University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

Hardware design and CAD for processor-based logic emulation
systems.

Amir Ali Yazdanshenas
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Yazdanshenas, Amir Ali, "Hardware design and CAD for processor-based logic emulation systems."
(2006). Electronic Theses and Dissertations. 7121.
https://scholar.uwindsor.ca/etd/7121

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7121?utm_source=scholar.uwindsor.ca%2Fetd%2F7121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Hardware Design and CAD for Processor-based
Logic Emulation Systems

by

Amir Ali Yazdanshenas

A Thesis
Submitted to the Faculty of Graduate Studies and Research through
Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-42312-7
Qur file  Notre référence
ISBN: 978-0-494-42312-7

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont éteé enleveés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hardware Design and CAD for Processor-based Logic Emulation Systems
by

Amir Ali Yazdanshenas

APPROVED BY:

W. Altenhof, External Examiner
Mechanical Engineering

E. Abdel-Raheem, Departmental Examiner
Electrical and Computer Engineering

M. A. S Khalid, Advisor
FElectrical and Computer Engineering

S. O’Leary, Chair of Defense
Electrical and Computer Engineering

December 6, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



© 2006 Amir Ali Yazdanshenas

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise retained in
a retreival system or transmitted in any form, on any medium by any means without prior written

permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

It is fair to claim that the greatest challenge currently faced by IC designers is how they prove
that their designs do not contain any functional errors before they actually send them away for
fabrication. Given the fact that fabrication of a chip is not only a time-consuming process, but also
very expensive, it would be financially devastating for IC manufacturing companies if any functional
errors are detected after the chip is fabricated. Logic emulation systems are programmable hardware
platforms that help IC designers to verify the correct functionality of their IC designs before they
are sent for fabrication. Processor-based logic emulation systems belong to a class of logic emulators
that are studied in details in this thesis.

In the first part of this research, a new hardware architecture for processor-based logic emula-
tion system, which was implemented in Xilinx Virtex-IT and Virtex 4 FPGAs, has been proposed.
Efficiency of proposed architecture in terms of speed, area and other design constraints is compared
with other studies. The new approach shows reasonable emulation speed (200K Hz), better logic
utilization (> 67%) while reducing the hardware size and cost by orders of magnitude.

More importantly, based on the proposed architecture, a software CAD framework was created
that allows automatic mapping of a gate-level netlist into a series of instructions, which can be
executed in parallel by a collection of logic emulation processors. Two scheduling algorithms have
been developed and implemented. The algorithms were evaluated using several popular benchmark
circuits. Experimental results show that the algorithms achieved close to optimal average processor

workload (83%) which results in fast emulation speed.
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Chapter 1

Introduction and Motivation

Ever since digital VLSI circuits came into existence engineers have been facing the constantly growing
problem of verifying correct functionality of circuits before they are sent for fabrication. Once the
chip is fabricated, which is a very expensive procedure, it would be impossible for designers to modify
the hardware in case design errors were detected, unless they go through all the design steps again.

Several functional verification methodologies such as software simulation and hardware-accelerated
simulation have been proposed so far. Each method has a number of advantages as well as disadvan-
tages. A briefly review of all these methods is presented in future chapters. Traditional verification
methods are not effective for very large IC designs. Consequently, finding faster, cost effective and
more accurate solutions for design verification is a very important research issue.

The most effective method for performing functional verification of an IC design prior to fab-
rication is Logic Emulation. A logic emulation system (also known as logic emulator) is a field
programmable system that can be programmed to emulate (i. e. imitate) the functionality of a
digital circuit at speeds of millions of cycles per second(CPS).

During past few years many logic emulation systems have been proposed and implemented. The
two main classes of logic emulation systems are FPGA-based logic emulation (FBE) and processor-
based logic emulation (PBE) systems. Each of these systems have a number advantages as well as
disadvantages. In most cases these systems might be so complex and expensive that it would be
financially infeasible for small or medium size companies to afford. Currently, there is a demand

for cheaper logic emulation systems that are fast and yet large enough to verify designs as big as
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1. INTRODUCTION AND MOTIVATION

multi-million gates.

More importantly, all logic emulation systems have an associated set of mapping CAD tools
(called design compilers) that perform the task of design compilation. The design compiler reads the
netlist of the design under test(DUT) and automatically converts it to a downloadable bit-stream
that can be “programmed” into the logic emulation system. Once the logic emulation system is
programmed, design engineers can verify the functionality of DUT by “running” it on the emulation
system. Much work remains to be done in exploring new architectures and mapping CAD tools for

logic emulation systems.

1.1 Thesis Overview
The main goals of this thesis are:

1. Investigate a cost effective architecture for processor-based logic emulation systems targeting
FPGAs. The motivation is to combine the advantages of both FBEs and PBEs in a single

system.

2. Create a CAD framework for automatic mapping of DUT netlist to a target processor-based

logic emulation system.

3. Explore new scheduling algorithms for mapping design netlists into a collection of parallel

processors.

In the first part of this research, a hardware architecture for processor-based logic emulation system
has been proposed which was implemented in Xilinx Virtex-II and Virtex 4 FPGAs. Efficiency of
proposed architecture in terms of speed, area and other design constraints is compared with other
studies.

More importantly, based on the proposed architecture, a software CAD framework that can auto-
matically map a gate-level netlist into a series of instructions, which can be executed in parallel on a
collection of logic emulation processors, has been discussed. In addition to software CAD framework,
two scheduling algorithms have been proposed and implemented. The algorithms were evaluated us-
ing several popular benchmark circuits and experimental results show that the algorithms achieved

close to optimal average processor workload which results in fast emulation speed.
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1. INTRODUCTION AND MOTIVATION

1.2 Thesis Organization

This thesis is organized as follows:

In Chapter 2 the history and importance of functional verification is briefly reviewed and various
hardware architectures for logic emulation systems are presented. Then the CAD flow and algorithms
used in each class of logic emulation system is discussed. In Chapter 3, the hardware architecture
proposed in this research is explained and later in Chapter 4 the implementation results of the
proposed architecture are described. Chapter 5 covers the CAD framework for mapping design
netlists on to the target logic emulation system. Also, two scheduling algorithms are introduced and
explained in detail as to how they improve the emulation speed. The experimental results obtained
by running the new algorithms on ten MCNC benchmark circuits are presented. Finally, Chapter 6

provides concluding remarks and a discussion of possible future work.
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Chapter 2

Background and Previous Work

In 1965, Gordon Moore predicted that the number of transistors per unit area in a typical inte-
grated circuit (e. g. microprocessor) will double roughly every 18 months [51]. This increase in the
integration level is called semiconductor productivity [35], or better known as Moore’s law. Another
implication of semiconductor productivity is that greater functionality is being integrated into unit
area of semiconductors, which results in a direct increase in design complexity. Therefore, some
researchers refer to such trend in semiconductor productivity as complexity growth.

On the other hand, the term design productivity refers to the number of logic gates designed
by single designer per day [35]. Statistics from real world show that although semiconductor pro-
ductivity keeps increasing with the pace expected by the Moore’s law, design productivity is not
improving proportionally, resulting in what we would like to call production gap or, as it will be
explained shortly, verification gap (Fig. 2.1). The existence of such a gap is due to two main rea-
sons: first, increase in the number of circuit elements and their interconnection (i. e. design size).
Second, increase in the number of test vectors to verify the correctness of all circuit elements. For
example, if there are N circuit elements (such as logic gates or flip-flops) within the digital circuit
under test and each element can assume a binary value (0 or 1), then we need at most 2V test
vectors to thoroughly verify the functionality of the circuit. It goes without saying that even for
a very small circuit (N < 100) it is practically impossible to fully verify the correctness of the
design as the number of test vectors (2!99) is almost infinite. To avoid design errors and possible

expensive silicon re-spins, chip manufacturers are looking for solutions to functionally verify their
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Figure 2.1: Complexity/Productivity growth versus time in terms of number of transistors{66]

designs before fabrication, often referred to as design verification. In fact, it would be fair to say
that, design verification has become the most important bottleneck in the design process, requiring
about 60-75% of design resources such as design time, computing resources and man-power [53][41].
Therefore, many researchers are targeting this area to narrow the verification gap or at least keep

it from increasing as the design size grows.

2.1 History of Design Verification

There are many different ways for tackling the design verification problem, some of which have been

around for a while. In general, there are five different methods used for design verification:
1. Formal Verification
2. Simulation
3. Hardware Accelerated Simulation
4. Rapid Prototyping
5. Logic Emulation

Each method has a number of advantages as well as drawbacks. In the semiconductor and electronic
industries, some or all of these methods are used to verify designs, based on design complexity and

verification requirements.
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2.1.1 Formal Verification

Formal verification refers to a process through which a designer proves formally that a designed
circuit satisfies the design specifications for all possible inputs [41]. The behavior of a hardware
design is described formally and then the correctness of the design is proved by using a number
of mathematical proof techniques [71] [27]. In formal verification, first the hardware is represented
using, logic equations or finite state machines (FSMs), regardless of other design aspects such as
timing or area constraints. Then, the designer studies the question of whether the designed circuit
matches the specifications or not. The specifications are often written as a set of temporal logic
formulas. For obvious reasons, some researchers believe that formal verification methods are simply
parts of the design process and not a post-design process.

Two most common approaches for formal verification are theorem proving (algorithmic veri-
fication) and model checking (deductive verification). Model checking tools represent the design
using Binary Decision Diagrams (BDDs) and the specifications by a set of temporal logic formulas
[10][15]. The model checking tool then traverses the BDD by exploring all possible combinations of
inputs/states/outputs to verify if the formulas are satisfied. On the contrary, in theorem proving
techniques, both the hardware and its specifications are represented in some abstract logic such as
Higher-Order Logic (HOL). Then, a mathematical proof within the rules of that logic is constructed
that shows the design matches its specifications. Theorem proving tools automate the process of
establishing the proof [23].

Since formal verification methods use mathematical approach to determine the correctness of a
design, therefore all possible errors in the design will be detected and sound functionality of the
design is guaranteed. However, they have a number of drawbacks which limit their usage for real
world designs. For instance, formal verification methods are not easily scalable and they all suffer
form state-space explosion. That is, if there are 250 memory cells within the circuit, then the

2250 states ! that need to be exhaustively searched. On the other hand, finding

circuit would have
mathematical abstraction (model) for even a small design is a complicated and tedious task and
requires lots of knowledge and experience. To overcome these problems, researchers have tried to
combine different formal verification methods together [23], but the results are still not suitable for

large designs.

1Just a bit more than the number of all particles in the universe!
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Simulation Engine

Figure 2.2: General view of software simulation tools

2.1.2 Simulation

By far the most popular verification method is software simulation, or simply, simulation. The
inputs to a logic simulator are the design netlist file and input stimulus signals, often in the form of
vector data files. The simulator computes how the design-under-test (DUT) would operate over time
and generates required outputs, given those inputs [4][1]. It is then the designer’s job to observe the
outputs produced by the simulator and verify if the design is operating correctly. The comparison
process can be automated by defining “monitors” for the simulation tools. It should be emphasized
that, in the simulation technique, not only the input stimuli to the DUT are represented in software
(e. g. vector data files) but also the DUT itself is represented in software. Therefore, it is obvious
that the simulator is nothing but a software simulation “engine” that runs the models of a DUT
against given input vector files (Fig. 2.2). In more recent design methodology, designers use hardware
description languages (HDL), such as Verilog or VHDL, to not only describe the design, behaviorally
or structurally, but also specify input stimuli and monitoring routines within the same embodiment,
called test bench (shown by shaded blocks in Fig. 2.2) [56]. Software simulators have a number of

advantages over other verification tools:

e They provide extensive capabilities for modifying and debugging the design which is due to

the intrinsic flexibility in software.
e They are much easier to use.

e They are significantly cheaper than other tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. BACKGROUND AND PREVIOUS WORK

The above benefits make simulators the most widely used verification tools. However, they do have

limitations:

o As the size of logic designs doubles the amount of computing work to simulate them roughly
quadruples. A rough estimation for such increase is that, an increase in the number of logic
gates not only increases the number of cycles, but also it increases the computational work
per cycle to get acceptable coverage [48]. Hence, software simulators are simply too slow to
simulate designs with more than a million gates. Typically their simulation speed is around

tens of cycles-per-second(CPS).
o Simulators do not provide the in-circuit emulation(ICE) capability.

e The accuracy of simulation results depends solely on how well the designer has modeled the
DUT in software and the number of test vectors (input stimuli) provided. Therefore, user

expertise is a key factor in simulation accuracy.

If we only use simulators for design verification, it is very likely that some design errors remain
undetected. A notorious example of such an incident was the design bug in the floating point
arithmetic unit of Intel’s Pentium processor, reported in [54], which caused a financial loss of several

million dollars to the company.

2.1.3 Hardware-Accelerated Simulation

To overcome the speed limitation of software simulators, simulation accelerators based on custom
hardware were developed. These accelerators provided built-in test equipment (such as signal gen-
erators and logic analyzers). Instead of using computer workstations, designers could execute the
simulation of their designs on a number of parallel processors which run orders of magnitudes faster
than simulators [3][16][61].

Although, hardware-accelerated simulators provided good speedup for simulation, they still suf-

fered from two major problems:

e It should be emphasized that hardware-accelerated simulators are still using software models

of the design and not real hardware.

e Massively parallel processing platforms succeed in physical simulation such as fluid flow or
structural analysis but they are not efficient enough in simulation of logic designs because

logic designs have very irregular topologies [48].

e They do not provide in-circuit emulation.
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2.1.4 Rapid Prototyping

Another relatively less popular functional verification method is rapid prototyping. In this method
designers quickly produce hardware models of the actual product that is fabricated by using fast
prototyping platforms such as programmable logic technology. By examining the functionality of
those models, designer can identify possible errors in their design before they send it for fabrication.
Unfortunately, the feasibility of rapid prototyping technique depends highly on the type of the
application and availability of tools. In one example, researchers have created a flexible environment
to develop only digital signal processing(DSP) applications [33].

Since rapid prototyping requires building a hardware sample closest to the final product, the
verification process will be fastest and detection of most design errors is likely. However, the main
disadvantage is that once the prototype is built it can not be used for other applications and therefore

it would be a throw-away effort.

2.1.5 Logic Emulation

The most recent verification tools are logic emulation systems. A hardware emulator is a completely
programmable hardware system which can be programmed to imitate (i. e. emulate) the functionality
of a large digital design (tens of million gates) at the speed of multi million cycles per second (CPS).
In other words, a logic emulator is a programmable device that, once programmed, functions just
like a prototype of the final chip before actually fabricating the chip itself.

Logic emulation systems have a number of advantages over other verification tools that have
recently brought them into spotlight. In the upcoming sections we will be thoroughly investigating

the hardware architecture and CAD tools for logic emulation systems.

2.2 Architecture of Logic Emulation Systems

So far a number of hardware architectures for logic emulation systems have been proposed, and
some of these architectures have been implemented. Regardless of their architecture, they all share
a number of basic features. Generally speaking, a typical logic emulation system consists of five

major components which their connectivity is shown in Fig. 2.3.
1. Programmable hardware

2. CAD tools which automatically map design-under-test (DUT) into downloadable bit stream

for the programmable hardware
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Figure 2.3: General view of a Logic Emulation System

3. Integrated instrumentation and debugging hardware such as integrated logic analyzers (ILA)

or programmable signal generators

4. Integrated control hardware and software to support the run time environment of the emulated

design
5. Target hardware interface circuitry

Figure 2.4 illustrates physical connectivity of a typical logic emulator in the real world environ-
ment. A logic emulator can be either connected directly to a single workstation or a collection of
workstations through a network (e. g. LAN). A set of back-end and front-end CAD tools run on
workstations. On the other end, a logic emulator can be connected to the target hardware, right in
the socket where the to-be-emulated chip will be mounted in future.

Logic emulation systems are classified according to the architecture used in their programmable
hardware. Although various companies and academic researchers have used different architectures,

they can all fall into one of the following two categories:
1. FPGA-Based Emulators (FBE)
2. Processor-Based Emulators (PBE)

As it will be explained later the proposed architecture combines some of the properties of both

classes of logic emulation systems. Thus the newly proposed emulation system will be referred to as
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Figure 2.4: Logic emulation system connectivity

hybrid logic emulation system.

2.2.1 FPGA-Based Logic Emulation System (FBE)

Ever since Field-Programmable Gate Arrays (FPGAs) were introduced in late 80s, they have been
extensively used in rapid prototyping and logic emulation platforms. Since FPGAs are fundamental
building blocks of FPGA-based emulation systems(FBEs), first, we will briefly review the internal
structure of a typical FPGA chip.

2.2.1.1 Introduction to Field-Programmable Gate Array

An FPGA is a flexible, completely re-programmable logic chip. While different FPGA manufacturers
have introduced different architectures [55](8], the most popular FPGA architecture contains a two
dimensional array of SRAM-based programmable logic elements (LE) (Fig. 2.5). The logic elements
are interconnected through horizontal/vertical metal wires and SRAM-controlled interconnecting
switches (shown at the bottom of Fig. 2.5).

Each logic element consists of two parts: a k-input look-up table(LUT) and a flip-flop. A k-input
LUT consists of an array of 2¢ x 1 SRAM-based memory cells. All k inputs to an LUT are address
inputs to that memory array and the value read from a memory cell is the output of the LUT. A

k-input LUT can realize any logic function of & inputs by programming the truth table values of the

11
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8x1 Memory Bit

F=AB+A-C+AB

Figure 2.6: Structure of a 3-input LUT (k = 3)

logic function directly into the memory array. An example of a 3-input LUT is shown in Fig. 2.6
that implements Boolean function F.

A combination of a k-input LUT and a flip-flop is capable of producing all feasible combinational
or sequential logic functions that can be built using £ input signals. The option of choosing between
the combinational or sequential output can be made by configuring the programmable bit connected
to the output multiplexer shown in Fig. 2.7. Typical LUTs have three to six inputs (3 < k < 6),
however it has been shown the best performance-versus-area is achieved by having & = 4 [60].
Along with the programmable logic described above, an FPGA includes a great number of SRAM-
based programmable switches and interconnecting switch matrices (shown at the bottom of Fig. 2.5)
which enables arbitrary interconnection among logic elements. The process of interconnecting logic
elements together is called routing. At the perimeter of an FPGA chip, programmable I/O pins
connect the FPGA’s internal logic to the outside circuitry. Based on the above descriptions, it is
obvious that an FPGA is a highly programmable device that can be configured (programmed) to
implement any digital circuit.

It should be emphasized that commercially available FPGAs are much more complicated in
architecture. They usually include embedded memory blocks, dedicated fast logic for arithmetic
operations as well as complicated logic element architecture. Medium-size commercial FPGAs have
a logic capacity of few thousands logic elements equivalent to few tens of thousands logic gates[20][39].
Although this capacity might sound large enough for some applications, it is not big enough for most

logic design today. Therefore, FPGA manufacturers are periodically introducing newer FPGAs with
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Figure 2.8: A generic FPGA-based logic emulation system
higher logic capacities.

2.2.1.2 Architecture of FPGA-Based Logic Emulation Systems

The programmable hardware section of FPGA-based emulators consists of a collection of FPGA mod-
ules interconnected through hardwires and/or Field Programmable Interconnection Devices(FPIDs)
(Fig. 2.8) [67][11][65].

From the architecture point of view, programmable interconnection devices are quite similar to
programmable routing resources inside FPGA chips. In other words, an FPID is a collection of
programmable switches and switch matrices. Thus the combination of multiple FPGAs and FPIDs

can create an extremely flexible and powerful platform for logic emulation and prototyping.
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Figure 2.9: Mesh architecture

The “routing architecture” of an FBE is the way in which the FPGAs, fixed wires and FPIDs
are connected. Previous research has shown that the routing architecture has a strong effect on the
speed, cost and routability of emulation systems. This is because an inefficient routing architecture
may require excessive logic and routing resources when implementing circuits and cause long routing
delays. Increased routing delays will profoundly slow down the emulation speed.

Several routing architectures for FBEs have been proposed. The routing architecture in FBEs

plays a key role in determining the cost and performance of these systems|[70].

A Mesh Interconnect Early FBEs did not use any FPIDs. Instead the FPGAs were arranged
in a two dimensional array and each FPGA was connected to its nearest neighboring FPGAs (mesh)
using hardwired connections (Fig. 2.9) [34].

Although mesh architecture is simple, it has a number of limitations which has made it obsolete.
In this architecture, FPGA I/O pins are not only used for connecting FPGA internal logic to
outside world, but also for routing inter-FPGA signals. Therefore a large percentage of FPGA 1/0
pins will be used up for inter-FPGA routing purposes. Moreover, some nets might pass through
many intermediate FPGAs in the mesh, which results in very long interconnect delays for some
signals. Not only does this slow down the design emulation but also creates unbalanced propagation
delays among signals that can induce incorrect or unwanted behavior in some time-sensitive signals,

(e. g. set-up/hold time violations).

B Full Crossbar Interconnect An alternative to using FPGAs for routing is to use field-

programmable interconnection device(FPID), which is a semiconductor device that can be pro-
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Figure 2.10: Internal structure of a field programmable interconnect device (FPID)

grammed (i. e. configured) to provide arbitrary connections between its I/O pins. It contains a
two dimensional array of, usually SRAM-based, programmable switches (Fig. 2.10). Therefore it is
capable of making any one-to-one or one-to-many connections between its I/O pins [21]. A typical
FPID may have as many as 1000 I/O pins.

In most recent FBE systems FPIDs are being used for interconnecting signals among FPGA
pins. The simplest architecture is Full Crossbar architecture. In this architecture each FPID is
connected to “all” FPGAs on the emulation board (Fig. 2.11). Since a full crossbar is capable of
connecting any two pins in the system it is logical to think of this architecture as a regular array
of programmable crosspoint switches. Although a full crossbar architecture guarantees successful
routability of all nets, it is utilized in small emulation systems with only a very few number of
FPGAs. This is because the size (area) of FPID crossbar increases as the square of number of its
I/0 pins. Equation 2.1 shows the relation between the number of crosspoint switches “S” in a full

crossbar that interconnects “N” FPGAs each with “P” 1/0O pins.
S=N(N-1)P?/2 (2.1)

For example, to interconnect 20 FPGAs (note that the number of FPGAs in a typical FBE
system is far more than this), each with 200 I/O pins, we need a FPID module with 4000 I/O pins
and a switch capacity of 7,600,000. Manufacturing such FPID would be impractical and expensive

in terms of pin count and layout area.

C Partial and Hierarchical Partial Crossbar The partial crossbar architecture [65][42] over-
comes the limitations of the full crossbar by using a set of smaller crossbars. This is due to the fact
that in real designs only a tiny fraction of crosspoint switches would ever be used to route signals in

the system. In this architecture the I/O pins of each FPGA are divided into subsets and each subset
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Figure 2.12: Logical view of partial crossbar interconnect (a). Block view (b).

is connected to a single FPID. Therefore the number of FPIDs in partial crossbar architecture is
equal to the number of subsets (Fig. 2.12).

Partial crossbar architecture maximizes the use of the FPGA’s logic capacity. The delay for any
inter-FPGA connection is uniform and is equal to delay through one FPID. In this architecture,
the size of FPIDs increases only linearly as a fraction of the number of FPGAs. Also, since this
architecture is completely symmetrical, the mapping CAD tools can map a DUT into FBE in less
timc. Consequently, the partial crossbar interconnect is economical and fully scalable. However, it
has some disadvantages too. First is the extra cost and size of multiple FPIDs. And second, the
fact that direct connections between FPGAs for routing time critical signals are not available.

Large FBE systems (with hundreds of FPGAs) can not be interconnected through single layer
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Figure 2.13: Example of two-level hierarchical partial crossbar architecture.

of partial crossbar. Instead, the partial crossbar architecture can be applied recursively, in a hier-
archical manner. That is, each set of FPGAs and FPIDs, interconnected through partial crossbar
architecture, could be virtually considered as a very large FPGA. A group of such “ultra-FPGAs”
can be interconnected by a second level of FPIDs, as shown in Fig. 2.13.

In the example shown in Fig. 2.13, if there is a net that must be routed from "FPGA 2” to
"FPGA 77, then that signal should pass through two FPIDs at "Layer 1” and one FPID at ”Layer
27, imposing a total of 3 unit delays on that signal. This implies that the more hierarchy levels are
used for interconnection, more delays would be induced on the nets. But this delay is acceptable

because the size of flat partial crossbar cannot be scaled beyond a few tens of FPGAs.

D Hybrid Complete Graph Partial Crossbar The latest research shows that a mixture of
hardwired and programmable connections among FPGAs provides a superior routing architecture for
FBE systems. In this approach, a significant percentage of pins in each FPGA are connected using
hardwired, the remainder are connected using programmable connections. The hardwire connections
are usually used to route time critical nets, whereas other non-critical nets are routed through FPIDs
(Fig. 2.14).

In hybrid complete graph partial crossbar(HCGP) architecture, the key parameter, which affects
the degree of routability, is the percentage of programmable connections P, with respect to the total
number of interconnection (eq. 2.2-2.4). Results show that the ratio of 60 percent provides good
routability and speed [42].

Ny =Ny + Ny, (2.2)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. BACKGROUND AND PREVIOUS WORK

Hardwire
Interconnections

Programmabie
Interconnections

Figure 2.14: Hybrid complete graph partial crossbar architecture

P, = N,/N, (2.3)
Py~ 0.6 (2.4)

Where,
Ny :Number of programmable connections
N}, :Number of hardwired connections

N; :Total Number of Connections

E Virtual Wire Architecture The logic capacity (determined by the number of logic elements)
of even the high end FPGA chips is not large enough to emulate even medium size digital IC designs.
Hence, FPGA-based logic emulators must contain muitiple FPGAs (tens to hundreds) so that they
could emulate multi-million gate logic circuits. Obviously, for such circuits, the design netlist must
be broken down in to smaller sub-circuits so that each sub-circuit could fit into single FPGA. The
process of breaking down a circuit netlist into smaller sub-circuits is referred to as partitioning.
Similarly, each sub-circuit is called a partition. After the circuit netlist is partitioned and mapped
into FPGAs, they will be connected to each other through FPGA I/0 pins. For each I/O signal
belonging to a partition, one I/O pin will be utilized (Fig. 2.15). Since FPGAs have limited number
of I/O pins, the sum of inputs and outputs of each partition can not exceed the number I/O pins in
one FPGA. Therefore, while partitioning a circuit amongst multiple FPGAs, each partition should

satisfy two constraints:

1. Logic capacity constraint:

Number of logic elements in one partition< (Total number of logic elements in one FPGA)
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2. Pin constraint:
N; + N, < P, where,
N; :Number of Input signals to partition
N, :Number of Output signals from partition

P, :Total number of FPGA I/0 pins

In a paper by Landman and Russo [46], it was empirically shown that the number of 1/O pins
in a partition is a function of number of logic elements in that partition. Such relation is shown in

2.5 and it is referred to as “Rent’s rule”.
P, =kxLE (2.5)

where,

L :Total number of logic elements

R :Rent’s constant (0.4 < R < 0.8)

k :average fan-in of logic elements

Empirical results show that, due to Rent’s rule, a great percentage of FPGA logic capacities in
conventional FBEs will remain underutilized. In worst cases it could be as high as 80%.

To overcome pin limitations (expressed by Rent’s rule) and improve logic utilization in FPGAs,
researchers at MIT proposed the idea of Virtual Wires [2]. Unlike traditional architectures where
each interconnecting physical wire is assigned to one signal (net), in virtual wire architecture each
physical wire will transfer multiple signal values at different time slots. In other words multiple
signals will be “time-multiplexed” on the same physical wire (Fig. 2.16). Multiple “output” signals

can be sampled and stored inside “micro-registers” at the “source” partition. The content of these
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Figure 2.16: Generic view of Virtual Wire architecture

registers are then serially transferred to the “destination” partition. A single wire is used to transfer
the serial values from the “source” partition into the “destination” partition. At the “destination”
partition the signal values are De-multiplexed using a set of serial receivers and a serial-to-parallel
converters. It should be mentioned that the sampling and transmission of signal values takes place
during each design’s clock cycle.

Virtual wire-based architecture has a number of advantages over other architectures such as:
o It significantly improves logic utilization in FPGAs (some cases more than 45%).
e Overcomes I/O pin constraints.

e Significantly reduces the number of FPGAs required in the FBE systems. Therefore virtual

wire-based emulators are much smaller and cheaper.
On the other hand virtual wire-based emulators have a number of disadvantages too:

e Extra control circuitry inside each FPGA is needed to time multiplex/de-multiplex signals on

a shared wire which imposes logic overhead in the circuit.

e Transferring signal values in time slots will cause delay in the signals. Therefore, emulation

speed is reduced.

F Time-Multiplexed FPGA Architecture In a different approach to improve logic uti-
lization in FPGAs, rescarchers have proposed a dynamically reconfigurable FPGA called time-
multiplezed FPGA [64). At any instance of time, a time-multiplexed FPGA has one “active” configuration
and eight “inactive” configurations. The configuration memory (also referred to as configuration

memory plane) is distributed over all logic elements and interconnecting switches within the FPGA
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Figure 2.17: Time-multiplexed FPGA configuration model.

chip which might contain 100,000 memory cells. Each configuration memory cell is backed up by
eight inactive configuration memory cells. Whenever the FPGA is reconfigured, all the logic elements
and interconnecting switches are updated simultaneously through the contents of one configuration
memory plane (Fig. 2.17). In practice, inactive configuration bit-streams might be stored in off-chip
memory banks which increases the FPGA reconfiguration delay.

After each and every reconfiguration, the output of each logic element inside the FPGA is also
stored in memory arrays called micro-registers. With 8 configuration planes, a micro-register should
contain an array of 8 x 1 memory cells. A general structure of a logic element in a time-multiplexed
FPGA is shown in Fig. 2.18.

In logic emulation mode, the time multiplexing capability of the FPGA is used to emulate a
large design. The FPGA sequences through all configurations called micro-cycles. Partial results
after each micro-cycle (i. e. after one configuration of the device) will be saved in micro-registers
and passed to subsequent micro-cycles. One pass though all micro-cycles is equivalent to one DUT

clock cycle (also known as user cycle).

2.2.1.3 Emulating Logic Designs on FBEs

So far we have explained different architectures used in the programmable hardware section of FBEs.

Now we explain how a typical digital design can be emulated on a generic FBE. To emulate a logic
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Figure 2.18: General view of one logic element in a time-multiplexed FPGA.

design on an FBE, first, the mapping CAD tools translate the design netlist into a set of configuration
bit-streams that can be used to configure (i. e. program) the FPGAs and FPIDs. Then, programming
bit streams are downloaded into all FPGAs and FPIDs. Once the FBE is configured it is ready to
emulate the design. Through a set of run-time tools, designers can examine their designs and detect

possible errors. We will explain the details of the steps involved in future sections.

2.2.2 Processor-Based Logic Emulation System (PBE)

The second class of logic emulators are Processor-Based Emulator Systems (PBEs)[70]. First gen-
erations of PBEs were introduced to the industry much before FBEs but they were only capable
of performing simulation acceleration and not in-circuit emulation. After the invention of FPGAs,
most companies preferred using FBEs for design verification. However, shortly later on, due to ob-
vious disadvantages of FBEs as well as introduction of custom IC design, PBEs were brought back
into spotlight. As of mid 90’s (until now) major verification vendors have introduced large-scale
high-end PBE systems to the market[24].

A general misconception does exist among few engineers that needs to be addressed here. Some
people believe that PBE systems are just another kind of hardware-accelerated simulation engines
which is not correct. Here are some fundamental differences between PBEs and hardware-accelerated

simulators:

e PBEs contain a collection of application specific processors , called emulation processors,
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which are optimized for emulating the functionality of logic circuits, as opposed to hardware-

accelerated machines in which generic processors are utilized.

o Hardware-accelerated simulators use software models of DUT components to simulate the
functionality of the whole design, whereas, in PBEs, the DUT netlist is directly mapped into

hardware.

o Hardware-accelerated simulators can not be connected to target platform and their output
appears, usually, in form of signal waveforms or data files, monitored on workstation screens,

whereas, PBEs can actually be connected to the target hardware.

As it will be explained in forthcoming chapters, this research has introduced an easily implementable
architecture for certain class of PBEs which has in fact created the required hardware platform for
developing software CAD tools. But, before explaining the proposed architecture, we will investigate

the generic architectures used in PBEs in this section.

2.2.2.1 Architecture of PBEs

In PBEs a collection of highly parallel hardware processors (e. g. tens to hundreds) are used to
emulate the functional behavior of logic designs. The processors communicate with each other during
run-time though an interconnection network. Depending on the logic processors’ architecture, PBE
systems could be very simple in structure or very complica