4,309 research outputs found

    Simulation of charge-trapping in nano-scale MOSFETs in the presence of random-dopants-induced variability

    Get PDF
    The growing variability of electrical characteristics is a major issue associated with continuous downscaling of contemporary bulk MOSFETs. In addition, the operating conditions brought about by these same scaling trends have pushed MOSFET degradation mechanisms such as Bias Temperature Instability (BTI) to the forefront as a critical reliability threat. This thesis investigates the impact of this ageing phenomena, in conjunction with device variability, on key MOSFET electrical parameters. A three-dimensional drift-diffusion approximation is adopted as the simulation approach in this work, with random dopant fluctuations—the dominant source of statistical variability—included in the simulations. The testbed device is a realistic 35 nm physical gate length n-channel conventional bulk MOSFET. 1000 microscopically different implementations of the transistor are simulated and subjected to charge-trapping at the oxide interface. The statistical simulations reveal relatively rare but very large threshold voltage shifts, with magnitudes over 3 times than that predicted by the conventional theoretical approach. The physical origin of this effect is investigated in terms of the electrostatic influences of the random dopants and trapped charges on the channel electron concentration. Simulations with progressively increased trapped charge densities—emulating the characteristic condition of BTI degradation—result in further variability of the threshold voltage distribution. Weak correlations of the order of 10-2 are found between the pre-degradation threshold voltage and post-degradation threshold voltage shift distributions. The importance of accounting for random dopant fluctuations in the simulations is emphasised in order to obtain qualitative agreement between simulation results and published experimental measurements. Finally, the information gained from these device-level physical simulations is integrated into statistical compact models, making the information available to circuit designers

    Statistical Characterization and Decomposition of SRAM cell Variability and Aging

    Get PDF
    abstract: Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for future technologies. This work presents a novel test measurement and extraction technique which is non-invasive to the actual operation of the SRAM memory array. The salient features of this work include i) A single ended SRAM test structure with no disturbance to SRAM operations ii) a convenient test procedure that only requires quasi-static control of external voltages iii) non-iterative method that extracts the VTH variation of each transistor from eight independent switch point measurements. With the present day technology scaling, in addition to the variability with the process, there is also the impact of other aging mechanisms which become dominant. The various aging mechanisms like Negative Bias Temperature Instability (NBTI), Channel Hot Carrier (CHC) and Time Dependent Dielectric Breakdown (TDDB) are critical in the present day nano-scale technology nodes. In this work, we focus on the impact of NBTI due to aging in the SRAM cell and have used Trapping/De-Trapping theory based log(t) model to explain the shift in threshold voltage VTH. The aging section focuses on the following i) Impact of Statistical aging in PMOS device due to NBTI dominates the temporal shift of SRAM cell ii) Besides static variations , shifting in VTH demands increased guard-banding margins in design stage iii) Aging statistics remain constant during the shift, presenting a secondary effect in aging prediction. iv) We have investigated to see if the aging mechanism can be used as a compensation technique to reduce mismatch due to process variations. Finally, the entire test setup has been tested in SPICE and also validated with silicon and the results are presented. The method also facilitates the study of design metrics such as static, read and write noise margins and also the data retention voltage and thus help designers to improve the cell stability of SRAM.Dissertation/ThesisM.S. Electrical Engineering 201

    Reliability Investigations of MOSFETs using RF Small Signal Characterization

    Get PDF
    Modern technology needs and advancements have introduced various new concepts such as Internet-of-Things, electric automotive, and Artificial intelligence. This implies an increased activity in the electronics domain of analog and high frequency. Silicon devices have emerged as a cost-effective solution for such diverse applications. As these silicon devices are pushed towards higher performance, there is a continuous need to improve fabrication, power efficiency, variability, and reliability. Often, a direct trade-off of higher performance is observed in the reliability of semiconductor devices. The acceleration-based methodologies used for reliability assessment are the adequate time-saving solution for the lifetime's extrapolation but come with uncertainty in accuracy. Thus, the efforts to improve the accuracy of reliability characterization methodologies run in parallel. This study highlights two goals that can be achieved by incorporating high-frequency characterization into the reliability characteristics. The first one is assessing high-frequency performance throughout the device's lifetime to facilitate an accurate description of device/circuit functionality for high-frequency applications. Secondly, to explore the potential of high-frequency characterization as the means of scanning reliability effects within devices. S-parameters served as the high-frequency device's response and mapped onto a small-signal model to analyze different components of a fully depleted silicon-on-insulator MOSFET. The studied devices are subjected to two important DC stress patterns, i.e., Bias temperature instability stress and hot carrier stress. The hot carrier stress, which inherently suffers from the self-heating effect, resulted in the transistor's geometry-dependent magnitudes of hot carrier degradation. It is shown that the incorporation of the thermal resistance model is mandatory for the investigation of hot carrier degradation. The property of direct translation of small-signal parameter degradation to DC parameter degradation is used to develop a new S-parameter based bias temperature instability characterization methodology. The changes in gate-related small-signal capacitances after hot carrier stress reveals a distinct signature due to local change of flat-band voltage. The measured effects of gate-related small-signal capacitances post-stress are validated through transient physics-based simulations in Sentaurus TCAD.:Abstract Symbols Acronyms 1 Introduction 2 Fundamentals 2.1 MOSFETs Scaling Trends and Challenges 2.1.1 Silicon on Insulator Technology 2.1.2 FDSOI Technology 2.2 Reliability of Semiconductor Devices 2.3 RF Reliability 2.4 MOSFET Degradation Mechanisms 2.4.1 Hot Carrier Degradation 2.4.2 Bias Temperature Instability 2.5 Self-heating 3 RF Characterization of fully-depleted Silicon on Insulator devices 3.1 Scattering Parameters 3.2 S-parameters Measurement Flow 3.2.1 Calibration 3.2.2 De-embedding 3.3 Small-Signal Model 3.3.1 Model Parameters Extraction 3.3.2 Transistor Figures of Merit 3.4 Characterization Results 4 Self-heating assessment in Multi-finger Devices 4.1 Self-heating Characterization Methodology 4.1.1 Output Conductance Frequency dependence 4.1.2 Temperature dependence of Drain Current 4.2 Thermal Resistance Behavior 4.2.1 Thermal Resistance Scaling with number of fingers 4.2.2 Thermal Resistance Scaling with finger spacing 4.2.3 Thermal Resistance Scaling with GateWidth 4.2.4 Thermal Resistance Scaling with Gate length 4.3 Thermal Resistance Model 4.4 Design for Thermal Resistance Optimization 5 Bias Temperature Instability Investigation 5.1 Impact of Bias Temperature Instability stress on Device Metrics 5.1.1 Experimental Details 5.1.2 DC Parameters Drift 5.1.3 RF Small-Signal Parameters Drift 5.2 S-parameter based on-the-fly Bias Temperature Instability Characterization Method 5.2.1 Measurement Methodology 5.2.2 Results and Discussion 6 Investigation of Hot-carrier Degradation 6.1 Impact of Hot-carrier stress on Device performance 6.1.1 DC Metrics Degradation 6.1.2 Impact on small-signal Parameters 6.2 Implications of Self-heating on Hot-carrier Degradation in n-MOSFETs 6.2.1 Inclusion of Thermal resistance in Hot-carrier Degradation modeling 6.2.2 Convolution of Bias Temperature Instability component in Hot-carrier Degradation 6.2.3 Effect of Source and Drain Placement in Multi-finger Layout 6.3 Vth turn-around effect in p-MOSFET 7 Deconvolution of Hot-carrier Degradation and Bias Temperature Instability using Scattering parameters 7.1 Small-Signal Parameter Signatures for Hot-carrier Degradation and Bias Temperature Instability 7.2 TCAD Dynamic Simulation of Defects 7.2.1 Fixed Charges 7.2.2 Interface Traps near Gate 7.2.3 Interface Traps near Spacer Region 7.2.4 Combination of Traps 7.2.5 Drain Series Resistance effect 7.2.6 DVth Correction 7.3 Empirical Modeling based deconvolution of Hot-carrier Degradation 8 Conclusion and Recommendations 8.1 General Conclusions 8.2 Recommendations for Future Work A Directly measured S-parameters and extracted Y-parameters B Device Dimensions for Thermal Resistance Modeling C Frequency response of hot-carrier degradation (HCD) D Localization Effect of Interface Traps Bibliograph

    Study Of Nanoscale Cmos Device And Circuit Reliability

    Get PDF
    The development of semiconductor technology has led to the significant scaling of the transistor dimensions -The transistor gate length drops down to tens of nanometers and the gate oxide thickness to 1 nm. In the future several years, the deep submicron devices will dominate the semiconductor industry for the high transistor density and the corresponding performance enhancement. For these devices, the reliability issues are the first concern for the commercialization. The major reliability issues caused by voltage and/or temperature stress are gate oxide breakdown (BD), hot carrier effects (HCs), and negative bias temperature instability (NBTI). They become even more important for the nanoscale CMOS devices, because of the high electrical field due to the small device size and high temperature due to the high transistor densities and high-speed performances. This dissertation focuses on the study of voltage and temperature stress-induced reliability issues in nanoscale CMOS devices and circuits. The physical mechanisms for BD, HCs, and NBTI have been presented. A practical and accurate equivalent circuit model for nanoscale devices was employed to simulate the RF performance degradation in circuit level. The parameter measurement and model extraction have been addressed. Furthermore, a methodology was developed to predict the HC, TDDB, and NBTI effects on the RF circuits with the nanoscale CMOS. It provides guidance for the reliability considerations of the RF circuit design. The BD, HC, and NBTI effects on digital gates and RF building blocks with the nanoscale devices low noise amplifier, oscillator, mixer, and power amplifier, have been investigated systematically. The contributions of this dissertation include: It provides a thorough study of the reliability issues caused by voltage and/or temperature stresses on nanoscale devices from device level to circuit level; The more real voltage stress case high frequency (900 MHz) dynamic stress, has been first explored and compared with the traditional DC stress; A simple and practical analytical method to predict RF performance degradation due to voltage stress in the nanoscale devices and RF circuits was given based on the normalized parameter degradations in device models. It provides a quick way for the designers to evaluate the performance degradations; Measurement and model extraction technologies, special for the nanoscale MOSFETs with ultra-thin, ultra-leaky gate oxide, were addressed and employed for the model establishments; Using the present existing computer-aided design tools (Cadence, Agilent ADS) with the developed models for performance degradation evaluation due to voltage or/and temperature stress by simulations provides a potential way that industry could use to save tens of millions of dollars annually in testing costs. The world now stands at the threshold of the age of nanotechnology, and scientists and engineers have been exploring here for years. The reliability is the first challenge for the commercialization of the nanoscale CMOS devices, which will be further downscaling into several tens or ten nanometers. The reliability is no longer the post-design evaluation, but the pre-design consideration. The successful and fruitful results of this dissertation, from device level to circuit level, provide not only an insight on how the voltage and/or temperature stress effects on the performances, but also methods and guidance for the designers to achieve more reliable circuits with nanoscale MOSFETs in the future

    Transistor Degradations in Very Large-Scale-Integrated CMOS Technologies

    Get PDF
    The historical evolution of hot carrier degradation mechanisms and their physical models are reviewed and an energy-driven hot carrier aging model is verified that can reproduce 62-nm-gate-long hot carrier degradation of transistors through consistent aging-parameter extractions for circuit simulation. A long-term hot carrier-resistant circuit design can be realized via optimal driver strength controls. The central role of the V GS ratio is emphasized during practical case studies on CMOS inverter chains and a dynamic random access memory (DRAM) word-line circuit. Negative bias temperature instability (NBTI) mechanisms are also reviewed and implemented in a hydrogen reaction-diffusion (R-D) framework. The R-D simulation reproduces time-dependent NBTI degradations interpreted into interface trap generation, Δ N it with a proper power-law dependency on time. The experimental evidence of pre-existing hydrogen-induced Si–H bond breakage is also proven by the quantifying R-D simulation. From this analysis, a low-pressure end-of-line (EOL) anneal can reduce the saturation level of NBTI degradation, which is believed to be caused by the outward diffusion of hydrogen from the gate regions and therefore prevents further breakage of Si–H bonds in the silicon-oxide interfaces

    Reliability analysis of planar and symmetrical & asymmetrical trench discrete SiC Power MOSFETs

    Get PDF
    Silicon Carbide MOSFETs are shown in research to outperform Silicon counterparts on many performance metrics, including switching rates and power losses. To further improve their performance, trench and double-trench structures have recently been developed. To replace conventional planar SiC MOSFETs, besides the performance parameters which are mostly stated in datasheets, reliability studies under stress are also needed. This thesis presents a comprehensive comparison between 3rd generation trench SiC power MOSFETs, namely symmetrical double-trench and asymmetrical trench with planar SiC power MOSFETs on four aspects of: switching slew rates (dI/dt & dV/dt), crosstalk characteristics, bias temperature instability and power cycling stability.First, the dynamic performance in both 1st quadrant and 3rd quadrant has been eval- uated on the differences in stress by dI/dt & dV/dt and resultant losses. This is key in understanding many other reliability criterions, i.e. severity of crosstalk induced switchings. In the 1st quadrant, the source current and drain-source voltage switching rates at both turn-ON and turn-OFF are measured under a range of test conditions. Both the symmetrical and asymmetrical trench MOSFETs have up to 2 times faster voltage and current slew rates compared with the planar one. They also indicate only slight changes in switching rate with junction temperature. In the 3rd quadrant, the reverse recovery peak current and total reverse recovery charge are measured with respect to junction temper- ature and load current level. Both the symmetrical and asymmetrical trench MOSFETs have less than half of the reverse recovery charge of that of the planar SiC MOSFET.In the evaluation of crosstalk characteristics, peak shoot-through current and induced gate voltage at crosstalk are measured with respect to junction temperature and external gate resistance. With particularly large external gate resistances connected to intentionally induce parasitic turn-ON, the symmetrical double-trench MOSFET is shown to be more prone to crosstalk with 23 A peak shoot-through current measured while it is only 10 A for asymmetrical trench and 4 A for planar MOSFET under similar test conditions. As the temperature increase, the peak shoot-through current drops for the symmetrical double-trench, while constant for the asymmetrical trench and rising for the planar device.Threshold voltage drift is also measured to reflect the degradation happened with bias temperature instability at various junction temperatures, stressing voltages and time periods. Under low-magnitude gate stress (within the range of datasheets) in both positive and negative bias cases, there is more threshold drift observed on the two trench MOSFETs at all junction temperatures than the planar MOSFET. When the stress magnitude is raised, there is less threshold drift observed on the two trench MOSFETs.To evaluate the ruggedness in continuous switchings, the devices are placed under repetitive turn-ON events. The thermal performance under such operation are compared. The asymmetrical trench MOSFET experiences the highest case temperature rise while the least is observed for the planar MOSFET. With an external heatsink equipped to achieve more efficient cooling, the repetitive turn-ON test transforms into the conventional power cycling. In this condition, both the symmetrical and asymmetrical trench MOSFETs fail earlier than the degraded (but not failed) planar MOSFET

    Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors

    Get PDF
    We measure top-gated graphene field effect transistors (GFETs) with nanosecond-range pulsed gate and drain voltages. Due to high-k dielectric or graphene imperfections, the drain current decreases ~10% over time scales of ~10 us, consistent with charge trapping mechanisms. Pulsed operation leads to hysteresis-free I-V characteristics, which are studied with pulses as short as 75 ns and 150 ns at the drain and gate, respectively. The pulsed operation enables reliable extraction of GFET intrinsic transconductance and mobility values independent of sweep direction, which are up to a factor of two higher than those obtained from simple DC characterization. We also observe drain-bias-induced charge trapping effects at lateral fields greater than 0.1 V/um. In addition, using modeling and capacitance-voltage measurements we extract charge trap densities up to 10^12 1/cm^2 in the top gate dielectric (here Al2O3). Our study illustrates important time- and field-dependent imperfections of top-gated GFETs with high-k dielectrics, which must be carefully considered for future developments of this technologyComment: to appear in IEEE Transactions on Electron Devices (2014

    Ageing and embedded instrument monitoring of analogue/mixed-signal IPS

    Get PDF

    Design of a reliability methodology: Modelling the influence of temperature on gate Oxide reliability

    Get PDF
    An Integrated Reliability Methodology (IRM) is presented that encompasses the changes that technology growth has brought with it and includes several new device degradation models. Each model is based on a physics of failure approach and includes on the effects of temperature. At all stages the models are verified experimentally on modern deep sub-micron devices. The research provides the foundations of a tool which gives the user the opportunity to make appropriate trade-offs between performance and reliability, and that can be implemented in the early stages of product development
    • …
    corecore