571 research outputs found

    Multicore and FPGA implementations of emotional-based agent architectures

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-014-1307-6.Control architectures based on Emotions are becoming promising solutions for the implementation of future robotic agents. The basic controllers of the architecture are the emotional processes that decide which behaviors of the robot must activate to fulfill the objectives. The number of emotional processes increases (hundreds of millions/s) with the complexity level of the application, reducing the processing capacity of the main processor to solve complex problems (millions of decisions in a given instant). However, the potential parallelism of the emotional processes permits their execution in parallel on FPGAs or Multicores, thus enabling slack computing in the main processor to tackle more complex dynamic problems. In this paper, an emotional architecture for mobile robotic agents is presented. The workload of the emotional processes is evaluated. Then, the main processor is extended with FPGA co-processors through Ethernet link. The FPGAs will be in charge of the execution of the emotional processes in parallel. Different Stratix FPGAs are compared to analyze their suitability to cope with the proposed mobile robotic agent applications. The applications are set up taking into account different environmental conditions, robot dynamics and emotional states. Moreover, the applications are run also on Multicore processors to compare their performance in relation to the FPGAs. Experimental results show that Stratix IV FPGA increases the performance in about one order of magnitude over the main processor and solves all the considered problems. Quad-Core increases the performance in 3.64 times, allowing to tackle about 89 % of the considered problems. Quad-Core has a lower cost than a Stratix IV, so more adequate solution but not for the most complex application. Stratix III could be applied to solve problems with around the double of the requirements that the main processor could support. Finally, a Dual-Core provides slightly better performance than stratix III and it is relatively cheaper.This work was supported in part under Spanish Grant PAID/2012/325 of "Programa de Apoyo a la Investigacion y Desarrollo. Proyectos multidisciplinares", Universitat Politecnica de Valencia, Spain.Domínguez Montagud, CP.; Hassan Mohamed, H.; Crespo, A.; Albaladejo Meroño, J. (2015). Multicore and FPGA implementations of emotional-based agent architectures. Journal of Supercomputing. 71(2):479-507. https://doi.org/10.1007/s11227-014-1307-6S479507712Malfaz M, Salichs MA (2010) Using MUDs as an experimental platform for testing a decision making system for self-motivated autonomous agents. Artif Intell Simul Behav J 2(1):21–44Damiano L, Cañamero L (2010) Constructing emotions. Epistemological groundings and applications in robotics for a synthetic approach to emotions. In: Proceedings of international symposium on aI-inspired biology, The Society for the Study of Artificial Intelligence, pp 20–28Hawes N, Wyatt J, Sloman A (2009) Exploring design space for an integrated intelligent system. Knowl Based Syst 22(7):509–515Sloman A (2009) Some requirements for human-like robots: why the recent over-emphasis on embodiment has held up progress. Creat Brain Like Intell 2009:248–277Arkin RC, Ulam P, Wagner AR (2012) Moral decision-making in autonomous systems: enforcement, moral emotions, dignity, trust and deception. In: Proceedings of the IEEE, Mar 2012, vol 100, no 3, pp 571–589iRobot industrial robots website. http://www.irobot.com/gi/ground/ . Accessed 22 Sept 2014Moravec H (2009) Rise of the robots: the future of artificial intelligence. Scientific American, March 2009. http://www.scientificamerican.com/article/rise-of-the-robots/ . Accessed 14 Oct 2014.Thu Bui L, Abbass HA, Barlow M, Bender A (2012) Robustness against the decision-maker’s attitude to risk in problems with conflicting objectives. IEEE Trans Evolut Comput 16(1):1–19Pedrycz W, Song M (2011) Analytic hierarchy process (AHP) in group decision making and its optimization with an allocation of information granularity. IEEE Trans Fuzzy Syst 19(3):527–539Lee-Johnson CP, Carnegie DA (2010) Mobile robot navigation modulated by artificial emotions. IEEE Trans Syst Man Cybern Part B 40(2):469–480Daglarli E, Temeltas H, Yesiloglu M (2009) Behavioral task processing for cognitive robots using artificial emotions. Neurocomputing 72(13):2835–2844Ventura R, Pinto-Ferreira C (2009) Responding efficiently to relevant stimuli using an emotion-based agent architecture. Neurocomputing 72(13):2923–2930Arkin RC, Ulam P, Wagner AR (2012) Moral decision-making in autonomous systems: enforcement, moral emotions, dignity, trust and deception. Proc IEEE 100(3):571–589Salichs MA, Malfaz M (2012) A new approach to modeling emotions and their use on a decision-making system for artificial agents. Affect Comput IEEE Trans 3(1):56–68Altera Corporation (2011) Stratix III device handbook, vol 1–2, version 2.2. http://www.altera.com/literature/lit-stx3.jsp . Accessed 14 Oct 2014.Altera Corporation (2014) Stratix IV device handbook, vol 1–4, version 5.9. http://www.altera.com/literature/lit-stratix-iv.jsp . Accessed 14 Oct 2014.Naouar MW, Monmasson E, Naassani AA, Slama-Belkhodja I, Patin N (2007) FPGA-based current controllers for AC machine drives: a review. IEEE Trans Ind Electr 54(4):1907–1925Intel Corporation (2014) Desktop 4th generation Intel Core Processor Family, Desktop Intel Pentium Processor Family, and Desktop Intel Celeron Processor Family, Datasheet, vol 1, 2March JL, Sahuquillo J, Hassan H, Petit S, Duato J (2011) A new energy-aware dynamic task set partitioning algorithm for soft and hard embedded real-time systems. Comput J 54(8):1282–1294Del Campo I, Basterretxea K, Echanobe J, Bosque G, Doctor F (2012) A system-on-chip development of a neuro-fuzzy embedded agent for ambient-intelligence environments. IEEE Trans Syst Man Cybern Part B 42(2):501–512Pedraza C, Castillo J, Martínez JI, Huerta P, Bosque JL, Cano J (2011) Genetic algorithm for Boolean minimization in an FPGA cluster. J Supercomput 58(2):244–252Orlowska-Kowalska T, Kaminski M (2011) FPGA implementation of the multilayer neural network for the speed estimation of the two-mass drive system. IEEE Trans Ind Inf 7(3):436–445Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B, Alvarez-icaza R, Datta P, Sawada J, Wong TM, Feldman V, Amir A, Ben-dayan D, Mcquinn E, Risk WP, Modha DS (2013) Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: Proceedings of international joint conference on neural networks, IEEE (IJCNN’2013)IBM Cognitive Computing and Neurosynaptic chips website. http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml . Accessed 22 Sept 2014Seo E, Jeong J, Park S, Lee J (2008) Energy efficient scheduling of real-time tasks on multicore processors. IEEE Trans Parallel Distrib Syst 19(11):1540–1552Lehoczky J, Sha L, Ding Y (1989) The rate monotonic scheduling algorithm: exact characterization and average case behavior. In: Proceedings of real time systems symposium, IEEE 1989, pp 166–171Ng-Thow-Hing V, Lim J, Wormer J, Sarvadevabhatla RK, Rocha C, Fujimura K, Sakagami Y (2008) The memory game: creating a human-robot interactive scenario for ASIMO. In: Proceedings of intelligent robots and systems, 2008, IROS 2008, IEEE/RSJ international conference, pp 779–78

    Quality attribute trade-offs in the embedded systems industry: An exploratory case study

    Get PDF
    The embedded systems domain has grown exponentially over the past years. The industry is forced by the market to rapidly improve and release new products to beat the competition. Frenetic development rhythms thus shape this domain and give rise to several new challenges for software design and development. One of them is dealing with trade-offs between run-time and design-time quality attributes. To study practices, processes and tools concerning the management of run-time and design-time quality attributes as well as the trade-offs among them from the perspective of embedded systems software engineers. An exploratory case study with two qualitative data collection steps, namely interviews and a focus group, involving six different companies from the embedded systems domain with a total of twenty participants. The interviewed subjects showed a preference for run-time over design-time qualities. Trade-offs between design-time and run-time qualities are very common, but they are often implicit, due to the lack of adequate monitoring tools and practices. Practitioners prefer to deal with trade-offs in the most lightweight way possible, by applying ad-hoc practices, thus avoiding any overhead incurred. Finally, practitioners have elaborated on how they envision the ideal tool support for dealing with trade-offs. Although it is notoriously difficult to deal with trade-offs, constantly monitoring the quality attributes of interest with automated tools is key in making explicit and prudent trade-offs and mitigating the risk of incurring technical debt

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Hardware design and CAD for processor-based logic emulation systems.

    Get PDF

    Summer 2008 Research Symposium Abstract Book

    Get PDF
    Summer 2008 volume of abstracts for science research projects conducted by Trinity College students

    What do we mean by participatory research in agriculture?

    No full text
    corecore