pentium CPU series
yielded wrong or inaccurate results [Vet15]. However, in-the-wild tests with
real hardware may easily become very expensive due to the complex manu-
facturing process. At this point, reconfigurable logic emerged to address
the issue. There are FPGAs, for example, that can be reconfigured any
time and (virtually) arbitrarily often. How this intricate paradigm can be
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Table 2.3. One bit full adder truth table
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Figure 2.7. Full adder in elementary logic

implemented is shown in the following.

Reconfigurable Logic

When designing formulas in Boolean algebra, the first step is to express the
expected results as a function of the input values through a truth table, that
can easily implemented as a look-up table (LUT), as shown in Table 2.3.

A full adder consists of three inputs, with one bit for each summand
and one bit for an incoming carry value that might come from a previous
adder or a negative number. The result is a one bit sum and an outgoing
carry bit. Further analysis and synthesis yields a elementary-level schematic
as shown in Figure 2.7.

Instead of actually implementing a full adder though gate-level logic,
the truth table can also be directly stored as-is using memory primitives.
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Figure 2.8. Simplified Configurable Logic Block with flip-flops and wide function
generators

Here, an 8 x 2 bit memory may store the two bits of result while the three
input wires may be used as address lines to that memory. Reading a value
from the address 100 will yield the result 01, which is exactly the binary
value of 1+ 0 + 0. Given enough memory, arbitrarily large functions can
be expressed using storage as look-up tables. Being memory, its contents
can also be replaced anytime, implementing completely new or corrected
functions if necessary. This method is the fundamental approach used in
FPGAs.

Configurable Logic Blocks

On Xilinx FPGAs such as the XC6V690T used in this work, look-up tables
are organized in so-called configurable logic blocks (CLBs). A coarse overview
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is shown in Figure 2.8. A CLB consists of two 64 x 2 bit look-up memories
tagged as LUT A and B on the left hand side of the schematic. Their output
can be selected by asserting the 6 bit address line inputs A and B. The
additional AX input for the lower side controls a multiplexer that is part of
the wide function generator. Inputs to the F7 MUX are the upper bits of both
LUTs, so when A and B are set to the same values, AX can be used as an
additional address line, merging both LUTs to a 128 x 2 look-up table. This
scheme can be further followed by using the F8 MUX to merge the local
LUTs with the LUTs in the next CLB, each adding an additional address
line.

On the output side, the lines A and B directly forward the contents of the
higher order bit of their respective look-up tables without intermediate logic.
The AMUX and BMUX output can be configured through the upstream
multiplexers that select the higher order bit, the lower order bit or the
output of the wide function generator for output. AQ and BQ offer an
additional flip-flop to break long signal paths and ease the meeting of
timing requirements. This flip-flop can also be configured as a latch instead
of a flip-flop. The last function shown are the BA and BB inputs that allow
the flip-flops to be primed with a default value or used as simple registers
for signals from outside this CLB. The most trivial function to implement
using a CLB is its look-up table to be used as is, i.e. as a plain 64 x 2 bit
memory called distributed RAM.

The CLB shown above, though, is simplified in that it only shows logic
that is connected to the realization of arbitrarily wide functions by using
look-up tables. The actual CLBs contain much more logic that, however, is
not required to understand the principles of FPGAs. By using additional
resources not shown, LUTs may be connected to build regular shift registers
and barrel shifters. Also, additional logic is included to allow efficient
development of adders and multipliers.

On-board Peripherals and Integrated Components

Not all functionality can be realized by using plain look-up tables. Some
components may not be expressed by simple zero-latency idealized Boolean
algebra, such as clock management. Although it could indeed be possible to
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Figure 2.9. Block RAM device

design a configuration without using clock signal generators at all, hardly
any communication protocol can be used without synchronization to some
low-jitter recurring signal. Besides CLBs, FPGAs contain a number of digital
clock managers that can be configured to clean clock signals from an outside
source and generate scaled and phase-shifted frequencies by setting phase
angles, clock multipliers and dividers. These clock signals are then fed into
specialized clock buffers that serve all on-chip components as clock sources.

Generating larger amounts of memory by using the CLB’s distributed
RAM is possible. However, being such a common use case, dedicated mem-
ory blocks have been introduced to lift this burden off the logic resources,
the Block RAM. A simplified Block RAM cell is shown in Figure 2.9. Each
primitive exposes two individual ports to access the underlying 36 kilobit
memory array, two accessors do not even have to agree on a common
clock signal as the Block RAM interface contains synchronizer logic. It
can therefore be also used as two separate 18 kilobit memories by mask-
ing the respective bits on the address lines. Additionally, masking out
the write enable lines turns the RAM block into a ROM block which also
allows further optimization by synthesis tools. Block RAM also features
arbitrary coalescing into larger memories while keeping a single dual-port
interface [UG473].

Another important component is the digital signal processor (DSP) tile.
Integer arithmetics also being of frequent usage, Xilinx introduced a number
of dedicated units that implement typical operations that are also found in
regular CPUs” and GPUs’ arithmetic-logical units (ALUs), such as integer
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additions, subtractions and bit-wise logical operations (AND, OR, XOR,
NOT, etc.). Xilinx DSPs, however, extend this set [UG479]:

> 25 x 18 bit two’s complement multipliers
> 48-bit accumulator with internal accumulator registers
> pre-adders for efficient finite impulse response (FIR) filtering applications

> SIMD operations for dual half-width (24 bit) or quad quarter-width (12
bit) operand addition, subtraction and accumulation

To ease integration, many FPGA boards feature additional off-chip
hardware. These often include PCI Express connectors and the respective
high frequency transceivers, memory controllers for DRAM, NAND flash
modules for external configuration storage, any many others. In modern
FPGAs, such as the recent Xilinx UltraScale series, some of these are already
integrated into the FPGA package, such as transceivers for PCI Express
usage, or DRAM memory controllers [DS890].

Energy Consumption

By reducing the structure size to the ranges of 28 nm and operating voltages
to 1.0-0.85V, FPGA vendors successfully keep their thermal design power
typically below 30 W while allowing theoretical peak clock frequencies of
750 MHz. The actual power consumption heavily depends on the program
configuration and therefore on the switching activity. Hence, a high utiliza-
tion and often-changing look-up tables lead to high power consumption.
Some peripherals, such as high-frequency transceivers for off-chip commu-
nication require higher currents, as well as clock distribution networks and
DSP slices [15]. Fortunately, modern design and synthesis tools such as
the Xilinx Power Estimator can evaluate the energy consumption and heat
dissipation based on the resource utilization within an error margin of less
than 100 mW.
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21.4 Comparison and Suitability Assessment

This work focuses on the partitioning of computational challenges into
sub-components suitable for the introduced platforms and especially their
interaction. In this section therefore the platform suitability for certain tasks
is assessed.

CPUs contain a low number of independent execution units. They are
clocked at comparatively high frequencies, have very potent branching and
branch prediction units and are capable of executing higher arithmetics,
transcendental functions and SIMD operations on register sizes up to 512
bit. This makes CPUs ideal for heavily control-flow oriented applications
and iterative processes with data-dependent loop conditions.

GPUs on the other hand contain a rather large number of cores clocked
with medium frequencies of approx. 1 GHz. Capabilities of these cores are
limited to rather simple ALU operations and low-precision floating-point
representations. Co-processing units for cores are available in low numbers,
typically in ratios between 1:4 to 1:16, such as special function units (SFUs)
for transcendental functions or raised-precision floating-point operation
units (DB units). High memory access speeds, sophisticated caching hierar-
chies and efficient hardware-implemented thread scheduling make GPUs
very efficient in highly data-parallel applications without divergence in
branching decisions or data dependencies, and simple arithmetics.

The nature of FPGAs not having a fixed execution pipeline or even
sequential execution units makes comparing these to more conservative
processors difficult. However, based on the available resources and the inter-
nal representation of functions through configured CLBs allows to assume
that very fine-grained parallelism can be implemented. In fact, parallelism
can be implemented on a multitude of application layers, from the lowest
of gate-levels to complex processors without any external scheduling su-
pervisor units and the associated overhead of an active scheduler. Typically,
FPGAs can use several clock networks where each buffer might operate
at frequencies of up to 750 MHz [DS182]. Despite the comparatively low
frequencies, with the help of DSPs, Block RAM and the implementation
of intermediate clock domains, deep pipelines and systolic fields can be
constructed easily. Data word sizes can be specifically tailored towards the
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Table 2.4. Platform suitability overview

Task CPU GPU FPGA

Operate on data with many very good bad bad
data inter-dependencies or data-
controlled loop conditions

Perform simple arithmetics on good very good very good
standard data types

Working with custom data types bad bad very good
Simple floating-point operations good very good good
Higher arithmetics good  medium bad
SIMD programming style bad very good very good
Pipeline operation bad bad very good
Operation on data streams very bad good very good
Memory access medium very good good
Parallelism potential low high  very high

application’s requirements as no native register sizes restrict the uses. With
careful design, several concurrently operating pipelines can generate large
amounts of data as long as no data dependencies arise and the pipeline
output can be moved off-chip on time.

These findings are summarized in Table 2.4.

2.2 Data Transfer and Communication

This section gives an overview over the communication technologies used
in the implementation of the prototype system. Short historical and mo-
tivational statements are given while the technical details required for a
thorough understanding of the decisions relating to communication be-
tween the involved devices.
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2.21 Direct Memory Access

In high-throughput hardware and software applications such as the pro-
posed one, managing the data flow and processing protocol handshakes
becomes a major burden that even modern processors struggle to handle.
This section introduces state-of-the-art technology to move large amounts
of data from one subsystem to using dedicated hardware instead of general-
purpose processors.

Until the introduction of DMA, around 1981, the only way of moving
data between peripherals was Programmed I/O (PIO). In this transmission
mode, the CPU is instructed to write to or read from a device and waiting for
its completion. Typical peer devices in regular computers were PS/2 mice
and keyboards, RS232 serial interfaces, sound cards and IDE/ATA hard
disk drives. Moving the head assembly on the actuator arm inside a hard
disk to a different track (seeking) easily takes several milliseconds, making
the PIO instruction block the CPU in the ranges of millions of clock cycles
where no other instruction can be executed. Therefore, no transmission
to or from other devices may take place and the current transmission’s
throughput is directly affected by the CPU’s instruction processing time.
Even in modern systems with multiple CPU cores and frequencies of several
gigahertz, this can become a problem. High-end server-grade network cards
often require bandwidths of 10 GBit per second and more. 2 GHz processors
would certainly be put under heavy load. Even graphics cards on modern
consumer-grade gaming workstations expect the system to deliver 10GB/s
and more.

In 1981, the IBM PC was launched containing an Intel 8088 CPU, one
of the first consumer computer systems making use of Direct Memory
Access (DMA). This technology allowed a Microprocessor to offload the
transmission handling to a separate DMA controller, in these early systems,
the Intel 8237. Now, the CPU set up the DMA controller with an offset and
a length via PIO and started the transaction. While the DMA transaction
was executing, the CPU could continue processing until the DMA controller
notified the CPU that the work has been done. Indeed, the 8237 even
supported four almost independent channels with transfer throughputs of
1.6 MiB/s per channel, a respectable speed for the early 1980s [Int93].
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Since then, the use of DMA technology has evolved heavily. Today, most
of the more data-intensive peripherals are connected via high-performance
and DMA-capable links, such as SCSI, Serial ATA or PCI Express. Several
new transport functions and modes have been added, such as scatter/gather
operations, which plays a major role in the transport mechanisms used in
our hybrid system.

Scatter-Gather Operation

Modern operating systems organize physical memory in pages. When a
process writes to virtual memory, the memory block is separated to (usually)
fixed-sized memory pages whose virtual addresses are translated to physical
addresses. Due to various reasons, such as fragmentation, pages from a
virtual memory block are not necessarily contiguous in physical memory.
The translation between virtual addresses and physical addresses is usually
done with the help of page tables as shown in Fig. 2.2.

DMA controllers though, programmed with only address, offset and
length, typically expect a contiguous memory region. Naturally, the maxi-
mum buffer size for a DMA transfer is therefore capped by the ability of the
operating system to provide such a region. Tests with a custom DMA driver
in recent Linux versions have shown that it is hardly possible to acquire
contiguous memory blocks larger than 4 MB, regardless of the available
physical memory. This has several reasons. Firstly and most importantly, a
user-space application does have very little control over the virtual memory
allocation modes. In particular, it cannot request memory that is contiguous
as the Linux system calls responsible for memory management (brk, sbrk
and mmap) [TOG13] purposely do not provide means for that. Therefore, the
transmission buffer has to be allocated in the memory space reserved for
the kernel, where memory can be allocated directly from the virtual mem-
ory subsystem instead of using system calls. Secondly, the Linux kernel’s
view of memory is separated into zones. One of the zones, ZONE_DMA, is the
memory region generally suitable for DMA. Unfortunately, many devices
and buses in a computer do not support full-width addresses. ISA buses,
for example, only allow DMA communication with 24 bit addresses [Int93],
but the DMA zone claims that memory taken from it generally works for
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DMA. Therefore, the DMA zone on a x86 sytem is 224 bytes, or 16 MiB in
size. However, devices on the PCI bus (or one of its direct successors, such
as PCI Express), do not have this limit and are able to work with memory
located throughout the (physical) address space, the memory still has to be
contiguous, though [LDD3, pp. 214-216].

Generally, when contiguous memory is required, the memory region
has to reside in the kernel memory space. As user applications do not have
access to kernel memory for security reasons, processes give a userspace-
allocated buffer to the kernel which then has to copy the data forth and
back. This conceptually unnecessary copy operation reduces the whole
DMA operation to absurdity as the CPU has to copy one word at a time
from one buffer to the other. Although the intra-memory copying is certainly
faster than moving data between devices, the CPU is utilized what DMA
was actually designed to reduce.

The solution is DMA operation in scatter/gather mode. This DMA func-
tion requires more complex setup in the kernel driver as well as in the DMA
controller. In this mode, the userspace process may allocate an arbitrary
block of memory by the usual means. The userspace buffer address is then
handed over to the responsible driver. Contrary to the previously described
DMA approach with kernel buffers (Streaming DMA), the driver translates
the userspace buffer into a list of pages. Then, entries in the page list that
correspond to physical memory regions next to each other, are coalesced
into single entries, yielding a list of contiguous memory regions called the
scatterlist. Modern DMA controllers do also allow programming by whole
scatterlists instead of single (address, length, offset)-tuples. For that purpose,
the memory occupied by the scatterlist itself has to obey the same restric-
tions as if it would be transferred with streaming DMA. Therefore, in the
extreme case, the scatterlist has to fit into a single memory page. In current
Linux systems, a (regular) page is 4,096 bytes. Assuming that addresses are
64 bit, length and offset 32 bit, a scatterlist entry is 16 bytes. Hence, a full
hypothetical scatterlist with 256 entries may address only 1 MiB of memory
when no coalescing is possible (i.e. due to busy or fragmented memory), so
for every megabyte of data, a new DMA transaction has to be started.

Although this is already a huge improvement over the streaming DMA
mode, there is still room to further reduce the CPU utilization. One obvious
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solution is to use larger pages. Modern CPUs and operating systems already
support larger tables (“HugeTLBs” in Linux, “Large Pages” in Windows,
“Super Pages” in BSD), but at least in Linux, there is no standardized way
to make use if this feature. Another solution is scatterlist chaining. In this
method, the last entry of a page-fit scatterlist is marked as “more are follow-
ing”. When the DMA controller has started processing the scatterlist entries
one-by-one, it will eventually reach the last one. The flagged entry tells the
controller that there are more entries, despite of the header word which
stated the list length, and the next word in the list is a header of a new list.
This way, several scatterlists can be chained together without interrupting
the transaction. Some DMA controllers organize the scatterlist buffer in a
ring buffer. Here, a new scatterlist can be loaded into the controller buffer
as soon as the controller has started the second list, ultimately allowing to
transmit arbitrary userspace buffers to and from peripheral devices with
minimal computing overhead.

Latest developments show that the scale of performance in DMA-
enabled communication links is not only required within a computing
system, but also in between computing systems. Several implementations
of a technology called Remote DMA (RDMA) have evolved to move data
between different computer system’s main memories without involving
their operating systems and/or CPUs. This could be done, for example, by
enabling both system’s interface cards to perform DMA transactions with
their local main memory and connecting both cards with a direct link so
that no routing would be required. Common implementations of RDMA
include InfiniBand, iWARP and RoCE (RDMA over Converged Ethernet).

2.2.2 PCI Express

PCI Express (PCle) is a standardized communication system in modern
computer architectures that is used to interconnect peripherals, such as
hard disk drives, network interface cards, and graphics accelerator cards.
It is held being the successor to ISA, PCI and AGP, although they do not
have much in common. At least the differences between AGP, PCI and PCI
Express are usually abstracted in operating systems in a way that generic
drivers, i.e. for sound cards, generally do not need to know the actual
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communication architecture.

Although often called a “bus”, PCle is actually a system of serial point-to-
point connections, where every device is directly connected to a switching
fabric, the PCI Express switch, at this level functioning much like its Ethernet
equivalent. On the physical layer, also called “PCle PHY”, PCI Express
devices are connected through an edge connector. While a standard PCI
interface contains 124 connections, 56 of them solely for power supply
and signal ground, a PCI Express connector requires only 36 connections,
including 18 power supply and ground connections. This is mostly because
PCI Express does not need bus arbitration and handshake pins (as it is not
a bus), and data is transmitted serially instead of in parallel.

Line Code and Data Rates

On the physical layer, data communication is implemented by using lanes,
full-duplex pairs of LVDS (low voltage differential signaling) wires, ac-
companied by the same number of ground connections, totaling to eight
additional wires per lane. All lanes together form a full-duplex logical
link. For Generation 1, the data rates are specified as 2.5GT/s, which is an
informal description of the number of transfers per second and incompatible
with the Systéme international d’unités (SI) due to its symbol name clash
(where T is reserved for the Tesla unit) [TTO8]. A more technically sound
measure would be the symbol rate as it is regularly used in information
theory [Bel53]. It is defined as the modulation rate of a signal, i.e. the
number of distinct symbol changes per second. Its SI-conforming unit is
the baud (Bd). Among many other communication protocols, PCI Express
Gen 1 uses the 8b10b line code, where 8 data bits are encoded in 10 line
bits. These line bits are generally called transfers, as in 2.5 Gigatransfers per
second, and can therefore be written more precisely as 2.5GBd/s. Now it is
clear, that a lane in PCI Express Gen 1 cannot transfer 2.5 Gb/s net payload
data but 2.0Gb/s due to the 8-in-10-bit encoding scheme. 20 % data rate
overhead being relatively high, the line code for PCI Express Generations 3
and 4 has been changed to 128b/130b reducing the line-code overhead to
approx. 1.5 %.

The data rates shown in Table 2.5 include line-code overhead but do not
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Table 2.5. Data rates per lane by PCI Express generation

Generation Line Code Line Rate  Net Speed

1.0/11 8b/10b  2.5GBd/s 238 MiB/s
2.0/21 8b/10b  5.0GBd/s 477 MiB/s
3.0/3.1 128b/130b  8.0GBd/s 939 MiB/s
4.0 128b/130b 16.0GBd/s 1.869MiB/s

take PCI Express protocol overhead into account. The actual application-
layer net throughput heavily depends on the application profile. Regarding
net data rates after protocol overhead, [BKO08] states:

Like other high data rate serial interconnect systems, PCle has a
protocol and processing overhead due to the additional transfer
robustness (CRC and acknowledgements). Long continuous uni-
directional transfers (such as those typical in high-performance
storage controllers) can approach >95 % of PCle’s raw (lane) data
rate. These transfers also benefit the most from increased number
of lanes (x2, x4, etc.) But in more typical applications (such as a
USB or Ethernet controller), the traffic profile is characterized as
short data packets with frequent enforced acknowledgements.
This type of traffic reduces the efficiency of the link, due to
overhead from packet parsing and forced interrupts (either in
the device’s host interface or the PC’s CPU). Being a protocol for
devices connected to the same printed circuit board, it does not
require the same tolerance for transmission errors as a protocol
for communication over longer distances, and thus, this loss of
efficiency is not particular to PCle.

DMA Usage

As stated earlier in Sect. 2.2.1, PCI Express devices support the use of
DMA. Unlike older buses such as ISA, PCI and PCle do not have a central
DMA controller. Instead, any device may become “bus master” to directly
initiate the transactions, effectively becoming a DMA controller for the
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duration of the transaction. Especially in buses or architectures where
several devices may become master at the same time, arbitration algorithms
have to be employed. Several Quality of Service (QoS) parameters, such as
traffic classes and virtual channels are required for standards-conformant
operation [BAS03]. This way, connections with real-time priorities, such as
audio streams that are naturally transmitted via synchronous means, may
be embedded in PCI Express” isochronous transactions.

Link Negotiation

PCI Express link management protocols are designed for highest compati-
bility in a way that most devices are fully backwards compatible. Therefore,
many features that come with updated revisions are optional and nego-
tiable. Newer cards may not only negotiate software peculiarities such as
power management features, but even link widths and low-level encodings.
For example, consumer motherboards often provide PCI Express female
edge connectors with a physical length of 16-lane slots but their electrical
wiring only supports four lanes. On the other hand, (physical) four-lane
cards may be inserted in any slot where it physically fits, i.e. fully wired
16-lane slots. To help coping with these lane width compatibility features,
several loop-back pins exist on these cards: after the first lane pair block, the
fourth, eighth and sixteenth lane pair block, two otherwise unused pins are
short-circuited. Hence, the PCI Express controller can easily set up initial
lane allocations without using the not-yet established communication links.

Unfortunately, many chip sets and processors do not provide enough
lanes to satisfy a full allocation request, i.e. the motherboard provides more
lanes on its sockets than the controllers support and all sockets contain
devices with maximum lane count. In these situations, the computer’s
system software (BIOS, UEFI, etc.) and operating system may re-negotiate
the lane allocations. Some systems even allow the end user to configure
allocation limits for certain slots. During the initial negotiation and further
re-negotiations, not only the lane allocations but also protocols and features
can be changed and agreed or declined upon. Arguably, the most impor-
tant feature for initial connections might be the PCI Express generation.
Generally, the generation used defines the line code and transfer rates. The

46



2.3. Parallel Computing

current PCI Express 4.0 standard defines the generations listed in Table 2.5.
Other features include advanced power management and error reporting
and recovery mechanisms.

2.3 Parallel Computing

The implementations presented in this work are heavily built upon parallel
programming building blocks. To truly penetrate this matter, it is essential
to develop a thorough mental model of the parallelization aspects in this
architecture. This section aims at laying the foundation and introducing
these building blocks.

2.3.1 Parallelism and Machine Models

Parallelism and parallelization may occur at different abstraction levels
throughout an application. Many of these mechanisms happen automati-
cally or implicitly, in a way that does not need any interaction with or even
knowledge by users, programmers or software architects. Other methods
have to be explicitly enabled and carefully used. The most important as-
pects of automatic parallelization and vectorization have been discussed
in Sect. 2.1.1, such as pipeline superscalarity. Assisted parallelization and
concurrency can be easily used through pre-built software libraries, such
as OpenMP and MPI. More abstract and higher-level techniques can only
be employed with deep knowledge of a specific problem, such as the prob-
lem partitioning used in the proposed work. In some cases, programmers
and hardware designers even create new parallelization techniques and
functions from scratch to be used for a certain class of applications. The
applications and architectures developed here are carefully designed to
include almost every layer of parallelism, from single instructions to a
rough hardware component schematic and are required to be understood to
properly evaluate the nature of the hybrid-parallel prototype architecture.
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Flynn’s Taxonomy

When parallelization and parallel operations became popular in computer
science, Michael J. Flynn proposed a classification scheme for parallel
execution models later known as “Flynn’s Taxonomy” [Fly72].

The original classes are defined as follows.

Single Instruction stream Single Data stream (SISD) describes the simplest
execution mode. Each scheduled instruction is executed exactly one after
another and processes exactly one datum before the next instruction is
scheduled. This is a typical mode for consumer-line CPUs before the
streaming instruction set extensions were introduced.

Single Instruction stream Multiple Data streams (SIMD) is a mode where a
single instruction operates on multiple data streams as supported in
modern processor since the Multimedia Extensions (MMX). Current
instruction set extensions, such as Advanced Vector Extensions 512-bit
(AVX-512) and Fused Multiply/Add (FMA), usually focus on SIMD
instructions.

Multiple Instruction stream Single Data stream (MISD) is a rather exotic mode
with low coverage in regular CPUs. Applications requiring high fault
tolerance may schedule a number of instructions on the same data
set where the different execution engines then have to agree on the
correct result. Another example is a systolic array where a single data
streams is processed by pipelined execution nodes. To some degree, the
classification of systolic arrays in Flynn’s Taxonomy is contested. This
will be discussed in detail in Sect. 2.3.2.

Multiple Instruction stream Multiple Data stream (MIMD) became more pop-
ular with multiprogramming processors and superscalar systems. Op-
erating systems schedule multiple instructions to be executed at the
same time on different nodes, each one associated with its own data
set. MIMD systems range from simple multi-core CPUs to distributed
platforms. As opposed to SIMD, instructions need not to be executed in
lock-step but fully asynchronously.
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When parallel processing and parallel architectures became a more
popular field of research, some authors felt the need to extend or further
subdivide Flynn’s taxonomy to account for modern developments. An in-
teresting example that is hard to classify with the mentioned terms is the
Cell processor found in Sony’s home entertainment system “PlayStation
3”. It is being developed by Sony, Toshiba and IBM since 2001 and features
a number of general-purpose processors, each one accompanied by eight
service processors that are specialized towards data-intensive processing
and floating-point calculations [GHF+06]. Service processors and main pro-
cessors operate in a master/slave environment and run different programs
and the same time but asynchronously. Althrough this seems to qualify for a
MIMD classification, the slave processors” work units are directly scheduled
by their master processor, not by some higher-level operating system, as
opposed to the master processor itself. This kind of work-sharing construct
would not be properly reflected without a subdivision of MIMD that is
called Multiple Programs, Multiple Data Streams (MPMD) [GFB+04].

A more commonly used subcategory proposal for MIMD is Single Pro-
gram, Multiple Data Streams (SPMD) [DGN+88; Dar01]. Analogous to MPMD,
multiple instructions are executed in parallel with multiple data streams
but within a single program. This is a typical class for all kinds multi-
threaded programs and therefore easily the most common style of parallel
programming.

2.3.2 Systolic Arrays

Most processors such as CPUs and GPUs are either based on Von Neu-
mann or Harvard sequential architectures and as such depend on complex
centrally orchestrated memory accesses, instruction execution pipelines,
program counters, register files and others. Although vendors have recently
added certain small-scale parallelism functionality, the underlying architec-
ture is still tied to sequential processes. As a large part of the problem is
implemented using a systolic array-based solution, a short introduction to
systolic structures using the simple example of polynomial solving is given.

A systolic array is a tightly coupled network of identical, primitive
nodes. These nodes can be interconnected arbitrarily, but most often, linear
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Figure 2.10. Polynomial evaluation using systolic arrays

arrays, two-dimensional meshes, hypercubes, and other popular network
topologies are used. No central unit coordinates data or control flows and
the overall operation is similar to pipelining.

For example, polynomials can be computed efficiently using linear
systolic arrays. A polynomial in its base form

y:a0+a1x—|—a2x2+...+akxk

can be transformed into a suitable expression using Horner’s Rule:

y=((((anx+ay,_1) xx+a,_2) XX +a,-3) X X...a1) X X+ 4d

The factorization now consists of a recursive sequence of multiply-and-
add operations and can be implemented using a linear systolic array with
inputs from two directions. The result is shown in Figure 2.10 using fused
multiply/add units. The first node multiplies its input (0) by x and adds
a,, and forwards the result to the next node, which multiplies the value
again by x and adds a,,_;. The first two nodes therefore calculate the sub-
term a,x + a,_1. Every successive node adds another pair. Once the first
output has been generated after n cycles (with n being the array length), one
polynomial can be evaluated every cycle with a latency of n cycles. As seen
from a CPU-like standpoint, the network processes n MUL/ADD instructions
per cycle.

As processing nodes only perform primitive operations, they also con-
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sume much less resources in terms of logic gates and transistors than fully
pipelined CPUs. Furthermore, due to their simplicity, they can also be
cascaded into large networks and with rising numbers of nodes, easily
outperform even the most sophisticated vector extensions (i.e. AVX-512).

While systolic arrays are very efficient by exploiting low level parallelism,
they can only be used with problems that can be expressed in a suitable
and simple form. Additionally, common architectures such as CPUs and
GPUs are not flexible enough for systolic chain implementations as inter-
core communication can easily become a bottleneck. Naturally, FPGAs do
provide the required flexibility and are a regular target for systolic array-
based signal processing algorithms (convolution, Fourier transform, lattice
filters), higher dimensional arithmetics (matrix multiplication, inversion,
decomposition) and artificial neural networks [ZP02].
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Chapter 3

Applications

3.1 A Primer on Bioinformatics

With the hybrid-parallel architecture focusing on applications in bioinfor-
matics, the following sections provide an overview on the biological and
genetic backgrounds. This knowledge is required to fully understand how
and why these applications and algorithms have been selected as well as
the importance of the results and consequences.

3.1.1 DNA and Chromosomes

All known lifeforms on earth, from complex mammals such as humans to
the simplest viruses and mycoplasma, store their hereditary information
in special macromolecules called deoxyribonucleic acid (DNA) [AJL+15,
Chap. 1]. DNA consists of a potentially long array of nucleotide pairs.
Nucleotides contain desoxyribose (a sugar) as a fixture and one of four
nucleobases, adenine, thymine, guanine or cytosine as the actual genetic
code, usually abbreviated by their first letter. These sugar fixtures are fused
together with phosphates, creating a helix structure. The DNA though, con-
tains a second strand, anti-parallel to the first. By their molecular structure,
adenine may only oppose thymine while guanine may only oppose cytosine.
Both nucleobases are tied together by hydrogen bridges, forming what is
called a base pair. Besides several biological implications, the double helix is
more fault-tolerant than a single strand because of its redundant nature. A
schematic overview of the DNA topology is shown in Fig. 3.1.

From an information scientist’s point of view, the DNA may act as a
universal linear data storage. The information itself is encoded with an
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Figure 3.1. A DNA schematic with nucleotides and sugar/phosphate fixture

alphabet of four different symbols where every symbol is stored along with
its inverse, introducing a certain level of redundancy.

Eukaryotes, organisms with cell membranes and distinctive cell or-
ganelles, contain their genetic material within a nucleus. During (regular)
cell division, the DNA is to be replicated to provide a copy for the newly
created cell. This process is called mitosis for regular cells and meiosis for
gametes. In the very first step during mitosis, the interphase, the DNA is
duplicated. During the next phase, the prophase, the single long double-helix
is tightly condensed and cast into chromosomes, stabilized by specialized
proteins called nucleosomes. A human cell typically contains 46 chromo-
somes of varying lengths, divided into two gonosomes and 44 autosomes.
As most mammals, human cells are diploid. They contain 22 autosomes and
one gonosome from their direct maternal ancestor and the same set from
their parental ancestor. Genetic information that will be used for purposes
in bioinformatics is usually extracted during the interphase or the follow-
ing metaphase, yielding chromosomes instead of a single double-helix, as
shown in Fig. 3.2. In literature and biobanks, chromosomes are sorted and
indexed by length, 1 being the longest chromosome, 22 the shortest. Due
to their special roles, gonosomes are not indexed by number but X or Y,
depending on their type.

The data stored in DNA serves a multitude of purposes. Many regions
encode the physical structure of proteins. When a protein is to be syn-
thesized, a certain region from the DNA is copied and processed into
messenger ribonucleic acid (mRNA), a single nucleotide strand similar to
these known from DNA. The mRNA encodes the protein structure by the
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Figure 3.2. Set of 23 chromosomes from a human male

use of codons, triplets of nucleotides. With four possible nucleotides, 64
possible codons exist, where 61 are used to encode the 20 canonical amino
acids proteins are created from. The remaining three codons mark the end
of an encoding re Dieselbe Frage stellt sich auf Seite 25 und einigen weiteren
Seiten.gion and terminate the translation process. The synthesis product is a
chain of amino acids where the exact types and overall ordering determine
the physical structure and therefore, function.

3.1.2 Genes

A gene is a region in the DNA with a certain function. In an evolutionary
point of view, a gene is a molecular unit of heredity [AJL+15], where its
transmission to offspring often means the transmission of phenotypic traits.
Although only parts of a DNA strand are currently considered to be genes,
the whole DNA including its associated mechanisms (ribonucleic acid,
genomes of mitochondia, etc.) and its non-coding regions is called genome
or genetic material. Currently, approx. 20000 genes are estimated to be
present in the human genome [PS10].

Mutations are alterations to the genetic material of an organism. They
may result from a multitude of causes. Popular examples are sunburns
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as a form of direct DNA damage, where UV rays with relatively high
energy impact the thymine’s ability to bind with adenosine, effectively
breaking the base pair at this location [Goo01]. The DNA not being a
hard crystalline formation but an organic mobile part, the strand may
overlap itself. This may also happen with chromosomes overlapping each
other or themselves. At these locations, one strand may just cut the other,
permanently reducing the information. This process is known as deletion
and can affect any number of nucleotide pairs [Lew04]. Another source of
mutation is the DNA replication and synthesis mechanism itself, where a
number of base pairs may be inserted into the strand, deleted or replaced as
results of molecular decay or error-prone repair processes [AJL+15, Chap. 5].

3.1.3 Single Nucleotide Polymorphisms (SNPs)

For this work however, only single nucleotide polymorphisms (SNPs) are
interesting. As the name suggests, a single nucleotide pair is replaced with
another consistent pair. Prior research suggests that many traits and (genetic)
diseases can be explained by the characteristics of a single SNP [TKF+11],
such as sickle-cell anemia [Ing56]. SNPs can be found throughout the
genome, within genes and also within non-coding regions. A SNP is defined
by its base position in the DNA and its possible base pair variations are
said to be alleles for this position.

As explained in Sect. 3.1.1, the human genome consists of a maternal
and a paternal set of chromosomes. Therefore, every SNP at a specific
location in the genome has two related base pairs, of which only the first
pair part is usually mentioned as the second part is redundant. For example,
if an individual has the guanine/cytosine pair at both the maternal and
paternal SNP’s location, it may be written as GG. If the variation G at the
SNP’s location is the predominant configuration (allele) in the individuals
respective population, it generally called wild type as opposed to the variant
type. Therefore, a SNP may have the following configurations:

> Homozygote wild, where both the maternal and paternal part contain the
predominant allele in the individual’s population.

> Homozygote variant, where both parts possess a variant type allele.
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> Heterozygote, where one part has a variant allele and the other part a
wild type allele.

3.1.4 Genome-wide Association Studies (GWAS)

Association studies are examinations of potentially large numbers of genetic
variations in different individuals to find correlations between genetic
variants and certain traits like diseases. In a typical set-up, individuals are
grouped into cases where a certain trait is present and in controls where it is
not. Results from genome-wide association studies (GWAS) may therefore
identify SNPs that are somehow associated with and influential to a disease,
but cannot specify which genes actually cause the trait to manifest [Man10].

One of the more popular GWA studies is extensively used in this work
and provided by the Wellcome Trust Case Control Consortium (WTCCC).
The study is designed around 2,000 sampled individuals from each of
seven diseases, type 1 diabetes, type 2 diabetes, coronary heart disease,
hypertension, bipolar disorder, rheumatoid arthritis and Crohn’s disease.
For the control group, 3,000 individuals have been sampled from the same
population based in Great Britain [BCC+07].

3.1.5 Epistasis

In genetics, the term epistasis refers to the phenomenon where a gene is
influenced by its genetic background. These influences may be dependencies
on the presence or absence of one or more other genes called modifier genes.
Other examples are influences between alleles in a single heterozygote
or between a gene and the environment. Often, the combined expression
cannot be explained solely by the sum of the effects of the single genes.
Therefore, epistatic interaction in classified as follows:

> Additive Epistasis. Purely additive effects of the single genes. As most
genes exhibit at least some level epistatic interaction, this type is relatively
rare [Kau93].

> Magnitudal Epistasis. The combined effect is larger than the sums of
the genes’ primary effects. It is suggested that magnitudal epistasis be
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further divided into positive and negative [Phi08; BCP+04] or synergistic
and antagonistic effects [CC10].

> Sign Epistasis. A genetic mutation has the oppisite effect when in pres-
ence of another certain genetic mutation [WWCO05].

It is therefore not only appropriate to search for single genes but also
combination of genes.

3.1.6 Acquiring Data

When planning and organizing a genome-wide gene-gene association study,
a large number of SNPs is analyzed, whose positions in the genome are
already known. For example, in the WTCCC1 study, approx. 500 000 SNPs
have been analyzed, within approx. three billion base pairs. This subset
of the genome is called genotype. Before software tools are able to analyze
SNPs and their alleles by investigating encodings of wild types and variant
types they first have to be translated from a biological representation, i.e. the
actual DNA, to a digital representation that computers can process.

One approach to digitize the SNPs” characteristics works by chemically
marking the desired SNPs in the genetic material. Every marker individually
identifies a certain SNP. Furthermore, the alleles in question are replaced
with fluorescent equivalent base pairs. Then, the material flows over a
special chip called microarray. This device contains an array of probes
where each probe allows one of the previously installed markers to bind.
After removing the leftovers, determining the allele configurations becomes
a matter of taking a photograph of the chip to capture the fluorescent
emissions. This photograph can then be easily processed into digital formats.
A fragment of a DNA microarray shot is shown in Figure 3.3.

While the first commercially available microarrays only allowed very
few SNPs for processing, current technologies typically support any number
between hundreds, thousands, and up to 4.5 million SNPs on a single array
in the Illumina Inc. Omni series [I1116]. With arrays becoming larger over
time and epistasis analysis targeting higher orders instead of singular SNP
effects, analysis in bioinformatics is becoming a major challenge when it
comes to available computational resources.
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Figure 3.3. Fluorescent emissions from a microarray

3.2 Exhaustive Interaction Search

Data from genome-wide association studies are well suited for analyses
of traits where the phenotypic outcome can be clearly distinguished into
“affected” and “not affected”. These traits are termed binary traits. Even
though single-SNP effects are certainly accountable for a large number
of traits, analyses of even millions of SNPs are trivial. However, research
suggests that epistatic gene-gene interactions might play a major role in
trait expression [Mah08; MAW10]. Single-SNP analysis methods may com-
bine SNPs with strong effects but hence, the SNP combination may only
express additive epistasis. This method of interaction analysis is obviously
not powerful enough to model interactions between SNPs that do not have
primary (single-SNP) effects.

Evaluating all actual combinations of two SNPs raises the computational
by an order of magnitude — from linear in the number of SNPs to quadratic.
The exact number of tests can be calculated with the help of the elemen-
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tary combinatorics, specifically the binomial coefficient, by counting all
2-combinations without repetitions. Let 7 be the number of SNPs and k = 2
the combination order.

Cln k) = (Z) - k'<nnlk>'

More formally, a k—combination of a set is a subset of k distinct elements
of it. In this case, it yields all sets of SNP combinations of length 2 where the
order does not matter, i.e. {i,j} = {j,i}, and a combination may not contain
the same SNP two times, {i,} does not exist. In this work, the terms “2-sets”
and “pairs” are interchangeably used although in the strictly mathematical
sense, a pair is a 2-tuple and tuples are defined to be ordered sequences
instead of unordered sets where the ordering of items is irrelevant.

When evaluating the already introduced WTCCC1 data set, more than
500000 SNPs have to be analyzed [BCC+07]. Although this is already a
fairly large study, even by today’s standards, the evaluation time is cer-
tainly a matter of seconds, depending on the actual method used. With
the power raised to second order interactions, 500 000 evaluations become
C(500000,2) ~ 125 x 10° evaluations. Whole data set analyses in these
orders of magnitude are clearly a much more interesting problem when it
comes to computational complexity and motivates the invention of specially
designed hardware and software architectures.

Recent research also suggests even more complex traits, such as the
expression of psioriasis, that seems to be following a larger network of
genes and might even influence other serious diseases [Z5X+16; ALI+00;
TE14]. These include inflammatory bowel diseases, hypertension, diabetes
and others [KMS+07]. These findings show that the search for interactions
of orders higher than two may also reveal interactions. As a proof of
concept, this work additionally presents an implementation of third order
epistatic interaction analysis. Considering the above data set, the number of
evaluations grows to C(500000,3) ~ 2.1 x 10'®, exponentially in the order
of interaction.

Even if such an evaluation consumed as few as ten CPU clock cycles
at the highest available frequencies, an exhaustive analysis would almost
take just under two years of runtime. Hence, only a suitably sized subset of
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Figure 3.4. An unnormalized contingency table

WTCCCI1 can be analyzed using the methods presented here.

3.2.1 Contingency Tables

To model other forms of interaction as plain additive combinations, such as
magnitudal or sign epistasis, the interactions themselves are to be investi-
gated. A common tool in survey research is the contingency table. It is a
type of matrix that generally displays the possibly multivariate frequency
distribution of the involved variables and can be used to assess the relations
between them. Figure 3.4 shows a suitable contingency table format for
two-SNP interaction. Each half of the displayed table describes allele distri-
bution of a SNP combination, with the case group on the left hand side and
the control group on the right hand side. The “w/w” cell on the right side,
for example, contains the number of control group individuals where the
alleles of SNP A and SNP B are both of the wild type. Note that this type
of table where the cells contain actual counters does not show a frequency
distribution. When programmatically creating contingency tables, this is
often an easier format but can trivially be processed into actual frequencies
by normalizing the cell values to the respective group size.

This unnormalized type of display has a few mathematical implications
that will be important in the implemented methods in later chapters. For
example, the column sum of SNP A’s wild types in the case group equals
the total number of wild types for SNP A’s cases and is constant for every
two-set of SNPs where SNP A is part of. This observation holds true for any
column and row in the table and will later be used to reduce the required
contingency table storage by removing this redundancy.

61



3. Applications

In principle, these kinds of contingency tables can be generated for any
order. For humans, these become more difficult to evaluate or even write
down as Figure 3.5 suggests by showing a table for third-order interaction
search. Unfortunately, raising the order does not only increase the number
of required tables exponentially but also the size of each table. Specifically,
each SNP in the combination adds three additional alleles to each group,
therefore, the number of counters in a table can be expressed as 2 x 3k, with
k being the order of interaction. Thus, second-order interaction requires
18 values, third order 54 values and fourth order 162 values per table.
Operating on these large data sets poses a major challenge in all involved
areas of computation, especially communication paths, their associated
stream handling, and the arithmetical units to calculate the respective
measures.

3.2.2 Second Order Interaction Measures

To evaluate the grade of interaction between two SNPs, a large number
of algorithms have been implemented in the last years. Most of them
employ complex statistical models that measure the differences of the allele
frequency distribution between the case group and the control group.

One of the simpler measures is iLOCi [PNI+12]. In this method, the
case group distribution is formulated as a probability mass function and
compared to a ground truth constructed from the control group. A dif-
ferent approach is taken by GWIS [GRW+13] where classification models
are proposed, based on receiver operating characteristics (ROC curves),
which are often used in machine learning algorithms. When going further
in this direction, many methods have evolved around random forest-based
variable prediction, such as Random Forest Fishing [YC14] or Permuted
Random Forests [LMA+16]. Generating ground truth assumptions through
random permutation is also well-established and used in multi-factor di-
mensionality reduction-based methods, such as MB-MDR [JLS11] and its
various descendants.

Another complex algorithm takes a classical regression-based approach.
In BOOST [WYY+10], two logistic regression models My and Mg are
obtained from a contingency table, where Mg is called saturated and is
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Figure 3.5. Contingency tables for cases and controls. 1;j; reflect the number of
occurrences for the corresponding genotype combination in a given SNP triple.
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based on the joint probability mass function between SNP variables and
the case/control variable. The so-called homogeneous model My is used
for regression analysis regarding the case/control group affiliation as a
dependent variable while the SNP variables are treated as predictor variables.
The difference between both models” estimates describes the probability
shifts in the case/control affiliation prediction as a function of the case and
control allele frequency distributions. Due to its widespread use and high
quality results, this method has been chosen for implementation on the
hybrid-parallel architecture.

3.2.3 Third Order Interaction Measures

Due to the required computational power involved in exhaustive third-order
interaction search, only very few methods have been published and even
less have been implemented to solve this issue [WYY+10; WLo11]. Guo et al.
use dynamic clustering methods to reduce the measure complexity to clus-
ters of SNPs [GMY+14]. Lacking established methods that are performed
exhaustively on every single combination, a new measure is proposed.

In the field of information theory, the mutual information I describes the
mutual dependence between two or more random variables. In the previous
section about second order interaction methods, the model of BOOST has
been introduced where regression models are used to describe the difference
of outcomes of a SNP combination with and without prior knowledge of the
case/control group affiliation. Wan et al. show that it can be implemented by
calculating the Kullback-Leibler divergence Dy, a measure of the difference
of two probability distributions. Mutual Information describes a very similar
measure but is defined through the entropy of its random variables [CT06,
Chap. 2.1-2.3]:

1(Xq,X2,X3;Y) = H(Xq, X2, X3) + HYY) — H(X1, X2, X3,Y) (3.2.1)

In discrete distributions such as contingency tables, the Mutual Informa-
tion test is equal to the G-Test, a well-known dependency test in statistics
and the successor to Pearson’s Chi Squared test [Pea00; Hoel2]. Addition-
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H(Y)

H(X,Y)

Figure 3.6. Venn diagram for mutual information and entropy

ally, in the discrete case it can then be defined through the Kullback-Leibler
divergence as used in BOOST and therefore allows assumptions about its
validity and expressiveness [CT06, Chap. 2.3].

Figure 3.6 depicts an interpretation of entropies and the mutual infor-
mation. The left circle describes the entropy (uncertainty) of the random
variable X and the right circle of Y. The union of both is the joint entropy of
X and Y, while the intersection of both is the mutual information. There-
fore, it can be expressed through the difference between the joint entropy
H(X,Y) and the sum of their individual entropies H(X) and H(Y), as
shown in Equation 3.2.1. Regarding the SNP combinations, the joint entropy
of all SNPs H(X) < H(Xj, X», X3) is intersected with the entropy of the
case/control variable Y.
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Chapter 4

The Hybrid Architecture
Prototype

Parts of this chapter have been previously published in [GWK+15a;
GKW+15, KGW+14; WKG+14; KWG+15; GWK+15b; GSK+14;
WKH+17].

This chapter consists of a thorough description of the prototype used to
implement the architecture. In particular, all components that were devel-
oped and engineered on all levels are presented, from top-level application
threading protocols down to electrical interfaces and wiring.

4.1 Overview

41.1 The Problem Statement

The overall problem that this hybrid architecture is designed to solve is
to create a larger platform to exploit the very different strengths of the
very different architectures with respect to the individual architectures’
power and potential of computation as explained in Chap. 2. The combined
platform targets a high efficiency in terms of energy and computational
power, achieved by synergistic effects and therefore performing better than
the sum of its components.
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The system presented here is generally capable of solving all kinds
of problems efficiently if they are reasonably divisible in several mostly
self-contained parts. For this work though, two interesting methods from
the area of genetics and bioinformatics have been selected as a proof of
concept. These methods are described in Sections 3.2.2 and 3.2.3. From
an algorithmical point of view, these problems are quite similar but their
implementations require different foci on different aspects and therefore
lead to different sophisticated approaches as the following sections show.

When accelerating applications or algorithms through parallelization
and concurrency, a common bottleneck is communication between the
participating components. Hence, it is declared the central challenge to
solve and great effort has been made to provide high-performance interfaces
with as low as possible set-up overhead and latency.

4.1.2 Problem Partitioning

Both problems described in 3.2.2 and 3.2.3 can be separated into following
steps:

1. The input data, a database of genetic material, is read from storage and
converted into a format suitable for the remaining parts.

SNP data is processed into contingency tables.
A statistical test is executed on each table.

Tables are filtered depending on their score.

SR

Remaining SNP pair information and scores are written to storage.

The conversion step will naturally be executed on the CPU as it is directly
attached to the storage and heavily data-dependent. The formats typically
used, as well as our application’s native format, encode the SNP data, i.e.
whether a certain SNP’s locus in a certain individual is a heterozygous,
homozygous wild or homozygous variant site, in a compressed stream
for reasons of efficiency. Hence, its interpretation involves operations on
single bits. As contingency tables are created by counting exactly these bit
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Figure 4.1. General system overview

patters, a highly efficient FPGA implementation could be developed. The
mutual information and Kullback-Leibler measures both especially involve
arithmetics on real numbers without data inter-dependencies and, hence,
are an appropriate choice for GPU platforms. The filtering and reporting
steps are implemented directly on the host system for the same reasons as
the input data conversions: its “warp divergence potential” and its locality
to the storage subsystem. An overview of the various data paths involved
is depicted in Figure 4.1.

4.1.3 System Set-up

The hardware platform can be clearly divided into three parts: the GPU
module, FPGA module and the CPU, among other tasks, serving as a
host. Following the design principles described in Sect. 4.1.1 regarding
communication bandwidth, PCI Express (see Sect. 2.2.2) has been chosen as
the system’s communication network for its wide availability and scalable
performance among its simplicity. A system summary is shown in Tables 4.1
and 4.2. Besides the high operating frequency of up to 4.4 GHz, the Intel
Core i7-4790K provides a PCI Express controller with 16 Generation-3
lanes with a total gross throughput of 128 Gb/s. Furthermore, the processor
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Table 4.1. Prototype configuration: CPU and GPU

CPU GPU
Platform Intel Core i7-4790K Nvidia GTX 780 Ti
Architecture 4 physical cores, SMT 2,880 CUDA cores
Frequency 800—4,400 MHz 875-928 MHz
Main Memory 32 GB DDR3-RAM 3 GB GDDR5-RAM
PCle Connectivity 16 lanes Gen 3, 8 lanes Gen 2 16 lanes Gen 3
Compiler G++5.3.1 NVCC7517 / G++49.3
System Software Linux 4.3.0 CUDA 75

features four physical cores supporting symmetric multi-threading for
eight concurrently running threads [4790]. In addition to the CPU’s PCI
Express controller, the MSI Z97 XPOWER AC motherboard’s platform
controller hub, an Intel DH82Z97 chipset, provides eight more PCI Express
lanes, Generation 2 [Z97]. The 16 Gen-3 lanes are occupied by an NVIDIA
GeForce 780 Ti graphics adapter, featuring a GK110B GPU with 2,880 CUDA
cores distributed over 15 streaming multiprocessors. 3,072 MiB of GDDR5
memory are attached to the 384 bit-wide memory bus. The floating-point
performance is stated as 5,040 GFLOPs but this only holds with 32-bit
IEEE 754 single-precision floating-point operations. Due to the low number
of double precision units in the NVIDIA Kepler microarchitecture, only
210 GFLOPs can be achieved with double precision calculations [12].

The prototype architecture has been designed with two different FPGA
types, a Xilinx Kintex 7K325T and a Xilinx Virtex 7V690T, two series that
differ significantly in price/performance ratios. The Kintex FPGA is hosted
on a Xilinx KC705 evaluation board. The FPGA is backed with 1 GiB DDR3
memory, an 8-lane PCI Express edge connector and more peripherals that
are not relevant to this work. The FPGA chip itself provides approximately
325,000 logic cells, 840 DSP slices and 16 Mb Block-RAM distributed over
445 units with 36 Kb each. As shown in Table 4.2, the Virtex FPGA offers
considerately more resources, 690,000 logic cells, 1,470 Block-RAM units
totaling to 52.9 Mb and 3,600 DSP slices, providing resources for much more
sophisticated designs.
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Table 4.2. Prototype configuration: FPGAs

Xilinx Kintex 7 Xilinx Virtex 7
Platform Xilinx KC705 Eval Board Alpha Data ADM-PCIE-7V3
Logic Cells 326,080 693,120
DSP Slices 840 1,470
Block RAM (36 kb) 445 1,470
Frequency 200-250 MHz 200-250 MHz
Memory 1 GiB DDR3-SDRAM 16 GiB DDR3-SDRAM
PCle Connectivity 8 lanes Gen 2 8 lanes Gen 2

Host System FPGA Board

FPGA

API ois

PCle Driver > Application
FP.GA DMA Engine <
Driver

Application

Graphics Card

CUDA
API

|

Grgphics CUDA Engine
Driver

Application

Figure 4.2. Prototype overview

41.4 Software

Obviously, the coarse software architecture follows the hardware architec-
ture in terms of work division as described in Sect. 4.1.2. To give a better
overview, Figure 4.2 summarizes the prototype system setup graphically.
Between the three application parts, a lot of resource management takes
place. On the host side, an operating system manages access to the devices
on the PCI Express network. For the specific functions that the devices are
to perform, for example, moving data to and from the host application

71



4. The Hybrid Architecture Prototype

or PCI Express parameter negotiation, drivers are implemented on both
ends of the link. On the host side, the driver is a piece of software being
executed within the Linux operating system kernel. It can only be accessed
by certain system calls and through the devices nodes anchored in the file
system hierarchy, as described in more detail in Sect. 4.4. These accessor
functions are combined into shared libraries that make up the Application
Programming Interfaces (API). Both FPGA boards in use require different
drivers. The Xilinx Evaluation board is bundled with an open-source driver
module whose sole purpose was to conduct throughput tests. Although
some work and principles could be re-used, large parts of the Xilinx driver
had to be rewritten to support the intended use cases in an efficient way. The
API encapsulating the Xilinx driver interface was completely written from
scratch. The Alpha Data Virtex 7 board, though, came with a full-featured
open-source kernel driver and APIs and required little work for adaption to
our needs. Both boards’ suppliers delivered ready-to-use PCI Express and
DMA modules for the FPGA implementation.

As CUDA applications are written in a relatively high-language, there is
no direct hardware or driver access, neither on the graphics hardware, nor
on the host system. NVIDIA provides well-documented but proprietary and
closed-source APIs and drivers for the CUDA development environment.
This brings several limitations as the following sections will show.

4.2 FPGA Configuration

The FPGA’s main task is creating the contingency tables that are delivered
to the GPU part for further processing. Being one of the more complex
parts, this section describes the FPGA configuration in detail.

4.2.1 Data Flow and Structural Overview

In a rather abstract overview, the FPGA design is composed of several larger
structural components as shown in Figure 4.3. After an initial configuration,
the host system sends a certain set of genotypes to the FPGA, ordered
by SNPs where for each SNP, the alleles of all samples at that specific
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Figure 4.3. Data flow schematic

positions are taken consecutively. The double-bounded symbol “Comm.
API” describes the PCI Express/DMA endpoint where these genotypes
arrive. From there, they are moved directly into the attached SD-RAM
memory module.

Once done, a streaming unit starts moving data to the contingency table
unit where tables are created. The table creation is a rather complex process
that will be explained more detailed in Section 4.2.3. For this overview
though, it is sufficient to know that the creation pipeline is constructed as a
large systolic array of small and primitive processing nodes (see Sect. 2.3.2
for an introduction to systolic arrays). To ease the result collection from
the nodes, several paths have been inserted where contingency tables are
moved off the array.

In the last step, the “Arbitration Unit” fetches the generated contingency
tables from several result paths and distributes them over the available DMA
channels to send them back to the host for further processing. Naturally, the
structure of the arbitration unit significantly changes with the ratio between
return paths and available DMA channels and is therefore different in 2-way
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Figure 4.4. Constant initialization

and 3-way interaction analyses.

4.2.2 Initialization

Before the FPGA can set to work, a two-phase initialization sequence has to
be performed. In the first step, a set of integer constants is received.

Constants

When designing hardware, only a certain amount of resources is available.
For every calculation that is done in a certain instant, hardware has to be
provided. These allocations are done in a highly complex synthesis during
development and cannot be changed afterwards without re-running this
process. To achieve a high efficiency it is therefore desirable to use the
allocated hardware primitives as often as possible.

In some cases though, hardware has to be created that is only used
once during the initialization without positive effects on the performance.
One example would be the number of 544-bit words that will fit into a
single transmission buffer. Although this could directly be calculated from
the number of 256-bit words that fit into a buffer, hardware would have
to be spent to calculate this one value that would not change throughout
the whole program run. As seen in Figure 4.4, instead both values are
transmitted. Here, the host system calculates this value on the CPU. Due
to the nature of using instruction-based processors instead of hard-wired
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application-specific processors, the resources used for that computation
are not allocated permanently. Therefore, the one-shot evaluation of small
constant values is best done on CPUs and beneficial to the FPGA design.

These constants are not necessarily constants in the traditional sense
where “constants never change”. Instead, they are data-specific values that
remain constant with respect (only) to the FPGA. They are computed and
derived on the host system based on the nature of the input data among
other factors.

The very first value in the constant block is a synchronization sequence.
When an application does not properly clean up or is forcefully terminated
by the operating system, data may still reside in intermediate buffers be-
tween the FPGA’s PCI Express endpoint and the host application. Hence,
this synchronization sequence can be used to synchronize to the actual
start of the application. Any other data word is discarded silently until the
defined state is reached by detecting this sequence.

As genotype data is a largely unstructured data stream, further process-
ing entities require certain parameters for correct operation. One example
would be the data streamer which moves data SNP-wise and is therefore
required to know how large a SNP actually is. Furthermore, the process of
creating contingency tables needs to separate control and case genotypes.
The final two values indicate how many 256-bit words and how many (544-
bit) contingency tables will fit into a single host-supplied transfer buffer.
Although this information is not actually required for the FPGA as the API
endpoint operates in streaming mode, an additional constraint has to be
followed where a transmission buffer must not contain incomplete tables.

Genotypes

In the second part of the initialization process, genotypes are copied from
the host application to the FPGA-attached memory where the streaming
unit will later fetch its SNP data. These genotype are expected in SNP-major
mode, i.e. all genotypes with respect to a single SNP will be collected
from all individuals. Similar to the constraint put on transmission buffers,
the size of every SNP is required to be a multiple of the memory’s word
size, 512 bit. Every genotype is expected to take two bits of data that
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Table 4.3. Genotype encoding

Genotype Encoding
Homozygous Wild 00
Heterozygous 01
Homozygous Variant 10
Invalid /Padding 11

is encoded as depicted in Table 4.3. If the number of genotypes does not
completely fill 512-bit words, the remaining space is filled with genotypes of
the “Invalid/Padding”-type. These will be ignored later when contingency
tables are created from this data. Immediately after the last SNP data word
has arrived, processing begins.

4.2.3 Processing Element Arrays

Figure 4.5 shows the table construction unit as a data flow diagram. This is
valid for both 2-way and 3-way methods with the notable difference that a
processing node for three-dimensional tables makes use of a second SNP
buffer (dotted box). The principles stay the same.

At the beginning of the data path, a data streaming unit “SNP Streamer”
reads a SNP from memory and injects 8 genotypes into the array, every
clock cycle, until the SNP has been completely transmitted. Then, the second
SNP is sent. This continues until all SNPs have been sent.

The very first node consumes all genotypes of the first SNP and stores
these into its “SNP Buffer”, a Block RAM module of 16 kbit capable of
storing 8000 genotypes. While the second SNP is streamed, the second
node does the same and stores it into its buffer without forwarding it to the
next node. Concurrently, the first node now uses these genotypes on the
fly and reads its own SNP buffer at the same pace to generate combined
allele counters resulting in a contingency table. Naturally, this only holds
for two-dimensional tables. In third-order interaction, a node will also have
to fill its second SNP buffer before a valid table can be created. When a SNP
first arrives at the third node, the first node will also pick up the “current”
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Figure 4.5. Systolic processing element array

SNP and continues to create contingency tables. The first node will create
tables for the pairings 1/2 and 1/3, the second node creates 2/3 and the
third node still waits for the fourth SNP. For the first few SNPs, the emission

will be as follows:

1. 1/2

2.1/3,2/3
3.1/4,2/4,3/4
4.1/5,2/5,3/5,4/5
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For third-order interactions, the table generation is delayed by one
additional SNP and is analogous to the previous example:

1.1/2/3

2.1/2/4,2/3/4
3.1/2/5,2/3/5,3/4/5

4. 1/2/6,2/3/6,3/4/6,4/5/6

When the last SNP has been injected, all nodes invalidate their SNP
buffers and the SNP stream restarts at the Pth SNP with P being the number
of nodes in the array. This results in the first newly created table being
(P+1)/(P+2) and continues in the same triangular pattern as before. This
process is analogous for three-dimensional tables but requires much more
streaming iterations to generate all possible triplets of SNPs.

Table Transport

A typical, for benchmarking widely used data set stems from the Wellcome
Trust Case Control Consortium (WTCCC). Their first version consists of
approx. 500000 SNPs, 2000 individuals in the case group and 3 000 indi-
viduals in the control group [BCC+07]. For this to work in the presented
architecture, a cell in a contingency table requires a minimum width of
[log, max(2000;3000)| = 12 bits. A whole contingency table therefore takes
up 2 x 9 x 12 = 216 or 2 x 27 x 12 = 648 bits of space, respectively. Due to
this low space requirement, it is stored in distributed memory instead of
Block RAM.

The maximum size of the node array depends on the amount of data to
be processed. Generated tables are moved off the array in a transport bus,
one half table (i.e. cases or controls) per clock cycle. For efficiency reasons,
the table generation is done separately for case samples and control samples.
With 2000 case genotypes per SNP and 8 genotypes per clock cycle, a node
has to be capable of creating a (half) contingency table within 250 clock
cycles. This holds for every node in the array and therefore results in 250
contingency tables that are generated in total under full bus load. Therefore,
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the array length is capped as shown in Eq. 4.2.1, apart from available system
resources. More nodes than this number would lead to bus congestion and
eventually lower efficiency.

P = min { Ncases; Ncontrols = Genotypes per cycle (4.2.1)
= min {2000; 3000} = 8
= 250.

To overcome this limitation a major structural change has been intro-
duced. As shown in Figures 4.3 and 4.5, additional transport buses have
been introduced that separate the contingency table streams into equally
sized sub-arrays. With k = 4 partitions, each transport bus can now take a
half table every cycle and hence effectively quadruples the total transport
bus capacity and will allow array sizes of up to P - k = 1000 nodes.

Due to routing channel congestion on the FPGA, the design achieves a
core frequency of 200 MHz. A whole system of 1000 two-way interaction
nodes therefore generates a stream of 320 x 10° contingency tables per sec-
ond, or 10.7 GiB/s. In Section 2.2.2, the transmission speeds in PCI Express
communication systems have been described in some detail. Generation 2
interfaces with 8 lanes, such as in the Alpha Data FPGA board, support a
maximum theoretical net throughput of 3816 MiB/s. Even if all interme-
diate devices were able to meet this rate, the table rate would require a
threefold of this throughput capability. This motivates further analyses on
the nature of contingency tables with a reduction of volume in mind.

Counter Compression

As shown in Sections 3.2.2 and 3.2.3, the sum of all counters in a contingency
table equals the total number of samples. More specifically, this also holds
true for each half part of the table. The sum of all counters in the case
part equals the total number of cases. These numbers though, are constant
with respect to the data set, and are already known by all participating
peripherals and subsystems. An implicit transmission is therefore redundant
and can be left out and can simply be done by removing and indeed not
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Table 4.4. Table generation rates at 200 MHz and 5000 samples

2-way 3-way
Max. group size 16384 65536 16384
Array length 1000 288 180
Partitions 4 2 3
Tables/s (per node) 320 x 10° 320 x 10° 320 x 10°
Tables/s (per partition) 60 x 10° 30 x10° 45 x 10°
Tables/s (total) 320 x 10°  92.2 x 10° 57.6 x 10°
Data rate (full tables) 10.7GiB/s 3.1GiB/s 5.8GiB/s

Data rate (reduced tables) 49GiB/s 14GiB/s 4.0GiB/s

counting a single field per half table. This will not only losslessly reduce
the required data rate but also allows to reduce the size of processing nodes
in the array and eventually the transport bus widths, freeing resources to
implement even more nodes.

With the help of the host system’s parser (see Sect. 4.5.2 for details), even
more resources can be saved. In a two-dimensional contingency table such
as in Figure 3.4, the sum of the leftmost column equals the total number
of homozygote wild types in SNP A. If this number is known in advance,
one additional value will be saved per column. On the downside, the parser
is required to extract and store these counters. Fortunately, as the parsing
process processes input data genotype-by-genotype anyway, this results
in very little computational burden. Furthermore, these few counters are
stored for each SNP, not for each combination of SNPs, proving its effi-
ciency. This scheme of counter saving continues and results in size-reduced
contingency tables that only contain 8 values. The same principles apply
to three-dimensional tables where the number of counters can be reduced
from 54 to 40. Table 4.4 gives an overview of the different configurations
and shows that the table data rate could be reduced to 4.9 GiB/s (46 %)
and 4.0GiB/s (71 %) for two-dimensional and three-dimensional tables,
respectively.
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4.2.4 Transmission Unit

The largest difference between FPGA-implemented two-way and three-way
interaction methods is in the Arbitration and Transmission Unit. For the
third order Mutual Information approach, the logic is designed for 180
nodes in three partitions, i.e. 60 nodes are serviced by one result channel.
The PCI Express API endpoint is configured to use three DMA channels, so
the channel mapping is trivial here.

An FPGA configuration supporting up to 4096 samples per group
requires a field with of log, 4096 = 12 bit per counter. Therefore, a 40-
counter table occupies 480 data bits of storage. Each table is accompanied
by an ID triplet that uniquely identifies the table so subsequent processing
entities know which SNP combination this table comes from. For example,
to allow up to two million SNPs, an ID field takes 21 bit, totaling to 543 bit.
The DMA channel’s port width is 256 bit, requiring a 543-to-256 bit data
width changer. This can be implemented by using a FIFO with asymmetric
ports. Converting between widths requires a shift register with a size of
the lowest common multiple of both port widths. In the case of 256 and
543, the lem is 139 008. Resource-wise, a 543 x 256 bit shift register is rather
inefficient. Increasing the table size by 1 bit to 544 by adding a bit reduces
the distinct prime product from 543 to 17. A 17 x 256 bit shift register is
much more efficient at the low cost of a slightly reduced transmission speed
of a single bit per table. The resulting protocol is shown in Figure 4.6.

4.3 GPU Kernels

The implementation for the GPU is much simpler than a hardware descrip-
tion on FPGAs due to its similarity to regular CPU-based programming.
Furthermore, the input data as created by the FPGA implementations
contain contingency tables that can be operated on without data inter-
dependencies. This allows a programming model known as embarrassingly
parallel. Nevertheless, a number of challenges arises in the face of the large
amounts of data where every snippet of code has to be analyzed down to
the instruction to provide the most efficient implementation.
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543 521 500 479

I D A ID B D C } Header
479 467 455 443 431 419 407 395 383 371 359
220 | 212 [ 210 | 202 | 201 | 200 | 122 [ 121 [ 120 [ 112
359 347 335 323 su 299 287 275 263 251 239 Cases
102 [ 101 [ 022 [ 021 [ 020 [ 012 | 011 | 010 | 002 | 001
239 227 215 203 191 179 167 155 143 131 119
220 | 212 [ 210 | 202 | 201 [ 200 | 122 [ 121 [ 120 | 112
119 107 95 83 71 59 47 35 23 11 0 Controls
102 | 101 | 022 | 021 | 020 | 012 | 011 | 010 | 002 | 001

Figure 4.6. Table transmission format

4.3.1 Programming Model and Data Distribution

Moving data from FPGA or similar non-NVIDIA peripherals to the CUDA
cores requires the contingency table data to be converted from a data stream
to discrete data packets that are handled one-by-one. Typical sizes used in
development are 256 MiB, 512 MiB and 1024 MiB. In second-order analysis,
a reduced contingency table as described in the FPGA chapters consists of
eight values 16 bit each, 16 bytes in total, which precisely fits into power-of-
two-sized buffers. Three-dimensional contingency tables require 40 values
of 12 bit each and additional 3 x 21 bit for their identifier, totaling to 68
bytes. Unfortunately, powers of two are not divisible by 68 and therefore,
the buffers are padded to full size with invalid data.

As explained in more detail in Section 2.1.2, before a kernel is launched
to the GPU, the execution scheme has to be defined beforehand. Config-
urable parameters are the number of threads per block and the total number
of blocks known as grid size. In the case of an NVIDIA GeForce 780 Tj, the
graphics processing unit used in the given prototype, every streaming
multiprocessor (SMX) contains a register file with 65536 entries that are dy-
namically shared among all concurrently executed threads [12]. Therefore,
the maximum size of a block is a function of the kernel’s space complexity
with respect to the number of registers allocated per thread. Within an
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SMX, a block is divided in warps of 32 threads in a SIMD-style lock-step
architecture. Every thread performs the same instruction at the same time.
If one thread performs a branch while others in the same warp do not, the
branch bodies are executed sequentially by their respective thread. This may
lead to a single warp taking longer than other concurrently running warps
if their threads did not branch. An SMX can run 192 threads in parallel, or
6 warps, and only a whole set of warps can be replaced, i.e. an execution
takes as long as the longest-running warp. To counter the effects of a high
warp divergence, the block size can be reduced enough to allow running
multiple blocks concurrently, removing the barrier functionality at the end
of a warp at the cost of increased scheduling overhead. As these parameters
are highly dependent on the actual workload and both application’s kernels
significantly differ regarding warp divergence and occupancy, they will be
described and discussed separately in the following sections.

The distribution itself is implemented in the most efficient way possible
for a GPU. If every thread on the GPU processes a single table from the
buffer, there will be no data or control flow dependencies and therefore no
time-consuming synchronization necessary. Furthermore, accesses to the
memory are strictly ordered. All 192 threads in an SMX access 192 consecu-
tive memory locations. With this workload, 192 individual memory accesses
can automatically be merged to the largest read size the respective memory
controller supports. This technique is called Memory Coalescing and can
reduce the memory bus load and increase cache hit ratios significantly.

4.3.2 Counter Reconstruction

To minimize the required bandwidth between FPGAs, the host system and
GPUs, the FPGA configuration removes some counters off contingency
tables that are redundant. As an example, Figure 4.7 shows a 2 x 3 x 3
contingency table in its reduced form. The reduction scheme is explained
in more detail in Sect. 4.2.3.

Before a statistical test can be performed, the removed counters have
to be reconstructed. Knowing the allele counts SNP-wise beforehand is
required as the following reconstruction equations show.Let Ls, a, k] be the
number of alleles a € {w, h, v} present in SNP s in the case or control group
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SNP A SNP A
Cases w h v Controls w h v
E w npoo  Horo 1020 w npo1  Horr M2
Z h  #oo #mo Ho h fior  HTIT foT
N v o0 Hzo0 M220 v np01  HzITr M221

Figure 4.7. A reduced 2 x 3 x 3 contingency table

(k € {cases, controls}).
no1ok = L[B, w, k] — nooox — nozok
nook = L[B, v, k] — napox — nazox
nyook = LA, w, k] — nooox — naook
ni1ok = L[A, b, k] — ng1oe — 1210k
niok = L[A, 0, k] — nggor — 10k
A three-dimensional contingency table as in Figure 4.8 that naturally

contains 2 x 27 values is reduced to 2 x 20 values and can be reconstructed
analogous to the two-dimensional kind.

nooor = LIA,w, 1] = ) noju

k=00
nior = L[B,w, 1] = ) njjor
ij#10
noy = LIC,w, 1] — Y nj
ik#11
my = LIA R = Y myjg
jk#11
no1y = L[B, b, 1] — Y njjy
ij#21
nya = LIC k1] — Y njp
ik+#22
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cases SNP A
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w % h  ngo1o 10110 710210
» V. Mp20  Mo120 0220
2 U W  #goo 11100 11200
z h |5 h #on #o M2
@ ©v vV 0 M11200 11220
O W 000 2100 12200
v % h  ny10 #ro M2210
wv vV oo Mo Moo

controls SNP A

(1=1 w h \%
O W #ggor o101 10201
w % h  ngoi1  noin1 o2
wv V. npog1 Mo121 Mo221
E O W  #or M1101 11201
z h & h s #r mon
» O v one M1 M
O W 001 M2101 2201
v % h  n11  #zrr M2211
w©v v o1 Mzt Moo

Figure 4.8. Three-dimensional contingency tables for cases and controls.

YZZZZI—LA'UZ

Z Mpjkl

jk#22

Notably, these equations only show counters that may be recalculated
with prior knowledge about allele counters of single SNPs. These are
acquired while parsing the initial data as a side product, therefore having
a negligible impact on runtime. More counters could be left out with
knowledge about allele occurrences in combinations of SNPs but is much
harder to obtain as it basically solves the second-order interaction problem.
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4.3.3 BOOST Measure Calculation

In BOOST [WYY+10], the strength of interaction between two SNPs is
measured by the difference of log-likelihood estimates L and L between
the logistic regression models My and Mg as described previously in
Chapter 3.2.2. This difference is proportional to the difference between the
joint distribution obtained from the saturated model and its factorization
and can be expressed through the Kullback-Leibler divergence

. . ik
Ls — LH = Z (nijk IOg lj)

ijk .uz]k
. Teijk
= ”2 (nijklog — >
ijk Pijk

=n-DgL (ﬁz‘jkﬂﬁijk)

where 7 and p;j are the normalized versions of the joint distribution
njjx and the distribution constructed from its factorization f;, and Dk,
the Kullback-Leibler divergence as defined in [KL51]. Unfortunately, My
does not have a closed-form and has to be calculated iteratively, i.e. using
Newton’s method. Iterative data dependent methods, though, are hardly
computable efficiently. Therefore, Wan et al. et al. propose to approximate
Mp with the Kirkwood Superposition Approximation (KSA):

SKSA _ L 7T T Tk
ik = 1 75 T T
U 0k T
1=
ijk bk

where # is a normalization factor. They further prove that this approxi-
mation using the KSA is an upper bound for Mp. The normalization factor
1/7 is still a large computational burden.

Seeking further computational simplification, a large number of tests
have shown that the unnormalized KSA has always been an upper bound
of the normalized KSA [GWK+15a]. For this test, all contingency tables
of 500000 artificial, randomized SNPs and 5000 samples similar to the
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800
normalized —
700 not normalized

600 - i
500 - i
400 - i
300 - i

200 - -

Filter Hits per 10000 Tests

100 - -

0 777777777%%” e I

10 12 14 16 18 20
Threshold 7

Figure 4.9. Approximation of the Kirkwood Superposition Approximation

first WICCC data set have been evaluated. Figure 4.9 shows both measure
methods with their respective filter passes and a threshold. Though not
mathematically proven yet, the unnormalized value is at least a good esti-
mation of an upper bound of the normalized value. The test results have
further shown that the unnormalized filter has a rather large type I error
(false positive) with respect to the KSA measure while the evaluation did
not find a single type II error (false negative). Therefore, the additional
approximation is a good candidate for a prefiltering system and is subse-
quently called the Kirkwood Superposition Approximation Superposition
Approximation (KSASA). Assuming that the KSASA is indeed an upper
bound of the KSA, the following filter chain can be constructed:

o 1
Lysa < —Lksasa
Ui
Ls—Lpg < Ls— Lgsa < Ls — Lxsasa

The overall execution on the GPU follows the scheme given in Al-
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gorithm 1. Once a contingency table passes the KSASA pre-filter, the
computationally more expensive KSA measure is calculated and com-
pared to its respective, user-supplied threshold. The original BOOST and
GBOOST [YYW+11] implementations feature a downstream “log-linear
test”, where the actual model My is evaluated iteratively. As the applica-
tion’s goal is to provide a drop-in replacement for the original software,
the implementation presented here also features an My evaluation as the
last filter in the pipeline being the most expensive test method. For further
processing, a positive score is only delivered to the system if it passes the
final test, otherwise it is set to zero.

Algorithm 1: GPU Filter Chain

Input: Thresholds 73, 7» and 13 for log-linear testing, KSA and
KSASA; a contingency table T
Result: Ls — Ly as an interaction method

Score < 0.0;
if KSASA(T) > 13 then
if KSA(T) = 1 then
Score < LoGLINEAR(T);
if Score < Ty then
L Score — 0.0;

SN Ul R W N =

7 return Score;

4.3.4 Mutual Information Calculation

The Mutual Information is a commonly used measure of the mutual de-
pendence of two or more random variables. As described in Section 3.2.2,
this implementation uses Mutual Information to describe the interaction
between three SNPs. It operates on 2 x 3 x 3 x 3 contingency tables gen-
erated by the FPGA and yields an “amount of information” in a random
variable that can be obtained through another random variable. The result
is also called relative entropy [CT06]. Regarding the actual application, one
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random variable is the allele distribution in a SNP combination and the
second variable is the actual outcome, i.e. whether the distribution relates
to the case group or the control group. Without additional knowledge, the
case/control variable is uniformly distributed with maximum uncertainty.
Calculating the Mutual Information between these two variables reduces
this uncertainty and might introduce a distribution bias and therefore give
an indication whether a SNP combination influences the occurrence of the
trait that has been used to divide individuals into cases and controls.

The Mutual Information for this case is defined as in Section 3.2.2, but
can be trivially transformed into equations that are easier on the resources.
Here,

> 1 is the number of samples per group (with I = 0 for cases and [ =1
for controls)

> 7t and n;j are the relative allele frequencies and absolute allele occur-
rences d with respect to a contingency table. The field index is defined
asi,j,kand € {0,1} as previously used.

> H(Xj, X, X3) is the joint entropy of the allele frequency tables of three
SNPs

> H(Xj, X2, X3,Y) is the joint entropy of the allele frequencies of a combi-
nation of SNPs including the trait status (case or control)

Mijki = Tkt /1
1(X1,X2,X3,Y) = H(X1, X2, X3) + HYY) — H(X1, X2, X3,Y)

nj; +n“ n:: +n..
H(Xy1,Xp,X3) = ,Z ijk0 ijk1 log ijko ijk1
ijk n n
n;; Ni:
H(Xy, Xa, X3,Y) = = Y —F log
ik M n
no no 1nq nq
H(Y) = —?log? — ?log?
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The actual implementation only calculates the joint entropies and their
differences, i.e. H(Xy, Xy, X3) — H(X1, X3, X3,Y). The calculation of the
case/control entropy H(Y) on the other hand, consists only of values that
are constant with respect to the data set. It is therefore a data-independent
offset that will not influence the natural order of a sorted result list. Hence,
the offset is only added to those few results that will eventually be reported
back to the user, removing some computational burden from the GPU. It
is worth noting that opposed to the factors in BOOST, no larger products
over floating-point numbers are required, so higher result precision can
be expected as the GPU uses a floating-point implementation based on
IEEE 754.

Additionally, calculating logarithms is usually implemented as iterative
Taylor-series approximations [Ori07] and is therefore a rather complex
operation when compared to others. In the special case of contingency
tables though, when factoring out the quotient n in the above equations,
the logarithm is only calculated for integers in the range [0..n] which makes
using a look-up table feasible, instead of occupying the limited amount
of special function units (SFUs) and waiting for complex arithmetics to
finish. Hence, a look-up table with #n 41 entries and double precision values
is pre-computed on the host system and then moved to a cache-efficient
read-only memory section on the GPU that the CUDA cores may then take
advantage of. Furthermore, NVIDIA’s logarithm implementation is known
to produce results with rather low precision. Hence, the logarithm look-up
can be expected to additionally increase the quality of the results.

4.3.5 Result Reporting

Both implemented methods store their results in the same way. This allows
the host system to operate on these data without distinguishing between the
various methods and/or kernels that could have been used to create them.
Both involved methods can be invoked with either IEEE 754 single precision
floating-point numbers or double precision. The possible result frames that
are delivered back to the host are shown in Figure 4.10. They always contain
three SNP IDs that uniquely identify the underlying contingency table. This
is required to enable the host to associate the score with an actual SNP
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ID SNP A ID SNP B
ID SNP C Single-precision score
0 3 6
ID SNP A ID SNP B
ID SNP C
Double-precision score

Figure 4.10. GPU result formats

triplet. The fourth field contains the actual score, using 32 bit or 64 bit. A
large number of tests has shown that when ordered by score, the ordering of
results does not change in dependence of the result score width. As BOOST
and the Mutual Information measure are primarily designed as upstream
screening applications, higher precision may be of little use. However, if
results are required to have a precision higher than approx. 107°, runtime
may be traded, although data center GPU models (i.e. the NVIDIA Tesla
series) with a large number of dedicated double precision floating-point
units could make the difference in runtime negligible.

On a CPU, data can be most efficiently accessed if their address is a
multiple of the word size. For single-precision, this is fairly trivial as the
ID fields also come in widths of 32bit, so no shifting could happen that
would move the score field to an unaligned position, assuming the whole
buffer starts at such a boundary. For double precision, the value should be
aligned to 64 bit boundaries. For the cost of 32 wasted padding bits, the
double precision score can be properly aligned.

Once all blocks from the grid have been executed, the on-chip caches are
flushed and the results are ready for being copied from the device memory
into the host memory for final filtering and processing.
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4.4 Host Drivers

On the host computer system, more specifically in its operating system, a
layer of driver software connects hardware with the kernel’s abstraction
layer. As each hardware module is unique and often does not implement
standardized interfaces, the hybrid system makes use of a plethora of
drivers of which the most important ones will be described.

The kernel’s abstraction layer helps developers to write software for
generic hardware, such as “sound cards”. Of course, the “sound cards”
themselves are not generic but the kernel tries to provide a common inter-
face that makes specific sound cards work without the software requiring
to know the exact brand and type. The functions specific to sound cards are
kept together in a common sound card interface. While this layer is certainly
useful, it only makes sense for hardware devices that share a common set
of functions. In many occasions, hardware exposes certain special functions
that do not belong to this set, such as selecting equalizer presets in sound
cards. Drivers for special-purpose hardware may choose to not even use
the abstraction layer at all. To handle these non-standard functions, the
respective drivers are usually delivered with an Application Programming
Interface (API) that seek to hide the complexity involved in driver relations.

The NVIDIA graphics card in this setup uses a closed-source hardware
driver and an extensive closed-source API to be used by applications.
Apart from the API interface specification, programming guides and rough
hardware descriptions, no documentation about the inner workings is
available to the public. For the Virtex 7-series FPGA board, Alpha Data
provided an open-source kernel driver and an API while the Kintex 7 board
did neither come with a driver nor an APIL. Although the Alpha Data driver
exposes much more functionality, the custom driver and software interfaces
follow the same principles. Therefore, only these will be described in the
following sections.

In Linux-based operating systems, programs can roughly be divided
into two realms, those running in user-space and those running in kernel-
space. User-space programs are run by users, terminated by the operating
system in case of malfunctioning, and closed when done or requested by
the user. The operating system provides various services to application
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during set-up, during runtime and when the program is terminating (in any
case), such as freeing claimed memory resources and closing left-open file
descriptors. In general, it is cared for applications to not cause harm to other
applications or the system itself as well as reducing resource exhaustion
due to misbehaving or badly programmed software. In kernel-space, driver
modules are just like regular programs as they may be started and and
removed from the kernel during runtime. The major difference is that these
modules are directly linked into the running kernel and hence, are not
stand-alone programs anymore. Instead of being associated with it, they
become a part of it. Therefore, the usual address space separation techniques
along with its memory protection mechanisms do not work anymore. There
is no higher-layer entity that cleans up after a module or terminates it in
case of memory corruption. When a module writes to a memory location
that it is not supposed to write to, the whole system may lock up or, in
case the memory location belongs to a file system or hard disk driver, silent
data corruption may occur, usually seen as a far worse consequence than
a full system lock-up. Due to this very low grade of protective measures,
kernel driver development requires great care and responsibility while only
very few assertions on the environment can be made as opposed to writing
user-space programs. To support driver developers, Linux provides a large
library of commonly used data structures and well-established algorithms
and puts a strong focus on separation and encapsulation of problems.
This leads to software designs that heavily divert from regular user-space
application design principles.

Regular permissions that can be given to users and superusers do not
apply for the kernel. Instead, it is running in a special environment with
almost uncontrolled access to other drivers, subsystems or bare hardware.
For reasons of stability and responsibility, as stated above, drivers should
only contain code that is absolutely required to run within kernel-space.
This leads to the development of user-space interfaces, so software parts that
do not require kernel privileges can be kept in well-defined and operating
system-protected APIs in user-space. Of course, this applies to the Kintex
FPGA’s driver as well.
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4.4.1 Interfacing

To protect the running kernel from user-space applications, the only means
of communication between both realms is via the System Call Interface. Sys-
tem calls are functions exported by the kernel and callable by applications
and provide access to the file system (for example by open or read), the
networking subsystem (bind, accept, send), scheduling, process manage-
ment and many other areas. In Linux, these calls follow a very special
call semantic. For every exported function, a unique number is allocated.
When an application wishes to issue a system call, it places this number
and the call’s parameters in certain processor registers and schedules a
special instruction TRAP. This instruction transfers control of execution to
the kernel and jumps to a fixed location where a system call dispatcher
handles the request. After completion, control is returned to the application
and execution continues at the instruction following TRAP [TB14, Chap. 1.6].

It is common among drivers to intercept system calls to the file system
for direct user-space communication. Linux itself provides functionality to
do so by supporting special device files that typically reside within the /dev/
directory in the file system tree. A driver module may therefore establish
a special device file and associate a handler with it. When an application
issues system calls that relate to that file, the dispatcher redirects the request
to the driver module instead of the regular file system layer. The KC705
driver makes heavy use of this interface. Besides these file-system endpoints,
the kernel expects modules to provide certain entry points for management.
The complete set of defined entry points is summarized in Table 4.5. The
init, exit and remove functions will not be further discussed as they only
perform kernel-related housekeeping.

When the driver is loaded into the kernel, it registers itself to be a service
operator for a given class of devices. Whenever such a device is plugged
in, the kernel iterates over all modules with a matching class until the first
module claims the yet unclaimed and therefore uninitialized device. This
process also takes place after a module has been loaded and unclaimed
devices with the specified class exist, and is called probing.

The probe function of the Kintex FPGA module claims a device if its
reported vendor/device identifier is 10EE/7082. These numbers are default
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Table 4.5. KC705 driver entry points

Entry point

Called by Description

init

exit

probe

remove

open

close
write

read

ioctl

inthandler

kernel

kernel

kernel

kernel

user

user
user

user

user

device

Performs module initialization and registra-
tion tasks, called right after module insertion
Clean-up and de-registration, called right be-
fore module removal

Called when a device has been inserted/-
found, is unclaimed and matches the mod-
ule’s class. Performs device-specific initializa-
tion such as buffer set-up and installing new
file system entry points.

Called when a device has been removed from
the system

Registers an application for exclusive access
to the FPGA device and establishes a handle
Releases an application’s access handle
Schedules a user-supplied buffer for DMA
transmission to the FPGA

Queues a user-supplied target buffer for
DMA transmission from the FPGA

Requests status information on read or write
queues, can set or get metadata for a trans-
mission

The driver is notified that a transmission has
completed
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values for generic, DMA-capable devices manufactured by Xilinx Corpo-
ration and are managed by a group of volunteers [PMV]. In the probing
stage, the device is set-up following a specific protocol:

1. Formally enable the device. Basic communication structures are allocated
and initialized by the PCI Express subsystem. The device is notified that
it should start its initialization routines. The chip set and the device agree
on initial PCI Express parameters, such as link width, frequencies and
protocol generation as explained in Sect. 2.2.2. Although dependent on
the actual hardware and kernel version, these are often set to the lowest
permissible values, i.e. generation 1.0 and one single lane.

2. Enable bus-mastering. The device may now provide its DMA controller
services to the system bus.

3. Initialize regions. The PCI Express controller in the FPGA design contains
a memory region that is now exposed to the host system. It is used for
configuration purposes, status reporting and DMA control. Furthermore,
it provides a low-bandwidth side channel for data when a DMA channel
is not yet available.

4. Allocate file system entry points for communication between a user-space
application and the driver module. These entry points already shown in
Table 4.5 encapsulate a large portion of the driver complexity and are
discussed in more detail in the next section.

5. Install interrupt handler and activate interrupt sources. The device may
now actively send notifications to the driver. This is used to signalize the
end of a DMA transfer.

6. Re-negotiate link speed and lane count. The engine parameters are set to
the highest values supported by all involved components of the hybrid
prototype.

When these steps have been performed successfully, the device should
be fully operational. In some situations, one or more of these steps may fail,
such as hardware errors or resource exhaustion of the host system. Then,
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all operations that have already been performed have to be rolled back and
resources released to ensure a defined system state. The probe function will
indicate an error and the device will be left unclaimed.

4.4.2 Data Transfer

The most demanding function of the driver interface is high-speed data
transmission between a user-space application and the FPGA device. For
the application endpoint, a special device file is installed in the system.
The KC705 device driver module intercepts all accesses to this file and
allows communication by the operating system’s standard 1/O facilities.
This approach has already been summarized in Sect. 4.4.1.

Before an application may use the modules and therefore the device’s
capabilities, the driver requires it to first issue an open system call on
the device file. For our hybrid prototype, concurrent accesses of multiple
processes are not desired. Therefore, a binary semaphore is established
immediately as file system entry points are generally re-entrant, i.e. many
processes may open a file at the same time and the execution threads of
the open method are interleaved or in parallel. As a binary semaphore only
allows a single thread to continue, any other thread is declined access until
the ownership of the device file is explicitly released. As exclusive access
is now guaranteed, a device handle is issued to the process so that it can
be uniquely identified in subsequent system calls. No other process can
acquire a handle until the release call is invoked. Furthermore, no process
may successfully call other functions on the file without providing a valid
handle. This is particularly true for release.

For actual transmission of data, the device file also supports read and
write operations that, as the following paragraphs will explain, are imple-
mented in a very similar way. Before discussing the exact semantics, it is
important to recall how the FPGA is supposed to operate the PCI Express
endpoint. A somewhat simplified PCI Express/DMA interface on the FPGA
is shown in Listing 4.1.
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Listing 4.1. Simplified PCI Express/DMA endpoint

entity PciExpressEndpoint is port (

s2c_valid : in std_logic;

s2c_ready : out std_logic;

s2c_data : in std_logic_vector(255 downto 0);
s2c_metadata : in std_logic_vector(31 downto 0);
c2s_valid : out std_logic;

c2s_ready : in std_logic;

c2s_data : out std_logic_vector (255 downto 0);
c2s_metadata : out std_logic_vector(31 downto 0)

);
end entity PciExpressEndpoint;

It can be seen that data that is to be sent or received is stored in 256 bit-
wide registers. The transfer itself is managed by the handshake signals ready
and valid that will be asserted high whenever the terminal is ready to handle
a new data word or the currently displayed data word is actually valid,
respectively. The overall behavior can therefore be described as streaming
operation with handshake.

In programs written in imperative programming languages such as
C or C++, it is not only cumbersome but highly inefficient to handle a
large number of 256 bit-sized buffers. Instead, a single, large memory buffer
should be supplied to the driver where the DMA engine may store 256 bit
words in consecutive word addresses. In terms of handshake, s2c_valid
and/or c2s_ready should be asserted high whenever the DMA engine has
claimed a buffer for a (host-side) write or read operation, respectively. The
“conversion” between stream-oriented and packet-oriented transmission
has an undesired consequence: the FPGA may not write data to the host
whenever it would be ready to. Instead, the host system is required to
exactly know when to expect data from the FPGA as it has to actively
supply a target data buffer. The other direction is less counter-intuitive.
Whenever the s2c_valid is high, the FPGA application “knows” that data is
expected.
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The naive implementation approach would be to supply a buffer to the
DMA endpoint directly after a successful probe and provide it to the client
application as soon as a read call is invoked. As previously mentioned, the
kernel provides address space separation and transparent process manage-
ment for all user-space applications, but not for applications running within
the kernel. Hence, while a driver can certainly allocate memory within the
kernel, it cannot be easily moved to the application, or vice-versa. Moving
memory between kernel and user-space implicates moving memory from
physical memory to virtual memory. The only way to move data here is to
use a byte-by-byte copy mechanism provided by the virtual memory sub-
system which would introduce a tight performance bottleneck. The reason
why we use DMA in the first place is to remove the burden of copying data
which is exactly what we would impose on it by kernel/user-space data
movement.

In Sections 2.1.1 and 2.2.1, the foundations of virtual memory and
DMA transfers have been explained in detail. DMA scatterlists are lists of
physical memory pages that ought to be transferred. Fortunately, the virtual
memory subsystem also provides functions to inspect memory regions
and page tables which contain the mapping between virtual memory and
physical memory. Note, though, that this description of page tables is
highly simplified but this abstract knowledge will be sufficient for our
cause. Therefore, a more sophisticated approach than kernel-allocation and
copying has been chosen. The KC705 module makes use of the complex
get_user_pages kernel API function as it is defined in Listing 4.2.

Listing 4.2. Definition of get_user_pages from the Linux API documentation

int get_user_pages (struct task_struct x tsk,
struct mm_struct * mm,
unsigned long start,
int nr_pages,
int write,
int force,
struct page *x pages,
struct vm_area_struct **x vmas);
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The Linux Kernel API Documentation for get_user_pages reads as fol-
lows:

Returns number of pages pinned. [...] get_user_pages walks
a process’s page tables and takes a reference to each struct page
that each user address corresponds to at a given instant. That is,
it takes the page that would be accessed if a user thread accesses
the given user virtual address at that instant.

Although the documentation, and certainly the idea of get_user_pages
too, focus on the aspect of pinning, it also returns a list of pages that have
been mapped into the user memory block that is given via the mm parameter.
Fortunately, as the memory is also pinned, it is guaranteed that every
address that is accessible in the buffer is actually backed by a physical
memory page. Instead, it could have been paged out to disk or not even
been allocated in case some memory pages had not been accessed before.
The returned structures that store information about the process’s pages
also contain the physical memory address that is required to fill a DMA
scatterlist. The pathway between a specific location in the physical memory
and a virtual memory address does not only contain page table translations
but also make heavy use of caching. Hence, after directly writing to the
respective physical memory (i.e. from an FPGA), user page caches are
required to be flushed to prevent lost updates or memory corruption in
general. For the same reason, the user-space application may not access the
memory block in any way until the memory is un-pinned and released. Not
only lost updates occur, but this may also trigger new caching efforts of the
operating system, possibly further corrupting data. Even read-only access
therefore has to be suppressed completely.

Depending on whether the requested operation is a read or a write, the
list of memory pages is then queued up in the read page descriptor ring or the
write page descriptor ring. Whenever the FPGA’s DMA controller signalizes
that it is ready to perform a transaction, and the respective ready or valid
signals are asserted, the scatterlist is loaded with entries from one of the ring
buffers. As the DMA engines proceeds to process one page after another,
its scatterlist is refilled from the ring. By using this technique, only one
long-running DMA transaction is required, at least theoretically. When
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processing stops, which may happen if the FPGA is not ready to take more
data, the start pointer of the ring buffer is moved back to the last page that
has not been successfully transmitted and the scatterlist is purged so the
system memory bus can be released by the controller. The scatterlist itself is
stored into the DMA engine through the PCI Express configuration space
(see Sect. 2.2.2). Every time the DMA engine has successfully processed a
scatterlist entry or stopped processing, an interrupt is sent to the driver
announcing a change of state. The state itself is then retrieved from the
configuration space and the driver decides whether the scatterlist should
be refilled, the transfer be partly rolled back or completely aborted.

Historically, motherboard chip sets provided dedicated interrupt lines
for every peripheral, so the CPU could be notified asynchronously. Without
interrupt lines, peripherals had to be periodically polled for status changes
which is not only inefficient but also makes real-time behavior as required
by sound cards hard or impossible. Interrupt lines are then aggregated by
an interrupt controller which in turn is connected to a CPU. On the software
side, Linux therefore may only implement a single function to communicate
with the interrupt controller. When a driver registers a function to handle
interrupts, a pointer is placed into the interrupt handler list. On interrupt,
each registered handler is called until the first handler indicates that the
interrupt has been handled and can be acknowledged on the interrupt
controller interface. A new interrupt may hence only arrive if the previous
has been acknowledged via controller handshake. Thus, interrupt process-
ing blocks subsequent interrupts. In Linux, it is therefore advised to split
interrupt handlers in half if the handler is considered to be a lengthy task
that could seriously delay other probably timing-critical interrupts [LDD3,
pages 275ft.]. In the so-called top half, the interrupt is acknowledged and
timing-critical operations may be performed. It then declares a bottom half
that does lengthy operations such as data input/output to/from PCI Ex-
press configuration memories or page table processing. Before the top half
returns control to the interrupt context, the system scheduler is instructed
to execute the bottom half in a less critical execution context. This way,
long-running tasks can be processed on interrupt events without delaying
subsequent notifications at the expense of much higher programming and
development complexity.
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When the full scatterlist associated with the user buffer is processed by
the DMA engine, the pages are un-pinned and the user-space application
may use the released memory again. If an application calls write, waits
until the data is written and then calls write again to send another memory
buffer, some time may have passed without transmitting data. To maximize
data throughput, write and read have therefore designed to operate non-
blocking, i.e. they return control back to the application as soon as the
memory buffer is successfully enqueued to the respective transmission ring.
Applications may now schedule more buffers until the transmission ring
is full, theoretically keeping the DMA engines running for an unlimited
amount of time. The downside is that the application is responsible for not
corrupting the associated memory by accessing it and activating caching
mechanisms.

As write and read cannot signal the transmission’s completion, a spe-
cial ioctl entry point has been implemented. ioctl is considered to be a
universal file system I/O call with custom functionality. For clarification, its
manual reads as follows:

int ioctl(int fd, unsigned long request, ...);

The ioctl() function manipulates the underlying device pa-
rameters of special files. [...] The second argument is a device-
dependent request code. The third argument is an untyped
pointer to memory. It’s traditionally char *argp (from the days
before void * was valid C), and will be so named for this discus-
sion. An ioctl() request has encoded in it whether the argument
is an in parameter or out parameter, and the size of the argument
argp in bytes.[...]

[It is] conforming to no single standard. Arguments, returns,
and semantics of ioctl() vary according to the device driver in
question (the call is used as a catch-all for operations that don’t
cleanly fit the UNIX stream I/O model).

In this driver, it has been used to query the status of both transmis-
sion rings. Therefore, the module defines the I0CTL_KC705_TX_STATUS and
I0CTL_KC705_RX_STATUS constants as request identifiers. The number of free

102



4.4. Host Drivers

transmission buffer entries is returned. As one entry describes a single
memory page and on the hybrid prototype’s processor, a page is fixed to
4096 bytes, the caller may calculate the actual amount of memory space
that may be queued. As a security precaution, a buffer may not be queued
in parts. That is, even if some pages may be queued, queueing is rejected if
there is not enough space to hold all pages associated with it. Due to the
sensitive nature of execution in kernel-space, several more measures are
taken that relate to the safety and validity of supplied user data. A bad
address supplied as a memory pointer might very well bring the whole
system down or worse, cause silent data corruption as has been previ-
ously mentioned. A great amount of responsibility lies therefore on the
programmer specifically when designing user-space interfaces for driver
modules.

Furthermore, it is worth noting, that write and read may be called
concurrently. Their processing pathways and data structures in the kernel
module are strictly kept seperate to allow unhindered full-duplex transfers.
At no time though, two writes or reads may be called concurrently. One
of both calls will return with a “Device or resource busy” error code, as
defined in the Linux standard libraries as EBUSY.

4.4.3 Application Programming Interface

To ease application devlopment, an application programming interface (API)
has been devloped. Its main purpose is to hide the interface complexity
of the driver making development more usable. This section describes the
noteworthy internals and presents the interface that applications should
use for FPGA connectivity. It is written in the C programming language, in
its standard version ISO/IEC 9899:1999, also known as C99.

The core functionality of the API is split in two parts: the client functions
and the polling thread. The latter is responsible for polling the ioctl interface
as described in the previous section. The former are the actual exported
functions.

Listing 4.3. KC705 open and close function prototypes
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int kc705_open(const char xdevice_filename,
struct kc705_handle =xxnew_handle,
FILE *log);

void kc705_close(struct kc705_handle xhdl);

Before an application may communicate with the FPGA, a device handle
has to be obtained by calling kc705_open as defined in Listing 4.3. On success,
the FPGA device identified by the device file device_filename is opened
and a handle is stored in the pointer given in the new_handle parameter.
Optionally, a file handle may be supplied as a logging target, warnings
and error messages are written to the given descriptor. If no logging file
is supplied, the respective messages are written to the standard output
stream, usually the terminal from where the application has been started.
Typical “open functions”, such as the Standard C Library’s fopen return
the handle directly and use a separate global variable as an error indicator.
Instead of polluting the variable namespace, every KC705 API function
returns an error code while actual values that might be of interest to the
application are placed in pointed-to structures supplied by the caller. The
struct kc705_handle is a complex structure containing many internals that
are not of interest for the user. Therefore, the structure is realized as an
opaque type. That is, a type that is formally defined without data members
or values. Hence, it is impossible to access any of the structure’s members.
The actual list of members is declared within the non-public library headers
so the API implementation can make use of them anyway.

On the internal side, the call to kc705_open creates a thread using the
operating system’s POSIX Threading library. Otherwise, it would be the
application’s responsibility to regularly poll the ioctl interface whenever
a buffer is expected to be processed. How exactly the polling thread is
implemented will be explained in the following paragraphs.

Listing 4.4. KC705 asynchronous read and write function prototypes

int kc705_write_async(
struct kc705_handle xhdl,
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void xbuffer,

size_t buffer_length,

unsigned long metadata,

void (xcallback) (void xbuffer,
size_t bytes_written,
void xuser_data,
unsigned long metadata),

void xuser_data);

int kc705_read_async(

struct kc705_handle xhdl,

void *buffer,

size_t buffer_length,

void (xcallback) (void xbuffer,
size_t bytes_read,
void xuser_data,
unsigned long metadata),
void *user_data);

Listing 4.4 refers to the prototype definitions of the basic read and
write functions of the exported KC705 API application interface. The first
parameter specifies a device handle that has been previously obtained
by successfully calling kc705_open. buffer and buffer_length are used to
provide a memory region whose contents should be written to the FPGA
or written to by the FPGA. After calling one of these functions, the buffer
address is given to the device driver that pins the memory and queues it
for DMA transfer. These functions do not wait until the transfer request has
been processed. Their return status simply indicates whether the buffer has
been successfully queued for transmission. If that is the case, the buffer must
not be accessed until it is released by the driver. The callback parameter
allows a user application to register a function that is called by the KC705
API when the supplied buffer has been processed. That is, the buffer may
not be accessed until the callback notifies the completion (or failure) of the
transfer. The callback function is given a set of parameters such as the buffer
address, the number of bytes that have actually been written or read and a
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Figure 4.11. KC705 API threading diagram

user_data field that contains an arbitrary value that has been supplied in
the user_data parameter in the actual API call. This allows the application
to easier correlate the calling of the function to the respective API call.
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In addition to these parameters, an application may write a metadata
value that is kept constant throughout the transfer and delivered in a side
channel to the FPGA where it is available in the first clock beat where
s2c_valid is asserted high. The FPGA interface also allows transmission of
metadata to the host. Obviously, this value is not available until the data has
been retrieved from the FPGA and therefore cannot be delivered in the API
call. Instead, the registered callback function of kc705_read_async receives
this value along with the actual data. This metadata functionality can be
used to transfer higher-level protocol data or encode other side-channel
information.

The callback functions are called by a special thread created in the
kc705_open function call. Its special purpose is to regularly inquire about
the buffers’ transmission statuses, relate page lists to buffers and eventually
initiate callbacks to the application. It therefore consists of a delayed loop
that calls ioct1 to receive the list of pages in the transmission and reception
rings. Then, the lists are compared against the list of user-supplied buffers.
As soon as a buffer has been processes, i.e. the page list corresponding
to a buffer has been completely removed from either the transmission or
reception list, the associated callback function is executed as shown in the
threading diagram in Figure 4.11. This function is executed in the KC705
API’s thread context. The application is therefore required to establish its
own thread communication mechanism. Furthermore, the function call
delays the polling function and should be as short as possible, similar to
the kernel interrupt routines described earlier. To maximize throughput,
several writes and reads can be initiated without waiting for completion
of previous transmissions. The respective callbacks are executed in-order
which further emphasizes the focus on runtime efficiency of the callback
functions.

To reduce the amount of set up code and ease development, two conve-
nience functions have been introduced that encapsulate the read/callback
and write/callback mechanisms in synchronous forms. The corresponding
prototypes are shown in Listing 4.6.

Listing 4.5. KC705 synchronous convenience wrappers for reading and writing
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int kc705_write(struct kc705_handle xhdl,
void xbuffer,
size_t buffer_length,
size_t xbytes_written,
unsigned long metadata);

int kc705_read(struct kc705_handle *hdl,
void xbuffer,
size_t buffer_length,
size_t *xbytes_read,
unsigned long *metadata);

These functions can be used much more intuitively and do not require a
deep understanding of the C Programming Language regarding function
pointers. While the asynchronous versions introduced earlier can lead
to an unstable system if the user application accidentally or maliciously
accesses a pinned buffer, the synchronous wrapper functions hide the
complexity and render this virtually impossible. For a prototype system
though, where performance potential is more important than security, access
to asynchronous functions is fundamental as it is not possible to queue up
multiple buffers when using only synchronous functions.

As shown in Listing 4.6, the KC705 API uses internal callback handlers
for reads and writes. To synchronize communication between the callback
thread and the application thread, a mutual exclusion primitive (mutex) and
a condition variable are employed. The former is implemented as a binary
semaphore, which can only be locked by one thread. If any other thread
tries to lock the mutex, its execution is paused by the scheduler until the
mutex is unlocked. Then, a random thread is selected and allowed to lock
the mutex again. While a thread is waiting for a lock, it does not consume
CPU time.

The condition variable provides the possibility to send a signal to one
or more threads that are waiting for a mutex. To wait for a signal, the
corresponding mutex has to be locked first. Then, when calling wait, the
lock is implicitly released without resuming scheduling. This allows more
than one thread at a time to use the condition variable. Another thread,
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such as our callback thread, can now lock the mutex, and perform the
condition variable’s notify operation and then unlock it again. As soon as
the mutex is unlocked, one waiting thread is randomly selected to continue.
This would be the application thread in the case of the KC705 API.

Listing 4.6. KC705 convenience wrapper for writing (simplified)

struct notify_handle {
condition_variable cv; mutex mtx; unsigned bytes_written;
} nhandle;

initialize_cv(nhandle.mtx);
lock(nhandle.mtx) ;
int status
= kc705_write_async(device,
buffer, buffer_length,
metadata,
internal_write_callback, &nhandle);

if(status == 0K) {
wait(nhandle.cv);
unlock(nhandle.mtx);
return nhandle.bytes_written;
} else {
unlock(nhandle.mtx);
return FAILURE;

4.5 Host Application

The host application takes up a special role in the hybrid system. Despite
FPGAs and GPUs carry the major computational burden, they are not
independent systems. Instead, they are peripherals to the CPU and the
applications and drivers running on the CPU. Therefore, it is the host
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system’s responsibility to set up, instruct and direct almost all aspects and
devices in the hybrid system’s ecosystem. Some of these duties are carried
out by the Linux kernel and drivers as explained in Section 4.4, but a large
part remains to be handled by the actual user-space software package.

4.5.1 Overview

The most demanding part in the host application is data flow handling.
The size of data sets is usually measured in gigabytes. These data are to be
parsed from a set of various formats, text-based, binary and/or compressed,
transformed into a special encoding suitable for processing on FPGAs and
efficiently stored. These records are distributed to a number of FPGAs.
Each FPGA generates several high-throughput data streams that have to
be served. Then, data is moved to a number of GPUs, results are fetched,
parsed, filtered and converted to the desired output formats.

The highest efficiency can only be achieved if sending and receiving the
various data streams is done in parallel. For example, four FPGAs with three
streams each require 12 concurrently running threads to be communicating
with each other only to move data out of the FPGA. It is not only critical
to correctly orchestrate such a large number of threads but also to provide
synchronization and data structures that are capable of handling these
amounts of data in time.

An overview of data flows is given in Figure 4.12. Before data can be
processed into contingency tables, they are first read from hard disk and
converted into a suitable format. A scheduling algorithm distributes the
resulting SNP data equally to the available FPGAs through the use of
multiple threads. Each FPGA then uses a number of DMA channels (see
Sect. 2.2.1) to move the contingency tables to the host’s main memory. To
reduce times where no reception buffer resides at the DMA endpoint, every
channel is serviced by a dedicated thread. The work buffers are then stored
into a concurrently used queue (“Table Buffer Queue”) where each GPU
is supplied with. Again, each GPU is serviced by a dedicated thread. A
second instance of a work queue is then used to distribute GPU result sets
to a number result processors on the CPU. The number of threads in use
by result processing is determined by and adapted to the host’s threading
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Figure 4.12. Application data flow schematic
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capabilities and the current backlog of work. Once the backlog reaches a
certain number, additional threads are spawned for result processing. Here,
GPU results are filtered either by threshold or by top lists of user-defined
length. Finally, the filtered lists are merged and written to disk.

These steps will be explained in detail in the following sections.

4.5.2 Input Data Files and Conversion

In bioinformatics, especially in methods generating or using data from
genome-wide association studies, apparently no consensus exists on data
formats. Instead, every software requires its own formats, so a large number
of format converters have emerged. The host application does support
a number of formats, where the two most important ones are described
in the following sections. Additionally, an efficient loading mechanism is
presented. All formats contain at least the following information that is
required to set up a GWAS analysis:

> a list of individuals (“samples”), where each record contains a pseudo-
nym and whether they belong to the case or to the control group

> a list of SNP markers with distinct names

> for every SNP and individual, either two genotypes are given or a type
classification (homozygous wild/variant or heterozygote)

As not only interaction searches are performed on GWAS, databases
often contain additional information, such as individual pedigrees, chro-
mosome numbers or genome positions. These are not used by the methods
presented here.

The PLINK Data Set Format

The authors of PLINK, a large tool set for all kinds of operations on sample
data, managed to establish a format that is supported by most current
methods and data providers [CCT+15].

The basic format consists of two files, a pedigree file and a map file. Both
are text-based formats where each record is stored per line. The pedigree
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file contains one line per sample. The first six space-separated columns
contain arbitrary family, individual, paternal and maternal identifiers, a
sex column and a phenotype, also described as “affection status”. From
the seventh column onwards, bi-allelic genotypes are specified, i.e. two
genotypes per SNP. All lines have to have the same number of fields and the
number of SNPs that have been genotypes provided for has to match the
number of SNPs specified in the map file. The map file contains definitions
for the SNPs used in the pedigree file, one per line. Each line contains the
chromosome, an arbitrary SNP identifier, and absolute and relative positions
of the SNP in the genome. Examples of these files are shown in Listings 4.7
and 4.8. The example pedigree file defined three individuals MOMMY, DADDY
and SON who belong to the same family FAMO@1. All individuals have three
bi-allelic SNPs defined. According to the map file, the first SNP originates
from chromosome 1 and is called rs123456, the second on chromosome 20
while the third SNP’s origin is not (yet) known.

Listing 4.7. PLINK pedigree file example

FAMGO1 MOMMY 0 6 2 2 AAGGAC
FAMOO1 DADDY 0 0 1 2 AAAG OO
FAMGO1 SON 121 1AAGGAO

Listing 4.8. PLINK SNP map file example

1 rs123456 0 1234555
20 rs234567 42 1234522
0 rs443322 0 0

Efficiency-wise, storing data in text formats is not optimal. A data set
composed of 500000 SNPs and 5000 samples may easily require 10 GiB
of storage space. The PLINK toolkit therefore supports a binary version
of the above. In this more efficient format, the first six columns are left
intact and moved to a family file. The remaining genotype columns are then
encoded into two bits for every SNP. Homozygote types are stored as 00 or
11 depending on the type, wild or variant, respectively. Heterozygotes are
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encoded as 10, no matter how the alleles are ordered. Unknown or missing
genotypes are encoded as 01. The very first genotype is stored in the lowest
significant bits of a byte. In an eight-bit field (or byte), the first individual
in the above pedigree file might therefore be encoded as 01101100. The
two highest significant bits are set to unknown as a fourth genotype does
not exist. After the first individual as been encoded, the next individual is
started at the next byte. Hence, if the number of SNPs is not divisible by
four, every individual has to be padded to fill up the last byte.

0 1 2

’ File identifier 01101100 00011011’ | Mode 00000000 ‘

’ MOMMY '01101100' DADDY '01011000’ | SON '01011100°' ‘

Figure 4.13. PLINK binary pedigree file in individual-major format

The actual implementation as seen in Figure 4.13 also includes three
header bytes per file. The first two bytes identify the binary format and the
third byte indicates whether the genotypes are stored as individual-major
as described above, or SNP-major, where the pedigree file is effectively
transposed. In addition to the binary format, a transposed version also
exists for the text format.

Reading, Queuing and Parsing

When programs load data from hard disks or other non-memory or even
non-local media, a large amount of time is typically spent in read system
calls. Effectively, the currently running thread is suspended by the system
scheduler until the request can be completed. In an efficient system, this
time can be used to perform non-I/O work, such as parsing data that has
been previously acquired. This requires the use of threads.

The application therefore spawns two threads. The first thread just
extracts records (i.e. text lines, individuals or SNPs) and spends most of
the time in a waiting state while the second thread converts the record
into an FPGA-compatible native format. Communication between threads,
though, has been and is still a major research topic in operating system
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theory and parallel architectures [BO03, Chap. 13]. Simple synchronization
schemes may be implemented by the use of semaphores but their use
in high-frequency locking/unlocking is generally considered excessively
demanding [ADK+12; OGK+12]. A rather obvious but nonetheless complex
solution is to find data structures that do not require locking for shared
access. In the previously mentioned work, the authors develop a lock-
free single-producer single-consumer queue (in short, SPSC queue) first
introduced by Leslie Lamport in 1979 [Lam79]. This queue structure has
been implemented to move data from the reader thread to the parser thread
for maximum efficiency and CPU saturation.

The expected efficiency is heavily dependent on the input format. Cur-
rently, plain-text PLINK transposed (“TPED/TFAM”), SNP-major PLINK
binary (“BIM/BED/FAM”), the custom data file format used in the original
BOOST software [WYY+10] and the native format described in 4.5.2. These
formats put a different computational burden on the parser thread. Addi-
tionally, all formats may also be compressed using gzip (an implementation
of the DEFLATE method [Deu96]) or bzip2 (a Burrows-Wheeler-based Huff-
man compressor [Sew]). The decompression is implemented as a reading
filter, so the computational burden lies on the I/O thread.

To further allow reconstruction of contingency table values that have
been optimized out during generation (see Sect. 4.3.2 for details), the parsing
thread also counts the number of wild and variant type homozygotes and
heterozygotes, divided in cases and controls. These six counters are stored
along by the SNPs.

The parsing result, regardless of the input data format, is designed to
be stored efficiently. As described in Section 4.2, the FPGA expects data in
SNP-major ordering in a 2-bit encoding as it is described the native format
introduction in Section 4.5.2. Before the first SNP is written to the internal
database, the number of case and control samples and the number of SNPs
have already been determined. Knowing these parameters, the exact size of
the full data set can be calculated. Hence, the database does not need to grow
with the data but can be allocated a constant size. This reduces memory
fragmentation and avoids costly memory allocation re-sizing. The database
structure itself consists of a single, continuous byte buffer and a number of
accessor methods that allow efficient and concurrent random access to any
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ranges of SNPs. This is especially important when distributing SNP data
to FPGAs. Additionally, when using certain command-line arguments (see
Appendices A.1 and A.2), a native data dump can be generated for faster
loading times in subsequent program calls.

The Native Format

The native format can be generated from any other input format to reduce
subsequent loading times when working with the same data sets, i.e. if
just a threshold parameter is changed. As it directly resembles the internal
database format, loading and storing does not require any expensive parsing
or format conversion. Often, input files such as the PLINK format include
more information than required. These extra data are stripped off. Hence,
many formats can be converted into the native format but not generated
from it. It can be seen as a lossy, one-way transformation. The exact structure
is described in the following paragraphs.

0 31 39 47 63

Type identifier 'SNPR’ |Names?
Number of SNPs

Number of Case Group Samples

Version Reserved

Number of Control Group Samples

Figure 4.14. SNPDB file format header

The binary layout begins with a header. It is shown in Figure 4.14. The
first field is a type identifier that allows the application to identify the given
file as a SNP database dump. The second field is a byte flag indicating
whether the dump contains a list of SNP names or not. This is especially
important as not every source format supports SNP names, such as the
BOOST layout. During development, the file layout has undergone several
changes. The next field therefore contains the format version. When loading,
the format version is checked such that incompatible versions are rejected
and compatible but older versions force a slower compatibility loading
mode. The following three fields hold the total numbers of SNPs, case
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group samples and control group samples.

The actual data follow the header structure. First, allele counts are
stored for every SNP. That is, during parsing, wild types, variant types
and heterozygotes are counted per case/control group that are now stored
within the file. These are required for counter reconstruction done by
the GPUs as explained in Section 4.3.2. Then, the full genotype database
generated during the parsing process is written to the file, in SNP-major
ordering. Depending on the “Names?” field in the header, an optional list
of SNP identification names is stored.

4.5.3 Memory Management

From the point where the database has been created and populated, data
will be extracted and moved to FPGAs, to GPUs and back to the host system
as shown in the overview. Repeatedly allocating, pinning, un-pinning and
releasing memory buffers can be costly operation.

To reduce these costs, a buffer management mechanism has been intro-
duced. During compile-time, i.e. by setting compiler macros, the buffer size
and maximum number can be set. Then, an application thread may request
one of these buffers for transmission.

The buffer handling system allocates a certain amount of buffers from
the operating system. Through the use of a custom allocation function, each
allocated buffer is automatically aligned at a 4 096 byte address boundary, i.e.
it is aligned to the beginning of a memory page as described in Section 2.2.1,
so the driver does not need to take care of odd buffer start addresses
and partly filled pages in the beginning. After allocation, each buffer is
pre-faulted. During this phase, the whole buffer is written to in a 4096-byte-
stride, forcing the operating system to actually map every virtual memory
page to an actual physical page. Finally, the memory is pinned, locking
these pages into memory, preventing that a memory may be paged out
to disk. These operations guarantee most efficient access to the managed
buffers.

During buffer construction, a custom deleter is installed. When the ref-
erence count of a buffer reaches zero, i.e. it is not in use anymore, it is
automatically taken back into the buffer manager. Internally, references to
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these buffers are kept on a stack. Therefore, the last buffer that has been re-
leased by a thread will be the first buffer supplied to a requesting thread. It
is expected that this will further improve efficiency by better use of memory
caching, though these effects might become less visible with larger buffer
sizes due to the relatively small and fixed-size CPU cache and sequential
access patterns.

4.5.4 FPGA Initialization

After buffer allocation, the API module for FPGA communication is ini-
tialized and queried for the number of FPGAs that are present and ready.
While the KC705 API for the Xilinx Kintex FPGA board only supports a
single full-duplex data channel, the Alpha Data API supports up to four
simplex data channels that can be freely configured. The final implementa-
tion for Virtex devices uses one channel to send SNP data. In the BOOST
implementation, a single result return channel is sufficient while the Mutual
Information implementation for 3-way interaction requires three channels
to maximize data throughput.

For every FPGA, that is, for every sending channel, one thread is created.
These threads extract ranges of SNPs from the databases and move them to
their FPGAs. The actual range is determined by a number of factors, most
importantly the number of FPGAs and GPUs available to the application.
As the help outputs of both application show (see Appendices A.1 and A.2),
the number of FPGAs and GPUs to use can be explicitly specified to allow
ratio tuning when the performance capabilities of the FPGA and GPU types
significantly differ. The devices in the system prototype have been chosen
to match in performance figures.

Data Distribution

In the trivial setting that only one FPGA /GPU combination is available, all
SNPs are sent to the FPGA for processing. When using more FPGAs, the
number of pairs or triplets should be divided among all FPGAs equally
and the corresponding SNP ranges determined and sent. For kth order
interaction, k ranges of SNPs are selected per FPGA. In the example show
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Figure 4.15. Distribution of SNPs in second-order interaction for four FPGAs

in Figure 4.15, it can be seen that for k = 2, each partition represents a
trapezoid.

For 2-way SNP interaction, the distribution can be achieved as follows.
Let

> N > 0 be the total number of SNPs to be analyzed for interactions
> F > 0 be the number of FPGAs to be used
> 0<a; <N with 0<i<F be the number of SNPs for FPGA i.

> A* be the total number of pairs to be calculated with A = A*/F pairs
for each FPGA.

Then, the following recursive equations for a; hold:

A* . N N2 - N
A<—T with A —(2)— 5
apg =V 2A
a1 = +/ag+2A —ag (Area of right trapezoid) (45.1)
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0 N

Figure 4.16. A right isosceles prism representing the space of 3-combinations of
SNPs

=1\ V2A+2A—-V2A
aiy1 =+/aj+2A —a; (4.5.2)

In this range calculations, the right triangle that represents the area of
SNP pairings has been partitioned into F = 4 equally-sized right trape-
zoids. The rightmost trapezoid has a zero-length right ankle making it
an isoscicle right triangle. As this is the only right ankle known before-
hand, this represents the starting point for the recursive definition in Equa-
tion 4.5.2. In Equation 4.5.1, the general area definition for irregular trape-
zoids, A = ay - hy — (hy — hy1) - a, where a is the basis and hy, h, the parallel
ankles at the right angles, is used. In our case, /1 is the previously obtained
value for 4, i.e. ag. This can then be transformed to solve a; as A is already
known and leads to Equation 4.5.1 and eventually the general form in a
recursive definition. With higher orders of interaction, the area calculation
of trapezoids can be exchanged for their respective representations in their
dimension. A third order calculation would therefore be done analogous
over right trapezoidal prisms instead of right planar trapezoids. Figure 4.16
shows such a right isosceles prism as representing the space of all possible
3-combinations of SNPs.
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4.5.5 Data Movement

After the FPGAs have been initialized with SNP data, the data path to the
FPGA is not required anymore. Instead, the threads now prepare for back-
reading the results the FPGAs generate from the SNP streams. If necessary,
each FPGA thread now spawns enough additional threads to be able to
service all available reader channels in parallel to minimize idle times.

Listing 4.9. FPGA Reader Thread Operation (simplified)

while(resultsRemaining(i) > 0) {
buffer& ctables = buffers.request();
status = fpga[il.read(ctables);
if(status == SUCCESS) {
tablequeue.push(ctables);
}
}

Each service thread will now read data from its respective channel as
long as data is expected. The target buffers are requested from the buffer
manager described in Section 4.5.3. When the reading call returns, two pos-
sible outcomes are expected. Firstly, the transaction may have been aborted.
This may only happen if the user terminates the application by sending an
interruption signal, i.e. by pressing Ctrl+C on the keyboard. Then, it is the
applications reponsibility to leave the API in a clean and defined state. This
involves tearing down DMA transactions. Additionally, another error condi-
tion has been implemented. In cases where the FPGA behaves unexpectedly
and stops transmission right in the middle, a configurable time-out actively
aborts a transaction as if the user had pressed Ctr1+C. The common case is
of course the successful transfer of a data buffer. In that case, a reference to
the received buffer is submitted to a special Multiple Producer/Multiple
Consumer Queue (MPMC Queue). In Figure 4.12, this is depicted as “Table
Buffer Queue” and serves as a central storage for distribution of work units
to a number of GPUs. A simplified draft is displayed in Listing 4.9.

Whether a channel is expected to deliver data is not trivial. Unfortu-
nately, there is no efficient way for the FPGA to let the host system know
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that the transfer has been completed. One method could be to place a
flag into the buffer. However, due to the nature of the data stream on the
FPGA, the condition can only be detected when the stream actually ends.
Therefore, the flag would have to be after the last valid data word in a
buffer. This would require the host to scan through the whole buffer to
find this flag. Another way of detection could be via side-channel data in
the PCI Express configuration interface (see 2.2.2 for details), a very slow
way of communication. Fortunately, processing data on FPGA is always
deterministic and predictable, if done right. Hence, knowing the number
of processing elements, SNPs, processing element chains and processing
elements per chain, the exact outcome per transmission channel can reliably
be calculated. The application pre-calculates these numbers for every trans-
mission channel so servicing threads can efficiently query for the number of
remaining results without performing costly non-DMA 1/0O operations or
memory scanning. As soon as a service thread detects that its work is done,
it joins with the main application thread, i.e. it terminates and notifies the
application of the status change.

Listing 4.10. GPU servicing thread operation (simplified)

while(moreResultsComing == true) {
buffer& tables = tablequeue.pop(); // wait if necessary
buffer& results = buffers.request();

status = gpul[il]l.runKernel(tables, results);
if(status == SUCCESS) {
resultqueue.push(results);

}
// table buffer implicitly released

Right after the creation of FPGA threads, similarly, servicing threads are
spawned to process table buffers from the aforementioned MPMC queue on
the GPUs. For every GPU available, one thread is responsible to take a table
buffer from the table buffer queue, move tables to the GPU. As the GPU
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requires another memory block to store the resulting scores, another buffer
is requested and provided as is shown in Listing 4.10. It is worth noting
that the table buffer that has been moved out of the table queue is now the
sole reference to that memory block. This buffer reference leaves the lexical
scope of the block defined by the while after it has been processed by the
GPU. The reference count of the buffer becomes zero and hence triggers the
deleter function described earlier in Sect. 4.5.3. The unused buffer, instead
of being released to the operating system, is being put back on the buffer
stack inside the buffer management operation. It becomes available again
for requesting by other functions and threads.

As soon as the GPU kernel has finished processing the table buffer, the
result buffer is submitted to another MPMC queue, depicted as “Result
Buffer Queue” for the final filtering and post-processing.

4.5.6 Result Collection and Processing

The final step is the post-processing of the results produced by the GPUs.
Now that the CPU is required to process the results into the final output
format, the buffer contents are defined as an array of structures as shown
in Figure 4.17. For every table entry in the original table buffer, one score
structure is generated. Both single precision (32 bits) and double precision
(64 bits) as defined in IEEE 754 are supported.

The structure has been carefully crafted so that each field can be accessed
by the CPU in a single memory access. Generally, a field has to be placed
at a memory address that is dividable by the size of the field itself. In
this case, all 16 bit fields have been aligned to 16 bit addresses and the
score field is aligned to a 64 bit address (and thus also to a 32 bit address).
Without following this alignment rule, the CPU would have to read two
adjacent words, mask the beginning and end of the first and second word,
respectively, and shift it into the right position so arithmetic operations can
correctly be performed.

Even though the structure is accessible in an efficient way, a single buffer
of one gigabyte on a second-order interaction method contains more than
67 million test results and a new buffer arrives every few hundred millisec-
onds. To avoid this buffer processing being a bottleneck, a configurable
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Figure 4.17. Third order test result structure with single precision score

number of threads are created to process buffers in parallel. As opposed
to the I/0 threads that work towards FPGAs and GPUs, these threads are
actually spawned to increase processing throughput on the CPU instead
of bridging transmission gaps. Although the number of threads may be
specified by the user, it is also possible to let the application decide.

Adaptive Threading

Before actually creating threads in the adaptive method, the system topol-
ogy is analyzed. The operating system is queried for the number of physical
CPUs, physical cores per processor and the order of symmetric multiprocess-
ing units (“hardware threads”, see Section 2.1.1 for a deeper explanation).
With these numbers known, an efficient threading policy can be set up.

By default, two threads are created to process results. If a backlog
develops, i.e. buffers queue up for result processing, another thread is
spawned until the maximum number of hardware-supported threads or a
user-configurable limit is reached. Let s be the number of physical CPUs,
¢ be the number of physical cores per processor and ¢ the number of
supported hardware threads per physical core. Then, the first s - ¢ threads
that are created are tied to the available cores, with at most one worker
thread per core. This is done by setting the scheduler affinity in the operating
system kernel. Although it is not guaranteed that the threads actually
run on the desired cores, the scheduler takes greater care than without
this specification. By using scheduling affinities, two consequences can be
exploited:

> The total computational power of all hardware threads sharing a single
physical core is rarely larger than 130 % of a single thread running on
that core [ECX+11]. By first distributing threads over cores instead of
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hardware threads, the first c threads are able to utilize 100 % each. Every
further thread only increases the load by up to 30 %.

> Threads with a set affinity have a much lower chance to be re-scheduled
for another processor/core/hardware thread. This reduces overhead
from context switching and hence, cache invalidation.

Additionally, when worker threads start becoming idle because they
process buffers faster than they arrive, they are not terminated. Instead, they
are put into sleep mode and therefore skipped from scheduling. This way,
they can be reactivated faster than newly creating a thread without con-
suming too much system resources. This is also done by setting scheduling
affinities and priorities.

Result Processing

Every result worker now processes the structures as shown in Figure 4.17
one-by-one. In second-order interaction search, the user supplies a threshold
by which the results are filtered. Every structure is then compared against
this threshold and those that feature a higher score than the threshold
are written to the result output file. Due to the nature of multiple threads
writing to the same data structure, the results will be delivered unordered.
In third-order interaction, an additional mode is supported. The user
may instead request only the best results to be reported, with a configurable
number of results. This is especially useful when evaluating new test meth-
ods as a clear threshold can not be given initially. Also, new methods may
be implemented where the altitude of scores vary among data sets. Selecting
the best results from particularly large data sets can be a computational and
algorithmical problem. This is evaluated in the following section.

List of Best Results

For both applications, it is desirable to not only filter values based on a
certain, fixed threshold but also acquire a list of the m best results where
m is much smaller than the total number of results generated r, i.e. m « r.
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The choice of data structures and algorithms has to satisfy a number of
requirements.

First of all, it is clear that r results cannot be kept in memory. Even if
every result of a 3-SNP-interaction on 500 000 SNPs would require a single
byte, almost 21 PiB of main memory would be required. This restricts us to
view the generation of results as streaming where only one-way sequential
access is possible. A naive implementation could be an array of fixed size
m which is kept sorted at all times. When a new result is taken from the
stream, it has to be compared to the smallest item in the array. Random
access in arrays can be done in constant time, so neither reading the smallest
element nor replacing it would create a bottleneck. Instead of re-sorting the
list which could easily take O(m -log m) using QUICKSORT or MERGESORT,
a binary search can be done to find the correct index for the new item in
O(logm). Being an array, a new item cannot be easily moved in between two
adjacent items. Therefore, all items between the determined index and the
end of the array would have to be moved one place to the right. Therefore,
the runtime complexity is O (m + log m) for each result. Furthermore, every
insertion would also require O(m + logm) accesses to the memory. The
memory bus is already quite busy by the concurrent DMA transfers, so a
lower memory access complexity is desirable.

Aside from a simple array, a priority queue is a natural choice for this
kind of work. Implemented as a max-heap in a binary tree, it can be stored
in a regular array in consecutive memory locations. The largest element can
always be accessed in O(1) being the root in the tree as the heap property
ensures that a node is always larger than its children. Insertion and deletion
and extraction of the minimum value can be done in O(log m) [CLR+07,
Chap. 6]. This also applies to the memory accesses. Now, for every result,
we have to extract the minimum and compare it to the result in question to
decide whether it makes sense to insert it into the max-heap. For such large
numbers even logarithmic runtime w.r.t. m is problematic.

The solution and actual implementation is a Min-Max Fine Binary Heap.
Here, a min-heap and a max-heap are combined in a single heap [ASS+86].
For this to work, the heap property is extended to define that a max-heap
node only has min-heap children and min-heap node only has max-heap
children. When viewed in level-order, every second level contains min-heap
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Figure 4.18. Min-max heap

nodes while every other level contains max-heap nodes. An example is
shown in Fig. 4.18. When the root node is a min-heap node, it contains the
minimum element in the whole heap and one of its two children contains
the maximum element. Therefore, accessing the minimum or maximum is
in O(1) while maintaining a “regular” heap’s runtime footprint. A further
optimization has been proposed by Carlsson et. al. in [CCM94], where for
each data item, an additional bit is stored that indicates whether the left
or right child is the smaller or larger one, depending on the node type.
Although this does not change the complexity class, only one node needs
to be loaded from memory instead of two, and finding of the minimum or
maximum becomes obsolete as it is already known.

Additionally, the list may only contain up to k elements. This is ensured
as shown in Algorithm 2. Before an attempt to actually insert an element into
a full list, it is first checked whether the element is larger than the current top
list’s minimum. If it was not, it would become the (k + 1)th element in a list
of the k largest elements and thus cut away to maintain the correct list size.
Therefore, FINDMIN is called for every candidate whereas DELETEMIN and
INsERrT are only called for those elements that will actually become part of
the list. As FINDMIN is constant in time complexity, as opposed to deletion
and insertion, a large amount of runtime can be saved as only few elements
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would actually be inserted. Unfortunately, the score distribution over all
generated contingency tables is unknown so no authoritative prediction
can be made about the actual efficiency of this measure, though actual
measurements clearly show its usefulness (see Section 5.2.1). However, this
initial filtering against the minimum of the heap is implemented using
AVX SIMD instructions to compare eight double-precision floating-point
scores against the minimum in a single instruction. The VCMPESTRM AVX2
instruction used here stores a mask that allows identification of all values
in the eight-tuple that are larger than the heap’s minimum — and can
therefore be inserted. An introduction to CPU SIMD instructions is given in
Section 2.1.1.

Algorithm 2: Min-Max Fine Binary Heap Insertion

Data: a heap with i elements and a capacity of m elements
Input: an item e to be inserted
Result: a heap with at most m elements

1 if i = m then

2 min «— FINDMIN(H);
3 if e > min then

4 | DELETEMIN(H);

5 INSERT(H, e);

In an intuitive (and naive) implementation would use pointers to store
the children node addresses in their parents. While this certainly works,
and is the de facto standard for languages in the functional programming
domain, it is rather inefficient in procedure-based programming. Instead,
the properties of a binary tree have been exploited to create an array-
based implementation. Given the heap shown in Figure 4.18, the array
representation is as depicted in Figure 4.19. The root node’s value is stored
in the first cell and its two children in the following two nodes. The left-
hand grandchildren are stored in cell four and five while the right-hand
grandchildren are stored in six and seven. This construction rule can be
generalized:

Let I(;) be the i-th node in the tree, counted from top to bottom and left
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8 |71|41|31|10| 11|16 46

Figure 4.19. Array representation of min-max heap

to right, with # being the total number of nodes and i e Ng with i < n —1:

lo) =
PARENT(i) = (z -1)/2
LeFrCHILD (i) = 2i + 1

RIGHTCHILD (i) = 2i + 2

This rule yields a node storage in level-order and has several advantages
over the pointer-based solution:

> Each node only requires storage for the datum itself. Assuming a pointer
size of 8 bytes, the storage overhead per node is reduced from 16 bytes
(two child pointers) to zero.

> With all level nodes being stored in consecutive ordering, it is very
cache friendly as nodes in the direct neighborhood are often accessed
afterwards (good cache locality).

> Instead of one allocation per node, all nodes are stored in a single,
consecutive block of memory in successive addresses. As the size of
the heap is constant and known in advance, the whole storage can be
allocated in a single system call, making the insertion of new nodes very
efficient. Due to the heap insertion mechanism, the binary tree is always
optimally balanced, hence, the array is also compact with no empty cell
between nodes.

Result Output

Finally, the results have to be written to a file to be of any use, whether
they originate from a top list or from a threshold filter. In the whole course
from the database, through the FPGAs and GPUs and eventually the result
processors, SNPs are only identified by their relative number in the database.
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For the researcher, these numbers do not have any meaningful information.
Therefore, instead of SNP IDs, their names are retrieved from a large look-
up table. Due to the nature of look-up tables, this access can be done in
O(1) with respect to the runtime.

The actual access to the file system is serialized among the result worker
threads with mutual exclusion primitives to prevent data corruption. Fur-
thermore, the results are not written to the file but stored in an intermediate
buffer. Otherwise, for every score, a few bytes would be written through the
read system call which is then diverted to the respective file system driver.
In addition to the high overhead of repeatedly issuing a system call for a
small amount of data, many file systems store data in blocks of a certain
size. For every write modification to a block that is less than the block size,
a read-modify-write cycle is performed. On the other hand, if the data is
buffered to write multiples of the file system’s block size, no read or modify
operations would have to be performed. Unfortunately, Linux supports a
broad variety of file systems but does not provide a standardized way of
querying for the block size. Usually though, they are specified as rather
small powers of two, such as 512 Bytes, 4 KiB or up to 512 KiB. Choosing
a buffer size of a few megabytes certainly exceeds all common block sizes
and is still a multiple thereof. This leaves the ResultWriter module with a
relatively small system call overhead and efficient file system I/O methods.

The output format is borrowed from the original BOOST publication in
[WYY+10]. An example of the output format for third order interaction is
shown in Listing 4.11. Two or three SNP names are displayed in whitespace-
separated columns, depending on the order of the interaction, and the last
column contains the score that has been assigned by the statistical method
in use.

Listing 4.11. Third order interaction result output example

SNP_A SNP_B SNP_C SCORE
rs123456 rs331234 rs443111 23.441345
rs@01337 rs313373 rs654321 42.55781
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Chapter 5

Evaluation

Parts of this chapter have been previously published in [GWK+15a;
GKW+15, KGW+14; WKG+14; KWG+15; GWK+15b; GSK+14;
WKH+17].

5.1 Performance Metrics

Performance figures of computing systems are typically represented with
a single value, the number of floating-point operations that can be pro-
cessed per second (FLOPS). Traditionally, it is measured using the linear
equation solving package LINPACK [DLP02]. This obviously focuses on
multiply/add operations but also includes memory speed, system bus
bandwidth, as well as operating system and networking overhead.

In the bi-anually published TOP500.org [T500] supercomputer ranking,
the participating systems are constructed from one or more of the following
features:

> NVIDIA graphics processors, such as Tesla K20X or
> Intel Xeon Phi manycore accelerators
> High-performance vector processors (i.e. Cray XC40)

> Intel CPUs and IBM Power processors
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By the time of this writing, not a single system contains FPGA-based
computing devices. As this chapter will show, FPGAs are not inferior re-
garding raw performance and, in fact, outperform any other architecture
when it comes to power consumption. The reason they are not listed be-
comes obvious when the way FPGAs are used is taken into account. Their
configuration is usually precisely engineered to perform a very specific
computation and it will not be capable of doing anything else until repro-
grammed. It could be designed to solve matrices and linear equations but
an FPGA cannot be seen as a general purpose computing device and the
results would not be representative with respect to the actual power of these
devices.

In fact, this argument may also hold for any other architecture, which
is a major point of critique when it comes to performance estimations. In
graphics processing and 3D rendering in particular, multiplying matrices
is a larger part of the computational burden. Hence, graphics processing
units are geared towards efficient matrix multiplication, for example by
implementing a highly parallel engine that can perform floating-point
additions and multiplications very efficiently. Therefore, graphics processing
units perform extraordinarily well in the TOP500 supercomputer list. Given
these results, the number of floating-point operations per second is not a
good performance estimation but merely a measure for the suitability for
certain operations - such as the solving of linear equations.

5.1.1 Measures and their Inaccuracies

When evaluating and comparing the performance of a single method across
various platforms and architectures, it is therefore reasonable to use a
measure that indeed is a good performance indicator for a particular purpose.
In the case of compound architectures as the one proposed in this work, the
performance will be measured by the outcome of its subcomponents and
communication speeds. The overall performance will be given in means
of elapsed time with respect to a reference data set. While runtimes show
very little jitter on GPUs and FPGAs, the host system has more duties than
just running the respective application. Instead, user logins are handled,
mechanical hard disks spin up and spin down, services respond to network
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requests, CPU caches are invalidated by other applications, and so on. To
accommodate these disruptions and sources of jitter, the CPU time that
has actually been allocated to the process is also given. This allows an
extrapolation to 100 % utilization and therefore generating comparable
results without dependencies on actual system load.

When it comes to generation of contingency tables, only one measure
could be representative for the FPGA’s performance: the actual number of
tables that can be delivered by the FPGA per second. Assuming perfect
determinism, an operation’s can be precisely predicted. As FPGAs are not
“programmed” but merely “described,” the programmer can always guaran-
tee the availability of a certain datum at a certain place within the accuracy
of a single clock cycle. Hence, it is easy to predict the number of tables per
second. However, the FPGA also reacts to events from outside. Anytime,
the memory controller may decide to perform DRAM refresh operations,
causing a delay when the FPGA requests data from the memory module.
Other sources of timing uncertainty is the host platform itself. The host
system moves data to or from the FPGA through various controllers and
built-in devices where each adds to the uncertainty. The host application
itself may not be able to provide a buffer on time because another applica-
tion is accessing this very memory region. This behavior cannot be factored
out by introducing utilization factors or bus load. Instead, the FPGA fills
its small on-board interface buffers and then proceeds to stall the whole
processing pipeline until the buffer is finally available. It then takes time to
propagate the news through the system in order to resume operation.

While the theoretical throughput of the FPGA design is certainly an
indicator of its power, the previously mentioned effects significantly reduce
the net data rate that can actually be delivered. In order to assess the
transmission efficiency and the FPGA stalling-related delays, additional
data is collected.

> On the FPGA, the number of cycles is counted where

> data is ready to send but the DMA channels are not

> DMA channels are ready to accept but no data is available (i.e. due to
stalling /resumption delays)

> both the DMA channel and the result channel are transmitting data
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> the generation pipeline is stalled
> On the host,

> the time it takes to read a full buffer

> the time it takes to supply a new buffer once the previous buffer has
been filled

> the time the application had to wait because no buffer was available
that could be supplied

With these numbers, a fairly accurate estimation regarding the table
creation speed and communication system efficiency can be given. When
it comes to processing the table buffer on the GPU, other measures have
proven to be useful. Unfortunately, the NVIDIA CUDA API does only
provide a limited set of profiling instrumentation, so some measures are
derived from others.

> The net transmission bandwidth from and to the GPU
> The device utilization measured in active blocks vs. idle blocks

> The warp divergence, derived from statistics gathered through side-
channel data. This includes coverage information, i.e. from the branches
taken in the BOOST filter chain between KSASA, KSA and log-linear
methods

Eventually, the host system does a final filtering process where records
are written to the file system if they satisfy one of the user-selectable
contitions:

= The interaction score is larger than a user-supplied threshold

> The interaction score is part of the highest k records throughout the
whole data set.

Clearly, the runtime of the threshold-based filter is directly dependent
on the magnitude of the threshold and the magnitudes of the interaction
scores. If a threshold is met or exceeded, the record in question is written
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to the (buffered) result output file. The runtime hence not only depends on
the decision but also on the file system performance and the underlying
storage system. For normalization purposes, the time spend writing to disk
is therefore also recorded.

The second filter is based on a fixed-capacity MINMAXHEAP implemen-
tation where the best k records with respect to the interaction score so far are
collected (see Section 4.5.6) Other than the threshold-based version with a
runtime of O(1), the heap implementation can only asymptotically process
data in constant time but it’s INSERT method is still in O(logk) where k
is the maximum heap capacity. To assess the actual efficiency of the heap,
two key figures are additionally collected: the number of scores that were
not inserted because they were smaller than the current minimum (and
the capacity has been reached) and the number of scores that have been
accepted for insertion because they were larger the minimal heap element
(and the capacity has been reached). Obviously, the number of insertions
while the capacity has not been reached yet, is k and does not need to be
collected.

Finally, the overall performance is given in terms of runtimes for a refer-
ence data set and processed pairs or triplets per second and a performance
bias can be given by comparing the average net production rate of the FPGA
against the average net processing rate of the GPU. For comparisons with
other implementations, runtimes are taken from their respective publica-
tions and are interpolated with the expectation that their runtime scales
linearly with the number of tables/pairs/triplets (i.e. linear in the number
of samples and exponential with the interaction order in the number of
SNPs).

5.2 Architecture

In this chapter, in-depth analyses are done on the overall architecture as well
as within and between its components. In the second part, the prototype
implementation is compared against other hybrid computing platforms,
implementations and methods regarding system performance and energy
consumption.
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Although the FPGAs in use do have a large amount of resources, they
are fully exhausted by the application. The resource-wise complexity of an
array node is directly anti-proportional to the number of nodes that fit on
the device, and, in turn, the generation rates. Therefore, configurations have
been created to support specific maximum data set sizes. An overview of
these different configurations is given in the following sections.

For comparability, runtimes and resource usage is measured using the
maximum supported data set size as well as a reference data set that can
be processed by all available configurations and consists of exactly 3000
control samples and 2000 case samples. The number of SNPs does not
affect the table generation and processing rates but merely the total runtime
defined by the number of contingency tables to create and process. Hence,
this number is not part of the reference and is always given explicitly where
applicable.

5.2.1 Throughput

The contingency table stream passes several components and interfaces and
is later turned into a result score stream. To assess the potential and actual
performance, each of these components and interfaces is examined.

Table Creation on the FPGA

For assessing the rate of contingency table creation, the number of nodes in
the systolic array plays a major role along with the frequency the nodes are
clocked with and the widths of the genotype lanes. Once the array is under
full load, i.e. SNP bulffers of all nodes have been filled, each node generates
one contingency table per SNP that is streamed along. Assuming a SNP
length of 5000 genotypes, with eight genotypes per cycle, a contingency
table is created in 5000/8=625 clock cycles. With a clock frequency of
200 MHz, 320000 tables are created per node and second. In Table 5.1, the
generation speeds of all FPGA configurations are shown, along with a short
summary. Data rates are given with respect to the reference data set and
sample-wise the largest supported data set indicated by “(max).”

Due to the non-trivial ordering of contingency tables in the third-order
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Table 5.1. FPGA configuration characteristics

Configuration 2-way 16k  2-way 64k 3-way 8k
Node frequency 200 MHz 200 MHz 200 MHz
Genotype supply 8/s 8/s 8/s
Maximum group size 8192 32768 4096
Node count 1000 288 180
Array partitions 4 2 3
Rates per node:
Tables/s (reference) 320k 320k 320k
Tables/s (max) 97.7k 24.4k 195k
Data rate (reference) 4.88MiB/s 4.88MiB/s 20.71MiB/s
Data rate (max) 1.49MiB/s  0.37MiB/s 12.64MiB/s
Total rates:
Tables/s (reference) 320M 92M 58M
Tables/s (max) 98M 7.0M 35M
Data rate (reference) 4883MiB/s 1406MiB/s 3728 MiB/s
Data rate (max) 1490 MiB/s 107MiB/s 2276 MiB/s

approach, tables are accompanied by identifiers as discussed in Sect. 4.2.4
and Figure 4.6. It consists of three fields of 21 bits each and adds an overhead
of 321 = 63 bit to each table. These fields are added to the data stream in
the transmission unit and result in gross data rates of 4 161 MiB/s (reference)
and 2276 MiB/s (max) with a total overhead of 433 MiB/s and 264 MiB/s,
respectively.

FPGA/Host Link

Figure 5.1 shows gross data rates that have been measured directly at the
PCI Express link level, separated into the DMA channels that have been
used in the third-order method.

It can be seen that the transmission speed breaks down at regular inter-
vals. These intervals tend to become smaller as the application proceeds
reaching their minimum at the very end. This can be explained by the way
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Figure 5.1. Channel-wise FPGA /host link speeds (third order)

the systolic array processes data. When throughput is at a high level (be-
tween negative spikes), both SNP buffers are filled and each node generates
one table every SNP. Once the full set of SNPs has been streamed, streaming
restarts but nodes have to replace their SNP buffer contents before new
tables can be emitted. Every new streaming sequence, the SNP buffer re-
placement frequency rises as the combination space becomes smaller (see
Sect. 4.2.3). Hence, the intervals become smaller as the SNP buffers are
replaced more frequently culminating at the last few SNPs where only
very few tables are generated per streaming sequence. Data throughput
is sampled once every 256 MiB. This results in the “between” throughput
apparently becoming lower. However, this effect is likely visible because of
the sequencing frequency rising over the throughput sampling frequency.
Hence, spikes are averaged and lower the measured throughput. Regarding
the data rates given in the configuration overview in Table 5.1 and the
overall construction, node-wise lower generation speeds are implausible.
Although the measured transmission speeds already suggest it, Fig-

138



5.2. Architecture

le+08

8e+07
g
S 6e+07
o
Y
§ 4e+07 |- i
@)

2e+07 N

0 | | | | |
0 50 100 150 200 250 300
Buffer Index

DMA channel is ready for input
Data is valid

Figure 5.2. FPGA /Host link saturation

ure 5.2 shows another important statistic. On the FPGA, the clock cycles
have been counted where each DMA channel signals that it is able to accept
a new data word (“DMA input ready”) and the number of clock cycles
where data is available for sending. These counters are reset when a new
buffer commences and are moved to the FPGA’s configuration space to be
read by the host as side-channel data. Measurements show that the average
buffer transmission time on the three-way method is 317 ms. Therefore, the
average buffer time in clock cycles assuming 250 MHz interface clock, is
80 x 10°. For simplicity, only statistics for the first DMA channel are shown
but the other two channels perform similarly.

Both graphs appear to be mirrors of each other. When both the DMA
channel is ready for input and the table output displays valid data, transmis-
sion is started and the DMA channel changes its state to not ready. Hence,
the DMA channel “ready count” graph essentially drops by the “data valid”
counter value during transmission. Still, the DMA channel is ready to a
large portion of the buffer cycle. Although no “transmission capacity” can
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be deduced from these data as a single transmission may lead to several not
valid emissions, it does allow to conclude that the transmission between the
host system and the FPGA is not fully saturated.

Result Processing

The host application can, if desired by the user, output only the highest
ranked results among the whole data set. The chosen data structure, a
MiNMAaxHEAP, has been modified to restrict the maximum number of stored
elements and is therefore independent of the data set size (see Section 4.5.6
)- Instead, the required storage is bounded by the number of items that the
user desires to keep. Although insertion into the MINMAXHEAP is fast, even
O(log k) becomes significant when a very large number of items are queued
for insertion. By extending the heap with a fixed size property, the runtime
can be reduced to asymptotically constant time by simply comparing the
to-be-inserted item to the lowest recorded score in the heap and only
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performing the actual insertion if it is larger than the current minimum. To
prevent lock contention in busy situations, every result processor thread
keeps a thread-local heap. When done, all heaps are merged into a single
heap which is then written to disk. Figure 5.3 depicts the number of heap
insertions for the first two heaps. The heap capacity used to generate data
for this diagram is 100. Tt can be seen, that the very first buffers (with a table
volume of approx. 8 x 10° tables) fill the heaps to a large extent while the
actual insertion counts become less and less. Around the 80th buffer, only
0.00625 % of all contained tables are submitted to insertion. The anomalies
around buffers 140 and 210 can be explained by single-SNP effects that
raise the signal strength of all combinations where that SNP participates in.
After buffer 250, no more than 20 tables (or 0.00025 %) per 8 x 10° tables are
inserted, reducing the measured CPU load to less than 10 % on the result
processing threads. The full profiling run on the reference data set yields
approx. 5300 buffers whereof the first 500 buffers are shown in the diagram.

Joint Application Performance

From Figures 5.4 and 5.5, it can be seen that FPGAs and GPUs, at least in
the configurations used in this application, perform equally well on both
tasks. Especially in the third-order method, the average FPGA generation
speed matches the average GPU processing speed within a margin of
130MiB/s. In Figure 5.5 though, the variations in the GPU application
speed are much larger. This can be explained through varying degrees of
warp divergence. GPU-based threads are organized in warps where each
thread in the warp is supplied with the same instruction stream. More
specifically, this disallows threads in a warp to diverge in the branches
taken, for example, in a conditional clause or a loop. If threads in a warp
require a different path to be taken, all other threads are halted. Hence,
all diverged branches are executed sequentially. In the case of the second-
order filter chain, most results are discarded by the KSASA pre-filter. In
data sets that contain SNPs that have a strong influence by themselves, all
combinations that include that SNP may present an increased score. In turn,
this might cause larger numbers of high-ranked consecutive combinations
where more pairs happen to proceed further into the filter chain into the
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Figure 5.4. FPGA generation speeds vs. GPU processing speed (third order)

Table 5.2. FPGA table generation and GPU processing speed comparison

Second-Order Third Order

BOOST Mutual Information

FPGA average 2749MiB/s 2799 MiB/s
GPU average 2502 MiB/s 2929 MiB/s

computationally more expensive tests. Due to the lack of branching in the
third-order method, warp divergence is essentially not happening while the
second-order method performs operation where the runtime is heavily data
dependant, causing throughput figures with higher variance.

In the BOOST implementation, the throughput averages of FPGAs and
GPUs differ slightly more than in the Mutual Information implementation.
Here, the average GPU processing speed is approximately 247 MiB/s lower
than the average FPGA generation speed as shown in Table 5.2.
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These results show that the computational power with respect to their
specific problems, GPUs and FPGAs are on par and can be combined to
develop a high-efficiency hybrid computer system. It is clear, that the FPGAs
involved process a workload that is close to their optimal problem structure,
counting and pipelining being two of the most suited tasks when it comes
to reconfigurable logic. The same conclusion can be derived for GPUs.
These devices contain special hardware modules to accelerate operations
on floating-point numbers and allow multiprocessing in a fixed but tunable
and large computation grid, combined with efficient on-chip scheduling
algorithms. Both parts combined with a potent host system to control the
data flow yields a system with a high performance-per-watt ratio and low
amount of idle resources. The following section displays and discusses the
proposed hybrid computer under the aspect of energy efficiency.
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5.2.2 Runtimes

Figure 5.6 shows how the runtimes of third order interaction search rises
with the number of SNPs. For reference, a function plot for the theoretical
runtime as computed by contingency table transmission rates has been
added. It can be seen that they only differ in a few seconds in runtime. The
difference can be explained by input data loading times as well as result
processing and writing. Furthermore, the parallel loading scheme as well as
the MinMaxHEeAP-based approach on result selection reduces the runtime
overhead to negligible values. The graph data has been collected from a
data set consisting of 5000 samples and SNPs in the range from 500 to 7 500
SNPs in steps of 500 SNPs. The result processing was set to gather the one
million best results in a MINMAaxXHEAP, using two threads for loading and
eight threads for filtering. All threads have been bound to a specific CPU
core to limit context switching overhead and cache invalidation.
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5.2.3 Energy Consumption

In the era of “green computing,” bare computational power is still the most
important aspect of a computing platform but rising energy consumption
is also becoming a problem. Especially in the domain of bioinformatics and
personal medicine, algorithms and applications cannot always be processed
at academical or commercial data centers, mainly due to restrictions when
it comes to sensitive patient data. Therefore, hospitals, labs and research
groups are often required to use local installations that cannot meet the
requirements of computing clusters, in terms of energy supply and housing.

Additionally, energy consumption is tightly coupled to thermal dis-
charge. As described earlier, thermal discharge has already significantly
influenced he evolution of CPUs (see Sect. 2.1.1) and this trend is likely
to continue, making it harder to further increase the “performance den-
sity.” The development of heterogeneous systems made of efficient and
specialized components does not only offer large amounts of computational
power but also increases the performance-per-watt ratio, leading to more
sustainable developments.

As isolated energy consumption of computer peripherals cannot be
easily measured, the tool set provided by the chip manufacturer Xilinx
Inc. is able to estimate the worst-case power consumption of the device
based on the compiled VHDL output and device feature mapping, using the
Xilinx Power Estimator (XPE). As there is no scheduler involved in FPGA
operation, it always operates under full load with only slight changes related
to the PCI Express transmission interface. The only other (non-negligible)
power consumer on the FPGA boards are the DDR3 memory modules. The
idle and load consumption have been taken from their manufacturer’s data
sheets. The results are displayed in Table 5.3.

The results clearly show that the performance presented earlier can be
delivered by regular desktop computers equipped with common-off-the-
shelf graphics hardware, consumer-grade power supply units and FPGA
accelerators. With a peak power of 530 Watts, no high-end cooling system is
required, instead the hybrid computer could be placed under any clinician’s
or lab technician’s desk.
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Table 5.3. Power consumption of hybrid computer components

Device Power Estimated by
idle load
Host System 124 W 242W Energy meter
NVIDIA GeForce 780 Ti 10W  259W  System monitor
Xilinx KC705 Board
Kintex 325T (2-way) 8.0W 8.0W XPE
Kintex 325T (3-way) 112W  112W XPE
DDR3 memory 05W 23W [Mic10]
Alpha Data Virtex Board
Virtex 690T (2-way) 179W  179W XPE
Virtex 690T (3-way) 173W  173W XPE
DDR3 memory 0.9W 51W [Micl1]
Total (Virtex, 3-way) 1522W 5234 W
Total (Virtex, 2-way) 1425W 511.3W

5.3 Competing Systems

To estimate how well the hybrid computer prototype performs, it is com-
pared against several other systems and methods. First, conventional CPU-
based approaches are analyzed. When evaluating large workloads, whole
clusters and cloud services are often used. Also, a limited number of hybrid
computers are shown, although none of them exploits the benefits of two
acceleration platforms but only use either FPGAs or GPUs.

It is usually impossible to find a data set where all other publications
agree upon. Hence, runtimes are extrapolated, assuming that the runtime
scales linearly in the number tests to be performed. Realistically, all compu-
tations incur enough overhead that no method truly scales linearly. Lacking
other methods of comparison, this might be the only fair and representa-
tive solution. Runtimes that have been extrapolated are marked with an
asterisk (*). Furthermore, none of the other methods are run locally as other
approaches may use hardware that is not available for individual measure-
ment. Instead, runtimes are solely taken from their respective publications
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and scaled to key data set sizes.

Energy consumption of competing systems is rarely publicized. To
provide energy measures, hardware details from publications are looked up
in data sheet archives. Then, the Thermal Design Power (TDP) is taken to
give a rough estimate of the power under load, assuming the programming
has been done to utilize as much available performance as possible. Hence,
these results may not represent the actual state of energy efficiency but give
an indicator that allows comparison among other platforms.

Furthermore, especially regarding the Mutual Information method, no
publications are known that specifically implement this measure. As this
work aims at establishing platforms instead of methods, comparison is done
throughout a multitude of tools that may not always produce results of
the same quality but at least claim to find second-order and third-order
interactions by exhaustively searching the space of SNP tuples.

5.3.1 Second Order Interaction

In Table 5.4, several implementations of the same method are shown and
compared to each other with respect to the processing throughput in million
tables per second and the total energy consumption in kWh. The reference
data set used contains of approx. 5000 samples and 500000 SNPs (WTCCC)
and the method parameters are comparable to the original BOOST imple-
mentation’s defaults. For reference, the original implementation has been
included.

The bottom half of Table 5.4 contains the original CPU-based imple-
mentation of BOOST and the later published GPU-based version. The
cluster-based reference implementation on a 32-node Intel Xeon E5 system
delivers 46.3 million tables per second, a speed-up of 138 over the original
CPU-based implementation when comparing whole systems. Assuming
that the original implementation does not use multiple threads and further-
more, the cluster nodes each use 8 threads as supported by the processor,
the per-core speed-up becomes approx. 0.6. This may be explained by the
cluster node interconnects. Even with high-performance Infiniband links as
they are used in the cluster system, a severe loss of computational power is
to be expected. On the other hand, these results show that the original im-
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Table 5.4. Performance comparison of different BOOST implementations

Architecture Runtime Throughput Energy Source

FPGA Cluster
128 x Spartan 6-LX150

Multi-GPU Node
4x NVIDIA GTX Titan

Hybrid System
Virtex 7-690T, NVIDIA GTX 780 Ti

Multi-GPU Node
4x NVIDIA Tesla K20m

6min  348.0MT/s 0.07kWh [GWK+15a]

10min  208.8MT/s 0.15kWh [GWK+15a]

12min  1580MT/s  0.10kWh  [KWS+16]

15min  139.2MT/s 0.18kWh [GWK+15a]

Single GPU .

NVIDIA GTX Titan 37 min 56.4MT/s 0.15kWh [GWK+15a]
CPU Cluster .

3% Intel Xeon E5-2660 45min 46.3MT/s 2.28kWh [GWK+15a]
FPGA . .
Kintex 7-325T 51 min 41.3MT/s 0.44kWh [Wielé6]
Single GPU ..

original GBOOST 2h 52 min 121MT/s (unknown)  [YYW+11]
CPY 115h 44 min* 0.3MT/s (unknown) [WYY+10]
original BOOST ’

plementation is indeed well-written and optimized and is therefore suitable
for reference in comparisons.

Both multi-GPU systems implement the BOOST measure in single preci-
sion. In their dynamic workflow, data is split into work units and distributed
among the systems” GPUs on-demand. When comparing the “4x NVIDIA
GTX Titan” node against the single GPU node, a speed-up nearly linear to
the number of devices can be observed (3.7). As the GTX Titan is specified
with a power-under-load of 250 W, but the whole single-node system draws
only 243 W, it can be assumed that neither the host system, nor the GPU
is able to exploit its full potential, though the margin seems to become
narrower on the four-GPU version.

It can further be seen that the hybrid-parallel prototype system (table
row in italics) achieves a speed-up of 527 over the original CPU-based
implementation [WYY+10] and 13 over the original GPU-based implemen-
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Table 5.5. Performance comparison of different exhaustive pairwise interaction
detectors

Method Architecture Runtime Throughput Energy
i[{;(l\)TICjH] FPGA Cluster 4 min 520.8 MT/s 0.05 kWh
Fé‘ﬁ%ﬂ;seard‘ fi?ﬁ?;‘iﬁ;lﬁimom 10min  2102MT/s (unknown)
BOOST Hybrid System 12 min 158.0 MT/s 0.05kWh
FIEEI"C\;/\II)ﬂl] NVIDIA GeForce GTX 580 2h 55min 11.9MT/s (unknown)
[PNI 12 (onspeciiod model) 19h  18MT/s  494kWh

tation [YYW+11]. An optimized version running on a compute cluster node
with four NVIDIA GTX Titan, performance-wise comparable to the NVIDIA
GTX 780 Ti used in this work, performs only 24 % better than the hybrid
system but uses four computation devices instead of two. When compared
to an FPGA cluster consisting of 128 Xilinx Spartan 6-LX150 FPGAs, 50 % of
the table throughput is achieved. However, a single LX150 device contains
a fifth of the logic resources of the Xilinx Virtex 7-690T. Additionally, an
implementation of the contingency table generation and evaluation on a
Xilinx Kintex 7-325T FPGA takes 51 min. This FPGA is technically equiv-
alent to the Virtex 7-690T FPGA used in the prototype but only possess
half its resources. However, the single-FPGA implementation achieved less
than a quarter of the hybrid performance. It can therefore be concluded
that a hybrid system with a GTX 780 Ti and a Virtex 7-690T can deliver
more performance than a system with two of these graphics cards or two
FPGA boards of this kind. Assuming that the performance scales linearly
in the number of computing devices used, the hybrid prototype processes
the data set in 35 % less time than a hypothetical Multi-GPU node with two
NVIDIA GTX Titan devices. Regarding energy efficiency, only the FPGA
cluster solution beats the hybrid prototype.

In Table 5.5, several two-way interaction analysis implementations are
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compared that exhaustively cover the full WTCCC data set without pre-
filtering. By far the fastest method is iLOCi, a model-free method that
measures differences in the linkage equilibrium (LD) of SNPS, i.e. the “equiva-
lence” of SNPs [PNI+12]. Hemani et al. created EpiGPU, an OpenCL-based
GPU-assisted approach to perform Fisher’s dependency tests with 4 degrees
of freedom [HTW+11; Lom07]. The second best performance in this survey
is delivered by multiEpistSearch, a logistic regression-based model similar
to BOOST, implemented on GPU arrays using the Unified Parallel C++
compiler extension [GKW+15] and a novel block-oriented work distribution
scheme. Unfortunately, energy consumption rates were not available for all
methods.

Comparing different methods by performance, though, may only be
useful in initial screenings of newly acquired data sets, as they significantly
differ in sensitivity and specificity, or in general, the quality of results.

5.3.2 Third Order Interaction

Evaluation with three-way epistasis detection methods is not well-estab-
lished, probably due to the heavy computational burden. Therefore, a novel
measure based on information theory methods has been developed, the
Mutual Information measure. A CPU-only OpenMP-based parallel imple-
mentation has been used to provide a performance reference to determine
the speed-up. The reference system features an Intel Core i7-4790K with
four physical cores and 2-way simultaneous multithreading enabled (eight
virtual cores, see Sect. 2.1.1). The clock frequency is 4.0 GHz and the system
supports 32 GiB DDR4-SDRAM.

Table 5.6 shows the results for a data set of 5000 samples and the
displayed number of SNPs. It can be seen that the overhead of setting
up the FPGA/GPU pipelines is negligible as the hybrid-parallel solution
outperforms the CPU-only version after just over 100 SNPs and converges
to a speed-up of approx. 72 in higher SNP numbers.

One noteworthy implementation using a measure similar to the Mutual
Information used in this work, is GPU3SNP [GS15]. The authors use a
configuration of four NVIDIA GTX Titan graphics accelerators to exhaus-
tively evaluate all SNP 3-tuples using Mutual Information in 22 hours for
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Table 5.6. Three-way interaction comparison

SNPs Host Runtime Hybrid Runtime Speed-up

100 0.8s 3.2s 0.25
250 9.7s 4.7s 2.0
500 1min 10s 6.9s 10.1
1000 7min 39s 8s 57.4
2000 1h 2min 53s 70.7
5000 16h 14 min 13min 36 s 71.6
10000 5d 10h 1h 49 min 71.8

50000 SNPs and 1000 individuals. Assuming linear decrease in runtime
w.r.t. to the number of samples in the data set, the hybrid-parallel prototype
system’s evaluation runtimes can be extrapolated to take 45 hours and 20
minutes for the same data set, based on the runtime for 5000 SNPs and
5000 samples. However, earlier analyses suggest that data channel capacity
between the FPGA and GPU becomes a bottleneck when a large number of
tables is generated in a short time frame (see Sect. 5.2.1). In case of larger
sample numbers, more time passes between the creation of two tables,
reducing the actual data rates. Thus, interpolating from a data set run of
40000 samples instead of 5000 down to 1000 samples, yields a runtime of
31 hours by factoring out the transmission speed limit. The hypothetical
Multi-GPU node consisting of two NVIDIA GTX Titan boards as used in the
BOOST evaluation would take 44 hours, resulting in a 42 % higher speed
when using the hybrid architecture instead, a similar speed increase as
observed in the two-way interaction set-up.

To assess the viability of the hybrid prototype system with respect to a
system solely consisting of FPGAs, the full analysis pipeline, i.e. creation
of contingency tables and evaluating the Mutual Information measure, has
also been implemented on an FPGA. Unfortunately, the 3-way configuration
presented in Table 5.1 only occupies less than 50 % of the FPGA’s available
resources as a fully occupied device would require higher data rates than
the Generation 2 PCI Express link is currently capable of. Therefore, a
Mutual Information pipeline could be added without reducing the number
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of nodes in the systolic array, making the standalone version precisely as
fast as the hybrid prototype [Wiel6].

Although the transmission link is an inherent component and apparently
a weakness of the hybrid architecture, using a more recent PCI Express
interface on the FPGA side such as Gen 3 or Gen 4, would certainly support
the assumption that the previous runtime interpolation of 31 hours is valid.
Upgrading the link from Gen 2 to Gen 4 almost quadruples the available
data rate. When taking the table construction and processing rates from
earlier chapters (i.e. Tables 5.1 and 5.2), the bottleneck is unlikely to remain
in the link. This further allows better exploiting the FPGA's resources to
create systolic arrays with more than the double amount of nodes, making
the hybrid prototype viable again with respect to the standalone FPGA
version.

Unfortunately, aside from GPU3SNP, no other exhaustive search tool
with comparable methods for third order interaction search is available
for comparison although the authors of BOOST explicitly state that their
method is generalizable to higher orders of interaction than two [WYY+10].

Regarding the energy consumption, GPU3SNP fails to be evaluated
because of stability issues in longer runs but as both the hardware and
software architectures are similar to the four-node BOOST GPU system
shown in Table 5.4, similar rates can be expected. These similarity rea-
sons also apply to the hybrid-parallel prototype. The differences in energy
consumption have been shown to be very small as seen in Table 5.3.
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Chapter 6

Conclusion

6.1 Summary of Results

A working hybrid-parallel architecture has been developed with focus on
applications in bioinformatics, mainly large-scale analysis on genome-wide
association studies. A general concept in computer science is to divide a
problem into smaller, more manageable problems. This divide-and-conquer
approach is also a central thought in the adaption or development of new
methods and tools for the hybrid system. Specialized peripherals, freely
configurable FPGAs, highly parallel GPUs and flexible CPUs, are used to
create a heterogeneous architecture where every component is assigned a
sub-problem that is specifically designed for the target platform in question.

In the case of gene-gene interactions in two and three dimensions, it
has been shown that such a heterogeneous system is very efficient when
compared to more conservative architectures. By the use of large systolic
data structures, FPGAs can be programmed to generate contingency tables
for later evaluation on GPUs, where higher arithmetics and transcendental
functions are required for calculation. Through careful process orchestration
by the CPU, both accelerators are able to work concurrently and move data
to and from each other in very efficient ways. The hardware foundation
is explicitly selected to perform high-throughput transfers with current
system bus controllers and beneficial PCI Express lane configurations. All
peripherals are tied together by a custom driver infrastructure that makes
heavy use of advanced Linux kernel features and hardware-assisted data
transfers while providing a usable interface for applications, such as the
presented two-way and three-way interaction analysis toolkit.

The suitability of the presented hybrid-parallel architecture is supported
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by the results presented in Chapter 5. In the case of two-way interaction
analysis, the processing throughput of the proposed prototype has been
shown to deliver results 35 % faster than two similar graphics cards while
performing 25 % better than two similar FPGA boards. In third-order in-
teraction, it is still 42 % faster than a two-GPU node but only as fast as a
single-FPGA solution with the transmission link being the limiting factor.
Since the introduction of the Alpha Data Virtex 7-690T boards, better PCI
Express endpoint modules (“drivers” on the FPGA) became available that
support Generation 3 and Generation 4 systems, doubling and quadru-
pling available net data rates. These developments will certainly lift the
transmission barrier. As the FPGA system in question only consumes less
than half of the resources available, fully exploiting the device will make
the prototype faster than a two-FPGA system, or at least delivering on-par
performance, given higher transport capabilities.

In general, the development and construction of the given hybrid-
parallel architecture prototype yields a platform that supports applications
in bioinformatics, specifically the analysis of gene-gene interactions in an
exhaustive way. The performance figures show a drastic decrease in runtime
when compared to more homogeneous and conservative architectures such
as single-CPU nodes, CPU-based clusters, and even GPU clusters. Even
then, the whole system fits into a single standard ATX desktop chassis
without any expensive server-grade hardware or power supply require-
ments, besides a GPU and FPGA card. Instead of moving sensitive patient
data to off-site data centers for computation, data sets can now be ana-
lyzed in-house by any lab technician due to simple platform interfaces,
consumer-grade hardware requirements and low energy consumption.

6.2 Future Work

Although the development process outlined and discussed in this work is
targeted towards a proof-of-concept system, a highly potent system has
evolved. However, during research and development, some optimizations
became clear that would have gone beyond the scope of this work and
therefore were not implemented.
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6.2.1 Direct Memory Access

Direct Memory Access is a core technology that this prototype system could
not have been developed without. It allows transferring data between mem-
ories without involvement of the CPU, besides set-up and tear-down, and
therefore frees valuable computational resources for the application’s needs.
In DMA scatter/gather transfers, the memory buffers that are scheduled
for transmission are stored in lists where each entry represents a 4 096-byte
block of memory, also called a memory page. These lists have a fixed capacity
and are processed and re-filled in a circular buffer-style. While the CPU
does not need to transfer the data by itself, it does have to prepare these
scatterlists and feed them to the DMA controller. The presented applications
use a number of buffers that are typically 256 MiB in size, or 65536 pages
per buffer. With transmission speeds measured in GiB/s, refilling these lists
on time becomes measurable part of the runtime.

Newer hardware platforms, processors and operating systems support
structures that are called Huge Pages on Linux, Super Pages on BSD and
Large Parges on Windows. Generally, these are regular memory pages that
support sizes of 4 KiB (the default size), 2 MiB and 1 GiB per page, drastically
reducing the effort of list management, provided that these page sizes are
supported by all connected peripherals.

Currently, data buffers are moved off the FPGA to the host’s main
memory using a DMA transaction, and then another DMA transaction is
responsible for moving the same block of data from the main memory
to the GPU’s memory. Although both the NVIDIA CUDA interface and
the Alpha Data interface explicitly allow transfers to “peer devices,” no
transmission protocols have been published. Reverse engineering techniques
could be used to develop a protocol and remove the burden of buffer
management entirely from the host, and reducing the number of required
DMA transactions from two to one. Several research groups have already
published findings regarding the direct data transmission between FPGAs
and NVIDIA GPUs, but none of them achieve the data rates required and
presented in this work, yet [BRF14; Sus14; Gill5].
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6.2.2 Mutual Information Deficiencies

Mutual Information is a method used in information theory to measure
the dependence between the entropies of two random variables. In this
work, a single random variable has been assigned to the joint probability
distribution of all SNPs that are used in the test. While this allows efficient
computation of the dependency between the SNP tuple and the case/control
variable, it is not only the combined effect of all SNPs that is shown, but for
a “good” score, it is sufficient for a single SNP to have a high dependence
(primary effects) or two of three SNPs (secondary effects). It is not always
desirable to allow primary and secondary effects overshadowing a possible
tertiary effect. Additionally, when a low number of best list entries is
selected, a single SNP with a strong influence may be present in a large
number of results, raising the score for an otherwise unremarkable SNP
combination.

Although the primary and secondary effects could be removed from the
final result by separately calculating the mutual information of all 1-tuples
and 2-tuples of a 3-tuple and subtracting these, implementing a different
method where primary and secondary effects play a lesser role in the result,
might be a better solution. A promising method is Information Gain, where
not only positive influence is modeled, but also negative (i.e. suppressing)
influence. However, the Information Gain measure is much more complex
than Mutual Information and hardly being able to be implemented on FP-
GAs in a resource-efficient way. Apart from the more precise measurement
results, this also basically removes the possibility of standalone FPGA solu-
tions, emphasizing the role of this hybrid-parallel system with respect to
third-order interaction analyses. Research on Information Gain applications
in third-order interaction is currently conducted and publications prepared.

6.2.3 Scaling Prototypes

An obvious follow-up target of this work is the turning of the prototype
into a full productive system where multiple FPGAs, GPUs and CPUs
are working together. Although this possibility has already been consid-
ered in the design of the respective drivers and software packages, data
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Figure 6.1. PCI Express lane layout in a multi-processor system

flow management becomes much more complex. An increased number
of data moving threads will inevitably increase the lock contention ratio,
i.e. the timer share that threads spend on waiting for a shared resource
to become available. Currently, with only a few producing threads and a
single consumer, the buffering queue could be implemented using standard
queue structures from the C++ Standard Template Library and semaphores.
A larger number of producers and consumers in high-performance envi-
ronments might require more sophisticated data structures. One notable
candidate for implementation is the Parallel Flat-Combining Synchronous
Queue, where both producers and consumers do not actively operate on
the work queue anymore but are serviced by a dedicated thread pool by
dispensing slot tickets [HIS+10]. These tickets can then be used to access
slots in the queue without further synchronization with other, concurrently
accessing threads, virtually eliminating lock contention on these central
data structures.

Aside from the pure software implementation, multiple computing
devices raise issues in the PCI Express connectivity. If a GPU requires 16
lanes, four GPUs require 64 lanes. Unfortunately, current processors do not
provide more than 40 lanes. An obvious solution is to use a multi-processor
system for more PCI Express bandwidth, as shown in Figure 6.1. Even
in a dual-processor set-up though, 40 lanes are not sufficient to deliver
maximum performance to all connected devices. In a shared FPGA /GPU
solution as presented in this work, data only flows between FPGAs and
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GPUs. It is therefore sufficient to downgrade the GPU link from 16 lanes to
8 lanes, the highest lane width current Xilinx FPGAs support natively.

As Figure 6.1 suggests, additional care has to be taken to not cross CPU
domain boundaries. For example, if FPGA 1 transmits data to GPU 2, the
PCI Express connection is routed through the CPU interconnect QPI (Intel
QuickPath Interconnect). The QPI is a shared medium where the various
CPU peripherals communicate with each other, i.e. memory controllers,
thread management units, I/O devices and PCI Express controllers. It does
not only limit the maximum bandwidth for concurrently running (and
boundary-crossing) FPGA /GPU transfers but may also severely reduce the
system performance through bus contention, such as critical main memory
transfers. For a successful implementation on a multi-device hybrid-parallel
architecture, the exact CPU and PCI Express topologies have to therefore
be examined. Additionally, great care has to be taken to bind execution
threads that service a particular FPGA or GPU to the responsible CPU to
avoid costly thread migration between CPUs and/or physical cores.

Currently, a follow-up system to this prototype is being installed at
the Institute of Clinical Molecular Biology, Kiel University, generously
funded by the Prof.-Dr.-Werner-Petersen-Stiftung. It features four high-end
NVIDIA Tesla P100 accelerators, four Xilinx UltraScale Kintex 7-115, the
largest devices in the Kintex series, two 8-core Intel Xeon processors clocked
at 3.2Ghz and 256 GiB DDR4-SDRAM. The presented BOOST method,
Mutual Information and Information Gain measures are currently being
implemented.

6.2.4 Other Applications

Analysis of genome-wide association studies is only one computationally
demanding area in bioinformatics, while the potential applications of such a
hybrid system are manifold. Ongoing projects include the following, where
standalone FPGA implementations have already been developed [Wiel6]:

Imputation refers to the statistical inference of factually unobserved geno-
types. When using microarrays as explained in Section 3.1.6, only a
limited set of SNPs is actually acquired. These, however, supply suppos-
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edly enough information to guess SNP variants in non-typed regions
based on statistical evaluations.

Sequence Alignment is the process of aligning two or more DNA sequences
to each other to find the position with the most identical overlaps. Before
GWAS are conducted, the actual SNP locations on the genome has to be
known beforehand. One method to find these locations is the alignment
of a large number of sequences to a reference genome. If a location
is found were all (or many) sequences match except for a single base
pair, a SNP might have been found. Naive sequence comparison is
typically done in quadratic runtime with respect to the string lengths
and therefore presents a demanding problem.
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Appendix A

Command-Line Options

A.1 adboost Help Output

Usage: adboost [options] <SNP input file>

Regular options:

-2 [ --help ] produce this help message

--version prints version information

--export-snpdb arg exports the SNP database to the given
file

-f [ --format ] arg (=plink_transposed)
use this input data format (only needed
if not importing the native format).
Allowed formats: plink_transposed,
plink_binary,boost,native

-0 [ --output ] arg write SNP interaction data to this file
instead of stdout

-t [ --threshold ] arg (=15) set threshold for KSA test

--threshold-11 arg (=30) set threshold for log-linear test

Hidden options (only visible in debug mode):

- -debug produce lots of debug output

--assume-fpgas arg (=-1) set number of FPGAs to use (-1 for all)

--assume-gpus arg (=-1) set number of GPUs to use (-1 for all)

--convert-only do only format conversion, don’t do actual
contingency table processing

- -dump-buffers dump received FPGA and GPU buffers to disk

--timeout arg (=5000) Timeout for FPGA transmissions (in ms)

This is version 1.00, compiled on Oct 10 2016, 11:10:22
Send bugs to Jan Christian Kaessens <jka+bugs@informatik.uni-kiel.de>
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A.2 ad3way Help Output

Usage: ad3way [options] <SNP input file>

Regular options:

-? [ --help 1 produce this help message

--version prints version information

--export-snpdb arg exports the SNP database to the given
file

-f [ --format ] arg (=plink_transposed)
use this input data format (only needed
if not importing the native format).
Allowed formats: plink_transposed,
plink_binary,boost,native

-0 [ --output ] arg write SNP interaction data to this file
instead of stdout
-n [ --result-count ] arg (=1000) set number of best results to keep

Hidden options (only visible in debug mode):

- -debug produce lots of debug output

--assume-fpgas arg (=-1) set number of FPGAs to use (-1 for all)

--assume-gpus arg (=-1) set number of GPUs to use (-1 for all)

--convert-only do only format conversion, don’t do actual
contingency table processing

- -dump-buffers dump received FPGA and GPU buffers to disk

--timeout arg (=5000) Timeout for FPGA transmissions (in ms)

This is version 1.00, compiled on Oct 10 2016, 14:15:39
Send bugs to Jan Christian Kaessens <jka+bugs@informatik.uni-kiel.de>
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