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ABSTRACT 

Reconfiguration in an Integrated Circuit (IC) design has become increasingly 

important in the recent years. Some of the driving factors behind this trend are 

reduction in transistor size, ever changing standards, very high IC mask costs and 

short time to market. The programmable hardware design however suffers from 

performance degradation due to the added flexibility contrary to the end user demand 

for very high speed and low power electronics. Domain specific reconfigurable 

architectures provide a powerful solution to the problem by carefully tailoring the 

domain of the reconfiguration for the increased performance. This research work 

focussed on investigating such low power reconfigurable VLSI architectures for 

forward error correction (FEC) to be deployed in a unified communication platform. 

The viterbi and turbo decoding are very well known techniques for FEC decoding and 

are essential components in many current and up coming standards such as WCDMA, 

WLAN, GSM, CDMA2000, ADSL and 3GPP. This thesis presents a reconfigurable 

unified implementation with a unified state machine control for combined turbo-

viterbi decoder array. The amount of flexibility in the reconfigurable design is 

carefully tailored to meet the performance constraints imposed by these standards. 

Work on reconfigurable viterbi decoder provided the new novel reconfigurable trace 

back methodology, new segmentation and memory management techniques along 

with an open trellis structure that can support multiple standards. The work on 

reconfigurable turbo array generated novel implementation techniques for low power 

input metrics management and reconfiguration, low power branch metrics generation, 

a new matrix normalization scheme and a completely flexible open trellis low power 

reconfigurable design. Turbo decoder design is combined with a novel low power 

implementation methodology for 3GPP internal interleaver. The interleaver 

implementation gives significant reduction in storage requirement for interleaved 

patterns and hence much improved power performance. 
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Chapter 1 

INTRODUCTION 

1.1 MOTIVATION 

VLSI design engineers have to balance many conflicting requirements for example; 

the design should not only be energy and area efficient but also flexible and high 

speed. Current devices are expected to combine a large amount of functionality 

together for example, a mobile phone now has 3G, WLAN, personal digital 

assistant, camera and many other services all integrated in one device. New 

standards like WiMAX (IEEE 802.16) and Wi-Fi (IEEE 802.11) allow VOIP and 

data services at a metropolitan scale with coverage over an area of several miles. 

This can potentially allow the user to remain connected for communication within 

an entire metropolitan area using VOIP with the scope of handoff to WCDMA 

Cell, satellite system or another WiMAX network in other areas. 

With all the advances in fabrication technologies ASIC mask cost still remains far 

above the ground and the time to market (TTM) is shrinking worst than ever 

before. For example the 30 cellular technologies are already looking obsolete well 

before establishing itself in the market in a serious way. The non-recurring 

engineering (NRE) costs impel the designer to think of unorthodox ASIC solutions. 

Adaptation to ever evolving standards and the constraints that are imposed by 

computationally intensive applications as in wireless communications demand a 

clever business model. However from VLSI implementation point of view, finding 

the optimal reconfigurable architecture for a given problem is very difficult as 

increasing the level of flexibility degrades the area, power and speed constraints 

adversely affecting the performance. The contradictory requirement of high speed 

and flexibility combined with low area and energy can not be satisfied by 

conventional instruction set processors and non flexible ASICs. Reconfigurable 

I 



Chapter 1: Introduction 

ASIC (hardware) therefore provides an interesting implementation option. FPGAs 

implementations cost 1OX-100X times in area and speed as compared to ASIC 

[ALB94]. However the granularity of the reconfigurable blocks and interconnects 

flexibility is required to be adjusted to meet all the performance constraints 

imposed by the application. 

Therefore the goal of the current research is to distil flexibility such that it meets 

the required power-area budgets for a desired level of performance. The thesis is 

motivated by the desire to reduce the power, area and improve the speed while 

maintaining the flexibility in the domain of convolution based forward error 

correction. 

1.2 CONTRIBUTION 

The main contribution of this work is a reusable architecture that can be exploited 

to implement domain-specific, programmable processors for convolution based 

forward error correcting algorithms. The work has also produced an architecture 

template that relies on a heterogeneous network of processing elements, optimized 

for a given domain of algorithms that can be reconfigured at run time. To verify the 

effectiveness of this architecture, FEC reconfigurable processing elements were 

designed, synthesized, and evaluated. Measured results which are presented in 

subsequent chapters demonstrate the effectiveness of this architecture. 

The single most valuable contribution of this research is the unified turbo-viterbi 

decoder array that can be used for multiple standards [AHM07] Construction of 

such array requires identification of areas where flexibility should be introduced in 

Viterbi and Turbo decoder blocks in order to make the overall VLSI design achieve 

the performance constraints as imposed by different standards shown in table I 

below: 
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Standard Codes (Cyclic Rates States Block Throughput 
Redundancy size 
Code-crc, 
Convolutional - 
cony & turbo)  

GSM crc +conv '/2 16 33-876 12Kbps 
IS-54 crc+conv '/2 32 1-512 9.6kbps 
IS-95 Con '/2,1/3 64 1-512 19.2kbps 
PDC crc+conv 9/17 16 1-512 14.4kbps 
UMTS con '/2, 1/3 256 1-504 32kbps 

Turbo V2,1/3 8 40-5114 2Mbps 
CDMA2000 con '/2-1/6 256 1-744 38kbps 

Turbo Y2-1/5 8 378- 2Mbps 
20736  

EDGE Con '/2,1/3 64 39-870 5-62kbps 
W-CDMA crc+con 1/3 256 1-504, 384 kbps 
(Japan) crc+turbo 1/3 4 40-5114 2 Mbps 
IEEE802.1 1 Con '/2 3/4, 64 or 256 1-4095 6-54mbps 
IEEE802.16 con 7/8- 64 1-2040 24 Mbps 

turbo 1/2 8 1-648 24 Mbps 
~-I /2  

Table 1.1. Convolutional decoder in various stanciaras 

Our work on reconfigurable viterbi decoder produced a novel implementation 

scheme for reconfigurable trace back processing and a new memory management 

and segmentation technique for multiple standards [AHM06]. With the 

reconfigurable aspects of viterbi decoder design a new and novel dynamic 

reconfiguration switching methodology is proposed that allows a very fast context 

switch between different standards [AHMI06]. The work also proposed and 

implemented a reconfigurable state machine control and open trellis reconfigurable 

architecture for viterbi decoding. 

The work in this thesis also identified the commonality of algorithm between 

viterbi and turbo and shown implementation level details for choice of common 

hardware blocks for a unified array. The novel implementation also demonstrates 

commonality of control features by using a single finite state machine for both 

Viterbi and Turbo decoding. This avoids the use of microprocessor based control 
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for these arrays. A novel turbo decoding VLSI implementation suitable for the 

underlying reconfigurable system [AHM05, AHM205] is also proposed. The work 

on reconfigurable turbo decoder showed an efficient low power input memory 

management and branch metric calculation scheme. A new open trellis structure for 

reconfigurable turbo decoding was implemented and the cost of reconfiguration is 

measured to justify the design decisions. 

A new approach for implementing a complex S random interleaver as defined in 

3GPP specification [3GPP99] is also presented. Due to the complexity of the 

interleaver algorithm, earlier implementations used a straight forward approach of 

storing the entire interleaved addresses in SRAM [MAS99]. This results in 

interleaver memories consuming major portion of the area and power. The novel 

implementation technique proposed in the thesis overcomes this bottleneck and 

provides a new technique for hardware pruning [AHM 105]. 

Experiments have also been performed on a domain specific reconfigurable 

methodology that automatically connects the domain specific blocks through a 

reconfigurable interconnect. [AHM104, AHM204]. 

1.3 STRUCTURE 
The structure of this thesis is as follows: 

Chapter 2 presents review of the research work in the area of reconfigurable 

techniques both by commercial and academic research. 

Chapter 3 describes the reconfigurable methodologies used by various 

domain specific architectures. 

Chapter 4 presents an overview of turbo decoding and explains the 

reconfigurable VLSI design detailing each individual component. 

• Chapter 5 describes the viterbi decoding along with reconfigurable VLSI 

design, the trace back methodology, memory management for multiple 

standards and the role of each viterbi decoding component in the unified 

array. 
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• Chapter 6 presents the low power interleaver solution to 3GPP interleaving 

algorithm. Chapter also describes the hardware technique for bit pruning. 

• Chapter 7 gives the summary and the conclusions drawn from the work. 

1.4 SUMMARY 

Domain specific reconfigurable design is a crucial research area and its benefits 

have been used to generate high performance reconfigurable design for a 

communication baseband forward error correction scheme. Multi standard 

reconfigurable baseband data paths are very attractive for all portable devices in the 

context of current and future standards. This thesis presents techniques to introduce 

flexibility with reduced power consumption in the convolution forward error 

correction blocks to be used in a common communication platform. The next 

chapter describes the existing architectures in literature and the performance 

improvement techniques used in domain specific blocks. 

5 



Chapter 2 

EVOLUTION OF RECONFIGURABLE 
ARCHITECTURES IN CONVENTIONAL 

FPGAs 

2.1 INTRODUCTION 

This chapter summarizes the different implementations of turbo and viterbi decoders 

reported in the literature. A case is presented for adopting a reconfigurable approach 

for these decoders. To solve the reconfiguration problem the chapter also describes 

reconfiguration techniques used in existing conventional FPGA architectures. 

Reconfigurable architectures have evolved from FPGAs and currently, there are a 

large class of FPGAs available commercially. Altera and Xilinx are the major 

contributors in commercial FPGA design and therefore have the biggest market share. 

The chapter explains the evolution in commercial reconfigurable logic block and 

routing architectures. Examples are quoted to trace these improvements with 

architectures present in previous and current generations of commercial reconfigurable 

devices. 

2.2 STATE OF THE ART IN VITERBI DECODER IMPLEMENTATIONS 

In Viterbi decoding there are two main techniques used for decoding the bits: the 

register exchange (RE) and the traceback (TB) [W1C95]. The RE technique is usually 

used for trellises with only a small number of states, whereas the TB technique is used 

for trellises with a large number of states. There are several high performance 

architectures reported in literature using the traceback technique. In [L1N89] a layered 

approach that combines the stages of the trellis into one stage has been proposed, and 

further developed by using radix-4 architectures in [BLA92]. The implementation in 
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[BLA92] is for fixed 32 state (K=6) decoder achieves throughputs of 70Mb/s for a 

radix 4 iteration in 1.2 tm CMOS process. However, this parallel implementation 

consumes 1.8W of power which makes it less useful for mobile platforms and because 

of its fixed architecture is not a good choice in reconfigurable scenarios. A similar 

radix 4 implementation in [RAB95] achieves a higher throughput of2lO Mb/sec but at 

the cost of higher power consumption of 3W. A similar radix 4, 32 state (fixed) 

implementation in 130nm process in [BRU04] achieves a through put of 2.8 Gb/s with 

a power consumption of 2.23W. 

The error correcting capability of an error correcting code is proportional to the 

constraint length (states) of decoder [HEL88]. Therefore, the new standards like 3GPP 

[3GPP99] define Viterbi decoders with large constraint lengths for example, there are 

256 states in 3GPP decoder. The above mentioned decoders therefore, also have a 

reduced error correction capability in addition to the higher power consumption. 

The latency and through put issues with block based designs [L1N89] have been 

addressed and improved in sliding block (window) architecture in [BLA97] with a 

four state decoder. Bit-serial approaches and operation reformulations have been 

proposed in [BLA97], [TSU99]. The minimum transition scheme in [11WA96] 

attempts to reduce the paths being traced back and in [LINOO] the speed of traceback 

was increased by saving the decisions in a permutation network. Another algebraic 

solution for low power high speed decoding have been proposed in [FET9 1] by using 

a semi-ring topology. There are also a few architectures that attempt to combine the 

traceback and register exchange methodologies together [JUN96], [BLA93]. 

All of the above mentioned design approaches were developed for low constraint 

length (K=3 to K=7). The decoder in [CHAOO] is designed for CDMA standard with 

256 states and have the maximum achievable throughput of 2 Mb/sec. In addition to 

the limited throughput the decoder also has an input/output memory architecture 

which is fixed only for CDMA decoder. The decoder is therefore suitable for a single 

standard but can not be used in multiple standards with its fixed trellis structure and 
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RAM design. Another CDMA implementation [KAN98] uses state serial approach in 

which few processing elements are shared for 256 states. This approach is in contrast 

to the previous high speed state parallel approaches in which every state at a given 

stage in the trellis corresponds to one processing unit. The architecture in [KAN98] is 

very low power however can only support voice traffic with data rates of 14.4 Kb/sec. 

Many other state-sequential architectures have been proposed [SHU93], [FRE86], 

[GUL88], [FEY93], [CHA89], [CHA92], [DAN95], [BLA92], but most have not had 

their efficiency validated in the VLSI hardware domain. 

It has been shown in [KAN98] that viterbi decoder account for more than one-third of 

power consumption in CDMA mobile terminals. The importance of power 

consumption is even more critical in a multiple terminal receiver in the context of 

software defined radio. In convolutional decoder implementation on Field 

Programmable Gate Arrays (FPGAs) power consumption is a major concern 

compared to ASICs and other custom chips. FPGAs have long routing tracks with 

significant parastic capacitance, and dissipate a significant amount of power at high 

frequencies. Previous work has presented point solution for power consumption in 

FPGAs [GE099], [KUM02], [RABO1]. Numerous CAD algorithms for FPGAs are 

also proposed that focus primarily on reducing switching acitivity to achieve lower 

power [WAN98], [MAKOI], [R0Y99], [S1NO2], [WOL03]. Other Implementations of 

Viterbi algorithm on FPGAs [ZHIJ07], [HAO06], [ABD06], [TUN06], [LUC06], 

[IRF05], [PET05], [ANG05], [Qll'104], [REV04], [SHA04], [LIN04], [ZHUO3], 

[HEN02], [FABO1], [PAN99], [JAN97], [YEH96], [WAN93], [KEL93] have not had 

their efficiency validated in power domains. 

2.3 STATE OF THE ART IN TURBO DECODING 

Turbo code with its excellent error correcting performance has revolutionized the 

communication engineering. After the successful revelation in the year 1993 [BER93], 

turbo code has been praised and crowned widely. It became one of the core technology 

for today's cutting edge products in industries for example, high density magnetic and 
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optical storage, wire or landline communication systems (Asymmetric Digital 

Subscriber Line - ADSL) [ELE04], optical fibre networks and wireless 

communication [HON01], [MCP99], [MCP02], [SONOO]. In wireless 

communications, the application of turbo code principle can further be categorized 

under the following sections: - 

2.3.1 TURBO RECEIVER TECHNIQUES FOR CODED MIMO OFDM 
SYSTEMS 

Turbo coding is also a crucial component in broadband wireless access 

communications. MIMO transmissions can achieve gains in both the information rate 

increase due to virtual multiple air-links, and diversity gain. In this area of research the 

turbo techniques are applied in conjunction with multiple-input-multiple-output 

(MIMO), space time coding, and orthogonal-frequency division multiplexing 

(OFDM). In this context and for small block size there are many solutions to error 

control coding such as orthogonal space-time block codes [TAR99], linear dispersion 

codes [HAS02], threaded algebraic space-time codes [DAM03] and lattice space-time 

trellis codes [GAM04]. But for moderate to large block sizes the coding schemes are 

based on turbo codes with bit-interleaved coded modulation (BICM) [LIU01], 

[WAN02], [TEN04], [ZEH92] and [1MA97, LAM04]. In his Ph.D. thesis Tujkovic 

presented a design method for constituent recursive space-time trellis codes and 

parallel concatenated space-time turbo coded modulation [TLJJ03]. This space-time 

coding framework integrated code concatenation into a random-like space time coding 

approach [TUJOO]. 

2.3.2 TURBO CODES FOR DIGITAL VIDEO BROADCASTING 

In another segment of research the turbo code concept is applied for digital video 

broadcasting (DVB) which is European Telecommunications Standards Institute 

(ETSI) standard for digital television services called as DVB-S [ETS94]. Internet over 

D\'B-S can potentially be a competitor against cable modem and DSL technology 

with an additionally requirement on uplink for DVB-S. DVB project has adopted 
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turbo codes for the satellite return channel in its DVB-RCS (Return Channel via 

Satellite) standard [ETS0O]. The DVB-RCS turbo code was optimized for short frame 

sizes (12 to 216 bytes) and return link support data rates from 144 kbps to 2Mbps. One 

problem with small frame sizes is that the trellis termination imposes a non negligible 

reduction in code rate and therefore DVB-RCS uses tail biting [H!v1A86] circular 

recursive convolutional encoding [BER99]. These techniques encode in such a way 

that the ending state matches the starting state in the trellis. DVB-RCS also uses duo 

binary encoders defined over Gallis Field (4) [JEZ99] which results in reduction in 

trellis states to half and therefore requires half as much memory. Given the fact that 

the DVB-RCS is a published standard, there are a few codec manufacturers that 

provide ASIC or core FPGA solutions such as: 

• IC 1000 turbo encoder/decoder, from TurboConcept [WEB 06] 

• S2000 from iCoding [WEB07] 

• ECC3 110 from 'Efficient Channel Coding Incorportation' [WEB08] 

2.3.3 TURBO CODES ON SATELLITE COMMUNICATIONS 

Turbo codes were selected as a decoding scheme in CCSDS (Consultative Committee 

for Space Data Systems) recommendations [CCS03], used worldwide by international 

space agencies (NASA, ESA, RSA etc.). The reason was the significant improvement 

in terms of power efficiency assured by turbo codes over the old concatenated 

schemes of the standard with coding gains larger than 2dBs. The structure of CCDS 

turbo encoder consists of two equal binary, linear, systematic, recursive convolutional 

encoders with rate ¼ and 16 states. European Space Agency (ESA) investigated the 

performance of high rate punctured turbo codes for [CCS03] inclusion. Punctured 

CCSDS turbo codes are obtained by simply puncturing the output of the CCSDS 

encoder [ANCOO], [ANC01]. With puncturing the performance of rate 3/4 codes is 

very good for large data frame lengths and is competitive with other solutions like 

LDPC and serial turbo codes. The performance with higher code rate however, is not 
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so good because puncturing causes a significant reduction of the minimum distance 

[GAR01]. Therefore this solution is currently being abandoned in [CCS03]. 

A survey of some of the most popular commercial developments based on serial and 

parallel concatenation of turbo codes is attempted below: 

2.3.3.1 ITERATIVE CONNECTIONS 'S-TECTm 

Iterative Connections [WEB09] decoders are designed for satellite communications 

providing performance less than I dB from channel capacity and BER performance of 

1/10 10  with the option of secure communication mode. The S - TEC Tm  family of 

serial concatenated convolutional codes was launched in 2003 and was integrated in 

the Datum Systems line of modems [WEB 10]. Their new version, Premier 5 satellite 

modem can provide data rates up to 5 Mbit/s in QPSK mode with coding rates '/2, 3/4 

and 7/8 and is the most power efficient satellite modem currently available in market. 

2.3.3.2 TRELLIS WARE 'FLEXICODES' 

TrellisWare Technologies [WEB 11] launched serial concatenated mode turbo like 

codes in early 2004 called FlexiCodes. It consists of 4-state outer rate Y2 convolutional 

code, followed by a single parity check (SPC) code and an inner rate 1 convolutional 

code and therefore, three elementary encoders combined in a single concatenated 

mode. The outer decoder produces estimates which, after interleaving, are fed to the 

SPC decoder; in turn, the SPC output is used by the inner decoder. The feedback loop 

starts from the inner decoder which passes extrinsic information to the SPC decoder; 

after interleaving, the bit estimates produces by the SPC decoder are input to the outer 

decoder. This family of codes performs very close to capacity for a wide range of 

coding rates and modulation. 

2.3.3.3 SMALL WORLD COMMUNICATIONS and iCODING 

Small world communications [WEB 12] provide turbo decoders in BIT/MCS format 

for downloading in to Xilinx Virtex and Spartan FPGAs or as a EDIF (VHDL) core. 
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These high speed decoders have some programmability in the design. The SI 000 is a 

15 Mbits/s iterative decoder for Xilinx or Altera FPGAs designed by iCoding 

[WEB 13]. A speed up to 45MbitJs is predicted for ASIC mapping of the design. 

S4000 is their high speed version that can run at 200 Mbitls in Virtex II or 100 Mbitls 

inVirtexE. 

2.3.3.4 STMicroelectronics 

STMicroelectronics [WEB 14] chipset is compliant with DVB-S and DIRECTV 

specifications and uses QPSK, 8PSK and 16QAM modulations. Due to the turbo 

decoding the chip allows 50% increased throughput or a reduction in more than 33% 

in the dish size. STMicroelectronics is one of the largest suppliers of set-top boxes in 

US with the 5TV0499 8PSK turbo codec. Directl'V [WEB15], EchoStar 

Communications [WEB 16] and Voom [WEB 17] are the other satellite TV providers 

taking advantage of the new turbo-like technologies. 

2.3.3.5 BROADCOM 

Broadcom [WEB 18] has two turbo decoding chipsets BCM4500 and BCM3348. 

BCM4500 is an integrated digital receiver that supports BPSK, QPSK and 8PSK in 

conjunction with turbo codes for up to 30 Mbaud. BCM3348 is the TurboQAM single 

chip cable modem using advanced TDMA and synchronous CDMA with MIPS, 

200Mhz communication processor. It supports 4/16/32/64/128/256/512/1024 QAM 

FEC decoding and 10/100 Ethernet MAC and USB interface. 

2.3.4 BLOCK TURBO AND TURBO PRODUCT CODES 

Block turbo codes [PYN97], [L0D93], [PYN94], [HAG96] form a sub-class of turbo 

codes. Different than regular turbo codes it is typically formed via linear block codes. 

Therefore they can be processed with algebraic decoders and have low complexity 

implementation. They are suitable for higher codes rates (greater than 0.75) and 

therefore for systems that require high spectral efficiency. The performance 
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improvement in QPSK modulation is not as good as for 16 QAM [PYN95] and they 

are less sensitive to input quantization when quantized to only 4 bits compared to 

convolutional based codes. Results from [PYN94] and [PYN95] conclude that for 

spectral efficiencies greater than 4/bits/s/Hz, block turbo coded QAM systems 

outperform convolutional coded QAM. A comparison is made in [BEN296] between 

parallel concatenated block codes (PCBC) using systematic cyclic codes and serial 

concatenated block codes (SCBC) using Hamming and BCH codes. The SCBCs 

perform better than PCBCs, but significantly worse than the equivalent structures 

based on convolutional codes. 

Examples of commercial implementation of block turbo codes (for example turbo 

product code - TPC) can be seen by the decoders developed by companies such as 

Comtech, Radyne, Paradise, Advantech, iDirect and ViaSat. Very high speed TPC 

ASIC decoders are available from Comtech AIIA Corporation [WEB 19]. The family 

consists of AHA450I (36 Mbitls), AHA4522, AHA4540 (155 Mbitls) and 

AHA4541(31 1 Mbitls) codecs. DMD20 satellite modem is developed by Radyne 

ComStream [WEB20]. The modem can operate from BPSK to 16QAM upto 

20Mbit/sec data rates and offers L-Band interfaces. Paradise datacom [WEB2 1], P300 

series of modems with TPC provides up to eight voice/fax ports, IP Bridge/Router for 

speeds up to 2Mbitls. Advantech Microwave Technologies [WEB22] has developed 

their AMT-70 satellite modem with a range from 8kbitls to 140 Mbitls, BPSK to 16 

QAM, 70/140 MHz or L-band version with an enhanced TPC option. The iDirect 

[WEB23] technology also produces TPC based modems based on DVB standard. 

ViaSat [WEB24] have three products based on turbo-like codes: Linkstar, Surtbeam 

and WildBlue. Linkstar is a two-way bandwidth-on-demand broadband VSAT system 

using the DVB standard. Surfbeam and WildBlue are based on satellite-enabled 

version of the Data Over Cable Service Interface Specifications (DOCSIS 1.1) 

standard. 

2.4 VLSI FOR TURBO DECODING 
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There are number of aspects of turbo decoding that makes their VLSI implementation 

non-trivial: first of all the algorithms that are used to implement the decoding (for 

example BCJR algorithm [BA1174]) are of great complexity, coupled with the iterative 

decoding principle, which makes very difficult the accomplishment of throughput, 

latency, power constraints as imposed by various standards. Moreover turbo decoders 

include large RAM memories that need to be organized and managed properly. The 

best solution for each application can only be selected by carefully exploring the space 

of design alternatives. 

The problem of latency and throughput are traditionally addressed by an approximated 

version of the original algorithm [BAH74], largely known as sliding window BUR 

algorithm [BEN396], [BAR96], [P1E96]. The lowest cost solution is to limit the 

window overlap to the backward recursion, obtaining the starting metrics for a given 

window from the last metrics of the previous one. This solution, known as single flow 

structure introduced in [V1T98]. Another powerful solution is given by DFG [PAR99], 

applied to various formulations of the sliding window BCJR [D1W95], [SCH99], 

[WORGO], [MAN03]. DFG methodology can also be applied to the study of parallel 

BCJR, where more windows are processed in parallel rather than serially [WOROO], 

[VIGOO], [ZHO02]. Another complete and clear study on the many possible 

alternatives in the SISO internal organization has been published by [MAN03], where 

expressions for the optimization of decoding delay and metric memories in single flow 

and parallel SISO is formally derived. 

Another approach proposed in [YUFOO] is based on the idea of evaluating backward 

state metrics in the forward direction. The possible advantage by this approach is the 

elimination of the path metric memory in the BCJR architecture which reduces SISO 

complexity and energy consumption. Some implementations of this concept, are 

proposed by Prof. T. Arslan in [ATL03] and in [KWA03] reporting improvements 

between 15% and 35%: however this approach seems to be critical for two main 

reasons: first of all the inversion of the original reverse metric calculation (and the 

equations in BCJR corresponding-to this operation) poses problems of singularity and 
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computational complexity; moreover the numerical precision in reverse computation 

has an heavy impact on the BER performance of the code. 

The use of radix-4 computation structures has also been explored [BIC03]: similar to 

viterbi decoders [BAL92]. In this technique trellis is compressed in time, compressing 

two trellis steps in a single one; this doubles the throughput for a given clock 

frequency with respect to radix-2 version. The disadvantage however is that the 

technique also doubles the edges for each state, so requiring the implementation of 

radix-4 log-MAP or max-log-MAP units with tree organization [MAS99], [BIC03]. 

The biggest challenge in implementation of Turbo decoder architecture especially in 

the domain of wireless communications is the power consumption. Turbo decoder 

tends to have large power consumption than other decoders [W0R99] because of three 

main reasons: 

• The hardware complexity is larger than for other decoders such as Viterbi 

decoders. 

• The decoding process is iterative and in order to achieve the throughput and 

decrease the effects of iterations, clock frequency must be kept high. 

• Large memories are included in the decoder architecture required as 

Input/Output buffers needed to support iterations and the interleaver memories. 

The most important technique at algorithmic level to reduce the effect of iterations on 

power consumption is by a concept known as stopping criteria [LEUO 1], [SCH 199], 

[ZH099]. In [LEU01] the circuit is shut down after the desired BER performance is 

achieved. As the energy dissipation tends to grow linearly with iteration, the 

percentage of power saved with this approach is roughly equal to the average 

reduction achieved in the number of iterations, which can be as large as 75%. The 

iteration number can also be controlled by means of decision-aided stop criterion 

[SCHI99]. A threshold can be set (on the basis of target BER) and compared against 

the output log-likelihood ratios (LLRs). If LLRS magnitudes of all bits in a block are 
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under the threshold, decisions are not considered reliable enough and new iterations 

are scheduled and vice versa. This technique gives percentage of energy reduction as 

high as 50%. The work in [ZH099] evaluates the number of I's accumulated from the 

output of decoded block at each iteration which is a necessary condition for having 

identical decoded bits from current and previous iteration is that the two accumulated 

values are equal. This technique is simpler however less precise. 

A wide range of trade-offs in turbo decoder architectures have been studied in 

[SCH99], [SCHO1] and several architectural parameters have been introduced, with 

the aim of finding a storage organization efficient from the energy point of view. It is 

proved in [SCHO I  that optimal choice of these parameters is strongly dependent on 

the specific turbo code and on the technology models used. 

Another technique proposed in [LEUOI] called "as slow as possible" algorithm which 

adapts the supply voltage to the instantaneous workload. The algorithm is based on 

estimations of the energy and delay associated to the decoding of a given data block. 

Data flow transformations are also applied to reduce both the storage of state metrics 

and number of memory transfers. While this idea does not provide any area benefit, it 

is quite effective in reducing the energy consumption. In [MAN03] the delay and 

energy benefits deriving from the adoption of some degree of parallelism in the 

decoding architecture are shown for a particular case of double flow structure. This 

architecture can be viewed as a particular case of more general parametric description 

based on the DFG and shows 25% reduction in dissipated energy with respect to 

single flow architecture. 

In [BIC03] a 180nm CMOS turbo decoder for 3GPP-HSDPA (High Speed Downlink 

Packet Access) is presented. The power dissipation is reduced combining architectural 

techniques, such as clamping of extrinsic information to save memory, and iteration 

control by means of efficient stopping criteria. In [BOG03] power performance of 

1 .45nJ/bitliteration is achieved by means of several algorithm and architecture level 
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optimization: reported data refer to a UMTS-like decoder, implemented in 180nm 

CMOS technology and supporting 75 Mbps. 

Several commercial implementations have been developed recently for decoders 

compliant with the 3GPP standard, both in the form of proprietary cores and soft 

cores. Some examples of available IP cores are given in [WEBO1], [WEB02], 

[WEB03], [WEB04], [WEB05]. VLSI design figures such as complexity, power 

dissipation and clock frequency are sometime available for these hard and soft cores. 

[WEB02] is a turbo decoder IP core available from Xilinx and designed for 3GPP 

[3GPP99] standard achieves the throughput of 6.5 M bits/sec for a 12 K block size and 

11 iterations. [WEB03] is Altera TC1000 DVB compliant block turbo decoder IP with 

payload bit rate of 4Mbitlsec. In [WEB05] a full 3GPP [3GPP99] standard turbo 

decoder is implemented as a drop in module for Virtex - E and Virtex II FPGAs. This 

iCoding S3000 module [WEB05] achieves data rates of 7 Mbits/s. With these IPs as 

well, there are no power figures provided. 

Implementations of turbo decoder on FPGAs have the advantage of flexibility 

(through device reconfiguration) and the availability of large amount of internal 

resources that can be exploited to achieve higher processing capabilities. The 

programming process for an FPGA consists in uploading of a bit stream containing the 

information for the internal configuration of logic blocks, interconnects and memories. 

For most devices the configuration process takes a long time and implies that the 

hardware previously mapped to the FPGA is stopped; these two main difficulties are 

overcome in recent devices that support partial and dynamic reconfiguration. Another 

major limitation to the adoption of FPGA platforms for wireless communication 

comes from the high power dissipation of FPGA devices, both dynamic and static. 

Inspite of these problems, the very short development time connected with the use of 

FPGAs, there is an impressive growth in the development of FPGA based system. A 

number of implementations addressed various turbo decoders achieving medium 

throughput figures [SHA03], [XIA02], [STEOI], [WEB05]. No power figures were 

quoted for implementations in [SHA03], [XIA02], [STEO1], [WEB05]. 
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The review done in above sections presents various implementation options for turbo 

decoding in academia and commercial. Due to parallel architecture inherent in turbo 

decoding high throughput architectures are possible exploiting the parallelism 

available in FPGAs but these implementations suffer from very high power 

consumption. Block turbo codes (and TPC) codec, because of its ease of 

implementation offer an attractive high speed low power implementation option which 

is exploited in variety of deep space application products. TPC codec has worst BER 

performance compared to convolutional turbo codec and are not used in 2 nd  and 3rd 

generation wireless mobile standards. 

In the current communication environments where different standard coexist, some 

new specifications for decoders in the modem platform emerge. Processing speed 

latency, energy consumption and cost constraints do not remain the only constraints 

on the design. A rapidly increasing role is now placed by two additional features, 

namely scalability and flexibility. Scalability is the capability of the platform to adapt 

to different choices for system level parameters, such as for example the mother 

convolutional codes or the size of the processed block; throughput, latency and power 

consumption typically change with these parameters and additional implementation 

complexity is paid to support scalability, however the decoder architecture is not 

changed or reconfigured when adapting to a different set of parameters. On the other 

hand the term flexibility is used to indicate the possibility to update an implementation 

platform in order to support a completely different decoder that does not simply 

require a change in some parameters: as an example a turbo decoder that can be 

reconfigured to perform Viterbi decoding. 

Aim of current research is to investigate scalable and flexible implementation aspects 

of convolutional decoding in the context of a software defined radio (SDR). A SDR 

device uses reconfigurable hardware that may be programmed over-the-air to operate 

under different wireless standards. For example, an SDR transceiver in a wireless 

laptop computer or PDA may be configured by different software loads to operate in 
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an IEEE-802.1 lx wireless network, a CDMA2000 wireless network, an 

OFDMIOFDMA wireless network, a GSM wireless network, or other types of 

networks. Many of these wireless standards require the use of turbo decoders or other 

decoders that are based on maximum a-posteriori probability (MAP) decoders. 

However, conventional decoders have significant drawbacks with respect to SDR 

applications. Turbo decoders and other types of decoders are optimized for decoding 

under only one or two specific standards. Conventional designs use different MAP 

decoders to support each standard separately. For example, a MAP decoder calculates 

three values: alpha (.alpha.), beta (.beta.), and lambda (.gamma.). Normally, three 

distinct hardware blocks are used to calculate these values. This increases power 

consumption and uses a large amount of die space. If an SDR device is required to 

support many wireless standards, more than one decoder must be implemented in the 

SDR device. This leads to a complex transceiver design that makes inefficient use of 

chip space and has high power dissipation. This also increases development cost and 

time-to-market (1'TM). Additionally, some of the newer wireless standards operate at 

relatively high data rates (e.g., WiBro, HSPDA, and the like). A decoder that is 

optimized in terms of speed and power consumption for a low data rate standard is 

unlikely to be optimized in terms of speed and power consumption for a high data rate 

standard, and vice versa. Thus, conventional decoder designs are not suitable for use 

in SDR applications. 

Next sections describe the reconfigurable architecture and techniques in current 

reconfigurable devices with an aim to assess the suitability of these techniques for our 

reconfigurable research. 

2.5 RECONFIGURATION IN FPGAs 

The origins of reconfigurable computing date back to 1960s by the concepts proposed 

by Gerald Estrin [EST]. The first FPGA (field programmable gate array) was 

introduced in [CAR86]. The reconfigurable design (RD) world has seen many changes 

and evolved both in hardware and software. Some of these improvements are 

discussed as under: 
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2.5.1 EVOLUTION IN LOGIC BLOCK ARCHITECTURE 

Historically the LBs can be seen to be evolved in the following order: 

• LBs build on NAND gates. 

• LBs build on mulitplexers. 

• SRAM (LUT) based LBs. 

• LBs build on clusters of LUTs. 

• Mixture of LUTs and application specific coarse grained LBs for example 

multipliers and dedicated processors. 

The first example of NAND gates based logic blocks is Cross point FPGA from Cross 

point solutions [MAP92]. It uses a single transistor pair (NAND) in the logic module. 

The transistors are connected in row and can be isolated by turning off the pair of 

transistor between the gates. In addition Cross point had RAM logic tile to implement 

memory or any other logic as LUT. A similar two input NAND block from Plessey 

FPGAs is shown in figure 2.1 [PLE89]. Latch can be made permanently transparent 

(using configuration RAM) if it is not required. 

Figure 2.1 Plessey LB 

Another example of LB based on NAND gates is the Toshiba FPGA developed in 

1991 [MUR91]. This FPGA has two input NAND gate and the input to the NAND 

gates is provided by either of the multiplexers. The multiplexers are connected to six 

local lines connected to adjacent cells and three long range connection lines. Latch 

output can be bypassed and inverted and non inverted outputs can be selected. Shift 
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registers can be implemented by using the master and slave cells. This is shown in 

figure 2.2. 

The second class of LBs based on multiplexers relied on the ability of the multiplexer 

to implement different logic functions by connecting each of its inputs to a constant or 

to a signal. 

Figure 2.2 Toshiba LB 

The Actel [GAR89, AHR90] blocks shown in figure 2.3 can implement 702 and 766 

logic functions respectively by connecting the multiplexer inputs to 110 or input 

signals. 

X 

82 

8394 	 CO 

Figure 2.3 Actel LB based on multiplexers 

A similar CLB by Quick logic [B1R99] is shown in figure 2.4. In this block alternate 

input to 'And' gate was inverted which eliminates the need of a separate inverter 
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circuit. Multiplexer based LBs are disadvantaged due to large number of inputs, 

demanding more routing resources. However they provide better flexibility for a 

relatively small number of transistors. 

The above set of fine grained CLBs exhibit poor performance in terms of area, power 

and delay/speed [SAT92]. The work shown in [SAT92] showed LUT based clusters 

gave best delay performance compared to multiplexer-based gates, NAND gates and 

the wide input AND-OR gates. One of the conclusions was that the connection delays 

often exceed the delay of the LB and hence is one of the fundamental limitations on 

FPGA speed. Increasing the functionality in a LB decreases these blocks in the critical 

path improving performance. 

Figure 2.4 Multiplexer based block by quick logic 

In the next category of SRAM based LUT, the logic corresponding to K inputs is 

stored in a 2" x I SRAM block. The address lines of SRAMs function as input and the 

output of the SRAM provides the value of the logic function. 

Figure 2.5 A 3 input LUT. 
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The biggest advantage in this case is the flexibility as a K-input LUT can perform any 

function of K inputs. The disadvantage is the large size of CLB due to 2' memory 

cells. Since the majority of the flexibility provided by LUT is not exploited in logic 

synthesis, a very large LUT will be underutilized. Figure 2.5 illustrates a three input 

LUT. The size of LUT determines the delay, area and power characteristics of a 

reconfigurable design. The work in [ANN I] and [ROS90] showed that LUT size of 4 

is the most area efficient in a non clustered context. 

After the non clustered approach, the LUTs started appearing in clusters. The main 

advantage with the clustered approach is that the routing resources are reduced and 

more functionality is provided within the blocks. It was demonstrated in [KOU9 1] that 

using a LUT size of 5 and 6 gave the best delay performance. In [AGR99] it is shown 

that two - three input LUTs have more advantages in terms of area and speed. 

[KAP99] suggested that using a heterogeneous mixture of LUT sizes of 2 and 3 was 

equivalent in area efficiency to LUT size of 4. The same problem was also addressed 

in [111L91], [R0S89] and [ROS90]. In a more clustered approach, the recent work by 

[EL104] has shown that LUT size of 4-6 and cluster size of 3-10 provides the best 

area-delay product for an FPGA. The results in the paper are confirmed by majority of 

the industrial implementations of FPGAs as can be observed by looking at the input 

size of LUTs in table 2.1. 

Device Year Logic Block, Cluster size 

Xilinx XC2000 1985 IxLUT-4 Input 

Xilinx XC3000 1987 1xLUT-5 Input 

Xilinx XC4000 1990 1xLUT-3 Input 

2xLUT-4 Input 

Xilinx Virtex 1998 4xLUT-4 Input 

Xilinx Virtex-II 2000 8xLUT-4 Input 

Xilinx Virtex-11 Pro 2001 8xLUT-4 Input 

Xilinx Virtex-4 2004 8xLUT-4 Input 
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Altera Flex 8000 1992 8xLUT-4 Input 

Altera Flex 10K 1995 8xLUT-4 Input 

Altera Apex 20k 1998 1 OXlut-4 Input 

Altera Apex-11 2001 1 OXlut-4 Input 

Altera Stratix 2002 1OxLUT-4 Input 

Altera Stratix II 2004 24xLUT-3 Input, 1 6xLUT-4 Input 

Table 2.1. Cluster size in commercial FPUAs 

The first appearance of cluster based LUTs can be seen after Xilinx XC3000 series. In 

Xilinx 4000 series two different sized (two four inputs LUTs feeding in to 3 input 

LUT) LUTs were used giving CLB a heterogeneous flavour. 

"dl 

C 

Figure 2.6 Cluster of LUTs in Xilinx 4000 

The next series called Xilinx-Virtex provided the first flavour towards high 

performance by the use of dedicated blocks. It contained dedicated block RAMs every 

12 CLB columns. The Xilinx Virtex series can be seen as an example of the last 

category of the LBs containing cluster of LUTs and several heterogeneous blocks. 

Similar to Xilinx, Altera reconfigurable devices also have clustered LUTs approach 

along with several coarse grained heterogeneous blocks. Altera's basic logic block 

signature can be traced back from its earlier flex 10K device. The details are shown in 

figure 2.7. 
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Figure 2.7 Flex 10K device by Altera 

The major difference from Xilinx devices is the avoidance of distributed RAMs to 

gain more predictable timing. The saving is especially higher for bigger size Xilinx 

distributed RAMs The main logic element is 4 Input LUT but unlike Xilinx, Altera 

LUT has separate drive capabilities for individual components giving it better 

utilization as shown in figure 2.8. 
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Figure 2.8 Altera Flex 10K logic element 
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Flex 10K also had faster interconnect topology by utilizing early-in and cascade-in 

chains. Its logic array block (LAB) is formed by combining LEs and each LAB 

contains about 96 usable logic gates. The embedded array consists of a series of EABs 

(embedded array blocks). The main approach in Stratix follows from its predecessors 

i.e., packing of multiple independent functional blocks in a single ALM. Altera Stratix 

II improved on Altera's earlier design by adding more heterogeneous blocks for 

example, DSP blocks, FIR/lW filters, FFT functions, DCI and correlators. It has three 

different classes of memory each defined for a different mode of operation hence 

moving towards restricting the domains of reconfigurability and gaining on 

performance. Another important example in this category of LBs is the HardCopy II 

devices (figure 2.9). HardCopy II device is a fixed non configurable device which 

removes all configurable resources and replaces them with direct metal connections. 

Hardcopy II devices consist of an array of HCells manufactured in 90nm process 

technology which has functionally equivalent architectural features as Stratix II. Only 

the HCells needed to implement the design are assembled together. The unused area of 

the HCell logic fabric is powered down. 
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2.5.2 ROUTING IN COMMERCIAL FPGAs 

The routing is used in a logic cluster to determine where the inputs come from and 

where the outputs will go. It also determines how the signal propagates through the 

logic elements themselves. There are two types of routing available one external to the 

logic clusters and one internal. We will restrict the discussion to external or global 

routing as internal routing has already been explained along with CLB/LE discussions 

in pervious sections. This chapter explains the routing schemes in commercial FPGAs 

and in chapter 3 the routing architectures are explained for domain specific 

reconfigurable architectures. In commercial FPGAs generally there are three different 

switch types used for routing: multiplexers pass transistors and tn-state buffers. There 

is also some form of fixed routing (non-programmable) which is used for fast carry 

propagation or fast shift registers. The overall routing architectures can be categorized 

as island, hierarchal, cellular and row architectures. Note that the current families of 

the commercial FPGAs have architectures that are more complex than what is 

described here, but these general categories can still be identified with in the above 

mentioned FPGAs. 

2.5.2.1 XILINX ROUTING ARCHITECTURE 

Xilinx uses island-style routing in which the logic structures are placed in two 

dimensional array surrounded by segmented horizontal and vertical routing channels. 

Figure 2.10 Island Style Routing 
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Each cluster connects to the routing through connection boxes (C-boxes) and C-boxes 

are connected by Switch boxes (S-boxes). S-boxes also provide change in direction 

from horizontal and vertical tracks and hence provide means of connecting one 

segment to another. 

Newer Xilinx routing architectures provide segments in several lengths for example 

long lines, Hex lines, double lines and direct lines. 
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Figure 2.11 single length connections 

[HIJNG90] has described the interconnect structure of Xilinx XC 4000 series of 

devices. It consists of single length, double length and long lines. The single-length 

connects adjacent CLBs via a switch box, where a switch box can connect for example 

CLB on the left to the top, bottom or right. Single length interconnects are used to 

connect the signals in localized area. This is shown in the figure 2.11. 

Note that the CLB's clock (K) input can be driven from one-half of the adjacent single 

length lines as shown in figure 2.12. The double length lines runs past two CLBs 

before entering a switch Matrix and provide connections for intermediate length point-

to-point interconnection. Double length lines are grouped in pairs, and the switch 

boxes are so placed that one member of the pair has switch box nearby alternating 

CLBs. 
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Figure 2.12 Double length connections 

The inputs in the CLB can be driven from any adjacent double length line and each 

CLB output can drive nearby double-length line in both the vertical and horizontal 

planes. Long lines are a grid of metal interconnect segment that run the entire length 

or width of the array and are intended for high fan out, time critical signal nets. Xilinx 

routing architectures are summarized in figure 2.13. Hex lines route signals to every 

third or sixth CLB in all four directions. Double lines route signals to every first or 

second CLB. Direct lines connect signal to neighbouring blocks including diagonal 

neighbours. 
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Figure 2.13 Xilinx interconnect topologies 
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Long lines are a grid of metal interconnect segment that run the entire length or width 

of the array and are intended for high fan out, time critical signal nets. Xilinx routing 

architectures are summarized in figure 2.17. Hex lines route signals to every third or 

sixth CLB in all four directions. Double lines route signals to every first or second 

CLB. Direct lines connect signal to neighbouring blocks including diagonal 

neighbours. 

2.5.2.2 ROUTING IN ALTERA FPGAs 

Altera FPGAs use staggered interconnects topology which demonstrates different 

levels of routing. It comprises of row and column interconnects that span fixed 

distances giving routing of different speed and lengths. The software (for example 

Quartus II compiler) automatically places critical design paths on faster interconnects 

to improve design performance. For example, Altera (Stratix) routing consists of a 

local interconnect, direct link, R4, R24, C4 and C16 interconnects. R4 interconnects 

are used for fast connections in a four LAB region. Figure 2.14 shows R4 interconnect 

of primary LAB and its left and right neighbours. 

I C..,.C,e I 

Figure 2.14 R4 interconnect 

In this scheme for R4 interconnects that drive to the right, the primary LAB and right 

neighbour can drive on to the R4 interconnect. 

For R4 interconnects that drive to the left, the primary LAB and its left neighbour can 

drive on to the interconnect. R4 interconnects can drive other R4, R24, C4 and C16 

interconnects to extend the range. R24 provide long row connections as it spans 24 
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LABs and it drives row (R4, R24) interconnects every fourth LAB. It can also drive 

C4 and C16 interconnects. Similarly column interconnects provide connections 

vertically where C4 interconnects spans 4 LABs or memory blocks (M512, M4K) and 

C16 spans 16 LABs. C16 is the fastest resource for column connection between 

LABs, tri matrix memory and DSP blocks. This is shown in figure 2.15. 

Figure 2.15 C4 interconnect 

2.4.3 CELLULAR ROUTING 

There is another kind of routing called the cellular routing in which the logic cells 

themselves are designed so they could be used as a part of the routing network 

between logic elements. The logic clusters for cellular routing are usually very fine 

grained and have single logic element in them. However the delays in the 

combinational paths get significant for circuits requiring longer routes in routing. An 

example structure is Cell Matrix [DUR01]. 

2.5.3 ROW ROUTING 
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A Row type routing is usually found in one-time programmable FPGAs for example 

many Actel Antifuse FPGAs ACT-I which consisted of vertical routing and some long 

wires. 

2.6 SUMMARY 

This chapter provided an overview of academic and commercial implementation of 

Viterbi and Turbo decoders. Some decoder algorithms are less complex to implement 

and achieve high data rates and low power consumption. Other algorithms provide 

excellent error correction performance but at the cost of high power consumption and 

lower speed. Each wireless standards define these algorithms as per the error 

correction capability desired. We have identified the state of the art in these 

implementations such that the results can be used to design a unified decoder structure 

that can target a large variety of communication standards. The chapter also 

introduced the evolution of reconfigurable architecture elements citing examples in 

commercial programmable devices. The configurable logic elements are covered in 

detail and an overview of different routing architectures is also provided. It has been 

shown that reconfigurable architectures tend to improve performance by restricting the 

application domain and by techniques that reduce the cost of routing. The next chapter 

covers another class of reconfiguration called domain specific reconfigurable 

architectures which have reconfiguration in even more restricted sense however giving 

better performance in a particular application domain. 
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Chapter 3 

RECONFIGURATION TECHNIQUES 
AND ARCHITECTURES FOR DOMAIN 

SPECIFIC PLATFORMS 

3.1 INTRODUCTION 

The approach for domain specific reconfigurable design is based on the observation 

that algorithms within a given domain of signal processing have in common a set of 

dominant kernels that are responsible for a large fraction of total execution time and 

energy. By executing these dominant kernels on dedicated, optimized processing 

elements significant energy savings can potentially be achieved. This yields 

processing elements that are domain-specific to a particular problem. The domain 

specific reconfigurable architectures can be classified on the basis of several criterion 

for example, reconfiguration model (static or dynamic), arrangement of logic blocks 

(cross bar, mesh or linear arrays), granularity (data path width), computation model 

(VLIW, MIMD, SIMD or single processor) and type of application domain (DSP, 

General Purpose, Video etc). One of the most successful applications for 

reconfigurable computing is in the field of real-time digital signal processing 

[TOD05]. Wireless is in many cases the driver for DSP processing on reconfigurable 

logic as a wireless baseband receiver consists of many DSP components. The authors 

of [V1L98], [HARO1], [ABWEB], [HAR21], [COM99] and [TOD05] presented a 

comprehensive survey of available reconfigurable computing platforms in the 

academic and commercial. In this section of dissertation the focus is only on 

architectures (or techniques) in literature that can directly or indirectly be useful in the 

baseband processing of a reconfigurable communication receiver. This chapter 

describes several suitable reconfigurable computation models citing examples from 

the literature and some existing reconfigurable architectures in the wireless domain. 
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3.2 DOMAIN SPECIFIC RECONFIGURABLE CORES FOR WIRELESS 
COMMUNICATION 

Based upon all of the published work, there are very few architectures designed 

specifically for wireless communications and some of the information on these 

architectures is either incomplete or not disclosed because of being proprietary items. 

On the basis of published information the most known and relevant architectures are 

presented below with an aim to cite the mappings for convolutional forward error 

correction decoding. 

3.2.1 CHAMELEON SYSTEMS - MONTIUM RECONFIGURABLE 
ARCHITECTURE 

Recore Systems [WEB25] Montium architecture is an extension of Chameleon 

Systems SoC template developed earlier at university of Twente, Netherlands 

[CHWEB], [SMI04], [PAU04]. Montium predecessor Chameleon had CS2000 family 

of multi-protocol multi-application reconfigurable platforms designed for 

telecommunication and data communication. Chameleon CS2000 can be considered as 

a general solution for the wireless application. However, it was not meant to be an 

implementation solution for the baseband processing of the handheld terminals. The 

C52000 family's very sophisticated and in-homogenous array makes an IP-based 

mapping difficult. The CS2000 family incorporates a 32-bit RISC core as a host, 

licensed from ARC UK, with full memory controller, PCI controller and a 

reconfigurable array. The reconfigurable array sizes come in 6, 9, and 12 tiles. The tile 

consists of seven 32-bit processing elements (each containing an 8 word instruction 

memory), four local memories of 128(deep) x 32(wide) bits, control logic and two 

16x24-bit multipliers. Every three tiles are grouped as a slice which can be configured 

independently and also includes 8k Bytes of local memory. The 32 bit processing 

element can also operate in SIMD fashion on four 8 bit data streams or two 16 bit data 

streams. It is programmed with eight user-definable instructions stored in the 

instruction memory. The instruction configures the input output routing, shifting, 

masking, register enables, memory read and write, flag generation and the operation of 
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processing unit. Dynamic configuration is supported and can be accomplished in one 

cycle. Their CS1200 family aims at initial markets in communication infrastructure 

with application areas as wireless base stations, fixed point wireless local loop (WLL), 

smart antennas, voice over IP (VoIP), very high speed digital subscriber loop (DSL) 

etc. 

Montium architecture designed for a 16-bit digital signal processing domain provides 

improvement to Chameleon system. The architecture resembles a VLIW processor - 

with some similarity to architectures explained in section 3.5 but with an optimized 

control structure. The VLIW instruction scheduling is done at compile time on to 

Montium coarse grained processing element called tile processor (TP). The TP 

consists of five identical ALUs each having its own local memory. There are ten local 

memories for the five ALUs. A sequencer selects the instructions that are stored in the 

decoder of TP [PAU06]. Each local SRAM is 16-bit wide and 512 locations deep 

constituting 8Kbit storage capacity per local memory. These local RAMs can also be 

used as a LUT to perform functions such as sine or divisions similar to FPGA based 

LUTs explained in chapter 2. Each ALU has four 16 bit inputs and two 16 bit outputs. 

Each input has a register file that can store up to four operands and can be written by 

various sources through a flexible interconnect. The ALUs can directly communicate 

with other ALUs horizontally i.e., in West-East direction etc. 

The flexibility of MONTIUM and granularity of its ALU was decided after mapping 

various FFT, DCT, FIR, VITERBI, TURBO, BLUETOOTH baseband algorithms 

[WEB26]. The compile time mapping process starts from description of algorithm in 

C++ or Matlab. The translation from description to architecture is done by 

programming in Recore's propriety Montium configuration description language 

(CDL). The CDL programs are then compiled for ALU mappings by using Montium 

Synsation compiler. The software tool chain with Montium also contains a cycle 

accurate Montium graphical simulator called Montium Simsation simulator. 
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Montium multiprocessor system consisting of multiple TPs is connected by a network 

on chip communication (NOC) fabric. Each TP has communication and configuration 

unit (CCU) which implements the network interface for communication between NOC 

and TP. The routers in the NOC connect to other routers creating a heterogeneous 

NOC of various hardware modules. There is also an AMBA-Advanced High-

Performance Bus (AI{B) bridge that connects a reconfigurable fabric to embedded 

processors, high performance peripherals, DMA controller, on chip memory and 

various other interfaces. 

In [EPRO1] turbo/viterbi channel decoder mapping on Montium architecture is 

described however, the implementation level details for the TP or the turbo decoding 

such as interleaving, modulation type, SISO arrangement and concatenation (serial / 

parallel) and fixed point considerations are not disclosed. Similarly Viterbi mappings 

on the array are accompanied by synthesis implementation results without any 

implementation level details. Results for the power consumption in Montium are not 

provided directly however, in [PAU07[ the power consumption for one TP memory 

arrangement is calculated. This calculation is based on FFT mapping and is shown that 

0.6 mw/ MHz is consumed by one TP. The overall power consumption in the fabric 

will depend on the speed and number of TPs required for the mapping. The mappings 

in [EPROI] show successful achievement of 3GPP and DAB data rates however the 

important power consumption details are not provided. 

The main advantage in VLIW structures like Montium is that the compiler decides 

what can be executed in parallel and there is no need for the hardware to check 

dependencies or decide on scheduling as these are resolved at compile time. However 

as indicated in [PAU04] there are a number of software challenges: 

• Firstly, building good compilers for VLIW structures is non-trivial as a best re- 

arrangement of code for long instruction packing may always be not possible. 

• Programs will tend to grow bigger as it may not always be enough instructions 

that can be done in parallel to fill all the available slots in the instruction, 
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which in turn means bigger code due to this wasted space. Memory band width 

always has important consequence on speed and power as it determines the 

size of the caches. 

It is not possible at compile time to identify all possible sources of pipeline 

stalls and their durations. A stall on cache miss, on one processor may create 

dynamic data dependency in other execution units which can result in write 

hazards (write after write hazard). Stalling all the parallel pipelines to avoid 

this problem results in poor performance. 

e Since compilers now need to know more details about architecture and length 

of the pipeline etc, changing a hardware component in turn means loss of 

binary compatability and redesign of compiler. 

The solution of these problems for example, may require sufficient hazard resolution 

hardware to deal with the dependencies that dynamically occur during execution, such 

that complete processor does not stall when one component does. Therefore, there are 

numerous hardware and software bottlenecks that limit the performance of VLIW 

based Montium architecture. 

MorphlCs [MOWEB] also announced its own version of reconfigurable chips 

targeting the next generation of wireless applications; it never disclosed any 

information about the inner design of its solution. 

Some domain specific cores have been developed around coarse grain general purpose 

architectures. Carl et. al [CAR04] developed an OFDM receiver based on RaPiD 

coarse grain reconfigurable architectures. RaPiD is based on linear array with no 

register file or crossbar interconnects. Therefore, the OFDM core has inherent 

limitations of the underlined architecture. RaPiD also shares many of the features of 

VLIW processor architectures and has similar limitations as discussed for Montium 

but with some improvements from a typical VLIW solution. For example, the RaPiD 

instruction format and decode logic is configured for each application according to the 

dynamic control required. This reduces the instruction width as same instruction field 
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can be used to control many different parts of the data path. It was stated in [CAR04] 

that 32-bit instructions have been sufficient to map a wide range of algorithms to a 

datapath with over 100 functional units and memories. 

There were no mappings of error correction decoders found on RaPiD, however work 

in [CAR04] details mappings for some common wireless baseband components. For 

example: searching blocks, synchronizing blocks and FFT blocks required in a 4 

channel MIMO OFDM receiver. It was concluded in [CAR04] that implementation on 

RaPiD for searching and tracking algorithms has 16 times the performance of the DSP 

implementation, at about three times the cost. When compared to ASIC, the RaPiD 

mapping has about half the performance at about three times the cost. When compared 

to FPGA, RaPiD has three times the performance at about 118 th  of the cost. RaPiD is 

designed for regular data paths like those found in digital signal processing, graphics 

and communications. Applications with highly irregular computations and complex 

addressing patterns or the applications that sparingly reuse data and cannot have fine-

grained parallelism will not map well on the architecture. Rapid architecture is 

explained below: 

3.2.2 RAPID ARCHITECTURE FOR OFDM WIRELESS RECEIVER 
MAPPINGS 

Rapid (Reconfigurable pipelined datapath) [EBE96, CR099, DAR98] is an 

architecture based on linear arrays. Its functional units (FU) are arranged in a serial 

sequence (having a common data width generally between 8 to 32 bits wide) but with 

no register file, or crossbar interconnect. Data is streamed in directly from external 

memory managed by a stream manager. The programmed controllers decode the 

operations in to parallel FUs of the data path of RAPID. Data and intermediate results 

are stored locally in registers and small RAMs, close to their destination FUs. The 

architecture is shown in figure 3.1. 
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Figure 3.1 Block diagram of RaPiD 

Figure 3.1 shows FUs of RAPID. The selection of FUs is chosen based on the 

application domain for which the device will be used. 
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Figure 3.2 interconnects for RAPID 

The FUs range in complexity from a simple general purpose register to booth-

multiplier with a configurable shifter or a viterbi decoder. The interconnect scheme is 

created by a linear arrangement of segmented word-based buses. The segments are 

connected by bus connectors as shown in figure 3.2. 
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All buses have same width which matches the data width operated on by the FUs. Bus 

connector can drive left, drive right, or be disconnected by using the tn-state buffers as 

shown in figure 3.3. The bus connector can also be configured to provide up to three 

register delays. 
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Figure 3.3 Bus connector with configurable delay and BC 

An input to a functional unit coming from the tracks is controlled by the multiplexer 

as shown in figure 3.4. 
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Figure 3.4 Connection of tracks to FUs of RAPID 

FUs drive the buses through tristate buffers and each FU can drive an arbitrary number 

of buses. The multiplexer control bits can be changed dynamically allowing some 

dynamic reconfiguration. Each track can be driven by any bit of the instruction word. 

These bits then run in parallel to the datapath and potentially through logic blocks in 
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order to produce the required soft control signals. Therefore the configuration of the 

dynamically changeable resources is controlled cycle by cycle using the "instruction 

generator" and "configurable instruction decoder". There is a stream generator which 

essentially is a memory interface with an address control and FIFO for each input and 

output stream. It provides the architecture with streams of data from external memory 

or other resources and receives the output streams from the RAPID architecture and 

writes the data to the external devices. 

Another method for providing enhanced performance for communication based 

algorithms is by the use of application-specific instruction set extensions. By creating 

application specific extensions to an instruction set, the critical portions of an 

application's dataflow graph (DFG) can be accelerated by mapping them to custom 

functional units. Though not as effective as ASICs, instructions set extensions 

improve performance and reduce energy consumption of processor. Instruction set 

extensions also maintain a degree of system programmability, which enables them to 

be utilized with more flexibility. Next section describes such architectures 

3.2.3 APPLICATION SPECIFIC INSTRUCTION SET PROCESSOR (ASIP) 
BASED COMMUNICATION DESIGNS 

In order to keep the design turnaround times short, there is a general trend in ASIPs 

(used in communication domain) to avoid complexity of a complete processor design. 

There are existing processors that allow specialization to their instruction set or data 

path for example; Xtensa from Tensilica [WEB27], Stretch S5 from Stretch [WEB28], 

ARCtangent from ARC [WEB29], and LISATek products from CoWare [WEB30]. 

There are architectures found in literature that use these processors for a unified 

communication based band mappings. 

In [ROSO4] UMTS based turbo decoder is mapped on to XiRisc ASIP developed by 

university of Bologna [1SE95]. The architecture uses 5 stage RISC pipeline tightly 

integrated with FPGA like reconfigurable array. The design inherits some of the 

disadvantages of the RISC architecture as the performance suffers due to the load store 
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pipeline structure and the internal memory bandwidth. The optimizing compiler sees 

the reconfigurable array as one of the various function units of ALU facilitating the 

job for compiler. It is demonstrated in [ROSO4] that 8 XiRisc processors are required 

to achieve 3GPP [3GPP99] data rates which makes this solution very impractical for 

handheld wireless receivers.. 

In [GIL03] another ASIP based on the Tensilica XTENSA [WEB27] platform 

targeting the channel decoding domain is presented. This architecture allows new 

instructions to be added at design time. The hardware for the new instructions within 

the processor pipeline is synthesized with an ASIC-like flow; hence, the processor 

cannot be reconfigured after the fabrication. Selection of the new instructions is 

performed manually by using a simulator and a profiler. When the Xtensa processor is 

synthesized, a dedicated development tool set is also generated that supports the newly 

added instruction as function intrinsics. The structure has some similarity to XiRisc 

architecture but has only four stage RISC pipeline. It suffers from similar 'load-store' 

drawbacks of the RISC architecture however, the ASIC implementation of data path 

allows higher turbo decoder throughput (1 .4Mbp/s per iteration - 0.2 Mbps for 6 

iterations) than XiRisc. The design only allows compile time reconfiguration where as 

XiRisc allowed dynamic reconfiguration and inspite of the ASIC flow the data rates 

achieved by XTENSA are still less than that required for 3GPP UMTS [3GPP99] 

standard. 

Another architecture [VOG06] implements viterbi and turbo decoding on ASIP 

synthesized at 65nm CMOS standard cell libraries. A throughput of 20Mbps (at 5 

turbo iterations) is achievable but at a very high clock frequency of 400MHz. Power 

figures are not quoted for the design which is an important parameter for its domain of 

interest i.e., battery powered wireless receivers. The design uses 16 parallel ACS 

blocks at 400 MHz which owing to its size is a very power aggressive design 

approach. The ASIP is based on framework provided by LISATek from CoWare Inc 

[WEB30]. It is a SIMD execution model with 11 stages of pipeline and 24 bit wide 

instruction. The SIMD multiprocessor execution model also suffers from a 
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complicated compiler, complex instruction scheduling and packing mechanism and 

runtime data dependency problems that can cause hazards in the processor pipeline. 

The architecture is claimed to be reconfigurable for DVB and CDMA however only 

convolution based architecture is described and block based decoding required for 

DVB are not disclosed. 

3.2.4 VITURBO 

Viturbo [CAV03] is an architecture developed at university of RICE for a unified 

turbo and viterbi decoding. The aim of this design was to achieve high data rates 

suitable for WLAN and 3G standards and allow reconfigurability between these two 

standards. Its reconfigurable design is based on a full parallel decoding approach for 

all possible constraint lengths resulting in architecture with 256 parallel states. The 

array consists of 256 adder-compare-select blocks with the additional control and 

RAMs circuitry. Reconfigurable interconnect is realized by the use of a large array of 

multiplexer banks. The design supports Viterbi decoder for constraint lengths 3 to 9 

and code rates 1/2 and 1/3. Rate ¼, 1/5 which are also required in 3GPP are not 

supported. Throughput rates up to 60.5Mbps for Viterbi decoding and 3.54Mbps for 

Turbo decoding were achieved on Xilinx Virtex II (XC2V2000) FPGA. Power 

simulations were also performed using Xilinx Xpower simulator. SOVA decoding 

algorithm were chosen for Turbo decoding which is inferior in BER performance 

compared to Max Log Map or Log Map decoders. This fully parallel scheme results in 

larger area and very high power consumption. For example, 3GPP [3GPP99] Viterbi 

decoder mapping on the array consumes 1.42 Watts of power. The other disadvantage 

is that the mappings that use only part of the array will have power wasted in the 

unused circuit. The design requires over 190k logic gates and about 327k bits of 

memory. The size and the power consumption make the design unsuitable for 

handheld battery powered wireless receivers. 

The research in this thesis investigates speed and power efficient reconfigurable VLSI 

design for a convolution FEC decoder that can target a large variety of wireless 

communication standards. Next sections describe some other MIMD, SIMD, VLIW 
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reconfigurable DSP architectures that may be useful in our reconfigurable design 

space exploration. 

3.3 ARCHITECTURES BASED ON LINEAR ARRAYS 

The majority of the VLSI architectures employ a pipelined data path to gain timing 

advantages. The concept used in pipeline acceleration is to reconfigure pipelines or 

parts of pipelines onto a reconfigurable architecture. The reconfiguration allows one 

stage of the pipeline path to be configured in every cycle, while concurrently 

executing all other stages. The reconfiguration is usually done at run time (dynamic) 

with an aim to keep the time for reconfiguration as short as possible. This works well 

for linear pipelines without forks. If there are forks in the pipeline, which would 

require a two dimensional realization, additional routing resources are needed, which 

are normally provided by longer lines spanning the whole or part of the array. The 

linear structure of processing elements allows direct mapping of pipelines with the 

inherent problem for forks. Unlike most mesh-based architectures (section 3.5), the 

resources are not evenly distributed as the architecture extends in only one direction. 

Piperench and Rapid are the two example architectures in literature with a linear array 

structure. While Rapid uses a mostly static configuration model, PipeRench relies 

highly on fast partial dynamic pipeline reconfiguration as well as run time scheduling 

of both configuration streams and data streams. The architecture is explained here as 

an illustrative example of dynamic reconfiguration. 

PipeRench [GOL02, G01,99] is a coarse grain reconfigurable architecture developed 

to speed up pipelined applications. The architecture is organised in stripes of pipeline 

stages. Each strip has 16 processing elements and 8 entry register file. The 

reconfigurable components allow the configuration of one pipeline stage in every 

cycle, while executing all other stripes in parallel. It aims to adapt the concept of 

virtual memory to reconfigurable hardware, resembling a virtual hardware thus 

implementing a time multiplexing of the physical computation resources. Figure 3.5 

shows stripes arrangement in a ring structure. 
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The ring is formed by connecting the last stripe to the first. RO register along with the 

details of PEs is shown in figure 3.6. An application pipeline is mapped on to the 

PipeRench, and the physical hardware is kept transparent to the application. The state 

of the over-written virtual stripes is preserved by writing the value into the RO state 

store memory. The state will be restored when that virtual stripe is returned to the 

fabric. The processing elements consist of ALUs implemented as 3 input LUTs (8 

LUTs/PE), barrel shifter, carry chain circuitry, zero detection circuitry etc. 
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Figure 3.5 Stripes of Piperench architecture 

The PEs within a stripe are interconnected through local interconnection network. PEs 

can access operands from the registered outputs of the previous stripe, as well as 

registered or unregistered outputs of the other PEs in the same stripe. There are 42 bits 

required to configure a PE while 672 bits are needed for an entire chip. The output 

from the PE can be written to any register in the register file. Unused registers are 

filled by the value from the corresponding register in the previous stripe. The PE 

output can also connect to horizontal interconnect line, which goes to other PEs in the 

stripe. This output can be programmed to be connected to the outputs of the previous 

stripe's register file or the current stripe's RO. When the virtual hardware is larger than 
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the available stripes, physical stripes will eventually be reconfigured with new virtual 

stripes. 
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Figure 3.6 Processing elements in piperench. 

3.4 WORMHOLE RECONFIGURATION MODEL 

In Wormhole runtime reconfiguration model, the data streams to be processed carry a 

header with configuration information. This header holds the configuration data for 

both the routing and the functionality of all processing elements the data stream 

encounters on its way. The main architecture in literature under this classification is 

Colt [B1T96], [ANN02]. The Colt system is mainly targeted for DSP applications 

which are implemented by configuring pipelines or part of pipelines onto the 

architecture. The pipelines are then used to process data streams. Figure 3.7 shows the 

functional unit of Colt system. 

By directly connecting functional units and guaranteeing that only one operand exists 

on an arc at a given time, the implemented data flow graph is reduced to a set of 

interacting pipelines. There are four main subsystems in the Colt: Six data ports (DPs), 
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the crossbar switch, the integer multiplier and the mesh. The mesh is further 

subdivided into Interconnected Functional Units (IFUs) which is the main 

computational facility. The FU has 16-bit left and right input registers, each of which 

can load an operand from any of the four nearest neighbour connections or from any 

of the four skip bus segments connected to the IFU. 

Figure 3.7 Colt functional unit 

The conditional unit in figure 3.7 selects left or right path and the output of the 

conditional unit passes through an optional output delay before being released to the 

rest of the chip on the four nearest neighbour connections. There is also a carry chain 

for add, subtract and negation. The IFUs at each side are connected by unidirectional 

nearest neighbour links in each direction with one outgoing and one incoming port. 

There is also a skip bus running between the IFUs which provide segmented 

connections between IFUs of the rows. In the top row, each IFU has two inputs from 

cross bar and in the bottom row IFU has single output going to the crossbar. At the left 

and right edges the two nearest neighbour links and the skip bus are connected to the 

opposite edges forming a torus structure. The dedicated integer multiplier has two 16 

bit inputs and two 16 bit outputs for the high and low word of the 32 bit result in two 

clock periods. Since the multiplier inputs and outputs are directly connected to the 
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cross bar the results can be quickly routed to any part of the chip for further 

processing. The six data ports are bidirectional, each 20 bits wide with 16 bits for data 

and four bits for stream flow control. 

INPUTS FROM CROSSBAR 

OUTPUTS TO CROSSBAR 

Figure 3.8 Colt IFU interconnection 

3.5 VLIW EXECUTION BASED RECONFIGURATION MODEL 

Multiprocessor based reconfigurable architectures have multiple instances of ALUs 

distributed in different placement strategies. There are three execution models for 

multiprocessor arrays: 

• Multiple instruction multiple data (MIMD) model for example Chess array 

explained in section 3.6. 

• Single instruction multiple data (SIMD) for example Morphosys architecture 

explained in section 3.8. 

• Very large instruction word (VLIW) model for example Paddi architectures. 

Chess, Morphosys and Paddi are examples of multiprocessor arrays. This section 

explains Paddi architectures as an example of VLIW execution model and crossbar 

based routing. 
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A full crossbar router allows the most flexible communication topology between the 

processing elements. The routing task thus becomes a simple operation. However, the 

implementation cost of a full cross bar is very high and therefore usually reduced 

complexity cross bars are used as in Paddi I. 

Figure 3.9 EXU of Paddi I 

The PADDI (Programmable Arithmetic Device for Digital Signal Processing) family 

of reconfigurable architectures was developed to address the problem of rapid 

prototyping for computation intensive DSP data paths. Paddi I [DEV90, CHE92] is a 

multiprocessor VLIW based architecture in which each execution unit (EXU) operates 

a four stage pipeline consisting of Fetch - Decode- Execute- Output cycles. The EXU 

(configurable between 16 or 32 bit wide operations) supports addition, subtraction, 

saturation, comparison, maximum-minimum and arithmetic right shift operations. 

Each EXU has an SRAM-based nano store which is configured serially at set-up time. 

At run time external sequencer broadcasts a 3b global address to each nanostore which 

is locally decoded in to a 53 bit instruction word. A 3 bit address is able to specify 8 x 

53 or one 424 bits very long instruction word. The EXU architecture is explained in 

figure 3.9. PADDI-2 [YEU93] has a similar architecture but now with Booth 

multiplier in EXUs (called nanoprocessor in Paddi 2). The small local program at each 

nanoprocessor implements a node or a cluster of few nodes of the data flow graph. 
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The arcs of the data flow graph are implemented by a flexible interconnect network 

that can be configured by programming SRAM cells controlling switches in the 

interconnect network to create point-to-point links between the nanoprocessors. 

Computational activities are coordinated by a distributed data-driven control strategy 

in which nanoprocessor computations are synchronized by passing data and control 

tokens. Each nanoprocessor has input FIFOs that capture incoming tokens from the 

communication network. Pleiades is a low power version of this family and consists of 

additional control processor. It comprises a general-purpose core surrounded by a 

heterogeneous array of autonomous special-purpose satellite processors. All 

computation and communication activities are coordinated via a distributed data-

driven control mechanism. The dominant, energy-intensive computational kernels of a 

given DSP algorithm are implemented on the satellite processors as a set of 

independent, concurrent threads of computation. Examples of satellite processors are 

Memories, Address generators, PGAs, MAC, ACS and DCTs. Figure 3.10 shows the 

Pleiades architecture. 
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Figure 3.10 Pleiades architecture 

The interconnect topology is a generalized mesh [ZHA99] in which the clusters 

internally use tightly connected generalized mesh architecture and inter-cluster switch 

boxes allow communication between clusters using the next higher level of 

communication network. Configuration is loaded into the configuration store registers 
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by the control processor through a wide configuration bus at a rate of 32 bits per cycle 

and there is overlap for configuration and kernel execution. This is accomplished by 

using multiple configuration contexts in multiple configuration store registers. There 

is also a distributed control mechanism as compared to one large global controller 

3.6 MIMD RECONFIGURATION MODEL 

The idea of a MIMD execution model based reconfiguration is to provide a highly 

parallel computing architecture composed of several repeated and interconnected tiles. 

The tiles comprise of computation facilities (like ALUs) and memory. The best 

example for such arrangement is the RAW architecture developed in MIT [MICO2, 

WA197]. It. is a RISC multi processor architecture and one of the most coarse grained 

architectures. It is two dimensional array of microprocessor (32-bit MIPS) tiles with 

32-bit pipelined floating point unit, local instruction and data caches, controller, 

register file of 32 general purpose and 16 floating point registers and program counter. 

It also contains several routers and wiring channels to support static (determined at 

compile-time) and dynamic (wormhole routing for data forwarding) networks. The 

prototype chip features 16 tiles arranged in 4 by 4 array. All architectural details are 

disclosed to the compilation framework. The processors however lack the support for 

dynamic instruction issuing or caching or register renaming. Due to the lack of these 

features, the execution model uses statically scheduled instruction streams generated 

by the compiler. Thus development software has to resolve all the dynamic issues. 

The CHESS architecture [MAR99] developed by Hewlett Packard Laboratories is 

another example of MIMD architecture. The architecture consists of ALUs and 

switchboxes. These components are arranged in a chessboard-like pattern as shown in 

figure 3.11. The ALUs feature two inputs and one output (4 bits 

registered/unregistered) as well as one single-bit input and one output for carry. The 

instruction set features 16 operations, including add and subtract, nine logical 

operations, two multiplex operations and three tests using the carry bit as condition 

output. Carry signals can be routed through the general routing fabric but also have 

dedicated high speed local routing paths to their north and east neighbours. It is 
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possible to connect the data output of an ALU to the configuration input of another 

one. Thus, the functionality of an ALU can be changed in a limited way on a cycle-

per-cycle basis during runtime by configuration data generated inside the array. 

Figure 3.11 Chess board placement pattern in Chess Array 

There is no facility for partial reconfiguration from outside of array as is possible in 

Paddi or Colt architectures. The ALUs and all routing resources are four bits wide. 

This is shown in figure 3.12. 
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Figure 3.12 Functional unit in Chess 

3.7 UN! PROCESSOR RECONFIGURATION MODEL 
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Domain specific reconfigurable architectures described so far are all coarse grained. 

The Garp architecture [HAU97] is a fine grained architecture that uses the concept of 

reconfigurable hardware being used as a slave of a standard MIPS processor. The 

reconfigurable logic blocks in the array resemble Xilinx 4000 FPGA series. By 

including a microprocessor, the Garp is targeted for ordinary processing environments, 

with the reconfigurable array being only activated for acceleration of specific loops or 

subroutines. The granularity of the processing elements is two bits with clusters of 

several such processing elements connected across rows. The instruction set of the 

MIPS-Processor has been extended with instructions to configure and control the 

array. The array works on a clock counter updated by the processor which determines 

the number of clock cycles the computation in the array should last. The counter 

decrements with the array clock cycle. When the counter is zero, updates of the state 

in the array are stopped. The Garp reconfigurable array consists of entities called 

blocks. There are at least 32 rows and 24 columns of blocks. One block on each row is 

known as control block. Figure 3.13 shows the architecture of Garp array. 
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Figure 3.13 Garp architecture. 
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The 16 consecutive blocks in a row provide operations on 32-bit quantities. In total 

there are 23 logic blocks per row. The basic unit of reconfiguration is one row, which 

can be seen to as a kind of reconfigurable ALU, being formed from relatively fine-

grained blocks. There is one control block for each row which is used for interfacing 

tasks like interrupting the processor or for initiating memory accesses. Memory 

accesses can be initiated by the reconfigurable array, but the data connection to 

memory is restricted to the central 16 columns with 16 logic blocks of each row. 

3.8 SIMD RECONFIGURATION MODEL 

A SIMD execution based reconfiguration model consists of a processor and parallel 

execution units. The processor issues the instructions in a SIMD manner. Morphosys 

is an example of SIMD reconfiguration model as it consists of a SIMD processor 

tightly coupled with a reconfigurable array. It is also targeted at highly regular 

applications with inherent data-parallelism. 
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Figure 3.14 Morphosys block diagram 

The Morphosys architecture comprises a core processor (Tiny RISC), a frame buffer, a 

DMA controller, a context memory, and a reconfigurable component organized in 
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SIMD fashion as an array of 8 by 8 reconfigurable cells. The core processor has an 

extended instruction set for manipulation of the DMA controller and the 

reconfigurable array as shown in figure 3.14. 

The programmable reconfigurable cell (RC) array of MorphoSys comprises an 8 by 8 

array of identical processing elements. The array is divided into four quadrants of 4 by 

4 cells each. A RC features a 16-bit datapath, comprising a 16x12 Multiplier, a shift 

unit, two input multiplexers, a register file with four 16 bit registers and a 32 bit 

context register for storing the configuration word. The multiplier can perform the 

standard arithmetic and logical operations as well as a multiply-accumulate operation 

in a single cycle. The multiplier has four inputs, two over the input multiplexers, one 

from the output register, and one connected to the context register to load a 12 bit 

operand contained in the configuration word. The two input multiplexers select one of 

several inputs for the Multiplier based on the control bits from the context word in the 

RC context register. These inputs include the outputs of the four nearest neighbour 

RCs, outputs of other RCs in the same row or column (with the quadrant), horizontal 

and vertical express lines, FB data bus and RC register file. This is shown in figure 

3.15. 
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Figure 3.15 Reconfigurable cell in Morphosys 
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The RC array interconnect consist of three hierarchical levels. In the first level, all 

cells are connected to their four nearest neighbours in a 2D mesh. The second level of 

connectivity is at the quadrant level (4x4 group of RCs). The RC array has four 

quadrants and within each quadrant, each cell can access the output of any other cell in 

its row and column. The third layer of interconnect consists of buses at a global level 

spanning the whole array and allowing transfer of data from a cell in a row or column 

of a quadrant to any other cell in the same row or column in the adjacent quadrant. 

3.9 SUMMARY 

This chapter introduced domain specific processor for configurable computations. 

Conventional programmable architectures shown in chapter 2 are concluded to be far 

less energy efficient than custom, application-specific devices. The inefficiency is due 

to the manner in which flexibility is achieved in conventional processors. 

Computations are performed on functional units that are designed for a much larger 

domain of applications. This makes the functional units large and complex, and their 

granularity is not always well-matched to the data types and the computations required 

by target algorithms. Similarly data operands are also stored in large centralized 

memory structures. This basic weakness afflicted all of the architectures that were 

discussed in chapter 2. It was then shown in this chapter that architectures that target a 

smaller set of applications can be more efficient than general-purpose devices and 

must be pursued. Domain-specific architectures can be particularly efficient, as they 

provide the architect with the opportunity to match architectural parameters to the 

properties of the target domain of algorithms. The next chapter proposes a 

reconfigurable solution for turbo decoding keeping in view the lessons learnt from the 

architectures in chapter 2 and chapter 3. 
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Chapter 4 

RECONFIGURABLE TURBO 
DECODING 

4.1 INTRODUCTION 

In this chapter the solution to the problem of reconfigurable turbo decoding is 

presented. A two fold reconfiguration context is designed, one is the 

reconfiguration of turbo decoding array itself as it is used in various wireless 

communication standards. Secondly, reconfiguration to adapt a turbo decoder for a 

common communication platform consisting of unified turbo-viterbi decoding 

components. For the first context, reconfiguration provides flexibility between 

different generator polynomials, constraint lengths, rates and frame sizes. In the 

second context reconfiguration addresses issues like state metrics normalization, 

sharing of input/output RAMs etc. For both contexts, a reconfigurable state 

machine control for individual and unified turbo decoding components is provided. 

A low power technique for caching two Window lengths on input matrices that 

reduces the read excess to larger input RAMs is also developed. Similarly branch 

metrics storage is avoided by performing more recalculations. 

The rest of the chapter is organized as follows. In section 4.2 and 4.3 the 

mathematical basis of the algorithm is briefly described. Section 4.4 describes the 

modifications done to the algorithm in literature to make it more suitable for 

hardware implementation. Section 4.5 gives the iterative BER improvement in 

turbo decoding. Section 4.6 to 4.11 presents different components of the 

reconfigurable VLSI design and the domains of reconfiguration. At the end 

comparisons of our results with the state of art and the contributions are discussed. 
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4.2 TURBO DECODING - THE INVENTION 

Claude Berrou, Alain Glavieux and Patrick Adde seminal contribution in [BER93] 

reported excellent coding gains approaching Shannonian predictions [SHA48]. This 

gave an insightful concept in to the error correcting power of turbo codes. The 

work in [BER93] was based on literature of G. Battail in 1987 [BAT87] and J. 

Hagenauer and P. Hoecher in 1989 [1-1AG89]. These scientists started their work on 

the Soft-Output Viterbi Algorithm which stimulated them to consider 

cascading/concatenating coding techniques for large asymptotic gains. Punya 

Thititmajshima, later joined the group in 1989 as a Ph. D student with his work 

started showing in literature in 1995 [TH195]. The beginning of SOVA was then 

replaced by Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [BAH74] at the end of 

discovery. The main patent filed for Turbo decoding is 1992 [PAT1]. 

4.3 THE MAXIMUM-A-POSTERIOR! (MAP) ALGORITHM 
MATHEMATICAL DESCRIPTION 

The MAP algorithm [BAH74] examines every possible path through the convolutional 

encoder trellis and therefore initially seemed to be unfeasibly complex for the majority 

of applications. Hence it was not widely used before the discovery of Turbo Codes. A 

brief description of the Log-MAP algorithm is given below. Throughout the thesis 

binary codes are assumed. 

The MAP algorithm gives, for each decoded bit u,, the probability that this bit was +1 

or -1, given the received symbol sequence y 0  .This is equivalent to finding the 

aposteriori log likelihood ratio 

P(u k  =+1I) 
L(u Iy0)=ln 

P(uK 	1) 
(1) 

Using Bayes' rule which gives the joint probability of a and b, P(a A b), in terms of the 

conditional probability of a given b 'P(a b)' as 

P(aAb)=P(ab).P(b) 	 (2) 

and also using its consequence 
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P({aAb}c)=P(a{bAc}).P(bc) 	 (3) 

Bayes' rule allows us to rewrite the equation (1) as: 

L(uKIyO)=ln P(uk=+IAyO) 
	 (4) 

P(uK =—lAy 0 ) 

Let us consider the convolution encoder with K=3, for which the possible 

transitions are shown in the figure 4.1 

-1 	S. 

Figure 4.1: Possible transitions in the trellis corresponding to Constraint length 

K=3 

For this code there are four encoder states, and since we consider a binary code, 

therefore, in each encoder state SKI there are two possible transitions. These transitions 

depend whether the input value is I or 0 (4). The next state 'SK' is connected to 

previous state SKI  by a unique trellis structure which varies from standard to standard. 

The transition associated with the input bit of -1 is shown as continuous line and that 

associated with the input bit of +1 is shown as a broken line. It can be seen from Figure 

4.1 that if the previous state Sk-i and the present state Sk are known, then the value of 

the input bit Uk,  which caused the transition between these two states, will be known. 

The probability that Uk = +1 is equal to the probability that the transition from the 

previous state Sk.1  to the present state Sk is one of the set of four possible transitions 

that can occur when Uk = +1. Since these transitions are mutually exclusive we can 

rewrite the equation (4) as: 
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P(Sk..I=S'ASk=SAYO) 	

(5) L(u k l Yo) =ln 	
P(SkI=S'ASk=SAYO) 

where (s', s) => uk = +1 is the set of transitions from the previous state SkI = s' to the 

present state Sk = s that can occur if the input bit Uk = +1, and similarly for (s',$) => uk 

= -1. For simplicity we represent P(Sk_I  = S'ASk = sAy0 ) as P(s'As A y 0 ). 

Y k 
Rewriting P(s'AsAy 0 ) as P(S.ASAYJ<kAYkAYJ>*) where 	is the received 

codeword associated with the present transition at stage k of trellis. y 	is the 

received sequence prior to the present transition and y  is the received sequence 

after the present transition. Using Bayes' rule from equation (2) and the fact that if 

we assume that the channel is memory less, then the future received sequence 
yJ<* 

will depend only on the present state s and not on the previous state s' or the 

present and previous received channel sequences 
y 
 and yo  , therefore: 

P(s'As A y0) = P(y  I {s'As A 	A y}).P(s'As Ay 0  A y) 	 (6) 

P(s A5AY)=P(y 0
J<k 

 Is).P(s
• 
 ASAy0 

f<* 
 Ay

k  
0 ) 	 (7) 

Again using Bayes' rule we expand equation (7) as follows: 

P(s'As A ) 
= p(J<k 

s).P({y: As)  I {s'Ay} ).P(s'Ay) 

J<k 	k 	 • 	J<k 
= P(  YO I s).P(y 0  As) I s).P(s Ay0 ) 

= 13k (s).yk (s,$).ak_I (s) 
	

(8) 

where: 	ak_I(s) = P(Sk_I = S'Ay 0 ) 
	

(9) 

Equation (9) explains that the trellis is in state s' at time k-i and the received 

channel sequence up to this point isyf<*. 

Similarly 

f( s) = P(y J>* ISk  =s) 
	

(10) 
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and 

Ik(5,$)_"(Y0ASk_3'ISk_1 _s) 	 (11) 

The MAP algorithm finds ak(s)  and k(5)  for all states s through the trellis, i.e., for 

all stages k=0,1,...N-1 and yk(S',5)  for all possible transitions from state Sk-i=s'  to 

state Sk=5. 

4.3.1 FORWARD RECURSIVE CALCULATION OF THE ak(s) VALUES 

As shown above we have akl(s')  as 

J<k+I 

ak(s)_P(Sk — sAy ) 

J<k 	* 
P(sAy 0  Ay) 

J<kk 
= 	P(SASAy 0  Ay 0 ) (12) 

using Bayes' rule again and the assumption that the channel is memory less we 

obtain the following equations: 

= 	P({sAy} I {s'Ay}.P(s'Ay) 

= 	yk(s',$).ak_I(s') 	 (13) 
all->s' 

Figure 4.2: Calculating alpha probability 

Thus, with the yk(s',$)  values, the ak(s)  values can be calculated recursively as 

shown in figure 4.2. 
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4.3.2 BACKWARD RECURSIVE CALCULATION OF THE Pk(S) 

VALUES: 

Similar to the above derivation, the k(5)  values can be evaluated. Again from 

equation (10) we can write Pk-](s')  as: 

fJk _I (s ) = P(y0 
J>k-1 

I Sk_I =SO) 	 (14) 

By splitting a single probability into the sum of joint probabilities and using the 

derivation from Baye's rule as well as the assumption that the channel is memory 

less we have: 

= 	P({i>kl}I,) 

all=>s 

= 	P({yAyAs}Is') 	 (15) 
all=>s 

From equation (3) 

= 	P({y  I {s'As A y} Y{y As) I s') 
a11>s 

= 	P(y >* I s) .P{yAs }I s ) 
a!1>s 

= 	18k (s).y,1 (s' 1 s). 	 (16) 
a11>s 

Calculation of 0 probabilities is shown by figure 4.3: 

Figure 4.3: Calculating beta probability 

4.3.2 CALCULATION OF THE 4(')  VALUES 
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From equation (11) we have Yk  (s', s) = P( {y* A S) I s') which is rewritten according 

to equation (3) which => P({a A b} c)= P(a {b A c}).P(b c), hence 

Yk(S ' ,S) = P(y I {s'As}).P(s Is') 

= P(y {s'As}).P(u k ) 
	

(17) 

where Uk is the input bit necessary to cause the transition from state Sk-i=s'  to SkS 

and P(uk) is the a-priori probability of this bit. This first term in the equation 

P(y I {s'As}), is equivalent to (Yk I xk), where Xk is the transmitted codeword 

associated with the transition from one state Sk1 = s' to Sk = s. 

Thus we can write 

n 

P(y I {s'As}) P(y I) = flP(y I x) 
	

(18) 
1=1 

where Xkl  and yki  are the individual bits in transmitted and received code words 

between 
k 
 and uk,  and n is the number of bits in each code word 

k 
 and 

X0 	 Xo 

Assuming that the transmitted bits Xkl  have been transmitted over a Gaussian 

channel using BPSK, so that the transmitted symbols are +1 or -I we have. 

P(y, Ix1)= 1-b exp(- 	(y1 
_)2) 

where Eb is the transmitted energy per bit, 0
2  is the noise variance and a is the 

fading amplitude (a1 for non-fading AWGN channels). 

1 	E P(y * I{ sAs ))=fl ., 	exp(-(y-ax)2 )2na 

I 
P(y I (s'As)) = 

j____ 
exp(--(yJ _)2) 

P(y I {s'As}) 
= 	exp(__(y2 +a 2 X - 2ax,y,)) 

O 	 ( Jfl 	 2U2 
,= 

E n 

P(Y O {s'As}) = C1 .C2 .exp(--2ax,y) 	 (19) 
20,2

1=1 
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E 
Cl = 
	

exp(— 	y1) 2a2

depends only on the channel SNR and on the magnitude of the received sequence. 

C2 =exp(_-a2xj) 

C2  =exp(— b  -----a 2  n) 
2o 

depends only on the channel SNR and fading amplitude. Hence we can write for 

Tk(S ,$): 

1k(S,') = P(uk).P(y* I {s'i's}) 

We also know that 

-L(u k  )/2 

	

_e 	(ukL(uk)12) 

	

UkJ - - + 
	

,.e 

P(uk ) = C3  .e k'(uk )12)  

)/2 

C3 = + 

C3  depends only on the LLR L(uk) and not on the whether Uk'S +1 or .1. 

Therefore equation (19) becomes: 

Yk (s', s) = C.e 2 ) . exp(_: 	2a xy,) 

	

2o 	1=1 

Yk (s', s) = 	. exp(- xy) 
	

(20) 
l=1 

where C=C 1 . C2 C3  does not depend on the sign of the bit Uk or the transmitted code 

word Xk and so is constant over the summations in the numerator and denominator 

in equation (5) and cancels out. Hence from equation (5) and (8): 

P(S,...J  = S'ASk _SAY 0 ) 

L(u k l Yo) =ln 	
P(SI=s'ASk=sAyO) 

(s',$)>uk-1 

crk_l(s).yk(s,$).flk(s) 	
(21)  L(u k  1y0)= In 	

ak_I(s').yk(s',$).13k(s) 
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The decoding bits are estimated based on this value of L(Uk I yo). 

When L(Uk I yo)>O, Uk = +1 and 

L(uk I yo) <0, Uk = -1. and when 

L(uk I yo) = o, one cannot be sure about the value of uk. 

MAP algorithm gives exceptional BER results at relatively low E,/No, however, the 

MAP algorithm is extremely difficult to implement in hardware as it contains 

mathematical operations such as logarithms and divisions. A modification of the 

MAP algorithm is the Log - MAP algorithm [R0B89]. As the name suggests the 

log-MAP algorithm is an implementation of the MAP algorithm in the logarithm 

domain. 

4.4 LOG-MAP DECODING ALGORITHM: 

Taking the logarithm of equations (13), (16), (20) and (2 1) 

Ak(s) = ln(ak(s)) 	 (22) 

Bk(S) = lfl(flk(S)) 	 (23) 

Fk(s',$) = ln(yk(s',$)) 	 (24) 

The Jacobian logarithm can be used to obtain a formula for both (22) and (23) that 

can be easily implemented in hardware 

Max* (A,A) = ln(e +e) 

where 

Max* (A ,A) = Max(A ,A )+ln( I +e -AI) 

We can rewrite equation (22) Using equation (13) as 

Ak(s)=In( 	yk(s ' ,$).ak_I(s ' )) 
all->s 

Ak (s) = In( 	exp[]Fk (s' , s) + Ak _I  (s')]) 
all->s' 

Ak(s) = max*5 ([Fk(s',$) + Ak_ I (s')]) 	 (25) 

Equation (16) can be rewritten as: 

Bk_I (s') = max* ([]k  (s', s) + Bk (s)]) 

and equation (20) becomes 
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,Y, (s', s) = in {C.e' )/2)  .exp(- 	xy )} 

Yk(S, s) = C'+ - .(ukL(uk))+ E- 	x Jy j 	 (26) 

Similarly equation (21) becomes: 

exp(Ak_I(s ' )+ F k (s',$)+ fik(s)) 
(s)=>u*=+I 

L(uIy )=in S.  
A 	° 	

exp(Ak_l(s')+Fk(s',$)+flk(s)) 

L(uk I y0) = maxt (Ak_I(s ' )+fk(s ' ,$)+flk(s)) — maxt  (A k _ I (s')+Fk (s',$)+Bk (s)) 
(s ,$)=>Uk=+I 	 (s ,$)=>uk=—I 

The add, compare, select, offset component is at the heart of all of the max* 

computations, it is shown graphically in figure 4.4 [BOUO3]. 

Offset 

LUT 

UT  

ab-'(so) 	
r&(so,$)  

I H ak(s) 

sign 

: 	

afr(s)—ak(s) 

Tk( 5 '.S) 

Figure 4.4. ACS block 

The log-MAP algorithm can be further simplified by excluding the offset 

In( I+e) in above equations, resulting in an implementation called the Max-

log-MAP algorithm [ERF94] 

4.5 THE TURBO CONCEPT 
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Traditional Turbo codes use recursive systematic convolutional (RSC) encoders 

and soft-in, soft-out (SISO) decoders. The information is encoded twice, with an 

interleaver between the two encoders. A top level diagram of a typical Turbo 

encoder is shown in figure 4.5. 

The interleaver decorrelate the input to the second encoder to make the encoded 

data sequences approximately statistically independent of each other. Each RSC 

encoder produces the parity information. The two parity sequences from the 

corresponding encoders can be punctured before being transmitted along with the 

original sequence to the decoder. This puncturing of parity information allows a 

wide range of coding rates to be realised and often half the parity information from 

each encoder is sent along with the original data sequence. 

Oath Systematic 
In 	 Ouput 

RSCI 
Encoder 

Puncturing 

I 
PwIt 

And  

_ 

Muttiplaxlng_  

RICI 
Encoder 

Figure 4.5 Turbo RSC encoders connected by interleaver 

A Turbo decoder contains two RSC encoders, the number of SISO decoders always 

match the number of RSC encoders present in the corresponding Turbo encoder. A 

SISO decoder reads in a soft data value and produces a soft data value at its output. 

Soft data is represented by an m-bit symbol. The magnitude of the symbol presents 

the confidence of the decoder producing the correct output. The multiple encoder 

and interleaver arrangement generates multiple views of the source data. Each view 

has its parity and systematic information. After passing through a channel each set 

of data are input to a SISO decoder. The SISO decoders operate iteratively. In the 

first iteration the first SISO decoder provides a soft output giving an estimation of 

the original data sequence based on the soft channel inputs alone. It also provides 

an extrinsic output which is used by the second RSC decoder (after interleaving) as 

67 



Chapter 4: Reconfigurable Turbo Decoding 

a priori information. The sharing of data between the decoders is what gives Turbo 

codes such a low BER. Top level diagram of turbo decoder is shown in figure 4.6. 

All data into SIS02 from SISO1 must be interleaved and all data into SISOI from 

SIS02 must be de-interleaved. Lie  and  L2e  are the data values shared between the 

decoders and are known as extrinsic data. The extrinsic information related to a bit 

uk is the information provided by a decoder based on the received sequence and on 

the a-priori information, but excluding the received systematic bit and the a priori 

information related to bit Uk.  A posteriori information related to a bit is the 

information that the decoder generates by taking into account all available sources 

of information concerning UK.  The apriori information related to a bit is information 

known before decoding commences, from source other than the received sequence 

or the code constraints. Data is shared between SISO decoders for a pre-determined 

number of iterations. Upon completing these iterations the turbo decoder produces 

a soft estimate of the decoded bits. 

$y.temadc bits__ 

I F=Po_11 
Parity  bits Iy Encoder i - 	 + 

Parity Me  by 

Figure 4.6.131ock diagram of turbo decoder 

4.6 RECONFIGUR.ABLE VLSI DESIGN TARGETING MULTIPLE 
STANDARDS 

The reconfigurable work on turbo decoder adds to the overall contribution of the 

thesis i.e., to provide Forward Error Correction (FEC) structure for a common 

communication platform designed for ubiquitous networks. The platform provides 

access to any network available to the user for example WLAN, 3G or GSM etc. In 

68 



Chapter 4: Reconfigurable Turbo Decoding 

the first phase of research we have looked at the investigation of accurate flexibility 

in order to meet the performance constraints as imposed by various standards. In 

the second phase a high speed, power and area efficient unified turbo-viterbi 

architecture is developed. This is in contrast to designing separate and optimized 

fixed decoders for all possible standards and switching between one of them. The 

implemented architecture is capable of Turbo and Viterbi decoding for a wide 

range of code parameters varying from constraint length 3 to 9, any generator 

polynomial and different rates. This reconfigurable design gives huge savings in 

area, energy and speed as opposed to the other option of implementing these 

decoders separately of each of the standards. 

F8M 
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V 	C 	 DUY 	
IPR0C5550RFl 0 
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SMI 	0 	I 	P-BINARY D€CSION 	
OUTPUT 

LJ 	' 	L_J—  SIT FOR WINPINNO 	 W-BINARY 

STATE 	 DECSION 
SIT FOR DATA OUT READ 

FORT I  AND 2 	WINNINNO - 	STATE 

H 	
- 

• 	I 	IN / 	 © 	IN 	
I PATh HISTORY 

	

FORWARD 	 FORWARD 	\I 	o 	I 	MEMORY O 	V 	PROCESSOR 	' 	 I PROCESSOR 
- - 	- 	RAM 	

RAM 

FSM 	71 
LLR -> LOG LIKELIHOOD RATIO CALCULATOR 
FAN .> FINITE STATE MACHINE 	 COMBINED VITERBI AND TURBO 
AC! - ADO COMPARE SELECT 	 BLOCKS 

BMC -> BRANCH METRIC CALCULATOR 	 VrIERBI DECODER BLOCKS 
SM -, STATE METRICS, BM - BRANCH METRICS 
RCI,RC2.> READ ADDRESS COUNTERS 	 TURBO DECODER BLOCKS 
WC -> WRITE ADDRESS COUNTER 

Figure 4.7 Block diagram of unified array 
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We have also presented a unified control structure for controlling the algorithmic 

flow in different standards. The control of viterbi components is provided by this 

reconfigurable finite state machine which avoids the use of separate microprocessor 

to control these blocks. Figure 4.7 represents the overall block diagram of the array 

and the individual components of this diagram are explained in two chapters. This 

chapter explains the individual turbo decoder components of the array individually 

and explains the design flow along with the reasons for the choice of these 

components and the flexibility. Chapter 5 explains the viterbi components of the 

block diagram shown in figure 4.7. 

4.7 RECONFIGURABLE DOMAIN 

Turbo decoders (example encoders shown in figure 4.8 and 4.9) share various 

common units; however, the number of units used and the connections of these 

units are highly variable and change upon any change in coding parameters. For 

instance, the path metrics computed from one Add Compare Select (ACS) unit 

might need to be routed back to any of a number of ACS units that need the 

updated path metrics for their computation. Similarly with the change of constraint 

length or coding rate or generator polynomial, the data routes are altered and the 

operations being performed inside a unit are changed accordingly. The other 

constraint on the design is that the architecture should support both viterbi and 

turbo decoding. The component RSC encoder for the UMTS standard is shown in 

figure 4.8. As each UMTS RSC encoder outputs only one parity stream, the 

encoder has a standard rate of 1/3. A CDMA2000 component RSC encoder is 

shown in figure 4.9. The CDMA2000 RSC encoder has two parity stream outputs 

and can therefore have a code rate of '/2, 1/3, '/4 or 1/5. 

0 '  

Figure 4.8: UMTS component encoder 
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Figure 4.9: CDMA2000 component encoder 

The puncturing patterns of CDMA 2000 standard are shown in table 4.1. In the 

table a 0 represents the bit that is deleted and a non-zero number given in table 4.2 

shows how many times the symbol in question is transmitted. For example, if data 

is being transmitted at a code rate of '/2 the output of the encoder will be 

X
'S , 	, x; , 

Code Rate 

Output '/2 1/3 ¼ 1/5 

11 11 11 11 

gPO 10 11 11 11 

xr' 00 00 10 11 

00 00 00 00 

01 11 01 11 

x/" 00 00 11 11 

Table 4.1 Table showing the corresponding bit to be transmitted for different rates 

in 3GPP [3GPP99] 

When the trellis termination is initialized the puncturing pattern is altered so that 

Xt s is transmitted, certain bits are repeated so that the code rate during trellis 

termination matches the 6/R; where R is the rate and each encoder clocked three 

times with switch in the lower position. 
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Code Rate 

Output '/2 1/3 '/4 115 

111000 222000 222000 333000 

xr° 111 000 111 000 111 000 111 000 

000000 000000 111 000 111 000 

X,  000111 000222 000222 000333 

000 111 000 111 000 111 000 111 

X, 
P1 000000 000000 000111 000111 

Table 4.2 Puncturing patterns for different rates as defined in [3GPP99] 

As shown by the above two examples Turbo decoding as defined in different 

standards have numerous similarities and differences. In multi-standard turbo 

decoder ACS operation is quite similar, even though the branch metrics feeding the 

ACS are computed differently, and the trellis structures are different requiring a 

different feed back from each of the ACS units. Another important issue is the 

reconfiguration between different constraint lengths and rates in addition to 

different decoding techniques i.e., Turbo and Viterbi decoding. The power budget 

of the overall array is also required to be kept minimum in order to keep the design 

efficient for all of the target standards. The design first phase is the finite precision 

analysis and is explained below. 

4.8 FINITE PRECISION ANALYSIS 

The quantization scheme of the array is very important as it determines the size of 

the storage and the logic blocks in the array. A large word length costs a lot of 

hardware and hence more area and power consumption however a small word 

length may result in very poor BER performance. The trade off between hardware 

complexity and decoding performance has to be reached especially for low power 

portable wireless applications. Quantization schemes are presented by notation nQf 

where n is the total number of bits and f is the fractional part. Bit Error Rate (BER) 
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results with floating point precision in matlab is presented in figure 4.10 below. 

BER improves by increasing the number of iterations. These improvements are 

more when iterations are increased initially for example, from iteration I to 2 and 

decreases subsequently for example from iteration 5 to 6. Very little improvement 

in BER is achieved beyond 6 iterations and therefore the results are presented for a 

maximum of 6 iterations. 

-4-iterl 	 snr 
-O-iter2 	

0 	0.25 	0.5 	0.75 	1 	1.25 	1.5 	1.75 	2 
---iter3 1.E+00 

• 	iter4 

-*-iter5 1.E-01 

---iter6 1.E-02 

1.E-03 

1.E-04 

1.E-05 

1.E-06 

1.E-07 

1.E-08 

Figure 4.10: Max Log Map BER analysis with floating point precision 

Quantization analysis of received bits was done for 3Q1, 3Q2, 4Q2, 4Q1, 4Q3, 5Q2 

and 5Q3 schemes. Experiments were performed on a cluster of interconnected unix 

stations able to perform 1000 parallel matlab executions. The size of the frame was 

chosen as 1000, and for lower SNR values 1000 parallel executions were 

performed (total of 106)  soft input values. For higher SNR, when the error rates 

drops significantly therefore parallel executions were increased to 1.5 x106 parallel 

executing frames of 1k to acquire least 200 error samples for averaging. 4Q2 was 

selected as the best scheme as difference in Eb/No  for 5Q2 is ignorable within a 

wide range of BER, however the difference in 3Q1 is quite significant (>0.3 dB in 

some range of SNR). This is shown in figure 4.11 below: 
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Figure 4.11: Fixed point analysis for input matrics for quantizatios 3:1, 4:2 and 5:2 
with 2 and 6 iterations of Max Log Map 

Similarly for the extrinsic information the investigated schemes were 5Q2, 5Q1, 

6Q2 and 6Q1. 6Q2 turned out to be the optimal choice as shown in figure 4.12. 
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Figure 4.12: Fixed point analysis for extrinsic (apriori) input for quantizatios 5:1, 
5:2 and 6:2 with 1, 2 and 6 iterations of Max Log Map 

From the input metrics 7 bits are used for branch metrics and 9 bit were established 

to be sufficient to represent forward and reverse metric calculations. Using this 
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quantization it was proved for Max Log Map the total quantization loss compared 

with the floating point precision is no more than 0.1dB. 

4.9 SLIDING WINDOW 

Both viterbi and turbo decoders use forward and reverse state metrics processing. 

To improve the latency typically windowed versions of the algorithm are employed 

for VLSI implementations, largely known as sliding window BCJR algorithm 

[BEN96]. The basic effect is that the equations will be applied separately to 

portions (window lengths - WLs) of the global block of data. In its simplistic form 

the algorithm uses two reverse processors Reverse Processor Dummy B2 and 

Reverse Processor BI in parallel with on forward processor FP (shown by ACSO-

ACS7 in figure 4.7). These forward recursion unit FP and backward recursion units 

(B 1 and 132) are identical except for the direction of recursion. B2 can start cold in 

any state (initializing each state as equi - probable) but after a few iterations (equal 

to WL) the state metrics are as reliable as if the process had been started at the final 

known correct node of trellis. B2 initializes the start state of Bi. The output 

received is after a delay of 2 WLs. The sliding window technique is therefore a way 

of reducing the amount of memory required by the Turbo decoder. If the sliding 

window technique was not used the number of FSM storage would be directly 

proportional to the block size of the packet being decoded. With the sliding 

window the number of metrics that need to be stored reduces to the sliding window 

size. The implementation for sliding window is explained in the subsequent 

sections. 

4.10 DESIGN APPROACH 

The algorithm is first implemented in matlab using floating point precision. Then 

fixed point simulations are carried out using fixed point tool box in matlab. We call 

these hardwired simulations as the algorithm is written in exactly the same way as 

will be done in hardware. The hardwired simulations are used to measure the effect 

of fixed word length on the BER performance. The design methodology for matlab 

simulations is shown in the figure 4.13 below. 
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Figure 4.13: Matlab design methodology 

As shown in figure 4.13, the matlab design methodology involves translating the 

algorithm from floating point precision to fixed point simulations. After this 

analysis the effects of different window lengths are anlysed on BER as the size of 

window directly determines the size of hardware. 

Matlab simulation with Fixed word length 
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Figure 4.14: ASIC design flow for Max Log Map Implementation 
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The matlab hardwired simulations generate vectors for the HDL (verilog) and the 

ASIC design flow used for the design is shown in figure 4.14. The ASIC design 

flow involves the pre-synthesis analysis and comparison with fixed point 

simulations in matlab. Design is synthesized on UMC 1 8Onm process technologies 

to evaluate the area and timing results. Synopsys Prime Time is used for timing 

evaluations and timing closure. Synopsys prime power is used for power 

evaluations by noting the toggling activity and back annotating it in to the circuit. 

Post synthesis verification is done comparing the results with pre synthesis values. 

Finally, layout and post layout verification is performed using Silicon Ensemble 

from Cadence. 

4.11 VLSI IMPLEMENTATION OF THE TURBO ALGORITHM 

The block diagram of turbo decoder is shown in figure 4.7. It can be seen that turbo 

decoding consists of the following components. 

• Input RAMS. 

• State Machine Controller. 

• Branch Metrics Computation. 

• Forward State Metrics and Reverse State Metrics Computations. 

• Saturation Hardware. 

• Reconfigurable Interconnect for Multiple Turbo Mappings. 

• Log Likelihood Ratio Calculator Block. 

• Output RAMs. 

• Interleaver. 

4.11.1 INPUT RAMS 

Input RAMs store in 	metrics for two window lengths (WLs). A novel 

implementation methodology is adopted to reuse the same input RAMs for both 

turbo and viterbi with a simple change in finite state machine (FSM) control. The 

size of the input RAMs is selected such that in viterbi mode these input RAMs can 

be reused to store the Branch Metrics configuration bits [AHMIO6]. This is further 

explained in chapter 5. 
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The interconnection of state machine controlling the input RAMs in turbo mode is 

shown in figure 4.15. The read and write control for input RAMs (ramXln_X2n_A 

etc) is provided by state machine (shown as FSM). The state machine also controls 

the multiplexers that provide input data to Branch Metrics Calculators (shown as 

BMC1-BMC3). Using this design approach change over between viterbi and turbo 

algorithm is simply done by changing the read/write and the multiplexer controls. 

The state machine control in Turbo mode is explained in subsequent sections. 
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Figure 4.15 FSM control for input RAMs and branch metric calculators 

The input RAMs cache in two window lengths of the input metrics which reduces 

the read access to the larger input RAM saving energy. There are two window 

lengths required to be saved as per the decoding strategy. We have used Synopsys 

Designware Write-After-Read (WAR) RAMs to implement two memory 

architecture compared with three memory architecture proposed in [MAS99]. The 

proposed two memory architecture employs two memory banks, each storing one 

window length of the input metrics. We have shown in [ARM 106] that in viterbi 

mode the write and read operation is applied without wasting any clock cycles 
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resulting in dynamic context switch for multi standard mappings and continuous 

decoding in turbo mode. The RAMs can be read and written in either forward or 

reverse direction controlled by state machine. 

4.11.2. STATE MACHINE CONTROL AND SCHEDULING 
ALGORITHM 

The turbo decoder state machine controls the read and write operations of input RAMs, 

Forward State Metric RAMs and the multiplexers. These multiplexers connect the 

inputs to BMC blocks as shown in figure 4.16. The read/write address is provided by 

binary up/down counter selected by the state machine. State machine control is 

responsible for providing the proposed scheduling algorithm. Figure 4.16 shows the 

read and write controls for input and FSM RAMs. The addresses are generated by 

forward and reverse counters either one of which can be selected input RAMs. The 

select signal of this multiplexer (shown as MUX in the figure) is also provided by state 

machine. The inputs to branch metrics blocks are also provided through multiplexers 

which are also controlled by the state machine. State machine also provides the read 

and write control signals for all the RAMs in the deisgn. The counters have a dynamic 

terminal count flag and the terminal count is kept flexible. This allows different 

window lengths to be controlled by the same state machine. This controlling scheme is 

further explained in subsequent sections. 
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Figure 4.16 VLSI design of State Machine 

4.11.2.1 	TIME SLOT O-L (FIGURE 4.17a) 
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Input metrics corresponding to first window length O-L are written in Input RAM1. 

The last metric is saved in first memory location and first metric in last memory 

location as shown in figure 4.17a. 
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Figure 4.17. Read/Write FSM Control for RAMs 

4.11.2.2 	TIME SLOT L-2L (FIGURE 4.17b) 

Figure 4.18 Scheduling diagram for max log map implementation 
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Input metrics corresponding to second WL (L-2L) are written in RAM2. Reverse 

Processor Beta (RP2) uses these input values to calculate reverse state metrics. 

Forward processor calculates forward state metrics by reading the RAMI in reverse 

direction as shown in figure 4.17b. Calculated forward state metrics are saved in 

forward state metrics RAMs (FSM RAMs) in the reverse direction i.e., last state metric 

in first memory location and the first metric in last memory location. 

	

4.11.2.3 	TIME SLOT 2L-3L (FIGURE 4.170 

After the latency of the two WLs, the log likelihood ratio (LLR) values corresponding 

to WL 'O-L' are calculated. LLR calculates the decoded bits by reading FSM RAMs in 

forward direction as shown in figure 4.17c. Reverse Processor (RP1) is initialized by 

RP2. RAM1 is read in forward direction to provide input metrics (corresponding to 

WL O-L) for reverse processor I (RPI) calculations. FP calculation is now performed 

on WL L-2L, which is done by reading the RAM2 in reverse direction as shown in fig 

4.17c. Calculated FSM values are saved in FSM RAM (Write-After-Read). Since FSM 

RAM was read in forward direction the write will also be performed in forward 

direction and first FSM value is saved in first memory location and last FSM value 

saved in last memory location. RAM1 is read for RP2 calculations (corresponding to 

frame 2L-3L). The input metrics (for frame 2L-3L) are written on RAM1 after the old 

values are read by RPI. This is shown by solid red arrow in figure 4.18. 

	

4.11.2.4 	TIME SLOT 3L-4L (FIGURE 4.17d) 

This slot provides the LLR decoded outputs for second WL L-2L. LLR calculator 

calculates the decoded bits by reading FSM RAMs in reverse direction as shown in 

figure 4.17d. RAM2 is read in forward direction for RPI calculation (for window 

length L-2L). RAMI is read in reverse direction for FP calculation (for WL, 2L-3L) as 

shown in fig 4.17d. Calculated forward state metric values are saved in FSM RAM 

after the read operation. Since FSM RAM was read in reverse direction the write will 

also be performed in reverse direction and last FSM is saved in first memory location 

and first FSM saved in last. 
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3L-4L 

Figure 4.19 FSM control for Max log map implementation 

RAM2 is read to calculate RP2 values (corresponding to frame 3L-4L). The cycle 

repeats after this where time slot 41--51- is similar to time slot 2L-3L and time slot 5L-

6L is similar to time slot 3L-4L. This is shown by the state diagram in figure 4.19. 

4.11.3 BRANCH METRICS CALCULATOR (BMC) 

Our approach to implementing branch metrics improves on the earlier proposed 

schemes by eliminating the branch metrics storage [MAS02, BEN96, P1E96, V1T98, 

ZH002, YUFOOJ. These traditional implementation techniques are summarized in 

figure 4.20. 

r  
rmcl Metric 

II iT 
ForwardRsvem State 	R.v.e State 	Calculation of 

Metric 	MalIIC Stone 	Reverse State 
calculahx Maliica 

Figure 4.20 Implementation possibilities for max log map 

The results shown in [MAS021 for two memory SISO without interleaver partitioning 

SISO branch metric RAMs (it RAMs) consume 40.2% power for an interleaver length 

of 5120. The branch metrics storage requirements increase many fold for viterbi 
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decoding where the number of states are much higher than turbo decoding. Therefore 

recalculating branch metrics as compared to storage approach improve results in both 

turbo and viterbi decoding. 

BMCI and BMC2 are connected to input RAMS 1 and 2 by using multiplexers which 

are controlled by finite state machine (FSM) as per the scheduling algorithm explained 

in section 4.11.2 and table 4.3. BMC2 which provides branch metrics for RP2 is 

directly connected to input metrics. 

Time 

Slot 

BMCI(FP) BMC3(RP1) 

O-L RAM2 RAMI 

L-21, RAM1 RAM2 

2L-3L RAM2 RAM1 

31,41, RAM1 RAM2 

4L-5L RAM2 RAM1 

Table 4.3. Input RAMs connections to BMC blocks 

Branch metrics are required for each state and stage of the trellis. These are computed 

by Euclidian distance of the soft input metrics and are given in section 4.4 by equation 

(26). Our implementation uses one BMC for each forward or reverse processor. Each 

BMC calculates all the possible branch metrics for a given decoder. It must be noted 

that the number of branch metrics is equal to 2", where n is the denominator in the code 

rate formula (kin) - k is the number of input bits and n is the number of output bits. 

Hence for rate 'A, the number of branch metrics will be 4 and 8 for rate 1/3. Similarly if 

constraint length of the trellis is K, the number of possible states are 2K1  (256 states for 

3GPP viterbi). Each ACS node (corresponding to each state) has two branches entering 

the node and hence each ACS unit needs a specific pair of branch metrics. This 

selection will differ depending upon the constraint length, coding type, rate, generator 

polynomial and index of ACS unit in question. For a completely flexible trellis decoder 

each branch of ACS node should have the ability to select any possible branch metric. 

For example for a rate '/2 encoder, each branch is connected by 4x1 multiplexers that 
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can select any 1 out of 4 possible branch metrics. Since our design uses 8 ACS units 

and there are two branches entering each ACS node. Each branch has 8x1 multiplexer 

(for rate 1/3) therefore there are sixteen 8x1 multiplexer for each stage of turbo decoder 

trellis. There are 48 configuration bits required to configure the branch metric 

interconnection. These configuration bits are changed only when a decoder having 

different parameters is mapped on to the same array. Viterbi decoder requires much 

larger configuration bits however uses the same ACS unit and multiplexer. This will be 

explained in next chapter. 

SWITCHING NETWORK 

- 

fxlBM(TseIccto 8x1I 

ACS UNIT 

8Xl-a/-seIector 8x1-BM(y)-selector - 

Figure 4.21: Flexible branch metric and state metric connection of ACS unit 

4.11.4 FORWARD AND REVERSE PROCESSOR CALCULATION 

The main kernel of the Turbo-Viterbi algorithm is ADD-COMPARE-SELECT (ACS) 

operation which is preformed by each FP, RP1 and RP2 blocks. Since the ACS 

operation is the only recursive part of the algorithm, the achievable data rate of a VLSI 

implementation is determined by the computation time of the ACS recursion. Given 

the branch metrics, the ACS unit calculates the survivor path metrics according to the 

ACS recursion. These survivor path metrics are again fed back to the ACS units for 

further processing on next clock cycle (for next stage of trellis). The feedback 

connection of survivor state to the ACS input is constant for a particular mapped 

algorithm however changes for decoders with different trellises. Therefore for a fully 
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flexible trellis decoder, the survivor ACS feedback connections are kept completely 

flexible by using 8x1 multiplexers for each ACS input. This is shown by figure 4.21. 

The ACS computation is performed at every state and stage of the trellis. Therefore as 

we advance in time across different stages of trellis, the same ACS units are reused for 

processing at each stage. Figure 4.22 shows the architectural diagram of ACS unit 

which consists of signed two's complement adders (shown as addlower and addupper) 

for adding branch metrics and forward state metrics. The maximum of the competing 

paths is seleted (shown by MinMax block) and the adjusted for saturation in sat —block. 

Max 

,J F 	addlower 	 sat block 

FSM2 	
.dde1_2pk.p_11_12 	 II 

BMI COMPARE 
& 	H OVERFLOW 

FSM1 	 ADD SELECT 	PROTECT 

Figure 4.22 Implemented ACS architecture for Max log Map algorithm 

FP, RP1 and RP2 have a similar design which consists of 8 parallel ACS blocks and 

hence 8 states can be processed in parallel. Any decoder that requires greater than 8 

states for processing is processed in state serial methodology where 8 states are 

processed for every clock cycle. For example ADSL (generator matrix 

[1,17octal/15octal]) and 3GPP turbo mappings on the array work in fully parallel 

schemes. Fully parallel architectures assign one ACS for each state to meet the 

performance constraints on speed and latency. In Viterbi mode however since the 

number of states (N) are higher (256 states for 3GPP) therefore P(P8) ACS units are 

used to process N (up to 256) states[AHM ]06]. Similarly the CCSDS (Consultative 

Committee for Space Data Systems) turbo decoder family has 16 states which will be 

decoded 8 states at a time is a similar fashion as GSM Viterbi mappings on Viterbi 

array as was explained in our work in [AHM 106]. 

0] 
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4.11.5 NORMALIZATION / SATURATION 

State metrics (FSMs and RSMs) are accumulated within a block as they are recursively 

computed for sliding window ACS computations. Since there is finite number of bits 

used for storing path metrics, there is a need to normalize the path metrics in order to 

avoid overflow. The normalization methodology however has to be adjusted for both 

state serial and state parallel reconfigurable mappings on the array. Therefore a new 

normalization scheme is adapted to support the mappings that do not use state parallel 

architectures. These include all viterbi mappings and turbo mappings on the array 

which have greater than 8 states (for example decoders for CCSDS telemetry 

operations). 

Figure 4.23: Normalization scheme with BM, FSM units for max log map 

In this normalization scheme we check at each time instant if any state metric is greater 

than 2q-2  then a fixed value 22  is subtracted from all state metrics. This is shown by 

normalization (N) block shown in figure 4.20. The block comprises of a subtractor that 

subtracts a fixed value (2 q,2)from state metrics and a multiplexer that selects the 

subtracted value if the normalization has to be employed. The multiplexer select signal 

can be provided by any ACS block and in case of state serial architecture mappings 

(states >8) the select signal is provided after all the states are processed. 
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Figure 4.24 New saturation check scheme for max log map 

In figure 4.23a the normalized FSMs were saved in the FSM RAM, this new scheme 

the normalization is applied after reading the state metrics from FSM RAM. The 

critical path delay of Branch Metric and State Metrics component is shown in figure 

4.23 with blue arrows. Note that this adjustment keeps the critical path still exactly the 

same, however now the same Processor blocks can be used for decoders with states 

greater than 8. The 8 parallel ACS blocks are shown in figure 4.24. 

4.11.6 LOG LIKELIHOOD RATIO (LLR) CALCULATION 

As shown in figure 4.25 the LLR block requires the values of forward, backward state 

metrics and branch metrics. It consists of two identical blocks (block A) calculating the 

LLR of bit 0 and biti respectively. The maximum calculated value of LLRI and LLRO 

is subtracted to find the final LLR output value. The sign of a posteriori value gives the 

value of decoded bit I or 0. LLR block is used in turbo mode only and is disabled in 

viterbi mode. The LLR block is pipelined to reduce the critical path delay. The position 

of the pipeline registers is shown by dotted line. Insertion of this pipeline reduces LLR 

components bottleneck on critical path (delay in ns shown in blue arrows). However 

ACS still remains in critical path and cannot be further pipelined due to the recursive 

nature of mapped algorithms. BM, FSM and RSM and LLR blocks shown in figure 

4.22 represent the branch metrics, forward state metrics, reverse state metrics and log 

likelihood values. 
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Figure 4.25 LLR Computation Unit of max log map decoder 

4.11.7 RECONFIGURABLE INTERCONNECT 

The reconfiguration topology for viterbi mappings were explained in chapter 5. A fully 

flexible trellis processing is used for Turbo decoding as well. This allows mappings of 

decoder with any generator polynomials. Each branch metrics and FSM connection to 

ACS block is done through a multiplexer. For example for Rate Yz, there are four 

possible branch metrics that can be connected to each BM branch of ACS block. 

Similarly for 8 states, there will be 8 possible ACS values that can be fed back to each 

FSM branch of ACS (refer figure 4.18 for these connections). These flexible 

connections are provided through multiplexer network as shown in figure 4.7. The 

multiplexer network is therefore a multiplexer bank providing 4x1 and 8x1 multiplexer 

connections for each BM and FSM branch of ACS operation of Forward and Reverse 

processors. Viterbi blocks in the array are shown in white in figure 4.7 and these are 

clocked down by using an active clocking gating strategy throughout the chip. 

4.12 COMPARISON OF RESULTS AND CONTRIBUTION 

The design is synthesized using Synopsys Design Compiler for 0.18 microns 

CMOS UMC cell library and the chip layout is done on Silicon Ensemble. Post 

layout power figures are taken from Synopsys Design Power by capturing the 

toggle activity of each node and then back annotating this in the circuit. Synopsys 

designware SRAMs were used for Forward Processor RAMs. Virtual Silicon 2K x 

8 synchronous (separate read and write port) macro RAMs were used for 

Output/Path history memory consuming 110 uW/MHz/Port. 

The overall results are summarized in table 4.4 
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Technology UMC 0.18 microns standard cell CMOS 
Supported code rates '/2,1/3 Turbo, '/2,1/3,1/4,1/5 Viterbi 
Representation Signed fixed point 
Constraint length Max 4 in parallel mode and max 9 (256 

states) for state sequential (8 states at a 
time) 

Generator Polynomial Flexible for both turbo and viterbi 
Survivor (Trace back 
length)  

Up to 6 times the constraint length 

Decision level 4 bit soft decision 
A posteriori estimation 6 bit soft decision. 
Supply Voltage 1.8V, 1.1 V (for 90nm) 
Interleaver Memory less-supports frames up to 5114 

(3GPP) 
Max Operating Frequency 84 MHz 
Max Throughput Turbo @ 
6 iterations (l8Onm)  

41 Mbits / sec / iteration 

Latency 2 window lengths 
Total area (l8Onm) 1.67mm 2  (without output RAMs) 

2.88mm 2  (with output RAMs) 
Total Average Power @ 
20 M1-Iz(Turbo mode) 
180nm  

78.54 mW 

Total Average Power @ 
100 Mhz (Turbo mode) 
with 90nm  

52 mW 

Table 4.4 Results turbo decoder 

The components of turbo decoder array contributing in the critical path delay 

(without LLR pipeline) are: Input Rams, BMC and LLR. The total delay with these 

components in the critical path will be 15.01 ns. The insertion of LLR pipeline 

changes the critical path and the components in the path are: Input Rams, BMC and 

FP. 
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Figure 4.26. Timing diagram for turbo decoder 

The overall path delay is now reduced to 11.92 ns. As explained above FP 

calculations are recursive and cannot be further pipelined, and hence the delay of 

FP determines the max speed of the design which with the clock period of 4.64 ns. 

This can be further improved if CLA adders are used instead of Full Adders in FP 

blocks. The critical path and the delay of the individual components is shown in 

figure 4.26. 

The overall area and power results of individual components can be compared in 

figure 4.27. 

Area-Power Comparisons 

60 

50 

40 

30 

20 

10 

Figure 4.27. Area-Power distributions of individual components of the designed 
turbo decoder 

For I 8Onm, 82% of the total average power of 78.54 mW is due to net switching 

and 18% is the cell internal power. The cell leakage power is 221.4798 11W. For 

90nm process technology the results are shown in figure 4.28. The results provided 

in figure 4.28 on 90nm process technologies show that Cell Internal Power also 

contributes significantly along with the net switching power and the design should 

be optimized for both. 

Input/Output RAMs, FSM RAMs and Input Scratch Pad RAMs when combined 

together occupy 95.6 % of the overall area and 83.4% of the power. 

Figure 4.29 gives the overall area results with 90nm process showing total area, cell 

count and timing figures. The over all area is reduced to 0.84 mm 2  with a critical 

path of 9.8 ns (100MHz). 
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Global Operating Voltage = 1.1 
Power-specific unit information 

Voltage Units = iv 
Capacitance Units = 1.000000ff 
Time Units = ins 
Dynamic Power Units = luW 	(derived from V,C,T units) 
Leakage Power Units = luW 

Cell Internal Power = 	31.1673 mW (59%) 
Net Switching Power = 	21.7252 aW (41%) 

Total Dynamic Power = 	52.8925 mW (100%) 

Cell Leakage Power 	= 112.7234 uW 

Figure 4.28. Ratio of the net switching power and cell internal power in 90rnn 
CMOS process 

Timing Path Group • clk' 

Levels of Logic: 56.00 
Critical Path Length: 9.80 
Critical Path Slack: 0.01 
Critical Path Clk Period: 10.00 
Total Negative Slack: 0.00 
No. of Violating Paths: 0.00 

Cell Count 

Rierarcial Cell Count: 389 
Rierarchial Port Count: 17768 
Leaf Cell Count: 23952 

Area 

Combinational Area: 79205.951585 
Noncombinational Area: 

429117.518607 
Net Area: 340051.718750 

Cell Area: 508323.468750 
Design Area: 648375.181088 

Figure 4.29. Critical path delay, Area and total cell count in 90nm CMOS 
process 

The turbo decoder design can be compared in the following broad reconfigurable 

categories: 

ASIP (application specific instruction set processor). 
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Implementations on general purpose processors. 

• Implementation on processors with Viterbi/turbo decoders as co processors. 

Implementations on FPGAs. 

• Implementation on ASICs. 

4.12.1 ASIP 

We have provided a detailed review of ASIPs in chapter 2 section 3.2.3. In ASIPs, 

flexibility is provided by the use of embedded processors specifically targeted to 

the decoding application. ASIP being software controlled is broader in domains of 

reconfigurability and hence more flexible than our design. The increase in 

flexibility, however degrades power, area and speed. For example in [ROSO4] there 

would be 8 XiRisc processors needed in order to achieve a throughput of 2Mbps. 

The processors are also required to run in parallel on successive blocks of data. 

4.12.2 GENERAL PURPOSE PROCESSORS 

General purpose processors are much more flexible than ASIP and our proposed 

array. However turbo decoder implementation on these results in a much reduced 

throughput. Since the throughput falls below the data rates as required by the 

standards, this favours the case for designing ASIC for Turbo decoding either as a 

coprocessor or as separate reconfigurable array. Table 4.5 below lists some 

published Turbo decoder implementations on general purpose processors and also 

lists the maximum throughput possible. Throughput results are worse than ASIP. 

However flexibility in general purpose processors is much higher. 

Processor Clock Speed Throughput possible Ref 
Motorola 56603 DSP Not quoted 48.6 kbps/iteration [WOR 021 
ST 120 200MHz 540 kbps/iteration [WOR02] 
Intel Pentium III 933 MHz 262 kbps/iteration [VALO1] 
DSP SP-5 SIMD Not quoted I 227kbps/iteration [HARO I  

Table 4.5. Performance of turbo decoders of different architectures in literature 

4.12.3 GENERAL PURPOSE RECONFIGURABLE LOGIC (FPGAs) 
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Dedicated implementations on general reconfigurable logic for example FPGAs 

can achieve higher throughput. However, it consumes higher power than ASIC 

implementation and our proposed implementation. For example, in [SHA03] 

implementation on Xilinx Vitex XCV300E (almost 50% resource utilization) 

consumes 695mW(25 MHz) for 1Mbps. 

4.12.4 ASIC 

A more exact ASIC comparison of our IP can be made with the work in [MAR02], 

where we have achieved similar area and power figures, however the reported array 

is limited to unified Viterbi and Turbo decoding for 3GPP where data rates of the order 

of 2Mbps are required. Also the Viterbi decoder is mainly aimed at low data rate 

(12Kbps) voice channels. The ACS processing is done by 4 Viterbi/log-MAP butterfly 

unit, which is sufficient for 3G data rates, but cannot support the extremely high data 

rates demanded by systems like WLAN. Therefore such a system might be useful for a 

certain specific standards like 3G, but is hardly useful when multiple standards/systems 

are in question. Our design is more flexible as it can target multiple standards both 

in viterbi and turbo mode. 

4.12.5 TURBO / VITERBI CO PROCESSOR ACCELERATORS 

Texas instrument (TI) latest TMS320C64 14 fixed point DSP processor [TMSOS] uses 

Viterbi and Turbo decoder coprocessors as two independent operating blocks. The 

parameters in the blocks can be adjusted to provide flexibility. The exact 

implementation details for this commercial processor are not disclosed. However it 

uses the processor bus and input data is quantized to 8 bits (8N3), which gives some 

indication into the size of blocks used for decoding [TMS04]. The flexibility in the 

case of turbo decoding is exactly similar to our design. However, our proposed design 

differs as it provides reconfiguration between viterbi and turbo as one unified design. 

This results in better reuse of hardware blocks. 

Our design is also more optimized for word lengths. The biggest disadvantage in 

[TMS04] is the power figures of this design. The power though depends on type of 

application mapped however is in 1000s of mW for any mapped application 
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[TMS 104]. The individual power and area figures of the design are presented in 

figure 4.22. In turbo mode the decoder consumes 78.5 mW occupying 2.824 mm 2 . 

4.13 CONCLUSION 

In this chapter the subject of Turbo codes is introduced along with the mathematical 

description of the various turbo decoding algorithms, the use of turbo decoders in 

various standards and its implementation. The implementation has focused on 

reconfigurable aspects of the design in the most efficient way. A comparison is done 

with the existing reconfigurable designs. The chapter has shown that design has both 

more processing power than general purpose processors, DSPs and FPGAs and more 

flexible than ASICs. The flexibility is carefully designed to keep it with in the power, 

area and timing budgets of the mapped standards. Being able to reconfigure the design 

means that new standards or upgrades to the standards can be implemented remotely 

potentially saving the network provider money. This avoids any re spun on the design 

avoiding the large non-recurring engineering costs in the process. 

The reconfigurable VLSI implementation was also covered with the design flow of 

algorithm from floating point precision in matlab to layout. The chapter highlighted 

the performance gains of such design and revealed the results which also verified the 

commercial relevance of the current design compared to the state of the art. 

94 



Chapter 5 

RECONFIGURABLE VITERBI 
DECODING 

5.1 INTRODUCTION 

In this chapter we choose to solve the problem of reconfigurable viterbi decoding in 

the context of a common communication platform consisting of unified turbo-

viterbi decoding components. The viterbi algorithm describes a very well known 

technique for decoding convolutional codes and is an essential part of WCDMA, 

WLAN, GSM, CDMA2000, ADSL and many other standards. Our goal under this 

segment of research is to design a viterbi decoder that allows reconfiguration 

between all of the above mentioned standards. In addition, the design should also 

achieve maximum resource allocation and performance by reusing components 

within turbo decoder base array. The reconfiguration within viterbi decoding also 

provides flexibility to reconfigure the array for different trellis types, constraint 

lengths, rates, generator polynomials and frame sizes. This makes the decoder ideal 

for a unified multi-standard telecommunication platform where each standard can 

map its own parameters on to the viterbi array. In addition a novel dynamic 

reconfiguration technique is also proposed in order to achieve faster context 

switching between different mappings. The reconfigurable fabric is implemented as 

a subset of turbo decoder array on a 180 nm UMC process technology. 

There has been prior research in the field of convolution codes and viterbi decoding 

in general but little work has been done on unified turbo-viterbi design for all the 

chosen standards in the current research. There is an increasing demand of high 

speed and low energy in these standards which has to be met by any reconfigurable 

design that targets them. It was shown with results that the implemented design 

gives much better results in terms of power, area, speed and timing compared to 
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existing reconfigurable DSP or FPGA based implementations. The proposed 

architecture is capable of supporting data rate requirement for 802.11 a WLAN and 

can switch between constraint lengths 3-9. The design also allows different 

generator polynomials and hence can have mappings of different trellis types. 

Another novelty in the implementation is to constraint the Viterbi design such that 

design space is restricted to reuse as much as possible the components of the 

existing turbo decoder array. We have solved the problem of reconfigurable viterbi 

communication hardware design in three parts. First, understanding and 

implementing the algorithm in fixed point format in matlab and evaluating the 

results (Hardwired Simulation). Secondly identifying the commonality of 

algorithms in the standards in question and introducing the desired flexibility to 

satisfy the imposed performance constraints. The identification stage is followed by 

evaluation stage for BER performance analysis for the chosen word length. The last 

stage is the reconfigurable VLSI implementation, comparison with hardwired 

simulation and evaluation of results power, area and speed results. 

The rest of this chapter is organized as follows. In section 5.2, convolution coding 

and Viterbi decoding is briefly described. Section 5.3 describes the reconfigurable 

domain where we look at specific codes that are used in different standards. In 

section 5.3 the hardwired simulations of viterbi algorithm are shown. Section 5.4 

describes the new reconfigurable viterbi design and the details of the individual 

components. In section 5.5, simulation results and performance measures for this 

implementation are provided and compared with the state of the art. 

5.2 VITERBI ALGORITHM 

Viterbi algorithm was invented to overcome several fundamental drawbacks in 

Block Cddes. First of all block codes are frame oriented which introduces 

intolerable latency into the decoding system. A Block code also requires frame 

synchronization and due to hard decisions, the coding gain is also limited. A 

convolution code [EL155] improves on block codes by passing the information 
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sequence to be transmitted through a linear finite-state shift register. Figure 5.1 

shows a typical rate 1/2 convolution decoder for cdma 2000. 

90 	 co  

Information Code 
bits (Input). 	 Symbols 

(Output) 

Ir  C 
g, 	

, 
 

Figure 5.1 K=9, Rate 1/2  Convolutional Encoder for CDMA 2000 

The rate of this encoder is determined by the ratio of the input to output bits. For 

example in the figure above the encoder outputs two bits for every input bit. In 

general, an encoder with k inputs and n outputs is said to have rate k/n. The binary 

data is fed into a series of shift registers (memory elements) and output is taken 

from the generators (go  and g,). This pattern of taps of the shift register determines 

the generator polynomial of the encoder. The generator polynomial in figure 5.1 

shall be go  equals 753(octal) and g i  equals 561 (octal). The constraint length 

parameter K (capital) denotes the "length" of the convolutional encoder (n) i.e., 

how many bits are available to feed the generators (XOR gates) that produce the 

output symbols. K is always equal to the number of memory elements (shift 

registers) plus one. For 3GPP encoder trellis shown in figure 5.1, K is 9. The 

contents of the shift register determine the state of the encoder. Therefore the 

number of states of the encoder will be 2i.  The behaviour of the encoder for an 

input sequence can also be viewed as finite state machines represented by state 

diagrams, graphs or trellises. The state diagram can be expanded into a trellis 

diagram which explicitly shows state transitions at each time instant. Any 
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convolution code can thus be uniquely defined in terms of its rate, constraint length 

and generator polynomial. 

The Viterbi decoding algorithm [V1T67, F0R73, V1T79] is the maximum 

likelihood decoding algorithm for convolution codes. It finds the most-likely 

noiseless state transition sequence of symbols in a state diagram, given a sequence 

of symbols that are corrupted by noise such as additive white Gaussian noise. 

5.3 MATHEMATICAL DESCRIPTION 

For coherence of presentation the viterbi algorithm is briefly summarized here. The 

interested readers are referred to [F0R73]. For simplicity all notations are kept 

exactly the same as described in [F0R73]. Given a sequence 'z' of observations of 

a discrete time finite state Markov process in memoryless noise, viterbi algorithm 

finds the state sequence 'x', for which the a-posteriori probability P(x I z) is 

maximum. This is called MAP (maximum a-posteriori probability) rule, which 

minimizes the error probability in detecting the whole sequence of message. The 

maximum likelihood ML decoder selects by definition, the estimate that maximizes 

P(z Ix). In general they can be related by Bayes' rule 

PAIB)= 	 (5.1) 
Pr(A) 

Pr(BI 
A)= Pr(AflB) 	 (5.2) 

Pr(A) 

Rearranging and combining equation (5.1) and equation (5.2) 

Pr (AIB) Pr(B) = Pr (AflB)Pr(BIA) Pr(A) 

P(x,z) = P(x I z)P(z) P(x)P(zlx). 	 (5.3) 

The process is Markov because the probability P(xk+I I x, xi,. . . , xk) = P(Xk+1 I Xk) 

Let the transition EA at time k be defined as the pair of states (xk+I, xk).  The input 

sequence u = (Uo, u1, . . .), where each uk can take on one of the finite number of 

values say 'm' (m2, for values of 0, 1). There is a noise-free signal sequence y, in 

which each yk  is some deterministic function of present and the 'v' previous states. 

yk = gUk, . . . , Uic. y) 
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The observed sequence z is the output of the memoiyless channel whose input is y. 

The channel is memoryless in the sense that the noise effecting one bit in the 

received word Zk is independent of the noise process affecting all other bits. The 

process described above can be modelled by a shift register of length v with inputs 

Uk. The number of states is thus JXJ = m". For example; In figure 5.1 there are 

28=256 states. The total number of transitions = m "  (for example there are 2 9  = 

512 transitions for each kin figure 5.1). 

Also note that viterbi algorithm finds the transition sequence 4 for which P(41z) is 

maximum (since x has one to one relationship with ), which is same as finding the 

most probable input sequence u, since u has one to one relationship with x. MAP 

sequence estimation problem is formally identical to the problem of finding the 

shortest route through a certain graph as every possible state sequence x there 

corresponds a unique path through the trellis. 

Since the process is observed in memoryless noise; that is, there is a sequence of 

observations Zk in which Zk depends probabilistically only on the transition (or xk) 

at time k (where the process runs from 0 to time K-I) 

P(zlx) =JJP(zk I X 	 (5.4) 

For higher rates (bits within the blocks) we add the notion of superscripts. 

K-I n-I 

P(zlx) =flflP(zflx). 	 (5.5) 
k=O j=O 

Equation (5.5) is called the likelihood function for x. Since logarithms are 

monotonically increasing, the estimate that maximizes P(zlx) is also the estimate 

that maximizes log P(zlx).  By taking the logarithm of each side of the equation, the 

log likelihood equation is obtained i.e., 

K-I n-I 

log P(zlx) =log  P(Zkj  I xi). 	 (5.6) 
k=O j=O 

In implementations of the Viterbi decoder, the summands in equation 5.6 are 

usually converted to a more easily manipulated form called "bit metrics" which can 
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be denoted as a function M(z /x). The path metric for code word x is then 

computed as follows 

K-I n-I 

M(z/x) = 	M(z /x). 	 (5.7) 
k=O j=O 

Also, the path metric can be expressed as the sum of branch metrics where the kth 

branch metric is defined as the sum of the bit metrics for the k th  block of z given x, 

M(z k  I X) = EM (Zkj  I xi). 	 (5.8) 

The kth partial path metric is thus obtained by summing the branch metrics for the 

first k branches that the path traverses, 

M'(zJx)=M(z, Ix). 

Since there are 2m  branches entering each node, we have to choose the "best" 

partial path metric among the metrics for all entering paths. The path with the best 

metric is the survivor, while the other path/paths are discarded. The best partial 

path metric might be either the largest or smallest, depending on how the bit metric 

calculation is done. The distance to be measured can be either Hamming distance 

or Euclidean distance. As explained above the survivor path for a given state is the 

path which has the minimum distance from the received sequence of noisy 

symbols. Using Euclidean distance compared to Hamming distance makes VA 

optimal [L0U95]. This calculation is explained below. 

5.3.1 EUCLIDEAN METRIC COMPUTATION 

For soft decision viterbi decoders the squared Euclidean distance is used as a metric 

to measure the distance between the received and the actual symbols. This is 

explained with an example below. 

Consider a rate Y2 Viterbi Encoder which generates 2 bits (-1-1, -1+1, +1-1, +1+1) 

for every input bit 1 or 0. Each received symbol Yk  may be represented in vector 

form as Yk = ( i,ij), where ro and r 1  are soft decision values, whose magnitudes 
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determine the reliability of the received vectoryk.  Every symbol in the transmitted 

code alphabet may likewise be represented by the vectorxk =1±1,±I). The 

computation of the Euclidean distance metric is: 

Distance = lYk - xjI2 

= I Y 12 2(Yk .Xk) +  I X 12 	 (5.9) 

The energy of the symbol Xk = {±1,±l} may be computed as 

IXk 2 =(±1) 2 +(±1) 2  =2 	 (5.10) 

This energy of all symbols in equation (5.9) is constant at normalized value of 2. 

For this example case, there are two paths that merge at each node of the trellis. 

Selecting the survivor is thus equivalent to comparing two distance equations 

(equation 5.9) D 0  and D 1  for these paths. Let the transmitted code alphabet for these 

two paths of the trellis be xk°  and x. 

Therefore: 
D.  = 1 Yk 1 2 -2(y k .x ° )+ I x°  1 2 	 (5.11) 

and 

D. IYk 12  2(y.x')+Ix' 
1 2 	 (5.12) 

We know that Viterbi algorithm selects the minimum of the distance between the 

competing paths. 

But, from equation 5.10 we know that the energy of xk is constant (equal to 

normalized value of 2) and therefore will be constant in minimum calculation of 

equation 5.11 and equation (5.12). Similarly the energy of yk  is the same in both the 

cases. This reduces the comparison operation to a minima function between the 

middle two dot product terms as is shown here under: 

min((-2(yk  )) (-2(vk  .x'  ))) 	 (5.13) 

Since a min operator on negative numbers may be interpreted as an equivalent max 

operator on positive numbers. Therefore equation (5.13) becomes: 

max((yk  .X), (Yk -v)) 
	

(5.14) 
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Each dot product term may be expanded as 

max(({ro, r 1 }.{±1, ±1}), ({r o, r i }.{±1, ±1})) 

'max(±ro  ±r 1 , ±r0  ±r 1 ) 
	

(5.15) 

where the signs of each term depend on the transmitted symbol for the branch 

being compared. Thus the squared Euclidean metric distance calculation to 

compute the branch metric may be performed with a simple add/subtract and 

comparison operation. The path metrics at stage k+1 of the connectednode of the 

trellis is calculated by adding the survivor in equation 5.15 with the calculation of 

equation 5.14 for stage k+ 1. 

5.4 RECONFIGURABLE VITERBI DOMAIN 

The major contribution of the work on viterbi decoder is the reconfigurable viterbi 

VLSI implementation that can target multiple standards and can be reconfigured to 

decode a range of convolutionally coded data. The architecture can support up to 

256 states, trellises with different generator polynomials and rates. The design is 

mapped onto the turbo decoder array components and these combined together 

provide forward error correction for a reconfigurable communication platform. The 

flexibility of the reported design is carefully tailored to reduce the granularity to 

restricted domains as compared to general purpose fine grained gate arrays. This 

flexibility trade off provides the desired improved performance in terms of speed, 

area and power. A Viterbi decoder is an important subsystem of any wireless 

communication receiver. Each standard, however, defines different encoding 

parameters for Viterbi Forward Error Correction. The examples of these variations 

are explained below: 

5.4.1 GSMJGPRS 

rigure D.2. viteroi tncoaer m uiviiurit 
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The Viterbi Encoder defined in 2nd  generation GSM and GPRS standards is shown 

figure 5.2. It is rate ½, K = 5 encoder with generator polynomials gO and gi as 23, 

33 respectively. 

5.4.2 3GPP2 (WCDMA, CDMA-2000) 

The 3GPP2 (Table 2.1.3.1.5-1 and Table 2.1.3.1.5-2 in [3GPP99]) standard defines 

convolution codes for channels with Spreading Rate 1 and Spreading Rate 3. All 

convolution codes have a constraint length K of 9. The generator function for rate 

V2  is gO equals 753 (octal) and gI equals 561 (octal). The symbol ci is output first 

and the code symbol ci is output last. The state of the convolution encoder upon 

initialization is the all-zero state. The encoder for this code is illustrated in figure 

5.1. The generator function for rate 1/3 are gO equals 557 (octal), gi equals 

663(octal) and g2 equals 711 (octal). The generator function for rate ¼ are gO 

equals 765 (octal), gi equals 671(octal), g2 equals 513(octal) and g3 equals 473 

(octal). 

Figure 5.3 Rate ½ an 1/3 Convolution encoders for 3GPP [3GPP99] 

5.4.3 WLAN 802.11a AND METROPOLITAN AREA NETWORK IEEE 
802.16 

These standards use rate /2 constraint length K=7, binary convolution code with the 

generator polynomials for cO as 171 (octal) and for c  as 133(octal). Puncturing the 

rate ½ allows higher rates of 2/3, 3/4, 5/6, and 7/8 for IEEE 802.16 and 1/2, 2/3, or 1/4 
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for IEEE 802.11 a. Puncturing is the procedure for omitting some of the encoded 

bits in the transmitter (thus reducing the number of transmitted bits and increasing 

the coding rate) and inserting a dummy "zero" metric into the convolution decoder 

on the receive side in place of the omitted bits. The puncturing patterns are defined 

in the corresponding standards. 

Figure 5.4 Rate '/2 Convolution encoder for WLAN and IEEE 802.15 

As shown by above examples Viterbi encoders defined in different standards have 

a number of differences and similarities. The VLSI design of Viterbi Decoder 

exploits this commonality for a unified Viterbi array for communication platforms. 

5.5 HARDWIRED SIMULATIONS 

The focus of these simulations is to build a modular and flexible simulation model 

that can be used for a variety of advanced communication systems. The algorithm 

is implemented first in floating point model. This is followed by a migration to the 

fixed point equivalent model. The fixed point model is emulation of hardware in 

matlab and provides a quick path for evaluating the BER performance for 

justification of the fixed point decisions. The model bridges the gap between 

system design and hardware implementation. The hardwired simulation model also 

provides verification environment at a higher level of abstraction and is used to 

verify the code written in HDL. 

Figure 5.5 below gives the BER results for AWGN channel rate V2 viterbi decoder 

of GSM, GPRS and 3GPP wireless standards. It was observed that 4 level 
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quantization in GSM, GPRS decoder is 0.5-1 dBs inferior to 8 level quantization at 

various SNRs. Increasing the quantization to 16 levels (4bits) allows further 

improvement of 0.25 dBs with the results closest to floating point precision. The 

trace back length in all the simulations was kept at 6 times the constraint length of 

the code. 

• 	 • 
II ---------------------- 

a a 

I. s- ____________ & I. 
- 

I 	 --- 

Figure 5.5: Fixed point analysis for rate '/2 Viterbi decoding in AWGN channel for 

GSM, GPRS and 3GPP 

Hard Decision WLAN -.- 3 bit soft decision -*- 4 bit soft decision  

Figure 5.6: BER Results for rate V2  soft decision viterbi decoder in multipath 

channel for WLAN 802.11 a and 802.16. 
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Figure 5.6 shows the hardwired fixed point simulations for WLAN (802.11 a) and 

Metropolitan area network 802.16. The results are in multipath channel with BPSK 

modulation and rate V2 viterbi hard and soft decision decoding. 3 bit soft decoding 

gives up to 1.7 dB improvement in BER compared to hard decision decoding. 16 

level soft decoding improve the gains by another 0.2 dB. 

A quantization level greater than 4 bits does not provide any significant 

improvement in BER. Therefore an input quantization of 4 bits (as in Turbo 

decoder) provides the best compromise between performance and hardware in a 

unified turbo-viterbi architecture. 

The fixed point model is written in Matlab [MATO1] using fixed point tool box and 

subsequently in the VLSI design all word level quantizations are kept exactly the 

same as Matlab design. These Matlab simulations provide model by model test 

vectors for VLSI implementation at various levels of hierarchy as was shown in 

section 4.10 earlier. The matlab pseudo code is shown on next page. 

7 bits 

a0 ________ 

a 1 

Figure 5.7 Next and Previous state calculation for all trellises 

5.6 VLSI IMPLEMENTATION OF THE VITERBI ALGORITHM 

The block diagram of the overall array is shown in figure 4.7 with Viterbi decoder 

components highlighted in yellow and white colour. The overall Viterbi decoder 

consists of the following major components. 

. ACS Blocks. 

Path Metrics Memory. 

Path History Memory. 
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. Reconfigurable write address generator block. 

State machine. 

• Reconfigurable Trace Back Processing blocks. 

• Input RAMs. 

5.6.1 ACS BLOCK 

ACS block is computationally one of the most intensive units in a Viterbi decoder. 

This block uses the accumulated metrics (called forward state metrics FSMs) and 

the current branch metrics to compute the survivor path metrics at each node in the 

trellis. The basic functions performed by this ACS block are add, compare and 

select. 
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Formulate Random Input Frame (lines 1-7). 

Perform the convolution encoding as per the Trellis (poly2trellis function: line 9). 

Separate Systematic and Parity bits (lines 13-21). 

Model the Channel for SNR by adding noise to the encodedframe (lines 33-42). 

Define the fixed point format for Branch Metrics, FSMS, RSMs etc (lines 48-68). 

Initialize the first state with Maximum FSM Metric for first stage of Trellis (k-0) (line 75), 

Initialize the start of Dummy Reverse Processor (line 79) and Reverse Processor beta (line 80), 

Initialize total windows (line 81). 

Calculate the Branch Metrics, Forward State Metrics in the forward recursion as under: 

p Outer: Iteration for input message frame 

Loop Middle: Iteration for all states in each stage (k)for trellis. Since there are 8 

parallel ACS blocks in hardware that process 8 states, therefore the no of state count = 

total number ofstates18 

Loop Inner: Iteration for processing 8 states as per hardware 

Calculate for each state at stage 'Ic' of the trellis the states at stage 'k-i 'that 

connect to this state. (Using function find_connected_states line 89) 

Save configuration bits for Branch metrics multiplexers in hardware (line 95). 

Calculate Branch Metrics for the connected states at stage kfrom stage k-i of 

trellis (lines 98-144) 

Calculate Forward State Metrics for these connected states i.e. FSMO and FSMI 

(lines 153-154) 

Find the maximum of the two FSMs (line 160). 

Corresponding to the winning FSM save br 0 (0 if upper branch was the 

winning state: lines 170-174). 

Update contents ofpath memory (lines 175-179) 

Return Loop Inner. 

Return Loop Middle. 

Model Saturation logic as per hardware design i.e., Subtract afixed value from 

all FSMs ([any  FSM crosses a threshold: lines 182-186 

Return Loop Outer. 

Perform traceback operation for Reverse Processor Dummy lines 211-212 as 

under: 

Calculate the start address for traceback - line 209 ([or 3GPP this traceback 

starts after 2" window length for which the address calculation is equal to (window 

length 54) X 2 X 256(total states) 18(8 states are processed in parallel) 

Read the memory content of Path History memory corresponding to this address 

and Multiplexer address— Line 213-214. 

Calculate the next trace back address using function 

calculate—next—address - Line 215 and the figure 3.5 shown below 

Actual Traceback starts from the start state calculated by the earlier dummy 

processor and actual message bits are decoded. (lines 220— 230). 

Matlab Pseudo code for Max log map 
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This was shown mathematically in equation 5.15 and the pseudo code in section 

5.5. Two ACS units combine to formulate one butterfly element as shown in figure 

5.8 where state metrics are shown as SM and branch metrics as BM. One trellis 

stage of a constraint length K coder is made up of 22  butterfly elements and 

requires 2 K-1 ACS operations. The entire viterbi decoder can be based on one such 

ACS unit resulting in a structure called state serial architectures [1NY98, GL187]. 

This is inherently low cost architecture however suffers from very slow speed 

rendering it less useful for high speed applications. Similarly a separate ACS circuit 

can be dedicated to every node in the trellis stage, resulting in fully parallel and 

very high speed architecture [C11U89]. This however is at the cost of very high 

energy consumption and the second disadvantage in using fully parallel scheme in 

the poor resource utilization for reconfiguration. 

SM1 	BM1 	SM 
1+1 

= MAX (5M 1+BM 1 ,SMjj.BM3J 

B <M2 

Figure 5.8. A simple butterfly operation for SM calculation 

The proposed architecture reuses the available 8 Add-Compare-Select (ACS) 

blocks in turbo decoding array. The concept of reusing these blocks results in a 

higher speed architecture than traditionally used state serial architectures. In 

comparison to fully parallel architectures an intermediate solution is presented 

where better energy efficiency can be achieved by Processing N states (up to 256) 

by P ACS (P=8) [CHU89] in contrast to assigning one ACS for each state. This 

results in 100% utilization of all ACS blocks for any mapped standard on the array. 

The state machine control makes it possible to use the array as a co-processor. We 

have also shown a reconfigurable trace back approach for survivor memory 

management and segmentation, a reconfigurable state metrics memory 

management methodology, a reconfigurable write address generation and an open 

trellis and dynamic reconfiguration process. For coherence of representation the 

viterbi algorithm (VA) is summarized with a 2 state trellis diagram. For each stage 
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'L' of trellis, branch metrics (BM) are computed using the soft input symbols. State 

metrics (SMs) for stage L+1 are updated using the SMs for stage 'L' of trellis as 

shown in figure 5.8. 

The BMs are computed by calculating the Euclidian distance of the soft input 

metrics as shown in section 5.3.1. The input metrics are represented in 4Q2 signed 

two's complement format similar to the turbo decoding array. The BM block for 

turbo decoder and viterbi decoder arrays is therefore very similar reutilizing the 

word length already available in Turbo decoding array. 

The error probability of convolution codes decreases exponentially with the 

constraint length [SHU93] and therefore standards like 3GPP [3GPP99] use large 

trellises. For brevity the design is explained with the worst case 3GPP example 

which has 256 states (constraint length --9). 

For this large constraint length (K=9), the 256 (2') states are represented by a 

smaller de Bruijn graph of 2m  states [SHU93]. There are 8 ACS blocks already 

available in the turbo decoder array [AHItvI205] and therefore reutilizing these 

states M=3, processing 8 states/clock cycle for Viterbi. This is shown in the figure 

5.9. 

T:::::.T 
1=18-~ 

du 

I 
Figure 5.9 256 states 3GPP trellis for generator polynomial 753,561 
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As shown in Fig 5.9 each ACS unit requires two states at trellis stage 'L-1' to 

calculate the winning state. This requires saving all the winning states at trellis 

stage 'L-1' as these are subsequently required at stage V. This contrasts with 

turbo decoder where forward state metrics were required to be saved for the 

complete window length. The FSM RAM reutilization for the unified array is 

explained in section 5.6.2. The Add-Compare-Select operation of viterbi is similar 

(as explained in section 4.11.4) however in viterbi decoder the ACS units provide 

additional data bits for Path History RAMs as explained in section 5.6.3. The 8 

ACS blocks were used in state parallel sequence in Turbo mode, where as in the 

viterbi mode this methodology is changed since the number of states are much 

higher. For example reutilizing these 8 ACS blocks for Viterbi there are 32 clock 

cycles required to process 256 states in 3GPP [3GPP99]. This requires a 

modification in the way the saturation logic works since the decision to saturate the 

results can only be achieved when all the states are processed. This is saturation 

logic control is shown in figure 5.10 and figure 4.17b. 

Mt 	

dtypefl 

outmuxi 	 dfirst 
outmux2 

C 
0 

Figure 5.10 Modification in saturation circuit for Viterbi decoding 

5.6.2 PATH METRICS (PM) MEMORY 

There are 256 winning states at each stage 'L' of the trellis which are saved in 

SRAMs to be used at stage 'L+1'. Each stage (L) of trellis requires 2L.1 ,2M clock 

cycles to calculate all wining states. Dual read ports have been used to access two 

path metrics required for the computation of the next path metric. Size of these 

RAMs (called FSM RAMs in the context of Turbo) is carefully selected to map 

both constraint length K=4 trellises in Turbo and up to K=9 constraint length 

trellises in Viterbi. To avoid the read-write conflict two alternate RAM banks have 
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been used for read and write operation. The update sequence is shown by the 

pattern shown in figure 5.11. 

Figure 5.11: PM Memory read and write operations 

At time t=1 'Read Port 1' read states 0-7 (for ACS 0-3) and 'Read Port 2' read 

states 8-15 (for ACS 4-7) from PM Memory 1. The ACS blocks update the path 

metrics and these are saved on PM Memory 2 as shown in blue. The process 

continues for trellis stage 'L' and the PM RAM2 is completely updated in 32 clock 

cycles. These values are then read in trellis stage 'L+1' and now PM Memory 1 

will be used for writing the updated metrics. For lower constraint lengths (for e.g. 

GSM, K5, 16 states) PM RAMs are updated in just two clock cycles. 

Bill 

lIHHF1h 
Figure 5.12. Example showing previous state calculation 

The input/output state connections for the ACS blocks are explained in figure 5.7. 

For example if the state at stage 'L' of trellis is 01111111 (figure 5.12); it implies 

that the decoded bit (shown in red) is 0 and the two possible states connected to this 

winning state at stage 'L-1' of trellis are 1111111_0 and 1111111_i. The previous 
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winning state decision is provided by the path history memory. Path Metrics 

memory is mapped on to Forward State Metrics RAM [AHM205] already available 

in turbo decoding array. 

The read and write address of PM RAMs is provided by flexible counters in Finite 

State Machine as shown in figure 5.13 where separate read counters are provided 

for FSM RAM I and FSM RAM2. In turbo mode the read and the write is in the 

same direction as was shown in figure 4.17 earlier. However in Viterbi mode the 

read operation as specified in figure 5.11 is performed by two counters for read port 

1 and read port 2 for the PM RAMs. Multiplexers A and B are used to switch the 

counters for turbo mode as was shown and explained in section 4.11.2. Read 

counter 1 and 2 also have dynamic count—to and count—from flags which are used 

to provide the PM RAMs controls for multiple viterbi standards. The value of 

count—to (c.t) and count—from (cS) is shown for different standards in table 5.1 

below: 

s/no Port Name Counter Viterbi- Viterbi- Viterbi 

3GPP WLAN & GSM/GPRS 

(256 IEEE 802.16 16 states 

states) 64 states 

c.t 	c.f c.t 	c.f c.t 	c.f 

1. Read Port l S bit up 30 0 7 0 0 0 

FSM RAM 1 counter 

increment 

of 2 

2. Read Port 2 S bit up 31 1 6 1 1 1 

FSM RAM 2 counter 

increment 

of 2. 

3. Write Port 5 bit up 0 31 0 7 0 1 

FSM RAM  counter 

and RAM2. 

Table 5.1 Viterbi state machine counter values for different standards 

113 



Chapter 5: Reconfigurable viterbi decoding 

State machine also provides the read and write control signals to all the RAMs. 

Data read from the PM RAMs is passed on to ACS units. State machine control 

provides select signals for multiplexer C which determines the PM RAM used to 

read data. Multiplexer D provides change of control from Viterbi mode to Turbo 

mode as in this mode PM RAMs are not used to provide data to ACS blocks. 

INPUT 
RAM 	RAM 2 

WRITE ADDRESS 
INPUT RAM I AND 

r • 	 ' S ATE MACHI E 
READ ADDR4ESS P...P.d2 CONTROL 

M 	INPUT RAM I 	
counter FSM RAM2 

FORWARD 
Wnte Address 

COUNTER 

atao 

READ ADDRESS 
A 

I 
rtl 	2 

INPUT RAM 2 
U -4 Road DATA IN FROM ACS 

REVERSE ( 1  counter BLOCKS 

COUNTER READ-WRITE 
U 	ADDRESS OF C 

X 	FORWARD STATE 

- 

METRICS RAM B [J 
R..dA...Po.t2 D 

WRITE ENABLE I FSM RAM1 	- 
Data out 

INPUT RAM I 
STATE MACHINE CONTROL port 1 & 2 

WRITE ENABLE Write Address 
INPUT RAM 2 

Control for 	Control for 
_____________________ 

From Turbo ACS units  
Mulitplexer BMC1 Mulitplexer BMC2 

Figure 5.13. State machine control for PM RAMs in viterbi 

5.6.3 PATH HISTORY (PH) MEMORY 

Path History Memory is used in VA to find the survivor path. The contents of this 

memory are updated on each stage 'L' of the trellis which allows reconstructing the 

survivor path. Each ACS unit output one bit for the survivor state. 8 decision bits 

per clock cycle (given by 8 ACS units) are saved in the PH RAM. The total size of 

the PH RAM is given by: 

Size of PH RAM = (2L1 /2M) x WL x Total windows ------- 

where window length is 6 times the constraint length. 

For constraint length 9, size =32 x 54 x 4 = 6912x8. 
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There is 8K (2Kx4) of output RAM available in turbo decoding array [AHM205]. 

This is reused for PH Memory and is shown in the figure 5.14. 

8 DECISION BITS 8 DECISION BITS 8 DECISION BITS 8 DECISION BITS 
PROVIDED BY PROVIDED BY PROVIDED BY PROVIDED BY 

ACS UNITS ACS UNITS ACS UNITS ACS UNITS 
4 

II 	II II 	Pill 

4 

il l 	 I II 	Ii - 
32 81 4 2 

2 
 

32 81 4 
42  30 

I 21 
81 PH MEMORY 

PH MEMORY PH MEMORY PH MEMORY WINDOW LENGTH 
WINDOW LENGTH WINDOW LENGTH WINDOW LENGTH 3 4 

1 2 36x2 BITS 30x2 BITS 

32 t 64X5 BITS 
SEGMENTATION 

42X3 BITS 
SEGMENTATION 

SEGMENTATION 
SHOWN FOR 

SEGMENTATION 
SHOWN FOR 

SHOWN FOR SHOWN FOR CONSTRAINT CONSTRAINT 
CONSTRAINT CONSTRAINT LENGTH 6(15-64 LENGTHS 

LENGTHS (3 GPP, LENGTH ? (IS-es STANDARD) (GSM.PDC 
CDMA2000, W- STANDARD) STANDARDS) 
CDMA-JAPAN, 

UMTS) 

ADDRESSES 0.2K ADDRESSES 2K-41( ADDRESSES 41(4K ADDRESS 6K-8K 

Figure 5.14: 2Kx4 identical path history RAMs in viterbi decoder, Segmentation 
and mappings shown for different standards 

Each block of 2K RAM is used to store one window length (WL) of decision bits. 

The RAM is segmented by the total states of the trellis. For example, for 256 states 

there are 256 decision bits (one for each state). Therefore the RAM is segmented in 

to 32x8 segments. Figure 5.14 shows mappings and segmentation of the PH 

memory for different standards. However the used area of each block of 2K RAM 

for a particular mapped standard will exactly be the same. This is enumerated in 

table 5.2 below 

Standard Constraint Memory 	utilization 	for 
length each 2K RAM=WL x 

segment size. 
W-CDMA(Japan) 9 54 x 32 =1728 X 8 bits 
CDMA 2000 
UNITS  
GSM,PDC 5 30x2=6OX8bits 
IS-95, IEEE 802.16 7 42 x 8 = 336 X 8 bits 
IS-54 6 36x4=l44X8bits 

TableS .2. Memory utilization for different standards in viterbi decoder 
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PH memory is read by trace back processors (section 5.6.6) as they calculate the 

survivor path in the reverse traversing of the trellis. The write and read control is 

provided by the state machine. This is explained in the section 5.6.5. Address 

generation is made reconfigurable as explained in section 5.6.4. 

5.6.4 RECONFIGURABLE WRITE ADDRESS GENERATOR 

The write address generation is controlled by Finite State Machine using a 5-bit 

counter driving the 6-bit counter. The 6 bit counter will be incremented once the 5 

bit counter reaches the terminal (maximum) count. 

5 Bit Up Counter 
With Count-To Flag 

fn 

B1B3B4 

11 bits j1teAddess 

B5 	136 	137 	B 

10 bIts arithmetic 	L.. 6 Bit Up Counter With 
Shifter 	r I 	Count-To flag 

4'bO 

Figure 5.15: Reconfigurable write address generator for viterbi decoder 

Both these counters have dynamic 'count—to' flags which provide the terminal 

count. The terminal count on the 6 bit counter provides means of introducing 

reconfigurable window length and terminal count setting on 5 bit counter adjusts 

the segment length for multiple standards. As shown in figure 5.12 a technique of 

segment by segment address writing on PH memory has been used where each 

segment corresponds to one trellis stage 'L' (256 states for 3GPP). 5 bit counter 

controls the segment address. The segment address however is different for 

different standards and the maximum value is 5 bits for 3GPP. 6 bit up counter is 
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concatenated with 4 zero bits on the MSB side and is then left shifted depending on 

the mapped standard. The output of the arithmetic shifter drives the lower end of 

write address through tri state buffers. 5 bit up counter drives the other side of 

address generator through tri state buffers (B 1 -134) as shown in the figure 5.15. 

WWWWWWWO 

Offlufflown 
Table 5.3. Configuration bits for tristate buffers in viterbi decoder 

Table 5.3 defines configuration bits for the tri state buffers shown in figure 5.15. 

Rows in the table correspond to constraint lengths 9,5,7,6 respectively. The 

constraint lengths are for different standards as defined in table 5.2. Last column 

'SH' in table 5.3 defines the number of left shifts for the arithmetic shifter. For 

example if 6 bit up counter gives [C5_C4_C3_C2_C I — CO]  and 10 bits arithmetic 

shifter input is [0_0_0_0_C5_C4_C3_C2_C 1_CO] thenif SH is 1 (left shift by 1) 

the output from arithmetic shifter will be [0_0_0_C5_C4_C3_C2_C 1 _C0_0]. This 

output will drive the lower end of write address as shown in figure 5.15. Using 

table 5.2 and configuration switch values corresponding to SH 1 (line No 4 table 

5.3), the write address will be 

[U4—U3—U2—U1—U0] are the five bit count values of upper counter (connected 

with B1-B4). This is the write address for 1S54 standard, similarly for 3GPP the 

write address as shown by switches in line No 1 table 1, will be 
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Both these counters have count —to flags and for 1S54 count—to flag of five bit 

counter will be set to 4, whereas count —to flag of 6 bit counter will be set to 36. For 

3GPP the count—to flags of 5 bit and 6 bit counters will be 32 and 54 respectively. 

5.6.5 STATE MACHINE CONTROL OF PATH HISTORY MEMORY 

Viterbi state machine control is very similar to turbo decoding. The only difference 

between the two is that the control is for read and write of Path history memory as 

opposed to input memories in turbo decoding. Both Turbo and Viterbi decoders use 

forward and reverse state metrics processing. There are windowed versions of the 

algorithm to improve the latency and in its simplistic form it uses two reverse 

processors (BI and 132) in parallel with one forward processor (FP 1). Reverse 

processor can start cold in any state (initializing each state as equi - probable), but 

after few iterations (equal to window length WL) the state metrics are as reliable as 

if the process had been started at the final node of trellis. Let B2 be the dummy 

reverse processor that starts from state 0 and after reverse traversing the trellis for a 

WL, provides the start state for the actual reverse processor Bi. 

Figure 5.16. State machine in viterbi showing 4 operating states 

Figure 5.16 shows the four basic states of VA with start state as '0-L'. The detailed 

scheduling diagram is presented in figure 5.17. Vertical axis presents time and 

horizontal axis presents trellis length. Table 5.4 is linked to Figure 5.17 for its 

explanation. Moreover a similar scheduling diagram for turbo decoding was 

presented in section 4.11.2 and our earlier work [AHM205]. Table 5.4 shows the 
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working of FP, B I and 132 as they write and read PH memories. After 4 WLs (O-L 

to 3L-4L) the cycle repeats. First decoded bits are output continuously after latency 

of 3 WLs from time 3L-4L. 

FRAME 
L 	2L 	3L 	4L 	5L 

	
RI 	71 	RI 	OIL 

TE MET ICS CAL ULATED IY FP. v ITE PH REA PH MEM RY 1 >  

\FPFC 
MEMOR I DECIS IN BITS ILLED A lit PH IIEMORY RY 2 

 
REA PH MEM 

FRAMI LENGTH O-I. VVI ITEPHII MORY3 REA PHMEM RY3 

E PH M REA PH MEM RY 1 MORY 

BITS F( 2'°  FRA IE LEN( H L-2L FILLEI I BY FP 

\F

P  IDECISIO 
NPHME DRY 2. 

JE 

P 82 RP I READS HE DECI ION BIT FROM P MEMOR 2 

/ FP CID ESPONE NG TO F ME LE TH LEN TH 2L T L 
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d RP. I INITIAL ED BY P B2 NO READS HE DECI ION BIT 
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Figure 5.17: Scheduling diagram for viterbi decoding 

Time PH Memi PH Mem2 PH Mem3 PH Mem4 

O-L Write FP Read B 1 NO OP Read 132 

L-2L Read B2 Write FP Read B 1 NO OP 

2L-3L NO OP Read B2 Write FP Read BI 

3L-4L Read B 1 NO OP Read 132 Write FP 

4L-5L Write FP Read B I NO OP Read 132 

Table 5.4. Read and writes on PH memories by FP,B 1 and 132 in viterbi decoder. 
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5.6.5.1 RECONFIGURABLE ASPECTS OF STATE MACHINE 

The state machine control needs to provide flexibility to control not only a switch 

over between viterbi and turbo decoding but also amongst different standards 

within viterbi decoding. The state machine controls are explained in subsequent 

sections along with the explanation of individual components of the array. The 

controls can be classified into the following categories: 

• Read and Write Controls for Input RAMs. 

• Controls for generating read and write addresses for Input RAMs. 

• Control signals for Branch Metrics Multiplexers. 

• Adjustment of scheduling and windowing as per the mapped standard. 

• Control signals for disabling the unused blocks. 

• Read and Write control signals for Path Metrics RAMs (called FSM RAMs 

in Turbo) 

• Address generation for PM RAMs. 

• Read and Write Controls for all the ports of PM RAMs. 

• Control signal for multiplexers controlling data outputs of PM RAMs. 

• Read and Write Controls for Path History (output RAMs in Turbo 

decoding). 

5.6.6 RECONFIGURABLE TRACE BACK PROCESSING 

As shown in section 5.6.5 there are two reverse processors BI and B2 (dummy) 

working in parallel. To get the survivor path, either register-exchange or trace back 

structures can be used [RAD81]. Since the trace-back is efficient for larger 

constraint lengths and low power applications, trace back processing is selected. In 

trace back processing the previous trellis path stage SL-1  is given by the current path 

state SL  according to the following update. 

SL-1 ESL <<1, D] 

this corresponds to a left shift of the current state introducing the value of surviving 

bit D in the vacant position as shown by Dl-D7 in figure 5.18. Survivor bit is 

selected by multiplexer Ml from the data bus of PH Memories. The select control 
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to this multiplexer is provided by DI, D2, D3 outputs. 6 bit Down Counter and 

arithmetic Shifter arrangement is also shown which works exactly the same as was 

explained in section 5.6.4. The only difference is that the counter is initialized with 

the last address of PH Memory and counts down by 1. The decrement in count by 

one provides a jump of one segment length. Reverse processor B 1 and B2 share the 

same counter and shifter. 

Reconfigurable trace back processing is explained with examples of 3GPP and 

GSM as was done in section 5.6.4. 

tSi Di 

Table 5.5 Tri state buffer controls for recontigurable trace back processing in 
viterbi decoder 

Let U4—U3—U2—U1 are outputs of buffers B1-B2_B3_B4 and 

C5_C4_C3_C2_C 1_CO are the outputs of the 6 bit down counter. Output of the 

arithmetic shifter without any shift is O_O_O_O_C6_C5_C4_C3_C2_C 1_CO. 

No B9 BlO B1 1 Sh Output Shifter 

GSM off Off Off 0 O_O_O_O_C5_C4_C3_C2_C1_CO 

3GPP on On On 4 C5_C4_C3_C2_C1_CO_O_0_O_O 

Table 5.6. Arithmetic shifter outputs and buffer controls in viterbi decoder 

The contents of the read register for 3GPP using the controls in table 4 and table 5 

are: 

U3U2 I  U1UO 

Similarly for GSM the read register contents are: 
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Figure 5.18: Trace back processing for reconfigurable viterbi decoding 

5.6.7 OPEN TRELLIS AND DYNAMIC RECONFIGURATION 

The input connections to all ACS units are made flexible by reconfigurable logic as 

shown in figure 4.7. BM configurations are saved in Input RAMs 1- 4. Each RAM 

block is 32x8 bits, and has asynchronous read and synchronous write ports. The 

RAMs are filled in 32 clock cycles (for 3GPP [3GPP99] trellis). It is worth noting 

that during the write operation on the RAMs simultaneous read is also performed. 

This provides dynamic switch over for different trellis types. These configuration 

bits provide the appropriate BMs for the ACS units. ACS units also need the 

previous state metric values which are read from Forward Processor RAMs as 

explained earlier. After first segment write operation on the RAMs is completed 

and then only read operation is performed for the subsequent segments. The size of 

the input RAMs is carefully selected to store all the branch metric configuration 

bits and the two window lengths of input metrics in case of Turbo decoding. The 

read write controls for the input RAMs is provided by state machine. These 
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controls change with the mapped standards and also with turbo and viterbi 

mappmgs. 

5.7 RESULTS 

The Viterbi mappings for various standards are first coded in matlab with floating 

point precision. The precision is then changed to fixed point as per the hardware 

design. The matlab code is changed to simulate the hardware, and therefore it 

provides the test vectors that can be directly used in the RTL design. Matlab fixed 

point simulations are also used to compare the results with floating point 

precisions. The RTL design after pre-synthesis simulations and verification is 

synthesized using Synopsys Design Compiler for 180 nm CMOS UMC cell library 

and the chip layout is done on Silicon ensemble. Post layout power figures are 

taken from Synopsys Design Power. Synopsys designware SRAMs were used for 

Forward Processor RAMs. Virtual Silicon 2K x 8 synchronous (separate read and 

write port) macro RAMs were used for Path history memory consuming 110 

uW/MHzfPort. Figure 5.19 gives the cell count and overall area of the array with 

1 8Onm process. 

Report: area 
Design: oneFPtwoRPs 
Version: X-2005.09-SP1 
Date : _ Thu Jun 101:50:25 2006 

Library(s) Used: 

umcll8u25Ot2_wc (File: Ihome/SLlgJumcO.18/LJMCL18U25OD2_2.41 
_ designcompiler/umcllBu25Ot2_wc.db) 

Number of ports: 	310 
Number of nets: 	10028 
Number of cells: 	8225 
Number of references: 	212 

Combinational area: 	1148921000000 
Noncombinational area: 529297.750000 
Net Interconnect area: undefined (Wire load has zero net area) 

Total cell area: 	1678616.125000 

Figure 5.19. Area of array without output RAMs 
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The array uses 1.67 mm  of area as shown in figure 5.19. The overall area and the 

cost of reconfigurable viterbi components is shown in figure 5.20. Area utilization 

of reconfigurable switching is 97089.6 um  which is only 3.4% of the overall area. 

The power consumption of this switching fabric is just 2.5% of the overall power 

consumption. The implementation of viterbi components on turbo decoder array 

increased the area of turbo decoder array by 20%. This overhead is much less than 

implementing viterbi and turbo decoder arrays separately. The unused blocks are 

disabled throughout the chip which results in no significant increase in power 

consumption of the overall array. The area and power figures are given in table 5.7. 

Similar power figures are achieved compared to the unified VLSI design [MAR02], 

however our design is made much more flexible than [MAR02]. 288 configuration 

bits are required to configure the array. At 20 MHz configuration clock speed it 

takes 14.4 isec to completely reconfigure the array. 

The power figures are quoted at 20MHz clock speeds. 

Area-Power Comparisons 
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Figure 5.20: Area and Power results of individual components of the viterbi design 

	

Technology 	 0.18 	microns 
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standard 	cell 

CMOS 

Code rate (flexible) 1/2, 1/3, 1/4,1/5 

Constraint 	length 

(flexible) 

Up to 9 (256 states) 

Generator polynomial Flexible 

Survivor 	path 	length 

(flexible) 

Maximum 54 

Decision level 4 bit soft decision 

ACS units 8 

Power supply 1.8V 

Operating frequency 20.0 MHz 

Total Power in mW 69.961 mW 

Total Area 2.82 mm2  

Table 5.7. Results for viterbi decoder 

The percentage of switching power and internal power in viterbi components is 

shown in figure 5.21 below: 

Library (a) Used: 
um  ll8u250t2wc (File: /heme/SLIg/umcO. 18/UMCL18U25OD2_2 .4/ 

design_compiler/umcll8u250t2_wc. db) 
Operating Conditions: WORST Library: umcll8u250t2_typ 
Global Operating Voltage = 1.8 
Power-specific unit information 

Voltage Units = 1V 
Capacitance Units = 1.000000pf 
Time Units = ins 
Dynamic Power Units = 1mW 	(derived from V,C,T units) 
Leakage Power Units lpW 

Cell Internal Power = 12.5929 mW (18%) 
Net Switching Power = 57.3680 mW (82%) 

Total Dynamic Power 	= 69.961 mW (100%) 

Cell Leakage Power 	= 175.3585 uW 

Figure 5.21: Net switching power and cell internal power in 1 8Onm UMC CMOS 

process for viterbi components of the array 
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5.6.1 COMPARISON 

The reconfigurable viterbi decoder design is compared with Texas Instrument's 

viterbi decoder [HOCOO]. This is also a flexible decoder with variable constraint 

length and code rate. The maximum data rate achievable by the decoder is 2.5 

Mbps which is slower than the data rates provided by our design (10.5 Mbps at 

maximum clock frequency). The decoder in [HOCO0] also used a coprocessor 

within programmable DSP which makes it limited to a particular processor type. 

The work proposed by [CHAO 1] presented a hard input reconfigurable viterbi 

decoding using single bit Hamming distances for WLAN and 3G. Our proposed 

design achieves a similar data rate however also has turbo decoding components 

and a soft decision viterbi decoder. The design in [CHAOI] hence has limited 

flexibility and the single bit hamming distance calculations makes it difficult to use 

in practical scenarios. 

The work proposed in [KEL93] is a foldable scheduling scheme for reconfigurable 

viterbi decoder. Turbo decoding is not available with this decoder, however the 

proposed architecture has a utilization of 100% for almost all configurations. The 

area power results are not provided and the implementation is also done on a set of 

FPGA boards rather than ASIC. 

5.8 CONCLUSION 

A fully flexible viterbi decoder for reconfigurable platforms has been designed. 

The decoder consumes 69mw at 20MHz occupying 2.824 mm  area. The array can 

be mapped onto various communication standards and hence can be used as an IP 

in reconfigurable platforms. It is shown with results that the cost of reconfiguration 

in our chosen domain is negligible and a careful reconfigurable design can give 

results very close to the state of the art ASIC designs but with much increased 

flexibility. 
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LOW POWER INTERLEAVER 

In this chapter, a novel implementation methodology to implement 3GPP 

mterleaver is proposed. Interleaving is the key factor in the excellent performance 

of turbo codes. The novel implementation methodology discussed in this chapter 

results in 3GPP interleaver design with a significant reduction in SRAM area. 

Interleaver SRAMs are the major contributor to the area and power of the turbo 

decoder and hence reducing SRAMs results in significant area and energy savings. 

6.1 INTRODUCTION 

Numerous interleaver design algorithms have been proposed so far, many of them 

are purely heuristic, other employ optimization techniques. A large class of 

interleaver designs are based on spreading which will be presented in subsequent 

sections. Due to the large number of proposals and due to the limited space in this 

thesis, we can present only the most significant algorithms in the following 

sections. 

6.1.1 RECTANGULAR INTERLEAVERS 

Rectangular interleavers, often simply referred to as "block interleavers", have 

been used for the transmission over fading channels for a long time [C0N87, 

ESA89]. This interleaver can be represented as a rectangular array of boxes, where 

each box contains a single bit or a tuple of bits. The boxes of x X y rectangular 

interleaver are arranged in x rows and y columns. In its simplest form it is 

implemented as memory in which data is written row-wise and read column-wise. 

For example, data is written row-wise as shown in Table 6.1. 
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Dl D2 D3 D4 

D5 D6 D7 D8 

D9 1)10 Dli D12 

D13 D14 D15 1)16 

D17 D18 D19 D20 

D21 D22 L D23 D24 

Table 6.1 Writing data Dl-D24 row by row in the memory in the case of a 
rectangular interleaver 

The interleaving process in row-column interleaver consists of reading data 

column-wise shown in table 6.2. 

Dl 	D5  1D9 JD13Dl7D21ID2 I D6 IDIOIDI 4 IDI 8 JD22 ID3  1D7 DlI 
Table 6.2. Reading data column-wise from memory in rectangular interleaver 

It is shown in [PSC96] that the utilization of rectangular interleavers in Turbo 

codes entails a major problem. With these interleavers, there is a large number of 

first component input words containing two weight 2 error patterns, which are 

permuted to similar second component input words containing two weight-2 error 

patterns. These EP's associated parity weights are low and they form a woven error 

pattern which produces a low codeword weight. The multiplicity of these low-

weight code words lies in the same order as the interleaver length K. [BFIOOa] 

shows that Turbo codes with rectangular interleavers can be interpreted as a special 

case of convolutional codes. Moreover, [BHOOa] and [GMBOO, GMBO 1] showed 

that the Turbo codes exhibit a particularly low trellis complexity for rectangular 

interleavers. There are many constructions possible for the block interleavers, some 

popular constructions are given below: 

6.1.2 HELICAL INTERLEAVER 

A "helical" interleaver writes data row-wise as in Table 6.1 but reads data 

diagonal-wise as shown below and in Table 6.1 in different colour patterns. 
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1 1)18 1 1)15  I )12  ID5 JD22 D19  1D16  I D9  I )6 ID3  1D23  I )20  1D13 I••• I 
Table 6.3 Diagonal interleaver read operation 

6.1.3 ODD-EVEN INTERLEAVER 

It was shown in [BAR94] that "odd-even" interleaver gives significant 

improvements when used in a turbo encoder design. Let us assume that we have a 

random sequence of binary data input to a rate one half systematic encoder and we 

produce the coded bits but only store the odd coded bits as in table 6.4. 

DI D2 1)3 D4 I D5 I D6 I D7 I D8 I D9 I DIO I DI  I D12 I D13 I D14 I D15 

XI - X3 - X5 I 	- X7 I  - X9 - XII I 	- X12 - X13 

Table 6.4 Table showing odd position bits for Odd-Even interleaver 

Now we store row wise the sequence of data 131-131 5 say in a block interleaver 

with an odd number of rows and odd number of columns. The encoding is done 

after reading column wise and the even positions of the coded bits are stored as 

shown in table 6.5 below: 

-- --- -- -- -- --- -- - 

Table 6.5 Table showing the even position bits for odd even interleaver 

The data which is actually sent through the channel is multiplex data from table 6.4 

and 6.5 as shown in table 6.6 below: 

Dl D2 D3 D4 D5 D6 D7 D8 D9 D1O DII D12 D13 D14 D15 

Xl YB  X3 YD X5 YF X7 YH X9 Yj Xli YL X12 YM X13 

Table 6.6 The output to channel from odd-even interleaver 

The advantage with this scheme is that the coded power is uniformly distributed as 

each of the information bits has their own coded bit associated with it. 
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6.1.4 SIMILE INTERLEAVER 

In Simile interleaver [BAR95] the whole block is divided in n+1 sequences, where 

n is the number of delay elements in the encoder. For a simple four state encoder, n 

= 2, the corresponding 3 sequences become: 

Sequence°  = {dk I k mod (n + 1) = O} 

Sequence' =dkIk mod (n+ l) = 1} 

Sequence  = {dk I k mod (n + 1) = 2} 

The property of the Simile interleaver is that after encoding both sequences of 

information bits (original and the interleaved), the state of both encoders stays the 

same. Therefore same tail bits can be appended to the information bits, which drive 

both encoders to the zero state. The final encoder state is independent of the order 

of the bits in normal or interleaved pattern as long as they follow the same 

sequence i.e., the index for the interleaved output follow the same pattern as for the 

non interleaved sequence. As an example in [BAR95], to generate a simile odd-

even block helical interleaver, the interleaver depth is chosen as an even number 

which is multiple of (v+1) and the second dimension is chosen to be prime. For a 

four state RSC encoder it is shown as: 

Xl X2 X3 X4 X5 X6 

X7 X8 X9 X10 Xli X12 

X13 X14 X15 X16 X17 X18 

X19 X20 X21 X22 X23 X24 

X25 X26 X27 X28 X29 X30 

Table 6.7 Row by Row entry for Simile odd-even block helical interleaver 

Part of the interleaved sequence is shown in table 6.8 below: 

X25 X20 X15 XJO X5 X30 X19 X14 X9 X4 X29 X24 X13 X8 X3 

J 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 

MOD 

3 

XI X2 X3 X4 X5 X6 X7 X8 X9 X10 Xli X12 X13 X14 X15 

Table 6.8 The output of a simile odd-even block helical interleaver 
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Comparison of row 1 and row 3 in table 6.8 shows both interleaved and non 

interleaved bits follow the same sequence. 

6.1.5 FRAME INTERLEAVER 

Unlike simile interleaver frame interleaver does not uses tails to drive both 

encoders to the same state. Instead it puts more constraints on the interleaver design 

[BER96]. The N information bits to be interleaved are stored twice in a memory of 

size 2N. The addresses are selected such that their subsequent reading is time-

separated by number of periods which is multiple of constraint length L. This 

arrangement also ensures that if the encoder started in state zero, it will end in state 

zero without the need of any tail bits. 

6.1.6 PSEUDO-RANDOM INTERLEAVER 

In this category of interleaver the interleaved patterns are generated by pseudo-

random algorithm. This algorithm can either be implemented in hardware as a 

pseudo-random generator or the interleaved patterns corresponding to the complete 

block size can be stored in a lookup table. Pseudo-random interleaving results 

depend on the block size and are varying for small and large block lengths. The 

criterion for choosing between them is done on computer simulations rather than 

analytically. 

6.1.7 S-TYPE INTERLEAVERS 

In an "S-random" interleaver, each randomly selected integer is compared to '5' 

previously selected integers and the current integer is selected only if it is at 

distance larger than S from any of the S pervious selections. The process is 

repeated for all N addresses. The interleaver gain is larger for larger '5' values. It 

was shown in [BER96] that if an interleaver of size N is randomly selected, the 

probability that a particular weight-2 (i.e. the sequence in which the number of ones 

are 2) data sequence will be permuted by the interleaver into another sequence of 

same form is roughly 2/N for large N. The probability is larger for smaller N. The 

weight 2 data sequence is an important factor in the design of the component codes. 
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S-random interleavers prove to be an effective methodology to avoid weight-2 data 

sequences. 

6.1.8 UNIFORM INTERLEAVERS 

Uniform interleaver was explained in [BENI96] as average of all possible 

interleavers with an aim to derive the performance bounds for turbo codes. 

Consider a sequence made of w ones and k-w zeros. A uniform interleaver of 

length k is a probabilistic device which maps this sequence to all distinct (4) 

permutations with equal probability ii(). The method gives upper bounds on the 

error probability which are quite accurate at high values of SNRs but not so 

accurate at lower SNRs. This technique allows the analysis of a turbo code as if it 

were made of two independent elementary codes, due to the uniform distribution 

produced by the interleaver. 

6.1.10 CONVOLUTIONAL INTERLEAVERS 

Convolutional interleavers were introduced in ([RAM70], [FOR71]. A typical 

convolutional interleaver consists of an input and output switch, which cyclically 

connects L shift registers, each register being delayed in time by B bits. The k-tb 

shift register thus introduces a (L - k)B bit delay. The end-to-end interleaver-

deinterleaver delay is (L - I )LB. This type of interleaver also introduces some 

zeros at the beginning and end of the interleaved data block due to the delay 

associated with each shift register 

6.1.11 CODE MATCHED INTERLEAVER 

Code matched interleaver is optimised for a specific code and starts with an 5-

random interleaver that can break as many of the short length input patterns as 

possible. Code matched interleavers aim to eliminate the first spectral lines of the 

turbo code distance spectrum which are generated by low weight input sequences 

[FEN99]. The most significant low weight input patterns are then identified. The 

132 



Chapter 6: Low Power Interleaver 

interleaver search is done in an iterative way to eliminate the cases where the 

interleaver outputs form an error pattern of the weight targeted to be eliminated. 

6.1.12 CHAOTIC INTERLEAVER 

The basic advantage of chaotic mterleaver is its reduced complexity and increased 

level of security in the communication system without penalty in performance 

[ZHAO 1]. This interleaver uses chaotic type of mapping, e.g., the Logistic 

mapping, which is used to produce chaotic data. This procedure is used to order the 

elements in each column vector, followed by ordering of the column vectors 

themselves. The interleaver mapping start is based on an initial state which can be 

considered as a key in a secure communication link. The decoder can't produce any 

meaningful output unless the key is known. As compared to pseudo-random 

interleavers a small improvement in performance of turbo codes was shown by 

Chaotic interleavers in [ZHAO 1]. 

6.1.13 NON-BLOCK INTERLEAVERS 

The main advantage of non block interleavers is their reduced delay. They were 

proposed in [P1E96] as self synchronizing turbo codes using non block interleavers. 

The proposed schemes do not require pre ambles to detect the beginning of the 

block. These are useful in application using long messages like stream-oriented 

applications [HALO 1] as there is no requirement of data-framing as in other block 

interleavers. 

6.1.14 THE BEST INTERLEAVER 

Interleavers are designed for specific system requirements. There is therefore no 

universal formula that can be used. It was shown in [BAR94] that for short block 

sizes and low Eb/No, an odd-even interleaver outperforms a pseudo-random 

interleaver [BAR94] and vice-versa at higher Eb/No. For larger block sizes, an S-

type interleaver outperforms a pseudo-random interleaver [BEN 196, BEN296]. 

With the larger size of the interleaver the extrinsic information passing between the 

two constituent decoder becomes more uncorrelated. Therefore the process allows 
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for two "independent" criteria to estimate the soft value of the same bit. The second 

important design parameter is the degree of "randomness" with which the 

interleaver and the deinterleaver spread the bursts of errors from one decoder 

output to the next decoder input. From this point of view the ideal interleaver is a 

random interleaver. 

In [K}1A97], a method to optimise the interleaver structure using the "Hungarian 

method" is presented. The goal is to break all the weight-2 sequences such that at 

least one of the outputs avoids a terminating zero-phase sequence. In [DAN98] a 

canonical form of the interleaver engine with minimal delay is defined as a finite 

state permuter (FSP). Two algorithms are developed for a systematic iterative 

construction of interleavers with a complexity that is polynomial with the 

interleaver size. Each transposition vector has associated with it a cost function, the 

algorithms aiming at the minimisation of this cost function. The complexity of the 

algorithm depends on the length of the error patterns which are taken into 

consideration. 

Recent work has shown that the tails can be dispensed with, without any significant 

loss in performance for higher interleaver sizes. From all the above examples of 

interleaver design it is clear that the role of the interleaver is to allow the decoders 

to make uncorrelated estimates of the soft values of the same information bit. The 

less "correlated" the two estimates are, the better the convergence of the iterative 

decoding algorithm. 

6.2 THE 3G INTERLEAVER 

The turbo code internal interleaver in 3GPP turbo decoding is defined by a complex 

algorithm for the generation of interleaved addresses. It is a pseudorandom block 

interleaver consists of two steps: mother interleaver generation and pruning 

[3GPP99]. The input sequence is first written row by row in a rectangular matrix. 

The number of rows and columns is a function of the information block size which 

can vary between 40 and 5114 bits. There are 207 mother interleaver sets that can 
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be selected depending on the information block length. Once a particular set is 

selected, some bits are pruned in order to adjust the size back to the original 

information block size. 

There are tables with primitive roots used for inter/intra row permutations. After 

performing permutations on rows and columns, the sequence is read out from the 

interleaver matrix column wise. These permutations are based on a set of prime 

numbers. The straightforward method of implementing the address interleaving is 

to generate all the possible addresses corresponding to a particular frame length, 

and store this interleaver address table in a memory. The maximum block size 

defined in 3GPP is 5114 and hence the memory required for interleaver is 5114 by 

13 bits. Thus interleaver/Deinterleaver RAMs are major contributors to the area, 

power of turbo decoder [MAS99, PEN03]. 

Message bits before 
encoding 	

El 	
Puncturing 

And 
Multiplexing 

Figure 6.1. PCCC (Parallel Concatenated Convolutional) Encoder 

The novelty of our design comes from implementing a low power solution that 

target the above mentioned bottleneck. Contrary to existing approaches [MAS99, 

PEN03] a dedicated address interleaving data path is implemented that generates 

the addresses in real time. The real time address computation avoids the use of pre-

computed address storage which greatly reduces the load on the processor and 

gives significant improvements in area and power. ASIC synthesis results on 0.18 

pm CMOS UMC technology demonstrate the efficiency of the proposed VLSI 

interleaver architecture. Figure 6.2 shows a parallel concatenated convolution 

(PCCC) turbo consisting of two SISO (soft input soft output) decoders connected 

135 



Chapter 6: Low Power Interleaver 

through an interleaver - deinterleaver structure [3GPP99]. The component decoders 

shown in figure 6.2 are individually matched to the corresponding encoders shown 

in figure 6.1. These constituent decoders work in an iterative way and the decoding 

process is stopped when the desired reliability is achieved. 

Figure 6.2. PCCC (Parallel Concatenated Convolutional) Decoder 

6.3 OVERVIEW OF ALGORITHM 

The 3GPP algorithm maps an input sequence of length K (40 - 5114) to an 

interleaved sequence of the same length (for full details refer [3GPP99]). The 

algorithm is first implemented in matlab where it translated from its definition of 

two dimensional rectangular interleaver matrix in to one dimensional space. The 

translation makes the algorithm easy to implement for one dimensional SRAM 

based VLSI designs. The hardware design follows from the fixed point simulation 

in matlab. The matlab code is written exactly replicating hardware in a process 

called hard wired simulations. The simulations generate the test vectors that can be 

used for presynthesis verification of }iDL code. The VLSI design of the algorithm 

follows the design cycle as shown in the figure 6.3. The two dimensional 

interleaver matrix is generated by the following pseudo code: 

6.3.1 PSEUDO CODE 
The algorithm is explained in two phases. For ease of understanding the notations 

used in the explanation are kept exactly the same as are used in the standard 

[3 GPP99]. 
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6.3.1.1 PHASE1. PREPARATORY PHASE 

Ste 1: 

Calculate the number of rows defined by length of K (bits input to decoder). It can 

have a value of 5, 10 or 20. 

Step 2: 

Length of K also determines the value of a prime number 'p'. It has a fixed value of 

53 for range of K between 481 and 530 and is computed from a lookup table for 

other values of K [3GPP99]. 

Stev 3: 

'K' and 'p' determine the number of columns of the interleaver matrix. 

Corresponding to the number of rows and columns calculated above the bit 

sequence is entered in the RxC interleaver matrix row wise. There will be some 

values of K with number of bits less than the total number of rows and columns of 

the interleaver matrix i.e., RxC >K. These empty values in the rectangular matrix 

are padded by dummy ones or zeros in a process called pruning. If the R is the total 

number of rows and C is the total number of columns, then the RxC matrix will be 

filled starting with bit x 1  in column 1 of row 1 and the last bit xRc  (message or 

pruned dummy bit) in column C of row R as shown below: 

F x, 	X2 .. 	x, 1 I X(R2xc2) 	.. 
Input=I 	 I 

X(R)(c2) 	.. X(Rxc)] 

Step 4: 

The value of 'p' calculated in step 2 is used to read a primitive root 'v' from table 

in [3GPP99]. The value of 'p' and 'v' is required to calculate the Base Sequence 

(called s(j) in [3GPP99]). This base sequence is required to permute bits column 

wise. The calculation of the base sequence for intra-row permutation is shown 

below by a pseudo code: 
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For each P 

Loop for j=1 to p-2 

so) =vxs(j-1) mod p 

End Loop 

Step 5: 

The prime sequence q1 is constructed using 'p'. The index 'i' is equal to the total 

number of rows of the interleaver matrix as shown by the following matlab code: 

q(1) = 1; 

for index6=2:R 

prime 1 =find(gcd(prime_nos,p- 1 )== I );% gcd =>greatest common divisor 

prime2=prime_nos(prime 1); 

prime3 =find (prime2 >6 & prime2>q( 1 ,index6- 1)); 

prime4=prime2(prime3); 

q(index6)=min(prime4); 

end 
4 q1' is used for permutation calculation of both rows and columns as shown in 

subsequent steps. 

Step 6: 

r(i) parameter which is used in intra row (column wise) permutation is calculated 

by using the using the prime sequence 'qi'  and T(i) patterns defined in table 3 in 

[3GPP99]. The matlab code is shown below: 

for index7l :R %R is the total number of rows 

r(T(index7)+1)=q(index7);% r(.) is the permuted row index 

end 

Interrow (permutation between different rows of interleaver matrix) is performed 

by using the interrow permutation table defined in [3GPP99]. 

6.3.1.2 PHASE 2. CALCULATION PHASE 
Step 1. IntraRow (Column-wise) permutation: 
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The column wise random permutation pattern is different for each row of the 

interleaver matrix. Columns are permuted according to two operations, first is the 

multiplication of r(i) (Step 6) with column count (0 to p.2). The modulation 

operation with the result of this multiplication and p (calculated in step 3) provides 

the index to base sequence calculated in step 4. The value of base sequence is used 

as index to permuted column as shown below: 

for index8=1 :R % R is the total number of rows 

for index9 = I :p- I % pis approximately equal to the number of columns 

Permuted_Matrix_Index(index8,index9)=s(mod((index9- 1 )*r(index8),p.  1 )+ 1); 

end 

end 

Step 2. Inter Row (row-wise) permutation 

After performing the inter column permutation the inter row permutation of the 

interleaver matrix is performed by using fixed patterns defined in the standard 

[3GPP99]. This is explained by the following matlab code: 

for indexl0=1 :R 

Permuted_Matrix_Rows_changed(index 1 0,:)Permuted_Matrix(T(index1 0)+ 1,:); 

end 

Step 3. Data read with prunin2 

Finally, data is read column by column from the interleaver matrix and dummy bits 

are removed. The two dimensional interleaver matrix matlab algorithmic 

translation precedes by a code in matlab which replaces the interleaver matrix to 

one dimension suitable for hardware implementation. The complete design flow is 

shown in figure 6.3. 
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Matlab simulation for two dimensional 
interleaver matrix generation 

Matlab simulation of one dimensional 
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Figure 6.3. Design flow for interleaver implementation 

Fig 6.4 shows the interleaver spread using this algorithm for K = 5114. 
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Figure 6.4. Interleaver spread for K=5114. 
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6.3.1.3 TRANSLATING THE INTERLEAVER MATRIX IN ONE 
DIMENSION 

The dynamic interleaved address calculation requires the translation of interleaver 

matrix rows and columns into one unified address. A novel implementation 

methodology is presented that adjusts the 3GPP interleaver algorithm for efficient 

VLSI implementation. The traditional implementation methodologies for saving the 

entire interleaved address space can be avoided by just adding a column offset to 

the calculated address. This offset is calculated as under: 

Column offset = (T(1,indexR) x C); 

Where C is the total number of columns of the interleaved matrix, indexR is the 

row index and T(1,indexR) generates the interleaved row index. The calculation of 

interleaved addresses in one dimension is shown by the following matlab code: 

%column by column calculations 

if(C=p) 

for indexC = 1:p- 1 

for indexR = 1:R 

s_mult_factor(indexR,indexC) = mod((indexC- 1 )*r(indexR),p  1); 

s_factor(indexR,indexC) = s(mod((indexC- 1 )*r(indexR),p  1 )+ 1); 

xing_factor(indexR,indexC)= (T( 1 ,indexR)*C) ;  

Corrected_addr(indexR,indexC)=s(mod((indexC- 1) * r(indexR),p- 

1 )+1 )+T(l ,indexR)*C ;  

end 

end 

% logic for last column address if required 

The other novelty in the implementation comes from the design of dynamic 

pruning logic which is discussed in section 6.5. 

6.4 VLSI ARCHITECTURE 

Our implementation approach reduces the size of the RAMs required to save the 

interleaved addresses. This is achieved by storing three pre-calculated values 
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instead of the entire sequence of interleaved addresses. The approach reduces the 

size of the RAM significantly and hence area and power. There is significant 

improvement in latency on frame changes as instead of changing the entire 

permuted addresses only a maximum of 256 base sequences are required to be 

changed and stored. 

The architecture follows the same flow as was explained in section 6.3. In the 

preparatory phase the SRAMs are filled in with pre computed values that are 

required in the dynamic interleaved address calculation. These values differ for 

each frame length and hence RAMs are pre-populated whenever frame length 

changes. The three pre-calculated values stored in SRAMs are base sequence, 

ordered prime sequence and intra row permutation patterns as explained below: 

6.4.1 BASE SEQUENCE 

The base sequence calculation was shown in step 4 of section 6.3.1.1. All base 

sequences 'so)' are pre computed for all 'j'  between 0 and p-l. The size of the base 

sequence is approximately equal to the number of columns of the interleaver 

matrix. 

6.4.2 ORDERED PRIME SEQUENCE 

The prime sequence 'q 1 ' calculation was shown in step 5 of section 6.3.1.1 where 

'i' is equal to the number of rows of the interleaver matrix. 

6.4.3 INTER ROW PERMUTATION PATTERNS 

Inter row permutation patterns 'Ti' are required in calculation of column offset as 

shown in section 6.3.1.3. These patterns as defined in [3GPP99] are also saved in 

SRAM. The individual components in the block diagram are explained below. 

6.4.4 DUAL PORT SRAM FOR PARAMETER 'r(j)' 

This RAM has synchronous single port write and asynchronous dual read ports and 

is used to store the permuted prime integers r(j). The values of r(j) change for 
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different frame lengths hence, it is pre-populated for each frame length. To 

compensate for pruning there are two data paths used in the design. The matlab 

calculation of this parameter was shown in step 6 of section 6.3.1.1 which depends 

on the number of rows of interleaver matrix. The maximum number of rows for 

3GPP corresponds to a maximum frame length of 5114. The number of rows for 

this frame length is 20 which is the maximum value of index 'j' in the parameter 

'r(j)'. The maximum permuted prime integer value corresponding to any 'r(j)' is 

therefore 79. Hence size of the RAM is selected as 20x8 bits. Matlab simulation 

calculates all the r(j) values and writes it in a file which is read by HDL test bench 

to be used in the preparation phase to pre populate this dual port RAM. r(j) and 

r(j+ 1) values are read from corresponding read ports - where j is the row number. 

The read counter starts from the first address to the last address (equal to the total 

number of rows) and r(j) values are read from the RAM. The read counter 

connected to the second read port reads the next address 'r(j+1)' which is required 

for pruning logic as explained in section 6.5. 

6.4.5 8X8 MULTIPLIERS 

As shown in matlab code of section 6.3.1.3 the first step in the dynamic address 

calculation is determining 's_mult_factor', a part of which requires multiplication 

of parameter 'r(j)' (section 6.4.4) with the total number of columns of the 

interleaver matrix. Another matlab simulation is performed to determine the 

maximum number of columns of the interleaver matrix for all frames. The 

maximum number of columns for all frame sizes is found out to be 255 which 

requires 8 bits. A 8x8 multiplier will be required to perform the multiplication of 

r(j) with the total number of columns in the interleaver matrix. It was shown in 

section 6.4.4 that r(j) values are saved in SRAM. There are two 8x8 Multipliers for 

Data path I and Data path 2 respectively and perform the multiplication of r(j) (or 

r(j+1)) with the number of columns. These multipliers are in the timing critical 

data path. To achieve the desired frequency they are implemented in parallel 

multiplication schemes (radix-2 booth algorithm). 
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6.4.6 MODULUS CALCULATOR 

Modulus calculator performs the modulus operation for the result calculated in 

section 6.4.5 and the number of columns. Modulus operation is performed using 

Synopsys design ware library modulus component and result from the modulus 

operation form the address of SRAM as shown below in section 6.4.7. 

6.4.7 DUAL PORT SRAM FOR PARAMETER 's(j)' 

The parameter 'so)' is calculated using the equation as described in [3GPP99] and 

shown earlier in Step 4 of section 6.3.1.1. It is repeated here for coherence of 

presentation: 

s(j)(v x so- 1)) mod p,j1,2,.. (p- 1) and s(0)=i 	(1) 

s(j) constitutes the base sequence for intra row permutation and varies with the total 

number of rows corresponding to different values of K. Therefore for each K this 

SRAM is pre-populated as was shown in the preparatory phase (refer section 

6.3.1.1). The maximum elements of s(j) for all K is 256 which is equal to the 

maximum number of columns of interleaver matrix (for K=5114). This SRAM is 

also dual read port for the corresponding two data paths. 

The result read from this SRAM corresponds to the mathematical operation defined 

in [3GPP99] as 

Ui(j) = s((j x ri) mod (p - i)) 	 (2) 

The interleaved address is constituted when the data is read out from the interleaver 

matrix column wise. Therefore, for interleaved address calculation equation (2) is 

also calculated and implemented column wise. The final address is computed by 

adding an offset to equation (2) as explained in section 6.3.1.3. This offset address 

is the inter row permutation transformed from two dimensions to one dimension as 

defmed below. 

Interleaved address = s(j) + T[Row_Number] * Columns 
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Figure 6.5 Block Diagram of the interleaver implementation 

6.4.8 INTER ROW PERMUTATION 

The inter row permutation is based on a small table represented in [3GPP99] by 

T[Row_Number]. SRAM (20 x 5) is used to save this parameter. The maximum 

size of this memory corresponds to the frame size of K=5114 having 20 rows. 

These 20 possible permutations can be represented by 5 bits; hence the size of the 

ROM is 20x5. This exactly corresponds to C-fold decimation of the input sequence 

with the appropriate phase so) [WEL04]. 
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6.5 PRUNING 

The algorithm in [3GPP99] calculates the number of rows and columns of 

interleaver matrix for each block size. The address pruning occurs when the block 

size is not equal to "Rows x Columns" of the interleaver matrix. Therefore, dummy 

bits are added to make them equal. Pruning is a major problem for real time address 

computation as these dummy bits have to be pruned away from the final interleaved 

addresses. Matlab simulations were performed to calculate the maximum number 

of pruned bits for all frames K between 41 and 5114. The message size with 

maximum number of pruned bit is calculated as K=2281. It is also observed 

through simulations that inter row permutation patterns ensure that the two unused 

interleaved addresses are never consecutively placed when reading the interleaver 

matrix column wise. This is shown in figure 6.6 below. 

Input Matrix 	 Interleaved Matrix 

X1,1 	X1.2 	- X1,C 	

*-w
DMMW Owmiy 

X2.1 	X22 	- - 	X2.0 	 X11 	XI,I 	- - 	XLI 

x(R1.1) 	X(R-1.2) 	- - 	Otm,.!O 	 Xi.I 	XI.I 	- - 	XIJ 

Ha-HF 	Al xu 

Figure 6.6. Dummy bits position in interleaving 

The observation leads us to conclude that whenever there is a pruned (dummy) bit 

in the interleaved matrix the next bit will always be a valid interleaved bit. 

Therefore there are two parallel data paths designed to overcome the effects of 

pruning. Data Path 2 is always calculating the next interleaved address from the 

one which is calculated from data pathl. The dynamic interleaved address 
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calculation is performed column wise and the pruned address is checked by the 

following pseudo code 

If (column wise calculated interleaved address> K) 

Address = dummy (pruned) 

Skip bit and get the next calculated address 

else 

perform the calculation as regular 

Therefore if Data path 1 address corresponds to the address of dummy bits the logic 

selects the data path 2 value i.e., the next interleaved address. 

6.5.1 PRUNING CONTROL LOGIC 

The implementation control flow is by use of counters controlling the read 

addresses of SRAMs. The counters (shown in next section) increment the read 

address by one and count to the terminal address which in turn depends on the 

frame size K. Each time dummy bit is detected and Data Path 2 is selected the row 

counter in the pruning logic increases the count by 2 instead of normal increments 

of 1. The next input addresses will skip this dummy pruned address and the 

mechanism will effectively remove all the pruned dummy addresses. 

6.5.2 ADDRESS CONTROLLER 

The column count is also provided by a binary up counter. The columns counter 

increments when the row counter reaches its terminal (maximum) count. The 

maximum number of rows for any frame size is 20 and therefore row counter is 5 

bits. The row counter feeds the 8 bits column counter. The 8 bits of column counter 

corresponds to the maximum number of columns (equal to 256) of interleaved 

matrix. Whenever dummy bit is detected and data path two is selected it is fed back 

to row counter. In order to offset the dummy address the row counter will in turn 

skip one address. The counter arrangement is shown by figure 6.7 below: 
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Figure 6.7. Address Generation and Pruning control Logic 

6.6 RESULTS 

The design is synthesized using Synopsys Design Compiler for 0.18 microns 

CMOS UMC cell library and chip layout done on Silicon ensemble. Post layout 

power figures are taken from Synopsys Design Power by inputting the toggling 

activity for the maximum frame size K =5114. Results are compared with a typical 

5114x13 Synopsys design ware SRAM which would otherwise have been used if 

implementation had adopted the look up table based design. The results are also 

compared with some 3GPP turbo decoder implementations. The implementation in 

[MAS99] uses 12 K words memory for interleaver and [PEN03] uses 27 K (total) 

memory. Similarly any design that implements the interleaver as memory will 

benefit from this presented approach. Table 6.9 below shows the overall 

synthesized area and post layout power figures for 21.7 MHz. 

Technology 0.18 microns standard cell CMOS 

Operating frequency 21.73 MHz 

Total Power in mW 36.06 

Total Area 771925.88 urn 2  

Table 6.9 Results of implemented interleaver 

Figure 6.8 shows the critical timing components in data path. Comparing the design 

with 51]4x]3 SRAM (the traditional approach [MAS99, PEN034]), the area of 

51 14x13 SRAM is 30083782 urn 2, which is 38.9 % more than our proposed 

scheme. 
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Figure 6.8. Synopsys Prime time critical path components shown (nano seconds) 

Figure 6.9 below shows the area and power results of the individual components of 

the design. The largest contributor to the area and power is the largest RAM S(j) 

(256x8) in the design. 
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Figure 6.9 Area and Power results of individual components of the design 
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There is 30% improvement in power as compared to the reference SRAM design. 

6.7 CONCLUSION 

In this chapter the requirement of efficient implementation for 3GPP [3GPP99] 

interleaving algorithm is introduced. The allowable frame lengths in 3GPP 

[3GPP99] standard is quite large (40-5114) and the traditional approach of storing 

the entire interleaved address space will result in interleaver consuming large 

power and area. The current implementation has addressed the power aspects of 

such designs in the most efficient way. A comparison with the existing turbo 

decoder designs is provided justifying the requirement of low energy solution for 

the interleaver. It was shown that it is more cost effective to store just the 

permutation patterns and not the entire interleaved addresses. The design flow was 

shown from the concept to Silicon layout. The novelty of this approach is in the 

efficient implementation of 3GPP interleaving algorithm providing an alternative to 

VLSI design engineers which is efficient in both area and power. The proposed 

architecture replaces the 5K - 13 bit SRAM with the hardware which is 38.9 % and 

30% more efficient in area and power respectively. 
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SUMMARY AND CONCLUSIONS 

7.1 INTRODUCTION 

The aim of this thesis is to investigate an efficient reconfigurable architecture for 

convolutional forward error correction. The key blocks investigated for reconfigurable 

performance evaluations are the viterbi and turbo decoders. The reconfiguration is 

designed with an aim to improve not only the power and timing but also to maintain 

maximum flexibility for the given domain. The unified array is implemented in 180nm 

CMOS process technology. There is also a novel low power implementation proposed 

for 3GPP S-Random block interleaving which is used alongside turbo decoding array. 

This chapter is organised into four sections. The first section summarises the content 

of the thesis and identifies the contributions. The second section draws conclusions 

from the work presented in this thesis. Final remarks are described in the third section 

and the last section outlines areas for future investigation. 

7.2 SUMMARY OF THESIS 

This thesis investigates flexibility in high performance convolutional FEC systems for 

a common multi-standard communication platform. The traditional reconfigurable 

architectures suffer from relatively poor performance owing to their high flexibility. 

By reducing the redundant flexibility in the traditional approaches a flexible, low 

power and high speed FEC solution is introduced that meets the performance 

constraints imposed by these standards. 

Chapter 2 provides an overview of commercially available reconfigurable 

architectures and some of the existing concepts in literature for the design of 
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reconfigurable logic elements and their interconnects. This review highlighted the 

importance of defining the domains of reconfigurability with restricted freedom so that 

performance can be improved. This chapter also showed the logic elements and the 

interconnect evolution with time and availability of such commercial devices that 

introduce flexibility in a very well defined domain. This chapter also linked these 

improvements with examples from commercial FPGAs. This chapter showed 

reconfigurable techniques and methodologies used in current state of the art 

commercial devices with aim to extort this information for any high performance 

reconfigurable design. 

In chapter 3 the reconfiguration focus shifted towards domain specific architectures in 

the literature. The useful domain specific reconfiguration techniques used in these 

architectures are explained in detail to use the information for current domain specific 

design. This chapter demonstrated that the reconfigurable functional units can be 

defined large and complex; however their granularity should be well-matched to the 

data types and the computations required by target algorithms. The chapter again 

reemphasised that the architectures that target a smaller set of applications can be 

more efficient than general-purpose devices and must be pursued. 

Chapter 4 looked into turbo decoding, the critical path delays and the typical power 

consumptions. The chapter also looks at the similarities and differences in the design 

of decoders as used in various communication standards. The information is used to 

introduce flexibility in the key locations of the decoder data path. The cost of 

reconfiguration is measured and tailored to achieve the performance imposed by these 

standards. An efficient control strategy is proposed in hardware that avoids the use of 

microprocessors to control the array and hence makes the array possible to be used as 

a standalone unit. The control is also designed for reconfiguration between not only 

multiple standards within turbo but also for unified turbo and viterbi decoding. An 

efficient low power technique proposed by caching the two window lengths of input 

metrics which reduces the read accesses for the larger input RAMs. The proposed 

reconfigurable methodology for input RAMs allows them to be reutilized for storage 
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of configuration bits in viterbi. A technique to avoid branch metric storage is also 

proposed. Finite precision analysis for turbo decoder under varying reconfiguration 

requirement is performed which emulates the hardware design in matlab for efficient 

BER analysis. A new matrix normalization scheme is also proposed that makes the 

turbo array compatible with viterbi decoding. The implemented reconfiguration 

topology keeps individual decoding components like forward state metrics, reverse 

state metrics and branch metric blocks completely flexible. The reconfigurable design 

also keeps the decoding trellis flexible for different rates, generator polynomials, 

constraint lengths and frame sizes. 

Chapter 5 provided various novel concepts in reconfigurable viterbi decoder design. A 

new reconfigurable path history memory management and segmentation technique for 

multiple standards is proposed. This is combined with a reconfigurable write address 

generation mechanism designed in hardware. A novel trace back approach is also 

proposed that provides the multi standard reconfigurability with a low power 

implementation. A novel technique for reading and writing path history memories is 

also implemented that adjusts efficiently in a multi standard environment. The 

reconfigurable work on viterbi also introduces a novel mechanism for controlling and 

storing the configuration bits that reduces the time to reconfigure the array. Like the 

turbo decoding array the viterbi components also provide an open trellis arrangement 

which makes the trellis flexible for different constraint lengths, rates, generator 

polynomials and frame sizes. The control of the viterbi components is provided by a 

flexible reconfigurable finite state machine that avoids the use of separate 

microprocessor for controlling the array. 

Chapter 6 proposed a novel low power implementation methodology for 3GPP 

interleaver. The proposed technique avoids the use of SRAMs for storing the entire 

interleaved sequences. This results in big savings in area and energy. The work in this 

chapter introduces a dynamic interleaver address calculation scheme and an effective 

mechanism for address pruning. The overall implementation has much improved 

energy than the traditional SRAM implementations of the 3GPP interleaver. 
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7.3 SUMMARY OF ACHIEVEMENTS 

The main achievements of this work are the following: 

• Development of a unified reconfigurable viterbi-turbo decoding array for a 

large number of communication standards. The Construction of such array 

requires identification of areas where flexibility should be introduced to make 

the overall array achieve the performance constraints as imposed by different 

standards. 

• An open trellis implementation of both turbo and viterbi decoders is presented 

individually and in the unified approach. 

The viterbi implementation has novel path history segmentation and 

management approach combined with a reconfigurable trace back and write 

address processors for multiple standards. The reconfigurable aspects of viterbi 

decoder are carefully designed for a very fast context switch between different 

standards. 

• Both viterbi and turbo processing is controlled by a reconfigurable finite state 

machine which is configurable not only for the control of individual standard 

mappings but also in the unified approach. The system flexibility is carefully 

tailored to give the best performance results in area, power and speed. 

• The work on reconfigurable turbo decoder showed an efficient low power 

input memory management and branch metric calculation scheme. A new open 

trellis structure for reconfigurable turbo decoding for multiple standards is also 

proposed. 

• A new approach for implementing S-Random interleaver as defined in 3GPP 

specification is also proposed. The novel implementation produces a much 

reduced memory implementation for interleaving and a new technique for 

hardware pruning. 

7.4 FINAL REMARKS 

This work represents a step forward in the area of high performance reconfiguration 

for convolutional forward error correction. The results of arrays synthesised in 1 8Onm 
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process technology show that the reconfigurable array safely meets the performance 

constraints imposed by the target communication standards. 

7.5 FUTURE WORK 

This thesis has tried to provide a through investigation into the research proposal of 

reconfigurable FEC decoder suitable for a SDR communication platform. However, a 

number of additional issues can be explored which might further add to knowledge 

gained from the research presented. The additional issues that can form extension to 

this work are highlighted as follows: 

• The template for a unified baseband processor can be further extended to 

include other base band blocks such as FIR filters, FFT and IFFT components 

and MIMO detection components to produce an overall reconfigurable 

baseband receiver. 

• The work can also be combined with contention free parallel interleavers for 

example, the recently proposed Quadratic Permutation Polynomial - QPP by 

Takeshita [TAK06] and description given earlier in [COSO4]. Our research can 

be extended in the new Long Term Evaluation (LTE) [3GPPr8] proposal for 

3GPP to design a higher speed decoder using the maximum contention free 

property of interleavers in [COSO4]. The performance of this new interleaver is 

shown to be better than S-Random interleavers in [MOT06] with added benefit 

of contention free access for fast decoding. [3GPPr8] describes the parameters 

of such interleavers required in 3GPP LTE. 

• The research can be extended for reconfigurable design space exploration for 

forward error correction in very high performance and low power consumption 

for example; Gb/sec throughput short distance wireless applications like Ultra 

Wide Band UWB specification by ECMA [UWB05]. 

• Parallel placement of turbo decoder blocks in our reconfigurable template can 

produce very high throughputs however for Gb/sec throughputs proposed in 

the above standards [UWB05] but an investigation is required to achieve low 

power consumption. Since the size of the array of parallel turbo decoding (for 
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Gb/s rates) will become prohibitively large an investigation to design more 

efficient reconfiguration is required. 

• Joint source and channel coding can achieve better results, and therefore 

reconfiguration approach can be extended in this direction to combine source 

coding reconfigurable architecture with modulation. 

• Static power consumption becomes an important parameter for lower process 

geometries (<90nm) and techniques needs to be investigated to reduce static 

power consumption as well as dynamic power consumption. 

• Efficient stopping criteria in turbo codes need to be combined with techniques 

such as dynamic voltage scaling to design a variable speed decoder which can 

control the iterations more interactively. 

• A further investigation can also look to produce a power efficient template for 

wireless as well as non battery powered turbo application as in optical/ 

magnetic storage and fibre optics. 

. There is further scope to experiment on suitable VLIW, SIMD or MIMID 

processor and the integration of the array either as a dedicated co processor or 

ALU of the processor data path. 
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