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A bstract

It is fair to claim th a t the greatest challenge currently faced by IC designers is how they prove 

th a t their designs do not contain any functional errors before they actually send them away for 

fabrication. Given the fact th a t fabrication of a chip is not only a time-consuming process, but also 

very expensive, it would be financially devastating for IC manufacturing companies if any functional 

errors are detected after the chip is fabricated. Logic emulation systems are programmable hardware 

platforms th a t help IC designers to  verify the correct functionality of their IC designs before they 

are sent for fabrication. Processor-based logic emulation systems belong to a class of logic emulators 

th a t are studied in details in this thesis.

In the first part of this research, a new hardware architecture for processor-based logic emula

tion system, which was implemented in Xilinx Virtex-II and Virtex 4 FPGAs, has been proposed. 

Efficiency of proposed architecture in terms of speed, area and other design constraints is compared 

with other studies. The new approach shows reasonable emulation speed (200K H z) ,  better logic 

utilization (> 67%) while reducing the hardware size and cost by orders of magnitude.

More importantly, based on the proposed architecture, a software CAD framework was created 

th a t allows automatic mapping of a gate-level netlist into a series of instructions, which can be 

executed in parallel by a collection of logic emulation processors. Two scheduling algorithms have 

been developed and implemented. The algorithms were evaluated using several popular benchmark 

circuits. Experimental results show tha t the algorithms achieved close to  optimal average processor 

workload (83%) which results in fast emulation speed.

iv
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C hapter 1

In troduction  and M o tiva tio n

Ever since digital VLSI circuits came into existence engineers have been facing the constantly growing 

problem of verifying correct functionality of circuits before they are sent for fabrication. Once the 

chip is fabricated, which is a very expensive procedure, it would be impossible for designers to  modify 

the hardware in case design errors were detected, unless they go through all the design steps again.

Several functional verification methodologies such as software simulation and hardware-accelerated 

simulation have been proposed so far. Each method has a number of advantages as well as disadvan

tages. A briefly review of all these methods is presented in future chapters. Traditional verification 

methods are not effective for very large IC designs. Consequently, finding faster, cost effective and 

more accurate solutions for design verification is a very im portant research issue.

The most effective method for performing functional verification of an IC design prior to fab

rication is Logic Emulation. A logic emulation system (also known as logic emulator) is a field 

programmable system th a t can be programmed to emulate (i. e. imitate) the functionality of a 

digital circuit a t speeds of millions of cycles per second(CPS).

During past few years many logic emulation systems have been proposed and implemented. The 

two main classes of logic emulation systems are FPGA-based logic emulation (FBE) and processor- 

based logic emulation (PBE) systems. Each of these systems have a number advantages as well as 

disadvantages. In most cases these systems might be so complex and expensive th a t it would be 

financially infeasible for small or medium size companies to afford. Currently, there is a demand 

for cheaper logic emulation systems th a t are fast and yet large enough to verify designs as big as

1
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1. INTRODUCTION AND MOTIVATION

multi-million gates.

More importantly, all logic emulation systems have an associated set of mapping CAD tools 

(called design compilers) th a t perform the task of design compilation. The design compiler reads the 

netlist of the design under fesf(DUT) and automatically converts it to  a downloadable bit-stream  

tha t can be “programmed” into the logic emulation system. Once the logic emulation system is 

programmed, design engineers can verify the functionality of DUT by “running” it on the emulation 

system. Much work remains to  be done in exploring new architectures and mapping CAD tools for 

logic emulation systems.

1.1 Thesis Overview

The main goals of this thesis are:

1. Investigate a cost effective architecture for processor-based logic emulation systems targeting 

FPGAs. The motivation is to combine the advantages of both FBEs and PBEs in a single 

system.

2. Create a CAD framework for autom atic mapping of DUT netlist to  a target processor-based 

logic emulation system.

3. Explore new scheduling algorithms for mapping design netlists into a collection of parallel 

processors.

In the first part of this research, a hardware architecture for processor-based logic emulation system 

has been proposed which was implemented in Xilinx Virtex-II and Virtex 4 FPGAs. Efficiency of 

proposed architecture in terms of speed, area and other design constraints is compared with other 

studies.

More importantly, based on the proposed architecture, a software CAD framework tha t can auto

matically map a gate-level netlist into a series of instructions, which can be executed in parallel on a 

collection of logic emulation processors, has been discussed. In addition to  software CAD framework, 

two scheduling algorithms have been proposed and implemented. The algorithms were evaluated us

ing several popular benchmark circuits and experimental results show th a t the algorithms achieved 

close to optimal average processor workload which results in fast emulation speed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. INTRODUCTION AND MOTIVATION

1.2 Thesis Organization

This thesis is organized as follows:

In Chapter 2 the history and importance of functional verification is briefly reviewed and various 

hardware architectures for logic emulation systems are presented. Then the CAD flow and algorithms 

used in each class of logic emulation system is discussed. In Chapter 3, the hardware architecture 

proposed in this research is explained and later in Chapter 4 the implementation results of the 

proposed architecture are described. Chapter 5 covers the CAD framework for mapping design 

netlists on to the target logic emulation system. Also, two scheduling algorithms are introduced and 

explained in detail as to how they improve the emulation speed. The experimental results obtained 

by running the new algorithms on ten MCNC benchmark circuits are presented. Finally, Chapter 6 

provides concluding remarks and a discussion of possible future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 2

Background and P revious W ork

In 1965, Gordon Moore predicted th a t the number of transistors per unit area in a typical inte

grated circuit (e. g. microprocessor) will double roughly every 18 months [51]. This increase in the 

integration level is called semiconductor productivity [35], or better known as Moore’s law. Another 

implication of semiconductor productivity is th a t greater functionality is being integrated into unit 

area of semiconductors, which results in a direct increase in design complexity. Therefore, some 

researchers refer to such trend in semiconductor productivity as complexity growth.

On the other hand, the term  design productivity refers to  the number of logic gates designed 

by single designer per day [35], Statistics from real world show th a t although semiconductor pro

ductivity keeps increasing with the pace expected by the Moore’s law, design productivity is not 

improving proportionally, resulting in what we would like to call production gap or, as it will be 

explained shortly, verification gap (Fig. 2.1). The existence of such a gap is due to  two main rea

sons: first, increase in the number of circuit elements and their interconnection (i. e. design size). 

Second, increase in the number of test vectors to verify the correctness of all circuit elements. For 

example, if there are N circuit elements (such as logic gates or flip-flops) within the digital circuit 

under test and each element can assume a binary value (0 or 1), then we need at most 2N test 

vectors to thoroughly verify the functionality of the circuit. It goes without saying th a t even for 

a very small circuit (N  <  100) it is practically impossible to fully verify the correctness of the 

design as the number of test vectors (2100) is almost infinite. To avoid design errors and possible 

expensive silicon re-spins, chip manufacturers are looking for solutions to functionally verify their

4
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Figure 2.1: Complexity/Productivity growth versus time in terms of number of transistors[66]

designs before fabrication, often referred to  as design verification. In fact, it would be fair to  say 

that, design verification has become the most im portant bottleneck in the design process, requiring 

about 60-75% of design resources such as design time, computing resources and man-power [53] [41]. 

Therefore, many researchers are targeting this area to narrow the verification gap or at least keep 

it from increasing as the design size grows.

2.1 H istory of Design Verification

There are many different ways for tackling the design verification problem, some of which have been 

around for a while. In general, there are five different methods used for design verification:

1. Formal Verification

2. Simulation

3. Hardware Accelerated Simulation

4. Rapid Prototyping

5. Logic Emulation

Each method has a number of advantages as well as drawbacks. In the semiconductor and electronic 

industries, some or all of these methods are used to  verify designs, based on design complexity and 

verification requirements.

5
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2.1.1 Formal Verification

Formal verification refers to a process through which a designer proves formally th a t a designed 

circuit satisfies the design specifications for all possible inputs [41]. The behavior of a hardware 

design is described formally and then the correctness of the design is proved by using a number 

of mathematical proof techniques [71] [27]. In formal verification, first the hardware is represented 

using, logic equations or finite state machines (FSMs), regardless of other design aspects such as 

timing or area constraints. Then, the designer studies the question of whether the designed circuit 

matches the specifications or not. The specifications are often written as a set of temporal logic 

formulas. For obvious reasons, some researchers believe tha t formal verification methods are simply 

parts of the design process and not a post-design process.

Two most common approaches for formal verification are theorem proving (algorithmic veri

fication) and model checking (deductive verification). Model checking tools represent the design 

using Binary Decision Diagrams (BDDs) and the specifications by a set of temporal logic formulas 

[10] [15]. The model checking tool then traverses the BDD by exploring all possible combinations of 

inputs/states/ou tputs to  verify if the formulas are satisfied. On the contrary, in theorem proving 

techniques, both the hardware and its specifications are represented in some abstract logic such as 

Higher-Order Logic (HOL). Then, a mathematical proof within the rules of th a t logic is constructed 

tha t shows the design matches its specifications. Theorem proving tools autom ate the process of 

establishing the proof [23].

Since formal verification methods use mathematical approach to determine the correctness of a 

design, therefore all possible errors in the design will be detected and sound functionality of the 

design is guaranteed. However, they have a number of drawbacks which limit their usage for real 

world designs. For instance, formal verification methods are not easily scalable and they all suffer 

form state-space explosion. T hat is, if there are 250 memory cells within the circuit, then the 

circuit would have 2250 states 1 th a t need to  be exhaustively searched. On the other hand, finding 

mathematical abstraction (model) for even a small design is a complicated and tedious task and 

requires lots of knowledge and experience. To overcome these problems, researchers have tried to 

combine different formal verification methods together [23], but the results are still not suitable for 

large designs.

l.Just a bit more than the number of all particles in the universe!
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Figure 2.2: General view of software simulation tools 

2.1.2 Simulation

By far the most popular verification method is software simulation, or simply, simulation. The 

inputs to a logic simulator are the design netlist file and input stimulus signals, often in the form of 

vector data files. The simulator computes how the design-under-test (DUT) would operate over time 

and generates required outputs, given those inputs [4] [1]. It is then the designer’s job to  observe the 

outputs produced by the simulator and verify if the design is operating correctly. The comparison 

process can be autom ated by defining “monitors” for the simulation tools. It should be emphasized 

that, in the simulation technique, not only the input stimuli to the DUT are represented in software 

(e. g. vector data  files) but also the DUT itself is represented in software. Therefore, it is obvious 

th a t the simulator is nothing but a software simulation “engine” th a t runs the models of a DUT 

against given input vector files (Fig. 2.2). In more recent design methodology, designers use hardware 

description languages (HDL), such as Verilog or VHDL, to  not only describe the design, behaviorally 

or structurally, but also specify input stimuli and monitoring routines within the same embodiment, 

called test bench (shown by shaded blocks in Fig. 2.2) [56]. Software simulators have a number of 

advantages over other verification tools:

•  They provide extensive capabilities for modifying and debugging the design which is due to 

the intrinsic flexibility in software.

• They are much easier to  use.

•  They are significantly cheaper than  other tools.

7
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The above benefits make simulators the most widely used verification tools. However, they do have 

limitations:

•  As the size of logic designs doubles the amount of computing work to simulate them roughly 

quadruples. A rough estimation for such increase is that, an increase in the number of logic 

gates not only increases the number of cycles, but also it increases the computational work 

per cycle to get acceptable coverage [48]. Hence, software simulators are simply too slow to 

simulate designs with more than  a million gates. Typically their simulation speed is around 

tens of cycles-per-second(CPS).

•  Simulators do not provide the in-circuit emulation(lCE) capability.

•  The accuracy of simulation results depends solely on how well the designer has modeled the 

DUT in software and the number of test vectors (input stimuli) provided. Therefore, user 

expertise is a key factor in simulation accuracy.

If we only use simulators for design verification, it is very likely th a t some design errors remain 

undetected. A notorious example of such an incident was the design bug in the floating point 

arithmetic unit of Intel’s Pentium processor, reported in [54], which caused a financial loss of several 

million dollars to the company.

2.1.3 H ardware-Accelerated Simulation

To overcome the speed limitation of software simulators, simulation accelerators based on custom 

hardware were developed. These accelerators provided built-in test equipment (such as signal gen

erators and logic analyzers). Instead of using computer workstations, designers could execute the 

simulation of their designs on a number of parallel processors which run orders of magnitudes faster 

than  simulators [3] [16] [61].

Although, hardware-accelerated simulators provided good speedup for simulation, they still suf

fered from two major problems:

•  It should be emphasized th a t hardware-accelerated simulators are still using software models 

of the design and not real hardware.

•  Massively parallel processing platforms succeed in physical simulation such as fluid flow or 

structural analysis but they are not efficient enough in simulation of logic designs because 

logic designs have very irregular topologies [48].

•  They do not provide in-circuit emulation.

8
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2.1.4 Rapid Prototyping

Another relatively less popular functional verification method is rapid prototyping. In this method 

designers quickly produce hardware models of the actual product th a t is fabricated by using fast 

prototyping platforms such as programmable logic technology. By examining the functionality of 

those models, designer can identify possible errors in their design before they send it for fabrication. 

Unfortunately, the feasibility of rapid prototyping technique depends highly on the type of the 

application and availability of tools. In one example, researchers have created a flexible environment 

to  develop only digital signal processing (DSP) applications [33].

Since rapid prototyping requires building a hardware sample closest to  the final product, the 

verification process will be fastest and detection of most design errors is likely. However, the main 

disadvantage is tha t once the prototype is built it can not be used for other applications and therefore 

it would be a throw-away effort.

2.1.5 Logic Em ulation

The most recent verification tools are logic emulation systems. A hardware emulator is a completely 

programmable hardware system which can be programmed to im itate (i. e. emulate) the functionality 

of a large digital design (tens of million gates) at the speed of multi million cycles per second (CPS). 

In other words, a logic emulator is a programmable device that, once programmed, functions just 

like a prototype of the final chip before actually fabricating the chip itself.

Logic emulation systems have a number of advantages over other verification tools th a t have 

recently brought them into spotlight. In the upcoming sections we will be thoroughly investigating 

the hardware architecture and CAD tools for logic emulation systems.

2.2 Architecture of Logic Emulation System s

So far a number of hardware architectures for logic emulation systems have been proposed, and 

some of these architectures have been implemented. Regardless of their architecture, they all share 

a number of basic features. Generally speaking, a typical logic emulation system consists of five 

major components which their connectivity is shown in Fig. 2.3.

1. Programmable hardware

2. CAD tools which automatically map design-under-test (DUT) into downloadable bit stream 

for the programmable hardware

9
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Figure 2.3: General view of a Logic Emulation System

3. Integrated instrum entation and debugging hardware such as integrated logic analyzers (ILA) 

or programmable signal generators

4. Integrated control hardware and software to support the run time environment of the emulated 

design

5. Target hardware interface circuitry

Figure 2.4 illustrates physical connectivity of a typical logic emulator in the real world environ

ment. A logic emulator can be either connected directly to a single workstation or a collection of 

workstations through a network (e. g. LAN), A set of back-end and front-end CAD tools run on 

workstations. On the other end, a logic emulator can be connected to the target hardware, right in 

the socket where the to-be-emulated chip will be mounted in future.

Logic emulation systems are classified according to  the architecture used in their programmable 

hardware. Although various companies and academic researchers have used different architectures, 

they can all fall into one of the following two categories:

1. FPGA-Based Emulators (FBE)

2. Processor-Based Emulators (PBE)

As it will be explained later the proposed architecture combines some of the properties of both 

classes of logic emulation systems. Thus the newly proposed emulation system will be referred to as

10
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Figure 2.4: Logic emulation system connectivity 

h yb rid  logic e m u la tio n  system.

2.2.1 FPG A -B ased Logic Em ulation System  (FBE)

Ever since Field-Programmable Gate Arrays (FPGAs) were introduced in late 80s, they have been 

extensively used in rapid prototyping and logic emulation platforms. Since FPGAs are fundamental 

building blocks of FPGA-based emulation system s(FBEs), first, we will briefly review the internal 

structure of a typical FPGA chip.

2.2.1.1 Introduction  to  F ield -P rogram m able G ate Array

An FPG A is a flexible, completely re-programmable logic chip. While different FPG A  manufacturers 

have introduced different architectures [55] [8], the most popular FPG A architecture contains a two 

dimensional array of SRAM-based programmable logic elements (LE) (Fig. 2.5). The logic elements 

are interconnected through horizontal/vertical metal wires and SRAM-controlled interconnecting 

switches (shown at the bottom  of Fig. 2.5).

Each logic element consists of two parts: a fc-input look-up table{LUT) and a flip-flop. A fc-input 

LUT consists of an array of 2fc x 1 SRAM-based memory cells. All k inputs to  an LUT are address 

inputs to  th a t memory array and the value read from a memory cell is the output of the LUT. A 

fc-input LUT can realize any logic function of k inputs by programming the tru th  table values of the

li
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logic function directly into the memory array. An example of a 3-input LUT is shown in Fig. 2.6 

th a t implements Boolean function F.

A combination of a fc-input LUT and a flip-flop is capable of producing all feasible combinational 

or sequential logic functions tha t can be built using fc input signals. The option of choosing between 

the combinational or sequential output can be made by configuring the programmable bit connected 

to  the output multiplexer shown in Fig. 2.7. Typical LUTs have three to six inputs (3 <  fc <  6), 

however it has been shown the best performance-versus-area is achieved by having fc =  4 [60]. 

Along with the programmable logic described above, an FPG A  includes a great number of SRAM- 

based programmable switches and interconnecting switch matrices (shown at the bottom  of Fig. 2.5) 

which enables arbitrary interconnection among logic elements. The process of interconnecting logic 

elements together is called routing. At the perimeter of an FPGA chip, programmable I /O  pins 

connect the FPG A ’s internal logic to  the outside circuitry. Based on the above descriptions, it is 

obvious th a t an FPGA is a highly programmable device th a t can be configured (programmed) to 

implement any digital circuit.

It should be emphasized tha t commercially available FPGAs are much more complicated in 

architecture. They usually include embedded memory blocks, dedicated fast logic for arithmetic 

operations as well as complicated logic element architecture. Medium-size commercial FPGAs have 

a logic capacity of few thousands logic elements equivalent to  few tens of thousands logic gates[20] [39]. 

Although this capacity might sound large enough for some applications, it is not big enough for most 

logic design today. Therefore, FPG A  manufacturers are periodically introducing newer FPGAs with

13
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Figure 2.8: A generic FPGA-based logic emulation system 

higher logic capacities.

2.2 .1 .2  A rch itecture o f  F P G A -B ased  Logic E m ulation  System s

The programmable hardware section of FPGA-based emulators consists of a collection of FPG A  mod

ules interconnected through hardwires and /o r Field Programmable Interconnection Devices (FPIDs) 

(Fig. 2.8) [67][11][65],

From the architecture point of view, programmable interconnection devices are quite similar to 

programmable routing resources inside FPG A chips. In other words, an FPID is a collection of 

programmable switches and switch matrices. Thus the combination of multiple FPGAs and FPIDs 

can create an extremely flexible and powerful platform for logic emulation and prototyping.
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The “routing architecture” of an FBE is the way in which the FPGAs, fixed wires and FPIDs 

are connected. Previous research has shown th a t the routing architecture has a strong effect on the 

speed, cost and routability of emulation systems. This is because an inefficient routing architecture 

may require excessive logic and routing resources when implementing circuits and cause long routing 

delays. Increased routing delays will profoundly slow down the emulation speed.

Several routing architectures for FBEs have been proposed. The routing architecture in FBEs 

plays a key role in determining the cost and performance of these systems[70].

A  M esh  In te rc o n n e c t Early FBEs did not use any FPIDs. Instead the FPGAs were arranged 

in a two dimensional array and each FPG A was connected to its nearest neighboring FPGAs (mesh) 

using hardwired connections (Fig. 2.9) [34].

Although mesh architecture is simple, it has a number of limitations which has made it obsolete. 

In this architecture, FPG A I/O  pins are not only used for connecting FPG A  internal logic to 

outside world, but also for routing inter-FPGA signals. Therefore a large percentage of FPG A  I/O  

pins will be used up for inter-FPGA routing purposes. Moreover, some nets might pass through 

many intermediate FPGAs in the mesh, which results in very long interconnect delays for some 

signals. Not only does this slow down the design emulation but also creates unbalanced propagation 

delays among signals th a t can induce incorrect or unwanted behavior in some time-sensitive signals, 

(e. g. set-up/hold time violations).

B  Full C ro ssb a r  In te rc o n n e c t An alternative to using FPGAs for routing is to use field- 

programmable interconnection device (FPID), which is a semiconductor device th a t can be pro-
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Figure 2.10: Internal structure of a field programmable interconnect device (FPID)

grammed (i. e. configured) to provide arbitrary connections between its I/O  pins. It contains a 

two dimensional array of, usually SRAM-based, programmable switches (Fig. 2.10). Therefore it is 

capable of making any one-to-one or one-to-many connections between its I /O  pins [21]. A typical 

FPID may have as many as 1000 I/O  pins.

In most recent FBE systems FPIDs are being used for interconnecting signals among FPG A 

pins. The simplest architecture is Full Crossbar architecture. In this architecture each FPID  is 

connected to “all” FPGAs on the emulation board (Fig. 2.11). Since a full crossbar is capable of 

connecting any two pins in the system it is logical to  think of this architecture as a regular array 

of programmable crosspoint switches. Although a full crossbar architecture guarantees successful 

routability of all nets, it is utilized in small emulation systems with only a very few number of 

FPGAs. This is because the size (area) of FPID  crossbar increases as the square of number of its 

I/O  pins. Equation 2.1 shows the relation between the number of crosspoint switches “5 ” in a full 

crossbar th a t interconnects “AT” FPGAs each with “P ” I/O  pins.

S  =  N (N  -  l ) P 2/2 (2 .1 )

For example, to interconnect 20 FPGAs (note th a t the number of FPG As in a typical FBE 

system is far more than this), each with 200 I/O  pins, we need a FPID module with 4000 I/O  pins 

and a switch capacity of 7,600,000. Manufacturing such FPID would be impractical and expensive 

in terms of pin count and layout area.

C P a r t ia l  a n d  H ie ra rc h ic a l P a r t ia l  C ro s sb a r  The partial crossbar architecture [65] [42] over

comes the limitations of the full crossbar by using a set of smaller crossbars. This is due to the fact 

th a t in real designs only a tiny fraction of crosspoint switches would ever be used to route signals in 

the system. In this architecture the I/O  pins of each FPG A  are divided into subsets and each subset
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Figure 2.12: Logical view of partial crossbar interconnect (a). Block view (b).

is connected to  a single FPID. Therefore the number of FPIDs in partial crossbar architecture is 

equal to  the number of subsets (Fig. 2.12).

Partial crossbar architecture maximizes the use of the FPG A ’s logic capacity. The delay for any 

inter-FPGA connection is uniform and is equal to  delay through one FPID. In this architecture, 

the size of FPIDs increases only linearly as a fraction of the number of FPGAs. Also, since this 

architecture is completely symmetrical, the mapping CAD tools can map a DUT into FBE in less 

t im e . C o n se q u e n tly , th e  p a r t ia l c ro ssb a r  in te r c o n n e c t  is  e c o n o m ic a l  a n d  fu lly  sc a la b le . H o w e v er , it  

has some disadvantages too. First is the extra cost and size of multiple FPIDs. And second, the 

fact th a t direct connections between FPGAs for routing time critical signals are not available.

Large FBE systems (with hundreds of FPGAs) can not be interconnected through single layer
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of partial crossbar. Instead, the partial crossbar architecture can be applied recursively, in a hier

archical manner. T hat is, each set of FPGAs and FPIDs, interconnected through partial crossbar 

architecture, could be virtually considered as a very large FPGA. A group of such “ultra-FPG A s” 

can be interconnected by a second level of FPIDs, as shown in Fig. 2.13.

In the example shown in Fig. 2.13, if there is a net th a t must be routed from ’’FPG A 2” to 

’’FPGA 7” , then th a t signal should pass through two FPIDs at ’’Layer 1” and one FPID  at ’’Layer 

2” , imposing a total of 3 unit delays on tha t signal. This implies tha t the more hierarchy levels are 

used for interconnection, more delays would be induced on the nets. But this delay is acceptable 

because the size of flat partial crossbar cannot be scaled beyond a few tens of FPGAs.

D  H y b rid  C o m p le te  G ra p h  P a r t ia l  C ro ssb a r  The latest research shows th a t a m ixture of 

hardwired and programmable connections among FPGAs provides a superior routing architecture for 

FBE systems. In this approach, a significant percentage of pins in each FPG A are connected using 

hardwired, the remainder are connected using programmable connections. The hardwire connections 

are usually used to route time critical nets, whereas other non-critical nets are routed through FPIDs 

(Fig. 2.14).

In hybrid complete graph partial cras.s6ar(HCGP) architecture, the key param eter, which affects 

th e  d e g r e e  o f  r o u ta b ility , is  th e  p e r c e n ta g e  o f  p r o g r a m m a b le  c o n n e c t io n s  P p  w ith  r e s p e c t  t o  t h e  to t a l  

number of interconnection (eq. 2.2-2.4). Results show th a t the ratio of 60 percent provides good 

routability and speed [42].

N t = N p + N h (2.2)
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Figure 2.14: Hybrid complete graph partial crossbar architecture

Pp = N p/N t (2.3)

Pp «  0.6 (2.4)

Where,

Np :Number of programmable connections 

Nh :Number of hardwired connections 

N t :Total Number of Connections

E  V ir tu a l  W ire  A rc h ite c tu re  The logic capacity (determined by the number of logic elements) 

of even the high end FPG A chips is not large enough to  emulate even medium size digital IC designs. 

Hence, FPGA-based logic emulators must contain multiple FPGAs (tens to hundreds) so th a t they 

could emulate multi-million gate logic circuits. Obviously, for such circuits, the design netlist must

be broken down in to smaller sub-circuits so th a t each sub-circuit could fit into single FPGA. The

process of breaking down a circuit netlist into smaller sub-circuits is referred to as partitioning. 

Similarly, each sub-circuit is called a partition. After the circuit netlist is partitioned and mapped 

into FPGAs, they will be connected to each other through FPGA I/O  pins. For each I/O  signal 

belonging to a partition, one I/O  pin will be utilized (Fig. 2.15). Since FPGAs have limited number 

of I/O  pins, the sum of inputs and outputs of each partition can not exceed the number I/O  pins in 

one FPGA. Therefore, while partitioning a circuit amongst multiple FPGAs, each partition should 

satisfy two constraints:

1. Logic capacity constraint:

Number of logic elements in one partition<  (Total number of logic elements in one FPGA)
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. BACKGROUND AND PREVIOUS W ORK

FPGA #! FPGA #2

II
Physical Wires

Figure 2.15: A genric view of non-time-multiplexed signals among two partitions.

2. Pin constraint:

jVj +  N 0 < Pt where,

Ni -.Number of Input signals to partition 

N 0 :Number of O utput signals from partition 

Pt :Total number of FPGA I/O  pins

In a paper by Landman and Russo [46], it was empirically shown th a t the number of I /O  pins 

in a partition is a function of number of logic elements in th a t partition. Such relation is shown in 

2.5 and it is referred to as “R en t’s rule”.

Pt = k x L R (2.5)

where,

L  : Total number of logic elements 

R  :Rent’s constant (0.4 <  R  <  0.8) 

k : average fan-in of logic elements

Empirical results show that, due to  Rent’s rule, a great percentage of FPGA logic capacities in 

conventional FBEs will remain underutilized. In worst cases it could be as high as 80%.

To overcome pin limitations (expressed by Rent’s rule) and improve logic utilization in FPGAs, 

researchers at MIT proposed the idea of Virtual Wires [2]. Unlike traditional architectures where 

each interconnecting physical wire is assigned to one signal (net), in virtual wire architecture each 

physical wire will transfer multiple signal values at different time slots. In other words multiple 

signals will be “time-multiplexed” on the same physical wire (Fig. 2.16). Multiple “output” signals 

can be sampled and stored inside “micro-registers” at the “source” partition. The content of these
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Figure 2.16: Generic view of Virtual Wire architecture

registers are then serially transferred to the “destination” partition. A single wire is used to  transfer 

the serial values from the “source” partition into the “destination” partition. At the “destination” 

partition the signal values are De-multiplexed using a set of serial receivers and a serial-to-parallel 

converters. It should be mentioned th a t the sampling and transmission of signal values takes place 

during each design’s clock cycle.

Virtual wire-based architecture has a number of advantages over other architectures such as:

•  It significantly improves logic utilization in FPGAs (some cases more than  45%).

• Overcomes I/O  pin constraints.

•  Significantly reduces the number of FPGAs required in the FBE systems. Therefore virtual 

wire-based emulators are much smaller and cheaper.

On the other hand virtual wire-based emulators have a number of disadvantages too:

• E xtra  control circuitry inside each FPG A is needed to time multiplex/de-multiplex signals on 

a shared wire which imposes logic overhead in the circuit.

•  Transferring signal values in time slots will cause delay in the signals. Therefore, emulation 

speed is reduced.

F  T im e -M u ltip le x e d  F P G A  A rc h ite c tu re  In a different approach to improve logic uti

l iz a t io n  in  F P G A s , r e sea rch ers  h a v e  p r o p o s e d  a  d y n a m ic a lly  r e c o n fig u r a b le  F P G A  c a lle d  time- 

multiplexed FPGA  [64]. At any instance of time, a time-multiplexed FPG A  has one “active” configuration 

and eight “inactive” configurations. The configuration memory (also referred to as configuration 

memory plane) is distributed over all logic elements and interconnecting switches within the FPGA
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Figure 2.17: Time-multiplexed FPG A configuration model.

chip which might contain 100,000 memory cells. Each configuration memory cell is backed up by 

eight inactive configuration memory cells. Whenever the FPGA is reconfigured, all the logic elements 

and interconnecting switches are updated simultaneously through the contents of one configuration 

memory plane (Fig. 2.17). In practice, inactive configuration bit-streams might be stored in off-chip 

memory banks which increases the FPGA reconfiguration delay.

After each and every reconfiguration, the output of each logic element inside the FPG A is also 

stored in memory arrays called micro-registers. W ith 8 configuration planes, a micro-register should 

contain an array of 8 x 1 memory cells. A general structure of a logic element in a time-multiplexed 

FPGA is shown in Fig. 2.18.

In logic emulation mode, the time multiplexing capability of the FPG A  is used to emulate a 

large design. The FPG A sequences through all configurations called micro-cycles. Partial results 

after each micro-cycle (i. e. after one configuration of the device) will be saved in micro-registers 

and passed to subsequent micro-cycles. One pass though all micro-cycles is equivalent to one DUT 

clock cycle (also known as user cycle).

2.2 .1 .3  E m ulating Logic D esign s on  F B E s

So far we have explained different architectures used in the programmable hardware section of FBEs. 

Now we explain how a typical digital design can be emulated on a generic FBE. To emulate a logic
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Figure 2.18: General view of one logic element in a time-multiplexed FPGA.

design on an FBE, first, the mapping CAD tools translate the design netlist into a set of configuration 

bit-streams th a t can be used to configure (i. e. program) the FPGAs and FPIDs. Then, programming 

bit streams are downloaded into all FPGAs and FPIDs. Once the FBE is configured it is ready to 

emulate the design. Through a set of run-time tools, designers can examine their designs and detect 

possible errors. We will explain the details of the steps involved in future sections.

2.2.2 Processor-Based Logic Em ulation System  (PB E )

The second class of logic emulators are Processor-Based Emulator Systems (PBEs) [70]. F irst gen

erations of PBEs were introduced to the industry much before FBEs but they were only capable 

of performing simulation acceleration and not in-circuit emulation. After the invention of FPGAs, 

most companies preferred using FBEs for design verification. However, shortly later on, due to ob

vious disadvantages of FBEs as well as introduction of custom IC design, PBEs were brought back 

into spotlight. As of mid 90’s (until now) m ajor verification vendors have introduced large-scale 

high-end PBE systems to  the market[24].

A general misconception does exist among few engineers th a t needs to be addressed here. Some 

people believe th a t PBE systems are just another kind of hardware-accelerated simulation engines 

which is not correct. Here are some fundamental differences between PBEs and hardware-accelerated 

simulators:

•  PBEs contain a collection of application specific processors , called emulation processors,
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which are optimized for emulating the functionality of logic circuits, as opposed to hardware- 

accelerated machines in which generic processors are utilized.

•  Hardware-accelerated simulators use software models of DUT components to  simulate the 

functionality of the whole design, whereas, in PBEs, the DUT netlist is directly mapped into 

hardware.

•  Hardware-accelerated simulators can not be connected to target platform and their output 

appears, usually, in form of signal waveforms or data files, monitored on workstation screens, 

whereas, PBEs can actually be connected to the target hardware.

As it will be explained in forthcoming chapters, this research has introduced an easily implementable 

architecture for certain class of PBEs which has in fact created the required hardware platform for 

developing software CAD tools. But, before explaining the proposed architecture, we will investigate 

the generic architectures used in PBEs in this section.

2.2 .2 .1  A rchitecture o f  P B E s

In PBEs a collection of highly parallel hardware processors (e. g. tens to  hundreds) are used to 

emulate the functional behavior of logic designs. The processors communicate with each other during 

run-time though an interconnection network. Depending on the logic processors ’ architecture, PBE 

systems could be very simple in structure or very complicated. However, roughly speaking, PBEs 

can be classified in two categories:

1. PBEs with Homogeneous Architecture

2. PBEs with Heterogeneous Architecture

A  P B E s w ith  H om ogeneous A rchitecture In this architecture all logic processors (also 

known as emulation processors) are identical in architecture (Fig. 2.19). Conventionally, each logic 

processor is dedicated to emulating the functionality of a single gate in the DUT. However, because 

the processors are built using fast technologies, it is possible to use one processor to  emulate multiple 

gates at different time slots. The control processor works as a bridge between the host processor and 

the emulation hardware. The I/O  processor establishes in-circuit connection between the emulation 

system and the target hardware. During the emulation process, logic processors transfer signal 

values and other information to each other.

Various emulation systems used in industry are developed based on the homogeneous architec

ture. Examples of such systems can be found in [29].
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Figure 2.19: General view of a Homogeneous PBE system

B  P B E s w ith  H eterogen eou s A rchitecture Unlike homogeneous architectures, heteroge

neous PBEs consist of a collection of non-identical processors (Fig. 2.20). Instead, each processor 

is optimized to  emulate specific tasks or functions[12]. For instance, some processors could be opti

mized for performing arithmetic operations such as multiplication/devision while another processor 

could emulate memory operations.

2.2.3 Logic Em ulation System s in Industry

We conclude this section by presenting examples of emulation systems used in industry th a t are 

currently helping design engineers to perform functional verification at early stages of IC design.

An example of commercially available FBE system is VStationPRO  from Mentor Graphics™  [22]. 

It is based on the virtual wires architecture tha t can emulate designs consisting of up to  120 million 

logic gates, a t speeds ranging from 0.5-2MHz. Palladium  system from Cadence™  [24] [38] is an 

example of a processor-based logic emulation system. It has a logic capacity of up to 256 million 

gates and emulation speeds ranging from 0.5 to 1MHz. It is not only a logic emulation system but also 

can be configured to function as a simulation acceleration platform for various design applications, 

offering simulation speed of 10000 times faster than  software-based simulation.
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Figure 2.20: General view of a Heterogeneous PBE system

2.3 CAD Flow for Logic Emulation System s

So far we have discussed different hardware architectures used in logic emulation systems. However, 

it goes without saying th a t without a useful computer-aided design (CAD) tool set, an emulation 

system would be a completely useless piece of hardware. In this section, we briefly review design 

mapping CAD tools used in logic emulation systems discussed so far to  familiarize readers with basic 

ideas involved in designing CAD tools for a logic emulation systems.

2.3.1 Introduction

Recall from 2.2 tha t logic emulation systems are usually connected to  a host workstation on which 

CAD tools are run. Generally speaking, an emulation CAD tool is responsible for two major tasks:

1. Mapping a logic design (DUT) into the logic emulation hardware, and

2. Controlling and supervising the operation of logic emulator during run-time.

Consequently, CAD tools for logic emulation systems consist of two m ajor parts: design compiler and 

run-time support tools. The run-time support tools are a collection of different front-end software 

tools (such as graphical logic analyzer, waveform viewer, memory analyzer and etc.), which help the 

users in debugging DUT easily and efficiently during the emulation process. The run-time support
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tools may differ significantly from one manufacturer to another or even from one product to another. 

Due to such high degree of architectural dependency, the run-time support tool will not be out of 

the scope of this research. The main focus in this section will be the design compilation CAD tools.

By definition, an emulation design compiler is a complex CAD system that efficiently translates 

huge structural representations of the design-under-test into the target emulator architecture. In other 

words, the design compiler software takes the netlist of the DUT and translates it in a way th a t it 

could be mapped into the target emulation system, so th a t the functionality of the mapped netlist 

would accurately imitate the functionality of the original design. Given the fact th a t today’s medium 

size designs would contain hundreds of thousand logic gates, the most im portant agenda would be 

the speed and accuracy of the design compiler CAD tool. Obviously, a well designed emulation CAD 

tool would be the one th a t translate the DUT netlist to  the target emulation system more efficiently 

in less time.

The main focus of this section of thesis is to  introduce an efficient set of tools th a t can take a 

large design netlist and map it to the proposed HEP-based logic emulation engine. But before that, 

we are going to  briefly review the contributions made so far by other researchers in the field.

2.3.2 C A D  Flow for FBEs

At first, we will be examining the CAD tool flow of FPGA-based logic emulation devices (FBEs). 

To map a logic design into an FBE, the design netlist has to pass through several steps of design 

compilation shown in Fig.2.21. The followings explain each step in further details:

• D e sig n  E n tr y ; The first step is design entry, where the compiler accepts input design file(s) 

specified in hardware description languages (HDLs), schematic netlists or any other proprietary 

design entry tool. At the end a “raw” design netlist will be generated by the design entry tool.

• S y n th e s is : Design compilation begins by reading in the design file(s) and generating the gate 

level logic netlist, which involves the transformation of register-transfer level (RTL) specifica

tions to  gate level netlist [37] [18]. This process usually results in a large hierarchical collection 

of netlists. The compiler combines them into a non-hierarchical single-level (flattened) design 

netlist file. If the design files are utilizing ASIC (Application-Specific Integrated Circuit) or 

cell libraries, the design compiler expands the library elements to the fully primitive level. At 

the end of this stage, a large flattened gate-level netlist of the design-under-test is generated. 

Also, a t this stage nets which have to  be connected to in-circuit cable pins, logic analyzer or 

pattern  generator channels are identified and marked by the user.
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• Technology M apping-. At this stage the technology mapping tools translate logic primitives 

in the design file into FPG A ’s logic elements [17] [31]. For instance, if the FPG A ’s logic 

elements only support 4-input LUTs then those logic gates inside the netlist with fan-in degree 

greater than four are broken down into smaller logic gates supportable by FPG A ’s logic element 

architecture. Similarly, small logic gates with fan-in degree less than  4 will be grouped together 

so tha t they could fit into logic elements. Also, technology mapping can automatically generate 

the FPGA logic block to  emulate particular memory configuration in the design netlist.

• P a r titio n in g :  Next, the huge gate-level netlist has to be broken down into smaller chunks of 

logic netlists so th a t each chunk could fit into one FPGA chip on the emulation board. This 

step is essentially needed for those FBEs which contain multiple low-capacity FPG A chips2. 

This process is referred to as spatial partitioning, or simply, partitioning. The partitions are 

evaluated and optimized according to  different criteria like FPG A logic capacity (size), number 

of I /O  pins on FPGAs and tim ing/speed constraints. The goal of partitioning is to minimize 

the number of utilized FPGAs, while observing the above constraints.

Almost all partitioners will take “multi-level-multi-way” partitioning approach to perform 

partitioning on the design netlist. Through this process, first, the design netlist is partitioned 

into a number of logic modules (LMs) th a t are usually equal to the number of boards available 

in the emulator. Then each LM is partitioned into minimum possible number of FPGA chips. 

To perform multi-level-multi-way partitioning, two classes of solutions have been introduced: 

top-down techniques and bottom-up techniques. Two algorithms, min-cut [30] [36] and ratio- 

cut [68], belong to  the top-down category th a t cut the whole design netlist recursively into 

smaller and smaller partitions. Clustering techniques are used for bottom-up approach through 

which partitions are built up out of tightly interconnected logic primitives [19] [52]. Commercial 

partitioning tools use combination of both techniques alternatively to build the partitions. 

Once the partitions are created, each partition is assigned to  a single FPG A in the FBE.

On the other hand, those FBE systems in which time-multiplexed FPGAs or virtual wire 

technology is used, hardware resources (such as FPGA logic elements or I/O  pins) are shared 

over time. In such systems, the DUT netlist has to be partitioned not only spatially but also 

temporally. The temporal partitioning algorithms perform the partitioning operation on the 

netlist so tha t delay overhead of sharing resources is minimized. In virtual wire-based emu

lation systems, where FPGA I/O  pins are shared throughout time, the temporal partitioning

2Such systems are also referred to as Multi-FPGA Systems (MFS)
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algorithms bundle up source-sink pairs in the netlist and assign unique time slot to each signal 

value. The algorithms try  to minimize the time delay in all signals to obtain greater emulation 

speed [62]. In time-multiplexed FPGA-based emulation systems, the tem poral partitioning 

algorithm will partition a technology-mapped netlist based on the precedence of logic elements 

in netlist, so tha t those closest to  the input signals are emulated earliest and those closest to 

outputs are emulated last. The algorithms guarantee tha t no signal is emulated earlier than 

its fan-in  signals while keeping the number of FPG A reconfiguration minimum [63].

• B o a rd  Level P la cem en t:  Once the design is partitioned each partition must be assigned to 

an FPG A among numerous FPGAs on the emulation hardware. The complexity of this step 

is totally dependent on the interconnection architecture employed in the emulation hardware. 

For instance, those emulators in which partial crossbar architecture is used, the interconnec

tion architecture is totally symmetrical. Consequently, any random board level placement is 

acceptable. However, when the mesh architecture is used, placement becomes highly critical 

for maintaining the inter-FPGA connections as short as possible.

The most well-known placement algorithm is simulated annealing [43] [58] which imitates the 

annealing process in molten metals. Starting with a high-temperature the simulated annealing 

algorithm generates a number of random placements of partitions among multiple FPGAs. As 

long as the new placements decrease the cost function(s) (i. e. routing cost, delay) the new 

placements would be accepted as valid placements. If the new placements increase the cost 

function the algorithm still accepts them, but in a probabilistic manner. If the new tem perature 

gets below the “threshold tem perature” then the algorithm will stop and will accept the last 

placement configuration which generated the least cost value. This way the algorithm avoids 

getting trapped in the local minima. It is worth emphasizing that, just like partitioning, there 

are no optimum solutions for placement problem achievable in polynomial time.

• In te r -F P G A  R o u tin g :  The inter-FPGA router determines the routing path for each inter- 

FPG A  net. The router could use direct connections between each FPG A  pairs or it may 

use intermediate FPGAs and FPIDs, depending upon the routing architecture used and wire 

availability. The router tries to avoid or minimize the number of intermediate FPG A s/FPID s 

used so tha t usage of routing resources as well as delay is minimized. It also tries to balance 

the usage of routing resources to  ensure routing completion.

•  In tra -F P G A  P la ce m en t a n d  R o u tin g :  At the next step, the compiler has to place each 

logic partition into the assigned FPGA and perform routing of internal nets using internal
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routing resources of FPGA chips. The placement and routing tools for this purpose are usually 

provided by FPG A vendors and may vary significantly depending on the internal architecture 

of FPGAs [13]. However, the following four steps are common among all of them:

— Assigning each logic block in design netlist to a specific logic block in the target FPGA 

(placement). The goal is to  minimize to tal wiring length and critical path delays.

— Various FPG A placement algorithms have been proposed such as [50] [47] [5] [49].

— Finding topological path of wires of each net in the chip. This process is referred to as 

global routing. Global routing is performed based on graph search techniques guided by 

channel or switch block density [9] [13] [6].

— Defining routing regions by breaking the areas around FPG A  logic elements into channels 

and switch boxes. Performing detailed routing (also known as channel routing) for each 

region, one region at a time [9] [6].

In most algorithms mentioned above the main objectives are reducing wiring length as well as 

reducing signal delays in the mapped netlist.

•  Configuration Bit-Stream Generation: The last step in the design compilation flow is the gen

eration of the configuration bit stream  for each FPG A which would be eventually downloaded 

into FPGAs.

Once the configuration bit-stream is downloaded into the FBE hardware, the DUT is ready to be 

emulated.

It is worth emphasizing that, despite the fact th a t the CAD flow is presented sequentially, in 

the real world, CAD tools might iterate several times through different steps to  obtain near optimal 

results. Also, for the sake of simplicity, some intermediate steps such as design rule checking (DRC) 

and clock tree analysis are not illustrated here. Commercial CAD tools might run the CAD tool on 

multi-processor platforms to reduce the compilation time.

Most importantly, partitioning placement and routing are well known examples of NP-hard prob

lems, for which there are no algorithms available th a t can produce optimal results in polynomial time 

[59]. Instead heuristic techniques are used, which usually provide acceptable near-optimal solutions 

w ithin a reasonable am ount o f tim e. However, the design com pilation tim e is quite dependent on 

the size of design netlist. Consequently, in comparison with PBE CAD tools, design compilation 

under FBE CAD tools is relatively more time consuming and less predictable3.

3Hence, it takes significantly more time to make “what-if” changes in DUT, if it were emulated using FBE.
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2.3.3 C A D  Flow for PB E s

As it was mentioned earlier, a typical PBE system contains a collection of highly parallel processors 

that, together, they emulate the functionality of DUT. Just like FBE systems, PBEs should be 

accompanied by a set of CAD tools th a t automatically “translate” the DUT’s netlist into PBE 

hardware for emulation purpose. PB E ’s CAD tools take the design netlist through a series of steps 

to  compile. At the end of compilation a set of executable binary codes will be generated for each 

emulation processor in the target PBE hardware. Once executable codes are generated, they will 

be downloaded into the “program memory” associated with each processor. Each processor will 

execute a unique emulation program.

The design compilation flow for PBE systems is similar to tha t of FBE system, with some minor 

differences. In fact, the algorithms involved in design compilation for PBE systems are relatively 

simpler and less complicated. A typical design compilation flow for PBEs is shown in Fig. 2.22. The 

detail of activities at each step is as follows:

•  Design Entry and Synthesis: these two steps are more or less identical to  those in FBE CAD 

tool. At the design entry step, the compiler accepts input design file(s) specified in hardware 

description languages (HDLs), schematic netlists or any other proprietary design entry tool. 

The synthesis tool will generate a large flattened gate-level netlist of the design-under-test.

• Technology Mapping: Next, the gate-level netlist is mapped into logic primitives which are 

recognizable by the emulation processors architecture. Hence the result of this step may vary 

significantly from one PBE to another.

• Spatial and temporal partitioning: At this stage, DUT netlist is divided into smaller sections 

so th a t once an emulation program is generated for each partition, the program could fit into 

the “control memory” of the associated emulation processor. The PBE partitioning tool will 

perform the partitioning process based on the processing capacity of each emulation processor 

within the network, or in other words processor’s granularity4. The partitions are then tem 

porally arranged based on their precedence in the circuit. Such process may also be referred 

to as scheduling. Temporal partitioning tools determines the sequence of execution for each 

emulation program. The objective of scheduling algorithm is to balance the processors’ work

load by evenly distributing tasks among different processors and maximizing emulation speed 

by profiling inter-processor connection.

4As opposed to PBEs, in FBE CAD tools the main constraint for partitioning is FPGA logic capacity versus 

available I/O pins while minimizing delay.
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•  Emulation Program Generation: The last stage is to generate the instruction words (i. e. op

code) for each processor. The instructions will be eventually downloaded to the control mem

ories of processors. After downloading the control programs the emulation hardware is ready 

to  emulate the DUT.

Few notes about the CAD tool flow mentioned above would be in order: F irst, it should be empha

sized th a t design compilation steps listed above may not appear in all PBE systems because these 

systems are quite diverse with respect to  their architecture. In some cases more/less steps for design 

compilation might be needed. Second, technology mapping tools in PBEs might be very complex 

based on the granularity of emulation processor. For example in, heterogeneous architectures (see 

B) the technology mapping tool has to  be able to automatically identify functionality of each sub- 

module (such as adders/multipliers, memories, counters/shift registers etc.) in the netlist and then 

assign/m ap each submodule to  its corresponding emulation processor. Such capability might require 

technology mapping tools to contain comprehensive set of libraries for all functional submodules or 

have profiling capabilities to identify each submodule in the DUT’s netlist. Obviously, this increases 

the complexity of CAD tool quite extensively. Examples of such tools can be found in [29] although 

the authors have not explained details of their CAD tools. Third, in some cases the order of spatial 

and temporal partitioning might be reversed where seemed appropriate. Based on the above facts, 

it is evident tha t in order to  prove the efficiency of the proposed HEP-based logic emulation engine, 

we need to introduce the accompanying set of CAD tools th a t automatically translate the DUT 

netlist to the target emulation engine. In the next chapter of this thesis we are going to  introduce 

the proposed set of tools as well as their sequential flow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. BACKGROUND AND PREVIOUS WORK

Design 
fcntrv

Logic
Synthesis

Technology
Mapping

Partitioning/
Assignment/
Scheduling

Emulation Program  
Generation

Downloading 
Emulation Program

Figure 2.22: CAD Flow for PBEs

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 3

Architecture o f  H ybrid  E m ulation  

P rocessor (H E P)

This chapter introduces a new class of processor-based logic emulations systems (PBE) th a t are easily 

implementable in FPGAs. The new emulation system is referred to as hybrid emulation system. The 

basic building blocks of the proposed architecture are Hybrid Emulation Processors (HEP) which is 

described in details in this chapter. The architecture of the HEP processor has few similarities with 

the architecture explained in [29]. However there are fundamental differences th a t will be explain 

when appropriate. The information presented in this chapter will also help readers to understand 

the software considerations for mapping CAD tools presented in future chapters.

3.1 Top-Level Organization the Emulation Engine

The proposed logic emulation system consists of an array of 64 identical processors referred to  as 

Hybrid Emulation Processor(HEP). The processors can transm it and receive data  through an inter

connection network. All the processors execute their local program in parallel. A  global sequencer (or 

Program Counter), whose value is shared by all 64 processors, causes the processors to  step through 

their emulation program in synchronism. Such embodiment consisting of processors, interconnect 

network and global sequencer is called an emulation module. The block diagram of an emulation 

module is shown in Fig. 3.1.
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Figure 3.1: Block diagram of an emulation module

3.2 How a Logic Design is Emulated?

Before moving on to  details about the internal architecture of the proposed emulation system, it is 

appropriate to  give the big picture on how a typical logic design can be emulated on this engine.

Before emulation starts an emulation CAD tool translates, maps and partitions the design-under- 

test into logical clusters. For each cluster, a control program consisting of a set of control words 

is constructed for a specific emulation processor. Individual emulation control programs are then 

loaded into embedded control memory associated with each processor prior to emulation. During 

emulation, the emulation processors execute control words from their respective control programs 

in synchronism via step values provided by the program counter. A complete sequence of steps 

corresponds to traversing all logic paths starting from the inputs towards the outputs within the 

DUT. It should be emphasized th a t each processor executes its unique program to emulate its 

assigned logic cluster. Due to the fact th a t the logic within clusters should be able to interact 

with each other, therefore the processors need to  have the ability to  transm it and receive data 

to/from  each other. The communication among the processors is provided through the non-blocking 

interconnection network consisting of sixty four 64-input multiplexers (MUX).

In the following sections the internal structure of each part in the emulation engine is described
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Figure 3.2: Internal structure of HEP Processor.

as well as their functionality.

3.3 Structure of Hybrid Emulation Processor

The emulation engine contains 64 identical HEP processors. The hybrid emulation processor (HEP) 

is a basic building block of the emulation engine. The internal structure of the processor is shown in 

Figure 3.2. At the heart of each processor there is a reconfigurable 4-input look-up table (LUT) th a t 

can implement any logic function of four inputs. A /c-input LUT, can implement 22> logic functions. 

Given the fact tha t in this architecture k = 4, HEP processor can implement any of 65536 possible 

logic functions at each step 1. The processor’s primary function is to execute 4-input logical function 

and produce a “function bit-out” during each step of the sequencer. Figure 3.3 exemplifies how the 

logic function (F) of four inputs (A,B,C and D) is implemented using a 4-input LUT. Presence 

of LUT in t h e  emulation p r o c e s so r  c e r ta in ly  e n a b le s  the p r o c e s so r  t o  e m u la te  a n y  c o m b in a t io n a l  

logic consisting of 1-4 inputs. On the other hand, to  enable a processor to emulate sequential logic, 

two memory arrays are implemented to  store logic values: Local Data EAM(LDR) and Input Data

xAs opposed to [29] in which k = 3.
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Figure 3.3: Example of implementing function F in a 4-input LUT.

RAM )(IDK). To implement a logic function, the “select” inputs to the 4-input LUT can receive 

any value from either of two memory arrays. Hence, an alternative to processors’ logic function is a 

memory operation th a t stores/retrieves binary values to/from  these memory arrays.

Embedding memory modules within each processor has created an architectural superiority over 

other emulation engines as well. Given the fact that, most of the today’s logic circuits have some sort 

of built-in “memory” , th a t stores binary information for processing (e. g. System-On-Chip modules 

have various memories, registers and buffers), embedded memory modules within each processor can 

be used to  emulate various memory-related operations in DUT.

Each processor can produce one-bit output at each step. Based on the above scheme the resulting 

function bit out may correspond to:

• a combinatorial logic output corresponding to  a combinatorial logic cluster in the DUT

• register output in the DUT

• single-bit value read from a cell in a memory array

Additional common operations performed by the processor during the emulation steps include storing 

the function bit out for subsequent use by the processor inside the Local D ata Ram (LDR) and

capturing and storing external (to the processor) data from other processors inside Input D ata

Ram(IDR).
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Each processor contains two sets of “program” memories referred to  as Right Control Memory 

and Left Control Memory. The left and right control memories hold a unique program created by 

the emulation CAD tool for each processor. The LDR and IDR hold data  previously generated and 

are addressed by fields in a corresponding right control word to  locate (fetch) four binary bits for 

input to  the LUT.

All the processors step through their program memories, while all share the value in the program 

counter (sequencer register). During each step of the sequencer an HEP processor emulates either a 

four input logic function, a memory array access or simply nothing (i. e. No-Operation) according to 

the instruction read from the program memories. Different fields in the left and right control words 

determine the type of operation as well as controlling the “data  flow” within the processor.

3.4 Instruction Set Architecture of HEP

Unlike generic processors th a t usually have a large set of instructions, the HEP processor realizes 

only four instructions2. The combination of these four instructions constitute emulation programs 

which control the hardware emulation process on each HEP processor. As it is depicted in Figure 3.2 

each instruction consists of two control words which are stored in Left and Right Control Memories 

respectively. The HEP instructions are:

1. LUTOP: Refers to  “LUT Operation” . The LUTOP instruction emulates a combinatorial logic 

functions of 1-4 inputs. Different fields of this instruction is shown in Fig. 3.4. The two most 

significant bits (MSB) (i. e. bits 17:16) of the left control word identifies the op-code (in this 

case = “01” ). The remaining 16 bits in the left control word (i. e. bits 15:0) is the value which 

is loaded into the logic function table inside the 4-input LUT. The logic function is emulated 

by forming an address from four data  bits retrieved from LDR and /or IDR. The location of 

these four bits inside the LDR and IDR memory spaces are specified in the right control word. 

Each address is 7 bits long which in Fig. 3.4 are labeled as “Operand Address A” (bits 6:0), 

“Operand Address B” (bits 7:13), “Operand Address C” (bits 14:20) and “Operand Address 

D” (bits 21:27). Four bits within the “source” field in right control word (bits 28:31) are used 

to configure the da ta  path within the HEP processor to  select between LDR and IDR as the 

so u r c e  for  fe tc h in g  fo u r  o p e r a n d s . F or in s ta n c e , i f  b it  2 8  is  “0 ” t h e n  o p e r a n d  “A ” is fe tc h e d  

from LDR otherwise the value is fetched from IDR. The six bits of the “Node Address” in the 

right control word (bits 32:37) are used to select the single bit input to  HEP processor from

2 Instruction set of processors in [29] consists of only two instructions.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. ARCHITECTURE OF HYBRID EMULATION PROCESSOR (HEP)

Left
Control
Word

Right
Control
Word

2-bits

OP-Code 
(0 1 )

16-blts

LUT Value

6-bits 4-bit 7-bits 7-bits 7-bits 7-bits

Node
A ddress Source Operand 

A ddress D
Operand 

Address C
Operand 

A ddress B
Operand 

A ddress A

Left
Control
Word

Right
Control
Word

2-bits 16-bits
OP-Code

(11) xxxxxx
6-bits 3-bits 1-bit 21-bit 7-bits

Node
A ddress XX Source XX RAM Address

Figure 3.5: Fields of RAMREF instruction

any of the 64 processors in the emulation engine. This address is applied to  the associated 

64-input multiplexer (switch) to  select a “bit-out” from one of the 64 processors in the engine. 

The selected processor bit-out is received as a processor bit-in signal and is stored in the IDR.

2. R A M R E F: Refers to  “RAM Referencing” . The RAMREF instruction performs a memory 

access operation on either LDR or IDR. The instruction will read single bit value from RAM 

memories and presents it as the processor’s bit-out. Figure 3.5 shows different fields of this 

instruction. The two most significant bits in the left control word (bits 16:17) indicates the 

opcode ( = “11” ). The 7-bit address of the value th a t has to be fetched from LDR or IDR is 

presented in the least significant bits of the right control word (bits 0:6). A single “source” 

bit in the right control word (bit 28) specifies whether the value should be fetched from LDR 

or IDR (if the source bit = “1” then the value is fetched from IDR). The six most significant 

bits in the right control word (bits 32:37) specify the “Node Address” which was discussed in 

“L U T O P ” in s tr u c t io n .

3. RO M R EF: Refers to  “ROM Referencing” . The ROMREF instruction reads one bit value from 

the “Right Control Memory” and presents it as the processor’s output (i. e. bit-out). This
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Figure 3.6: Fields of ROMREF instruction

instruction is mainly used when static binary values are needed for the emulation process. 

It is worth mentioning that, since the content of both Left and Right Control memories is 

loaded only once during the initialization of emulation engine, the binary values stored in 

these memories can be used to  represent static data. Figure3.6 shows different fields of this 

instruction. The two most significant bits in the left control word (bits 16:17) represent the 

opcode ( = “10” ). Seven least significant bits in the left control word (bits 0:6) contain the 

address of the location in the right control memory where the value must be read from. The 

value tha t is read from the right control memory is a 16-bit binary value from which only 

one bit is desirable. The 16-bit value fetched from the right control word is high-lighted in 

Figure3.6 as the lower 16 bits in the “Right Control Word(2)” . To address a single bit among 16 

bits, a 4-bit “bit-address” field in the left control word (bits 7:10) is used. Six most significant 

bits in the right control word (1) (bits 32:37) constitute the “Node Address” field. For further 

information about this field please refer to  descriptions of LUTOP instruction.

4. N O P : Refers to  “No-Operation” . The NOP instruction does exactly what is says so: it 

does nothing at all. Such instruction causes the processor to  slack (stall) for the duration of 

one instruction, during which it stores necessary data received from other processors. Such 

instruction is usually needed when one processor requires multiple inputs produced by other 

processors all the same time. In tha t case the processor should “wait” for other processors to 

produce the input values. Different fields of NOP instruction is shown in Figure 3.7. The two 

most significant bits in the left control word (bits 16:17) indicate the op-code value for this 

instruction ( = “00”). Six most significant bits of the right control word (bits 32:37) contain
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Left
Control
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the “Node Address” (see descriptions of “LUTOP” instruction for further details about “Node 

Address” ). It is worth emphasizing th a t although the NOP instruction has no functional 

significance except for the fact th a t it still uses “Node Address” to  select one of the 64 processors 

in the engine and latch the in-coming data  from the selected processor.

It is worth emphasizing tha t an HEP processor, unlike other processors, does not recognize any type 

of “jum p” or “conditional statem ent” instructions. The processor simply executes all the instructions 

one by one until it is halted by the emulation supervisory unit.

3.5 Central Control U nit of HEP

From the mathematical point of view a digital processor, in this case HEP, is a Turing machine 

with finite number of “states” . Hence, all digital processors contain a central control unit tha t 

implements a Finite State Machine(FSM) th a t takes the processor, step-by-step, through a series 

of activities or states. Being no exception to this rule, the HEP processor contains a central control 

unit th a t traverses a finite state machine, symbolically shown in Figure 3.8. By traversing the FSM, 

the control unit supervises the flow of data  inside the processor. In other words the FSM determines 

what kind of activities or events take place inside the processor during an instruction cycle.

Due to the fact th a t an HEP processor has only four types of instructions, the instruction cycle 

is less sophisticated than  those in general purpose processors. In nutshell, during one instruction 

cycle, the processor fetches one instruction word from both Left and Right Control memories, where 

the “Program Counter Register” is pointing at. The instruction is then decoded and executed. The 

o u tp u t  p r o d u c e d  b y  a  p r o c e s so r  is  a  s in g le  b it  v a lu e  w h ic h  a p p e a r s  o n  t h e  p r o c e s so r ’s “N o d e  B i t - o u t ” 

pin3. A copy of the output value is also stored in the Local D ata RAM (LDR) memory within the 

processor for future references. The location where the output value is stored inside LDR is again

3The only exception to this rule is the “N O P” instruction which does not produce a new output.
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provided by the program counter register. Also, during each instruction, a processor will receive 

a single bit input from one of the sixty four processors inside the emulation engine. The received 

input is automatically stored inside Input Data A AM (IDR), where Program  Counter points to.

In Figure3.8 each state has been assigned a unique two-digit state number which appears inside 

each state box.Details of activities taking place at each state of instruction cycle is explained below.

1. S ta te  “00” : This state initiates the fetching of instruction words from Left and Right Control 

Memories. The “Read” signals to  both memories are asserted (active “High” ). The address 

of the instruction is provided by the global sequencer (Program Counter Register) and is 

placed on the address bus. The control words read from both control memories are stored into 

processor’s Left Control Register and Right Control Register respectively. Once the control 

words are read into the registers, the instruction is immediately decoded. Based on the type 

of the instruction, the control unit may jum p to one of four possible states (i. e. “State 11” , 

“State21” , “State 31” or “State 41” ) in the next HEP clock cycle.

2. S ta te  “11” : By this state, the processor has identified (decoded) th a t the instruction to  be 

executed is a LUTOP instruction. The six-bit “Node Address” is extracted from the right 

control word (bits 32:37) and applied to the 64-input MUX to select the single input bit to  the 

processor among 64 inputs (see 3.4). The logic function table of the 4-input LUT is updated 

with a 16 bit value stored in the left control word. The location address of the first operand 

to the 4-input LUT is extracted from the right control word ( “Operand Address A”) and 

applied to the address busses of both LDR and IDR. The respective “Read” signals to LDR 

and IDR are asserted. Bit 28 of the left control word selects either LDR or IDR as the source 

for “Operand A” . Consequently, a t the end of this state the first input to the 4-input LUT is 

fetched from the memory.

3. S ta te  “12” : At this state the location address for the second input to  the 4-input LUT

(i. e. “Operand Address B”) is extracted from left control word and placed on LDR and IDR

address busses. Also, bit 29 of the left control word selects either LDR or IDR as the source 

for “Operand B” . At the end of this state the value of “Operand B” is fetched from either of 

the memories.

4. S ta te  “13” : At this state the location address for the third input to the 4-input LUT

(i. e. “Operand Address C”) is extracted from left control word and placed on LDR and

IDR address busses. Also, bit 30 of the left control word selects either LDR or IDR as the
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source for “Operand C” . At the end of this state the value of “Operand C” is fetched from 

either of the memories.

5. S ta te  “14” : At this state the location address for the fourth input to the 4-input LUT 

(i. e. “Operand Address D” ) is extracted from left control word and placed on LDR and IDR 

address busses. Also, bit 31 of the left control word selects either LDR or IDR as the source 

for “Operand D” . At the end of this state the value of “Operand D” is fetched from either of 

the memories.

6. S ta te  “15” : By the end of “State 14” all four operands to  the 4-input LUT are fetched 

from data memories. These four operands construct a 4-bit address to  the 4-input LUT (see 

Fig. 3.3). Hence, a t the beginning of State 15, the “Read” signals to data  memories are 

disactivated, marking the end of the operand read cycle. During State 15 the 4-input LUT 

generates one-bit value as an output. The output of the LUT is stored in a tem porary buffer 

within the HEP processor and will be stored in LDR later a t “State 17” . Also, each HEP 

processor will receive one input bit from one of the 64 processors. The received bit must be 

stored in the IDR memory. The location inside IDR where the input bit must be stored at 

is addressed by the current value of Program  Counter Register. Therefore, a t this state the 

value of program counter register is placed on the address bus of IDR. Also, the “Write” signal 

to  IDR memory is activated. At the end of this state processor’s “bit-in” is latched (written) 

into IDR.

7. S ta te  “16” : At this state, write cycle to IDR is terminated. The output of the LUT is 

transferred from the tem porary storage to the internal data  bus of the processor so that, on 

the next state, it would be stored inside the LDR memory.

8. S ta te “17” : At this state, the output of LUT appears on the “Node Bit O ut” pin of the 

processor. This value must also be stored inside LDR memory where value of Program  Counter 

Register is pointing to. Hence, the content of program counter is placed on LDR’s address bus 

and the memory’s “Write” signal is activated. At the end of this state, the output of LUT is 

stored in LDR. Also, Program Counter Register is automatically incremented by one.

9. S ta te  “ 18” : At this state the, LDR’s write cycle is term inated which, in fact, marks the end  

of execution cycle of one LUTOP instruction. At the end of this state, the processor jumps 

back to  State “00” which initiates fetching of the next instruction in control memories.
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10. S ta te  “21” : The controller jumps to  this state if the new instruction happens to be a “RAM

R EF” instruction (see 3.4). The function of RAMREF instruction is to  retrieve one bit value 

from either LDR or IDR memory arrays. Seven bits within the right control word (bits 0:6) 

provide the address of the location where the desired value is stored. Hence, this address is 

applied to  the address bus of both data  memories (LDR and IDR). Then “Read” signals to 

both memories are asserted (activated). The “source” bit in the right control word (bit 28) 

specifies the LDR or IDR as the supplier. At the end of this state a single bit value is fetched 

from one of the data  memories. Also, at this state, the six-bit “Node Address” is extracted 

from the right control word (bits 32:37) and applied to the 64-input MUX to select the input 

bit to  the processor among 64 inputs.

11. S ta te  “22” : At this state the value th a t was fetched from either of data  memories during 

State “21” , is latched within a tem porary storage inside the processor.

12. S ta te  “23” : At this state the “Read” signals to both data  memories are disactivated which 

marks the end of memory read cycle. Also, the input bit to  the processor which was selected 

during State “21” has to  be latched inside IDR. Hence, the address where the input bit has to 

be stored inside IDR is provided by Program Counter Register and applied to  IDR’s address 

bus. Then the “Write” signal to  IDR is activated and input bit to the processor is stored inside 

IDR. At the end of this state the Program  Counter Register will be automatically incremented 

by one.

13. S ta te  “24” : At this state the “Write” signal to IDR memory is disactivated to  mark the end 

of the data memory write cycle. Also, the single-bit value th a t was previously fetched from 

either of data memories (LDR/IDR) during State “21” is transferred to  the output pin of the 

processor (i. e. “Node Bit O ut”). This value would be the output value of the processor at 

the end of the RAMREF instruction. At the end of this state the controller will jump back to 

State “00” to initiate fetching of the next instruction.

14. S ta te  “31” : The controller jumps to  this state if the new instruction happens to be “ROM

R EF” instruction (see 3.4). The function of ROMREF instruction is to  retrieve one bit static 

value from right control memory. To perform this operation, ROMREF instruction will need 

to fetch a second word from th e right control memory. Therefore, at the beginning o f th is  

state, the address of location where the second word is stored, will be extracted from the seven 

least significant bits of the left control word and applied to  the address bus of the right control 

memory. At the end of this state a 16 bit value is fetched from the right control memory.
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15. S ta te  “32” : Among the 16 bits fetched from the right control memory at State “31” , only 

one bit is desirable. To extract the bit value, the 16 bit value is loaded into the logic function 

table of the 4-input LUT. Four bits in the left control word (bits 7:10), also referred to  as 

“bit address” are used as the input address to the 4-input LUT. Once the four bit address is 

applied, the LUT will extract one bit among the 16 bit value. At the end of this state the 

extracted bit value will be stored in a tem porary register inside the processor.

16. S ta te  “33” : In this state the processor will select one input among all 64 inputs to  the 

processor. The processor input must be stored in IDR memory. Therefore, a t this state the 

location where the input bit has to  be stored at inside the IDR will be provided by Program 

Counter Register. The “Write” signal to IDR is also activated. At the end of this state the 

“Node Bit-in” is stored inside IDR memory.

17. S ta te  “34” : At this state the single bit value, which was extracted from the right control 

memory during the state “32” , will be transferred to output pin of the processor ( “Node 

Bit-out”). Also, a copy of th a t bit has to  be stored inside LDR memory for future references. 

Hence, the address of the location where th a t value has to  be stored is provided by the Program 

Counter register and placed on the address bus of the LDR. Subsequently, the “Write” signal 

to  LDR is activated. At the end of this state the single bit value retrieved by the ROMREF 

instruction is stored in LDR memory.

18. S ta te  “35” : This state marks the end of the processor’s write cycle. The Program Counter 

Register is incremented by one. At the end of this state the processor will jum p back to  State 

“00” to  initiate the fetching if the next instruction.

19. S ta te  “41” : The controller jumps to  this state if the new instruction happens to  be “N OP” 

instruction (see 3.4). The NOP instruction performs no significant function. It causes the 

processor to delay for one instruction cycle. The only activity th a t takes place during this 

instruction is tha t the processor receives a single input bit from one of the 64 processors and 

stores the value inside the IDR memory. To perform that, six-bit “Node Address” is extracted 

from the right control word (bits 32:37) and applied to the 64-input MUX to select the input 

bit to the processor.

20. S ta te  “42” : The location where the input bit has to be stored inside IDR memory is provided 

by Program  Counter register and is applied to  address bus of IDR memory. The “Write” signal 

to  IDR is activated at this state. By the end of this state the input value is stored inside the
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IDR memory.

21. S ta te  “43” : This state marks the end of memory’s write cycle as well as the processor’s 

instruction cycle. At the end of this state the processor returns to  State “00” to  initiate 

another instruction cycle.

Although there are to tal number of 21 states shown in control un it’s FSM, we have managed to 

“combine” all the states in to  only 9 states during implementation. Also, we have used “one-hot” 

encoding technique to further simplify the structure of HEP processor. Consequently, the longest 

path, from the start of the FSM towards the end, consists of total of 9 states. Given the fact th a t 

each state takes one clock cycle to finish, maximum instruction execution time in an HEP processor 

is 9 x Tciock , where Tc[oci~ is the period of processor’s clock signal.

3.6 Control M emory of HEP

An HEP processor contains two memory arrays which, together, store the emulation program as

signed to each processor. These memories are referred to as Left and Right Control memories 

(Fig. 3.9). Each control memory stores 128 control words, executed sequentially and repetitively 

under the control of program counter (global sequencer) register. Each revolution of the program 

counter from zero to  a predetermined maximum value(< 127) corresponds to  one design path clock 

cycle in DUT. A left control word and a right control word in the control memories are simultaneously 

selected during each instruction cycle.

Each instruction word in the left control memory consists of 18 bits. The two most significant 

bits in the left control word always (bits 16:17) indicate the instruction op-code (for details about 

each field of left control word please refer to3.4). The functionality of remaining bits in the left 

control word (bits 0:15) depends on the type of the instruction. The left control memory is always 

addressed directly by the step value inside the program counter register. Each instruction word 

in the right control memory consists of 38 bits that, depending on the instruction type, might be 

interpreted differently (for details about each field of right control word please refer to 3.4). The 

right control memory is usually addressed by the step value inside the program counter register 

unless the “ROMREF” instruction is being executed. In such case, contents of the right control 

memory are interpreted as static data in the emulated memory array and is addressed by the value 

extracted from left control word. Accordingly, any of the right control words may be addressed 

during any step of the sequencer and only the left control words are sequentially addressed by the 

program counter register.
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Figure 3.9: H E P’s Control Memory structure.

The contents of both Left and Right Control memories are uploaded only once during the initial

ization of the emulation engine. During this time all the processors will be halted and no operation 

will take place. Therefore, both control memories have additional address and data  busses for down

loading binary information in to  them. These ports are managed by the an external “Download 

Manager Module” within the emulation engine. Once downloading bitstream s into control memo

ries is finished, the download manager reset all the HEP processors in the emulation engine and the 

processors s ta rt the emulation process synchronously.

3.7 D ata M emory of HEP

Each HEP processor has two 128-by-l bit memories for data storage. These data  memories are 

referred to as Local Data /M M  (LDR) and Input Data R A M  (IDR). The LDR memory stores a copy 

of the the output bit generated by the processor after executing each instruction. The IDR memory, 

on the other hand, stores the single bit value th a t a processor receives from one of the 64 processors 

in the emulation engine during each and every instruction execution. The write address to both data 

memories is always provided by the step value stored inside the program counter register (global
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Figure 3.10: H E P’s D ata Memory structure.

sequencer). The read address to data  memories is provided by fields inside the right control word 

of each instruction. Figure 3.10 shows the block diagram of data memories inside each processor. It 

is worth mentioning that, the IDR memory is written to  during every instruction cycle. The LDR 

memory is written to  during ever instruction cycle, except for “RAMREF” instruction.

3.8 Input/O utput Ports of HEP

An HEP processor generates a single bit output after executing each instruction. The processor’s 

output appears on the “Node Bit-out” pin which is connected to  the emulation engine interconnect 

network. An emulation engine contains sixty four HEP processors. An output pin of one processor 

is connected to  the input of all other 63 processors inside the emulation engine. Evidently, such 

interconnection network would enable each processor to  receive its input, one bit a t a time, from 

any other processor inside the emulation engine-1. As it is shown in Figure 3.11 all 64 inputs to one

4In reality, the output of one processor is also provided as the sixty fourth input to the sam e processor to make the  

architecture more symmetric. That means, that each processor can also accept an input from itself as well. However, 

in this embodiment such functionality is never used.
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Figure 3.11: H E P’s Inpu t/O u tpu t structure.

processor are connected to a 64-by-l multiplexer. The single input bit to  one processor (i. e. “Node 

Bit-in” ) has to  be selected by the same processor among all 64 inputs5. To do that, the processor 

needs a six-bit address. Six most significant bits of the instruction’s right control word (bits 32:37) 

provides such address to the 64-by-l MUX (for further details please refer to section 3.4). It should 

be emphasized tha t the input bit to  a processor is always stored inside the IDR memory during 

every instruction cycle.

3.9 H E P ’s Program Counter Register (Global Sequencer)

As it was mentioned earlier in this chapter, all sixty four processors inside the emulation engine, al

though they execute their unique emulation program, they all step through their emulation program 

in synchronism. Consequently, an emulation engine should contain a Global Sequencer th a t helps 

all the processors to  step through their program. The step value provided by the global sequencer 

is identical to all the processors. This value could be between zero and 127 (total of 128 steps).

5The processors described in [29] are connected to 3 adjacent processors through a mesh interconnect. Hence, each 

processor can receive 3 inputs simultaneously.
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However, in reality, due to the fact th a t the global sequencer’s output has to be fanned out to  64 

processors, we decided to  “localize” the global sequencer inside each HEP processor. Therefore a 

global sequencer has now become the Program Counter Register within an HEP processor. But it 

has to be emphasized th a t a t each instant of time during the emulation, the values stored in all 

program counter registers are equal. Since each processor can only execute to tal of 128 instructions, 

the Program Counter Register is a seven-bit long. The program counter is incremented every 9 clock 

pulses of system clock (Figure 3.12). The reset signal causes the program counter to  initialize to 

zero.

3.10 Additional Signal Pins of HEP

The physical pin-out mapping of an HEP processor is shown in Figure 3.13. Each processor, being a 

synchronous machine, has an input Clock signal. The clock signal is identical to all HEP processors 

in the engine and, as we will see in future chapter, is referred to  as system clock. The Reset signal 

to each processor is activated only once at the beginning of the emulation operation. Upon the 

activation of reset signal the program counter register is reset to  “0” and all the processors will s tart 

executing instructions starting at address zero.
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C hapter 4

Im plem en ta tion  o f  H ybrid  Em ulation  

Processor  on F P G A

In section the architecture of HEP emulation processor was described. In this chapter we present the 

results of simulation, synthesis and implementation of HEP-base emulation engine on X ilinx™  Virtex- 

II and Virtex-4 FPGA devices. Also, a brief overview of other processor-based emulation systems 

th a t are being used in academia is presented. Finally, we compare the proposed architecture with 

other emulation systems based on size, logic capacity, speed and implementation platform.

4.1 Introduction

Until the mid 1990s, large scale digital circuits were functionally verified using software simulators 

and implemented using Application-Specific Integrated Circuits (ASIC). However, with the intro

duction of large capacity FPGAs, there has been a shift towards reconfigurable computing for verifi

cation and implementation. The fine-grained parallelism in FPGAs coupled with the inherent data  

parallelism found in many circuit simulation applications, have made reconfigurable computing an 

encouraging alternative th a t offers a compromise between performance of fixed-functionality hard

ware and flexibility of software-programmable devices. As opposed to general purpose processors, 

FPGAs allow non-standard word-length sizes and fully parallel processing, which can significantly 

improve throughput (e. g. one to  four orders of magnitude) with only a reasonable penalty in terms
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Figure 4.1: Generic architecture of HEP-based emulation engine
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of implementation area (3 — 4x) [44]. Additionally, using FPGAs can offer rapid prototyping of 

emulation engines in much less time. Using FPGAs for rapid prototyping usually reduces the de

velopment time by half. Also, unlike ASICs, FPGAs provide relatively flexible visibility into the 

design-under-development. Last, but certainly not least, is the price factor. The logic emulation 

systems th a t use proprietary ASIC emulation processors could be much more expensive than  those 

using off-the-shelf FPG A  modules. Based on the above facts, FPGA devices were selected as the 

target platform to implement the proposed HEP-based emulation engine.

4.2 Design Specifications for HEP-based Emulation Engine

The generic architecture of the proposed emulation engine is shown in Figure4.1. The engine consists 

of the following modules:

1. Sixty four HEP processors and the interconnection network

2. Target System I/O  Interface

3. Download Manager Module (DMM)

4. Signal Trap Module

The heart of the engine consists of 64 HEP processors th a t communicate through a time-multiplexed 

interconnection network. This module is in fact the target platform for the developed CAD tool, 

which will be discussed in later chapters.
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Figure 4.2: Example of Signal Trap circuitry.

The “target system I/O  interface” module connects the emulation engine to the target system 

where the DUT will be eventually mounted. The main task of I /O  interface module is to  acquire 

signal samples from the target system and assign these inputs to  emulation processors in appro

priate emulation cycles. The Download Manager Module (DMM) performs two main tasks: Before 

the emulation starts, it downloads the emulation program bitstream  into Left and Right Control 

memories of all 64 HEP processors inside the engine. Once the downloading process is finished, the 

DMM signals all processors simultaneously to start the emulation by activating their “Reset” signal.

Signal Trap module helps the emulation engine to  “trap ” (i. e. latch) a signal value during 

emulation runtime. This module is programmable by user, who determines which signal at what 

time should be monitored. Each signal trap  module is associated with one processor which creates 

a flexible signal monitoring capability. It is worth emphasizing th a t signal trap  modules can be very 

simple or very sophisticated with respect to their structure or functionality. In the simplest form, 

a signal trap  module consists of an “n-bit” digital comparator and a D-FlipFlop (Fig. 4.2). The 

comparator compares the value of Program Counter Register (Global Sequencer) with a predefined 

value (determined by the user). If these two values become equal (i. e. Program Counter reaches 

certain emulation cycle) the processor’s output ( “Node Bit-out” ) will be stored (trapped) in D- 

FlipFlop. Later on, any “monitoring” mechanism can extract and echo the trapped value to  the 

u ser . T h is  w a y  u sers  c a n  tr a c e  or m o n ito r  v ir tu a lly  a ll t h e  e v e n ts  in  D U T  d u r in g  r u n -t im e . I t  sh o u ld  

be emphasized that the main focus of this research was the evaluation and implementation feasibility 

of the HEP-based emulation core and the study of other submodules such as I/O  interface, DMM 

and monitoring are left for future research.
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4.3 RTL Design of H EP-Based Emulation Engine

Conventionally, FPGA design and implementation involves a top-down design flow, illustrated in 

Fig. 4.3 which was applied in implementation of the proposed emulation engine as well. The first 

step in the design process involved identifying hardware specification and general functionality of 

emulation engine. Based on the specifications, the register-transfer-level(RTL) models and test 

benches for each individual submodule in the engine were developed using VHDL language. RTL 

design refers to  the methodology of modeling a sequential circuit as a set of registers and a set 

of transfer functions which describe the flow of data  between the registers. Each submodule, is 

developed in VHDL using both behavioral modeling, to describe the functionality of the submod

ule, as well as structural modeling to instantiate and bind comprising submodules together. The 

design was simulated a t the RTL level by running the testbenches using ModelSim®. We chose a 

sequential 4 x 4-bit binary multiplier as an example of DUT and performed “sanity checking” on the 

emulation engine to  confirm the correct functionality of the proposed engine. However, timing and 

FPG A resource usage remains unknown until logic synthesis is performed. FPG A logic synthesis 

is performed to create an optimized gate-level netlist which is based on design constraint such as 

timing (speed), area, I /O  pin and power. Once the gate-level netlist is generated and mapped to 

the target FPG A ’s logic-elements, the design (i. e. Emulation Engine) is placed and routed inside 

the FPGA(s). The synthesis constraint also affect the effort required for placement and routing. If 

the design is over-constrained it is very likely th a t routing failure will occur since routing resources 

are fixed in FPGAs. The last step in the design flow is the generation of configuration bitstream  file 

th a t can be downloaded into FPGA.

It has to be emphasized tha t some intermediate steps in the FPG A  design flow are not shown 

in Fig. 4.3. In practice some of the steps might be executed iteratively. There are a number 

FPGA electronic design automation(EDA) tools th a t are provided by both FPG A  and third party 

manufacturers. Complete design environments are offered by Xilinx ISE[39] and Altera Quartus 

II [20]. Since, Xilinx Virtex-II and Virtex-4 FPG A device family are selected as the target platform 

for implementing the proposed HEP-based emulation engine, we used Xilinx ISE (v7.1) as the desired 

FPGA EDA development tool.

4.3.1 RTL Modeling of HEP Processor

The HEP processor is described using VHDL language and IEEE_std_logic_1164 library while adopt

ing a bottom-up approach. The RTL models of all submodules along with their functionality is
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Figure 4.3: FPGA Design Flow

described behaviorally in each design file. Later, each submodule is instantiated and binded to top- 

level modules using VHDL structural description. The hierarchy of VHDL design files is shown in 

Fig. 4.4, where “EP_Top_Module. vhd” is the HEP processor top module1. Each design file has an 

associated VHDL testbench file as well 2, which are used by ModelSim to perform RTL simulation. 

The functionality of each design file is described below.

1. “EP_PACKAGE. vhd” : Includes global constants shared by all the VHDL bodies (not shown 

in the figure).

2. “EP_PROGRAM_COUNTER. vhd” : Describes the functionality of Program  Counter Register 

(Global Sequencer) of HEP processor.

3. “EP-RECONFIGURABLE-4LUT. vhd” : Describes the functionality of the 4-input LUT.

4. “EP JNPUT-SW ITCH . vhd” : Describes the functionality of the 64-input reconfigurable mul

tiplexer tha t helps the processor to select the input “Node Bit-in” .

1The listing of VHDL design files are presented in the accompanying CD with this thesis.
2Testbench filenames are similar to design files except that they are followed by “_TestBench.vhd” .
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Figure 4.4: Hierarchy of VHDL design files for HEP Processor

5. “EP_RIGHT_CONTROL_ROM. vhd”: Describes the structure of Right Control memory of 

each HEP processor.

6. “EP_LEFT_CONTROLJtOM. vhd” : Describes the structure of Left Control memory of each 

HEP processor.

7. “EP-DATA-RAM. vhd” : Describes the structure and functionality of both data  RAM modules 

(IDR and LDR) within each processor.

8. “EP_CONTROL_UNIT. vhd” : Describes the functionality of central control unit of the HEP 

processor. It explains how the controller’s FSM actually works.

9. “EP-TOPJMODULE. vhd” : This is the wrap-up module th a t instantiates and binds all the 

submodules together to  build an HEP processor.

4.4 RTL Simulation Results

To investigate correct operation of HEP processor and its submodules as well as the emulation engine, 

we performed software simulation using ModelSim tool. A 4 x 4-bit sequential binary multiplier 

(Fig. 4.5) was selected as a design example to  be emulated on HEP-based emulation engine. Figures 

4.6 to 4.13 illustrate the simulation results.

Figure 4.6 illustrates the functional behavior of the program counter after initiating the reset 

signal to the emulation engine. The program counter is incremented by one during every instruction 

cycle.

Figure 4.7 illustrates the functionality of the reconfigurable 4-input LUT during the execution 

of two consecutive LUTOP instructions. “L U T Jnput-x” represent the select signals to  the 4-LUT 

module and “Input-value” is LUT value extracted from left control words.
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Figure 4.5: Example of 4x4 Sequential Binary Multiplier

Figure 4.8 shows the operation of 64-bit input switch of HEP processor during execution. The 

“address” represents the address of the processor within the module whose output is read during 

the instruction cycle. “Bus value” represent hexa-decimal equivalent of the value currently present 

on the interconnect network.

Figure 4.9 depicts read and write cycles of the input and local data  RAMs. During the first write 

cycle a node bit-in is latched into IDR which is fetched by a RAMREF instruction during cycle 3.

Similarly, figures 4.10 and 4.11 illustrate read and write cycles of Left and Right control memo

ries respectively. The write cycles show the process of downloading emulation programs into control 

memories. In the figure, the write cycles are marked by asserting “W rite” signal (=1). The read cy

cles, however, show the instructions are fetched from program memories and are marked by asserting 

“Read_data” signal to  high. The address of the instruction if provided through the “Read_Address” 

bus. The read/w rite cycles are synchronized with respect to system clock signal.

Figure 4.12 illustrates the functionality of H E P’s central control unit while executing a LUTOP 

instruction. The transition through states of FSM is clearly shown in the figure ( “FSM_State” sig

nal). The value presented a t the “Node_Bit_Out” represents the output value of the HEP processor.

Finally, figure 4.13 illustrates the functionality of an HEP processor after downloading 3 instruc

tions (e. g. Two NOP and one LUTOP instruction) into control memories and initiating the start 

of emulation by disactivating the processor’s “reset” signal. The output of the processor appears on 

the “node.bit_out” pin after executing the third instruction (i. e. LUTOP).

4.5 Synthesis Results

Once the proper functionality of all submodules were determined, a gate-level netlist of each sub- 

module as well as the whole processor was generated and mapped using Xilinx ISE®  (7.1) design en

vironment. The HEP processor was synthesized targeting Xilinx Virtex II (XC2V8000) and Virtex-4
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Figure 4.6: Simulated waveform view of Program Counter Submodule
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Figure 4.9: Simulated Read/W rite cycles of IDR and LDR
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Figure 4.12: Simulated functionality of Central Control Unit while executing a LUTOP instruction.
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Table 4.1: Synthesis results of HEP processor and submodules.

Virtex-2 Virtex-4

M odule Size CLE D elay F1 max Size CLE D elay Fmax

(# S lic e ) Usage(% ) (nS) (M H z) (# S lic e ) U sage(% ) (nS) (M H z)

P rg .C n tr 4 0 3.6 277 4 0 1.88 531

R econA LU T 4 0 4.58 218 4 0 3.03 330

Inpt-Sw tch 17 0 9.19 108 17 0 6.33 157

D ata-R A M 60 0 4.93 202 60 0 3.15 317

L ft-R O M 228 1 5.12 195 400 0 3.19 313

R ght-R O M 479 1 5.18 193 840 0 3.3 303

C n trJJ  n it 139 1 4.68 213 143 0 2.71 368

H E P 957 2 5.17 193 1529 1 3.31 301

(XC4VLX200) families of FPGA devices.

Table4.1 summarizes synthesis results for an HEP processor as well as its submodules in terms 

of speed, combinational path delay and FPG A  resource usage while targeting both FPG A families 

of devices (Virtex-2 and 4). Although there are different speed packagings are available in both 

families of FPGAs, we are only presenting the results for the most common speed packages. As the 

results in the tables show, the maximum combinational path delay in the processor determines the 

maximum system clock frequency of the processor as well.

It is worth emphasizing tha t to  make the VHDL design files transportable to other FPG A 

synthesis tools, no Xilinx proprietary library modules were used. Such assumption will force the 

Xilinx ISE tool to avoid using FPGA-specific resources such as embedded memory blocks.

The proposed HEP-based emulation engine, consisting of 64 HEP processors and their intercon

nect network was implemented while targeting Virtex-2 and Virtex-4 FPGAs from Xilinx. Table 4.2 

summarizes the synthesis results obtained by Xilinx ISE. The results are summarized with respect to 

number of modules, FPG A  resource utilization, emulation engine speed, maximum emulation time 

and maximum logic capacity of the HEP-based emulation system.
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Table 4.2: Synthesis results of HEP-based emulation system.

Feature V irtex-2 V irtex-4

# o f  Modules 2 1

# o f  H EP/m odule 32 64

#Slice

(%)

31150

(67%)

85525

(96%)

# 1 /0

(%)

264

(32%)

264

(27%)

System Clock 

F m a x i  MHz) 193 301

Instruction 

Cycle (ns)

46.6 29.9

max. Emulation 

time (fj,s)

5.95 3.81

Emulation program 

upload time (jis)

127 77

min. Emulation 

frequency(KHz)

168 262

Logic

Capacity

8K-160K 8K-160K
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4.6 Comparison and Conclusion

Before comparing the proposed architecture, we briefly review some existing logic emulation devices 

th a t are being used mainly in academia. The survey presented here is partially derived from technical 

documents which are available to public. However, due to confidentiality of detailed technical 

information related to  these system, some information are results of personal speculation.

Previous work generally fall into two main categories. The first, use time-multiplexed FPGAs in 

order to  build denser FBE devices. Examples of such systems would be Dharma[7] and DPGA[25]. 

The second approach use ASIC processors developed solely for logic emulation such as YSE[26] and 

VEGA [40],

1. Dharma[7]: is a general-general purpose time-multiplexed FPG A designed at the University 

of California3. DUT mapped into Dharma are levelized and entire level is evaluated per clock 

cycle (as opposed to  YSE in which circuits are serialized and only one logic block is evaluated 

per clock cycle). For a circuit to fit into Dharma, the number of logic blocks per level must 

not exceed the number of physically available logic blocks on the chip, which is a very huge 

disadvantage.

2. DPGA[25]: stands for Dynamically Programmable Gate Array and was developed at the MIT 

Artificial Intelligence Laboratory. DPGA is an FPGA with four configuration contexts and 

each context is stored in its configuration memory. The contexts are switched under external 

control. The basic logic element is in fact a 4-input LUT combined with a single flipflop th a t is 

shared among all contexts. DPGA is a general purpose hardware development platform th a t 

was not necessarily optimized for logic emulation purposes. For logic emulation purposes, a 

netlist must be partitioned into sub-circuits th a t each will fit into single context. The DPGA 

must contain sufficient memory capacity to store the results of each context (combinational 

logic blocks+flipflops) as well as configuration bitstream. Current embodiment of DPGA fails 

to  provide such provisions, therefore, roughly speaking, it is not suitable for logic emulation. 

On the other hand if the time delay caused by context switching is significantly higher than 

emulation time of one logic slice, then emulation speed will be drastically reduced to  unac

ceptable levels. However, DPGA demonstrate how time-multiplexing technique could result 

in better logic capacity utilization in FPG A s.

3. YSE[26]: Yorktown Simulation Engine was developed at IBM. Based on our classification pre

sented before, YSE is an example of hardware-accelerated simulator tha t uses 256 simulation-

3It is the first time-multiplexed FPG A that has been reported in literature.
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specific parallel processors to simulate (and not emulate) a logic design4. Unlike HEP-based 

emulation system, YSE does not provide in-circuit connection to target platform. Each pro

cessor in YSE is capable of simulating 4096 logic blocks. The processors are constructed from 

LSI TTL-based integrated circuits. The fundamental logic element used in the processors is 

a 4-input LUT. Signal values are represented as four-valued logic5. Hence, the signal state- 

memory has the capacity of 16K  x 2. To allow multiple accesses to  memory per clock cycle, the 

state-memory has five read ports and two write ports to. A 256 full-crossbar interconnect to 

route data  among processors. Although YSE achieved low logic density due to its construction 

from LSI modules, it vividly proved th a t hardware-accelerated simulation could be 600 times 

faster than  software simulation.

4. VEGA[40]: is an ASIC-based PBE system th a t was developed at the University of Toronto. 

Similar to  HEP, VEGA also uses 4-input LUT as the basic element for emulating combina

torial logic. An additional memory associated with each processor dynamically routes the 

inputs/outputs to/from  each processor. Although a VEGA has been implemented using ASIC 

technology, the emulation clock frequency is within few hundred kilo hertz.

Table 4.3 summarizes the features explained above. The last column expresses the features of 

HEP-based emulation engine. Comparing the results illustrated in table 4.2, the entire HEP-based 

emulation system, consisting of 64 processors, would require only two Vritex-2 FPGAs (XC2V8000) 

or just one Virtex-4 FPGA (XC4VLX200) for implementation. This means th a t an HEP-based 

emulation system is an order of magnitude smaller in size than other emulation systems. It is worth 

mentioning that, such reduction in size will significantly reduce the cost of HEP-based emulation 

system so th a t it is easily affordable by members of academia6. Also, HEP-based emulation system 

uses off-the-shelf FPG A modules where as most PBEs are implemented using ASIC technology. 

Hence, the implementation of HEP-based emulation systems takes significantly less time.

In term s of speed, an HEP-based emulation system have a clock frequency of 193-301MHz or 

emulation speed of 168-262KHz. Comparing with other PBEs th a t are using ASIC technology 

for implementation (e. g. VEGA), HEP-based emulation system proves to have 3-4 times faster 

emulation speed. Such emulation speed is quite resonable for most applications.

4However, due to architectural similarities, we can still present the results obtained by YSE
5 In “fo u r-v a lu ed  lo g ic ” ea ch  s ig n a l ca n  a ssu m e  a n y  o f  four v a lu e s :“0 ” , “1” , “U ” (U n d efin ed ) a n d  “Z” (h ig h -

impedance), as opposed to Binary-valued logic in which only “0” and “1” are acceptable values.
6 Commercially available emulation systems are at least 3 orders of magnitude more expensive than an HEP-based

emulation system
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Table 4.3: Comparison of HEP with other Emulation systems

F e a tu re Y S E D h a rm a D P G A V E G A H E P

# o f  Elements 

emulated per 

Clock

1 1 logic level Entire Array 1 64

^instructions 

per processor

4096 N /A N /A 256-2048 128

Processing Block 4-LUT variable

K-LUT

2 x 4 — L ut 4-LUT 4-LUT

Memory

Architecture

5-port RAM Latches Flip-flop 6-port Reg. File 

single port RAM

Single port 

RAM /ROM

M ax.#  of 

Processors

256 N /A 4000 2048 64

Implementation

Technology

TTL/LSI ASIC FPGA ASIC off-the-shelf

FPG A

In spite the fact th a t most logic capacity of FPGAs will remain underutilized (due to  R ent’s 

rule), a HEP-based emulation system increases the FPG A logic utilization between 67-96% while 

the I/O  pin utilization is only between 27-32%. Moreover, due to  intrinsic flexibility in HDL, the 

HEP-based emulation system can be easily customized into other FPG A  family of devices, such as 

those from Altera. Such characteristic is unique to  HEP-based emulation system and is not found 

in other emulation systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 5

A C A D  Tool Suite f o r  HEP-based  

Em ulation  S ys tem

As it was mentioned in 2.3 all logic emulation systems are accompanied with associated set of CAD 

tools th a t automatically perform design compilation on DUT netlists. The ultimate goal of such 

tools is to perform the design compilation so th a t DUTs could be emulated on the emulation platform 

more efficiently and in less time. On the other hand, as logic designs are becoming bigger and more 

sophisticated, design compilation process is also becoming more time consuming. For example, logic 

designs as big as hundred thousand logic gates could take several hours (even days) to  compile. 

Hence, CAD tools th a t prove to be efficient and fast a t the same time are highly desirable.

In the previous chapters the hardware architecture of the proposed HEP-based emulation engine 

was described. In the following sections we are going to introduce the steps required for design 

compilation for HEP-based emulation engine as well as new scheduling algorithms th a t decrease 

to tal emulation time. At the end the results obtained by the proposed tool will be compared with 

others.

5.1 B asic  requirem ents for H E P -b ased  C A D  to o l

Before introducing the CAD tool flow of HEP-based emulation system, we need to understand what 

is the purpose of such tool and why we need it?
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Emulation Cycle

Figure 5.1: Design cycle versus Emulation Cycle in a generic DUT.

An HEP-based CAD tool should be able to automatically map any combinatorial or sequential 

circuit to HEP-based emulation system’s hardware. A generic view of a sequential circuit is shown 

in Fig. 5.1. In such circuits changes in signal values is controlled (or synchronized) by “clock” signal. 

In this context we will refer to such signal as design Clock. Flip-flops are responsible for “storing” 

binary values and will change their values in synchronism to design clock. The combinatorial logic 

determines the “present-state-next-state” relationship among the signal values.

A HEP-based emulation system should be able to  evaluate all signal values within time intervals 

marked by the design clock. During each design clock, all HEP processors will run an emulation 

program, by sequentially executing a series of instructions. Each instruction will take one instruction 

cycle to  execute. However, for a HEP processor it takes 9 system clock to  execute single instruction. 

T h e  r e la t io n  b e tw e e n  s y s te m  c lo c k , in s tr u c t io n  c y c le  a n d  d e s ig n  c lo c k  is  a lso  i l lu s tr a te d  in  F ig .  5 .1 .

As we will see in future, an efficient CAD tool is the one th a t can emulate a design cycle in less 

number of instruction cycles.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

Em ulation  Program  
G eneration

Scheduling

D ow nloading  
Em ulation Program

Figure 5.2: CAD Flow for HEP-based emulation system.

5.2 Overall CAD Flow

Figure 5.2 illustrates the conceptual view of proposed CAD framework for HEP-based emulation 

system. To map a DUT into and HEP-based emulation system, the DUT has to  pass through the 

steps shown below.

The proposed CAD flow in most parts resembles the flow of CAD tools for PBEs, except for 

the fact that, now the task scheduling replaces partitioning and assignment step in PBEs. The 

details of each step is described below. To help the readers to have a better understanding of design 

compilation process, we have created a 4 x 4 sequential binary multiplier as a design example and 

taken it through the compilation steps. A block view of a 4 x 4 binary multiplier is shown in Fig. 4.5.

5.2.1 D esign Entry

The first step of emulation CAD tool is design entry, where the user(s) (i. e. circuit designers) formally 

describes the functionality of the DUT. They can specify their designs through hardware description 

languages (e. g. VHDL/Verilog) or schematics capture tools using any industry standard tool such
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Figure 5.3: RTL view of binary multiplier produced by Synopsys Design Compiler

as Cadence Concept®HDL. In the case of the design example, the multiplier has been designed 

using VHDL language. The program listing of multiplier is presented in the CD accompanying this 

thesis.

At the end of this step, design entry tools usually produce the register-transfer level (RTL) 

representation of the DUT. Figure 5.3 illustrates the RTL view of the multiplier generated by 

Synopsys®Design Compiler.

5.2.2 Synthesis

Once the design is specified, the DUT’s gate-level netlist can be obtained using any synthesis tools 

th a t support library components utilized in DUT. The synthesis tool takes the RTL netlist and 

automatically generates the gate-level netlist. An example of such synthesis tool is Synopsys Design 

Compiler. The synthesized gate-level netlist of the binary multiplier is shown in Fig. 5.4. It is 

worth emphasizing th a t no practical limitation on the type of the tool used for either design entry 

or synthesis has been set. Hence, users may use any tool available.

In order to  present the results obtained by the proposed CAD tool, we have used MCNC
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Figure 5.4: Gate-level view of binary multiplier generated by Synopsys Design Compiler.

LGSynth93 benchmark circuit suite which contains more than 100 gate-level netlists[69] presented in 

BLIF format. The suite contains both combinatorial and sequential circuits in various sizes ranging 

from a few to tens of thousands gates. However, the results of experiments performed are illustrated 

only for the ten biggest circuits in the suite. Table 5.1 describes the sample circuits quantitatively, in 

terms of number of elements (size), number of inpu t/ou tpu t and number of logic gates with fan-in1 

degrees less/greater than  4 and also the length of the critical path  in the gate-level netlist “before” 

technology mapping. The last row of the table contains the information of the binary multiplier.

5.2.3 Technology M apping

As the name specifies, a typical gate-level netlist contains library dependent logic primitives such 

as complex combinatorial logic with high fan-in degree and flip-flops. However, to emulate such 

design on HEP-based emulation engine, the gate-level netlist has to  be transformed, so th a t the 

circuit could be mapped in to  emulation system. Such transform ation is called technology mapping. 

The technology mapping tool coalesces the gates/flip-flops into the basic building block of an HEP 

processor, i. e. a four-input L U T  and flip-flops.

At this step we have used the SIS package developed at the UC Berkeley [57] to transform gate- 

level netlists. The “Flowmap” tool[17] was used to  perform the the technology mapping. Flowmap

1 Fan-in degree of a logic gate is the number of inputs to the logic gate
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Table 5.1: Ten biggest MCNC circuits.

D U T # L o g ic

E lem en ts

In p u t-

O u tp u t

#  G a te s # F l i P-

F lo p s

^  G a te s  

(fanin<4)

# G a te s

(fanin>4)

C ritic a l

P a th

s38417 24011 31-109 22548 1463 22548 0 65

s38584 19699 41-307 18275 1424 18275 0 70

s35932 17793 35-320 16065 1728 16065 0 29

frisc 4425 20-117 3539 886 3539 0 23

elliptic 4724 131-115 3602 1122 3602 0 18

pdc 4775 16-40 4775 0 4775 0 9

des 2263 256-245 2263 0 1464 799 10

ilO 2452 257-224 2452 0 2291 161 55

C7552 3466 207-108 3466 0 3410 56 43

C5315 3088 178-123 3088 0 3067 21 79

Multiplier 136 10-8 106 30 106 0 10

is an LUT-based technology mapping tool which produces depth-optimal mapping solution for Re

bounded Boolean networks. The algorithm calculates min- cost K-feasible cuts for all the logic 

gates in the circuit. Flowmap can be run to minimize either to tal area or total delay. “Delay” 

minimization, in this case, is the minimization of the number of LUTs on the circuit’s critical path. 

However, since maximizing the emulation speed is the main objective, circuits should be mapped 

to  so th a t the area is minimized. Smaller area results in fewer LUTs, which, generally, reduces the 

number of emulation cycles. In case of HEP-based emulation system, since each processor contains 

a 4-input LUT (4-LUT), Flowmap has to  convert the gate level netlists into a collection of LUTs 

and flip-flops. An example of technology mapping process is illustrated in Fig. 5.5. In the example 

shown, the technology mapping tool has not only reduced the area but also the “depth” of the 

circuit, resulting in a circuit with minimum delay.

However, the experiments show th a t if the DUT netlist is “decomposed” before it is technology 

mapped by Flowmap, the final circuit contains less logic elements (i. e. less area). The decomposition 

process is performed using SIS DMIG tool [14] th a t converts all the logic gates in an unbounded 

gate-level netlist into a collection of two-input (i. e. 2-bounded) logic gates. The DMIG tool uses tree- 

balancing technique to obtain a depth-optimal solution to break a netlist into logic gates with “fan-in” 

degree less than  or equal to 2. Figure 5.6 illustrates technology decomposition of a logic gate with fan-
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n 1

£ > = 0 - 0 ,n 2

4-LUTn 3

n 4

Figure 5.5: Example of technology mapping for reducing area and delay.

in degree of four. As it is shown in the figure, balanced-tree technology decomposition usually results 

in a circuit with shorter critical path. Although, technically speaking, logic decomposition could 

be performed independently from mapping, we refer to combination of both steps as technology 

mapping. The scripts used for logic decomposition and technology mapping is provided in the 

complementary CD along with this Thesis.

Table 5.2 summarizes the results obtained for the 10 biggest MCNC circuits (as well as binary 

multiplier example) after logic decomposition and technology mapping. The results are shown for 

having the circuits decomposed and not decomposed prior to  mapping. Interestingly, having the 

circuits logically decomposed prior to mapping has reduced the critical path length in the final circuit. 

Such reduction results in reduction of number of emulation cycles and increases the emulation speed.

Although technology mapping helps to  reduce the critical path length (almost) in all cases, but 

it does not necessarily reduce the size of the circuit. In some circuits (e. g. DES), the technology 

mapped circuit will contain even more logic elements (i. e. bigger in size) compared to  its size before 

technology mapping. Such observation could be attributed to high fan-in degree (> 4) of substantial 

number of logic gates in the circuit.

5.2.4 Scheduling

According to  computer science literature, an HEP-based emulation system is an example of a special 

purpose platform th a t can be classified as a synchronous Multiple Instruction Multiple Data (MIMD) 

multi-processor system. An MIMD system contains a number of processing elements (PE), or sim

ply, processors, th a t run in parallel while each PE  contains a unique area for program and data. A 

program is a collection of “tasks” th a t must be executed by processors in a specific sequence. How

ever, the greatest challenge ahead of researchers is partitioning applications into tasks, coordinating
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Figure 5.6: Technology decomposition, (a) Balanced-tree, (b) Unbalanced-tree. 

_______________ Table 5.2: Results of technology mapping._______________

Original w/o. Decomposition Decomposition

D U T Size C ritical

path

Size C ritical

path

Size C ritical

path

s38417 24011 65 5372 11 5411 10

S38584 19699 70 6704 13 6630 9

s35932 17793 29 5152 4 5152 4

frisc 4425 23 6529 23 7362 23

elliptic 4724 18 5563 18 6190 18

pdc 4775 9 6314 9 6796 9

des 2263 10 3369 6 3957 6

ilO 2452 55 1373 16 1401 13

C7552 3466 43 933 8 907 8

C5315 3088 79 837 10 802 9

Multiplier 136 10 99 8 99 8

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

communication, synchronizing processors and “scheduling” tasks on the parallel platform [45].

Scheduling and allocation of tasks is extremely crucial since an inappropriate scheduling of tasks 

can fail to  exploit true potentials of the system and can offset the gain from parallelization. The ob

jective of scheduling is to minimize the completion time of a parallel application by properly allocating 

the tasks to the processors [45], In a broad sense, the scheduling problem exists in two forms:

•  Static: In static scheduling, which is usually done at compile time, the characteristics of a 

parallel program (such as processing times, inter-processor communication, data  dependencies 

and synchronization requirements) are known before the program execution.

• Dynamic: In dynamic scheduling only a few assumptions about the parallel program can be 

made before execution, and thus, scheduling decisions have to  be made “on-the-fly” (during 

program execution).

In this application, after technology mapping, the generated netlist consists of a collection of logic 

elements. Emulating the functionality of each element can be viewed as a “task” for a HEP processor 

in the emulation engine. Taking such analogy, the whole technology mapped netlist is considered as 

a parallel “program” th a t has to be emulated on 64 HEP processors. The most im portant questions 

here to  answer are: how should we break the program into smaller tasks? and how these task should 

be scheduled and assigned to processors so that the execution time is minimum?

Obviously, due to the fact tha t the characteristics of the technology mapped netlist is known 

prior to scheduling, task  scheduling can be accomplished using “static” scheduling techniques.

The scheduling problem is an NP-complete problem for most cases [45]. Hence, many heuris

tics with polynomial-time complexity have been suggested. However, these heuristics are highly 

diverse in terms of their assumptions about the structure of parallel program and the target parallel 

architecture.

In the following sections of this thesis, the task scheduling problem for HEP-based emulation 

system is addressed. In this research, new heuristic algorithms and tools th a t can perform the task 

scheduling for HEP processors th a t reduce the emulation time have been developed. The algorithms 

are extensions to the static scheduling algorithm called list scheduling. The algorithms described 

below could also be applied to any architecturally similar PBE.

5.2 .4 .1  Prelim inaries

From the scheduling tool point of view, a DUT netlist is a parallel program th a t consists of hundreds 

to thousands of tasks th a t have to be executed on a number of logic processors. To schedule tasks,
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Figure 5.7: Modeling a DUT as a Mealy Machine.

first, the task precedence graph(TPG), in which, nodes represent the tasks and the directed edges 

represent the execution dependencies, as well as, the amount of communication, is built. Such 

modeling, is commonly used in static scheduling of a parallel programs with tightly coupled tasks 

on multi-processors. In circuit terminology, TPG  is equivalent to  directed acyclic graph (DAG) and 

therefore the two can be used in this context interchangeably.

To construct DAG representation of a netlist first the inputs and outputs of DUT must be 

identified. A sequential circuit could be rearranged using Mealy machine model illustrated in Fig. 5.7. 

In Mealy machine model, a DUT consists of combinatorial logic combined with flip-flops th a t store 

the “present state” of the circuit2. Inputs to a circuit are either the primary inputs (external 

inputs) or any fed-back flip-flop outputs. The combinatorial logic establishes “present-state- next- 

state” relationship in the circuit. The circuit outputs are either the combinatorial outputs or the 

flip-flop inputs3. In a technology mapped circuit the combinatorial logic consists of 4-input LUTs.

Figure 5.8 illustrates DAG equivalent of a DUT netlist. A node in DAG is equivalent to  a logic 

element (4-LUT or FF) in the DUT netlist. Mathematically, a DAG is shown as G — (V, E ), where 

V  is the set of all the vertices (nodes) and E  is the set of all the edges. The weight w(n,) assigned to 

node ni represents its computation cost. However, in an HEP processor the computation costs for

^Roughly speaking, a flip-flop (FF) is one bit of “memory” element that can store a binary value for infinite

duration of time. Hence, a flip-flop can also be regarded as a logic unit that is capable of keeping a “history” of signal 

values
3The same definitions for input/outputs will also apply to merely combinatorial circuits (memory-less circuits) 

except that they do not include flip-flop inputs/outputs.
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Figure 5.8: DAG representation of netlist

all logic elements are equal, because each logic element can be emulated in one H E P’s instruction 

cycle. Thus, w(rii) = 1 for all n,; 6 V. Also, the weight w(e,j) assigned to edge etj  represents the 

communication cost between two nodes rii and rij. Recalling from previous chapters, during each 

instruction cycle, an HEP processor is capable of receiving/transm itting value calculated for one 

logic element in the graph from one processor to another. Hence w(eij) = 1 for all e  E. Once 

DUT is modeled as a DAG, the scheduling objective is to minimize the program completion time or 

maximize the speed-up (we will define these terms shortly).

5 .2 .4 .2  L e v e l iz a t io n

We are given a netlist represented in DAG in which nodes are already mapped to LUTs and FFs. The 

objective is to  map each node into a suitable instruction word in a HEP processor. If the number of 

HEP processors is represented by P  and the number of available instruction words in each processor 

is represented by W , then the to tal number of available instruction words is P  x W . In the proposed 

HEP-based emulation engine where P  =  64 and W  =  128, there are to tal of 8192 (8K) instruction 

words available. The instruction memory map(IMM) of HEP-based emulation engine is shown in 

Fig. 5.9. The process of assigning nodes to  instruction words in IMM is done through subdividing the 

DUT netlist into slices and allocating nodes in each slice to  instruction words. However to preserve 

functional correctness of the mapped netlist, the slicing of the DAG is subject to the following rules:

•  An LUT node must be scheduled to  an instruction word no earlier th an  all the nodes th a t 

generate it inputs (i. e. fan-in nodes).
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Figure 5.9: Instruction memory map (IMM) of HEP-based emulation system.

•  All flip-flip outputs used as feedback inputs are considered as virtual inputs to  DUT and must 

be scheduled prior to  all nodes it is driving (i. e. fan-out nodes).

•  No two nodes with a common fan-out node should be assigned to the same instruction cycle.

While the first two rules are referred to  as precedence constraints, the last rule is referred to as 

communication constraint. The problem consists of slicing the DAG into smallest number of parti

tions so th a t none of the rules stated above is violated and nodes in each partition are assigned to 

instruction words in IMM so tha t the to tal execution time for all nodes in one partition is minimized. 

The largest number of partitions allowed is bounded by W  (number of available instruction words 

in each HEP processor).

A straight forward solution for slicing DAG while observing the precedence constraints is obtained 

through levelization. Levelized scheduling orders the nodes with respect to the number of logic stages 

(i. e. distance) from the inputs. Each node in DAG is labeled with its “level” . Prim ary inputs to 

the circuits and outputs of flip-flops are given level 0. All other nodes are given a level th a t is one 

greater than  the maximum level of their fan-in nodes. Such labeling can be done with a simple 

tree traversal algorithm such as Depth-First Traversal (DFT). If nodes are evaluated in level order 

(all level 1 nodes before all level 2 nodes and so on), then the generated outputs after the last level 

(c o r r e s p o n d in g  to  t h e  p r im a r y  o u t p u t s  a n d  flip -flo p  in p u ts )  w ill  h a v e  th e ir  c o r r e c t  v a lu e s .

Two DAG levelization algorithms are known, ASAP and ALAP. As-Soon-As-Possible (ASAP) 

levelization, shown in Fig. 5.10, rearranges each node as soon as all fan-in nodes are levelized. As- 

Late-As-Possible (ALAP) levelization, shown in Fig. 5.12, assigns a node to  one level before its
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Figure 5.10: ASAP Levelization

output is required. The pseudo codes for both ASAP and ALAP algorithms are shown in 5.11 and 

5.13 respectively. The ASAP algorithm starts from the input nodes and moves towards the output 

nodes while performing “forward” depth-first labeling. The label value assigned by ASAP algorithm 

to node u* is represented as A SA P (vi). Similarly, the ALAP algorithm starts from the output 

nodes and moves towards the input nodes while performing “backward” depth-first labeling. The 

label value assigned by ALAP algorithm to node t>, is represented as A L A P (v i) .Using the “parallel 

programming” analogy on a multi-processor platform where each node (vertex) u, in TPG  represents 

a single “task” , A S A P (v i)  and A L A P (vi) correspond to the earliest time and latest time th a t task 

Vi can sta rt running respectively.

Although ASAP and ALAP levelizations produce correct emulation results th a t satisfy prece

dence constraints, they do not create a balanced processor workload. Figure 5.14 shows a histogram 

of processor workload through time (i. e. cycles) while an average-sized netlist, for example “ellip

tic. blif” (< 6200 logic elements), is being emulated. The blue and red lines show the processors 

activity when the netlist is levelized using ASAP and ALAP algorithm respectively. The ASAP 

levelization tends to shift most of the processors’ workload closer to  early cycles while ALAP lev

elization shifts the workload closer to later cycles. In either case, most HEP processors remain 

“idle” during intermediate cycles. The peaks on the left and right indicate th a t many nodes could 

be scheduled in any instruction cycles. The shapes of these curves are typical of m ajority of designs 

especially large ones.

Circuits containing more than 6300 logic elements fail to be scheduled in to the HEP-based 

emulation engine’s IMM if the designs were to be scheduled using either ALAP or ASAP levelization
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01 A S A P (G  = (V ,E ))
02 {
03 FOR each Vi £ G DO
04 IF fanin(uj) =  4> THEN
05 V i-A S A P  =  1;
06 G = G — {vi};
07 ELSE
08 Vi ■ A S A P  =  0;
09 ENDIF
10 ENDFOR
11 WHILE G  /  4> DO
12 FOR each Vi E G DO
13 IF all fanin(uj) are levelized THEN
14 Vi ■ A S A P  = MAX(fanin(wi ) • A S A P ) + 1;
15 G = G -  {Vi}-,
16 ENDIF
17 ENDFOR
18 END WHILE
19 RETURN;
20 }

Figure 5.11: ASAP algorithm in pseudo code.

Level 0 Level 1 Level 2 Level 3
i
i

t
!
f
I
I
t
I
I
t
I

v5f
I

Figure 5.12: ALAP Levelization

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. A CAD TOOL SUITE FOR HEP-BASED EMULATION SYSTEM

01 A L A P (G  = (V ,E ))
02 {
03 FOR each u* e  G DO
04 IF fanout(uj) =  0 THEN
05 Vi ■ A L A P  — CPL; \  * C P L  — C riticalP athLength  * \
06 G = G - { v i };
07 ELSE
08 Vi ■ A L A P  — 0;
09 ENDIF
10 ENDFOR
11 WHILE G ^  (f) DO
12 FOR each Vi G G DO
13 IF all fanout (uj) are levelized THEN
14 Vi ■ A L A P  = MIN(fanout(t'j )-ALAP) - 1;
15 G = G - { Viy,
16 ENDIF
17 ENDFOR
18 END WHILE
19 RETURN;
20 }

Figure 5.13: ALAP algorithm in pseudo code.

Processor Workload

«5o£
I

32 80 96 10456 64
0 < Cycles 5 127

Figure 5.14: Processor workload after levelizing “elliptic” . Blue and red lines represents ASAP and 
ALAP levelization respectively.
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techniques. Hence, a scheduler heuristic should be capable of not only mapping all the circuits 

into the emulation system but also minimize emulation time by maximizing the average processor 

workload for all 64 processors in the emulation engine.

5 .2 .4 .3  M odified List Scheduling (M LS)

Although ASAP and ALAP levelization algorithms produce correct results there are significant 

leeway in the partial order for nodes th a t are not on the critical path.

Definition: In a technology mapped netlist represented by DAG G = (V, E ), the critical path is 

the path with maximal length between inputs and outputs. For example, in Fig. 5.10 the critical path 

consists of wi —> rq —> vq —i• vg. Nodes on critical path are called critical path node (CPN), which are 

shaded in gray color in Fig. 5.10. It is worth mentioning that, based on the definition, it is possible 

for a circuit to  have multiple critical paths. For example in Fig. 5.10, V2 —> Vi —> v& —> vg is also a 

critical path.

To balance processor workload and improve emulation speed, the scheduling tool should be able 

to identify non-critical path nodes within the DAG and reschedule them effectively into other instruc

tion cycles in order to minimize “the maximum number of instructions” . For example, comparing 

figures 5.10 and 5.12, node wj can be moved from level 0 into level 2, while not violating the prece

dence constraints, to  decrease processor’s workload in level 0 and increase the processor’s workload 

in level 2, thus balancing workload in both levels.

The scheduling tool introduced in this section uses a variation of list scheduling[32] algorithm, 

originally developed for high-level synthesis. The proposed scheduling algorithm is referred to  as 

modified list scheduling or MLS. The pseudo code for MLS is shown in 5.15.

• The first step is to  generate ASAP and ALAP levelization of DAG (lines 3-4). As a result the 

range of levels into which each node can be assigned is determined.

L e m m a : For node vt £ V  if A S A P (v i) = A L A P (v i) then vt is on critical path  (i. e. u* is a 

CPN). Similarly, Vi is non-CPN if and only if A L A P (vi)  — A S A P (v i)  ^  0 (line 6-12). The 

length of critical path is denoted as Cl  and Cl = M ax{A LA P {vi)) for all Vi € V  (line 5).

O b serva tio n  1: Any circuit C, represented by graph G = (V, E ), will require at least C l  

cycles to  be emulated on any parallel processing platform. The ultim ate goal for any scheduling 

heuristics is to reduce the number of emulation cycles (=emulation time) closer to C l  ■

•  The MLS iterates (line 13-41) through levels, starting from level 0 to maximum of C l  (0 < 

L j < C l ).  At each level (L j), all “ready-to-schedule” nodes are sorted in ascending order
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01 M L S (G = (V ,E ) )
02 {
03 A S A P (G  = (V,E));
04 A L A P (G  =  (V ,E))i
05 CL =  M A X {v i ■ A L A P )■
06 FOR each Vi £ G DO
07 IF  Vi • A L A P  -  Vi ■ A S A P  =  0 THEN
08 Vi is CPN;
09 ELSE
10 Vj is non-CPN;
11 ENDIF
12 ENDFOR
13 FOR L j =  0 TO CL DO
14 V ' = 4>\
15 FOR all Vi • A S A P  > L j DO
16 Vi ■ M O B  =  Vi ■ A L A P  — L j ;
17 V ' = V ' + {vi}-
18 ENDFOR
19 V ' = SO R T (F ',“ascending mobility” );
20 Max_Cycle=Min_Cycle=0;
21 WHILE V ' ±  (j> DO
22 IF Vi e  C P N  THEN
23 allocate jm d -co lla p seJ  M  M  (ij, M ax-C ycle, M in JJycle );
24 V  = V ' -
25 ENDIF
26 END WHILE
27 WHILE V ' /  4> DO
28 IF Vi • M O B  = 0 THEN
29 allocate jm d -c o lla p se J M M (u,;, M ax-C ycle, M iruCycle);
30 V  = V ' -  M ;
31 ENDIF
32 END WHILE
33 WHILE V ’ ^<j) DO
34 vi =  H E A D (V 1, random )’, \*random ly select \
35 IF a l l o c a t e  j a n d - C o l l a p s e J M M ( v i ,  M ax-C ycle, M inJC yde) successful THEN
36 V  = V -  {v i}’,
37 ELSE
38 leave v ,  for next iteration and do nothing;
39 ENDIF
40 END WHILE
41 ENDFOR
42 RETURN;
43  }

Figure 5.15: MLS algorithm
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with respect to  their “mobility” . In other words, nodes are prioritized with respect to  their 

mobility, so tha t a node with the lowest mobility has the highest priority.

Definition: Node u* is “ready-to-schedule” if ASAP(v i )  < Lj  and Vi has not yet been allocated 

into a word inside IMM.

Definition: For node w*, “Mobility” is calculated as MOB (vi )  =  AL AP (vi )  — Lj.  In other 

words, the mobility of node Vi determines how many levels the node can be “postponed” for 

scheduling.

Sorting the nodes in ascending order with respect to  their mobility, virtually, categorizes all 

“ready-to-schedule” nodes into three subclasses:

—  critical path nodes: At level Lj ,  any ready-to-schedule node (?;*) th a t belongs to  critical 

path will have a mobility of 0 (MOB(vi)  = A L A P (v i )—Lj  = A L A P (v i ) —ASAP(v i )  =  0).

— semi-critical nodes: A ready-to-schedule node (Vi) is a semi-critical node if it is neither 

on critical path nor can be “postponed” (i. e. moved) to  later levels (Lj+1 , - - - )  either, 

because Lj  =  ALAP{vi) .  For such nodes M O B ( v i )  =  0 as well.

— postponable node: Node w* is postponable if M OB (v i)  =/= 0.

•  At each level (Lj)  once all ready-to-schedule nodes are identified they are sorted and prioritized 

with respect to their mobility (line 15-19). First “all” the critical path  nodes (in level Lj)  are 

allocated into IMM (line 21-26). Next, “all” the semi-critical nodes will also be allocated into 

the IMM (line 27-32). And, finally, the algorithm tries to allocate postponable nodes into 

IMM, by selecting a node from a list with least mobility. If two postponable nodes have same 

mobility the algorithm will select one node ra n d o m ly  (line 33-40). Note th a t all nodes are 

allocated to  IMM while observing the communication constraint.

• At each iteration, if “allocate_and_collapseJMM()” function fails to  allocate a postponable 

node to IMM, the node will be moved to  next level (Lj+i).

The pseudo code illustrated in Fig. 5.15 explains the main steps involved in MLS algorithm. How

ever, to avoid confusion in the code we excluded the details of steps during “allocate_and_collapse JM M ()” 

function calls which we will describe below.

•  The main objective of “allocate_and_collapse_IMM()” is to collapse those nodes tha t satisfy 

the communication constraint. Collapsible nodes can be allocated into the same instruction 

cycle (but on separate HEP processors). Figure 5.16 illustrates how collapsing two nodes could 

reduce length of emulation program.
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v4

v3

t 1 I

Lj Lj+1

P ro cesso r A P ro cesso r B P ro cesso r C

Cycle c-1 
Cycle c 

Cycle c+1

V1 and V3 are collapsible. 
So they sh a re  the sam e cycle.

| V2 is not collapsible with neither ¥1 nor ¥3. j 
j ¥2  can not sh a re  cycle with VI or V3 I

mmja y c l e  (Lj) = c
MIN^CYCLE (Lj) -■ c m

Figure 5.16: Examples of collapsing nodes during IMM allocation.
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•  At each level L j, the algorithm tries to collapse critical path  nodes into the same instruc

tion cycles. If two critical path node are not collapsible the algorithm will allocate the nodes 

into two different instruction cycles. The algorithm keeps track of minimum and maximum 

instruction cycles occupied by all m utually non-collapsible CPNs in level L j. The cycle num

bers are referred to  Min_Cyde(L;/) and M ax.Cycle(Lj). In the example shown in Fig. 5.16, 

M ax-C ycle(L j) = C  and M in-C ycle(L j) = C  — 1. If a non-collapsible CPN is to be added 

to IMM, th a t node is allocated to  level Max_Cyc:le(L j )+1 and Max_Levol(Lj) will be up

dated automatically. To initiate collapsing and allocating nodes, the MLS algorithm sets both 

MimCycle and Max_Cycle to 0 (Line 20).

• MLS allocates and collapses semi-critical nodes the same way it treats CPNs. The only differ

ence is th a t now the M ax-C ycle(L j) A M iri-C ycle(L j). In such case, the algorithms tries to 

fit the nodes in between cycles Max_Cycle(Lj) and Min_Cycle(Lj). If no suitable cycles were 

found then Max_Cycle(L7) is incremented by 1.

•  At the final step, MLS starts allocating postponable nodes. However this time MLS will start 

searching to  find free instruction word in IMM “only” within the range between M axX’ycle(Lj) 

and Min_Cycle(Lj). If the node could not fit within th a t range then the node is moved to  next 

level (Lj_|_i).

It is worth indicating tha t before MLS starts the scheduling process it initializes all the instruction 

words in IMM by filling them all with “NO P” instruction. At the end of scheduling, those instruction 

words in IMM to which no node has been assigned are left intact ( = “NOP” instructions).

As we will discuss later, the ratio of used instruction words with respect to  number of “N O P” 

instructions (i. e. processor idle time) in one HEP processor is the most im portant evaluation 

metrics for comparing scheduling algorithms. Any optimization technique th a t could improve such 

ratio is highly desirable.

5.2 .4 .4  M L S + B F F  Scheduling

Task scheduling for a multi-processor platform is an NP-complete problem, for which no optimal 

solution exists. Although MLS scheduling produces close to  optimal solution in a reasonable amount 

o f  t im e  w e  c o u ld  s t i l l  a p p ly  so m e  o p t im iz a t io n  te c h n iq u e s  t h a t  m ig h t  fu r th e r  im p r o v e  t h e  th e  s c h e d u l

ing result. The improvement over MLS algorithm th a t is explained below results in an increase in 

average processor workload or reduction of processor idle time which, in turn, reduces emulation 

time.
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As mentioned earlier, at each level, the MLS algorithm prioritizes the circuit nodes according to 

their mobility and assigns higher priority to CPNs or semi-critical nodes over postponable nodes. 

However, it does not distinguish postponable nodes with “equal” mobility. In such cases, the MLS 

algorithm will randomly selects a node for collapsing and allocation into IMM.

The problem with such scheme is th a t the algorithm does NOT make any “prediction” about 

the signal flow within DAG. Lack of such prediction capability results in more frequent failures in 

collapsing and allocating postponable nodes, as these nodes are accumulated into later cycles.

An intuitive improvement to MLS is explained through the following example. As illustrated 

in Fig. 5.17, node v\ driving the inputs to  two other nodes V2 and v3. In other words, v\ has 

the “fan-out” degree of 2. Obviously, if A SA P {v{)  =  L  then A S A P (v 2 ) =  A S A P (v 3) = L  +  1 . 

Similarly node iq, also with A S A P (v 4 ) =  L  has a fan-out degree of 3 (driving nodes v5 ,ve,v7). If 

during MLS scheduling both nodes v\ and tq were identified as postponable nodes, the algorithm 

will choose either nodes randomly as the next candidate for scheduling. However, if iq was selected 

first over v \ ,  then input values to three nodes (i. e. v 3 ,v q ,v 7 )  will be calculated earlier without being 

postponed to  later iterations. This means th a t three HEP processors tha t emulate v$, v$, and v7 

would have less “waiting” time to  have their inputs ready. In this sense, V 4,  with fan-out degree 

of 3 would be preferred over tq (with fan-out of 2) simply because V4 keeps less number o f HEP  

processors waiting. Based on the above example, an improved scheduling algorithm introduced here 

is referred to  as “modified list scheduling with biggest fan-out first” or shortly M LS+BFF4. Figure 

5.18 explains the M LS+BFF algorithm in pseudo code. M LS+BFF algorithm performs identically 

to MLS algorithm except when it tries to  schedule postponable nodes. For such nodes, M LS+BFF 

will further sort (i. e. prioritize) all the postponable nodes with equal mobility with respect to  their 

“fan-out degrees” , so th a t nodes with greater fan-out will have higher priority over nodes with same 

mobility and less fan-out (line 35-36).

The results obtained by M LS+BFF scheduling algorithm shows improvements in average pro

cessor workload, as we will see shortly. Such improvement is solely obtained due to  the fact that, 

a t each iteration, M LS+BFF is capable of “predicting” the processors workload in next iteration by 

profiling signal flow of the circuit.

5.2 .4 .5  M athem atica l Form ulation

To be able to  compare the results with previous work, first we should establish the mathematical 

foundations. The formulation of the scheduling problem along with the evaluation metrics are

41 could not find a shorter descriptive name.
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Fanout (VI) = 2

Fanout (V4)» 3

*

Lj Lj+1

Processor A Processor B Processor C Processor D

NOP
Cycle c+1—■»-

if  v1 is scheduled first, 
processor D will remain idle.

Processor A ProcessorB Processor C Processor D

Cycle c-1— ► v4
Cycle c-— ►! \  v5 J L v7r

Cycle: c+1— e -|

[ ¥  v4 is scheduled first, j
| processor D will receive input! 
{ in cycle “c-1 1

Figure 5.17: Prioritizing nodes with equal mobility with respect to  their fan-out degree.
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0 1  M L S  +  B F F (G  = (V, E))
02 {
03 A S A P (G  = (V,E));
04 A L A P (G  = (V,E));
05 CL = M A X (v i ■ ALAP)-,
06 FOR each € G  DO
07 IF Vi • A L A P  -  Vi ■ A S A P  =  0 THEN
08 Vi is CPN;
09 ELSE
10 Vi is non-CPN;
11 ENDIF
12 ENDFOR
13 FOR L j =  0 TO CL DO
14 V ' = 4r,
15 FOR all Vi ■ A S A P  > L j DO
16 Vi ■ M O B  — Vi ■ A L A P  — L j ;
17 V ' = V ' + M ;
18 ENDFOR
19 V ' =  SO R TfV ',“ascending mobility” );
20 Max_Cycle=Min_Cycle=0;
21 WHILE V ' ±  4  DO
22 IF Vi e  C P N  THEN
23 allocate-and-collapseJM M (vi, M ax.C ycle, MinJOycle):
24 V  = V ' -  {,vt};
25 ENDIF
26 END WHILE
27 WHILE V ' =£ <j> DO
28 IF  Vi ■ M O B  = 0 THEN
29 allocateM nd-CollapseJM M (vi, M ax-C ycle, M inJCycle)\
30 V  =  V ' -  {ui};
31 ENDIF
32 END WHILE
33 WHILE V ' ±  <p DO
35 V f = SO RT(F/,“descending fanout” );
36 Vi = H E A D (V ');
37 IF  allocatejand.collapse J M M (v i ,  M ax-C ycle, M inJCycle) successful THEN
38 V  = V ' -  {u*};
39 ELSE
40 leave i>* for next iteration and do nothing;
41 ENDIF
42 END WHILE
43 ENDFOR
44 RETURN;
45 }

Figure 5.18: M LS+BFF algorithm
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presented below [28]. Let C  be the technology-mapped design to  be scheduled. We will represent C  

by a directed graph, G, in which each logic element (LU T/FF) is represented by a vertex (node) in 

the graph. The directed graph G is shown as G = (V. E ), where V  is the set of all vertices and E  is 

the set of uni-directional edges hence:

•  each Vi G V  represent a logic element in C for 1 < i < |F |;

•  each (Vi,Vj) € E  represents a directed wire from logic element i  to  logic element j  in C. In

this case v7 is “fan-in” node of Vj. And, v 7 is “fan-out” node of vt :

•  The graph G' =  ( V, E ')  is the a c y c l i c  flow g r a p h  of G =  (V. E ) where E '  C  E  obtained

by depth first search starting from both LUT vertices with zero fan-in or fed-back Flip-flop

Static task scheduling is a NP-complete problem for which heuristic solutions is required. One 

method for obtaining acceptable solutions is to formulate the scheduling problem using Integer 

Programming (IP).

Definition: A binary variable X ij is associated with each Vi G V  in G' where:

•  Xjj =  1 iff the logic element i, represented by , is scheduled in cycle j:

• Xitj  =  0  otherwise.

Let the earliest and latest cycles in which a vertex Vi can be scheduled be E (i)  and L(i), respectively5. 

Definition: The scheduling interval of vertex v% is defined as the set of integers S(i) = {E (i), E (i) +  

1, • • • ,L (i)} .  The longest path in DAG is called critical path and is denoted by CP. The length of

the critical path (i. e. number of nodes on critical path) is shown as Cl = \CP\. Obviously, the

overall scheduling interval for every Vi will be S(i) =  ( 1 , ■ • • , C l }-

Assignment Constraint: In order to have a correct scheduling solution, it is imperative tha t each 

vertex in DAG be scheduled for only one cycle in its scheduling interval. In other words:

je e p

Precedence Constraint: It is also imperative to observe the two precedence constraints mentioned

b e fo r e  t o  g u a r a n te e  t h e  c o r r e c t  sc h e d u lin g . M a th e m a t ic a lly  sp ea k in g :

outputs.

(5.1)

^ 2  x i2,32 + x L,ji ^  V(vi l 5 v*2) G E ',v ix,v i2 € V,Vj G (5 (i)} . (5.2)
3 2 < j  j l > 3

5Obviously, A S A P (v i)  — E ( i ) and A L A P (v i)  =  L{i)
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Resource Constraint: At every level, we must ensure th a t there are enough computing resources, in 

the form of instruction words in IMM, to  map the prioritized vertices into IMM.

X ij  < 64 x (M ax-C ycle(L) — M in-C ycle(L)), V) £ L evelsL  + 1, L + 2, • • • , Cl (5.3)
Vvi €l e ve l L

It is obvious th a t by scheduling the closest element of the DAG to outputs as early as possible, a 

minimum number of instruction cycles needed to  emulate the entire design can be achieved. The 

logic elements of the design immediately connected to  primary outputs are represented by vertices 

without successors in G '. We will ignore all the vertices of G' th a t have one or more successors and 

consider only the vertices without successors for cycle minimization in the following manner:

m in  ,Vu* £ Vw ithoutsuccessors. (5.4)
jes(i)j-x

5 .2 .4 .6  E v a lu a t io n  M e t r ic s

The efficiency of an algorithm tha t targets the problem of task scheduling for parallel processing 

platform can be measured in various ways. We will explain the definition and mathematical for

mulation for each evaluation metrics in this subsection. The results obtained by the scheduling 

algorithms are explained later in this chapter.

M in im u m  e m u la tio n  tim e:  An HEP-based consists of P  x IT processing elements (=  total 

number of words in IMM), where P  is the number of emulation processors and W  is depth (size) of 

H E P’s control memory. Hence, if circuit C  represented by G =  (V, E ) was to  be emulated on HEP- 

based emulation system, the theoretical lower bound for emulation time (delay) D min is calculated 

as:

Cl <  Dj, \V\ (5.5)
P

P ro cesso r  W orkload  a n d  Id le  T im e:  Let’s assume tha t program T  consists of to tal of M  

tasks tha t are to  be executed using single processor (e. g. P i) is represented by T  = {Tplti ,T p lt2 , • • ■ , Tpu 

The execution time of task T, on one processor is shown as Ep, ■ Thus the execution time of program 

T  is:

E t o t a L P x  = D T l ,P i  + E T 2 ,P r  -\ b £ tm,Pi =  ^ 2  ^Zi.Pi (5-6)
T i < T i < T m

However, if program T  is to  be executed on a parallel-processor platform, execution of tasks will 

be delayed due to communication overhead and inter-task dependencies. The execution graph for 

program T  is illustrated in Fig. 5.19. In such case, the total execution time of program T  will be 

prolonged by the total delay time:
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Execution time

(a)

(b)

Ti T2 T3 • • » • Tm

Execution time 1

di Ti
' ...it Iu2 12 j* * * • *

-------------------------- ►
Total IDLE time

Figure 5.19: Executing program on a parallel platform, (a) executing program on single processor 
(no delay between tasks), (b) executing program on a parallel processor.

2̂ E Ti,Pi + 5Z
T x < T i < T M

(5.7)
i<M

The second term  in the above equation, (X)»<m ^*)> usually referred to as processor idle time 

(i. e. time during which processor is not executing anything). “Processor workload” ,<j>, is the ratio 

of time during which a processor is “busy” executing tasks with respect to the to tal execution time:

e TuPi

T i< T i< T M
yp i

J 2  +  J 2 6i
T i< T i< T M

(5.8)

i<M

A good scheduling tool for a parallel processing platform thrives on maximizing workload for each 

and every processor in the system, as well as, balancing the workload among all processors. Also, 

the scheduler should minimize the total processor idle time. Based on the above formulation, the 

average processor workload (0 ) is defined as:

(5.9)— l < i < 6 4

To achieve acceptable balance of workload among processors the following relation should hold:

cj) w cj)p. (5.10)

S peed-up : The speed-up is defined as the time required for sequential execution of a program 

divided by the time required for parallel execution. The amount of speed-up is measured according 

to the number of cycles (rather than  time). The speed-up is denoted by A.
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E x e c u tio n  D elay: Execution delay is the defined as the amount of time th a t execution of a 

task is delayed (postponed). In this application, the earliest time th a t task u* can be executed 

is determined by ASAP(vi ) .  If task v-t is executed at level L,  then the delay for task vt is A =  

L — ASAP(v i ) .

5 .2 .4 .7  Im plem entation  o f  M L S /M L S + B F F  Scheduling Tools

For the purpose of this research a software tool in “C” language called “GSchedule” on Unix/Linux 

platform has been developed6. Source listings for “GSchedule” is provided in a CD-ROM accom

panying this thesis. The following command line illustrates how the tool is run against MCNC 

benchmark circuits:

$ GSchedule [-BFF] netlist_name.blif

The GSchedule schedules a technology mapped netlist (in BLIF format) using MLS algorithm 

and presents the results on standard output. The [-BFF] option makes the tool to use M LS+BFF 

algorithm.

We have used dynamic memory allocation and linked-lists to implement the data  structure used 

in GSchedule to minimize memory usage by the tool. Each node in DAG, is a “C” structure consists 

of several fields such as name, fan-in list, fan-outs degree, and ASAP/ALAP level numbers. The 

GSchedule builds a netlist of such node structure by parsing the input BLIF netlist.

Once the scheduling is finished, the GSchedule will generate the emulation program for each and 

every 64 HEP processors in the emulation engine. A sample snapshot of the output generated by 

GSchedule is shown in Fig. 5.20. Notice th a t node names in each column represent the instruction 

words will be downloaded into each H E P’s control memory.

5.2.5 Experim ental R esults

In this section the results obtained by the scheduling tools, MLS and M LS+BFF, are presented. 

The tools were tried on almost all circuits in MCNC benchmark suite. However, we will only present 

the results for the 1 0  biggest circuits.

•  Table 5.3 illustrates both the average (<f>) as well as maximum HEP processor workload. As the 

results show the MLS scheduling has managed to achieve to tal average processor workload of 

83.9% while the deviation of workload among processors is less than  3%. T hat means, during 

the emulation process, the workload is evenly distributed among all 64 HEP processors in the

6 The source listings consists of approximately 4000 lines of codes.
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File Edit Search References Shell Macro Windows 

Number o f Em ulation Cycles= -7  

Maximum number o f NOP i n s t r u c t i o n s  13 

Average Proce33or Workload= 0 578704

Help

1# 1 *  2 #  3 # 4 #  5

0 Ip 534 149 p 272 105 p 302 114 p 210 89 p 141 65
1 I p 87 33 p 4 1 p 373 133 p 88 34 p 22b 93
2 |p 2358 162 u 37 13 NOP p 182 79 NOP
3 | p 203 86 ' p_24_7_ p 179 78 p 23 6 p_230_35_
4 |p 293 112 n n ll4 b p 251 100 p 3546 165 p 3550 167
5 I [3859] p 242 97 [3632] [3873] n n ll4 0
b | n n253b [3809] n n2546 [3667] n n2545
7 | [3729] [3891] [3996] [3821] n n ll3 6
8 | [3666] n_n2532 [3671] [3676] [3683]
Q 1 [3946] n n2086 [3968] n_n2039 n n904

10 I n n689 n_n2043 n n2080 n n2011 n n2061
11 I [3448] n n982 [4017] n n l992 n n l981
10 |N0P NOP n n980 [4018] NOP
13 | r i nl530 n n938 n n963 n n l905 [3641]
14 1 [3510] [4042] NOP NOP n n775
15 |N0P NOP NOP NOP NOP

N —

J

Figure 5.20: Example of output generated by GSchedule tool. Each column represents the emulation 
instructions executed by one processor.

emulation system. In some cases the MLS scheduling has achieved almost optimal scheduling 

solution (99.4%). Also, as shown in the table, the total processor idle time is less than  9 cycles 

in average.

Table 5.4 represents same statistics about the sequential binary multiplier circuit7 example. In 

case of very small circuits (such as binary multiplier) the statistics show th a t most processing 

resources in the HEP-based emulation system remains under utilized. Hence the average 

processor workload for such sparse circuits is considerably lower.

Table 5.5 illustrates how the M LS+BFF optimization algorithm has not only increased the 

average processor workload but also has reduced the average processor idle time in at least 

half of the test cases. Such increase in the average processor workload is reported to be 

between 0.7 — 6.2%, with an average value of +1.5%. Also the reduction in processor idle 

time is between 1-3 cycles, with an average value of 1.2 cycles. It is worth emphasizing tha t 

M LS+BFF scheduling tool does not create a significant improvement in small circuits such as 

the binary multiplier example.

7Binary multiplier does not belong to MCNC benchmark suite. So we decided to present the results for that
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Table 5.3: Processor workload calculated after MLS scheduling.

D U T 0 mm

(% )

<t>

{%)

D eviation

(% )

A vg. Idle  

T im e (eye. )

s38417 93.3 95.3 2 5

s38584 97.2 97.9 0.7 3

s35932 98 99.4 1.4 1

frisc 91.8 93.7 1.9 8

elliptic 96 96.8 0 . 8 4

pdc 85.2 87.2 2 16

des 92.7 95.4 2.7 4

ilO 53.3 57.7 4.4 2 0

C7552 51.6 58.5 6.9 13

C5315 51.8 57.8 6 1 2

TOTAL 81.1 83.9 2 . 8 8 . 6

Table 5.4: Processor workload after MLS scheduling on multiplier.

D U T tfrmin

(% )

4>

(%)

D eviation

(% )

A vg. Idle  

T im e (eye. )

Multiplier 7.1 1 2 4.9 1 2
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Table 5.5: Processor workload after M LS+BFF scheduling.

D U T M LS

m

M L S + B F F

m

Im p ro v e m e n t

(% )

M LS A vg. 

Id le  T im e

M L S + B F F  A vg. 

Id le  T im e

R e d u c tio n

(% )

s38417 95.3 95.3 0 5 5 0

s38584 97.9 97.9 0 3 3 0

S35932 99.4 99.4 0 1 1 0

frisc 93.7 96.1 2.4 8 5 3

elliptic 96.8 99.7 2.9 4 3 1

pdc 87.2 87.9 0.7 16 14 2

des 95.4 98.2 2 . 8 4 1 3

ilO 57.5 57.5 0 2 0 2 0 0

C7552 58.5 64.7 6 . 2 13 1 0 3

c5315 57.8 57.8 0 1 2 1 2 0

T O T A L 83.9 85.4 1.5 8 . 6 7.4 1 . 2

• The emulation time for ten biggest circuits when the designs are scheduled by both MLS and 

M LS+BFF are shown in Tables 5.6 and 5.7 respectively. Last two columns of each algorithm 

show the total emulation time when the HEP-based emulation engine is implemented on Virtex- 

II and Virtex-4 family of FPGAs. As it is shown in tables, an HEP-based emulation system 

is capable of emulating the largest circuit (i. e. “frisc. blif” ) in 3.58 — 5 . 5 9 if the circuit is 

scheduled by M LS+BFF algorithm. Also the amount of speed-up obtained by each algorithm 

is reported for each circuit. As the results show the average speed-up gained by MLS algorithm 

is A =  50.4,while the average speed-up gained by M LS+BFF is A =  51.3.

•  The time complexity of MLS and M LS+BFF algorithms to  perform ASAP and ALAP lev- 

elization on circuit C, denoted by G = (V ,E ), is 0 (2 |V | +  2 |E |). Assuming tha t there are 

to tal average of \V\  nodes at each level, prioritizing and allocating nodes to  64 processors will 

have the time complexity of 0(64 • \V\ log \V\.  Hence the to tal time complexity of MLS (and 

M LS+BFF) algorithm is 0 ( 2\V\  +  2 |E |) +  0(64  • |F | log \ V\.  Both scheduling tools were run 

in  L in u x  e n v ir o n m e n t o n  a  p e r so n a l c o m p u te r  w ith  a n  In te l P e n t iu m  2 .8 G H z  p r o c e s so r . T h e  

scheduling tools managed to schedule most test circuits in less than  1 hour. Average execution 

time for purely combinatorial circuits such as “C7552” is less than 3 minutes. Also, the ex-

separately.
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Table 5.6: Emulation time and speed-up obtained by MLS scheduling.

D U T Drain E m u la tio n  

In s t .  C ycles

MLS

S p eed -u p

A

V ir te x  I I

fcS)

V ir te x  4

(liS)

S38417 85 90 60.1 4.19 2.69

s38584 104 108 61.3 5.03 3.22

s35932 81 8 6 59.8 4.01 2.57

frisc 116 123 59.8 5.73 3.67

elliptic 97 1 0 2 60.6 4.75 3.04

pdc 107 1 2 2 55.7 5.68 3.64

des 62 69 57.3 3.21 2.06

ilO 2 2 45 31.1 2.09 1.34

c7552 15 31 29.2 1.44 0.92

c5315 13 27 29.7 1 . 2 0 . 8

Multiplier 2 14 7.1 0.65 0.41

Table 5.7: Emulation time and speed-up obtained by M LS+BFF scheduling.

D U T Drain E m u la tio n  

In s t .  C ycles

M LS+BFF

S p eed -u p

A

V ir te x  I I V ir te x  4

s38417 85 90 60.1 4.19 2.69

S38584 104 108 61.3 5.03 3.22

S35932 81 8 6 59.8 4.01 2.57

frisc 116 1 2 0 61.3 5.59 3.58

elliptic 97 99 62.5 4.61 2.96

pdc 107 1 2 1 56.1 5.64 3.61

des 62 67 59.1 3.12 2 . 0

ilO 2 2 45 31.1 2.09 1.3

c7552 15 28 32.3 1.30 0.83

c5315 13 27 29.7 1.25 0.80

Multiplier 2 14 7.1 0.65 0.41
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periments show th a t the optimization technique introduced by M LS+BFF causes no overhead 

on design compilation time due to  the fact th a t the improvement is made by adding local 

conditions to MLS algorithm. Hence the execution time of M LS+BFF algorithm is identical 

to  execution of MLS algorithm.

5.2.6 Code G eneration and Download

The last steps in the proposed CAD flow (Fig. 5.2) are code generation and downloading. Once 

the scheduling tool generated the memory map for each HEP processor, the instruction words will 

be filled with mnemonic names of nodes in the netlist. The task of code generation consists of 

replacing the mnemonic names with actual executable binary op-codes for HEP processors. The 

code generator will replace the unused instruction words in IMM with binary code for “NO P” 

instruction. Similarly, if the mnemonic represents an LUT or flip-flop output, it will be replaced by 

“LUTOP” and “RAMREF” instructions respectively. The “ROM REF” instructions are used when 

corresponding flip-flop contains an initial value of non-zero.

Once the whole IMM is parsed and binary code representing each instruction word is generated 

the generated bit-stream can be downloaded into the HEP processors’ control memories through 

“download manager” module on the emulation system. As it is shown in Fig. 5.2 once the binary 

codes are downloaded into HEP-based emulation system the design is ready to be emulated.

5.3 Comparison and Conclusion

In this chapter a CAD framework for design compilation targeting HEP-based emulation systems 

has been proposed. As a part of this proposal, two scheduling algorithms called MLS and M LS+BFF 

were introduced and developed. The tools were run on 10 biggest circuits from MCNC benchmark 

suite. As a result of scheduling algorithms, the HEP-based emulation system can emulate the biggest 

test circuit in less than  6fiS.

Table 5.8 compares the emulation time of ten circuits on HEP-based emulation system with those 

reported by VEGA architecture [40]. The author of [40] has reported the results for four of sample 

circuits th a t have been used in this study. The results show, the HEP-based emulation system has 

4-5 times faster emulation speed. However, it should be emphasized th a t the ASIC-based emulation 

processors used in VEGA architecture were fabricated using CMOS 1.2pm  fabrication technology 

where as Virtex-2 and virtex-4 are fabricated using 0.15pm and 0.09pm technologies respectively. 

The MLS and M LS+BFF algorithms create close to optimum scheduling solutions especially for
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Table 5.8: Comparing emulation time of HEP and VEGA

D U T size M L S /M L S + B F F

fxS

V E G A

u s

s38417 5411 4.19-4.19 21.7

S38584 6630 5.03-5.03 23

pdc 6796 5.68-5.64 25.6

ilO 1401 2.09-2.09 23.5

large circuits. In fact, the empirical results show that, as circuits become denser the utilization 

of processing elements increases which is on the contrary to the results obtained by similar FBE 

systems. In FBE systems, as the DUT size increases as long as there are enough logic elements 

and I /O  pins available in the target FPG A chips. However, due to R ent’s rule, significant FPG A ’s 

logic capacity remains under-utilized. If the size of the circuit increases beyond effective logic 

capacity of FPGAs then multiple FPG A devices will be required. In th a t case the log utilization in 

FPG A modules will drop as it is shown, conceptually, by the dotted red curve in Fig. 5.21. Also, 

The FPG A  logic utilization hardly reaches above 80%. In Fig. 5.21 the blue curve represents the 

percentage of processing resources used with respect to the design size in a HEP-based logic emulation 

system which illustrates better resource utilization with respect to FBEs. Obviously, robustness of 

M LS/M LS+BFF scheduling algorithms against bigger size circuits is a great advantage over similar 

tools. However it should be emphasized th a t the curve shown for FBE systems is conceptually 

correct but values are not accurate.
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P ro c e s s in g  R e s o u rc e  Utilization
100
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C IRCU IT SIZE

Figure 5.21: Resource utilization in HEP-based emulation system and FBEs.
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Conclusions and Future W ork

The contributions made by this research can be classified in two sections. First, this work has 

presented the design of a specialized processor called hybrid-emulation processor (HEP) th a t can be 

easily implemented on any FPG A  platform. A collection of 64 HEP processors were embedded into 

Xilinx FPG A devices to  build a logic emulation engine. The emulation engine is capable of emulating 

the functionality of digital circuits as large as 160000 logic gates and flip-flops. While relatively 

simple in architecture, it can emulate a design at speeds of up to 262K H z .  The embodiment of 64 

HEP processors requires only one or two of-the-shelf FPG A modules. Such small hardware reduces 

the cost of HEP-based emulation system by orders of magnitude with respect to its commercial 

counterparts. The HEP architecture can be easily expanded to  higher capacities while eliminating 

the need for redesigning the hardware platform.

More importantly, two task scheduling algorithms, MLS and M LS+BFF, have been introduced 

and developed as a part of a CAD framework th a t automatically map DUT’s netlists into HEP-based 

emulation system. It has been shown tha t the proposed scheduling heuristics can maximize proces

sors workload and reduce to tal emulation time while keeping the scheduling time within reasonable 

range. The ten largest circuits from MCNC benchmark suite were used to  evaluate the performance 

of the scheduling tools. Based on this evaluation, the scheduling algorithms, substantially increase 

in the average workload in emulation processors. As a result, a large circuit, as big as 22000 gates, 

can be emulated in 6/i.s. An optimization technique, introduced in M LS+BFF algorithm has further 

improved the average workload by 1-6% while causing no overhead on design compilation time. More
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interestingly, unlike FBE CAD tools, the scheduling tool favors denser circuits over small circuits 

and produces better resource utilization for bigger circuits.

Finally, a complete CAD framework th a t can be used for design compilation of DUTs into HEP- 

based emulation systems, has been explained in details th a t has eliminated the need for partitioning, 

placement and routing tools. Hence, the design compilation time is significantly shorter and more 

predictable.

6.1 Future Work

The followings are a number of possible suggestions, concerning hardware and software of HEP-based 

emulation system, th a t we would like to  share with readers for possible future researches.

6.1.1 Improvem ents in Hardware A rchitecture

Due to the fact th a t size of digital circuits is constantly increasing (Moore’s law) HEP-based emula

tion systems with larger logic capacity will soon be needed. Fortunately, flexibility of programmable 

logic devices (e. g. FPGAs) allows us to not only design HEPs with higher logic capacity but also 

to integrate more number of them  into FPGAs. Hence, providing easily scalable soft IP  (Intel

lectual Property) core for HEP-based emulation systems will assist verification engineers to  easily 

develop fast and cheap logic emulation systems with variable size and logic capacity. HEP-based 

multi-FPGA systems for emulating very large designs is also an interesting topic for future research.

The HEP based emulation engine introduced in this thesis is only capable of emulating combi

natorial and fully synchronous sequential logic circuits. Although, such circuits constitute m ajority 

of all logic designs, having an HEP processor th a t can also emulate logic circuits with multiple 

asynchronous clocks may be very useful.

Lastly, integrating HEP-based emulation engine with complementary peripheral modules such 

as download manager, monitoring and supervisory modules will make the HEP-based emulation 

system a desirable verification tool for all small and medium size IC manufacturing companies.

6.1.2 Improvement in D esign Compiler Tool

T h e  im p r o v e m e n t m a d e  by M L S + B F F  algorithm is  mainly due to  the fact th a t the algorithm is 

capable of “predicting” the flow of signals in netlist from one level to  the next immediate level. 

However, if the algorithm was somehow capable of profiling the flow of all signals in to  further
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depths within the circuits, scheduler might create even better solutions. Task scheduling for parallel 

processing platforms is widely open to  researchers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

[1] M. Abramovici, Y. H. Levendel, and P. R. Menon. A logic simulation machine. IEEE Trans
actions on Computer-Aided Design of Integrated Circuits and Systems, 2(2):82-94, Apr. 1983.

[2] J. Babb, R. Tessier, M. Dahl, S. Z. Hanono, D. M. Hoki, and A. Agarwal. Logic emulation 
with virtual wires. IEEE Transactions on Computer-Aided Design o f Integrated Circuits and 
Systems, 16(6):609-626, Jun. 1997.

[3] M. L. Bailey, J. V. Briner, and R. D. Chamberlain. Parallel logic simulation of vlsi systems. 
AC M  Computing Surveys (CSUR), 26(3):255-293, Sept. 1994.

[4] Z. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rutledge. HSS-a high-speed simulator. IEEE  
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(4):601-617, Jul. 
1987.

[5] G. Beraudo and J. Lillis. Timing optimization of fpga placements by logic replication. In 
Proceedings of IEEE Design Automation Conference, pages 196-201, Jun. 2003.

[6 ] V. Betz and J. Rose. Vpr: A new packing, placement and routing tool for fpga research. In 
International Workshop on Field Programmable Logic and Applications, pages 213-222, 1997.

[7] N. B. Bhat, K. Chaudhary, and E. S. Kuh. Performance-Oriented Fully Routable Dynamic 
Architecture for a Field Programmable Logic Device, 1993. Memorandum No. UCB/ERL 
M 93/42, Electronics Research Labratory, University of California, Berkeley.

[8 ] S. Brown, J. Rose, and Z. G. Vranesic. A detailed router for field-programmable gate arrays. 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(5):620- 
628, May 1992.

[9] S. Brown, J. Rose, and Z. G. Vranesic. A detailed router for field-programmable gate arrays. 
IE EE  Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(5):620- 
628, May 1992.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification using 
symbolic model checking. In Proc. A C M /IE E E  Design Automation Conference, pages 46-51, 
J u n .1990.

[11] M. B utts and J. Batcheller. Method of using electronically reconfigurable logic circuits, 1991. 
U. S. Patent 5036473.

[12] M. R. Butts. Logic multiprocessor for FPG A  implementation, Jun. 2004. U. S. Patent Appli
cation 2004/0123258 Al.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

[13] Y. W. Chang, S. Thakur, K. Zhu, and D. F. Wong. A new global routing algorithm for fpgas. 
In Proceedings of the IE E E /A C M  international conference on computer-aided design, pages 
356-361, Nov. 1994.

[14] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar. Dag-map: graph-based fpga 
technology mapping for delay optimization. IEEE Design and Test of Computers, 9(3):7-20, 
Sept. 1992.

[15] E. M. Clarke and R. P. Kurshan. Computer-aided verification. IEEE Spectrum, 33(6):61-67, 
Jun. 1996.

[16] D. Cock and A. Carpenter. A proposed hardware fault simulation engine. In IE EE  Proc. of the 
European Conference on Design Automation(EDAC), pages 570-574, Feb. 1991.

[17] J. Cong and Y. Ding. Flowmap: an optimal technology mapping algorithm for delay opti
mization in lookup-table based fpga designs. IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, 13(1):1—12, Jan. 1994.

[18] J. Cong, J. Peck, and Y. Ding. Rasp: A general logic synthesis system for sram-based fpgas. 
In Proceedings of AC M  Fourth International Symposium on Field-Programmable Gate Arrays, 
pages 137-143, Feb. 1996.

[19] J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications to circuit 
partitioning in vlsi design. In IEEE 30th Conference on Design Automation, pages 755-760, 
Jun. 1993.

[20] Altera Corp. Available at: www.altera.com, 2006.

[21] Aptix Corp. P roduct brief: The System Explorer MP4, Available at: www.aptix.com, 1998.

[22] Mentor Graphics Corp. Availabele at: www.mentor.com, 2006.

[23] P. Curzon and S. Tahar. Automating the verification of parameterized hardware using a hybrid 
tool. In IEEE Proc. international conference on Microelectronics(ICM), pages 257-260, Oct. 
2001 .

[24] Cadence Incisive Palladium Datasheet, 2006. Available at:
www.cadence.com/datasheets/incisivepalladiumILds.pdf.

[25] A. DeHon. A First Generation DPGA Implementation, 1995. MIT Transit Note 114. Available 
at:jh ttp ://w w w .a i.m it.e d u /p ro jec ts /tran s it/tn ll4 /tn ll4 .h tm li.

[26] M. M. Denneau. The yorktown simulation engine. In A C M  Proceedings of the 19th Conference 
on Design Automation, pages 431-435, Jan. 1982.

[27] R. Eastham  and K. Thirunarayan. Proof strategies for hardware verification. In IEEE Proc. of 
National Aerospace and Electronics Conference, pages 451-458, May 1996.

[28] A. Ejnioui and N. Ranganathan. Design partitioning on single-chip emulation systems. In IEEE  
T h ir te e n th  I n t e r n a t i o n a l  C o n fe r e n c e  o n  V L S I  D e s ig n ,  p a g e s  2 3 4 —2 3 9 , J a n . 2 0 0 0 .

[29] W. F. Beausoliel et al. Multiprocessor for hardware emulation, 1996. U. S. Patent 5551013.

[30] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network partitions. In 
Proceedings of 19th Design Automation Conference, pages 175-181, Jun. 1982.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.altera.com
http://www.aptix.com
http://www.mentor.com
http://www.cadence.com/datasheets/incisivepalladiumILds.pdf
http://www.ai.mit.edu/projects/transit/tnll4/tnll4.htmli


REFERENCES

[31] R. J. Francis, J. Rose, and K. Chung. Chortle: a technology mapping program for lookup table- 
based field programmable gate arrays. In Proceedings of 27th A C M /IE E E  Design Automation  
Conference, pages 613-619, Jun. 1990.

[32] D. Gajski, N. D utt, A. Wu, and S. lin. High Level Synthesis: Introduction to Chip and System  
Design. Kluwer Academic Publishers, 1994.

[33] R. Hartley, K. Welles, M. Hartman, A. Chatterjee, P. Delano, B. Molnar, and C. Rafferty. A 
rapid-prototyping environment for digital-signal processors. IEEE Design and Test of Comput
ers, 8(2):ll-25 , Jun. 1991.

[34] S. Hauck, G. Borriello, and C. Ebeling. Mesh routing topologies for multi-fpga systems. IEEE  
Transactions on Very Large Scale Integration (VLSI) Systems, 6(3):400-408, Sept. 1998.

[35] A. Hemani. Charting the EDA roadmap. IEEE J. Circuits and Devices Magazine, 20(6):5-10, 
Nov. 2004.

[36] J. Hwang and A. El-Gamal. Optimal replication for min-cut partitioning. In IE E E /A C M  
International Conference on Computer-Aided Design, pages 432-435, Nov. 1992.

[37] T. T. Hwang, R. M. Owens, M. J. Irwin, and K. H. Wang. Logic synthesis for field-programmable 
gate arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 
13(10):1280-1287, Oct. 1994.

[38] Cadence Design System Inc. Available at: www.cadence.com, 2006.

[39] Xilinx Inc. Available at: www.xilinx.com, 2006.

[40] D. Jones. A Time-Multiplexed FPGA Architecture for Logic Emulation, 1995. M. A. Sc. Thesis, 
University of Toronto.

[41] K. Keutzer. The need for formal verification in hardware design and what formal verification 
has not done for me lately. In IEEE International Workshop on the HOL Theorem Proving 
System and Its Applications, pages 77-86, Aug. 1991.

[42] M. .A. S. Khalid and J. Rose. A novel and efficient routing architecture for multi-fpga systems. 
IEEE Transactions on VLSI Systems, 8(l):30-39, Feb. 2000.

[43] S. Kirkpatrick, C. Gelatt, and M. Vecchi. In Science, 1983. Vol. 220, No. 4598,671.

[44] I. Kuon and J. Rose. Measuring the gap between fpgas and asics. IEEE Transactions on 
Computer-Aided Design of Integrated Circuits (Accepted for future publication), PP(99):1-13.

[45] Y. K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to 
multiprocessors. AC M  Computing Surveys (CSUR), 31(4):406-471, Dec. 1999.

[46] B. S. Landman and R. L. Russo. On a pin versus block relationship for partitions of logic 
graphs. IEEE Transactions on Computers, C-20(12):1469-1479, Dec. 1971.

[47] H. Li, W. K. Mak, and S. Katkoori. Force-directed performance-driven placement algorithm for 
fpgas. In Proceedings o f IE E E  C om puter society  A nnual S ym posium  on VLSI, pages 193-198, 
Feb. 2004.

[48] D. MacMillen, R. Camposano, M. Butts, D. Hill, and T. W. Williams. An industrial view 
of electronic design automation. IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, 19(12):1428-1448, Dec. 2000.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cadence.com
http://www.xilinx.com


REFERENCES

[49] P. Maidee, C. Ababei, and K. Bazargan. Fast timing-driven partitioning-based placement for 
island style fpgas. In Proceedings of IEEE Design Automation Conference, pages 598-603, Jun. 
2003.

[50] A. M arquardt, V. Betz, and J. Rose. Timing-driven placement for fpgas. In Proceedings of 
ACM /SIG D A eighth international symposium on Field programmable gate arrays, pages 203- 
213, Feb. 2000.

[51] G. Moore. Cramming more components into integrated circuits. Electronics, 38(8), 1956. 
Available: f tp : / /download.intel.com/research/ silicon/m oorespaper.pdf.

[52] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli. On clustering for minimum de
lay/area. In IEEE International Conference on Computer-Aided Design (Digest of Technical 
Papers), pages 6-9, Nov. 1991.

[53] C. Pixley, A. Chittor, F. Meyer, S. McMaster, and D. Benua. Functional verification 2003: 
technology, tools and methodology. In IEEE Proc. International Conference on ASIC, pages 
1-5, Oct. 2003.

[54] V. R. P ra tt, P. D. Mosses, M. Nielsen, and M. I. Schwartzbach. Anatomy of the pentium 
bug. Theory and Practice of Software Development (TAPSOFT), Vol. 915 of Lecture Notes in 
Computer Science, Spiinger-Verlag, pages 97-107, 1995.

[55] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of field-programmable gate 
arrays. Proceedings o f the IEEE, 81(7):1013-1029, Jul. 1993.

[56] M. Schutz. How to efficiently build vhdl testbenches. In IEEE Proc. EURO Design Automation  
Conference (EURO-DAC) with EURO-VHDL, pages 554-559, Sept. 1995.

[57] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, 
P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A System for Se
quential Circuit Synthesis, 1992. EECS Department, University of California, Berkeley, URL: 
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html, No. UCB/ERL M92/41.

[58] K. Shahookar and P. Mazumder. Vlsi cell placement techniques. AC M  Computing Surveys, 
23(2):143-220, Jun. 1991.

[59] N. A. Sherwani. Algorithms for VLSI Physical Design Automation (Second Printing). Kluwer 
Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061, 1994.

[60] S. Singh, J. Rose, and P. Chow D. Lewis. The effect of logic block architecture on fpga perfor
mance. IEEE Journal o f Solid-State Circuits, 27:281-287, Mar. 1992.

[61] L. Soule and T. Blank. Parallel logic simulation on general purpose machines. In Proc. of 25th 
A C M /IE E E  Design Automation Conference, pages 166-171, Jun. 1988.

[62] H. P. Su and Y. L. Lin. A phase assignment method for virtual-wire-based hardware emulation. 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16(7):776- 
783, Jul. 1997.

[63] S. Trimberger. Scheduling designs into a time-multiplexed fpga. In Proceedings o f ACM /SIG D A  
sixth international symposium on Field Programmable Gate Arrays, pages 153-160, 1998.

[64] S. Trimberger, D. Carberry, and A. Johnson J. Wong. A time-multiplexed fpga. In IEEE  
Symposium on FPGAs fo r  Custom Computing Machines, pages 22-28, Apr. 1997.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://download.intel.com/research/silicon/moorespaper.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html


REFERENCES

[65] J. Varghese, M. Butts, and J. Batcheller. An efficient logic emulation system. IEEE Transactions 
on Very Large Scale Integration (VLSI) Systems, 1(2): 1T1—174, Jun. 1993.

[6 6 ] K. Wakabayashi and T. Okamoto. C-based SoC design flow and EDA tools: an ASIC and 
system vendor perspective. IEEE Trans, on Computer-Aided Design of Integrated Circuits and 
Systems, 19(12), Dec. 2000.

[67] S. Walters. Computer-aided prototyping for asic-based systems. IEEE Design and Test of 
Computers, 8(2):4-10, Jun. 1991.

[6 8 ] Y. C. Wei and C. K. Cheng. Ratio cut partitioning for hierarchical designs. IEEE Transactions 
on Computer-Aided Design of Integrated Circuits and Systems, 10(7):911—921, Jul. 1991.

[69] S. Yang. Logic Sythesis and Optimization Benchmarks, version 3.0, 1991. Micro-electronics 
Centre of North Carolina, P. O. Box 12889, Research Triangle Park, NC. , 27709, USA.

[70] A. A. Yazdanshenas and M. A. S. Khalid. Logic emulation systems: A survey. AC M  Transac
tions on Design Automation of Electronic Systems, 2006. Paper currently under review.

[71] Y. Zhu and T. Marshall. Design verification using formal techniques. In IEEE Proc. Interna
tional Conference on ASIC, pages 21-28, Oct. 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA A U C T O R IS

Amir Ali Yazdanshenas was born in , Tehran, Iran, on June 10, 1975. He received his B.A.Sc. 
degree in Computer Hardware Engineering in 1999 from the Iran University of Science and Tech
nology (IUST). He is currently a candidate in the electrical and computer engineering M.A.Sc. 
program at the University of Windsor. His research interests include Logic Emulation Systems, 
field-programmable logic devices, embedded system design, computer architecture, and high perfor
mance VLSI circuit design.

i n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Hardware design and CAD for processor-based logic emulation systems.
	Recommended Citation

	tmp.1507664919.pdf.wLwfB

