
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

Hardware design and CAD for processor-based logic emulation Hardware design and CAD for processor-based logic emulation

systems. systems.

Amir Ali Yazdanshenas
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Yazdanshenas, Amir Ali, "Hardware design and CAD for processor-based logic emulation systems."
(2006). Electronic Theses and Dissertations. 7121.
https://scholar.uwindsor.ca/etd/7121

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7121?utm_source=scholar.uwindsor.ca%2Fetd%2F7121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Hardware Design and CAD for Processor-based
Logic Emulation Systems

by

Am ir Ali Yazdanshenas

A Thesis
Subm itted to the Faculty of G raduate Studies and Research through

Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of M aster of Applied Science at the

University of W indsor

Windsor, Ontario, Canada
2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42312-7
Our file Notre reference
ISBN: 978-0-494-42312-7

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hardware Design and CAD for Processor-based Logic Emulation Systems

by

Amir Ali Yazdanshenas

APPROVED BY:

W. Altenhof, External Examiner
Mechanical Engineering

E. Abdel-Raheem, Departmental Examiner
Electrical and Computer Engineering

M. A. S Khalid, Advisor
Electrical and Computer Engineering

S. O ’Leary, Chair of Defense
Electrical and Computer Engineering

December 6, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© 2006 Amir Ali Yazdanshenas

All Rights Reserved. No P art of this document may be reproduced, stored or otherwise retained in

a retreival system or transm itted in any form, on any medium by any means without prior w ritten

permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

It is fair to claim th a t the greatest challenge currently faced by IC designers is how they prove

th a t their designs do not contain any functional errors before they actually send them away for

fabrication. Given the fact th a t fabrication of a chip is not only a time-consuming process, but also

very expensive, it would be financially devastating for IC manufacturing companies if any functional

errors are detected after the chip is fabricated. Logic emulation systems are programmable hardware

platforms th a t help IC designers to verify the correct functionality of their IC designs before they

are sent for fabrication. Processor-based logic emulation systems belong to a class of logic emulators

th a t are studied in details in this thesis.

In the first part of this research, a new hardware architecture for processor-based logic emula

tion system, which was implemented in Xilinx Virtex-II and Virtex 4 FPGAs, has been proposed.

Efficiency of proposed architecture in terms of speed, area and other design constraints is compared

with other studies. The new approach shows reasonable emulation speed (200K H z) , better logic

utilization (> 67%) while reducing the hardware size and cost by orders of magnitude.

More importantly, based on the proposed architecture, a software CAD framework was created

th a t allows automatic mapping of a gate-level netlist into a series of instructions, which can be

executed in parallel by a collection of logic emulation processors. Two scheduling algorithms have

been developed and implemented. The algorithms were evaluated using several popular benchmark

circuits. Experimental results show tha t the algorithms achieved close to optimal average processor

workload (83%) which results in fast emulation speed.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my mother who never stopped loving me.
To my father (Captain) who never stopped supporting me.
To my brothers who never stopped cheering me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A cknow ledgm ents

There are so many people who have directly or indirectly influenced this work th a t I will remain

thankful to all of them for the rest of my life because, without them, I would have never made it this

far. First and foremost is Dr. Mohammed Khalid, my supervisor, to whom I would like to express

my most sincere gratitude for his invaluable encouragement, guidance and support. To Dr. Esam

Abdel-Raheem for his infinite kindness and patience, I would like to express my appreciation from

the bottom of my heart. Next, I would like to thank Dr. William Altenhof, whose scientific and

precise approach towards details has shed so much light into my work. Also, special thanks goes

to Dr. O ’Leary who kindly accepted to chair my defense session. I shall truly thank Dr. Majid

Ahmadi for always believing in me and accepting me into this program. Also, I would like to thank

Dr. Roberto Muscedere for answering technical questions I encountered in the RCIM lab and his

professional help during the course of this research.

Added to these gentlemen, are my dearest colleagues and friends at the Department of Electrical

and Computer Engineering. My best wishes go to Kevin Banovic, Jason Tong, Raymond Lee,

Harb Abdulhamid, Ian Anderson and Marwan Kanaan for creating such a wonderful and pleasant

atmosphere to work at. To my friends Behdad Elahipanah, Nima Bayan, Mohammad Naserian,

Amr Elkholy, with whom I spent such a wonderful time playing soccer, I wish them success in all

aspects of their lives. And last, but not least, I have to express my thanks to Ms. Andria Turner

and Ms. Shelby Merchand for being so generous and helpful to me throughout these years.

This research was funded by the National Science and Engineering Research Council (NSERC)

and the University of Windsor, while the Canadian Microelectronics Corporation (CMC) has pro

vided all our FPGA lab equipments, VLSI CAD software and technical support. Their contribution

is also gratefully acknowledged.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

A b stract iv

D ed ication v

A cknow ledgm ents vi

List o f F igures x

List o f Tables x iii

List o f A bbreviations x iv

1 Introduction and M otivation 1

1.1 Thesis O v e rv ie w .. 2

1.2 Thesis O rg a n iz a tio n .. 3

2 B ackground and P revious W ork 4

2.1 History of Design V erification ... 5

2.1.1 Formal V erification.. 6

2.1.2 Simulation ... 7

2.1.3 Hardware-Accelerated S im ulation... 8

2.1.4 Rapid P ro to ty p in g .. 9

2.1.5 Logic E m u la t io n ... 9

2.2 Architecture of Logic Emulation Systems .. 9

2.2.1 FPGA-Based Logic Emulation System (F B E) ... 11

2.2.1.1 Introduction to Field-Programmable Gate A r r a y 11

2.2.1.2 Architecture of FPGA-Based Logic Emulation S y s te m s 14

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

A Mesh In terco n n ec t.. 15

B Full Crossbar In te rc o n n e c t.. 15

C Partial and Hierarchical Partial C ro s s b a r 16

D Hybrid Complete Graph Partial C ro s sb a r 18

E Virtual Wire A rchitecture... 19

F Time-Multiplexed FPG A A rch itectu re...................................... 21

2.2.1.3 Emulating Logic Designs on F B E s .. 22

2.2.2 Processor-Based Logic Emulation System (P B E) .. 23

2.2.2.1 Architecture of P B E s ... 24

A PBEs with Homogeneous A rchitecture...................................... 24

B PBEs with Heterogeneous A rc h ite c tu re 25

2.2.3 Logic Emulation Systems in In d u stry ... 25

2.3 CAD Flow for Logic Emulation S y s te m s .. 26

2.3.1 Introduction .. 26

2.3.2 CAD Flow for F B E s ... 27

2.3.3 CAD Flow for P B E s ... 32

3 A rchitecture o f H ybrid E m ulation P rocessor (H E P) 35

3.1 Top-Level Organization the Emulation E ng ine.. 35

3.2 How a Logic Design is E m u la ted ? ... 36

3.3 Structure of Hybrid Emulation Processor ... 37

3.4 Instruction Set Architecture of H E P ... 39

3.5 Central Control Unit of H E P .. 42

3.6 Control Memory of H E P .. 48

3.7 D ata Memory of H E P ... 49

3.8 Inpu t/O utpu t Ports of H E P ... 50

3.9 H E P’s Program Counter Register (Global Sequencer)... 51

3.10 Additional Signal Pins of H E P ... 52

4 Im plem entation o f H ybrid E m ulation P rocessor on F P G A 54

4.1 In troduction ... 54

4.2 Design Specifications for HEP-based Emulation E ng ine .. 55

4.3 RTL Design of HEP-Based Emulation E n g in e ... 57

4.3.1 RTL Modeling of HEP P ro ce sso r... 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

4.4 RTL Simulation R e s u l t s .. 59

4.5 Synthesis R e s u lts ... 60

4.6 Comparison and C onclusion ... 66

5 A C A D Tool S u ite for H E P -based E m ulation S ystem 69

5.1 Basic requirements for HEP-based CAD tool .. 69

5.2 Overall CAD F l o w .. 71

5.2.1 Design E n t r y .. 71

5.2.2 S y n th e s is .. 72

5.2.3 Technology M ap p in g .. 73

5.2.4 Scheduling ... 75

5.2.4.1 P relim inaries .. 77

5.2.4.2 Levelization .. 79

5.2.4.3 Modified List Scheduling (M L S) ... 84

5.2.4.4 M LS+BFF Scheduling .. 88

5.2.4.5 M athematical F o rm u la tio n ... 89

5.2.4.6 Evaluation M etrics.. 93

5.2.4.7 Implementation of M LS/M LS+BFF Scheduling T o o ls 95

5.2.5 Experimental Results ... 95

5.2.6 Code Generation and Download ... 100

5.3 Comparison and C onclusion ... 100

6 C onclusions and Future W ork 103

6.1 Future Work .. 104

6.1.1 Improvements in Hardware A rch itec tu re .. 104

6.1.2 Improvement in Design Compiler T o o l ... 104

R eferences 106

VITA A U C T O R IS 111

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Com plexity/Productivity growth versus time in terms of number of transistors[66] . 5

2.2 General view of software simulation tools ... 7

2.3 General view of a Logic Emulation S ystem ... 10

2.4 Logic emulation system c o n n e c tiv ity .. 11

2.5 Internal view of a typical FPGA ... 12

2.6 Structure of a 3-input LUT (k = 3) .. 13

2.7 Internal structure of a generic logic e le m e n t ... 14

2.8 A generic FPGA-based logic emulation system ... 14

2.9 Mesh arch itecture ... 15

2.10 Internal structure of a field programmable interconnect device (F P I D) 16

2.11 Logical view of full crossbar interconnect (a). Block view (b).. 17

2.12 Logical view of partial crossbar interconnect (a). Block view (b).................................... 17

2.13 Example of two-level hierarchical partial crossbar architecture.. 18

2.14 Hybrid complete graph partial crossbar a r c h i te c tu re ... 19

2.15 A genric view of non-time-multiplexed signals among two partitions............................. 20

2.16 Generic view of V irtual Wire a rc h ite c tu re ... 21

2.17 Time-multiplexed FPG A configuration model... 22

2.18 General view of one logic element in a time-multiplexed FPG A 23

2.19 General view of a Homogeneous PBE s y s t e m .. 25

2.20 General view of a Heterogeneous PBE s y s te m .. 26

2.21 CAD flow for FBEs... 31

2.22 CAD Flow for P B E s .. 34

3.1 Block diagram of an emulation m o d u le ... 36

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

3.2 Internal structure of HEP Processor... 37

3.3 Example of implementing function F in a 4-input LUT... 38

3.4 Fields of LUTOP in s t ru c t io n ... 40

3.5 Fields of RAMREF in s tru c t io n .. 40

3.6 Fields of ROMREF in s tru c t io n .. 41

3.7 Fields of NOP in s tru c tio n .. 42

3.8 H E P’s Control Unit Finite State M a c h in e .. 44

3.9 H E P’s Control Memory structure.. 49

3.10 H E P’s D ata Memory structure... 50

3.11 H E P’s Inpu t/O utpu t structure... 51

3.12 H E P’s Program Counter (Global Sequencer).. 52

3.13 H E P’s Pin-out M ap.. 53

4.1 Generic architecture of HEP-based emulation e n g in e .. 55

4.2 Example of Signal Trap c irc u itry .. 56

4.3 FPG A Design F lo w ... 58

4.4 Hierarchy of VHDL design files for HEP P ro c e s so r .. 59

4.5 Example of 4x4 Sequential Binary Multiplier .. 60

4.6 Simulated waveform view of Program Counter S ubm odu le... 61

4.7 Simulated waveform view of 4-input L U T ... 61

4.8 Simulated waveform view of 64-input interconnect switch ... 61

4.9 Simulated Read/W rite cycles of IDR and L D R ... 61

4.10 Simulated Read/W rite cycles of Left Control M e m o ry .. 62

4.11 Simulated Read/W rite cycles of Right Control Memory .. 62

4.12 Simulated functionality of Central Control Unit while executing a LUTOP instruction. 63

4.13 Simulation of emulation program being Downloaded/Executed on a processor 63

5.1 Design cycle versus Emulation Cycle in a generic DUT... 70

5.2 CAD Flow for HEP-based emulation system.. 71

5.3 RTL view of binary multiplier produced by Synopsys Design C o m p ile r 72

5.4 Gate-level view of binary multiplier generated by Synopsys Design Compiler................ 73

5.5 Example of technology mapping for reducing area and delay. .. 75

5.6 Technology decomposition, (a) Balanced-tree, (b) Unbalanced-tree................................. 76

5.7 Modeling a DUT as a Mealy Machine... 78

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

5.8 DAG representation of n e t l i s t ... 79

5.9 Instruction memory map (IMM) of HEP-based emulation system..................................... 80

5.10 ASAP L evelization .. 81

5.11 ASAP algorithm in pseudo code... 82

5.12 ALAP L evelization ... 82

5.13 ALAP algorithm in pseudo code... 83

5.14 Processor workload after levelizing “elliptic” .. 83

5.15 MLS a lg o r ith m .. 85

5.16 Examples of collapsing nodes during IMM allocation... 87

5.17 Prioritizing nodes with equal mobility with respect to their fan-out degree.................... 90

5.18 M LS+BFF algorithm .. 91

5.19 Executing program on a parallel p la t f o r m .. 94

5.20 Example of output generated by GSchedule tool... 96

5.21 Resource utilization in HEP-based emulation system and FBEs.. 102

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 Synthesis results of HEP processor and submodules.. 64

4.2 Synthesis results of HEP-based emulation system.. 65

4.3 Comparison of HEP with other Emulation s y s te m s ... 68

5.1 Ten biggest MCNC circuits... 74

5.2 Results of technology mapping... 76

5.3 Processor workload calculated after MLS scheduling... 97

5.4 Processor workload after MLS scheduling on multiplier.. 97

5.5 Processor workload after M LS+BFF scheduling... 98

5.6 Emulation time and speed-up obtained by MLS scheduling... 99

5.7 Emulation time and speed-up obtained by M LS+BFF scheduling................................... 99

5.8 Comparing emulation time of HEP and V E G A .. 101

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L ist o f A bbrevia tions

Abbreviation Definition
CL Critical path length.
P Number of HEP processors.
W Number of instruction words per HEP.

t Processor workload.
4> Average processor workload.
A Speed-up.
ALAP As-Late-As-Possible (levelization).
ASAP As-Soon-As-Possible (levelization).
ASIC Application-specific integrated circuit.
BDD Binary decision diagram.
BFT Breadth-first traversal.
BLIF Berkeley logic interchange format.
CAD Computer aided design.
CMC Canadian microelectronics corporation.
CPN Critical path node.
CPS Cycles per second.
DAG Directed acyclic graph.
DFT Depth-first traversal.
DMM Download manager module.
DRC Design rule checking.
DSP Digital signal processing.
DUT Design under test.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ABBREVIATIONS

A bbreviation Definition
EDA Electronic design automation.
FBE FPGA-based emulation system.
FF Flip-flop.
FPG A Field-programmable gate array.
FPID Field-programmable interconnection device.
FSM Finite state machine.
HCGP Hybrid Complete Graph Partial Crossbar.
HEP Hybrid Emulation Processor.
HOL Higher-order logic.
IC Integrated circuit.
IDR Input data RAM.
I/O Input/output.
IEEE Institute of electrical and electronics engineers.
IMM Instruction memory map.
LDR Local data RAM.
LE Logic element.
LSB Least significant bit.
LSI Large scale integrated (circuit).
LUT Look-up-table.
MCNC Microelectronics center of North Carolina.
MFS Multi-FPGA system.
MIMD Multiple instruction multiple data.
MLS Modified list scheduling.
MSB Most significant bit.
MUX Multiplexer.
PBE Processor-based emulation system.
PE Processing element.
RTL Register transfer level.
TPG Task precedence graph.
TTL Transistor-Transistor Logic.
VHDL Very high speed integrated circuit (VHSIC) hardware description language.
VLSI Very large scale integrated (circuit).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

In troduction and M o tiva tio n

Ever since digital VLSI circuits came into existence engineers have been facing the constantly growing

problem of verifying correct functionality of circuits before they are sent for fabrication. Once the

chip is fabricated, which is a very expensive procedure, it would be impossible for designers to modify

the hardware in case design errors were detected, unless they go through all the design steps again.

Several functional verification methodologies such as software simulation and hardware-accelerated

simulation have been proposed so far. Each method has a number of advantages as well as disadvan

tages. A briefly review of all these methods is presented in future chapters. Traditional verification

methods are not effective for very large IC designs. Consequently, finding faster, cost effective and

more accurate solutions for design verification is a very im portant research issue.

The most effective method for performing functional verification of an IC design prior to fab

rication is Logic Emulation. A logic emulation system (also known as logic emulator) is a field

programmable system th a t can be programmed to emulate (i. e. imitate) the functionality of a

digital circuit a t speeds of millions of cycles per second(CPS).

During past few years many logic emulation systems have been proposed and implemented. The

two main classes of logic emulation systems are FPGA-based logic emulation (FBE) and processor-

based logic emulation (PBE) systems. Each of these systems have a number advantages as well as

disadvantages. In most cases these systems might be so complex and expensive th a t it would be

financially infeasible for small or medium size companies to afford. Currently, there is a demand

for cheaper logic emulation systems th a t are fast and yet large enough to verify designs as big as

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION AND MOTIVATION

multi-million gates.

More importantly, all logic emulation systems have an associated set of mapping CAD tools

(called design compilers) th a t perform the task of design compilation. The design compiler reads the

netlist of the design under fesf(DUT) and automatically converts it to a downloadable bit-stream

tha t can be “programmed” into the logic emulation system. Once the logic emulation system is

programmed, design engineers can verify the functionality of DUT by “running” it on the emulation

system. Much work remains to be done in exploring new architectures and mapping CAD tools for

logic emulation systems.

1.1 Thesis Overview

The main goals of this thesis are:

1. Investigate a cost effective architecture for processor-based logic emulation systems targeting

FPGAs. The motivation is to combine the advantages of both FBEs and PBEs in a single

system.

2. Create a CAD framework for autom atic mapping of DUT netlist to a target processor-based

logic emulation system.

3. Explore new scheduling algorithms for mapping design netlists into a collection of parallel

processors.

In the first part of this research, a hardware architecture for processor-based logic emulation system

has been proposed which was implemented in Xilinx Virtex-II and Virtex 4 FPGAs. Efficiency of

proposed architecture in terms of speed, area and other design constraints is compared with other

studies.

More importantly, based on the proposed architecture, a software CAD framework tha t can auto

matically map a gate-level netlist into a series of instructions, which can be executed in parallel on a

collection of logic emulation processors, has been discussed. In addition to software CAD framework,

two scheduling algorithms have been proposed and implemented. The algorithms were evaluated us

ing several popular benchmark circuits and experimental results show th a t the algorithms achieved

close to optimal average processor workload which results in fast emulation speed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION AND MOTIVATION

1.2 Thesis Organization

This thesis is organized as follows:

In Chapter 2 the history and importance of functional verification is briefly reviewed and various

hardware architectures for logic emulation systems are presented. Then the CAD flow and algorithms

used in each class of logic emulation system is discussed. In Chapter 3, the hardware architecture

proposed in this research is explained and later in Chapter 4 the implementation results of the

proposed architecture are described. Chapter 5 covers the CAD framework for mapping design

netlists on to the target logic emulation system. Also, two scheduling algorithms are introduced and

explained in detail as to how they improve the emulation speed. The experimental results obtained

by running the new algorithms on ten MCNC benchmark circuits are presented. Finally, Chapter 6

provides concluding remarks and a discussion of possible future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

Background and P revious W ork

In 1965, Gordon Moore predicted th a t the number of transistors per unit area in a typical inte

grated circuit (e. g. microprocessor) will double roughly every 18 months [51]. This increase in the

integration level is called semiconductor productivity [35], or better known as Moore’s law. Another

implication of semiconductor productivity is th a t greater functionality is being integrated into unit

area of semiconductors, which results in a direct increase in design complexity. Therefore, some

researchers refer to such trend in semiconductor productivity as complexity growth.

On the other hand, the term design productivity refers to the number of logic gates designed

by single designer per day [35], Statistics from real world show th a t although semiconductor pro

ductivity keeps increasing with the pace expected by the Moore’s law, design productivity is not

improving proportionally, resulting in what we would like to call production gap or, as it will be

explained shortly, verification gap (Fig. 2.1). The existence of such a gap is due to two main rea

sons: first, increase in the number of circuit elements and their interconnection (i. e. design size).

Second, increase in the number of test vectors to verify the correctness of all circuit elements. For

example, if there are N circuit elements (such as logic gates or flip-flops) within the digital circuit

under test and each element can assume a binary value (0 or 1), then we need at most 2N test

vectors to thoroughly verify the functionality of the circuit. It goes without saying th a t even for

a very small circuit (N < 100) it is practically impossible to fully verify the correctness of the

design as the number of test vectors (2100) is almost infinite. To avoid design errors and possible

expensive silicon re-spins, chip manufacturers are looking for solutions to functionally verify their

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

u
im«
a
&imo

. "tm*
•m
e93

E"“*
v
'Sco
t«S

im oM

1000M -

100M -

10M -

lM -

0.1M -

0.01 Ml

58% / Yr. Complexity
Growth Rate

21% / Yr. Productivity
Growth Rate

if*a©«r>. s
T
v.

- IOOOO0K

- 1OO0OK

-1000K

- 1O0K

- 0.1 K

CUIIK

jjj
5 ytm» “t
6 © ST a*T! ©
?5i ©
Sf 5 S. -•
2 g*
© a

Figure 2.1: Complexity/Productivity growth versus time in terms of number of transistors[66]

designs before fabrication, often referred to as design verification. In fact, it would be fair to say

that, design verification has become the most im portant bottleneck in the design process, requiring

about 60-75% of design resources such as design time, computing resources and man-power [53] [41].

Therefore, many researchers are targeting this area to narrow the verification gap or at least keep

it from increasing as the design size grows.

2.1 H istory of Design Verification

There are many different ways for tackling the design verification problem, some of which have been

around for a while. In general, there are five different methods used for design verification:

1. Formal Verification

2. Simulation

3. Hardware Accelerated Simulation

4. Rapid Prototyping

5. Logic Emulation

Each method has a number of advantages as well as drawbacks. In the semiconductor and electronic

industries, some or all of these methods are used to verify designs, based on design complexity and

verification requirements.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

2.1.1 Formal Verification

Formal verification refers to a process through which a designer proves formally th a t a designed

circuit satisfies the design specifications for all possible inputs [41]. The behavior of a hardware

design is described formally and then the correctness of the design is proved by using a number

of mathematical proof techniques [71] [27]. In formal verification, first the hardware is represented

using, logic equations or finite state machines (FSMs), regardless of other design aspects such as

timing or area constraints. Then, the designer studies the question of whether the designed circuit

matches the specifications or not. The specifications are often written as a set of temporal logic

formulas. For obvious reasons, some researchers believe tha t formal verification methods are simply

parts of the design process and not a post-design process.

Two most common approaches for formal verification are theorem proving (algorithmic veri

fication) and model checking (deductive verification). Model checking tools represent the design

using Binary Decision Diagrams (BDDs) and the specifications by a set of temporal logic formulas

[10] [15]. The model checking tool then traverses the BDD by exploring all possible combinations of

inputs/states/ou tputs to verify if the formulas are satisfied. On the contrary, in theorem proving

techniques, both the hardware and its specifications are represented in some abstract logic such as

Higher-Order Logic (HOL). Then, a mathematical proof within the rules of th a t logic is constructed

tha t shows the design matches its specifications. Theorem proving tools autom ate the process of

establishing the proof [23].

Since formal verification methods use mathematical approach to determine the correctness of a

design, therefore all possible errors in the design will be detected and sound functionality of the

design is guaranteed. However, they have a number of drawbacks which limit their usage for real

world designs. For instance, formal verification methods are not easily scalable and they all suffer

form state-space explosion. T hat is, if there are 250 memory cells within the circuit, then the

circuit would have 2250 states 1 th a t need to be exhaustively searched. On the other hand, finding

mathematical abstraction (model) for even a small design is a complicated and tedious task and

requires lots of knowledge and experience. To overcome these problems, researchers have tried to

combine different formal verification methods together [23], but the results are still not suitable for

large designs.

l.Just a bit more than the number of all particles in the universe!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

IlipUt
Stimuli

Monitor

Simulation Engine

Figure 2.2: General view of software simulation tools

2.1.2 Simulation

By far the most popular verification method is software simulation, or simply, simulation. The

inputs to a logic simulator are the design netlist file and input stimulus signals, often in the form of

vector data files. The simulator computes how the design-under-test (DUT) would operate over time

and generates required outputs, given those inputs [4] [1]. It is then the designer’s job to observe the

outputs produced by the simulator and verify if the design is operating correctly. The comparison

process can be autom ated by defining “monitors” for the simulation tools. It should be emphasized

that, in the simulation technique, not only the input stimuli to the DUT are represented in software

(e. g. vector data files) but also the DUT itself is represented in software. Therefore, it is obvious

th a t the simulator is nothing but a software simulation “engine” th a t runs the models of a DUT

against given input vector files (Fig. 2.2). In more recent design methodology, designers use hardware

description languages (HDL), such as Verilog or VHDL, to not only describe the design, behaviorally

or structurally, but also specify input stimuli and monitoring routines within the same embodiment,

called test bench (shown by shaded blocks in Fig. 2.2) [56]. Software simulators have a number of

advantages over other verification tools:

• They provide extensive capabilities for modifying and debugging the design which is due to

the intrinsic flexibility in software.

• They are much easier to use.

• They are significantly cheaper than other tools.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

The above benefits make simulators the most widely used verification tools. However, they do have

limitations:

• As the size of logic designs doubles the amount of computing work to simulate them roughly

quadruples. A rough estimation for such increase is that, an increase in the number of logic

gates not only increases the number of cycles, but also it increases the computational work

per cycle to get acceptable coverage [48]. Hence, software simulators are simply too slow to

simulate designs with more than a million gates. Typically their simulation speed is around

tens of cycles-per-second(CPS).

• Simulators do not provide the in-circuit emulation(lCE) capability.

• The accuracy of simulation results depends solely on how well the designer has modeled the

DUT in software and the number of test vectors (input stimuli) provided. Therefore, user

expertise is a key factor in simulation accuracy.

If we only use simulators for design verification, it is very likely th a t some design errors remain

undetected. A notorious example of such an incident was the design bug in the floating point

arithmetic unit of Intel’s Pentium processor, reported in [54], which caused a financial loss of several

million dollars to the company.

2.1.3 H ardware-Accelerated Simulation

To overcome the speed limitation of software simulators, simulation accelerators based on custom

hardware were developed. These accelerators provided built-in test equipment (such as signal gen

erators and logic analyzers). Instead of using computer workstations, designers could execute the

simulation of their designs on a number of parallel processors which run orders of magnitudes faster

than simulators [3] [16] [61].

Although, hardware-accelerated simulators provided good speedup for simulation, they still suf

fered from two major problems:

• It should be emphasized th a t hardware-accelerated simulators are still using software models

of the design and not real hardware.

• Massively parallel processing platforms succeed in physical simulation such as fluid flow or

structural analysis but they are not efficient enough in simulation of logic designs because

logic designs have very irregular topologies [48].

• They do not provide in-circuit emulation.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

2.1.4 Rapid Prototyping

Another relatively less popular functional verification method is rapid prototyping. In this method

designers quickly produce hardware models of the actual product th a t is fabricated by using fast

prototyping platforms such as programmable logic technology. By examining the functionality of

those models, designer can identify possible errors in their design before they send it for fabrication.

Unfortunately, the feasibility of rapid prototyping technique depends highly on the type of the

application and availability of tools. In one example, researchers have created a flexible environment

to develop only digital signal processing (DSP) applications [33].

Since rapid prototyping requires building a hardware sample closest to the final product, the

verification process will be fastest and detection of most design errors is likely. However, the main

disadvantage is tha t once the prototype is built it can not be used for other applications and therefore

it would be a throw-away effort.

2.1.5 Logic Em ulation

The most recent verification tools are logic emulation systems. A hardware emulator is a completely

programmable hardware system which can be programmed to im itate (i. e. emulate) the functionality

of a large digital design (tens of million gates) at the speed of multi million cycles per second (CPS).

In other words, a logic emulator is a programmable device that, once programmed, functions just

like a prototype of the final chip before actually fabricating the chip itself.

Logic emulation systems have a number of advantages over other verification tools th a t have

recently brought them into spotlight. In the upcoming sections we will be thoroughly investigating

the hardware architecture and CAD tools for logic emulation systems.

2.2 Architecture of Logic Emulation System s

So far a number of hardware architectures for logic emulation systems have been proposed, and

some of these architectures have been implemented. Regardless of their architecture, they all share

a number of basic features. Generally speaking, a typical logic emulation system consists of five

major components which their connectivity is shown in Fig. 2.3.

1. Programmable hardware

2. CAD tools which automatically map design-under-test (DUT) into downloadable bit stream

for the programmable hardware

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Integrated
Debug Tools

To Host
Station

a k. Logic Emulator
N—V Control Module

Target Platform
Interface
(optional)

Connection to
Target Platform

Figure 2.3: General view of a Logic Emulation System

3. Integrated instrum entation and debugging hardware such as integrated logic analyzers (ILA)

or programmable signal generators

4. Integrated control hardware and software to support the run time environment of the emulated

design

5. Target hardware interface circuitry

Figure 2.4 illustrates physical connectivity of a typical logic emulator in the real world environ

ment. A logic emulator can be either connected directly to a single workstation or a collection of

workstations through a network (e. g. LAN), A set of back-end and front-end CAD tools run on

workstations. On the other end, a logic emulator can be connected to the target hardware, right in

the socket where the to-be-emulated chip will be mounted in future.

Logic emulation systems are classified according to the architecture used in their programmable

hardware. Although various companies and academic researchers have used different architectures,

they can all fall into one of the following two categories:

1. FPGA-Based Emulators (FBE)

2. Processor-Based Emulators (PBE)

As it will be explained later the proposed architecture combines some of the properties of both

classes of logic emulation systems. Thus the newly proposed emulation system will be referred to as

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

DUT
Description

Target
Hardware

Logic
Emulator

O'jO-1 I/O Cable LAN<=> □
Work

Station

Figure 2.4: Logic emulation system connectivity

h yb rid logic e m u la tio n system.

2.2.1 FPG A -B ased Logic Em ulation System (FBE)

Ever since Field-Programmable Gate Arrays (FPGAs) were introduced in late 80s, they have been

extensively used in rapid prototyping and logic emulation platforms. Since FPGAs are fundamental

building blocks of FPGA-based emulation system s(FBEs), first, we will briefly review the internal

structure of a typical FPGA chip.

2.2.1.1 Introduction to F ield -P rogram m able G ate Array

An FPG A is a flexible, completely re-programmable logic chip. While different FPG A manufacturers

have introduced different architectures [55] [8], the most popular FPG A architecture contains a two

dimensional array of SRAM-based programmable logic elements (LE) (Fig. 2.5). The logic elements

are interconnected through horizontal/vertical metal wires and SRAM-controlled interconnecting

switches (shown at the bottom of Fig. 2.5).

Each logic element consists of two parts: a fc-input look-up table{LUT) and a flip-flop. A fc-input

LUT consists of an array of 2fc x 1 SRAM-based memory cells. All k inputs to an LUT are address

inputs to th a t memory array and the value read from a memory cell is the output of the LUT. A

fc-input LUT can realize any logic function of k inputs by programming the tru th table values of the

li

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Logic
Element

Logic
Element

Logic
Element

Logic
Element

Logic
Element

M etai Lines
H orizontal

Wire I SRAM Bit

MUX
M O S Transistor

SRAM-Controlled Switch
SRAM Bit

Figure 2.5: Internal view of a typical FPGA

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

8x1 Memory Bit

A-
B-
C-

1
1
0
1
0
0
1
1

F=A*B+A-C+A-B

MGA 3-Input

Figure 2.6: S tructure of a 3-input LUT (fc = 3)

logic function directly into the memory array. An example of a 3-input LUT is shown in Fig. 2.6

th a t implements Boolean function F.

A combination of a fc-input LUT and a flip-flop is capable of producing all feasible combinational

or sequential logic functions tha t can be built using fc input signals. The option of choosing between

the combinational or sequential output can be made by configuring the programmable bit connected

to the output multiplexer shown in Fig. 2.7. Typical LUTs have three to six inputs (3 < fc < 6),

however it has been shown the best performance-versus-area is achieved by having fc = 4 [60].

Along with the programmable logic described above, an FPG A includes a great number of SRAM-

based programmable switches and interconnecting switch matrices (shown at the bottom of Fig. 2.5)

which enables arbitrary interconnection among logic elements. The process of interconnecting logic

elements together is called routing. At the perimeter of an FPGA chip, programmable I /O pins

connect the FPG A ’s internal logic to the outside circuitry. Based on the above descriptions, it is

obvious th a t an FPGA is a highly programmable device th a t can be configured (programmed) to

implement any digital circuit.

It should be emphasized tha t commercially available FPGAs are much more complicated in

architecture. They usually include embedded memory blocks, dedicated fast logic for arithmetic

operations as well as complicated logic element architecture. Medium-size commercial FPGAs have

a logic capacity of few thousands logic elements equivalent to few tens of thousands logic gates[20] [39].

Although this capacity might sound large enough for some applications, it is not big enough for most

logic design today. Therefore, FPG A manufacturers are periodically introducing newer FPGAs with

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Configuration Bit

4~lnput

2-1
MUX

C o ck

Output

Flip-Flop

Figure 2.7: Internal structure of a generic logic element

Hardwire
Connection

Programmable
Interconnection

FPGA

FPGAFPGA

FPGA

FPGA

FPGA

FPGA FPGA

Figure 2.8: A generic FPGA-based logic emulation system

higher logic capacities.

2.2 .1 .2 A rch itecture o f F P G A -B ased Logic E m ulation System s

The programmable hardware section of FPGA-based emulators consists of a collection of FPG A mod

ules interconnected through hardwires and /o r Field Programmable Interconnection Devices (FPIDs)

(Fig. 2.8) [67][11][65],

From the architecture point of view, programmable interconnection devices are quite similar to

programmable routing resources inside FPG A chips. In other words, an FPID is a collection of

programmable switches and switch matrices. Thus the combination of multiple FPGAs and FPIDs

can create an extremely flexible and powerful platform for logic emulation and prototyping.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA
, — ,r-------

FPGA FPGA

TTT
Figure 2.9: Mesh architecture

The “routing architecture” of an FBE is the way in which the FPGAs, fixed wires and FPIDs

are connected. Previous research has shown th a t the routing architecture has a strong effect on the

speed, cost and routability of emulation systems. This is because an inefficient routing architecture

may require excessive logic and routing resources when implementing circuits and cause long routing

delays. Increased routing delays will profoundly slow down the emulation speed.

Several routing architectures for FBEs have been proposed. The routing architecture in FBEs

plays a key role in determining the cost and performance of these systems[70].

A M esh In te rc o n n e c t Early FBEs did not use any FPIDs. Instead the FPGAs were arranged

in a two dimensional array and each FPG A was connected to its nearest neighboring FPGAs (mesh)

using hardwired connections (Fig. 2.9) [34].

Although mesh architecture is simple, it has a number of limitations which has made it obsolete.

In this architecture, FPG A I/O pins are not only used for connecting FPG A internal logic to

outside world, but also for routing inter-FPGA signals. Therefore a large percentage of FPG A I/O

pins will be used up for inter-FPGA routing purposes. Moreover, some nets might pass through

many intermediate FPGAs in the mesh, which results in very long interconnect delays for some

signals. Not only does this slow down the design emulation but also creates unbalanced propagation

delays among signals th a t can induce incorrect or unwanted behavior in some time-sensitive signals,

(e. g. set-up/hold time violations).

B Full C ro ssb a r In te rc o n n e c t An alternative to using FPGAs for routing is to use field-

programmable interconnection device (FPID), which is a semiconductor device th a t can be pro-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

8
s —

9 £9 ! 9 i 9 I9 I 9 t3 I I

(9 E9 CI f i I i 19 I1 t
lil,

SRAM Bit;

MOS Transistor:

Crosspoint Switch'

-I/O Pins

Figure 2.10: Internal structure of a field programmable interconnect device (FPID)

grammed (i. e. configured) to provide arbitrary connections between its I/O pins. It contains a

two dimensional array of, usually SRAM-based, programmable switches (Fig. 2.10). Therefore it is

capable of making any one-to-one or one-to-many connections between its I /O pins [21]. A typical

FPID may have as many as 1000 I/O pins.

In most recent FBE systems FPIDs are being used for interconnecting signals among FPG A

pins. The simplest architecture is Full Crossbar architecture. In this architecture each FPID is

connected to “all” FPGAs on the emulation board (Fig. 2.11). Since a full crossbar is capable of

connecting any two pins in the system it is logical to think of this architecture as a regular array

of programmable crosspoint switches. Although a full crossbar architecture guarantees successful

routability of all nets, it is utilized in small emulation systems with only a very few number of

FPGAs. This is because the size (area) of FPID crossbar increases as the square of number of its

I/O pins. Equation 2.1 shows the relation between the number of crosspoint switches “5 ” in a full

crossbar th a t interconnects “AT” FPGAs each with “P ” I/O pins.

S = N (N - l) P 2/2 (2 .1)

For example, to interconnect 20 FPGAs (note th a t the number of FPG As in a typical FBE

system is far more than this), each with 200 I/O pins, we need a FPID module with 4000 I/O pins

and a switch capacity of 7,600,000. Manufacturing such FPID would be impractical and expensive

in terms of pin count and layout area.

C P a r t ia l a n d H ie ra rc h ic a l P a r t ia l C ro s sb a r The partial crossbar architecture [65] [42] over

comes the limitations of the full crossbar by using a set of smaller crossbars. This is due to the fact

th a t in real designs only a tiny fraction of crosspoint switches would ever be used to route signals in

the system. In this architecture the I/O pins of each FPG A are divided into subsets and each subset

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

F P G A
2

F P G A
3

F P G A
I

F P G A
4

F P G A F P G A
I -a '2 .;:g

)
-— —
FP ID

<
F P G A F P G A

3 4

* ~ Crosspoint Switch

(b)

Figure 2.11: Logical view of full crossbar interconnect (a). Block view (b).

FPGA 3

A B C

FPGA 1

A B C

FPGA 2

A B C

All sw itches belonging
to sam e group are

placed in one FPID.

FPGA 1 FPGA 2 FPG A 3

PI uPIIJ

(b)

Figure 2.12: Logical view of partial crossbar interconnect (a). Block view (b).

is connected to a single FPID. Therefore the number of FPIDs in partial crossbar architecture is

equal to the number of subsets (Fig. 2.12).

Partial crossbar architecture maximizes the use of the FPG A ’s logic capacity. The delay for any

inter-FPGA connection is uniform and is equal to delay through one FPID. In this architecture,

the size of FPIDs increases only linearly as a fraction of the number of FPGAs. Also, since this

architecture is completely symmetrical, the mapping CAD tools can map a DUT into FBE in less

t im e . C o n se q u e n tly , th e p a r t ia l c ro ssb a r in te r c o n n e c t is e c o n o m ic a l a n d fu lly sc a la b le . H o w e v er , it

has some disadvantages too. First is the extra cost and size of multiple FPIDs. And second, the

fact th a t direct connections between FPGAs for routing time critical signals are not available.

Large FBE systems (with hundreds of FPGAs) can not be interconnected through single layer

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Layer 1 F P ID A FPID

HMD n

Off-Board Connection

Figure 2.13: Example of two-level hierarchical partial crossbar architecture.

of partial crossbar. Instead, the partial crossbar architecture can be applied recursively, in a hier

archical manner. T hat is, each set of FPGAs and FPIDs, interconnected through partial crossbar

architecture, could be virtually considered as a very large FPGA. A group of such “ultra-FPG A s”

can be interconnected by a second level of FPIDs, as shown in Fig. 2.13.

In the example shown in Fig. 2.13, if there is a net th a t must be routed from ’’FPG A 2” to

’’FPGA 7” , then th a t signal should pass through two FPIDs at ’’Layer 1” and one FPID at ’’Layer

2” , imposing a total of 3 unit delays on tha t signal. This implies tha t the more hierarchy levels are

used for interconnection, more delays would be induced on the nets. But this delay is acceptable

because the size of flat partial crossbar cannot be scaled beyond a few tens of FPGAs.

D H y b rid C o m p le te G ra p h P a r t ia l C ro ssb a r The latest research shows th a t a m ixture of

hardwired and programmable connections among FPGAs provides a superior routing architecture for

FBE systems. In this approach, a significant percentage of pins in each FPG A are connected using

hardwired, the remainder are connected using programmable connections. The hardwire connections

are usually used to route time critical nets, whereas other non-critical nets are routed through FPIDs

(Fig. 2.14).

In hybrid complete graph partial cras.s6ar(HCGP) architecture, the key param eter, which affects

th e d e g r e e o f r o u ta b ility , is th e p e r c e n ta g e o f p r o g r a m m a b le c o n n e c t io n s P p w ith r e s p e c t t o t h e to t a l

number of interconnection (eq. 2.2-2.4). Results show th a t the ratio of 60 percent provides good

routability and speed [42].

N t = N p + N h (2.2)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W O RK

Hardwire
Interconnections

Programmable
Interconnections'PH PI I

FPGA 1 FPGA 3FPGA 2

Figure 2.14: Hybrid complete graph partial crossbar architecture

Pp = N p/N t (2.3)

Pp « 0.6 (2.4)

Where,

Np :Number of programmable connections

Nh :Number of hardwired connections

N t :Total Number of Connections

E V ir tu a l W ire A rc h ite c tu re The logic capacity (determined by the number of logic elements)

of even the high end FPG A chips is not large enough to emulate even medium size digital IC designs.

Hence, FPGA-based logic emulators must contain multiple FPGAs (tens to hundreds) so th a t they

could emulate multi-million gate logic circuits. Obviously, for such circuits, the design netlist must

be broken down in to smaller sub-circuits so th a t each sub-circuit could fit into single FPGA. The

process of breaking down a circuit netlist into smaller sub-circuits is referred to as partitioning.

Similarly, each sub-circuit is called a partition. After the circuit netlist is partitioned and mapped

into FPGAs, they will be connected to each other through FPGA I/O pins. For each I/O signal

belonging to a partition, one I/O pin will be utilized (Fig. 2.15). Since FPGAs have limited number

of I/O pins, the sum of inputs and outputs of each partition can not exceed the number I/O pins in

one FPGA. Therefore, while partitioning a circuit amongst multiple FPGAs, each partition should

satisfy two constraints:

1. Logic capacity constraint:

Number of logic elements in one partition< (Total number of logic elements in one FPGA)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

FPGA #! FPGA #2

II
Physical Wires

Figure 2.15: A genric view of non-time-multiplexed signals among two partitions.

2. Pin constraint:

jVj + N 0 < Pt where,

Ni -.Number of Input signals to partition

N 0 :Number of O utput signals from partition

Pt :Total number of FPGA I/O pins

In a paper by Landman and Russo [46], it was empirically shown th a t the number of I /O pins

in a partition is a function of number of logic elements in th a t partition. Such relation is shown in

2.5 and it is referred to as “R en t’s rule”.

Pt = k x L R (2.5)

where,

L : Total number of logic elements

R :Rent’s constant (0.4 < R < 0.8)

k : average fan-in of logic elements

Empirical results show that, due to Rent’s rule, a great percentage of FPGA logic capacities in

conventional FBEs will remain underutilized. In worst cases it could be as high as 80%.

To overcome pin limitations (expressed by Rent’s rule) and improve logic utilization in FPGAs,

researchers at MIT proposed the idea of Virtual Wires [2]. Unlike traditional architectures where

each interconnecting physical wire is assigned to one signal (net), in virtual wire architecture each

physical wire will transfer multiple signal values at different time slots. In other words multiple

signals will be “time-multiplexed” on the same physical wire (Fig. 2.16). Multiple “output” signals

can be sampled and stored inside “micro-registers” at the “source” partition. The content of these

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

FPGA #1 FPGA #2

Logical Outputs

I I I T
A

Logical Inputs

J f t t
----- -»►

Serial Shifter Serial Shifter

Physical Wire

Figure 2.16: Generic view of Virtual Wire architecture

registers are then serially transferred to the “destination” partition. A single wire is used to transfer

the serial values from the “source” partition into the “destination” partition. At the “destination”

partition the signal values are De-multiplexed using a set of serial receivers and a serial-to-parallel

converters. It should be mentioned th a t the sampling and transmission of signal values takes place

during each design’s clock cycle.

Virtual wire-based architecture has a number of advantages over other architectures such as:

• It significantly improves logic utilization in FPGAs (some cases more than 45%).

• Overcomes I/O pin constraints.

• Significantly reduces the number of FPGAs required in the FBE systems. Therefore virtual

wire-based emulators are much smaller and cheaper.

On the other hand virtual wire-based emulators have a number of disadvantages too:

• E xtra control circuitry inside each FPG A is needed to time multiplex/de-multiplex signals on

a shared wire which imposes logic overhead in the circuit.

• Transferring signal values in time slots will cause delay in the signals. Therefore, emulation

speed is reduced.

F T im e -M u ltip le x e d F P G A A rc h ite c tu re In a different approach to improve logic uti

l iz a t io n in F P G A s , r e sea rch ers h a v e p r o p o s e d a d y n a m ic a lly r e c o n fig u r a b le F P G A c a lle d time-

multiplexed FPGA [64]. At any instance of time, a time-multiplexed FPG A has one “active” configuration

and eight “inactive” configurations. The configuration memory (also referred to as configuration

memory plane) is distributed over all logic elements and interconnecting switches within the FPGA

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

t
*
%
i
i
f
*

i
*

*
#

*
*

Figure 2.17: Time-multiplexed FPG A configuration model.

chip which might contain 100,000 memory cells. Each configuration memory cell is backed up by

eight inactive configuration memory cells. Whenever the FPGA is reconfigured, all the logic elements

and interconnecting switches are updated simultaneously through the contents of one configuration

memory plane (Fig. 2.17). In practice, inactive configuration bit-streams might be stored in off-chip

memory banks which increases the FPGA reconfiguration delay.

After each and every reconfiguration, the output of each logic element inside the FPG A is also

stored in memory arrays called micro-registers. W ith 8 configuration planes, a micro-register should

contain an array of 8 x 1 memory cells. A general structure of a logic element in a time-multiplexed

FPGA is shown in Fig. 2.18.

In logic emulation mode, the time multiplexing capability of the FPG A is used to emulate a

large design. The FPG A sequences through all configurations called micro-cycles. Partial results

after each micro-cycle (i. e. after one configuration of the device) will be saved in micro-registers

and passed to subsequent micro-cycles. One pass though all micro-cycles is equivalent to one DUT

clock cycle (also known as user cycle).

2.2 .1 .3 E m ulating Logic D esign s on F B E s

So far we have explained different architectures used in the programmable hardware section of FBEs.

Now we explain how a typical digital design can be emulated on a generic FBE. To emulate a logic

22

rConfigu ration
i # 7 ,

/£ o n t ig u r a tion #5*

i #4 ,

T ^ n f i iS r io n #
i# l

prograinniabU
logic &

(. interconnect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Configuration Cells <8x161 *► To routing
^ switches

8x1 M UX

2-1
MUX

O utput

Clock

4-input
LUT

Flip-Flop

M icro Kegister <8xl)

Configuration
Ceils (8x1)

Figure 2.18: General view of one logic element in a time-multiplexed FPGA.

design on an FBE, first, the mapping CAD tools translate the design netlist into a set of configuration

bit-streams th a t can be used to configure (i. e. program) the FPGAs and FPIDs. Then, programming

bit streams are downloaded into all FPGAs and FPIDs. Once the FBE is configured it is ready to

emulate the design. Through a set of run-time tools, designers can examine their designs and detect

possible errors. We will explain the details of the steps involved in future sections.

2.2.2 Processor-Based Logic Em ulation System (PB E)

The second class of logic emulators are Processor-Based Emulator Systems (PBEs) [70]. F irst gen

erations of PBEs were introduced to the industry much before FBEs but they were only capable

of performing simulation acceleration and not in-circuit emulation. After the invention of FPGAs,

most companies preferred using FBEs for design verification. However, shortly later on, due to ob

vious disadvantages of FBEs as well as introduction of custom IC design, PBEs were brought back

into spotlight. As of mid 90’s (until now) m ajor verification vendors have introduced large-scale

high-end PBE systems to the market[24].

A general misconception does exist among few engineers th a t needs to be addressed here. Some

people believe th a t PBE systems are just another kind of hardware-accelerated simulation engines

which is not correct. Here are some fundamental differences between PBEs and hardware-accelerated

simulators:

• PBEs contain a collection of application specific processors , called emulation processors,

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

which are optimized for emulating the functionality of logic circuits, as opposed to hardware-

accelerated machines in which generic processors are utilized.

• Hardware-accelerated simulators use software models of DUT components to simulate the

functionality of the whole design, whereas, in PBEs, the DUT netlist is directly mapped into

hardware.

• Hardware-accelerated simulators can not be connected to target platform and their output

appears, usually, in form of signal waveforms or data files, monitored on workstation screens,

whereas, PBEs can actually be connected to the target hardware.

As it will be explained in forthcoming chapters, this research has introduced an easily implementable

architecture for certain class of PBEs which has in fact created the required hardware platform for

developing software CAD tools. But, before explaining the proposed architecture, we will investigate

the generic architectures used in PBEs in this section.

2.2 .2 .1 A rchitecture o f P B E s

In PBEs a collection of highly parallel hardware processors (e. g. tens to hundreds) are used to

emulate the functional behavior of logic designs. The processors communicate with each other during

run-time though an interconnection network. Depending on the logic processors ’ architecture, PBE

systems could be very simple in structure or very complicated. However, roughly speaking, PBEs

can be classified in two categories:

1. PBEs with Homogeneous Architecture

2. PBEs with Heterogeneous Architecture

A P B E s w ith H om ogeneous A rchitecture In this architecture all logic processors (also

known as emulation processors) are identical in architecture (Fig. 2.19). Conventionally, each logic

processor is dedicated to emulating the functionality of a single gate in the DUT. However, because

the processors are built using fast technologies, it is possible to use one processor to emulate multiple

gates at different time slots. The control processor works as a bridge between the host processor and

the emulation hardware. The I/O processor establishes in-circuit connection between the emulation

system and the target hardware. During the emulation process, logic processors transfer signal

values and other information to each other.

Various emulation systems used in industry are developed based on the homogeneous architec

ture. Examples of such systems can be found in [29].

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

N-To-N Switch Network

^ i i ^ i f)
Logie Logic

Processor ,:Pro#sso:r:,: Processor Processor
i :.. ... A: N

BUS

Control
Processor

I/O
Processor

Host Computer ICE Connection

Figure 2.19: General view of a Homogeneous PBE system

B P B E s w ith H eterogen eou s A rchitecture Unlike homogeneous architectures, heteroge

neous PBEs consist of a collection of non-identical processors (Fig. 2.20). Instead, each processor

is optimized to emulate specific tasks or functions[12]. For instance, some processors could be opti

mized for performing arithmetic operations such as multiplication/devision while another processor

could emulate memory operations.

2.2.3 Logic Em ulation System s in Industry

We conclude this section by presenting examples of emulation systems used in industry th a t are

currently helping design engineers to perform functional verification at early stages of IC design.

An example of commercially available FBE system is VStationPRO from Mentor Graphics™ [22].

It is based on the virtual wires architecture tha t can emulate designs consisting of up to 120 million

logic gates, a t speeds ranging from 0.5-2MHz. Palladium system from Cadence™ [24] [38] is an

example of a processor-based logic emulation system. It has a logic capacity of up to 256 million

gates and emulation speeds ranging from 0.5 to 1MHz. It is not only a logic emulation system but also

can be configured to function as a simulation acceleration platform for various design applications,

offering simulation speed of 10000 times faster than software-based simulation.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Interconnect Architecture

Logic
Processor

Control
Unit

Interface
Unit

Memory
P ro cesso r

ICE Connection

Figure 2.20: General view of a Heterogeneous PBE system

2.3 CAD Flow for Logic Emulation System s

So far we have discussed different hardware architectures used in logic emulation systems. However,

it goes without saying th a t without a useful computer-aided design (CAD) tool set, an emulation

system would be a completely useless piece of hardware. In this section, we briefly review design

mapping CAD tools used in logic emulation systems discussed so far to familiarize readers with basic

ideas involved in designing CAD tools for a logic emulation systems.

2.3.1 Introduction

Recall from 2.2 tha t logic emulation systems are usually connected to a host workstation on which

CAD tools are run. Generally speaking, an emulation CAD tool is responsible for two major tasks:

1. Mapping a logic design (DUT) into the logic emulation hardware, and

2. Controlling and supervising the operation of logic emulator during run-time.

Consequently, CAD tools for logic emulation systems consist of two m ajor parts: design compiler and

run-time support tools. The run-time support tools are a collection of different front-end software

tools (such as graphical logic analyzer, waveform viewer, memory analyzer and etc.), which help the

users in debugging DUT easily and efficiently during the emulation process. The run-time support

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

tools may differ significantly from one manufacturer to another or even from one product to another.

Due to such high degree of architectural dependency, the run-time support tool will not be out of

the scope of this research. The main focus in this section will be the design compilation CAD tools.

By definition, an emulation design compiler is a complex CAD system that efficiently translates

huge structural representations of the design-under-test into the target emulator architecture. In other

words, the design compiler software takes the netlist of the DUT and translates it in a way th a t it

could be mapped into the target emulation system, so th a t the functionality of the mapped netlist

would accurately imitate the functionality of the original design. Given the fact th a t today’s medium

size designs would contain hundreds of thousand logic gates, the most im portant agenda would be

the speed and accuracy of the design compiler CAD tool. Obviously, a well designed emulation CAD

tool would be the one th a t translate the DUT netlist to the target emulation system more efficiently

in less time.

The main focus of this section of thesis is to introduce an efficient set of tools th a t can take a

large design netlist and map it to the proposed HEP-based logic emulation engine. But before that,

we are going to briefly review the contributions made so far by other researchers in the field.

2.3.2 C A D Flow for FBEs

At first, we will be examining the CAD tool flow of FPGA-based logic emulation devices (FBEs).

To map a logic design into an FBE, the design netlist has to pass through several steps of design

compilation shown in Fig.2.21. The followings explain each step in further details:

• D e sig n E n tr y ; The first step is design entry, where the compiler accepts input design file(s)

specified in hardware description languages (HDLs), schematic netlists or any other proprietary

design entry tool. At the end a “raw” design netlist will be generated by the design entry tool.

• S y n th e s is : Design compilation begins by reading in the design file(s) and generating the gate

level logic netlist, which involves the transformation of register-transfer level (RTL) specifica

tions to gate level netlist [37] [18]. This process usually results in a large hierarchical collection

of netlists. The compiler combines them into a non-hierarchical single-level (flattened) design

netlist file. If the design files are utilizing ASIC (Application-Specific Integrated Circuit) or

cell libraries, the design compiler expands the library elements to the fully primitive level. At

the end of this stage, a large flattened gate-level netlist of the design-under-test is generated.

Also, a t this stage nets which have to be connected to in-circuit cable pins, logic analyzer or

pattern generator channels are identified and marked by the user.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

• Technology M apping-. At this stage the technology mapping tools translate logic primitives

in the design file into FPG A ’s logic elements [17] [31]. For instance, if the FPG A ’s logic

elements only support 4-input LUTs then those logic gates inside the netlist with fan-in degree

greater than four are broken down into smaller logic gates supportable by FPG A ’s logic element

architecture. Similarly, small logic gates with fan-in degree less than 4 will be grouped together

so tha t they could fit into logic elements. Also, technology mapping can automatically generate

the FPGA logic block to emulate particular memory configuration in the design netlist.

• P a r titio n in g : Next, the huge gate-level netlist has to be broken down into smaller chunks of

logic netlists so th a t each chunk could fit into one FPGA chip on the emulation board. This

step is essentially needed for those FBEs which contain multiple low-capacity FPG A chips2.

This process is referred to as spatial partitioning, or simply, partitioning. The partitions are

evaluated and optimized according to different criteria like FPG A logic capacity (size), number

of I /O pins on FPGAs and tim ing/speed constraints. The goal of partitioning is to minimize

the number of utilized FPGAs, while observing the above constraints.

Almost all partitioners will take “multi-level-multi-way” partitioning approach to perform

partitioning on the design netlist. Through this process, first, the design netlist is partitioned

into a number of logic modules (LMs) th a t are usually equal to the number of boards available

in the emulator. Then each LM is partitioned into minimum possible number of FPGA chips.

To perform multi-level-multi-way partitioning, two classes of solutions have been introduced:

top-down techniques and bottom-up techniques. Two algorithms, min-cut [30] [36] and ratio-

cut [68], belong to the top-down category th a t cut the whole design netlist recursively into

smaller and smaller partitions. Clustering techniques are used for bottom-up approach through

which partitions are built up out of tightly interconnected logic primitives [19] [52]. Commercial

partitioning tools use combination of both techniques alternatively to build the partitions.

Once the partitions are created, each partition is assigned to a single FPG A in the FBE.

On the other hand, those FBE systems in which time-multiplexed FPGAs or virtual wire

technology is used, hardware resources (such as FPGA logic elements or I/O pins) are shared

over time. In such systems, the DUT netlist has to be partitioned not only spatially but also

temporally. The temporal partitioning algorithms perform the partitioning operation on the

netlist so tha t delay overhead of sharing resources is minimized. In virtual wire-based emu

lation systems, where FPGA I/O pins are shared throughout time, the temporal partitioning

2Such systems are also referred to as Multi-FPGA Systems (MFS)

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

algorithms bundle up source-sink pairs in the netlist and assign unique time slot to each signal

value. The algorithms try to minimize the time delay in all signals to obtain greater emulation

speed [62]. In time-multiplexed FPGA-based emulation systems, the tem poral partitioning

algorithm will partition a technology-mapped netlist based on the precedence of logic elements

in netlist, so tha t those closest to the input signals are emulated earliest and those closest to

outputs are emulated last. The algorithms guarantee tha t no signal is emulated earlier than

its fan-in signals while keeping the number of FPG A reconfiguration minimum [63].

• B o a rd Level P la cem en t: Once the design is partitioned each partition must be assigned to

an FPG A among numerous FPGAs on the emulation hardware. The complexity of this step

is totally dependent on the interconnection architecture employed in the emulation hardware.

For instance, those emulators in which partial crossbar architecture is used, the interconnec

tion architecture is totally symmetrical. Consequently, any random board level placement is

acceptable. However, when the mesh architecture is used, placement becomes highly critical

for maintaining the inter-FPGA connections as short as possible.

The most well-known placement algorithm is simulated annealing [43] [58] which imitates the

annealing process in molten metals. Starting with a high-temperature the simulated annealing

algorithm generates a number of random placements of partitions among multiple FPGAs. As

long as the new placements decrease the cost function(s) (i. e. routing cost, delay) the new

placements would be accepted as valid placements. If the new placements increase the cost

function the algorithm still accepts them, but in a probabilistic manner. If the new tem perature

gets below the “threshold tem perature” then the algorithm will stop and will accept the last

placement configuration which generated the least cost value. This way the algorithm avoids

getting trapped in the local minima. It is worth emphasizing that, just like partitioning, there

are no optimum solutions for placement problem achievable in polynomial time.

• In te r -F P G A R o u tin g : The inter-FPGA router determines the routing path for each inter-

FPG A net. The router could use direct connections between each FPG A pairs or it may

use intermediate FPGAs and FPIDs, depending upon the routing architecture used and wire

availability. The router tries to avoid or minimize the number of intermediate FPG A s/FPID s

used so tha t usage of routing resources as well as delay is minimized. It also tries to balance

the usage of routing resources to ensure routing completion.

• In tra -F P G A P la ce m en t a n d R o u tin g : At the next step, the compiler has to place each

logic partition into the assigned FPGA and perform routing of internal nets using internal

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

routing resources of FPGA chips. The placement and routing tools for this purpose are usually

provided by FPG A vendors and may vary significantly depending on the internal architecture

of FPGAs [13]. However, the following four steps are common among all of them:

— Assigning each logic block in design netlist to a specific logic block in the target FPGA

(placement). The goal is to minimize to tal wiring length and critical path delays.

— Various FPG A placement algorithms have been proposed such as [50] [47] [5] [49].

— Finding topological path of wires of each net in the chip. This process is referred to as

global routing. Global routing is performed based on graph search techniques guided by

channel or switch block density [9] [13] [6].

— Defining routing regions by breaking the areas around FPG A logic elements into channels

and switch boxes. Performing detailed routing (also known as channel routing) for each

region, one region at a time [9] [6].

In most algorithms mentioned above the main objectives are reducing wiring length as well as

reducing signal delays in the mapped netlist.

• Configuration Bit-Stream Generation: The last step in the design compilation flow is the gen

eration of the configuration bit stream for each FPG A which would be eventually downloaded

into FPGAs.

Once the configuration bit-stream is downloaded into the FBE hardware, the DUT is ready to be

emulated.

It is worth emphasizing that, despite the fact th a t the CAD flow is presented sequentially, in

the real world, CAD tools might iterate several times through different steps to obtain near optimal

results. Also, for the sake of simplicity, some intermediate steps such as design rule checking (DRC)

and clock tree analysis are not illustrated here. Commercial CAD tools might run the CAD tool on

multi-processor platforms to reduce the compilation time.

Most importantly, partitioning placement and routing are well known examples of NP-hard prob

lems, for which there are no algorithms available th a t can produce optimal results in polynomial time

[59]. Instead heuristic techniques are used, which usually provide acceptable near-optimal solutions

w ithin a reasonable am ount o f tim e. However, the design com pilation tim e is quite dependent on

the size of design netlist. Consequently, in comparison with PBE CAD tools, design compilation

under FBE CAD tools is relatively more time consuming and less predictable3.

3Hence, it takes significantly more time to make “what-if” changes in DUT, if it were emulated using FBE.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Logic
Synthesis

Inter-FPGA Routing

Intra-FPGA
Placement Si Rooting

Downloading
Configuration Bit

Stream

Figure 2.21: CAD flow for FBEs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

2.3.3 C A D Flow for PB E s

As it was mentioned earlier, a typical PBE system contains a collection of highly parallel processors

that, together, they emulate the functionality of DUT. Just like FBE systems, PBEs should be

accompanied by a set of CAD tools th a t automatically “translate” the DUT’s netlist into PBE

hardware for emulation purpose. PB E ’s CAD tools take the design netlist through a series of steps

to compile. At the end of compilation a set of executable binary codes will be generated for each

emulation processor in the target PBE hardware. Once executable codes are generated, they will

be downloaded into the “program memory” associated with each processor. Each processor will

execute a unique emulation program.

The design compilation flow for PBE systems is similar to tha t of FBE system, with some minor

differences. In fact, the algorithms involved in design compilation for PBE systems are relatively

simpler and less complicated. A typical design compilation flow for PBEs is shown in Fig. 2.22. The

detail of activities at each step is as follows:

• Design Entry and Synthesis: these two steps are more or less identical to those in FBE CAD

tool. At the design entry step, the compiler accepts input design file(s) specified in hardware

description languages (HDLs), schematic netlists or any other proprietary design entry tool.

The synthesis tool will generate a large flattened gate-level netlist of the design-under-test.

• Technology Mapping: Next, the gate-level netlist is mapped into logic primitives which are

recognizable by the emulation processors architecture. Hence the result of this step may vary

significantly from one PBE to another.

• Spatial and temporal partitioning: At this stage, DUT netlist is divided into smaller sections

so th a t once an emulation program is generated for each partition, the program could fit into

the “control memory” of the associated emulation processor. The PBE partitioning tool will

perform the partitioning process based on the processing capacity of each emulation processor

within the network, or in other words processor’s granularity4. The partitions are then tem

porally arranged based on their precedence in the circuit. Such process may also be referred

to as scheduling. Temporal partitioning tools determines the sequence of execution for each

emulation program. The objective of scheduling algorithm is to balance the processors’ work

load by evenly distributing tasks among different processors and maximizing emulation speed

by profiling inter-processor connection.

4As opposed to PBEs, in FBE CAD tools the main constraint for partitioning is FPGA logic capacity versus

available I/O pins while minimizing delay.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

• Emulation Program Generation: The last stage is to generate the instruction words (i. e. op

code) for each processor. The instructions will be eventually downloaded to the control mem

ories of processors. After downloading the control programs the emulation hardware is ready

to emulate the DUT.

Few notes about the CAD tool flow mentioned above would be in order: F irst, it should be empha

sized th a t design compilation steps listed above may not appear in all PBE systems because these

systems are quite diverse with respect to their architecture. In some cases more/less steps for design

compilation might be needed. Second, technology mapping tools in PBEs might be very complex

based on the granularity of emulation processor. For example in, heterogeneous architectures (see

B) the technology mapping tool has to be able to automatically identify functionality of each sub-

module (such as adders/multipliers, memories, counters/shift registers etc.) in the netlist and then

assign/m ap each submodule to its corresponding emulation processor. Such capability might require

technology mapping tools to contain comprehensive set of libraries for all functional submodules or

have profiling capabilities to identify each submodule in the DUT’s netlist. Obviously, this increases

the complexity of CAD tool quite extensively. Examples of such tools can be found in [29] although

the authors have not explained details of their CAD tools. Third, in some cases the order of spatial

and temporal partitioning might be reversed where seemed appropriate. Based on the above facts,

it is evident tha t in order to prove the efficiency of the proposed HEP-based logic emulation engine,

we need to introduce the accompanying set of CAD tools th a t automatically translate the DUT

netlist to the target emulation engine. In the next chapter of this thesis we are going to introduce

the proposed set of tools as well as their sequential flow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS WORK

Design
fcntrv

Logic
Synthesis

Technology
Mapping

Partitioning/
Assignment/
Scheduling

Emulation Program
Generation

Downloading
Emulation Program

Figure 2.22: CAD Flow for PBEs

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 3

Architecture o f H ybrid E m ulation

P rocessor (H E P)

This chapter introduces a new class of processor-based logic emulations systems (PBE) th a t are easily

implementable in FPGAs. The new emulation system is referred to as hybrid emulation system. The

basic building blocks of the proposed architecture are Hybrid Emulation Processors (HEP) which is

described in details in this chapter. The architecture of the HEP processor has few similarities with

the architecture explained in [29]. However there are fundamental differences th a t will be explain

when appropriate. The information presented in this chapter will also help readers to understand

the software considerations for mapping CAD tools presented in future chapters.

3.1 Top-Level Organization the Emulation Engine

The proposed logic emulation system consists of an array of 64 identical processors referred to as

Hybrid Emulation Processor(HEP). The processors can transm it and receive data through an inter

connection network. All the processors execute their local program in parallel. A global sequencer (or

Program Counter), whose value is shared by all 64 processors, causes the processors to step through

their emulation program in synchronism. Such embodiment consisting of processors, interconnect

network and global sequencer is called an emulation module. The block diagram of an emulation

module is shown in Fig. 3.1.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

i n r i r > r

MUX MUX

Processor ProcessorProcessor

Global Sequencer
(Program Counter)

Figure 3.1: Block diagram of an emulation module

3.2 How a Logic Design is Emulated?

Before moving on to details about the internal architecture of the proposed emulation system, it is

appropriate to give the big picture on how a typical logic design can be emulated on this engine.

Before emulation starts an emulation CAD tool translates, maps and partitions the design-under-

test into logical clusters. For each cluster, a control program consisting of a set of control words

is constructed for a specific emulation processor. Individual emulation control programs are then

loaded into embedded control memory associated with each processor prior to emulation. During

emulation, the emulation processors execute control words from their respective control programs

in synchronism via step values provided by the program counter. A complete sequence of steps

corresponds to traversing all logic paths starting from the inputs towards the outputs within the

DUT. It should be emphasized th a t each processor executes its unique program to emulate its

assigned logic cluster. Due to the fact th a t the logic within clusters should be able to interact

with each other, therefore the processors need to have the ability to transm it and receive data

to/from each other. The communication among the processors is provided through the non-blocking

interconnection network consisting of sixty four 64-input multiplexers (MUX).

In the following sections the internal structure of each part in the emulation engine is described

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

' Global Sequencer
\ (Program Counter} j

Instruction
Addr.

Control
Memory 1

(UIT Value)

Node

Write Addr.

Control
Memory 2

(Data Flow)

Read
Add.

Data Flow Control

ZK s / K

K-lnput
LUT

Output to
Other Nodes 11

I

Local Input
Data Data
RAM RAM Input From

Other Nodes

Figure 3.2: Internal structure of HEP Processor.

as well as their functionality.

3.3 Structure of Hybrid Emulation Processor

The emulation engine contains 64 identical HEP processors. The hybrid emulation processor (HEP)

is a basic building block of the emulation engine. The internal structure of the processor is shown in

Figure 3.2. At the heart of each processor there is a reconfigurable 4-input look-up table (LUT) th a t

can implement any logic function of four inputs. A /c-input LUT, can implement 22> logic functions.

Given the fact tha t in this architecture k = 4, HEP processor can implement any of 65536 possible

logic functions at each step 1. The processor’s primary function is to execute 4-input logical function

and produce a “function bit-out” during each step of the sequencer. Figure 3.3 exemplifies how the

logic function (F) of four inputs (A,B,C and D) is implemented using a 4-input LUT. Presence

of LUT in t h e emulation p r o c e s so r c e r ta in ly e n a b le s the p r o c e s so r t o e m u la te a n y c o m b in a t io n a l

logic consisting of 1-4 inputs. On the other hand, to enable a processor to emulate sequential logic,

two memory arrays are implemented to store logic values: Local Data EAM(LDR) and Input Data

xAs opposed to [29] in which k = 3.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

16x1
L ogic F u n c tio n

T a b le

1 6 -to - l
M U X

Figure 3.3: Example of implementing function F in a 4-input LUT.

RAM)(IDK). To implement a logic function, the “select” inputs to the 4-input LUT can receive

any value from either of two memory arrays. Hence, an alternative to processors’ logic function is a

memory operation th a t stores/retrieves binary values to/from these memory arrays.

Embedding memory modules within each processor has created an architectural superiority over

other emulation engines as well. Given the fact that, most of the today’s logic circuits have some sort

of built-in “memory” , th a t stores binary information for processing (e. g. System-On-Chip modules

have various memories, registers and buffers), embedded memory modules within each processor can

be used to emulate various memory-related operations in DUT.

Each processor can produce one-bit output at each step. Based on the above scheme the resulting

function bit out may correspond to:

• a combinatorial logic output corresponding to a combinatorial logic cluster in the DUT

• register output in the DUT

• single-bit value read from a cell in a memory array

Additional common operations performed by the processor during the emulation steps include storing

the function bit out for subsequent use by the processor inside the Local D ata Ram (LDR) and

capturing and storing external (to the processor) data from other processors inside Input D ata

Ram(IDR).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

Each processor contains two sets of “program” memories referred to as Right Control Memory

and Left Control Memory. The left and right control memories hold a unique program created by

the emulation CAD tool for each processor. The LDR and IDR hold data previously generated and

are addressed by fields in a corresponding right control word to locate (fetch) four binary bits for

input to the LUT.

All the processors step through their program memories, while all share the value in the program

counter (sequencer register). During each step of the sequencer an HEP processor emulates either a

four input logic function, a memory array access or simply nothing (i. e. No-Operation) according to

the instruction read from the program memories. Different fields in the left and right control words

determine the type of operation as well as controlling the “data flow” within the processor.

3.4 Instruction Set Architecture of HEP

Unlike generic processors th a t usually have a large set of instructions, the HEP processor realizes

only four instructions2. The combination of these four instructions constitute emulation programs

which control the hardware emulation process on each HEP processor. As it is depicted in Figure 3.2

each instruction consists of two control words which are stored in Left and Right Control Memories

respectively. The HEP instructions are:

1. LUTOP: Refers to “LUT Operation” . The LUTOP instruction emulates a combinatorial logic

functions of 1-4 inputs. Different fields of this instruction is shown in Fig. 3.4. The two most

significant bits (MSB) (i. e. bits 17:16) of the left control word identifies the op-code (in this

case = “01”). The remaining 16 bits in the left control word (i. e. bits 15:0) is the value which

is loaded into the logic function table inside the 4-input LUT. The logic function is emulated

by forming an address from four data bits retrieved from LDR and /or IDR. The location of

these four bits inside the LDR and IDR memory spaces are specified in the right control word.

Each address is 7 bits long which in Fig. 3.4 are labeled as “Operand Address A” (bits 6:0),

“Operand Address B” (bits 7:13), “Operand Address C” (bits 14:20) and “Operand Address

D” (bits 21:27). Four bits within the “source” field in right control word (bits 28:31) are used

to configure the da ta path within the HEP processor to select between LDR and IDR as the

so u r c e for fe tc h in g fo u r o p e r a n d s . F or in s ta n c e , i f b it 2 8 is “0 ” t h e n o p e r a n d “A ” is fe tc h e d

from LDR otherwise the value is fetched from IDR. The six bits of the “Node Address” in the

right control word (bits 32:37) are used to select the single bit input to HEP processor from

2 Instruction set of processors in [29] consists of only two instructions.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

Left
Control
Word

Right
Control
Word

2-bits

OP-Code
(0 1)

16-blts

LUT Value

6-bits 4-bit 7-bits 7-bits 7-bits 7-bits

Node
A ddress Source Operand

A ddress D
Operand

Address C
Operand

A ddress B
Operand

A ddress A

Left
Control
Word

Right
Control
Word

2-bits 16-bits
OP-Code

(11) xxxxxx
6-bits 3-bits 1-bit 21-bit 7-bits

Node
A ddress XX Source XX RAM Address

Figure 3.5: Fields of RAMREF instruction

any of the 64 processors in the emulation engine. This address is applied to the associated

64-input multiplexer (switch) to select a “bit-out” from one of the 64 processors in the engine.

The selected processor bit-out is received as a processor bit-in signal and is stored in the IDR.

2. R A M R E F: Refers to “RAM Referencing” . The RAMREF instruction performs a memory

access operation on either LDR or IDR. The instruction will read single bit value from RAM

memories and presents it as the processor’s bit-out. Figure 3.5 shows different fields of this

instruction. The two most significant bits in the left control word (bits 16:17) indicates the

opcode (= “11”). The 7-bit address of the value th a t has to be fetched from LDR or IDR is

presented in the least significant bits of the right control word (bits 0:6). A single “source”

bit in the right control word (bit 28) specifies whether the value should be fetched from LDR

or IDR (if the source bit = “1” then the value is fetched from IDR). The six most significant

bits in the right control word (bits 32:37) specify the “Node Address” which was discussed in

“L U T O P ” in s tr u c t io n .

3. RO M R EF: Refers to “ROM Referencing” . The ROMREF instruction reads one bit value from

the “Right Control Memory” and presents it as the processor’s output (i. e. bit-out). This

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

2*b)ts 5-bits -bits 7-bits
Left

Control
Word

Control
Word (1)

Right
Control
Word (2)

OP-Code
(10) XX A ddress

ROM
A ddress

6-bits 32-bits
Node

Address XXXXXXXX

22-bits 16-bits

XXXXXXXX ROM Value

Figure 3.6: Fields of ROMREF instruction

instruction is mainly used when static binary values are needed for the emulation process.

It is worth mentioning that, since the content of both Left and Right Control memories is

loaded only once during the initialization of emulation engine, the binary values stored in

these memories can be used to represent static data. Figure3.6 shows different fields of this

instruction. The two most significant bits in the left control word (bits 16:17) represent the

opcode (= “10”). Seven least significant bits in the left control word (bits 0:6) contain the

address of the location in the right control memory where the value must be read from. The

value tha t is read from the right control memory is a 16-bit binary value from which only

one bit is desirable. The 16-bit value fetched from the right control word is high-lighted in

Figure3.6 as the lower 16 bits in the “Right Control Word(2)” . To address a single bit among 16

bits, a 4-bit “bit-address” field in the left control word (bits 7:10) is used. Six most significant

bits in the right control word (1) (bits 32:37) constitute the “Node Address” field. For further

information about this field please refer to descriptions of LUTOP instruction.

4. N O P : Refers to “No-Operation” . The NOP instruction does exactly what is says so: it

does nothing at all. Such instruction causes the processor to slack (stall) for the duration of

one instruction, during which it stores necessary data received from other processors. Such

instruction is usually needed when one processor requires multiple inputs produced by other

processors all the same time. In tha t case the processor should “wait” for other processors to

produce the input values. Different fields of NOP instruction is shown in Figure 3.7. The two

most significant bits in the left control word (bits 16:17) indicate the op-code value for this

instruction (= “00”). Six most significant bits of the right control word (bits 32:37) contain

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

Left
Control
Word

Right
Control
Word

the “Node Address” (see descriptions of “LUTOP” instruction for further details about “Node

Address”). It is worth emphasizing th a t although the NOP instruction has no functional

significance except for the fact th a t it still uses “Node Address” to select one of the 64 processors

in the engine and latch the in-coming data from the selected processor.

It is worth emphasizing tha t an HEP processor, unlike other processors, does not recognize any type

of “jum p” or “conditional statem ent” instructions. The processor simply executes all the instructions

one by one until it is halted by the emulation supervisory unit.

3.5 Central Control U nit of HEP

From the mathematical point of view a digital processor, in this case HEP, is a Turing machine

with finite number of “states” . Hence, all digital processors contain a central control unit tha t

implements a Finite State Machine(FSM) th a t takes the processor, step-by-step, through a series

of activities or states. Being no exception to this rule, the HEP processor contains a central control

unit th a t traverses a finite state machine, symbolically shown in Figure 3.8. By traversing the FSM,

the control unit supervises the flow of data inside the processor. In other words the FSM determines

what kind of activities or events take place inside the processor during an instruction cycle.

Due to the fact th a t an HEP processor has only four types of instructions, the instruction cycle

is less sophisticated than those in general purpose processors. In nutshell, during one instruction

cycle, the processor fetches one instruction word from both Left and Right Control memories, where

the “Program Counter Register” is pointing at. The instruction is then decoded and executed. The

o u tp u t p r o d u c e d b y a p r o c e s so r is a s in g le b it v a lu e w h ic h a p p e a r s o n t h e p r o c e s so r ’s “N o d e B i t - o u t ”

pin3. A copy of the output value is also stored in the Local D ata RAM (LDR) memory within the

processor for future references. The location where the output value is stored inside LDR is again

3The only exception to this rule is the “N O P” instruction which does not produce a new output.

42

2-bits

OP-Code
(00)

16-bits

xxxxxx
6-btts 32-bit
Node

Address xxxxxxxxxx

Figure 3.7: Fields of NOP instruction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

provided by the program counter register. Also, during each instruction, a processor will receive

a single bit input from one of the sixty four processors inside the emulation engine. The received

input is automatically stored inside Input Data A AM (IDR), where Program Counter points to.

In Figure3.8 each state has been assigned a unique two-digit state number which appears inside

each state box.Details of activities taking place at each state of instruction cycle is explained below.

1. S ta te “00” : This state initiates the fetching of instruction words from Left and Right Control

Memories. The “Read” signals to both memories are asserted (active “High”). The address

of the instruction is provided by the global sequencer (Program Counter Register) and is

placed on the address bus. The control words read from both control memories are stored into

processor’s Left Control Register and Right Control Register respectively. Once the control

words are read into the registers, the instruction is immediately decoded. Based on the type

of the instruction, the control unit may jum p to one of four possible states (i. e. “State 11” ,

“State21” , “State 31” or “State 41”) in the next HEP clock cycle.

2. S ta te “11” : By this state, the processor has identified (decoded) th a t the instruction to be

executed is a LUTOP instruction. The six-bit “Node Address” is extracted from the right

control word (bits 32:37) and applied to the 64-input MUX to select the single input bit to the

processor among 64 inputs (see 3.4). The logic function table of the 4-input LUT is updated

with a 16 bit value stored in the left control word. The location address of the first operand

to the 4-input LUT is extracted from the right control word (“Operand Address A”) and

applied to the address busses of both LDR and IDR. The respective “Read” signals to LDR

and IDR are asserted. Bit 28 of the left control word selects either LDR or IDR as the source

for “Operand A” . Consequently, a t the end of this state the first input to the 4-input LUT is

fetched from the memory.

3. S ta te “12” : At this state the location address for the second input to the 4-input LUT

(i. e. “Operand Address B”) is extracted from left control word and placed on LDR and IDR

address busses. Also, bit 29 of the left control word selects either LDR or IDR as the source

for “Operand B” . At the end of this state the value of “Operand B” is fetched from either of

the memories.

4. S ta te “13” : At this state the location address for the third input to the 4-input LUT

(i. e. “Operand Address C”) is extracted from left control word and placed on LDR and

IDR address busses. Also, bit 30 of the left control word selects either LDR or IDR as the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

LUTOP ROMREFRAMREF NOP

State “41

' t
State “33!

\ r

[state “15’

State “16’

' r

State "24’ State "35! State “43’

State “13‘

State “23

State “22

State “18’

State “11 State “31

State “17!

State "21

State “12

State “42’

State “32

Instruction
Fectch & Decode

State “00”

Figure 3.8: H E P’s Control Unit Finite State Machine

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

source for “Operand C” . At the end of this state the value of “Operand C” is fetched from

either of the memories.

5. S ta te “14” : At this state the location address for the fourth input to the 4-input LUT

(i. e. “Operand Address D”) is extracted from left control word and placed on LDR and IDR

address busses. Also, bit 31 of the left control word selects either LDR or IDR as the source

for “Operand D” . At the end of this state the value of “Operand D” is fetched from either of

the memories.

6. S ta te “15” : By the end of “State 14” all four operands to the 4-input LUT are fetched

from data memories. These four operands construct a 4-bit address to the 4-input LUT (see

Fig. 3.3). Hence, a t the beginning of State 15, the “Read” signals to data memories are

disactivated, marking the end of the operand read cycle. During State 15 the 4-input LUT

generates one-bit value as an output. The output of the LUT is stored in a tem porary buffer

within the HEP processor and will be stored in LDR later a t “State 17” . Also, each HEP

processor will receive one input bit from one of the 64 processors. The received bit must be

stored in the IDR memory. The location inside IDR where the input bit must be stored at

is addressed by the current value of Program Counter Register. Therefore, a t this state the

value of program counter register is placed on the address bus of IDR. Also, the “Write” signal

to IDR memory is activated. At the end of this state processor’s “bit-in” is latched (written)

into IDR.

7. S ta te “16” : At this state, write cycle to IDR is terminated. The output of the LUT is

transferred from the tem porary storage to the internal data bus of the processor so that, on

the next state, it would be stored inside the LDR memory.

8. S ta te “17” : At this state, the output of LUT appears on the “Node Bit O ut” pin of the

processor. This value must also be stored inside LDR memory where value of Program Counter

Register is pointing to. Hence, the content of program counter is placed on LDR’s address bus

and the memory’s “Write” signal is activated. At the end of this state, the output of LUT is

stored in LDR. Also, Program Counter Register is automatically incremented by one.

9. S ta te “ 18” : At this state the, LDR’s write cycle is term inated which, in fact, marks the end

of execution cycle of one LUTOP instruction. At the end of this state, the processor jumps

back to State “00” which initiates fetching of the next instruction in control memories.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

10. S ta te “21” : The controller jumps to this state if the new instruction happens to be a “RAM

R EF” instruction (see 3.4). The function of RAMREF instruction is to retrieve one bit value

from either LDR or IDR memory arrays. Seven bits within the right control word (bits 0:6)

provide the address of the location where the desired value is stored. Hence, this address is

applied to the address bus of both data memories (LDR and IDR). Then “Read” signals to

both memories are asserted (activated). The “source” bit in the right control word (bit 28)

specifies the LDR or IDR as the supplier. At the end of this state a single bit value is fetched

from one of the data memories. Also, at this state, the six-bit “Node Address” is extracted

from the right control word (bits 32:37) and applied to the 64-input MUX to select the input

bit to the processor among 64 inputs.

11. S ta te “22” : At this state the value th a t was fetched from either of data memories during

State “21” , is latched within a tem porary storage inside the processor.

12. S ta te “23” : At this state the “Read” signals to both data memories are disactivated which

marks the end of memory read cycle. Also, the input bit to the processor which was selected

during State “21” has to be latched inside IDR. Hence, the address where the input bit has to

be stored inside IDR is provided by Program Counter Register and applied to IDR’s address

bus. Then the “Write” signal to IDR is activated and input bit to the processor is stored inside

IDR. At the end of this state the Program Counter Register will be automatically incremented

by one.

13. S ta te “24” : At this state the “Write” signal to IDR memory is disactivated to mark the end

of the data memory write cycle. Also, the single-bit value th a t was previously fetched from

either of data memories (LDR/IDR) during State “21” is transferred to the output pin of the

processor (i. e. “Node Bit O ut”). This value would be the output value of the processor at

the end of the RAMREF instruction. At the end of this state the controller will jump back to

State “00” to initiate fetching of the next instruction.

14. S ta te “31” : The controller jumps to this state if the new instruction happens to be “ROM

R EF” instruction (see 3.4). The function of ROMREF instruction is to retrieve one bit static

value from right control memory. To perform this operation, ROMREF instruction will need

to fetch a second word from th e right control memory. Therefore, at the beginning o f th is

state, the address of location where the second word is stored, will be extracted from the seven

least significant bits of the left control word and applied to the address bus of the right control

memory. At the end of this state a 16 bit value is fetched from the right control memory.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

15. S ta te “32” : Among the 16 bits fetched from the right control memory at State “31” , only

one bit is desirable. To extract the bit value, the 16 bit value is loaded into the logic function

table of the 4-input LUT. Four bits in the left control word (bits 7:10), also referred to as

“bit address” are used as the input address to the 4-input LUT. Once the four bit address is

applied, the LUT will extract one bit among the 16 bit value. At the end of this state the

extracted bit value will be stored in a tem porary register inside the processor.

16. S ta te “33” : In this state the processor will select one input among all 64 inputs to the

processor. The processor input must be stored in IDR memory. Therefore, a t this state the

location where the input bit has to be stored at inside the IDR will be provided by Program

Counter Register. The “Write” signal to IDR is also activated. At the end of this state the

“Node Bit-in” is stored inside IDR memory.

17. S ta te “34” : At this state the single bit value, which was extracted from the right control

memory during the state “32” , will be transferred to output pin of the processor (“Node

Bit-out”). Also, a copy of th a t bit has to be stored inside LDR memory for future references.

Hence, the address of the location where th a t value has to be stored is provided by the Program

Counter register and placed on the address bus of the LDR. Subsequently, the “Write” signal

to LDR is activated. At the end of this state the single bit value retrieved by the ROMREF

instruction is stored in LDR memory.

18. S ta te “35” : This state marks the end of the processor’s write cycle. The Program Counter

Register is incremented by one. At the end of this state the processor will jum p back to State

“00” to initiate the fetching if the next instruction.

19. S ta te “41” : The controller jumps to this state if the new instruction happens to be “N OP”

instruction (see 3.4). The NOP instruction performs no significant function. It causes the

processor to delay for one instruction cycle. The only activity th a t takes place during this

instruction is tha t the processor receives a single input bit from one of the 64 processors and

stores the value inside the IDR memory. To perform that, six-bit “Node Address” is extracted

from the right control word (bits 32:37) and applied to the 64-input MUX to select the input

bit to the processor.

20. S ta te “42” : The location where the input bit has to be stored inside IDR memory is provided

by Program Counter register and is applied to address bus of IDR memory. The “Write” signal

to IDR is activated at this state. By the end of this state the input value is stored inside the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

IDR memory.

21. S ta te “43” : This state marks the end of memory’s write cycle as well as the processor’s

instruction cycle. At the end of this state the processor returns to State “00” to initiate

another instruction cycle.

Although there are to tal number of 21 states shown in control un it’s FSM, we have managed to

“combine” all the states in to only 9 states during implementation. Also, we have used “one-hot”

encoding technique to further simplify the structure of HEP processor. Consequently, the longest

path, from the start of the FSM towards the end, consists of total of 9 states. Given the fact th a t

each state takes one clock cycle to finish, maximum instruction execution time in an HEP processor

is 9 x Tciock , where Tc[oci~ is the period of processor’s clock signal.

3.6 Control M emory of HEP

An HEP processor contains two memory arrays which, together, store the emulation program as

signed to each processor. These memories are referred to as Left and Right Control memories

(Fig. 3.9). Each control memory stores 128 control words, executed sequentially and repetitively

under the control of program counter (global sequencer) register. Each revolution of the program

counter from zero to a predetermined maximum value(< 127) corresponds to one design path clock

cycle in DUT. A left control word and a right control word in the control memories are simultaneously

selected during each instruction cycle.

Each instruction word in the left control memory consists of 18 bits. The two most significant

bits in the left control word always (bits 16:17) indicate the instruction op-code (for details about

each field of left control word please refer to3.4). The functionality of remaining bits in the left

control word (bits 0:15) depends on the type of the instruction. The left control memory is always

addressed directly by the step value inside the program counter register. Each instruction word

in the right control memory consists of 38 bits that, depending on the instruction type, might be

interpreted differently (for details about each field of right control word please refer to 3.4). The

right control memory is usually addressed by the step value inside the program counter register

unless the “ROMREF” instruction is being executed. In such case, contents of the right control

memory are interpreted as static data in the emulated memory array and is addressed by the value

extracted from left control word. Accordingly, any of the right control words may be addressed

during any step of the sequencer and only the left control words are sequentially addressed by the

program counter register.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

Central Control Unit
1 O utput Data
'38

Rsad Address

Read Address

2-to-1
MUX

Left Control
Memory
(128x18)

Right Control
Memory
(128x38)

Write Address* Write Data Write A ddress; ; Write Data

Download Manager Module

Figure 3.9: H E P’s Control Memory structure.

The contents of both Left and Right Control memories are uploaded only once during the initial

ization of the emulation engine. During this time all the processors will be halted and no operation

will take place. Therefore, both control memories have additional address and data busses for down

loading binary information in to them. These ports are managed by the an external “Download

Manager Module” within the emulation engine. Once downloading bitstream s into control memo

ries is finished, the download manager reset all the HEP processors in the emulation engine and the

processors s ta rt the emulation process synchronously.

3.7 D ata M emory of HEP

Each HEP processor has two 128-by-l bit memories for data storage. These data memories are

referred to as Local Data /M M (LDR) and Input Data R A M (IDR). The LDR memory stores a copy

of the the output bit generated by the processor after executing each instruction. The IDR memory,

on the other hand, stores the single bit value th a t a processor receives from one of the 64 processors

in the emulation engine during each and every instruction execution. The write address to both data

memories is always provided by the step value stored inside the program counter register (global

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

J Program Counter •
! R egister J

Write Address Write Address

Local
Data
RAM

(128x1)

input
Data
RAM

(128x1)

Write Date

Read Address Read AddressRead
Data

2-to-1
i MUX

Central Control Unit

Figure 3.10: H E P’s D ata Memory structure.

sequencer). The read address to data memories is provided by fields inside the right control word

of each instruction. Figure 3.10 shows the block diagram of data memories inside each processor. It

is worth mentioning that, the IDR memory is written to during every instruction cycle. The LDR

memory is written to during ever instruction cycle, except for “RAMREF” instruction.

3.8 Input/O utput Ports of HEP

An HEP processor generates a single bit output after executing each instruction. The processor’s

output appears on the “Node Bit-out” pin which is connected to the emulation engine interconnect

network. An emulation engine contains sixty four HEP processors. An output pin of one processor

is connected to the input of all other 63 processors inside the emulation engine. Evidently, such

interconnection network would enable each processor to receive its input, one bit a t a time, from

any other processor inside the emulation engine-1. As it is shown in Figure 3.11 all 64 inputs to one

4In reality, the output of one processor is also provided as the sixty fourth input to the sam e processor to make the

architecture more symmetric. That means, that each processor can also accept an input from itself as well. However,

in this embodiment such functionality is never used.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

Mode Bit-out (HEP *1)

Node Bit-out (HEP *2)

Node Bit-out (HEP #3)

64-to-1 Node Bit-in

Node Bit-out (HEP #64) ^

Central Control UnitNods Address

Node Slt-out

Figure 3.11: H E P’s Inpu t/O u tpu t structure.

processor are connected to a 64-by-l multiplexer. The single input bit to one processor (i. e. “Node

Bit-in”) has to be selected by the same processor among all 64 inputs5. To do that, the processor

needs a six-bit address. Six most significant bits of the instruction’s right control word (bits 32:37)

provides such address to the 64-by-l MUX (for further details please refer to section 3.4). It should

be emphasized tha t the input bit to a processor is always stored inside the IDR memory during

every instruction cycle.

3.9 H E P ’s Program Counter Register (Global Sequencer)

As it was mentioned earlier in this chapter, all sixty four processors inside the emulation engine, al

though they execute their unique emulation program, they all step through their emulation program

in synchronism. Consequently, an emulation engine should contain a Global Sequencer th a t helps

all the processors to step through their program. The step value provided by the global sequencer

is identical to all the processors. This value could be between zero and 127 (total of 128 steps).

5The processors described in [29] are connected to 3 adjacent processors through a mesh interconnect. Hence, each

processor can receive 3 inputs simultaneously.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

Reset Increment

System.
lock

I
Divide Clock Program Counter
by 9 (Global Sequencer)

"T

To
Control and Data
Memory Address

Bus

Figure 3.12: H E P’s Program Counter (Global Sequencer).

However, in reality, due to the fact th a t the global sequencer’s output has to be fanned out to 64

processors, we decided to “localize” the global sequencer inside each HEP processor. Therefore a

global sequencer has now become the Program Counter Register within an HEP processor. But it

has to be emphasized th a t a t each instant of time during the emulation, the values stored in all

program counter registers are equal. Since each processor can only execute to tal of 128 instructions,

the Program Counter Register is a seven-bit long. The program counter is incremented every 9 clock

pulses of system clock (Figure 3.12). The reset signal causes the program counter to initialize to

zero.

3.10 Additional Signal Pins of HEP

The physical pin-out mapping of an HEP processor is shown in Figure 3.13. Each processor, being a

synchronous machine, has an input Clock signal. The clock signal is identical to all HEP processors

in the engine and, as we will see in future chapter, is referred to as system clock. The Reset signal

to each processor is activated only once at the beginning of the emulation operation. Upon the

activation of reset signal the program counter register is reset to “0” and all the processors will s tart

executing instructions starting at address zero.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

64 Inputs from
Interconnect

Network

System Clock

N ode Bit-in

Node Bit-out ■W#’

Reset

_ 7s Right Control Memory
"jr Download Address

m Right Control Memory
s Download Data

_ _ V _ _ L e f tC o n tro l Memory
s Download A ddress

Left Control Memory
/ Download Data

_ Right Control Memory
“ Write

Left Control Memory
Write

Figure 3.13: H E P’s Pin-out Map.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 4

Im plem en ta tion o f H ybrid Em ulation

Processor on F P G A

In section the architecture of HEP emulation processor was described. In this chapter we present the

results of simulation, synthesis and implementation of HEP-base emulation engine on X ilinx™ Virtex-

II and Virtex-4 FPGA devices. Also, a brief overview of other processor-based emulation systems

th a t are being used in academia is presented. Finally, we compare the proposed architecture with

other emulation systems based on size, logic capacity, speed and implementation platform.

4.1 Introduction

Until the mid 1990s, large scale digital circuits were functionally verified using software simulators

and implemented using Application-Specific Integrated Circuits (ASIC). However, with the intro

duction of large capacity FPGAs, there has been a shift towards reconfigurable computing for verifi

cation and implementation. The fine-grained parallelism in FPGAs coupled with the inherent data

parallelism found in many circuit simulation applications, have made reconfigurable computing an

encouraging alternative th a t offers a compromise between performance of fixed-functionality hard

ware and flexibility of software-programmable devices. As opposed to general purpose processors,

FPGAs allow non-standard word-length sizes and fully parallel processing, which can significantly

improve throughput (e. g. one to four orders of magnitude) with only a reasonable penalty in terms

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

Interconnect, N etw ork

■ ■ ■ ■ Proc. 64 -Proc. 3Proc. 2Proc. 1
■

Download
M anager

Figure 4.1: Generic architecture of HEP-based emulation engine

Intcrfuec

of implementation area (3 — 4x) [44]. Additionally, using FPGAs can offer rapid prototyping of

emulation engines in much less time. Using FPGAs for rapid prototyping usually reduces the de

velopment time by half. Also, unlike ASICs, FPGAs provide relatively flexible visibility into the

design-under-development. Last, but certainly not least, is the price factor. The logic emulation

systems th a t use proprietary ASIC emulation processors could be much more expensive than those

using off-the-shelf FPG A modules. Based on the above facts, FPGA devices were selected as the

target platform to implement the proposed HEP-based emulation engine.

4.2 Design Specifications for HEP-based Emulation Engine

The generic architecture of the proposed emulation engine is shown in Figure4.1. The engine consists

of the following modules:

1. Sixty four HEP processors and the interconnection network

2. Target System I/O Interface

3. Download Manager Module (DMM)

4. Signal Trap Module

The heart of the engine consists of 64 HEP processors th a t communicate through a time-multiplexed

interconnection network. This module is in fact the target platform for the developed CAD tool,

which will be discussed in later chapters.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

Node Bit-out

7-Bit
Comparator

Trap

Program Counter

R eference Value

D-FF
> C L K

Figure 4.2: Example of Signal Trap circuitry.

The “target system I/O interface” module connects the emulation engine to the target system

where the DUT will be eventually mounted. The main task of I /O interface module is to acquire

signal samples from the target system and assign these inputs to emulation processors in appro

priate emulation cycles. The Download Manager Module (DMM) performs two main tasks: Before

the emulation starts, it downloads the emulation program bitstream into Left and Right Control

memories of all 64 HEP processors inside the engine. Once the downloading process is finished, the

DMM signals all processors simultaneously to start the emulation by activating their “Reset” signal.

Signal Trap module helps the emulation engine to “trap ” (i. e. latch) a signal value during

emulation runtime. This module is programmable by user, who determines which signal at what

time should be monitored. Each signal trap module is associated with one processor which creates

a flexible signal monitoring capability. It is worth emphasizing th a t signal trap modules can be very

simple or very sophisticated with respect to their structure or functionality. In the simplest form,

a signal trap module consists of an “n-bit” digital comparator and a D-FlipFlop (Fig. 4.2). The

comparator compares the value of Program Counter Register (Global Sequencer) with a predefined

value (determined by the user). If these two values become equal (i. e. Program Counter reaches

certain emulation cycle) the processor’s output (“Node Bit-out”) will be stored (trapped) in D-

FlipFlop. Later on, any “monitoring” mechanism can extract and echo the trapped value to the

u ser . T h is w a y u sers c a n tr a c e or m o n ito r v ir tu a lly a ll t h e e v e n ts in D U T d u r in g r u n -t im e . I t sh o u ld

be emphasized that the main focus of this research was the evaluation and implementation feasibility

of the HEP-based emulation core and the study of other submodules such as I/O interface, DMM

and monitoring are left for future research.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

4.3 RTL Design of H EP-Based Emulation Engine

Conventionally, FPGA design and implementation involves a top-down design flow, illustrated in

Fig. 4.3 which was applied in implementation of the proposed emulation engine as well. The first

step in the design process involved identifying hardware specification and general functionality of

emulation engine. Based on the specifications, the register-transfer-level(RTL) models and test

benches for each individual submodule in the engine were developed using VHDL language. RTL

design refers to the methodology of modeling a sequential circuit as a set of registers and a set

of transfer functions which describe the flow of data between the registers. Each submodule, is

developed in VHDL using both behavioral modeling, to describe the functionality of the submod

ule, as well as structural modeling to instantiate and bind comprising submodules together. The

design was simulated a t the RTL level by running the testbenches using ModelSim®. We chose a

sequential 4 x 4-bit binary multiplier as an example of DUT and performed “sanity checking” on the

emulation engine to confirm the correct functionality of the proposed engine. However, timing and

FPG A resource usage remains unknown until logic synthesis is performed. FPG A logic synthesis

is performed to create an optimized gate-level netlist which is based on design constraint such as

timing (speed), area, I /O pin and power. Once the gate-level netlist is generated and mapped to

the target FPG A ’s logic-elements, the design (i. e. Emulation Engine) is placed and routed inside

the FPGA(s). The synthesis constraint also affect the effort required for placement and routing. If

the design is over-constrained it is very likely th a t routing failure will occur since routing resources

are fixed in FPGAs. The last step in the design flow is the generation of configuration bitstream file

th a t can be downloaded into FPGA.

It has to be emphasized tha t some intermediate steps in the FPG A design flow are not shown

in Fig. 4.3. In practice some of the steps might be executed iteratively. There are a number

FPGA electronic design automation(EDA) tools th a t are provided by both FPG A and third party

manufacturers. Complete design environments are offered by Xilinx ISE[39] and Altera Quartus

II [20]. Since, Xilinx Virtex-II and Virtex-4 FPG A device family are selected as the target platform

for implementing the proposed HEP-based emulation engine, we used Xilinx ISE (v7.1) as the desired

FPGA EDA development tool.

4.3.1 RTL Modeling of HEP Processor

The HEP processor is described using VHDL language and IEEE_std_logic_1164 library while adopt

ing a bottom-up approach. The RTL models of all submodules along with their functionality is

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

RTL Simulation

L ogic Synthesis

Hardware
Specification

Placement &
Routing

RTL M odel &
Testbench

Configuration Bit-stream
Generation

Download

Figure 4.3: FPGA Design Flow

described behaviorally in each design file. Later, each submodule is instantiated and binded to top-

level modules using VHDL structural description. The hierarchy of VHDL design files is shown in

Fig. 4.4, where “EP_Top_Module. vhd” is the HEP processor top module1. Each design file has an

associated VHDL testbench file as well 2, which are used by ModelSim to perform RTL simulation.

The functionality of each design file is described below.

1. “EP_PACKAGE. vhd” : Includes global constants shared by all the VHDL bodies (not shown

in the figure).

2. “EP_PROGRAM_COUNTER. vhd” : Describes the functionality of Program Counter Register

(Global Sequencer) of HEP processor.

3. “EP-RECONFIGURABLE-4LUT. vhd” : Describes the functionality of the 4-input LUT.

4. “EP JNPUT-SW ITCH . vhd” : Describes the functionality of the 64-input reconfigurable mul

tiplexer tha t helps the processor to select the input “Node Bit-in” .

1The listing of VHDL design files are presented in the accompanying CD with this thesis.
2Testbench filenames are similar to design files except that they are followed by “_TestBench.vhd” .

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

EP_T op_M odul e .v h d

T
EP L e f t C o n t r o l ROM.vhd

T
EP L o c a l D a ta RAM.vhd

EP_Pxx.gram_Cc.unt e r . vh d E P R i g h tC o n t r o lR C M . v hd EP_Input_D ata_RA M . v hd EP C o n t r o l U n i t . v h d

i r
BP_Data_RAM.Yhd E P _ R e o o n f ig u ra b le _ 4 n iT .v h d E P _ In p u t_ S v i t c h . vh d

Figure 4.4: Hierarchy of VHDL design files for HEP Processor

5. “EP_RIGHT_CONTROL_ROM. vhd”: Describes the structure of Right Control memory of

each HEP processor.

6. “EP_LEFT_CONTROLJtOM. vhd” : Describes the structure of Left Control memory of each

HEP processor.

7. “EP-DATA-RAM. vhd” : Describes the structure and functionality of both data RAM modules

(IDR and LDR) within each processor.

8. “EP_CONTROL_UNIT. vhd” : Describes the functionality of central control unit of the HEP

processor. It explains how the controller’s FSM actually works.

9. “EP-TOPJMODULE. vhd” : This is the wrap-up module th a t instantiates and binds all the

submodules together to build an HEP processor.

4.4 RTL Simulation Results

To investigate correct operation of HEP processor and its submodules as well as the emulation engine,

we performed software simulation using ModelSim tool. A 4 x 4-bit sequential binary multiplier

(Fig. 4.5) was selected as a design example to be emulated on HEP-based emulation engine. Figures

4.6 to 4.13 illustrate the simulation results.

Figure 4.6 illustrates the functional behavior of the program counter after initiating the reset

signal to the emulation engine. The program counter is incremented by one during every instruction

cycle.

Figure 4.7 illustrates the functionality of the reconfigurable 4-input LUT during the execution

of two consecutive LUTOP instructions. “L U T Jnput-x” represent the select signals to the 4-LUT

module and “Input-value” is LUT value extracted from left control words.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

Multiplicand M ultiplier

. - I - i
4x4

Binary M ultiplier

•?
Output

Figure 4.5: Example of 4x4 Sequential Binary Multiplier

Figure 4.8 shows the operation of 64-bit input switch of HEP processor during execution. The

“address” represents the address of the processor within the module whose output is read during

the instruction cycle. “Bus value” represent hexa-decimal equivalent of the value currently present

on the interconnect network.

Figure 4.9 depicts read and write cycles of the input and local data RAMs. During the first write

cycle a node bit-in is latched into IDR which is fetched by a RAMREF instruction during cycle 3.

Similarly, figures 4.10 and 4.11 illustrate read and write cycles of Left and Right control memo

ries respectively. The write cycles show the process of downloading emulation programs into control

memories. In the figure, the write cycles are marked by asserting “W rite” signal (=1). The read cy

cles, however, show the instructions are fetched from program memories and are marked by asserting

“Read_data” signal to high. The address of the instruction if provided through the “Read_Address”

bus. The read/w rite cycles are synchronized with respect to system clock signal.

Figure 4.12 illustrates the functionality of H E P’s central control unit while executing a LUTOP

instruction. The transition through states of FSM is clearly shown in the figure (“FSM_State” sig

nal). The value presented a t the “Node_Bit_Out” represents the output value of the HEP processor.

Finally, figure 4.13 illustrates the functionality of an HEP processor after downloading 3 instruc

tions (e. g. Two NOP and one LUTOP instruction) into control memories and initiating the start

of emulation by disactivating the processor’s “reset” signal. The output of the processor appears on

the “node.bit_out” pin after executing the third instruction (i. e. LUTOP).

4.5 Synthesis Results

Once the proper functionality of all submodules were determined, a gate-level netlist of each sub-

module as well as the whole processor was generated and mapped using Xilinx ISE® (7.1) design en

vironment. The HEP processor was synthesized targeting Xilinx Virtex II (XC2V8000) and Virtex-4

60

■Clock

■Start

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

n

Now 100 ps 300 ns S00 700 ns

Figure 4.6: Simulated waveform view of Program Counter Submodule

^ LUTJnpulJ) 1 I I I

r " i+ LUTJnpulJ 0

I# LUTJnput_2 1

I I^ LUTJnpulJ 0

E l # InpuLValue 0001001000110100 (1010101010101010 10001001 onrii 101 oo

i i r"...................................LUTJOutput 1

Now 1000000 psi>... ,........
3 2(3 ns 40 ns W) ns

Figure 4.7: Simulated waveform view of 4-input LUT

Address 000001 iuooW loioioo 1000111 raodOOl
E M ^ Bus_Value 764B0C (AAAAAAAAAAAAMAA I7640OOO5S120F-FF-D

^ Nodejftjn 0 ! I I I
Now 100 ps D 40 m 80 ns 120 ns

Figure 4.8: Simulated waveform view of 64-input interconnect switch

nonoonn (uTioTnT 10001101

Now 1000000 ps 100 m

Figure 4.9: Simulated Read/W rite cycles of IDR and LDR

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

Clock

^ Write

E l - ^ Write_Address

+H g» Write D ata

E H | r Read_A ddress

CD ^ Read_Data

00

2AAAA

00

TjiT zee:

I2AAM WFF 100000

00 101 w

12AAAA 13F F F F 100000

i t t t t t t t i h t i t (i t i i i i i i t i i t i i i i t t t i i t i i h i i I t t M i i t t i m i i i i h i i i t t i i i I i i i i i i i i i I m i i I i t

100 ns 200 ns 300 ns 400 ns

Figure 4.10: Simulated Read/W rite cycles of Left Control Memory

^ Clock

^ Write

E M ^ W rite _ D a ta

Read_Address

(±H^ Read_Data

0 0 7 1 E 0E O 00 l(2 A ^ A A A A W T

~TdT

"13F F F F F F F F F

0 0 7 1 E 0 E 0 0 0 '

1000000ps I "

ZtiSL

~] [0 0 7 lT d E 0 0 0

IPT-

IffFFFFFFFFflWIEQEOOO ~

Figure 4.11: Simulated Read/W rite cycles of Right Control Memory

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

Cbck 0 — 1— 1— 1— 1— 1__ 1— 1— 1— 1— 1— 1— 1— 1— 1— 1— 1— 1— 1— 1__
•# Reset o i! |

E H # PC 000000 nnnnnnn rooooom

FSM_State state_7 state 0 Istate 1 Estate 7 Istate 3 Istate 4 Istate 5 Istate 6 Istate 7 Istate 8 Istate 0

•# lnciement_PC 0 I" I
E H # RighUControl_RGM_Address 01 :nn 101

E H # Left_Contfol_Word 1FFFE ftfinOO HFFfT ™........ " "" "
E H # Right_Control_Word 0110GE onooooooOo ionooE8onr:

E H # Data_RAM_Address 01 xx tod too 13a tod

IDR_Read 0 I I
IDR_Qutput 1
LDR_Read 0 I I
LDR_Dutput 0

- # IDR_Write 0 I I
LDR_Write 0 1 1

E H # Processorjnput 000000 OOQOQQOQQOQOQQOO

Node_Bit_ln 0

Node_Bit_Out 1

Figure 4.12: Simulated functionality of Central Control Unit while executing a LUTOP instruction.

R eset 1 ' I
h n n i i j i j i j u i j m m m r i j i n j u u i j i j i r i ^ ^# Clock 1

Left_Control_Data_Write 1 i
Right_Contiol_Data_Write 1 i 1 i--

EH# Left_Contrd_W ord_Download OFFFF
EH# Right_Cont(oi_Word_Download 240000

EH# Left_Control_Download_Address 00 : I I I 104

EH# Right_ContfoLDowrtoad_Addtess 00 U I I 104

EH# PC 00 inn Im 102 103 104

EH# lntereom ect_B U S_V alue 000000 sboooOOOOOOdddddO IdqoOOOI nnmnriOOti [FFFFFFFFFF'fFfffd jnonnnnnnoooonnoi uffffffffffffff ifffffff

EH# Left_Control_Word

EH# Right_Control_Word

OFFFF
240000

I0FFFF 100001 11002b 120482 135555

12400000000 IOIFFFFFFFF l0OFO2dOO8U I3FF00... IOOFO2OOO8O I00EFFFFF82
Node_Bit_Dut U

Figure 4.13: Simulation of emulation program being Downloaded/Executed on a processor

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

Table 4.1: Synthesis results of HEP processor and submodules.

Virtex-2 Virtex-4

M odule Size CLE D elay F1 max Size CLE D elay Fmax

(# S lic e) Usage(%) (nS) (M H z) (# S lic e) U sage(%) (nS) (M H z)

P rg .C n tr 4 0 3.6 277 4 0 1.88 531

R econA LU T 4 0 4.58 218 4 0 3.03 330

Inpt-Sw tch 17 0 9.19 108 17 0 6.33 157

D ata-R A M 60 0 4.93 202 60 0 3.15 317

L ft-R O M 228 1 5.12 195 400 0 3.19 313

R ght-R O M 479 1 5.18 193 840 0 3.3 303

C n trJJ n it 139 1 4.68 213 143 0 2.71 368

H E P 957 2 5.17 193 1529 1 3.31 301

(XC4VLX200) families of FPGA devices.

Table4.1 summarizes synthesis results for an HEP processor as well as its submodules in terms

of speed, combinational path delay and FPG A resource usage while targeting both FPG A families

of devices (Virtex-2 and 4). Although there are different speed packagings are available in both

families of FPGAs, we are only presenting the results for the most common speed packages. As the

results in the tables show, the maximum combinational path delay in the processor determines the

maximum system clock frequency of the processor as well.

It is worth emphasizing tha t to make the VHDL design files transportable to other FPG A

synthesis tools, no Xilinx proprietary library modules were used. Such assumption will force the

Xilinx ISE tool to avoid using FPGA-specific resources such as embedded memory blocks.

The proposed HEP-based emulation engine, consisting of 64 HEP processors and their intercon

nect network was implemented while targeting Virtex-2 and Virtex-4 FPGAs from Xilinx. Table 4.2

summarizes the synthesis results obtained by Xilinx ISE. The results are summarized with respect to

number of modules, FPG A resource utilization, emulation engine speed, maximum emulation time

and maximum logic capacity of the HEP-based emulation system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

Table 4.2: Synthesis results of HEP-based emulation system.

Feature V irtex-2 V irtex-4

o f Modules 2 1

o f H EP/m odule 32 64

#Slice

(%)

31150

(67%)

85525

(96%)

1 /0

(%)

264

(32%)

264

(27%)

System Clock

F m a x i MHz) 193 301

Instruction

Cycle (ns)

46.6 29.9

max. Emulation

time (fj,s)

5.95 3.81

Emulation program

upload time (jis)

127 77

min. Emulation

frequency(KHz)

168 262

Logic

Capacity

8K-160K 8K-160K

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

4.6 Comparison and Conclusion

Before comparing the proposed architecture, we briefly review some existing logic emulation devices

th a t are being used mainly in academia. The survey presented here is partially derived from technical

documents which are available to public. However, due to confidentiality of detailed technical

information related to these system, some information are results of personal speculation.

Previous work generally fall into two main categories. The first, use time-multiplexed FPGAs in

order to build denser FBE devices. Examples of such systems would be Dharma[7] and DPGA[25].

The second approach use ASIC processors developed solely for logic emulation such as YSE[26] and

VEGA [40],

1. Dharma[7]: is a general-general purpose time-multiplexed FPG A designed at the University

of California3. DUT mapped into Dharma are levelized and entire level is evaluated per clock

cycle (as opposed to YSE in which circuits are serialized and only one logic block is evaluated

per clock cycle). For a circuit to fit into Dharma, the number of logic blocks per level must

not exceed the number of physically available logic blocks on the chip, which is a very huge

disadvantage.

2. DPGA[25]: stands for Dynamically Programmable Gate Array and was developed at the MIT

Artificial Intelligence Laboratory. DPGA is an FPGA with four configuration contexts and

each context is stored in its configuration memory. The contexts are switched under external

control. The basic logic element is in fact a 4-input LUT combined with a single flipflop th a t is

shared among all contexts. DPGA is a general purpose hardware development platform th a t

was not necessarily optimized for logic emulation purposes. For logic emulation purposes, a

netlist must be partitioned into sub-circuits th a t each will fit into single context. The DPGA

must contain sufficient memory capacity to store the results of each context (combinational

logic blocks+flipflops) as well as configuration bitstream. Current embodiment of DPGA fails

to provide such provisions, therefore, roughly speaking, it is not suitable for logic emulation.

On the other hand if the time delay caused by context switching is significantly higher than

emulation time of one logic slice, then emulation speed will be drastically reduced to unac

ceptable levels. However, DPGA demonstrate how time-multiplexing technique could result

in better logic capacity utilization in FPG A s.

3. YSE[26]: Yorktown Simulation Engine was developed at IBM. Based on our classification pre

sented before, YSE is an example of hardware-accelerated simulator tha t uses 256 simulation-

3It is the first time-multiplexed FPG A that has been reported in literature.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

specific parallel processors to simulate (and not emulate) a logic design4. Unlike HEP-based

emulation system, YSE does not provide in-circuit connection to target platform. Each pro

cessor in YSE is capable of simulating 4096 logic blocks. The processors are constructed from

LSI TTL-based integrated circuits. The fundamental logic element used in the processors is

a 4-input LUT. Signal values are represented as four-valued logic5. Hence, the signal state-

memory has the capacity of 16K x 2. To allow multiple accesses to memory per clock cycle, the

state-memory has five read ports and two write ports to. A 256 full-crossbar interconnect to

route data among processors. Although YSE achieved low logic density due to its construction

from LSI modules, it vividly proved th a t hardware-accelerated simulation could be 600 times

faster than software simulation.

4. VEGA[40]: is an ASIC-based PBE system th a t was developed at the University of Toronto.

Similar to HEP, VEGA also uses 4-input LUT as the basic element for emulating combina

torial logic. An additional memory associated with each processor dynamically routes the

inputs/outputs to/from each processor. Although a VEGA has been implemented using ASIC

technology, the emulation clock frequency is within few hundred kilo hertz.

Table 4.3 summarizes the features explained above. The last column expresses the features of

HEP-based emulation engine. Comparing the results illustrated in table 4.2, the entire HEP-based

emulation system, consisting of 64 processors, would require only two Vritex-2 FPGAs (XC2V8000)

or just one Virtex-4 FPGA (XC4VLX200) for implementation. This means th a t an HEP-based

emulation system is an order of magnitude smaller in size than other emulation systems. It is worth

mentioning that, such reduction in size will significantly reduce the cost of HEP-based emulation

system so th a t it is easily affordable by members of academia6. Also, HEP-based emulation system

uses off-the-shelf FPG A modules where as most PBEs are implemented using ASIC technology.

Hence, the implementation of HEP-based emulation systems takes significantly less time.

In term s of speed, an HEP-based emulation system have a clock frequency of 193-301MHz or

emulation speed of 168-262KHz. Comparing with other PBEs th a t are using ASIC technology

for implementation (e. g. VEGA), HEP-based emulation system proves to have 3-4 times faster

emulation speed. Such emulation speed is quite resonable for most applications.

4However, due to architectural similarities, we can still present the results obtained by YSE
5 In “fo u r-v a lu ed lo g ic ” ea ch s ig n a l ca n a ssu m e a n y o f four v a lu e s :“0 ” , “1” , “U ” (U n d efin ed) a n d “Z” (h ig h -

impedance), as opposed to Binary-valued logic in which only “0” and “1” are acceptable values.
6 Commercially available emulation systems are at least 3 orders of magnitude more expensive than an HEP-based

emulation system

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. IMPLEMENTATION OF HYBRID EMULATION PROCESSOR ON FPGA

Table 4.3: Comparison of HEP with other Emulation systems

F e a tu re Y S E D h a rm a D P G A V E G A H E P

o f Elements

emulated per

Clock

1 1 logic level Entire Array 1 64

^instructions

per processor

4096 N /A N /A 256-2048 128

Processing Block 4-LUT variable

K-LUT

2 x 4 — L ut 4-LUT 4-LUT

Memory

Architecture

5-port RAM Latches Flip-flop 6-port Reg. File

single port RAM

Single port

RAM /ROM

M ax.# of

Processors

256 N /A 4000 2048 64

Implementation

Technology

TTL/LSI ASIC FPGA ASIC off-the-shelf

FPG A

In spite the fact th a t most logic capacity of FPGAs will remain underutilized (due to R ent’s

rule), a HEP-based emulation system increases the FPG A logic utilization between 67-96% while

the I/O pin utilization is only between 27-32%. Moreover, due to intrinsic flexibility in HDL, the

HEP-based emulation system can be easily customized into other FPG A family of devices, such as

those from Altera. Such characteristic is unique to HEP-based emulation system and is not found

in other emulation systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

A C A D Tool Suite f o r HEP-based

Em ulation S ys tem

As it was mentioned in 2.3 all logic emulation systems are accompanied with associated set of CAD

tools th a t automatically perform design compilation on DUT netlists. The ultimate goal of such

tools is to perform the design compilation so th a t DUTs could be emulated on the emulation platform

more efficiently and in less time. On the other hand, as logic designs are becoming bigger and more

sophisticated, design compilation process is also becoming more time consuming. For example, logic

designs as big as hundred thousand logic gates could take several hours (even days) to compile.

Hence, CAD tools th a t prove to be efficient and fast a t the same time are highly desirable.

In the previous chapters the hardware architecture of the proposed HEP-based emulation engine

was described. In the following sections we are going to introduce the steps required for design

compilation for HEP-based emulation engine as well as new scheduling algorithms th a t decrease

to tal emulation time. At the end the results obtained by the proposed tool will be compared with

others.

5.1 B asic requirem ents for H E P -b ased C A D to o l

Before introducing the CAD tool flow of HEP-based emulation system, we need to understand what

is the purpose of such tool and why we need it?

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Combinational
Logic FF

Inputs CLK

Design Cycle

CLKi

(instruction o)(lnstruction 1 ̂ Instruction 2}*

,nSC y d e ° n
«vm l L m J Iwm l Im nJ I n a l Sam i Imwl Sam i I *

Emulation Cycle

Figure 5.1: Design cycle versus Emulation Cycle in a generic DUT.

An HEP-based CAD tool should be able to automatically map any combinatorial or sequential

circuit to HEP-based emulation system’s hardware. A generic view of a sequential circuit is shown

in Fig. 5.1. In such circuits changes in signal values is controlled (or synchronized) by “clock” signal.

In this context we will refer to such signal as design Clock. Flip-flops are responsible for “storing”

binary values and will change their values in synchronism to design clock. The combinatorial logic

determines the “present-state-next-state” relationship among the signal values.

A HEP-based emulation system should be able to evaluate all signal values within time intervals

marked by the design clock. During each design clock, all HEP processors will run an emulation

program, by sequentially executing a series of instructions. Each instruction will take one instruction

cycle to execute. However, for a HEP processor it takes 9 system clock to execute single instruction.

T h e r e la t io n b e tw e e n s y s te m c lo c k , in s tr u c t io n c y c le a n d d e s ig n c lo c k is a lso i l lu s tr a te d in F ig . 5 .1 .

As we will see in future, an efficient CAD tool is the one th a t can emulate a design cycle in less

number of instruction cycles.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Em ulation Program
G eneration

Scheduling

D ow nloading
Em ulation Program

Figure 5.2: CAD Flow for HEP-based emulation system.

5.2 Overall CAD Flow

Figure 5.2 illustrates the conceptual view of proposed CAD framework for HEP-based emulation

system. To map a DUT into and HEP-based emulation system, the DUT has to pass through the

steps shown below.

The proposed CAD flow in most parts resembles the flow of CAD tools for PBEs, except for

the fact that, now the task scheduling replaces partitioning and assignment step in PBEs. The

details of each step is described below. To help the readers to have a better understanding of design

compilation process, we have created a 4 x 4 sequential binary multiplier as a design example and

taken it through the compilation steps. A block view of a 4 x 4 binary multiplier is shown in Fig. 4.5.

5.2.1 D esign Entry

The first step of emulation CAD tool is design entry, where the user(s) (i. e. circuit designers) formally

describes the functionality of the DUT. They can specify their designs through hardware description

languages (e. g. VHDL/Verilog) or schematics capture tools using any industry standard tool such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Figure 5.3: RTL view of binary multiplier produced by Synopsys Design Compiler

as Cadence Concept®HDL. In the case of the design example, the multiplier has been designed

using VHDL language. The program listing of multiplier is presented in the CD accompanying this

thesis.

At the end of this step, design entry tools usually produce the register-transfer level (RTL)

representation of the DUT. Figure 5.3 illustrates the RTL view of the multiplier generated by

Synopsys®Design Compiler.

5.2.2 Synthesis

Once the design is specified, the DUT’s gate-level netlist can be obtained using any synthesis tools

th a t support library components utilized in DUT. The synthesis tool takes the RTL netlist and

automatically generates the gate-level netlist. An example of such synthesis tool is Synopsys Design

Compiler. The synthesized gate-level netlist of the binary multiplier is shown in Fig. 5.4. It is

worth emphasizing th a t no practical limitation on the type of the tool used for either design entry

or synthesis has been set. Hence, users may use any tool available.

In order to present the results obtained by the proposed CAD tool, we have used MCNC

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Figure 5.4: Gate-level view of binary multiplier generated by Synopsys Design Compiler.

LGSynth93 benchmark circuit suite which contains more than 100 gate-level netlists[69] presented in

BLIF format. The suite contains both combinatorial and sequential circuits in various sizes ranging

from a few to tens of thousands gates. However, the results of experiments performed are illustrated

only for the ten biggest circuits in the suite. Table 5.1 describes the sample circuits quantitatively, in

terms of number of elements (size), number of inpu t/ou tpu t and number of logic gates with fan-in1

degrees less/greater than 4 and also the length of the critical path in the gate-level netlist “before”

technology mapping. The last row of the table contains the information of the binary multiplier.

5.2.3 Technology M apping

As the name specifies, a typical gate-level netlist contains library dependent logic primitives such

as complex combinatorial logic with high fan-in degree and flip-flops. However, to emulate such

design on HEP-based emulation engine, the gate-level netlist has to be transformed, so th a t the

circuit could be mapped in to emulation system. Such transform ation is called technology mapping.

The technology mapping tool coalesces the gates/flip-flops into the basic building block of an HEP

processor, i. e. a four-input L U T and flip-flops.

At this step we have used the SIS package developed at the UC Berkeley [57] to transform gate-

level netlists. The “Flowmap” tool[17] was used to perform the the technology mapping. Flowmap

1 Fan-in degree of a logic gate is the number of inputs to the logic gate

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Table 5.1: Ten biggest MCNC circuits.

D U T # L o g ic

E lem en ts

In p u t-

O u tp u t

G a te s # F l i P-

F lo p s

^ G a te s

(fanin<4)

G a te s

(fanin>4)

C ritic a l

P a th

s38417 24011 31-109 22548 1463 22548 0 65

s38584 19699 41-307 18275 1424 18275 0 70

s35932 17793 35-320 16065 1728 16065 0 29

frisc 4425 20-117 3539 886 3539 0 23

elliptic 4724 131-115 3602 1122 3602 0 18

pdc 4775 16-40 4775 0 4775 0 9

des 2263 256-245 2263 0 1464 799 10

ilO 2452 257-224 2452 0 2291 161 55

C7552 3466 207-108 3466 0 3410 56 43

C5315 3088 178-123 3088 0 3067 21 79

Multiplier 136 10-8 106 30 106 0 10

is an LUT-based technology mapping tool which produces depth-optimal mapping solution for Re

bounded Boolean networks. The algorithm calculates min- cost K-feasible cuts for all the logic

gates in the circuit. Flowmap can be run to minimize either to tal area or total delay. “Delay”

minimization, in this case, is the minimization of the number of LUTs on the circuit’s critical path.

However, since maximizing the emulation speed is the main objective, circuits should be mapped

to so th a t the area is minimized. Smaller area results in fewer LUTs, which, generally, reduces the

number of emulation cycles. In case of HEP-based emulation system, since each processor contains

a 4-input LUT (4-LUT), Flowmap has to convert the gate level netlists into a collection of LUTs

and flip-flops. An example of technology mapping process is illustrated in Fig. 5.5. In the example

shown, the technology mapping tool has not only reduced the area but also the “depth” of the

circuit, resulting in a circuit with minimum delay.

However, the experiments show th a t if the DUT netlist is “decomposed” before it is technology

mapped by Flowmap, the final circuit contains less logic elements (i. e. less area). The decomposition

process is performed using SIS DMIG tool [14] th a t converts all the logic gates in an unbounded

gate-level netlist into a collection of two-input (i. e. 2-bounded) logic gates. The DMIG tool uses tree-

balancing technique to obtain a depth-optimal solution to break a netlist into logic gates with “fan-in”

degree less than or equal to 2. Figure 5.6 illustrates technology decomposition of a logic gate with fan-

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

n 1

£ > = 0 - 0 ,n 2

4-LUTn 3

n 4

Figure 5.5: Example of technology mapping for reducing area and delay.

in degree of four. As it is shown in the figure, balanced-tree technology decomposition usually results

in a circuit with shorter critical path. Although, technically speaking, logic decomposition could

be performed independently from mapping, we refer to combination of both steps as technology

mapping. The scripts used for logic decomposition and technology mapping is provided in the

complementary CD along with this Thesis.

Table 5.2 summarizes the results obtained for the 10 biggest MCNC circuits (as well as binary

multiplier example) after logic decomposition and technology mapping. The results are shown for

having the circuits decomposed and not decomposed prior to mapping. Interestingly, having the

circuits logically decomposed prior to mapping has reduced the critical path length in the final circuit.

Such reduction results in reduction of number of emulation cycles and increases the emulation speed.

Although technology mapping helps to reduce the critical path length (almost) in all cases, but

it does not necessarily reduce the size of the circuit. In some circuits (e. g. DES), the technology

mapped circuit will contain even more logic elements (i. e. bigger in size) compared to its size before

technology mapping. Such observation could be attributed to high fan-in degree (> 4) of substantial

number of logic gates in the circuit.

5.2.4 Scheduling

According to computer science literature, an HEP-based emulation system is an example of a special

purpose platform th a t can be classified as a synchronous Multiple Instruction Multiple Data (MIMD)

multi-processor system. An MIMD system contains a number of processing elements (PE), or sim

ply, processors, th a t run in parallel while each PE contains a unique area for program and data. A

program is a collection of “tasks” th a t must be executed by processors in a specific sequence. How

ever, the greatest challenge ahead of researchers is partitioning applications into tasks, coordinating

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

nJ$J S
(a)

(b)

V,

Figure 5.6: Technology decomposition, (a) Balanced-tree, (b) Unbalanced-tree.

_______________ Table 5.2: Results of technology mapping._______________

Original w/o. Decomposition Decomposition

D U T Size C ritical

path

Size C ritical

path

Size C ritical

path

s38417 24011 65 5372 11 5411 10

S38584 19699 70 6704 13 6630 9

s35932 17793 29 5152 4 5152 4

frisc 4425 23 6529 23 7362 23

elliptic 4724 18 5563 18 6190 18

pdc 4775 9 6314 9 6796 9

des 2263 10 3369 6 3957 6

ilO 2452 55 1373 16 1401 13

C7552 3466 43 933 8 907 8

C5315 3088 79 837 10 802 9

Multiplier 136 10 99 8 99 8

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

communication, synchronizing processors and “scheduling” tasks on the parallel platform [45].

Scheduling and allocation of tasks is extremely crucial since an inappropriate scheduling of tasks

can fail to exploit true potentials of the system and can offset the gain from parallelization. The ob

jective of scheduling is to minimize the completion time of a parallel application by properly allocating

the tasks to the processors [45], In a broad sense, the scheduling problem exists in two forms:

• Static: In static scheduling, which is usually done at compile time, the characteristics of a

parallel program (such as processing times, inter-processor communication, data dependencies

and synchronization requirements) are known before the program execution.

• Dynamic: In dynamic scheduling only a few assumptions about the parallel program can be

made before execution, and thus, scheduling decisions have to be made “on-the-fly” (during

program execution).

In this application, after technology mapping, the generated netlist consists of a collection of logic

elements. Emulating the functionality of each element can be viewed as a “task” for a HEP processor

in the emulation engine. Taking such analogy, the whole technology mapped netlist is considered as

a parallel “program” th a t has to be emulated on 64 HEP processors. The most im portant questions

here to answer are: how should we break the program into smaller tasks? and how these task should

be scheduled and assigned to processors so that the execution time is minimum?

Obviously, due to the fact tha t the characteristics of the technology mapped netlist is known

prior to scheduling, task scheduling can be accomplished using “static” scheduling techniques.

The scheduling problem is an NP-complete problem for most cases [45]. Hence, many heuris

tics with polynomial-time complexity have been suggested. However, these heuristics are highly

diverse in terms of their assumptions about the structure of parallel program and the target parallel

architecture.

In the following sections of this thesis, the task scheduling problem for HEP-based emulation

system is addressed. In this research, new heuristic algorithms and tools th a t can perform the task

scheduling for HEP processors th a t reduce the emulation time have been developed. The algorithms

are extensions to the static scheduling algorithm called list scheduling. The algorithms described

below could also be applied to any architecturally similar PBE.

5.2 .4 .1 Prelim inaries

From the scheduling tool point of view, a DUT netlist is a parallel program th a t consists of hundreds

to thousands of tasks th a t have to be executed on a number of logic processors. To schedule tasks,

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

FF InputsFF Outputs Combinational
Logic FF

Primary Inputs CLK

Primary
Outputs

Figure 5.7: Modeling a DUT as a Mealy Machine.

first, the task precedence graph(TPG), in which, nodes represent the tasks and the directed edges

represent the execution dependencies, as well as, the amount of communication, is built. Such

modeling, is commonly used in static scheduling of a parallel programs with tightly coupled tasks

on multi-processors. In circuit terminology, TPG is equivalent to directed acyclic graph (DAG) and

therefore the two can be used in this context interchangeably.

To construct DAG representation of a netlist first the inputs and outputs of DUT must be

identified. A sequential circuit could be rearranged using Mealy machine model illustrated in Fig. 5.7.

In Mealy machine model, a DUT consists of combinatorial logic combined with flip-flops th a t store

the “present state” of the circuit2. Inputs to a circuit are either the primary inputs (external

inputs) or any fed-back flip-flop outputs. The combinatorial logic establishes “present-state- next-

state” relationship in the circuit. The circuit outputs are either the combinatorial outputs or the

flip-flop inputs3. In a technology mapped circuit the combinatorial logic consists of 4-input LUTs.

Figure 5.8 illustrates DAG equivalent of a DUT netlist. A node in DAG is equivalent to a logic

element (4-LUT or FF) in the DUT netlist. Mathematically, a DAG is shown as G — (V, E), where

V is the set of all the vertices (nodes) and E is the set of all the edges. The weight w(n,) assigned to

node ni represents its computation cost. However, in an HEP processor the computation costs for

^Roughly speaking, a flip-flop (FF) is one bit of “memory” element that can store a binary value for infinite

duration of time. Hence, a flip-flop can also be regarded as a logic unit that is capable of keeping a “history” of signal

values
3The same definitions for input/outputs will also apply to merely combinatorial circuits (memory-less circuits)

except that they do not include flip-flop inputs/outputs.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

v4

*HS v2

LUT

LUT
LUT

Figure 5.8: DAG representation of netlist

all logic elements are equal, because each logic element can be emulated in one H E P’s instruction

cycle. Thus, w(rii) = 1 for all n,; 6 V. Also, the weight w(e,j) assigned to edge etj represents the

communication cost between two nodes rii and rij. Recalling from previous chapters, during each

instruction cycle, an HEP processor is capable of receiving/transm itting value calculated for one

logic element in the graph from one processor to another. Hence w(eij) = 1 for all e E. Once

DUT is modeled as a DAG, the scheduling objective is to minimize the program completion time or

maximize the speed-up (we will define these terms shortly).

5 .2 .4 .2 L e v e l iz a t io n

We are given a netlist represented in DAG in which nodes are already mapped to LUTs and FFs. The

objective is to map each node into a suitable instruction word in a HEP processor. If the number of

HEP processors is represented by P and the number of available instruction words in each processor

is represented by W , then the to tal number of available instruction words is P x W . In the proposed

HEP-based emulation engine where P = 64 and W = 128, there are to tal of 8192 (8K) instruction

words available. The instruction memory map(IMM) of HEP-based emulation engine is shown in

Fig. 5.9. The process of assigning nodes to instruction words in IMM is done through subdividing the

DUT netlist into slices and allocating nodes in each slice to instruction words. However to preserve

functional correctness of the mapped netlist, the slicing of the DAG is subject to the following rules:

• An LUT node must be scheduled to an instruction word no earlier th an all the nodes th a t

generate it inputs (i. e. fan-in nodes).

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Processor 1 Processor 2 Processor 64

Cycle i-t —►
Cycle I —►
Cycle i+1—►

i-1
i

i+1

0 0
♦

i-1 i-1
i

i+1
i

i+1

127 [127 127

Figure 5.9: Instruction memory map (IMM) of HEP-based emulation system.

• All flip-flip outputs used as feedback inputs are considered as virtual inputs to DUT and must

be scheduled prior to all nodes it is driving (i. e. fan-out nodes).

• No two nodes with a common fan-out node should be assigned to the same instruction cycle.

While the first two rules are referred to as precedence constraints, the last rule is referred to as

communication constraint. The problem consists of slicing the DAG into smallest number of parti

tions so th a t none of the rules stated above is violated and nodes in each partition are assigned to

instruction words in IMM so tha t the to tal execution time for all nodes in one partition is minimized.

The largest number of partitions allowed is bounded by W (number of available instruction words

in each HEP processor).

A straight forward solution for slicing DAG while observing the precedence constraints is obtained

through levelization. Levelized scheduling orders the nodes with respect to the number of logic stages

(i. e. distance) from the inputs. Each node in DAG is labeled with its “level” . Prim ary inputs to

the circuits and outputs of flip-flops are given level 0. All other nodes are given a level th a t is one

greater than the maximum level of their fan-in nodes. Such labeling can be done with a simple

tree traversal algorithm such as Depth-First Traversal (DFT). If nodes are evaluated in level order

(all level 1 nodes before all level 2 nodes and so on), then the generated outputs after the last level

(c o r r e s p o n d in g to t h e p r im a r y o u t p u t s a n d flip -flo p in p u ts) w ill h a v e th e ir c o r r e c t v a lu e s .

Two DAG levelization algorithms are known, ASAP and ALAP. As-Soon-As-Possible (ASAP)

levelization, shown in Fig. 5.10, rearranges each node as soon as all fan-in nodes are levelized. As-

Late-As-Possible (ALAP) levelization, shown in Fig. 5.12, assigns a node to one level before its

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Level 8 Level 1 Level 2 Level 3

v7

v2

Figure 5.10: ASAP Levelization

output is required. The pseudo codes for both ASAP and ALAP algorithms are shown in 5.11 and

5.13 respectively. The ASAP algorithm starts from the input nodes and moves towards the output

nodes while performing “forward” depth-first labeling. The label value assigned by ASAP algorithm

to node u* is represented as A SA P (vi). Similarly, the ALAP algorithm starts from the output

nodes and moves towards the input nodes while performing “backward” depth-first labeling. The

label value assigned by ALAP algorithm to node t>, is represented as A L A P (v i) .Using the “parallel

programming” analogy on a multi-processor platform where each node (vertex) u, in TPG represents

a single “task” , A S A P (v i) and A L A P (vi) correspond to the earliest time and latest time th a t task

Vi can sta rt running respectively.

Although ASAP and ALAP levelizations produce correct emulation results th a t satisfy prece

dence constraints, they do not create a balanced processor workload. Figure 5.14 shows a histogram

of processor workload through time (i. e. cycles) while an average-sized netlist, for example “ellip

tic. blif” (< 6200 logic elements), is being emulated. The blue and red lines show the processors

activity when the netlist is levelized using ASAP and ALAP algorithm respectively. The ASAP

levelization tends to shift most of the processors’ workload closer to early cycles while ALAP lev

elization shifts the workload closer to later cycles. In either case, most HEP processors remain

“idle” during intermediate cycles. The peaks on the left and right indicate th a t many nodes could

be scheduled in any instruction cycles. The shapes of these curves are typical of m ajority of designs

especially large ones.

Circuits containing more than 6300 logic elements fail to be scheduled in to the HEP-based

emulation engine’s IMM if the designs were to be scheduled using either ALAP or ASAP levelization

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

01 A S A P (G = (V ,E))
02 {
03 FOR each Vi £ G DO
04 IF fanin(uj) = 4> THEN
05 V i-A S A P = 1;
06 G = G — {vi};
07 ELSE
08 Vi ■ A S A P = 0;
09 ENDIF
10 ENDFOR
11 WHILE G / 4> DO
12 FOR each Vi E G DO
13 IF all fanin(uj) are levelized THEN
14 Vi ■ A S A P = MAX(fanin(wi) • A S A P) + 1;
15 G = G - {Vi}-,
16 ENDIF
17 ENDFOR
18 END WHILE
19 RETURN;
20 }

Figure 5.11: ASAP algorithm in pseudo code.

Level 0 Level 1 Level 2 Level 3
i
i

t
!
f
I
I
t
I
I
t
I

v5f
I

Figure 5.12: ALAP Levelization

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

01 A L A P (G = (V ,E))
02 {
03 FOR each u* e G DO
04 IF fanout(uj) = 0 THEN
05 Vi ■ A L A P — CPL; \ * C P L — C riticalP athLength * \
06 G = G - { v i };
07 ELSE
08 Vi ■ A L A P — 0;
09 ENDIF
10 ENDFOR
11 WHILE G ^ (f) DO
12 FOR each Vi G G DO
13 IF all fanout (uj) are levelized THEN
14 Vi ■ A L A P = MIN(fanout(t'j)-ALAP) - 1;
15 G = G - { Viy,
16 ENDIF
17 ENDFOR
18 END WHILE
19 RETURN;
20 }

Figure 5.13: ALAP algorithm in pseudo code.

Processor Workload

«5o£
I

32 80 96 10456 64
0 < Cycles 5 127

Figure 5.14: Processor workload after levelizing “elliptic” . Blue and red lines represents ASAP and
ALAP levelization respectively.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

techniques. Hence, a scheduler heuristic should be capable of not only mapping all the circuits

into the emulation system but also minimize emulation time by maximizing the average processor

workload for all 64 processors in the emulation engine.

5 .2 .4 .3 M odified List Scheduling (M LS)

Although ASAP and ALAP levelization algorithms produce correct results there are significant

leeway in the partial order for nodes th a t are not on the critical path.

Definition: In a technology mapped netlist represented by DAG G = (V, E), the critical path is

the path with maximal length between inputs and outputs. For example, in Fig. 5.10 the critical path

consists of wi —> rq —> vq —i• vg. Nodes on critical path are called critical path node (CPN), which are

shaded in gray color in Fig. 5.10. It is worth mentioning that, based on the definition, it is possible

for a circuit to have multiple critical paths. For example in Fig. 5.10, V2 —> Vi —> v& —> vg is also a

critical path.

To balance processor workload and improve emulation speed, the scheduling tool should be able

to identify non-critical path nodes within the DAG and reschedule them effectively into other instruc

tion cycles in order to minimize “the maximum number of instructions” . For example, comparing

figures 5.10 and 5.12, node wj can be moved from level 0 into level 2, while not violating the prece

dence constraints, to decrease processor’s workload in level 0 and increase the processor’s workload

in level 2, thus balancing workload in both levels.

The scheduling tool introduced in this section uses a variation of list scheduling[32] algorithm,

originally developed for high-level synthesis. The proposed scheduling algorithm is referred to as

modified list scheduling or MLS. The pseudo code for MLS is shown in 5.15.

• The first step is to generate ASAP and ALAP levelization of DAG (lines 3-4). As a result the

range of levels into which each node can be assigned is determined.

L e m m a : For node vt £ V if A S A P (v i) = A L A P (v i) then vt is on critical path (i. e. u* is a

CPN). Similarly, Vi is non-CPN if and only if A L A P (vi) — A S A P (v i) ^ 0 (line 6-12). The

length of critical path is denoted as Cl and Cl = M ax{A LA P {vi)) for all Vi € V (line 5).

O b serva tio n 1: Any circuit C, represented by graph G = (V, E), will require at least C l

cycles to be emulated on any parallel processing platform. The ultim ate goal for any scheduling

heuristics is to reduce the number of emulation cycles (=emulation time) closer to C l ■

• The MLS iterates (line 13-41) through levels, starting from level 0 to maximum of C l (0 <

L j < C l). At each level (L j), all “ready-to-schedule” nodes are sorted in ascending order

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

01 M L S (G = (V ,E))
02 {
03 A S A P (G = (V,E));
04 A L A P (G = (V ,E))i
05 CL = M A X {v i ■ A L A P)■
06 FOR each Vi £ G DO
07 IF Vi • A L A P - Vi ■ A S A P = 0 THEN
08 Vi is CPN;
09 ELSE
10 Vj is non-CPN;
11 ENDIF
12 ENDFOR
13 FOR L j = 0 TO CL DO
14 V ' = 4>\
15 FOR all Vi • A S A P > L j DO
16 Vi ■ M O B = Vi ■ A L A P — L j ;
17 V ' = V ' + {vi}-
18 ENDFOR
19 V ' = SO R T (F ',“ascending mobility”);
20 Max_Cycle=Min_Cycle=0;
21 WHILE V ' ± (j> DO
22 IF Vi e C P N THEN
23 allocate jm d -co lla p seJ M M (ij, M ax-C ycle, M in JJycle);
24 V = V ' -
25 ENDIF
26 END WHILE
27 WHILE V ' / 4> DO
28 IF Vi • M O B = 0 THEN
29 allocate jm d -c o lla p se J M M (u,;, M ax-C ycle, M iruCycle);
30 V = V ' - M ;
31 ENDIF
32 END WHILE
33 WHILE V ’ ^<j) DO
34 vi = H E A D (V 1, random)’, *random ly select \
35 IF a l l o c a t e j a n d - C o l l a p s e J M M (v i , M ax-C ycle, M inJC yde) successful THEN
36 V = V - {v i}’,
37 ELSE
38 leave v , for next iteration and do nothing;
39 ENDIF
40 END WHILE
41 ENDFOR
42 RETURN;
43 }

Figure 5.15: MLS algorithm

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

with respect to their “mobility” . In other words, nodes are prioritized with respect to their

mobility, so tha t a node with the lowest mobility has the highest priority.

Definition: Node u* is “ready-to-schedule” if ASAP(v i) < Lj and Vi has not yet been allocated

into a word inside IMM.

Definition: For node w*, “Mobility” is calculated as MOB (vi) = AL AP (vi) — Lj. In other

words, the mobility of node Vi determines how many levels the node can be “postponed” for

scheduling.

Sorting the nodes in ascending order with respect to their mobility, virtually, categorizes all

“ready-to-schedule” nodes into three subclasses:

— critical path nodes: At level Lj , any ready-to-schedule node (?;*) th a t belongs to critical

path will have a mobility of 0 (MOB(vi) = A L A P (v i)—Lj = A L A P (v i) —ASAP(v i) = 0).

— semi-critical nodes: A ready-to-schedule node (Vi) is a semi-critical node if it is neither

on critical path nor can be “postponed” (i. e. moved) to later levels (Lj+1 , - - -) either,

because Lj = ALAP{vi) . For such nodes M O B (v i) = 0 as well.

— postponable node: Node w* is postponable if M OB (v i) =/= 0.

• At each level (Lj) once all ready-to-schedule nodes are identified they are sorted and prioritized

with respect to their mobility (line 15-19). First “all” the critical path nodes (in level Lj) are

allocated into IMM (line 21-26). Next, “all” the semi-critical nodes will also be allocated into

the IMM (line 27-32). And, finally, the algorithm tries to allocate postponable nodes into

IMM, by selecting a node from a list with least mobility. If two postponable nodes have same

mobility the algorithm will select one node ra n d o m ly (line 33-40). Note th a t all nodes are

allocated to IMM while observing the communication constraint.

• At each iteration, if “allocate_and_collapseJMM()” function fails to allocate a postponable

node to IMM, the node will be moved to next level (Lj+i).

The pseudo code illustrated in Fig. 5.15 explains the main steps involved in MLS algorithm. How

ever, to avoid confusion in the code we excluded the details of steps during “allocate_and_collapse JM M ()”

function calls which we will describe below.

• The main objective of “allocate_and_collapse_IMM()” is to collapse those nodes tha t satisfy

the communication constraint. Collapsible nodes can be allocated into the same instruction

cycle (but on separate HEP processors). Figure 5.16 illustrates how collapsing two nodes could

reduce length of emulation program.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

v4

v3

t 1 I

Lj Lj+1

P ro cesso r A P ro cesso r B P ro cesso r C

Cycle c-1
Cycle c

Cycle c+1

V1 and V3 are collapsible.
So they sh a re the sam e cycle.

| V2 is not collapsible with neither ¥1 nor ¥3. j
j ¥2 can not sh a re cycle with VI or V3 I

mmja y c l e (Lj) = c
MIN^CYCLE (Lj) -■ c m

Figure 5.16: Examples of collapsing nodes during IMM allocation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

• At each level L j, the algorithm tries to collapse critical path nodes into the same instruc

tion cycles. If two critical path node are not collapsible the algorithm will allocate the nodes

into two different instruction cycles. The algorithm keeps track of minimum and maximum

instruction cycles occupied by all m utually non-collapsible CPNs in level L j. The cycle num

bers are referred to Min_Cyde(L;/) and M ax.Cycle(Lj). In the example shown in Fig. 5.16,

M ax-C ycle(L j) = C and M in-C ycle(L j) = C — 1. If a non-collapsible CPN is to be added

to IMM, th a t node is allocated to level Max_Cyc:le(L j)+1 and Max_Levol(Lj) will be up

dated automatically. To initiate collapsing and allocating nodes, the MLS algorithm sets both

MimCycle and Max_Cycle to 0 (Line 20).

• MLS allocates and collapses semi-critical nodes the same way it treats CPNs. The only differ

ence is th a t now the M ax-C ycle(L j) A M iri-C ycle(L j). In such case, the algorithms tries to

fit the nodes in between cycles Max_Cycle(Lj) and Min_Cycle(Lj). If no suitable cycles were

found then Max_Cycle(L7) is incremented by 1.

• At the final step, MLS starts allocating postponable nodes. However this time MLS will start

searching to find free instruction word in IMM “only” within the range between M axX’ycle(Lj)

and Min_Cycle(Lj). If the node could not fit within th a t range then the node is moved to next

level (Lj_|_i).

It is worth indicating tha t before MLS starts the scheduling process it initializes all the instruction

words in IMM by filling them all with “NO P” instruction. At the end of scheduling, those instruction

words in IMM to which no node has been assigned are left intact (= “NOP” instructions).

As we will discuss later, the ratio of used instruction words with respect to number of “N O P”

instructions (i. e. processor idle time) in one HEP processor is the most im portant evaluation

metrics for comparing scheduling algorithms. Any optimization technique th a t could improve such

ratio is highly desirable.

5.2 .4 .4 M L S + B F F Scheduling

Task scheduling for a multi-processor platform is an NP-complete problem, for which no optimal

solution exists. Although MLS scheduling produces close to optimal solution in a reasonable amount

o f t im e w e c o u ld s t i l l a p p ly so m e o p t im iz a t io n te c h n iq u e s t h a t m ig h t fu r th e r im p r o v e t h e th e s c h e d u l

ing result. The improvement over MLS algorithm th a t is explained below results in an increase in

average processor workload or reduction of processor idle time which, in turn, reduces emulation

time.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

As mentioned earlier, at each level, the MLS algorithm prioritizes the circuit nodes according to

their mobility and assigns higher priority to CPNs or semi-critical nodes over postponable nodes.

However, it does not distinguish postponable nodes with “equal” mobility. In such cases, the MLS

algorithm will randomly selects a node for collapsing and allocation into IMM.

The problem with such scheme is th a t the algorithm does NOT make any “prediction” about

the signal flow within DAG. Lack of such prediction capability results in more frequent failures in

collapsing and allocating postponable nodes, as these nodes are accumulated into later cycles.

An intuitive improvement to MLS is explained through the following example. As illustrated

in Fig. 5.17, node v\ driving the inputs to two other nodes V2 and v3. In other words, v\ has

the “fan-out” degree of 2. Obviously, if A SA P {v{) = L then A S A P (v 2) = A S A P (v 3) = L + 1 .

Similarly node iq, also with A S A P (v 4) = L has a fan-out degree of 3 (driving nodes v5 ,ve,v7). If

during MLS scheduling both nodes v\ and tq were identified as postponable nodes, the algorithm

will choose either nodes randomly as the next candidate for scheduling. However, if iq was selected

first over v \ , then input values to three nodes (i. e. v 3 ,v q ,v 7) will be calculated earlier without being

postponed to later iterations. This means th a t three HEP processors tha t emulate v$, v$, and v7

would have less “waiting” time to have their inputs ready. In this sense, V 4, with fan-out degree

of 3 would be preferred over tq (with fan-out of 2) simply because V4 keeps less number o f HEP

processors waiting. Based on the above example, an improved scheduling algorithm introduced here

is referred to as “modified list scheduling with biggest fan-out first” or shortly M LS+BFF4. Figure

5.18 explains the M LS+BFF algorithm in pseudo code. M LS+BFF algorithm performs identically

to MLS algorithm except when it tries to schedule postponable nodes. For such nodes, M LS+BFF

will further sort (i. e. prioritize) all the postponable nodes with equal mobility with respect to their

“fan-out degrees” , so th a t nodes with greater fan-out will have higher priority over nodes with same

mobility and less fan-out (line 35-36).

The results obtained by M LS+BFF scheduling algorithm shows improvements in average pro

cessor workload, as we will see shortly. Such improvement is solely obtained due to the fact that,

a t each iteration, M LS+BFF is capable of “predicting” the processors workload in next iteration by

profiling signal flow of the circuit.

5.2 .4 .5 M athem atica l Form ulation

To be able to compare the results with previous work, first we should establish the mathematical

foundations. The formulation of the scheduling problem along with the evaluation metrics are

41 could not find a shorter descriptive name.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Fanout (VI) = 2

Fanout (V4)» 3

*

Lj Lj+1

Processor A Processor B Processor C Processor D

NOP
Cycle c+1—■»-

if v1 is scheduled first,
processor D will remain idle.

Processor A ProcessorB Processor C Processor D

Cycle c-1— ► v4
Cycle c-— ►! \ v5 J L v7r

Cycle: c+1— e -|

[¥ v4 is scheduled first, j
| processor D will receive input!
{ in cycle “c-1 1

Figure 5.17: Prioritizing nodes with equal mobility with respect to their fan-out degree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

0 1 M L S + B F F (G = (V, E))
02 {
03 A S A P (G = (V,E));
04 A L A P (G = (V,E));
05 CL = M A X (v i ■ ALAP)-,
06 FOR each € G DO
07 IF Vi • A L A P - Vi ■ A S A P = 0 THEN
08 Vi is CPN;
09 ELSE
10 Vi is non-CPN;
11 ENDIF
12 ENDFOR
13 FOR L j = 0 TO CL DO
14 V ' = 4r,
15 FOR all Vi ■ A S A P > L j DO
16 Vi ■ M O B — Vi ■ A L A P — L j ;
17 V ' = V ' + M ;
18 ENDFOR
19 V ' = SO R TfV ',“ascending mobility”);
20 Max_Cycle=Min_Cycle=0;
21 WHILE V ' ± 4 DO
22 IF Vi e C P N THEN
23 allocate-and-collapseJM M (vi, M ax.C ycle, MinJOycle):
24 V = V ' - {,vt};
25 ENDIF
26 END WHILE
27 WHILE V ' =£ <j> DO
28 IF Vi ■ M O B = 0 THEN
29 allocateM nd-CollapseJM M (vi, M ax-C ycle, M inJCycle)\
30 V = V ' - {ui};
31 ENDIF
32 END WHILE
33 WHILE V ' ± <p DO
35 V f = SO RT(F/,“descending fanout”);
36 Vi = H E A D (V ');
37 IF allocatejand.collapse J M M (v i , M ax-C ycle, M inJCycle) successful THEN
38 V = V ' - {u*};
39 ELSE
40 leave i>* for next iteration and do nothing;
41 ENDIF
42 END WHILE
43 ENDFOR
44 RETURN;
45 }

Figure 5.18: M LS+BFF algorithm

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

presented below [28]. Let C be the technology-mapped design to be scheduled. We will represent C

by a directed graph, G, in which each logic element (LU T/FF) is represented by a vertex (node) in

the graph. The directed graph G is shown as G = (V. E), where V is the set of all vertices and E is

the set of uni-directional edges hence:

• each Vi G V represent a logic element in C for 1 < i < |F |;

• each (Vi,Vj) € E represents a directed wire from logic element i to logic element j in C. In

this case v7 is “fan-in” node of Vj. And, v 7 is “fan-out” node of vt :

• The graph G' = (V, E ') is the a c y c l i c flow g r a p h of G = (V. E) where E ' C E obtained

by depth first search starting from both LUT vertices with zero fan-in or fed-back Flip-flop

Static task scheduling is a NP-complete problem for which heuristic solutions is required. One

method for obtaining acceptable solutions is to formulate the scheduling problem using Integer

Programming (IP).

Definition: A binary variable X ij is associated with each Vi G V in G' where:

• Xjj = 1 iff the logic element i, represented by , is scheduled in cycle j:

• Xitj = 0 otherwise.

Let the earliest and latest cycles in which a vertex Vi can be scheduled be E (i) and L(i), respectively5.

Definition: The scheduling interval of vertex v% is defined as the set of integers S(i) = {E (i), E (i) +

1, • • • ,L (i)} . The longest path in DAG is called critical path and is denoted by CP. The length of

the critical path (i. e. number of nodes on critical path) is shown as Cl = \CP\. Obviously, the

overall scheduling interval for every Vi will be S(i) = (1 , ■ • • , C l }-

Assignment Constraint: In order to have a correct scheduling solution, it is imperative tha t each

vertex in DAG be scheduled for only one cycle in its scheduling interval. In other words:

je e p

Precedence Constraint: It is also imperative to observe the two precedence constraints mentioned

b e fo r e t o g u a r a n te e t h e c o r r e c t sc h e d u lin g . M a th e m a t ic a lly sp ea k in g :

outputs.

(5.1)

^ 2 x i2,32 + x L,ji ^ V(vi l 5 v*2) G E ',v ix,v i2 € V,Vj G (5 (i)} . (5.2)
3 2 < j j l > 3

5Obviously, A S A P (v i) — E (i) and A L A P (v i) = L{i)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Resource Constraint: At every level, we must ensure th a t there are enough computing resources, in

the form of instruction words in IMM, to map the prioritized vertices into IMM.

X ij < 64 x (M ax-C ycle(L) — M in-C ycle(L)), V) £ L evelsL + 1, L + 2, • • • , Cl (5.3)
Vvi €l e ve l L

It is obvious th a t by scheduling the closest element of the DAG to outputs as early as possible, a

minimum number of instruction cycles needed to emulate the entire design can be achieved. The

logic elements of the design immediately connected to primary outputs are represented by vertices

without successors in G '. We will ignore all the vertices of G' th a t have one or more successors and

consider only the vertices without successors for cycle minimization in the following manner:

m in ,Vu* £ Vw ithoutsuccessors. (5.4)
jes(i)j-x

5 .2 .4 .6 E v a lu a t io n M e t r ic s

The efficiency of an algorithm tha t targets the problem of task scheduling for parallel processing

platform can be measured in various ways. We will explain the definition and mathematical for

mulation for each evaluation metrics in this subsection. The results obtained by the scheduling

algorithms are explained later in this chapter.

M in im u m e m u la tio n tim e: An HEP-based consists of P x IT processing elements (= total

number of words in IMM), where P is the number of emulation processors and W is depth (size) of

H E P’s control memory. Hence, if circuit C represented by G = (V, E) was to be emulated on HEP-

based emulation system, the theoretical lower bound for emulation time (delay) D min is calculated

as:

Cl < Dj, \V\ (5.5)
P

P ro cesso r W orkload a n d Id le T im e: Let’s assume tha t program T consists of to tal of M

tasks tha t are to be executed using single processor (e. g. P i) is represented by T = {Tplti ,T p lt2 , • • ■ , Tpu

The execution time of task T, on one processor is shown as Ep, ■ Thus the execution time of program

T is:

E t o t a L P x = D T l ,P i + E T 2 ,P r -\ b £ tm,Pi = ^ 2 ^Zi.Pi (5-6)
T i < T i < T m

However, if program T is to be executed on a parallel-processor platform, execution of tasks will

be delayed due to communication overhead and inter-task dependencies. The execution graph for

program T is illustrated in Fig. 5.19. In such case, the total execution time of program T will be

prolonged by the total delay time:

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Execution time

(a)

(b)

Ti T2 T3 • • » • Tm

Execution time 1

di Ti
' ...it Iu2 12 j* * * • *

-------------------------- ►
Total IDLE time

Figure 5.19: Executing program on a parallel platform, (a) executing program on single processor
(no delay between tasks), (b) executing program on a parallel processor.

2̂ E Ti,Pi + 5Z
T x < T i < T M

(5.7)
i<M

The second term in the above equation, (X)»<m ^*)> usually referred to as processor idle time

(i. e. time during which processor is not executing anything). “Processor workload” ,<j>, is the ratio

of time during which a processor is “busy” executing tasks with respect to the to tal execution time:

e TuPi

T i< T i< T M
yp i

J 2 + J 2 6i
T i< T i< T M

(5.8)

i<M

A good scheduling tool for a parallel processing platform thrives on maximizing workload for each

and every processor in the system, as well as, balancing the workload among all processors. Also,

the scheduler should minimize the total processor idle time. Based on the above formulation, the

average processor workload (0) is defined as:

(5.9)— l < i < 6 4

To achieve acceptable balance of workload among processors the following relation should hold:

cj) w cj)p. (5.10)

S peed-up : The speed-up is defined as the time required for sequential execution of a program

divided by the time required for parallel execution. The amount of speed-up is measured according

to the number of cycles (rather than time). The speed-up is denoted by A.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

E x e c u tio n D elay: Execution delay is the defined as the amount of time th a t execution of a

task is delayed (postponed). In this application, the earliest time th a t task u* can be executed

is determined by ASAP(vi) . If task v-t is executed at level L, then the delay for task vt is A =

L — ASAP(v i) .

5 .2 .4 .7 Im plem entation o f M L S /M L S + B F F Scheduling Tools

For the purpose of this research a software tool in “C” language called “GSchedule” on Unix/Linux

platform has been developed6. Source listings for “GSchedule” is provided in a CD-ROM accom

panying this thesis. The following command line illustrates how the tool is run against MCNC

benchmark circuits:

$ GSchedule [-BFF] netlist_name.blif

The GSchedule schedules a technology mapped netlist (in BLIF format) using MLS algorithm

and presents the results on standard output. The [-BFF] option makes the tool to use M LS+BFF

algorithm.

We have used dynamic memory allocation and linked-lists to implement the data structure used

in GSchedule to minimize memory usage by the tool. Each node in DAG, is a “C” structure consists

of several fields such as name, fan-in list, fan-outs degree, and ASAP/ALAP level numbers. The

GSchedule builds a netlist of such node structure by parsing the input BLIF netlist.

Once the scheduling is finished, the GSchedule will generate the emulation program for each and

every 64 HEP processors in the emulation engine. A sample snapshot of the output generated by

GSchedule is shown in Fig. 5.20. Notice th a t node names in each column represent the instruction

words will be downloaded into each H E P’s control memory.

5.2.5 Experim ental R esults

In this section the results obtained by the scheduling tools, MLS and M LS+BFF, are presented.

The tools were tried on almost all circuits in MCNC benchmark suite. However, we will only present

the results for the 1 0 biggest circuits.

• Table 5.3 illustrates both the average (<f>) as well as maximum HEP processor workload. As the

results show the MLS scheduling has managed to achieve to tal average processor workload of

83.9% while the deviation of workload among processors is less than 3%. T hat means, during

the emulation process, the workload is evenly distributed among all 64 HEP processors in the

6 The source listings consists of approximately 4000 lines of codes.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

File Edit Search References Shell Macro Windows

Number o f Em ulation Cycles= -7

Maximum number o f NOP i n s t r u c t i o n s 13

Average Proce33or Workload= 0 578704

Help

1# 1 * 2 # 3 # 4 # 5

0 Ip 534 149 p 272 105 p 302 114 p 210 89 p 141 65
1 I p 87 33 p 4 1 p 373 133 p 88 34 p 22b 93
2 |p 2358 162 u 37 13 NOP p 182 79 NOP
3 | p 203 86 ' p_24_7_ p 179 78 p 23 6 p_230_35_
4 |p 293 112 n n ll4 b p 251 100 p 3546 165 p 3550 167
5 I [3859] p 242 97 [3632] [3873] n n ll4 0
b | n n253b [3809] n n2546 [3667] n n2545
7 | [3729] [3891] [3996] [3821] n n ll3 6
8 | [3666] n_n2532 [3671] [3676] [3683]
Q 1 [3946] n n2086 [3968] n_n2039 n n904

10 I n n689 n_n2043 n n2080 n n2011 n n2061
11 I [3448] n n982 [4017] n n l992 n n l981
10 |N0P NOP n n980 [4018] NOP
13 | r i nl530 n n938 n n963 n n l905 [3641]
14 1 [3510] [4042] NOP NOP n n775
15 |N0P NOP NOP NOP NOP

N —

J

Figure 5.20: Example of output generated by GSchedule tool. Each column represents the emulation
instructions executed by one processor.

emulation system. In some cases the MLS scheduling has achieved almost optimal scheduling

solution (99.4%). Also, as shown in the table, the total processor idle time is less than 9 cycles

in average.

Table 5.4 represents same statistics about the sequential binary multiplier circuit7 example. In

case of very small circuits (such as binary multiplier) the statistics show th a t most processing

resources in the HEP-based emulation system remains under utilized. Hence the average

processor workload for such sparse circuits is considerably lower.

Table 5.5 illustrates how the M LS+BFF optimization algorithm has not only increased the

average processor workload but also has reduced the average processor idle time in at least

half of the test cases. Such increase in the average processor workload is reported to be

between 0.7 — 6.2%, with an average value of +1.5%. Also the reduction in processor idle

time is between 1-3 cycles, with an average value of 1.2 cycles. It is worth emphasizing tha t

M LS+BFF scheduling tool does not create a significant improvement in small circuits such as

the binary multiplier example.

7Binary multiplier does not belong to MCNC benchmark suite. So we decided to present the results for that

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Table 5.3: Processor workload calculated after MLS scheduling.

D U T 0 mm

(%)

<t>

{%)

D eviation

(%)

A vg. Idle

T im e (eye.)

s38417 93.3 95.3 2 5

s38584 97.2 97.9 0.7 3

s35932 98 99.4 1.4 1

frisc 91.8 93.7 1.9 8

elliptic 96 96.8 0 . 8 4

pdc 85.2 87.2 2 16

des 92.7 95.4 2.7 4

ilO 53.3 57.7 4.4 2 0

C7552 51.6 58.5 6.9 13

C5315 51.8 57.8 6 1 2

TOTAL 81.1 83.9 2 . 8 8 . 6

Table 5.4: Processor workload after MLS scheduling on multiplier.

D U T tfrmin

(%)

4>

(%)

D eviation

(%)

A vg. Idle

T im e (eye.)

Multiplier 7.1 1 2 4.9 1 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Table 5.5: Processor workload after M LS+BFF scheduling.

D U T M LS

m

M L S + B F F

m

Im p ro v e m e n t

(%)

M LS A vg.

Id le T im e

M L S + B F F A vg.

Id le T im e

R e d u c tio n

(%)

s38417 95.3 95.3 0 5 5 0

s38584 97.9 97.9 0 3 3 0

S35932 99.4 99.4 0 1 1 0

frisc 93.7 96.1 2.4 8 5 3

elliptic 96.8 99.7 2.9 4 3 1

pdc 87.2 87.9 0.7 16 14 2

des 95.4 98.2 2 . 8 4 1 3

ilO 57.5 57.5 0 2 0 2 0 0

C7552 58.5 64.7 6 . 2 13 1 0 3

c5315 57.8 57.8 0 1 2 1 2 0

T O T A L 83.9 85.4 1.5 8 . 6 7.4 1 . 2

• The emulation time for ten biggest circuits when the designs are scheduled by both MLS and

M LS+BFF are shown in Tables 5.6 and 5.7 respectively. Last two columns of each algorithm

show the total emulation time when the HEP-based emulation engine is implemented on Virtex-

II and Virtex-4 family of FPGAs. As it is shown in tables, an HEP-based emulation system

is capable of emulating the largest circuit (i. e. “frisc. blif”) in 3.58 — 5 . 5 9 if the circuit is

scheduled by M LS+BFF algorithm. Also the amount of speed-up obtained by each algorithm

is reported for each circuit. As the results show the average speed-up gained by MLS algorithm

is A = 50.4,while the average speed-up gained by M LS+BFF is A = 51.3.

• The time complexity of MLS and M LS+BFF algorithms to perform ASAP and ALAP lev-

elization on circuit C, denoted by G = (V ,E), is 0 (2 |V | + 2 |E |). Assuming tha t there are

to tal average of \V\ nodes at each level, prioritizing and allocating nodes to 64 processors will

have the time complexity of 0(64 • \V\ log \V\. Hence the to tal time complexity of MLS (and

M LS+BFF) algorithm is 0 (2\V\ + 2 |E |) + 0(64 • |F | log \ V\. Both scheduling tools were run

in L in u x e n v ir o n m e n t o n a p e r so n a l c o m p u te r w ith a n In te l P e n t iu m 2 .8 G H z p r o c e s so r . T h e

scheduling tools managed to schedule most test circuits in less than 1 hour. Average execution

time for purely combinatorial circuits such as “C7552” is less than 3 minutes. Also, the ex-

separately.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Table 5.6: Emulation time and speed-up obtained by MLS scheduling.

D U T Drain E m u la tio n

In s t . C ycles

MLS

S p eed -u p

A

V ir te x I I

fcS)

V ir te x 4

(liS)

S38417 85 90 60.1 4.19 2.69

s38584 104 108 61.3 5.03 3.22

s35932 81 8 6 59.8 4.01 2.57

frisc 116 123 59.8 5.73 3.67

elliptic 97 1 0 2 60.6 4.75 3.04

pdc 107 1 2 2 55.7 5.68 3.64

des 62 69 57.3 3.21 2.06

ilO 2 2 45 31.1 2.09 1.34

c7552 15 31 29.2 1.44 0.92

c5315 13 27 29.7 1 . 2 0 . 8

Multiplier 2 14 7.1 0.65 0.41

Table 5.7: Emulation time and speed-up obtained by M LS+BFF scheduling.

D U T Drain E m u la tio n

In s t . C ycles

M LS+BFF

S p eed -u p

A

V ir te x I I V ir te x 4

s38417 85 90 60.1 4.19 2.69

S38584 104 108 61.3 5.03 3.22

S35932 81 8 6 59.8 4.01 2.57

frisc 116 1 2 0 61.3 5.59 3.58

elliptic 97 99 62.5 4.61 2.96

pdc 107 1 2 1 56.1 5.64 3.61

des 62 67 59.1 3.12 2 . 0

ilO 2 2 45 31.1 2.09 1.3

c7552 15 28 32.3 1.30 0.83

c5315 13 27 29.7 1.25 0.80

Multiplier 2 14 7.1 0.65 0.41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

periments show th a t the optimization technique introduced by M LS+BFF causes no overhead

on design compilation time due to the fact th a t the improvement is made by adding local

conditions to MLS algorithm. Hence the execution time of M LS+BFF algorithm is identical

to execution of MLS algorithm.

5.2.6 Code G eneration and Download

The last steps in the proposed CAD flow (Fig. 5.2) are code generation and downloading. Once

the scheduling tool generated the memory map for each HEP processor, the instruction words will

be filled with mnemonic names of nodes in the netlist. The task of code generation consists of

replacing the mnemonic names with actual executable binary op-codes for HEP processors. The

code generator will replace the unused instruction words in IMM with binary code for “NO P”

instruction. Similarly, if the mnemonic represents an LUT or flip-flop output, it will be replaced by

“LUTOP” and “RAMREF” instructions respectively. The “ROM REF” instructions are used when

corresponding flip-flop contains an initial value of non-zero.

Once the whole IMM is parsed and binary code representing each instruction word is generated

the generated bit-stream can be downloaded into the HEP processors’ control memories through

“download manager” module on the emulation system. As it is shown in Fig. 5.2 once the binary

codes are downloaded into HEP-based emulation system the design is ready to be emulated.

5.3 Comparison and Conclusion

In this chapter a CAD framework for design compilation targeting HEP-based emulation systems

has been proposed. As a part of this proposal, two scheduling algorithms called MLS and M LS+BFF

were introduced and developed. The tools were run on 10 biggest circuits from MCNC benchmark

suite. As a result of scheduling algorithms, the HEP-based emulation system can emulate the biggest

test circuit in less than 6fiS.

Table 5.8 compares the emulation time of ten circuits on HEP-based emulation system with those

reported by VEGA architecture [40]. The author of [40] has reported the results for four of sample

circuits th a t have been used in this study. The results show, the HEP-based emulation system has

4-5 times faster emulation speed. However, it should be emphasized th a t the ASIC-based emulation

processors used in VEGA architecture were fabricated using CMOS 1.2pm fabrication technology

where as Virtex-2 and virtex-4 are fabricated using 0.15pm and 0.09pm technologies respectively.

The MLS and M LS+BFF algorithms create close to optimum scheduling solutions especially for

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Table 5.8: Comparing emulation time of HEP and VEGA

D U T size M L S /M L S + B F F

fxS

V E G A

u s

s38417 5411 4.19-4.19 21.7

S38584 6630 5.03-5.03 23

pdc 6796 5.68-5.64 25.6

ilO 1401 2.09-2.09 23.5

large circuits. In fact, the empirical results show that, as circuits become denser the utilization

of processing elements increases which is on the contrary to the results obtained by similar FBE

systems. In FBE systems, as the DUT size increases as long as there are enough logic elements

and I /O pins available in the target FPG A chips. However, due to R ent’s rule, significant FPG A ’s

logic capacity remains under-utilized. If the size of the circuit increases beyond effective logic

capacity of FPGAs then multiple FPG A devices will be required. In th a t case the log utilization in

FPG A modules will drop as it is shown, conceptually, by the dotted red curve in Fig. 5.21. Also,

The FPG A logic utilization hardly reaches above 80%. In Fig. 5.21 the blue curve represents the

percentage of processing resources used with respect to the design size in a HEP-based logic emulation

system which illustrates better resource utilization with respect to FBEs. Obviously, robustness of

M LS/M LS+BFF scheduling algorithms against bigger size circuits is a great advantage over similar

tools. However it should be emphasized th a t the curve shown for FBE systems is conceptually

correct but values are not accurate.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

P ro c e s s in g R e s o u rc e Utilization
100

80

cg
to
N

s

20

1400 2100 2800 3500 4200 4900 5600 6300 7000700
C IRCU IT SIZE

Figure 5.21: Resource utilization in HEP-based emulation system and FBEs.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 6

Conclusions and Future W ork

The contributions made by this research can be classified in two sections. First, this work has

presented the design of a specialized processor called hybrid-emulation processor (HEP) th a t can be

easily implemented on any FPG A platform. A collection of 64 HEP processors were embedded into

Xilinx FPG A devices to build a logic emulation engine. The emulation engine is capable of emulating

the functionality of digital circuits as large as 160000 logic gates and flip-flops. While relatively

simple in architecture, it can emulate a design at speeds of up to 262K H z . The embodiment of 64

HEP processors requires only one or two of-the-shelf FPG A modules. Such small hardware reduces

the cost of HEP-based emulation system by orders of magnitude with respect to its commercial

counterparts. The HEP architecture can be easily expanded to higher capacities while eliminating

the need for redesigning the hardware platform.

More importantly, two task scheduling algorithms, MLS and M LS+BFF, have been introduced

and developed as a part of a CAD framework th a t automatically map DUT’s netlists into HEP-based

emulation system. It has been shown tha t the proposed scheduling heuristics can maximize proces

sors workload and reduce to tal emulation time while keeping the scheduling time within reasonable

range. The ten largest circuits from MCNC benchmark suite were used to evaluate the performance

of the scheduling tools. Based on this evaluation, the scheduling algorithms, substantially increase

in the average workload in emulation processors. As a result, a large circuit, as big as 22000 gates,

can be emulated in 6/i.s. An optimization technique, introduced in M LS+BFF algorithm has further

improved the average workload by 1-6% while causing no overhead on design compilation time. More

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE W ORK

interestingly, unlike FBE CAD tools, the scheduling tool favors denser circuits over small circuits

and produces better resource utilization for bigger circuits.

Finally, a complete CAD framework th a t can be used for design compilation of DUTs into HEP-

based emulation systems, has been explained in details th a t has eliminated the need for partitioning,

placement and routing tools. Hence, the design compilation time is significantly shorter and more

predictable.

6.1 Future Work

The followings are a number of possible suggestions, concerning hardware and software of HEP-based

emulation system, th a t we would like to share with readers for possible future researches.

6.1.1 Improvem ents in Hardware A rchitecture

Due to the fact th a t size of digital circuits is constantly increasing (Moore’s law) HEP-based emula

tion systems with larger logic capacity will soon be needed. Fortunately, flexibility of programmable

logic devices (e. g. FPGAs) allows us to not only design HEPs with higher logic capacity but also

to integrate more number of them into FPGAs. Hence, providing easily scalable soft IP (Intel

lectual Property) core for HEP-based emulation systems will assist verification engineers to easily

develop fast and cheap logic emulation systems with variable size and logic capacity. HEP-based

multi-FPGA systems for emulating very large designs is also an interesting topic for future research.

The HEP based emulation engine introduced in this thesis is only capable of emulating combi

natorial and fully synchronous sequential logic circuits. Although, such circuits constitute m ajority

of all logic designs, having an HEP processor th a t can also emulate logic circuits with multiple

asynchronous clocks may be very useful.

Lastly, integrating HEP-based emulation engine with complementary peripheral modules such

as download manager, monitoring and supervisory modules will make the HEP-based emulation

system a desirable verification tool for all small and medium size IC manufacturing companies.

6.1.2 Improvement in D esign Compiler Tool

T h e im p r o v e m e n t m a d e by M L S + B F F algorithm is mainly due to the fact th a t the algorithm is

capable of “predicting” the flow of signals in netlist from one level to the next immediate level.

However, if the algorithm was somehow capable of profiling the flow of all signals in to further

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE W O RK

depths within the circuits, scheduler might create even better solutions. Task scheduling for parallel

processing platforms is widely open to researchers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] M. Abramovici, Y. H. Levendel, and P. R. Menon. A logic simulation machine. IEEE Trans
actions on Computer-Aided Design of Integrated Circuits and Systems, 2(2):82-94, Apr. 1983.

[2] J. Babb, R. Tessier, M. Dahl, S. Z. Hanono, D. M. Hoki, and A. Agarwal. Logic emulation
with virtual wires. IEEE Transactions on Computer-Aided Design o f Integrated Circuits and
Systems, 16(6):609-626, Jun. 1997.

[3] M. L. Bailey, J. V. Briner, and R. D. Chamberlain. Parallel logic simulation of vlsi systems.
AC M Computing Surveys (CSUR), 26(3):255-293, Sept. 1994.

[4] Z. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rutledge. HSS-a high-speed simulator. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(4):601-617, Jul.
1987.

[5] G. Beraudo and J. Lillis. Timing optimization of fpga placements by logic replication. In
Proceedings of IEEE Design Automation Conference, pages 196-201, Jun. 2003.

[6] V. Betz and J. Rose. Vpr: A new packing, placement and routing tool for fpga research. In
International Workshop on Field Programmable Logic and Applications, pages 213-222, 1997.

[7] N. B. Bhat, K. Chaudhary, and E. S. Kuh. Performance-Oriented Fully Routable Dynamic
Architecture for a Field Programmable Logic Device, 1993. Memorandum No. UCB/ERL
M 93/42, Electronics Research Labratory, University of California, Berkeley.

[8] S. Brown, J. Rose, and Z. G. Vranesic. A detailed router for field-programmable gate arrays.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(5):620-
628, May 1992.

[9] S. Brown, J. Rose, and Z. G. Vranesic. A detailed router for field-programmable gate arrays.
IE EE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(5):620-
628, May 1992.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification using
symbolic model checking. In Proc. A C M /IE E E Design Automation Conference, pages 46-51,
J u n .1990.

[11] M. B utts and J. Batcheller. Method of using electronically reconfigurable logic circuits, 1991.
U. S. Patent 5036473.

[12] M. R. Butts. Logic multiprocessor for FPG A implementation, Jun. 2004. U. S. Patent Appli
cation 2004/0123258 Al.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[13] Y. W. Chang, S. Thakur, K. Zhu, and D. F. Wong. A new global routing algorithm for fpgas.
In Proceedings of the IE E E /A C M international conference on computer-aided design, pages
356-361, Nov. 1994.

[14] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar. Dag-map: graph-based fpga
technology mapping for delay optimization. IEEE Design and Test of Computers, 9(3):7-20,
Sept. 1992.

[15] E. M. Clarke and R. P. Kurshan. Computer-aided verification. IEEE Spectrum, 33(6):61-67,
Jun. 1996.

[16] D. Cock and A. Carpenter. A proposed hardware fault simulation engine. In IE EE Proc. of the
European Conference on Design Automation(EDAC), pages 570-574, Feb. 1991.

[17] J. Cong and Y. Ding. Flowmap: an optimal technology mapping algorithm for delay opti
mization in lookup-table based fpga designs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 13(1):1—12, Jan. 1994.

[18] J. Cong, J. Peck, and Y. Ding. Rasp: A general logic synthesis system for sram-based fpgas.
In Proceedings of AC M Fourth International Symposium on Field-Programmable Gate Arrays,
pages 137-143, Feb. 1996.

[19] J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications to circuit
partitioning in vlsi design. In IEEE 30th Conference on Design Automation, pages 755-760,
Jun. 1993.

[20] Altera Corp. Available at: www.altera.com, 2006.

[21] Aptix Corp. P roduct brief: The System Explorer MP4, Available at: www.aptix.com, 1998.

[22] Mentor Graphics Corp. Availabele at: www.mentor.com, 2006.

[23] P. Curzon and S. Tahar. Automating the verification of parameterized hardware using a hybrid
tool. In IEEE Proc. international conference on Microelectronics(ICM), pages 257-260, Oct.
2001 .

[24] Cadence Incisive Palladium Datasheet, 2006. Available at:
www.cadence.com/datasheets/incisivepalladiumILds.pdf.

[25] A. DeHon. A First Generation DPGA Implementation, 1995. MIT Transit Note 114. Available
at:jh ttp ://w w w .a i.m it.e d u /p ro jec ts /tran s it/tn ll4 /tn ll4 .h tm li.

[26] M. M. Denneau. The yorktown simulation engine. In A C M Proceedings of the 19th Conference
on Design Automation, pages 431-435, Jan. 1982.

[27] R. Eastham and K. Thirunarayan. Proof strategies for hardware verification. In IEEE Proc. of
National Aerospace and Electronics Conference, pages 451-458, May 1996.

[28] A. Ejnioui and N. Ranganathan. Design partitioning on single-chip emulation systems. In IEEE
T h ir te e n th I n t e r n a t i o n a l C o n fe r e n c e o n V L S I D e s ig n , p a g e s 2 3 4 —2 3 9 , J a n . 2 0 0 0 .

[29] W. F. Beausoliel et al. Multiprocessor for hardware emulation, 1996. U. S. Patent 5551013.

[30] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network partitions. In
Proceedings of 19th Design Automation Conference, pages 175-181, Jun. 1982.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.altera.com
http://www.aptix.com
http://www.mentor.com
http://www.cadence.com/datasheets/incisivepalladiumILds.pdf
http://www.ai.mit.edu/projects/transit/tnll4/tnll4.htmli

REFERENCES

[31] R. J. Francis, J. Rose, and K. Chung. Chortle: a technology mapping program for lookup table-
based field programmable gate arrays. In Proceedings of 27th A C M /IE E E Design Automation
Conference, pages 613-619, Jun. 1990.

[32] D. Gajski, N. D utt, A. Wu, and S. lin. High Level Synthesis: Introduction to Chip and System
Design. Kluwer Academic Publishers, 1994.

[33] R. Hartley, K. Welles, M. Hartman, A. Chatterjee, P. Delano, B. Molnar, and C. Rafferty. A
rapid-prototyping environment for digital-signal processors. IEEE Design and Test of Comput
ers, 8(2):ll-25 , Jun. 1991.

[34] S. Hauck, G. Borriello, and C. Ebeling. Mesh routing topologies for multi-fpga systems. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 6(3):400-408, Sept. 1998.

[35] A. Hemani. Charting the EDA roadmap. IEEE J. Circuits and Devices Magazine, 20(6):5-10,
Nov. 2004.

[36] J. Hwang and A. El-Gamal. Optimal replication for min-cut partitioning. In IE E E /A C M
International Conference on Computer-Aided Design, pages 432-435, Nov. 1992.

[37] T. T. Hwang, R. M. Owens, M. J. Irwin, and K. H. Wang. Logic synthesis for field-programmable
gate arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
13(10):1280-1287, Oct. 1994.

[38] Cadence Design System Inc. Available at: www.cadence.com, 2006.

[39] Xilinx Inc. Available at: www.xilinx.com, 2006.

[40] D. Jones. A Time-Multiplexed FPGA Architecture for Logic Emulation, 1995. M. A. Sc. Thesis,
University of Toronto.

[41] K. Keutzer. The need for formal verification in hardware design and what formal verification
has not done for me lately. In IEEE International Workshop on the HOL Theorem Proving
System and Its Applications, pages 77-86, Aug. 1991.

[42] M. .A. S. Khalid and J. Rose. A novel and efficient routing architecture for multi-fpga systems.
IEEE Transactions on VLSI Systems, 8(l):30-39, Feb. 2000.

[43] S. Kirkpatrick, C. Gelatt, and M. Vecchi. In Science, 1983. Vol. 220, No. 4598,671.

[44] I. Kuon and J. Rose. Measuring the gap between fpgas and asics. IEEE Transactions on
Computer-Aided Design of Integrated Circuits (Accepted for future publication), PP(99):1-13.

[45] Y. K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to
multiprocessors. AC M Computing Surveys (CSUR), 31(4):406-471, Dec. 1999.

[46] B. S. Landman and R. L. Russo. On a pin versus block relationship for partitions of logic
graphs. IEEE Transactions on Computers, C-20(12):1469-1479, Dec. 1971.

[47] H. Li, W. K. Mak, and S. Katkoori. Force-directed performance-driven placement algorithm for
fpgas. In Proceedings o f IE E E C om puter society A nnual S ym posium on VLSI, pages 193-198,
Feb. 2004.

[48] D. MacMillen, R. Camposano, M. Butts, D. Hill, and T. W. Williams. An industrial view
of electronic design automation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1428-1448, Dec. 2000.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cadence.com
http://www.xilinx.com

REFERENCES

[49] P. Maidee, C. Ababei, and K. Bazargan. Fast timing-driven partitioning-based placement for
island style fpgas. In Proceedings of IEEE Design Automation Conference, pages 598-603, Jun.
2003.

[50] A. M arquardt, V. Betz, and J. Rose. Timing-driven placement for fpgas. In Proceedings of
ACM /SIG D A eighth international symposium on Field programmable gate arrays, pages 203-
213, Feb. 2000.

[51] G. Moore. Cramming more components into integrated circuits. Electronics, 38(8), 1956.
Available: f tp : / /download.intel.com/research/ silicon/m oorespaper.pdf.

[52] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli. On clustering for minimum de
lay/area. In IEEE International Conference on Computer-Aided Design (Digest of Technical
Papers), pages 6-9, Nov. 1991.

[53] C. Pixley, A. Chittor, F. Meyer, S. McMaster, and D. Benua. Functional verification 2003:
technology, tools and methodology. In IEEE Proc. International Conference on ASIC, pages
1-5, Oct. 2003.

[54] V. R. P ra tt, P. D. Mosses, M. Nielsen, and M. I. Schwartzbach. Anatomy of the pentium
bug. Theory and Practice of Software Development (TAPSOFT), Vol. 915 of Lecture Notes in
Computer Science, Spiinger-Verlag, pages 97-107, 1995.

[55] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of field-programmable gate
arrays. Proceedings o f the IEEE, 81(7):1013-1029, Jul. 1993.

[56] M. Schutz. How to efficiently build vhdl testbenches. In IEEE Proc. EURO Design Automation
Conference (EURO-DAC) with EURO-VHDL, pages 554-559, Sept. 1995.

[57] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A System for Se
quential Circuit Synthesis, 1992. EECS Department, University of California, Berkeley, URL:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html, No. UCB/ERL M92/41.

[58] K. Shahookar and P. Mazumder. Vlsi cell placement techniques. AC M Computing Surveys,
23(2):143-220, Jun. 1991.

[59] N. A. Sherwani. Algorithms for VLSI Physical Design Automation (Second Printing). Kluwer
Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061, 1994.

[60] S. Singh, J. Rose, and P. Chow D. Lewis. The effect of logic block architecture on fpga perfor
mance. IEEE Journal o f Solid-State Circuits, 27:281-287, Mar. 1992.

[61] L. Soule and T. Blank. Parallel logic simulation on general purpose machines. In Proc. of 25th
A C M /IE E E Design Automation Conference, pages 166-171, Jun. 1988.

[62] H. P. Su and Y. L. Lin. A phase assignment method for virtual-wire-based hardware emulation.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16(7):776-
783, Jul. 1997.

[63] S. Trimberger. Scheduling designs into a time-multiplexed fpga. In Proceedings o f ACM /SIG D A
sixth international symposium on Field Programmable Gate Arrays, pages 153-160, 1998.

[64] S. Trimberger, D. Carberry, and A. Johnson J. Wong. A time-multiplexed fpga. In IEEE
Symposium on FPGAs fo r Custom Computing Machines, pages 22-28, Apr. 1997.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://download.intel.com/research/silicon/moorespaper.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html

REFERENCES

[65] J. Varghese, M. Butts, and J. Batcheller. An efficient logic emulation system. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 1(2): 1T1—174, Jun. 1993.

[6 6] K. Wakabayashi and T. Okamoto. C-based SoC design flow and EDA tools: an ASIC and
system vendor perspective. IEEE Trans, on Computer-Aided Design of Integrated Circuits and
Systems, 19(12), Dec. 2000.

[67] S. Walters. Computer-aided prototyping for asic-based systems. IEEE Design and Test of
Computers, 8(2):4-10, Jun. 1991.

[6 8] Y. C. Wei and C. K. Cheng. Ratio cut partitioning for hierarchical designs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 10(7):911—921, Jul. 1991.

[69] S. Yang. Logic Sythesis and Optimization Benchmarks, version 3.0, 1991. Micro-electronics
Centre of North Carolina, P. O. Box 12889, Research Triangle Park, NC. , 27709, USA.

[70] A. A. Yazdanshenas and M. A. S. Khalid. Logic emulation systems: A survey. AC M Transac
tions on Design Automation of Electronic Systems, 2006. Paper currently under review.

[71] Y. Zhu and T. Marshall. Design verification using formal techniques. In IEEE Proc. Interna
tional Conference on ASIC, pages 21-28, Oct. 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA A U C T O R IS

Amir Ali Yazdanshenas was born in , Tehran, Iran, on June 10, 1975. He received his B.A.Sc.
degree in Computer Hardware Engineering in 1999 from the Iran University of Science and Tech
nology (IUST). He is currently a candidate in the electrical and computer engineering M.A.Sc.
program at the University of Windsor. His research interests include Logic Emulation Systems,
field-programmable logic devices, embedded system design, computer architecture, and high perfor
mance VLSI circuit design.

i n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Hardware design and CAD for processor-based logic emulation systems.
	Recommended Citation

	tmp.1507664919.pdf.wLwfB

