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Preface

Network for Sustainable Ultrascale Computing (NESUS)

We are very excited to present the proceedings of the First International Workshop on Sustainable Ultrascale Comput-
ing Systems (NESUS 2014), a workshop created to reflect the research and cooperation activities made in the NESUS
COST Action (IC1035) (www.nesus.eu), but open to all the research community working in large/ultra-scale computing
systems. It was held in Porto (Portugal) on August 27-28, 2014.
The goal in scalable and sustainable technology today is to have on the one hand large parallel supercomputers, named
Exascale computers, and on the other hand, to have very large data centers with hundreds of thousands of computers
coordinating with distributed memory systems. Ultimately, NESUS idea is to have both architectures converge to solve
problems in what we call ultrascale. Ultrascale systems combine the advantages of distributed and parallel computing
systems. The former is a type of computing in which many tasks are executed at the same time coordinately to solve
one problem, based on the principle that a big problem can be divided into many smaller ones that are simultaneously
solved. The latter system, in both grid and cloud computing, uses a large number of computers organized into clusters in
a distributed infrastructure, and can execute millions of tasks at the same time usually working on independent problems
and big data. The applications of these systems and the benefits they can yield for society are enormous, according to the
researchers, who note that this type of computing will help conduct studies about genomics, new materials, simulations of
fluid dynamics used for atmospheric analysis and weather forecasts, and even the human brain and its behavior.
The goal of the NESUS Action is to establish an open European research network targeting sustainable solutions for ul-
trascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management.
Ultrascale systems are envisioned in NESUS as large-scale complex systems joining parallel and distributed computing
systems that will be two to three orders of magnitude larger that today’s systems. The EU is already funding large scale
computing systems research, but it is not coordinated across researchers, leading to duplications and inefficiencies. The
network will contribute to glue disparate researchers working across different areas and provide a meeting ground for
researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research
topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency,
and resilience. Some of the most active research groups of the world in this area are members of this NESUS Action. This
Action will increase the value of these groups at the European-level by reducing duplication of efforts and providing a
more holistic view to all researchers, it will promote the leadership of Europe, and it will increase their impact on science,
economy, and society.
The scientific objective of NESUS is to study the challenges presented by the next generation of ultrascale computing sys-
tems to enhance their sustainability. These systems, which will be characterized by their large size and great complexity,
present significant challenges, from their construction to their exploitation and use. We try to analyze all the challenges
there are and see how they can be studied holistically and integrated, to be able to provide a more sustainable system. The
challenges that this type of computing poses affect aspects such as scalability, the programming models used, resilience to
failures, energy management, the handling of large volume of data, etc. One of the NESUS goals is to find the way that all
solutions that are proposed can be transmitted to user applications with the minimum possible redesign and reprogramming
effort.
The project began last March with 29 European countries, but at present consists of 39 European countries and six coun-
tries from other continents. It now involves nearly 200 scientists, almost 40% of whom are young researchers, because



one essential goal of these Actions is to promote and create an ecosystem of scientists who can work on these matters in
the European Union in the future.
The project have already held two important meetings: one for work groups in Madrid in July and another in Oporto (Por-
tugal) at the end of August, attended by representatives of the research groups that participate as well as Project Officers
from the EU’s H2020 program. By reducing duplication of work and providing a more comprehensive vision of all the
researchers, this COST Action hopes to increase the value of these groups at the European level, promoting European
leadership in this area of knowledge, as well as enhancing its impact on science, the economy and society.
This Action, which concludes in 2018, aims to produce a catalogue of open source applications that are being developed
by the members of the Action and which will serve to demonstrate new ultrascale systems and take on their main chal-
lenges. In this way, anyone will be able to use these applications to test them in their systems and demonstrate their level
of sustainability.

Prof. Jesus Carretero
University Carlos III of Madrid
NESUS Chair

November 2014
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University of Extremadura, Spain
juancarl@unex.es

Abstract

Collective operations, a key issue in the global efficiency of HPC applications, are optimized in current MPI libraries by choosing at runtime
between a set of algorithms, based on platform-dependent beforehand established parameters, as the message size or the number of processes.
However, with progressively more cores per node, the cost of a collective algorithm must be mainly imputed to process-to-processor mapping,
because its decisive influence over the network traffic. Hierarchical design of collective algorithms pursuits to minimize the data movement
through the slowest communication channels of the multi-core cluster. Nevertheless, the hierarchical implementation of some collectives becomes
inefficient, and even impracticable, due to the operation definition itself. This paper proposes a new approach that departs from a frequently found
regular mapping, either sequential or round-robin. While keeping the mapping, the rank assignation to the processes is temporarily changed prior
to the execution of the collective algorithm. The new assignation makes the communication pattern to adapt to the communication channels
hierarchy. We explore this technique for the Ring algorithm when used in the well-known MPI_Allreduce collective, and discuss the obtained
performance results. Extensions to other algorithms and collective operations are proposed.

Keywords MPI Collectives, Parallel Algorithms, Message Passing Interface, Multi-core Clusters

I. Introduction

MPI [1] collective functions involve a group of processes commu-
nicating by message passing in an isolated context, known as com-
municator. Each process of a communicator is identified by its rank,
an integer number ranging from 0 to P− 1, where P is the size of
the communicator. The optimisation of collectives is a key issue
in HPC applications. A collective operation can be executed by
different algorithms, each suitable for a given network technology,
communicator size, message size, etc. For example, in the MPICH
library [2], the implementation of MPI_Allreduce uses two algorithms
for medium and large messages when the number of processes is
a power of two, namely Recursive Doubling and Ring. The switch
from the first to the second algorithm is done at execution time,
with platform-dependent beforehand established message size and
process number thresholds.

Current parallel systems are composed of multi-core nodes con-
nected by a high performance network. The communication cost
between two MPI ranks depends on their location, being lower if
they share memory, and higher if they are in different nodes. There-
fore the performance of an application depends on the assignation
of the ranks to the processors of the cluster (mapping). In general,
two types of mapping cover the necessities of most applications:
sequential and round-robin. In the sequential mapping, ranks bind
to processors so that a domain is completed (e.g. socket or node)
before moving to the next domain. In round-robin, ranks are bound
to domains by rotating on the existing domains.

Mapping affects to the performance of the underlying algorithms
of collective operations. Interestingly, a given mapping may favour
an algorithm and, at the same time, being harmful to another al-

gorithm, not matter if both are used in the implementation of the
same collective. For example, in the implementation of the allreduce
operation in MPICH, referred above, the Recursive Doubling algo-
rithm shows a better performance when the mapping is round-robin,
while the Ring algorithm runs faster under the sequential mapping.

An approach to the issue of collectives performance is building
algorithms that are aware of the different capacities of the available
communication channels, as shared memory and network. These
algorithms, known as hierarchical, stand on minimizing the commu-
nications through the slower channels, but the implementation for
some collectives as allgather is not as effective as expected, even im-
practicable, and hence it is not provided in well-known MPI libraries
as Open MPI [3].

This paper describes a new approach to the optimization of col-
lectives in multi-core clusters. The goal is to obtain the best possible
communication throughput. For instance, in the Ring algorithm, the
communication takes place between consecutive ranks. If consecu-
tive ranks are mapped to different nodes, all the communications
progress through the network. Instead, a schedule of consecutive
ranks to processes placed in the same multi-core node favours the
much more efficient shared memory communication. Our method
is based on a temporal reassignment of ranks. That neither modifies
the algorithm nor the physical mapping. Instead, it is carried out
by means of a transformation function prior to the execution of
the algorithm. The function is simple and efficient, and converts a
sequential mapping to round-robin and vice versa only during the
execution of the algorithm.

This paper focuses on the Ring algorithm in the context of the
allreduce operation. Besides, the methodology described is directly
applicable to other algorithms used in the implementation of MPI
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collectives. Platform considered is characterized by P, the number of
processors (or processes involved in the operation), and M, the num-
ber of nodes in the cluster. Q = P/M is the number of processors per
node. Two channels are considered in the system, shared memory
and network, with different performance. The study is conducted
under two different mappings, sequential and round-robin, under
the assumption of a homogeneously distributed number of processes
over the nodes of the system. A hierarchical implementation of the
algorithm is examined as well. The attained cost reduction depends
on the number of nodes and the number of processes per node.
In the used experimental platform, even with a small number of
processes and nodes, the improvement reaches up to 2× for long
messages.

With respect to the structure of this article, following this intro-
duction, section II reviews proposals of optimization of collective
operations in a broad range of platforms. Section III studies the
allreduce Ring algorithm in multi-core clusters based on the incom-
ing mapping, and also a hierarchical allreduce implementation. The
section exposes our proposal to improve the performance of the
algorithm and the section IV outlines extensions to cases not covered
in this paper. Section V shows the obtained performance figures,
and section VI concludes the paper.

II. Related Work

MPI collectives performance is a key issue in high performance
computing applications, and significant work has been invested in
their design and optimization. Collectives in the MPI standard can
be implemented from several of a set of algorithms available.

For instance, MPI_Allreduce can be implemented using the Re-
cursive Doubling algorithm, that improves the latency when P is a
power of two for small messages because is optimum with regard to
the number of stages, however, the Ring algorithm performs better
for larger messages. Both algorithms are also used in the imple-
mentation of MPI_Allgather, for which, in addition, other proposed
algorithms improve the performance when requirements related to
message size, process number or hardware and network technolo-
gies are met. Bruck algorithm [4] is more efficient for very short
messages, even though it needs additional temporal memory, Neigh-
bour Exchange algorithm in [5] requires half the stages than the Ring
algorithm when the number of processes is even, and it exploits
the piggy-backing feature of the TCP/IP protocols, as well as the
Dissemination algorithm, proposed in [6], based on processes pair-
wise exchange of messages. Also related to the improvement of the
performance by exploiting some networks capabilities, Mamidala et
al. [7] evaluate the RDMA capacity for allowing concurrent direct
memory access by the processes either in the same or different node
of a multi-core cluster. Ma et al. [8] discuss the intra-node processes
direct copy communication through shared memory by using the ca-
pacities of the operating system, and in [9] evaluate its impact in the
collectives operations. Kielmann et al. [10] focus on the optimization
of collective communications for clustered wide area systems.

The use of several algorithms in the same collective, based on
system dependant beforehand established thresholds for message
size and number of processes is shown by Thakur et al. in work
[11] in a monoprocessor cluster of workstations. This approach
has been adopted by the MPICH library, and it is available in the
Open MPI library through its Modular Component Architecture

[12]. Vadhiyar et al. [13] evaluate such improvement of performance
through previous executed series of experiments conducted in an
specific platform.

Multi-core clusters introduce a new actor in the scene. Perfor-
mance becomes dependant on the effective use of the different com-
munication channels. Hierarchical algorithms are specifically built
to minimize the use of slower communication channels, and usually
execute in several stages [14]. The process group splits in subgroups,
with a local root per subgroup. Processes in a subgroup commu-
nicate through the faster communication channel, usually shared
memory, hence, a subgroup is assigned to a node in the system. The
application of these kind of algorithms to several implementations of
the MPI standard and hardware platforms is extensively evaluated
in [15], [16] and [17]. Based on analytical communication models,
Karonis et al. [18] demonstrated the advantages of a multilevel
topology-aware implementation of algorithms with respect to opti-
mal plain algorithms. Sack and Gropp [19] show that a suboptimal
algorithm in terms of inter-domain communications may produce
lesser congestion that an optimal algorithm, and therefore to achieve
a faster execution.

Former approximations adapt algorithms to the underlying com-
munication capabilities. An inverse approach is to improve the
performance through the calculation of the best layout of the pro-
cesses over the processors of the cluster. Kravtsov et al. [20] define
and propose an efficient solution to the topology-aware co-allocation
problem, and Jeannot et al. proposes the TreeMatch algorithm in [21]
applied to multi-core clusters. The challenge is optimally mapping
the graph that defines the communication necessities of an appli-
cation to the graph of the available resources. The solution can be
applied to MPI collective operations, provided that they are built
as a set of point-to-point transmissions [22]. Algorithms to auto-
matically build the optimal distance-aware collective communication
topology, based on the distance information between processes, are
proposed in [23]. The results are applied to Binomial Tree broadcast
and Ring allgather collectives.

III. MPI_Allreduce Ring Algorithm

In the MPI_Allreduce collective operation every process contributes
with a buffer of size m bytes and gets in the output buffer the result
of applying an specified operation to all the P processes buffers.

Ring algorithm implementation of the allreduce collective first
copies data from the input buffer to the output buffer. Next, it
operates on the output buffer in two phases: computation and distri-
bution. The algorithm does not preserve order of operations. As a
consequence, it can not be used with non commutative operations.

The computation phase is done in P− 1 stages. The data buffer is
divided up in segments of size m/P. In each stage k, from k = 0, a
process p sends its p− k segment to process p + 1, and next receives
in a temporary buffer a segment from process p− 1, that operates
with local p − k − 1 segment, with wraparounds. The operated
segment in each process will be sent in the next stage. After P− 1
stages, each process p has a full operated segment in the p + 1
position of the output buffer.

Distribution phase performs an allgather to distribute these seg-
ments between processes also using a Ring algorithm. The algorithm
operates in P− 1 stages. All processes contribute with an m/P bytes
segment at offset p + 1 and receive P segments ordered by rank, for
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Figure 1: Representation of the communications in the stages of the Allre-
duce Ring (both computation and distribution phases) algorithm when
processes are sequentially and round robin mapped, in a machine with
P = 6 processes and M = 2 nodes.

a total of m bytes. In each stage, process p sends to process p + 1 the
m/P bytes received in the previous stage from process p− 1, with
wraparound.

Figure 1 represents the transmissions between processes in a ma-
chine with P = 6 processes and M = 2 nodes under both sequential
(left) and round robin (right) mapping. In the Ring algorithm se-
quential mapping minimizes the point-to-point transmissions across
the network. The first process of each node receives from the for-
mer node, and the last process sends to the next node. The rest of
transmissions take place in shared memory and they progress in
parallel with a total of M inter-node flows. Nevertheless, when the
incoming mapping is round-robin M×Q inter-node transmissions
take place at a time, giving rise to a much higher contention that
degrades the communication. In networks as Ethernet, for instance,
the contention may lead to a performance breakdown that grows
with the number of simultaneous transfers. In section V, we evaluate
the performance of Ring algorithm with sequential and round-robin
mappings in a cluster based on Infiniband.

The fact is that the layout of the processes over the processors
has a great impact in the effective cost. In the allreduce, both
phases, computation and distribution, communicate each rank with
the nearest next and previous rank numbers, hence, consecutive
ranks must run in the same node in order to increase the data
transmissions inside a node and minimize the network contention.
The next section explores the design of algorithms which take into
account the mapping of processes on the physical hierarchy of
communications.

III.1 Hierarchical Allreduce Algorithm

An algorithm can be designed to minimize the data movement
through the slowest communication channels in a multi-core cluster
for the allreduce collective. For example, the implementation found
in Open MPI library is composed of three phases, that progress
sequentially.

The first phase performs a reduce operation local to each node
in the system. One process per node, called local root, obtains
the full operated Q segments in the output buffer. The second
phase performs an inter-node allreduce between local roots. The

number of processes running allreduce decreases with respect to
a simple allreduce operation in section III, from P to M, but the
size of messages contributed by each process increases from m/P to
m ·Q/P. Thus, the amount of data transmitted through the network
is the same as the allreduce Ring algorithm with sequential mapping.
Nevertheless, this hierarchical design of the allgather minimizes
the network contention regardless of the initial process mapping.
Finally, in the third phase, the local root process broadcasts its
resulting buffer to the rest of the processes in the same node.

Additional communicators must be created to perform collectives
inside each node, and the inter-node allreduce between local roots.

III.2 Allreduce Mapping Transformation at Run-
Time

Under awareness of a regular mapping, such as sequential or round-
robin, the programmer would be in the position of exploiting that
knowledge to increase the algorithm performance.

Necessity of minimize network communication advises a physical
rearrangement of the processes that guarantees a sequential mapping
before starting Ring algorithm. In practice, however, physically
moving the processes conveys an excessive latency and cached data
invalidation penalties. We propose instead a mere previous logical
rearrangement of the ranks, a solution that is applied dynamically
and efficiently. Logical renaming of processes ranks can be applied
to both computation and distribution phases. The new algorithm is
denoted as Ring*.

Let be a rank set R = {r0, r1, . . . , rP−1} assigned to the P processes
of a communicator following a Round Robin mapping. For simplicity
and without loss of generality, we define rp = p. The set R can be
transformed into another set S = {s0, s1, . . . , sP−1}, which shows a
sequential mapping, with sp = fSQ(p). The transformation function
fSQ is defined as:

fSQ(p) = ((p×Q)%P) + bp / Mc (1)

The number of nodes M must be known and the processes must
be homogeneously distributed between nodes, i.e., the number of
processes per node (Q) must be constant. See section IV for explana-
tions about extensions to irregular mappings.

Similarly, a rank set S = {s0, s1, . . . , sP−1} with sp = p
and a sequential mapping can be transformed into a set R =
{r0, r1, . . . , rP−1}, which shows a round robin mapping, with rp =
fRR(p). The transformation function fRR (inverse of fSQ) is defined
as:

fRR(p) = ((p×M)%P) + bp / Qc (2)

In the allreduce computation phase, renaming of processes is
applied prior to the execution of the Ring algorithm. A process with
rank p behaves as a process with rank fSQ(p), applying the definition
in (1). Then, in the stage k, a process sends the segment fSQ(p)− k to
process behaving as fSQ(p)+ 1, calculated as fRR

(
fSQ(p) + 1

)
. Next,

it receives a segment from process with rank fRR
(

fSQ(p)− 1
)

in a
temporary buffer, that operates with local segment fSQ(p)− k− 1.

For instance, process p = 2 in Figure 2 behaves as fSQ(2) = 1.
In the first stage k = 0, it sends the segment fSQ(2) − k =
1 to process behaving as the rank fSQ(2) + 1, which is calcu-
lated as fRR

(
fSQ(2) + 1

)
= fRR(2) = 4, and receives from

3
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Figure 2: Allreduce Ring algorithm computation phase, stage k = 0, with
round-robin mapping, P = 6 and M = 2. The buffer total size is divided up
in P segments. Processes renaming through the transformation functions
changes the mapping from round-robin to sequential before starting.

fRR
(

fSQ(2)− 1
)
= fRR(0) = 0 a segment to be operated with the

local segment number fSQ(2)− k− 1 = 0.
Again, allreduce distribution phase requires renaming of processes

from p into fSQ(p) prior to the execution of the regular Ring allgather
algorithm. The operating principle is the same as the computation
phase.

IV. Extensions of the Method

Our approach consists of departing from the a priori knowledge
of a layout with regular mapping and keeps the original algorithm
after having switched to another regular mapping, much more
favourable in terms of performance. Such mapping information
could be available through the processes manager module of the
particular MPI implementation.

The transformation functions can be applied to algorithms with
similar communication patterns to the Ring algorithm. For instance,
Neighbour Exchange and Binomial Tree perform better when processes
are sequentially mapped. Other algorithms have opposite require-
ments, such as Recursive Doubling and Dissemination algorithms,
better suited to initial round robin mapping, because the distance
between rank numbers communicating exponentially grows in each
stage. The mapping needs to change from sequential to round robin,
through the inverse application of the transformation functions.

The above-mentioned algorithms are used in a wide variety of
collectives operations defined in the MPI standard, as Broadcast,
Scatter, Allgather, etc. proving the method as highly generic.

Nevertheless, we can not always make assumptions about the
deployment of the ranks over the cluster, all the more so as this
layout may change with the creation of new communicators at run
time, that could assign different ranks to the processes. On that case,
with non-regular mappings, each rank involved in the collective
operation will need to have information about the layout of all
the ranks in the communicator. Resource requirements for that
information are under study by the authors.

Performance measurements in clusters with other network tech-
nologies, such as Ethernet, confirms the expected results, with an
increase in the difference of performance between mappings that is
proportional to the difference in bandwidth capabilities between the
channels.
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Figure 3: Bandwidth of the allreduce Ring algorithm with sequential and
round-robin mappings, and the Ring* algorithm when executed with M = 2
nodes and Q = 8 processes by node, for a total of P = 16 processes.

V. Performance Evaluation

The experimental platform used, named Fermi, is composed of eight
nodes connected by a QDR Infiniband network. Each node has two
2.27 GHz Quad core Intel Xeon E5520 processors, with 8MB of shared
L3 cache size, making a total of eight cores per node. The operating
system is Linux 2.6.32. We used IMB (Intel MPI Benchmark), version
3.2, to obtain the latency data. Bandwidth is calculated as the
message size divided by the latency, and showed in figures for the
sake of clarity. A high number of iterations are executed for each
collective algorithm and mean time is taken. IMB runs on Open
MPI 1.8, the library that provides the allreduce algorithms through
its Tuned and Hierarch collective components. Nonetheless it should
be noted that MVAPICH2 yields similar results, as well as MPICH,
which has been tested in Ethernet networks.

The allreduce Ring algorithm performance is plotted in Figures 3
to 5. Figures represent the bandwidth of sequential (SEQ) and round
robin (RR) mappings, as well as the Ring∗ algorithm and the hier-
archical implementation of the collective operation, for increasing
number of nodes (M), with Q = 8. The difference in bandwidth be-
tween sequential and Ring∗ algorithm with respect to less favourable
round robin mapping is nearly to 2×, for all the range of messages.
Ring∗ overload to the Ring algorithm is very low, because it is only
attributable to the execution of transformation functions.

Hierarchical implementation of the allreduce algorithm leads to a
higher performance than round robin, but it degrades with the size
of the message because phases must progress sequentially. Perfor-
mance depends as well on the algorithms used in each phase. In this
paper we use the binomial tree algorithm for the Reduce and Broadcast
algorithms in the phases 1 and 3, and allreduce Ring algorithm in
the inter-node phase 2. This configuration outperforms even the
allreduce Ring algorithm for short and medium messages.

In Figure 6 we plot the relative mean bandwidth (measured along
the whole range of messages plotted in figures) between different
cases for a constant number of nodes (M = 8), and a growing
number of processes per node. Note that the difference between the
sequential and the round-robin mapping grows with Q. As expected,
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Figure 4: Bandwidth of the allreduce Ring algorithm with sequential and
round-robin mappings, and the Ring* algorithm when executed with M = 4
nodes and Q = 8 processes by node, for a total of P = 32 processes.

the difference between sequential and Ring∗ remains constant, and
denotes a minimal overload. Respect to the hierarchical case, the
difference is constant for that small number of nodes.

It can be observed in Figure 3 that the change of mapping of the
Ring∗ algorithm shows an improvement with respect to the round
robin mapping even in a minimal configuration with only M = 2
nodes.

VI. Conclusions

The performance of MPI collective algorithms in multi-core clusters
highly depends on the deployment of the processes on the processors
of the system. These algorithms usually establish a communication
pattern between ranks that, if under specific regular mappings, use
the communication resources effectively, other mappings signifi-
cantly worsen their performance. The hierarchical design pursues
the optimal use of the system available communication channels,
regardless of the process mapping, but they are only efficient in a
limited subset of collectives operations.

This paper proposes a more generic approach, whose goal is to
adapt the mapping of processes to the communication pattern of
the collective algorithm in run-time to reduce network traffic and
contention. Such a switch does not require process migration, but a
renaming of the processes ranks prior to the execution of the original
algorithm.

Performance improvements of MPI_Allreduce collective is evalu-
ated when built upon the Ring algorithm, which performs better
when processes are mapped sequentially. The figures show that
the processes renaming adds a low impact upon the cost of the
original algorithm. Results are also compared to the hierarchical
implementation of the collective.

Our approach can be applied to other algorithms commonly used
in MPI collective operations, as the Recursive Doubling, Neighbour
Exchange, Dissemination or Binomial Tree, with different incoming
mapping necessities, covering a broad range of communication
patterns. In addition, the paper discusses extensions to cover non-
regular mapping of processes and other collective operations.
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Abstract

Data in digital repositories are everyday more and more massive and distributed. Therefore analyzing them requires efficient data analysis
techniques and scalable storage and computing platforms. Cloud computing infrastructures offer an effective support for addressing both the
computational and data storage needs of big data mining and parallel knowledge discovery applications. In fact, complex data mining tasks
involve data- and compute-intensive algorithms that require large and efficient storage facilities together with high performance processors to
get results in acceptable times. In this paper we describe a Data Mining Cloud Framework (DMCF) designed for developing and executing
distributed data analytics applications as workflows of services. We describe also a workflow-oriented language, called JS4Cloud, to support the
design and execution of script-based data analysis workflows on DMCF. We finally present a data analysis application developed with JS4Cloud,
and the scalability achieved executing it on DMCF.

Keywords Cloud computing, Data analytics, Workflows, JS4Cloud

I. Introduction

Cloud computing provides elastic services, high performance and
scalable data storage to a large and everyday increasing number
of users [1]. Clouds enlarged the offer of distributed computing
systems by providing advanced Internet services that complement
and complete functionalities of distributed computing provided by
the Web, Grid computing and peer-to-peer networks. In fact, Cloud
computing systems provide large-scale infrastructures for complex
high-performance applications. Most of those applications use big
data repositories and needs to access and analyze them to extract
useful information.

Big data is a new and over-used term that refers to massive,
heterogeneous, and often unstructured digital content that is difficult
to process using traditional data management tools and techniques.
The term includes the complexity and variety of data and data
types, real-time data collection and processing needs, and the value
that can be obtained by smart analytics. Advanced data mining
techniques and associated tools can help extract information from
large, complex datasets that are useful in making informed decisions
in many business and scientific applications including advertising,
market sales, social studies, bioinformatics, and high-energy physics.
Combining big data analytics and knowledge discovery techniques
with scalable computing systems will produce new insights in a
shorter time [5].

Although a few cloud-based analytics platforms are available to-
day, current research work foresees that they will become common
within a few years. Some current solutions are open source systems
such as Apache Hadoop and SciDB, while others are proprietary
solutions provided by companies such as Google, IBM, EMC, BigML,
Splunk Storm, Kognitio, and InsightsOne. As more such platforms
emerge, researchers will port increasingly powerful data mining pro-
gramming tools and strategies to the cloud to exploit complex and
flexible software models such as the distributed workflow paradigm.

The growing use of service-oriented computing could accelerate

this trend. Developers and researchers can adopt the software as a
service (SaaS), platform as a service (PaaS), and infrastructure as a
service (IaaS) models to implement big data analytics solutions in the
cloud. In such a way, data mining tasks and knowledge discovery
applications can be offered as high-level services on Clouds. This
approach creates a new way to delivery data analysis software that
is called data analytics as a service (DAaaS).

Here we describe a Data Mining Cloud Framework (DMCF) that
we developed according to this approach. In DMCF, data analysis
workflows can be designed through visual programming, which is
a very effective design approach for high-level users, e.g. domain-
expert analysts having a limited understanding of programming.
Recently, we extended the DMCF system to support also script-based
data analysis workflows, as an additional and more flexible program-
ming interface for skilled users. To this end, in [4] we introduced a
workflow-oriented language, called JS4Cloud, to support the design
and execution of script-based data analysis workflows on DMCF.

II. Data Mining Cloud Framework

The DMCF has been designed to be implemented on different Cloud
systems. However, a first implementation of the framework has been
carried out on the Windows Azure cloud platform and has been
evaluated through a set of data analysis applications executed on a
Microsoft Cloud data center. The remainder of the section describes
system architecture, application execution, user interface, and visual
workflow programming.

II.1 System architecture
The architecture includes different kinds of components that can be
grouped into storage and compute components (see Figure 1). The
storage components include:

• A Data Folder that contains data sources and the results of
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knowledge discovery processes. Similarly, a Tool folder contains
libraries and executable files for data selection, pre-processing,
transformation, data mining, and results evaluation.

• The Data Table, Tool Table and Task Table that contain metadata
information associated with data, tools, and tasks.

• The Task Queue that manages the tasks to be executed.

Browser

1

2

3

Virtual
Servers

Cloud platform

Website

Web instances

Worker

Worker instances

Task Queue

5

6

Storage

4

Tool folderololol fofoldldlderlderData folderDaDatata fofofoldlderfo

User

Tables

Task TableTool TableData Table

Infrastructure

Figure 1: System architecture and application execution steps.

The virtual machines components are:

• A pool of Worker instances, which is in charge of executing the
data mining tasks submitted by users.

• A pool of Web instances host the Website, by allowing users to
submit, monitor the execution, and access the results of their
data mining tasks.

The Website is the user interface to three functionalities: i) App
submission, which allows users to submit single-task, parameter
sweeping, or workflow-based applications; ii) App monitoring, which
is used to monitor the status and access results of the submitted
applications; iii) Data/Tool management, which allows users to manage
input/output data and tools.

II.2 Applications execution
Figure 1 shows the main steps carried out for designing and execut-
ing a knowledge discovery application:

1. A user accesses the Website and designs the application (either
single-task, parameter sweeping, or workflow-based) through a
Web-based interface.

2. After application submission, the system creates a set of tasks
and inserts them into the Task Queue on the basis of the appli-
cation.

3. Each idle Worker picks a task from the Task Queue, and con-
currently executes it.

4. Each Worker gets the input dataset from the location specified
by the application. To this end, a file transfer is performed from
the Data Folder where the dataset is located, to the local storage
of the Worker.

5. After task completion, each Worker puts the result on the Data
Folder.

6. The Website notifies the user as soon as her/his task(s) have
completed, and allows her/him to access the results.

The set of tasks created on the second step depends on the type
of application submitted by a user. In the case of a single-task
application, just one data mining task is inserted into the Task Queue.
If the user submits a parameter sweeping application, the set of tasks
corresponding to the combinations of the input parameters values
are executed in parallel. If a complex workflow-based application
must be executed, the set of tasks created depends on how many
data mining tools are invoked within the workflow. Initially, only
the workflow tasks without dependencies are inserted into the Task
Queue.

II.3 User interface

The App submission section of the Website is composed of two main
parts: one pane for composing and running both single-task and
parameter-sweeping applications and another pane for programming
and executing workflow-based knowledge discovery applications.
As an example, Figure 2 shows a screenshot of the App submis-
sion section, taken during the execution of a parameter-sweeping
application.

Figure 2: Screenshot of the App submission section.

Users can monitor the status of each single task through the App
monitoring section, as shown in Figure 3. For each task, the current
status (submitted, running, done or failed) and status update time
are shown. Moreover, for each task that has completed its execution,
two links are enabled: the first one (Stat) gives access to a file
containing some statistics about the amount of resources consumed
by the task; the second one (Result) visualizes the task result.

2
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Figure 3: Screenshot of the App monitoring section.

II.4 Visual workflow programming
The DMCF includes a visual programming interface and its services
to support the composition and execution of workflow-based knowl-
edge discovery applications. Workflows provide a paradigm that
may encompass all the steps of discovery based on the execution of
complex algorithms and the access and analysis of scientific data. In
data-driven discovery processes, knowledge discovery workflows
can produce results that can confirm real experiments or provide
insights that cannot be achieved in laboratories.

Visual workflows in DMCF are directed acyclic graphs whose
nodes represent resources and whose edges represent the dependen-
cies among the resources. Workflows include two types of nodes:

• Data node, which represents an input or output data element.
Two subtypes exist: Dataset, which represents a data collection,
and Model, which represents a model generated by a data
analysis tool (e.g., a decision tree).

• Tool node, which represents a tool performing any kind of
operation that can be applied to a data node (filtering, splitting,
data mining, etc.).

The nodes can be connected with each other through direct edges,
establishing specific dependency relationships among them. When
an edge is being created between two nodes, a label is automatically
attached to it representing the kind of relationship between the
two nodes. Data and Tool nodes can be added to the workflow
singularly or in array form. A data array is an ordered collection of
input/output data elements, while a tool array represents multiple
instances of the same tool.

Figure 4 shows a data mining workflow composed of several
sequential and parallel steps as an example for presenting the main
features of the visual programming interface of the DMCF [3]. The
example workflow analyzes a dataset by using several instances of a
classification algorithm that run in parallel on several cloud servers.

III. Script-based workflow programming

JS4Cloud (JavaScript for Cloud) is a JavaScript-based language for
programming data analysis workflows [4]. The Web interface of
DMCF allows to design and execute workflows programmed by the
JS4Cloud language, by providing an environment similar to that
used to develop visual workflows in the same framework.

The main benefits of JS4Cloud are: i) it is based on a well known
scripting language, so that users do not have to learn a new pro-
gramming language from scratch; ii) it implements a data-driven
task parallelism that automatically spawns ready-to-run tasks to
the available Cloud resources; iii) it exploits implicit parallelism so
application workflows can be programmed in a totally sequential
way.

Two key programming abstractions in JS4Cloud are Data and Tool
elements:

• Data elements denote input files or storage elements, or output
files or stored elements.

• Tool elements denote algorithms or software tools.

For each Data and Tool element included in a JS4Cloud workflow,
an associated descriptor, expressed in JSON format, will be included
in the environment of the user who is developing the workflow.

A Tool descriptor includes a reference to its executable, the re-
quired libraries, and the list of input and output parameters. Each
parameter is characterized by name, description, type, and can be
mandatory or optional. The JSON descriptor of a new tool is cre-
ated automatically through a guided procedure provided by DMCF,
which allows users to specify all the needed information for invoking
the tool (executable, input and output parameters, etc.).

Similarly, a Data descriptor contains information to access an
input or output file, including its identifier, location, and format.
Differently from Tool descriptors, Data descriptors can also be cre-
ated dynamically as a result of a task operation during the execution
of a JS4Cloud script. For example, if a workflow W reads a dataset
Di and creates (writes) a new dataset Dj, only Di’s descriptor will
be present in the environment before W’s execution, whereas Dj’s
descriptor will be created at runtime.

Another key element in JS4Cloud is the task concept, which repre-
sents the unit of parallelism in our model. A task is a Tool, invoked
from the script code, which is intended to run in parallel with other
tasks on a set of Cloud resources.

According to this approach, JS4Cloud implements data-driven task
parallelism. This means that, as soon as a task does not depend on
any other task in the same workflow, the runtime asynchronously
spawns it to the first available virtual machine. A task Tj does not
depend on a task Ti belonging to the same workflow (with i 6= j), if
Tj during its execution does not read any data element created by
Ti .

III.1 JS4Cloud functions

JS4Cloud extends JavaScript with three additional functionalities,
implemented by the set of functions listed in Table 1:

• Data Access, for accessing a data element stored in the Cloud;

• Data Definition: to define a new data element that will be created
at runtime as a result of a tool execution;

• Tool Execution: to invoke the execution of a tool available in the
Cloud.
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Figure 4: A visual workflow for parallel classification.

Table 1: JS4Cloud functions.

Functionality Function Description

Data
Access

Data.get(<dataName>); Returns a reference to the data element with the provided
name.

Data.get(new RegExp(<regular expression>)); Returns an array of references to the data elements whose
name match the regular expression.

Data
Definition

Data.define(<dataName>); Defines a new data element that will be created at run-
time.

Data.define(<arrayName>,<dim>); Define an array of data elements.

Data.define(<arrayName>,[<dim1>,...,<dimn>]); Define a multi-dimensional array of data elements.

Tool
Execution

<toolName>(<par1>:<val1>,...,<parn>:<valn>); Invokes an existing tool with associated parameter val-
ues.

Data Access is implemented by the Data.get function, which is
available in two versions: the first one receives the name of a data
element, and returns a reference to it; the second one returns an
array of references to the data elements whose name match the
provided regular expression. For example, the following statement:

var ref = Data.get("Census");

assigns to variable ref a reference to the dataset named Census,
while the following statement:

var ref = Data.get(new RegExp("^CensusPart"));

assigns to ref an array of references (ref[0]...ref[n-1]) to all the
datasets whose name begins with CensusPart.

Data Definition is done through the Data.define function, avail-
able in three versions: the first one defines a single data element; the
second one defines a one-dimensional array of data elements; the
third one defines a multi-dimensional array of data elements. For
instance, the following piece of code:

var ref = Data.define("CensusModel");

defines a new data element named CensusModel and assigns its
reference to variable ref, while the following statement:

var ref = Data.define("CensusModel", 16);

defines an array of data elements of size 16 (ref[0]... ref[15]).
In both cases, the data elements will be created at runtime as result
of a tool execution.

Differently from Data Access and Data Definition, there is not a
named function for Tool Execution. In fact, the invocation of a tool T
is made by calling a function with the same name of T. For example,
the following statement:

DTree({dataset:DRef, confidence:0.05, model:MRef});

invokes a tool named DTree, where DRef is a reference to the dataset
to be analyzed, previously introduced using the Data.get func-
tion, MRef is a reference to the model to be generated, previously
introduced using Data.define.

III.2 Basic patterns

Several workflow patterns can be implemented with JS4Cloud [4].
Figure 5 shows four examples of patterns that can be defined in
JS4Cloud workflows, namely data partitioning, data aggregation,
parameter sweeping and input sweeping. For each pattern, the
figure shows an example as a visual DMCF workflow, and how the
same example can be coded using JS4Cloud.

The data partitioning pattern produces two or more output data
from an input data element, as in Figure 5-a1, where a Partitioner
tool divides a dataset into a number of splits. With JS4Cloud, this
can be written as shown in Figure 5-a2.

4

10 A Workflow-oriented Language for Scalable Data Analytics



First NESUS Workshop. October 2014

NetLog Partitioner

dataset datasetParts

NetLogPart[16]

SCensus J48 CensusTree

var DRef = Data.get("NetLog");

var PRef = Data.define("NetLogParts", 16);

Partitioner({dataset:DRef, datasetParts:PRef});

a1) a2)

ModelChooser

models bestModel

Model[8] BestModel

var BMRef = Data.define("BestModel");

ModelChooser({models:MsRef, bestModel:BMRef});

b1) b2)

TrainSet J48[5]
PS: confidence

Model[5]

dataset model

var TRef = Data.get("TrainSet");

var nMod = 5;

var MRef = Data.define("Model", nMod);

var min = 0.1;

var max = 0.5;

for(var i=0; i<nMod; i++)

J48({dataset:TRef, model:MRef[i],

confidence:(min+i*(max-min)/(nMod-1))});

c1) c2)

TrainSet[16] J48[16]
PS: dataset

Model[16]

dataset model

var nMod = 16;

var MRef = Data.define("Model", nMod);

for(var i=0; i<nMod; i++)

J48({dataset:TsRef[i], model:MRef[i],

confidence:0.1});

d1) d2)

Figure 5: Visual (left) and JS4Cloud (right) workflow patterns: a) data partitioning; b) data aggregation; c) parameter sweeping; d) input sweeping.

The data aggregation pattern generates one output data from multi-
ple input data, as in Figure 5-b1, where a ModelChooser tool takes
as input eight data mining models and chooses the best one based
on some evaluation criteria. The same task can be coded using
JS4Cloud as shown in Figure 5-b2.

Parameter sweeping is a data analysis pattern in which a dataset
is analyzed by multiple instances of the same tool with different
parameters, as in the example shown in Figure 5-c1. In this exam-
ple, a training set is processed in parallel by 5 instances of the J48
data classification tool to produce the same number of data mining
models. The J48 instances differ each other by the value of a single
parameter, the confidence factor, which has been configured (through
the visual interface) to range from 0.1 to 0.5 with a step of 0.1. The
equivalent JS4Cloud script is shown in Figure 5-c2.

Finally, input sweeping is a pattern in which a set of input data is
analyzed independently to produce the same number of output data.
It is similar to the parameter sweeping pattern, with the difference
that in this case the sweeping is done on the input data rather
than on a tool parameter. An example of input sweeping pattern
is represented in Figure 5-d1. In this example, 16 training sets are
processed in parallel by 16 instances of J48, to produce the same
number of data mining models. The corresponding JS4Cloud script
is shown in Figure 5-d2.

III.3 Example of JS4Cloud workflow

We describe a JS4Cloud workflow that analyzes a dataset using n
instances of the J48 classification algorithm that work on n partitions

of the training set and generate n knowledge models. By using
the n generated models and the test set, n classifiers produce in
parallel n classified datasets (n classifications). In the final step
of the workflow, a voter generates the final classification (in the
file FinalClassTestSet) by assigning a class to each data item.
This is done by choosing the class predicted by the majority of the
models [6].

The input dataset, containing about 46 million tuples and with a
size of 5 GB, was generated from the KDD Cup 1999’s dataset, which
contains a wide variety of simulated intrusion records in a military
network environment.

Figure 6 shows the JS4Cloud code of the workflow. At the be-
ginning, the input dataset is split into training set and test set by a
partitioning tool (line 3). Then, the training set is partitioned into
64 parts using another partitioning tool (line 5). As third step, the
training sets are analyzed in parallel by 64 instances of the J48 clas-
sification algorithm, to produce the same number of classification
models (lines 7-8). The fourth step classifies the test set using the 64
models generated on the previous step (lines 10-11). The classifica-
tion is performed by 64 classifiers that run in parallel to produce 64
classified test sets. As the last operation, the 64 classified test sets
are passed to a voter that produces the final classified test set.

Beside each code line number, a colored circle indicates the status
of execution. The green circles at lines 3 and 5 indicate that the two
partitioners have completed their execution; the blue circle at line 8
indicates that J48 tasks are still running; the orange circles indicates
that the corresponding tasks are waiting to be executed.

Figure 7 shows the turnaround times of the workflow, obtained
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Figure 6: JS4Cloud workflow running in the DMCF’s user interface.

varying the number of virtual servers used to run it on the Cloud
from 1 (sequential execution) to 64 (maximum parallelism). As
shown in the figure, the turnaround time decreases from more than
107 hours (4.5 days) by using a single server, to about 2 hours on 64
servers. This is an evident and significant reduction of time, with a
speedup ranging from 7.64 using 8 servers to 50.78 using 64 servers.
This is a very positive result, taking into account that some sequential
parts of the implemented application (namely, partitioning and
voting) do not run in parallel.
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Figure 7: Turnaround time vs number of available servers.

IV. Concluding remarks

Cloud computing [2] provides scalable resources for Big data mining
and parallel knowledge discovery applications. In fact, Clouds offer
large and efficient storage facilities with high performance proces-
sors to get results in reduced times. In this paper we presented a
Data Mining Cloud Framework (DMCF) designed for developing
and running distributed data analytics applications as collections of
services. In this framework, data sets, data mining algorithms and
knowledge models are implemented as services that can be com-
bined through a visual interface to produce distributed workflows
executed on Clouds.

Recently, we extended the DMCF system to support also script-

based data analysis workflows, as an additional and more flexible
programming interface for skilled users. To this end, we introduced a
workflow-oriented language, called JS4Cloud, to support the design
and execution of script-based data analysis workflows on DMCF.
Experimental performance results, obtained designing and executing
JS4Cloud workflows in DMCF, have proven the effectiveness of
the proposed language for programming data analysis workflows,
as well as the scalability that can be achieved by executing such
workflows on a public Cloud infrastructure.
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Abstract

One of the major challenges in ultrascale systems is the effective scheduling of complex jobs within strict timing constraints. The distributed and
heterogeneous system resources constitute another critical issue that must be addressed by the employed scheduling strategy. In this paper, we
investigate by simulation the performance of various policies for the scheduling of real-time directed acyclic graphs in a heterogeneous distributed
environment. We apply bin packing techniques during the processor selection phase of the scheduling process, in order to utilize schedule gaps
and thus enhance existing list scheduling methods. The simulation results show that the proposed policies outperform all of the other examined
algorithms.

Keywords Scheduling, Distributed systems, Real-time jobs, Simulation, Performance evaluation

I. Introduction

The rapid developments in computing and communication tech-
nologies have led to the emergence of ultrascale computing, which
provides a large-scale, heterogeneous distributed platform for the
processing of complex jobs [1, 2, 3, 4]. The sustainability of a com-
puting environment of such scale and complexity is one of the most
crucial aspects of ultrascale computing.

I.1 Motivation

One of the major challenges in ultrascale systems is the effective
scheduling and processing of a large number of interdependent tasks
within strict timing constraints. Such tasks often have precedence
constraints among them and thus form a real-time directed acyclic
graph (DAG), with an end-to-end deadline. In case a real-time job
cannot meet its deadline, then depending on its criticality, its result
will be useless or even worse, this may have catastrophic conse-
quences on the environment under control [5]. The distributed and
heterogeneous resources of the target system constitute another criti-
cal issue that must be addressed during the scheduling of real-time
complex jobs [6].

I.2 Contribution

We investigate by simulation the performance of various policies for
the scheduling of real-time DAGs in a heterogeneous distributed
environment. Our goal is to apply effective techniques during the
scheduling process, in order to guarantee that every real-time job
will meet its deadline.

I.3 Related Work

A large number of job scheduling techniques have been developed
and studied in the literature [7, 8, 9, 10, 11, 12, 13]. The most com-

monly used real-time scheduling algorithm is the Earliest Deadline
First (EDF) [14]. According to this policy, the job with the earliest
deadline has the highest priority for execution. An efficient and
practical method for scheduling directed acyclic graphs, is the list
scheduling approach, according to which the tasks are arranged in a
prioritized list. Subsequently, each task is allocated to the proces-
sor that minimizes a cost function, such as the task estimated start
time [15]. A simple list scheduling algorithm is the Highest Level
First (HLF) [16], which prioritizes each component task according
to the longest path from the particular task to an exit task in the
DAG.

Based on the observation that idle time slots may form in the
schedule of a processor due to the data dependencies of the tasks in
a DAG, Kruatrachue and Lewis in [17] propose the Insertion Schedul-
ing Heuristic (ISH). According to this method which is based on HLF,
during the processor selection phase, a task may be inserted into an
idle time slot in a processor’s schedule, as long as it does not delay
the execution of the succeeding task in the schedule and provided
that it cannot start earlier on any other processor. Topcuoglu et
al. in [18] present the Heterogeneous Earliest Finish Time (HEFT) list
scheduling strategy, which is essentially an alternative version of
ISH, adapted for heterogeneous systems.

An improved version of HEFT is presented in [15] by Arabnejad
and Barbosa. It introduces a look ahead feature based on an op-
timistic cost table. Jiang et al. in [19] present a novel clustering
algorithm, the Path Clustering Heuristic with Distributed Gap Search
(PCH-DGS), for the scheduling of multiple DAGs in a heteroge-
neous cloud. Their proposed method tries to insert each group of
tasks into the first available idle time slot in a processor’s schedule
(a DAG’s tasks are partitioned into groups in an attempt to mini-
mize the communication cost between them). In case the time gap
cannot accommodate all of the tasks of the group, the rest of the
group’s tasks are inserted into the next available schedule gap of
the same or other processor.
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All of the above algorithms are static and do not take into account
any timing constraints. Moreover, they essentially utilize schedule
gaps according to the First Fit bin packing technique [20]. Cheng
et al. propose in [21] a scheduling heuristic, Least Space-Time First
(LSTF), that takes into account both the precedence and the timing
constraints among the tasks. However, their algorithm does not uti-
lize any schedule idle time slots. In this paper, we apply various bin
packing techniques (First Fit, Best Fit and Worst Fit) during the pro-
cessor selection phase of the scheduling process, in order to utilize
schedule gaps and thus enhance existing list scheduling methods.
Moreover, our policies are suitable for the dynamic scheduling of
multiple real-time DAGs.

II. System and Workload Models

The real-time complex jobs arrive in a Poisson stream with rate λ
at a heterogeneous cluster that consists of a set of q fully connected
processors. Each processor pi serves its own local queue of tasks
(it has its own local memory) and has an execution rate µi. The
transfer rate between two processors pi and pj is denoted by νij. The
processor execution rates and the communication links data transfer
rates may vary. The heterogeneous cluster is dedicated to real-time
jobs and it may be part of a computational grid or cloud. The jobs
arrive at a central scheduler [22], where their unscheduled tasks
wait in a global waiting queue until they get ready to be scheduled.
A task becomes ready to be scheduled when it has no predecessors
or when all of its parent tasks have finished execution.

The heterogeneity factor HF of the system denotes the differ-
ence in the speed of the processors, as well as in the trans-
fer rate of the communication links. The execution rate of
each processor in the system is uniformly distributed in the
range [µ · (1− HF/2) , µ · (1 + HF/2)], where µ is the mean ex-
ecution rate of the processors. The data transfer rate of
each communication link is uniformly distributed in the range

[ν · (1− HF/2) , ν · (1 + HF/2)], where ν is the mean data transfer
rate of the communication links.

Each job that arrives at the cluster is a directed acyclic graph
G = (V, E), where V is the set of the nodes of the graph and E is the
set of the directed edges between the nodes. Each node represents a
component task ni, whereas a directed edge eij between two tasks ni

and nj represents the data that must be transmitted from task ni to
task nj. Each node ni in a DAG has a weight wi, which denotes its
computational volume (i.e. the amount of computational operations
needed to be executed). The computational cost of the task ni on a
processor pj is given by:

Comp(ni, pj) = wi/µ j (1)

where µ j is the execution rate of processor pj. The level Li of a
task ni is the length of the longest path from the particular task
to an exit task. The length of a path in the graph is the sum of
the computational and communication costs of all of the tasks and
edges, respectively, on the path.

Each edge eij between two nodes ni and nj has a weight cij which
represents its communication volume (i.e. the amount of data needed
to be transmitted between the two tasks). The communication cost
of the edge eij is incurred when data are transmitted from task ni

(scheduled on processor pm) to task nj (scheduled on processor pn)

and is defined as:

Comm
(
(ni, pm), (nj, pn)

)
= cij/νmn (2)

where νmn is the data transfer rate of the communication link be-
tween the processors pm and pn.

The communication to computation ratio CCR of a job is the ratio
of its average communication cost to its average computational cost
on a target system and is given by:

CCR =
∑eij∈E Comm(eij)

∑ni∈V Comp(ni)
(3)

where V and E are the sets of the nodes and the edges of the job

respectively. Comm(eij) is the average communication cost of the
edge eij over all of the communication links in the system, whereas

Comp(ni) is the average computational cost of the task ni over all of
the processors in the system. An example task graph is illustrated
in figure 1.

6 10

5 2 1

7 5

4

6

n1 n2

n3 n4 n5

n7 n8

n10

n12

9 8 5

8

4

5

3

2

1

9

1

3

9

n6

n9

n11

11 5

2

4

6

3

Figure 1: An example DAG with two entry tasks and five exit tasks. The
number in each node denotes the average computational cost of the repre-
sented task. The number on each edge denotes the average communication
cost between the two tasks that it connects. The critical path (i.e. the
longest path) of the graph is depicted with thick arrows.

III. Scheduling Strategies

In order to schedule the ready tasks in the global waiting queue, a
list scheduling heuristic is employed. This method consists of two
phases: (a) a task selection phase and (b) a processor selection phase.
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III.1 Task Selection Phase

Each task is assigned a priority according to one of the following
policies:

• Earliest Deadline First (EDF): the priority value of each task
is equal to the absolute end-to-end deadline of its job. The
task with the smallest priority value has the highest priority
for scheduling.

• Highest Level First (HLF): the priority value of each task is
equal to its level. The task with the largest priority value has
the highest priority for scheduling.

• Least Space-Time First (LSTF): the priority value of a task ni

is equal to its space-time STi parameter, which is defined as
STi(t) = D− t− Li, where D is the absolute end-to-end dead-
line of the task’s job, t is the current time instant and Li is the
task’s level.

The tasks are arranged in a list, according to their priority. The task
with the highest priority for scheduling is placed first in the list.
In case two or more tasks have the same priority value, they are
arranged in descending order of average computational costs.

III.2 Processor Selection Phase

Once a task is selected by the scheduler, it is allocated to the proces-
sor that can provide it with the earliest estimated start time EST (ties
are broken randomly). The EST of a ready task ni on a processor pn

is given by:

EST(ni, pn) = max {Tdata(ni, pn), Tidle(ni, pn)} (4)

where Tdata(ni, pn) is the time at which all input data of task ni

will be available on processor pn, whereas Tidle(ni, pn) is the time at
which pn will be able to execute task ni.

In order to calculate the term Tidle(ni, pn), the potential position
of task ni on processor pn is determined. This is the position at
which the task ni would be placed according to its priority in the
local waiting queue of processor pn, if it was actually assigned to
that particular processor. An alternative, more effective method to
determine the potential position of a task in a processor’s queue is
described below.

III.3 Alternative Method of Potential Position Cal-
culation

According to our proposed method, during the processor selection
phase of the scheduling process, the potential position of a ready
task in a processor’s queue is determined by taking into account not
only the task’s priority, but also the idle time slots in the processor’s
schedule that can be utilized. Specifically:

• Step 1: We first find the initial potential position at which the
ready task ni would be placed in the processor’s queue, accord-
ing to its priority and so that it does not precede the task that is
placed after the last exploited idle time slot in the schedule of
the processor. The scheduled tasks placed in the area between
the head of the queue and the initial potential position of task
ni, form the exploitable area of the queue.

• Step 2: The tasks in the exploitable area of the queue are ex-
amined whether they can give idle time slots, starting from the
task at the head of the queue. An idle time slot is candidate for
exploitation by the ready task ni only when it can accommo-
date its computational cost. Moreover, task ni must not delay
any succeeding tasks in the processor’s queue.

The task is inserted into an idle time slot according to one of
the following bin packing policies:

– First Fit (FF): the task is placed into the first idle time slot
where its computational cost fits.

– Best Fit (BF): the task is placed into the idle time slot
where its computational cost fits and where it leaves the
minimum unused time possible.

– Worst Fit (WF): the task is placed into the idle time slot
where its computational cost fits and where it leaves the
maximum unused time possible.

The above procedure has as a result the calculation of the final
potential position of the ready task ni.

The pseudocode for the method described above is given in algo-
rithm 1. The scheduling method used in this paper is an enhanced
version of the one described in our previous work in [23]. Specifi-
cally, in this paper, in case a job misses its deadline, not only are its
scheduled tasks that are waiting in processor local queues aborted,
but also, all of the other tasks that are waiting in the particular
queues are rescheduled (on the same processors), according to their
priority. This is necessary, due to the fact that a task removal from
a queue may lead to the cancellation of utilized idle time slots or to
the creation of new ones that could be exploited by other tasks that
are waiting in the queue. Other differences with our previous work
in [23] include: (a) the CCR parameter is defined differently in this
paper and (b) different values for the simulation input parameters
are used.

IV. Performance Evaluation

IV.1 Performance Metric

The performance of the investigated scheduling policies was eval-
uated by simulation. In order to have full control on all of the
required system and workload parameters, we implemented our
own discrete-event simulation program in C++. As a performance
metric, the job guarantee ratio JGR was employed, which is defined
as:

JGR =
TN JG

TN JA
(5)

where TN JG is the total number of jobs guaranteed, i.e. the total
number of jobs that met their deadline. TN JA is the total number
of job arrivals at the system, during the time period the system was
observed.

IV.2 Simulation Input Parameters

In our simulation experiments we used synthetic workload, in or-
der to obtain unbiased results. The task graphs were generated ran-
domly, using our own custom DAG generator, as described in [24].
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Algorithm 1 Alternative method of potential position calculation.

Input: A ready task ni and a processor pn.
Output: Final potential position of task ni in pn’s queue.

1: find initialPotentialPosition of task ni in pn’s queue
2: determine exploitable area of pn’s queue
3: f inalPotentialPosition← initialPotentialPosition
4: spareTime← −1
5: get first task nj in exploitable area of pn’s queue
6: repeat
7: if task nj forms a schedule hole then

8: if Comp(ni, pn) ≤ Tdata(nj, pn)− EST(ni, pn) then
9: if Bin Packing Policy = First Fit then

10: f inalPotentialPosition← currentQueuePosition
11: return f inalPotentialPosition
12: else if Bin Packing Policy = Best Fit then
13: if spareTime = −1 or spareTime> spareTimeO f ThisScheduleHole then
14: spareTime← spareTimeO f ThisScheduleHole
15: f inalPotentialPosition← currentQueuePosition
16: end if
17: else if Bin Packing Policy = Worst Fit then
18: if spareTime < spareTimeO f ThisScheduleHole then
19: spareTime← spareTimeO f ThisScheduleHole
20: f inalPotentialPosition← currentQueuePosition
21: end if
22: end if
23: end if
24: end if
25: get next task nj in exploitable area of pn’s queue
26: until all tasks in exploitable area of pn’s queue are examined
27: return f inalPotentialPosition

The simulation input parameters are summarized in table 1. The
computational volume of a task in a graph is exponential with mean
w. The communication volume of an edge is exponential with mean
c. The relative deadline of each job is uniformly distributed in the
range [CPL, 2CPL], where CPL is the length of the critical (i.e. the
longest) path in the graph. The heterogeneity factor of the system
is considered to be equal to HF = 0.5. That is, the target system is
considered to feature a moderate degree of heterogeneity.

Parameter description Value

Number of processors in the system q = 64
Mean execution rate of processors µ = 1
Mean data trans. rate of comm. links ν = 1
Heterogeneity factor HF = 0.5
Number of tasks in each job a ∼ U[1, 64]
Arrival rate of the jobs λ = {0.2, 0.25, 0.3, 0.35}
Relative deadline of each job RD ∼ U[CPL, 2CPL]
CCR of the jobs CCR = {0.1, 1, 10}
Mean comp. volume of the tasks w = 10 (CCR = 0.1) and

w = 1 (CCR = {1, 10})

Table 1: Simulation input parameters.

IV.3 Simulation Results

We investigated the performance of the scheduling strategies in-
cluded in table 2, with respect to the arrival rate of the jobs, for
DAGs with various communication to computation ratios:

• computationally intensive DAGs (CCR = 0.1);

• moderate DAGs (CCR = 1);

• communication intensive DAGs (CCR = 10).

Scheduling Task Selection Phase Processor Selection Phase
Strategy (task prioritization) (utilization of idle time slots)

EDF Earliest Deadline First No
EDF_FF Earliest Deadline First First Fit
EDF_BF Earliest Deadline First Best Fit
EDF_WF Earliest Deadline First Worst Fit
HLF Highest Level First No
HLF_FF Highest Level First First Fit
HLF_BF Highest Level First Best Fit
HLF_WF Highest Level First Worst Fit
LSTF Least Space-Time First No
LSTF_FF Least Space-Time First First Fit
LSTF_BF Least Space-Time First Best Fit
LSTF_WF Least Space-Time First Worst Fit

Table 2: Examined scheduling strategies.

 λ 

Figure 2: JGR vs. λ for CCR = 0.1.

Figures 2, 3 and 4 show the simulation results in each of the above
cases, respectively.

The simulation results suggest that the scheduling strategies that
employ the EDF policy in the task selection phase, exhibit better
performance than the strategies that employ the HLF and the LSTF
policies. This is more obvious in the case of computationally inten-
sive DAGs. Furthermore, the proposed alternative versions of the
scheduling algorithms that utilize idle time slots in the processor se-
lection phase, outperform their respective counterparts that do not
utilize idle time gaps.

Figure 5 shows the average improvement in the system perfor-
mance for the proposed scheduling policies, compared to their
counterpart methods that do not utilize schedule gaps. The im-
provement is more apparent in the case of computationally inten-
sive workload. Specifically, the average improvement in this case
is shown in table 3 for each scheduling strategy. Even though the
scheduling strategies that employ the HLF and the LSTF policies in
the task selection phase benefit more by the utilization of idle time
slots in the processor selection phase than the respective strategies
that use EDF, the latter outperform their corresponding counter-
parts.
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 λ

Figure 3: JGR vs. λ for CCR = 1.

 λ

Figure 4: JGR vs. λ for CCR = 10.

V. Conclusions and Future Directions

In this paper, we investigated by simulation the performance of
various policies for the scheduling of real-time DAGs in a hetero-
geneous distributed environment. We applied bin packing tech-
niques during the processor selection phase of the scheduling pro-
cess, in order to utilize schedule gaps and thus enhance existing list
scheduling algorithms.

The simulation results suggest that in the case where the utiliza-
tion of idle time slots is based on the Best Fit bin packing technique,
the system exhibits better performance than in the case where the
First Fit and the Worst Fit policies are used. Overall, the proposed
EDF_BF scheduling strategy outperforms all of the other examined
algorithms.

Ultrascale systems may utilize multicore architectures. Moreover,
energy efficiency and fault tolerance are vital aspects of their sus-
tainability [25, 26]. Therefore, our future research plans include the
adaptation of our proposed scheduling strategies in order to meet

Figure 5: The average improvement (%) in the system performance for the
proposed scheduling strategies, compared to their counterpart policies that
do not utilize idle time slots.

Scheduling Average
Strategy Improvement in JGR

EDF_FF 1.89%
EDF_BF 2.69%
EDF_WF 1.60%
HLF_FF 6.27%
HLF_BF 11.22%
HLF_WF 4.32%
LSTF_FF 3.45%
LSTF_BF 5.86%
LSTF_WF 3.31%

Table 3: The average improvement in the system performance for the pro-
posed scheduling strategies, in the case of computationally intensive work-
load.

those needs.
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Abstract

We present MOHEFT, a multi-objective list scheduling heuristic that provides the user with a set of Pareto tradeoff optimal solutions from
which the one that better suits the user requirements can be manually selected. We demonstrate the potential of our method for multi-objective
workflow scheduling on the commercial Amazon EC2 Cloud by comparing the quality of the MOHEFT tradeoff solutions with a state-of-the-art
multi-objective approach called SPEA2* for three types of synthetic workflows with different parallelism and load balancing characteristics. We
conclude with an outlook into future research towards closing the gap between the scientific simulation and real-world experimentation.

Keywords Scheduling, scientific workflows, Cloud computing, multi-objective optimisation, list-based heuristics

I. Introduction

In previous e-science research [21], many scientists have found in
scientific workflows an attractive model of building large scale appli-
cations for heterogeneous wide-area parallel and distributed comput-
ing systems such as Grids. Typically, a scientific workflow applica-
tion [20] consists of several (legacy) programs (referred from now on
as tasks or activities) in the form of a dependency graph, where the
input of some of these programs may depend on the output of the
others. Once the application is composed as a workflow, its perfor-
mance depends on how the individual tasks are mapped (scheduled)
on to the available parallel and distributed resources. Traditionally,
finding an optimal schedule of the tasks minimising the makespan or
completion time of the whole workflow has been the main objective
and a major NP-complete challenge [23]. As a consequence, many
heuristics and meta-heuristics [4] for approximating a solution to
this problem have been proposed [18, 22].

In the context of Cloud computing, the computed mapping must
additionally optimise the economic cost incurred by renting resources.
Today, most commercial Clouds offer heterogeneous types of re-
sources at different prices and with different performance. For
example, in Amazon EC2 ( )
a user can choose among different types of instances, where the
fastest resource is about eight times more expensive than the slowest

one1. In these circumstances, the workflow scheduling problem
has to be formulated as a multi-objective optimisation problem (MOP)
which aims at optimising at least two conflicting criteria: makespan
and economic cost of workflow’s execution. The main characteristic
of MOPs is that no single solution exists that is optimal with respect
to all objectives, but a set of tradeoff solutions known as Pareto
front [9]. Solutions within this set cannot be further improved in
any of the considered objectives without causing the degradation of
at least another objective. Most related work [13, 17, 2] simplifies
workflow scheduling optimising several competing objectives to a
single-objective problem by aggregating all the objectives in one
analytical function. The main drawback of these approaches is that
the aggregation of the different objectives is made a priori, with any
knowledge about the workflow, infrastructure, and in general about
the problem being solved. Therefore, the computed solution may
not properly capture the user preferences. On the other hand, few
approaches computing the tradeoff solutions have been proposed.
Their main advantage over the aggregative ones is that the user is
provided with a set of optimal solutions from which the one that
better suits the requirement or preferences can be manually selected.

To address this gap, we introduce in this paper a new multi-
objective workflow scheduling method called Multi-Objective Het-
erogeneous Earliest Finish Time (MOHEFT) as an extension to the

1These prices only refer to the Standard On-Demand Instances (September 2013)
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well-known HEFT [22] mono-objective workflow scheduling algo-
rithm. Our proposal is a new heuristic-based method that computes
a set of tradeoff solutions with a small additional overhead com-
pared to the traditional single objective methods. In doing this,
MOHEFT builds several intermediate workflow schedules in parallel
in each step instead of a single one. To ensure the quality of the
tradeoff solutions, MOHEFT uses dominance relationships and a
metric called crowding distance to guarantee their diversity. MO-
HEFT is generic in the number and type of objectives, applied in this
paper for optimising the makespan and economic cost of running
workflow applications in an Amazon-based commercial Cloud.

While in theory a Cloud user can access an infinite pool of re-
sources, in practice most providers restrict this number to a maxi-
mum of N instances that can be simultaneously acquired. For ex-
ample, in Amazon this maximum number is limited to N = 20
and could be enlarged through offline communication. Within
this maximum number N, the user flexibly can choose between
the different types of instances offered by the Cloud provider (e.g.

, , , , for Ama-
zon EC2) with different performance and prices. The question which
instances should compose the set of maximum size N for running
the workflow becomes critical and has no single answer, since dif-
ferent combinations produce different tradeoff schedules. Moreover,
the set of N instances does not need to be invariant during the
whole workflow execution. For example, it may occur that one type
of instance is particularly good at the beginning of the workflow ex-
ecution, and a different type of instance is mostly beneficial towards
the end. These additional constraints imposed by commercial Cloud
systems require modifications to the proposed algorithms originally
designed for heterogeneous distributed computing systems. Addi-
tionally, we also aim at highlighting the potential of the Pareto front
as a tool for decision support, analysing how the user can exploit
this information for improving the workflow schedule.

The paper is organised as follows. Section II defines the ab-
stract workflow, resource, and problem definition underneath our
approach. In Section III, we present our multi-objective workflow
scheduling algorithm, adapted to the case of commercial Clouds.
We present in Section IV the experimental setup for evaluating our
technique on several synthetic and real-world workflows on Ama-
zon EC2 (Section V). Finally, we summarise the conclusions and the
future work in Section VI.

II. Model

This section formally describes the workflow, resource, and problem
definition underneath our approach.

II.1 Workflow Model

We model a workflow application as a directed acyclic graph:
W = (A, D) consisting of n tasks (also referred in the re-
maining of this paper as activities) A =

Sn
i=1 {Ai}, intercon-

nected through control flow and data flow dependencies; D =��
Ai , Aj, Dataij

�
|
�

Ai , Aj
�
2 A⇥ A

 
, where Dataij represents the

size of the data which needs to be transferred from activity Ai to
activity Aj. We use pred(Ai) = {Ak | (Ak , Ai , Dataki) 2 D} to denote
the predecessor set of activity Ai , (i.e. activities to be completed before
starting Ai). Finally, we assume that the computational workload of

every activity Ai is known and is given by the number of machine
instructions required to be executed.

II.2 Resource Model

We assume that our hardware platform consists of a set of m het-
erogeneous resources R = [m

j=1Rj, which can be of any type as
provided by Amazon EC2 (e.g. , , ,

, , ). For a given resource Rj of a
certain type, we know its average performance measured in GFLOPs.
In our workflow model we assume that an activity that is executed in
any of these resource can benefit from a parallel execution using all
the virtual cores exposed by the instance, achieving the performance
indicated in the last column of Table 1. The use of any of these
resources is charged per every hour of computation following the
Amazon prices indicated in the third column of that table. The final
price is based not only on the resources’ usage, but also in the data
stored and transferred among different instances which depends on
four components: (1) price per hours of resource’s usage PERi ; (2)
price per MB of data storage PSRi ; (3) price per MB of data received
PIRi ; (4) price per MB of data sent PORi .

The prices of these components depend on the Cloud provider.
Currently, Amazon EC2 does not charge for internal data transfers
among EC2 instances which do not require a public IP address, i.e.
which do not require to be publicly reachable from Internet. Amazon
EC2 also does not charge for incoming data from Internet to EC2
instances. In the case of outgoing data, the first GB transferred each
month is free, and up to 10TB of information can be transferred at a
relative low price of 0.120$ per GB. For the data storage, the price
charged by Amazon EC2 is 0.10$ per stored GB.

Finally, commercial Clouds such as Amazon EC2 introduce con-
straints that must considered. While in theory a user can access
an infinite pool of resources, in practice most providers restrict this
number to a maximum of N instances that can be simultaneously
acquired. For example, in case of Amazon this maximum number is
limited to 20 and can be enlarged through offline communication.
Within this maximum number N, the user can flexibly choose be-
tween the different types of instances with different performance
and prices. The question which instances to compose the set of
maximum size N for running the workflow becomes critical and
has no single answer since different systems of maximum size N
will produce different tradeoff schedules. Moreover, the set of N
instances does not have to be invariant during the whole workflow
execution. For example, it may occur that one type of instance is
particularly good at the beginning of the workflow execution, and a
different type of instance the most beneficial at the end.

II.3 Problem Definition

Our problem consists in scheduling the execution of the workflow
tasks on Cloud resources such that the makespan and the economic
costs are minimised. In the rest of this paper, we will use sched(Ai)
to denote the resource on which the task Ai is scheduled to be
executed. We describe in the following how the two objectives of
interest are computed.
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II.3.1 Makespan

For computing the workflow makespan, it is first necessary to
define the execution time t(Ai ,Rj)

of an activity Ai on a resource

Rj = sched (Ai) as the sum of the time required for transferring the
biggest input data from any Ap 2 pred

�
Ap

�
and the time required

to complete Ai in Rj:

t(Ai ,Rj)
= max

Ap2pred(Ai)

(
Datapi

bpj

)
+

workload (Ai)

sj
, (1)

where Datapi is the size of the data to be transferred between Ap and
Ai , bpj is the bandwidth of one TCP stream between the resource
where task Ap was executed and the resource Rj, workload(Ai) the
length of the task Ai in machine instructions, and sj the speed of the
resource Rj in number of machine instructions per second. Next, we
can compute the completion time TAi of activity Ai considering the
execution time of itself and its predecessors:

TAi =

8
<
:

t(Ai ,sched(Ai))
, pred (Ai) = ∆;

max
Ap2pred(Ai)

n
TAp + t(Ai ,sched(Ai))

o
, pred (Ai) 6= ∆. (2)

The workflow makespan is finally defined as the maximum comple-
tion time of all the activities in the workflow:

TW = max
i2[1,n]

n
T(Ai ,sched(Ai))

o
. (3)

II.3.2 Economic Cost

The economic cost depends on two terms: the computation cost
C(comp) and the cost of data transfer and storage C(data). We define

C(data)
(Ai ,Rj)

as the cost of the data transfers In(Ai) and Out (Ai) and

storage Data (Ai) from executing activity Ai on resource Rj:

C(data)
(Ai ,Rj)

= Data (Ai) · t(Ai ,Rj)
· PSRi + In(Ai) · PIRi + Out (Ai) · PORi ,

(4)
For defining the cost C(comp)

Rj
of using a resource Rj, we assume

that for each task Ai executed on Rj we record two timestamps:

t(start)
Ai

when the activity starts and t(end)
Ai

when the activity finishes

its execution. The value t(end)
Ai

can be computed as t(start)
Ai

+ t(Ai ,Rj)
+

maxAi2pred(Ap)

n Dataip
bjp

o
. We consider that the times for transferring

the input In (Ai) and the output data Out (Ai) are included in the
interval between t(start)

Ai
and t(end)

Ai
. In other words, these time stamps

indicate the period of time on which the resource Rj needs to be
active due to the execution of the activity Ai .

Let us consider the set of p activities scheduled on resource Rj
denoted as

�
J1, . . . , Jp

 
, where p < n and sched (Ji) = Rj, i 2 [1, p],

sorted based on their start timestamp: t(start)
J1

< . . . < t(start)
Jp

. Based

on this ordering, we cluster them in q  p different groups G(j)
k , 1 

k  q, so that all activities in one group are executed consecutively
without releasing the resource. After the activity with the largest
start timestamp in the group completes, the resource is released.

We construct the first group G(j)
1 = {J1, . . . , Jr} , r  p, based on

the following three rules:

1. The first activity J1 belongs to the first group: J1 2 G(j)
1 ;

2. Every activity Ji 2 G(j)
1 , 2  i  r completes before the resource

is released. This means that Ji starts when the resource is still
leased because of the execution of Ji�1:

t(start)
Ji

< t(start)
J1

+

2
666

t(end)
Ji�1
� t(start)

J1
3600

3
777

· 3600. (5)

We divide the total time in seconds of using a resource by 3600
in order to convert it to hours, and use the ceiling operator to
round this value to complete hours of computation. Obviously,
the resource will be rented for as many hours as required for
finishing all the activities within this group.

3. The next activity (not part of the previous group) Jr+1 62 G(j)
1 , r +

1  p starts in an instant of time tstart
Jr+1

when the resource has
been already released, i.e., task Jr has finished its execution, the
last rented period of one hour for executing Jr has expired, and
the resource Rj was not needed in the period of time elapsed
between tend

Jr and tstart
Jr+1

. Mathematically, it can be expressed as:

t(start)
J1

+

2
666

t(end)
Jr � t(start)

J1
3600

3
777

· 3600 < t(start)
Jr+1

. (6)

Successive groups are built until the last activity Jp has been

assigned. The second group G(j)
2 is constructed in the same way

starting from the task Jr+1 instead of J1. The same strategy is used
for the rest of the groups. Once all the groups have been created, we

define the cost C(comp)
Rj

of using the resource Rj as the number hours

required for executing all groups multiplied by the cost per hour:

C(comp)
Rj

= PERj ·
q

Â
k=1

2
6666

Â
Ai2G(k)

Rj

t(Ai ,Rj)

3600

3
7777

. (7)

We compute the economic cost of executing the entire workflow
W = (A, D) as the computation cost on all m resources plus the cost
for transferring and storing the data:

CW =
m

Â
j=1

C(comp)
Rj

+ Â
(Ai ,Aj ,Dataij)2D

C(data)
(Ai ,Rj)

. (8)

III. Cloud-aware Multi-Objective Heterogeneous
Earliest Finish Time Algorithm

The original HEFT algorithm builds a solution by iteratively map-
ping the workflow tasks onto the available resources. That mapping
is aimed at minimising the completion time of every task, so in every
iteration only the resource which minimises this goal is considered.
When multiple objectives are considered, the goal is to compute a
set of tradeoff solutions by allowing the creation of several solutions
at the same time instead of building a single one. Therefore, instead
of mapping every task onto the resource where it is finishes earlier,
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Algorithm 1 Cloud-aware MOHEFT algorithm.
Require: W = (A, D), A =

Sn
i=1 Ai . Workflow application

Require: N . Maximum simultaneous instances
Require: I . Number of different instance types
Require: R =

Sm
j=1 Rj . Set of resources, where m = N · I

Require: K . Number of tradeoff solutions
Ensure: S =

SK
i=1 schedW , schedW =

��
Ai , sched

�
Ai
��

|8Ai 2 A
 

. Set of K tradeoff schedules

1: function MOHEFT(W,R,K)
2: Rank B-rank(A) . Order the tasks according to B-rank
3: for k 1, K do . Create K empty workflow schedules
4: Sk  ∆
5: end for
6: for i 1, n do . Iterate over the ranked tasks
7: S0  ∆
8: for j 1, m do . Iterate over all resources
9: for k 1, K do . Iterate over all tradeoff schedules

10: s Sk [
⇣

Ranki , Rj
⌘

. Extend all intermediate schedules

11: if countResources(schedW , m) > N then . More than N instances used
12: Ts  • . Mark schedule as non-valid
13: Cs  •
14: end if
15: S0  S0 [ {s} . Add new mapping to all intermediate schedules
16: end for
17: end for
18: S0  sortCrowdDist(S0 , K) . Sort according to crowding distance
19: S First(S0 , K) . Choose K schedules with highest crowding distance
20: end for
21: return S
22: end function

we should allow mapping it to resources that provide a tradeoff
between the considered objectives.

MOHEFT described in pseudocode in Algorithm 1 extends the
original HEFT algorithm by approximating a set of tradeoff solutions
K instead of a single one. Similar to HEFT, it ranks first the tasks
using the B-rank metric (line 2). However, instead of creating an
empty solution as in HEFT, it creates a set S of K empty solutions
(lines 3–5). Afterwards, the mapping phase of MOHEFT begins
(lines 6–20). MOHEFT iterates first over the list of tasks (line 6)
sorted by their computed rank. The idea is to extend every solution
in S by mapping the next task to be executed onto all m possible
resources and store them in a temporal set S0 which is initially empty
(line 7). For creating these new solutions, we iterate over the set of
resources (line 8) and the solution set S (line 9), and add the new
extended intermediate schedules to the new set S0 (line 15). This
strategy results in an exhaustive search if we do not include any
restrictions. Therefore, we save only the best K tradeoffs solutions
from the temporary set S0 into the set S (lines 18–19). We consider
that a solution belongs to the best tradeoff if it is not dominated by
any other solution and if it contributes to the diversity of the set.
For this last criterion, we employ the crowding distance [10], which
gives a measure of the area surrounding a solution where no other
tradeoff solution is placed. Our criterion is to prefer solutions with
a higher crowding distance, since this means that the set represents
a wider area of different tradeoff solutions. The constraint on the
number of resources is checked in line 11. If the constraint is not
violated, the makespan and cost are computed as before, otherwise
they are set to infinite. This will cause the algorithm to discard that
solutions later on line 18, producing only tradeoff solutions which
use at most N instances. After assigning all the tasks (line 21), the
algorithm returns the set of K best tradeoff solutions.

Given a set of n activities and m resources, the computational
complexity of HEFT is O(n · m). MOHEFT only introduces two main
differences with respect to HEFT: the creation of several solutions in
each iteration of the algorithm, and the possibility of considering re-
sources providing a tradeoff solution. These two modifications only

require an additional loop in MOHEFT (see Algorithm 1, lines 9 –
16). Considering that the set of tradeoff solutions is K, the extra loop
in MOHEFT performs only K iterations, rendering a complexity of
O(n · m · K). Usually, the number of tradeoff solutions is a constant
much lower than n and m. For example, a workflow can be com-
posed of thousands of tasks and the set of tradeoff solutions can be
accurately represented with tens of solutions. Thus, the complexity
can be approximated as almost O(n · m), as in HEFT.

IV. Experimental Setup

We describe in this section the experiments carried out for validating
the Cloud-aware MOHEFT algorithm.

IV.1 Evaluation Metrics

We consider three criteria for comparing the quality of solutions.
First, we consider the shortest makespan of the schedules computed
by the three analysed techniques. Second, we focus on the economic
aspect of the schedules, analysing the cheapest solution reported
by each technique. The idea of these two indicators is to assess the
behaviour of the different approaches optimising each individual
criterion. Finally, we consider the hypervolume indicator for assess-
ing the quality of computed tradeoff solutions. Second, we analyse
the tradeoff solutions for different workflow types. Although we
compute the tradeoff between cost and makespan, for the sake of
highlighting the potential of the obtained results, we will plot the
cost savings versus the makespan deterioration, as percentages rel-
ative to the most makespan-efficient solution, computed by HEFT.
Third, we study the number and the type of instances selected by the
different scheduling solutions computed by the three approaches.

We compare the MOHEFT algorithm with SPEA2* [25], a ver-
sion of the SPEA2 genetic algorithm proposed in [26] which was
shown to outperform NSGA-II and PAES for multi-objective work-
flow scheduling in [25]. We implemented SPEA2* using the jMetal
framework [11], slightly modified to deal with the limitation im-
posed by commercial Clouds on the maximum number of simultane-
ous resources. This algorithm requires the same input parameters as
MOHEFT and works with a population (set) of candidate solutions
which are iteratively recombined with the aim of evolving them
towards the optima. In our experiments, we used K = 10, apply the
recombination operator with a probability of 0.9 and the mutation
with 0.5. This configuration is the same one used in the original
paper where SPEA2* is described. In order to avoid our conclusions
be biased by any hazard effect of this stochastic behaviour, we run
SPEA2* for five times and always consider the run producing the
front with the largest hypervolume.

IV.2 Workflow Applications

We generated three types of synthetic workflows using the random
workflow generator described in [24]. Our interest is to analyse
how the number of independent activities influences the scheduling
results. Therefore, the defined types are intended to cover a wide
spectrum of workflow structures from this point of view:

• Type-1 where the number of tasks that can be executed in paral-
lel ranges between one and two;
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Table 1: Performance and price of various Amazon EC2 instances.

Instance Mean performance [GFLOPS] Price [$/h] GFLOPS/$
2.0 0.1 19.6
7.1 0.4 17.9
11.4 0.8 14.2
3.9 0.2 19.6
50.0 0.8 62.5

• Type-2 where the number of tasks that can be executed in paral-
lel is high, and the workflow is balanced (same number of tasks
in every level);

• Type-3 where the number of tasks that can be executed in paral-
lel is high, but the workflow is unbalanced (different number
of tasks in every level).

We generated the length of every task and the data produced using
a Gaussian distribution. For every type, we considered 100 different
instances having between 100 and 1000 different tasks.

IV.3 Resource Infrastructure
Amazon EC2 offers fourteen different types of on-demand instances
with different performance and price. In [1], Iosup et al. evaluated
them for scientific computing and reported the average performance
in millions of floating point operations per second (GFLOPs) of five
different instance types thorough extensive benchmark experimen-
tation. Table 1 summarises the average performance, the price per
hour of computation, and the ratio GFLOPs per invested dollar of
these resources. In this work, we will evaluate our multi-criteria
workflow scheduling method on these five instance types.

We consider that the user has access to the default maximum
number of N = 20 Amazon instances which can be of any of the five
types summarised in Table 1 (i.e. I = 5 and m = N · I = 20 · 5 = 100).
We assume that no public IP addresses are required for running
the experiments on the Amazon EC2 infrastructure. Additionally,
the output data transfers from Amazon to the outside Internet are
constant, take place only at the end of the workflow execution and
thus, do not influence the scheduling results. In this situation, we
assume in our experiments that the prices for data sent and received
are zero: PIRi = 0 and PORi = 0.

V. Evaluation

We present in this section the evaluation results for the synthetic
workflow first, then for the real-world ones. Finally, we analyse
how the solutions computed by the algorithms change when the
constraint of simultaneously using 20 resources is relaxed.

V.1 Type-1 Workflows
First, Fig. 1a shows that MOHEFT outperformed SPEA2 in terms of
hypervolume for all evaluated Type-1 workflow instances. We did
not include HEFT in this comparison because it only delivers a single
solution with the optimal makespan. It is remarkable that, for this
workflow type, MOHEFT always computed solutions with the same
hypervolume value, meaning that the shape of the optimal set of
tradeoff solutions in this case does not vary with the workflow size.

In terms of makespan (see Fig. 1b), all the three methods computed
the same solution, which confirms that the performance of MOHEFT
does not degrade compared to HEFT. In case of SPEA2*, the results
are not surprising since the algorithm is initialised with the solu-
tion computed by HEFT. Both MOHEFT and SPEA2 computed the
same cheapest schedule illustrated in Fig. 1c, which considers the
cheapest instance ( ) for the entire workflow. This fact is a
consequence of the low degree of parallelism of this workflow. The
solution computed by HEFT is always the most expensive one.

Fig. 1d shows an example of tradeoff solutions computed by
MOHEFT and SPEA2*. The higher quality of the solutions computed
by MOHEFT can be easily visualised in this chart. In particular, we
observe that our method computed a schedule which halves the
price of the solution with the optimal makespan by only introducing
a 7% of time overhead. In case of SPEA2*, a solution with the same
cost would have required an increase of 25% in makespan. These
results highlight the importance of the Pareto front as a decision
support tool, since computing a single schedule at a time would
have hidden this information.

V.2 Type-2 Workflows

In terms of the quality of the set of tradeoff solutions, MOHEFT has
again outperformed SPEA2* for all Type-2 workflow sizes, as indi-
cated by the hypervolume indicator in Fig. 2a. In this case, different
workflow sizes result in Pareto fronts with different hypervolumes,
meaning that the shape of the Pareto front for this problem depends
on the number of tasks that can be executed in parallel. If we focus
on the makespan (see Fig. 2b), it is worth mentioning that MOHEFT
and SPEA2* were able in some cases to compute solutions with
better makespans than HEFT. The explanation for this behaviour is
that, due to its greedy nature, HEFT easily converges towards a local
optimum, situation which is overcome by MOHEFT and SPEA2*
due to a larger exploration of the search space. In terms of economic
cost (see Fig. 2c), MOHEFT and SPEA2* computed the same solution
which is a lot cheaper than the solution with the best makespan.

Fig. 2d shows a comparison of the tradeoff solutions computed
by MOHEFT and SPEA2*. The differences between both algorithms
are even more noticeable than for workflows of Type-1. In this case,
MOHEFT computed a schedule which reduced the cost by 30%
incurring only a 1.4% increase in makespan. Computing a solution
of similar price for SPEA2* would have required increasing the
makespan by more than 450%. This huge difference between our
approach and SPEA2* clearly points out the potential of MOHEFT
for multi-objective workflow scheduling in terms of the quality of
the computed solutions.

For this workflow type, many solutions computed by SPEA2*
required more than 20 resources, thus invalidating its adoption
for workflow scheduling in the context of commercial Clouds with
limitations on the maximum number of instances that can be si-
multaneously rented. In particular, 66% of the computed schedules
required more than the 20 resource limit imposed by Amazon EC2
(see Fig. 2d). This behaviour does not appear in the solutions com-
puted by MOHEFT or HEFT, which always provided schedules with
at most 20 resources.
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(a) Hypervolume.

MOHEFT

(b) Makespan.

MOHEFT

(c) Economic cost. (d) Cost – makespan tradeoff.

Figure 1: Evaluation results for synthetic workflows of Type-1.

(a) Hypervolume. (b) Makespan. (c) Economic cost. (d) Cost – makespan tradeoff.

Figure 2: Evaluation results for synthetic workflows of Type-2.

(a) Hypervolume. (b) Makespan. (c) Economic cost. (d) Cost – makespan tradeoff.

Figure 3: Evaluation results for synthetic workflows of Type-3.

V.3 Type-3 Workflows

The results for this workflow type, summarised in Fig. 3, confirm
the findings of the previous two types.

The hypervolume of the tradeoff sets for the Type-3 workflows
(see Fig. 3a) shows that MOHEFT outperforms SPEA2* also in this
case. As in the previous case, the hypervolume reflects a different
shape of the Pareto front for workflows with different number of
activities. This fact validates the hypothesis that the shape of the
tradeoff solutions depends on the number of activities of the work-
flow that can be executed in parallel. All three techniques computed
the schedule which minimises the makespan, confirming again the
suitability of this method for workflow scheduling if the user is only
interested in optimising this goal. Similar to the previous case, MO-
HEFT and SPEA2* computed the best solutions in terms of economic
cost. The difference between HEFT and the other two methods tends
to increase with the number of activities composing the workflow.

An example of the tradeoff solutions computed by MOHEFT and
SPEA2* is shown in Fig. 3d. For this workflow type, MOHEFT was
able to compute solutions that halve the maximum price with only
1% increase in makespan, while SPEA2* required at least a 40% of

extra time for a solution of the same cost. These results indicate
once more the better suitability of MOHEFT for multi-objective
workflow scheduling on the Amazon EC2 Cloud. In this case, the
three techniques always computed schedules meeting the restriction
of using at most 20 on-demand instances.

VI. Discussion and Outlook

Designing, optimising, scheduling, and executing scientific applica-
tions for heterogeneous computing infrastructures, including pro-
duction Clouds, involve multiple cycles of code development, small
testing followed by real executions, performance monitoring, data
collection, optimisation and tuning, which is a cumbersome, tedious,
and time-consuming multi-experimental process if not supported by
appropriate tools. Working with heterogeneous and dynamic pro-
duction platforms, such as the European Grid Infrastructure (EGI)
or the Amazon EC2 Cloud, brings additional complexity related to
performance variability (due to external factors), non-deterministic
parallel executions, virtualization overheads, or reliability issues
requiring repeated experimentation to produce statistically relevant
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results. Repeated experimentation, however, has the drawback of
being time and resource consuming (in both manpower and hard-
ware), of disrupting regular production on the platforms, and of
limiting freedom in exploration of new cases (e.g. for the sake of cu-
riosity). This issue becomes critical in public Cloud infrastructures,
that through their new pay-as-you-go cost resource provisioning
model, make the experimentation costs transparent. Finally, energy
consumption has recently become another argument against “wast-
ing natural resources” for curiosity science that may yield validated
results only in few cases. Faced with this situation, scheduling and
executing scientific applications in production distributed computing
infrastructures (DCI), including Clouds, has become an increasingly
complex multi-objective optimisation problem involving several con-
flicting metrics for which no appropriate tool support exists due
to the increased difficulty in deploying and testing new heuristic
methods in real production environments. As a first step in this
direction, we proposed a truly multi-objective workflow scheduler
called MOHEFT, which extends a well-known list scheduling heuris-
tic in a multi-dimensional objective space of tradeoff solutions. We
applied the algorithm in the context of makespan and economic cost
optimisation, extended to deal with the realistic constraints imposed
by commercial Clouds that restrict the total number of resources
that can be simultaneously acquired, but keep their type flexible
depending on the temporal needs.

To research and validate such new scheduling heuristics, com-
puter scientists rely nowadays on mathematical models [19, 14],
simulators [3, 6, 8], or experimental platforms [5] to reproduce
real systems in controlled conditions, which nonetheless remains
a challenge [16, 12]. Among these, simulation tools have emerged
as important exploration means to facilitate the conduction and
management of thousands of experiments, freeing scientists and
developers from the complexity and variability of the underlying
infrastructure. Simulation tools not only allow easier prototyping
and testing of new methods, but also enable their thorough evalu-
ation in situations not easily encountered in real-world scenarios
through deterministic and reproducible experiments. Inline with
these considerations, we validated and compared MOHEFT with
the original HEFT algorithm and with SPEA2*, an extension of
the state-of-the-art multi-objective optimisation algorithm SPEA2
by simulating three types of synthetic workflows with different
parallelization and work balancing characteristics on Amazon EC2
resources. We showed that the visualisation of the Pareto front can
represent a powerful decision making tool for selecting the most
appropriate tradeoff solutions. For example, it revealed that certain
workflows can be executed twice as cheap by conceding a marginal
5% increase in makespan. In all experiments, MOHEFT computed
schedules with the same makespan as the HEFT but with better
economic cost, and outperformed SPEA2* in terms of hypervolume
used as an indicator of the quality of the set of tradeoff solutions. A
visual analysis of the tradeoff solutions revealed that SPEA2* com-
puted in many cases solutions with a higher economic for the same
makespan. Finally, our experiments revealed that MOHEFT was
able to meet the resource constraints imposed by current commercial
Clouds, while SPEA2* failed on this issue.

Our validation, however, is limited to simulation of synthetic
workflows and lacks a real-world validation. A reason for this is
a major drawback of the existing simulation tools is that they are
not properly tuned for production platforms. As argued in [7], most

of the existing works validate their research (including scheduling)
based on simulation without giving sufficient proofs that the sim-
ulator accurately reproduces the behaviour of a real infrastructure,
which makes the accuracy and relevance of the results doubtful.
Furthermore, most works do not validate the simulated results by
comparing them with real executions in a real infrastructure. A
reason that brought to this unfortunate situation is the lack of in-
tegrated tools that close the cycle between experimentation of new
basic research methods (such as investigation of new scheduling
optimisation algorithms), their extensive and accurate validation
through realistic infrastructure modelling and simulation tools, and
finally their integration and deployment on the real platform for
production runs delivering the expected improved performance.

Realistic 
simulation 

environment 
(CC-IN2P3)

Multi-objective 
scheduling 

research (UIBK)

Production 
execution and 

validation 
(CREATIS, UIBK)

Tracing and 
performance 

modelling 
(CREATIS)

Figure 4: Closing the modelling and
simulation – research – production
execution cycle.

We plan in the future
to validate our proposed
method for real-world sci-
entific workflows on pro-
duction Cloud infrastruc-
tures, which is a real chal-
lenge due to the lack of
appropriate validation tools.
Faced with this research
problem, University of Inns-
bruck together two INRIA
divisions (CREATIS – CNRS
and IN2P3 Computing Cen-
ter) aim to research a frame-
work enabling lightweight
exploration and evaluation
of new scheduling heuristic methods for scientific applications on
real Cloud infrastructures through extensive realistic simulations,
before deploying them for production runs as illustrated in Figure 4.
This work therefore aims to reduce the experimentation costs and
contribute to shortening the application lifecycle from its design
to production operation, maintenance and tuning. We intend to
research methods to build realistic simulations of real DCIs from ob-
servations and existing simulation toolboxes, with particular focus
on the EGI Cloud platform. We will specifically focus on the sim-
ulation of the Virtual Imaging Platform (VIP) [15], one of the most
used scientific computing platforms on the EGI that facilitates shar-
ing of medical image simulators and digital models of the human
body. We intend to extend our objective space with other metrics
of interest alongside makespan and economic cost, such as energy
consumption, reliability, utilisation, fairness, security, and any other
Quality of Service or functional application-specific parameter.
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Abstract

The notion of what exactly we mean by productivity is largely depending on the active paradigms of a particular field and, on a global level, on
the present prevailing social, cultural, scientific and spiritual paradigms and environment. It follows that in a long term any specific definition
of productivity will have to be changed. Unfortunately, due to the historical processes, present day human-computer communication is on an
extremely low level of language complexity. Consequently our present day productivity in using computers from the idea till the implementation is
very low. This is primarily due to the circulus vitiosus of interdependecy of (hardware) computer architectures and popular computer programming
languages based on the designs of the first Electronic Brains of the mid-last century. The natural, human Language is the prime Human tool
for building a common model of the Universe, a huge fractal dynamic system, i.e. machine, whose sub-machines are smaller fractal machines
consisting of a series which goes through dialects, sociolects down to idiolects. On the other hand, regarding strictly formal non-adaptable
"programming" languages we see that almost all our computer linguistic efforts are oriented towards fixed expressions which are simple enough to
be easily and efficiently translated into the scalar serial presently prevailing computer architecture(s). Therefore a new, fresh approach is proposed,
based on the idea that the lowest possible level of a computer system shall understand a natural-like communication language, which is contextful
and deals with Information, not with Data without Meta-Data. By significantly leveling up the human-computer interaction towards the ideals of
a semi-natural language completely new approaches for High Productivity Computing, both on Hardware and on Software level can be thought
out, and the NESUS WG1 Focus Group High Productivity Computing has been established, to historically, futuristically and realistically define
and, based on that, develop, through partner collaboration projects, such a (possible) High Productivity System based on specific hardware and
software.

Keywords High Productivity Computing, Computer History, Human Computers, Natural Language, Programming Languages, Productivity,
Data, Information, Data Processing, Information Processing, Focus Group High Productivity Computing, NESUS

I. What is Productivity?

The word productivity comes from the Latin words pro ("for") and
duco, 3. ("to lead"). In this sense pro-duco means to lead towards
some thing, and has generally the meaning of something which
was made by a process aimed towards that result. Productivity
is therefore actually lively occasioning of making something, and
encompasses, in its general sense, the whole path to be followed from
an idea to its realisation. Therefore we can speak of productivity in
sciences, arts, technologies, and even sports.

Naturally, through constant change in the Human society, and
the constant change of particular techniques being employed within
each, old or newly developed, field of human enterprise, particular
aspects of the term productivity are being differently emphasized.
The standpoint from which we regard what actually productivity is
as applied to a specific (sub-)field in a specific moment in time is
directly depending on the present and projected future needs inside
that particular field, as well as the present and projected needs of
the society in which this field is embedded.

Therefore it is obvious that the notion of what exactly we mean
by productivity is largely depending on the present state of affairs of
the field we are applying the notion to, and, on a more global level,
on the present prevailing social, cultural, scientific and spiritual
paradigm and environment. It follows that in a long term any
specific definition of productivity will have to be changed. However

the general definition, productivity being the lively flowing over a
process path from an idea to its realisation, holds in all cases. The
length of the process path, be it in time, material, effort..., is the
generic measure of productivity, a long path (highly time-consuming
realisation, enormous amount of effort...) shows low productivity, a
short path high productivity.

From this generic definition we can consequently easily adapt the
specific notions of productivity in specific fields of human endeav-
our, according to the mentioned field and civilisation paradigms,
standpoints and preferences. It is important to note that the notion
of productivity in all of its wide semantic field is directly connected
with the notion of technique. The use of a certain technique applied
to certain processes will consequently directly induce the produc-
tivity of that application. A technique is actually the way in which
a process (from inception to realisation of whatever is produced) is
performed. A good technique is the ’tool’ to achieve a short path, i.e.
high productivity. Technology is therefore a field aiming towards
high productivity by rationally organising applications of different
techniques to processes.

II. Productivity and Computers

Once upon a time we had simple calculators, abaci and similar, and
writing equipment (pen and paper, stylus and papirus, chisel and
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stone...). Therefore to make any more complicated calculations a
computer, a person who knows how to calculate and compute, was
needed. A Computator was known already in ancient Rome, and
the first mention of people being Computers in English dates back
to 1613. There were quite a lot of areas computers were employed
in - ranging from purely scientific applications through navigation,
commerce, balistics, finances, building, designing... to, and in the
previous, 20th century, even mostly, war efforts.

And, as sad as it is, exactly those war efforts of the last century
were necessitating the employment of a huge number of computers,
mostly women, to raise the productivity primarily of enemy code
breaking and balistic calculations. But we have already seen in the
history of technology that certain repetitive operations, exactly pro-
grammed, can be more productive when using mechanical means
(as for example the programmed looms) or very entertaining (as
e.g. the roll-piano). So, accumbent on the existing developments,
the programmed loom/roll-piano, the Hollerith sorting machines,
mechanical calculators, Babbage’s machine constructions, the work
of mrs. Ada Lovelace (and not to forget the Zuse mechanical comput-
ers), and naturally abaci, during the Second World War we started
developing electromechanical, electrical and electronic equipment
which could take over the most tedious parts of the jobs computers
had to do, and therefore significantly raise the overall productivity
of whatever they had to compute.

II.1 Initial Aim of Computers

It is hard exactly to know if the initial aim of non-human computers
(or, better to say, calculating and computing equipment) was primar-
ily to take off the burden of tedious repetitive operations in which
humans make a lot of errors, or to shorten the time individual calcu-
lations in a process of computing something take, or both of those
(which actually seems most probable). Anyway, the development
of those first non-human computers radically changed the world in
that instant (as strange as it sounds, but here we will not go into the
philosophycal justification of this statement).

Regarding the productivity, the "mechanical" calculating and com-
puting done by the electronic brains (!) of that time was much much
faster than ever humans could imagine. The "Giant Brain" (as the
press called it) ENIAC from 1946 could do unbelievable 35 divisions
or square roots per second, and unimaginable 357 multiplications
per second! This enormous speed of elementary, but for a human
quite time-consuming mathematical operations was the highest peek
of computing productivity anybody could conceive, as thousands
and thousands computers would have to be employed to do the
same amount of calculations in the same amount of time as the giant
electronic brain(s).

It could be noted that this thrilling speed of something humans
see as very complicated operations (multiplication, division, square
root) raised the eyes of everybody towards the unfathomable heights
of "intelligence" that were in front of us. Because, if that electronic
brain can do so complicated operations so extremely fast, he must be
able to be thought (instructed, programmed) to be highly intelligent!
We just need to find how to programme intelligence into the giant
brain... and soon: it will help us solve all of our problems / it will
take over the world (choose by preference).

Therefore it is quite logical that with such an enormous difference
of the calculation speed between the electronic computer and the

human computer the productivity was fully focused on the electronic
"brain". Any (well almost any) amount of human labour to prepare
the calculation sequence, the way the computer will perform the
process, the algorithm, and the data necessary - was a very small
general effort in comparison with the amount of human computer
effort saved by the use of the computing equipment.

However, it is interesting to note that the balance of productivity
is always important. In 1948. a small stored programme memory
was added to the ENIAC computer. This modification made the
computer to work much slower, and disabled the possibility of use of
parallelism in the processor. Although this modification reduced the
speed of the computer by a huge factor of six and in the same time
eliminated the ability of parallel computation, it did reduced the
reprogramming time from days to hours. The speed of the computer
was still high enough to be finally I/O bound, and the productivity
was enhanced: the change in speed of programming was considered
well worth the loss of performance in execution.

An important fact which has to be mentioned from the historical
perspective is that the memories of the early (electronic) computers
- both the data and the programme storages, independent of the
architecture - were quite small, and their size never surpassed any-
thing a human could not analyse on paper in a reasonable amount
of time. Therefore a convenient method of getting rid of algorithmic,
data or human errors in the calculations on a computer was the so
called "core dump", meaning a full listing of the data in all computer
memory locations. This would then be used very effectively by the
humans to understand what went wrong. And just to mention an
important historical fact: the first electronic computer programmers
were women - the human computers employed during the war.

II.2 The "Middle Ages" of Computers

Very soon it was realised that instructing the computers on the basic
level of wires, bits and switches is not the most productive way of
translating algorithms into actual computing processes. More free-
dom of expression was needed for the programmers, more autonomy
was needed from the computers.

The focus of productivity partly shifted from the previous era, as
more and more computers, larger and larger computer memories
and faster and faster processors began to be available. Now the
challenge started being how to organise all of our ideas (and we
just mentioned how high our hopes were flying) and somehow
transfer them into something the computer would understand, as
the performance of the computers was drastically raising even inside
the same decade. Suddenly the computers started being "hungry"
for programmes and new data, as most of the simple algorithms and
small data sets would be "devoured" by the computing speed.

So, to cope with this change of the focus of productivity, as
now the computers were already so stable (hardware-wise) and
so fast that we, humans, started lagging behind with our job of
programming, we had to invent a new way to organise our process
of instructing the computers. That led to the invention of autocoders,
assemblers and higher level programming languages.

However the way the computers worked, i.e. the way those
very basic operations are organised in streams of operators and
operands, was very influential on the development of the emerging
"programming languages". Actually, the computers themselves were
initially constructed to do sequential mathematical algorithms, the
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same way a human computer would do them. They were never in
construction then intended to process and render movable pictures,
to translate natural languages, or to drive a car. Although between
the first few computer programming languages ever invented we see
several major families of completely different approaches, as in the
families (in the broadest sense) started by Assemblers, Fortran, Lisp,
APL and Cobol, hardware was primarily (and still is, unfortunatelly)
developed based on the same philosophy which, out of necessity,
produced the first electronic computers.

So consequently, most of the programming languages were/are
based on the elementary serial calculating engine principles, as to be
effectively executed on hardware. This was a combined consequence
of the common computer architecture and the fact that vast majority
of programmers, being thought about such computer internal work-
ing and architecture, very easily accepted just those languages, and
not the other computer-linguistical streams like APL or Lisp.

II.3 Where Are We Now?

In the meantime our "necessities" have drastically changed. We do
not have any more relatively simple needs that could be explained
to the computer in several hundreds, thousands or even tens of
thousands of elementary steps. We now, more and more, want
computers to perform well in a very vast field of extremely diverse
data and information processing domains. Suddenly, historically
speaking, we have the wish, which we perceive as a need, to process
huge amounts of data, to process extremely complicated algorithms,
and we wish we would have computers which could process zillions
of over-simple operations, common to our present equipment as they
are inherited from the early history of computing equipment. Not
many different hardware approaches did we ever try, and most of
the alternatives we do not use. And, furthermore, the same type of
equipment we also wish to drive cars, move robots, keep our doctor
informed about our blood pressure, get the lights properly running
in the theatre, and allow us to chat through some book of faces.

And naturally, consequently our focus of the notion of produc-
tivity changes again. This time we have an enormous amount of
diverse computers, all based on processing very simple operations
on any kind of operands presented to them as data, and most of
them organised as scalar serial processors. And we have an extended
set of programming languages almost all of the same kind, the basic
historical computer-execution oriented kind. And even more, most
of us use just the linguistically worst languages, i.e. those at the
lowest machine level, as e.g. Fortran, C, C++, Java... etc. Though
some of us love some of them, others some others, still others keep
their faith in Lisp or APL families, we are all gravely and thoroughly
aware of the fact that programming anything for the present day data
communicating and processing environment is extremely tedious
and with results which can not be predicted to be as we wished,
wanted or needed.

The productivity is getting lower and lower. The path between
the idea and the final realisation, the final answers or possibility of
application of the computer is very very long. We cannot cope any
more with the complexity which emerged.

So the focus of productivity in present day and, as much as we may
predict the future, in the future shall be on the notion that computers,
as being more and more inseparable part of our whole society and
civilization, have to be user friendly to any educational level of

potential users. Therefore the notion of High Productivity in this
sense encompasses the productivity of any human necessitating help
from information processing and computing equipment, whatever
their needs be.

III. Humans and Computers

So we stand here, in front of unknown powers and possibilities, in
front of the Giant Brain encompassing presently billions of comput-
ers of all kinds, intertwined into a twisty turbulent network of slow,
medium, fast, very-fast, ultra-fast connections, and we would like to
actually use it. As a personal assistant, as a scientific collaborator, as
a companion in times of leisure, as a librarian and as a library, as
a preserver and a collector, as a future telling machine, as a trusty
banker and as an "intelligence enhancer". And not to forget, we
would like this Great Brain also to drive our cars, to play waiters in
bars and lounges, and restaurants, naturally, and also to produce
cars, to take care of our health, and, most importantly, to entertain
us.

There is a very interesting aspect of the interrelationship between
Humans and Computers. Though this is not the main thematic of
this article, it is a very important aspect of our present day overall
civilisation development:

Imagine in one moment a huge electromagnetic storm comes
onto our little planet Earth. And suddenly the internet is down.
Completely. Could we succeed to live as we knew just twenty
years ago? Could we survive with the non-connected computing
technology?

Imagine in one moment a huge electromagnetic storm comes onto
our little planet Earth. And suddenly no one computer works. All
the buzzing computing equipment is dead still. Could we succeed
to live as we knew just seventy years ago? There are still quite many
between us who lived already seventy years ago. Could our present
day civilisation survive the shock of being thrown back just half a
century? (We would still have the knowledge!)

Would that not be good stories for a science-fiction horror film?
Humans Without Computers!

Well, to continue now, do not worry and do not imagine that any
of the above storms happened. The major problem we, as Humans,
actually have with Computers from the very begin of their devel-
opment is that the communication possibilities between a human
with an idea and a computer into which it could be implement are
so primitive that not many of us either can grasp all the necessary
prerequisites, or have enough time to do it, or are interested at all
to tackle such a complex field of communication. Even if we have
strong intentions and enormous sitting stamina the job of explain-
ing any idea to modern day computers, specially if we need more
than one processor, or more than one computer, is a risky job, as a
lot of unpredictable problems related to any level of modern com-
puter realisation (hadware and appropriate accompanying software)
can suddenly emerge and throw us into a next frenzy, undefined
time frame of "development". Most of what we euphemistically
call development of an application (of ideas onto computers) is actu-
ally headbanging debugging and search for solutions of practical
implementation problems in a dimly lit space of extremely high
complexity, meandering through the vast and confusing ocean of
individual low level statements.
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III.1 Human Civilisation and the Language

The Language is the prime human tool for building a common
model of the Universe. Cybernetically speaking, the Language is a
huge fractal dynamic system, i.e. machine, whose sub-machines are
smaller fractal machines consisting of a series which goes through
dialects, sociolects down to idiolects. On each fractal level the lan-
guage is defining the model of the world, from the individual, with
his knowledges and prejudices, through a specific group, society,
field of interest, with its specific terms and phrases and implicities,
up to the national Language, with its approach towards life, its
epistemology, paradigms, hopes, fears and spirituality. Not forget-
ting the highest level of human common, some and all languages
encompassing, model of the environment in which each and every
Human Being lives, as for example the notions of birth and death,
the notions of Sun and Moon, leaves, trees, water and vapour, love,
heroism, serenity, knowledge etc. etc. From that level down the facet
machines, sub-languages which work inside a Language may, as
we get towards the individual, be getting more awkward, slangish,
highly distorted, very narow-minded, and logically must be entail-
ing smaller amount of active and passive elements. The "meaning"
of something is always seen and communicated through the infor-
mational structural position of notions transferred into speech by
organisation into words and phrases and enveloped by idiomatic
linguistical rules into a specific text, intended to have the possibility
to "rearrange" the informational structural position of notions in the
other person, group, society... One human knows something, many
humans know much, all humans know all (what the Human race as
a collective knows).

In other words, a natural Language is a very flexible web of
interrelations between notions up to the level of text expression.
That way it becomes a common model of all that a human and
his human civilisation perceives in the world around. Through
that it is obvious that all inter-human communication, to be able
to express any reference to things not here and now, i.e. to use the
frame of reference of a common model of the World and influence
the change of particular aspects of the model in communication
co-actors, has to be linguistically based. Even more, due to that
baseness of Language in our perception of the environment, most
of our internal thoughts are very often in the form of words and
sentences of a Language which is internal enough for us (mother
tongue or tongues or well known, interiorised, other languages).
The Language, constantly changing and adapting itself, as a whole
defines this active frame of reference through which we inspect our
environment and communicate about it.

Are you gay? In a melancholic way? I hope you are not just sad!
You know, presently most computers are women!

These few sentences probably exemplify the above text quite well.
They seem strange in present day English, and they, to be properly
understood (as they were intended to be by the speaker/writer)
have to be read/heard within an appropriate context. How much
information did you get by reading those sentences literaly? For
this example the understood meaning during the Second World
War America would be quite cheering up for a mathematically
versed unemployed woman, staring through a window in a gay, but
melancholic way.

III.2 Programming Languages
As already mentioned, the development of programming languages
was a natural extension of what the computers could execute to-
wards the perceived needs of what we would like to "compute". It
was a huge step forward in the sense of productivity as opposed
to the defining and rewiring of specific wires connecting computer
subunits, or entering individual bits of instructions into the machine.
The higher level syntax, rigid and formal, as to be able to be easily
and unambiguously translated into elementary machine instructions,
and the use of words similar to some words of natural languages
(but absolutely strictly unambiguously defined) made instructing
electronic computers, programming them to do something according
to some explicitly in the programming language described algorithm,
much easier and more convenient. However, the main benefit of us-
ing programming languages with a reasonable syntactic and sematic
expressibility was (and is), naturally, the possibility to use a higher
level of abstraction, and therefore to think easier and more about the
algorithmic translation of ideas then the actual low level hardware
execution prerequisites.

Therefore the introduction of formal computer programming lan-
guages meant a higher level of abstraction, enabled portability and
generic algorithmic formalisation, and all that with much less steep
learning curves.

III.3 Which Programming Language?
"When tackling a complex new problem first develop a formal lan-
guage specifically oriented towards that problem, the problem is
then much easier to solve" (paraphrasing William M. Waite), or use
an existing formal language which is already developed for the
necessary type of processing.

Quite interestingly, although it is quite simple to develop and im-
plement a specific field attuned formal language, using standardised
tools, and although the productivity of writing in such a specialised
language is much higher than in generic formal languages, this very
valuable approach seems to be all but forgotten. Even the usage
of different already developed and implemented formal languages
which are specifically adapted for certain areas of problems, and
can yield really much in productivity inside their specialisation, is
presently not common. It seems that everybody wants to do every-
thing in just the one (or very few) formal language(s) well known
(and actually the popularity of those most popular - C and its fam-
ily - is a consequence of the C compiler being part of all standard
UNIX distributions up until recently, and not a merit per sui generi).
Does it matter at all how hard certain things are to program, or
how complex certain algorithms come out in those over-popular
languages?

Actually almost all our computer linguistic efforts are generally
oriented towards making a formal language which could be easy
enough for a human to understand and learn, and still simple
enough to be easily and efficiently translated into the scalar serial
frame of mind of the prevailing computer architecture. They all
somehow tend towards the ideal of mathematical notation, algo-
rithmic notation, but also towards the ideal of a natural way of
expressing. However, the mathematical and algorithmic notation
used in inter-human communication is still too much away towards
the natural languages to be realistically regarded as a formal lan-
guage. These systems of notation, developed ages ago and constantly
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enhanced, were never meant to be self-standing in communication,
but were and are an "enhancement", a linguistic field-specific addi-
tion to the natural language, primarily in the area of the appropriate
sociolects. Many other such notations as the mathematical do exist,
in a wide variety of domains, with more or less internal formal-
ity, consistency and information content inter-fixation - which is
the highest in mathematics. All of them are used in inter-human
communication only inside natural language texts!

IV. Still Computers? Actually No... Ordinators!

We have seen that the major focus of our use of electronic computing
machines has fully changed, from the time of being equipment to
compute numerical results of mathematical algorithms to the present
time of being equipment to process complex information structures
and flows based on algorithms from diverse fields of sciences, arts
and communications.

Though we still call our machines computers, actually they are
much better described by the French word "ordinateur" (equally in
e.g. Spanish, Italian...).

Or perhaps we shall keep this name, the Ordinator, for the next gen-
eration of machines which will actually process information and not
data, and which will be completely different in their architectures,
as to allow productive processing based on natural-like languages,
where many algorithms will be automatically chosen and optimised
based on the knowledge of the context on the lowest levels of hard-
ware and software. And with which humans will communicate in a
consistent and understandable way.

IV.1 The Hardware/Programming Languages Bot-
tleneck

Once upon a time we had Simple (as in "then constructable") Hard-
ware architecturally serial scalar and for that kind of hardware we
developed Simple formal Languages, expanding them as necessary
to cope with as much low level programming as possible in a rea-
sonably "high" formal language environment.

70 years later we extensively use Simple formal Languages - whose
development started once upon a time conceptually for serial scalar
hardware architectures - to make programmes to be executed on Very
complicated Simple Hardware, the direct descendants of hardware
constructed once upon a time.

It seems that we got stuck in a vicious circle: The development of
new hardware approaches, which would be radically different form
present day architectures is not regarded as viable, as there is a lot of
"software" which shall be directly compilable/executable on any new
or old computer system. Therefore the programming languages keep
the possible further hardware and computer architectures develop-
ment in check. The development of new linguistical approaches,
which would be radically different in the sense of much higher,
towards the human oriented, expression power, is hampered by the
necessity to be implemented using existing programming languages
and programming paradigms and for them appropriate hardware.
Therefore the hardware keeps possible the development of future
alternate and novel human-computer communication languages in
check by being very to extremely unfit for effective execution of such
communication/programming paradigms.

IV.2 Drinking Water From a Glass

Let us, for a moment, pretend to be very obedient, and execute the
following instructions: There is a glass of water on the table. If there
is water in the glass do the following. Take a toothpick. With the
toothpick acquire a drop of water from the glass. Put the toothpick
between your lips. Swallow the drop of water. Return the toothpick.
Execute again from the second instruction sentence.

Well, now do it 2 billion times a second, instruction by instruction,
drop by drop. What a slow and tedious way to drink a glass of water!
So what shall I do? Use a fork! So I will process four drops at once! -
Still very slow. So let us try to use for example a hundred thousand
toothpicks, or even forks! That shall do the trick! Well, it would...
if the glass would not have been to small for so many forks, and if
somehow we could solve that terrible problem of COORDINATION
of 100.000 hands, some left, some right! And even with the two
of them often the one does not know what the other does. (Well,
the whole exercise with 100.000 forks picking up the drops 2 billion
times per second has actually no sense, as the amount of water drops
in a glass of water is only around 5000. So we did a monumentous
overkill!)

But it would have been fair (and much much more productive)
that somebody have said to you, instead of giving you this silly
instructions text, to drink the water from the glass on the table. It
would have been much easier for both of you. He could have said
it in a simple and to him also easy understandable way, and you
could have ignored the toothpick and the fork and used your hand
to pick the glass and drink the water from it. This is the difference
in productivity based on just the use of proper high level contextfull
language (context here, inter alias, being the knowledge of the
notions table, glass and drink on both sides of the communication
channel).

(Any similarity to present day usage and construction of comput-
ers is purely coincident.)

V. Natural vs. Formal Languages

Every Language is in its basis Formal (otherwise we could not
understand each other). However this formalness of the natural
languages is not specified outside itself, as with strictly formal
languages, but is inbuilt in the very essence of the language and
the corresponding model of the World. Therefore it is flexible, and
the tensions of these flexibilities spread over the society using the
language pull certain notions, grammatical rules, phrases, words
and pronounciations to new positions in the interrelations network,
giving them new meanings or new expression forms.

However all this is possible because natural languages have Con-
text which is mostly implicit in the use of words and their sequences,
i.e. phrases, sentences, texts... Therefore it is completely appropriate
to use the same lexical word in conveying different meanings, the
so called homonyms, as the context allows (if there is enough of it)
proper "decoding" of the meaning. Homonyms are two different
words with different meanings but which look and sound the same.
Something like cool in "This jacket is really cool" - i.e. ’Wow’; and
"This water is really cool", i.e. ’Brrrr’. Programming languages do
not have implicit knowledge of the context and therefore no possibil-
ity for usage of homonyms. Contrary, if using information context
of what the objects (data) of a specific verb are, what they represent
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- that is directly usable to properly define the necessary algorithms
to process the data according to the appropriate homonym.

Another important element of all natural languages are synonyms
(although theoretically there is always the language efficiency princi-
ple acting, which on a longer run disallows complete, full synonyms
- no two natural language words have exactly the same meaning).

Formal languages can not describe novel grammatical and se-
mantic rules of themselves. They are never self-referential. Natural
languages are a-priory self-referential, as the only possible defini-
tion of the language is inherently inside itself, i.e. inside the fractal
knowledge of all speakers of that language.

There is also a third kind of languages, in between the formality
and rigidity of formal languages, and the naturality and flexibility
of natural languages, let’s call this language family Natural-Like
Languages. These languages, though formally defined in their
basis, enable the expansion of their own linguistical rules, of the
grammar, of the lexic and of the semantics and context-environment
handling. The axiomatic language of mathematics is such a system,
which can be expanded and contracted in grammar, in lexic and in
semantics, by the proper use of already defined phrases (constructs).
Unfortunately the consistent possibility to enhance and change the
grammatical rules of itself is not existing in strict formal languages,
as are our programming languages. This consequently also leads to
the impossibility of algorithms written in "programming" languages
to be meaningfully linguistically combined.

VI. An Approach Towards High Productivity
Computing

It is obvious that presently we have a huge heap of more and more
complex problems to solve if we want to continue our expansion-
ist usage of data processing and communication equipment. It is
also obvious that we actually need information processing and com-
munication equipment, with a much higher productivity of the
human-ordinator coordination.

VI.1 Present State of Affairs
When "programming" computers we talk really a lot in a language
which can express very little with its grammar and lexis, so we
have to talk so much to be able to define at all any even slightly
complicated processes and define them well. In other words, we use
languages which say very little with a lot of words. Using a language
which says a lot with a few words it is possible to understandably
express something not trivial in a very short text. Only than are we
able to use a lot of words to say really much.

Yet we succeeded to develop enormous amounts of algorithms
and by that gained huge quantities (and qualities) of knowledge how
to implement our wishes in a formal way. This knowledge, gained in
a very hard way, by programming those computing engines which
know how to execute only a very few very elemental mathematical,
logical and organisational operations, is extremely worthy. But we
have to regard it as knowledge and experience, and we shall be very
careful by taking those algorithms, those programmes, those appli-
cations literaly, as they are now, into the future. By regarding these
historical developments in computer science primarily as knowledge
founded on experience we are freed to use the same ideas we used
to implement on classical computers in the future on completely

novel ordinator architectures, expressing them in completely novel
natural-like, human language similar language(s).

Much can be said about the rationale of the above-said. We
presently use layer upon layer upon layer of extremely complex
sequences of extremely simple "instructions" in those "modern"
programming languages we use. This results in high levels of un-
necessary processing, from the level of the operating system, to
the level of the highest layers of user-land. We have scalar serial
processors and try to connect them in clusters, grids and clouds,
without a general linguistic notion of how to program uniformly
those (heterogenous) processing elements. Some of our algorithms
may work properly with 32 processing cores, but do not gain any-
thing, or even lose, if we use 64 processors. How do we expand
such algorithms to work on thousands of processors? We talk a lot
about information processing (even the whole area of human effort
is called Information and Communication Technologies), but most
of the numbers (specifically on the processing level) we process are
pure non-tagged data. Enormous amounts of bits in bytes repre-
senting something which could be either enormously overgrown so
called Applications, or it could be pictures, films, cardiograms, parts
of a Beethoven symphony, in miriads of formats, or anything else, as
a matter of fact. The processing unit has absolutely no idea what the
data processed represents. The storage unit neither. Nor do we, if
we lose the "directory list". We almost know how to program single
scalar serial processors, how do we do it when we want to program
and coordinate hundreds, thousands, millions? ...and even more, we
shall be productive when doing it.

Unfortunately the above short list of just some problems to be
solved is far from being exhaustive, as we approach the era of peta-,
exa-, zetta-, yotta-. (Yotta is the approximate estimated amount of
stars in the presently Observable Universe - that is all stars in all
galaxies we could observe by the most modern methods of obser-
vation. Our own galaxy, the Milky Way, consists of less than half a
Tera of stars.)

VI.2 Data vs. Information

"10.77032961 10.44030651 10.19803903 10.04987562 10.04987562 10.1803903 10.44030651 10.77032961

10.81665383 10.29563014 10.29563014 10.81665383 10.63014581 10.63014581 10.63014581 10.63014581

10.81665383 10.81665383 10.29563014 10.29563014 10.77032961 10.77032961 10.44030651 10.44030651

10.19803903 10.19803903 10.04987562 10.04987562 10.04987562 10.04987562 10.19803903 10.19803903

10.44030651 10.44030651 10.77032961 10.77032961 10.29563014 10.29563014 10.81665383 10.81665383

10.63014581 10.63014581 10.63014581 10.63014581 10.81665383 10.29563014 10.29563014 10.81665383

10.77032961 10.44030651 10.19803903 10.04987562 10.04987562 10.1803903 10.44030651 10.77032961"
Cited here is some data. Obviously a list of numbers, all in an

open interval between 10 and 11. This is quite apparent.
However, not much can be done with the above list of data. It

is actually meaningless as such. It just happens that I personally
know what those numbers represent, as I did generate them, but
then, on the other hand, as I did not write any explanation, this
list of numbers actually can have any "meaning" anybody gives it,
as long as that "meaning" preserves the consistency of the internal
data relationships. Or not... Perhaps it is just individual numbers
which have no internal relationship at all inside the list? Or should
it perhaps be a table, and not a list?

This example shows quite obviously that Information is not Data
only. That no meaningful information can be extracted from the
presented list without deep investigation, if even then. If we would
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use these data as information(s) we have to have a context in which
the data has some meaning, some sense. Therefore to talk about
information it is necessary to have a context. For the area of
data/information processing we could define the notion of infor-
mation as being a combination of data and metadata - the value
and the context, or, in the parlance of linguistics, the significator
and the significant, the expression and the content. Though it may
seem confusing, we can take as a premise that, for our purposes, the
data is actually the expression and the metadata the content, as the
data actually expresses a specific value of the same type of content.
Therefore we could write Information: Data + Metadata.

It could be suspected, by not knowing the whole truth, that math-
ematical notation does not involve context. Actually it always does,
in a crude way similar (but on a much higher model level) to the (for-
mal) use of I-, J- and K- names in Fortran, which on the level of the
(unspoken) language inherent model have a presuposed "context" of
being integers, if not explicitly defined as something else by some
sentence of the programme. The meanings of mathematical notation
(the same as any other, e.g. musical notes) are deeply rooted in the
human language and the model of the World, and directly contextu-
ally connected with the enveloping linguistic expressions. Humans
never process data - only information. The context of this informa-
tion is always deeply rooted in the perception of the environment,
independent of the level of "education" or "knowledge" or "intelli-
gence". And natural languages, consequently (and presequently)
handle only Information - even the bees when communicating the
location of usable flowers!

VI.3 An Approach Towards High Productivity
Computing

Finally, given here are some indications of paths which shall be
taken, or at least explored, and which can lead us towards a much
higher level of productivity in our cooperation with Computers (or
Ordinators of the future).

Firstly we shall use Information, being here defined as context-
aware Data and Meta-Data, and not use Data alone. This is the
prerequisite change on the paradigmatic level which enables the
development of natural-like languages. Further highly important
features of natural languages are that they are "eclectic", meaning
that different styles, different synonyms and even different grammat-
ical rules on different semantical fields can be seamlessly integrated
into the Language. Well, otherwise we could not communicate in
the society at all! The use of a contextful language, dependent on
information and not data alone, enables the very important and
productive usage of homonyms (a simple example would be the
usage of a multiplication operator on two complex numbers, where
the type of the numerical content - polar, cartesian or dimension-
less - is known to the processor, so that actually we have the same
word doing mathematically quite different operations, where the
results may, as in this case, or may not be inter-compatible, as when
multiplying a character by 0 or 1, taking it none times or one time).
And, very importantly (and extremely easily implementable) - for
the benefit of Humans the language has to have synonyms.

To raise the level of productivity of the human-computer coopera-
tion, it is essential to try to level up the basic Ordinator (Computer)
language understanding towards the level of Humans (and not vice
versa!). This will enable to significantly widen the approach to-

wards construction of basic hardware processing units and their
architectures. As already stated, the present formal languages inter-
locked with present hardware architectures do not enable efficient
implementations of natural-like languages. Naturally, as they are
Turing-complete, it is conceivable and attainable to implement this
kind of language understanding using present day languages and
methods. This is very relevant for the interoperability of approaches
towards High Productivity Computing, as the same linguistic system
can be implemented in software, as a Virtual Executor, on any con-
venient spread of present day computing architectures, as well as on
specially developed hardware and computer architectures. Naturally,
as already explained, the software implementation is sub-optimal
per se, and only full development of natural-like human-computer
communication and interaction languages implemented in the low-
est levels of hardware, microware and firmware will enable a full
growth towards the aim of keeping the productivity of information
processing and computing as high and as balanced as possible be-
tween the two actors in the process - the Human and the Ordinator
(computer).

VI.4 An Experiment in High Productivity Comput-
ing - Virtue

At the Rudjer Boshkovich Institute in Zagreb we started tackling
these problems systematically several years ago, and an investiga-
tion into basic principles of computer programming, as well as the
principles by which we serialize the inherently extremely massively
parallel universe around us into serial algorithms was performed -
and a new approach taken.

The result of this approach is Virtue - the Virtual Interactive
Resource-Tasking Universal Environment, an experimental imple-
mentation of an approach towards High Productivity Computing.

Imagine a mathematically simple and effective visualisation - a
four-dimensional hypersphere to be rendered as simple asterisks
showing all the dots inside the sphere’s radius, and spaces out-
side, the third and fourth dimension to be shown as a sequence of
two-dimensional slices. By just looking at such a very elementary
visualisation the basic structure of the hypersphere can easily be
deduced. Now find a C, C++ or Java programmer and ask him to
make a short programme to show such a sphere to you... And now,
after they have shown you this four-dimensional sphere, ask them to
show to you how it would look like in 5 or 6 dimensions... Or, better,
do not ask them to do any of that for you in such a language, as it
would take quite a lengthy time even for the best. (A non-optimised
solution which we prototyped in C for 4 dimensions has more then
130 lines of source code - non-paralelised! An optimized or paral-
lelised version would take much longer to develop.) And it is a kind
of "one-execution is enough" request and programme.

The definition of a new Virtue verb "sphere" which solves the
above problem for any number of dimensions up to 8 [taking three
scalar numerical objects, expressed as a real number for the radius,
and two n-dimensional numbers (real - 1d, complex - 2d, quaternion
- 3d or 4d, or octonion - 5d, 6d, 7d or 8d) for the centre and the space-
size] is this sentence: TRIADIC SPACE CENTRE MAGNITUDE
GREATER ’*’ MULTIPLY; OPERATOR @sphere SET. For example:
15 15i15j15k15 31i31j31k31 sphere.

What it says is that you want to have an asterisks wherever the
radius is greater than the magnitude of the centered space elements;
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and otherwise a blank. The verb SPACE (synonymous to INTERVAL)
with a scalar numerical object makes a space of indices from 1 ( or
1i1, 1i1j1, 1i1j1k1, ...) up to the specified last indices, i.e. the indicated
size of each dimension. The word CENTRE is a simple synonym
for the verb SUBTRACT (scalar subtract of n from an index array
actually centres it around that n).

Being based on such principles, Virtue is a language which pro-
poses a different approach, by keeping the inherent parallel structure
of natural algorithms, and doing the parallel processing by itself, if it
is algorithmically possible and feasible. Virtue is a syntactically very
simple, yet semantically extremely complex language, offering, inter
alias: consistent application of any operation on any logically usable
combination of data-types, no "reserved words" and almost no "re-
served interpunctions", synonyms, automation of memoisation, mul-
tiple word contexts (and therefore homonyms), combined data types
of anything Virtue supports (e.g. functions, symbol names, scalars,
multidimensional sub-structured spaces etc.), stochastic processing,
multivalued and multidimensional logic operations, multidimen-
sional sub-structured file access structures, continuations etc., SIMD,
MIMD, SISD and MISD programming models and furthermore also
allows for the changes of its own grammar.

Hierarchically, by defining complex meanings for Virtue words
(or, differently said, named functions defined as operators), as e.g.,
building on the previous example, by defining the "meanings" of
’small’ ’big’ and ’please’ thus: NILADIC 5 5i5 11i11; OPERATOR
@small SET. NILADIC 30 30i30j30k30 61i61j61k61; OPERATOR @big
SET. NILADIC; OPERATOR @please SET., high level simple natural-
language like expressions can be used: "small sphere please." or
"please big sphere.". Being interactive the Virtue Environment en-
ables easy and understandable development and debugging (includ-
ing tracing, stepping, intervention, editing...). Used in batch mode,
a programme written in Virtue may be used for computing input
to other programmes, as for example PowRay for visualisations, or
the Virtue environment may be used as a pipe-through between any
existing programmes/applications.

Therefore, due to this semantic richness and grammatical simple-
ness, in Virtue, for example, the text of the algorithm for Conway’s
"Game of Life" necessitates only 12 language tokens (7 words, 14
numbers in 3 vectors and 2 delimiters) in one sentence: MONADIC
(1 1 1 1 0.5 1 1 1 1) [3 3] MONADIC RAVEL SUM (2.5 3 3.5) IDEN-
TICAL ANY; STENCIL;. (The STENCIL is a stenciling operator,
synonymous to MASK. The array edge behaviour can easily be
modified by optional modifier words REFLECT or WRAP. These
operators will work on any-dimensional spaces.) This sentence (al-
gorithm/programme) will work for any size of a "Game of Life"
board, up to the size of the underlying hardware memory, and au-
tomatically using, if feasible, parallel processing (actually a higher
level form of SIMD in this case).

The computer implementation of Virtue is presently in Alpha 0.7
state, and parallelisation is implemented on single-image systems.
The experimental implementation is constantly parallely developed
and tested on a very wide range of different computers, ranging
from the mid-1980-ies Sun3 (16MHz/16MiB and 20MHz/24MiB)
workstations up to modern day blades, with various operating sys-
tems and their generations (SunOS, Solaris, NetBSD, FreeBSD, Linux,
MacOS/X, UWIN, Cygwin...), different compilers and compiler gen-
erations, various processors (M68k, MIPS, SPARC, PowerPC, AMD,
Intel), on 32 and 64 bit architectures, 32 and 64 bit floating-point, in

single-processor and SMD/NUMA multi-processor, multi-threading
and multi-core computers. Such a wide range of computers, both
historically and speed-wise, for the experimental Virtue implementa-
tions allows for development of a very easily adaptable system, and
the behaviour of the old Sun3 systems shows that even on them the
execution is fast for the amount of data which can be represented
in the memory of those computers (as an example, executing the
classical double-recursive fibonacci algorithm, a full list of all the first
1500 Fibonacci series numbers will be produced on a 1986 20MHz
Sun3, using the inbuilt Virtue memoisation word RESULT, in only
27.827s, whereas the next time the same request is entered the results
will come in just 4.461s - using the same basic algorithm in Virtue,
a non-memoised recursive calculation of the (just) 32nd Fibonacci
series number on a modern day SunFire X4240 takes full 26.012s!).

The internal speed measurements which the Virtue Executor has
have provided us with quite a lot of important data on the behaviour
of different computer systems and different processors, so an inves-
tigation into the "speed of a computer" is presently being performed,
with some results to be presented soon.

Shortly presented in this subsection is an experiment in com-
puter implementation of the necessities and possibilities of High
Productivity Computing. Further development of this idea allows
for definition of a more syntactically rich very high level human
oriented machine interaction language, which, combined with ad-
ditional artificial intelligence components, appropriate ergonomic
human presentation/sensory interfaces and with the integration of
user style association memory, we sincerely hope can help the future
development of Computer Science and Usage Practice.

VII. Focus Group High Productivity Computing

Under the umbrella of Working Group 1 ("State of the art and
continuous learning in Ultra Scale Computing Systems") of the
NESUS Action (COST IC1305 - "Network for Sustainable Ultrascale
Computing") the "Focus Group High Productivity Computing" (FG
HProC) was established. The main aim of this Focus Group is to
explore the possibilities of an integrative approach which would
allow a significant shortening of the time lapse between the human
ideas or needs and computer implementation solutions. As already
quite thoroughly explained in this article, the major idea driving this
Focus Group and its (present and future) work is that computers,
as being more and more inseparable part of our whole society and
civilization, have to be user friendly to any educational level of
potential users, and the notion of High Productivity in this sense
encompasses the productivity of any human necessitating help from
information processing and computing equipment, whatever their
needs be. This is the idealistic aim towards which this Focus Group
will try to steer itself.

To achieve this global aiming, the Focus Group will focus on
two major aspects of computer science: the past (and present) and
the future. To learn from history: a comparative exploration of
computer history and present day tools, methodologies, languages,
algorithms and hardware in view of the information processing
and computing needs and necessities perceived now and, as much
as possible, projected into the future. Some of the preliminary
investigation results are given in this article. An extremely important
aspect of this is historical research into avenues of computer science
taken, but not pursued. A huge amount of great ideas is actually
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almost forgotten, ideas that can be very useful today, and for which
in the time they were invented and thought out there was not a
feasible possibility to actually be realized in their full potential. This
exploration will be a very valuable addition to the NESUS WG1,
regarding the State of the Art, as well as to the general computer
history, as observed from the technical and technological side.

To be able to define the necessities of high productivity in the
sense of the aim of this Focus Group, another objective is important,
the exploration of the concept of High Productivity Computing,
or, maybe better to say, High Productivity Information Processing
and Computing. The objective of this Focus Group is to explore
the development of necessities in the area of high productivity
through the history of computer science to present day, and produce
knowledgeable reports on possible future shifts of the productivity
focus. Prime goals are the envisioned resulting knowledge gained
from extended study, and a strict definition of the concept of High
Productivity in Information and Computing Sciences.

The central objective of the Focus Group High Productivity Com-
puting is the development, definition and standardization of a uni-
versal (linguistic) environment from the level of (new) hardware
up to the level of algorithmic expression of complex algorithms
involving a wide spectrum of available information processing and
computing equipment, and based on the algorithmic and linguistic
knowledge gained so far by our civilisation. Based on these the goal
is to actually be able to realise a prototype of a High Productivity
Information Processing and Computing Infrastructure by facilitating
cooperation of different interested partners through the FET and
other H2020 European Union science founding calls.

VIII. The End:

– Use courage to "Boldly go where no other computer scientist has
gone before"! –
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Abstract

In this study we propose an efficient method for collaborative H.264/AVC inter-loop encoding in heterogeneous CPU+GPU systems. This method
relies on specifically developed extensive library of highly optimized parallel algorithms for both CPU and GPU architectures, and all inter-loop
modules. In order to minimize the overall encoding time, this method integrates adaptive load balancing for the most computationally intensive,
inter-prediction modules, which is based on dynamically built functional performance models of heterogenous devices and inter-loop modules. The
proposed method also introduces efficient communication-aware techniques, which maximize data reusing, and decrease the overhead of expensive
data transfers in collaborative video encoding. The experimental results show that the proposed method is able of achieving real-time video
encoding for very demanding video coding parameters, i.e., full HD video format, 64×64 pixels search area and the exhaustive motion estimation.

Keywords video coding, divisible load theory, load-balancing, CPU+GPU computing

I. Introduction

The newest video coding standards, such as H.264/AVC [17] and
HEVC/H.265 [16], achieve high compression efficiencies, by rely-
ing on advanced encoding techniques (e.g. multiple partitioning
modes, large search ranges, quarter-pixel precision). On the other
hand, all these techniques dramatically increase the computational
requirements, and make real-time encoding of High Definition (HD)
video sequences hard to be achieved on any individual device avail-
able on modern desktops, such as multi-core Central Processing
Units (CPUs) and Graphics Processing Units (GPUs).

To simultaneously employ several heterogeneous devices avail-
able on modern desktops for real-time video encoding, an efficient
method for collaborative H.264/AVC inter loop on CPU+GPU sys-
tems is proposed herein. A unified execution environment was
designed to ensure efficient cross-device execution and to guarantee
the correctness of the video encoding process. It includes an exten-
sive library of highly optimized parallel algorithms for all inter-loop
video encoding modules, which are developed using the device-
specific programming models and tools (e.g. CUDA, OpenMP, etc.).
In order to minimize the over inter-loop encoding time, the proposed
collaborative environment also integrates different scheduling, load
balancing and data access management routines.

Highly efficient parallel algorithms are developed for both CPUs
and GPUs and for all inter-loop modules, namely Motion Estimation
(ME), Sub-Pixel ME (SME), Interpolation (INT), Motion Compensa-
tion (MC), Transform and Quantization (TQ), Inverse TQ (TQ−1) and
Deblocking Filtering (DBL). The integrated scheduling and load bal-
ancing routines allow efficient distribution of the workloads for these
modules over all processing devices. For the most computationally
intensive modules (i.e., ME, SME and INT), the proposed load bal-
ancing, based on Divisible Load Theory (DLT) [20], relies on realistic
and dynamically built Functional Performance Models (FPMs) [7,10]
of both communication and computation system resources. The
workloads of the remaining modules are distributed at the module

level by applying the optimal Dijkstra algorithm [4]. Furthermore,
the proposed method also includes specific, communication-aware
techniques to maximize data reuse, and to decrease the data trans-
fers overhead. Because of a similar algorithmic structure of the video
encoding inter-loop, many solutions provided herein can also be
applied to HEVC/H.265 encoders.

The obtained experimental results show that the proposed method
achieves a real-time inter-loop video encoding for full-HD (1080p)
video sequences, when applying exhaustive ME and 64×64 pixels
search area (SA) on a commodity desktop platform equipped with a
multi-core CPU and two GPUs. To the best of the authors’ knowl-
edge, this is one of the first approaches that applies adaptive load
balancing with dynamically built partial estimations of the FPMs
to tackle efficient collaborative execution of complex multi-module
problems, such as video encoding, in heterogenous environments.

II. Related Work

There are only few state-of-the-art approaches that deal with the
efficient parallel implementation of the entire video encoder (or its
main functional parts), namely, for multi-core CPU [21], GPU [22],
or CPU+GPU [14, 15] environments. In CPU+GPU systems, these
approaches either i) simply offload a single inter-loop module in its
entirety (mainly the ME) to the GPU, while performing the rest of
the encoder on the CPU [9,19], or ii) exploit simultaneous CPU+GPU
processing at the level of a single inter-loop module [15, 23].

These approaches have a limited scalability (only one GPU can
be employed) and cannot fully exploit the capabilities of CPU+GPU
systems (since the CPU is idle, while the GPU processes the entire
offloaded module) [19]. In [9] the pipelining granularity is decided
through a large set of experiments, while in [23] the cross-device load
distribution is found by intersecting the experimentally obtained
fitted full performance curves. However, both approaches impose
limited scalability over the number of processing devices and coding
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Figure 1: H.264/AVC encoder.

parameters, and, also, introduce huge preprocessing scheduling
overheads. The method proposed in [15] use a single GPU and
constant compute-only performance parametrization, while in [18] a
simple equidistant data partitioning is applied for video encoding
in multi-GPU systems, since the CPU is only used to orchestrate the
execution across a homogenous set of GPUs.

The methods proposed herein span over three load balanc-
ing/scheduling classes for heterogenous environments, namely: si-
multaneous multi-module load balancing, static DAG-based schedul-
ing and dynamic iterative load balancing. The proposed load bal-
ancing method relies on DLT [20] and there are only a few studies
targeting the DLT scheduling in CPU+GPU systems either for gen-
eral [7] or application-specific [1] problems. In [11], the authors
apply DLT scheduling for a single-module load distribution in CPU-
only cluster environments for a custom video encoder. In [5, 13], we
proposed load balancing methods that rely on constant performance
models and linear programming for determining the cross-device
load distributions, while in [12], only the inter-prediction modules
were considered.

In this work, for the first time, the real-time video encoding on
commodity CPU+GPU platforms is investigated for a complete
H.264/AVC inter-loop, where the adaptive iterative load balancing
with on-the-fly update of partial FPMs [6,7] is applied at the level of
inter-prediction modules. The dynamically built partial estimations
of the full FPMs allow realistic and simultaneous modeling of capa-
bilities for communication links and heterogeneous devices during
the execution of several inter-loop modules. Moreover, the proposed
approach also considers the replication of certain computationally
inexpensive encoding modules (i.e., INT) over several processing
devices in order to reduce the communication overheads and achieve
significant performance gains.

III. Parallel Inter-loop video encoding on CPU
and GPU devices

In order to allow an efficient parallelization and collaborative
CPU+GPU execution, the inherent data dependences of H.264/AVC
inter-loop encoder and the computational requirements of differ-
ent encoding modules, must be considered. According to the
H.264/AVC standard [17], current frame (CF) is divided in multiple
square-shaped Macroblock (MB), which are encoded using either an
intra- or an inter-prediction mode (see Fig. 1). This standard allows
a further subdivision of the MB by considering 7 different partition-
ing modes, namely 16×16, 16×8, 8×16, 8×8, 8×4, 4×8 and 4×4

pixels. In the most computationally demanding and most frequently
applied inter-prediction mode, the prediction of each MB is obtained
by searching within already encoded Reference Frames (RFs). This
procedure, denoted as ME, is then further refined with previously in-
terpolated Sub-pixel Frames (SFs) from INT module by applying the
SME procedure. In the MC module, the residual signal is computed
according to the selected MB subdivision mode, which is found as
the best trade-off between the size of data required to encode the
residual signal and the motion vectors (MVs). The residual is sub-
sequently transformed and quantized in TQ modules, and entropy
coded (alongside with the MVs and the mode decision data), before
it is sent to the decoder. The decoding process, composed of the
TQ−1 and DBL, is also implemented in the feedback loop of the
encoder, in order to locally reconstruct the RFs.

Parallelization at the level of entire inter-loop imposes several
hard-to-solve challenges, which must be explicitly taken into account
to ensure the correctness of the overall video encoding procedure.
In detail, an efficient parallelization requires the observance of data
dependencies at several levels: i) between consecutive frames, ii)
within a single video frame, and iii) between the inter-loop modules.

In the H.264/AVC inter-loop, the encoding of the CF can not start
before the previous frames are encoded and the required RFs are
reconstructed. Such a dependency prevents the encoding of several
frames in parallel. Moreover, the inherent data dependencies be-
tween the neighboring MBs in certain inter-loop modules (such as
DBL) also limit the possibility to concurrently perform the entire
encoding procedure on different parts of a frame. Hence, efficient
module-level pipelined schemes can hardly be adopted, either for
parts of the frame or for the entire frame. Furthermore, the output
data of one module is often the input data for another (e.g., the
MVs from ME define the initial search point for the SME), which
imposes additional data dependencies between the inter-loop mod-
ules. Hence, the data-dependent inter-loop modules have to be
sequentially processed (within a single frame). The only exceptions
are ME and INT modules, which can be simultaneously processed,
since both of them use the CF and/or the RFs.

Architecturally different devices in modern CPU+GPU systems
impose additional challenges to the parallelization of individual
inter-loop modules. For example, GPUs require to exploit the fine-
gained data-level parallelism suitable for simultaneous processing on
hundreds of cores, while for CPU architectures with several general
purpose cores the parallelism can be exploited at coarser-grained
level. Therefore, it is required to parallelize the modules for each
device in the system according to both per-module parallelization
potentials and architectural characteristics of devices. For each inter-
loop module, the detailed description of parallel algorithms and
parallelization techniques applied herein can be found in [13, 15].

In what concerns the ME, efficient CPU and GPU parallelizations
and collaborative processing the Full-Search Block-Matching (FSBM)
is adopted, since the execution pattern of adaptive algorithms highly
depends on the video content, which makes the achievable perfor-
mance hard to be predicted and prevents efficient load balancing.
Moreover, the dependency on the video content causes branch di-
vergence for matching candidates examined on different GPU cores,
resulting in attaining very poor GPU performance. In fact, even the
state-of-the-art approaches dealing with the GPU parallelization of
the adaptive algorithms [3] (namely UMHexagonS [2]) were unable
of achieving better performance than CPU implementations.
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different device architectures.

Furthermore, to exploit the fine-grained data-level parallelism
required for efficient GPU parallelization and collaborative video
encoding in CPU+GPU platforms, it is also required to provide a
sufficient amount of data-independent computations that can be
simultaneously processed on hundreds of GPU cores. Accordingly,
to relax spatial data dependences imposed by the definition of SA
center, a set of temporary dependent predictors was analyzed in [12].
It was observed that the best MV found for the 16×16 partitioning
mode in the previous frame for the collocated MB represents a good
compromise for the SA center predictor. In fact, this predictor is
only used herein to compute the SA center, while the selected MVs
are then post-computed according to real median vectors of the
neighboring MBs.

In order to experimentally assess the contributions of individual

modules to the overall video encoding time, the initial inter-loop
encoding was performed for an 1080p HD video sequence on two
different device architectures, namely on quad-core Intel i7 950 pro-
cessor (Nehalem) and NVIDIA Fermi GeForce GTX580 (Fermi). Dur-
ing the initial evaluation on each device architecture, the parallelized
modules were used and the inter-loop encoding was performed with
4 RFs, the SA size of 32×32 pixels, and FSBM. As it can be observed
in Fig. 2, the inter-prediction modules (i.e., ME+INT+SME) participate
with more than 95% in overall encoding time, for both CPU and
GPU parallel implementations. Consequently, their efficient execu-
tion is crucial to achieve real-time video encoding on target desktop
systems. It is worth noting that the participation of the ME in the
overall inter-loop share highly depends on the selected encoding
parameters, such as the number of RFs, SA size, and the search
algorithm. However, the conclusions provided herein can be equally
applied to any selected parameters, considering the clear dominance
of the inter-prediction modules.

For simplicity, the Remaining Modules, i.e., MC, TQ, TQ−1 and

Algorithm 1 Collaborative Inter-loop video encoding for heteroge-
neous CPU+GPU systems

1: define the initial distributions
2: for all inter frames do

3: perform inter-loop for the defined distributions
4: initialize/update the performance models
5: define module-level distribution for R* modules
6: perform the load balancing for inter-prediction modules
7: end for

DBL, are referred herein as R* modules and their share in the overall
encoding time is typically less than 5% (see Fig. 2). In addition, Fig. 3
depicts the breakdown of the computational requirements for each
R* module. As it can be observed, in both CPU and GPU parallel
implementations the DBL represents the dominant module, with
more than 50% in overall computational share.

IV. Collaborative Inter-loop Video Encoding

The collaborative inter-loop video encoding for heterogeneous
CPU+GPU systems, proposed herein, provides unified execution
environment that dynamically instantiates the parallel CPU and GPU
algorithms for individual inter-loop modules. It is implemented
in OpenMP and CUDA programming models in order to attain
high execution control and to maximally exploit the parallelization
potential of CPU+GPU system.

According to the analysis provided in Section III, the collaborative
inter-loop video encoding is performed at a frame level in several
steps. As presented in Algorithm 1, in the first step (Algorithm 1
line 1) the initial cross-device load distributions are defined for all
inter-loop modules. In detail, for the ME, SME and INT modules,
the equidistant data partitioning is performed, while the R* mod-
ules are assigned for execution on all processing devices in their
entirety. This evaluation is conducted in order to build the initial
FPMs for each device/inter-prediction module pair, as well as to
assess the performance disparity among heterogeneous devices for
each R* module. Based on this characterization, for each subsequent
inter-frame, the inter-loop video encoding is performed on the target
CPU+GPU system according to newly determined load distribu-
tions (line 3). Afterwards, the execution and data transfer times
are recorded for each device/module pair and the corresponding
performance models are updated (line 4).

In the proposed method, different scheduling approaches are
applied for the inter-prediction (ME, SME and INT) modules and for
the R* modules. For the R* modules, the cross-device distribution
of entire modules is determined with Dijkstra algorithm [4], such
that the overall encoding time is minimized (line 5). On the other
hand, the computational load of the inter-prediction (ME+SME+INT)
sequence is distributed among all the processing devices according
to the dynamically built partial estimations of the full FPMs (line 6).

IV.1 Distribution for the R* modules

In this procedure, each of the least computationally intensive R*
modules (MC, TQ, TQ−1 and DBL) is mapped to a processing device,
such that the overall encoding time is minimized. This procedure
also reflects the device-module execution affinities and the required
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encoding procedure for mapping the remaining R* modules.

data transfers for possible migration of the encoding procedure
among the processing devices.

The implementation of this procedure is illustrated in Fig. 4 for
a typical CPU+GPU system. Initially, a data-flow diagram is con-
structed, such that both processing and data transfer times (in each
direction) are included for each R* module and for each devices
in the system. In fact, such data-flow diagram is a weighted DAG
that encapsulates all possible communication paths between the
accelerators and the CPU. In detail, tMC , tTQ, tTQ−1

and tDBL rep-
resent the time required to process each R* module, i.e. MC, TQ,
TQ−1 and DBL, respectively, on different device architectures (where
index c designates CPU and index g GPU device). In Fig. 4, the
edges represent the input/output data transfers to/from a certain
device, namely: i) tp is the transfer time of needed MVs from SME
and/or SFs from INT to perform the MC; ii) tr is the transfer time
of produced residual data to initiate TQ; iii) tq is the time required
to transfer quantization coefficients for TQ−1; and iv) tr f and t f f

represent the transfer times of reconstructed and filtered frames,
respectively. The transfer direction is designated by hd or dh indices
to represent the transfers occurring from the CPU (host) to the GPU
(device) or from the GPU to the CPU, respectively.

As soon as the DAG is constructed, the minimal path between
the first and last node is found. This path represents the optimal
mapping of the modules to the processing devices in the CPU+GPU
system. On the other hand, the sum of the weights of the edge within
the path represents the prediction for the smallest R* encoding time
achievable by applying the proposed method. Considering the
fixed and limited number of DAG nodes, the optimal Dijkstra’s
algorithm [4] is applied to find the minimal path.

As it can be observed in Fig. 2, individual R* modules might
have different device affinities, according to their data dependen-
cies and parallelization potential, as well as the characteristics of
target devices (number of cores, memory hierarchy etc.). However,
the migration of R* sequence among devices rarely compensate the
imposed data transfers, thus the entire R* sequence is usually per-
formed on a single (fastest) device. For simplicity, in the remaining
text, it will be assumed that the R* modules are processed on a
single device. According to the selected device/architecture, the ap-
plied scheduling will be considered as GPU-centric and CPU-centric.
However, it is worth emphasizing that this simplification is only
introduced for presentation purposes and it does not influence the
generality of the proposed load balancing approach.

IV.2 Load balancing for inter-prediction modules

The load balancing for inter-prediction (ME+INT+SME) sequence
proposed herein relies on data parallelism at the level of the parts of
the frame. In detail, it considers that each of the k CPU cores and w
GPU accelerators (i.e. pi processing devices, where i={1, .., k+w})
performs the same algorithm on different parts of the input buffers.

CF RF

ME INT

MVm SF

SME

MVs

mi

si

si
mi

si

Figure 5: Data access management for collaborative processing of
ME+SME+INT sequence.

As it is depicted in Fig. 5, the CF is partitioned among all CPU and
GPU devices, such that the ME is collaboratively performed on the
assigned CF portions, in order to produce the respective parts of
MVm buffer. The MVm buffer is further partitioned among devices,
to collaboratively perform the SME module. The simultaneously
produced MVs by SME on different devices, are then collected in the
MVs buffer in the CPU main memory. It is worth noting that while
the CPU can directly access the buffers from the main memory, for
the GPUs explicit data transfers need to be performed.

In the proposed method, the per-device load distributions are de-
termined at the level of MB-rows. The major rationale behind adopt-
ing such granularity lies in the fact that it provides low scheduling
overheads, while efficiently exploiting bandwidth of communication
lines and device performance. In contrast, at the finer-grained level,
the latency might dominate the execution, and the inevitable repack-
ing is required of the original frame format from a matrix/array of
pixels (in raster scan order) to an array of structures (MBs).

In order to eliminate the cost of expensive data-transfers for the
SF (16 times larger than CF and RF), the execution of INT module is
replicated on all devices. In fact, since the INT procedure is much
faster than the corresponding data transfers, this replication also
allows minimization of the overall inter-prediction time. Hence,
the list of complete SFs is kept updated on each processing device.
Accordingly, the distribution of the SME workload, considers only
the input and output transfers of the full-pixel and quarter-pixel
MVs, respectively. In order to minimize the memory requirements,
both lists of SFs and RFs are updated in the form of FIFO circular
buffers, where the newest SF/RF replaces the oldest one.

In Fig. 6, the proposed scheduling method is presented in two
variants, i.e., CPU-centric (Fig. 6(a)) and GPU-centric (Fig. 6(b)). In
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(a) CPU centric.
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(b) GPU centric.

Figure 6: Scheduling strategy for collaborative inter-loop video encoding.
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Figure 7: Performance of the proposed method for different SA sizes, single
RF and 1080p resolution.

both cases, there are only two synchronization points for video en-
coding inter-loop, namely: i) τb at the end of collaborative processing
of inter-prediction sequence; and ii) τtot at the end of inter-loop.

For both variants, the inter-prediction processing on the GPU that
does not perform R* modules (i.e., GPUi) also requires the initial
transfer of the CF and RF input buffers, and the output transfer of
the produced part of MVs buffer (see Fig. 6 and 5). However, for
the GPU that processes the R* modules (i.e., GPU1 in Fig. 6(b)), the
output transfer of the MVs buffer is not required, since the MVs are
only needed on the device that performs the MC module. However,
since the MVs produced on the other devices must be collected, the
input transfer for the remaining part of the MVs buffer is required
after the τb point. At the end of R* sequence, the produced RF
must be returned to the CPU, in order to allow processing of the
next inter-frame on other devices. Due to the replication of the INT
module, the transfer of SF buffer is not required.

In each iteration (inter-frame), the distribution vectors m={mi}
and s={si} are determined, where the mi and si represent the num-
ber of MB-rows assigned to the ME and SME, respectively, for each
processing device pi . The m and s distribution vectors are deter-
mined by the application of the MSLBA algorithm [7] and by relying
on dynamically built FPMs for each device-module pair. The partial
estimations of the full FPMs are constructed by applying piece-wise
linear approximation on a minimum set of points, i.e., by considering
the performance obtained in previous iterations, and the asymmetric
bandwidth of communication lines. In this algorithm the distribu-
tions are firstly found in the real domain, while the final integer
distributions (m and s) are obtained in a refinement procedure [7].

V. Experimental Results

For the evaluation purposes, the proposed method is integrated
in JM 18.6 reference coder [8]. The Baseline Profile was applied,
and two different quantizer values (28 and 33). Also, two different
1080p sequences are tested, namely RollingTomatoes and Sun f lower.
Presented values are the average performance obtained for these
parameters/sequences. However, it is worth noting that the obtained
performance does not significantly depend on the video content.
The tests were executed on different desktop platforms composed of
the following devices: Intel i7 4770K (Haswell) CPU, Intel Core i7
950 (Nehalem) CPU, NVIDIA Tesla K40c (Kepler) GPU and NVIDIA

Figure 8: Performance of the proposed method for different number of RFs,
32×32 pixels SA and 1080p resolution.

GeForce GTX 580 (Fermi). The system composed of single Haswell
CPU and single Kepler GPU is assigned as Sys_HK, while the system
composed of the same CPU and two Kepler GPUs is Sys_HKK. On
the other hand, the system composed of a single Nehalem CPU
and a single Fermi GPU is assigned as Sys_NF, while the system
composed of the same CPU and two Fermi GPUs is Sys_NFF.

Figure 7 presents the average performance in frames per second
(fps) obtained with the proposed method, when considering different
SA sizes, single RF and full HD (1080p) video sequences. As it can be
observed, a real time encoding (more than 25 fps) was achieved in all
tested systems for 32×32 pixels SA. In SysHKK platform, a real-time
encoding (more than 33 fps) was achieved even for more demanding
64×64 pixels SA, while in SysHK a near real-time performance was
achieved (more than 22 fps) with the same coding parameters.

Figure 8 shows the experimentally achieved average performance
(in fps) with the proposed method in different systems and for
different number of RFs and 32×32 pixels SA. As it can be observed,
all the systems except the Sys_NF were able of achieving a real-time
performance of more than 25 fps for multiple RFs. Moreover, in
Sys_HKK a real-time performance for up to 5 RFs was achieved.

In addition to the ability of the proposed method to achieve a
real-time performance for very demanding coding parameters, Fig. 7
and 8 also show that the proposed method is scalable over both the
SA size and the number of RFs. This is achieved mainly due to the
high efficiency of the proposed load balancing approach and the
developed highly optimized parallel CPU and GPU algorithms.

VI. Conclusions

In this study, an efficient method for collaborative H.264/AVC inter-
loop in heterogeneous CPU+GPU systems was proposed. In order
to cope with the inherent data-dependencies and computational
complexity of inter-loop modules, a unified execution environment
was designed to ensure efficient cross-device execution and to guar-
antee the correctness of the video encoding process. It also includes
an extensive library of highly optimized parallel algorithms for
all inter-loop video encoding modules, which are developed using
the device-specific programming models and tools. The integrated
scheduling and load balancing routines allow efficient distribution
of the workloads for these modules across all processing devices.
For the most computationally intensive inter-prediction modules,
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the proposed adaptive load balancing relies on realistic and dynami-
cally built FPMs of both communication and computation system
resources. The workloads of the remaining modules are distributed
according to their module-device affinities by applying the opti-
mal Dijkstra algorithm. In order to minimize the overall inter-loop
encoding time, the proposed collaborative encoding method also in-
tegrates data access management and specific, communication-aware
replication techniques to maximize data reuse, while decreasing the
data transfers overheads. The experimental results shown that the
proposed method is able of achieving real-time video encoding for
full HD resolution, with a 64×64 pixels SA and exhaustive ME on
the state-of-the-art commodity CPU+GPU platforms. Moreover, the
scalability of the proposed method over the SA size, number of RFs
and number of processing devices was experimentally shown.
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Abstract

In this work, we study the efficiency of the OpenFOAM-based parallel solver for the heat conduction in electrical power cables. The 2D
benchmark problem with three cables is used for our numerical tests. We study and compare the efficiency of conjugate gradient solver with
diagonal incomplete Cholesky (DIC) preconditioner and generalized geometric-algebraic multigrid solver (GAMG), which is available in Open-
FOAM. The convergence and parallel scalability of the solvers are presented and analyzed. Parallel numerical tests are performed on the cluster
of multicore computers.

Keywords OpenFOAM, parallel algorithms, domain decomposition, preconditioner, multigrid

I. Introduction

The knowledge of heat generation and distribution in and around
the high-voltage electrical cables is necessary to optimize the de-
sign and exploitation of electricity transferring infrastructure. En-
gineers are interested in maximum allowable current in different
conditions, optimal cable parameters, cable life expectancy estima-
tions and many other engineering factors.

Presently applicable IEC standards for the design and installa-
tion of electrical power cables are often based on the analytical and
heuristic formulas. Obviously, these formulas cannot accurately ac-
count for the various conditions under which the cables are actu-
ally installed and used. They estimate the cable’s current-carrying
capacity (so-called ampacity) with significant margins to stay on the
safe side [1]. The safety margins can be quite large and result in
50-70% usage of actual resources. A more accurate mathematical
modelling is needed to meet the latest technical and economical re-
quirements and to elaborate new, improved, cost-effective design
rules and standards.

When we need to deal with mathematical models for the heat
transfer in various media (metals, insulators, soil, water, air) and
non-trivial geometries, only the means of parallel computing tech-
nologies can allow us to get results in an adequate time. To solve
numerically selected models, we develop our numerical solvers us-
ing the OpenFOAM package [2]. OpenFOAM is a free, open source
CFD software package. It has an extensive set of standard solvers
for popular CFD applications. It also allows us to implement our
own models, numerical schemes and algorithms, utilizing the rich
set of OpenFOAM capabilities [3]. However, application of Open-
FOAM libraries for solving specific problems still requires an appro-
priate theoretical and empirical analysis and a nontrivial selection
of optimal algorithms. Examples of such problems are described in
[4] and [5].

The important consequence of this software development ap-
proach is that obtained application solvers can automatically exploit

the parallel computing capabilities already available in the Open-
FOAM package. Parallelization of OpenFOAM is based on MPI
(Message Passing Interface) standard. However, the modular struc-
ture of this package allows the development of parallel applications
for modern hybrid and heterogeneous high-performance comput-
ing (HPC) platforms. See, for example, [6], for CUDA applications
on GPU.

In recent years, scalability and performance of parallel Open-
FOAM solvers are actively studied for various applications and
HPC platforms. In [7] it is noted that the scalability of parallel
OpenFOAM solvers is not very well understood for many applica-
tions when executed on massively parallel systems.

We note that an extensive experimental scalability analysis of se-
lected OpenFOAM applications is one of the tasks solved in PRACE
(Partnership for Advanced Computing in Europe) project, see [8],
[9]. In [8] are presented results on IBM BlueGene/Q (Fermi) and
Hewlett Packard C7000 (Lagrange) parallel supercomputers for a
few CFD applications with different multi-physics models. The pre-
sented experimental results are showing a good scaling and effi-
ciency with up to 2048–4096 cores. It is noted that such results are
expected when balancing between computation, message passing
and I/O work is good. Obviously, the next generation of ultrascale
computing systems will cause additional challenges due to their
complexity and heterogeneity.

In this work, we study and analyze the performance of Open-
FOAM-based parallel solver for the heat conduction in electrical
power cables. Two linear system solvers are considered and com-
pared, namely, the conjugate gradient solver with diagonal incom-
plete Cholesky (DIC) preconditioner and generalized geometric-
algebraic multigrid solver (GAMG), which is available in Open-
FOAM. We study the convergence and parallel scalability of the lin-
ear solvers, the sensitivity of parallel preconditioners with respect
to the grid size and the number of processes. Another goal is to
study the ability of OpenFOAM to efficiently deal with the hetero-
geneity of the computer cluster.
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In Section II, we shortly describe the problem, mathematical
model and benchmark problem used for our parallel numerical
tests. In Section III, we describe our OpenFOAM-based solver and
discuss the parallelization approach employed in the OpenFOAM
package. In Section IV, we present and analyze the obtained results
on convergence and scalability of the considered linear solvers for
our application. Finally, some conclusions are drawn in Section V.

II. Benchmark problem

As a benchmark problem in this research we solve the heat conduc-
tion problem for electrical power cables directly buried in the soil.
It is also assumed that the thermo-physical properties of the soil
remain constant, i.e. the moisture transfer in the soil is not con-
sidered. Such a simplified problem is described by the following
well-known mathematical model:





cρ
∂T

∂t
= ∇ · (λ∇T) + q, t ∈ [0, tmax ],~x ∈ Ω,

T(~x, 0) = Tb, ~x ∈ Ω,

T(~x, t) = Tb, ~x ∈ ∂Ω,

T, λ∇T are continuous, ~x ∈ Ω,

(1)

where T(~x, t) is the temperature, c(~x) > 0 is the specific heat capac-
ity, ρ(~x) > 0 is the mass density, λ(~x) > 0 is the heat conductivity
coefficient, q(~x, t, T) is the heat source function due to power losses,
Tb is the initial and boundary temperature. Coefficients λ(~x), c(~x),
ρ(~x) are discontinuous functions. Their real values can vary be-
tween metallic conductor, insulators and soil by several orders of
magnitude [1].

In this work, we have used 2D geometry for our benchmark prob-
lem. Three cables are buried in the soil as shown in figure 1. The
red area is metallic conductor, the blue area is an insulator and the
gray area marks the soil.

Figure 1: 2D geometry of benchmark problem: three cables in the soil.

III. Parallel OpenFOAM-based solver

OpenFOAM (Open source Field Operation And Manipulation) [2]
is a C++ toolbox (library) for the development of customized nu-
merical solvers for partial differential equations (PDEs). For numer-
ical solution of PDEs OpenFOAM uses the Finite Volume Method
(FVM) with co-located arrangement of unknowns [3].

We obtain a numerical solver for our benchmark problem (1) by
the slight modification of the standard laplacianFoam solver: adding

variable problem coefficients c(~x), ρ(~x), λ(~x) and a nonlinear source
term q(~x, t, T) dependent on temperature T. Note that a proper in-
terpolation should be used for calculation of discontinuous coeffi-
cient λ(~x) on conductor-insulator-soil interface walls of according
finite volumes. We employ the harmonic interpolation to ensure the
continuity of heat flux λ∇T.

We generate the finite volume mesh in problem domain Ω us-
ing OpenFOAM preprocessing tool and obtain FVM discretization
with the four point stencil for the 2D problem. Resulting systems of
linear equations with symmetric matrices can be solved by precon-
ditioned conjugate gradient method with various preconditioners
and multigrid method.

Parallelization in OpenFOAM is robust and implemented at a
low level using the MPI library. Solvers are built using high level
objects and, in general, don’t require any parallel-specific coding.
They will run in parallel automatically. Thus there is no need for
users to implement standard steps of any parallel code: decompo-
sition of the problem into subproblems, distribution of these tasks
among different processes, implementation of data communication
methods. A drawback of such automatic tools is that the user has
very limited possibilities to modify the generated parallel algorithm
if the efficiency of the OpenFOAM parallel code is not sufficient.

OpenFOAM employs a common approach for parallelization of
numerical algorithms – domain decomposition. The mesh and its
associated fields are partitioned into sub-domains, which are allo-
cated to different processes. Parallel computation of the proposed
finite FVM algorithm requires two types of communication. First
type is the local communication between neighboring processes
for approximation of the Laplacian term on the given stencil and
matrix-vector multiplication. Second type is the global communi-
cation between all processes for computation of scalar products in
iterative linear solvers.

OpenFOAM employs a zero-halo layer approach [6], which con-
siders cell edges on sub-domain boundaries as boundary and ap-
plies a special kind of boundary condition.

OpenFOAM supports four methods of domain decomposition,
which decompose the data into non-overlapping sub-domains: sim-
ple, hierarchical, scotch and manual [2]. For our parallel tests the
mesh is partitioned by using Scotch library [10]. Scotch is a library
for graph and mesh partitioning, similar to well-known Metis li-
brary [11]. It requires no geometric input from the user and at-
tempts to minimize the number of boundary edges between sub-
domains. The user can specify the weights of the sub-domains,
what can be useful on heterogeneous clusters of parallel computers
with different performance of processors. We will use this feature
solving our benchmark problem on heterogeneous cluster.

IV. Parallel performance tests and analysis

In our previous work [12], we have investigated the theoretical com-
plexity and scalability of our OpenFOAM based parallel solver with
preconditioned conjugate gradient method. To validate the theoreti-
cal model in numerical tests, we have fixed the number of iterations
for solving systems of linear equations – 1000. In this way, we have
ensured that the same amount of work was done in all parallel tests
(10 time steps with 1000 iterations), despite the possible differences
in convergence due to parallel preconditioning and different round-
off errors, due to data communication.

2

44 On Efficiency of the OpenFOAM-based Parallel Solver for the Heat Transfer in Electrical Power Cables



First NESUS Workshop. October. 2014

In this study we want to investigate the convergence of conjugate
gradient linear solver with diagonal incomplete Cholesky precon-
ditioner (DIC/CG) and compare to the convergence of generalized
geometric-algebraic multigrid solver (GAMG). We want to study
the scalability of both linear solvers and the influence of the mesh
partitioning on parallel preconditioners. So, now the tolerance of
linear solvers is fixed and set to 10−6. In each test, we do 10 time
steps with different number of iterations, which is dependent on
convergence.

p 1 × 1 2 × 1 4 × 1 8 × 1 8 × 2

Mesh size - 1018488

Nav
p 721.9 839.3 865.4 942.4 1009.7

DIC/CG Tp 265.1 161.7 77.0 41.1 28.5
Tav

p 0.0367 0.0192 0.0089 0.0044 0.0028

Nav
p 20.4 22.6 25.2 37.0 59.2

GAMG Tp 49.7 30.7 20.3 25.3 44.8
Tav

p 0.2436 0.1356 0.0807 0.0684 0.0757

Mesh size - 2048000

Nav
p 1015.6 1140.1 1142.6 1448.2 1401.6

DIC/CG Tp 799.3 437.1 237.0 133.4 87.2
Tav

p 0.0787 0.0383 0.0207 0.0092 0.0062

Nav
p 19.4 27.0 27.7 39.0 39.3

GAMG Tp 94.6 70.8 41.5 39.7 39.2
Tav

p 0.4874 0.2622 0.1497 0.1017 0.0997

Mesh size - 4102264

Nav
p 1427.0 1452.0 1928.4 1939.4 1717.8

DIC/CG Tp 2119.4 1114.9 872.2 414.6 265.8
Tav

p 0.1485 0.0768 0.0452 0,0214 0,0155

Nav
p 24.6 25.9 41.0 40.3 47.0

GAMG Tp 243.9 137.0 120.2 68.9 69.7
Tav

p 0.9913 0.5291 0.2932 0.1708 0.1482

Mesh size - 8192000

Nav
p - 2468.9 2463.9 2535.1 2635.1

DIC/CG Tp - 3933.5 2165.9 1126.8 829.6
Tav

p - 0.1593 0.0879 0,0445 0,0315

Nav
p - 38.2 33.8 39.0 41.3

GAMG Tp - 402.5 193.3 123.67 100.6
Tav

p - 1.0536 0.5720 0.3171 0.2436

Table 1: The average number of iterations Nav
p with p processes, the total

wall time Tp of 10 time steps with p processes, the average time of one
iteration - Tav

p = Tp/Nav
p /10 with p processes for DIC/CG and GAMG

linear solvers with tolerance 10−6. Here p = nd × nc is the number of
parallel processes using nd nodes with nc cores per node.

Parallel numerical tests were performed on the Vilkas cluster of
Vilnius Gediminas technical university. We have used eight nodes

with Intel Core i7-860 processors, 4 cores (2.80 GHz) per node. Com-
putational nodes are interconnected via Gigabit Smart Switch.

In table 1, we present the average number of iterations Nav
p , the

total wall time Tp of 10 time steps, the average time of one iteration -
Tav

p = Tp/Nav
p /10 obtained with p processes. Results are presented

for both linear solvers and increasing finite volume mesh. Size of
the mesh (the number of finite volumes) was almost doubled for
each next test.

Note that the case p = 1 × 1 provides data on convergence and
elapsed wall time for the sequential algorithms. There are no data
for the mesh size 8192000, because this case does not fit into mem-
ory available on the single node. As we can see, the number of
iterations of DIC/CG solver is increasing as

√
2 when the mesh size

is doubled. This is in accordance with the theory. The number of
iterations of GAMG solver is also growing with the mesh size, but
not as much as in the case of DIC/CG, compare 24.6/20.4 ≈ 1.21 to
1427/721.9 ≈ 1.99 (2 expected).

Comparing the elapsed times Tp we see that the GAMG solver is
a faster alternative that DIC/CG solver. The GAMG solver achieves
the biggest advantage over the DIC/CG solver at sequential tests.
For parallel tests, the advantage is constantly decreasing with in-
creasing number of processes - p. It seems that there are two reasons
for this. First reason is the degradation in performance of parallel
preconditioner. For parallel DIC preconditioner with conjugate gra-
dients, the number of iterations is quite gradually increasing up to
40% going from 1 to 16 processes. At the same time the number
of GAMG iterations exibits significant jumps, altogether up to 2-3
times going from 1 to 16 processes.

Another reason for the significant degradation of parallel perfor-
mance of GAMG solver is algorithmic scalability of its parallel al-
gorithm. Comparing the average times of one iteration with p pro-
cesses - Tav

p , we see that the parallel algorithm of DIC/CG solver
scales much better than the parallel algorithm of GAMG solver.

Next, we want to study the ability of our OpenFOAM-based par-
allel solver to utilize the full power of heterogeneous cluster made
of computational nodes of different speeds. For these numerical
tests we have used eight additional nodes with Intel Quad Q6600
processors, 4 cores (2.4 GHz) per node.

Computing nodes with Intel Core i7-860 processors are up to 1.6-
1.7 times faster than the Intel Quad Q6600 processors solving our
benchmark problem (see [12]). To achieve the load balancing be-
tween i7 and q nodes, we employ the weights in the mesh partition-
ing algorithm from the Scotch library [10]. The performance results
of the tests on heterogeneous cluster are presented in table 2.

Solving our biggest case in this work with 8192000 finite volumes,
we obtain a real speedup only with DIC/CG linear solver. The per-
formance of GAMG linear solver is further degrading. It is interest-
ing to note that slight changes in the weighting factor w, can cause
significant changes in the convergence of GAMG: from 43.2 to 51.7
iterations per time step with 16 × 1 processes.

V. Conclusions

We have tested the parallel performance of the conjugate gra-
dient solver with diagonal incomplete Cholesky preconditioner
(DIC/CG) and generalized geometric-algebraic multigrid (GAMG)
solver in OpenFOAM-based application for the heat conduction in
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Mesh size - 8192000

p 16 × 1 16 × 1 16 × 2 16 × 2 16 × 4 16 × 4

i7(w) 1.6 1.7 1.6 1.7 1.6 1.7

Nav
p 2340.7 2589.5 2790.7 2659.9 2630.2 2643.9

DIC/CG Tp 647.2 728.6 574.6 536.6 540.7 524.7
Tav

p 0.0277 0.0281 0.0206 0.0202 0.0206 0,0199

Nav
p 43.2 51.7 53.8 55.2 56.2 60.7

GAMG Tp 144.8 170.7 135.4 135.6 229.0 256.3
Tav

p 0.3351 0.3301 0.2517 0.2457 0.4075 0.4223

Table 2: The average number of iterations Nav
p with p processes, the total

wall time Tp of 10 time steps with p processes, the average time of one
iteration - Tav

p = Tp/Nav
p /10 with p processes for DIC/CG and GAMG

linear solvers with tolerance 10−6. Here p = nd × nc is the number of
parallel processes using nd nodes with nc cores per node, i7(w) is the
weighting factor used in mesh partitioning algorithm for faster i7 nodes.

electrical power cables. The best running times in our tests were
obtained with GAMG solver. However, DIC/CG linear solver has
shown to be less sensitive to the parallel preconditioning degrada-
tion. It has also shown better algorithmic scalability.

DIC/CG linear solver is to be recommended for the parallel com-
putations on parallel computing systems with large number of pro-
cessors and cores. Additional options of GAMG solver need to be
investigated to improve its scalability. Parallel performance of the
conjugate gradient solver with GAMG preconditioner (instead of
DIC) is to be studied in future work.

The weighting factors in mesh partitioning algorithm allow effi-
cient utilization of heterogeneous computing nodes for our parallel
application. More research is needed on the influence of different
graph partitioning algorithms.
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Abstract

Exascale systems are likely to have orders of magnitude less memory per core than current systems (though still large amounts of memory).
As the amount of memory per core is dropping, going to thread-based models might be an unavoidable step towards the exascale milestone.
AzequiaMPI is a thread-based open source full conformant implementation of MPI-1.3 for shared memory. We expose the techniques introduced
in AzequiaMPI that, first, simplify the implementation and second, make the thread-based model to significantly improve the bandwidth of
process-based implementations. Current version is also compliant with the MPI_THREAD_MULTIPLE thread-safety level, a feature of MPI-2.0
standard. The well known Thakur and Gropp MPI_THREAD_MULTIPLE tests show that both latency and bandwidth figures of AzequiaMPI
significantly improve that of MPC-MPI, MPICH and Open MPI in an eight cores Intel Xeon E5620 Nehalem machine.

Keywords MPI performance, Thread-based MPI, MPI_THREAD_MULTIPLE, Multicore architectures

I. Introduction

MPI [4] is an industry de-facto parallel programming standard
based on the message-passing paradigm. As new languages and
alternatives as Unified Parallel C (UPC) and OpenMP are being
proposed for supporting more efficiently multicore architectures,
MPI keeps facing the challenge. The fact is that MPI is still used on
shared memory due to its better portability and its good data locality
due to data partitioning. An MPI application is composed by a set
of independent program instances that communicate by message
passing. Traditional mainstream MPI implementations as MPICH
and OpenMPI build each instance as a full-fledged process. It entails
some disadvantages in shared memory because message passing
between two processes must go through a per-pair intermediate
shared buffer, and copying degrades the communication efficiency.

Two trends drive the performance of current HPC clusters. One
is the strong increase in the amount of memory-per-node, and the
other the rising number of cores per processor. However, if the
count of cores per machine is doubling approximately every 2 years,
the DRAM DIMM capacity is just doubling about every 3 years
[5]. This means that the memory capacity per core is expected to
drop by 30 % every two years. As a result, exascale systems are
likely to have orders of magnitude less memory per core than current
systems. Against this backdrop, going to thread-based models might
be an unavoidable step towards the exascale milestone [3], because
it should reduce the application memory footprint [7]. Not only
that, thread-based MPI improves the MPI performance in shared
memory because enables optimised communication mechanisms, as
the single copy. This paper is about this issue.

It is possible building the MPI instance as a thread. Thread-based
MPI has been around for years, but the fact is that no thread-based
MPI implementation has been widely adopted in practice. The
reasons are not fundamental, but rather practical concerns imposed
by the prevalence of the OS-level process. One of them is the issue of
the global variables of a MPI rank, that get shared by them all under
the thread-based case, giving place to faulty programs. Though

privaticing them through program transformation techniques is
a well studied requirement, and some partial efforts have been
undertaken in this direction [[11], [10]], the fact is that no explicit tool
is currently available, or at least provided by a main stream tool chain
to transparently circunvent the problem. The other argumented
weakness of thread-based MPI is the thread-safety of third-party
software, either library code or device drivers. It is true that non
thread-safe software is unusable by theaded MPI ranks, but the same
happens to the threads created under the MPI_THREAD_MULTIPLE
ability of the MPI-2 standard in a process-based implementation. All
in all, a not thread-safe library should be labelled as quite limited
software product nowadays, whether used in an MPI context or not.

AzequiaMPI [9] is thread-based but still an open source full con-
formant implementation of the MPI-1.3 standard. Its original version
was targeted to embedded distributed signal processing platforms of
DSP and FPGAs supporting a single address space, which forced us
to implement MPI upon threads. This work presents performance
evaluation of current AzequiaMPI, targeted to standard HPC multi-
core machines. The design is rooted on the lock-free queue structure
used in MPICH2-Nemesis, but exploiting the advantage of sharing
a common address space. Our tests show a relevant improvement
against MPICH, Open MPI and MPC-MPI in an 8 cores Nehalem
machine. The rest of the paper is as follows. Related work is pre-
sented in section 2. In section 3 we introduce the core design of the
system and comparative performance figures. Section 4 presents the
extensions to the desing that support the MPI_THREAD_MULTIPLE
option in an efficient way. Section 5 concludes.

II. Related Work

Implementing a MPI node as a thread is not a new concept, but it
has received very limited attention in the literature. Seminal work [2]
discusses TOMPI (for Thread Only MPI), an early proof of concept
prototype that implements just a handful of MPI primitives, not even
in a conformant way.
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Figure 1: Requests and queues in AzequiaMPI.

TMPI (for threaded MPI) [11] is a more solid and deeper research
on thread-based MPI. TMPI is also a partial implementation of MPI-
1 (29 functions) addressed to clusters of multiprocessors. Authors
claimed that, on the average, TMPI is 46% faster than MPICH, but
note that the further Nemesis library made MPICH up to twice faster
for short messages and shows an up to 1.4 factor of improvement
for large messages. Unfortunately, TMPI only provides the source
code of an early version based in mutexes.

MPI Actor (for MPI Accelerator) [6] is a middleware that maps
MPI nodes to threads in multicore machines. It claims to patch any
existing process-based MPI implementation, so that a MPI process
runs as a thread in shared memory. Its big advantage would be
avoiding the huge work of building a new fully conformant thread-
based implementation. Unfortunately, MPI Actor source code is
not publicly available. Anyway, the performance of AzequiaMPI
overcomes by large that achieved by MPI Actor.

MultiProcessor Communications environment (MPC) [8], aims
an efficient runtime system unifying the MPI, POSIX Threads and
OpenMP. The key idea is to use user-level threads instead of pro-
cesses to increase scheduling flexibility, to better control memory
allocations and optimize scheduling of the communication flows
with other nodes.The scheduler and memory allocator modules co-
operate to preserve data locality, a crucial issue when dealing with
NUMA nodes.

III. Thread-Single: Design and Performance

Fig. 1 shows the basic design of AzequiaMPI. Each MPI rank (a
thread) has three queues, known as PRQ, MBX and LFQ. PRQ is
the queue of pending receive requests, and MBX (for mailbox) is
the queue of unexpectedly arrived send requests. Both are ordinary
double-linked lists. Only its owner rank accesses to them. LFQ is a
lock-free queue, the same used by MPICH2-Nemesis [1]. It allows
a single receiver (its owner) and many senders. All of them access
it without locking. To receive a message, the MPI rank r allocates a
receiving request R from its per-thread pool. R is initialised so that a
field points to the receive user buffer. Next, r explores MBX, looking
for a send request S that matches R. On success, r performs the copy,
updates S as satisfied, and finally dequeues and liberates R. If no
matching happens, r enqueues R in its PRQ queue. If the receive
primitive is blocking (MPI_Recv) r enters the progress routine, that
basically polls LFQ for new events. If the primitive is non-blocking
(MPI_Irecv) r returns.

To send a message, an MPI rank s allocates a sending request
S from its per-thread pool. A field of S points to the send user
buffer as Fig. 1 shows. Next, S is enqueued in the receiver lock-free

Figure 2: FastBuffers in a configuration of four threads.

queue LFQ. A blocking send primitive makes s entering the progress
engine, that polls the state field of S until it is satisfied. Then s
liberates S. A non-blocking send simply makes s to continue and
defers the polling to subsequent test/wait invocations.

The progress routine basically polls LFQ for new events. When
the invoking rank t dequeues a send request S from LFQ, t matches
S against its PRQ. If a matching receiving request R is found, t
dequeues and liberates R, makes the copy from the send buffer to
the receive buffer and set S as satisfied. If a matching receive request
is not found, S is enqueued in MBX.

MPICH2-Nemesis provides a mechanism called fastbox to acceler-
ate small messages [1]. A fastbox is a small buffer associated to each
pair of MPI ranks. It allows a sender to by-pass the LFQ by copying
directly its message to the fastbox. After the copy is done, an integer
flag acting as a turn is switched for reception. The receiver copies
from the fastbox to its user buffer, switching the turn for sending.
AzequiaMPI extends fastboxes to fastbuffers, as Fig. 2 illustrates.
In AzequiaMPI we have observed in the respective left and right
scenarios of Fig. 3 that a fastbuffer, with either one or two fastboxes,
diminish the latency of small messages by half, and that a fastbuffer
of two fastboxes multiplies the bandwidth of small messages by four.

Fastboxes, however, come with a price. They pose the issue of
message ordering because introduce a second path between a sender
and a receiver. If the receiver checks the fastbox before the LFQ
or viceversa, it may receive the messages in the wrong order. This
situation is handled so that every local message carries on a sequence
number that is matched on reception, as it is done with source and
tag. Messages up to 1 KB are delivered this way if the fast buffer
is not full. Management of sequence numbers is tricky, but cheap.
The true downside of fastBuffers is memory compsumtion, of order
O(Q2) where Q is the number of cores per node. If the size of the
fastBuffer is 2KB, the implementaton would allocate 2KB x 128 x 128
= 32 MB only to this resource on a machine of Q = 128 cores. To
save memory AzequiaMPI creates fastbuffers on the fly, and only
when really needed. Look at Fig. 2. The four fast buffers of rank 0
do not come into existence when the application starts up. Instead
fastbuffer 1, for instance, is created by rank 1 when it tries to send
its first small message to rank 0.

Fig. 3 shows the setup produced by the single-threaded latency
and bandwidth tests from the well known Thakur and Gropp bench-
mark [12], in the eight cores of the Nehalem. The benchmark is
included in the source distribution gim.unex.es/azequiampi of Aze-
qioaMPI. Latency is measured on a ping-pong setup, and likely
bandwidth on a stream. Fig. 4 and Fig. 5 show the performance
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Figure 3: Thakur and Gropp single threaded tests. Experimental setup.

Figure 4: Latency measurements of four MPI implementations in the setup
at the left side of Fig. 3.

achieved by this design, compared to that of MPICH, OpenMPI
and MPC-MPI. AzequiaMPI threads, and MPICH and Open MPI
processes are core bound in round-robin. It is currently not possible
to bind tasks in MPC-MPI. The eight MPC-MPI threads, designed to
run unbound in oversubscripted scenarios, have the eight cores avail-
able. Note that MPC-MPI is almost one order of magnitud slower in
terms of latency than AzequiaMPI and MPICH. MPICH produces
the best outcomes in this respect. AzequiaMPI shows the best band-
width, partly due to an optimisation technique only possible when
the send and receive user buffers share memory: both sender and
receiver cooperate in the copy, so that, for instance, sender copies
lower half of send buffer to lower half of receive buffer, and likely
the receiver on the upper halves. We call this method "split copy"
and it should be clear that it constitutes a significant advantage with
respect to process based implementations. It seems that MPC-MPI
does not currently exploit this technique.

IV. Thread-Multiple: Design and Performance

AzequiaMPI, being MPI-1.3 conformant, also supports the highest
level of thread safety for user programs, MPI_THREAD_MULTIPLE,
an MPI-2 feature that allows concurrent MPI calls from multiple
threads. Turning thread-safe a MPI implementation is a problem
of introducing the right set of mutexes around the critical message
queues, what inevitably leads to a performance breakdown. Mini-
mizing this impact is a challenging task. This section discusses the

Figure 5: Bandwidth measurements of four MPI implementationsin the
setup at the right side of Fig. 3.

MPI_THREAD_MULTIPLE design in AzequiaMPI.
The standard says that all the threads of a rank s can send a

message to another rank r, and that any thread of rank r can handle
the message, but a specific thread is not an addressable object. On
other hand, the standard sets out that a pair of messages from
the same rank but emitted by different threads are considered as
concurrent events (even in the case that the messages had been
emitted "physically" one after the other). This means that it is not
possible to establish a temporal order relation between them and,
as a result, they may be collected by the receiver rank in any order.
Obviously, the messages sent by the same thread do keep the order.
AzequiaMPI enforces such order using the simple concept of flux,
which will be addressed below.

On the reception side, the standard literally states that "if two
receive operations that are logically concurrent receive two succes-
sively sent messages, then the two messages can match the two
receives in either order." We understand that this statement frees
the implementation from ordering receiving requests from different
threads ri of a rank r, and as a result, each thread ri may set up its
own PRQ receiving queue .

A flux is a sort of connexion, an object with a pair source-
destination [si , r] where si is the thread i of source rank s and r

Figure 6: Design of fluxes. Any thread sending to a rank creates its private
fastbuffer

3

Juan-Carlos Diaz-Martin, Juan A. Rico-Gallego 49



First NESUS Workshop. • September 2014 • Vol. I, No. 1

Figure 7: Thakur and Gropp multiple threaded tests. Experimental setup.

the destination rank. The source and destination extremes of a flux
are internal objects of types sFlux and rFlux respectively. The first
time the thread si invokes MPI_Send to send to a rank r, si allocates
a sFlux object, initialises it with the name [si , r] and enqueues it in
a private single-linked list. Next, at the destination extreme, si allo-
cates the counterpart rFlux object, initialises it with the handle of its
corresponding sFlux object and enqueues it in a lock-free queue of r
named rFluxQ. Concurrent insertions in rFluxQ are expected from
any thread of any local rank. Every flux has an associated fastbuffer,
a technique that improves the latency of the implementation (see Fig.
6). Fasbuffers introduce a second path from source to destination,
what imposes a sequence number in the messages of a flux. The flux
object keeps the current sequence number.

When a thread si invokes MPI_Send to send a message to rank
r, it begins by looking up the [si , r] object in its sFluxQ queue. If
r is not there then the flux object is created. As before mentioned,
the first message of the flux under 1KB arranges the creation of
the fastBuffer, whose handle is registered in sFlux. These small
messages are sent by copying to the fastBuffer (Fig. 2) and then
MPI_Send returns. Greater messages follow another path. A request
object S is allocated per message, and enqueued in the LFQ of r, as
shown in Fig. 1. Once enqueued, MPI_Send polls a flag of S. When
the flag is set, the message has been received, then thread si frees S
and returns. This process is done concurrently in a thread-safe way

Figure 8: Latency measurements of four MPI implementations in the setup
at the left side of Fig. 7.

by all the si threads of process s without using any mutex.
When a thread ri invokes MPI_Recv for a small message from rank

s, it looks up all the fastbuffers associated to the threads of s. To this
end ri runs through the LFQ of rFlux to access these fastbuffers. If a
matching takes place the fastbuffer content is copied to the ri user
buffer and MPI_Recv returns. It can be thought that the rFluxQ lock-
free queue may be accessed for insertion while it is being explored.
It can be shown, however that both operations are safe when they
take place simultaneously, what avoids the introduction of a costly
mutex to protect rFluxQ. For messages greater than 1KB, and also
when no matching happens in the fastbuffer, MPI_Recv allocates a
receiving request, inserts it in the private queue of receiving pending
requests (PRQ) of ri and enters the progress engine in an infinite
loop.

Each iteration of the progress engine works in two stages. The first
stage runs through the private PRQ queue of the invoking thread,
let be tj from rank t. For each request R found in PRQ the pair [s,
keyTag] is obtained, where s is the desired source rank. Then

1. The set of fastBuffers from s (see Fig. 6) is probed against the
pair [s, keyTag], as above discussed. If a matching happens R
becomes satisfied and the progress engine returns.

2. If no matching takes place in the fastbuffers, the private unex-
pected queue (PMBX) of invoker ti is probed against the pair [s,
keyTag]. If a matching source request S is found, it is satistied,
as well as R, and the progress engine returns.

3. If no matching takes place in PMBX, the global unexpected
queue MBX is probed against the pair [s, keyTag]. MBX is a
double-linked queue of owner t, concurrently read and written
by all the ti threads. It hence needs a mutex.

If no matching happens, the iteration of the progress engine enters
the second stage. It consists of a loop of dequeue operations on
the LFQ of rank t (see Fig. 1) until it becomes empty. This type
of queue allows two or more concurrent enqueuers, but a single
dequeuer, what imposes a mutex m to protect dequeueing. A thread
tj acquires m before a dequeue operation. Each dequeued request
S is proved against all the pending requests of the private PRQ of
tj. If a matching of source and tag happens, but not of sequence

Figure 9: Bandwidth measurements of four MPI implementations in the
setup at the right side of Fig. 7.
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number, S is enqueued in the private unexpected queue PMBX
of tj; else is enqueued in the global unexpected queue MBX. The
attained efficiency of this MPI THREAD MULTIPLE design has been
measured with the Thakur and Gropp benchmark, and compared
to that of MPICH, Open MPI and MPC-MPI. Fig. 7 shows the
benchmark setup and Fig. 8 and Fig. 9 the obtained results. It can
be appreciated that the AzequiaMPI figures considerably improve
that of the rest of implementations.

V. Conclusions and further work

The thread-based design of AzequiaMPI and further optimizations
based on its common address space makes it to outperform other
MPI distributions in a significant manner. AzequiaMPI has shown
that the thread-based approach opens opportunities to implement
the MPI_THREAD_MULTIPLE thread safety level in a more efficient
way than current popular MPI process-based libraries do. We aim
to explore the implementation of the recent extensions of the MPI-3
standard to support shared memory at the ligth of these experiences
in a thread-based framework.
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Abstract

Cloud-based storage is becoming a cost-effective solution for agencies, hospitals, government instances and scientific centers to deliver and share
contents to/with a set of end-users. However, reliability, privacy and lack of control are the main problems that arise when contracting content
delivery services with a single cloud storage provider. This paper presents the implementation of a storage system for content delivery and sharing
in federated cloud storage networks. This system virtualizes the storage resources of a set of organizations as a single federated system, which is
in charge of the content storage. The architecture includes a metadata management layer to keep the content delivery control in-house and a
storage synchronization worker/monitor to keep the state of storage resources in the federation as well as to send contents near to the end-users. It
also includes a redundancy layer based on a multi-threaded engine that enables the system to withstand failures in the federated network. We
developed a prototype based on this scheme as a proof of concept. The experimental evaluation shows the benefits of building content delivery
systems in federated cloud environments, in terms of performance, reliability and profitability of the storage space.

Keywords Content delivery, Virtualization, Storage federation, fault-tolerant

I. Introduction

Space agencies, hospitals, government instances, news agencies and
scientific centers not only are producing huge amount of contents
but also they need to distribute them to different communities or
population segments through the Internet [1].

Cloud storage approach has becoming a cost-effective solution for
building dynamic and elastic online content delivery(CD) systems[2].
Organizations can contract a CD service with a provider through
self-service and self-organizing web applications and their users can
retrieve the contents in any time from anywhere by using almost
any device.

However, organizations and users still have concerns about un-
available service[3], lost data risks [4] and lack of controls over data
management [5] when using cloud storage. Organizations and users
are quite justified in expressing their concerns about data storage
and management in the cloud because a user rejects her legitimate
expectation to privacy when she voluntarily relegates private content
to a third-party [6].

Vendor dependence lock-in is another problem that has caused
a big concern among organizations. This problem arises when one
organization contracts with a single cloud provider the storage and
management of all the data. This becomes a real problem when
the organization decides to change the cloud provider or the cloud
provider pulls out of the market[7]. In the first scenario it is not
clear that other provider could handle the content delivery in its
current state because of software dependencies. In the latter, the
organization depends on the window offered by the provider to the
clients for migrating their data to another provider. In both scenarios,
the more data stored in the cloud the more economic impact on the
costs suffered by the organizations.

The federated cloud model enables organizations to create a
shared cloud storage based on strategic partnership policies[8]. In
this model, a set of organizations cooperates for building a shared
storage space to serve requests of other members that are in either
failure or saturation circumstances. This model improves the reliabil-
ity of the CD services as a federation member can withstand failures
of their site by using the resources of partners for serving their user
requests. Federation also enables the organizations to preserve au-
tonomy and privacy even when a portion of their infrastructure has
been used by the partners experimenting site failures.

This paper presents the implementation of a system for content
delivery and sharing in Federated Cloud Storage. This system vir-
tualizes the storage resources of a set of organizations as a single
federated system, which is in charge of the content storage. The
architecture includes a metadata management layer to keep the
content delivery control in-house and a storage synchronization
worker/monitor to keep the state of storage resources in the fed-
eration as well as to send contents near to the end-users. It also
includes a redundancy layer based on a multi-threaded engine that
enables the system to withstand failures in the federated network.

We developed a prototype based on this system as a proof of
concept and its performance was compared with a fault-tolerant
distributed web storage as well as public and private File Hosting
Services.

A case study based on data obtained from the European Space
Astronomy Center (ESAC) for the Soil Moisture Ocean Salinity [9] is
presented as experimental evaluation. We distribute satellite images
to a set of organizations, from two countries spanning two continents
by using a federated Storage System (FSS). The end-users retrieved
images by using a FSS client.

The experimental evaluation shows the benefits of building con-
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tent delivery systems in federated cloud environments, in terms of
performance, reliability and profitability of the storage space.

II. Related Work

Content Delivery Networks (CDN) such as Akamai [10], Coral [11]
or Globule [12] cache small pieces of information and distribute
them to locations near who requests them. The final end-user ob-
serves a reduction of the latency and overhead in the content delivery
process.

The cloud-based storage services enable organizations to create
catalogs of contents based on URLs. The end-users can access the
catalog without simultaneous download restrictions by using any of
the web browsers, synchronizer based on HTTP streams or (S)FTP
applications. However, studies show that users prefer local storage
solutions than public solution when managing sensitive data [13].
Moreover, cloud-based storage services are based on a pay-as-you-
go pricing model, which apply rates based on the monthly stored
contents plus the penalizations stated at the service level agreement
(SLA) contracted. These conditions could lead to long-term costs.
For instance, EUMETSAT and EOSDIS transfer around 1 TB of
meteorological images per day, which might press organizations to
consider an alternative service.

In addition, Vendor lock-in problem could arise when the organi-
zation decides to change the cloud provider or the cloud provider
pulls out of the market[7](Nirvanix provides cautionary tale for
cloud storage).

In order to face up system failures, in this kind of approaches
the servers split the contents into chunks by applying a given
codification[13] and they distributes them according a given fault-
tolerant strategy. Nevertheless, the users and the organizations send
the whole contents to the storage services, which could produce
concerns about the way in which the privacy data is managed. In
addition, the encoding/decoding data and its distribution both rep-
resent an extra work to be performed by the organizations servers.

The distribution of data on several providers have been proposed
to avoid this type of problems [14]. Nevertheless, this kind of
solutions are only available for public providers and solutions taking
both the user and organization concerns into account are currently
required by organizations.

This system can configure federations by using either private or
public storage resources for organizations to deliver contents to end-
users. Moreover, the codification applied to content dispersion by
our system takes advantage of continuous flows and the multiple
cores available in current computers.

III. A storage system for content delivery and
sharing in Federated Cloud

A traditional content delivery system commonly includes stages such
as source, formatting, deliver and acquisition of contents. In the first
stage providers send a set of contents in raw format to the formatting
stage, in which a set of users performs a set of annotation tasks for
achieving manufactured contents, which are sent to a storage system.
In the phase of acquisition, the end users retrieves the contents from
the content delivery service by using a web application.

Our federated storage system (FSS) takes advantage of thee types
of technologies to improve the effectiveness of the aforementioned

content delivery process. The first is a cloud storage federation tech-
nology [9] applied to a metadata manager for keeping the control of
content delivery in-house and enabling the organization to preserve
autonomy in failure scenarios. The second are publish-subscribe
patterns applied to a storage synchronization monitor, which en-
ables FSS to inform the user about new available contents and to
register the consume of each storage resource. The last one is the
multi-core technology applied to a redundancy layer based on a
multi-threaded engine for taking advantage of multiple cores of end-
users and providers computers to improve the performance of the
codification and dispersion of the federated fault-tolerant schemes
used by FSS in the CD service.

Figure 1 shows an example of content delivery based on FSS. Raw
data is sent to providers, which perform a set of annotation tasks
for achieving manufactured contents. These contents are sent in the
form of a catalog to the metadata manager by using an agent of our
system. The metadata performs a push operation to split the |F|
into n = C1..Cn chunks, which are distributed to a set of storage
synchronization monitors that are members of the storage federation.
When the provider shares that content by publishing the catalog,
the end-users are notified and can retrieve the contents by using a
FSS client APP. This APP obtains the locations to retrieve the chunks
once the metadata manager verifies that the credentials of the client
are valid. The APP retrieves the chunks from the federated storage
and reconstructs the file in-house. As a result, the members of the
federation has no possibility to reconstruct any file without either
the authorization of the metadata manager or the collaboration of
other members of the federation.

III.1 A metadata management layer

This layer is a cloud image in charge of the metadata flows, which
includes the following modules for establishing management rules
for the content flows:

• Catalog manager. This module enables the organization to create
and manage catalog of contents. This module includes an
attribute-based policy for managing the access to the contents
listed in the catalog. It also enables authorized users, called
providers, to add new contents to the catalog.

• Multi-tenant module. It manages end-users and providers ac-
counts and is also in charge of the controls of the catalogs
property. In this module, the contents of a given user account
are isolated and remains invisible to other accounts.

• Publish and Subscribe server. It is in charge of the catalog publi-
cation and the subscriptions of contents. It serves the contents
orders sent by end-users and controls the location of each cata-
log in the federation. This module includes an alert system that
notifies to providers who is subscribing their contents and deliv-
ers the links to get access to published contents. It also includes
push and pull RESTful functions for storing and retrieving
contents form the federation.

This critical component is installed in-house by using cloud in-
stance placed at private cloud of the organization.
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Figure 1: Content Allocation/Location in SkyStorage System.

III.1.1 A storage synchronization monitor

This module creates a database for managing the paths and access
methods of each storage resource assigned by an organization to the
federated cloud in the content delivery service. In order to observe
the conditions of the agreement of the federation, this database also
includes the consume metrics of each storage location. For instance,
the storage quotas of received contents from each partner and the
agreement characteristics for determining when a partner is ready
to receive redundancy.

This module registers the operations performed by FSS, providers
and end-users with each storage resource while an operational and
safety monitor keeps updating the statistics in the database.

An agent in this module manages the metadata of the storage
locations stores/retrieves contents by using the the redundancy layer.

III.2 A redundancy layer based on a multi-threaded
engine

We add redundancy to the original content by using a dispersion
algorithm called IDA [15]. This algorithm basically splits a given file
|F| into n redundant chunks, which must be distributed to n different
storage locations. In scenarios where some original locations are
unavailable and the user retrieves |F|, the algorithm recovers any
of m number of chunks from the available storage locations with
which the engine can reconstruct |F|. This means, it is granted that
|F| can be reconstructed when n > m and the unavailable locations
are n−m.

This algorithm can be implemented with different combinations
of m and n parameters. This combination determines the codifi-
cation costs in terms of storage space and computation time. The
size of each resultant chunk is |F|/m, which results in a percent-
age excess of redundancy equal to (n−m)/m. Let us consider an
IDA implementation with parameters (n = 5; m = 3), in this case
|F| is transformed into five chunks and it can be reconstructed by
retrieving at least three chunks from any three different locations; as
a result, the system produces 66.7% of redundancy overhead, which
is less than one replica.

Table 1 shows the amount of extra capacity spent for n servers
when requiring m chunks (at least) to support fault-tolerance.

Table 1: IDA Parameters Combination m (chunks required for recovering
contents) and n (servers)

n(servers) m=1 m=2 m=3 m=4 m=5 m=6
n=2 100%
n=3 200% 50%
n=4 300% 100% 33.3%
n=5 400% 150% 66.70% 25%
n=6 500% 200% 100% 50% 20%
n=7 600% 250% 133.3% 75% 40% 16.7%

III.2.1 Parallelism and Continuous Workflows

In order to save storage space, we use this algorithm in the content
delivery process instead of using several replicas. In terms of latency,
the client is retrieving (|F|/m) chunks of data, which is similar to
retrieve the whole file.

Nevertheless, the codification of the redundant chunks produces
computation overhead while the distribution of chunks produces
latency, which could be a problem depending on the network char-
acteristics.

In order to reduce the effects of overhead and latency on the
encoding/decoding procedures, we proposed and implemented an
IDA codification technique based on parallel and continuous flows
called Continuous Workflows.

We defined a distribution workflow based on the IDA encoding
procedure. This workflow has been designed for providers to deliver
contents to the federated storage by using push operations. This
workflow includes an acquisition stage that receives a service key as
input parameter. This key reports the construction of this workflow
to metadata manager and enables the engine to obtain n relative
URLs mapping n different containers. This engine stores each chunk
that will produce this workflow by using a relative URL, which
includes an anonymized name that will be the identifier of that
chunk in the assigned container. This means that this chunk is
managed as a file by the container/provider. This stage starts when
reading the content that will be distributed by the workflow and
ends up when sending both the content and the URLs to the next
stage.

The transformation stage creates as many process as cores in the
computer where the engine has been launched to split the content
into n redundant chunks. This stage adds redundancy to each chunk
and sends the obtained results to the transport stage. This stage
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Table 2: The characteristics of Agents Clients

PCs and Cloud Instances Cores RAM
Agents
UC3M-Cloud 5 Instances 2 4GB

UC3M-Colme 2 PCs 4 (i7) and 2 (i5) 4GB
Cinvestav 5 Instances 4 8GB
Clients
UC3M-Cloud 2 Instances 4 4GB
UC3M-Colme 2 PCs 7 (i7) and 4 (i5) 4GB
Cinvestav 5 Instances 2(3) and 3(2) 2(1GB) and 3(4GB)

writes the results, sent by the previous stage, in n streams created
by using the relative URLs. This stage closes the streams when the
encoding of each chunk is done and reports to the engine the found
errors if any.

We also defined a retrieving workflow based on the IDA decoding
for end-users to retrieve contents from the storage federation.

In this workflow, the acquisition stage receives as input parameter
the name of the content that will be retrieved by the workflow,
creates one file |F| whit this name by using the local file system
and sends m relative URLs to the pipeline. The transformation stage
creates as many process as cores available and sends the URLs to the
transport stage which creates m streams by using the URLs, reads
the chunks and sends the results to the pipeline. The Transformation
stage receives data, starts the reconstruction of the content and sends
the results to the pipeline.The acquisition stage writes the received
data in the file |F|.

The goal of this technique is to use all the processing power
available in the computer where the engine is placed for enhancing
the performance of the content workflow as it represents the highest
costs in a CD service.

This multi-threading version improves the performance of en-
coding and decoding tasks by taking advantage of multiple cores
commonly found in current devices. This technique allows the en-
gine to reduce the codification overhead making feasible to introduce
a fault-tolerant scheme in the CD process. The implementation of
CD as continuous flow allows the engine to avoid writing chunks in
the local disks.

We implemented the transformation stage by using TBB technol-
ogy [16] and the transportation stage by using Curl libraries [17].

IV. The prototype

We consider a scenario where a set of organizations build a CD
service in a cloud federated network by using our FSS. The federa-
tion includes three members that are represented by the following
acronyms UC3M-Colme, UC3M-Cloud and Cinvestav. UC3M-Cloud
located in Leganes, UC3M-Colme located in Colmenarejo (both cities
near to Madrid, Spain). Cinvestav is located in Northeastern Mexico.

The UC3M-Cloud is in charge of the metadata manager and all the
members have installed a image of the storage monitor and including
a set of agents of the multi-threaded engine. We have launched a set
of client images in the infrastructure of all the members with which
the end-users retrieve the contents published by a source.

Table 2 shows the features of the storage infrastructure shared by
each organization as well as the agents and clients included in this
prototype.

V. Experimental Evaluation

We defined two evaluation scenarios: In the first we evaluated the
performance of the federated storage system(FSS) with a synthetic
workload while in the second we conducted a study case in which
apply our FSS to the content deliver by using a set of real images.

We developed an IO_Launcher for producing publish, subscribe,
pull (Download) and push (Upload) operations. The API sends these
operations to the metadata manager. It assumes this artificial load
comes from real and valid users and captures the response time,
which is the only metric evaluated so far.

We captured the response time per each performed operation,
which helps us to determine the degree of satisfaction or end-users.
This time is measured from the publication/subscription moment
of a given content until the time point in which the storage service
retrieves that content, meaning that the request has been success-
fully dispatched. This time includes the streaming time, the network
round trip latency and the write/read time in the temporal paths.
This time also includes the time spent in subscription synchroniza-
tion. Finally, this time also could include codification time when
using redundancy.

VI. Experiments per evaluation scenarios and
Results

The preliminary results included in this section consider the evalua-
tion of the two scenarios previously defined.

VI.1 Performance evaluation of Federated storage
system

In this scenario, we evaluated a storage network created with UC3M-
Colme and UC3M-Cloud for testing the performance of FSS when
delivering and retrieving contents with different size file.

We have designed a synthetic workload scenario to test the redun-
dancy engine in which IO_Launcher sends an incremental load by
duplicating the file size from 512KB to 1GB.

We defined the following configurations in this scenario:

• Phoenix: In this configuration, users store and retrieve contents
by using an Online Distributed Web Storage System called
Phoenix[18]. We implemented Phoenix in the UC3M-Colme and
UC3M-Cloud organizations and it has been configured to apply
a fault-tolerant strategy to the contents based on dispersion of
information by using the IDA algorithm.

• Private FHS: In this configuration, users store and retrieve con-
tents by using a Private Web File Hosting System. We have
implemented a Private FHS in UC3M-Colme organization in
which the contents are stored without producing and distribut-
ing redundancy.

• Amazon: In this configuration, users store and retrieve con-
tents by using an AWS Amazon instance with the standard
redundancy associated to a free account.

• FSS: We implemented our file distributor and acquisitor agent
in the UC3M-Colme and UC3M-Cloud organizations. This con-
figuration allows us to measure all the stages of the workflow
produced by our storage system.
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Figure 2: Response Time of Uploads

Fig. 2 shows, in vertical axis, the mean response time obtained
when a user sends contents of different sizes (horizontal axis) to the
online storage system.

Fig. 2 also shows that Private FHS yields the best performance
because it returns the control to the user when the file arrives to
the cloud. This means Private FHS does not generate redundancy
overhead, which improves the response time observed by the user.
Moreover, Private FHS is situated in Colmenarejo city while the
common users of this service are from both Madrid and Comenarejo.
This reduces latency because both cities are geographically close
to each other. Amazon configuration performs the same procedure
as Private FHS but it produces more delay because its servers are
located at Ireland.

Phoenix configuration produces the worst delay because it solves
the vulnerability window in which the user could loss data by
immediately splitting contents into chunks and distributing them
to cloud storage locations of the two organizations. Once this has
been performed, Phoenix returns the control to the synchronizer. As
a result, the user obtains data assurance and she can retrieve that
file even when the site of her organization is down.

The FSS performance is better than Amazon configuration (44% in
mean) when the file size <4MB because the locality compensates
the overhead of codification and, when the file size >4MB, Amazon
configuration is better than FSS (9.14% in mean) because FSS dis-
tributes five chunks per I/O request (66.7% more data than Amazon).
Nevertheless, this is a small increment because of FSS optimizes the
storage stages on the client-side. In addition, that increment can be
reduced or even eliminated by reducing the amount of distributed
chunks when applying the information assurance policies.

As we can see, FSS offer the same reliability as Phoenix at reason-
able cost. Moreover, FSS preserves the original file in-house, which
means the contents can not be reconstructed by the administrators
of a given organization without obtaining some chunks from either
other organizations or the user device. When the users retrieving
contents by using FSS, we observed the same behavior that the
upload operations.

VI.2 Case study: Satellite Images delivery

This case study is based on data from the European Space Astronomy
Center (ESAC), located at Villafranca del Castillo (Spain), which is
in charge of the Soil Moisture Ocean Salinity or SMOS mission from
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Figure 3: The response times of push operations for FSS and Distributed
Cloud Storage configurations

2009. This mission has generated a vast amount of contents, that
will be used to create the first Earth global salinity map. Our system
distributes images of the Sun of SMOS mission in FITS format to
end-users through the Internet with a mean size of 44MB. A set
of organizations and end-users, from two countries spanning two
continents, get the contents by using a client APP of our system.

The following three configurations were defined in this case study:

• DCS: In this configuration, the end-user can access the contents
by using an online distributed cloud storage system or DCS
that does not include any redundant information.

• DCS-Mirroring: We implemented DCS in the UC3M-Colme
and UC3M-Cloud organizations that includes a fault-tolerant
strategy based on simple mirroring. This means two replicas are
sent to the federated storage. The organization can withstand
the failure of one cloud storage site by using this configuration.

• FSS: In this configuration, the organization delivers contents to
interested users by using a FSS system, which was configured
with an IDA combination (n = 5, m = 3). This means the FSS
client retrieves three chunks each time the end-users subscribe
a published content. This IDA configuration allows the system
to withstand 2 failures.

FHS and Phoenix configurations are not considered in this study
as the first exposes security issues and the second produces more
overhead than its version multi-threaded version FSS.

In this scenario we configured a storage network federation in-
cluding UC3M-Cloud, UC3M-Colme and Cinvestav organizations.
UC3M-Cloud was in charge of metadata manager and master of the
content distribution role. In this scenario, a source sends images to
the content delivery service by using publish and subscribe patterns.
In this evaluation we define a push pattern in which the source sends
the contents to its near members (UC3M-Cloud, UC3M-Colme). We
defined two pull patterns. The first invoked by member that are not
near to the source (Cinvestav). This pattern has been configured as
a hot standby scheme in which each storage monitor worker of the
Cinvestav member has a partner in the UC3M-Cloud and UC3M-
Colme. Each worker of Cinvestav retrieves a chunk from its partner
when the master receives a publish pattern. The service is accessed
by the users of the members as single domain by using subscribe
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patterns. Based on this unified interface, all users of all members
are supported even when the servers of their organization are not
available.

Figure 3 shows the mean response times observed by organi-
zations when they distribute contents to end-users by using the
mentioned configurations. Each point in this graph represents the
mean response time of ten push operations. This means that 120
contents, with a mean size of 44MB, were sent to the cloud storage
by the content delivery configurations. Figure 3 also shows that
the response times of DCS configuration are better than the FSS
configuration. Nevertheless, FSS configuration allows organization
to withstand the failure of one cloud site and the source, while DCS
is a single backup that can tolerate the failure of the source.

DCS-Mirroring improves the reliability of DCS configurations but
it introduces a considerable overhead in the response times. More-
over, this configuration sends the whole file, so privacy and legal
problems could arise. The FSS system distributes anonymized and
encoded chunks, which means that the FSS agent and client know
the locations of the chunks and are the only ones that can recon-
struct the contents. In addition, FSS only produces up 66.7% of
redundancy overhead while this overhead for DCS mirroring is of
100%.

VII. Conclusions

This paper presented the implementation of FSS: a system for con-
tent delivery and sharing in Federated Cloud Storage. This system
virtualizes the storage resources of a set of organizations as a single
federated system, which is in charge of the content storage. The
architecture of this system includes a metadata management layer
to keep the content delivery control in-house and a storage synchro-
nization worker/monitor to keep the state of storage resources in
the federation as well as to send contents near to the end-users. It
also includes a redundancy layer based on a multi-threaded engine
that enables the system to withstand failures in the federated net-
work. The experimental evaluation shows the benefits of building
content delivery systems in federated cloud environments, in terms
of performance, reliability and profitability of the storage space.
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Abstract

Computer systems performance is is being improved today using two major approaches: general-purpose computers computing power increase
(creation of multicore processors, multiprocessor computer systems, supercomputers), and adaptation of the computer hardware to the executed
algorithm (class of algorithms). Last approach often provides application of the ASIC-based and FPGA-based hardware accelerators, also called
reconfigurable, and is characterized by better performance / power consumption ratio and lower cost as compared to the general-purpose computers
of equivalent performance. However, such systems have typical problems. The ASIC-based accelerators: 1) are effective for certain classes of
algorithms only and 2) algorithms and software require adaptation for effective application. The FPGA-based accelerators and reconfigurable
computer systems (that use FPGAs as a processing unit): 1) in the process of writing require a special program to perform computing tasks
balancing between the general-purpose computer and FPGAs; 2) require designing the application-specific processor soft-cores; and 3) are effective
for certain classes of problems only, for which application-specific processor soft-cores were previously developed. In this paper, we consider an
emerging type of high-performance computer systems called self-configurable FPGA-based computer systems, which are deprived of specified
challenges. We have analyzed the background of self-configurable computer systems creation, presented current results of our research, and
introduced some ongoing works. Self-configurable computer systems are being developed within the project entitled "Improvement of heterogeneous
systems efficiency using self-configurable FPGA-based computing" that is the part of the NESUS Action.

Keywords Field programmable gate arrays, high performance computing, reconfigurable computing, self-configurable computer systems.

I. Introduction

Computer systems performance increase continues to be a determi-
native factor for the progress in science and engineering branches,
and also have become a catalyst of emerging a range of new spheres
of human activity. It is hard to find a field today that does not
depend on this characteristic of the computer systems. However in
the beginning of the 21st century the pace of performance increase
of the general-purpose processors that make a base of personal
computers and multiprocessor computer systems, fast until now,
has begun getting slower. This trend is even more notable today,
when the general-purpose processors clock rate practically remains
the same within several last years. The reasons for this are the
fundamental boundaries in the energy efficiency for the CMOS tech-
nology used today in the integrated circuits industry and limitations
that a traditional method of information processing imposes on the
general-purpose processor architecture, particularly, the sequential
execution of instructions in the program, and the sequential access to
instructions and data in the memory. Trying to provide the instruc-
tion set compatibility for each next processor generation with the
previous one and to support the existing software by the processors
of different generations, the hardware and software manufacturers
do not introduce principal changes neither into the single-processor
architecture nor into the method of information processing in it.

The task of computer systems performance increase is being
solved today mostly by creating the multi-core processors, where the
number of cores in the chip ranges from a few to tens of complex

and to hundreds of simpler ones, and tends to grow. However, an
approach to increase the number of cores in the chip in the system
has principal disadvantages as well. Thus, having the parallel data
processing, it is also necessary to investigate and develop much
more energy-efficient computer systems on each technological level,
including devices, hardware architecture and software.

Therefore, today one of the most perspective directions in high-
performance computing is creation of the heterogeneous computer
systems. These systems combine one or more general-purpose
processors and hardware accelerators, including those built on the
basis of reconfigurable environments - field-programmable gate
arrays (FPGA).

The problems related to designing the heterogeneous computer
systems with the use of the hardware accelerators, primarily the
reconfigurable ones, are considered in the book [1]. In this paper,
the design issues and the development trends of the heterogeneous
computer systems - from those built on the ASIC-based hardware
accelerators to the reconfigurable and self-configurable ones - are
being discussed.

II. Improving the Computer Systems Performance
Using the ASIC-based Hardware Accelerators

The ASIC-based hardware accelerator (AHA) is a device that con-
tains a high-performance programmable processor with architecture
dedicated to the specific class of algorithms and intended to increase
the computer system performance on that class of algorithms. Typ-
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ically, AHAs are used to execute the complex algorithms applied
to big data arrays that cannot be processed by the general-purpose
processor during the acceptable period of time.

Today the most widely used AHAs are [1]: the CELL proces-
sors developed jointly by IBM, Toshiba and Sony; the accelera-
tor boards manufactured by ClearSpeed (Great Britain-USA); the
GPGPU boards produced by ATI and Nvidia; and the GRAPE boards
developed jointly by the scientists from the University of Tokyo and
the National Astronomical Observatory of Japan.

Usually, when using AHA, the time of task execution is shortened
by one/two orders of magnitude as compared to that spent for this
task by the general-purpose processor. However, there are several
problems that significantly reduce AHA effectiveness, namely:

1. AHAs are very complex devices. Their development requires
years of work of a number of engineers (four years and nearly
four hundred of engineers for the CELL processor creation).

2. AHAs have got the parallel architecture. In order to write
the parallel programs for them, first the algorithms should
be adapted to this architecture that practically means their
re-designing and afterwards the parallel programs should be
developed using special programming languages, and this re-
quires a great amount of intellectual work. Moreover, not for
all algorithms this architecture is effective.

3. An approach to combine a general-purpose computer with
AHA gives an opportunity to get high performance for execut-
ing the tasks, on which the algorithms, that AHA is dedicated
to, are based, but not an arbitrary task.

Having a goal to provide the computer systems with the oppor-
tunity to achieve high performance characteristics while executing
arbitrary tasks, the accelerators are being built on the basis of pro-
grammable logic devices. Such hardware accelerators, as well as the
computer systems with them, are called reconfigurable.

III. Reconfigurable Computer Systems

Reconfigurable computer systems (RCCSs) compete with other types
of high-performance computer systems due to the high characteris-
tics of modern field-programmable gate arrays (FPGAs) - a hardware
base of reconfigurable computing environment (RCE) of RCCS, and
due to advances in design technology of application-specific proces-
sors to be synthesized in RCE of RCCS.

Co-functioning of the computer system based on the general-
purpose processors with application-specific processors synthesized
in RCE, whose structure considers an executed algorithms features,
allows its productivity to be increased by 2-3 orders of magnitude.
Reconfigurability and ability to synthesize an application-specific
processor (ASP) with a new structure and functions in RCE allow
one to change the functional commitment of RCCS created thereby
with preserving its high performance at the new class of problems.

The RCCS architecture and organization on different levels are
described in [2]-[4]. By analyzing these studies one may conclude
difficulty of information processing in such systems, which is a
consequence of a need to perform the ASPs design and synthesis in
RCE before being used. The ASP design is performed by describing
its architecture in the VHDL or Verilog hardware design languages

(HDL) with the use of the register transfer level design tools, or even
by specifying its characteristics and algorithm to be executed in the
high-level programming language, as it is provided by the advanced
electronic system level design tools, for example, System-C [5] from
Celoxica, Catapult-C [6] from Calypto Design Systems, DIMETalk [7]
from Nallatech, CoDeveloper [8]. These tools enable creation of the
HDL-descriptions of computing devices on the register transfer level
from the programs written in a high-level programming language,
often a modified C language. The Chameleon Technology and tools
[9] from Intron, as well as SPARK developed at the University of Cal-
ifornia, are intended to design ASPs using the algorithm description
in the ANSI C language. The basic platform for ASPs creation here
is a configurable processor architecture, which provides creation
of its desired configuration with the use of the following configu-
ration parameters: the number of functional units, the instruction
set of each functional unit, the capacity of the program and data
memories, the number of inputs and outputs of the communication
network. These parameters together with the specification of the pro-
cessor’s interface should be submitted in addition to the algorithm
description.

IV. Information Processing Method in RCCS.
Challenges and Solutions

Information processing in RCCS can be represented as a sequential
execution of the four stages [10]. At the first stage, the user creates
the program Pin written in the high-level programming language,
divides this program into the computer subprogram PGPC and the
RCE subprogram PRCE, performs the PGPC subprogram compilation,
generates its executable file obj and stores it in the computer memory.
At the second stage, the user develops (or uses a ready-made solu-
tion) an HDL-model ASPM of ASP intended to perform the PRCE
subprogram of RCE, performs the logical synthesis of the ASP and
loads the configuration files conf =

{
con fq, q = 1...KFPGA

}
, where

KFPGA is the number of FPGAs forming RCE, and, thus, creates
an ASP in RCE. At the third stage, after the program initialization,
the operating system loads the executable file obj of the computer
subprogram to its main memory. At the fourth stage, RCCS executes
the Pin program. Computer executes its own subprogram PGPC , RCE
executes its own subprogram PRCE.

By analyzing the above-described method of information pro-
cessing in RCCS, one can conclude the problems that significantly
impede the improvement of its efficiency, namely:

• the need in the process of writing a program to perform com-
puting tasks balancing between the general-purpose computer
and the reconfigurable environment;

• the need of designing the application-specific processor soft-
cores to be implemented in RCE that requires specialists and
software packages for the IP Cores designing, testing, synthesis
and implementation;

• in RCCS, there is an unsolvable problem caused by the inability
to develop the application-specific processor HDL-models to
be implemented in RCE that will be effective for the series of
problems. This challenge imposes a fatal limitation on RCCS:
these systems are effective only for certain classes of problems,
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for which the application-specific processor HDL-models have
been developed previously.

Automation of all stages of information processing in RCCS is
a key approach to solve the above problems. The development of
the ASP’s HDL-model at the second stage requires from the user a
significant amount of time and knowledge of the system-level design
technology. However, as mentioned above, today the software tools
are available allowing automatic creation of the ASP’s HDL-models
from high-level description of the algorithm to be implemented
in. This software tools transform the algorithm described in the
high-level programming language into the HDL-model of ASP. By
linking the operations of ASP’s HDL-model generation, ASP’s logical
synthesis and RCE configuring in automatically executable sequence,
the computer system can load the configuration codes into RCE
automatically with no user intrusion.

It should be noted that the use of generation tools imposes con-
dition of availability of a high-level algorithm description to be
implemented in ASP. The user creates this description at the first
stage during dividing the input program into two subprograms,
and this also requires from the user a significant amount of time.
Automation of load balancing, besides reduction of amount of time,
will allow one to:

1. link operations of load balancing and compilation of computer
subprogram in one startup sequence, and, as a result, to obtain
a subprogram executable file without user intrusion;

2. link operations of load balancing, generation of ASP HDL-
model, ASP’s logical synthesis and RCE configuration in one
startup sequence, and, as a result, to load configuration codes
into RCE automatically without user intrusion.

Consequently, automation of steps performed at the first two
stages of information processing method in RCCS, i.e. automatic
obtaining of computer subprogram executable file and automatic
creation and loading of ASP configuration files into RCE for RCE
subprogram execution, will allow one to reduce:

• the execution time for information processing;

• the complexity of information processing since the user has
no longer to perform the systems analysis, ASPs architecture
design and ASPs logical synthesis.

However, automation of the two first stages execution does not
solve another problem mentioned above - namely, the list of prob-
lems that RCCS is effective on remains short and depends on the
functional characteristics of ASPs implemented in RCE. Their change
requires, at least, repeating the second stage’s steps of the above-
mentioned method of information processing, which should be done
by the user.

This challenge can be solved by improving the method of infor-
mation processing in RCCS in the way that loading configuration
files obtained after the logical synthesis into RCE is carried out not
by the user but by the operating system, and not at the second
stage but at the third one, in parallel with loading the computer
subprogram executable file into its main memory after the program
initialization. This implies that configuration files should be stored
in the computer memory after the logical synthesis. Thus, because

the configuration files are formed automatically in parallel with the
computer subprogram executable file and stored in its memory, the
entire sequence of actions from the beginning of the load balancing
up to obtaining the executable file and the configuration files should
be treated as a single stage of program compiling.

V. Self-Configurable Computer Systems

We suggest to call self-configurable the computer system with recon-
figurable logic, where program compilation includes automatically
performed actions of configuration creation, and which acquires
that configuration automatically during the program loading for
execution [10].

In the Self-Configurable Computer System (SCCS), 1) execution
of the computational load balancing between the general-purpose
computer and RCE and 2) creation of the ASP’s programming model
are automated, and the method of information processing is im-
proved in the way that loading the configuration files obtained after
the logical synthesis into RCE is carried out not by user but by the
operating system in parallel with loading the computer subprogram
executable file into its main memory after the program initialization
[10].

The diagram of the method of information processing in the SCCS
is shown in figure 1. This method can be represented as a sequential
execution of three stages: program compiling, loading and execution.

The user creates a program Pin written in a high level program-
ming language and submits it into SCCS. SCCS during compiling
automatically performs the following actions: divides this program
into the computer subprogram PGPC and the RCE subprogram PRCE,
performs computer subprogram PGPC compilation, generates its ex-
ecutable file obj, creates ASP’s HDL-model ASPM to perform the
RCE subprogram PRCE, performs the ASP’s logical synthesis, and
stores the obtained executable file obj and the RCE configuration
files conf =

{
con fq, q = 1...KFPGA

}
in computer memory, where

KFPGA is the number of FPGAs that form RCE.
In order to perform these actions the SCCS has to contain the

following means:

1. A computational load balancing system for load balancing be-
tween the computer and RCE. This system should automatically
select from the program Pin fragments, whose execution in RCE
reduces its execution time, and divide the program Pin into the
computer subprogram PGPC , replacing the selected fragments in
it by instructions for interaction with RCE, and the RCE subpro-
gram PRCE, formed from the selected fragments. An example
of such system is described in [11]. This system creates the
RCE subprogram in the x86 assembly language, thus it must
be supported by the means for the assembly language code
translation into the high-level language to be used in SCCS. The
tool of this type is available on the market, for example Relogix
Assembler-to-C Translator [12] from MicroAPL.

2. A generating system for the ASP HDL-model creation, which
should automatically generate a model ASPM from the RCE
subprogram PRCE, like Chameleon system from Intron, Agility
Compiler and DK4 Design Suite from Celoxica, CoDeveloper
from Impulse.
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Figure 1: The diagram of the method of information processing in the SCCS.

3. The tools that are used in RCCS for performing the computer
subprogram compilation and creation of its executable file, and
for the logical synthesis of the ASPs.

At the stage of the program loading after its initialization, SCCS
loads the executable file obj of the computer subprogram into its
main memory using the standard loader and, at the same time, loads
the configuration files conf =

{
con fq, q = 1...KFPGA

}
into RCE and,

thus, creates an ASP in it. Then, the stage of the program execution
is performed in the same way as in the RCCS. In order to perform
these actions the same tools can be used in SCCS as in RCCS.

The structure of the self-configurable computer system that im-
plements the proposed method of information processing is shown
in figure 2. The term "self-configurable" against the FPGA-based
computer system implies that here the computer system performs
by itself all the steps of information processing after the program
initialization, ranging from the load balancing between the computer
and RCE up to obtaining the executable file of RCE, as well as the
RCE configuring.

VI. SCCS Benefits

• Ensured effective use of reconfigurable logic to perform arbi-
trary tasks - loading of executable files and configuration files

into the computer main memory and into RCE is, respectively,
performed by the operating system after program initialization.

• Shortened information processing time - all the actions, start-
ing from the load balancing and till obtaining the executable
file and the configuration files, are executed automatically at
the stage of program compiling without user’s intrusion.

• Reduced information processing complexity - requirements
to the user experience are simply reduced to knowing the high
level programming language.

• Simplified programming - the user utilizes the ANSI C lan-
guage that requires no additional constructions (parallel opera-
tors, directives etc.) and works with SCCS in the same manner
as with the conventional personal computer.

VII. Background of SCCS

SCCS creation is the result of years of engineering and research
work of the authors in the field of application-specific processors
development, their ASIC-and FPGA-implementation, and creation of
the methods and means for their high-level design. The background
of SCCS is built on the:
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Figure 2: The structure of the self-configurable computer system.

1. ESL Design Tools and Solutions (developed in cooperation with
Intron ltd (http://intron-innovations.com)):

• Chameleon - System-Level Design Solution intended for
the ASIC design automatic generation from the algorithm
described in the ANSI C language. The developer, specify-
ing an algorithm of the data processing on ANSI C, gets
on return fully debugged and synthesizable VHDL RTL
model of the device that implements the described algo-
rithm. The architecture of the device is fully optimized
for the executed algorithm and maximally uses its ability
for paralleling. Obtained VHDL design may be further
implemented in FPGA by any FPGA design solution, e.g.
the Xilinx ISE Web-PACK.

• OSCAR - System-Level Design Solution intended for the
VHDL design automatic generation from the algorithmic
representation. The customer may select one of the follow-
ing options for synthesizing the algorithmic computing
device (ACD):

(a) a single-stage ACD;

(b) a multiple-stage ACD;

(c) a pipeline ACD;

(d) an ACD with the scalable layers/operators.

• IP Cores Generator -high-level software tools, which allow
IP Core with required characteristics to be obtained auto-
matically on the basis of the scalable IP modules’ sources.
Some of them are the tools for generating: 1) the Fast
Fourier Transformation IP Cores; 2) the Fast Cosine Trans-
formation IP Cores; 3) the Data Encryption Standard IP
Cores; 4) the Multiple-Block RAM Access Controller IP
Cores [13], [14].

Generator’s input consists of the scalable parameterizable
IP modules’ sources and user-defined IP Core parameters
from the given list. The generator output consists of the
IP Core source HDL files; the IP Core test bench with the
test patterns; text documentation etc.

2. Our new computer architecture.

3. Our new multiport computer memory with the parallel conflict-
free data access [15].

VIII. What We Have Done Within the Project

• The theoretical principles of the SCCS design and operation
have been developed, the characteristics of information process-
ing duration in SCCS have been investigated and the SCCS’s
fundamental advantages over the reconfigurable ones have been
proven.

• The method of information processing in SCCS for their single-
and multi-processor implementations has been developed.

• The principles of the SCCS structural organization and the con-
ceptual bases of their components design have been developed.

• The theoretical foundations of approaches to computational
load balancing system design in SCCS and the method of com-
putational load balancing between the general-purpose com-
puter and the reconfigurable environment have been investi-
gated. An instance of the computational load balancing system
with the use of the LLVM compiler has been created.

• The high-level design tools have been developed allowing the
application-specific processor VHDL IP-Cores to be generated
on the basis of the ANSI C descriptions of their algorithms of
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operation that are the advanced products for the system-level
design.

IX. Current and Future SCCS Development

In our belief, SCCS represents definitely an emerging direction in
developing the heterogeneous computer systems particularly and
in the high-performance computing in general, and there is a need
in further works in developing the SCCS theoretical basis, software
and hardware design and implementation, testing, optimization etc.
Some ongoing works on the SCCS creation are as follows:

• Development of the SCCS operating system. The goal of this
work is to develop the theoretical background and the appro-
priate system software means for the SCCS operation during
program compilation, loading for execution, and execution.

• Load balancing in the SCCS. The goal of this work is to de-
velop the theoretical background and the appropriate software
tools for balancing the computational algorithms specified by
the input program between the general-purpose programmable
processor and reconfigurable environment that fully explore
the spatial and the temporal properties of the algorithm.

• Automatic mapping of the soft-cores synthesized by the
HLL2HDL tools into the target FPGA architecture (the HLL
- high-level programming language). The goal of this work
is to develop the theoretical background and the appropriate
software means for adaptation of the structure of the soft-cores
synthesized by the HLL2HDL tools to that of the target FPGAs,
as well as to integrate these tools with other software SCCS
components.

• SCCS based on the partially reconfigurable FPGAs. The goal
of this work is to improve the SCCS efficiency by developing
the methods of the parallel execution of multiple computing
tasks in their reconfigurable environment, to implement and
investigate the self-configurable FPGA-based computer systems
based on the partial dynamic reconfigurable FPGAs.

X. Conclusions

In this paper, we have described an emerging type of the heteroge-
neous computer systems, namely, the self-configurable FPGA-based
computer systems.

The method of information processing in SCCS has been presented
and the rules of application of the computer software and hardware
tools necessary for its implementation have been described.

SCCS benefits are as follows: 1) an ensured effective use of the
reconfigurable logic to perform arbitrary tasks; 2) a shortened in-
formation processing time; 3) a reduced information processing
complexity; and 4) a simplified programming.

We have highlighted the background of SCCS, which is built
on: 1) our ESL Design Tools and Solutions; 2) our new computer
architecture; and 3) our new multiport computer memory with the
parallel conflict-free data access.

Finally, we have shown some ongoing works on the SCCS creation,
targeted on the development of the SCCS theoretical basis and their
software and hardware components design and implementation.
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Abstract

A data parallel solution approach formulated with cellular automata is proposed with a potential to become a part of future sustainable
computers. It offers extreme parallelism on data-flow principles. If a problem can be formulated with a local and iterative methodology, so that data
cell results always depend on neighbouring data items only, the cellular automata could be an efficient solution framework. We have demonstrated
experimentally, on a graph-theoretical problem, that the performance of the proposed methodology has a potential to be for two orders of magnitude
faster from known solutions.
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I. Introduction

Increasing data and processing requirements of applications are con-
stantly pushing for further increases in computational capabilities.
Today, we have reached a point where computational systems are
confronted with physical barriers that limits a significant further
increase of system frequencies. Additionally, excessive energy con-
sumption, limited scalability and complex data management are
obstacles that have to be solved nowadays to enable further increase
of the computing performances.

It seems that massively parallel computing devices on all lev-
els of computing, connected in heterogeneous computing systems,
could counterbalance these difficulties. Multicore systems, graphic
processing units (GPU), dedicated FPGA accelerators are already
widely implemented and investigated options in contemporary high
performance computers. Adaptive combinations of control-flow and
data-flow approaches seems to be able to offer general purpose and
sustainable ultrascale computers that will be able to cope the appli-
cations either with demanding processing power or with complex
analysis of big data sets.

The cellular automata (CA) can be considered as an alternative
way of computation based on local data-flow principles. The concept
of CA was first proposed by John von Neumann in 1950s through
self-reproducing systems (published later in [1]). The formalization
has been improved by various authors [2, 3, 4, 5], emphasizing
different theoretical and practical perspectives. Various application
areas of CAs, ranging from ecology [6], biology [7], diffusion through
soil pores [8], image processing [9], wafer diagnostics [10], sociology
[11] etc., have been investigated later.

A CA can be informally represented as a set of regularly and
locally connected identical elements. The elements can be only in a
finite set of states. The CA evolves in discrete time steps, changing
the states of elements according to a local rule, which is the same for
all elements. The new state of each element depends on its previous
state and on the state of its neighbourhood. The characteristic
properties of CAs are therefore locality, discreetness and synchrony.

The CA can be considered as a computing machine in the sense
that it is able to transform an input configuration, embedded in its

initial state, to an output configuration. The theoretical studies of
the computational capabilities of CA [3, 4] have shown that there
exists CAs that are equivalent to the Turing machine and therefore
can be used as general purpose computers. Our work is relevant
to the practical backward approach in the design of CAs [5], where
transition rules are searched for that result in CA states that match
the physical system.

Many efficient applications have been developed with data-flow
approaches and CAs on problems that have been previously solved
with local numerical methods [12, 13]. The CAs can compete with
classical computers in computational performance and efficient use
of energy because of massive parallelism and relatively low system
clock. The hardware resources of CAs can be implemented with
Systems-on-Chips (SoC) on the wafer level [14], with more gen-
eral Field programmable logic arrays(FPGA) [12], with emulation
on manycore systems or on hybrid architectures mixing all above
options.

A CA can be mapped on the physical system with the method-
ology already established in heterogeneous computing: the initial
problem data and possibly transition rules are mapped from the host
CPU onto the computing array which implements the CA. CA cells
compute in parallel for the required number of computational steps.
After a stopping criteria is met the results are read from the CA into
the host memory and further analysed or visualized on the CPU.
The procedure can be implemented in a loop with an eventual repro-
gramming of the CA. It is evident that such a data-flow approach
could have a striking advantage [15] over the classical crunching
machines in the significantly lower consumption of energy per a
computing operation, which could contribute to the sustainability of
future computers.

The CAs rely on the discreteness, locality, regularity, and syn-
chrony. Their simple definition has several advantages, e.g. CAs are
not limited by the number of elements, their evolution is inherently
parallel, they have a strong resemblance to many important princi-
ples in the nature like: cells that are building blocks for large systems,
elementary particles, etc. However, to approach to real problems,
some additional properties of CAs are necessary, e.g. global com-
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munication (for loading of initial data, implementation of stopping
criteria or reading of final results) and non-homogeneity (for an
adequate treatment of boundary conditions).

The rest of the work is organised as follows. In the next Section
a principal description of the proposed system architecture is de-
scribed focusing on global operations related to data movements.
Section III is an overview of the work related to the identification
of infinite clusters and their percolation backbones. This problem
can be considered as an example of a large class of demanding
tasks that can be solved by parallel iterative operations on local data.
In Section IV a new efficient CA algorithm is proposed that can
efficiently cope with this graph-theoretical problem. The proposed
approach is experimentally tested and evaluated on finding 2-D site
percolation backbones. It was shown that the performance of the
proposed solution has a potential to be for two orders of magnitude
faster than previous known solutions.

II. System architecture

To objectively evaluate a CA algorithm the time needed for data
manipulation has also be considered. Fore example, initial data, e.g.
pixels of images, sites of percolation array, etc. must be loaded into
CA cells. Beside data management capability, each CA cell must
comprise also a processing and memory unit that are tailored to al-
gorithm requirements. All cells usually execute the same operations
with the same system clock.

We can suppose that a CA array is build from rectangular tiles that
incorporate N = (L×M) CA cells. For simplicity, we suppose that
M = L. Each cell is connected directly with a small number of near-
est neighbours d, e.g. d = 4 or d = 8 with a simple communication
switch built in each CA cell [16].

A set of l routers with radix r is connected to a subset of r CA
cells. The radix is here a number of communication ports to the
lower level. Each router has also a single, possibly faster, port to the
higher level. If the number of CA cells is large, p intermittent levels
of routers can be introduced. The routers communicate with a host
computer that manage data transfer to lower layer routers, or to CA
cells if a router is positioned on the lowest level.

The communication among direct d connected cells is performed
in a single communication step (hop). Also the routers can connect
two levels of routers in a single hop. In the case of a single level of l
routers, the data can be transferred from the host computer to all N
CA cells in three hops. For example, if we have a grid of N = 10.000
CA cells arranged in a (100× 100) grid with d = 8 and r = 36 then
dr2 = 10.368 CA cells can be reached with a single level of r routers,
so the whole CA grid can be filled with initial data in three hops.

Note that a certain degree of pipe-lining in the communication
is possible that can further decrease the total communication time.
The ratio between the communication and calculation time limits
the scalability and speed-up of the execution, as usual in all parallel
systems.

III. Related work and problem definition

In percolation theory, one of the fundamental task is to find a span-
ning cluster (termed also infinite cluster) of the same sites that
connect two opposite borders of a simulated square domain. Such
clusters appear if the probability that a site or CA cell is coloured

black is higher than the percolation probability pc [17]. The recur-
sive Hoshen-Kopelman algorithm [18] is a popular algorithm for
the identification of infinite clusters that has been also successfully
parallelized [19] on distributed memory computers. Several other
approaches to the paralellization of graph algorithms are presented
in [20].

The next task, which is computationally more complex and there-
fore still a bottleneck, is the backbone identification in infinite clus-
ters. Informally, all sites in dead ends or loops that can not contribute
to the "transport" of a matter trough the infinite cluster has to be iden-
tified and removed to determine the backbone. Tarjan’s recursive
depth-first-search (DFS) algorithm [21] is well known and often used
for the backbone identification. The key to finding the backbone
is to recognize the articulation sites of the infinite cluster. A local
procedure for recognizing articulation sites along with an improved,
almost four times faster, algorithm for the backbone identification
was proposed in [22].

An interesting approach for the backbone identification in an
infinite cluster, based on the principle of direct electrifying solved
by FEM methodology, is presented in [23]. All of the backbone
finding algorithms are recursive with a risk of stack overflow in
large systems.

As an alternative to the above listed approaches, we propose a CA
algorithm for identification of infinite clusters and their backbones
in 2-D grids with open boundary conditions. The algorithm relays
on local rules and can resolve the problem of stack overflow in large
systems. The inherent data-parallel approach of CA can improve
efficiency and speed-up of the execution.

We consider a CA as a two dimensional lattice network of unite
squares (cells) whose centres are in integer lattice (grid). For simplic-
ity, we suppose that the grid has N = L2 cells (i, j) with positions
determined by indices i, j = 0, ..., L− 1 in x and y directions, where
L ≥ 3. Each cell can exist in a finite number of states. Cells of
the lattice network change their states in discrete moments in time.
Cell’s next state is defined by local transition function, which manages
with altering the states of each cell, based on the present cell state
and states of neighbourhood’s cells. We use Moore neighbourhood
with twenty-four neighbours. A cell has four nearest neighbours
(nn) and four next-nearest neighbours (nnn) and sixteen not next -
nearest neighbours. Two cells (i1, j1) and (i2, j2) are nn-neighbours if
|i1 − i2|+ |j1 − j2| ≤ 1, nnn-neighbours if (i1 − i2)2 + (j1 − j2)2 = 2
and nnnn-neighbours if 2 < (i1 − i2)2 + (j1 − j2)2 ≤ 4.

For a CA A applying the local transition function ϕA to all cells
of a configuration Con f simultaneously, we get the sequence of
configurations con fA(t, Con f ), where t = 0, 1, 2, ... is a time step.

The initial configuration is represented by a 2-D grid of square
cells and each cell can exist in two different states, white or black.
On the top and bottom boundaries of the grid are black cells only
while the left and right boundaries are white. All remaining cells
of the grid, are coloured black with probability p and white with
probability 1− p. These probabilities are independent for each cell.
Two examples of grids with p = 0.5 < pc and p = 0.6 > pc are
shown in Figures 2 and 1, respectively. We can see that an infinite
cluster appears in the example from Figure 1.

Two cells (i1, j1) and (in, jn), which are in the same state are nn-
connected if there exists a sequence of cells (ik , jk), 2 ≤ k ≤ n which
are in the same state, such that each pair (ik−1, jk−1) and (ik , jk) are
nn-neighbours. Similarly, they are nnn-connected if the sequence of
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Figure 1: Initial grid configuration generated with p = 0.5 without infinite
clusters.

the cells (ik, jk), 2 ≤ k ≤ n which are in the same state, such that
each pair (ik−1, jk−1) and (ik , jk) are nn- or nnn-neighbours.

A black nn-cluster is a group of black cells which are nn-connected.
The infinite cluster is a black cluster which spans from the top to the
bottom row of a grid. The backbone is a subset of the infinite cluster,
which cells are nn-connected with the top or bottom row cells with
at least two disjoint chains. A cell is an articulation cell of an infinite
cluster if removing the cell (i.e. changing its state to white) splits
the infinite cluster into two or more parts, at least one part being
connected to neither the top nor the bottom row.

In the same way, an nnn-cluster is a group of cells in the same
state that are nnn-connected. In particular, white nnn-cluster is a
group of white cells that are nnn-connected.

The proposed CA algorithm for identification of infinite cluster
and its backbone is implemented in four steps. In the Step 1, white
nnn-clusters are labelled with different colors. After finishing this
task the algorithm identified the cells that belong to the infinite
cluster. In Step 2, the algorithm recognizes articulation cells of the
infinite cluster. Some of them are permanently removed, but some
of them are marked by white color. In Step 3, the parts of backbone
are labelled. Finally, in Step 4, some of previously marked white
cells become a part of the backbone and the backbone is identified.

IV. Solution algorithm

Let i, j ∈ {0, 1, 2, ..., L− 1} and t ∈ N, t ≥ 0. Denote by c(i,j)(t) the
state of a cell (i, j) in time step t and by c (t) an argument of a local
transition function, which is an ordered collections of nn- , nnn- and
nnnn- neighbours cell’s states in time step t.

We use the terminology of colors. A cell is in state ’m’ if it is
coloured by color m. 0-color is white, 1-color is black, m-color is a
color with code m, m > 1, e.g. in RGB implementation.

Let C0 be an initial configuration. We will define five CAs Ai
by their local transition functions ϕAi , i = 1, 2, ..., 5. For a CA Ai
applying the local transition function ϕAi to all cells on a configu-

Figure 2: Initial grid configuration generated with p = 0.6 with a single
infinite cluster.

ration Con f simultaneously, we get the sequence of configurations
con fAi (t, Con f ), i ∈ {1, 2, ..., 5}, where t = 0, 1, 2, ... is a time step.

Step 1: CA A1 will change states of some white cells in each white
nnn-cluster. These new states will be all different because their
colors are related to their positions. Let a and b are the lowest left
and lowest right cells on the left and right boundaries of the grid in
initial configuration C0. Let LR = {a, b}⋃{
(i, j) ∈ C0|c(i,j)(0) = 0∧ c(i+1,j−1)(0) = c(i+1,j)(0) = c(i,j−1)(0) = 1

}
.

Then ϕA1 (c(t)) = c1
(i,j)(t + 1) where:

c1
(i,j) (t + 1) =

{
i ∗ L + j + 2, t = 0∧ (i, j) ∈ LR
c(i,j) (t) , otherwise.

and t = 0, 1, 2, ... is a time step.
Colour i ∗ L + j + 2 of a cell (i, j) depends on the position of a

cell in the grid. Hence, the CA A1 changes the state of a cell in a
new unique state, different from all other cells. Also, lowest left
cells of any white nn- and nnn-cluster has black nnn-neighbours
(i + 1, j− 1), (i + 1, j), (i, j− 1). Hence, in every white nnn-cluster at
least one cell will have its unique color, different from white. Note,
for t > 1 the CA A1 will remain idle.

CA A2 will colour every white nnn-cluster with unique
color, different from black and white. Let Cols(i,j)(t) ={

c(k,l)(t)|k ∈ {i− 1, i, i + 1} , l ∈ {j− 1, j, j + 1}
}

be the set of all col-

ors of nn- and nnn-neighbours of a cell (i, j). Then ϕA2 (c(t)) =
c2
(i,j)(t + 1) is defined by:

c2
(i,j) (t + 1) =

{
max(Cols(i,j)(t)), c(i,j)(t) 6= 1∧max(Cols(i,j)(t)) > 1
c(i,j) (t) , otherwise.

where t = 0, 1, 2, .... For the CA A2, after some time step, no cell will
be changed. In implementation of the CA A2 a global variable is
used to identify this.

3

Biljana Stamatovic, Roman Trobec 67



Book paper template • September 2014 • Vol. I, No. 1

If cells a and b have the same colors then left and right boundaries
are in same nnn- cluster. Hence, if cells a and b have the same colors
initial configuration doesn’t have an infinite cluster.

Step 2: CAs Ai , i = 3, 4, 5 will implemented the part of the algo-
rithm from [22].

CA A3 will locally identify articulation cells and color them with
white color, in the first time step. In the second time step, the CA
will label some nn-neighbours of white cells, because some of the
white cells may belong to the backbone. Note, that after Step 1 no
cell remains white. Definition of CA A3 is obtained from discussion
and the corollary in [22].:

Corollary 1 Let a be a cell of the black infinite cluster, and let Ga be a set
of a and its nn and nnn cells then a is an articulation cell if and only if
there are in Ga at least two white cells, referred to as b and c, that belong to
the same nnn-cluster but cannot be connected by the white cells from Ga.

Figure 3: Cases of articulation cells: y is any color different from black and
x and z are any colors with a restriction that z must be different from y.

In figure 3 some cases of Ga are shown. The set of the shown cases
together with their rotated configurations for 90, 180, 270 degrees,
are denoted by Ar. Let Tag is the set of black nn-neighbours of white
cells which are tagged as contact couple. For example, for central
cell (i, j) in figure 3 d) the contact couple is {(i + 1, j), (i, j + 1)}, in
figure 3 e) the contact couple is {(i + 1, j), (i, j− 1)} and in figure 3
f) contact couples are {(i, j + 1), (i + 1, j)} and {(i− 1, j), (i, j− 1)}.
In implementation we will have twelve cases for the tagging and
we will use nnnn-neighbours. Here, we only use one color tag =
L2 + 2, because of a simplified explanation. Now, we define the local
transition function ϕA3 (c(t)) = c3

(i,j)(t + 1) by:

c3
(i,j) (t + 1) =





y, t = 0∧ (i, j) ∈ Ar a), b), c
0, t = 0∧ (i, j) ∈ Ar d), e), f )
tag, t = 1∧ (i, j) ∈ Tag
c(i,j) (t) , otherwise.

where t = 0, 1, 2, ... is a time step and y is from figure 3 a), b), c) .
Note, for t > 2 the CA A3 will remain idle.

Step 3: CA A4 will color black cells from the infinite cluster that
are in its backbone, except some articulation cells.

Let m = L2 + 3. The local transition function ϕA4
will label a part of backbone by a color m. Let TB ={
(i, j)|c(i,j)(t) = 1∧ (j = 0∨ j = L− 1)

}
be the set of top and bot-

tom boundary black cells. Let Nn be a set of black and tag cells
whose at least one of its nn-neighbours is in state m. Let Ntag
be a set of tag cells which have one white nn-neighbour and
one different tagged nnn-neighbour or two white nn-neighbours
and two m nnn-neighbours. Now, the local transition function
ϕA4 (c(t)) = c4

(i,j)(t + 1) is defined by:

c4
(i,j) (t + 1) =

{
m, (i, j) ∈ TB

⋃
Nn

⋃
Ntag

c(i,j) (t) , otherwise.

where t = 0, 1, 2, ... is a time step. For the CA A4, after some time
step, no cell will be changed. In implementation of the CA A4 a
global variable is used to identify this.

Step 4: Here, we will define CA A5 who decide which white cell
from Step3 is in the backbone. We will use the fact "a white cell
should be restored to be a cell of the backbone if either (i) it has at
least two nn-neighbours belonging to the infinite cluster, or (ii) it has
an nn-neighbour of the infinite cluster and a white nn cell which are
nn-connected by another cell of the infinite cluster" from paper [22].

Let B be a set of white cells with two or more m nn-neighbours
and cells with an m nn-neighbour and a white nn-neighbour which
is nn-connected by another m cell. The local transition functions
ϕA5 = c5

(i,j)(t + 1) is defined by:

c5
(i,j) (t + 1) =

{
m, (i, j) ∈ B
c(i,j) (t) , otherwise

where t = 0, 1, 2, ... is a time step. Note, for implementation of the
CA A5 we will use nnnn - neighbours.

Using the described CAs in a loop we can form algorithm 1 for
the identification of infinite clusters and their backbones.

Data: Initial configuration C0
Result: If the infinite cluster does not exist then the algorithm

stops else the obtained set of m cells is backbone.
ϕA1 ;
while exist cell which change its state do

ϕA2 ;
end
if state of lowest left cell == state of lowest right cell then

stop; //no infinite cluster
else

ϕA3 ; // articulation cells become white
ϕA3 ; // nn-neighbours some of white cells are tagged
Let m be an unique color;
while exist cell which change its state do

ϕA4 ;
end
ϕA5 ; // some articulation cells are in backbone

end
Algorithm 1: Algorithm for identification of an infinite cluster
and its backbone.

V. Experimental results and discussion

The implementation of the algorithm is made in NetLogo 5.0.4.
The algorithm was extensively evaluated on various test cases for
different size of grids and percolation probabilities, i.e. densities
of black cells in initial configuration. In Figures 4 and 5 the final
configurations are shown after running the Algorithm 1 on initial
configurations from Figures 1 and 2, respectively.

It is evident from figure 4 that there is no infinite cluster in the
initial configuration from figure 1. However, figure 5 indicates a
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backbone of an infinite cluster, which is obviously present on the
initial configuration from figure 2.

Figure 4: Final result after the application of proposed algorithm on the
initial configuration from figure 1.

Figure 5: Yellow backbone for initial configuration from figure 2.

The preliminary numerical results for different sizes of grids and
probability of black cells p = 0.592745 are shown in Table 1. We cal-
culated the average time steps required for 100 initial configurations
of each for grid size. The slope in the number of time steps can be es-
timated as ∆L2/∆M and is significantly smaller as in [22]. However,
the current implementation of the algorithm with NetLogo is limited
with grid sizes. The results still indicate that the proposed algorithm
can be faster than known algorithms for the backbone identification.
For definite confirmation we need a data-flow implementation of
the algorithm, which is a part of our future investigation.

Advantages of the proposed approach are in using data-flow
approaches in Step 1 and Step 3 [24] while the well known algorithms

for labelling components are based on DFS approach, which is
recursive and hard to parallelize [25]. The proposed CA definition
of the proposed data parallel algorithm has several advantages, e.g.
it is not limited by the number of cells, its evolution is inherently
parallel, and it has a strong resemblance to the important approaches
in the nature like principles of cells or elementary particles.

Drawbacks of the algorithm are in using global variables for stop-
ping CA’s work. Lack of global communication, implies problems
related to global synchronization, data manipulation and inability
for calculation of complex mathematical operations, however, these
difficulties can be resolved by dedicated hardware resources. The het-
erogeneous computing, supported today with data-flow approaches,
FPGAs, SoCs, GPUs and manycore systems, are promising platforms
for the implementation of the efficient CA based algorithms.

Dimesions of grid (L) Mean time steps (M)
21x21 26.3
41x41 49.61
61x61 58.81
81x81 73.12

101x101 81.59
121x121 85.49
141x141 93.74
161x161 91.38
181x181 95.6
201x201 97.86

Table 1: Average number of time steps M as a function of grid size L.
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Abstract

The ever-increasing power of supercomputer systems is both driving and enabling the emergence of new problem-solving methods that require
the efficient execution of many concurrent and interacting tasks. Swift/T, as a description language and runtime, offers the dynamic creation and
execution of workflows, varying in granularity, on high-component-count platforms. Swift/T takes advantage of the Asynchronous Dynamic
Load Balancing (ADLB) library to dynamically distribute the tasks among the nodes. These tasks may share data using a parallel file system, an
approach that could degrade performance as a result of interference with other applications and poor exploitation of data locality. The objective
of this work is to expose and exploit data locality in Swift/T through Hercules, a distributed in-memory store based on Memcached, and to
explore tradeoffs between data locality and load balance in distributed workflow executions. In this paper we present our approach to enable
locality-based optimizations in Swift/T by guiding ADLB to schedule computation jobs in the nodes containing the required data. We also
analyze the interaction between locality and load balance: our initial measurements based on various raw file access patterns show promising
results. Moreover, we present future work based on the promising results achieved so far.

Keywords Locality, In-memory storage, Swift/T, workflows

I. Introduction

Storage systems represent one of the main bottlenecks in modern
high-performance systems and are expected to pose a significant
challenge when building the next-generation exascale systems [2].
Large-scale storage systems are likely to be hierarchical [4], a con-
figuration that will probably be achieved by exploiting data locality
and asynchronously moving data among hierarchy levels [7].

In order to extract maximum performance from the new hard-
ware, exascale systems will require new problem-solving ap-
proaches. One of the most promising candidate approaches is the
many-task paradigm relying on a workflow model. In this paper we
propose a solution using Swift/T, a programming model and run-
time developed at Argonne National Laboratory that simplifies the
development and deployment of many-task applications on large-
scale systems. To expose and exploit data locality in Swift/T, we use
Hercules, a distributed in-memory store based on Memcached. Her-
cules offers Swift/T workers a shared storage in which I/O nodes
can be dynamically deployed for increasing data locality, while scal-
ing better than traditional shared file systems. Additionally, the per-
formance can be isolated from the shared file-system load peaks, a
feature that will be especially important on exascale systems where
several applications can be running concurrently.

II. Swift/T

Swift [11] is a programming model and runtime engine that permits
users to easily express the logic of many-task applications by using
a high-level language called Swift. The latest Swift implementation,
called Swift/T [12], can quickly launch tasks in any of the available
workers using the dataflow model Turbine.This model can be de-
ployed and distributed and can generate tasks with the throughput
required by next-generation exascale systems [13].

As seen in Figure 1, Swift/T comprises three main components:
the Swift compiler, the Turbine engines, and the Asynchoronous Dy-
namic Loud Balancing (ADLB) module [8]. The first step consists
in converting the Swift code into Turbine code. The Swift language
is a scripting language that can easily used to describe parallel al-
gorithms. A Swift program specifies different leaf tasks with their
input and output clearly characterized. These tasks can be written
in the Swift language or can be independent programs written in
any other language, treated by Swift as black boxes.

The second step is the identification of dependencies in the Tur-
bine code. Independent tasks can be run in parallel, while data-
dependent tasks will be held by the Turbine engines until every de-
pendency is fulfilled. When a task is ready to run, it is dispatched
to the ADLB load-balancing module. The Turbine engines can run
on any number of nodes for additional load balancing.

In the third step, the ADLB module schedules the tasks to be
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Swift 

program

user
Turbine code

compiler

engine engine engine engine engine

load balancing (ADLB) / data services

worker worker worker worker worker

worker worker worker worker worker

Leaf tasks Notifications

Figure 1: Architecture of the Swift/T runtime. Swift code is compiled
into the Turbine code evaluated by the engines; workers execute leaf task
applications.

launched on the available workers. When a task finishes, ADLB
collects the results and notifies any Turbine engines subscribed to
the outputs from that task. Upon notification, the Turbine engines
update the data dependencies and release any remaining tasks that
are ready to run.

input_files

docking match merge

final_file

SFS / HERCULES

Figure 2: Scheme of a typical many-task workflow application: a protein-
docking simulation. The output of one task is the input of the next task.

For a better understanding of the applications representative for
Swift/T, Figure 2 shows an example of a workflow application. The
application is a typical protein-docking workflow, in which a mas-
sive number of files describing protein characteristics are to be pro-
cessed in order to evaluate how each combination of files docks.
For this purpose, three different modules are applied consecutively,
represented in the figure as boxes.

The docking module, written in C, evaluates two protein files
and generates a temporary output file containing their combination.
The match module, written in Java, takes the output of the previous
file and determines whether the combination is correct, classifying
it with a label and writing it to an output file. The merge application,
written in Swift, uses all the files generated by the match application
and merges them in a single file counting the number of labels of
each kind. This file is the final output of the application. A snippet
of the source code sample of this application is shown in Figure 3.

A typical protein-docking scenario involves thousands of differ-
ent proteins producing millions of possible combinations. Manu-
ally launching these combinations is tedious work, and classical
scripting languages do not have the capability to run independent

1 import string;
2 import files;
3
4 app (file f_output) dock (file f_in1, file f_in2)
5 {
6 "./docking" f_in1 f_in2 f_output;
7 }
8
9 app (file f_output) match (file f_input)

10 {
11 "java match" f_input f_output;
12 }
13
14 (file f_results) merge(file f_input[])
15 {
16 foreach f in f_input {
17 // Merge algorithm

18 }
19 }
20
21 main
22 {
23 file fin[];
24 file f_match[];
25 foreach fin1,i in fin{
26 foreach fin2,j in fin{
27 file f_tmp = dock(fin1,fin2);
28 index = i+j + j;
29 f_match[index] = match(f_tmp);
30 }
31 }
32 file f_out<"results.out"> = merge(f_match);
33 }

Figure 3: Example of Swift source code.

tasks in parallel. With the simple code from Figure 3, Swift/T eval-
uates the dependencies and runs millions of instances of existing
programs without requiring any change in the source code—not
even a recompilation if the code was previously compiled for the
machine on which it is supposed to run. File reads and writes are
made through a file system shared by every Swift/T worker node.

Currently, Swift/T uses distributed memory to store basic vari-
ables; but it requires a shared file system to store files, relying on
the distributed memory mechanism only for solving file dependen-
cies using file paths. As shown in Figure 3, this mechanism is used
even when the files are going to be part of a workflow: the output of
a task generates a temporary file used as the input of the next task.
Hercules can alleviate this I/O bottleneck by storing the files in the
main memory of the worker nodes. In addition to this problem, the
original Swift/T scheduler was not able to exploit data locations,
which prohibited the use of systems like Hercules. As shown in
Section IV, the ADLB scheduler, driven by Swift, can be guided to
exploit data locality and access Hercules files without network com-
munication, colocating the computation in the worker that contains
the data and obtaining performance improvements.

III. Hercules

The distributed memory space of Hercules [5] can be used by appli-
cations as a virtual storage device for I/O operations. We have
adapted this space for use as in-memory shared storage for the
Swift/T workers. Our approach relies on an improved version of
the Memcached [6] servers, which provide a storage solution for the
worker.

As can be seen in Figure 4, our solution consists of two levels:
client library and servers. On top is the client user-level library with
a layered design. Back-ends are based on the Memcached server,
extending its functionality with persistence and tweaks. Main ad-
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Figure 4: Hercules architecture. On the top is the client side, a user-level
library. On the bottom is the server side with the Hercules I/O nodes
divided in modules.

vantages offered by Hercules are scalability, ease of deployment,
flexibility, and performance.

Scalability is achieved by fully distributing data and metadata in-
formation among all the nodes, avoiding the bottlenecks produced
by centralized metadata servers, in cases of high metadata accesses
load. Data and metadata placement is calculated on the client side
by an algorithmic hashing. The servers, on the other hand, are com-
pletely stateless.

Ease of deployment and flexibility are tackled at the client side
by using a POSIX-like user-level interface (open, read, write, close,
etc.) in addition to the classic put/get approach in current NoSQL
databases. Existing software requires minimal changes to run with
Hercules. Servers can be deployed in any kind of Linux system at
the user level, and persistence can be easily configured by using
existing plugins or developing new ones.

Performance is achieved by exploiting the parallel I/O capabili-
ties of Memcached servers. Hercules is easy to deploy on as many
nodes as necessary, and every node can be accessed independently,
multiplying the total throughput peak performance. Furthermore,
each node can serve requests in a concurrent way thanks to a mul-
tithreading approach. The combination of these two factors results
in full scalability, in both the number of nodes and the number of
workers running on each node.

In addition to the default algorithmic hashing provided by Mem-
cached, we have designed two new custom placement algorithms.
The first algorithm is a locality-aware placement, capable of plac-
ing all the items related with one specific file in the same node.
Thus, if a task needs to access an existing file and is running on
the same node as the Hercules server containing the data, it can
access the whole file locally. Combining data locality and concur-
rent request serving, our solution can achieve intranode scalability,
serving requests in parallel from different workers running on the
same node—a common approach in current and future multicore

compute nodes—and avoiding the usual single network interface
bottleneck. The second algorithm has been designed but is not yet
fully developed; its objective is to take into account load factors (ca-
pacity, CPU load, burst peaks) when selecting the data placement.

IV. Integrating Swift/T and Hercules

The objective of this work is to combine the Swift/T many-task run-
time with our Hercules storage system in order to perform I/O
operations in-memory instead of using default systemwide shared
file systems. The integration of Hercules and Swift/T takes advan-
tage of two features offered by each solution: (1) Hercules offers
an ad hoc distributed storage shared among all available workers,
using their main memory for storing data; and (2) Swift/T has an
experimental feature, called @location [14], that can be used to over-
ride the default scheduling, placing a specific task on any desired
worker node.

To integrate both features, we have developed a mechanism that
spawns one Hercules server on each of the worker nodes available
for Swift/T. We have implemented a function to easily determine
where a specific file is located or where it will be located if it has not
yet been written to expose data locality. We have used the @location
experimental feature to schedule read operations in nodes contain-
ing the required data and write operations in the nodes that are
going to contain the data to exploit data locality. The combination
of these three techniques enables users to perform any kind of read-
/write file operation querying the Hercules server running in the
same node, without needing network communication or disk oper-
ations.

Our solution also can be used as an ad hoc distributed in-memory
storage, resulting in easier deployment and better scalability than
conventional shared file systems provide. Furthermore, our ad hoc
storage can avoid the peak load performance penalties that occur
from sharing storage resources between different applications run-
ning on the same system, thus reducing the shared file system noise
in I/O operations.

V. Evaluation

To evaluate our integration of Swift/T and Hercules, we ran a se-
ries of tests on the Fusion cluster at Argonne National Laboratory.
This cluster has 320 nodes, composed of dual-socket boards with
quad-core 2.53 GHz processors and 36 GB of main memory. The
intercommunication networks are InfiniBand QDR (4 GB/s) and Gi-
gabit Ethernet.

For the evaluation, we developed a synthetic application with 64
tasks consisting of 32 tasks performing a file write of 2 GB each
and 32 tasks performing reads of the previously created 2 GB files.
We compared raw file reads/writes with GPFS, Hercules without
locality, and Hercules using data locality in all the tasks (all the I/O
operations were done inside the node, without using the network).
Hercules used the InfiniBand network over TCP/IP for I/O; the
GPFS file system has a peak performance of 3200 MB/s over the
InfiniBand network. We focused on two cases: scalability in the
number of nodes (launching one worker per node) and scalability
in the number of workers per node (with a fixed node setup).

As can be seen in Figure 5 and Figure 6, our solution scales bet-
ter than GPFS, especially when contention is high. In other words,
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Figure 5: Raw file write throughput per node comparison between our
proposed solution and GPFS, when scaling the number of nodes, running
one worker per node.
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Figure 6: Raw file read throughput per node comparison between our pro-
posed solution and GPFS, when scaling the number of nodes, running one
worker per node.

when many workers are trying to access the file system concur-
rently, Hercules takes advantage of the increased number of I/O
nodes launched and colocated with each worker to perform I/O
accesses in a parallel way, whereas GPFS shares its maximum band-
width between all the nodes. The throughput represented in both
figures corresponds with the throughput per node, resulting in
an aggregated throughput that scales with the number of worker
nodes. Hercules performs similarly over the network and locally,
probably because of the overhead of the TCP/IP stack even for lo-
cal accesses.

Figure 7 and Figure 8 show how when we increased the num-
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Figure 7: Raw file write throughput per node comparison between our pro-
posed solution and GPFS scaling the number of workers per node running
in a fixed 8-node setup.
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Figure 8: Raw file read throughput per node comparison between our pro-
posed solution and GPFS scaling the number of workers per node running
in a fixed 8-node setup.

ber of workers per node, fixing the number of nodes to 8, the
results are similar to the previous case: our solution scales better
with the number of workers, whereas GPFS performance is affected
by contention. Again, we note that the represented throughput is
measured per worker, which explains the performance hit of GPFS,
which has to share the available bandwidth among all the workers.

In this case, the locality-aware version performs better, because it
can serve more workers in parallel without contention. That behav-
ior is explained by the ability of the Hercules I/O nodes to serve
various workers in parallel thanks to the multithreaded implemen-
tation. When the queries are done inside the same node, there is
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no need for sharing the network interface, resulting in an improved
performance over remote queries using the InfiniBand network in-
terface over TCP. Requests can be served by the multithreaded Her-
cules I/O nodes using the loopback TCP stack, avoiding sharing the
available bandwidth.

These tests demonstrate how our proposed solution scales bet-
ter than current state-of-the-art parallel shared file systems for I/O-
bound applications. We have also demonstrated how our solution
suffers less from contention and offers a more stable performance
when different applications share the same parallel file system. In
contrast, however, real-life applications usually mix computation
and I/O operations. This behavior results in less contention to the
shared file system and should be evaluated in the future. Another
issue that was exposed when evaluating our solution is related to
the overridden scheduling. Currently the @location functionality al-
lows only one specific node to be selected; but since the load is not
balanced among workers running on the same node, a load imbal-
ance can result, reducing the performance gains produced by the
improved throughput.

VI. Related Work

The increasing popularity of many-task computing and workflow
engines and the I/O bottleneck in such scenarios have led several
researchers to investigate this problem.

Parrot [9] is a tool for attaching existing programs to remote I/O
systems through the POSIX file-system interface, and Chirp [10] is
a user-level file system for collaboration across distributed systems
such as clusters, clouds, and grids. They are usually combined
to easily deploy a distributed file system ready to use with cur-
rent applications through a POSIX API. Many characteristics are
shared with Hercules: user-level deployment without any special
privileges, transparency through the use of a widely used interface,
and easy deployment using a simple command to start a new server.
Hercules, however, is designed to achieve high scalability and per-
formance by taking advantage of as many compute nodes as possi-
ble for I/O operations. Moreover, Hercules uses main memory for
storage improving performance in data-locality-aware accesses.

Costa et al. proposed using extended file attributes in MosaStore
[1, 3] to provide communication between the workflow engine and
the file system through the use of hints about the data. The work-
flow engine can provide these hints directly to the file system, or
the file system can infer the patterns by analyzing the data accesses.
The MosaStore approach is radically different from Hercules, using
a centralized metadata server instead of the fully distributed, easy-
to-use, and flexible deployment approach of our proposed solution.

The AMFS shell [15] offers programmers a simple scripting lan-
guage for running parallel scripting applications in-memory on
large-scale computers. The objective of this solution is similar to
the combination of Swift/T and Hercules, but Swift/T can auto-
matically solve data dependencies and launch tasks to workers in a
more efficient way by using distributed Turbine engines. AMFS and
Hercules also share the distributed metadata approach; the main
difference is that AMFS shell programs can explicitly specify in-
memory or persistent storage, whereas Hercules can be deployed
with persistence enabled in a transparent way for the programmer.

HyCache+ [16] is a distributed storage middleware that allows
I/O to effectively leverage the high bisection bandwidth of the high-

speed interconnect of massively parallel high-end computing sys-
tems. HyCache+ acts as the primary place for holding hot data
for the applications (e.g., metadata, intermediate results for large-
scale data analysis) and only asynchronously swaps cold data on
the remote parallel file system. Similarities between HyCache+ and
Hercules include their fully distributed metadata approach, use of
compute network instead of the shared storage network, and the
high scalability capabilities. HyCache+ relies on POSIX, however,
whereas Hercules offers the possibility of using a POSIX-like in-
terface and get/set operations. Moreover, HyCache+ focuses on en-
hancing parallel file systems in a generic way, whereas Hercules has
been designed to work specifically with a many-task engine, expos-
ing and exploiting data locality in current applications. HyCache+
and Hercules thus share similar ideas, but Hercules is ready to im-
prove many-task I/O performance by focusing on easy and flexible
deployment options.

VII. Conclusions

In this paper we have presented the integration of Swift/T and
Hercules in order to expose and exploit data locality in many-task
workflows. We have evaluated the capabilities of our solution for
raw file access. The approach achieves a substantial improvement
of throughput performance over that of the GPFS file system. In
addition, our solution can deploy as many I/O nodes as Swift/T
workers running the application, achieving better scalability than
possible with traditional static parallel file systems. Another advan-
tage of our solution is isolation from shared file system noise. In
the increasingly common case of various applications running at
the same time on the same system, our solution ensures isolation
of the I/O performance, independent of the file system load at any
specific instant.

To tackle the load imbalance issue, we are working on two new
approaches that can be combined. The first one will try to improve
the load balance of workers inside the same node. An improved
scheduler has been implemented in Swift/T, and we are evaluating
it with Hercules. The second approach focuses on load balance
among nodes. We are developing a new placement policy to map
data in a load-aware way, placing data in the less-loaded nodes or
in the nodes with more memory/capacity available. Moreover, to
better demonstrate the capabilities of our solution, we will evaluate
it with CCTW, a real MapReduce-like application.
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