
lv1

00

F-

0
C,

N 13

Domain Specific High Performance Reconfigurable
Architecture for a Communication Platform

Imran Ahmed

Thesis submitted for the degree of Philosophy.
The University of Edinburgh.

May 2007

C

V3 181

DECLARATION OF ORIGINALITY

I hereby declare that the research recorded in this thesis and the thesis itself was

composed and originated entirely by myself in the School of Engineering and

Electronics at the University of Edinburgh.

Imran Ahmed

11

ACKNOWLEDGEMENT

Praise be to GOD ALMIGHTY, my creator and sustainer, who made me capable

enough to complete this thesis.

I am also thankful to:

My supervisor, Prof. Tughrul Arslan for his knowledge, expert guidance and

patience whilst assisting me through out my research. His technical acumen,

precise suggestions and timely discussions are whole heartily appreciated.

I wish to express my indebtness to Dr. Ahmet Erdogen for his helpful suggestions

and lively discussions during the research work. I am grateful to Dr. Sami Khawam

for his technical guidance in reconfigurable area.

I would also like to thank all the staff at Institute for System Level Integration for

providing me with their support and excellent research facilities.

My whole family, especially my wife Rukia and my daughter Sara in whose

presence I always found the life in its best colours. Thanks to my nephew Changez

and niece Isra for their prayers.

Very special thanks to my parents and their prayers which have supported me

throughout my life. This thesis is dedicated to my wife for her untiring love and

support.

111

12

PUBLICATIONS

I Ahmed, T Arslan, "Reconfiguration requirement for convolutional
forward error correction decoding for 3G and Beyond", journal submitted to IEEE
VLSI transaction.

I Ahmed, T Arslan, "A reconfigurable viterbi traceback for implementation
on Turbo Decoding Array", in IEEE International SOC Conference, 2006.
Publication date: Sept. 2006 Page(s) 107-108.

I Ahmed, T Arslan, "A reconfigurable viterbi decoder for a communication
platform", in IEEE International FPL Conference, 2006. Publication date: Aug
2006 on pages 1-6.

I Ahmed, T Arslan, "VLSI Design of Multi Standard Turbo Decoder for 3G
and Beyond", in 12 1h International IEEE ASP-DAC Conference Jan 23-26, 2007.

I Ahmed, T Arsian, "A Low Energy VLSI Design of Random Block
Interleaver for 3GPP Turbo Decoding", in IEEE international Symposium on
circuits and systems ISCAS 2006 publication date 21-24 May 2006.

I. Ahmed, T. Arsian, "Improved Memory Strategy for Log Map turbo
decoders," in SOC Conference, 2005. Proceedings IEEE international pages 103-
104, Sept 25-28 2005.

I Ahmed, T Arsian, "Efficient implementation of Mobile Video
Computations on Domain Specific Reconfigurable Arrays" in Proceedings IEEE
Design, Automation and Test in Europe (DATE) conference in 2004. Publication
date: 16-20 Feb. 2004 on pages 1833.

I Ahmed, T Arslan, "Video transmission through domain specific
reconfigurable architectures over short distance wireless medium utilizing
Bluetooth IEEE 802.15.1/spl trade/standard" in Proceedings IEEE international
SOC Conference 2004, publication date: 12-15 Sep 2004 on pages 7-10.

I Ahmed, T Arslan et al "Domain Specific Reconfigurable Architecture of
Turbo Decoder Optimized for Short Distance Wireless Communication", in
Proceedings 19th IEEE International Parallel and Distributed Processing 2005
publication date: 04-08 April 2005 on pages 166b.

iv

ABSTRACT

Reconfiguration in an Integrated Circuit (IC) design has become increasingly

important in the recent years. Some of the driving factors behind this trend are

reduction in transistor size, ever changing standards, very high IC mask costs and

short time to market. The programmable hardware design however suffers from

performance degradation due to the added flexibility contrary to the end user demand

for very high speed and low power electronics. Domain specific reconfigurable

architectures provide a powerful solution to the problem by carefully tailoring the

domain of the reconfiguration for the increased performance. This research work

focussed on investigating such low power reconfigurable VLSI architectures for

forward error correction (FEC) to be deployed in a unified communication platform.

The viterbi and turbo decoding are very well known techniques for FEC decoding and

are essential components in many current and up coming standards such as WCDMA,

WLAN, GSM, CDMA2000, ADSL and 3GPP. This thesis presents a reconfigurable

unified implementation with a unified state machine control for combined turbo-

viterbi decoder array. The amount of flexibility in the reconfigurable design is

carefully tailored to meet the performance constraints imposed by these standards.

Work on reconfigurable viterbi decoder provided the new novel reconfigurable trace

back methodology, new segmentation and memory management techniques along

with an open trellis structure that can support multiple standards. The work on

reconfigurable turbo array generated novel implementation techniques for low power

input metrics management and reconfiguration, low power branch metrics generation,

a new matrix normalization scheme and a completely flexible open trellis low power

reconfigurable design. Turbo decoder design is combined with a novel low power

implementation methodology for 3GPP internal interleaver. The interleaver

implementation gives significant reduction in storage requirement for interleaved

patterns and hence much improved power performance.

V

CONTENTS

DECLARATION OF ORIGINALITY 	 .11

ACKNOWLEDGEMENT...iii

PUBLICATIONS .. iv

ABSTRACT ... V

CONTENTS ..

1 	INTRODUCTION ... 1

1.1 	MOTIVATION..1
1.2 	CONTRIBUTION ...2
1.3 	STRUCTURE..4
1.4 	SUMMARY... 5

2 	EVOLUTION OF RECONFIGURABLE ARCHITECTURES IN CONVENTIONAL
FPGAs ... 6

2 .1 INTRODUCTION...6
2.2 STATE OF THE ART IN VITERBI DECODER IMPLEMENTATIONS.......................6
2.3 STATE OF THE ART IN TURBO DECODING..8
2.3.1 TURBO RECEIVER TECHNIQUES FOR CODED MIMO OFDM SYSTEMS9
2.3.2 TURBO CODES FOR DIGITAL VIDEO BROADCASTING ..9
2.3.3 TURBO CODES ON SATELLITE COMMUNICATIONS... 10
2.3.3.1 ITERATIVE CONNECTIONS 'S-T`EC Tm 	.. 11
2.3.3.2 TRELLISWARE 'FLEXICODES ' ... 11
2.3.3.3 SMALL WORLD COMMUNICATIONS AND ICODING ... 11
2.3.3.4 STMICROELECTRONICS... 12
2 .3.3.5 BROADCOM.. 12
2.3.4 BLOCK TURBO AND TURBO PRODUCT CODES.. 12
2.4 VLSI FOR TURBO DECODING ... 13
2.5 RECONFIGURATION IN FPGAS... 19
2.5.1 EVOLUTION IN LOGIC BLOCK ARCHITECTURE.. 20
2.5.2 ROUTING IN COMMERCIAL FPGAS... 27
2.5.2.1 XILINX ROUTING ARCHITECTURE ... 27
2.5.2.2 ROUTING IN ALTERA FPGAS.. 30
2 .4.3 CELLULAR ROUTING ... 31
2 .5.3 ROW ROUTING... 31
2 .6 SUMMARY... 32

3 RECONFIGURATION TECHNIQUES AND ARCHITECTURES FOR DOMAIN
SPECIFIC PLATFORMS ... 33

3.1 INTRODUCTION .. 33
3.2 DOMAIN SPECIFIC RECONFIGURABLE CORES FOR WIRELESS

COMMUNICATION .. 34
3.2.1 CHAMELEON SYSTEMS - MONTIUM RECONFIGURABLE ARCHITECTURE 34
3.2.2 RAPID ARCHITECTURE FOR OFDM WIRELESS RECEIVER MAPPINGS........... 38
3.2.3 APPLICATION SPECIFIC INSTRUCTION SET PROCESSOR (ASIP) BASED

COMMUNICATIONDESIGNS... 41
3 .2.4 VITURBO ... 43

VI

3.3 ARCHITECTURES BASED ON LINEAR ARRAYS 	 .44
3.4 WORMHOLE RECONFIGURATION MODEL .. 46
3.5 VLIW EXECUTION BASED RECONFIGURATION MODEL 48

3.6 MIMD RECONFIGURATION MODEL .. 51
3.7 UNI PROCESSOR RECONFIGURATION MODEL ... 52
3.8 SIMD RECONFIGURATION MODEL ... 54

3.9 SUMMARY ... 56

4 RECONFIGURABLE TURBO DECODING ... 57

4.1 INTRODUCTION ... 57
4.2 TURBO DECODING - THE INVENTION ... 58
4.3 THE MAXIMUM-A-POSTERIORI (MAP) ALGORITHM - MATHEMATICAL

DESCRIPTION ... 58
4.3.1 FORWARD RECURSIVE CALCULATION OF THE AK(S) VALUES 61
4.3.2 BACKWARD RECURSIVE CALCULATION OF THE BK(S) VALUES: 62

4.3.2 CALCULATION OF THE 	VALUES .. 62
4.4 LOG-MAP DECODING ALGORITHM: ... 65
4.5 THE TURBO CONCEPT .. 66
4.6 RECONFIGURABLE VLSI DESIGN TARGETING MULTIPLE STANDARDS 68
4.7 RECONFIGURABLE DOMAIN .. 70
4.8 FINITE PRECISION ANALYSIS .. 72
4.9 SLIDING WINDOW ... 75
4.10 DESIGN APPROACH .. 75
4.11 VLSI IMPLEMENTATION OF THE TURBO ALGORITHM 77
4.11.1 INPUT RAMS ... 77
4.11.2. STATE MACHINE CONTROL AND SCHEDULING ALGORITHM 79
4.11.2.1 TIME SLOT 0-1, (FIGURE 4.17A) ... 79
4.11.2.2 TIME SLOT L-21, (FIGURE 4.17B) ... 80
4.11.2.3 TIME SLOT 2L-3L (FIGURE 4.17C) ... 81
4.11.2.4 TIME SLOT 31,41, (FIGURE 4.17D) ... 81
4.11.3 BRANCH METRICS CALCULATOR (BMC) .. 82
4.11.4 FORWARD AND REVERSE PROCESSOR CALCULATION 84
4.11.5 NORMALIZATION / SATURATION ... 86
4.11.6 LOG LIKELIHOOD RATIO (LLR) CALCULATION .. 87
4.11.7 RECONFIGURABLE INTERCONNECT .. 88
4.12 COMPARISON OF RESULTS AND CONTRIBUTION .. 88
4.12.1 ASIP .. 92
4.12.2 GENERAL PURPOSE PROCESSORS .. 92
4.12.3 GENERAL PURPOSE RECONFIGURABLE LOGIC (FPGAS) 92
4.12.4 ASIC .. 93
4.12.5 TURBO I VITERBI CO PROCESSOR ACCELERATORS... 93
4.13 CONCLUSION ...94

5 	RECONFIGURABLE VITERBI DECODING...95

5.1 	INTRODUCTION...95
5.2 	VITERBI ALGORITHM ... 96
5.3 	MATHEMATICAL DESCRIPTION..98
5.3.1 	EUCLIDEAN METRIC COMPUTATION ... loo
5.4 	RECONFIGURABLE VITERBI DOMAIN ...102
5.4.1 	GSMIGPRS ...102
5.4.2 	3GPP2 (WCDMA, CDMA-2000) ...103
5.4.3 	WLAN 802.1 IA AND METROPOLITAN AREA NETWORK IEEE 802.16.............103
5.5 	HARDWIRED SIMULATIONS...104
5.6 	VLSI IMPLEMENTATION OF THE VITERBI ALGORITHM..................................106
5.6.1 	ACS BLOCK...107

vii

5.6.2 PATH METRICS (PM) MEMORY 	 .111
5.6.3 PATH HISTORY (PH) MEMORY ... 114
5.6.4 RECONFIGURABLE WRITE ADDRESS GENERATOR .. 116
5.6.5 STATE MACHINE CONTROL OF PATH HISTORY MEMORY 118
5.6.5.1 RECONFIGURABLE ASPECTS OF STATE MACHINE .. 120
5.6.6 RECONFIGURABLE TRACE BACK PROCESSING .. 120
5.6.7 OPEN TRELLIS AND DYNAMIC RECONFIGURATION .. 122
5.7 RESULTS .. 123
5.6.1 COMPARISON ... 126
5.8 CONCLUSION ... 126

6 LOW POWER INTERLEAVER ... 127

6.1 INTRODUCTION ... 127
6.1.1 RECTANGULAR INTERLEAVERS ... 127
6.1.2 HELICAL INTERLEAVER .. 128
6.1.3 ODD-EVEN INTERLEAVER .. 129
6.1.4 SIMILE INTERLEAVER.. 130
6.1.5 FRAME INTERLEAVER ... 131
6.1.6 PSEUDO-RANDOM INTERLEAVER .. 131
6.1.7 S-TYPE INTERLEAVERS ... 131
6.1.8 UNIFORM INTERLEAVERS .. 132
6.1.10 CONVOLUTIONAL INTERLEAVERS .. 132
6.1.11 CODE MATCHED INTERLEAVER ... 132
6.1.12 CHAOTIC INTERLEAVER ... 133
6.1.13 NON-BLOCK INTERLEAVERS ... 133
6.1.14 THE BEST INTERLEAVER .. 133
6.2 THE 3G INTERLEAVER ... 134
6.3 OVERVIEW OF ALGORITHM ... 136
6.3.1 PSEUDO CODE .. 136
6.3.1.1 PHASE1. PREPARATORY PHASE .. 137
6.3.1.2 PHASE 2. CALCULATION PHASE .. 138
6.3.1.3 TRANSLATING THE INTERLEAVER MATRIX IN ONE DIMENSION 141
6.4 VLSI ARCHITECTURE ... 141
6.4.1 BASE SEQUENCE ... 142
6.4.2 ORDERED PRIME SEQUENCE .. 142
6.4.3 INTER ROW PERMUTATION PATTERNS ... 142
6.4.4 DUAL PORT SRAM FOR PARAMETER 'R(J)' .. 142
6.4.5 8X8 MULTIPLIERS ... 143
6.4.6 MODULUS CALCULATOR .. 144
6.4.7 DUAL PORT SRAM FOR PARAMETER 'S(J)' ... 144
6.4.8 INTER ROW PERMUTATION.. 145.
6.5 PRUNING ... 146
6.5.1 PRUNING CONTROL LOGIC... 147
6.5.2 ADDRESS CONTROLLER.. 147
6.6 RESULTS.. 148
6.7 CONCLUSION ... 150

SUMMARY AND CONCLUSIONS .. 151

7.1 INTRODUCTION... 151
7.2 SUMMARY OF THESIS .. 151
7.3 SUMMARY OF ACHIEVEMENTS... 154
7.4 FINAL REMARKS... 154
7.5 FUTURE WORK... 155

REFERENCES ..157

vi"

LIST OF FIGURES

Figure2.1 	Plessey LB.. 20

Figure2.2 Toshiba LB... 2 1

Figure 2.3. Actel LB based on multiplexers.. 21

Figure 2.4. Multiplexer based block by quick logic .. 22

Figure2.5. A 3 	input LUT. .. 22

Figure 2.6 Cluster of LUTs in Xilinx 4000 ... 24

Figure 2.7 Flex 10K device by Altera.. 25

Figure 2.8 Altera Flex 10K logic element ... 25

Figure 2.9 HCeII placement in HardCopy II .. 26

Figure 2.11 	single length connections... 28

Figure 2.12 Double length connection... 29

Figure 2.13 Xilinx interconnect topologies ... 29

Figure2.14 R4 interconnect .. 30

Figure2.15 C4 interconnect .. 31

Figure 3.1 Block diagram of RaPiD .. 39

Figure 3.2 interconnects for RAPID.. 39

Figure 3.3 Bus connector with configurable delay and BC... 40

Figure 3.4 Connection of tracks to FUs of RAPID.. 40

Figure 3.5 Stripes of Piperench architecture.. 45

Figure 3.6 Processing elements in piperench... 46

Figure 3.7 Colt functional unit... 47

Figure 3.8 Colt IFU interconnection.. 48

Figure3.9 EXU of Paddi I... 49

Figure 3.10 Pleiades architecture .. 50

Figure 3.11 Chess board placement pattern in Chess Array..52

Figure 3.12 Functional unit in Chess... 52

Figure3.13 Garp architecture..5 3

Figure 3.14 Morphosys block diagram.. 54

Figure 3.15 Reconfigurable cell in Morphosys.. 55

Figure 4.1: Possible transitions in the trellis corresponding to Constraint length K=3...................... 59

Figure 4.2: Calculating alpha probability .. 61

Figure 4.3: Calculating beta probability .. 62

ix

Figure 4.4. ACS block 	 .66

Figure 4.5 Turbo RSC encoders connected by interleaver .. 67

Figure 4.6.131ock diagram of turbo decoder ... 68

Figure 4.7 Block diagram of unified array .. 69

Figure 4.8: UMTS component encoder ... 70

Figure 4.9: CDMA2000 component encoder .. 71

Figure 4.10: Max Log Map BER analysis with floating point precision ... 73

Figure 4.11: Fixed point analysis for input matrics for quantizatios 3:1, 4:2 and 5:2 with 2 and 6
iterationsof Max Log Map .. 74

Figure 4.12: Fixed point analysis for extrinsic (apriori) input for quantizatios 5:1, 5:2 and 6:2 with 1, 2
and 6 iterations of Max Log Map .. 74

Figure 4.13: Matlab design methodology .. 76

Figure 4.14: ASIC design flow for Max Log Map Implementation .. 76

Figure 4.15 FSM control for input RAMs and branch metric calculators ... 78

Figure 4.16 VLSI design of State Machine ... 79

Figure 4.17. Read/Write FSM Control for RAMs ... 80

Figure 4.18 Scheduling diagram for max log map implementation ... 80

Figure 4.19 FSM control for Max log map implementation .. 82

Figure 4.20: Implementation possibilities for max log map .. 82

Figure 4.21: Flexible branch metric and state metric connection of ACS unit 84

Figure 4.22 Implemented ACS architecture for Max log Map algorithm .. 85

Figure 4.23: Normalization scheme with BM, FSM units for max log map 86

Figure 4.24 New saturation check scheme for max log map ... 87

Figure 4.25. LLR Computation Unit of max log map decoder .. 88

Figure 4.26. Timing diagram for turbo decoder .. 90

Figure 4.27. Area-Power distributions of individual components of the designed turbo decoder 90

Figure 4.28. Ratio of the net switching power and cell internal power in 90nm CMOS process 91

Figure 4.29. Critical path delay, Area and total cell count in 90nm CMOS process 91

Figure 5.1 K=9, Rate V2 Convolutional Encoder for CDMA 2000 .. 97

Figure 5.2. Viterbi Encoder in GSMIGPRS .. 102

Figure 5.3 Rate V2 an 1/3 Convolution encoders for 3GPP [3GPP99] ... 103

Figure 5.4 Rate ½ Convolution encoder for WLAN and IEEE 802.15 ... 104

Figure 5.5: Fixed point analysis for rate V2 Viterbi decoding in AWGN channel 105

Figure 5.6: BER Results for rate ½ soft decision viterbi decoder in multipath channel for WLAN
802.11a and 8O2.16 .. 105

Figure 5.7 Next and Previous state calculation for all trellises .. 106

Figure 5.8. A simple butterfly operation for SM calculation ... 109

Figure 5.9 256 states 3GPP trellis for generator polynomial 753,561 ... 110

X

Figure 5. 10 Modification in saturation circuit for Viterbi decoding .. III

Figure 5.11: PM Memory read and write operations ... 112

Figure 5.10. Example showing previous state calculation ... 112

Figure 5.13. State machine control for PM RAMs in viterbi ... 114

Figure 5.14: 2Kx4 identical path history RAMs in viterbi decoder, Segmentation and mappings shown
fordifferent standards .. 115

Figure 5.15: Reconfigurable write address generator for viterbi decoder .. 116

Figure 5.16. State machine in viterbi showing 4 operating states .. 118

Figure 5.17: Scheduling diagram for viterbi decoding .. 119

Figure 5.18: Traceback processing for reconfigurable viterbi decoding ... 122

Figure 5.19: Area of array without output RAMs .. 123

Figure 5.20: Area and Power results of individual components of the viterbi design 124

Figure 5.21: Net switching power and cell internal power in I 8Onm UMC CMOS process for viterbi
componentsof the array .. 125

Figure 6.1. PCCC (Parallel Concatenated Convolutional) Encoder .. 135

Figure 6.2. PCCC (Parallel Concatenated Convolutional) Decoder .. 136

Figure 6.3. Design flow for interleaver implementation .. 140

Figure 6.5 Block Diagram of the interleaver implementation ... 145

Figure 6.6. Dummy bits position in interleaving ... 146

Figure 6.7. Address Generation and Pruning control Logic .. 148

Figure 6.8. Synopsys Prime time critical path components shown (nano seconds) 149

Figure 6.9 Area and Power results of individual components of the design 149

xi

LIST OF TABLES

Table 1.1. Convoltional decoders in various standards..3
Table 2.1. Cluster size in commercial FPGAs...24
Table 4.1 Table showing the corresponding bit to be transmitted for different rates in 3GPP
[3GPP99J .. 71
Table 4.2 Puncturing patterns for different rates as defined in [3GPP99J 72
Table 4.3. Input RAMs connections to BMC blocks.. 83
Table 4.4 Results turbo decoder.. 89
Table 4.5. Performance of turbo decoders of different architectures in literature............................92
Table 5.1 Viterbi state machine counter values for different standards.. 113
Table5.2. Memory utilization for different standards in viterbi decoder... 115
Table 5.3. Configuration bits for tristate buffers in viterbi decoder .. 117
Table 5.4. Read and writes on PH memories by FP,B1 and B2 in viterbi decoder......................... 119
Table 5.5 Tri state buffer controls for reconfigurable trace back processing in viterbi decoder.... 121
Table 5.6 Arithmetic shtfler outputs and buffer controls in viterbi decoder................................... 121
Table 5.7. Results for viterbi decoder.. 125
Table 6.1 Writing data D1-D24 row by row in the memory in rectangular interleaver.................. 128
Table 62. Reading data column-wise from memory in rectangular interleaver............................. 128
Table 6.3 Diagonal interleaver read operation... 129
Table 6.4 Table showing odd position bits for Odd-Even interleaver... 129
Table 6.5 Table showing the even position bits for odd even interleaver.. 129
Table 66 The output to channel from odd-even interleaver.. 129
Table 6.7 Row by Row entry for Simile odd-even block helical interleaver.................................... 130
Table 68 The output of a simile odd-even block helical interleaver... 130
Table 6.9 Results of implemented interleaver.. 148

xli

ACRONYMS AND ABBREVIATIONS

ACS Add compare select
ADC Analog to digital converter
ADSL Asymmetric digital subscriber line
ALM Adaptive logic module
ASIC Application specific integrated circuit
CLB Configurable logic blocks
CDMA Code division multiple access
CMOS Complementary metal oxide semiconductor technology
CBox Connection box
DCT Discrete cosine transform
DSP Digital signal processing
DP Data ports
FEC Forward error correction
FFT Fast Fourier transform
FIR Finite impulse response filter
FPGA Field programmable gate array
FP Forward processor
GSM Global system for mobile communications
FSM Finite state machine
FSM RAM Forward state metrics random access memory
I/O Input-output
IFU Interconnected functional units
LAB Logic Array Block
LB Logic block
LC Logic cell
LE Logic element
LLR Loglikelihood ratio
LSB Least significant bit
LUT Look-up-table
MAC Multiply accumulate
MIMD Multiple instruction multiple data
MSB Most significant bit
OFDM Orthogonal frequency division multiplexing
PGAs Programmable gate arrays
RAM Random access memory
RP Reverse processor
SBOX Switch box
SRAM Static random access memory
RI) Reconfigurable design
ROM Read only memory
RSC Recursive systematic convolutional
RTL Register transfer language
SAIF Switching activity interchange format
SDF Standard delay format
SIMD Single instruction multiple data

xlii

SISO Soft input soft output
SNR Signal to noise ratio
SOC System on chip
VLIW Very large instruction word
VLSI Very large scale integration
WCDMA Wide band carrier division multiple access
WLAN Wireless local area network
WL Window length
WiMAX Worldwide interoperability for microwave access
WRT with respect to

xlv

Chapter 1

INTRODUCTION

1.1 MOTIVATION

VLSI design engineers have to balance many conflicting requirements for example;

the design should not only be energy and area efficient but also flexible and high

speed. Current devices are expected to combine a large amount of functionality

together for example, a mobile phone now has 3G, WLAN, personal digital

assistant, camera and many other services all integrated in one device. New

standards like WiMAX (IEEE 802.16) and Wi-Fi (IEEE 802.11) allow VOIP and

data services at a metropolitan scale with coverage over an area of several miles.

This can potentially allow the user to remain connected for communication within

an entire metropolitan area using VOIP with the scope of handoff to WCDMA

Cell, satellite system or another WiMAX network in other areas.

With all the advances in fabrication technologies ASIC mask cost still remains far

above the ground and the time to market (TTM) is shrinking worst than ever

before. For example the 30 cellular technologies are already looking obsolete well

before establishing itself in the market in a serious way. The non-recurring

engineering (NRE) costs impel the designer to think of unorthodox ASIC solutions.

Adaptation to ever evolving standards and the constraints that are imposed by

computationally intensive applications as in wireless communications demand a

clever business model. However from VLSI implementation point of view, finding

the optimal reconfigurable architecture for a given problem is very difficult as

increasing the level of flexibility degrades the area, power and speed constraints

adversely affecting the performance. The contradictory requirement of high speed

and flexibility combined with low area and energy can not be satisfied by

conventional instruction set processors and non flexible ASICs. Reconfigurable

I

Chapter 1: Introduction

ASIC (hardware) therefore provides an interesting implementation option. FPGAs

implementations cost 1OX-100X times in area and speed as compared to ASIC

[ALB94]. However the granularity of the reconfigurable blocks and interconnects

flexibility is required to be adjusted to meet all the performance constraints

imposed by the application.

Therefore the goal of the current research is to distil flexibility such that it meets

the required power-area budgets for a desired level of performance. The thesis is

motivated by the desire to reduce the power, area and improve the speed while

maintaining the flexibility in the domain of convolution based forward error

correction.

1.2 CONTRIBUTION

The main contribution of this work is a reusable architecture that can be exploited

to implement domain-specific, programmable processors for convolution based

forward error correcting algorithms. The work has also produced an architecture

template that relies on a heterogeneous network of processing elements, optimized

for a given domain of algorithms that can be reconfigured at run time. To verify the

effectiveness of this architecture, FEC reconfigurable processing elements were

designed, synthesized, and evaluated. Measured results which are presented in

subsequent chapters demonstrate the effectiveness of this architecture.

The single most valuable contribution of this research is the unified turbo-viterbi

decoder array that can be used for multiple standards [AHM07] Construction of

such array requires identification of areas where flexibility should be introduced in

Viterbi and Turbo decoder blocks in order to make the overall VLSI design achieve

the performance constraints as imposed by different standards shown in table I

below:

2

Chapter 1: Introduction

Standard Codes (Cyclic Rates States Block Throughput
Redundancy size
Code-crc,
Convolutional -
cony & turbo)

GSM crc +conv '/2 16 33-876 12Kbps
IS-54 crc+conv '/2 32 1-512 9.6kbps
IS-95 Con '/2,1/3 64 1-512 19.2kbps
PDC crc+conv 9/17 16 1-512 14.4kbps
UMTS con '/2, 1/3 256 1-504 32kbps

Turbo V2,1/3 8 40-5114 2Mbps
CDMA2000 con '/2-1/6 256 1-744 38kbps

Turbo Y2-1/5 8 378- 2Mbps
20736

EDGE Con '/2,1/3 64 39-870 5-62kbps
W-CDMA crc+con 1/3 256 1-504, 384 kbps
(Japan) crc+turbo 1/3 4 40-5114 2 Mbps
IEEE802.1 1 Con '/2 3/4, 64 or 256 1-4095 6-54mbps
IEEE802.16 con 7/8- 64 1-2040 24 Mbps

turbo 1/2 8 1-648 24 Mbps
~-I /2

Table 1.1. Convolutional decoder in various stanciaras

Our work on reconfigurable viterbi decoder produced a novel implementation

scheme for reconfigurable trace back processing and a new memory management

and segmentation technique for multiple standards [AHM06]. With the

reconfigurable aspects of viterbi decoder design a new and novel dynamic

reconfiguration switching methodology is proposed that allows a very fast context

switch between different standards [AHMI06]. The work also proposed and

implemented a reconfigurable state machine control and open trellis reconfigurable

architecture for viterbi decoding.

The work in this thesis also identified the commonality of algorithm between

viterbi and turbo and shown implementation level details for choice of common

hardware blocks for a unified array. The novel implementation also demonstrates

commonality of control features by using a single finite state machine for both

Viterbi and Turbo decoding. This avoids the use of microprocessor based control

3

I,

Chapter 1: Introduction

for these arrays. A novel turbo decoding VLSI implementation suitable for the

underlying reconfigurable system [AHM05, AHM205] is also proposed. The work

on reconfigurable turbo decoder showed an efficient low power input memory

management and branch metric calculation scheme. A new open trellis structure for

reconfigurable turbo decoding was implemented and the cost of reconfiguration is

measured to justify the design decisions.

A new approach for implementing a complex S random interleaver as defined in

3GPP specification [3GPP99] is also presented. Due to the complexity of the

interleaver algorithm, earlier implementations used a straight forward approach of

storing the entire interleaved addresses in SRAM [MAS99]. This results in

interleaver memories consuming major portion of the area and power. The novel

implementation technique proposed in the thesis overcomes this bottleneck and

provides a new technique for hardware pruning [AHM 105].

Experiments have also been performed on a domain specific reconfigurable

methodology that automatically connects the domain specific blocks through a

reconfigurable interconnect. [AHM104, AHM204].

1.3 STRUCTURE
The structure of this thesis is as follows:

Chapter 2 presents review of the research work in the area of reconfigurable

techniques both by commercial and academic research.

Chapter 3 describes the reconfigurable methodologies used by various

domain specific architectures.

Chapter 4 presents an overview of turbo decoding and explains the

reconfigurable VLSI design detailing each individual component.

• Chapter 5 describes the viterbi decoding along with reconfigurable VLSI

design, the trace back methodology, memory management for multiple

standards and the role of each viterbi decoding component in the unified

array.

4

Chapter 1: Introduction

• Chapter 6 presents the low power interleaver solution to 3GPP interleaving

algorithm. Chapter also describes the hardware technique for bit pruning.

• Chapter 7 gives the summary and the conclusions drawn from the work.

1.4 SUMMARY

Domain specific reconfigurable design is a crucial research area and its benefits

have been used to generate high performance reconfigurable design for a

communication baseband forward error correction scheme. Multi standard

reconfigurable baseband data paths are very attractive for all portable devices in the

context of current and future standards. This thesis presents techniques to introduce

flexibility with reduced power consumption in the convolution forward error

correction blocks to be used in a common communication platform. The next

chapter describes the existing architectures in literature and the performance

improvement techniques used in domain specific blocks.

5

Chapter 2

EVOLUTION OF RECONFIGURABLE
ARCHITECTURES IN CONVENTIONAL

FPGAs

2.1 INTRODUCTION

This chapter summarizes the different implementations of turbo and viterbi decoders

reported in the literature. A case is presented for adopting a reconfigurable approach

for these decoders. To solve the reconfiguration problem the chapter also describes

reconfiguration techniques used in existing conventional FPGA architectures.

Reconfigurable architectures have evolved from FPGAs and currently, there are a

large class of FPGAs available commercially. Altera and Xilinx are the major

contributors in commercial FPGA design and therefore have the biggest market share.

The chapter explains the evolution in commercial reconfigurable logic block and

routing architectures. Examples are quoted to trace these improvements with

architectures present in previous and current generations of commercial reconfigurable

devices.

2.2 STATE OF THE ART IN VITERBI DECODER IMPLEMENTATIONS

In Viterbi decoding there are two main techniques used for decoding the bits: the

register exchange (RE) and the traceback (TB) [W1C95]. The RE technique is usually

used for trellises with only a small number of states, whereas the TB technique is used

for trellises with a large number of states. There are several high performance

architectures reported in literature using the traceback technique. In [L1N89] a layered

approach that combines the stages of the trellis into one stage has been proposed, and

further developed by using radix-4 architectures in [BLA92]. The implementation in

6

Chapter 2: Performance improvement techniques in reconfigurable architectures

[BLA92] is for fixed 32 state (K=6) decoder achieves throughputs of 70Mb/s for a

radix 4 iteration in 1.2 tm CMOS process. However, this parallel implementation

consumes 1.8W of power which makes it less useful for mobile platforms and because

of its fixed architecture is not a good choice in reconfigurable scenarios. A similar

radix 4 implementation in [RAB95] achieves a higher throughput of2lO Mb/sec but at

the cost of higher power consumption of 3W. A similar radix 4, 32 state (fixed)

implementation in 130nm process in [BRU04] achieves a through put of 2.8 Gb/s with

a power consumption of 2.23W.

The error correcting capability of an error correcting code is proportional to the

constraint length (states) of decoder [HEL88]. Therefore, the new standards like 3GPP

[3GPP99] define Viterbi decoders with large constraint lengths for example, there are

256 states in 3GPP decoder. The above mentioned decoders therefore, also have a

reduced error correction capability in addition to the higher power consumption.

The latency and through put issues with block based designs [L1N89] have been

addressed and improved in sliding block (window) architecture in [BLA97] with a

four state decoder. Bit-serial approaches and operation reformulations have been

proposed in [BLA97], [TSU99]. The minimum transition scheme in [11WA96]

attempts to reduce the paths being traced back and in [LINOO] the speed of traceback

was increased by saving the decisions in a permutation network. Another algebraic

solution for low power high speed decoding have been proposed in [FET9 1] by using

a semi-ring topology. There are also a few architectures that attempt to combine the

traceback and register exchange methodologies together [JUN96], [BLA93].

All of the above mentioned design approaches were developed for low constraint

length (K=3 to K=7). The decoder in [CHAOO] is designed for CDMA standard with

256 states and have the maximum achievable throughput of 2 Mb/sec. In addition to

the limited throughput the decoder also has an input/output memory architecture

which is fixed only for CDMA decoder. The decoder is therefore suitable for a single

standard but can not be used in multiple standards with its fixed trellis structure and

7

Chapter 2: Performance improvement techniques in reconfigurable architectures

RAM design. Another CDMA implementation [KAN98] uses state serial approach in

which few processing elements are shared for 256 states. This approach is in contrast

to the previous high speed state parallel approaches in which every state at a given

stage in the trellis corresponds to one processing unit. The architecture in [KAN98] is

very low power however can only support voice traffic with data rates of 14.4 Kb/sec.

Many other state-sequential architectures have been proposed [SHU93], [FRE86],

[GUL88], [FEY93], [CHA89], [CHA92], [DAN95], [BLA92], but most have not had

their efficiency validated in the VLSI hardware domain.

It has been shown in [KAN98] that viterbi decoder account for more than one-third of

power consumption in CDMA mobile terminals. The importance of power

consumption is even more critical in a multiple terminal receiver in the context of

software defined radio. In convolutional decoder implementation on Field

Programmable Gate Arrays (FPGAs) power consumption is a major concern

compared to ASICs and other custom chips. FPGAs have long routing tracks with

significant parastic capacitance, and dissipate a significant amount of power at high

frequencies. Previous work has presented point solution for power consumption in

FPGAs [GE099], [KUM02], [RABO1]. Numerous CAD algorithms for FPGAs are

also proposed that focus primarily on reducing switching acitivity to achieve lower

power [WAN98], [MAKOI], [R0Y99], [S1NO2], [WOL03]. Other Implementations of

Viterbi algorithm on FPGAs [ZHIJ07], [HAO06], [ABD06], [TUN06], [LUC06],

[IRF05], [PET05], [ANG05], [Qll'104], [REV04], [SHA04], [LIN04], [ZHUO3],

[HEN02], [FABO1], [PAN99], [JAN97], [YEH96], [WAN93], [KEL93] have not had

their efficiency validated in power domains.

2.3 STATE OF THE ART IN TURBO DECODING

Turbo code with its excellent error correcting performance has revolutionized the

communication engineering. After the successful revelation in the year 1993 [BER93],

turbo code has been praised and crowned widely. It became one of the core technology

for today's cutting edge products in industries for example, high density magnetic and

8

Chapter 2: Performance improvement techniques in reconfigurable architectures

optical storage, wire or landline communication systems (Asymmetric Digital

Subscriber Line - ADSL) [ELE04], optical fibre networks and wireless

communication [HON01], [MCP99], [MCP02], [SONOO]. In wireless

communications, the application of turbo code principle can further be categorized

under the following sections: -

2.3.1 TURBO RECEIVER TECHNIQUES FOR CODED MIMO OFDM
SYSTEMS

Turbo coding is also a crucial component in broadband wireless access

communications. MIMO transmissions can achieve gains in both the information rate

increase due to virtual multiple air-links, and diversity gain. In this area of research the

turbo techniques are applied in conjunction with multiple-input-multiple-output

(MIMO), space time coding, and orthogonal-frequency division multiplexing

(OFDM). In this context and for small block size there are many solutions to error

control coding such as orthogonal space-time block codes [TAR99], linear dispersion

codes [HAS02], threaded algebraic space-time codes [DAM03] and lattice space-time

trellis codes [GAM04]. But for moderate to large block sizes the coding schemes are

based on turbo codes with bit-interleaved coded modulation (BICM) [LIU01],

[WAN02], [TEN04], [ZEH92] and [1MA97, LAM04]. In his Ph.D. thesis Tujkovic

presented a design method for constituent recursive space-time trellis codes and

parallel concatenated space-time turbo coded modulation [TLJJ03]. This space-time

coding framework integrated code concatenation into a random-like space time coding

approach [TUJOO].

2.3.2 TURBO CODES FOR DIGITAL VIDEO BROADCASTING

In another segment of research the turbo code concept is applied for digital video

broadcasting (DVB) which is European Telecommunications Standards Institute

(ETSI) standard for digital television services called as DVB-S [ETS94]. Internet over

D\'B-S can potentially be a competitor against cable modem and DSL technology

with an additionally requirement on uplink for DVB-S. DVB project has adopted

9

Chapter 2: Performance improvement techniques in reconfigurable architectures

turbo codes for the satellite return channel in its DVB-RCS (Return Channel via

Satellite) standard [ETS0O]. The DVB-RCS turbo code was optimized for short frame

sizes (12 to 216 bytes) and return link support data rates from 144 kbps to 2Mbps. One

problem with small frame sizes is that the trellis termination imposes a non negligible

reduction in code rate and therefore DVB-RCS uses tail biting [H!v1A86] circular

recursive convolutional encoding [BER99]. These techniques encode in such a way

that the ending state matches the starting state in the trellis. DVB-RCS also uses duo

binary encoders defined over Gallis Field (4) [JEZ99] which results in reduction in

trellis states to half and therefore requires half as much memory. Given the fact that

the DVB-RCS is a published standard, there are a few codec manufacturers that

provide ASIC or core FPGA solutions such as:

• IC 1000 turbo encoder/decoder, from TurboConcept [WEB 06]

• S2000 from iCoding [WEB07]

• ECC3 110 from 'Efficient Channel Coding Incorportation' [WEB08]

2.3.3 TURBO CODES ON SATELLITE COMMUNICATIONS

Turbo codes were selected as a decoding scheme in CCSDS (Consultative Committee

for Space Data Systems) recommendations [CCS03], used worldwide by international

space agencies (NASA, ESA, RSA etc.). The reason was the significant improvement

in terms of power efficiency assured by turbo codes over the old concatenated

schemes of the standard with coding gains larger than 2dBs. The structure of CCDS

turbo encoder consists of two equal binary, linear, systematic, recursive convolutional

encoders with rate ¼ and 16 states. European Space Agency (ESA) investigated the

performance of high rate punctured turbo codes for [CCS03] inclusion. Punctured

CCSDS turbo codes are obtained by simply puncturing the output of the CCSDS

encoder [ANCOO], [ANC01]. With puncturing the performance of rate 3/4 codes is

very good for large data frame lengths and is competitive with other solutions like

LDPC and serial turbo codes. The performance with higher code rate however, is not

10

Chapter 2: Performance improvement techniques in reconfigurable architectures

so good because puncturing causes a significant reduction of the minimum distance

[GAR01]. Therefore this solution is currently being abandoned in [CCS03].

A survey of some of the most popular commercial developments based on serial and

parallel concatenation of turbo codes is attempted below:

2.3.3.1 ITERATIVE CONNECTIONS 'S-TECTm

Iterative Connections [WEB09] decoders are designed for satellite communications

providing performance less than I dB from channel capacity and BER performance of

1/10 10 with the option of secure communication mode. The S - TEC Tm family of

serial concatenated convolutional codes was launched in 2003 and was integrated in

the Datum Systems line of modems [WEB 10]. Their new version, Premier 5 satellite

modem can provide data rates up to 5 Mbit/s in QPSK mode with coding rates '/2, 3/4

and 7/8 and is the most power efficient satellite modem currently available in market.

2.3.3.2 TRELLIS WARE 'FLEXICODES'

TrellisWare Technologies [WEB 11] launched serial concatenated mode turbo like

codes in early 2004 called FlexiCodes. It consists of 4-state outer rate Y2 convolutional

code, followed by a single parity check (SPC) code and an inner rate 1 convolutional

code and therefore, three elementary encoders combined in a single concatenated

mode. The outer decoder produces estimates which, after interleaving, are fed to the

SPC decoder; in turn, the SPC output is used by the inner decoder. The feedback loop

starts from the inner decoder which passes extrinsic information to the SPC decoder;

after interleaving, the bit estimates produces by the SPC decoder are input to the outer

decoder. This family of codes performs very close to capacity for a wide range of

coding rates and modulation.

2.3.3.3 SMALL WORLD COMMUNICATIONS and iCODING

Small world communications [WEB 12] provide turbo decoders in BIT/MCS format

for downloading in to Xilinx Virtex and Spartan FPGAs or as a EDIF (VHDL) core.

11

Chapter 2: Performance improvement techniques in reconfigurable architectures

These high speed decoders have some programmability in the design. The SI 000 is a

15 Mbits/s iterative decoder for Xilinx or Altera FPGAs designed by iCoding

[WEB 13]. A speed up to 45MbitJs is predicted for ASIC mapping of the design.

S4000 is their high speed version that can run at 200 Mbitls in Virtex II or 100 Mbitls

inVirtexE.

2.3.3.4 STMicroelectronics

STMicroelectronics [WEB 14] chipset is compliant with DVB-S and DIRECTV

specifications and uses QPSK, 8PSK and 16QAM modulations. Due to the turbo

decoding the chip allows 50% increased throughput or a reduction in more than 33%

in the dish size. STMicroelectronics is one of the largest suppliers of set-top boxes in

US with the 5TV0499 8PSK turbo codec. Directl'V [WEB15], EchoStar

Communications [WEB 16] and Voom [WEB 17] are the other satellite TV providers

taking advantage of the new turbo-like technologies.

2.3.3.5 BROADCOM

Broadcom [WEB 18] has two turbo decoding chipsets BCM4500 and BCM3348.

BCM4500 is an integrated digital receiver that supports BPSK, QPSK and 8PSK in

conjunction with turbo codes for up to 30 Mbaud. BCM3348 is the TurboQAM single

chip cable modem using advanced TDMA and synchronous CDMA with MIPS,

200Mhz communication processor. It supports 4/16/32/64/128/256/512/1024 QAM

FEC decoding and 10/100 Ethernet MAC and USB interface.

2.3.4 BLOCK TURBO AND TURBO PRODUCT CODES

Block turbo codes [PYN97], [L0D93], [PYN94], [HAG96] form a sub-class of turbo

codes. Different than regular turbo codes it is typically formed via linear block codes.

Therefore they can be processed with algebraic decoders and have low complexity

implementation. They are suitable for higher codes rates (greater than 0.75) and

therefore for systems that require high spectral efficiency. The performance

12

Chapter 2: Performance improvement techniques in reconfigurable architectures

improvement in QPSK modulation is not as good as for 16 QAM [PYN95] and they

are less sensitive to input quantization when quantized to only 4 bits compared to

convolutional based codes. Results from [PYN94] and [PYN95] conclude that for

spectral efficiencies greater than 4/bits/s/Hz, block turbo coded QAM systems

outperform convolutional coded QAM. A comparison is made in [BEN296] between

parallel concatenated block codes (PCBC) using systematic cyclic codes and serial

concatenated block codes (SCBC) using Hamming and BCH codes. The SCBCs

perform better than PCBCs, but significantly worse than the equivalent structures

based on convolutional codes.

Examples of commercial implementation of block turbo codes (for example turbo

product code - TPC) can be seen by the decoders developed by companies such as

Comtech, Radyne, Paradise, Advantech, iDirect and ViaSat. Very high speed TPC

ASIC decoders are available from Comtech AIIA Corporation [WEB 19]. The family

consists of AHA450I (36 Mbitls), AHA4522, AHA4540 (155 Mbitls) and

AHA4541(31 1 Mbitls) codecs. DMD20 satellite modem is developed by Radyne

ComStream [WEB20]. The modem can operate from BPSK to 16QAM upto

20Mbit/sec data rates and offers L-Band interfaces. Paradise datacom [WEB2 1], P300

series of modems with TPC provides up to eight voice/fax ports, IP Bridge/Router for

speeds up to 2Mbitls. Advantech Microwave Technologies [WEB22] has developed

their AMT-70 satellite modem with a range from 8kbitls to 140 Mbitls, BPSK to 16

QAM, 70/140 MHz or L-band version with an enhanced TPC option. The iDirect

[WEB23] technology also produces TPC based modems based on DVB standard.

ViaSat [WEB24] have three products based on turbo-like codes: Linkstar, Surtbeam

and WildBlue. Linkstar is a two-way bandwidth-on-demand broadband VSAT system

using the DVB standard. Surfbeam and WildBlue are based on satellite-enabled

version of the Data Over Cable Service Interface Specifications (DOCSIS 1.1)

standard.

2.4 VLSI FOR TURBO DECODING

13

Chapter 2: Performance improvement techniques in reconfigurable architectures

There are number of aspects of turbo decoding that makes their VLSI implementation

non-trivial: first of all the algorithms that are used to implement the decoding (for

example BCJR algorithm [BA1174]) are of great complexity, coupled with the iterative

decoding principle, which makes very difficult the accomplishment of throughput,

latency, power constraints as imposed by various standards. Moreover turbo decoders

include large RAM memories that need to be organized and managed properly. The

best solution for each application can only be selected by carefully exploring the space

of design alternatives.

The problem of latency and throughput are traditionally addressed by an approximated

version of the original algorithm [BAH74], largely known as sliding window BUR

algorithm [BEN396], [BAR96], [P1E96]. The lowest cost solution is to limit the

window overlap to the backward recursion, obtaining the starting metrics for a given

window from the last metrics of the previous one. This solution, known as single flow

structure introduced in [V1T98]. Another powerful solution is given by DFG [PAR99],

applied to various formulations of the sliding window BCJR [D1W95], [SCH99],

[WORGO], [MAN03]. DFG methodology can also be applied to the study of parallel

BCJR, where more windows are processed in parallel rather than serially [WOROO],

[VIGOO], [ZHO02]. Another complete and clear study on the many possible

alternatives in the SISO internal organization has been published by [MAN03], where

expressions for the optimization of decoding delay and metric memories in single flow

and parallel SISO is formally derived.

Another approach proposed in [YUFOO] is based on the idea of evaluating backward

state metrics in the forward direction. The possible advantage by this approach is the

elimination of the path metric memory in the BCJR architecture which reduces SISO

complexity and energy consumption. Some implementations of this concept, are

proposed by Prof. T. Arslan in [ATL03] and in [KWA03] reporting improvements

between 15% and 35%: however this approach seems to be critical for two main

reasons: first of all the inversion of the original reverse metric calculation (and the

equations in BCJR corresponding-to this operation) poses problems of singularity and

14

Chapter 2: Performance improvement techniques in reconfigurable architectures

computational complexity; moreover the numerical precision in reverse computation

has an heavy impact on the BER performance of the code.

The use of radix-4 computation structures has also been explored [BIC03]: similar to

viterbi decoders [BAL92]. In this technique trellis is compressed in time, compressing

two trellis steps in a single one; this doubles the throughput for a given clock

frequency with respect to radix-2 version. The disadvantage however is that the

technique also doubles the edges for each state, so requiring the implementation of

radix-4 log-MAP or max-log-MAP units with tree organization [MAS99], [BIC03].

The biggest challenge in implementation of Turbo decoder architecture especially in

the domain of wireless communications is the power consumption. Turbo decoder

tends to have large power consumption than other decoders [W0R99] because of three

main reasons:

• The hardware complexity is larger than for other decoders such as Viterbi

decoders.

• The decoding process is iterative and in order to achieve the throughput and

decrease the effects of iterations, clock frequency must be kept high.

• Large memories are included in the decoder architecture required as

Input/Output buffers needed to support iterations and the interleaver memories.

The most important technique at algorithmic level to reduce the effect of iterations on

power consumption is by a concept known as stopping criteria [LEUO 1], [SCH 199],

[ZH099]. In [LEU01] the circuit is shut down after the desired BER performance is

achieved. As the energy dissipation tends to grow linearly with iteration, the

percentage of power saved with this approach is roughly equal to the average

reduction achieved in the number of iterations, which can be as large as 75%. The

iteration number can also be controlled by means of decision-aided stop criterion

[SCHI99]. A threshold can be set (on the basis of target BER) and compared against

the output log-likelihood ratios (LLRs). If LLRS magnitudes of all bits in a block are

15

Chapter 2: Performance improvement techniques in reconfigurable architectures

under the threshold, decisions are not considered reliable enough and new iterations

are scheduled and vice versa. This technique gives percentage of energy reduction as

high as 50%. The work in [ZH099] evaluates the number of I's accumulated from the

output of decoded block at each iteration which is a necessary condition for having

identical decoded bits from current and previous iteration is that the two accumulated

values are equal. This technique is simpler however less precise.

A wide range of trade-offs in turbo decoder architectures have been studied in

[SCH99], [SCHO1] and several architectural parameters have been introduced, with

the aim of finding a storage organization efficient from the energy point of view. It is

proved in [SCHO I that optimal choice of these parameters is strongly dependent on

the specific turbo code and on the technology models used.

Another technique proposed in [LEUOI] called "as slow as possible" algorithm which

adapts the supply voltage to the instantaneous workload. The algorithm is based on

estimations of the energy and delay associated to the decoding of a given data block.

Data flow transformations are also applied to reduce both the storage of state metrics

and number of memory transfers. While this idea does not provide any area benefit, it

is quite effective in reducing the energy consumption. In [MAN03] the delay and

energy benefits deriving from the adoption of some degree of parallelism in the

decoding architecture are shown for a particular case of double flow structure. This

architecture can be viewed as a particular case of more general parametric description

based on the DFG and shows 25% reduction in dissipated energy with respect to

single flow architecture.

In [BIC03] a 180nm CMOS turbo decoder for 3GPP-HSDPA (High Speed Downlink

Packet Access) is presented. The power dissipation is reduced combining architectural

techniques, such as clamping of extrinsic information to save memory, and iteration

control by means of efficient stopping criteria. In [BOG03] power performance of

1 .45nJ/bitliteration is achieved by means of several algorithm and architecture level

16

Chapter 2: Performance improvement techniques in reconfigurable architectures

optimization: reported data refer to a UMTS-like decoder, implemented in 180nm

CMOS technology and supporting 75 Mbps.

Several commercial implementations have been developed recently for decoders

compliant with the 3GPP standard, both in the form of proprietary cores and soft

cores. Some examples of available IP cores are given in [WEBO1], [WEB02],

[WEB03], [WEB04], [WEB05]. VLSI design figures such as complexity, power

dissipation and clock frequency are sometime available for these hard and soft cores.

[WEB02] is a turbo decoder IP core available from Xilinx and designed for 3GPP

[3GPP99] standard achieves the throughput of 6.5 M bits/sec for a 12 K block size and

11 iterations. [WEB03] is Altera TC1000 DVB compliant block turbo decoder IP with

payload bit rate of 4Mbitlsec. In [WEB05] a full 3GPP [3GPP99] standard turbo

decoder is implemented as a drop in module for Virtex - E and Virtex II FPGAs. This

iCoding S3000 module [WEB05] achieves data rates of 7 Mbits/s. With these IPs as

well, there are no power figures provided.

Implementations of turbo decoder on FPGAs have the advantage of flexibility

(through device reconfiguration) and the availability of large amount of internal

resources that can be exploited to achieve higher processing capabilities. The

programming process for an FPGA consists in uploading of a bit stream containing the

information for the internal configuration of logic blocks, interconnects and memories.

For most devices the configuration process takes a long time and implies that the

hardware previously mapped to the FPGA is stopped; these two main difficulties are

overcome in recent devices that support partial and dynamic reconfiguration. Another

major limitation to the adoption of FPGA platforms for wireless communication

comes from the high power dissipation of FPGA devices, both dynamic and static.

Inspite of these problems, the very short development time connected with the use of

FPGAs, there is an impressive growth in the development of FPGA based system. A

number of implementations addressed various turbo decoders achieving medium

throughput figures [SHA03], [XIA02], [STEOI], [WEB05]. No power figures were

quoted for implementations in [SHA03], [XIA02], [STEO1], [WEB05].

17

Chapter 2: Performance improvement techniques in reconfigurable architectures

The review done in above sections presents various implementation options for turbo

decoding in academia and commercial. Due to parallel architecture inherent in turbo

decoding high throughput architectures are possible exploiting the parallelism

available in FPGAs but these implementations suffer from very high power

consumption. Block turbo codes (and TPC) codec, because of its ease of

implementation offer an attractive high speed low power implementation option which

is exploited in variety of deep space application products. TPC codec has worst BER

performance compared to convolutional turbo codec and are not used in 2 nd and 3rd

generation wireless mobile standards.

In the current communication environments where different standard coexist, some

new specifications for decoders in the modem platform emerge. Processing speed

latency, energy consumption and cost constraints do not remain the only constraints

on the design. A rapidly increasing role is now placed by two additional features,

namely scalability and flexibility. Scalability is the capability of the platform to adapt

to different choices for system level parameters, such as for example the mother

convolutional codes or the size of the processed block; throughput, latency and power

consumption typically change with these parameters and additional implementation

complexity is paid to support scalability, however the decoder architecture is not

changed or reconfigured when adapting to a different set of parameters. On the other

hand the term flexibility is used to indicate the possibility to update an implementation

platform in order to support a completely different decoder that does not simply

require a change in some parameters: as an example a turbo decoder that can be

reconfigured to perform Viterbi decoding.

Aim of current research is to investigate scalable and flexible implementation aspects

of convolutional decoding in the context of a software defined radio (SDR). A SDR

device uses reconfigurable hardware that may be programmed over-the-air to operate

under different wireless standards. For example, an SDR transceiver in a wireless

laptop computer or PDA may be configured by different software loads to operate in

18

Chapter 2: Performance improvement techniques in reconfigurable architectures

an IEEE-802.1 lx wireless network, a CDMA2000 wireless network, an

OFDMIOFDMA wireless network, a GSM wireless network, or other types of

networks. Many of these wireless standards require the use of turbo decoders or other

decoders that are based on maximum a-posteriori probability (MAP) decoders.

However, conventional decoders have significant drawbacks with respect to SDR

applications. Turbo decoders and other types of decoders are optimized for decoding

under only one or two specific standards. Conventional designs use different MAP

decoders to support each standard separately. For example, a MAP decoder calculates

three values: alpha (.alpha.), beta (.beta.), and lambda (.gamma.). Normally, three

distinct hardware blocks are used to calculate these values. This increases power

consumption and uses a large amount of die space. If an SDR device is required to

support many wireless standards, more than one decoder must be implemented in the

SDR device. This leads to a complex transceiver design that makes inefficient use of

chip space and has high power dissipation. This also increases development cost and

time-to-market (1'TM). Additionally, some of the newer wireless standards operate at

relatively high data rates (e.g., WiBro, HSPDA, and the like). A decoder that is

optimized in terms of speed and power consumption for a low data rate standard is

unlikely to be optimized in terms of speed and power consumption for a high data rate

standard, and vice versa. Thus, conventional decoder designs are not suitable for use

in SDR applications.

Next sections describe the reconfigurable architecture and techniques in current

reconfigurable devices with an aim to assess the suitability of these techniques for our

reconfigurable research.

2.5 RECONFIGURATION IN FPGAs

The origins of reconfigurable computing date back to 1960s by the concepts proposed

by Gerald Estrin [EST]. The first FPGA (field programmable gate array) was

introduced in [CAR86]. The reconfigurable design (RD) world has seen many changes

and evolved both in hardware and software. Some of these improvements are

discussed as under:

19

Chapter 2: Performance improvement techniques in reconfigurable architectures

2.5.1 EVOLUTION IN LOGIC BLOCK ARCHITECTURE

Historically the LBs can be seen to be evolved in the following order:

• LBs build on NAND gates.

• LBs build on mulitplexers.

• SRAM (LUT) based LBs.

• LBs build on clusters of LUTs.

• Mixture of LUTs and application specific coarse grained LBs for example

multipliers and dedicated processors.

The first example of NAND gates based logic blocks is Cross point FPGA from Cross

point solutions [MAP92]. It uses a single transistor pair (NAND) in the logic module.

The transistors are connected in row and can be isolated by turning off the pair of

transistor between the gates. In addition Cross point had RAM logic tile to implement

memory or any other logic as LUT. A similar two input NAND block from Plessey

FPGAs is shown in figure 2.1 [PLE89]. Latch can be made permanently transparent

(using configuration RAM) if it is not required.

Figure 2.1 Plessey LB

Another example of LB based on NAND gates is the Toshiba FPGA developed in

1991 [MUR91]. This FPGA has two input NAND gate and the input to the NAND

gates is provided by either of the multiplexers. The multiplexers are connected to six

local lines connected to adjacent cells and three long range connection lines. Latch

output can be bypassed and inverted and non inverted outputs can be selected. Shift

20

Chapter 2: Performance improvement techniques in reconfigurable architectures

registers can be implemented by using the master and slave cells. This is shown in

figure 2.2.

The second class of LBs based on multiplexers relied on the ability of the multiplexer

to implement different logic functions by connecting each of its inputs to a constant or

to a signal.

Figure 2.2 Toshiba LB

The Actel [GAR89, AHR90] blocks shown in figure 2.3 can implement 702 and 766

logic functions respectively by connecting the multiplexer inputs to 110 or input

signals.

X

82

8394 	 CO

Figure 2.3 Actel LB based on multiplexers

A similar CLB by Quick logic [B1R99] is shown in figure 2.4. In this block alternate

input to 'And' gate was inverted which eliminates the need of a separate inverter

21

Chapter 2: Performance improvement techniques in reconfigurable architectures

circuit. Multiplexer based LBs are disadvantaged due to large number of inputs,

demanding more routing resources. However they provide better flexibility for a

relatively small number of transistors.

The above set of fine grained CLBs exhibit poor performance in terms of area, power

and delay/speed [SAT92]. The work shown in [SAT92] showed LUT based clusters

gave best delay performance compared to multiplexer-based gates, NAND gates and

the wide input AND-OR gates. One of the conclusions was that the connection delays

often exceed the delay of the LB and hence is one of the fundamental limitations on

FPGA speed. Increasing the functionality in a LB decreases these blocks in the critical

path improving performance.

Figure 2.4 Multiplexer based block by quick logic

In the next category of SRAM based LUT, the logic corresponding to K inputs is

stored in a 2" x I SRAM block. The address lines of SRAMs function as input and the

output of the SRAM provides the value of the logic function.

Figure 2.5 A 3 input LUT.

22

Chapter 2: Performance improvement techniques in reconfigurable architectures

The biggest advantage in this case is the flexibility as a K-input LUT can perform any

function of K inputs. The disadvantage is the large size of CLB due to 2' memory

cells. Since the majority of the flexibility provided by LUT is not exploited in logic

synthesis, a very large LUT will be underutilized. Figure 2.5 illustrates a three input

LUT. The size of LUT determines the delay, area and power characteristics of a

reconfigurable design. The work in [ANN I] and [ROS90] showed that LUT size of 4

is the most area efficient in a non clustered context.

After the non clustered approach, the LUTs started appearing in clusters. The main

advantage with the clustered approach is that the routing resources are reduced and

more functionality is provided within the blocks. It was demonstrated in [KOU9 1] that

using a LUT size of 5 and 6 gave the best delay performance. In [AGR99] it is shown

that two - three input LUTs have more advantages in terms of area and speed.

[KAP99] suggested that using a heterogeneous mixture of LUT sizes of 2 and 3 was

equivalent in area efficiency to LUT size of 4. The same problem was also addressed

in [111L91], [R0S89] and [ROS90]. In a more clustered approach, the recent work by

[EL104] has shown that LUT size of 4-6 and cluster size of 3-10 provides the best

area-delay product for an FPGA. The results in the paper are confirmed by majority of

the industrial implementations of FPGAs as can be observed by looking at the input

size of LUTs in table 2.1.

Device Year Logic Block, Cluster size

Xilinx XC2000 1985 IxLUT-4 Input

Xilinx XC3000 1987 1xLUT-5 Input

Xilinx XC4000 1990 1xLUT-3 Input

2xLUT-4 Input

Xilinx Virtex 1998 4xLUT-4 Input

Xilinx Virtex-II 2000 8xLUT-4 Input

Xilinx Virtex-11 Pro 2001 8xLUT-4 Input

Xilinx Virtex-4 2004 8xLUT-4 Input

23

Chapter 2: Performance improvement techniques in reconfigurable architectures

Altera Flex 8000 1992 8xLUT-4 Input

Altera Flex 10K 1995 8xLUT-4 Input

Altera Apex 20k 1998 1 OXlut-4 Input

Altera Apex-11 2001 1 OXlut-4 Input

Altera Stratix 2002 1OxLUT-4 Input

Altera Stratix II 2004 24xLUT-3 Input, 1 6xLUT-4 Input

Table 2.1. Cluster size in commercial FPUAs

The first appearance of cluster based LUTs can be seen after Xilinx XC3000 series. In

Xilinx 4000 series two different sized (two four inputs LUTs feeding in to 3 input

LUT) LUTs were used giving CLB a heterogeneous flavour.

"dl

C

Figure 2.6 Cluster of LUTs in Xilinx 4000

The next series called Xilinx-Virtex provided the first flavour towards high

performance by the use of dedicated blocks. It contained dedicated block RAMs every

12 CLB columns. The Xilinx Virtex series can be seen as an example of the last

category of the LBs containing cluster of LUTs and several heterogeneous blocks.

Similar to Xilinx, Altera reconfigurable devices also have clustered LUTs approach

along with several coarse grained heterogeneous blocks. Altera's basic logic block

signature can be traced back from its earlier flex 10K device. The details are shown in

figure 2.7.

24

Chapter 2: Performance improvement techniques in reconfigurable architectures

Embedded Array Block(EAB)
I/o

Element
(tOE)

 — ffEWEEfEIOEE_

I I—
I--

Ro, 	 Logic Element
Intercorinect U 	U UHLUU 	F

Li
Interconnect

Embedded
Array

Figure 2.7 Flex 10K device by Altera

The major difference from Xilinx devices is the avoidance of distributed RAMs to

gain more predictable timing. The saving is especially higher for bigger size Xilinx

distributed RAMs The main logic element is 4 Input LUT but unlike Xilinx, Altera

LUT has separate drive capabilities for individual components giving it better

utilization as shown in figure 2.8.

Register

Carry-IN 	Cascade-In Bypass

da1
_

LookP any
data2_I 'Table 	Chain 	Cascade data3 	i da (LU 	 Chain

Iabctrll
Iabctrl2

'1Clear/

_ Preset- ________
Chip-Wide , Logic >

To FastTrack
Interconnect

Reset __________________ _____________________ENA
CLRN

To LAB Local
Iabctjl3 Interconnect

Programmable

Carry-uut Cascade-Out Register

Figure 2.8 Altera Flex 10K logic element

25

Chapter 2: Performance improvement techniques in reconfigurable architectures

Flex 10K also had faster interconnect topology by utilizing early-in and cascade-in

chains. Its logic array block (LAB) is formed by combining LEs and each LAB

contains about 96 usable logic gates. The embedded array consists of a series of EABs

(embedded array blocks). The main approach in Stratix follows from its predecessors

i.e., packing of multiple independent functional blocks in a single ALM. Altera Stratix

II improved on Altera's earlier design by adding more heterogeneous blocks for

example, DSP blocks, FIR/lW filters, FFT functions, DCI and correlators. It has three

different classes of memory each defined for a different mode of operation hence

moving towards restricting the domains of reconfigurability and gaining on

performance. Another important example in this category of LBs is the HardCopy II

devices (figure 2.9). HardCopy II device is a fixed non configurable device which

removes all configurable resources and replaces them with direct metal connections.

Hardcopy II devices consist of an array of HCells manufactured in 90nm process

technology which has functionally equivalent architectural features as Stratix II. Only

the HCells needed to implement the design are assembled together. The unused area of

the HCell logic fabric is powered down.

 I Array
HCells

•PLL I
U..

L!11 	•U•
...

11!Il 	•UU ...
L!11 	•UU ...
L!11 	••

U.. nom

U..
Ii!J_1 	•UU

...

11!11 	•• U.. II 	•.• .••
IJ 	••U

iiii 	•••
iii

•

MW RAM
Block

-
—
-
-
-
-
-
-
-
-
-
—
—
-

•••
U..

MW RAM
Block

-
—
-
-
-
-
—
-
-
—
—
—
-
-

[•J

...........
•U•U•••UU•• -
•UU••UU••U• 	I• —
••U•UUU•••U

...
UU•
U.. •• UU

U•U ••• ••• ••• ... U..

U..
-' , • 	_•• U..
_____________ U..

u. urn •rn •u .uu•urnuuu. •.rn•rn.U.. •UU U••u•••••• •urn •Uu•UU,Uu •UU

... •UU •UU UUU U•• ••• ••• uU •.• •.. u. urn •u• ••U ••U U•U •U •rn •u •Urn ••• urn, u u.. U.. .•. ... •urn .. •. .urn
I ... ••• U•U

Figure 2.9 Well placement in HardCopy II

26

Chapter 2: Performance improvement techniques in reconfigurable architectures

2.5.2 ROUTING IN COMMERCIAL FPGAs

The routing is used in a logic cluster to determine where the inputs come from and

where the outputs will go. It also determines how the signal propagates through the

logic elements themselves. There are two types of routing available one external to the

logic clusters and one internal. We will restrict the discussion to external or global

routing as internal routing has already been explained along with CLB/LE discussions

in pervious sections. This chapter explains the routing schemes in commercial FPGAs

and in chapter 3 the routing architectures are explained for domain specific

reconfigurable architectures. In commercial FPGAs generally there are three different

switch types used for routing: multiplexers pass transistors and tn-state buffers. There

is also some form of fixed routing (non-programmable) which is used for fast carry

propagation or fast shift registers. The overall routing architectures can be categorized

as island, hierarchal, cellular and row architectures. Note that the current families of

the commercial FPGAs have architectures that are more complex than what is

described here, but these general categories can still be identified with in the above

mentioned FPGAs.

2.5.2.1 XILINX ROUTING ARCHITECTURE

Xilinx uses island-style routing in which the logic structures are placed in two

dimensional array surrounded by segmented horizontal and vertical routing channels.

Figure 2.10 Island Style Routing

27

Chapter 2: Performance improvement techniques in reconfigurable architectures

Each cluster connects to the routing through connection boxes (C-boxes) and C-boxes

are connected by Switch boxes (S-boxes). S-boxes also provide change in direction

from horizontal and vertical tracks and hence provide means of connecting one

segment to another.

Newer Xilinx routing architectures provide segments in several lengths for example

long lines, Hex lines, double lines and direct lines.

T?.'•-'-'-IiflUi •iiiuiii______ 11 iiiuiii•
: iiiuuii
•uimii____________

I
ulilull

F3: M11111110

J111

Figure 2.11 single length connections

[HIJNG90] has described the interconnect structure of Xilinx XC 4000 series of

devices. It consists of single length, double length and long lines. The single-length

connects adjacent CLBs via a switch box, where a switch box can connect for example

CLB on the left to the top, bottom or right. Single length interconnects are used to

connect the signals in localized area. This is shown in the figure 2.11.

Note that the CLB's clock (K) input can be driven from one-half of the adjacent single

length lines as shown in figure 2.12. The double length lines runs past two CLBs

before entering a switch Matrix and provide connections for intermediate length point-

to-point interconnection. Double length lines are grouped in pairs, and the switch

boxes are so placed that one member of the pair has switch box nearby alternating

CLBs.

28

Chapter 2: Performance improvement techniques in reconfigurable architectures

Figure 2.12 Double length connections

The inputs in the CLB can be driven from any adjacent double length line and each

CLB output can drive nearby double-length line in both the vertical and horizontal

planes. Long lines are a grid of metal interconnect segment that run the entire length

or width of the array and are intended for high fan out, time critical signal nets. Xilinx

routing architectures are summarized in figure 2.13. Hex lines route signals to every

third or sixth CLB in all four directions. Double lines route signals to every first or

second CLB. Direct lines connect signal to neighbouring blocks including diagonal

neighbours.

"M F VI=
 =_ __

or
Ei_hi111111 Hex

I.rl
..• —_
.=
 - I!'

Figure 2.13 Xilinx interconnect topologies

29

Chapter 2: Performance improvement techniques in reconfigurable architectures

Long lines are a grid of metal interconnect segment that run the entire length or width

of the array and are intended for high fan out, time critical signal nets. Xilinx routing

architectures are summarized in figure 2.17. Hex lines route signals to every third or

sixth CLB in all four directions. Double lines route signals to every first or second

CLB. Direct lines connect signal to neighbouring blocks including diagonal

neighbours.

2.5.2.2 ROUTING IN ALTERA FPGAs

Altera FPGAs use staggered interconnects topology which demonstrates different

levels of routing. It comprises of row and column interconnects that span fixed

distances giving routing of different speed and lengths. The software (for example

Quartus II compiler) automatically places critical design paths on faster interconnects

to improve design performance. For example, Altera (Stratix) routing consists of a

local interconnect, direct link, R4, R24, C4 and C16 interconnects. R4 interconnects

are used for fast connections in a four LAB region. Figure 2.14 shows R4 interconnect

of primary LAB and its left and right neighbours.

I C..,.C,e I

Figure 2.14 R4 interconnect

In this scheme for R4 interconnects that drive to the right, the primary LAB and right

neighbour can drive on to the R4 interconnect.

For R4 interconnects that drive to the left, the primary LAB and its left neighbour can

drive on to the interconnect. R4 interconnects can drive other R4, R24, C4 and C16

interconnects to extend the range. R24 provide long row connections as it spans 24

30

Chapter 2: Performance improvement techniques in reconfigurable architectures

LABs and it drives row (R4, R24) interconnects every fourth LAB. It can also drive

C4 and C16 interconnects. Similarly column interconnects provide connections

vertically where C4 interconnects spans 4 LABs or memory blocks (M512, M4K) and

C16 spans 16 LABs. C16 is the fastest resource for column connection between

LABs, tri matrix memory and DSP blocks. This is shown in figure 2.15.

Figure 2.15 C4 interconnect

2.4.3 CELLULAR ROUTING

There is another kind of routing called the cellular routing in which the logic cells

themselves are designed so they could be used as a part of the routing network

between logic elements. The logic clusters for cellular routing are usually very fine

grained and have single logic element in them. However the delays in the

combinational paths get significant for circuits requiring longer routes in routing. An

example structure is Cell Matrix [DUR01].

2.5.3 ROW ROUTING

31

Chapter 2: Performance improvement techniques in reconfigurable architectures

A Row type routing is usually found in one-time programmable FPGAs for example

many Actel Antifuse FPGAs ACT-I which consisted of vertical routing and some long

wires.

2.6 SUMMARY

This chapter provided an overview of academic and commercial implementation of

Viterbi and Turbo decoders. Some decoder algorithms are less complex to implement

and achieve high data rates and low power consumption. Other algorithms provide

excellent error correction performance but at the cost of high power consumption and

lower speed. Each wireless standards define these algorithms as per the error

correction capability desired. We have identified the state of the art in these

implementations such that the results can be used to design a unified decoder structure

that can target a large variety of communication standards. The chapter also

introduced the evolution of reconfigurable architecture elements citing examples in

commercial programmable devices. The configurable logic elements are covered in

detail and an overview of different routing architectures is also provided. It has been

shown that reconfigurable architectures tend to improve performance by restricting the

application domain and by techniques that reduce the cost of routing. The next chapter

covers another class of reconfiguration called domain specific reconfigurable

architectures which have reconfiguration in even more restricted sense however giving

better performance in a particular application domain.

32

Chapter 3

RECONFIGURATION TECHNIQUES
AND ARCHITECTURES FOR DOMAIN

SPECIFIC PLATFORMS

3.1 INTRODUCTION

The approach for domain specific reconfigurable design is based on the observation

that algorithms within a given domain of signal processing have in common a set of

dominant kernels that are responsible for a large fraction of total execution time and

energy. By executing these dominant kernels on dedicated, optimized processing

elements significant energy savings can potentially be achieved. This yields

processing elements that are domain-specific to a particular problem. The domain

specific reconfigurable architectures can be classified on the basis of several criterion

for example, reconfiguration model (static or dynamic), arrangement of logic blocks

(cross bar, mesh or linear arrays), granularity (data path width), computation model

(VLIW, MIMD, SIMD or single processor) and type of application domain (DSP,

General Purpose, Video etc). One of the most successful applications for

reconfigurable computing is in the field of real-time digital signal processing

[TOD05]. Wireless is in many cases the driver for DSP processing on reconfigurable

logic as a wireless baseband receiver consists of many DSP components. The authors

of [V1L98], [HARO1], [ABWEB], [HAR21], [COM99] and [TOD05] presented a

comprehensive survey of available reconfigurable computing platforms in the

academic and commercial. In this section of dissertation the focus is only on

architectures (or techniques) in literature that can directly or indirectly be useful in the

baseband processing of a reconfigurable communication receiver. This chapter

describes several suitable reconfigurable computation models citing examples from

the literature and some existing reconfigurable architectures in the wireless domain.

33

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

3.2 DOMAIN SPECIFIC RECONFIGURABLE CORES FOR WIRELESS
COMMUNICATION

Based upon all of the published work, there are very few architectures designed

specifically for wireless communications and some of the information on these

architectures is either incomplete or not disclosed because of being proprietary items.

On the basis of published information the most known and relevant architectures are

presented below with an aim to cite the mappings for convolutional forward error

correction decoding.

3.2.1 CHAMELEON SYSTEMS - MONTIUM RECONFIGURABLE
ARCHITECTURE

Recore Systems [WEB25] Montium architecture is an extension of Chameleon

Systems SoC template developed earlier at university of Twente, Netherlands

[CHWEB], [SMI04], [PAU04]. Montium predecessor Chameleon had CS2000 family

of multi-protocol multi-application reconfigurable platforms designed for

telecommunication and data communication. Chameleon CS2000 can be considered as

a general solution for the wireless application. However, it was not meant to be an

implementation solution for the baseband processing of the handheld terminals. The

C52000 family's very sophisticated and in-homogenous array makes an IP-based

mapping difficult. The CS2000 family incorporates a 32-bit RISC core as a host,

licensed from ARC UK, with full memory controller, PCI controller and a

reconfigurable array. The reconfigurable array sizes come in 6, 9, and 12 tiles. The tile

consists of seven 32-bit processing elements (each containing an 8 word instruction

memory), four local memories of 128(deep) x 32(wide) bits, control logic and two

16x24-bit multipliers. Every three tiles are grouped as a slice which can be configured

independently and also includes 8k Bytes of local memory. The 32 bit processing

element can also operate in SIMD fashion on four 8 bit data streams or two 16 bit data

streams. It is programmed with eight user-definable instructions stored in the

instruction memory. The instruction configures the input output routing, shifting,

masking, register enables, memory read and write, flag generation and the operation of

34

Chapter 3: Reconfiguration teehniques& architectures for domain specific platforms

processing unit. Dynamic configuration is supported and can be accomplished in one

cycle. Their CS1200 family aims at initial markets in communication infrastructure

with application areas as wireless base stations, fixed point wireless local loop (WLL),

smart antennas, voice over IP (VoIP), very high speed digital subscriber loop (DSL)

etc.

Montium architecture designed for a 16-bit digital signal processing domain provides

improvement to Chameleon system. The architecture resembles a VLIW processor -

with some similarity to architectures explained in section 3.5 but with an optimized

control structure. The VLIW instruction scheduling is done at compile time on to

Montium coarse grained processing element called tile processor (TP). The TP

consists of five identical ALUs each having its own local memory. There are ten local

memories for the five ALUs. A sequencer selects the instructions that are stored in the

decoder of TP [PAU06]. Each local SRAM is 16-bit wide and 512 locations deep

constituting 8Kbit storage capacity per local memory. These local RAMs can also be

used as a LUT to perform functions such as sine or divisions similar to FPGA based

LUTs explained in chapter 2. Each ALU has four 16 bit inputs and two 16 bit outputs.

Each input has a register file that can store up to four operands and can be written by

various sources through a flexible interconnect. The ALUs can directly communicate

with other ALUs horizontally i.e., in West-East direction etc.

The flexibility of MONTIUM and granularity of its ALU was decided after mapping

various FFT, DCT, FIR, VITERBI, TURBO, BLUETOOTH baseband algorithms

[WEB26]. The compile time mapping process starts from description of algorithm in

C++ or Matlab. The translation from description to architecture is done by

programming in Recore's propriety Montium configuration description language

(CDL). The CDL programs are then compiled for ALU mappings by using Montium

Synsation compiler. The software tool chain with Montium also contains a cycle

accurate Montium graphical simulator called Montium Simsation simulator.

35

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

Montium multiprocessor system consisting of multiple TPs is connected by a network

on chip communication (NOC) fabric. Each TP has communication and configuration

unit (CCU) which implements the network interface for communication between NOC

and TP. The routers in the NOC connect to other routers creating a heterogeneous

NOC of various hardware modules. There is also an AMBA-Advanced High-

Performance Bus (AI{B) bridge that connects a reconfigurable fabric to embedded

processors, high performance peripherals, DMA controller, on chip memory and

various other interfaces.

In [EPRO1] turbo/viterbi channel decoder mapping on Montium architecture is

described however, the implementation level details for the TP or the turbo decoding

such as interleaving, modulation type, SISO arrangement and concatenation (serial /

parallel) and fixed point considerations are not disclosed. Similarly Viterbi mappings

on the array are accompanied by synthesis implementation results without any

implementation level details. Results for the power consumption in Montium are not

provided directly however, in [PAU07[the power consumption for one TP memory

arrangement is calculated. This calculation is based on FFT mapping and is shown that

0.6 mw/ MHz is consumed by one TP. The overall power consumption in the fabric

will depend on the speed and number of TPs required for the mapping. The mappings

in [EPROI] show successful achievement of 3GPP and DAB data rates however the

important power consumption details are not provided.

The main advantage in VLIW structures like Montium is that the compiler decides

what can be executed in parallel and there is no need for the hardware to check

dependencies or decide on scheduling as these are resolved at compile time. However

as indicated in [PAU04] there are a number of software challenges:

• Firstly, building good compilers for VLIW structures is non-trivial as a best re-

arrangement of code for long instruction packing may always be not possible.

• Programs will tend to grow bigger as it may not always be enough instructions

that can be done in parallel to fill all the available slots in the instruction,

36

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

which in turn means bigger code due to this wasted space. Memory band width

always has important consequence on speed and power as it determines the

size of the caches.

It is not possible at compile time to identify all possible sources of pipeline

stalls and their durations. A stall on cache miss, on one processor may create

dynamic data dependency in other execution units which can result in write

hazards (write after write hazard). Stalling all the parallel pipelines to avoid

this problem results in poor performance.

e Since compilers now need to know more details about architecture and length

of the pipeline etc, changing a hardware component in turn means loss of

binary compatability and redesign of compiler.

The solution of these problems for example, may require sufficient hazard resolution

hardware to deal with the dependencies that dynamically occur during execution, such

that complete processor does not stall when one component does. Therefore, there are

numerous hardware and software bottlenecks that limit the performance of VLIW

based Montium architecture.

MorphlCs [MOWEB] also announced its own version of reconfigurable chips

targeting the next generation of wireless applications; it never disclosed any

information about the inner design of its solution.

Some domain specific cores have been developed around coarse grain general purpose

architectures. Carl et. al [CAR04] developed an OFDM receiver based on RaPiD

coarse grain reconfigurable architectures. RaPiD is based on linear array with no

register file or crossbar interconnects. Therefore, the OFDM core has inherent

limitations of the underlined architecture. RaPiD also shares many of the features of

VLIW processor architectures and has similar limitations as discussed for Montium

but with some improvements from a typical VLIW solution. For example, the RaPiD

instruction format and decode logic is configured for each application according to the

dynamic control required. This reduces the instruction width as same instruction field

37

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

can be used to control many different parts of the data path. It was stated in [CAR04]

that 32-bit instructions have been sufficient to map a wide range of algorithms to a

datapath with over 100 functional units and memories.

There were no mappings of error correction decoders found on RaPiD, however work

in [CAR04] details mappings for some common wireless baseband components. For

example: searching blocks, synchronizing blocks and FFT blocks required in a 4

channel MIMO OFDM receiver. It was concluded in [CAR04] that implementation on

RaPiD for searching and tracking algorithms has 16 times the performance of the DSP

implementation, at about three times the cost. When compared to ASIC, the RaPiD

mapping has about half the performance at about three times the cost. When compared

to FPGA, RaPiD has three times the performance at about 118 th of the cost. RaPiD is

designed for regular data paths like those found in digital signal processing, graphics

and communications. Applications with highly irregular computations and complex

addressing patterns or the applications that sparingly reuse data and cannot have fine-

grained parallelism will not map well on the architecture. Rapid architecture is

explained below:

3.2.2 RAPID ARCHITECTURE FOR OFDM WIRELESS RECEIVER
MAPPINGS

Rapid (Reconfigurable pipelined datapath) [EBE96, CR099, DAR98] is an

architecture based on linear arrays. Its functional units (FU) are arranged in a serial

sequence (having a common data width generally between 8 to 32 bits wide) but with

no register file, or crossbar interconnect. Data is streamed in directly from external

memory managed by a stream manager. The programmed controllers decode the

operations in to parallel FUs of the data path of RAPID. Data and intermediate results

are stored locally in registers and small RAMs, close to their destination FUs. The

architecture is shown in figure 3.1.

38

S.

Bus \,
Segments Bus Connectors

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

Input Streams
S

I 	 S

External 	External
Memo 	Sensors

£

-y 	 -. Output Streams

Stream
Manager 	 :

	

-L I !t t1 	yt 	 ,L. 	 •.t_ 	j- t. t

	

F] 'A 'U 	R 	 IR 	A IR 	R F

	

lHLIu 	A IE,. 	• 	•EL liE 	or At

	

F] IuI L 	LM 	IG 	 IG]u 	De M

	

L 	 I 	J] 	2 Un

Figure 3.1 Block diagram of RaPiD

Figure 3.1 shows FUs of RAPID. The selection of FUs is chosen based on the

application domain for which the device will be used.

SSESSES EU EU SS .
11111] 	I]IIlI 	liii]] 	111111 	11111 	11111 	Iiii]I 	111111 	111111

Programmable Interconnect

Figure 3.2 interconnects for RAPID

The FUs range in complexity from a simple general purpose register to booth-

multiplier with a configurable shifter or a viterbi decoder. The interconnect scheme is

created by a linear arrangement of segmented word-based buses. The segments are

connected by bus connectors as shown in figure 3.2.

39

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

All buses have same width which matches the data width operated on by the FUs. Bus

connector can drive left, drive right, or be disconnected by using the tn-state buffers as

shown in figure 3.3. The bus connector can also be configured to provide up to three

register delays.

DrIvs
low

Drive 	 Drivu
left? 	 right?

Figure 3.3 Bus connector with configurable delay and BC

An input to a functional unit coming from the tracks is controlled by the multiplexer

as shown in figure 3.4.

fr
bt to 	 Fw.ctons

U..

-t--

17 r

Figure 3.4 Connection of tracks to FUs of RAPID

FUs drive the buses through tristate buffers and each FU can drive an arbitrary number

of buses. The multiplexer control bits can be changed dynamically allowing some

dynamic reconfiguration. Each track can be driven by any bit of the instruction word.

These bits then run in parallel to the datapath and potentially through logic blocks in

40

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

order to produce the required soft control signals. Therefore the configuration of the

dynamically changeable resources is controlled cycle by cycle using the "instruction

generator" and "configurable instruction decoder". There is a stream generator which

essentially is a memory interface with an address control and FIFO for each input and

output stream. It provides the architecture with streams of data from external memory

or other resources and receives the output streams from the RAPID architecture and

writes the data to the external devices.

Another method for providing enhanced performance for communication based

algorithms is by the use of application-specific instruction set extensions. By creating

application specific extensions to an instruction set, the critical portions of an

application's dataflow graph (DFG) can be accelerated by mapping them to custom

functional units. Though not as effective as ASICs, instructions set extensions

improve performance and reduce energy consumption of processor. Instruction set

extensions also maintain a degree of system programmability, which enables them to

be utilized with more flexibility. Next section describes such architectures

3.2.3 APPLICATION SPECIFIC INSTRUCTION SET PROCESSOR (ASIP)
BASED COMMUNICATION DESIGNS

In order to keep the design turnaround times short, there is a general trend in ASIPs

(used in communication domain) to avoid complexity of a complete processor design.

There are existing processors that allow specialization to their instruction set or data

path for example; Xtensa from Tensilica [WEB27], Stretch S5 from Stretch [WEB28],

ARCtangent from ARC [WEB29], and LISATek products from CoWare [WEB30].

There are architectures found in literature that use these processors for a unified

communication based band mappings.

In [ROSO4] UMTS based turbo decoder is mapped on to XiRisc ASIP developed by

university of Bologna [1SE95]. The architecture uses 5 stage RISC pipeline tightly

integrated with FPGA like reconfigurable array. The design inherits some of the

disadvantages of the RISC architecture as the performance suffers due to the load store

41

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

pipeline structure and the internal memory bandwidth. The optimizing compiler sees

the reconfigurable array as one of the various function units of ALU facilitating the

job for compiler. It is demonstrated in [ROSO4] that 8 XiRisc processors are required

to achieve 3GPP [3GPP99] data rates which makes this solution very impractical for

handheld wireless receivers..

In [GIL03] another ASIP based on the Tensilica XTENSA [WEB27] platform

targeting the channel decoding domain is presented. This architecture allows new

instructions to be added at design time. The hardware for the new instructions within

the processor pipeline is synthesized with an ASIC-like flow; hence, the processor

cannot be reconfigured after the fabrication. Selection of the new instructions is

performed manually by using a simulator and a profiler. When the Xtensa processor is

synthesized, a dedicated development tool set is also generated that supports the newly

added instruction as function intrinsics. The structure has some similarity to XiRisc

architecture but has only four stage RISC pipeline. It suffers from similar 'load-store'

drawbacks of the RISC architecture however, the ASIC implementation of data path

allows higher turbo decoder throughput (1 .4Mbp/s per iteration - 0.2 Mbps for 6

iterations) than XiRisc. The design only allows compile time reconfiguration where as

XiRisc allowed dynamic reconfiguration and inspite of the ASIC flow the data rates

achieved by XTENSA are still less than that required for 3GPP UMTS [3GPP99]

standard.

Another architecture [VOG06] implements viterbi and turbo decoding on ASIP

synthesized at 65nm CMOS standard cell libraries. A throughput of 20Mbps (at 5

turbo iterations) is achievable but at a very high clock frequency of 400MHz. Power

figures are not quoted for the design which is an important parameter for its domain of

interest i.e., battery powered wireless receivers. The design uses 16 parallel ACS

blocks at 400 MHz which owing to its size is a very power aggressive design

approach. The ASIP is based on framework provided by LISATek from CoWare Inc

[WEB30]. It is a SIMD execution model with 11 stages of pipeline and 24 bit wide

instruction. The SIMD multiprocessor execution model also suffers from a

42

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

complicated compiler, complex instruction scheduling and packing mechanism and

runtime data dependency problems that can cause hazards in the processor pipeline.

The architecture is claimed to be reconfigurable for DVB and CDMA however only

convolution based architecture is described and block based decoding required for

DVB are not disclosed.

3.2.4 VITURBO

Viturbo [CAV03] is an architecture developed at university of RICE for a unified

turbo and viterbi decoding. The aim of this design was to achieve high data rates

suitable for WLAN and 3G standards and allow reconfigurability between these two

standards. Its reconfigurable design is based on a full parallel decoding approach for

all possible constraint lengths resulting in architecture with 256 parallel states. The

array consists of 256 adder-compare-select blocks with the additional control and

RAMs circuitry. Reconfigurable interconnect is realized by the use of a large array of

multiplexer banks. The design supports Viterbi decoder for constraint lengths 3 to 9

and code rates 1/2 and 1/3. Rate ¼, 1/5 which are also required in 3GPP are not

supported. Throughput rates up to 60.5Mbps for Viterbi decoding and 3.54Mbps for

Turbo decoding were achieved on Xilinx Virtex II (XC2V2000) FPGA. Power

simulations were also performed using Xilinx Xpower simulator. SOVA decoding

algorithm were chosen for Turbo decoding which is inferior in BER performance

compared to Max Log Map or Log Map decoders. This fully parallel scheme results in

larger area and very high power consumption. For example, 3GPP [3GPP99] Viterbi

decoder mapping on the array consumes 1.42 Watts of power. The other disadvantage

is that the mappings that use only part of the array will have power wasted in the

unused circuit. The design requires over 190k logic gates and about 327k bits of

memory. The size and the power consumption make the design unsuitable for

handheld battery powered wireless receivers.

The research in this thesis investigates speed and power efficient reconfigurable VLSI

design for a convolution FEC decoder that can target a large variety of wireless

communication standards. Next sections describe some other MIMD, SIMD, VLIW

43

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

reconfigurable DSP architectures that may be useful in our reconfigurable design

space exploration.

3.3 ARCHITECTURES BASED ON LINEAR ARRAYS

The majority of the VLSI architectures employ a pipelined data path to gain timing

advantages. The concept used in pipeline acceleration is to reconfigure pipelines or

parts of pipelines onto a reconfigurable architecture. The reconfiguration allows one

stage of the pipeline path to be configured in every cycle, while concurrently

executing all other stages. The reconfiguration is usually done at run time (dynamic)

with an aim to keep the time for reconfiguration as short as possible. This works well

for linear pipelines without forks. If there are forks in the pipeline, which would

require a two dimensional realization, additional routing resources are needed, which

are normally provided by longer lines spanning the whole or part of the array. The

linear structure of processing elements allows direct mapping of pipelines with the

inherent problem for forks. Unlike most mesh-based architectures (section 3.5), the

resources are not evenly distributed as the architecture extends in only one direction.

Piperench and Rapid are the two example architectures in literature with a linear array

structure. While Rapid uses a mostly static configuration model, PipeRench relies

highly on fast partial dynamic pipeline reconfiguration as well as run time scheduling

of both configuration streams and data streams. The architecture is explained here as

an illustrative example of dynamic reconfiguration.

PipeRench [GOL02, G01,99] is a coarse grain reconfigurable architecture developed

to speed up pipelined applications. The architecture is organised in stripes of pipeline

stages. Each strip has 16 processing elements and 8 entry register file. The

reconfigurable components allow the configuration of one pipeline stage in every

cycle, while executing all other stripes in parallel. It aims to adapt the concept of

virtual memory to reconfigurable hardware, resembling a virtual hardware thus

implementing a time multiplexing of the physical computation resources. Figure 3.5

shows stripes arrangement in a ring structure.

44

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

The ring is formed by connecting the last stripe to the first. RO register along with the

details of PEs is shown in figure 3.6. An application pipeline is mapped on to the

PipeRench, and the physical hardware is kept transparent to the application. The state

of the over-written virtual stripes is preserved by writing the value into the RO state

store memory. The state will be restored when that virtual stripe is returned to the

fabric. The processing elements consist of ALUs implemented as 3 input LUTs (8

LUTs/PE), barrel shifter, carry chain circuitry, zero detection circuitry etc.

Stripe Ii -

IjI
I... 	...

I1 	
D _Il
bl

- SMM I 	 I Ou

RO Steft s.

Figure 3.5 Stripes of Piperench architecture

The PEs within a stripe are interconnected through local interconnection network. PEs

can access operands from the registered outputs of the previous stripe, as well as

registered or unregistered outputs of the other PEs in the same stripe. There are 42 bits

required to configure a PE while 672 bits are needed for an entire chip. The output

from the PE can be written to any register in the register file. Unused registers are

filled by the value from the corresponding register in the previous stripe. The PE

output can also connect to horizontal interconnect line, which goes to other PEs in the

stripe. This output can be programmed to be connected to the outputs of the previous

stripe's register file or the current stripe's RO. When the virtual hardware is larger than

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

the available stripes, physical stripes will eventually be reconfigured with new virtual

stripes.

- - • - : ------- ___
- -
-

•
• ------- ______ ___

• = : --- - - : ------- ------- --- --- • - . ------- ___
- - ------- ------- ZMZZ

fHHHI Iru11111.
'4I!IIi.

Figure 3.6 Processing elements in piperench.

3.4 WORMHOLE RECONFIGURATION MODEL

In Wormhole runtime reconfiguration model, the data streams to be processed carry a

header with configuration information. This header holds the configuration data for

both the routing and the functionality of all processing elements the data stream

encounters on its way. The main architecture in literature under this classification is

Colt [B1T96], [ANN02]. The Colt system is mainly targeted for DSP applications

which are implemented by configuring pipelines or part of pipelines onto the

architecture. The pipelines are then used to process data streams. Figure 3.7 shows the

functional unit of Colt system.

By directly connecting functional units and guaranteeing that only one operand exists

on an arc at a given time, the implemented data flow graph is reduced to a set of

interacting pipelines. There are four main subsystems in the Colt: Six data ports (DPs),

46

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

the crossbar switch, the integer multiplier and the mesh. The mesh is further

subdivided into Interconnected Functional Units (IFUs) which is the main

computational facility. The FU has 16-bit left and right input registers, each of which

can load an operand from any of the four nearest neighbour connections or from any

of the four skip bus segments connected to the IFU.

Figure 3.7 Colt functional unit

The conditional unit in figure 3.7 selects left or right path and the output of the

conditional unit passes through an optional output delay before being released to the

rest of the chip on the four nearest neighbour connections. There is also a carry chain

for add, subtract and negation. The IFUs at each side are connected by unidirectional

nearest neighbour links in each direction with one outgoing and one incoming port.

There is also a skip bus running between the IFUs which provide segmented

connections between IFUs of the rows. In the top row, each IFU has two inputs from

cross bar and in the bottom row IFU has single output going to the crossbar. At the left

and right edges the two nearest neighbour links and the skip bus are connected to the

opposite edges forming a torus structure. The dedicated integer multiplier has two 16

bit inputs and two 16 bit outputs for the high and low word of the 32 bit result in two

clock periods. Since the multiplier inputs and outputs are directly connected to the

47

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

cross bar the results can be quickly routed to any part of the chip for further

processing. The six data ports are bidirectional, each 20 bits wide with 16 bits for data

and four bits for stream flow control.

INPUTS FROM CROSSBAR

OUTPUTS TO CROSSBAR

Figure 3.8 Colt IFU interconnection

3.5 VLIW EXECUTION BASED RECONFIGURATION MODEL

Multiprocessor based reconfigurable architectures have multiple instances of ALUs

distributed in different placement strategies. There are three execution models for

multiprocessor arrays:

• Multiple instruction multiple data (MIMD) model for example Chess array

explained in section 3.6.

• Single instruction multiple data (SIMD) for example Morphosys architecture

explained in section 3.8.

• Very large instruction word (VLIW) model for example Paddi architectures.

Chess, Morphosys and Paddi are examples of multiprocessor arrays. This section

explains Paddi architectures as an example of VLIW execution model and crossbar

based routing.

48

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

A full crossbar router allows the most flexible communication topology between the

processing elements. The routing task thus becomes a simple operation. However, the

implementation cost of a full cross bar is very high and therefore usually reduced

complexity cross bars are used as in Paddi I.

Figure 3.9 EXU of Paddi I

The PADDI (Programmable Arithmetic Device for Digital Signal Processing) family

of reconfigurable architectures was developed to address the problem of rapid

prototyping for computation intensive DSP data paths. Paddi I [DEV90, CHE92] is a

multiprocessor VLIW based architecture in which each execution unit (EXU) operates

a four stage pipeline consisting of Fetch - Decode- Execute- Output cycles. The EXU

(configurable between 16 or 32 bit wide operations) supports addition, subtraction,

saturation, comparison, maximum-minimum and arithmetic right shift operations.

Each EXU has an SRAM-based nano store which is configured serially at set-up time.

At run time external sequencer broadcasts a 3b global address to each nanostore which

is locally decoded in to a 53 bit instruction word. A 3 bit address is able to specify 8 x

53 or one 424 bits very long instruction word. The EXU architecture is explained in

figure 3.9. PADDI-2 [YEU93] has a similar architecture but now with Booth

multiplier in EXUs (called nanoprocessor in Paddi 2). The small local program at each

nanoprocessor implements a node or a cluster of few nodes of the data flow graph.

49

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

The arcs of the data flow graph are implemented by a flexible interconnect network

that can be configured by programming SRAM cells controlling switches in the

interconnect network to create point-to-point links between the nanoprocessors.

Computational activities are coordinated by a distributed data-driven control strategy

in which nanoprocessor computations are synchronized by passing data and control

tokens. Each nanoprocessor has input FIFOs that capture incoming tokens from the

communication network. Pleiades is a low power version of this family and consists of

additional control processor. It comprises a general-purpose core surrounded by a

heterogeneous array of autonomous special-purpose satellite processors. All

computation and communication activities are coordinated via a distributed data-

driven control mechanism. The dominant, energy-intensive computational kernels of a

given DSP algorithm are implemented on the satellite processors as a set of

independent, concurrent threads of computation. Examples of satellite processors are

Memories, Address generators, PGAs, MAC, ACS and DCTs. Figure 3.10 shows the

Pleiades architecture.

ft 	T_

Addr.s 	IU[iJHru.qnory ____ -
Gao 	1 14II 52x16. 	J 	4x1€b

ARM8uP
Communication Network

Interfwa

Address, , Data

MAC 	 ALU 	 FPGA 	U 04" 	Configuration
Bus

Figure 3.10 Pleiades architecture

The interconnect topology is a generalized mesh [ZHA99] in which the clusters

internally use tightly connected generalized mesh architecture and inter-cluster switch

boxes allow communication between clusters using the next higher level of

communication network. Configuration is loaded into the configuration store registers

50

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

by the control processor through a wide configuration bus at a rate of 32 bits per cycle

and there is overlap for configuration and kernel execution. This is accomplished by

using multiple configuration contexts in multiple configuration store registers. There

is also a distributed control mechanism as compared to one large global controller

3.6 MIMD RECONFIGURATION MODEL

The idea of a MIMD execution model based reconfiguration is to provide a highly

parallel computing architecture composed of several repeated and interconnected tiles.

The tiles comprise of computation facilities (like ALUs) and memory. The best

example for such arrangement is the RAW architecture developed in MIT [MICO2,

WA197]. It. is a RISC multi processor architecture and one of the most coarse grained

architectures. It is two dimensional array of microprocessor (32-bit MIPS) tiles with

32-bit pipelined floating point unit, local instruction and data caches, controller,

register file of 32 general purpose and 16 floating point registers and program counter.

It also contains several routers and wiring channels to support static (determined at

compile-time) and dynamic (wormhole routing for data forwarding) networks. The

prototype chip features 16 tiles arranged in 4 by 4 array. All architectural details are

disclosed to the compilation framework. The processors however lack the support for

dynamic instruction issuing or caching or register renaming. Due to the lack of these

features, the execution model uses statically scheduled instruction streams generated

by the compiler. Thus development software has to resolve all the dynamic issues.

The CHESS architecture [MAR99] developed by Hewlett Packard Laboratories is

another example of MIMD architecture. The architecture consists of ALUs and

switchboxes. These components are arranged in a chessboard-like pattern as shown in

figure 3.11. The ALUs feature two inputs and one output (4 bits

registered/unregistered) as well as one single-bit input and one output for carry. The

instruction set features 16 operations, including add and subtract, nine logical

operations, two multiplex operations and three tests using the carry bit as condition

output. Carry signals can be routed through the general routing fabric but also have

dedicated high speed local routing paths to their north and east neighbours. It is

51

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

possible to connect the data output of an ALU to the configuration input of another

one. Thus, the functionality of an ALU can be changed in a limited way on a cycle-

per-cycle basis during runtime by configuration data generated inside the array.

Figure 3.11 Chess board placement pattern in Chess Array

There is no facility for partial reconfiguration from outside of array as is possible in

Paddi or Colt architectures. The ALUs and all routing resources are four bits wide.

This is shown in figure 3.12.

Cm

Generate __E~~F
Sum

H
Function

Unit

A
Input Generate

Carry

Cout

Figure 3.12 Functional unit in Chess

3.7 UN! PROCESSOR RECONFIGURATION MODEL

52

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

Domain specific reconfigurable architectures described so far are all coarse grained.

The Garp architecture [HAU97] is a fine grained architecture that uses the concept of

reconfigurable hardware being used as a slave of a standard MIPS processor. The

reconfigurable logic blocks in the array resemble Xilinx 4000 FPGA series. By

including a microprocessor, the Garp is targeted for ordinary processing environments,

with the reconfigurable array being only activated for acceleration of specific loops or

subroutines. The granularity of the processing elements is two bits with clusters of

several such processing elements connected across rows. The instruction set of the

MIPS-Processor has been extended with instructions to configure and control the

array. The array works on a clock counter updated by the processor which determines

the number of clock cycles the computation in the array should last. The counter

decrements with the array clock cycle. When the counter is zero, updates of the state

in the array are stopped. The Garp reconfigurable array consists of entities called

blocks. There are at least 32 rows and 24 columns of blocks. One block on each row is

known as control block. Figure 3.13 shows the architecture of Garp array.

•u..s.:..I...
• •s•.••••..•••.•••.••.••
•
• UU • U•UU •U• • u uiu••. a•• .0
• •••••uU.•••••••.•_•••.
• • •I.• U UU .. lu UU U• U UU.:

; U lU • U • UU • •U IiUUU SU U U •U UIU

4 Memory
Buses

Figure 3.13 Garp architecture.

53

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

The 16 consecutive blocks in a row provide operations on 32-bit quantities. In total

there are 23 logic blocks per row. The basic unit of reconfiguration is one row, which

can be seen to as a kind of reconfigurable ALU, being formed from relatively fine-

grained blocks. There is one control block for each row which is used for interfacing

tasks like interrupting the processor or for initiating memory accesses. Memory

accesses can be initiated by the reconfigurable array, but the data connection to

memory is restricted to the central 16 columns with 16 logic blocks of each row.

3.8 SIMD RECONFIGURATION MODEL

A SIMD execution based reconfiguration model consists of a processor and parallel

execution units. The processor issues the instructions in a SIMD manner. Morphosys

is an example of SIMD reconfiguration model as it consists of a SIMD processor

tightly coupled with a reconfigurable array. It is also targeted at highly regular

applications with inherent data-parallelism.

Ml Chip

ri 32 	Thy_RISC

ata

Cache
Core Processor

3 2' 1
r' 	ri Reconilgurabie

Cell(RC)
Array

Frame
- 	 - DMA 	Buffer

Controller 	(2 sets 4
4 	Banks)

Memory
Bank

Memory 16 Memory
Bank
DRAM]

Control 	Chip Boundary 	Data

Figure 3.14 Morphosys block diagram

The Morphosys architecture comprises a core processor (Tiny RISC), a frame buffer, a

DMA controller, a context memory, and a reconfigurable component organized in

54

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

SIMD fashion as an array of 8 by 8 reconfigurable cells. The core processor has an

extended instruction set for manipulation of the DMA controller and the

reconfigurable array as shown in figure 3.14.

The programmable reconfigurable cell (RC) array of MorphoSys comprises an 8 by 8

array of identical processing elements. The array is divided into four quadrants of 4 by

4 cells each. A RC features a 16-bit datapath, comprising a 16x12 Multiplier, a shift

unit, two input multiplexers, a register file with four 16 bit registers and a 32 bit

context register for storing the configuration word. The multiplier can perform the

standard arithmetic and logical operations as well as a multiply-accumulate operation

in a single cycle. The multiplier has four inputs, two over the input multiplexers, one

from the output register, and one connected to the context register to load a 12 bit

operand contained in the configuration word. The two input multiplexers select one of

several inputs for the Multiplier based on the control bits from the context word in the

RC context register. These inputs include the outputs of the four nearest neighbour

RCs, outputs of other RCs in the same row or column (with the quadrant), horizontal

and vertical express lines, FB data bus and RC register file. This is shown in figure

3.15.

16 83DaIa

I 	U 	TBXQ 	RO-R3 	 64

----\ 	MUX.A 	/ 	UDLI
Context T

Word E

Context T MU&B Is
Mey

R 112
E

8

 ALU.MULT

jftngF~..
1

--------------------- 	 --

y1±7
L 	1'

OIPREG

To DOW fro Wa T. V& 	RCS
Bus

Figure 3.15 Reconfigurable cell in Morphosys

55

Chapter 3: Reconfiguration techniques & architectures for domain specific platforms

The RC array interconnect consist of three hierarchical levels. In the first level, all

cells are connected to their four nearest neighbours in a 2D mesh. The second level of

connectivity is at the quadrant level (4x4 group of RCs). The RC array has four

quadrants and within each quadrant, each cell can access the output of any other cell in

its row and column. The third layer of interconnect consists of buses at a global level

spanning the whole array and allowing transfer of data from a cell in a row or column

of a quadrant to any other cell in the same row or column in the adjacent quadrant.

3.9 SUMMARY

This chapter introduced domain specific processor for configurable computations.

Conventional programmable architectures shown in chapter 2 are concluded to be far

less energy efficient than custom, application-specific devices. The inefficiency is due

to the manner in which flexibility is achieved in conventional processors.

Computations are performed on functional units that are designed for a much larger

domain of applications. This makes the functional units large and complex, and their

granularity is not always well-matched to the data types and the computations required

by target algorithms. Similarly data operands are also stored in large centralized

memory structures. This basic weakness afflicted all of the architectures that were

discussed in chapter 2. It was then shown in this chapter that architectures that target a

smaller set of applications can be more efficient than general-purpose devices and

must be pursued. Domain-specific architectures can be particularly efficient, as they

provide the architect with the opportunity to match architectural parameters to the

properties of the target domain of algorithms. The next chapter proposes a

reconfigurable solution for turbo decoding keeping in view the lessons learnt from the

architectures in chapter 2 and chapter 3.

56

Chapter 4

RECONFIGURABLE TURBO
DECODING

4.1 INTRODUCTION

In this chapter the solution to the problem of reconfigurable turbo decoding is

presented. A two fold reconfiguration context is designed, one is the

reconfiguration of turbo decoding array itself as it is used in various wireless

communication standards. Secondly, reconfiguration to adapt a turbo decoder for a

common communication platform consisting of unified turbo-viterbi decoding

components. For the first context, reconfiguration provides flexibility between

different generator polynomials, constraint lengths, rates and frame sizes. In the

second context reconfiguration addresses issues like state metrics normalization,

sharing of input/output RAMs etc. For both contexts, a reconfigurable state

machine control for individual and unified turbo decoding components is provided.

A low power technique for caching two Window lengths on input matrices that

reduces the read excess to larger input RAMs is also developed. Similarly branch

metrics storage is avoided by performing more recalculations.

The rest of the chapter is organized as follows. In section 4.2 and 4.3 the

mathematical basis of the algorithm is briefly described. Section 4.4 describes the

modifications done to the algorithm in literature to make it more suitable for

hardware implementation. Section 4.5 gives the iterative BER improvement in

turbo decoding. Section 4.6 to 4.11 presents different components of the

reconfigurable VLSI design and the domains of reconfiguration. At the end

comparisons of our results with the state of art and the contributions are discussed.

57

Chapter 4: Reconfigurable Turbo Decoding

4.2 TURBO DECODING - THE INVENTION

Claude Berrou, Alain Glavieux and Patrick Adde seminal contribution in [BER93]

reported excellent coding gains approaching Shannonian predictions [SHA48]. This

gave an insightful concept in to the error correcting power of turbo codes. The

work in [BER93] was based on literature of G. Battail in 1987 [BAT87] and J.

Hagenauer and P. Hoecher in 1989 [1-1AG89]. These scientists started their work on

the Soft-Output Viterbi Algorithm which stimulated them to consider

cascading/concatenating coding techniques for large asymptotic gains. Punya

Thititmajshima, later joined the group in 1989 as a Ph. D student with his work

started showing in literature in 1995 [TH195]. The beginning of SOVA was then

replaced by Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [BAH74] at the end of

discovery. The main patent filed for Turbo decoding is 1992 [PAT1].

4.3 THE MAXIMUM-A-POSTERIOR! (MAP) ALGORITHM
MATHEMATICAL DESCRIPTION

The MAP algorithm [BAH74] examines every possible path through the convolutional

encoder trellis and therefore initially seemed to be unfeasibly complex for the majority

of applications. Hence it was not widely used before the discovery of Turbo Codes. A

brief description of the Log-MAP algorithm is given below. Throughout the thesis

binary codes are assumed.

The MAP algorithm gives, for each decoded bit u,, the probability that this bit was +1

or -1, given the received symbol sequence y 0 .This is equivalent to finding the

aposteriori log likelihood ratio

P(u k =+1I)
L(u Iy0)=ln

P(uK 	1)
(1)

Using Bayes' rule which gives the joint probability of a and b, P(a A b), in terms of the

conditional probability of a given b 'P(a b)' as

P(aAb)=P(ab).P(b) 	 (2)

and also using its consequence

58

Chapter 4: Reconfigurable Turbo Decoding

P({aAb}c)=P(a{bAc}).P(bc) 	 (3)

Bayes' rule allows us to rewrite the equation (1) as:

L(uKIyO)=ln P(uk=+IAyO)
	 (4)

P(uK =—lAy 0)

Let us consider the convolution encoder with K=3, for which the possible

transitions are shown in the figure 4.1

-1 	S.

Figure 4.1: Possible transitions in the trellis corresponding to Constraint length

K=3

For this code there are four encoder states, and since we consider a binary code,

therefore, in each encoder state SKI there are two possible transitions. These transitions

depend whether the input value is I or 0 (4). The next state 'SK' is connected to

previous state SKI by a unique trellis structure which varies from standard to standard.

The transition associated with the input bit of -1 is shown as continuous line and that

associated with the input bit of +1 is shown as a broken line. It can be seen from Figure

4.1 that if the previous state Sk-i and the present state Sk are known, then the value of

the input bit Uk, which caused the transition between these two states, will be known.

The probability that Uk = +1 is equal to the probability that the transition from the

previous state Sk.1 to the present state Sk is one of the set of four possible transitions

that can occur when Uk = +1. Since these transitions are mutually exclusive we can

rewrite the equation (4) as:

59

Chapter 4: Reconfigurable Turbo Decoding

	

P(Sk..I=S'ASk=SAYO) 	

(5) L(u k l Yo) =ln 	
P(SkI=S'ASk=SAYO)

where (s', s) => uk = +1 is the set of transitions from the previous state SkI = s' to the

present state Sk = s that can occur if the input bit Uk = +1, and similarly for (s',$) => uk

= -1. For simplicity we represent P(Sk_I = S'ASk = sAy0) as P(s'As A y 0).

Y k
Rewriting P(s'AsAy 0) as P(S.ASAYJ<kAYkAYJ>*) where 	is the received

codeword associated with the present transition at stage k of trellis. y 	is the

received sequence prior to the present transition and y is the received sequence

after the present transition. Using Bayes' rule from equation (2) and the fact that if

we assume that the channel is memory less, then the future received sequence
yJ<*

will depend only on the present state s and not on the previous state s' or the

present and previous received channel sequences
y
 and yo , therefore:

P(s'As A y0) = P(y I {s'As A 	A y}).P(s'As Ay 0 A y) 	 (6)

P(s A5AY)=P(y 0
J<k

 Is).P(s
•
 ASAy0

f<*
 Ay

k
0) 	 (7)

Again using Bayes' rule we expand equation (7) as follows:

P(s'As A)
= p(J<k

s).P({y: As) I {s'Ay}).P(s'Ay)

J<k 	k 	 • 	J<k
= P(YO I s).P(y 0 As) I s).P(s Ay0)

= 13k (s).yk (s,$).ak_I (s)
	

(8)

where: 	ak_I(s) = P(Sk_I = S'Ay 0)
	

(9)

Equation (9) explains that the trellis is in state s' at time k-i and the received

channel sequence up to this point isyf<*.

Similarly

f(s) = P(y J>* ISk =s)
	

(10)

60

Chapter 4: Reconfigurable Turbo Decoding

and

Ik(5,$)_"(Y0ASk_3'ISk_1 _s) 	 (11)

The MAP algorithm finds ak(s) and k(5) for all states s through the trellis, i.e., for

all stages k=0,1,...N-1 and yk(S',5) for all possible transitions from state Sk-i=s' to

state Sk=5.

4.3.1 FORWARD RECURSIVE CALCULATION OF THE ak(s) VALUES

As shown above we have akl(s') as

J<k+I

ak(s)_P(Sk — sAy)

J<k 	*
P(sAy 0 Ay)

J<kk
= 	P(SASAy 0 Ay 0) (12)

using Bayes' rule again and the assumption that the channel is memory less we

obtain the following equations:

= 	P({sAy} I {s'Ay}.P(s'Ay)

= 	yk(s',$).ak_I(s') 	 (13)
all->s'

Figure 4.2: Calculating alpha probability

Thus, with the yk(s',$) values, the ak(s) values can be calculated recursively as

shown in figure 4.2.

61

Chapter 4: Reconfigurable Turbo Decoding

4.3.2 BACKWARD RECURSIVE CALCULATION OF THE Pk(S)

VALUES:

Similar to the above derivation, the k(5) values can be evaluated. Again from

equation (10) we can write Pk-](s') as:

fJk _I (s) = P(y0
J>k-1

I Sk_I =SO) 	 (14)

By splitting a single probability into the sum of joint probabilities and using the

derivation from Baye's rule as well as the assumption that the channel is memory

less we have:

= 	P({i>kl}I,)

all=>s

= 	P({yAyAs}Is') 	 (15)
all=>s

From equation (3)

= 	P({y I {s'As A y} Y{y As) I s')
a11>s

= 	P(y >* I s) .P{yAs }I s)
a!1>s

= 	18k (s).y,1 (s' 1 s). 	 (16)
a11>s

Calculation of 0 probabilities is shown by figure 4.3:

Figure 4.3: Calculating beta probability

4.3.2 CALCULATION OF THE 4(') VALUES

62

Chapter 4: Reconfigurable Turbo Decoding

From equation (11) we have Yk (s', s) = P({y* A S) I s') which is rewritten according

to equation (3) which => P({a A b} c)= P(a {b A c}).P(b c), hence

Yk(S ' ,S) = P(y I {s'As}).P(s Is')

= P(y {s'As}).P(u k)
	

(17)

where Uk is the input bit necessary to cause the transition from state Sk-i=s' to SkS

and P(uk) is the a-priori probability of this bit. This first term in the equation

P(y I {s'As}), is equivalent to (Yk I xk), where Xk is the transmitted codeword

associated with the transition from one state Sk1 = s' to Sk = s.

Thus we can write

n

P(y I {s'As}) P(y I) = flP(y I x)
	

(18)
1=1

where Xkl and yki are the individual bits in transmitted and received code words

between
k
 and uk, and n is the number of bits in each code word

k
 and

X0 	 Xo

Assuming that the transmitted bits Xkl have been transmitted over a Gaussian

channel using BPSK, so that the transmitted symbols are +1 or -I we have.

P(y, Ix1)= 1-b exp(- 	(y1
_)2)

where Eb is the transmitted energy per bit, 0
2 is the noise variance and a is the

fading amplitude (a1 for non-fading AWGN channels).

1 	E P(y * I{ sAs))=fl ., 	exp(-(y-ax)2)2na

I
P(y I (s'As)) =

j____
exp(--(yJ _)2)

P(y I {s'As})
= 	exp(__(y2 +a 2 X - 2ax,y,))

O 	 (Jfl 	 2U2
,=

E n

P(Y O {s'As}) = C1 .C2 .exp(--2ax,y) 	 (19)
20,2

1=1

63

Chapter 4: Reconfigurable Turbo Decoding

E
Cl =
	

exp(— 	y1) 2a2

depends only on the channel SNR and on the magnitude of the received sequence.

C2 =exp(_-a2xj)

C2 =exp(— b -----a 2 n)
2o

depends only on the channel SNR and fading amplitude. Hence we can write for

Tk(S ,$):

1k(S,') = P(uk).P(y* I {s'i's})

We also know that

-L(u k)/2

	

_e 	(ukL(uk)12)

	

UkJ - - +
	

,.e

P(uk) = C3 .e k'(uk)12)

)/2

C3 = +

C3 depends only on the LLR L(uk) and not on the whether Uk'S +1 or .1.

Therefore equation (19) becomes:

Yk (s', s) = C.e 2) . exp(_: 	2a xy,)

	

2o 	1=1

Yk (s', s) = 	. exp(- xy)
	

(20)
l=1

where C=C 1 . C2 C3 does not depend on the sign of the bit Uk or the transmitted code

word Xk and so is constant over the summations in the numerator and denominator

in equation (5) and cancels out. Hence from equation (5) and (8):

P(S,...J = S'ASk _SAY 0)

L(u k l Yo) =ln 	
P(SI=s'ASk=sAyO)

(s',$)>uk-1

crk_l(s).yk(s,$).flk(s) 	
(21) L(u k 1y0)= In 	

ak_I(s').yk(s',$).13k(s)

64

Chapter 4: Reconfigurable Turbo Decoding

The decoding bits are estimated based on this value of L(Uk I yo).

When L(Uk I yo)>O, Uk = +1 and

L(uk I yo) <0, Uk = -1. and when

L(uk I yo) = o, one cannot be sure about the value of uk.

MAP algorithm gives exceptional BER results at relatively low E,/No, however, the

MAP algorithm is extremely difficult to implement in hardware as it contains

mathematical operations such as logarithms and divisions. A modification of the

MAP algorithm is the Log - MAP algorithm [R0B89]. As the name suggests the

log-MAP algorithm is an implementation of the MAP algorithm in the logarithm

domain.

4.4 LOG-MAP DECODING ALGORITHM:

Taking the logarithm of equations (13), (16), (20) and (2 1)

Ak(s) = ln(ak(s)) 	 (22)

Bk(S) = lfl(flk(S)) 	 (23)

Fk(s',$) = ln(yk(s',$)) 	 (24)

The Jacobian logarithm can be used to obtain a formula for both (22) and (23) that

can be easily implemented in hardware

Max* (A,A) = ln(e +e)

where

Max* (A ,A) = Max(A ,A)+ln(I +e -AI)

We can rewrite equation (22) Using equation (13) as

Ak(s)=In(yk(s ' ,$).ak_I(s '))
all->s

Ak (s) = In(exp[]Fk (s' , s) + Ak _I (s')])
all->s'

Ak(s) = max*5 ([Fk(s',$) + Ak_ I (s')]) 	 (25)

Equation (16) can be rewritten as:

Bk_I (s') = max* ([]k (s', s) + Bk (s)])

and equation (20) becomes

65

Chapter 4: Reconfigurable Turbo Decoding

,Y, (s', s) = in {C.e')/2) .exp(- 	xy)}

Yk(S, s) = C'+ - .(ukL(uk))+ E- 	x Jy j 	 (26)

Similarly equation (21) becomes:

exp(Ak_I(s ')+ F k (s',$)+ fik(s))
(s)=>u*=+I

L(uIy)=in S.
A 	° 	

exp(Ak_l(s')+Fk(s',$)+flk(s))

L(uk I y0) = maxt (Ak_I(s ')+fk(s ' ,$)+flk(s)) — maxt (A k _ I (s')+Fk (s',$)+Bk (s))
(s ,$)=>Uk=+I 	 (s ,$)=>uk=—I

The add, compare, select, offset component is at the heart of all of the max*

computations, it is shown graphically in figure 4.4 [BOUO3].

Offset

LUT

UT

ab-'(so) 	
r&(so,$)

I H ak(s)

sign

: 	

afr(s)—ak(s)

Tk(5 '.S)

Figure 4.4. ACS block

The log-MAP algorithm can be further simplified by excluding the offset

In(I+e) in above equations, resulting in an implementation called the Max-

log-MAP algorithm [ERF94]

4.5 THE TURBO CONCEPT

66

Chapter 4: Reconfigurable Turbo Decoding

Traditional Turbo codes use recursive systematic convolutional (RSC) encoders

and soft-in, soft-out (SISO) decoders. The information is encoded twice, with an

interleaver between the two encoders. A top level diagram of a typical Turbo

encoder is shown in figure 4.5.

The interleaver decorrelate the input to the second encoder to make the encoded

data sequences approximately statistically independent of each other. Each RSC

encoder produces the parity information. The two parity sequences from the

corresponding encoders can be punctured before being transmitted along with the

original sequence to the decoder. This puncturing of parity information allows a

wide range of coding rates to be realised and often half the parity information from

each encoder is sent along with the original data sequence.

Oath Systematic
In 	 Ouput

RSCI
Encoder

Puncturing

I
PwIt

And

_

Muttiplaxlng_

RICI
Encoder

Figure 4.5 Turbo RSC encoders connected by interleaver

A Turbo decoder contains two RSC encoders, the number of SISO decoders always

match the number of RSC encoders present in the corresponding Turbo encoder. A

SISO decoder reads in a soft data value and produces a soft data value at its output.

Soft data is represented by an m-bit symbol. The magnitude of the symbol presents

the confidence of the decoder producing the correct output. The multiple encoder

and interleaver arrangement generates multiple views of the source data. Each view

has its parity and systematic information. After passing through a channel each set

of data are input to a SISO decoder. The SISO decoders operate iteratively. In the

first iteration the first SISO decoder provides a soft output giving an estimation of

the original data sequence based on the soft channel inputs alone. It also provides

an extrinsic output which is used by the second RSC decoder (after interleaving) as

67

Chapter 4: Reconfigurable Turbo Decoding

a priori information. The sharing of data between the decoders is what gives Turbo

codes such a low BER. Top level diagram of turbo decoder is shown in figure 4.6.

All data into SIS02 from SISO1 must be interleaved and all data into SISOI from

SIS02 must be de-interleaved. Lie and L2e are the data values shared between the

decoders and are known as extrinsic data. The extrinsic information related to a bit

uk is the information provided by a decoder based on the received sequence and on

the a-priori information, but excluding the received systematic bit and the a priori

information related to bit Uk. A posteriori information related to a bit is the

information that the decoder generates by taking into account all available sources

of information concerning UK. The apriori information related to a bit is information

known before decoding commences, from source other than the received sequence

or the code constraints. Data is shared between SISO decoders for a pre-determined

number of iterations. Upon completing these iterations the turbo decoder produces

a soft estimate of the decoded bits.

$y.temadc bits__

I F=Po_11
Parity bits Iy Encoder i - 	 +

Parity Me by

Figure 4.6.131ock diagram of turbo decoder

4.6 RECONFIGUR.ABLE VLSI DESIGN TARGETING MULTIPLE
STANDARDS

The reconfigurable work on turbo decoder adds to the overall contribution of the

thesis i.e., to provide Forward Error Correction (FEC) structure for a common

communication platform designed for ubiquitous networks. The platform provides

access to any network available to the user for example WLAN, 3G or GSM etc. In

68

Chapter 4: Reconfigurable Turbo Decoding

the first phase of research we have looked at the investigation of accurate flexibility

in order to meet the performance constraints as imposed by various standards. In

the second phase a high speed, power and area efficient unified turbo-viterbi

architecture is developed. This is in contrast to designing separate and optimized

fixed decoders for all possible standards and switching between one of them. The

implemented architecture is capable of Turbo and Viterbi decoding for a wide

range of code parameters varying from constraint length 3 to 9, any generator

polynomial and different rates. This reconfigurable design gives huge savings in

area, energy and speed as opposed to the other option of implementing these

decoders separately of each of the standards.

F8M

cO
p
s o.s

P (TO PATH HISTORYI 1 	 0- FROM 	I
INPUT 	• 	 OUTPUT RAM 	 PAM RAM
RAMI •

smci ____ 	~~VER
INPUT 	 RSI 	C'D 	

CALCUTOR

1INPUT - 	 DL_J - A
PROCESSOR EEB 3] REVERSE

V 	C 	 DUY 	
IPR0C5550RFl 0

J INPUT

• .

TURBO

PAM S 	WTERM
SWITCHING NETWORK 	 DECODED

OUTPUTS
BINS 	-
AMY 	ACS 	OUTPUT - - - - -- 	 0-AC!

SMI 	0 	I 	P-BINARY D€CSION 	
OUTPUT

LJ 	' 	L_J— SIT FOR WINPINNO 	 W-BINARY

STATE 	 DECSION
SIT FOR DATA OUT READ

FORT I AND 2 	WINNINNO - 	STATE

H 	
-

• 	I 	IN / 	 © 	IN 	
I PATh HISTORY

	

FORWARD 	 FORWARD 	\I 	o 	I 	MEMORY O 	V 	PROCESSOR 	' 	 I PROCESSOR
- - 	- 	RAM 	

RAM

FSM 	71
LLR -> LOG LIKELIHOOD RATIO CALCULATOR
FAN .> FINITE STATE MACHINE 	 COMBINED VITERBI AND TURBO
AC! - ADO COMPARE SELECT 	 BLOCKS

BMC -> BRANCH METRIC CALCULATOR 	 VrIERBI DECODER BLOCKS
SM -, STATE METRICS, BM - BRANCH METRICS
RCI,RC2.> READ ADDRESS COUNTERS 	 TURBO DECODER BLOCKS
WC -> WRITE ADDRESS COUNTER

Figure 4.7 Block diagram of unified array

69

Chapter 4: Reconfigurable Turbo Decoding

We have also presented a unified control structure for controlling the algorithmic

flow in different standards. The control of viterbi components is provided by this

reconfigurable finite state machine which avoids the use of separate microprocessor

to control these blocks. Figure 4.7 represents the overall block diagram of the array

and the individual components of this diagram are explained in two chapters. This

chapter explains the individual turbo decoder components of the array individually

and explains the design flow along with the reasons for the choice of these

components and the flexibility. Chapter 5 explains the viterbi components of the

block diagram shown in figure 4.7.

4.7 RECONFIGURABLE DOMAIN

Turbo decoders (example encoders shown in figure 4.8 and 4.9) share various

common units; however, the number of units used and the connections of these

units are highly variable and change upon any change in coding parameters. For

instance, the path metrics computed from one Add Compare Select (ACS) unit

might need to be routed back to any of a number of ACS units that need the

updated path metrics for their computation. Similarly with the change of constraint

length or coding rate or generator polynomial, the data routes are altered and the

operations being performed inside a unit are changed accordingly. The other

constraint on the design is that the architecture should support both viterbi and

turbo decoding. The component RSC encoder for the UMTS standard is shown in

figure 4.8. As each UMTS RSC encoder outputs only one parity stream, the

encoder has a standard rate of 1/3. A CDMA2000 component RSC encoder is

shown in figure 4.9. The CDMA2000 RSC encoder has two parity stream outputs

and can therefore have a code rate of '/2, 1/3, '/4 or 1/5.

0 '

Figure 4.8: UMTS component encoder

70

Chapter 4: Reconfigurable Turbo Decoding

Figure 4.9: CDMA2000 component encoder

The puncturing patterns of CDMA 2000 standard are shown in table 4.1. In the

table a 0 represents the bit that is deleted and a non-zero number given in table 4.2

shows how many times the symbol in question is transmitted. For example, if data

is being transmitted at a code rate of '/2 the output of the encoder will be

X
'S , 	, x; ,

Code Rate

Output '/2 1/3 ¼ 1/5

11 11 11 11

gPO 10 11 11 11

xr' 00 00 10 11

00 00 00 00

01 11 01 11

x/" 00 00 11 11

Table 4.1 Table showing the corresponding bit to be transmitted for different rates

in 3GPP [3GPP99]

When the trellis termination is initialized the puncturing pattern is altered so that

Xt s is transmitted, certain bits are repeated so that the code rate during trellis

termination matches the 6/R; where R is the rate and each encoder clocked three

times with switch in the lower position.

71

Chapter 4: Reconfigurable Turbo Decoding

Code Rate

Output '/2 1/3 '/4 115

111000 222000 222000 333000

xr° 111 000 111 000 111 000 111 000

000000 000000 111 000 111 000

X, 000111 000222 000222 000333

000 111 000 111 000 111 000 111

X,
P1 000000 000000 000111 000111

Table 4.2 Puncturing patterns for different rates as defined in [3GPP99]

As shown by the above two examples Turbo decoding as defined in different

standards have numerous similarities and differences. In multi-standard turbo

decoder ACS operation is quite similar, even though the branch metrics feeding the

ACS are computed differently, and the trellis structures are different requiring a

different feed back from each of the ACS units. Another important issue is the

reconfiguration between different constraint lengths and rates in addition to

different decoding techniques i.e., Turbo and Viterbi decoding. The power budget

of the overall array is also required to be kept minimum in order to keep the design

efficient for all of the target standards. The design first phase is the finite precision

analysis and is explained below.

4.8 FINITE PRECISION ANALYSIS

The quantization scheme of the array is very important as it determines the size of

the storage and the logic blocks in the array. A large word length costs a lot of

hardware and hence more area and power consumption however a small word

length may result in very poor BER performance. The trade off between hardware

complexity and decoding performance has to be reached especially for low power

portable wireless applications. Quantization schemes are presented by notation nQf

where n is the total number of bits and f is the fractional part. Bit Error Rate (BER)

72

Chapter 4: Reconfigurable Turbo Decoding

results with floating point precision in matlab is presented in figure 4.10 below.

BER improves by increasing the number of iterations. These improvements are

more when iterations are increased initially for example, from iteration I to 2 and

decreases subsequently for example from iteration 5 to 6. Very little improvement

in BER is achieved beyond 6 iterations and therefore the results are presented for a

maximum of 6 iterations.

-4-iterl 	 snr
-O-iter2 	

0 	0.25 	0.5 	0.75 	1 	1.25 	1.5 	1.75 	2
---iter3 1.E+00

• 	iter4

-*-iter5 1.E-01

---iter6 1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

1.E-07

1.E-08

Figure 4.10: Max Log Map BER analysis with floating point precision

Quantization analysis of received bits was done for 3Q1, 3Q2, 4Q2, 4Q1, 4Q3, 5Q2

and 5Q3 schemes. Experiments were performed on a cluster of interconnected unix

stations able to perform 1000 parallel matlab executions. The size of the frame was

chosen as 1000, and for lower SNR values 1000 parallel executions were

performed (total of 106) soft input values. For higher SNR, when the error rates

drops significantly therefore parallel executions were increased to 1.5 x106 parallel

executing frames of 1k to acquire least 200 error samples for averaging. 4Q2 was

selected as the best scheme as difference in Eb/No for 5Q2 is ignorable within a

wide range of BER, however the difference in 3Q1 is quite significant (>0.3 dB in

some range of SNR). This is shown in figure 4.11 below:

73

Chapter 4: Reconfigurable Turbo Decoding

snr

	

0 	0.25 	0.5 	0.75 	1 	1.25 	1.5 	1.75 	2
1.E+00

1.E-01

1.E-02

1.E-03
I-

2 1.E-04

1.E-05

1.E-06

1.E-07

1.E-08
quahzation 4:2,5:2, iter2 -s- quantition 42,52, iter6

3:1 Q anbzation, iter 2 	-- 3:1uanlization, iter 6

Figure 4.11: Fixed point analysis for input matrics for quantizatios 3:1, 4:2 and 5:2
with 2 and 6 iterations of Max Log Map

Similarly for the extrinsic information the investigated schemes were 5Q2, 5Q1,

6Q2 and 6Q1. 6Q2 turned out to be the optimal choice as shown in figure 4.12.

snr

	

0 	0.25 	0.5 	0.75 	1 	1.25 	1.5 	1.75 	2
1.E+O0

I.E-Ui

1.E-02

1.E-03 X

1.E-04 X
i.E-OS

X
i.E-06

1.E-07

I 	flQ

-.-quanon 5:1 ,6:2,5:2-iterl -0- quanon 62,5:1, iter2 	--qi.nUon 5:1, iter6

qunon 52, iter 2 	x quanzaon 52, iter 6 	-- qu nlization 6:2, iter 6

Figure 4.12: Fixed point analysis for extrinsic (apriori) input for quantizatios 5:1,
5:2 and 6:2 with 1, 2 and 6 iterations of Max Log Map

From the input metrics 7 bits are used for branch metrics and 9 bit were established

to be sufficient to represent forward and reverse metric calculations. Using this

74

Chapter 4: Reconfigurable Turbo Decoding

quantization it was proved for Max Log Map the total quantization loss compared

with the floating point precision is no more than 0.1dB.

4.9 SLIDING WINDOW

Both viterbi and turbo decoders use forward and reverse state metrics processing.

To improve the latency typically windowed versions of the algorithm are employed

for VLSI implementations, largely known as sliding window BCJR algorithm

[BEN96]. The basic effect is that the equations will be applied separately to

portions (window lengths - WLs) of the global block of data. In its simplistic form

the algorithm uses two reverse processors Reverse Processor Dummy B2 and

Reverse Processor BI in parallel with on forward processor FP (shown by ACSO-

ACS7 in figure 4.7). These forward recursion unit FP and backward recursion units

(B 1 and 132) are identical except for the direction of recursion. B2 can start cold in

any state (initializing each state as equi - probable) but after a few iterations (equal

to WL) the state metrics are as reliable as if the process had been started at the final

known correct node of trellis. B2 initializes the start state of Bi. The output

received is after a delay of 2 WLs. The sliding window technique is therefore a way

of reducing the amount of memory required by the Turbo decoder. If the sliding

window technique was not used the number of FSM storage would be directly

proportional to the block size of the packet being decoded. With the sliding

window the number of metrics that need to be stored reduces to the sliding window

size. The implementation for sliding window is explained in the subsequent

sections.

4.10 DESIGN APPROACH

The algorithm is first implemented in matlab using floating point precision. Then

fixed point simulations are carried out using fixed point tool box in matlab. We call

these hardwired simulations as the algorithm is written in exactly the same way as

will be done in hardware. The hardwired simulations are used to measure the effect

of fixed word length on the BER performance. The design methodology for matlab

simulations is shown in the figure 4.13 below.

75

Chapter 4: Reconfigurable Turbo Decoding

I Generate matlab code with infinite I

I 	precision (without windowing)

Anal
'I.

I Generate matlab code with infinite
point effects

I
Fixed point simulation with

windowing
Analyze Effects o

Windowing

Analyze fixed point
I 	Generate matlab fixed point 	I

_
effects after Window in

I simulation (without windowing) 	-

(Output Vectoré\
for Verilog J

Figure 4.13: Matlab design methodology

As shown in figure 4.13, the matlab design methodology involves translating the

algorithm from floating point precision to fixed point simulations. After this

analysis the effects of different window lengths are anlysed on BER as the size of

window directly determines the size of hardware.

Matlab simulation with Fixed word length

RIFY (BETWEE 	 ADJUST FOR
FIXED POINT AND 	 OPTIMUM
INrrE PRECISIO WORD LENGTH

HDL (venlog) simultation

FY (BETWEEN 	NO FIXED POINT AND VERILOG
SIMULATIONS)

YES
SYNTHESIS, POST SYNTHESIS SIMULATION, POWER,

AREA, TIMING EVALUATION

(BETWEEN PRESY
AND POST SYNTHESIS

SIMULAnONS

I YES
FLOORPLAN, LAYOUT, POST LAYOUT SIMULATION,

POWER, AREA AND TIMING EVALUATIONS

PARISION BE 	NO
PREI.AYOUT AND POST

YOUT SIMULATI

YES

Figure 4.14: ASIC design flow for Max Log Map Implementation

76

Chapter 4: Reconfigurable Turbo Decoding

The matlab hardwired simulations generate vectors for the HDL (verilog) and the

ASIC design flow used for the design is shown in figure 4.14. The ASIC design

flow involves the pre-synthesis analysis and comparison with fixed point

simulations in matlab. Design is synthesized on UMC 1 8Onm process technologies

to evaluate the area and timing results. Synopsys Prime Time is used for timing

evaluations and timing closure. Synopsys prime power is used for power

evaluations by noting the toggling activity and back annotating it in to the circuit.

Post synthesis verification is done comparing the results with pre synthesis values.

Finally, layout and post layout verification is performed using Silicon Ensemble

from Cadence.

4.11 VLSI IMPLEMENTATION OF THE TURBO ALGORITHM

The block diagram of turbo decoder is shown in figure 4.7. It can be seen that turbo

decoding consists of the following components.

• Input RAMS.

• State Machine Controller.

• Branch Metrics Computation.

• Forward State Metrics and Reverse State Metrics Computations.

• Saturation Hardware.

• Reconfigurable Interconnect for Multiple Turbo Mappings.

• Log Likelihood Ratio Calculator Block.

• Output RAMs.

• Interleaver.

4.11.1 INPUT RAMS

Input RAMs store in 	metrics for two window lengths (WLs). A novel

implementation methodology is adopted to reuse the same input RAMs for both

turbo and viterbi with a simple change in finite state machine (FSM) control. The

size of the input RAMs is selected such that in viterbi mode these input RAMs can

be reused to store the Branch Metrics configuration bits [AHMIO6]. This is further

explained in chapter 5.

77

Chapter 4: Reconfigurable Turbo Decoding

The interconnection of state machine controlling the input RAMs in turbo mode is

shown in figure 4.15. The read and write control for input RAMs (ramXln_X2n_A

etc) is provided by state machine (shown as FSM). The state machine also controls

the multiplexers that provide input data to Branch Metrics Calculators (shown as

BMC1-BMC3). Using this design approach change over between viterbi and turbo

algorithm is simply done by changing the read/write and the multiplexer controls.

The state machine control in Turbo mode is explained in subsequent sections.

DW_r.m_,_w__dff.ft_32..O

F1 0 	 I 0300'4303

03'0033013 0030003
'3 03

-"-' ramXln X2n A

— _____ I 	I BMCI 	I

I 	FSM
LP

I • 	 d AC1I5O

01

_So.FSMIV 03 0€_3070J

ramXlnX2n

DW_rfl_0_w_e_dff_6_32_0 BMC2
• -

03003301303 d.th_ M3 q .303003
WE03 	*LLR_I.035:O] ramLLRA

 LLL Dw_ono.y_w_._dfT_6_32_0

303

ramLL.RB

Figure 4.15 FSM control for input RAMs and branch metric calculators

The input RAMs cache in two window lengths of the input metrics which reduces

the read access to the larger input RAM saving energy. There are two window

lengths required to be saved as per the decoding strategy. We have used Synopsys

Designware Write-After-Read (WAR) RAMs to implement two memory

architecture compared with three memory architecture proposed in [MAS99]. The

proposed two memory architecture employs two memory banks, each storing one

window length of the input metrics. We have shown in [ARM 106] that in viterbi

mode the write and read operation is applied without wasting any clock cycles

78

Chapter 4: Reconfigurable Turbo Decoding

resulting in dynamic context switch for multi standard mappings and continuous

decoding in turbo mode. The RAMs can be read and written in either forward or

reverse direction controlled by state machine.

4.11.2. STATE MACHINE CONTROL AND SCHEDULING
ALGORITHM

The turbo decoder state machine controls the read and write operations of input RAMs,

Forward State Metric RAMs and the multiplexers. These multiplexers connect the

inputs to BMC blocks as shown in figure 4.16. The read/write address is provided by

binary up/down counter selected by the state machine. State machine control is

responsible for providing the proposed scheduling algorithm. Figure 4.16 shows the

read and write controls for input and FSM RAMs. The addresses are generated by

forward and reverse counters either one of which can be selected input RAMs. The

select signal of this multiplexer (shown as MUX in the figure) is also provided by state

machine. The inputs to branch metrics blocks are also provided through multiplexers

which are also controlled by the state machine. State machine also provides the read

and write control signals for all the RAMs in the deisgn. The counters have a dynamic

terminal count flag and the terminal count is kept flexible. This allows different

window lengths to be controlled by the same state machine. This controlling scheme is

further explained in subsequent sections.

EAD ADDRESS

REVERSE INPUT RAM I
II

COUNTER

AD ADDRESS

ZUTRAM2

FORWARD
COUNTER

LRADDRE

READ-WRITE

I—ADDRESSOF
 FORWARD STATE

METRICS RAM

WRITE ADDRESS WRITE ENABLE
INPUT RAM 1 AND INPUT RAM I

RA
E COO1

lit ENABLE
Contr trol for 	 NPIJTRJM2

MWNAwwBMCI MutItpfecer BMd2

Figure 4.16 VLSI design of State Machine

4.11.2.1 	TIME SLOT O-L (FIGURE 4.17a)

79

Frame
0 	 L 	2L 	3L 	4L

01

L

E
I-

4L

/
/ WRITE I M I RI- D RAM 1

---I>
WRITE M2 RI- DRAM:

-,
/ 	 WRITE I M FSM

/
READ MFSM

Chapter 4: Reconfigurable Turbo Decoding

Input metrics corresponding to first window length O-L are written in Input RAM1.

The last metric is saved in first memory location and first metric in last memory

location as shown in figure 4.17a.

I INPUT
I 	321

INPUT

11

HwH
I

1111321

	

I I INPUT 11 	l 	INPUT I1 	I 	FSM 1I

	

II 	331 	II 	321 	I

k'I 	'FSM' 	I

	

L_J 	Li I 	FSM i Li
1

FSM I
32 	 Ii 	321 	I 	32

INPUT - I INPUT I1 J 	FSM 	

j FSM RAM 	11 	IRAMI 	 FSM
lE 	I 2 T 	RD IRAM

L_iU FSML INPUT 	

INPUT

[_J
1 -32 	

ft-It

32 	 321 	I 	 321 	I INPUT - 1 	INPUT 	1 	FSM I FSM 1 	
FSM

II FSU 	
FSM L

EADE IRAMI
RAM READ 	

[J 	

I FSM I
WRITE

INPUT - 	 LI 32
.1.

Figure 4.17. Read/Write FSM Control for RAMs

4.11.2.2 	TIME SLOT L-2L (FIGURE 4.17b)

Figure 4.18 Scheduling diagram for max log map implementation

80

Chapter 4: Reconfigurable Turbo Decoding

Input metrics corresponding to second WL (L-2L) are written in RAM2. Reverse

Processor Beta (RP2) uses these input values to calculate reverse state metrics.

Forward processor calculates forward state metrics by reading the RAMI in reverse

direction as shown in figure 4.17b. Calculated forward state metrics are saved in

forward state metrics RAMs (FSM RAMs) in the reverse direction i.e., last state metric

in first memory location and the first metric in last memory location.

	

4.11.2.3 	TIME SLOT 2L-3L (FIGURE 4.170

After the latency of the two WLs, the log likelihood ratio (LLR) values corresponding

to WL 'O-L' are calculated. LLR calculates the decoded bits by reading FSM RAMs in

forward direction as shown in figure 4.17c. Reverse Processor (RP1) is initialized by

RP2. RAM1 is read in forward direction to provide input metrics (corresponding to

WL O-L) for reverse processor I (RPI) calculations. FP calculation is now performed

on WL L-2L, which is done by reading the RAM2 in reverse direction as shown in fig

4.17c. Calculated FSM values are saved in FSM RAM (Write-After-Read). Since FSM

RAM was read in forward direction the write will also be performed in forward

direction and first FSM value is saved in first memory location and last FSM value

saved in last memory location. RAM1 is read for RP2 calculations (corresponding to

frame 2L-3L). The input metrics (for frame 2L-3L) are written on RAM1 after the old

values are read by RPI. This is shown by solid red arrow in figure 4.18.

	

4.11.2.4 	TIME SLOT 3L-4L (FIGURE 4.17d)

This slot provides the LLR decoded outputs for second WL L-2L. LLR calculator

calculates the decoded bits by reading FSM RAMs in reverse direction as shown in

figure 4.17d. RAM2 is read in forward direction for RPI calculation (for window

length L-2L). RAMI is read in reverse direction for FP calculation (for WL, 2L-3L) as

shown in fig 4.17d. Calculated forward state metric values are saved in FSM RAM

after the read operation. Since FSM RAM was read in reverse direction the write will

also be performed in reverse direction and last FSM is saved in first memory location

and first FSM saved in last.

81

Chapter 4: Reconfigurable Turbo Decoding

3L-4L

Figure 4.19 FSM control for Max log map implementation

RAM2 is read to calculate RP2 values (corresponding to frame 3L-4L). The cycle

repeats after this where time slot 41--51- is similar to time slot 2L-3L and time slot 5L-

6L is similar to time slot 3L-4L. This is shown by the state diagram in figure 4.19.

4.11.3 BRANCH METRICS CALCULATOR (BMC)

Our approach to implementing branch metrics improves on the earlier proposed

schemes by eliminating the branch metrics storage [MAS02, BEN96, P1E96, V1T98,

ZH002, YUFOOJ. These traditional implementation techniques are summarized in

figure 4.20.

r
rmcl Metric

II iT
ForwardRsvem State 	R.v.e State 	Calculation of

Metric 	MalIIC Stone 	Reverse State
calculahx Maliica

Figure 4.20 Implementation possibilities for max log map

The results shown in [MAS021 for two memory SISO without interleaver partitioning

SISO branch metric RAMs (it RAMs) consume 40.2% power for an interleaver length

of 5120. The branch metrics storage requirements increase many fold for viterbi

82

Chapter 4: Reconfigurable Turbo Decoding

decoding where the number of states are much higher than turbo decoding. Therefore

recalculating branch metrics as compared to storage approach improve results in both

turbo and viterbi decoding.

BMCI and BMC2 are connected to input RAMS 1 and 2 by using multiplexers which

are controlled by finite state machine (FSM) as per the scheduling algorithm explained

in section 4.11.2 and table 4.3. BMC2 which provides branch metrics for RP2 is

directly connected to input metrics.

Time

Slot

BMCI(FP) BMC3(RP1)

O-L RAM2 RAMI

L-21, RAM1 RAM2

2L-3L RAM2 RAM1

31,41, RAM1 RAM2

4L-5L RAM2 RAM1

Table 4.3. Input RAMs connections to BMC blocks

Branch metrics are required for each state and stage of the trellis. These are computed

by Euclidian distance of the soft input metrics and are given in section 4.4 by equation

(26). Our implementation uses one BMC for each forward or reverse processor. Each

BMC calculates all the possible branch metrics for a given decoder. It must be noted

that the number of branch metrics is equal to 2", where n is the denominator in the code

rate formula (kin) - k is the number of input bits and n is the number of output bits.

Hence for rate 'A, the number of branch metrics will be 4 and 8 for rate 1/3. Similarly if

constraint length of the trellis is K, the number of possible states are 2K1 (256 states for

3GPP viterbi). Each ACS node (corresponding to each state) has two branches entering

the node and hence each ACS unit needs a specific pair of branch metrics. This

selection will differ depending upon the constraint length, coding type, rate, generator

polynomial and index of ACS unit in question. For a completely flexible trellis decoder

each branch of ACS node should have the ability to select any possible branch metric.

For example for a rate '/2 encoder, each branch is connected by 4x1 multiplexers that

83

Chapter 4: Reconfigurable Turbo Decoding

can select any 1 out of 4 possible branch metrics. Since our design uses 8 ACS units

and there are two branches entering each ACS node. Each branch has 8x1 multiplexer

(for rate 1/3) therefore there are sixteen 8x1 multiplexer for each stage of turbo decoder

trellis. There are 48 configuration bits required to configure the branch metric

interconnection. These configuration bits are changed only when a decoder having

different parameters is mapped on to the same array. Viterbi decoder requires much

larger configuration bits however uses the same ACS unit and multiplexer. This will be

explained in next chapter.

SWITCHING NETWORK

-

fxlBM(TseIccto 8x1I

ACS UNIT

8Xl-a/-seIector 8x1-BM(y)-selector -

Figure 4.21: Flexible branch metric and state metric connection of ACS unit

4.11.4 FORWARD AND REVERSE PROCESSOR CALCULATION

The main kernel of the Turbo-Viterbi algorithm is ADD-COMPARE-SELECT (ACS)

operation which is preformed by each FP, RP1 and RP2 blocks. Since the ACS

operation is the only recursive part of the algorithm, the achievable data rate of a VLSI

implementation is determined by the computation time of the ACS recursion. Given

the branch metrics, the ACS unit calculates the survivor path metrics according to the

ACS recursion. These survivor path metrics are again fed back to the ACS units for

further processing on next clock cycle (for next stage of trellis). The feedback

connection of survivor state to the ACS input is constant for a particular mapped

algorithm however changes for decoders with different trellises. Therefore for a fully

84

Chapter 4: Reconfigurable Turbo Decoding

flexible trellis decoder, the survivor ACS feedback connections are kept completely

flexible by using 8x1 multiplexers for each ACS input. This is shown by figure 4.21.

The ACS computation is performed at every state and stage of the trellis. Therefore as

we advance in time across different stages of trellis, the same ACS units are reused for

processing at each stage. Figure 4.22 shows the architectural diagram of ACS unit

which consists of signed two's complement adders (shown as addlower and addupper)

for adding branch metrics and forward state metrics. The maximum of the competing

paths is seleted (shown by MinMax block) and the adjusted for saturation in sat —block.

Max

,J F 	addlower 	 sat block

FSM2 	
.dde1_2pk.p_11_12 	 II

BMI COMPARE
& 	H OVERFLOW

FSM1 	 ADD SELECT 	PROTECT

Figure 4.22 Implemented ACS architecture for Max log Map algorithm

FP, RP1 and RP2 have a similar design which consists of 8 parallel ACS blocks and

hence 8 states can be processed in parallel. Any decoder that requires greater than 8

states for processing is processed in state serial methodology where 8 states are

processed for every clock cycle. For example ADSL (generator matrix

[1,17octal/15octal]) and 3GPP turbo mappings on the array work in fully parallel

schemes. Fully parallel architectures assign one ACS for each state to meet the

performance constraints on speed and latency. In Viterbi mode however since the

number of states (N) are higher (256 states for 3GPP) therefore P(P8) ACS units are

used to process N (up to 256) states[AHM]06]. Similarly the CCSDS (Consultative

Committee for Space Data Systems) turbo decoder family has 16 states which will be

decoded 8 states at a time is a similar fashion as GSM Viterbi mappings on Viterbi

array as was explained in our work in [AHM 106].

0]

85

Apicaj INPUT SYMBOL APOBI
DAT DA A

5 ME 4
C COMPARE

APRIORI INPUT IYNBOL APRIONI
n.y. 	fly, 	 flatS

FBN.,

FAmO 1
COMPARE 4.S4

sELECT

(b)

Chapter 4: Reconfigurable Turbo Decoding

4.11.5 NORMALIZATION / SATURATION

State metrics (FSMs and RSMs) are accumulated within a block as they are recursively

computed for sliding window ACS computations. Since there is finite number of bits

used for storing path metrics, there is a need to normalize the path metrics in order to

avoid overflow. The normalization methodology however has to be adjusted for both

state serial and state parallel reconfigurable mappings on the array. Therefore a new

normalization scheme is adapted to support the mappings that do not use state parallel

architectures. These include all viterbi mappings and turbo mappings on the array

which have greater than 8 states (for example decoders for CCSDS telemetry

operations).

Figure 4.23: Normalization scheme with BM, FSM units for max log map

In this normalization scheme we check at each time instant if any state metric is greater

than 2q-2 then a fixed value 22 is subtracted from all state metrics. This is shown by

normalization (N) block shown in figure 4.20. The block comprises of a subtractor that

subtracts a fixed value (2 q,2)from state metrics and a multiplexer that selects the

subtracted value if the normalization has to be employed. The multiplexer select signal

can be provided by any ACS block and in case of state serial architecture mappings

(states >8) the select signal is provided after all the states are processed.

86

Chapter 4: Reconfigurable Turbo Decoding

Figure 4.24 New saturation check scheme for max log map

In figure 4.23a the normalized FSMs were saved in the FSM RAM, this new scheme

the normalization is applied after reading the state metrics from FSM RAM. The

critical path delay of Branch Metric and State Metrics component is shown in figure

4.23 with blue arrows. Note that this adjustment keeps the critical path still exactly the

same, however now the same Processor blocks can be used for decoders with states

greater than 8. The 8 parallel ACS blocks are shown in figure 4.24.

4.11.6 LOG LIKELIHOOD RATIO (LLR) CALCULATION

As shown in figure 4.25 the LLR block requires the values of forward, backward state

metrics and branch metrics. It consists of two identical blocks (block A) calculating the

LLR of bit 0 and biti respectively. The maximum calculated value of LLRI and LLRO

is subtracted to find the final LLR output value. The sign of a posteriori value gives the

value of decoded bit I or 0. LLR block is used in turbo mode only and is disabled in

viterbi mode. The LLR block is pipelined to reduce the critical path delay. The position

of the pipeline registers is shown by dotted line. Insertion of this pipeline reduces LLR

components bottleneck on critical path (delay in ns shown in blue arrows). However

ACS still remains in critical path and cannot be further pipelined due to the recursive

nature of mapped algorithms. BM, FSM and RSM and LLR blocks shown in figure

4.22 represent the branch metrics, forward state metrics, reverse state metrics and log

likelihood values.

87

Chapter 4: Reconfigurable Turbo Decoding

BLOCK A

	

I 	 I
BM EM 	 EM EM 	 EM EN 	EN EN

	

t17—M FS-M I I M— i 	I 	I I F3N
I

 Ad

COMPARE AND EEI.ECT MAX

COMPARE AND
t1_ oEcuueu-1J— EEI.ECT MA

OUTPUT LLRE

CKAI

Figure 4.25 LLR Computation Unit of max log map decoder

4.11.7 RECONFIGURABLE INTERCONNECT

The reconfiguration topology for viterbi mappings were explained in chapter 5. A fully

flexible trellis processing is used for Turbo decoding as well. This allows mappings of

decoder with any generator polynomials. Each branch metrics and FSM connection to

ACS block is done through a multiplexer. For example for Rate Yz, there are four

possible branch metrics that can be connected to each BM branch of ACS block.

Similarly for 8 states, there will be 8 possible ACS values that can be fed back to each

FSM branch of ACS (refer figure 4.18 for these connections). These flexible

connections are provided through multiplexer network as shown in figure 4.7. The

multiplexer network is therefore a multiplexer bank providing 4x1 and 8x1 multiplexer

connections for each BM and FSM branch of ACS operation of Forward and Reverse

processors. Viterbi blocks in the array are shown in white in figure 4.7 and these are

clocked down by using an active clocking gating strategy throughout the chip.

4.12 COMPARISON OF RESULTS AND CONTRIBUTION

The design is synthesized using Synopsys Design Compiler for 0.18 microns

CMOS UMC cell library and the chip layout is done on Silicon Ensemble. Post

layout power figures are taken from Synopsys Design Power by capturing the

toggle activity of each node and then back annotating this in the circuit. Synopsys

designware SRAMs were used for Forward Processor RAMs. Virtual Silicon 2K x

8 synchronous (separate read and write port) macro RAMs were used for

Output/Path history memory consuming 110 uW/MHz/Port.

The overall results are summarized in table 4.4

88

Chapter 4: Reconfigurable Turbo Decoding

Technology UMC 0.18 microns standard cell CMOS
Supported code rates '/2,1/3 Turbo, '/2,1/3,1/4,1/5 Viterbi
Representation Signed fixed point
Constraint length Max 4 in parallel mode and max 9 (256

states) for state sequential (8 states at a
time)

Generator Polynomial Flexible for both turbo and viterbi
Survivor (Trace back
length)

Up to 6 times the constraint length

Decision level 4 bit soft decision
A posteriori estimation 6 bit soft decision.
Supply Voltage 1.8V, 1.1 V (for 90nm)
Interleaver Memory less-supports frames up to 5114

(3GPP)
Max Operating Frequency 84 MHz
Max Throughput Turbo @
6 iterations (l8Onm)

41 Mbits / sec / iteration

Latency 2 window lengths
Total area (l8Onm) 1.67mm 2 (without output RAMs)

2.88mm 2 (with output RAMs)
Total Average Power @
20 M1-Iz(Turbo mode)
180nm

78.54 mW

Total Average Power @
100 Mhz (Turbo mode)
with 90nm

52 mW

Table 4.4 Results turbo decoder

The components of turbo decoder array contributing in the critical path delay

(without LLR pipeline) are: Input Rams, BMC and LLR. The total delay with these

components in the critical path will be 15.01 ns. The insertion of LLR pipeline

changes the critical path and the components in the path are: Input Rams, BMC and

FP.

89

Chapter 4: Reconfigurable Turbo Decoding

Figure 4.26. Timing diagram for turbo decoder

The overall path delay is now reduced to 11.92 ns. As explained above FP

calculations are recursive and cannot be further pipelined, and hence the delay of

FP determines the max speed of the design which with the clock period of 4.64 ns.

This can be further improved if CLA adders are used instead of Full Adders in FP

blocks. The critical path and the delay of the individual components is shown in

figure 4.26.

The overall area and power results of individual components can be compared in

figure 4.27.

Area-Power Comparisons

60

50

40

30

20

10

Figure 4.27. Area-Power distributions of individual components of the designed
turbo decoder

For I 8Onm, 82% of the total average power of 78.54 mW is due to net switching

and 18% is the cell internal power. The cell leakage power is 221.4798 11W. For

90nm process technology the results are shown in figure 4.28. The results provided

in figure 4.28 on 90nm process technologies show that Cell Internal Power also

contributes significantly along with the net switching power and the design should

be optimized for both.

Input/Output RAMs, FSM RAMs and Input Scratch Pad RAMs when combined

together occupy 95.6 % of the overall area and 83.4% of the power.

Figure 4.29 gives the overall area results with 90nm process showing total area, cell

count and timing figures. The over all area is reduced to 0.84 mm 2 with a critical

path of 9.8 ns (100MHz).

90

Chapter 4: Reconfigurable Turbo Decoding

Global Operating Voltage = 1.1
Power-specific unit information

Voltage Units = iv
Capacitance Units = 1.000000ff
Time Units = ins
Dynamic Power Units = luW 	(derived from V,C,T units)
Leakage Power Units = luW

Cell Internal Power = 	31.1673 mW (59%)
Net Switching Power = 	21.7252 aW (41%)

Total Dynamic Power = 	52.8925 mW (100%)

Cell Leakage Power 	= 112.7234 uW

Figure 4.28. Ratio of the net switching power and cell internal power in 90rnn
CMOS process

Timing Path Group • clk'

Levels of Logic: 56.00
Critical Path Length: 9.80
Critical Path Slack: 0.01
Critical Path Clk Period: 10.00
Total Negative Slack: 0.00
No. of Violating Paths: 0.00

Cell Count

Rierarcial Cell Count: 389
Rierarchial Port Count: 17768
Leaf Cell Count: 23952

Area

Combinational Area: 79205.951585
Noncombinational Area:

429117.518607
Net Area: 340051.718750

Cell Area: 508323.468750
Design Area: 648375.181088

Figure 4.29. Critical path delay, Area and total cell count in 90nm CMOS
process

The turbo decoder design can be compared in the following broad reconfigurable

categories:

ASIP (application specific instruction set processor).

91

Chapter 4: Reconfigurable Turbo Decoding

Implementations on general purpose processors.

• Implementation on processors with Viterbi/turbo decoders as co processors.

Implementations on FPGAs.

• Implementation on ASICs.

4.12.1 ASIP

We have provided a detailed review of ASIPs in chapter 2 section 3.2.3. In ASIPs,

flexibility is provided by the use of embedded processors specifically targeted to

the decoding application. ASIP being software controlled is broader in domains of

reconfigurability and hence more flexible than our design. The increase in

flexibility, however degrades power, area and speed. For example in [ROSO4] there

would be 8 XiRisc processors needed in order to achieve a throughput of 2Mbps.

The processors are also required to run in parallel on successive blocks of data.

4.12.2 GENERAL PURPOSE PROCESSORS

General purpose processors are much more flexible than ASIP and our proposed

array. However turbo decoder implementation on these results in a much reduced

throughput. Since the throughput falls below the data rates as required by the

standards, this favours the case for designing ASIC for Turbo decoding either as a

coprocessor or as separate reconfigurable array. Table 4.5 below lists some

published Turbo decoder implementations on general purpose processors and also

lists the maximum throughput possible. Throughput results are worse than ASIP.

However flexibility in general purpose processors is much higher.

Processor Clock Speed Throughput possible Ref
Motorola 56603 DSP Not quoted 48.6 kbps/iteration [WOR 021
ST 120 200MHz 540 kbps/iteration [WOR02]
Intel Pentium III 933 MHz 262 kbps/iteration [VALO1]
DSP SP-5 SIMD Not quoted I 227kbps/iteration [HARO I

Table 4.5. Performance of turbo decoders of different architectures in literature

4.12.3 GENERAL PURPOSE RECONFIGURABLE LOGIC (FPGAs)

92

Chapter 4: Reconfigurable Turbo Decoding

Dedicated implementations on general reconfigurable logic for example FPGAs

can achieve higher throughput. However, it consumes higher power than ASIC

implementation and our proposed implementation. For example, in [SHA03]

implementation on Xilinx Vitex XCV300E (almost 50% resource utilization)

consumes 695mW(25 MHz) for 1Mbps.

4.12.4 ASIC

A more exact ASIC comparison of our IP can be made with the work in [MAR02],

where we have achieved similar area and power figures, however the reported array

is limited to unified Viterbi and Turbo decoding for 3GPP where data rates of the order

of 2Mbps are required. Also the Viterbi decoder is mainly aimed at low data rate

(12Kbps) voice channels. The ACS processing is done by 4 Viterbi/log-MAP butterfly

unit, which is sufficient for 3G data rates, but cannot support the extremely high data

rates demanded by systems like WLAN. Therefore such a system might be useful for a

certain specific standards like 3G, but is hardly useful when multiple standards/systems

are in question. Our design is more flexible as it can target multiple standards both

in viterbi and turbo mode.

4.12.5 TURBO / VITERBI CO PROCESSOR ACCELERATORS

Texas instrument (TI) latest TMS320C64 14 fixed point DSP processor [TMSOS] uses

Viterbi and Turbo decoder coprocessors as two independent operating blocks. The

parameters in the blocks can be adjusted to provide flexibility. The exact

implementation details for this commercial processor are not disclosed. However it

uses the processor bus and input data is quantized to 8 bits (8N3), which gives some

indication into the size of blocks used for decoding [TMS04]. The flexibility in the

case of turbo decoding is exactly similar to our design. However, our proposed design

differs as it provides reconfiguration between viterbi and turbo as one unified design.

This results in better reuse of hardware blocks.

Our design is also more optimized for word lengths. The biggest disadvantage in

[TMS04] is the power figures of this design. The power though depends on type of

application mapped however is in 1000s of mW for any mapped application

93

Chapter 4: Reconfigurable Turbo Decoding

[TMS 104]. The individual power and area figures of the design are presented in

figure 4.22. In turbo mode the decoder consumes 78.5 mW occupying 2.824 mm 2 .

4.13 CONCLUSION

In this chapter the subject of Turbo codes is introduced along with the mathematical

description of the various turbo decoding algorithms, the use of turbo decoders in

various standards and its implementation. The implementation has focused on

reconfigurable aspects of the design in the most efficient way. A comparison is done

with the existing reconfigurable designs. The chapter has shown that design has both

more processing power than general purpose processors, DSPs and FPGAs and more

flexible than ASICs. The flexibility is carefully designed to keep it with in the power,

area and timing budgets of the mapped standards. Being able to reconfigure the design

means that new standards or upgrades to the standards can be implemented remotely

potentially saving the network provider money. This avoids any re spun on the design

avoiding the large non-recurring engineering costs in the process.

The reconfigurable VLSI implementation was also covered with the design flow of

algorithm from floating point precision in matlab to layout. The chapter highlighted

the performance gains of such design and revealed the results which also verified the

commercial relevance of the current design compared to the state of the art.

94

Chapter 5

RECONFIGURABLE VITERBI
DECODING

5.1 INTRODUCTION

In this chapter we choose to solve the problem of reconfigurable viterbi decoding in

the context of a common communication platform consisting of unified turbo-

viterbi decoding components. The viterbi algorithm describes a very well known

technique for decoding convolutional codes and is an essential part of WCDMA,

WLAN, GSM, CDMA2000, ADSL and many other standards. Our goal under this

segment of research is to design a viterbi decoder that allows reconfiguration

between all of the above mentioned standards. In addition, the design should also

achieve maximum resource allocation and performance by reusing components

within turbo decoder base array. The reconfiguration within viterbi decoding also

provides flexibility to reconfigure the array for different trellis types, constraint

lengths, rates, generator polynomials and frame sizes. This makes the decoder ideal

for a unified multi-standard telecommunication platform where each standard can

map its own parameters on to the viterbi array. In addition a novel dynamic

reconfiguration technique is also proposed in order to achieve faster context

switching between different mappings. The reconfigurable fabric is implemented as

a subset of turbo decoder array on a 180 nm UMC process technology.

There has been prior research in the field of convolution codes and viterbi decoding

in general but little work has been done on unified turbo-viterbi design for all the

chosen standards in the current research. There is an increasing demand of high

speed and low energy in these standards which has to be met by any reconfigurable

design that targets them. It was shown with results that the implemented design

gives much better results in terms of power, area, speed and timing compared to

95

Chapter 5: Reconfigurable viterbi decoding

existing reconfigurable DSP or FPGA based implementations. The proposed

architecture is capable of supporting data rate requirement for 802.11 a WLAN and

can switch between constraint lengths 3-9. The design also allows different

generator polynomials and hence can have mappings of different trellis types.

Another novelty in the implementation is to constraint the Viterbi design such that

design space is restricted to reuse as much as possible the components of the

existing turbo decoder array. We have solved the problem of reconfigurable viterbi

communication hardware design in three parts. First, understanding and

implementing the algorithm in fixed point format in matlab and evaluating the

results (Hardwired Simulation). Secondly identifying the commonality of

algorithms in the standards in question and introducing the desired flexibility to

satisfy the imposed performance constraints. The identification stage is followed by

evaluation stage for BER performance analysis for the chosen word length. The last

stage is the reconfigurable VLSI implementation, comparison with hardwired

simulation and evaluation of results power, area and speed results.

The rest of this chapter is organized as follows. In section 5.2, convolution coding

and Viterbi decoding is briefly described. Section 5.3 describes the reconfigurable

domain where we look at specific codes that are used in different standards. In

section 5.3 the hardwired simulations of viterbi algorithm are shown. Section 5.4

describes the new reconfigurable viterbi design and the details of the individual

components. In section 5.5, simulation results and performance measures for this

implementation are provided and compared with the state of the art.

5.2 VITERBI ALGORITHM

Viterbi algorithm was invented to overcome several fundamental drawbacks in

Block Cddes. First of all block codes are frame oriented which introduces

intolerable latency into the decoding system. A Block code also requires frame

synchronization and due to hard decisions, the coding gain is also limited. A

convolution code [EL155] improves on block codes by passing the information

96

Chapter 5: Reconfigurable viterbi decoding

sequence to be transmitted through a linear finite-state shift register. Figure 5.1

shows a typical rate 1/2 convolution decoder for cdma 2000.

90 	 co

Information Code
bits (Input). 	 Symbols

(Output)

Ir C
g, 	

,

Figure 5.1 K=9, Rate 1/2 Convolutional Encoder for CDMA 2000

The rate of this encoder is determined by the ratio of the input to output bits. For

example in the figure above the encoder outputs two bits for every input bit. In

general, an encoder with k inputs and n outputs is said to have rate k/n. The binary

data is fed into a series of shift registers (memory elements) and output is taken

from the generators (go and g,). This pattern of taps of the shift register determines

the generator polynomial of the encoder. The generator polynomial in figure 5.1

shall be go equals 753(octal) and g i equals 561 (octal). The constraint length

parameter K (capital) denotes the "length" of the convolutional encoder (n) i.e.,

how many bits are available to feed the generators (XOR gates) that produce the

output symbols. K is always equal to the number of memory elements (shift

registers) plus one. For 3GPP encoder trellis shown in figure 5.1, K is 9. The

contents of the shift register determine the state of the encoder. Therefore the

number of states of the encoder will be 2i. The behaviour of the encoder for an

input sequence can also be viewed as finite state machines represented by state

diagrams, graphs or trellises. The state diagram can be expanded into a trellis

diagram which explicitly shows state transitions at each time instant. Any

97

Chapter 5: Reconfigurable viterbi decoding

convolution code can thus be uniquely defined in terms of its rate, constraint length

and generator polynomial.

The Viterbi decoding algorithm [V1T67, F0R73, V1T79] is the maximum

likelihood decoding algorithm for convolution codes. It finds the most-likely

noiseless state transition sequence of symbols in a state diagram, given a sequence

of symbols that are corrupted by noise such as additive white Gaussian noise.

5.3 MATHEMATICAL DESCRIPTION

For coherence of presentation the viterbi algorithm is briefly summarized here. The

interested readers are referred to [F0R73]. For simplicity all notations are kept

exactly the same as described in [F0R73]. Given a sequence 'z' of observations of

a discrete time finite state Markov process in memoryless noise, viterbi algorithm

finds the state sequence 'x', for which the a-posteriori probability P(x I z) is

maximum. This is called MAP (maximum a-posteriori probability) rule, which

minimizes the error probability in detecting the whole sequence of message. The

maximum likelihood ML decoder selects by definition, the estimate that maximizes

P(z Ix). In general they can be related by Bayes' rule

PAIB)= 	 (5.1)
Pr(A)

Pr(BI
A)= Pr(AflB) 	 (5.2)

Pr(A)

Rearranging and combining equation (5.1) and equation (5.2)

Pr (AIB) Pr(B) = Pr (AflB)Pr(BIA) Pr(A)

P(x,z) = P(x I z)P(z) P(x)P(zlx). 	 (5.3)

The process is Markov because the probability P(xk+I I x, xi,. . . , xk) = P(Xk+1 I Xk)

Let the transition EA at time k be defined as the pair of states (xk+I, xk). The input

sequence u = (Uo, u1, . . .), where each uk can take on one of the finite number of

values say 'm' (m2, for values of 0, 1). There is a noise-free signal sequence y, in

which each yk is some deterministic function of present and the 'v' previous states.

yk = gUk, . . . , Uic. y)

98

Chapter 5: Reconfigurable viterbi decoding

The observed sequence z is the output of the memoiyless channel whose input is y.

The channel is memoryless in the sense that the noise effecting one bit in the

received word Zk is independent of the noise process affecting all other bits. The

process described above can be modelled by a shift register of length v with inputs

Uk. The number of states is thus JXJ = m". For example; In figure 5.1 there are

28=256 states. The total number of transitions = m " (for example there are 2 9 =

512 transitions for each kin figure 5.1).

Also note that viterbi algorithm finds the transition sequence 4 for which P(41z) is

maximum (since x has one to one relationship with), which is same as finding the

most probable input sequence u, since u has one to one relationship with x. MAP

sequence estimation problem is formally identical to the problem of finding the

shortest route through a certain graph as every possible state sequence x there

corresponds a unique path through the trellis.

Since the process is observed in memoryless noise; that is, there is a sequence of

observations Zk in which Zk depends probabilistically only on the transition (or xk)

at time k (where the process runs from 0 to time K-I)

P(zlx) =JJP(zk I X 	 (5.4)

For higher rates (bits within the blocks) we add the notion of superscripts.

K-I n-I

P(zlx) =flflP(zflx). 	 (5.5)
k=O j=O

Equation (5.5) is called the likelihood function for x. Since logarithms are

monotonically increasing, the estimate that maximizes P(zlx) is also the estimate

that maximizes log P(zlx). By taking the logarithm of each side of the equation, the

log likelihood equation is obtained i.e.,

K-I n-I

log P(zlx) =log P(Zkj I xi). 	 (5.6)
k=O j=O

In implementations of the Viterbi decoder, the summands in equation 5.6 are

usually converted to a more easily manipulated form called "bit metrics" which can

99

Chapter 5: Reconfigurable viterbi decoding

be denoted as a function M(z /x). The path metric for code word x is then

computed as follows

K-I n-I

M(z/x) = 	M(z /x). 	 (5.7)
k=O j=O

Also, the path metric can be expressed as the sum of branch metrics where the kth

branch metric is defined as the sum of the bit metrics for the k th block of z given x,

M(z k I X) = EM (Zkj I xi). 	 (5.8)

The kth partial path metric is thus obtained by summing the branch metrics for the

first k branches that the path traverses,

M'(zJx)=M(z, Ix).

Since there are 2m branches entering each node, we have to choose the "best"

partial path metric among the metrics for all entering paths. The path with the best

metric is the survivor, while the other path/paths are discarded. The best partial

path metric might be either the largest or smallest, depending on how the bit metric

calculation is done. The distance to be measured can be either Hamming distance

or Euclidean distance. As explained above the survivor path for a given state is the

path which has the minimum distance from the received sequence of noisy

symbols. Using Euclidean distance compared to Hamming distance makes VA

optimal [L0U95]. This calculation is explained below.

5.3.1 EUCLIDEAN METRIC COMPUTATION

For soft decision viterbi decoders the squared Euclidean distance is used as a metric

to measure the distance between the received and the actual symbols. This is

explained with an example below.

Consider a rate Y2 Viterbi Encoder which generates 2 bits (-1-1, -1+1, +1-1, +1+1)

for every input bit 1 or 0. Each received symbol Yk may be represented in vector

form as Yk = (i,ij), where ro and r 1 are soft decision values, whose magnitudes

100

Chapter 5: Reconfigurable viterbi decoding

determine the reliability of the received vectoryk. Every symbol in the transmitted

code alphabet may likewise be represented by the vectorxk =1±1,±I). The

computation of the Euclidean distance metric is:

Distance = lYk - xjI2

= I Y 12 2(Yk .Xk) + I X 12 	 (5.9)

The energy of the symbol Xk = {±1,±l} may be computed as

IXk 2 =(±1) 2 +(±1) 2 =2 	 (5.10)

This energy of all symbols in equation (5.9) is constant at normalized value of 2.

For this example case, there are two paths that merge at each node of the trellis.

Selecting the survivor is thus equivalent to comparing two distance equations

(equation 5.9) D 0 and D 1 for these paths. Let the transmitted code alphabet for these

two paths of the trellis be xk° and x.

Therefore:
D. = 1 Yk 1 2 -2(y k .x °)+ I x° 1 2 	 (5.11)

and

D. IYk 12 2(y.x')+Ix'
1 2 	 (5.12)

We know that Viterbi algorithm selects the minimum of the distance between the

competing paths.

But, from equation 5.10 we know that the energy of xk is constant (equal to

normalized value of 2) and therefore will be constant in minimum calculation of

equation 5.11 and equation (5.12). Similarly the energy of yk is the same in both the

cases. This reduces the comparison operation to a minima function between the

middle two dot product terms as is shown here under:

min((-2(yk)) (-2(vk .x'))) 	 (5.13)

Since a min operator on negative numbers may be interpreted as an equivalent max

operator on positive numbers. Therefore equation (5.13) becomes:

max((yk .X), (Yk -v))
	

(5.14)

101

Chapter 5: Reconfigurable viterbi decoding

Each dot product term may be expanded as

max(({ro, r 1 }.{±1, ±1}), ({r o, r i }.{±1, ±1}))

'max(±ro ±r 1 , ±r0 ±r 1)
	

(5.15)

where the signs of each term depend on the transmitted symbol for the branch

being compared. Thus the squared Euclidean metric distance calculation to

compute the branch metric may be performed with a simple add/subtract and

comparison operation. The path metrics at stage k+1 of the connectednode of the

trellis is calculated by adding the survivor in equation 5.15 with the calculation of

equation 5.14 for stage k+ 1.

5.4 RECONFIGURABLE VITERBI DOMAIN

The major contribution of the work on viterbi decoder is the reconfigurable viterbi

VLSI implementation that can target multiple standards and can be reconfigured to

decode a range of convolutionally coded data. The architecture can support up to

256 states, trellises with different generator polynomials and rates. The design is

mapped onto the turbo decoder array components and these combined together

provide forward error correction for a reconfigurable communication platform. The

flexibility of the reported design is carefully tailored to reduce the granularity to

restricted domains as compared to general purpose fine grained gate arrays. This

flexibility trade off provides the desired improved performance in terms of speed,

area and power. A Viterbi decoder is an important subsystem of any wireless

communication receiver. Each standard, however, defines different encoding

parameters for Viterbi Forward Error Correction. The examples of these variations

are explained below:

5.4.1 GSMJGPRS

rigure D.2. viteroi tncoaer m uiviiurit

102

Chapter 5: Reconfigurable viterbi decoding

The Viterbi Encoder defined in 2nd generation GSM and GPRS standards is shown

figure 5.2. It is rate ½, K = 5 encoder with generator polynomials gO and gi as 23,

33 respectively.

5.4.2 3GPP2 (WCDMA, CDMA-2000)

The 3GPP2 (Table 2.1.3.1.5-1 and Table 2.1.3.1.5-2 in [3GPP99]) standard defines

convolution codes for channels with Spreading Rate 1 and Spreading Rate 3. All

convolution codes have a constraint length K of 9. The generator function for rate

V2 is gO equals 753 (octal) and gI equals 561 (octal). The symbol ci is output first

and the code symbol ci is output last. The state of the convolution encoder upon

initialization is the all-zero state. The encoder for this code is illustrated in figure

5.1. The generator function for rate 1/3 are gO equals 557 (octal), gi equals

663(octal) and g2 equals 711 (octal). The generator function for rate ¼ are gO

equals 765 (octal), gi equals 671(octal), g2 equals 513(octal) and g3 equals 473

(octal).

Figure 5.3 Rate ½ an 1/3 Convolution encoders for 3GPP [3GPP99]

5.4.3 WLAN 802.11a AND METROPOLITAN AREA NETWORK IEEE
802.16

These standards use rate /2 constraint length K=7, binary convolution code with the

generator polynomials for cO as 171 (octal) and for c as 133(octal). Puncturing the

rate ½ allows higher rates of 2/3, 3/4, 5/6, and 7/8 for IEEE 802.16 and 1/2, 2/3, or 1/4

103

Chapter 5: Reconfigurable viterbi decoding

for IEEE 802.11 a. Puncturing is the procedure for omitting some of the encoded

bits in the transmitter (thus reducing the number of transmitted bits and increasing

the coding rate) and inserting a dummy "zero" metric into the convolution decoder

on the receive side in place of the omitted bits. The puncturing patterns are defined

in the corresponding standards.

Figure 5.4 Rate '/2 Convolution encoder for WLAN and IEEE 802.15

As shown by above examples Viterbi encoders defined in different standards have

a number of differences and similarities. The VLSI design of Viterbi Decoder

exploits this commonality for a unified Viterbi array for communication platforms.

5.5 HARDWIRED SIMULATIONS

The focus of these simulations is to build a modular and flexible simulation model

that can be used for a variety of advanced communication systems. The algorithm

is implemented first in floating point model. This is followed by a migration to the

fixed point equivalent model. The fixed point model is emulation of hardware in

matlab and provides a quick path for evaluating the BER performance for

justification of the fixed point decisions. The model bridges the gap between

system design and hardware implementation. The hardwired simulation model also

provides verification environment at a higher level of abstraction and is used to

verify the code written in HDL.

Figure 5.5 below gives the BER results for AWGN channel rate V2 viterbi decoder

of GSM, GPRS and 3GPP wireless standards. It was observed that 4 level

104

3
1.E+00

i.E-01

1.E-02 LU
1.E-03

1.E-04

l.E-05

Eb/No(dB)

4 	5 	6 	7 	8 	9 	10

Chapter 5: Reconfigurable viterbi decoding

quantization in GSM, GPRS decoder is 0.5-1 dBs inferior to 8 level quantization at

various SNRs. Increasing the quantization to 16 levels (4bits) allows further

improvement of 0.25 dBs with the results closest to floating point precision. The

trace back length in all the simulations was kept at 6 times the constraint length of

the code.

• 	 •
II ----------------------

a a

I. s- ____________ & I.
-

I 	 ---

Figure 5.5: Fixed point analysis for rate '/2 Viterbi decoding in AWGN channel for

GSM, GPRS and 3GPP

Hard Decision WLAN -.- 3 bit soft decision -*- 4 bit soft decision

Figure 5.6: BER Results for rate V2 soft decision viterbi decoder in multipath

channel for WLAN 802.11 a and 802.16.

105

Chapter 5: Reconfigurable viterbi decoding

Figure 5.6 shows the hardwired fixed point simulations for WLAN (802.11 a) and

Metropolitan area network 802.16. The results are in multipath channel with BPSK

modulation and rate V2 viterbi hard and soft decision decoding. 3 bit soft decoding

gives up to 1.7 dB improvement in BER compared to hard decision decoding. 16

level soft decoding improve the gains by another 0.2 dB.

A quantization level greater than 4 bits does not provide any significant

improvement in BER. Therefore an input quantization of 4 bits (as in Turbo

decoder) provides the best compromise between performance and hardware in a

unified turbo-viterbi architecture.

The fixed point model is written in Matlab [MATO1] using fixed point tool box and

subsequently in the VLSI design all word level quantizations are kept exactly the

same as Matlab design. These Matlab simulations provide model by model test

vectors for VLSI implementation at various levels of hierarchy as was shown in

section 4.10 earlier. The matlab pseudo code is shown on next page.

7 bits

a0 ________

a 1

Figure 5.7 Next and Previous state calculation for all trellises

5.6 VLSI IMPLEMENTATION OF THE VITERBI ALGORITHM

The block diagram of the overall array is shown in figure 4.7 with Viterbi decoder

components highlighted in yellow and white colour. The overall Viterbi decoder

consists of the following major components.

. ACS Blocks.

Path Metrics Memory.

Path History Memory.

106

Chapter 5: Reconfigurable viterbi decoding

. Reconfigurable write address generator block.

State machine.

• Reconfigurable Trace Back Processing blocks.

• Input RAMs.

5.6.1 ACS BLOCK

ACS block is computationally one of the most intensive units in a Viterbi decoder.

This block uses the accumulated metrics (called forward state metrics FSMs) and

the current branch metrics to compute the survivor path metrics at each node in the

trellis. The basic functions performed by this ACS block are add, compare and

select.

107

Chapter 5: Reconfigurable viterbi decoding

Formulate Random Input Frame (lines 1-7).

Perform the convolution encoding as per the Trellis (poly2trellis function: line 9).

Separate Systematic and Parity bits (lines 13-21).

Model the Channel for SNR by adding noise to the encodedframe (lines 33-42).

Define the fixed point format for Branch Metrics, FSMS, RSMs etc (lines 48-68).

Initialize the first state with Maximum FSM Metric for first stage of Trellis (k-0) (line 75),

Initialize the start of Dummy Reverse Processor (line 79) and Reverse Processor beta (line 80),

Initialize total windows (line 81).

Calculate the Branch Metrics, Forward State Metrics in the forward recursion as under:

p Outer: Iteration for input message frame

Loop Middle: Iteration for all states in each stage (k)for trellis. Since there are 8

parallel ACS blocks in hardware that process 8 states, therefore the no of state count =

total number ofstates18

Loop Inner: Iteration for processing 8 states as per hardware

Calculate for each state at stage 'Ic' of the trellis the states at stage 'k-i 'that

connect to this state. (Using function find_connected_states line 89)

Save configuration bits for Branch metrics multiplexers in hardware (line 95).

Calculate Branch Metrics for the connected states at stage kfrom stage k-i of

trellis (lines 98-144)

Calculate Forward State Metrics for these connected states i.e. FSMO and FSMI

(lines 153-154)

Find the maximum of the two FSMs (line 160).

Corresponding to the winning FSM save br 0 (0 if upper branch was the

winning state: lines 170-174).

Update contents ofpath memory (lines 175-179)

Return Loop Inner.

Return Loop Middle.

Model Saturation logic as per hardware design i.e., Subtract afixed value from

all FSMs ([any FSM crosses a threshold: lines 182-186

Return Loop Outer.

Perform traceback operation for Reverse Processor Dummy lines 211-212 as

under:

Calculate the start address for traceback - line 209 ([or 3GPP this traceback

starts after 2" window length for which the address calculation is equal to (window

length 54) X 2 X 256(total states) 18(8 states are processed in parallel)

Read the memory content of Path History memory corresponding to this address

and Multiplexer address— Line 213-214.

Calculate the next trace back address using function

calculate—next—address - Line 215 and the figure 3.5 shown below

Actual Traceback starts from the start state calculated by the earlier dummy

processor and actual message bits are decoded. (lines 220— 230).

Matlab Pseudo code for Max log map

108

Chapter 5: Reconfigurable viterbi decoding

This was shown mathematically in equation 5.15 and the pseudo code in section

5.5. Two ACS units combine to formulate one butterfly element as shown in figure

5.8 where state metrics are shown as SM and branch metrics as BM. One trellis

stage of a constraint length K coder is made up of 22 butterfly elements and

requires 2 K-1 ACS operations. The entire viterbi decoder can be based on one such

ACS unit resulting in a structure called state serial architectures [1NY98, GL187].

This is inherently low cost architecture however suffers from very slow speed

rendering it less useful for high speed applications. Similarly a separate ACS circuit

can be dedicated to every node in the trellis stage, resulting in fully parallel and

very high speed architecture [C11U89]. This however is at the cost of very high

energy consumption and the second disadvantage in using fully parallel scheme in

the poor resource utilization for reconfiguration.

SM1 	BM1 	SM
1+1

= MAX (5M 1+BM 1 ,SMjj.BM3J

B <M2

Figure 5.8. A simple butterfly operation for SM calculation

The proposed architecture reuses the available 8 Add-Compare-Select (ACS)

blocks in turbo decoding array. The concept of reusing these blocks results in a

higher speed architecture than traditionally used state serial architectures. In

comparison to fully parallel architectures an intermediate solution is presented

where better energy efficiency can be achieved by Processing N states (up to 256)

by P ACS (P=8) [CHU89] in contrast to assigning one ACS for each state. This

results in 100% utilization of all ACS blocks for any mapped standard on the array.

The state machine control makes it possible to use the array as a co-processor. We

have also shown a reconfigurable trace back approach for survivor memory

management and segmentation, a reconfigurable state metrics memory

management methodology, a reconfigurable write address generation and an open

trellis and dynamic reconfiguration process. For coherence of representation the

viterbi algorithm (VA) is summarized with a 2 state trellis diagram. For each stage

109

Chapter 5: Reconfigurable viterbi decoding

'L' of trellis, branch metrics (BM) are computed using the soft input symbols. State

metrics (SMs) for stage L+1 are updated using the SMs for stage 'L' of trellis as

shown in figure 5.8.

The BMs are computed by calculating the Euclidian distance of the soft input

metrics as shown in section 5.3.1. The input metrics are represented in 4Q2 signed

two's complement format similar to the turbo decoding array. The BM block for

turbo decoder and viterbi decoder arrays is therefore very similar reutilizing the

word length already available in Turbo decoding array.

The error probability of convolution codes decreases exponentially with the

constraint length [SHU93] and therefore standards like 3GPP [3GPP99] use large

trellises. For brevity the design is explained with the worst case 3GPP example

which has 256 states (constraint length --9).

For this large constraint length (K=9), the 256 (2') states are represented by a

smaller de Bruijn graph of 2m states [SHU93]. There are 8 ACS blocks already

available in the turbo decoder array [AHItvI205] and therefore reutilizing these

states M=3, processing 8 states/clock cycle for Viterbi. This is shown in the figure

5.9.

T:::::.T
1=18-~

du

I
Figure 5.9 256 states 3GPP trellis for generator polynomial 753,561

110

Chapter 5: Reconfigurable viterbi decoding

As shown in Fig 5.9 each ACS unit requires two states at trellis stage 'L-1' to

calculate the winning state. This requires saving all the winning states at trellis

stage 'L-1' as these are subsequently required at stage V. This contrasts with

turbo decoder where forward state metrics were required to be saved for the

complete window length. The FSM RAM reutilization for the unified array is

explained in section 5.6.2. The Add-Compare-Select operation of viterbi is similar

(as explained in section 4.11.4) however in viterbi decoder the ACS units provide

additional data bits for Path History RAMs as explained in section 5.6.3. The 8

ACS blocks were used in state parallel sequence in Turbo mode, where as in the

viterbi mode this methodology is changed since the number of states are much

higher. For example reutilizing these 8 ACS blocks for Viterbi there are 32 clock

cycles required to process 256 states in 3GPP [3GPP99]. This requires a

modification in the way the saturation logic works since the decision to saturate the

results can only be achieved when all the states are processed. This is saturation

logic control is shown in figure 5.10 and figure 4.17b.

Mt 	

dtypefl

outmuxi 	 dfirst
outmux2

C
0

Figure 5.10 Modification in saturation circuit for Viterbi decoding

5.6.2 PATH METRICS (PM) MEMORY

There are 256 winning states at each stage 'L' of the trellis which are saved in

SRAMs to be used at stage 'L+1'. Each stage (L) of trellis requires 2L.1 ,2M clock

cycles to calculate all wining states. Dual read ports have been used to access two

path metrics required for the computation of the next path metric. Size of these

RAMs (called FSM RAMs in the context of Turbo) is carefully selected to map

both constraint length K=4 trellises in Turbo and up to K=9 constraint length

trellises in Viterbi. To avoid the read-write conflict two alternate RAM banks have

111

OUTPUT FROM
INPUT FOR ACS

ACS BLOCKS Read Port 1* BLOCKS t2 Read Port 2*
t2 0 8

(0,1) (16,17) f Read
(2,3) 	I (18,19)

Port i
2 10

(4,5) (20,21) 11
(6,7) •(22,23) 12

1 3
(8,9) (24, 25) 6 14

(10,11)I

7 15
(12,13)

(26,27)1Read
(28,29) Port

(14,15) (30,31)

States0-7 Stateso-7
States 8-15

Path Metric
Memory 2

States 16-30

Path Metric
Memory I

States 248-255

Nrlte
Port

Chapter 5: Reconfigurable viterbi decoding

been used for read and write operation. The update sequence is shown by the

pattern shown in figure 5.11.

Figure 5.11: PM Memory read and write operations

At time t=1 'Read Port 1' read states 0-7 (for ACS 0-3) and 'Read Port 2' read

states 8-15 (for ACS 4-7) from PM Memory 1. The ACS blocks update the path

metrics and these are saved on PM Memory 2 as shown in blue. The process

continues for trellis stage 'L' and the PM RAM2 is completely updated in 32 clock

cycles. These values are then read in trellis stage 'L+1' and now PM Memory 1

will be used for writing the updated metrics. For lower constraint lengths (for e.g.

GSM, K5, 16 states) PM RAMs are updated in just two clock cycles.

Bill

lIHHF1h
Figure 5.12. Example showing previous state calculation

The input/output state connections for the ACS blocks are explained in figure 5.7.

For example if the state at stage 'L' of trellis is 01111111 (figure 5.12); it implies

that the decoded bit (shown in red) is 0 and the two possible states connected to this

winning state at stage 'L-1' of trellis are 1111111_0 and 1111111_i. The previous

112

Chapter 5: Reconfigurable viterbi decoding

winning state decision is provided by the path history memory. Path Metrics

memory is mapped on to Forward State Metrics RAM [AHM205] already available

in turbo decoding array.

The read and write address of PM RAMs is provided by flexible counters in Finite

State Machine as shown in figure 5.13 where separate read counters are provided

for FSM RAM I and FSM RAM2. In turbo mode the read and the write is in the

same direction as was shown in figure 4.17 earlier. However in Viterbi mode the

read operation as specified in figure 5.11 is performed by two counters for read port

1 and read port 2 for the PM RAMs. Multiplexers A and B are used to switch the

counters for turbo mode as was shown and explained in section 4.11.2. Read

counter 1 and 2 also have dynamic count—to and count—from flags which are used

to provide the PM RAMs controls for multiple viterbi standards. The value of

count—to (c.t) and count—from (cS) is shown for different standards in table 5.1

below:

s/no Port Name Counter Viterbi- Viterbi- Viterbi

3GPP WLAN & GSM/GPRS

(256 IEEE 802.16 16 states

states) 64 states

c.t 	c.f c.t 	c.f c.t 	c.f

1. Read Port l S bit up 30 0 7 0 0 0

FSM RAM 1 counter

increment

of 2

2. Read Port 2 S bit up 31 1 6 1 1 1

FSM RAM 2 counter

increment

of 2.

3. Write Port 5 bit up 0 31 0 7 0 1

FSM RAM counter

and RAM2.

Table 5.1 Viterbi state machine counter values for different standards

113

Chapter 5: Reconfigurable viterbi decoding

State machine also provides the read and write control signals to all the RAMs.

Data read from the PM RAMs is passed on to ACS units. State machine control

provides select signals for multiplexer C which determines the PM RAM used to

read data. Multiplexer D provides change of control from Viterbi mode to Turbo

mode as in this mode PM RAMs are not used to provide data to ACS blocks.

INPUT
RAM 	RAM 2

WRITE ADDRESS
INPUT RAM I AND

r • 	 ' S ATE MACHI E
READ ADDR4ESS P...P.d2 CONTROL

M 	INPUT RAM I 	
counter FSM RAM2

FORWARD
Wnte Address

COUNTER

atao

READ ADDRESS
A

I
rtl 	2

INPUT RAM 2
U -4 Road DATA IN FROM ACS

REVERSE (1 counter BLOCKS

COUNTER READ-WRITE
U 	ADDRESS OF C

X 	FORWARD STATE

-

METRICS RAM B [J
R..dA...Po.t2 D

WRITE ENABLE I FSM RAM1 	-
Data out

INPUT RAM I
STATE MACHINE CONTROL port 1 & 2

WRITE ENABLE Write Address
INPUT RAM 2

Control for 	Control for

From Turbo ACS units
Mulitplexer BMC1 Mulitplexer BMC2

Figure 5.13. State machine control for PM RAMs in viterbi

5.6.3 PATH HISTORY (PH) MEMORY

Path History Memory is used in VA to find the survivor path. The contents of this

memory are updated on each stage 'L' of the trellis which allows reconstructing the

survivor path. Each ACS unit output one bit for the survivor state. 8 decision bits

per clock cycle (given by 8 ACS units) are saved in the PH RAM. The total size of

the PH RAM is given by:

Size of PH RAM = (2L1 /2M) x WL x Total windows -------

where window length is 6 times the constraint length.

For constraint length 9, size =32 x 54 x 4 = 6912x8.

114

Chapter 5: Reconfigurable viterbi decoding

There is 8K (2Kx4) of output RAM available in turbo decoding array [AHM205].

This is reused for PH Memory and is shown in the figure 5.14.

8 DECISION BITS 8 DECISION BITS 8 DECISION BITS 8 DECISION BITS
PROVIDED BY PROVIDED BY PROVIDED BY PROVIDED BY

ACS UNITS ACS UNITS ACS UNITS ACS UNITS
4

II 	II II 	Pill

4

il l 	 I II 	Ii -
32 81 4 2

2

32 81 4
42 30

I 21
81 PH MEMORY

PH MEMORY PH MEMORY PH MEMORY WINDOW LENGTH
WINDOW LENGTH WINDOW LENGTH WINDOW LENGTH 3 4

1 2 36x2 BITS 30x2 BITS

32 t 64X5 BITS
SEGMENTATION

42X3 BITS
SEGMENTATION

SEGMENTATION
SHOWN FOR

SEGMENTATION
SHOWN FOR

SHOWN FOR SHOWN FOR CONSTRAINT CONSTRAINT
CONSTRAINT CONSTRAINT LENGTH 6(15-64 LENGTHS

LENGTHS (3 GPP, LENGTH ? (IS-es STANDARD) (GSM.PDC
CDMA2000, W- STANDARD) STANDARDS)
CDMA-JAPAN,

UMTS)

ADDRESSES 0.2K ADDRESSES 2K-41(ADDRESSES 41(4K ADDRESS 6K-8K

Figure 5.14: 2Kx4 identical path history RAMs in viterbi decoder, Segmentation
and mappings shown for different standards

Each block of 2K RAM is used to store one window length (WL) of decision bits.

The RAM is segmented by the total states of the trellis. For example, for 256 states

there are 256 decision bits (one for each state). Therefore the RAM is segmented in

to 32x8 segments. Figure 5.14 shows mappings and segmentation of the PH

memory for different standards. However the used area of each block of 2K RAM

for a particular mapped standard will exactly be the same. This is enumerated in

table 5.2 below

Standard Constraint Memory 	utilization 	for
length each 2K RAM=WL x

segment size.
W-CDMA(Japan) 9 54 x 32 =1728 X 8 bits
CDMA 2000
UNITS
GSM,PDC 5 30x2=6OX8bits
IS-95, IEEE 802.16 7 42 x 8 = 336 X 8 bits
IS-54 6 36x4=l44X8bits

TableS .2. Memory utilization for different standards in viterbi decoder

115

Chapter 5: Reconfigurable viterbi decoding

PH memory is read by trace back processors (section 5.6.6) as they calculate the

survivor path in the reverse traversing of the trellis. The write and read control is

provided by the state machine. This is explained in the section 5.6.5. Address

generation is made reconfigurable as explained in section 5.6.4.

5.6.4 RECONFIGURABLE WRITE ADDRESS GENERATOR

The write address generation is controlled by Finite State Machine using a 5-bit

counter driving the 6-bit counter. The 6 bit counter will be incremented once the 5

bit counter reaches the terminal (maximum) count.

5 Bit Up Counter
With Count-To Flag

fn

B1B3B4

11 bits j1teAddess

B5 	136 	137 	B

10 bIts arithmetic 	L.. 6 Bit Up Counter With
Shifter 	r I 	Count-To flag

4'bO

Figure 5.15: Reconfigurable write address generator for viterbi decoder

Both these counters have dynamic 'count—to' flags which provide the terminal

count. The terminal count on the 6 bit counter provides means of introducing

reconfigurable window length and terminal count setting on 5 bit counter adjusts

the segment length for multiple standards. As shown in figure 5.12 a technique of

segment by segment address writing on PH memory has been used where each

segment corresponds to one trellis stage 'L' (256 states for 3GPP). 5 bit counter

controls the segment address. The segment address however is different for

different standards and the maximum value is 5 bits for 3GPP. 6 bit up counter is

116

Chapter 5: Reconfigurable viterbi decoding

concatenated with 4 zero bits on the MSB side and is then left shifted depending on

the mapped standard. The output of the arithmetic shifter drives the lower end of

write address through tri state buffers. 5 bit up counter drives the other side of

address generator through tri state buffers (B 1 -134) as shown in the figure 5.15.

WWWWWWWO

Offlufflown
Table 5.3. Configuration bits for tristate buffers in viterbi decoder

Table 5.3 defines configuration bits for the tri state buffers shown in figure 5.15.

Rows in the table correspond to constraint lengths 9,5,7,6 respectively. The

constraint lengths are for different standards as defined in table 5.2. Last column

'SH' in table 5.3 defines the number of left shifts for the arithmetic shifter. For

example if 6 bit up counter gives [C5_C4_C3_C2_C I — CO] and 10 bits arithmetic

shifter input is [0_0_0_0_C5_C4_C3_C2_C 1_CO] thenif SH is 1 (left shift by 1)

the output from arithmetic shifter will be [0_0_0_C5_C4_C3_C2_C 1 _C0_0]. This

output will drive the lower end of write address as shown in figure 5.15. Using

table 5.2 and configuration switch values corresponding to SH 1 (line No 4 table

5.3), the write address will be

[U4—U3—U2—U1—U0] are the five bit count values of upper counter (connected

with B1-B4). This is the write address for 1S54 standard, similarly for 3GPP the

write address as shown by switches in line No 1 table 1, will be

117

Chapter 5: Reconfigurable viterbi decoding

Both these counters have count —to flags and for 1S54 count—to flag of five bit

counter will be set to 4, whereas count —to flag of 6 bit counter will be set to 36. For

3GPP the count—to flags of 5 bit and 6 bit counters will be 32 and 54 respectively.

5.6.5 STATE MACHINE CONTROL OF PATH HISTORY MEMORY

Viterbi state machine control is very similar to turbo decoding. The only difference

between the two is that the control is for read and write of Path history memory as

opposed to input memories in turbo decoding. Both Turbo and Viterbi decoders use

forward and reverse state metrics processing. There are windowed versions of the

algorithm to improve the latency and in its simplistic form it uses two reverse

processors (BI and 132) in parallel with one forward processor (FP 1). Reverse

processor can start cold in any state (initializing each state as equi - probable), but

after few iterations (equal to window length WL) the state metrics are as reliable as

if the process had been started at the final node of trellis. Let B2 be the dummy

reverse processor that starts from state 0 and after reverse traversing the trellis for a

WL, provides the start state for the actual reverse processor Bi.

Figure 5.16. State machine in viterbi showing 4 operating states

Figure 5.16 shows the four basic states of VA with start state as '0-L'. The detailed

scheduling diagram is presented in figure 5.17. Vertical axis presents time and

horizontal axis presents trellis length. Table 5.4 is linked to Figure 5.17 for its

explanation. Moreover a similar scheduling diagram for turbo decoding was

presented in section 4.11.2 and our earlier work [AHM205]. Table 5.4 shows the

118

L

2L

w
3L

4L

SL 5L

6L

Chapter 5: Reconfigurable viterbi decoding

working of FP, B I and 132 as they write and read PH memories. After 4 WLs (O-L

to 3L-4L) the cycle repeats. First decoded bits are output continuously after latency

of 3 WLs from time 3L-4L.

FRAME
L 	2L 	3L 	4L 	5L

	
RI 	71 	RI 	OIL

TE MET ICS CAL ULATED IY FP. v ITE PH REA PH MEM RY 1 >

\FPFC
MEMOR I DECIS IN BITS ILLED A lit PH IIEMORY RY 2

REA PH MEM

FRAMI LENGTH O-I. VVI ITEPHII MORY3 REA PHMEM RY3

E PH M REA PH MEM RY 1 MORY

BITS F(2'° FRA IE LEN(H L-2L FILLEI I BY FP

\F

P IDECISIO
NPHME DRY 2.

JE

P 82 RP I READS HE DECI ION BIT FROM P MEMOR 2

/ FP CID ESPONE NG TO F ME LE TH LEN TH 2L T L
FP Fil S THE D CISION TS FOR RAME LI IGTH 2L 3L

/ IN P MEMO 3.

d RP. I INITIAL ED BY P B2 NO READS HE DECI ION BIT
RP BI RP B2 \ 	F OM PH MORY I AND GIV S THE D CODED UTPUT.

I \ P B2 RS THE CISION ITS FRO PH ME ORY 3

FP 	
'

RRESP NDING) FRAM! 3L-2L.
FILLS DECISI N BITS IR FRAM LENGT 3L - 4L

\FP
/

EPEAT, IRITNG NPATh ISTORY EMORY
PP BI RI B2 ND CYI E REPE rs

RP BI 9/B2 \

Figure 5.17: Scheduling diagram for viterbi decoding

Time PH Memi PH Mem2 PH Mem3 PH Mem4

O-L Write FP Read B 1 NO OP Read 132

L-2L Read B2 Write FP Read B 1 NO OP

2L-3L NO OP Read B2 Write FP Read BI

3L-4L Read B 1 NO OP Read 132 Write FP

4L-5L Write FP Read B I NO OP Read 132

Table 5.4. Read and writes on PH memories by FP,B 1 and 132 in viterbi decoder.

119

Chapter 5: Reconfigurable viterbi decoding

5.6.5.1 RECONFIGURABLE ASPECTS OF STATE MACHINE

The state machine control needs to provide flexibility to control not only a switch

over between viterbi and turbo decoding but also amongst different standards

within viterbi decoding. The state machine controls are explained in subsequent

sections along with the explanation of individual components of the array. The

controls can be classified into the following categories:

• Read and Write Controls for Input RAMs.

• Controls for generating read and write addresses for Input RAMs.

• Control signals for Branch Metrics Multiplexers.

• Adjustment of scheduling and windowing as per the mapped standard.

• Control signals for disabling the unused blocks.

• Read and Write control signals for Path Metrics RAMs (called FSM RAMs

in Turbo)

• Address generation for PM RAMs.

• Read and Write Controls for all the ports of PM RAMs.

• Control signal for multiplexers controlling data outputs of PM RAMs.

• Read and Write Controls for Path History (output RAMs in Turbo

decoding).

5.6.6 RECONFIGURABLE TRACE BACK PROCESSING

As shown in section 5.6.5 there are two reverse processors BI and B2 (dummy)

working in parallel. To get the survivor path, either register-exchange or trace back

structures can be used [RAD81]. Since the trace-back is efficient for larger

constraint lengths and low power applications, trace back processing is selected. In

trace back processing the previous trellis path stage SL-1 is given by the current path

state SL according to the following update.

SL-1 ESL <<1, D]

this corresponds to a left shift of the current state introducing the value of surviving

bit D in the vacant position as shown by Dl-D7 in figure 5.18. Survivor bit is

selected by multiplexer Ml from the data bus of PH Memories. The select control

120

Chapter 5: Reconfigurable viterbi decoding

to this multiplexer is provided by DI, D2, D3 outputs. 6 bit Down Counter and

arithmetic Shifter arrangement is also shown which works exactly the same as was

explained in section 5.6.4. The only difference is that the counter is initialized with

the last address of PH Memory and counts down by 1. The decrement in count by

one provides a jump of one segment length. Reverse processor B 1 and B2 share the

same counter and shifter.

Reconfigurable trace back processing is explained with examples of 3GPP and

GSM as was done in section 5.6.4.

tSi Di

Table 5.5 Tri state buffer controls for recontigurable trace back processing in
viterbi decoder

Let U4—U3—U2—U1 are outputs of buffers B1-B2_B3_B4 and

C5_C4_C3_C2_C 1_CO are the outputs of the 6 bit down counter. Output of the

arithmetic shifter without any shift is O_O_O_O_C6_C5_C4_C3_C2_C 1_CO.

No B9 BlO B1 1 Sh Output Shifter

GSM off Off Off 0 O_O_O_O_C5_C4_C3_C2_C1_CO

3GPP on On On 4 C5_C4_C3_C2_C1_CO_O_0_O_O

Table 5.6. Arithmetic shifter outputs and buffer controls in viterbi decoder

The contents of the read register for 3GPP using the controls in table 4 and table 5

are:

U3U2 I U1UO

Similarly for GSM the read register contents are:

121

Chapter 5: Reconfigurable viterbi decoding

0 0 0 0 C5 C4 C3 C2 C1 co

LOAD

'[JB11LJB1OP[JB9pLJ I
D8 	lj D7 	 D6 	05

B1 	 1321 63 I 	84H 	
UO

I 	5 LS OF READ ADRESS

551 	B6' 	 B71 	 551

4LSB8OF 	 6MSBs OF

~ FFFFTF } SHIFTER 	 READ
ADDRESS

6 BIT DOWN LIIIIJIIII S ARITHMETIC
COUNTER WITH SHIFTER

LOAD FLAG

bo 	 -

D4 I 	03 4 	02' 	Dl

DATA
OUT

FROM
PATH

HISTORY
MEMORY

Ml

Figure 5.18: Trace back processing for reconfigurable viterbi decoding

5.6.7 OPEN TRELLIS AND DYNAMIC RECONFIGURATION

The input connections to all ACS units are made flexible by reconfigurable logic as

shown in figure 4.7. BM configurations are saved in Input RAMs 1- 4. Each RAM

block is 32x8 bits, and has asynchronous read and synchronous write ports. The

RAMs are filled in 32 clock cycles (for 3GPP [3GPP99] trellis). It is worth noting

that during the write operation on the RAMs simultaneous read is also performed.

This provides dynamic switch over for different trellis types. These configuration

bits provide the appropriate BMs for the ACS units. ACS units also need the

previous state metric values which are read from Forward Processor RAMs as

explained earlier. After first segment write operation on the RAMs is completed

and then only read operation is performed for the subsequent segments. The size of

the input RAMs is carefully selected to store all the branch metric configuration

bits and the two window lengths of input metrics in case of Turbo decoding. The

read write controls for the input RAMs is provided by state machine. These

122

Chapter 5: Reconfigurable viterbi decoding

controls change with the mapped standards and also with turbo and viterbi

mappmgs.

5.7 RESULTS

The Viterbi mappings for various standards are first coded in matlab with floating

point precision. The precision is then changed to fixed point as per the hardware

design. The matlab code is changed to simulate the hardware, and therefore it

provides the test vectors that can be directly used in the RTL design. Matlab fixed

point simulations are also used to compare the results with floating point

precisions. The RTL design after pre-synthesis simulations and verification is

synthesized using Synopsys Design Compiler for 180 nm CMOS UMC cell library

and the chip layout is done on Silicon ensemble. Post layout power figures are

taken from Synopsys Design Power. Synopsys designware SRAMs were used for

Forward Processor RAMs. Virtual Silicon 2K x 8 synchronous (separate read and

write port) macro RAMs were used for Path history memory consuming 110

uW/MHzfPort. Figure 5.19 gives the cell count and overall area of the array with

1 8Onm process.

Report: area
Design: oneFPtwoRPs
Version: X-2005.09-SP1
Date : _ Thu Jun 101:50:25 2006

Library(s) Used:

umcll8u25Ot2_wc (File: Ihome/SLlgJumcO.18/LJMCL18U25OD2_2.41
_ designcompiler/umcllBu25Ot2_wc.db)

Number of ports: 	310
Number of nets: 	10028
Number of cells: 	8225
Number of references: 	212

Combinational area: 	1148921000000
Noncombinational area: 529297.750000
Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 	1678616.125000

Figure 5.19. Area of array without output RAMs

123

Chapter 5: Reconfigurable viterbi decoding

The array uses 1.67 mm of area as shown in figure 5.19. The overall area and the

cost of reconfigurable viterbi components is shown in figure 5.20. Area utilization

of reconfigurable switching is 97089.6 um which is only 3.4% of the overall area.

The power consumption of this switching fabric is just 2.5% of the overall power

consumption. The implementation of viterbi components on turbo decoder array

increased the area of turbo decoder array by 20%. This overhead is much less than

implementing viterbi and turbo decoder arrays separately. The unused blocks are

disabled throughout the chip which results in no significant increase in power

consumption of the overall array. The area and power figures are given in table 5.7.

Similar power figures are achieved compared to the unified VLSI design [MAR02],

however our design is made much more flexible than [MAR02]. 288 configuration

bits are required to configure the array. At 20 MHz configuration clock speed it

takes 14.4 isec to completely reconfigure the array.

The power figures are quoted at 20MHz clock speeds.

Area-Power Comparisons

60

50

40

30

20

10

0

4,
	\ #

Figure 5.20: Area and Power results of individual components of the viterbi design

	

Technology 	 0.18 	microns

124

Chapter 5: Reconfigurable viterbi decoding

standard 	cell

CMOS

Code rate (flexible) 1/2, 1/3, 1/4,1/5

Constraint 	length

(flexible)

Up to 9 (256 states)

Generator polynomial Flexible

Survivor 	path 	length

(flexible)

Maximum 54

Decision level 4 bit soft decision

ACS units 8

Power supply 1.8V

Operating frequency 20.0 MHz

Total Power in mW 69.961 mW

Total Area 2.82 mm2

Table 5.7. Results for viterbi decoder

The percentage of switching power and internal power in viterbi components is

shown in figure 5.21 below:

Library (a) Used:
um ll8u250t2wc (File: /heme/SLIg/umcO. 18/UMCL18U25OD2_2 .4/

design_compiler/umcll8u250t2_wc. db)
Operating Conditions: WORST Library: umcll8u250t2_typ
Global Operating Voltage = 1.8
Power-specific unit information

Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = ins
Dynamic Power Units = 1mW 	(derived from V,C,T units)
Leakage Power Units lpW

Cell Internal Power = 12.5929 mW (18%)
Net Switching Power = 57.3680 mW (82%)

Total Dynamic Power 	= 69.961 mW (100%)

Cell Leakage Power 	= 175.3585 uW

Figure 5.21: Net switching power and cell internal power in 1 8Onm UMC CMOS

process for viterbi components of the array

125

Chapter 5: Reconfigurable viterbi decoding

5.6.1 COMPARISON

The reconfigurable viterbi decoder design is compared with Texas Instrument's

viterbi decoder [HOCOO]. This is also a flexible decoder with variable constraint

length and code rate. The maximum data rate achievable by the decoder is 2.5

Mbps which is slower than the data rates provided by our design (10.5 Mbps at

maximum clock frequency). The decoder in [HOCO0] also used a coprocessor

within programmable DSP which makes it limited to a particular processor type.

The work proposed by [CHAO 1] presented a hard input reconfigurable viterbi

decoding using single bit Hamming distances for WLAN and 3G. Our proposed

design achieves a similar data rate however also has turbo decoding components

and a soft decision viterbi decoder. The design in [CHAOI] hence has limited

flexibility and the single bit hamming distance calculations makes it difficult to use

in practical scenarios.

The work proposed in [KEL93] is a foldable scheduling scheme for reconfigurable

viterbi decoder. Turbo decoding is not available with this decoder, however the

proposed architecture has a utilization of 100% for almost all configurations. The

area power results are not provided and the implementation is also done on a set of

FPGA boards rather than ASIC.

5.8 CONCLUSION

A fully flexible viterbi decoder for reconfigurable platforms has been designed.

The decoder consumes 69mw at 20MHz occupying 2.824 mm area. The array can

be mapped onto various communication standards and hence can be used as an IP

in reconfigurable platforms. It is shown with results that the cost of reconfiguration

in our chosen domain is negligible and a careful reconfigurable design can give

results very close to the state of the art ASIC designs but with much increased

flexibility.

126

Chapter 6

LOW POWER INTERLEAVER

In this chapter, a novel implementation methodology to implement 3GPP

mterleaver is proposed. Interleaving is the key factor in the excellent performance

of turbo codes. The novel implementation methodology discussed in this chapter

results in 3GPP interleaver design with a significant reduction in SRAM area.

Interleaver SRAMs are the major contributor to the area and power of the turbo

decoder and hence reducing SRAMs results in significant area and energy savings.

6.1 INTRODUCTION

Numerous interleaver design algorithms have been proposed so far, many of them

are purely heuristic, other employ optimization techniques. A large class of

interleaver designs are based on spreading which will be presented in subsequent

sections. Due to the large number of proposals and due to the limited space in this

thesis, we can present only the most significant algorithms in the following

sections.

6.1.1 RECTANGULAR INTERLEAVERS

Rectangular interleavers, often simply referred to as "block interleavers", have

been used for the transmission over fading channels for a long time [C0N87,

ESA89]. This interleaver can be represented as a rectangular array of boxes, where

each box contains a single bit or a tuple of bits. The boxes of x X y rectangular

interleaver are arranged in x rows and y columns. In its simplest form it is

implemented as memory in which data is written row-wise and read column-wise.

For example, data is written row-wise as shown in Table 6.1.

127

Chapter 6: Low Power Interleaver

Dl D2 D3 D4

D5 D6 D7 D8

D9 1)10 Dli D12

D13 D14 D15 1)16

D17 D18 D19 D20

D21 D22 L D23 D24

Table 6.1 Writing data Dl-D24 row by row in the memory in the case of a
rectangular interleaver

The interleaving process in row-column interleaver consists of reading data

column-wise shown in table 6.2.

Dl 	D5 1D9 JD13Dl7D21ID2 I D6 IDIOIDI 4 IDI 8 JD22 ID3 1D7 DlI
Table 6.2. Reading data column-wise from memory in rectangular interleaver

It is shown in [PSC96] that the utilization of rectangular interleavers in Turbo

codes entails a major problem. With these interleavers, there is a large number of

first component input words containing two weight 2 error patterns, which are

permuted to similar second component input words containing two weight-2 error

patterns. These EP's associated parity weights are low and they form a woven error

pattern which produces a low codeword weight. The multiplicity of these low-

weight code words lies in the same order as the interleaver length K. [BFIOOa]

shows that Turbo codes with rectangular interleavers can be interpreted as a special

case of convolutional codes. Moreover, [BHOOa] and [GMBOO, GMBO 1] showed

that the Turbo codes exhibit a particularly low trellis complexity for rectangular

interleavers. There are many constructions possible for the block interleavers, some

popular constructions are given below:

6.1.2 HELICAL INTERLEAVER

A "helical" interleaver writes data row-wise as in Table 6.1 but reads data

diagonal-wise as shown below and in Table 6.1 in different colour patterns.

128

Chapter 6: Low Power Interleaver

1 1)18 1 1)15 I)12 ID5 JD22 D19 1D16 I D9 I)6 ID3 1D23 I)20 1D13 I••• I
Table 6.3 Diagonal interleaver read operation

6.1.3 ODD-EVEN INTERLEAVER

It was shown in [BAR94] that "odd-even" interleaver gives significant

improvements when used in a turbo encoder design. Let us assume that we have a

random sequence of binary data input to a rate one half systematic encoder and we

produce the coded bits but only store the odd coded bits as in table 6.4.

DI D2 1)3 D4 I D5 I D6 I D7 I D8 I D9 I DIO I DI I D12 I D13 I D14 I D15

XI - X3 - X5 I 	- X7 I - X9 - XII I 	- X12 - X13

Table 6.4 Table showing odd position bits for Odd-Even interleaver

Now we store row wise the sequence of data 131-131 5 say in a block interleaver

with an odd number of rows and odd number of columns. The encoding is done

after reading column wise and the even positions of the coded bits are stored as

shown in table 6.5 below:

-- --- -- -- -- --- -- -

Table 6.5 Table showing the even position bits for odd even interleaver

The data which is actually sent through the channel is multiplex data from table 6.4

and 6.5 as shown in table 6.6 below:

Dl D2 D3 D4 D5 D6 D7 D8 D9 D1O DII D12 D13 D14 D15

Xl YB X3 YD X5 YF X7 YH X9 Yj Xli YL X12 YM X13

Table 6.6 The output to channel from odd-even interleaver

The advantage with this scheme is that the coded power is uniformly distributed as

each of the information bits has their own coded bit associated with it.

129

Chapter 6: Low Power Interleaver

6.1.4 SIMILE INTERLEAVER

In Simile interleaver [BAR95] the whole block is divided in n+1 sequences, where

n is the number of delay elements in the encoder. For a simple four state encoder, n

= 2, the corresponding 3 sequences become:

Sequence° = {dk I k mod (n + 1) = O}

Sequence' =dkIk mod (n+ l) = 1}

Sequence = {dk I k mod (n + 1) = 2}

The property of the Simile interleaver is that after encoding both sequences of

information bits (original and the interleaved), the state of both encoders stays the

same. Therefore same tail bits can be appended to the information bits, which drive

both encoders to the zero state. The final encoder state is independent of the order

of the bits in normal or interleaved pattern as long as they follow the same

sequence i.e., the index for the interleaved output follow the same pattern as for the

non interleaved sequence. As an example in [BAR95], to generate a simile odd-

even block helical interleaver, the interleaver depth is chosen as an even number

which is multiple of (v+1) and the second dimension is chosen to be prime. For a

four state RSC encoder it is shown as:

Xl X2 X3 X4 X5 X6

X7 X8 X9 X10 Xli X12

X13 X14 X15 X16 X17 X18

X19 X20 X21 X22 X23 X24

X25 X26 X27 X28 X29 X30

Table 6.7 Row by Row entry for Simile odd-even block helical interleaver

Part of the interleaved sequence is shown in table 6.8 below:

X25 X20 X15 XJO X5 X30 X19 X14 X9 X4 X29 X24 X13 X8 X3

J 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

MOD

3

XI X2 X3 X4 X5 X6 X7 X8 X9 X10 Xli X12 X13 X14 X15

Table 6.8 The output of a simile odd-even block helical interleaver

130

Chapter 6: Low Power Interleaver

Comparison of row 1 and row 3 in table 6.8 shows both interleaved and non

interleaved bits follow the same sequence.

6.1.5 FRAME INTERLEAVER

Unlike simile interleaver frame interleaver does not uses tails to drive both

encoders to the same state. Instead it puts more constraints on the interleaver design

[BER96]. The N information bits to be interleaved are stored twice in a memory of

size 2N. The addresses are selected such that their subsequent reading is time-

separated by number of periods which is multiple of constraint length L. This

arrangement also ensures that if the encoder started in state zero, it will end in state

zero without the need of any tail bits.

6.1.6 PSEUDO-RANDOM INTERLEAVER

In this category of interleaver the interleaved patterns are generated by pseudo-

random algorithm. This algorithm can either be implemented in hardware as a

pseudo-random generator or the interleaved patterns corresponding to the complete

block size can be stored in a lookup table. Pseudo-random interleaving results

depend on the block size and are varying for small and large block lengths. The

criterion for choosing between them is done on computer simulations rather than

analytically.

6.1.7 S-TYPE INTERLEAVERS

In an "S-random" interleaver, each randomly selected integer is compared to '5'

previously selected integers and the current integer is selected only if it is at

distance larger than S from any of the S pervious selections. The process is

repeated for all N addresses. The interleaver gain is larger for larger '5' values. It

was shown in [BER96] that if an interleaver of size N is randomly selected, the

probability that a particular weight-2 (i.e. the sequence in which the number of ones

are 2) data sequence will be permuted by the interleaver into another sequence of

same form is roughly 2/N for large N. The probability is larger for smaller N. The

weight 2 data sequence is an important factor in the design of the component codes.

131

Chapter 6: Low Power Interleaver

S-random interleavers prove to be an effective methodology to avoid weight-2 data

sequences.

6.1.8 UNIFORM INTERLEAVERS

Uniform interleaver was explained in [BENI96] as average of all possible

interleavers with an aim to derive the performance bounds for turbo codes.

Consider a sequence made of w ones and k-w zeros. A uniform interleaver of

length k is a probabilistic device which maps this sequence to all distinct (4)

permutations with equal probability ii(). The method gives upper bounds on the

error probability which are quite accurate at high values of SNRs but not so

accurate at lower SNRs. This technique allows the analysis of a turbo code as if it

were made of two independent elementary codes, due to the uniform distribution

produced by the interleaver.

6.1.10 CONVOLUTIONAL INTERLEAVERS

Convolutional interleavers were introduced in ([RAM70], [FOR71]. A typical

convolutional interleaver consists of an input and output switch, which cyclically

connects L shift registers, each register being delayed in time by B bits. The k-tb

shift register thus introduces a (L - k)B bit delay. The end-to-end interleaver-

deinterleaver delay is (L - I)LB. This type of interleaver also introduces some

zeros at the beginning and end of the interleaved data block due to the delay

associated with each shift register

6.1.11 CODE MATCHED INTERLEAVER

Code matched interleaver is optimised for a specific code and starts with an 5-

random interleaver that can break as many of the short length input patterns as

possible. Code matched interleavers aim to eliminate the first spectral lines of the

turbo code distance spectrum which are generated by low weight input sequences

[FEN99]. The most significant low weight input patterns are then identified. The

132

Chapter 6: Low Power Interleaver

interleaver search is done in an iterative way to eliminate the cases where the

interleaver outputs form an error pattern of the weight targeted to be eliminated.

6.1.12 CHAOTIC INTERLEAVER

The basic advantage of chaotic mterleaver is its reduced complexity and increased

level of security in the communication system without penalty in performance

[ZHAO 1]. This interleaver uses chaotic type of mapping, e.g., the Logistic

mapping, which is used to produce chaotic data. This procedure is used to order the

elements in each column vector, followed by ordering of the column vectors

themselves. The interleaver mapping start is based on an initial state which can be

considered as a key in a secure communication link. The decoder can't produce any

meaningful output unless the key is known. As compared to pseudo-random

interleavers a small improvement in performance of turbo codes was shown by

Chaotic interleavers in [ZHAO 1].

6.1.13 NON-BLOCK INTERLEAVERS

The main advantage of non block interleavers is their reduced delay. They were

proposed in [P1E96] as self synchronizing turbo codes using non block interleavers.

The proposed schemes do not require pre ambles to detect the beginning of the

block. These are useful in application using long messages like stream-oriented

applications [HALO 1] as there is no requirement of data-framing as in other block

interleavers.

6.1.14 THE BEST INTERLEAVER

Interleavers are designed for specific system requirements. There is therefore no

universal formula that can be used. It was shown in [BAR94] that for short block

sizes and low Eb/No, an odd-even interleaver outperforms a pseudo-random

interleaver [BAR94] and vice-versa at higher Eb/No. For larger block sizes, an S-

type interleaver outperforms a pseudo-random interleaver [BEN 196, BEN296].

With the larger size of the interleaver the extrinsic information passing between the

two constituent decoder becomes more uncorrelated. Therefore the process allows

133

Chapter 6: Low Power Interleaver

for two "independent" criteria to estimate the soft value of the same bit. The second

important design parameter is the degree of "randomness" with which the

interleaver and the deinterleaver spread the bursts of errors from one decoder

output to the next decoder input. From this point of view the ideal interleaver is a

random interleaver.

In [K}1A97], a method to optimise the interleaver structure using the "Hungarian

method" is presented. The goal is to break all the weight-2 sequences such that at

least one of the outputs avoids a terminating zero-phase sequence. In [DAN98] a

canonical form of the interleaver engine with minimal delay is defined as a finite

state permuter (FSP). Two algorithms are developed for a systematic iterative

construction of interleavers with a complexity that is polynomial with the

interleaver size. Each transposition vector has associated with it a cost function, the

algorithms aiming at the minimisation of this cost function. The complexity of the

algorithm depends on the length of the error patterns which are taken into

consideration.

Recent work has shown that the tails can be dispensed with, without any significant

loss in performance for higher interleaver sizes. From all the above examples of

interleaver design it is clear that the role of the interleaver is to allow the decoders

to make uncorrelated estimates of the soft values of the same information bit. The

less "correlated" the two estimates are, the better the convergence of the iterative

decoding algorithm.

6.2 THE 3G INTERLEAVER

The turbo code internal interleaver in 3GPP turbo decoding is defined by a complex

algorithm for the generation of interleaved addresses. It is a pseudorandom block

interleaver consists of two steps: mother interleaver generation and pruning

[3GPP99]. The input sequence is first written row by row in a rectangular matrix.

The number of rows and columns is a function of the information block size which

can vary between 40 and 5114 bits. There are 207 mother interleaver sets that can

134

Chapter 6: Low Power Interleaver

be selected depending on the information block length. Once a particular set is

selected, some bits are pruned in order to adjust the size back to the original

information block size.

There are tables with primitive roots used for inter/intra row permutations. After

performing permutations on rows and columns, the sequence is read out from the

interleaver matrix column wise. These permutations are based on a set of prime

numbers. The straightforward method of implementing the address interleaving is

to generate all the possible addresses corresponding to a particular frame length,

and store this interleaver address table in a memory. The maximum block size

defined in 3GPP is 5114 and hence the memory required for interleaver is 5114 by

13 bits. Thus interleaver/Deinterleaver RAMs are major contributors to the area,

power of turbo decoder [MAS99, PEN03].

Message bits before
encoding 	

El 	
Puncturing

And
Multiplexing

Figure 6.1. PCCC (Parallel Concatenated Convolutional) Encoder

The novelty of our design comes from implementing a low power solution that

target the above mentioned bottleneck. Contrary to existing approaches [MAS99,

PEN03] a dedicated address interleaving data path is implemented that generates

the addresses in real time. The real time address computation avoids the use of pre-

computed address storage which greatly reduces the load on the processor and

gives significant improvements in area and power. ASIC synthesis results on 0.18

pm CMOS UMC technology demonstrate the efficiency of the proposed VLSI

interleaver architecture. Figure 6.2 shows a parallel concatenated convolution

(PCCC) turbo consisting of two SISO (soft input soft output) decoders connected

135

Chapter 6: Low Power Interleaver

through an interleaver - deinterleaver structure [3GPP99]. The component decoders

shown in figure 6.2 are individually matched to the corresponding encoders shown

in figure 6.1. These constituent decoders work in an iterative way and the decoding

process is stopped when the desired reliability is achieved.

Figure 6.2. PCCC (Parallel Concatenated Convolutional) Decoder

6.3 OVERVIEW OF ALGORITHM

The 3GPP algorithm maps an input sequence of length K (40 - 5114) to an

interleaved sequence of the same length (for full details refer [3GPP99]). The

algorithm is first implemented in matlab where it translated from its definition of

two dimensional rectangular interleaver matrix in to one dimensional space. The

translation makes the algorithm easy to implement for one dimensional SRAM

based VLSI designs. The hardware design follows from the fixed point simulation

in matlab. The matlab code is written exactly replicating hardware in a process

called hard wired simulations. The simulations generate the test vectors that can be

used for presynthesis verification of }iDL code. The VLSI design of the algorithm

follows the design cycle as shown in the figure 6.3. The two dimensional

interleaver matrix is generated by the following pseudo code:

6.3.1 PSEUDO CODE
The algorithm is explained in two phases. For ease of understanding the notations

used in the explanation are kept exactly the same as are used in the standard

[3 GPP99].

136

Chapter 6: Low Power Interleaver

6.3.1.1 PHASE1. PREPARATORY PHASE

Ste 1:

Calculate the number of rows defined by length of K (bits input to decoder). It can

have a value of 5, 10 or 20.

Step 2:

Length of K also determines the value of a prime number 'p'. It has a fixed value of

53 for range of K between 481 and 530 and is computed from a lookup table for

other values of K [3GPP99].

Stev 3:

'K' and 'p' determine the number of columns of the interleaver matrix.

Corresponding to the number of rows and columns calculated above the bit

sequence is entered in the RxC interleaver matrix row wise. There will be some

values of K with number of bits less than the total number of rows and columns of

the interleaver matrix i.e., RxC >K. These empty values in the rectangular matrix

are padded by dummy ones or zeros in a process called pruning. If the R is the total

number of rows and C is the total number of columns, then the RxC matrix will be

filled starting with bit x 1 in column 1 of row 1 and the last bit xRc (message or

pruned dummy bit) in column C of row R as shown below:

F x, 	X2 .. 	x, 1 I X(R2xc2) 	..
Input=I 	 I

X(R)(c2) 	.. X(Rxc)]

Step 4:

The value of 'p' calculated in step 2 is used to read a primitive root 'v' from table

in [3GPP99]. The value of 'p' and 'v' is required to calculate the Base Sequence

(called s(j) in [3GPP99]). This base sequence is required to permute bits column

wise. The calculation of the base sequence for intra-row permutation is shown

below by a pseudo code:

137

Chapter 6: Low Power Interleaver

For each P

Loop for j=1 to p-2

so) =vxs(j-1) mod p

End Loop

Step 5:

The prime sequence q1 is constructed using 'p'. The index 'i' is equal to the total

number of rows of the interleaver matrix as shown by the following matlab code:

q(1) = 1;

for index6=2:R

prime 1 =find(gcd(prime_nos,p- 1)== I);% gcd =>greatest common divisor

prime2=prime_nos(prime 1);

prime3 =find (prime2 >6 & prime2>q(1 ,index6- 1));

prime4=prime2(prime3);

q(index6)=min(prime4);

end
4 q1' is used for permutation calculation of both rows and columns as shown in

subsequent steps.

Step 6:

r(i) parameter which is used in intra row (column wise) permutation is calculated

by using the using the prime sequence 'qi' and T(i) patterns defined in table 3 in

[3GPP99]. The matlab code is shown below:

for index7l :R %R is the total number of rows

r(T(index7)+1)=q(index7);% r(.) is the permuted row index

end

Interrow (permutation between different rows of interleaver matrix) is performed

by using the interrow permutation table defined in [3GPP99].

6.3.1.2 PHASE 2. CALCULATION PHASE
Step 1. IntraRow (Column-wise) permutation:

138

Chapter 6: Low Power Interleaver

The column wise random permutation pattern is different for each row of the

interleaver matrix. Columns are permuted according to two operations, first is the

multiplication of r(i) (Step 6) with column count (0 to p.2). The modulation

operation with the result of this multiplication and p (calculated in step 3) provides

the index to base sequence calculated in step 4. The value of base sequence is used

as index to permuted column as shown below:

for index8=1 :R % R is the total number of rows

for index9 = I :p- I % pis approximately equal to the number of columns

Permuted_Matrix_Index(index8,index9)=s(mod((index9- 1)*r(index8),p. 1)+ 1);

end

end

Step 2. Inter Row (row-wise) permutation

After performing the inter column permutation the inter row permutation of the

interleaver matrix is performed by using fixed patterns defined in the standard

[3GPP99]. This is explained by the following matlab code:

for indexl0=1 :R

Permuted_Matrix_Rows_changed(index 1 0,:)Permuted_Matrix(T(index1 0)+ 1,:);

end

Step 3. Data read with prunin2

Finally, data is read column by column from the interleaver matrix and dummy bits

are removed. The two dimensional interleaver matrix matlab algorithmic

translation precedes by a code in matlab which replaces the interleaver matrix to

one dimension suitable for hardware implementation. The complete design flow is

shown in figure 6.3.

139

Chapter 6: Low Power Interleaver

Matlab simulation for two dimensional
interleaver matrix generation

Matlab simulation of one dimensional

I 	interleaver matrix

HDL (veiilog) simuttation

	

4AND VEOG 8ATS) 	
NO

	

YES 	-

SYNTHESIS, POST SYNTHESIS SIMULATION, POWER,
AREA, TIMING EVALUATION

-

	

VERIFY (BETV.Sa
	

NO
PSTh1)ES AND P

YES
LAYOUT, POST LAYOUT SIMULAT
AREA AND TIMING EVALUATIONS

COMPARISION 	EN 	NO
PYOUT AND POST
LA

YES

Figure 6.3. Design flow for interleaver implementation

Fig 6.4 shows the interleaver spread using this algorithm for K = 5114.

114

5000

4000 	 --'---- 	 —

.5- j 	, .. •. 	- - •s 	 d 	' d

3000

2000

- 	. 	- 	 - 	'. t 	Al 	 • ,_. -
•, 	': 	 s?'• ' 	- 	

5- 	. 	
' ?

1000

- -- -S .' . :-• - 	 ,.- -' '.S • 	As... . 	 - 5

0 	1000 	2000 	3000 	4000 	5000

fl)ut Bit Position

Figure 6.4. Interleaver spread for K=5114.

140

Chapter 6: Low Power Interleaver

6.3.1.3 TRANSLATING THE INTERLEAVER MATRIX IN ONE
DIMENSION

The dynamic interleaved address calculation requires the translation of interleaver

matrix rows and columns into one unified address. A novel implementation

methodology is presented that adjusts the 3GPP interleaver algorithm for efficient

VLSI implementation. The traditional implementation methodologies for saving the

entire interleaved address space can be avoided by just adding a column offset to

the calculated address. This offset is calculated as under:

Column offset = (T(1,indexR) x C);

Where C is the total number of columns of the interleaved matrix, indexR is the

row index and T(1,indexR) generates the interleaved row index. The calculation of

interleaved addresses in one dimension is shown by the following matlab code:

%column by column calculations

if(C=p)

for indexC = 1:p- 1

for indexR = 1:R

s_mult_factor(indexR,indexC) = mod((indexC- 1)*r(indexR),p 1);

s_factor(indexR,indexC) = s(mod((indexC- 1)*r(indexR),p 1)+ 1);

xing_factor(indexR,indexC)= (T(1 ,indexR)*C) ;

Corrected_addr(indexR,indexC)=s(mod((indexC- 1) * r(indexR),p-

1)+1)+T(l ,indexR)*C ;

end

end

% logic for last column address if required

The other novelty in the implementation comes from the design of dynamic

pruning logic which is discussed in section 6.5.

6.4 VLSI ARCHITECTURE

Our implementation approach reduces the size of the RAMs required to save the

interleaved addresses. This is achieved by storing three pre-calculated values

141

Chapter 6: Low Power Interleaver

instead of the entire sequence of interleaved addresses. The approach reduces the

size of the RAM significantly and hence area and power. There is significant

improvement in latency on frame changes as instead of changing the entire

permuted addresses only a maximum of 256 base sequences are required to be

changed and stored.

The architecture follows the same flow as was explained in section 6.3. In the

preparatory phase the SRAMs are filled in with pre computed values that are

required in the dynamic interleaved address calculation. These values differ for

each frame length and hence RAMs are pre-populated whenever frame length

changes. The three pre-calculated values stored in SRAMs are base sequence,

ordered prime sequence and intra row permutation patterns as explained below:

6.4.1 BASE SEQUENCE

The base sequence calculation was shown in step 4 of section 6.3.1.1. All base

sequences 'so)' are pre computed for all 'j' between 0 and p-l. The size of the base

sequence is approximately equal to the number of columns of the interleaver

matrix.

6.4.2 ORDERED PRIME SEQUENCE

The prime sequence 'q 1 ' calculation was shown in step 5 of section 6.3.1.1 where

'i' is equal to the number of rows of the interleaver matrix.

6.4.3 INTER ROW PERMUTATION PATTERNS

Inter row permutation patterns 'Ti' are required in calculation of column offset as

shown in section 6.3.1.3. These patterns as defined in [3GPP99] are also saved in

SRAM. The individual components in the block diagram are explained below.

6.4.4 DUAL PORT SRAM FOR PARAMETER 'r(j)'

This RAM has synchronous single port write and asynchronous dual read ports and

is used to store the permuted prime integers r(j). The values of r(j) change for

142

Chapter 6: Low Power Interleaver

different frame lengths hence, it is pre-populated for each frame length. To

compensate for pruning there are two data paths used in the design. The matlab

calculation of this parameter was shown in step 6 of section 6.3.1.1 which depends

on the number of rows of interleaver matrix. The maximum number of rows for

3GPP corresponds to a maximum frame length of 5114. The number of rows for

this frame length is 20 which is the maximum value of index 'j' in the parameter

'r(j)'. The maximum permuted prime integer value corresponding to any 'r(j)' is

therefore 79. Hence size of the RAM is selected as 20x8 bits. Matlab simulation

calculates all the r(j) values and writes it in a file which is read by HDL test bench

to be used in the preparation phase to pre populate this dual port RAM. r(j) and

r(j+ 1) values are read from corresponding read ports - where j is the row number.

The read counter starts from the first address to the last address (equal to the total

number of rows) and r(j) values are read from the RAM. The read counter

connected to the second read port reads the next address 'r(j+1)' which is required

for pruning logic as explained in section 6.5.

6.4.5 8X8 MULTIPLIERS

As shown in matlab code of section 6.3.1.3 the first step in the dynamic address

calculation is determining 's_mult_factor', a part of which requires multiplication

of parameter 'r(j)' (section 6.4.4) with the total number of columns of the

interleaver matrix. Another matlab simulation is performed to determine the

maximum number of columns of the interleaver matrix for all frames. The

maximum number of columns for all frame sizes is found out to be 255 which

requires 8 bits. A 8x8 multiplier will be required to perform the multiplication of

r(j) with the total number of columns in the interleaver matrix. It was shown in

section 6.4.4 that r(j) values are saved in SRAM. There are two 8x8 Multipliers for

Data path I and Data path 2 respectively and perform the multiplication of r(j) (or

r(j+1)) with the number of columns. These multipliers are in the timing critical

data path. To achieve the desired frequency they are implemented in parallel

multiplication schemes (radix-2 booth algorithm).

143

Chapter 6: Low Power Interleaver

6.4.6 MODULUS CALCULATOR

Modulus calculator performs the modulus operation for the result calculated in

section 6.4.5 and the number of columns. Modulus operation is performed using

Synopsys design ware library modulus component and result from the modulus

operation form the address of SRAM as shown below in section 6.4.7.

6.4.7 DUAL PORT SRAM FOR PARAMETER 's(j)'

The parameter 'so)' is calculated using the equation as described in [3GPP99] and

shown earlier in Step 4 of section 6.3.1.1. It is repeated here for coherence of

presentation:

s(j)(v x so- 1)) mod p,j1,2,.. (p- 1) and s(0)=i 	(1)

s(j) constitutes the base sequence for intra row permutation and varies with the total

number of rows corresponding to different values of K. Therefore for each K this

SRAM is pre-populated as was shown in the preparatory phase (refer section

6.3.1.1). The maximum elements of s(j) for all K is 256 which is equal to the

maximum number of columns of interleaver matrix (for K=5114). This SRAM is

also dual read port for the corresponding two data paths.

The result read from this SRAM corresponds to the mathematical operation defined

in [3GPP99] as

Ui(j) = s((j x ri) mod (p - i)) 	 (2)

The interleaved address is constituted when the data is read out from the interleaver

matrix column wise. Therefore, for interleaved address calculation equation (2) is

also calculated and implemented column wise. The final address is computed by

adding an offset to equation (2) as explained in section 6.3.1.3. This offset address

is the inter row permutation transformed from two dimensions to one dimension as

defmed below.

Interleaved address = s(j) + T[Row_Number] * Columns

144

Chapter 6: Low Power Interleaver

Address and Pruning Control

.44o of

CW... Addrel3

	

I 	 Cd

	

Row I 	 Row Address

	

Address1 	[Fil
r(j)

Dual Port SRAM
20x8 Bits

Data Path I

rj 	 Data Path 2 	r1. 1

Multiplier 	 Multiplier

	

8x8 	 8x8

P 	Mod 	 p Mod

SRAM 256x8 for SO)

Last Column Select Logic

Row ount ROM

Row Co nt+1 	 + 	 +

11,0-1

P

11,oti
' 	 x

> K logic

Interleaved
Address
Output

Figure 6.5 Block Diagram of the interleaver implementation

6.4.8 INTER ROW PERMUTATION

The inter row permutation is based on a small table represented in [3GPP99] by

T[Row_Number]. SRAM (20 x 5) is used to save this parameter. The maximum

size of this memory corresponds to the frame size of K=5114 having 20 rows.

These 20 possible permutations can be represented by 5 bits; hence the size of the

ROM is 20x5. This exactly corresponds to C-fold decimation of the input sequence

with the appropriate phase so) [WEL04].

145

Chapter 6: Low Power Interleaver

6.5 PRUNING

The algorithm in [3GPP99] calculates the number of rows and columns of

interleaver matrix for each block size. The address pruning occurs when the block

size is not equal to "Rows x Columns" of the interleaver matrix. Therefore, dummy

bits are added to make them equal. Pruning is a major problem for real time address

computation as these dummy bits have to be pruned away from the final interleaved

addresses. Matlab simulations were performed to calculate the maximum number

of pruned bits for all frames K between 41 and 5114. The message size with

maximum number of pruned bit is calculated as K=2281. It is also observed

through simulations that inter row permutation patterns ensure that the two unused

interleaved addresses are never consecutively placed when reading the interleaver

matrix column wise. This is shown in figure 6.6 below.

Input Matrix 	 Interleaved Matrix

X1,1 	X1.2 	- X1,C 	

*-w
DMMW Owmiy

X2.1 	X22 	- - 	X2.0 	 X11 	XI,I 	- - 	XLI

x(R1.1) 	X(R-1.2) 	- - 	Otm,.!O 	 Xi.I 	XI.I 	- - 	XIJ

Ha-HF 	Al xu

Figure 6.6. Dummy bits position in interleaving

The observation leads us to conclude that whenever there is a pruned (dummy) bit

in the interleaved matrix the next bit will always be a valid interleaved bit.

Therefore there are two parallel data paths designed to overcome the effects of

pruning. Data Path 2 is always calculating the next interleaved address from the

one which is calculated from data pathl. The dynamic interleaved address

Ef1

Chapter 6: Low Power lnterleaver

calculation is performed column wise and the pruned address is checked by the

following pseudo code

If (column wise calculated interleaved address> K)

Address = dummy (pruned)

Skip bit and get the next calculated address

else

perform the calculation as regular

Therefore if Data path 1 address corresponds to the address of dummy bits the logic

selects the data path 2 value i.e., the next interleaved address.

6.5.1 PRUNING CONTROL LOGIC

The implementation control flow is by use of counters controlling the read

addresses of SRAMs. The counters (shown in next section) increment the read

address by one and count to the terminal address which in turn depends on the

frame size K. Each time dummy bit is detected and Data Path 2 is selected the row

counter in the pruning logic increases the count by 2 instead of normal increments

of 1. The next input addresses will skip this dummy pruned address and the

mechanism will effectively remove all the pruned dummy addresses.

6.5.2 ADDRESS CONTROLLER

The column count is also provided by a binary up counter. The columns counter

increments when the row counter reaches its terminal (maximum) count. The

maximum number of rows for any frame size is 20 and therefore row counter is 5

bits. The row counter feeds the 8 bits column counter. The 8 bits of column counter

corresponds to the maximum number of columns (equal to 256) of interleaved

matrix. Whenever dummy bit is detected and data path two is selected it is fed back

to row counter. In order to offset the dummy address the row counter will in turn

skip one address. The counter arrangement is shown by figure 6.7 below:

147

Chapter 6: Low Power Interleaver

Count
rColumn Count—ø

—Date 	Row Counter
	

Column Counter

—Count too- 	 Terminal
count

Figure 6.7. Address Generation and Pruning control Logic

6.6 RESULTS

The design is synthesized using Synopsys Design Compiler for 0.18 microns

CMOS UMC cell library and chip layout done on Silicon ensemble. Post layout

power figures are taken from Synopsys Design Power by inputting the toggling

activity for the maximum frame size K =5114. Results are compared with a typical

5114x13 Synopsys design ware SRAM which would otherwise have been used if

implementation had adopted the look up table based design. The results are also

compared with some 3GPP turbo decoder implementations. The implementation in

[MAS99] uses 12 K words memory for interleaver and [PEN03] uses 27 K (total)

memory. Similarly any design that implements the interleaver as memory will

benefit from this presented approach. Table 6.9 below shows the overall

synthesized area and post layout power figures for 21.7 MHz.

Technology 0.18 microns standard cell CMOS

Operating frequency 21.73 MHz

Total Power in mW 36.06

Total Area 771925.88 urn 2

Table 6.9 Results of implemented interleaver

Figure 6.8 shows the critical timing components in data path. Comparing the design

with 51]4x]3 SRAM (the traditional approach [MAS99, PEN034]), the area of

51 14x13 SRAM is 30083782 urn 2, which is 38.9 % more than our proposed

scheme.

148

6: Low Power Interleaver

timing 	 9.49

I 	I
8] 	 I 	I
7] 	6.44 	 I 	I

I 	 I 	I
4] 	I 	 I
3 	I 	I 	 2.5 	 I 	2.38

2 	I 	I 	1.54 	 I 	I
1j 	I 	I 	I 	I 	I 	I

Hb

Figure 6.8. Synopsys Prime time critical path components shown (nano seconds)

Figure 6.9 below shows the area and power results of the individual components of

the design. The largest contributor to the area and power is the largest RAM S(j)

(256x8) in the design.

Area-Power Consumption

45

40

35

30

25

20

15

10

5

0

le
0
	c, 	 Co

Figure 6.9 Area and Power results of individual components of the design

149

Chapter 6: Low Power Interleaver

There is 30% improvement in power as compared to the reference SRAM design.

6.7 CONCLUSION

In this chapter the requirement of efficient implementation for 3GPP [3GPP99]

interleaving algorithm is introduced. The allowable frame lengths in 3GPP

[3GPP99] standard is quite large (40-5114) and the traditional approach of storing

the entire interleaved address space will result in interleaver consuming large

power and area. The current implementation has addressed the power aspects of

such designs in the most efficient way. A comparison with the existing turbo

decoder designs is provided justifying the requirement of low energy solution for

the interleaver. It was shown that it is more cost effective to store just the

permutation patterns and not the entire interleaved addresses. The design flow was

shown from the concept to Silicon layout. The novelty of this approach is in the

efficient implementation of 3GPP interleaving algorithm providing an alternative to

VLSI design engineers which is efficient in both area and power. The proposed

architecture replaces the 5K - 13 bit SRAM with the hardware which is 38.9 % and

30% more efficient in area and power respectively.

150

Chapter 7

SUMMARY AND CONCLUSIONS

7.1 INTRODUCTION

The aim of this thesis is to investigate an efficient reconfigurable architecture for

convolutional forward error correction. The key blocks investigated for reconfigurable

performance evaluations are the viterbi and turbo decoders. The reconfiguration is

designed with an aim to improve not only the power and timing but also to maintain

maximum flexibility for the given domain. The unified array is implemented in 180nm

CMOS process technology. There is also a novel low power implementation proposed

for 3GPP S-Random block interleaving which is used alongside turbo decoding array.

This chapter is organised into four sections. The first section summarises the content

of the thesis and identifies the contributions. The second section draws conclusions

from the work presented in this thesis. Final remarks are described in the third section

and the last section outlines areas for future investigation.

7.2 SUMMARY OF THESIS

This thesis investigates flexibility in high performance convolutional FEC systems for

a common multi-standard communication platform. The traditional reconfigurable

architectures suffer from relatively poor performance owing to their high flexibility.

By reducing the redundant flexibility in the traditional approaches a flexible, low

power and high speed FEC solution is introduced that meets the performance

constraints imposed by these standards.

Chapter 2 provides an overview of commercially available reconfigurable

architectures and some of the existing concepts in literature for the design of

151

Chapter 7 Summary and Conclusions

reconfigurable logic elements and their interconnects. This review highlighted the

importance of defining the domains of reconfigurability with restricted freedom so that

performance can be improved. This chapter also showed the logic elements and the

interconnect evolution with time and availability of such commercial devices that

introduce flexibility in a very well defined domain. This chapter also linked these

improvements with examples from commercial FPGAs. This chapter showed

reconfigurable techniques and methodologies used in current state of the art

commercial devices with aim to extort this information for any high performance

reconfigurable design.

In chapter 3 the reconfiguration focus shifted towards domain specific architectures in

the literature. The useful domain specific reconfiguration techniques used in these

architectures are explained in detail to use the information for current domain specific

design. This chapter demonstrated that the reconfigurable functional units can be

defined large and complex; however their granularity should be well-matched to the

data types and the computations required by target algorithms. The chapter again

reemphasised that the architectures that target a smaller set of applications can be

more efficient than general-purpose devices and must be pursued.

Chapter 4 looked into turbo decoding, the critical path delays and the typical power

consumptions. The chapter also looks at the similarities and differences in the design

of decoders as used in various communication standards. The information is used to

introduce flexibility in the key locations of the decoder data path. The cost of

reconfiguration is measured and tailored to achieve the performance imposed by these

standards. An efficient control strategy is proposed in hardware that avoids the use of

microprocessors to control the array and hence makes the array possible to be used as

a standalone unit. The control is also designed for reconfiguration between not only

multiple standards within turbo but also for unified turbo and viterbi decoding. An

efficient low power technique proposed by caching the two window lengths of input

metrics which reduces the read accesses for the larger input RAMs. The proposed

reconfigurable methodology for input RAMs allows them to be reutilized for storage

152

Chapter 7 Summary and Conclusions

of configuration bits in viterbi. A technique to avoid branch metric storage is also

proposed. Finite precision analysis for turbo decoder under varying reconfiguration

requirement is performed which emulates the hardware design in matlab for efficient

BER analysis. A new matrix normalization scheme is also proposed that makes the

turbo array compatible with viterbi decoding. The implemented reconfiguration

topology keeps individual decoding components like forward state metrics, reverse

state metrics and branch metric blocks completely flexible. The reconfigurable design

also keeps the decoding trellis flexible for different rates, generator polynomials,

constraint lengths and frame sizes.

Chapter 5 provided various novel concepts in reconfigurable viterbi decoder design. A

new reconfigurable path history memory management and segmentation technique for

multiple standards is proposed. This is combined with a reconfigurable write address

generation mechanism designed in hardware. A novel trace back approach is also

proposed that provides the multi standard reconfigurability with a low power

implementation. A novel technique for reading and writing path history memories is

also implemented that adjusts efficiently in a multi standard environment. The

reconfigurable work on viterbi also introduces a novel mechanism for controlling and

storing the configuration bits that reduces the time to reconfigure the array. Like the

turbo decoding array the viterbi components also provide an open trellis arrangement

which makes the trellis flexible for different constraint lengths, rates, generator

polynomials and frame sizes. The control of the viterbi components is provided by a

flexible reconfigurable finite state machine that avoids the use of separate

microprocessor for controlling the array.

Chapter 6 proposed a novel low power implementation methodology for 3GPP

interleaver. The proposed technique avoids the use of SRAMs for storing the entire

interleaved sequences. This results in big savings in area and energy. The work in this

chapter introduces a dynamic interleaver address calculation scheme and an effective

mechanism for address pruning. The overall implementation has much improved

energy than the traditional SRAM implementations of the 3GPP interleaver.

153

Chapter 7 Summary and Conclusions

7.3 SUMMARY OF ACHIEVEMENTS

The main achievements of this work are the following:

• Development of a unified reconfigurable viterbi-turbo decoding array for a

large number of communication standards. The Construction of such array

requires identification of areas where flexibility should be introduced to make

the overall array achieve the performance constraints as imposed by different

standards.

• An open trellis implementation of both turbo and viterbi decoders is presented

individually and in the unified approach.

The viterbi implementation has novel path history segmentation and

management approach combined with a reconfigurable trace back and write

address processors for multiple standards. The reconfigurable aspects of viterbi

decoder are carefully designed for a very fast context switch between different

standards.

• Both viterbi and turbo processing is controlled by a reconfigurable finite state

machine which is configurable not only for the control of individual standard

mappings but also in the unified approach. The system flexibility is carefully

tailored to give the best performance results in area, power and speed.

• The work on reconfigurable turbo decoder showed an efficient low power

input memory management and branch metric calculation scheme. A new open

trellis structure for reconfigurable turbo decoding for multiple standards is also

proposed.

• A new approach for implementing S-Random interleaver as defined in 3GPP

specification is also proposed. The novel implementation produces a much

reduced memory implementation for interleaving and a new technique for

hardware pruning.

7.4 FINAL REMARKS

This work represents a step forward in the area of high performance reconfiguration

for convolutional forward error correction. The results of arrays synthesised in 1 8Onm

154

Chapter 7 Summary and Conclusions

process technology show that the reconfigurable array safely meets the performance

constraints imposed by the target communication standards.

7.5 FUTURE WORK

This thesis has tried to provide a through investigation into the research proposal of

reconfigurable FEC decoder suitable for a SDR communication platform. However, a

number of additional issues can be explored which might further add to knowledge

gained from the research presented. The additional issues that can form extension to

this work are highlighted as follows:

• The template for a unified baseband processor can be further extended to

include other base band blocks such as FIR filters, FFT and IFFT components

and MIMO detection components to produce an overall reconfigurable

baseband receiver.

• The work can also be combined with contention free parallel interleavers for

example, the recently proposed Quadratic Permutation Polynomial - QPP by

Takeshita [TAK06] and description given earlier in [COSO4]. Our research can

be extended in the new Long Term Evaluation (LTE) [3GPPr8] proposal for

3GPP to design a higher speed decoder using the maximum contention free

property of interleavers in [COSO4]. The performance of this new interleaver is

shown to be better than S-Random interleavers in [MOT06] with added benefit

of contention free access for fast decoding. [3GPPr8] describes the parameters

of such interleavers required in 3GPP LTE.

• The research can be extended for reconfigurable design space exploration for

forward error correction in very high performance and low power consumption

for example; Gb/sec throughput short distance wireless applications like Ultra

Wide Band UWB specification by ECMA [UWB05].

• Parallel placement of turbo decoder blocks in our reconfigurable template can

produce very high throughputs however for Gb/sec throughputs proposed in

the above standards [UWB05] but an investigation is required to achieve low

power consumption. Since the size of the array of parallel turbo decoding (for

155

Chapter 7 Summary and Conclusions

Gb/s rates) will become prohibitively large an investigation to design more

efficient reconfiguration is required.

• Joint source and channel coding can achieve better results, and therefore

reconfiguration approach can be extended in this direction to combine source

coding reconfigurable architecture with modulation.

• Static power consumption becomes an important parameter for lower process

geometries (<90nm) and techniques needs to be investigated to reduce static

power consumption as well as dynamic power consumption.

• Efficient stopping criteria in turbo codes need to be combined with techniques

such as dynamic voltage scaling to design a variable speed decoder which can

control the iterations more interactively.

• A further investigation can also look to produce a power efficient template for

wireless as well as non battery powered turbo application as in optical/

magnetic storage and fibre optics.

. There is further scope to experiment on suitable VLIW, SIMD or MIMID

processor and the integration of the array either as a dedicated co processor or

ALU of the processor data path.

156

REFERENCES

[3GPP99] Third Generation Partnership Project, Technical Specification Group-Radio
Access Network, Multiplexing and channel coding (FDD), 3G TS 25.212 v3.3.0

[3GPPr8] www.3GPP.org , Technical Specification Group Radio Access Network:
Multiplexing and channel coding Release 8, 3GPP 15 36.212

[ABWEB] R. Abielmona, "Alphabetical List of Reconfigurable Computing
Architectures", http://www.site.uottawa.ca/ —rabielmo/personal/rc.htmI

[ABD06] Abdul-Shakoor et al., "A high performance soft decision Viterbi decoder for
WLAN and broadband applications" in Canadian Conference on Electrical and
Computer Engineering, May 2006, pp 2468-2471

[ADR05] Adrian Cosoroaba and Frederic Rivoallon, "Achieving Higher System
performance with the Virtex-5 Family of FPGAs", White Paper: Virtex-5 family of
FPGAs www.xilinx.com

[AGR99] 0. Agrawal, et. al., "An innovative, segmented high performance FPGA
family with variable-grain-architecture and wide-gating functions," in Proc. IEEE
Field Programmable Gate Arrays (FPGA), Monterey, CA, 1999, pp. 17-26

[AHIM07] I Ahmed, T Arslan, "Reconfiguration requirement for convolutional
forward error correction decoding for 3G and Beyond", journal submitted to IEEE
VLSI transaction" journal submitted to IEEE VLSI transaction

[AHM06] I Ahmed, T Arsian, "A reconfigurable viterbi trace back for implementation
on Turbo Decoding Array", in IEEE International SOC Conference, 2006. Publication
date: Sept. 2006 Page(s) 107-108

[AHIvII06] I Ahmed, T Arslan, "A reconfigurable viterbi decoder for a
communication platform" in IEEE International FPL Conference, 2006. Publication
date: Aug 2006 on pages 1-6

[AHM05] I Ahmed, T Arslan, "VLSI Design of Multi Standard Turbo Decoder for 3G
and Beyond" in 12th International IEEE ASP-DAC Conference Jan 23-26, 2007

[AHM105] I Ahmed, T Arslan, "A Low Energy VLSI Design of Random Block
Interleaver for 3GPP Turbo Decoding", in IEEE international Symposium on circuits
and systems ISCAS 2006 publication date 21-24 May 2006

157

References

[AHM205] I. Ahmed, T. Arsian, "Improved Memory Strategy for Log Map turbo
decoders,". Soc conference, 2005. Proceedings IEEE international pages 103-104,
Sept 25-28 2005

[AHM 104] I Ahmed, T Arsian, "Efficient implementation of Mobile Video
Computations on Domain Specific Reconfigurable Arrays" in Proceedings IEEE
Design, Automation and Test in Europe (DATE) conference in 2004. Publication date:
16-20 Feb. 2004 on pages 1833

[AHM204] I Ahmed, T Arsian, "Video transmission through domain specific
reconfigurable architectures over short distance wireless medium utilizing Bluetooth
IEEE 802.15.1 /sp! trade/standard" in Proceedings IEEE international soc conference
2004, publication date: 12-15 Sep 2004 on pages 7-10

[AHR90] M. Ahrens, et. al., "An FPGA family optimized for high densities and
reduced routing delay," in Proc. 1990 CICC, M pp. 31.5.1-31.5.4, May 1990

[ALB94] O.T. Albaharna, P. Y. K. Cheung, and T. J. Clarke, Area and Time
limitations of FPGA-based virtual hardware", Proceedings of the IEEE Intemtational
Conference on Computer Design, October 1994, pp. 184-189

[ALTO 1] http: //www.altera.coml products / devices /stratix2/features/dsp/perfist2-
dsp_performance.html

[ANCOO] University of Ancona (2000) Study of Bandwidth-Efficient Coding Schemes
for Near-Earth Applications. ESA/ESOC Contract No. 14128/00/D/SW - Final Report

[ANCO1] University of Ancona (2001) Highly Efficient Channel Codes for High Data
Rate Missions. ESA/ESOC Contract No. 15048/01/DIHK(5C)– Final Report

[ANG05] F. Angarita et al., "Efficient Mapping on FPGA of a Viterbi Decoder for
Wireless LANs" in IEEE workshop on Signal Processing Systems Design and
Implementation 2-4 Nov. 2005 pp. 710-715

[ANN1] "FPGA area vs. cell granularity—PLA cells," in Proc. Custom Integrated
Circuits Conf., May 1992, pp. 4.3.1-4.3.4

[ANN02] "Wormhole Run-Time Reconfiguration: Conceptualization and VLSI
Design of a High Performance Computing System"

[ATL03] I. Atluri, T. Arslan, "Low power VLSI implementation of the MAP decoder
for turbo codes through forward recursive calculation of reverse state metrics" IEEE
Int. soc Conf. 17-20 Sept. 2003, pp. 408-411

158

References

[BAH74] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, "Optimal decoding of linear
codes for minimizing symbol error rate," IEEE Trans. Inform. Theory, IT-20, pp. 248-
287, Mar. 1974

[BAR94] S. A. Barbulescu and S. S. Pietrobon, "Interleaver design for turbo codes",
Electronics Letters, Vol 30, No 25, Dec. 1994

[BAR95] S. A. Barbulescu and S. S. Pietrobon, "Terminating the trellis of turbo codes
in the same state", Electronics Letters, Vol. 31, No. 1, pp.22-23, Jan. 1995

[BAR96] S. A. Barbulescu et al , " Iterative decoding of turbo codes and other
concatenated codes" PhD dissertation, university South Australia, pp. 23-24, 1996

[BAT87] G. Battail, "Ponderation des symoles decodes par l'algorithme e Viterbi",
Ann. Telecommun., Fr., 42, N 1-2, pp. 31-38, Jan. 1987

[BEN96] S. Benedetto et al, "Soft-output decoding algorithms for continuous
decoding of parallel concatenated convolutional codes", Proceedings of ICC'96,
Dallas, Texas, June 1996

[BER99] C. Berrou et al, "Multiple parallel concatenation of circular recursive
convolutional (CRSC) codes" Annals of Telecommunication, pp 166-172, Mar-Apr.
1999

[BLA92] P. J. Black and T. H.-Y. Meng, "A unified approach to the Viterbi algorithm
state metric update for shift register processes," in Proc.IEEE mt. Conf. Acoustics,
Speech and Signal Processing, Mar. 1992, pp. 629-632

[BHOOa] Macro Breiling and Lajos Hanzo, "The Super-Trellis Structure of Turbo
Codes", IEEE Trans. Inform. Theory, pages 2212-2228, 2000

[BEN 196] S. Benedetto and G. Montorsi, "Unveiling turbo codes: some results on
parallel concatenated coding schemes", IEEE Transactions on Information Theory,
Vol. 42, No. 2, pp.409-428, March 1996

[BEN296] S. Benedetto et al, "Serial concatenation of interleaved codes: performance
analysis, design and iterative decoding", JPL TDA Progress Report 42-126, Aug 1996

[BEN396] S. Benedetto et al, "Soft input Soft output MAP module to decode parallel
and serial concatenated codes" in TDA Progr. Rep. 42-127, Jet Propulsion Lab,
Pasadena, CA, pp. 1-20, 1996

[BER93] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo Codes". Proc ICC, Geneva, Switzerland,
1993, pp. 1064-1070

159

References

[BER96] C. Berrou, S. Evans and G. Battail, "Turbo block codes", Proceedings of
Seminar on Turbo Coding, Lund, Sweden, pp. 1-7, Aug. 1996

[BIC03] M. Bickerstaff et a!, "A 24 Mb/s radix-4 LogMap turbo decoder for 3GPP-
HSDPA mobile wireless" International Solid State Conference, ISSCC, Feb 11, 2003,
Session 8, paper 8.5

[B1R99] J. Birkner, A. Chan, H. T.Chua, A. Chao, K. Gordon, B. Kleinman, P. Kolze,
and R. Wong, " A very high-speed field programmable gate array using metal-to-
metal antifuse programmable elements," in New Hardware Product Introduction at
CICC' 99

[B1T96] R. A. Bittner et al.: Colt: An Experiment in Wormhole Run-time
Reconfiguration; SPIE Photonics East '96, Boston, MA, USA, Nov. 1996

[BLA92] P. Black et al, " A 140 mb/s 32-state radix-4 viterbi decoder", IEEE Journal
of Solid-State Circuits, vol. 27, no. 12, pp. 1877-1885, December 1992

[BLA93] P. Black and T.Y. Meng, "Hybrid survivor path architectures for viterbi
decoders", Proc. ICASSP, pp. 433-436, 1993

[BLA97] P. Black et al, "A I -gb/s, four-state, sliding block viterbi decoder", IEEE
Journal of Solid-State Circuits, vol. 32, no. 6 pp. 797-805, June 1997

[BOG03] B. Bougard et a!, "A Low-Power High Speed Parallel Concatenated Turbo-
decoding Architecture" 3td mt. Symp. on Turbo Codes and Related Topics, Brest,
France, 2003, pp. 511-514

[BOUO3] E. Boutillon, W. J. Gross, G. Gulak, "VLSI architectures for the MAP
algorithm". IEEE Transactions on Communications, Vol. 51, No. 2, pp. 175-185,
February 2003

[BRU04] Bruels, N et al, "A 2.8Gb/s, 32-state, radix-4 Viterbi decoder add-compare-
select unit", in IEEE Symposium on VLSI Circuits, 17-19 June 2004 pages 170-173

[CAR86] W. Carter et al., "A user programmable reconfigurable gate array," in Proc.
CICC, May 1986, pp. 233-235

[CAR04] Carl Ebeling et al, "Implementing an OFDM receiver on the RaPiD
Reconfigurable Architecture" IEEE Trans. On Computers, Nov 2004, Vol 53, Issue 11
pp. 1436 - 1448

[CAV03] Cavallaro J. R., Vaya M "Viturbo: a reconifigurable architecture for Viterbi
and turbo decoding" IEEE ICASSP 2003, 6-10 April 2003, Vol 2, pages: 11-497-500

160

References

[CCS03] Consultative Committee for Space Data Systems (2003) TM
Synchronization and Channel Coding. Blue Book 131.0-13-1

[CHA89] C.-Y. Chang and K. Yao, "Systolic array processing of the Viterbi
algorithm," IEEE Trans. Inform. Theory, vol. 35, pp. 76-86, Jan. 1989

[CHA92] P. M. Chau and K. J. Stephen, "Scaling and folding the Viterbi algorithm
trellis," in VLSI Signal Processing V, pp. 479-489, Oct. 1992

[CHAOO] Y. N. Chang et al, "A 2-Mb/s 256-state 10mW rate-1/3 Viterbi decoder",
IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 826-834, June 2000

[CHA01] K. Chadha and J. Cavallaro, "A reconfigurable Viterbi Decoder
Architecture" 35th Asilomar Conference on Signals, Systems and Computers, 2001,
vol 1, pp. 66-71

[CHE92] D. C. Chen et. al., "A Reconfigurable Multiprocessor IC for Rapid
Prototyping of Algorithmic-Specific High Speed DSP Data Paths" IEEE J. Solid-State
Circuits, Vol 27. No. 12, Dec 1992

[CHU89] C. Y Chung and K. Yao, "Systolic array processing of the Viterbi
algorithm," IEEE Trans. Inform. Theory, vol. 35, nol, pp. 76-86, Jan 1989

[CHWEB] Chameleon Systems Corp. website http://www.chameleonsystems.com/

[COM99] K. Compton, and S. Hauck, "Configurable Computing: A Survey of
Systems and Software", Northwest University, Dept. of ECE, Technical Report, 1999

[C0N87] Consultative Committee for Space Data Systems (CCSDS),
"Recommendations for Space Data Systems Standard: Telemetry Channel Coding,
Blue Book Issue 2, CCSDS 101.0-B2 edition, Jan 1987

[COSO4] Costello, D. J., et al "Contention-free interleavers" In IEEE proceedings ISIT
2004, 27 June –2 July 2004, pp 54

[CR099] D. C. Cronquist et al., "Architecture design of reconfigurable pipelined data
paths", Proceedings of the 20th Anniversary conference on advanced research in
VLSI, March 1999, pp. 23-40

[DAM03] M. 0. Damen, et al, "Linear threaded algebraic space-time constellations."
IEEE Trans. Inform. Theory, pp 2372-2388, Oct. 2003.

[DAN95] F. Daneshgaran and K. Yao, "The iterative collapse algorithm: A novel
approach for the design of long constraint length Viterbi decoders—Part I and Part II,"
IEEE Trans. Commun., vol.43, pp. 1409-1418,1419-1428, Feb.–Apr. 1995

161

References

{DAN98} F. Daneshgaran and M. Monin, "Iterative interleaver growth algorithms of
polynomial complexity for turbo codes" , IEEE International Symposium on
Information Theory, Boston, USA, Aug. 1998

[DAR98] Darren C. Cronquist et al., "Specifying and compiling applications for
RAPID", IEEE Symposium on FPGAs for Custom Computing machines April 1998,
pp. 116-125

[DER05] Derek Curd, "Power Consumption in 65 nm FPGAs" White paper Virtex-5
family of FPGAs, www.xilinx.com

[DEV90] Devereaux C. Chen, "Programmable Arithmetic Devices for High Speed
Digital Signal Processing" VLSI Signal Processing IV, IEEE Press 1990

[D1W95] H. Diwid et al, "Real-time algorithms and VLSI architectures for soft output
MAP convolutional decoding" Proc. Personal, Indoor, and Mobile Radio
Communications, PIMRC'95, vol. 1, 1995, pp. 193-197

[DURO1] Lisa Durbec and Nick Macias, The cell Matrix: An architecture for
nanocomputing, Nano technology (2001), 217-230

[EBE96] C. Ebeling et al., "Rapid - reconfigurable pipelined datapath, Field-
Programmable Logic: Smart Applications, New Paradigms, and Compilers". 6th
international Workshop on Field-Programmable Logic and Applications, Sep 1996, pp
126-135

[ELE04] E. Eleftheriou et al, "Application of capacity-approaching coding techniques
to digital subscriber lines" IEEE Communications Magazine, vol. 42, No. 4, pp. 88-
94, April 2004

[ELI04] Elias Ahmed and Jonathan Rose, "The Effect of LUT and Cluster Size on
Deep-Submicron FPGA Performance and Density" IEEE Trans on VLSI systems, vol
12, No 3, March 2004

[EL155] P. Elias. "Coding for Noisy Channels". IRE Cony. Record, 4:37-47, 1955

[ERF94] J. Erfanian et. al., "Reduced complexity symbol detectors with parallel
structures for ISI channels," IEEE Transactions on Communications, vol. 42, pp.
1661-1671, 1994

[ESA89] European Space Agency (ESA). PSS-04-103, "Telemetry Channel Coding
Standard, Sept. 1989"

[EST] G. Estrin, B. Bussel, R. Turn, and J. Bibb, "Parallel processing in a
restructurable computer system" IEEE Transactions on Electronic Computers!

162

References

[ETS94] European Telecommunications Standards Institute, "Digital broadcasting
system for television, sound and data services" ETS 200 421, 1994

[ETSOO] European Telecommunications Standards Institute, "Digital video
broadcasting (DVB); interaction channel for satellite distribution systems" ETSI EN
301 790 V1.2.2 (2000-12), 2000.

[FABOI] Fabian Luis Vargas et. al., "A FPGA-based Viterbi Algorithm
implementation for speech recognition systems" in IEEE ICASSP conference, 7-11
May 2001, pp. 1217-1220

[FEN99] W. Feng, J. Yuan and B. Vucetic, "A code matched interleaver design for
turbo codes", Proceedings International Symposium on Personal, Indoor and Mobile
radioCcommunications (PIMRC), Osaka, Japan, pp. 578-582, Sep. 1999

[FET9 1] G. Fettweis et al, "Feedforward architectures for parallel viterbi decoding",
Journal of VLSI Signal Processing, vol 3, pp. 105-119, 1991

[FEY93] G. Feygin, P. Gulak, and P. Chow, "A multiprocessor architecture for Viterbi
decoders with linear speedup," IEEE Trans. Signal Processing, vol. 41, pp. 2907-
2917, Sept. 1993

[EPRO 1] Gerard K. Rauwerda, "Reconfigurable Turbo/Viterbi Channel Decoder in the
Coarse-Grained Montium Architecture", University of Twente, department EEMCS,
eprints.eemcs.utwente.nl

[FOR7I] G. D. Forney Jr., "Burst-correcting codes for the classic bursty channel",
IEEE Transactions on Communications, Vol. 19, No. 5. pp.772-781, Oct. 1971

[F0R73] J. Forney, "The Viterbi Algorithm", Proceeding of the IEEE, vol. 61, pp.
268-78, March 1973

[FRE86] N. J. P. Frenette et al., "Implementation of a Viterbi processor for a digital
communications system with a time-dispersive channel," IEEE J. Select. Areas
Commun., vol. SAC-4, pp. 160-167, Jan. 1986

[GAM04] H. El Gamal, et al ,"Lattice coding and decoding achieve the optimal
diversity-vs-multiplexing tradeoff of MIMO channels." IEEE Trans. Inform. Theory,
2004
[GAR89] A. El Garnal, et al., " An architecture for electrically configurable gate
arrays," IEEE JSSC, vol. 124, No. 2, pp. 394-398, Apr. 1989

[GAROI] Garello R, Benedetto S, Pierleoni P (2001), "Computing the free distance of
turbo codes and serially concatenated codes with interleavers" IEEE J. on Selected
Areas on Communications 19, pp. 800-812

163

References

[GE099] V. George, H. Zhang, J. Rabaey, "The Design of a Low Energy FPGA,"
International Symposium on Low Power Electronics and Design, pp. 188-193, 1999

[GIL03] F. Gilbert et a!, "Communication centric architectures for turbo-decoding on
embedded multiprocessors," in Proc. Design, Automation, Test Eur. Conf., Mar. 2003,
pp. 356-361.

[GL187] S. C. Glinski, et. al., "A processor for graph search algorithms" in Proc.
ISSCC'87, New York, 1987, pp. 162-163

[GMBOO] Roberto Garello, Guido Montorsi, Sergio Benedetto, and Giovanni
Cancellieri, "Interleaver properties and their applications to the Trellis Complexity
Analysis of Turbo Codes" IEEE Trans. Commun., 49(5):793-807, May 2001

[GMBO 1] Roberto Garello et. al., "Interleaver Properties and their Applications to the
Trellis Complexity Analysis of Turbo Codes" IEEE Trans. Commun., 49(5):793-807,
May 2001

[GOL02] S.C. Goldstein, et al., "PipeRench: a reconfigurable architecture and
compiler", IEEE Computer Apr 2000, Volume 33, Issue 4 pages 70-77], [Herman
Schmit et al., Piperench: A virtualized programmable datapath in 0.18 micron
technology, Proceedings of the IEEE Customer Integrated Circuits Conference, May
2002, pp. 63-66

[G0L99] S. C. Goldstein et al., "PipeRench: A Coprocessor for Streaming Multimedia
Acceleration", Proc ISCA' 99, Atlanta, May 2-4, 1999

[GUL88] P. G. Gulak and T. Kailath, "Locally connected VLSI architectures for the
Viterbi algorithm," IEEE J. Select. Areas Commun., vol. 6, pp. 527-537, Apr. 1988

[HAE06] S. Haene et. al., "FPGA Implementation of Viterbi Decoders for MIMO-
BICM" IN 39TH Asilomar conference on Signals, Systems and Computers, October 28
- November 1, 2005 Page(s): 734 -738

[HAG89] J. Hagenauer and P. Hoecher, " A Viterbi algorithm with soft-decision
outputs and its applications", Proc. Of Globecom '89, Dallas, Texas, pp. 47.11-47.17,
Nov. 1989

[HAG96] Hagenauer J et a!, "Iterative decoding of binary block and convolutional
codes" IEEE Transactions on Information Theory, 1996, vol. 42, 429-445

[HAL01] E. K. Hall and S. G. Wilson, "Stream Oriented Turbo Codes", IEEE
Transactions on Information Theory, Vol.47, No. 5, July 2001

164

References

[HAO06] Hao Yang et. al., "Design and Implementation of a high-speed and area-
efficient viterbi decoder" in 8th International Conference on Solid-State and Integrated
Circuit Technology, 2006, PP. 2108-2110

[HARO 1] Hartenstein R., "Coarse Grain Reconfigurable Architectures" in Design
Automation Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South
Pacific Publication Date: 30 Jan.-2 Feb. 2001 Page(s): 564 - 569

[HAR21] Hartenstein R., " A Decade of Reconfigurable Computing: A Visionary
Retrospective", Proc. DATE 2001 Conf., Munich, Germany, pp. 642, Mar., 2001

[HAR98] R. Hartenstein "Using The KressArray for Reconfigurable Computing,"
Conf. on Configurable: Technology and Applications, Boston, Nov. 1998

[HARO 1] J. Harrison, "Implementation of a 3GPP turbo decoder on a programmable
DSP core", Commun. Design Conf., San Jose, CA, Oct. 2001

[HAS02] B. Hassibi et al, "High-rate codes that are linear in space and time", IEEE
trans. Inform. Theory, pp 1804-1824, 2002

[HAU97] J. Hauser and J. Wawrzynek: Garp: A MIPS Processor with a
Reconfigurable Coprocessor; Proc. IEEE FCCM'97, Napa, April 16-18, 1997

[HEL88] Heller, J et al ,"Viterbi Decoding for Satellite and Space Communication" in
IEEE Transactions on Communications, Vol 19 Oct 1971 Pages 835-848

[HEN02] R. Henning "Low-Power approach for decoding convolutional codes with
adaptive Viterbi algorithm approximations" in International Symposium on Low
Power Electronics and Design, 2002. pp. 68-71

[HIL91] D. Hill and N.-S. Woo, "The Benefits of flexibility in look-up table FPGAs,"
in Proc. Oxford mt. Workshop FPGAs, W. Moore and W. Luk, Eds., Abingdon,
Oxfordshire,, UK, 1991, pp. 127-136

[HOCOO] D. Hocevar, A. Gatherer, "Architecture selection for a low power flexible
Viterbi Decoder" IEEE international conference on 3rd Generation Wireless
Communications, 2000, vol. 5, Pp. 2257-2264

[HON01] Hong Wei Song et al, "Iterative decoding for partial response(PR),
equalized, magneto-optical (MO) data storage channels" JSAC, vol. 19, no. 4, pp.
774-782, Apr. 2001.

[HUNG 90] Hung-Cheng Hsieh et al, "Third-generation architecture boosts speed and
density of field-programmable gate arrays" in IEEE 1990 custom integrated circuits
conference

165

References

[HWA96] D. I. Oh and S. Y. Hwang, "Design of a viterbi decoder with low power
using minimum-transition traceback scheme", lEE Electronics Letters, vol. 32, pp.
2198-2199, November 2006

[1MA77] H. Imai et al, "A new multilevel coding method using error correcting
codes", IEEE Trans. Inform. Theory, 371-377, May 1977

[1NY98] Inyup Kang, et. al., "Low-Power Viterbi Decoder for CDMA Mobile
Terminals," IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 473-482, Mar. 1998

[IRF05] Muhammad Irfan et. al., "Design and ImIementation of Viterbi Encoding
and Decoding Algorithm on FPGA" in 17' International Conference on
Microelectronics, 13-15 Dec 2005, pp 234-239

[1SE95] C. Iseli et al, "Spyder: A SURE (Superscalar and Reconfigurable) processor"
J. Supercomput., vol. 9, no. 3, pp. 231-252, 1995.

[JAN97] Jang-Hyun Park et al, "Performance Test of Viterbi Decoder for Wideband
CDMA System" in IEEE ASP-DAC Conference, 28-31 Jan. 1997. pp. 19-23

[JUN96] S. J. Jung et al, "A new survivor memory management method in viterbi
decoders: trace-delete method and its implementation", Proc. ICASSP, pp.3284-3286,
1996

[KAN98] I. Kang et al, "Low-power viterbi decoder for cdma mobile terminals",
IEEE Journal of Solid-State Circuits, vol 33, no 3, pp. 473-482, March 1998

[KAP99] S. Kaptanoglu, G. Bakker, A. Kundu, and I. Comeillet, "A new high density
and very low cost reprogrammable FPGA architecture," in IEEE Field Programmable
Gate Arrays, Monterey, CA, 1999, pp. 3-12

[KEL93] P. H. Kelly and P. M. Chau, "A flexible constraint length, foldable Viterbi
Decoder" IEEE Global Telecommunications Conference GLOB ECOM, 1993, pp.
631-635

[KHA07] A. K. Khandani, "Design of the turbo code interleaver using Hungarian
method", Electronics Letters, 1997

[KOU9I] J. Kouloheris and A. El Gamal, "FPGA Performance Versus Cell
Granularity," in Proc. Custom Integrated Circuits Conf., May 1991, pp.6.2.1 - 6.2.4

[KRE95] R. Kress et al, "A Datapath Synthesis System for the Reconfigurable
Datapath Architecture" ASP-DAC 95, Chiba, Japan, Aug 29-Sep 1, 1995

166

References

[KUM02] R. Kumar, C.P. Ravikumar, "Leakage Power Estimation for Deep
Submicron Circuits in an ASIC Design Environment," Proceedings of the 15th
International Conference on VLSI Design (VLSID'02), January 2002

[KWA03] J. Kwak et a!, "Reverse tracing of forward state metric in log-MAP and
max-log-MAP decoders" mt. Symp. on Circuits and Systems, 25-28 May 2003

[LAM04] L. H.J. Lampe et a!, "Multilevel coding for multiple-antenna transmission",
IEEE Trans. Wireless Commun., pp 203-208, 2004

[LEUOI] 0. Y. Leung et al, "Reducing power consumption of turbo decoder using
adaptive iteration with variable supply voltage" IEEE Trans. on VLSI Systems, Vol. 9,
No. 1, Feb 2001, pp. 34-40

[L1N89] H. D. Lin et al, "Algorithms and architectures for concurrent viterbi
decoding", Proc. IEEE International Conference on Communications, pp. 836-840,
June 1989

[L1N00] M. B. Lin, "New path history management circuits for viterbi decoders,"
IEEE Transactions on Communications, vol. 48, no. 10, pp. 1605-1608, October 2000

[LIN04] Lingyan Sun et al., "A High-Throughput, Field Programmable Gate Array
Implementation of Soft Output Viterbi Algorithm for Magnetic Recording" in IEEE
Transactions on Magnetics Vol 40, Issue 4 July 2004, pp. 3081-3083

[LIUO1] Y. Liu et al, "Full rate space-time turbo codes", IEEE J. Select. Areas in
Commun., pp 969-980, 2001

[L0D93] Lodge J et a!, "Separable MAP filters for the decoding of product and
concatenated codes" IEEE ICC '93, Geneva, Switzerland 1740-1745

[L0U95] H. Lou, "Implementing the Viterbi Algorithm", IEEE Signal Processing
Magazine, pp. 42-52, Sep. 1995

[LUC06] Lucia Bissi et al., "A Multi-Standard Reconfigurable Viterbi Decoder using
Embedded FPGA blocks" In 9 th EUROMICRO Conference on Digital System Design:
Architectures, Methods and Tools, 2006, pp: 146-154

[MAKOI] H. Li, W-K. Mak, S. Katkoori, "LUT-Based FPGA Technology Mapping
for Power Minimization with Optimal Depth," IEEE Computer Society Workshop on
VLSI, pp. 123-128, 2001

[MAN03] M. Mansour et al, "VLSI Architectures for SISO-APP Decoders", IEEE
trans. On VLSI Systems, Vol. 11, No. 4, August 2003

167

References

[MAP92] D. Marple and L. Cooke, "An MPGA compatible FPGA architecture," in
FPGA 92, ACM First mt. Workshop on Field-Programmable Gate Arrays, pp. 39-44,
Feb. 1992

[MAR99] A. Marshall et al. "A Reconfigurable Arithmetic Array for Multimedia
Applications; Proc. ACWSIGiA FPGA'99, Monterey, Feb. 21-23,1999"

[MAR02] Mark A. Bickerstaff et. al., "A Unified Turbo/Viterbi Channel Decoder for
3GPP mobile wireless in 0.18-gm CMOS ," IEEE J. Solid-State Circuits, vol. 37, no.
11, pp. 1555-1 564, Nov. 2002

[MAS99] Guido Masera et al, "VLSI architectures for Turbo Codes" IEEE
transactions on very large scale integration (VLSI) Systems, Vol 7, No. 3, September
1999

[MAS02] Masera, G. et al, " Architectural strategies for low-power VLSI turbo
decoders", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, June
2002, pages 279 - 285 Volume: 10 , Issue: 3

[MAT01] www.mathworks.com

[MCP99] L. McPheters et al, "Concatenated codes and iterative(turbo) decoding for
PRML optical recording channels" in Optical Data Storage Conference, 1999, pp.
342-343.

[MCP02] L. McPheters, "Turbo-coded optical recording for channels with dvd
minimum mark size" IEEE Trans. on Magnetics, vol. 38m, no. 1, pp. 298-302, Jan.
2002.

[MICO2] Michael Bedford Taylor et al., "The RAW microprocessor: A computational
fabric for software circuits and general-purpose programs", IEEE Micro 22 (2002), no.
2,25-3 5

[MOT06] Motorola, "Performance of contention free interleavers for LTE turbo
codes", 3GPP TSG RAN WGI 47bis, Tech Rep. R1-070055

[MO WEB] MorphlCs website. http://www.morphics.com/

[PATI] Patent US 870,483: US, 5406,570 ML Decoding-Inventor: C. Berrou and P.
Adde, April 22

[PAT2] G. D. Forney, "Interleavers", U.S. Patent 3 652 998, Codex Corporation,
Watertown, MA

168

References

[PAG98] K. Page and P. Chau, "Improved architectures for the add-compare-select
operation in long constraint length viterbi decoding", IEEE Journal of Solid-State
Cirucits, vol. 33, pp. 151-155, January 1998

[PAR99] K. K. Parhi et at, "VLSI signal processing systems: design and
implementation" John Wiley and Sons, 1999

[PAN99] Bupesh Pandita et at., "Design and Implementation of a Viterbi Decoder
Using FPGAs" in 12th International Conference on VLSI design, 7-10 Jan 1999, pp.
611-614

[PAU04] Paul M. Heysters, "Coarse-Grained Reconfigurable Processors - Flexibility
meets Efficiency" PhD thesis, University of Twente, Enschede, The Netherlands,
September 2004

[PAU06] Paul M. Heysters, "Coarse-Grained Reconfigurable Computing for Power
Aware Applications" ERSA 2006, Las Vegas Nevada, June 26-29 2006

[PEN03] Pen-Hsin Chen et al. " Dual - Mode Convolutional / SOVA based turbo
decoder VLSI design for wireless communication systems" 2003 IEEE International
solid state circuits conference ISSCC. Pages 369-372

[PET05] Mihail Petrov et al., "A State-Serial Viterbi Decoder Architecture for Digital
Radio on FPGA" in IEEE International Conference on Field-Programmable
Technology, 11-14 Dec. 2005, pp 323-324

[P1E96] S. S. Pietrobon, "Efficient Implementation of Continuous MAP Decoders and
a Synchronisation Technique for Turbo Decoders", Proc. mt. Symp. Inform. Theory
Appl., Victoria, Canada, pp. 586-589, Sep 1996

[PLE89] Plessey Semiconductor ERA60 100 preliminary data sheet, Swindon,
England, 1989

[PSC96] Lance Perez, Jan Seghers and Daniel Costello, "A Distance Spectrum
Interpretation of Turbo Codes", IEEE Trans. Inform. Theory, 42(6):1698-1709, 1996

[PYN94] Pyndiah R et al, "Near optimum decoding of product codes" IEEE
GLOBECOM'94, New Orleans, USA, pp 339:343

[PYN95] Pyndiah R et at, "Performance of block turbo coded 1 6-QAM and 64-QAM
modulations" GLOBECOM' 95, Singapore, 1039-1043

[PYN97] Pyndiah R, "Iterative decoding of product codes" Proceedings International
Symposium on Turbo Codes and Related Topics, Best, France, 1997, pp 71-79

169

References

[Q1N04] Qin Xiang-Ju et. al., "An Adaptive Viterbi Decoder Based on FPGA
Dynamic Reconfiguration Technology" in IEEE International conference on Field-
Programmable Technology, 2004, on pages 315-318

[RABOI] T. Tuan, J. Rabaey, "Reconfigurable Fabric for Low-Energy Protocol
Processing," ICASSP 2001

[RAB95] A. Yeung and J. Rabaey," A 210mb/s radix-4 bit-level pipelined viterbi
decoder", Digest of Technical Papers, Proc. International Solid-State Circuits
Conference, February 1995

[RAD81] C.M. Rader, " Memory management in a Viterbi decoder," IEEE Trans.
Commun., vol. COM-29, pp. 1399-1401, Sept. 1981

[RAM70] J. L. Ramsey, "Realization of optimum interleavers", IEEE Transactions on
Information Theory, Vol. 16, No. 3, pp.33 8-345, May 1970

[REV04] J.S.Reeve et al., "A FPGA Implementation of a Parallel Viterbi Decoder for
Block Cyclic and Convolution Codes" in IEEE conference on Communications, 20-24
June 2004. pp. 2596-2599

[R0B89] P. Robertson, E. Villebrun, and P. Hoher, "A Comparison of Optimal and
Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain," in
proceedings of the International Conference on Communications, Seatle USA, pp.
1680-1686, 1989

[ROSO4] A. La Rosa, et al, " Implementation of a UMTS turbo-decoder on a
dynanicially reconfigurable platform", Design, Automation and Test in Europe,
Volume 2, 16-20 Feb. 2004 pp. 1218-1223 Vol 2

[R0S89] J. Rose, R. J. Francis, P. Chow, and D. Lewis, "The effect of Logic Block
complexity on area of programmable arrays," in Proc. Custom Integrated Circuits
Conf., May 1989, pp. 5.3.1-5.3.5

[ROS90] J. Rose, R. J. Francis, D. Lewis, and P. Chow, "Architecture of field-
programmable gate arrays: The effect of logic functionality on area efficiency," IEEE
J. Solid-State Circuits, pp. 1217-1225, Oct. 1990

[ROY99] K. Roy, "Power-Dissipation Driven FPGA Place and Route Under Timing
Constraints," IEEE Transactions on Circuits and Systems, vol. 46, no. 5, pp. 634-637,
May 1999

[SAT92] Satwant Singh, et a!, "The Effect of LB Architecture on FPGA Performance"
in IEEE Journal of Solid State Circuits, vol 27, No 3, March 1992

170

References

[SCH99] C.Schurgers et at, "Energy efficient data transfer and storage organization
for a MAP turbo decoder module" Proc. Of Low Power Electronics and Design
Symposium, 16-17 Aug. 1999, PP. 76-81

[SCH 199] C. Schurgers et a!, "Adaptive Turbo Decoding for Indoor Wireless
Communication" IEEE Wireless Communications and Networking Conference
(WCNC), 21-24 September 1999, pp. 1498-1502

[SCH01] C. Schurgers et a!, "Memory Optimization of MAP Turbo Decoder
Algorithms", IEEE Trans. on VLSI Systems, Vol. 9, No. 2, April 2001, pp. 305-3 12

[SHA48] C. E. Shannon, "A mathematical theory of Communication, Bell System
Technical Journal, Vol. 27, July 1948, pp. 379-423 and October 1948, pp. 623-656

[SHA03] S. Sharm et al, "A simplified and efficient implementation of FPGA-based
turbo decoder" Proceedings of the 2003 IEEE Intl. Conf. on Perf, ,Computing and
Communications", 9-11 April 2003 pp. 207-213

[SHA04] A. R. Abdul Shakoor et al., "High Speed Viterbi Decoder for W-LAN and
Broadband Applications" in IEEE Northeast workshop on circuits and systems, 20-23
June 2004, pp. 25-28

[SHU93] C. B. Shung et. al., "Area-efficient architectures for the Viterbi algorithm -
Part I: Theory," IEEE Trans. Commun., vol. 41, pp 2907-2917, Sep 1993

[S1NO2] A. Singh, M. Marek-Sadowska, "Efficient Circuit Clustering for Area and
Power Reduction in FPGAs," Proceedings of International Symposium on Field-
Programmable Gate Arrays, February 2002

[SMI04] Smit, G. J. M. et at, "Lessons learned from designing the MON11UM - a
reconfigurable processing tile" in IEEE SOC proceedings, 16-18 Nov. 2004, pp. 29-32

[SONOO] H. Song et at, "Turbo decoding for optical storage" in ICC 2000, vol. 1, New
Orleans, LA, 2000, pp. 104-108

[STEO 1] J. Steensma, "FPGA implementation of a 3GPP turbo codec" Thirty-Fifth
Asilomar Conference on Signals, Systems and.Computers, Vol: 1, 4-7 Nov 2001, pp.
61-65 vol. 1

[TAK06] Oscar Y. Takeshita, "On Maximum Contention-Free Interleavers and
Permutation Polynomials Over Integer Rings" IEEE Trans. On Information theory,
Mar 2006, Pp 1249-1253

[TAR99] V. Tarokh et al, "Space-time block codes from orthogonal designs" IEEE
Trans. Inform. Theory, pp 1456-1467 July 1999

171

References

[TEN04] S. Ten Brink et a!, "Design of low-density parity-check codes for modulation
and detection" IEEE Trans. Commun., pp 670-678, Apr 2004

[TH195] Punya Thitimajshinia, " Recursive Systematic Convolutional codes and
application to parallel concatenation," IEEE globecom '95, Singapore, pp. 2267-2272

[TMS04] TMS320C64x DSP Turbo-Decoder Coprocessor (TCP) Reference Guide,
Sep 2004 www.ti.com

[TMS05] TMS320C6414, databook, revised May 2005, www.ti.com

[TMS 104] TMS320C64 1 4Th ST/I 6T Power Consumption Summary, application
report spraa45-august 2004, www.ti.com

[TSU99] C. Y. Tsui et a!, "Low power acs unit design for the viterbi decoder", Proc.
IEEE International Symposium on Circuits and Systems, pp. 137-140, 1999

[TOD05] Todman et al, "Reconfigurable computing: architectures and design
methods", lEE Proceedings in Computer and Digital Techniques, Vol 152 on pages
193-207, Mar 2005

[TUJOO] D. Tujkovic, "Recursive space-time trellis codes for turbo coded modulation"
in Proc. IEEE Global Telecommun. Conf., vol 2, pp 1010-1015 Nov 27— Dec i 2000

[TUJ03] D. Tujkovic, "Space-time turbo coded modulation for wireless
communication systems" Ph.D. dissertation, University of Oulu, Oulu, Finland 2003.

[TLJN06] Tung. H.T et al., "Implementation and Comparison of Various Viterbi
Detectors for EPRML Systems" in international Conference on Communications,
Circuits and Systems, 25-28 June 2006, pp 2309-2313

[UWB05] ECMA UWB Specification "High Rate Ultra Wideband PHY and MAC
standard" 1st ed. Vol. ECMA-368, ECMA, ED., 2005

[VAL01] M. C. Valenti and J. Sun, "The UMTS turbo code and efficient decoder
implementation suitable for software-defined radios", mt. J. Wireless Inform.
Networks, vol. 8, no. 4, pp. 203-216, 2001

[VI000] F. Vigilone et al, "A 50 Mbit/s Iterative Turbo-Decoder", Proc of DATE
2000 Conference, pp. 176-180, March 2000

[V1L98] J. Villasenor, " The flexibility of configurable computing", IEEE Signal
Processing Magazine, Vol. 15, No. 5, Sep. 1998, pp. 67-84

172

References

[V1T67] A. J. Viterbi, "Error Bounds for Convolution Codes and an Asymptotically
Optimum Decoding Algorithm", IEEE transactions on Information Theory, IT-13:
260-269, April 1967

[V1T79] A. J. Viterbi and J. K. Omura, "Principle of Digital Communication and
Coding". McGraw-Hill Book Company, 1979

[V1T98] Viterbi, A.J. "An intuitive justification and a simplified implementation of
the MAP decoder for convolutional codes", IEEE Journal on Selected Areas in
Communications, Volume: 16, Issue: 2 , Feb. 1998 Pages:260 —264

[VOG06] Vogt T, Wehn N, "A Reconfigurable Application Specific Instruction Set
Processor for Viterbi and Log-MAP Decoding" IEEE SIPS 2006, Oct 2006, pp 142 -
147.

[WAN93] Wang Kaiming et al., "Viterbi Hardware Implementation for GSM" in
IEEE conference on Computer, Communication, Control and Power Engineering, 19-
21 Oct. 1993, pp. 120-122

[WAN98] J-M. Hwang, F-Y. Chiang, T-T. Hwang, "A Re-Engineering Approach to
Low Power FPGA Design Using SPFD," Proceedings of Design Automation
Conference, pp. 722-725, 1998

[WAN02] X. Wang et al , "LDPC-based space-time coded OFDM systems over
correlated fading channels" IEEE Trans. Commun., 74-88, Jan 2002.

[WEB01] www.latticesirn.com/products

[WEB02] www.xilinx.com/products/logicore/alliance

[WEBO] www.altera.com/products/ *!P-

[WEB04] www.us.design-reuse.corn/sip

[WEB05] www.icoding.com/products.htrn

[WEB06] www.turboconcept.com

[WEB07] www.icoding.com

[WEB08] www.eccincorlD.com

[WEB09] www.iterativeconnections.com

[WEB 10] www.datumsysterns.com

173

References

[WEB 11] www.trellisware.com

[WEB12] www.sworld.com.au

[WEB13] www.icoding.com

[WEB 14] www.st.com

[WEB15] www.directv.com

[WEB 16] www.dishnetwork.com

[WEB 17] www.voom.com

[WEB 18] www.broad corn .com

[WEB 19] www.aha.com

[WEB20] www.radynecomstreai -n.com

[WEB21] www.pardisedata.com

[WEB22] www.advantech.ca

[WEB23] www.idirect.net

[WEB24] www.viasat.com

[WEB25] www.recoresystems.com

[WEB26] www.chameleon.ctit.utwente.nl

[WE197] E. Waingold, M. Taylor, et al., "Baring it all to software: raw machines,
IEEE Computer (1997), 86-93

[WEL04] Welling A. "Two Stage Interleaving Network Analysis to design area and
energy efficient 3GPP compliant receiver architectures" IEEE Workshop on Signal
Processing Systems, 2004.Page(s):65 - 70

[W1C95] S. B. Wicker, "Error Control Systems for Digital Communication and
Storage", Prentice Hall, 1995

[WOL03] F. G. Wolff, M.J. Knieser, D.J. Weyer, C.A. Papachnstou, "High-Level
Low Power FPGA Design Methodology," National Aerospace and Electronics
Conference (NAECON), pp.554-559

174

References

[W0R99] A. P.Worthen et al, "Performance optimization of VLSI transceiver for low-
energy communications systems" Military Communication Conference, MILCOM
1999, Vol. 2,31 Oct. —3 Nov. 1999, pp. 1434-1438

[WOROO] A. Worm et al, "A High Speed MAP architecture with optimized memory
size and power consumption" Proc. IEEE Workshop Signal processing Systems, SiPS
2000, pp. 265-274

[WOR02] h. Michel, A Worm et a!, "Hardware/Software trade-offs for advanced 3G
channel coding", in Proc. Design, Automation, Test Eur, Conf., Mar 2002, pp. 396-
401

[XIA02] Xiao-Jun Zeng et a!, "Design and implementation of a turbo decoder for 3G
W-CDMA systems" Consumer Electronics, IEEE Transactions, Vol 48, Issue: 2, May
2002 pp. 284-291

[YEH96] David Yeh et al., "RACER: A Reconfigurable Constraint-Length 14 Viterbi
Decoder" in IEEE Symposium on FPGAs for Custom Computing Machines, 17-19
April 1996, pp: 60:69

[YEU93] A. K. W. Yeung, J. M. Rabaey, " A Reconfigurable Data-driven
Multiprocessor Architecture for Rapid Prototyping of High Throughput DSP
Algorithms" Proc. HICSS-26, Kauai, Hawaii, Jan. 1993

[YUFOO] Yufei Wu et al, "Forward computation of backward path metrics for MAP
decoder," IEEE VTC2000

[ZEH92] E. Zehavi, "8-PSK trellis codes for a Rayleigh channel" IEEE Trans.
Commun., pp 873-884, May 1992

[ZHA99] H. Zhang, M. Wan, V. George, and J. Rabaey, "Interconnect Architecture
Exploration for Low-Energy Reconfigurable Single-Chip DSPs," Proceedings of the
IEEE Computer Society Workshop on VLSI '99, pp. 2-8, 1999

[ZHAOI] H. Zhang, L. Wang and J. Yu, "A chaotic interleaver used in turbo codes",
submitted to IEEE Transactions on Circuit & Systems, March 2001

[ZH099] Zhongfeng Wang et. al., "VLSI Implementation issues of Turbo Decoder
Design for Wireless Applications", IEEE workshop on Signal Processing Systems,
1999, pp. 503-512

[ZHO02] Zhongfeng Wang; Zhipei Chi; Parhi, K.K, "Area-efficient high-speed
decoding schemes for turbo decoders, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Dec. 2002 Pages:902 —912

175

References

[ZHUO3] Zhu Y et al., "Reconfigurable Viterbi Decoding Using a New ACS
Pipelining Technique" IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, 24-26 June 2003, pp 360-368

[ZHU07] Zhuo Xu et al., "Implementation of Folded Sliding Block Viterbi Decoders
for MB-OFDM UWB Communication System" in IEEE International Symposium on
Circuits and Systems, 27-30 May 2007, pp 2574-2577

176

