

 University of Groningen

Quality attribute trade-offs in the embedded systems industry
Sas, Darius; Avgeriou, Paris

Published in:
Software quality journal

DOI:
10.1007/s11219-019-09478-x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sas, D., & Avgeriou, P. (2020). Quality attribute trade-offs in the embedded systems industry: An
exploratory case study. Software quality journal, 28(2), 505-534. https://doi.org/10.1007/s11219-019-
09478-x

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-06-2022

https://doi.org/10.1007/s11219-019-09478-x
https://research.rug.nl/en/publications/15a93813-f8da-444a-8c77-bde80f9be427
https://doi.org/10.1007/s11219-019-09478-x
https://doi.org/10.1007/s11219-019-09478-x

Software Quality Journal
https://doi.org/10.1007/s11219-019-09478-x

Quality attribute trade-offs in the embedded systems
industry: an exploratory case study

Darius Sas1 ·Paris Avgeriou1

© The Author(s) 2019

Abstract
The embedded systems domain has grown exponentially over the past years. The industry is
forced by the market to rapidly improve and release new products to beat the competition.
Frenetic development rhythms thus shape this domain and give rise to several new chal-
lenges for software design and development. One of them is dealing with trade-offs between
run-time and design-time quality attributes. To study practices, processes and tools concern-
ing the management of run-time and design-time quality attributes as well as the trade-offs
among them from the perspective of embedded systems software engineers. An exploratory
case study with two qualitative data collection steps, namely interviews and a focus group,
involving six different companies from the embedded systems domain with a total of twenty
participants. The interviewed subjects showed a preference for run-time over design-time
qualities. Trade-offs between design-time and run-time qualities are very common, but they
are often implicit, due to the lack of adequate monitoring tools and practices. Practitioners
prefer to deal with trade-offs in the most lightweight way possible, by applying ad-hoc prac-
tices, thus avoiding any overhead incurred. Finally, practitioners have elaborated on how
they envision the ideal tool support for dealing with trade-offs. Although it is notoriously
difficult to deal with trade-offs, constantly monitoring the quality attributes of interest with
automated tools is key in making explicit and prudent trade-offs and mitigating the risk of
incurring technical debt.

Keywords Embedded systems · Technical debt · Energy efficiency · Dependability ·
Trade-off · Empirical study

� Darius Sas
d.d.sas@rug.nl

Paris Avgeriou
p.avgeriou@rug.nl

1 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence
Faculty of Science and Engineering, University of Groningen, Nijenborgh 9, 9747AG, Groningen,
Netherlands

Published online: 4 December 2019

(2020) 28:505–534

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-019-09478-x&domain=pdf
http://orcid.org/0000-0003-3383-3298
mailto: d.d.sas@rug.nl
mailto: p.avgeriou@rug.nl

1 Introduction

Over the past years, embedded systems (ES) have experienced exponential growth, both in
terms of size and complexity as well as the number of domains where they are applied.
However, this growth also brings substantial challenges, one of which is to deal with both
the run-time quality attributes that determine system behaviour, and the design-time ones
that establish system sustainability. Managing quality attributes and performing trade-offs
between them is notoriously difficult in any field (Bass et al. 2012). In the case of embedded
systems, it is even more challenging, due to the limited hardware resources on which the
software is deployed, as well as the rapid evolution of hardware (Mallick and Schroeder
2009).

The management of trade-offs between run-time qualities on the one side, and design-
time qualities on the other, is thus becoming a critical research area. Specifically, the
embedded systems industry needs dedicated tooling, processes and practices for managing
such trade-offs (Ampatzoglou et al. 2016). At the moment, several tools are available, both
free/open-source and commercial, but only to support the management of individual quality
attributes of interest in embedded systems. The management of trade-offs is still an unex-
plored area: not only there are no tools available, but, to the best of our knowledge, there
is also no evidence regarding the specific needs of the embedded systems industry on per-
forming quality attributes trade-offs. Thus, this problem can be formulated as a high-level
research question: How are trade-offs between quality attributes currently managed by the
ES industry and how can this be improved?

We begin to address this problem through an exploratory case study investigating how
embedded systems engineers manage trade-offs between run-time and design-time quality
attributes and what kind of support they require. We collected data in three steps. First, we
performed a series of interviews with eight subjects to obtain a fine-grained understanding
of the daily activities they performed and the trade-off decisions they experienced on their
projects. Then, we planned a focus group session with eight subjects (two of them had also
taken part in the interviews), discussing the issues, costs, decisions, and related trade-offs
of design-time and run-time qualities. The interviewees and the focus group participants
worked in five different companies in the embedded systems domain. And finally, we inter-
viewed six more participants in order to check, confirm, and possibly extend the findings
from the previous two phases.

Our findings shed light on which qualities are prioritised in the studied domain, what
kind of trade-offs occur, how these trade-offs take place in practice, and how they should
ideally take place. We note that, while our scope encompasses run-time and design-time
qualities in general, we pay special attention to Maintainability, Dependability, and Energy
Efficiency. We selected these qualities due to their importance for the embedded systems
software development lifecycle (Knight 2002; Koopman 2004) (further motivation for these
3 qualities is given in Section 3.1).

This paper is organised using the Linear-Analytic Structure version of the case study
reporting template proposed by Runeson et al. (2012). This template was chosen because it
is commonly used to report case studies in Software Engineering. Section 2 introduces some
theoretical background and reports on similar work from literature. Section 3 elaborates on
the case study design, while Section 4 reports the results obtained by this work. Section 5
presents a discussion on our findings with key take-away messages. Section 6 describes
some threats to the validity of this study and how they were mitigated. Section 7 concludes
this work and explores possible future work.

Software Quality Journal (2020) 28:505–534506

2 Background and Related work

This section summarises the background knowledge necessary to better understand the work
presented and reports on related work.

2.1 Background and terminology

The management of the quality attributes of a system is a key activity on which the success
of the project and user acceptance heavily depend on. Indeed, software quality is defined as
the degree to which software possesses a desired combination of quality attributes (Barbacci
et al. 1995; IEEE 1993).

Quality attributes may be categorised according to different criteria; one possible taxon-
omy is to divide them according to their run-time or design-time nature (Bass et al. 2012).
The former type includes the quality attributes that describe the behaviour of a system dur-
ing its execution; in other words, those attributes that impact the usage of the system by
external actors, which may be both users or other systems (e.g. Performance, Reliability,
Security). In contrast, design-time quality attributes determine the ease of managing the
system artefacts during the software development lifecycle and the sustainability of the sys-
tem over time (e.g. Maintainability, Reusability, Testability). We adopted such a dichotomy
in order to focus our efforts on the trade-offs between the quality attributes across the two
categories rather than within them.

As mentioned in Section 1, we pay special attention to Maintainability as a design-time
quality and Dependability and Energy efficiency as run-time qualities. Maintainability is
strongly connected to the concept of technical debt (Kruchten et al. 2012), which plagues
all non-trivial embedded systems. Technical debt entails a trade-off (often an implicit one)
between the maintainability of a system and short-term benefits (Kruchten et al. 2012).
Dependability is composed of four sub-qualities, namely Availability, Reliability, Safety,
and Security (Laprie 1992). Energy efficiency has become a very prominent run-time quality
in the era of the Internet of Things and Cyber-Physical Systems as it affects the battery life
of embedded devices (Sherman 2008).

In this paper, we adopt the definitions of Maintainability, Performance, Interoperability,
and Security from ISO/IEC 25010:2011 (ISO/IEC 25010 2011). For Reliability, we adopt
the definition of Fault-tolerance from the standard. Availability is also defined as in the
standard, however, we treat it separately from Reliability, while the standard considers it
part of Reliability. For Safety, we adopt the definition provided by IEC 61508-1:2010 (IEC
61508 2010).

A trade-off between two quality attributes is a conscious, or unconscious, decision that
positively affects one quality attribute and negatively affects the other. Trade-offs are an
indispensable element of software engineering, as every decision has both benefits and lia-
bilities. But not every decision may imply a trade-off between quality attributes, and it may
not always be the case that the quality attributes involved in a trade-off are explicitly known.
Some decisions may conceal implicit trade-offs which the decision-maker may not be aware
of, either at the time of taking the decision or later. There are several approaches that help
to deal with trade-offs; one of the most prominent is ATAM (Architecture Trade-off Anal-
ysis Method), which specifically focuses on evaluating the trade-offs while designing, or
maintaining, a software architecture (Bass et al. 2012; Clements et al. 2003).

Software Quality Journal (2020) 28:505–534 507

2.2 Related work

A number of studies provide evidence regarding the trade-offs between run-time and design-
time quality attributes in the embedded systems domain.

Ampatzoglou et al. (2016) performed an extensive case study on the perception of tech-
nical debt in the embedded systems industry, shedding light on how Maintainability is
traded-off against other qualities. A number of engineers from seven companies were inter-
viewed, using a supervised questionnaire-based approach, to elicit information about a total
of twenty software components that had accumulated technical debt and were difficult to
maintain. Their findings show that (a) Maintainability is more seriously considered when
the expected lifetime of the project is over ten years; (b) the most frequent types of techni-
cal debt are test, architectural and code; and (c) the embedded systems industry prioritises
Reliability, Functionality and Performance against Maintainability.

In a similar context, Wahler et al. (2017) investigated trade-offs between quality attributes
in industrial control and automation systems (ICASs) running on embedded devices. The
authors performed an online survey taken by thirty-seven participants who had worked on
real-time embedded systems. The findings suggest that there are three clusters of qualities
that contain positively-related quality attributes. The first cluster is composed of two run-
time qualities—Timeliness and Predictability—which means that fulfilling Timeliness eases
fulfilling Predictability. The second cluster is composed of three design-time qualities—
Modularity, Reusability and Portability—and again fulfilling one eases fulfilling the others.
The third cluster is composed of a single run-time quality: Efficiency, intended as power
consumption and heat dissipation. The authors state that quality attributes belonging to one
of the clusters negatively influence the attributes of the other clusters.

Feitosa et al. (2015) investigated quality attribute trade-offs among critical and non-
critical qualities by analysing twenty open-source Java projects in the embedded software
field. The following findings emerged from their analyses: (a) Correctness negatively affects
Performance since solving bugs usually introduces inefficiencies in the source code that
affect performance, and (b) increasing Performance negatively affects Reusability since
solutions that improve performance have a negative impact on quality metrics like cohesion,
coupling and size.

Similarly, Papadopoulos et al. (2018) studied the interrelation between design and
run-time quality metrics by examining source code quality and comparing it with the
performance and energy consumption of a set of embedded applications. In their work,
they measure source code quality using the Cognitive Complexity metric calculated by
SonarQube1 and CPU cycles, cache misses, and memory accesses to measure run-time per-
formances. The authors observed that, by applying certain transformations to the source
code of the selected embedded systems, there exist trade-offs between performance/energy
consumption and Cognitive Complexity.

A different approach was used by Oliveira et al. (2008), who measured design-time
quality metrics on the source code and compared them with performance-related metrics
(i.e. memory, time) measured during the execution of the system. The authors compared
four alternative designs of an example system, showing the existence of trade-offs between
design-time quality metrics and performance. More precisely, the increase of the McCabe
Cyclomatic Complexity metric correlated with a decrease in cycles performed and memory
used.

1See https://sonarqube.org/

Software Quality Journal (2020) 28:505–534508

https://sonarqube.org/

A practical approach to managing trade-offs between run-time and design-time quali-
ties was introduced by Corrêa et al. (2010). The authors propose an approach for guiding
design decisions based on the prediction of physical properties (cycles, power consumption)
using traditional software metrics, showing how design decisions impact on the physical
properties of the final system.

The work of Mentis et al. (2009) focuses on evaluating the impact of design decisions
on run-time quality aspects for different software architectures (not limited to embedded
systems). Their analysis discovered groups of run-time metrics that strongly correlate with
each other, for they were found to be affected by the same architectural factors. However,
their approach is based on simulation data obtained using a tool developed by the authors
themselves for a previous study.

Bellomo et al. (2015) studied the most common quality attributes that projects must
address and their relative importance. Their aim was to understand the impact of long-term
architectural deterioration (i.e. technical debt) of quality attributes based on quality attribute
scenario data generated through the Architecture Trade-Off Analysis Method (ATAM) from
multiple projects and multiple domains (including ES) and companies. Their results show
how Modifiability (i.e. Maintainability) is of primary importance in the majority of the
projects considered by the study.

Martini and Bosch (2015) explore, by interviewing fifteen embedded systems practition-
ers, the input they use to deal with architectural technical debt items caused by non-optimal
architectural decisions as well as the priority they attribute to different aspects of software
development. Their findings suggest that Maintainability-related costs are important when
prioritising technical debt but they are secondary to other business-oriented factors, such as
the competitive advantage.

The presented studies differ from this work in at least one of the following aspects: (a)
they base their analyses and conclusions on open-source projects rather than on industrial
ones; (b) they focus on source code analysis rather than on the human factors that caused a
particular change in the system; (c) they do not report on individual trade-off experiences
shared by developers. We chose these criteria to compare our study to the related work as
they comprise the goal of the study and highlight its uniqueness. Our study is the only one
that fulfils all three of these criteria as summarised by Table 1.

3 Case study design

We followed the guidelines proposed by Runeson et al. (2012) to conduct and report case
studies. Furthermore, we used the protocol template proposed by Brereton et al. (2008) to

Table 1 Comparison between related work studies and this study. TO stands for trade-off

Related Work Industrial setting Human factors of TO Report TO experience

Ampatzoglou et al. (2016) and
Wahler et al. (2017)

✓ ✓ ✗

Bellomo et al. (2015) and Martini
and Bosch (2015)

✓ ✗ ✗

Feitosa et al. (2015), Papadopoulos
et al. (2018), Corrêa et al. (2010),
and Mentis et al. (2009)

✗ ✗ ✗

This work ✓ ✓ ✓

Software Quality Journal (2020) 28:505–534 509

develop the case study design and keep track of its changes. The replication package of this
study is available online2 and includes the case study protocol, the questionnaires of the
interviews, the discussion agenda of the focus group, the transcription template, the notes
used to explain the technical concept to practitioners, and the consent letter template. To
ensure the quality of the results of this study, we list the threats to validity in Section 6 and
the mitigating actions undertaken to address them. Moreover, a sanity check of all results
was performed by discussing them in a dedicated meeting of our research group.

3.1 Objective and Research Questions

The objective of this study is made more specific using the Goal-Question-Metric (van
Solingen et al. 2002) formulation:

Analyse the experience of software engineers for the purpose of understanding the
management of run-time qualities, design-time qualities and the trade-offs among
them with respect to practices, processes and tool support from the point of view of
software engineers in the context of industrial embedded system projects.

The stated goal leads to four specific research questions:

RQ1 What is the interest of the ES industry in design-time and run-time quality attributes,
such as Maintainability, Dependability and Energy efficiency, and what tools, processes,
and practices are adopted to manage them?

This investigates the qualities of interest (in the scope of this study) for practitioners in the
ES domain, as well as tools, processes, and practices used to address these qualities indi-
vidually. We distinguish between design-time and run-time qualities. Once we understand
which qualities are of interest, the next question explores their trade-offs.

RQ2 What trade-offs between design-time and run-time qualities do ES practitioners
make?

This aims at eliciting knowledge on the compromises and trade-offs between design-time
and run-time qualities, as well as investigating the implicit or explicit nature of such trade-
offs. Once we understand which trade-offs are made, the next question explores how they
are made.

RQ3 What processes, practices, and tools do ES practitioners use to support trade-off
decisions?

This focuses on understanding whether the developers follow processes and practices (for-
mal, ad-hoc or otherwise) for dealing with trade-offs and how these are eventually applied.
It is also of interest to check if dedicated or general-purpose tools are used to support the
trade-off decision-making process. Once we understand how trade-offs are currently made,
the next question explores how they should ideally be made.

RQ4 What would be the ideal features of a tool supporting quality attribute trade-off
decisions?

Finally, this research question aims at obtaining insight into the desired features for an ideal
tool that supports quality attribute trade-off decisions. We have chosen to investigate ideal

2Visit http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip

Software Quality Journal (2020) 28:505–534510

http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip

Context 1

Case 1

Embedded Unit of

Analysis 1.1

Embedded Unit of

Analysis 1.2

Context 2

Case 2

Embedded Unit of

Analysis 2.1

Embedded Unit of

Analysis 2.2

Domain

Company 2

Engineer 1

Engineer 2

Fig. 1 Embedded multiple-case study design, based on Figure 3.1 by Runeson et al. (2012)

tool support instead of practices or processes because (a) tools are less explored by the
current literature (Barney et al. 2012), and (b) practitioners urgently need tools to manage
trade-offs effectively (Ampatzoglou et al. 2016).

As aforementioned in Section 1, qualities of particular interest during this study are (a)
Maintainability, due to the impact of software maintenance on the overall project costs
(Erlikh 2000); (b) Dependability, due to its high significance in most embedded systems,
especially safety-critical ones (Knight 2002); and (c) Energy Efficiency, due to its rising
popularity in multiple sub-domains of embedded systems (Koopman 2004). All of these
qualities have a concrete impact on the success of a product in today’s embedded systems
market as they provide a technological competitive advantage for they affect both costs and
end-user experience. While we pay special attention to these three qualities, the study looks
at design-time and run-time qualities in general.

3.2 Cases, subjects and units of analysis

The case study was designed as an exploratory embedded multiple-case study (Runeson
et al. 2012). A multiple-case study allows studying multiple cases (each within its own
context) with a single protocol. As shown in Figure 1, the companies map to the individual
cases (or case subjects) while their domain maps to the context. Accordingly, the engineers
that took part in the study correspond to the individual unit of analysis; thus each engineer
represents a single unit.

Table 2 The case study subjects. Size classification follows European Union’s SME classification based on
the number of employees: small (< 50), medium (< 250), large (≥ 250)

Case subject Domain Size # of Engineers

C1 Defense and civil aviation Large 6

C2 Industrial wearables Small 4

C3 High Performance Computing Medium 3

C4 Medical implants & HPC Small 4

C5 Automotive Large 1

C6 IoT & Sustainable Energy Medium 2

Total 20

Software Quality Journal (2020) 28:505–534 511

Table 2 lists the case study subjects along with the application domain of the respective
company and the number of engineers involved in the study.

Due to the adoption of two data collection methods, interviews and focus group
(described in the next section), the selection process of the engineers taking part in the study
was threefold.

1. In the first step, each case subject was asked to designate two or three software
engineers to take part in the interviews.

2. Next, the case subjects were asked to provide, if possible, at least one or two additional
engineers to take part in the focus group.

3. In the third and final step, the second round of interviews was performed interviewing
different sets of engineers.

This process of data collection ensured data source triangulation (i.e. collecting the same
data at different occasions) and methodological triangulation (i.e. combining different types
of data collection methods) (Runeson et al. 2012).

Overall, twenty engineers with experience ranging from one to thirty years, working in
six different companies, took part in the study.

3.3 Data collection

The research questions were explored by collecting qualitative data through a series of indi-
vidual interviews and a focus group. The following subsections describe both data collection
methods in more detail.

3.3.1 Interviews

Interviews were designed following a semi-structured format, composed of a set of prede-
fined open questions, with the possibility for the interviewer to further investigate interesting
answers, and for the interviewee, to freely elaborate on them. The questionnaire can be
found in the replication package2.

Before the interviews began, practitioners were asked to think of a brownfield project on
which they had worked on for at least one year and which had at least two of the follow-
ing quality attributes among their key drivers: (a) Maintainability (i.e. technical debt), (b)
Dependability (Availability, Reliability, Security and Safety) and (c) Energy Efficiency.
Such a request was necessary in order to guarantee that the subjects were referring to a
project that had had enough time to accumulate technical debt and was concerned with the
quality attributes of interest to this study. More specifically, brownfield projects have an
inherent amount of accumulated technical debt, whereas greenfield projects do not have
big maintenance issues. Additionally, working on a project for at least one year increases
the knowledge of the system, allowing the practitioner to obtain a deep understanding and
experience.

Interviews were performed in two rounds spanning one year one from the other but
following the same protocol and questionnaire (strengthening data source triangulation
(Runeson et al. 2012)). In the first round, eight interviews were performed, whereas in
the second, six. Background details on the fourteen interviewed practitioners and the
related projects are reported in Table 3. The participants were interviewed through video-
conferencing for approximately one hour each. Prior to performing the actual interviews,
two pilot interviews were performed to calibrate the case study protocol and particularly to
refine the questions. The first pilot suggested that there was a lack of clarity in some of the

Software Quality Journal (2020) 28:505–534512

Ta
bl
e
3

B
ac

kg
ro

un
d

in
fo

rm
at

io
n

on
th

e
in

te
rv

ie
w

ee
an

d
th

ei
r

re
sp

ec
tiv

e
pr

oj
ec

ts

ID
C

om
pa

ny
Pr

oj
ec

t
Pl

at
fo

rm
R

ol
e

in
th

e
co

m
pa

ny
Y

ea
rs

of
ex

pe
ri

en
ce

cu
rr

.r
ol

e
in

to
ta

l

I1
C

1
O

nb
oa

rd
ai

rb
or

ne
su

rv
ei

lla
nc

e
sy

st
em

C
+

+
,W

in
X

P
So

ft
w

ar
e

E
ng

in
ee

r
2

17

I2
C

1
O

nb
oa

rd
ai

rb
or

ne
su

rv
ei

lla
nc

e
sy

st
em

C
+

+
,W

in
X

P
So

ft
w

ar
e

E
ng

in
ee

r
10

16

I3
C

1
B

la
ck

bo
x

so
ft

w
ar

e
fo

r
U

A
V

dr
on

es
C

+
+

So
ft

w
ar

e
A

rc
hi

te
ct

8
13

I4
C

1
U

A
V

pa
tr

ol
dr

on
e

C
+

+
So

ft
w

ar
e

A
rc

hi
te

ct
2

2

I5
C

2
M

et
eo

ro
lo

gi
ca

ls
ta

tio
n

w
ith

di
st

ri
bu

te
d

se
ns

or
s

Ja
va

So
ft

w
ar

e
A

rc
hi

te
ct

5
11

I6
C

2
Sm

ar
tG

la
ss

es
fo

r
in

du
st

ri
al

te
ch

ni
ca

la
ss

is
ta

nc
e

Ja
va

So
ft

w
ar

e
E

ng
in

ee
r

3
7

I7
C

3
Q

ua
nt

um
C

hr
om

od
yn

am
ic

s
co

m
pu

ta
tio

ns
Ja

va
+

V
H

D
L

A
pp

lic
at

io
n

de
ve

lo
pe

r
3

3

I8
C

3
Sc

ie
nt

if
ic

ca
lc

ul
at

io
ns

on
FP

G
A

s
Ja

va
+

V
H

D
L

A
pp

lic
at

io
n

de
ve

lo
pe

r
1

2

I9
C

4
Fr

am
ew

or
k

fo
r

br
ai

n
si

m
ul

at
io

ns
on

FP
G

A
Ja

va
+

V
H

D
L

A
pp

lic
at

io
n

de
ve

lo
pe

r
6

6

I1
0

C
4

Se
cu

ri
ty

-b
y-

de
si

gn
fo

r
IM

D
C

+
V

H
D

L
A

pp
lic

at
io

n
de

ve
lo

pe
r

2
7

I1
1

C
4

O
bj

ec
tt

ra
ck

in
g

ap
pl

ic
at

io
n

on
FP

G
A

C
+

V
H

D
L

A
pp

lic
at

io
n

de
ve

lo
pe

r
2

2

I1
2

C
2

Sm
ar

tG
la

ss
es

fo
r

in
du

st
ri

al
te

ch
ni

ca
la

ss
is

ta
nc

e
Ja

va
So

ft
w

ar
e

E
ng

in
ee

r
7

10

I1
4

C
6

D
is

tr
ib

ut
ed

m
ob

ile
se

ns
in

g
pl

at
fo

rm
C

+
+

So
ft

w
ar

e
E

ng
in

ee
r

1
1

I1
5

C
6

N
et

w
or

k
of

po
w

er
m

et
re

s
fo

r
so

la
r

pa
ne

ls
Py

th
on

,R
as

pb
er

ry
Pi

So
ft

w
ar

e
A

rc
hi

te
ct

6
6

A
ve

ra
ge

4.
1

7.
3

Software Quality Journal (2020) 28:505–534 513

Goal:
introduce the

interviewee to the

objective of the

study

Introduction

Goal:
collect contextual

info about the

interviewee

Context setup

Goal:
ask the main

questions of the

interview

Main phase

Goal:
collect

interviewee's

general opinions

General

considerations

Goal:
inform the

interviewee about

the next steps

End of the

interview

Fig. 2 The format of the interviews

questions and that an initial written list of the topics covered by the interview was necessary
to allow the practitioners to prepare themselves upfront. The change required for updating
the protocol, which prevented us from using data from the first pilot in the analysis phase.
Concerning the second pilot, the interview allowed us to improve the time required to ask
the interviewee all the questions and it did not result in any change to the protocol. Although
minor changes to the questions were made, none of them was enough to impact the validity
of the interview. Hence, the data from the second pilot interview was considered valid and
was used in the analysis.

Each interview spanned five phases: the first and the last correspond to the introduction
and the conclusion phases respectively, while the other phases were dedicated to data col-
lection, as can be seen in Fig. 2. After transcribing the recordings, each transcription was
reviewed by the interviewee in order to avoid misunderstandings.

Concerning the projects discussed with the fourteen interviewees, two of them talked
about the same project, thus thirteen projects were analysed in this study. Finally, all
interviewees gave their explicit permission for their interview to be recorded.

3.3.2 Focus group

The focus group session was performed for the purpose of triangulating the results with the
data from the interviews (methodological triangulation (Runeson et al. 2012)). Addition-
ally, the focus group enriched the findings from the interviews and explored, from a group
viewpoint, the practices adopted by the subjects in real-world embedded system projects.
The focus group guide can be found in the replication package2.

It is important to note that, in a group setting, subjects express more explicit and detailed
views about their needs due to cognitive mechanisms that activate only through active dis-
cussion with other subjects similar to them Mcdonagh et al. (2000) and Kontio et al. (2008).
Moreover, during a focus group, practitioners can also compare their experience with the
other participants and provide unbiased feedback (to the other group members) from an
extraneous point of view. Hence, by pairing the focus group with a number of individual
interviews, we collected both personal experiences and group opinions.

In total, eight participants were involved in the focus group; two of them had also taken
part in the interviews. The session was guided by the two co-authors, fulfilling the assistant
and moderator roles respectively, as suggested by Kontio et al. (2008) and McDonagh-
Philip (Mcdonagh et al. 2000). The format adopted for this data collection step was semi-
structured and divided into phases, as depicted in Fig. 3. After introducing the participants
to the focus group dynamics, background information about the participants was collected
and is reported in Table 4. Contrary to what we did during the interviews, we did not ask
practitioners to focus on a single project, but rather we deliberately let them talk about their

Software Quality Journal (2020) 28:505–534514

Goal:
introduce the

participants to the

study and

explanations

Introduction

Goal:
collect

information about

the participants'

background

Collect

background

information

Goal:
discuss the main

points on the

agenda

Main discussion

Goal:
wrap up of the

session and end of

the discussion

End of the focus

group

Fig. 3 The format of the focus group

whole experience in the industry. This choice simplified the session, as it would have been
impractical and too time-consuming to ask each participant to select a project and share a
minimum amount of context with the other participants in order for the discussion to make
sense. Next, the conversation continued with the main discussion points, prepared prior to
the beginning of the session, that touched upon the same topics, and in the same order, as the
ones from the interviews. The session ended after 1 hour and 45 minutes and was recorded
and transcribed with the consent of the participants.

Prior to the beginning of the focus group, the participants had also received a brief written
introduction with some examples explaining the technical terminology adopted throughout
the discussion. This succinct explanation prepared them for the beginning of the session,
whereas the introduction phase covered any other gaps in their theoretical knowledge. The
discussion points were designed in a semi-structured way and focused on trade-off decision
making and related support, since the data collected on these topics during the interviews
needed to be further strengthened by the focus group. Specifically, they first covered the
three main quality attributes of this study (i.e. Maintainability, Dependability, Energy Effi-
ciency) in order to initiate the technical discussion. Then, the discussion moved to implicit
and explicit trade-off experiences and related opinions. In the end, ideas on an envisioned
tool supporting trade-offs management were proposed and discussed by the participants.
The contribution of each participant in the discussion was overall balanced. Nonetheless,

Table 4 Background information of the focus group participants, including the typical project size these
practitioners work on. * denotes subjects that were also interviewed

ID Company Typical project size Role in the company Years of experience

in SLOC in PM curr. role in total

P1 C1 1000000+ 15-100 Key account manager 13 31

P2 C1 50000+ 4 System architect 15 22

P3* C2 10000+ 3 Software architect 5 11

P4* C2 10000+ 3 Software engineer 3 7

P5 C2 10000+ 3 CEO 5 17

P6 C3 N/A 6 Project and research manager 3 5

P7 C4 15000 80 Chief engineer 10 15

P8 C5 500000+ 7 Project manager 2 12

Average 7 15

Software Quality Journal (2020) 28:505–534 515

two of the participants made fewer interventions than the average did, whereas another one
intervened in most of the discussions and required the intervention of the moderator. More-
over, two factors, namely the semi-structured format of the focus group and the presence of
two moderators, ensured that the discussion had a specific direction at any point and that the
two participants (out of eight) that were also interviewed did not unveil details that would
bias discussion and the other participants.

3.4 Data analysis

The analysis of the interviews was performed using the Constant Comparative Method
(CCM) (Boeije 2002) (which is part of Grounded Theory (Glaser et al. 1968)), with the sup-
port of a dedicated software tool for qualitative data analysis, Atlas.ti3. Grounded Theory
(GT) was used because it is one of the most important methods in the field of qualitative
data analysis and it has been used extensively within both social sciences and software engi-
neering. Additionally, GT provides a structured approach to analyse and process the data
collected from multiple sources, causing the theoretical sensitivity of the researcher to grow
as the data analysis progresses and eventually allow him to formulate hypotheses and theory.

During data analysis, the CCM allowed us to better understand the data and identify
links between separate data points by comparing the differences and similarities (using
Atlas.ti’s features in addition to simple tables and diagrams) within a single interview,
between interviews of the same case, interviews from different cases, and between inter-
views and statements from the focus group. The analysis started by coding the available
data using special keywords, like “trade-off” and “quality attribute”, as codes. The coded
quotations (i.e. the excerpts associated with a code) were also linked, whenever necessary,
using links of different types (continued by, criticises, justifies, etc.), provided by default
by Atlas.ti. Following the guidelines of Runeson et al. (2012) for analysing qualitative data,
during the analysis, we continuously added new codes when necessary, updated the exist-
ing ones and organised the final forty-nine codes by group. Additionally, we also created a
labelled network, available in the replication package2, highlighting the relations between
the codes. Next, thanks to such an organisation of the codes and quotations, we were able
to query the data, summarise the information, and fill it into tables used to compare related
concepts and experiences among the participants or among the different interview phases.
Interesting findings and conclusions were eventually inferred and annotated separately. The
process was iterative and was repeated several times until no new findings emerged from
the analysis.

For the purpose of better understanding the analysis process, let us suppose we wanted
to know what practitioners think of Maintainability. To do so, we queried, through Atlas.ti,
all the coded statements related to the group of codes “Maintainability”. Next, we started
reading all the statements, compared the opinions in order to understand the differences or
similarities, and then summarised with own words their opinion in dedicated tables. The
tables had as rows the quality attributes of interest and as columns the interviewee ID, plus
a general column describing the general opinion. These entries were updated and revised
with each iteration of the analysis process.

Special attention was drawn to create a chain of evidence between the final results, the
intermediary data structures, and the interview transcripts. Chains of evidence allow tracing

3See https://atlasti.com

Software Quality Journal (2020) 28:505–534516

https://atlasti.com

back the origin of a particular piece of information to its original source in case a review of
the results might be necessary for the future.

The same methodology – CCM – was adopted for analysing the data from the focus
group. The recordings allowed us to easily discern the exact participant contributing to
the discussion, whereas the same tables and diagrams were adopted to compare and
contextualise the different statements of each participant.

4 Results

The following subsections report on the findings of this study, organised per research
question.

Before presenting the results, it is noteworthy to mention that the data collected amounts
to fourteen hours of recordings (almost thirteen hours of interviews, counting an average of
50 minutes on average per interview, and one hour and forty-five minutes of focus group).

The results from RQ1 are mostly based on the interviews and partially triangulated by
the focus group.

The results from RQ2 are more mixed and contain one example (number 4) exclusively
mentioned in the focus group, one example (number 3) coming from the interviews but
mentioned by multiple focus group participants, and the rest come from the interviews
exclusively.

Concerning instead RQ3, it is hard to determine a precise contribution as both intervie-
wees and focus group participants were sharing similar opinions and experiences.

Finally, the features mentioned by practitioners in RQ4 are equally split between
focus group and interviews: three features were mentioned both in interviews and focus
group; three were exclusively mentioned in the focus group whereas four were exclu-
sively mentioned in the interviews. It is interesting to note that only few minutes of focus
group managed to produce a comparable number of ideal features as fourteen individual
interviews, showing how group dynamics enable creative thinking.

4.1 RQ1 –What is the interest of the ES industry in design-time and run-time
quality attributes, such as Maintainability, Dependability and Energy efficiency,
and what tools, processes, and practices are adopted tomanage them?

To understand which quality attributes are the most important, we explicitly asked practi-
tioners to discuss and rank the quality attributes of interest in their projects. We provide next
some qualitative details on the quality attributes of interest alongside the description of the
tools, processes and practices used by the practitioners for each quality attribute. We start
with run-time quality attributes:

– Dependability includes Availability, Reliability, Security, and Safety, with the first two
being the highest priority in general. Availability and Reliability are intrinsically depen-
dent on each other and this aspect is reflected by the fact that the same practices, such as
software testing, flight simulations, flight tests, and test benches with simulated sensors,
are adopted to enforce both of them. There are also cases where not only Reliability
and Availability are highly connected, but also Safety, like in the case of flying drones,
where the inability to send commands to a drone could result in dangerous situations.
Let us discuss each sub-quality attribute separately:

Software Quality Journal (2020) 28:505–534 517

1. Availability is safeguarded using different techniques, depending on the domain
of the project, such as performance measurements with different tooling, static
analysis tools for bug identification (i.e. Coverity4) , test benches with simu-
lated hardware, flight simulators, and log inspection for pinpointing issues not
identified automatically. In the case of the medical project, it adopted multiple
state-of-the-art design principles to ensure no compromises over this quality, like
for example intentionally allowing an unlimited number of authentication attempts
to the implant device and exploiting energy harvesting techniques to ensure the
device does not consume all the battery while processing them. Another example
was the offloading of all the operations related to Security on a separate processor,
so that the main one is completely free to perform a specific medical task.

2. Reliability is closely related to Availability, so similar techniques and tools are
used to measure and assess its level. There were also cases were Reliability (on its
own) was a critical quality attribute and special measures were adopted to enforce
the quality. For example, in one case the failure of a small percentage (of thou-
sands) of remote sensors could have a big impact on the company’s business; hence
a sophisticated logging system was developed in order to monitor, detect, clas-
sify, and report every failure and facilitate a root cause analysis of the problem.
In another case, the subjects prepared a special test to ensure the reliability of the
connectivity of the system in extreme conditions, and live-tested the product in
conditions that it was not originally designed to work in. The term Robustness was
also used by some of the subjects with the same meaning as Reliability (they used
both terms interchangeably).

3. Security was of secondary importance, since most of the projects did not manage
any sensitive data. Among the projects that did have security-oriented components,
very few of them employed tools (e.g. BurpSuite5) to statically check the code to
identify possible vulnerabilities. In the case of medical devices, were Safety is at
risk if the Security of the device is at risk, developers considered using verification
tools and provers (such as Tamarin Prover6, or AVISPA7) to check their implemen-
tation of the ISO 9798 standard, however, they deemed it was not necessary for
such a simple protocol. As a final note, there was also a case were neither encryp-
tion nor any other security measures were considered even though the project
involved data exchange over the network; this in contrast to common practices.

4. Safety was not a major concern in most of the projects, as they did not have
to perform safety-critical operations. However, two of the projects were safety-
critical, and in those cases safety was strictly tied with other qualities, such as
Availability, Reliability, Security and Energy Efficiency. For example, in the med-
ical implant project, where Safety is their mantra, all four of these qualities were
necessary to be guaranteed in order to achieve the expected level of Safety from
an implantable medical device (IMD). Generally speaking, the interviewed prac-
titioners, to enforce Safety, employed techniques such as state-of-the-art design
principles (such as the ones mentioned for Availability), flight simulations, intense
testing and real-world flying tests.

4See https://scan.coverity.com/
5See https://portswigger.net/burp
6See https://tamarin-prover.github.io/
7See http://www.avispa-project.org/

Software Quality Journal (2020) 28:505–534518

https://scan.coverity.com/
https://portswigger.net/burp
https://tamarin-prover.github.io/
http://www.avispa-project.org/

According to the comments of some of the interviewees, Security and Safety were
the least prioritised. This fact is because, at the beginning of a project, it is first more
important to achieve a high level of Availability and Reliability to be able to impress the
management and the eventual customers. Thus, they pay extra attention to such quality
attributes first (namely, they prioritise them), and then, later on, before delivering the
product to the customer, they focus on meeting all the Security and Safety requirements
of the specific domain the customer is operating in. This can be seen as a prioritisation
w.r.t time, rather than importance, i.e. Security and Safety are carefully taken care of at
a later stage and certainly before delivery.

Before moving on to the next quality attribute, we present, as an example, how the
results on this quality attribute were obtained through the chain of evidence. The first
piece of evidence is encountered in the coded data, where Dependability had its own
dedicated code (along with four children codes, for its four sub-qualities). Next, all
the Dependability-coded data was summarised in a structured table that included also
the other quality attributes. Since the reporting is based on such tables, the chain of
evidence, from reporting to raw-data, is complete.

– Energy Efficiency at the software level was not at the top of the priorities in the
projects studied. On the other hand, energy-efficient hardware and hardware design
were deemed much more important and prioritised. In many cases, the main source of
energy consumption was located in the hardware parts (i.e. motors) or in the design
of the hardware itself (e.g. FPGA and IMD design), mostly ignoring the software part.
At the software level, the most common practice used to assess energy consumption is
monitoring the computational resources used by the software (CPU, memory, network,
disk, etc.) or used by the hardware managed by the software (e.g. sensors misuse). A
similar case, where resource usage and energy consumption are strictly tied, is when a
cloud back-end is required to manage the IoT infrastructure of the system. In this case,
practitioners saw the costs generated by the cloud back-end as energy-related costs that
critically impacted the business, and they used the tools made available by the cloud
service to guide their energy refactorings.

Finally, it is interesting to report that in one project, after a year of development,
it turned out that the intensive resource usage and sensor misuse were causing exces-
sive energy usage, which, along with severe architectural issues, resulted in a complete
rewrite of the system.

– Performance is especially important in HPC projects, where it is the main driver for
every decision made, practice and tool employed (especially at the hardware level).
Regarding embedded projects, it is not of high priority, as it mostly depends on the
projects needs rather than having explicit performance requirements imposed by the
needs of the domain. Concerning the tools and practices used to measure and monitor
performance, two approaches were mentioned often. The first one is the plain inspec-
tion of the logged timestamps, while the second one relies on dedicated tooling (such
as VerySleepy8, or built-in functions when available) to profile the execution time of
the CPU (and other resources). In general, resource usage is one of the key aspects of
decision-making for speed, general optimisations and other decisions.

Concerning design-time qualities, we observed the following:

8See http://codersnotes.com/sleepy/

Software Quality Journal (2020) 28:505–534 519

http://codersnotes.com/sleepy/

– Maintainability was a crucial aspect in most of the projects discussed. However, no
team reported using dedicated tools to measure and manage it, despite having to deal
in most case with issues, such as code duplication and magic numbers, that are easily
detectable by modern tools. In fact, some projects had experienced major maintainabil-
ity issues due to the accumulation of technical debt; in one case, this eventually caused
the bankruptcy of the project (Ampatzoglou et al. 2015), forcing the team to rewrite the
system from scratch.

The most commonly-mentioned arguments for striving for high maintainability
include the addition of new members to the team (which may substitute existing ones),
the architectural complexity of some parts of the system (that need to be easily under-
stood despite their complexity), and the necessity to support future changes, both at
software and hardware level, not through trial-and-error but by-design. Contrary to
Dependability, Maintainability, despite being deemed very important, it is often down-
prioritized in practice as it is an easy target for cutting corners (prioritisation w.r.t
importance).

Some subjects mentioned certain programming practices that they follow in order to
increase Maintainability, such as coding rules, conventions, applying design patterns,
and common sense. Other subjects, from company C1, explained how they employ doc-
umentation to transfer knowledge between teams and from old projects to new projects,
especially because the developers working on those projects change very often (every
6 months on average). That company works in the aviation sector, which is safety-
critical, thus they rely on source code comments and documentation to keep track of
every hack and optimisation made in the code. The documentation is then inspected
every time the code is transferred to new projects to be reused to ensure that such hacks
and optimisations do not cause any issues in the new project.

Lastly, it is worth mentioning that some sub-qualities of Maintainability mentioned
by the subjects are Modularity, Readability, Flexibility, Reusability and Understand-
ability. None of them is monitored or measured in any way, similarly as mentioned
above for Maintainability.

– Extensibility plays an important role in many of the studied projects since new func-
tionality, new sensors, and new hardware in general are required to be added to the
systems with minimal effort, and, in some cases, without stopping the system. As in the
case of Maintainability, several subjects stated that they do not use any tool to measure
or monitor this quality, but they specifically address it upfront during design-time (at
an architectural level).

– The ease of deployment (Deployability) on multiple platforms is a quality attribute that
is important only for certain types of projects. Specifically, some companies need to
deploy off-the-shelf systems on arbitrary hardware (e.g. drones, FPGA), rapidly adapt
them to the new hardware platform and extend them with custom modules specialised
for the specific tasks required by the customer. A tool-chain developed in-house is used
to automate the whole process.

In another company, the continuous change forced by rapid technology advance-
ments (every 6 months), and the high competition in the sector, require continuous
hardware upgrades in order for the company to remain competitive. In such a scenario,
the subject’s strategy was to keep the project’s source code as independent as possible
from the platform on which it is deployed on, so every time the hardware changes, the
changes in the software are minimised.

Software Quality Journal (2020) 28:505–534520

– System interoperability was also addressed by some of the subjects in order to
make the system compatible with several types of sensors for data collection, receiv-
ing input from controlling devices and sending data streams to different devices (e.g.
smartphones, central control stations).

4.2 RQ2 –What trade-offs between design-time and run-time qualities do ES
practitioners make?

To answer this question, we elaborate on trade-off experiences shared by the subjects during
the interviews and the focus group and on the rationale behind those trade-offs. We note that
all these experiences had negative consequences on the development activities. The subjects
described a number of examples that are worth presenting in some detail, as the context is
of paramount importance to understand the nature of the trade-off:

1. In this example, the goal was to optimise the saving times of the data on disk. Specif-
ically, the system had to manage a certain amount of data per second which had to be
permanently saved on disk. To this end, code maintainability was compromised by per-
forming memory optimisations and by trying different disk access strategies (e.g. bulk
or individual record writes). The subject was perfectly aware that such a change would
reduce the Understandability of the code, but accepted the trade-off anyway. Later on,
when new measurement types had to be added to the data saved on disk, it turned out
that also the Extensibility of that part was diminished, making it very time-consuming
to add new data types to the main data structure saved on disk. This trade-off was there-
fore very inconvenient for this participant as he also said that “... all the structs9 needed
to be rethought”.

This explicit trade-off between Performance and Understandability also concealed a
hidden implicit trade-off that negatively affected Extensibility. Overall, Maintainability
was affected twice.

2. In this example, the system needed to access the DDR memory of the FPGA in a more
optimised manner so that the calculation could be accelerated. The subject thus decided
to re-organise the in-memory data representation of the data itself in a tiled manner (e.g.
data is separated into independent logical sections that occupy different portions of the
memory), rather than as a monolith (e.g. data is one big continuous portion that occupies
the whole memory). This change caused the code that managed the memory accesses
to be much harder to understand and thus to change because the tiled representation,
despite being faster, required extra code for it to work.

This explicit trade-off entails reducing the Maintainability of the involved part by
incurring technical debt, in order to favour Performance.

3. The following example is a common practice reported by multiple subjects. It involves
Dependability and Maintainability, with the latter being explicitly compromised in
favour of the former in order to prepare the system for a demonstration. The reason
why Dependability – including Reliability and Availability – are highly prioritised over
other qualities in view of a demo is because they must go well and impress the man-
agers or the customers; for example, if the drone does not respond to the commands in
the middle of a presentation it is worse than losing battery life 30% faster (demos do
not last long enough to be impacted by battery). Most of the time, demos also involve
new functionality. Thus, often practitioners rush the code of the features that are going

9Intendend as the struct data structure from the C++ language.

Software Quality Journal (2020) 28:505–534 521

to be presented to the customer, ignoring good coding practices in order to implement
the feature faster. Unfortunately, they admitted that such a smelly code is rarely fixed
after the demo is completed.

This explicit trade-off is an example of how Functionality and Dependability are
highly prioritised over Maintainability, causing the project to incur technical debt.

4. This experience refers to a practice commonly employed by teams that develop multi-
threaded systems. The system was originally designed using a layered architecture to
take advantage of its main benefits: high Modularity and Portability. Over the years,
the system kept steadily growing, with new layers and concurrent tasks added, as new
features or changes were required. Eventually, the overhead introduced by the multiple
architectural layers influenced the execution time of every concurrent task at the point
that the tasks could not be completed within the time-slot assigned to them, thus neg-
atively influencing performance. To fix the issue, the developers started to deliberately
compromise Maintainability (incurring technical debt) by bypassing the architectural
layers to gain the speed necessary to complete the tasks within the assigned time-slot.
The performance gains were quite big, since once a layer is bypassed, multiple instances
can use the same link. The big gain in performance encouraged them to repeatedly
apply this hack to improve performance.

This practice is an example of an explicit trade-off that damages Maintainability
in order to gain Performance. It is also an example of inherently trading off Perfor-
mance for Portability, as the extra layers allowing for Portability eventually reduce
performance.

5. This example concerns favouring the Deployability of the system over Performance. It
concerns projects that are being deployed within containers (e.g. Docker). Even if the
extra layer introduced by the container slows down the system performance, the team
accepts this explicit trade-off to avoid the effort of deploying the system for several
platforms.

6. The following example reports on a trade-off at the design level with a great impact
on the end user’s experience. In this project, the system was meant to provide easy and
immediate access to accelerating the user’s scientific applications through FPGAs. To
achieve such a goal, the team designed a generic FPGA model that was able to accom-
modate roughly 80% of a typical user’s needs. This flexibility was only possible by (1)
imposing some limitations to the user’s control over some of the parameters that one
can usually define while working with FPGAs and (2) forcing a modular design of the
system at the cost of reducing performance. More specifically, as FPGAs require to stat-
ically define everything during design-time, accounting for different modules impacted
on the potential performance that users could obtain by running their application on
FPGAs designed by themselves.

This trade-off was therefore explicit at the time of making the decision, sacrificing
Performance in favour of Modularity as the team developing the system knew very well
what were the consequences on Performance of providing a flexible, accessible, and
modular FPGA acceleration framework.

7. In this case, the system was supposed to provide a live streaming service over a 4G con-
nection to a remote endpoint over the network. However, when the signal was weak,
video quality was greatly affected. The development team recognised that by adopting
different encryption and authentication algorithms depending on the quality of the sig-
nal, they could improve user experience without sacrificing Security. This option was
preferred over not using any encryption and authentication at all, which would have
simplified Maintenance and improved user experience at the same time. Nevertheless,

Software Quality Journal (2020) 28:505–534522

the team decided to not sacrifice Security despite the extra code necessary to implement
the aforementioned solution and the overall complexity it introduces.

The development team was not willing to sacrifice Security, and due to the incom-
ing release date of the project, it was necessary to fix the issue as soon as possible.
Hence, they decided to quickly fix the problem by ignoring the effects on Maintainabil-
ity. This was an explicit trade-off that sacrificed Maintainability for Security and thus
incurred technical debt. Interestingly, the team admitted to often prefer Security over
Maintainability.

8. This final example reports on a trade-off of Maintainability, more precisely Readabil-
ity, in favour of Testability. The subject intentionally introduced a more complex, but
also more advantageous accumulation methodology of partial results over multiple exe-
cution cycles in different components of the system. The advantage lies in an easier
inspection of the system’s state during simulation (i.e testing). Of course, the subject
was clearly aware of the consequences of this change over the Readability of the code.

Even though this is an explicit trade-off between two design-time qualities, it is still
interesting to report here in order to show the diversity of trade-off decisions between
qualities made in practice.

A summary of the quality attributes involved in the trade-offs reported above is depicted by
Fig. 4.

One remarkable observation is that most subjects had difficulties identifying the trade-
off decisions they made, especially in the case of implicit trade-offs. Additionally, some
participants admitted that there may be trade-offs that they are not aware of yet; these are
both implicit and inadvertent trade-offs and are very difficult to uncover.

4.3 RQ3 –What processes, practices, and tools do ES practitioners follow to support
trade-off decisions?

The results indicate that no particular process (i.e. ATAM, AHP, QFD, ADD, etc. Bar-
ney et al. (2012)) is adopted when a decision that impacts both run-time and design-time
qualities has to be taken.

The decision-making process in the cases studied follows common sense and normal
intra-team interaction dynamics. Specifically, the following practices were common among
the studied cases. Since most of the projects studied are developed by small teams, it is
common for software architects to also write code and work closely with other developers.

1

Maintainability
4

1

1
Performance

2
Dependability Deployability

Legend:

A B

A B

Traded A for B implicitly

Traded A for B explicitly

Fig. 4 Trade-offs between design-time and run-time quality attributes reported by the subjects. Edge weights
represent the number of trade-offs

Software Quality Journal (2020) 28:505–534 523

Most of the decisions that imply a trade-off between essential quality attributes are taken by
the architects themselves, potentially in consultation with other team members. However,
when an important trade-off decision has to be made, the project leader is consulted in order
to decide on how to proceed. These cases usually concern the modification of functionality
that might be of interest for the customer of the project (e.g. a change in the requirements).
Most of the teams do not consult external experts, but one of the teams reported to occa-
sionally do so, especially when dealing with complicated third-party libraries impacting the
performance of their code.

The subjects support their trade-off decisions by acquiring input from different tools
used to measure run-time metrics related to resource usage (i.e. CPU, network, memory)
and test results. Specific tools are occasionally used, but the most common practice for
measuring execution times, memory used, and network usage is logging. Specific domain-
related devices that are used as an important input are flight and hardware simulators. Teams
working on projects relying on cloud services for managing their back-end use the resource
monitoring tools to pinpoint hot-spots and drive their decisions related to the code. The
study participants working in the HPC domain use an internal spreadsheet to estimate the
performances of the card based on the clock frequency and the characteristics of the card
design. We emphasise that all aforementioned tools are used to measure individual qualities;
there were no subjects using dedicated tools that manage trade-offs between qualities.

The findings can be summarised by stating that the study participants adopt a more
lightweight and ad-hoc approach to deal with decisions rather than using a particular
decision-support method. By lightweight and ad-hoc we mean that they do not use specific
methodologies, but they rather do an educated choice based on the data they have avail-
able, their own experience and of the other team members, and of course customer feedback
whenever available. The main reason is the limited amount of time between releases (or
demos), which forces them to directly tackle the issues they are facing in the most rapid
manner in order to continue the development of the system and deliver the product to the
customer.

4.4 RQ4 –What would be the ideal features of a tool supporting quality attribute
trade-off decisions?

The features hereby are originated directly from the ideas of the focus group and inter-
viewees participants, they range from very specific topics in trade-off management to the
measurement of individual qualities. The next subsections report on each category.

4.4.1 Trade-offmanagement

Concerning features related to trade-off management:

– A common demand was the possibility to select a quality attribute for which the system
should propose potential optimisations and highlight eventual trade-offs arising from
applying them. For example, the envisioned system would propose changes that might
improve the Maintainability level of a particular class, showing the possible impact on,
for example, energy consumption for each proposed change. Similar analyses should
also be supported for other quality attributes, such as Energy Efficiency and Security.
The rationale behind this requirement is to help practitioners increase a certain quality
of the system and, at the same time raise awareness about the impact on other quality
attributes involved in the optimisation;

Software Quality Journal (2020) 28:505–534524

– The ability to register explicit trade-offs, especially in terms of accepting the compro-
mised qualities, was also deemed important. For example, tools that perform continuous
analysis of quality attributes will keep issuing warnings related to the diminished qual-
ity (because of the trade-off). Practitioners mentioned that they would like to turn such
warnings off since it would not make sense to address them: that would simply cancel
the effects of the trade-off decision. For example, by simplifying the cognitive complex-
ity of a method, thus easing maintainability, one might introduce energy inefficiencies.
If this optimisation was suggested and effected by the tool, then one should be able to
turn off the consequent energy warnings;

– Another interesting feature is the consequent impact of an applied optimisation on test
coverage, or, more specifically, which tests have to be re-executed. The rationale behind
this requirement is that executing tests is a time-consuming activity, thus, re-executing
only tests affected by the applied change would greatly influence the productivity of
the developers.

– Concerning Energy Efficiency, some practitioners would be interested to know what
changes in the source code have a higher impact on the overall energy drawn by the
system. This kind of feature can be applied at refactorings that focus on both improving
Energy Efficiency and Maintainability, thus highlighting possible trade-offs between
run-time and design-time qualities.

4.4.2 Technical project management

Ideal features that relate to technical project management are listed below:

– An important feature is the possibility to set a user-defined severity level for each qual-
ity rule detected through static analysis, depending on the project being analysed, and
on the software component where the issue is detected. The rationale behind this fea-
ture stems from the fact that different projects require different quality levels. In fact,
the concept of quality often depends on the contract stipulated by the company and its
customers. Hence, it is important to allow the user to define the desired level of quality
for each project. For example, if the customer values Security, then security issues in
critical components can be given very high severity;

– The practitioners also expressed their interest in monitoring the extended resource
usage over a certain threshold defined by the user (e.g. software uses CPU over 85%
for more than 10 seconds). The rationale is that the user wants to ensure that there is a
margin for a potential growth10 of the system. In particular, reserving a certain margin
of the available resources, such as memory or CPU time, for a potential future growth
guarantees that the functionalities offered by a device can be increased without requir-
ing hardware updates, thus extending the lifespan of the product. On top of this, it is
especially important in critical embedded systems that, in case of malfunctioning, there
are enough resources available to handle emergency situations.

– In some cases, the remote parts of some systems rely on 4G network connectivity to
properly function. Practitioners working on these kinds of projects have expressed the
need for estimating the data usage of their system in order to have an idea of the (partial)

10Note that this concept differs from Scalability for it is meant as an indefinite increase in the number of
features that the system is able to offer.

Software Quality Journal (2020) 28:505–534 525

cost of running the system. As the number of remote sensors with embedded sim cards
in the system increases, every bit exchanged by a sensor has a higher impact on the
final cost generated by the system.

4.4.3 Monitoring quality attributes

The features related to monitoring quality attributes:

– Resource profiling (CPU, memory, disk, etc.) seemed to be very popular since practi-
tioners consider the quantification of run-time qualities (e.g. Reliability, Performance,
or Energy Efficiency) of interest to be of paramount importance;

– In relation to Energy Efficiency, an interesting but hard-to-satisfy need is the automatic
detection of possible optimisations of sensors and hardware usage by the software. One
example could be the number of frames per second registered by a camera, which in
case it is excessive and unneeded, it negatively influences energy consumption;

– Technical debt monitoring is also appealing to some of the practitioners. In particular,
it is deemed very useful to break down the overall technical debt by associating specific
technical debt items to individual software components; this, in turn, helps to better
focus maintenance efforts.

Finally, there were also other, more generic features, such as security vulnerability
identification, bug detection, and weekly reports on design-time and run-time qualities
evolution.

5 Discussion

This study investigated how software engineers and architects, from different companies
from the embedded systems domain, prioritise and manage quality attributes, (paying spe-
cial attention to Maintainability, Dependability, and Energy Efficiency) and the trade-offs
among them.

The results from RQ1 indicate that the involved practitioners focus their develop-
ment efforts mostly on Dependability (more specifically, on Availability and Reliability).
Although they value Maintainability as a top-priority quality attribute (as also identified by
Bellomo et al. (2015)), they fail to effectively measure and monitor it with dedicated tools.
Several factors could cause this behaviour:

– practitioners often lack theoretical knowledge on how the tools calculate metrics, what
these metrics mean and how the metrics can be customised to better fit their context. In
addition, they usually do not have enough insight into the available tools (commercial
or open-source) to be able to select the one that fits them better;

– most projects have very short iterations that require developers to focus on imple-
menting functionality, while maintainability is not prioritised with the reasoning of not
having business value;

– practitioners often have a short-term perspective on a specific project e.g. due to
changing projects frequently. Thus the long-term sustainability of a project is not an
immediate concern for them;

– the contract with the customer often does not explicitly concern architecture or code
quality, thus the company might not invest on it;

Software Quality Journal (2020) 28:505–534526

– and finally, due to lack of training or company culture, developers may misunderstand
or underestimate the shortcomings in maintainability.

The majority of the trade-off experiences mentioned by the subjects (reported in RQ2)
involve Maintainability as the compromised quality attribute whereas Dependability or Per-
formance are favoured in most of the cases. This finding aligns with what has been already
reported by two other studies from the investigated literature (Ampatzoglou et al. 2016;
Feitosa et al. 2015). It is worth mentioning that the results of the three studies (this study,
Ampatzoglou et al. (2016) and Feitosa et al. (2015)) were obtained in different contexts,
using different data collection methodologies and data sources, while the similarities among
them appear to be particularly strong. Therefore, these results seem to generalise well
increasing the external validity of the studies.

Regarding the explicit or implicit nature of trade-offs reported in RQ3, the results from
RQ2 indicate that the majority of the trade-offs can be considered explicit. Through this
observation alone, we could derive the conclusion that practitioners are perfectly aware of
almost all the trade-offs they make and the qualities involved; yet, this would be a skewed
view of reality caused by survivorship bias. That is because practitioners do not thoroughly
monitor most of the design-time quality attributes – as emerges from RQ1 – and implicit
trade-offs are harder to remember and report. Hence, we conjecture that a significant amount
of decisions entail implicit trade-offs; especially those that incur technical debt due to un-
monitored quality attributes, such as Maintainability. As a result, the consequences of these
implicit trade-offs are usually only discovered when new functionality or performance opti-
misations are required to be implemented, causing the developers to pay technical debt
interest on that part of the code. The trade-off number one reported by RQ2 is a clear
example of this phenomenon.

Another common practice that frequently causes practitioners to incur technical debt is
the preparation for a demo. In general, this practice can be seen as incurring deliberate, but
prudent, technical debt (Fowler 2014), since it is a conscious decision made by the team in
order to obtain a short-term advantage. One of the reasons that we deem this as ‘prudent’,
rather than ‘reckless’ (Fowler 2014), is because practitioners foresee very little interest prob-
ability on the parts of the system they rush before the demo; a possible explanation for this
behaviour could be that customers might require a change involving that part of the sys-
tem, so it might not be worth at all spending too much time on it. This is reasonable since
practitioners are required first and foremost to pursue customer satisfaction, rather than the
long-term sustainability of source code. However, there needs to be a concrete strategy, after
the demo, to monitor the incurred technical debt and strive to repay it as soon as possible.

Considering the results obtained from RQ3, it is reasonable to wonder why the subjects
of the study do not use any specific process to support their trade-off decisions. One possi-
ble explanation could be that, like most software engineering processes, those for managing
trade-offs are not as well-known in industrial practice as in the academic domain. Even if
practitioners are familiar with such processes, many of them require a non-trivial amount of
time to learn, plan, and eventually execute. In particular, the planning and execution over-
head are rather incompatible with the daily routine of a developer and strict deadlines that
characterise the industrial software domain, and, more specifically, the projects in our study.
Note that since implicit trade-offs can arise from any decision taken, it could be necessary,
depending on the case, to apply these methods on a daily basis. Moreover, some of these
processes involve multiple parties and project stakeholders, thus requiring substantial effort
and calendar time to apply these methods for each decision; this does not align with teams

Software Quality Journal (2020) 28:505–534 527

following an agile software development process. Also, a considerable amount of infor-
mation concerning the system is usually required, which may not always be available in a
practical amount of time, at the moment of making the decision.

An interesting aspect that emerges from the results is the prioritisation in managing trade-
offs. Pipelining every decision through a trade-off decision-support process would add an
excessive overhead; that would be counter-productive both in the short and in the long term.
The only reasonable approach to manage trade-offs is to rationally select decisions that
require support based on the foreseeable impact they have on the quality attributes of interest
in the project, as well as potential risks. However, this is easier said than done. Consider,
for example, the fourth trade-off experience uncovered by RQ2, where engineers could
have applied a trade-off decision-making support process to avoid heavily compromising on
Maintainability and identify a new, more adequate, system architecture. They realised that
cutting corners (i.e. bypassing layers) is the easiest way to improve performance, and did
not bother considering eventual trade-offs since they were able to gain huge performance
improvements. These large gains were enough of a reason for them to ignore long-term
trade-offs, tackle their issue and keep developing the system.

The abovementioned considerations can be generalised to companies that develop B2B
(Business to Business) embedded system products that are meant to be sold to customers
later on as personalised solutions. The development of these products is done by teams
that are small or medium sized (from 3-4 elements up to 6-7) and which members work
closely together, perhaps covering multiple roles and wearing different hats depending on
the development phase. Embedded systems industry is forced by the market to move fast and
innovate quickly, this requires their teams to react quickly to changes. In this regard, smaller
teams of 3-5 members have been found to be the sweet spot for productivity in relation to the
actual effort spent with a maximum of 9 elements by Putnam (1978). Moreover, teams with
less than 10 elements are also the most frequent teams in software development (Rodrı́guez
et al. 2012).

Finally, we summarise some of the implications of our study for practitioners and
researchers. Researchers now have a clearer view of the embedded systems industry’s needs,
practices, tools, quality attributes and trade-offs experiences, that can be used as a founda-
tion for future research or experimental tool development. Furthermore, those interested in
the practical aspects of technical debt management, now have a better insight on common
habits and decisions concerning incurring technical debt (e.g. trade-offs and other practices
from RQ2 and RQ3) and repaying technical debt (e.g. right after a demo, when there are less
uncertainties and more time). Also, they have now more insights on implicit and explicit
trade-offs, which have not been studied before in the literature. Practitioners, on the other
hand, can learn a lot from the reported experiences and the conclusions drawn by this study
in order to further improve their development processes. For example, important decisions
that involve quality attribute trade-offs should be supported by adequate decision-making
processes or practices that document the qualities involved, keeping track of the decisions
(e.g. using approaches proposed by other authors (van Heesch et al. 2012; Falessi et al.
2011; Barney et al. 2012)) and the favoured and sacrificed qualities. Such documents can
be subsequently used to support future decisions. They can also become more aware of the
importance to constantly monitor design-time quality attributes using dedicated software
(i.e. that monitors technical debt, like SonarQube) and make trade-offs explicit, to the best
possible extent.

Software Quality Journal (2020) 28:505–534528

6 Threats to validity

The present study is subject to limitations which can be categorised into construct validity,
external validity, and reliability following the classification proposed by Runeson et al.
(2012). Internal validity is not a concern for this study because we did not examine causal
relations (Runeson et al. 2012).

6.1 Construct validity

Construct validity concerns the degree to which a study measures what it claims to be
measuring (Runeson et al. 2012).

This study aimed at eliciting the knowledge of the practitioners in relation to a spe-
cific goal, expressed as research questions. A case study protocol was carefully designed
to ensure that the questions of the interviews and of the focus group were congruous with
such a goal. Additionally, the protocol was reviewed by an external reviewer to ascertain
that indeed the data to be collected pertain to the research questions.

A possible construct validity threat comes from the risk that not all participants shared
the same theoretical and technical knowledge of the high-level concepts covered during the
interviews. To address this threat, the interviewer ensured that each interviewee was on the
same track as the others about the meaning of the main technical terms used throughout
the interview by performing a brief explanation before using any of those terms. The focus
group participants received a similar explanation both in written form, prior to the session,
and verbally, during the session. Moreover, two pilot interviews were performed, and con-
tinuous feedback from the interviewed practitioners contributed to improving the clarity and
the scope of the questions asked in the remaining interviews. To avoid collecting data unre-
lated to the initial goal, the interviewees were required to discuss only projects respecting
the criteria mentioned in Section 3.3.1. Finally, the possible bias introduced by the two par-
ticipants that took part in both interviews and focus group was mitigated in two ways: first,
the semi-structured format of the focus group was driven by a pre-defined agenda and we
ensured no participant would cause us to deviate from that agenda; second, the session was
moderated by an experienced researcher who intervened whenever necessary. Thus, given
these two factors, the two participants could not mention or make reference to any detail
related to the interview that was yet not disclosed to the whole group.

6.2 External validity

External validity concerns whether the results of the study are generalisable to other similar
environments, so that the results obtained are useful in other contexts. There are two pos-
sible generalisations viewpoints: concerning the subjects and concerning embedded system
fields.

Concerning the subjects, our study is based on data collected from several engineers
coming from multiple companies. The engineers have a different field of specialisation
and background, and their experience ranges from junior developers to very experienced
system architects (see Tables 3 and 4). This variety of experiences covers a broad spectrum
of embedded systems engineers, thus representing, at least to some extent, the needs, the
practices, and the tools used by practitioners working in the embedded systems domain.

Concerning the teams, the data collected by this study is mostly focused on small to
medium software development teams. This limitation slightly reduces the generalisations
of the results, mostly from RQ3, to teams of similar sizes. However, teams with less than

Software Quality Journal (2020) 28:505–534 529

10 members are the most common teams in software development, regardless of the main
programming language (and thus platform) used (Rodrı́guez et al. 2012), allowing these
results to be applied to most teams.

Concerning the fields, this work discusses embedded systems that value Dependability,
Performance, and Energy efficiency since most of the systems investigated perform tasks
that are critical, time-bounded, or extended in duration on devices relying on batteries.
The generalisation is however limited to companies that create systems meant for other
businesses rather than to the average consumer. Although these kinds of systems are only
a small sample of the overall embedded systems population, the results obtained might be
generalised to other domains that share a similar set of important quality attributes, such as
industrial automation devices (Safety and Energy Efficiency), networking (Availability and
Reliability), and scientific and measuring tools (high Performance). However, one could
argue that the study is unbalanced towards the aviation domain, since most of our subjects
come from such a domain. Nevertheless, several quality attributes that are critical in this
domain are also critical in other domains considered; for example, Safety and Reliability are
crucial attributes both in the Automotive and in the Medical implants fields. Additionally,
we considered each company as an individual case study subject, thus each company’s needs
were weighted according to the case study design, independently of the number of units of
analysis they supplied for the study.

We cannot claim that the results can be generalised to other embedded system types,
such as general consumer electronics, or machine learning applications, because different
qualities or device types are preferred in these fields.

6.3 Reliability

Reliability, in this context, refers to the degree to which the collected data depends on the
specific researchers collecting and analysing it (different researchers following the same
case study design should yield the same data). To this end, a replication package, contain-
ing the protocol and the questionnaires, is available online2, allowing other researchers to
evaluate the rigor of the design or replicate the study.

To guarantee the reliability of the findings, all the intermediary results were reviewed
by a second researcher during all the process of analysis and the analysis was performed
following a well-known qualitative data analysis method, namely Constant Comparative
Method (Boeije 2002). Additionally, the results were presented in front of at least one prac-
titioner of each company that took part in the study in order to ensure that the sources of the
data agree with the findings of the study and ensure their credibility.

7 Conclusions and future work

Managing quality attribute trade-offs is a complicated activity that has a considerable impact
on the system’s behaviour and future sustainability. The embedded systems domain is gener-
ally more sensitive to trade-offs among quality attributes than other domains since they have
strict requirements on performance, energy and dependability. For example, small changes
to the design or code of the system might have an undesired impact on its run-time qualities.

By analysing and understanding how the industry deals with trade-offs on a day-by-
day basis, it is possible to propose solutions that support the industry in addressing this
complicated problem. To this end, this work investigated the needs and practices of the

Software Quality Journal (2020) 28:505–534530

embedded systems industry on quality attribute trade-offs by directly interacting with a
number of practitioners through interviews and a focus group.

A major finding from this study is that embedded systems engineers are in great need of
tooling that supports the monitoring of run-time qualities, but at the same time indicates pos-
sible implications on design-time qualities of the performed changes. Also, we found that
practitioners rarely adopt tools for monitoring design-time quality attributes; this behaviour
causes them to overlook important trade-offs that negatively impact the cost of the project
in the long-term (i.e. incur technical debt). Moreover, due to strict domain requirements,
practitioners have difficulties applying methods, or processes, for explicitly managing trade-
offs among quality attributes. Thus, they focus on the major run-time qualities, such as
Dependability or Performance, that satisfy customer needs.

As future research perspective, it would be interesting to investigate the actual costs
of trade-offs in a project and compare estimations of technical debt interest for implicit
and explicit trade-offs. Another interesting work would be to investigate an empirically-
calculated ratio of explicit versus implicit trade-offs, allowing one to grossly estimate the
hidden technical debt principal of a project using data of past decisions.

Acknowledgements Special thanks to Apostolos Ampatzoglou for providing suggestions and comments
on the design of this study. We would also like to thank all the companies that took part in this study and
provided us with valuable information.

Funding information This work was financially supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 780572 SDK4ED (https://sdk4ed.eu/).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P. (2015). The financial aspect
of managing technical debt: a systematic literature review. Information and Software Technology,
64, 52–73. https://doi.org/10.1016/j.infsof.2015.04.001. http://www.sciencedirect.com/science/article/
pii/S0950584915000762.

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., Abrahamsson, P., Martini, A., Zdun,
U., Systa, K. (2016). The perception of technical debt in the embedded systems domain: an industrial
case study. In Proceedings - 2016 IEEE 8th International Workshop on Managing Technical Debt, MTD
2016 (pp. 9–16). https://doi.org/10.1109/MTD.2016.8.

Barbacci, M., Klein, M.H., Longstaff, T., Weinstock, C. (1995). Quality Attributes. Tech. rep., Carnegie
Mellon University, Software Engineering Institute, Pittsburgh.

Barney, S., Petersen, K., Svahnberg, M., Aurum, A., Barney, H. (2012). Software quality trade-offs: a system-
atic map. Information and Software Technology, 54(7), 651–662. https://doi.org/10.1016/j.infsof.2012.
01.008. http://linkinghub.elsevier.com/retrieve/pii/S0950584912000195.

Bass, L., Clements, P., Kazman, P. (2012). Software architecture in practice, 3rd edn. Addison-Wesley
Professional. https://dl.acm.org/citation.cfm?id=2392670.

Bellomo, S., Gorton, I., Kazman, R. (2015). Toward agile architecture: insights from 15 years of ATAM
data. IEEE Software, 32(5), 38–45. https://doi.org/10.1109/MS.2015.35. https://ieeexplore.ieee.org/
document/7024074/.

Boeije, H. (2002). A purposeful approach to the constant comparative method in the analysis of qualitative
interviews. Quality & Quantity, 36, 391–409. https://doi.org/10.1023/A:1020909529486.

Software Quality Journal (2020) 28:505–534 531

https://sdk4ed.eu/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.infsof.2015.04.001
http://www.sciencedirect.com/science/article/pii/S0950584915000762
http://www.sciencedirect.com/science/article/pii/S0950584915000762
https://doi.org/10.1109/MTD.2016.8
https://doi.org/10.1016/j.infsof.2012.01.008
https://doi.org/10.1016/j.infsof.2012.01.008
http://linkinghub.elsevier.com/retrieve/pii/S0950584912000195
https://dl.acm.org/citation.cfm?id=2392670
https://doi.org/10.1109/MS.2015.35
https://ieeexplore.ieee.org/document/7024074/
https://ieeexplore.ieee.org/document/7024074/
https://doi.org/10.1023/A:1020909529486

Brereton, P., Kitchenham, B., Budgen, D., Li, Z. (2008). Using a protocol template for case study plan-
ning. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software
Engineering. https://doi.org/10.1145/2601248.2601276.

Clements, P., Kazman, R., Klein, M., et al. (2003). Evaluating Software Architectures. Beijing: Tsinghua
University Press.

Corrêa, U.B., Lamb, L., Carro, L., Brisolara, L., Mattos, J. (2010). Towards estimating physical properties
of embedded systems using software quality metrics. In 2010 10Th IEEE International Conference on
Computer and Information Technology (pp. 2381–2386). IEEE. https://doi.org/10.1109/CIT.2010.409.
http://ieeexplore.ieee.org/document/5578300/.

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Professional, 2(3), 17–23.
https://doi.org/10.1109/6294.846201.

Falessi, D., Cantone, G., Kazman, R., Kruchten, P. (2011). Decision-making techniques for soft-
ware architecture design: a comparative survey. ACM Computing Surveys, 43(4), 33:1–33:28.
https://doi.org/10.1145/1978802.1978812.

Feitosa, D., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y. (2015). Investigating quality trade-
offs in open source critical embedded systems. In Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Architectures - QoSA ’15 (pp. 113–122).
https://doi.org/10.1145/2737182.2737190.

Fowler, M. (2014). The technical debt quadrant. https://martinfowler.com/bliki/TechnicalDebtQuadrant.html.
[Online; Accessed: September 2018].

Glaser, B.G., Strauss, A.L., Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative
research. Nursing Research, 17(4), 364.

IEEE (1993). Ieee standard for a software quality metrics methodology. IEEE Std 1061–1992.
https://doi.org/10.1109/IEEESTD.1993.115124.

IEC 61508 (2010). Functional safety of electrical/electronic/programmable electronic safety-related systems.
Standard, International Electrotechnical Commission, Geneva.

ISO/IEC 25010 (2011). System and software quality models. Standard, International Organization for
Standardization, Geneva.

Laprie, J.C. (1992). Dependability: basic concepts and terminology. In Dependability: Basic Concepts and
Terminology (pp. 1–12). Vienna: Springer, https://doi.org/10.1007/978-3-7091-9170-5 1.

Knight, J. (2002). Dependability of embedded systems. In Proceedings of the 24th International Conference
on Software Engineering. ICSE 2002 (pp. 685–686). https://doi.org/10.1109/ICSE.2002.1008029. http://
portal.acm.org/citation.cfm?doid=581339.581445.

Kontio, J., Bragge, J., Lehtola, L. (2008). The focus group method as an empirical tool in software
engineering, (pp. 93–116). London: Springer. https://doi.org/10.1007/978-1-84800-044-5 4.

Koopman, P. (2004). Embedded system security. Computer, 37(7), 95–97. https://doi.org/10.1109/MC.2004.
52.

Kruchten, P., Nord, R.L., Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice. IEEE
Software, 29(6), 18–21. https://doi.org/10.1109/MS.2012.167.

Mallick, D.N., & Schroeder, R.G. (2009). An integrated framework for measuring product development
performance in high technology industries. Production and Operations Management, 14(2), 142–158.
https://doi.org/10.1111/j.1937-5956.2005.tb00015.x.

Martini, A., & Bosch, J. (2015). Towards prioritizing architecture technical debt: information needs of archi-
tects and product owners. In 2015 41St euromicro conference on software engineering and advanced
applications (pp. 422–429). IEEE. https://doi.org/10.1109/SEAA.2015.78. http://ieeexplore.ieee.org/
document/7302484/.

Mcdonagh, D., Msc, P., Mdrs, M., Bruseberg, A. (2000). Using Focus Groups to Support New Product
Development. institution of engineering designers journal (september).

Mentis, A., Katsaros, P., Angelis, L. (2009). Synthetic metrics for evaluating runtime quality of software
architectures with complex tradeoffs. In 2009 35Th euromicro conference on software engineering and
advanced applications (pp. 237–242). IEEE. https://doi.org/10.1109/SEAA.2009.84. http://ieeexplore.
ieee.org/document/5349844/.

Oliveira, M.F., Redin, R.M., Carro, L., Lamb, L., Wagner, F. (2008). Software quality metrics and their
impact on embedded software. In 2008 5Th International Workshop on Model-based Methodologies for
Pervasive and Embedded Software (pp. 68–77), Mompes. https://doi.org/10.1109/MOMPES.2008.11.

Papadopoulos, L., Marantos, C., Digkas, G., Ampatzoglou, A., Chatzigeorgiou, A., Soudris, D. (2018). Inter-
relations between software quality metrics, performance and energy consumption in embedded appli-
cations. In Proceedings of the 21st International Workshop on Software and Compilers for Embedded
Systems - SCOPES ’18 (pp. 62–65). New York: ACM Press. https://doi.org/10.1145/3207719.3207736.

Software Quality Journal (2020) 28:505–534532

https://doi.org/10.1145/2601248.2601276
https://doi.org/10.1109/CIT.2010.409
http://ieeexplore.ieee.org/document/5578300/
https://doi.org/10.1109/6294.846201
https://doi.org/10.1145/1978802.1978812
https://doi.org/10.1145/2737182.2737190
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://doi.org/10.1109/IEEESTD.1993.115124
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1109/ICSE.2002.1008029
http://portal.acm.org/citation.cfm?doid=581339.581445
http://portal.acm.org/citation.cfm?doid=581339.581445
https://doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1109/MC.2004.52
https://doi.org/10.1109/MC.2004.52
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1111/j.1937-5956.2005.tb00015.x
https://doi.org/10.1109/SEAA.2015.78
http://ieeexplore.ieee.org/document/7302484/
http://ieeexplore.ieee.org/document/7302484/
https://doi.org/10.1109/SEAA.2009.84
http://ieeexplore.ieee.org/document/5349844/
http://ieeexplore.ieee.org/document/5349844/
https://doi.org/10.1109/MOMPES.2008.11
https://doi.org/10.1145/3207719.3207736

Putnam, L. (1978). A general empirical solution to the macro software sizing and estimating problem. IEEE
Transactions on Software Engineering, SE-4(4), 345–361. https://doi.org/10.1109/TSE.1978.231521.
http://ieeexplore.ieee.org/document/1702544/.

Rodrı́guez, D., Sicilia, M.A., Garcı́a, E., Harrison, R. (2012). Empirical findings on team size
and productivity in software development. Journal of Systems and Software, 85(3), 562–
570. https://doi.org/10.1016/j.jss.2011.09.009. https://www-sciencedirect-com.proxy-ub.rug.nl/science/
article/pii/S0164121211002366.

Runeson, P., Host, M., Rainer, A., Regnell, B. (2012). Case study research in software engineering. Wiley.
https://doi.org/10.1002/9781118181034.

Sherman, T. (2008). Quality attributes for embedded systems. In Advances in computer and informa-
tion sciences and engineering (pp. 536–539). Netherlands: Springer. http://link.springer.com/10.1007/
978-1-4020-8741-7 95.

van Heesch, U., Avgeriou, P., Hilliard, R. (2012). A documentation framework for architecture decisions.
Journal of Systems and Software, 85(4), 795–820. https://doi.org/10.1016/j.jss.2011.10.017.

van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D. (2002). Goal Question Metric (GQM) approach.
In Encyclopedia of software engineering. Wiley. https://doi.org/10.1002/0471028959.sof142.

Wahler, M., Eidenbenz, R., Monot, A., Oriol, M., Sivanthi, T. (2017). Quality attribute trade-offs in
industrial software systems. In: 2017 IEEE International Conference on Software Architecture Work-
shops (ICSAW) (pp. 251–254). IEEE. https://doi.org/10.1109/ICSAW.2017.10. http://ieeexplore.ieee.
org/document/7958498/.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Darius Sas is a Ph.D. student at the Bernoulli Institute for Math-
ematics, Computer Science and Artificial Intelligence, University
of Groningen, the Netherlands. He received his Master’s degree in
Computer Science in 2018 from the University of Milano-Bicocca,
Milan, Italy. He then started his academic career as a Ph.D. stu-
dent in the Software Engineering and Architecture (SEARCH) group
lead by Paris Avgeriou at the University of Groningen. His Ph.D.
project focuses on architectural technical debt elimination in embed-
ded systems and is part of a European project (SDK4ED) that
focuses on the interplay between technical debt, energy efficiency,
and dependability.

Software Quality Journal (2020) 28:505–534 533

https://doi.org/10.1109/TSE.1978.231521
http://ieeexplore.ieee.org/document/1702544/
https://doi.org/10.1016/j.jss.2011.09.009
https://www-sciencedirect-com.proxy-ub.rug.nl/science/article/pii/S0164121211002366
https://www-sciencedirect-com.proxy-ub.rug.nl/science/article/pii/S0164121211002366
https://doi.org/10.1002/9781118181034
http://link.springer.com/10.1007/978-1-4020-8741-7_95
http://link.springer.com/10.1007/978-1-4020-8741-7_95
https://doi.org/10.1016/j.jss.2011.10.017
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1109/ICSAW.2017.10
http://ieeexplore.ieee.org/document/7958498/
http://ieeexplore.ieee.org/document/7958498/

Dr. Paris Avgeriou is Full Professor of Software Engineering in the
Bernoulli Institute for Mathematics, Computer Science and Artifi-
cial Intelligence, University of Groningen, the Netherlands. He is
the head of the Software Engineering and Architecture (SEARCH)
research group since September 2006. He received a diploma (M.Sc.)
in Electrical and Computer Engineering (1999), as well as a Ph.D. in
Software Engineering (2003) from the National Technical University
of Athens (NTUA), Greece. He has worked as a Senior Researcher
at the Fraunhofer IPSI, Darmstadt, Germany (2005), and the Uni-
versity of Luxembourg (2004), under the Fellowship Programme of
ERCIM, as a visiting Lecturer at the Department of Computer Sci-
ence (2003), University of Cyprus, and as a research and teaching
assistant at NTUA (1999 ? 2002). He has been leading a number of
research projects on software architecture, that are directly related to
the European industry of Software-intensive systems. He is the Editor
in Chief of the Journal of Systems and Software, as well as an Asso-
ciate Editor for IEEE Software. He also sits on the editorial board of

Springer Transactions on Pattern Languages of Programming (TPLOP). He has acted/will act as (co-)Chair
for ECSA 14, MTD 15, EuroPLoP 11, Tech Debt 19 and ICSA 19. He has been co-organizing international
workshops in conferences such as ICSE, ECOOP, ICSR, UML, ACM SAC). He is a senior member of IEEE,
a member of ISERN, ERCIM, Hillside Europe and acts as a PC member and reviewer for several conferences
and journals. He has received awards and distinctions for both teaching and research, is regularly invited to
give keynotes and invited talks and has published more than 200 articles in peer-reviewed international jour-
nals, conference proceedings and books. His research interests lie in the area of software architecture, with
strong emphasis on architecture modeling, knowledge, evolution, patterns, metrics, and technical debt. He
champions the evidence-based paradigm in Software Engineering research and works towards closing the
gap between industry and academia.

Software Quality Journal (2020) 28:505–534534

	Quality attribute trade-offs in the embedded systems industry: an exploratory case study
	Abstract
	Introduction
	Background and Related work
	Background and terminology
	Related work

	Case study design
	Objective and Research Questions
	Cases, subjects and units of analysis
	Data collection
	Interviews
	Focus group

	Data analysis

	Results
	RQ1 – What is the interest of the ES industry in design-time and run-time quality attributes, such as Maintainability, Dependability and Energy efficiency, and what tools, processes, and practices are adopted to manage them?
	RQ2 – What trade-offs between design-time and run-time qualities do ES practitioners make?
	RQ3 – What processes, practices, and tools do ES practitioners follow to support trade-off decisions?
	RQ4 – What would be the ideal features of a tool supporting quality attribute trade-off decisions?
	Trade-off management
	Technical project management
	Monitoring quality attributes

	Discussion
	Threats to validity
	Construct validity
	External validity
	Reliability

	Conclusions and future work
	References

