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ABSTRACT 

The development of semiconductor technology has led to the significant scaling of the 

transistor dimensions -The transistor gate length drops down to tens of nanometers and the gate 

oxide thickness to 1 nm. In the future several years, the deep submicron devices will dominate 

the semiconductor industry for the high transistor density and the corresponding performance 

enhancement. For these devices, the reliability issues are the first concern for the 

commercialization. The major reliability issues caused by voltage and/or temperature stress are 

gate oxide breakdown (BD), hot carrier effects (HCs), and negative bias temperature instability 

(NBTI). They become even more important for the nanoscale CMOS devices, because of the 

high electrical field due to the small device size and high temperature due to the high transistor 

densities and high-speed performances. 

This dissertation focuses on the study of voltage and temperature stress-induced 

reliability issues in nanoscale CMOS devices and circuits. The physical mechanisms for BD, 

HCs, and NBTI have been presented. A practical and accurate equivalent circuit model for 

nanoscale devices was employed to simulate the RF performance degradation in circuit level. 

The parameter measurement and model extraction have been addressed. Furthermore, a 

methodology was developed to predict the HC, TDDB, and NBTI effects on the RF circuits with 

the nanoscale CMOS. It provides guidance for the reliability considerations of the RF circuit 

design. The BD, HC, and NBTI effects on digital gates and RF building blocks with the 

nanoscale devices – low noise amplifier, oscillator, mixer, and power amplifier, have been 

investigated systematically. 

The contributions of this dissertation include: It provides a thorough study of the 

reliability issues caused by voltage and/or temperature stresses on nanoscale devices – from 
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device level to circuit level; The more real voltage stress case – high frequency (900 MHz) 

dynamic stress, has been first explored and compared with the traditional DC stress; A simple 

and practical analytical method to predict RF performance degradation due to voltage stress in 

the nanoscale devices and RF circuits was given based on the normalized parameter degradations 

in device models. It provides a quick way for the designers to evaluate the performance 

degradations; Measurement and model extraction technologies, special for the nanoscale 

MOSFETs with ultra-thin, ultra-leaky gate oxide, were addressed and employed for the model 

establishments; Using the present existing computer-aided design tools (Cadence, Agilent ADS) 

with the developed models for performance degradation evaluation due to voltage or/and 

temperature stress by simulations provides a potential way that industry could use to save tens of 

millions of dollars annually in testing costs. 

The world now stands at the threshold of the age of nanotechnology, and scientists and 

engineers have been exploring here for years. The reliability is the first challenge for the 

commercialization of the nanoscale CMOS devices, which will be further downscaling into 

several tens or ten nanometers. The reliability is no longer the post-design evaluation, but the 

pre-design consideration. The successful and fruitful results of this dissertation, from device 

level to circuit level, provide not only an insight on how the voltage and/or temperature stress 

effects on the performances, but also methods and guidance for the designers to achieve more 

reliable circuits with nanoscale MOSFETs in the future. 
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1 CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

With continuous downscaling of device geometry and increasing demands for high 

performance, the two major reliability issues - gate oxide breakdown (BD) due to high vertical 

field in the oxide and hot carriers (HCs) because of high lateral field in short-channel MOSFETs 

[1] - [3], become even more important. Oxide breakdown and hot carriers result in performance 

degradation in RF circuits [4] - [7]. On the other hand, with the smaller dimensions for 

improving speed and functionality, each successive generation of transistors, which dissipates 

larger mount of power and results in heat flux to the ambient, requires sophisticated thermal 

management for reliability. High performance integrated circuit can have hot spots leading to 

large temperature gradients across a chip. Using the MEDICI simulation, the temperature at the 

gate-drain opening for the bulk devices was estimated 315 K [8]. For the silicon-on-insulator 

devices, the simulated temperature was up to 550 K. The net result is pattern dependent 

dispersion in the activation of NBTI processes and negative bias temperature instability (NBTI) 

drifts. If care is not taken to understand these issues, timing degradation dependent paths can 

lead to accelerated circuit failures during burn-in or field operations. Detection of these failures 

may become difficult due to circuit complexity and hence lead to erroneous data or output 

conditions. NBTI is one of the major temperature-induced reliability issues for p-channel 

MOSFET, which is caused by the interface traps under high temperature and negative gate 

voltage bias. 

1 



Even though much is known about the HC, BD and NBTI effects on the device dc 

characteristics, little is understood of the interaction of NBTI with BD and HCI, and the impact 

on RF performance, such as noise and linearity. The practical dynamic stress on the RFICs is 

first investigated here. An impact and accurate model to evaluate the RF performance in circuits 

is necessary.  

1.2 Research Goals 

The research presented here focuses on the following issues: 

1. Reliability Issues in the deep submicron devices 

2. Modeling the MOSFETs’ degradations 

3. Mixed HC, BD, and NBTI effects on RF performance degradation on MOSFETs. 

4. Performance degradation in MOSFETs RFIC, including LNA, mixer, VCO, PA, and 

buffer amplifier 

5. HC and BD effects on the RF performance of 60 nm high-k dielectrics CMOS devices 

and circuits 

1.3 Outlines 

Chapter 2 presents the basic voltage and temperature stress-induced reliability issues – HC, 

BD, and NBTI in MOSFETs. The RF performance degradation in devices is given in chapter 3. 

Analytical analysis to relate the performance to device parameters for the LNA, PA, mixer, and 

VCO is presented in the beginning of chapter 4. Then, the RFIC performance degradation is 
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given. In chapter 5, the stress induced performance degradations in 60 nm high-k dielectrics 

CMOS devices and circuits, are described. Chapter 6 gives the conclusions. 
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2 CHAPTER TWO: DEVICE MODELING AND PARASITIC 
EXTRACTION 

2.1 BSIM Models 

BSIM is a physics-based, accurate, scalable, robustic and predictive MOSFET SPICE 

model for circuit simulation and CMOS technology development. It is developed by the BSIM 

Research Group in the Department of Electrical Engineering and Computer Sciences (EECS) at 

the University of California, Berkeley. The third iteration of BSIM3 was established by 

SEMATECH as the first industry-wide standard of its kind in December of 1996. BSIM3v3 has 

since been widely used by most semiconductor and IC design companies world-wide for device 

modeling and CMOS IC design. It is a consortium of semiconductor companies and simulator 

vendor world-wide promoting BSIM3v3 development as the industry standard compact model 

[9]. The Bsim model will be adopted as the basic model for our devices. 

 

2.2 Equivalent Circuit Model 

 

The increasing importance to improve the reliability of circuits makes it necessary to 

evaluating the performance degradation due to these effects during the RFIC design phase before 

fabrication. Therefore, a compact model to predict the stressed MOS transistor behaviors 

accurately is important. The BSIM3v3 models are extracted from DC characteristics and does 

not account for the gate leakage current – the significant indicator of BD. Based on [7], a model, 
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which represents the stressed device behaviors, is developed and shown in Fig. 1. The equivalent 

circuit includes the terminal resistances (Rg, Rd, Rs), substrate network equivalent resistances 

(Rdb, Rsb, Rdsb), junction capacitances (Cdb, Csb), and two inter-terminal resistances (Rgd, Rgs). The 

intrinsic transistor is a BSIM3v3 model, which is extracted from the fresh or stressed devices 

using BSIMpro at different temperatures. Agilent 4156B is used as the I-V meter. Rgs and Rgd are 

used to account for equivalent resistances between the gate and the source and between the gate 

and the drain, respectively. The resistances come from the resistor-like behaviors for post-hard 

breakdown MOSFETs. They are extracted from the Ig-Vg curve of the stressed device. Other 

parameters – Cgs, Cgd, Rg, Rd, Rs, Cdb, Rds, Rdb, are extracted from Y-parameters that were 

converted from measured S-parameters. Rbsd and Csb are obtained by optimizing the entire model 

to fit measured S-parameters. In the BSIM3v3 model, the parameters are temperature dependent. 

 

Figure 2.1: Improved Model for RF simulation. 

Other parameters are extracted from Y-parameters that were converted from measured S-
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parameters. The details are given in Appendix I. Parameter extraction is given as: 

 Im( 11)
gg

YC =
ω

 (5) 

 Im( 12)
gd

YC =
ω

 (6) 

 gs ggC C Cgd= −  (7) 

 Im( 22 12)
db sb

Y YC C −
≈ =

ω
 (8) 
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g
m gg

Y C
R

g C
−ω

=
ω

 (9) 

 
2

2

Re( 12) 1/
( )

gg gd g gd
d

gd db gd

Y C C R
R

C C C
+ ω +

=
ω +

R
 (10) 

 
2 2 2 2

2 2

Re( 11) 1/ 1/gs gd gd d gg
s

gs

Y R R C R C
R

C
− − − ω − ω

=
ω

gR
 (11) 

Rbsd and Csb are obtained by optimizing the entire model to fit measured Y-parameters. 

2.3 On-Wafer Structure Design and Measurement 

The standard “open” deembedding method was first pro-posed in 1987 and employs a 

technique in which the pad capacitance is accounted for and calibrated by using an “OPEN” test 

structure (i.e., no transistor). Several other deembedding methods were subsequently proposed, 

and which use additional test structures (including the “SHORT” and “THROUGH,” etc.) to 

calibrate both the pad and interconnect parasitic in the device-under-test (DUT). 

The current industry paradigm is the so-called “open–short” standard. However, since this 

approach assumes lumped-component approximations, it begins to lose accuracy as the 
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frequency increases above approximately 30 GHz. For more robust-parameter extraction, several 

high-frequency deembedding techniques have been recently proposed [6], [7]. These methods 

either use equivalent two-port analysis (with cascade, series, or parallel structures) or 

complicated equivalent circuit models, which simplify the parasitic under suitable 

approximations (e.g., the cascade structure neglects the parasitic feedback from the output to 

input). 

To generalize the problem and avoid the potential inaccuracy caused by the above assumptions 

or simplifications, a four-port system calibration methodology was introduced by Rizzoli et al. 

for noise analysis [8]. As shown in [8] and [9], any two-port measurement can be modeled as a 

four-port system, which captures all of the parasitics surrounding the intrinsic device (Fig. 1). 

Once the 4x4 matrix of the system is solved, the intrinsic -parameters can be accurately 

extracted. However, the 4x4 matrix was solved either using equivalent-circuit [8], [9] or 

electrical magnetic (EM) simulations, together with additional calibration [10]. Clearly, the 

accuracy of such methods depends on the validity of the lumped or distributive model. 
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Figure 2.2: Device under test and surrounding deembedding structures. 
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3 CHAPTER THREE: DEVICE RELIABILITY 

3.1 Introduction 

With the smaller dimensions for each successive generation of transistors for improving 

speed and functionality, the power dissipation, which results in heat flux to be removed to the 

ambient, required development of thermal management for reliability. High performance silicon-

on- insulator (SOC) can have hot spots in a circuit design leading to large temperature gradients 

across a chip. Using MEDICI simulation, the temperature at the gate-drain opening for the bulk 

devices was estimated to be 315 K [1]. While for the SOC devices, the simulated temperature 

was up to 550 K. The net result is pattern dependent dispersion in the activation of negative bias 

temperature instability (NBTI) processes and NBTI drift. If care is not taken to understand these 

issues, timing degradation dependent paths can lead to accelerated circuit failures during burn-in 

or field operations. Detection of these failures may become difficult due to circuit complexity 

and hence lead to erroneous data or output conditions. NBTI is one of the major temperature-

induced reliability issues for p-channel MOSFET, which is caused by the interface traps under 

high temperature and negative gate voltage bias. Beside the NBTI effects, the pMOS transistors 

in real circuits also suffer from the gate oxide breakdown (BD) due to high vertical electrical 

field in the oxide and the hot carriers injection (HCI) because of high lateral electrical field in 

short-channel MOSFETs [2]-[6]. Increased temperature accelerates the combined NBTI, BD and 

HCI degradation significantly in our test transistors. Consequently the RF performance 

degradation in circuits follows. 
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3.1.1 Hot Carrier Effects 

The term 'hot carriers' refers to either holes or electrons (also referred to as 'hot electrons') 

that have gained very high kinetic energy after being accelerated by a strong electric field in 

areas of high field intensities within a semiconductor (especially MOS) device.  Because of 

their high kinetic energy, hot carriers can get injected and trapped in areas of the device where 

they shouldn't be, forming a space charge that causes the device to degrade or become 

unstable. The term 'hot carrier effects', therefore, refers to device degradation or instability 

caused by hot carrier injection.  

There are four commonly encountered hot carrier injection mechanisms.  These are 1) the 

drain avalanche hot carrier injection; 2) the channel hot electron injection; 3) the substrate hot 

electron injection; and 4) the secondary generated hot electron injection. The drain avalanche 

hot carrier (DAHC) injection, as shown in Fig. 2.1, is said to produce the worst device 

degradation under normal operating temperature range. This occurs when a high voltage 

applied at the drain under non-saturated conditions (VD > VG) results in very high electric fields 

near the drain, which accelerate channel carriers into the drain's depletion region. Studies have 

shown that the worst effects occur when VD = 2VG. The acceleration of the channel carriers 

causes them to collide with Si lattice atoms, creating dislodged electron-hole pairs in the 

process.  This phenomenon is known as impact ionization, with some of the displaced 

electron-hole (e-h) pairs also gaining enough energy to overcome the electric potential barrier 

between the silicon substrate and the gate oxide.  Under the influence of drain-to-gate field, hot 

carriers that surmount the substrate-gate oxide barrier get injected into the gate oxide layer 

where they are sometimes trapped. This hot carrier injection process occurs mainly in a narrow 

injection zone at the drain end of the device where the lateral field is at its maximum. Hot 

carriers can be trapped at the Si-SiO2 interface (hence referred to as 'interface states') or within 

the oxide itself, forming a space charge (volume charge) that increases over time as more 

charges are trapped. These trapped charges shift some of the characteristics of the device, such 

as its threshold voltage (Vth) and its conveyed conductance (gm). Injected carriers do not get 

trapped in the gate oxide become gate current. On the other hand, majority of the holes from 

the e-h pairs generated by impact ionization flow back to the substrate, comprising a large 
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portion of the substrate's drift current. Excessive substrate current may therefore be an 

indication of hot carrier degradation.  In gross cases, abnormally high substrate current can 

upset the balance of carrier flow and facilitate latch-up. Channel hot electron (CHE) injection 

occurs when both the gate voltage and the drain voltage are significantly higher than the source 

voltage, with VG ≈ VD.  Channel carriers that travel from the source to the drain are sometimes 

driven towards the gate oxide even before they reach the drain because of the high gate 

voltage. Substrate hot electron (SHE) injection occurs when the substrate back bias is very 

positive or very negative, i.e., |VB|>> 0. Under this condition, carriers of one type in the 

substrate are driven by the substrate field toward the Si-SiO2 interface. As they move toward 

the substrate-oxide interface, they further gain kinetic energy from the high field in surface 

depletion region.  They eventually overcome the surface energy barrier and get injected into 

the gate oxide, where some of them are trapped. Substrate hot electron (SHE) injection occurs 

when the substrate back bias is very positive or very negative, i.e., |V

B

BB| >> 0. Under this 

condition, carriers of one type in the substrate are driven by the substrate field toward the Si-

SiO2 interface. As they move toward the substrate-oxide interface, they further gain kinetic 

energy from the high field in surface depletion region.  They eventually overcome the surface 

energy barrier and get injected into the gate oxide, where some of them are trapped. Secondary 

generated hot electron (SGHE) injection involves the generation of hot carriers from impact 

ionization involving a secondary carrier that was likewise created by an earlier incident of 

impact ionization.  This occurs under conditions similar to DAHC, i.e., the applied voltage at 

the drain is high or VD > VG, which is the driving condition for impact ionization. The main 

difference, however, is the influence of the substrate's back bias in the hot carrier generation. 

This back bias results in a field that tends to drive the hot carriers generated by the secondary 

carriers toward the surface region, where they further gain kinetic energy to overcome the 

surface energy barrier. Hot carrier effects are brought about or aggravated by reductions in 

device dimensions without corresponding reductions in operating voltages, resulting in higher 

electric fields internal to the device. Problems due to hot carrier injection therefore constitute a 

major obstacle towards higher circuit densities. Recent studies have even shown that voltage 

reduction alone will not eliminate hot carrier effects, which were observed to manifest even at 

reduced drain voltages, e.g., 1.8 V.  Thus, optimum design of devices to minimize, if not 
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prevent, hot carrier effects is the best solution for hot carrier problems. Common design 

techniques for preventing hot carrier effects include: 1) increase in channel lengths; 2) n+ / n- 

double diffusion of sources and drains; 3)  use of graded drain junctions; 4) introduction of 

self-aligned n- regions between the channel and the n+ junctions to create an offset gate; and 

5) use of buried p+ channels. Hot carrier phenomena are accelerated by low temperature, 

mainly because this condition reduces charge detrapping. 
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Figure 3.1: Mechanisms of Hot Carrier Effects. (a) DAHC injection involves impact ionization 

of carriers near the drain area; (b) CHE injection involves propelling of carriers in the channel 

toward the oxide even before they reach the drain area; (c) SHE injection involves trapping of 
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carriers from the substrate; (d) SGHE injection involves hot carriers generated by secondary 

carriers. 

3.1.2 Breakdown 

Oxide Breakdown refers to the destruction of an oxide layer (usually silicon dioxide or 

SiO2) in a semiconductor device.  Oxide layers are used in many parts of the device: as gate 

oxide between the metal and the semiconductor in MOS transistors, as dielectric layer in 

capacitors, as inter-layer dielectric to isolate conductors from each other, etc.  Oxide breakdown 

is also referred to as 'oxide rupture' or 'oxide punch-through. 

Oxide breakdown has always been of serious reliability concern in the semiconductor 

industry because of the continuous trek towards smaller and smaller devices. As other features of 

the device are scaled down, the oxide thickness must be reduced.  Oxides become more 

vulnerable to the voltages as they get thinner.  The thinnest oxide layers today are already less 

than 50 angstroms thick.  An oxide layer can break down instantaneously at 8-11 MV per cm of 

thickness, or 0.8-1.1 V per angstrom of thickness. 

            Oxide breakdowns may be classified as one of the following: 1) EOS/ESD-induced 

dielectric breakdown; 2) early-life dielectric breakdown; 3) time-dependent dielectric breakdown 

(TDDB).  The first classification is self-explanatory, referring merely to oxide destruction due to 

the application of excessive voltage or current to the device.   

     Early-life and time-dependent dielectric breakdowns are technically the same failure 

mechanism, except that the former involves a breakdown that occurs early in the life of the 

device (say, within the first 2 years of normal operation), while the latter involves a breakdown 
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that occurs after a longer time of use (mainly in the 'wear-out' stage). Both categories involve 

destruction of the dielectric while under normal bias or operation.  

       Early life and time-dependent dielectric breakdowns are primarily due to the presence of 

weak spots within the dielectric layer arising from its poor processing or uneven growth. These 

weak spots or dielectric defects may be caused by: 1) the presence of mobile sodium (Na) ions in 

the oxide; 2) radiation damage; 3) contamination, wherein particles or impurities are trapped on 

the silicon prior to oxidation; and 4) crystalline defects in the silicon such as stacking faults and 

dislocations.      

             The risk of dielectric breakdown generally increases with the area of the oxide layer, 

since a larger area means the presence of more defects and greater exposure to 

contaminants.  The worse cases of oxide defects are the ones that result in early life dielectric 

breakdowns.  It must be pointed out, however, that even very high quality oxides can suffer 

breakdown with time, especially in the 'wear-out' period of its lifetime. This latter case is the 

classic 'TDDB' mechanism.  

Previous studies have shown that SiO2 TDDB is a charge injection mechanism, the 

process of which may be divided into 2 stages - the build-up stage and the runaway 

stage.   During the build-up stage, charges invariably get trapped in various parts of the oxide as 

current flows in the oxide. The trapped charges increase in number with time, forming high 

electric fields (electric field = voltage/oxide thickness) and high current regions along the 

way.  This process of electric field build-up continues until the runaway stage is reached. During 

the runaway stage, the sum of the electric field built up by charge injection and the electric fields 

applied to the device exceeds the dielectric breakdown threshold in some of the weakest points 

of the dielectric. These points start conducting large currents that further heat up the dielectric, 
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which further increases the current flow.  This positive feedback loop eventually results in 

electrical and thermal runaway, destroying the oxide in the end.  The runaway stage happens in a 

very short period of time. 

The presence of defects in the dielectric greatly reduces the time needed to transition from 

the build-up to the runaway stage.  These defects actually have the effect of 'thinning' down the 

oxide where they are located, since they are occupying space that should have been occupied by 

the dielectric. The effective electric field is higher in these thinned-out areas compared to defect-

free areas for any given voltage. This is why it takes a lower voltage and shorter time to break 

down the dielectric at its defect points. 

3.1.3 Negative Bias Temperature Instability 

Under high negative gate voltage bias in pMOSFETs at elevated temperature-NBTI stress, 

the electrochemical reaction at Si-SiO2 interface is: 

  (2.1) +
3 3Si-H + O -Si-O-Si+h Si  + O -Si-OH -Si↔ +

The interface state (Si·) is generated from the dissociation of hydrogen terminated 

trivalent Si bonds (Si-H) by holes (h+) in the Si inversion layer. The released hydrogenated 

species (H+) diffuse and are trapped near the oxide interface resulting in the positive oxide 

charges (Si-OH+-Si). Experiments show that the positively charged hydrogen (H+) reacts with 

the SiO2 lattice to form an OH group bonded to an oxide atom, leaving a trivalent Si atom (Si0+) 

in the oxide and one trivalent Sis at the Si surface. The Si0+ forms the fixed positive charge (Nf) 

and the Sis forms the interface trap (Nit). NBTI stress causes Nit and Nf shifts, contributing 

mainly to the shift in device characteristics. The Nit and Nf shifts are given by: 
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  (2.2) 
4 1.5 0.25( , , , ) 9 10 exp( 0.2 / ) /it ox ox ox oxN E T t t E t kT t−Δ = × −

  (2.3) 
1.5 0.14( , , ) 490 exp( 0.15 / )f ox oxN E T t E t kTΔ = −

where Eox is the electric field in the oxide, T is the temperature, t is the stress time, tox is the oxide 

thickness, and k is Boltzmann’s constant. The shift of threshold voltage is: 

 1 1 2( , ) [1 exp( / )] [1 exp( / )]th it fV N N B t B t 2τ τΔ Δ Δ = − − + − −  (2.4) 

where B1 and B2 relate to ∆Nit and ∆Nf, τ1 and τ2 are the reaction limiting time constants. The 

channel mobility degradation (∆μ) also depends on the interface traps. 

The NBTI induced Nit and Nf  shifts causes the change in device characteristics, as well as 

the performance degradation. The degradation is thermally activated (See Eqs. (2) and (3)) and, 

therefore, is sensitive to temperature. It degrades severely under higher temperature. 

Companying with NBTI under high gate voltage bias and temperature, hydrogen release, 

hole injection and thermo -chemical electric field create defects in the oxide and likely trigger 

breakdown. On the other hand, constant high voltage at the drain terminal in real pMOS devices 

can also result in another reliability issue - hot carrier effects. The carriers accumulate sufficient 

energy to surmount the Si-SiO2 surface and enter the oxide. The injected carriers enhance the 

interface state generation and increase the NBTI sensitivity. 

3.1.4 Dynamic and Static Stress 

It showed that dynamic stress with 25 MHz inverter-like voltage stress on the gate and the 

drain provided more degradation than a quasi-static sum of DC stresses [12], [13]. It was further 

claimed that the falling gate voltage, not the rising edge, is responsible for the performance 

degradation [14], [15]. Increasing frequency also led to more degradation and the maximum 
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damage was attained at frequencies in the range of 1 – 100 MHz [16] - [18]. At very high 

frequencies, the damage from dynamic stress drops significantly [18]. In the case of dynamic 

stress, the degradation due to inverter-like voltage stress on both gate and drain contacts is 

smaller than that of AC gate voltage stress with a fixed drain voltage [17]. The dynamic stress 

induced degradation is frequency dependent [12] - [18]. In the range of kHz or tens MHz, the 

damage from AC stress attains the maximum [12] - [14]. While at high frequencies, it drops 

significantly [17], [18], [19], [20]. In other words, a threshold frequency divides the stress 

frequency into two regimes: the low-frequency regime where the degradation rate is large and 

the high-frequency regime where the degradation is small. 

3.2 Effects on Device Models 

The model parameter shifts due to voltage and temperature stresses have been studied in 

[4] - [7], [21], [22]. Two mechanisms are traditionally suggested as key to the degradation of 

MOS devices by stresses [10], [11]. One involves the oxide-trapped charge, and the other is the 

generation of interface-states. As MOS devices shrink and gate oxide thickness is reduced, 

oxide-trapped charge more likely occurs in deep submicron devices because channel hot carriers 

reach velocity saturation easily, thus increasing the possibility of band-to-band tunneling [19]. 

Literature suggests both electrons and holes can be trapped in the oxide layer under different 

stress conditions [20], [27]. Measuring the shift in the threshold voltage after hot carrier stress is 

the most convenient way to identify which carriers are trapped in the oxide during stress. In N-

MOSFETs, the threshold voltage increases after hot carrier stress if electrons are trapped, and 

decreases after hot carrier stress if holes are trapped. 
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Under high negative gate voltage bias in pMOSFETs at elevated temperature-NBTI stress, 

the electrochemical reaction at Si-SiO2 interface is [28]: 

  (3.1) +
3 3Si-H + O -Si-O-Si+h Si  + O -Si-OH -Si↔ +

2

The interface state (Si·) is generated from the dissociation of hydrogen terminated 

trivalent Si bonds (Si-H) by holes (h+) in the Si inversion layer. The released hydrogenated 

species (H+) diffuse and are trapped near the oxide interface resulting in the positive oxide 

charges (Si-OH+-Si). Experiments show that the positively charged hydrogen (H+) reacts with the 

SiO2 lattice to form an OH group bonded to an oxide atom, leaving a trivalent Si atom (Si0
+) in 

the oxide and one trivalent Sis at the Si surface. The Si0
+ forms the fixed positive charge (Nf) and 

the Sis forms the interface trap (Nit). NBTI stress causes Nit and Nf shifts, contributing mainly to 

the shift in device characteristics. The Nit and Nf shifts are given by: 

  (3.2) 4 1.5 0.25( , , , ) 9 10 exp( 0.2 / ) /it ox ox ox oxN E T t t E t kT t−Δ = × −

  (3.3) 1.5 0.14( , , ) 490 exp( 0.15 / )f ox oxN E T t E t kTΔ = −

where Eox is the electric field in the oxide, T is the temperature, t is the stress time, tox is the oxide 

thickness, and k is Boltzmann’s constant. The shift of threshold voltage is: 

 1 1 2( , ) [1 exp( / )] [1 exp( / )]th it fV N N B t B tτ τΔ Δ Δ = − − + − −  (3.4) 

where BB1 and B2B  relate to ⊿Nit and ⊿Nf [7], τ1 and τ2 are the reaction limiting time constants. The 

channel mobility degradation (⊿μ) also depends on the interface traps. 

The NBTI induced Nit and Nf shifts causes the change in device characteristics, as well as 

the performance degradation. The degradation is thermally activated (See Eqs. (3.2) and (3.3)) 

and, therefore, is sensitive to temperature. It degrades severely under higher temperature [28]. 
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Companying with NBTI under high gate voltage bias and temperature, hydrogen release, 

hole injection and thermo -chemical electric field create defects in the oxide and likely trigger 

breakdown. On the other hand, constant high voltage at the drain terminal in real pMOS devices 

can also result in another reliability issue - hot carrier effects. The carriers accumulate sufficient 

energy to surmount the Si-SiO2 surface and enter the oxide. The injected carriers enhance the 

interface state generation and increase the NBTI sensitivity. 

MOSFET devices under voltage and temperature stresses suffer from the hot carrier, BD, 

and NBTI effects. The parameter shifts due to these effects degrade the RF performance in 

MOSFETs. 

3.3 Effects on RF Performances in Devices 

3.3.1 Analysis 

The main figures of merit (FOMs) in MOSFET devices are cutoff frequency and maximum 

frequency, linearity performance and noise figure. The FOMs relate to the model parameters of 

devices, which will be changed due to voltage and temperature stresses. Therefore, the 

alternatives of FOMs are anticipated. 

3.3.1.1 Cutoff Frequency and Maximum Frequency 

In the high-frequency performance, two figures of merit are particularly popular - the 

cutoff frequency (fT) and maximum frequency (fmax). They are the frequencies at which the 
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current and power gain are extrapolated to fall to unity, respectively. The cutoff frequency and 

maximum frequency are given as: 
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 It is clear that the cutoff frequency and maximum frequency depend on the 

transconductance terminal resistances and parasitic capacitances. 

3.3.1.2 Linearity 

Analysis of MOSFETs linearity to relate the linearity performance with the device 

parameters is useful. Taking into account the velocity saturation effect, the drain current of the 

MOSFET in the saturation region is given by 
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where Cox is the gate oxide capacitance per area, vsat is the saturation velocity, Vgs is the gate-

source voltage, μ0 is the mobility, θ is the mobility degradation factor, and W and L are the 

channel width and length, respectively. 

Without considering the memory effect in a weak nonlinear application, the drain current 

Id as a function of vgs in Taylor series is 

  (3.8) 2 3 4 5
0 1 2 3 4 5 ......d gs gs gs gs gsI T T v T v T v T v T v= + + + + + +
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 (3.9) 
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and Vd = Vgs–Vth. Usually, the coefficient T1 is seen as the transconductance of transistors. High-

order coefficients are introduced by the transistor nonlinearity. The third harmonic intercept 

voltage (VIP3) is used as a criterion for linearity 

 1
3

3

4( ) 10log( )IP
TV dBV

T
=  (3.10) 

If the distortion components are small enough in applications such as low noise 

amplifiers (LNAs), the Taylor expansion is a simple way to describe the linearity of MOSFETs. 

Considering the input impedance components, gate-source capacitance, and feedback component 

through gate-drain capacitance at high frequency, the Taylor expansion, which is based on the 

coefficients derived from I-V characteristics, becomes inappropriate. The Volterra series is then 

employed to analyze the device linearity with two-tone input signals. Typical examples are 

mixers. The Volterra series gives 

  (3.11) 2
0 1 2 1 2 3 1 2 3( ) ( , ) ( , , ) ...in in ini A s v A s s v A s s s v= + + 3 +

where s(= jω) is the Laplace variable. s1 = jω1 ,s2 = jω2 , s3 = -jω2. ω1 and ω2 are the angular 

frequencies of two-tone input, and ω = ω1 ≈ ω2. These coefficients are a function of gm, Cgs, 

operation frequency ω, and other circuit components. From (5) and using KCL at the small-

signal model, we can obtain the coefficients A1(s), A2(s1, s2) and A3(s1, s2, s3). This is given in 

Appendix. VIP3 using the Volterra series is 

 1
3

3 1 2 3

4 | ( ) |( ) 10log( )
| ( , , ) |IP

A sV dBV
A s s s

=  (3.12) 

For a short-channel MOSFET, however, the output conductance is also an important 

nonlinear source and must be included in the analysis at high frequencies. The third-order 

intermodulation current caused by the transconductance and output-conductance nonlinearities is 
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approximated as [29]: 
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 (3.13) 

where Rload is the load resistance. V is the fundamental voltage amplitude at the gate. The 

fundamental voltage amplitude at drain is given by 

 
1
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g Rv
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=
+

V  (3.14) 

The load resistance Rload = 50 Ω is used at the device drain terminal in the analysis and 

simulation below. 

3.3.1.3 Noise 

To understand the noise behavior, a single MOSFET can be considered as a small circuit 

with different resistive, capacitive, and active components as we have seen in Fig. 1. Different 

noise sources exist in a MOS transistor with their power spectral densities (PSDs) (cf. Fig. 1), 

including (1) terminal resistance thermal noise at the gate, source, and drain; (2) thermal noise 

and the flicker noise in the channel; (3) substrate resistance thermal noise, and (4) induced gate 

noise. 

Analysis of MOSFETs noise to relate the performance with the device parameters is 

useful. Taking into account the terminal resistors, the minimum noise figure of the MOSFET in 

the saturation region is given by 

   f gs gd g s mNF K f C C R R g= + π + + 1/ 2 1/ 2
min 1 2 ( )( ) /    (3.15) 

where gm is the transconductance, f is the operation frequency, Kf is FuKui factor, Cgs and Cgd are 

gate-source and gate-drain capacitances, respectively; RG and RS are gate and source equal 
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resistances, respectively. 

The noise figure with input source impedance (Gs + jBs) is 

   n
s opt s opt

s

RNF NF G G B B
G

= + − + −2
min [( ) ( ) ]2    (3.16) 

where Rn is the noise resistance, Gopt and Bopt are the real and image part of the optimum 

source admittance, respectively. They are given as: 
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where gd0 is the output-conductance, c ( ≈ 0.395j ) is the correlation coefficient, δ is the 

coefficient of gate noise, γ is the coefficient of channel current noise. For long-channel devices, 

the value of 2/3 holds when the device is saturated, and the value of one is valid when the drain-

source voltage is zero. For short-channel devices, however, γ is much greater than 2/3 in 

saturation region. 

These equations include the effects of terminal resistances and give an indication of the 

impact of parameters on the HF noise performance. One can see that the HF noise performance 

of MOSFETs relates to Cgs, Cgd, gm, gd, and the terminal poly-silicon resistances. They are the 

key components determining the HF noise characteristics of the NMOSFETs. The next section 

presents the experimental results of these parameters before and after stress. Most of them shift 
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significantly after stress. Therefore, the degradation of the HF noise performance in NMOSFETs 

is expected. 
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Figure 3.2. (a) Threshold voltage degradation versus time; (b) Mobility degradation versus time; (c)  I-V 

characteristics for fresh (□), NB stress (x), and NBH stress (∆). (marks: measurement, lines: simulation). 

All stresses were performed at 400 K. The stress time is 7200 seconds; (d) Transconductance versus gate 

source voltage for fresh ( ), NB stress (◊), and NBH stress (□).(marks: measurement, lines: simulation). 

All stresses were performed at 400 K. The stress time is 7200 seconds. Vds = -1.5 V. 

∇

3.3.2 Results 

The study of RF linearity degradation was based on the nMOSFET BSIM3 models, 

which were extracted from devices using BSIMpro before and after stress. Agilent 4156B was 

27 



used as the I-V meter for BSIMpro. Stress conditions are described in Sec. III, and the stress time 

is 1000 seconds. In the extracted model files, many parameters were adjusted to represent the 

stressed device behaviors, including Vth0, K1, K2, K3, U0, Ua, Ub, Uc, Voff, NFactor, Cj, 

Cgdo, Cgso, etc. The simulated I-V characteristics using these models are shown in Fig. 3.7. 

Measured I-V characteristics are also given in the same figure to prove the accuracy of the 

models. Good agreement between the simulated and measured results is obtained. 

As in Sec. II, the MOSFET input voltage has small perturbations around the bias point in 

weak nonlinear applications and the Volterra series analysis holds. The drain current shows 

considerable depression as a result of stress, as evidenced in Fig. 3.7. It is assumed that the 

dominant source of nonlinearity is the channel current Id. The expression for Id and the load line 

trajectory determine the nonlinear operation of the MOSFETs. With a decrease in drain current 

after stress, the output power is decreased. The drain current has more compression in the linear 

region than in the saturation region. Therefore, the output power will be more depressed at low 

gate-source voltage biases than at high gate-source voltage biases. And the third-order 

intermodulation distortion (IM3) is smaller at low gate-source voltage biases. The output power 

and IM3 follow the shape of |gm| and |gm3|. 

IM3 and output power are shown in Fig. 3.8. The calculated values using the Volterra 

series analysis (lines) agree very well with the extracted data (marks) from measurement. In the 

context of the Volterra series, it is known that the distortion of MOSFETs comes from the 

nonlinear device parameters such as Cgd, Cds, gm, and gd. 
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Figure 3.3. I–V characteristics and load line. (ڤ: fresh measurement; ∆: after stress measurement; line: 

simulation for fresh device; dash: simulation for device after stress). 

The output power decreases after stress. When Vgs is greater than 1.2 V, IM3 of the 

stressed device is greater than that of the fresh device. Therefore, one can predict a large 

distortion in this region. The simulated output power and IM3 versus input power is shown in 

Figs. 3.9 (a) and (b) at Vgs = 0.8 and 1.2 V, respectively. The two-tone input (ω1 = 900 MHz, ω2 

= 920 MHz) is used in SpectreRF periodic steady-state (PSS) simulation. The supply voltage is 

2.0 V and the load resistor is 50 Ω. The source and bulk are grounded. With –20 dBm input 

power. IM3 decreases by 1 dBm at Vgs = 0.8 V and 4 dBm at Vgs =1.2 V. 

29 



The input impedance of MOSFETs is also a major source of nonlinearity at high 

frequencies. It consists of two major nonlinear components, Cgs and Cgd. As presented in Section 

III, Cgs changes significantly after stress, while Cgd shows a slight change. The extracted third-

order intercept point (IIP3) is shown in Fig. 3.9 (c). At low drain currents, the degradation of 

IIP3 is about 1 dBm (Id = 1.0 mA). And at high drain currents, the linearity degradation is larger 

(about 8 dBm at Id = 4.5 mA). 

 

Figure 3.4. Calculated (lines) and extracted (marks. open marks: Fresh; closed marks: after stress) small 

signal output power and third - order IMD (IM3). Vgs = 1 V, Vds = 1.5 V and load resistor is 50 Ω. NMOS 

(W×L = 10×0.16 μm2) with source and bulk grounded. Input power = -10 dBm. 
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(a) 
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 (b) 
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(c) 

Figure 3.5. Simulated output power and IM3 versus input power at (a) Vgs = 0.8 V and (b) Vgs = 1.2 V. 

(open marks: fresh; closed marks: after stress); (c) Linearity of MOSFET versus drain current obtained 

from the extracted data of transconductance and output-conductance before and after stress. Here, a 50 Ω 

resistor is used as the output load. 

For the noise performance, the valid extraction region is up to 10 GHz. The mean values 

from 1 GHz to 10 GHz are selected as the extracted parameters. After breakdown, a leakage path 

exists across the gate oxide, which adds another noise source to the transistor, thus degrading the 

noise performance. Also, the drastic increase in the gate current due to stress effects increases the 

real part of the complex input impedance. The immediate impact of such a change affects the 

impedance matching condition, which is critical for the NMOSFET noise performance. The 
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optimum noise conductance (Gopt) and susceptance (BBopt) are extracted using Eqns. (3.18) and 

(3.19) from the measured parameters. They change strongly due to the dynamic stress, as 

evidence in Fig. 3.10 (a) and (b). The equivalent noise resistance (Rn) does not shift significantly, 

as shown in Fig. 3.10 (c). Minimum noise figure (NFmin) relates to Cgs, Cgd, Rg, Rs, and gm. All 

the parameters shift after stress, as described in Sec. III. Therefore, the degradation of NFmin is 

expected. The extracted NFmin using Eqn. (3.20) is shown in Fig. 3.10 (d). Noise figure at 50 Ω 

versus frequency before and after stress is given in Fig. 3.11 (a). It degrades significantly. The 

simulated results using the developed model are also shown in the same picture, there are good 

agreements between the extracted and simulated results from 1 GHz to 10 GHz. Because the 

parameter extraction is valid from 1 GHz to 10 GHz, the disagreement exists out of this range. 

The noise figures at 50 Ω versus drain current were measured using Y-factor method with 

Alitech 6716 noise generator and HP 8560 RF spectrum analyzer. The results for fresh and 

stressed device are given in Fig. 3.11 (b). One can see that the noise figure decreases with the 

increasing drain current. The average degradation of noise figure is about 1 dB. Simulated results 

are also plot in the same figure. 
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Figure 3.6. Extracted noise parameters versus frequency before and after stress. (a) Normalized noise 

resistance; (b) Optimum noise conductance; (c) optimum noise susceptance; (d) Minimum noise figure. 

Stress condition: 0 - 2.8 V inverter-like dynamic stress on NMOS (W×L = 20×0.16 μm2) for 2 hours. 

Parameter measurement conditions: Source and bulk were grounded. Vgs = 0.86 and Vds = 1.5 V. 
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(a)       

 

 (b) 

Figure 3.7. (a) Extracted and simulated noise figure @ 50 Ω versus frequency. (b)Measured and simulated 

noise figure @ 50 Ω versus drain current. Frequency is 900 MHz. marks: measurement, lines: simulation. 
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The cutoff frequency before and after stress is plotted as a function of DC gate voltage in 

Fig. 3.12. The cutoff frequency (fT) reduced 20% approximately after dynamic stress. The 

degradation is mainly due to the shift of transconductance and overlap capacitances due to 

dynamic stress. The maximum frequency (fmax) is also shown in the same figure, it degraded 

significantly after AC stress. For our device (L = 160 nm), fmax ~ gm
1/2, it degrades with the 

decrease of gm after AC stress. 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

5

10

15

20

25

30

35

40

45

50

fT

fmax

 

 

f T/f
m

ax
  (

G
H

z)

Gate-Source Voltage (V)

 Fresh simulation
 Fresh measurement
 After AC stress simulation
 After AC stress measurement

 

Figure 3.8. Cutoff-frequency versus gate-source voltage. Drain-source voltage is set at 1.5 V. 

 

37 



4 CHAPTER FOUR: RF CIRCUIT DESIGN AND PERFORMANCE 
ANALYSIS 

4.1 Introduction 

The low noise amplifier function plays an important role in the receiver design. Its main 

function is to amplify extremely low signals without adding noise, thus preserving the required 

signal-to-noise ratio (SNR) of the system at extremely low power levels. Additionally, for large 

signal levels, the LNA amplifies the received signal without introducing any distortions, which 

eliminates channel interference. Proper LNA design is crucial in today’s communication 

technology. Because of the complexity of the signals in today’s digital communications, 

additional design considerations need to be addressed during an LNA design procedure. 

Power amplifiers, also known as PAs, are used in the transmit side of RF circuits, typically 

to drive antennas. Power amplifiers typically trade off efficiency and linearity, and this tradeoff 

is very important in a fully monolithic implementation. Higher efficiency leads to extended 

battery life, and this is especially important in the realization of small, portable products. There 

are some additional challenges specifically related to being fully integrated. Integrated circuits 

typically have a limited power supply voltage to avoid breakdown, as well as a metal migration 

limit for current. Thus, simply achieving the desired output power can be a challenge. Power 

amplifiers dissipate power and generate heat, which has to be removed. Due to the small size of 

integrated circuits, this is a challenging exercise in design and packaging. Several recent 

overview presentations have highlighted the special problems with achieving high efficiency and 

linearity in fully integrated power amplifiers.  
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The purpose of the mixer is to convert a signal from one frequency to another. In a receiver, 

this conversion is from radio frequency to intermediate frequency. Mixing requires a circuit with 

a nonlinear transfer function, since nonlinearity is fundamentally necessary to generate new 

frequencies. If an input RF signal and a local oscillator signal are passed through a system with a 

second-order nonlinearity, the output signals will have components at the sum and difference 

frequencies. A circuit realizing such nonlinearity could be as simple as a diode followed by some 

filtering to remove unwanted components. On the other hand, it could be more complex, such as 

the double balanced cross-coupled circuit, commonly called the Gilbert cell. In an integrated 

circuit, the more complex structures are often preferred, since extra transistors can be used with 

little extra cost but with improved performance.  

An oscillator is a circuit that generates a periodic waveform whether it be sinusoidal, 

square, triangular, or, more likely, some distorted combination of all three. Oscillators are used 

in a number of applications in which a reference tone is required. For instance, they can be used 

as the clock for digital circuits or as the source of the LO signal in transmitters. In receivers, 

oscillator waveforms are used as the reference frequency to mix down the received RF to an IF 

or to baseband. In most RF applications, sinusoidal references with a high degree of spectral 

purity (low phase noise) are required. 

This chapter focuses on the performance degradation in these basic RFICs. Parameter 

shifts in devices have been studied in chapter 3. They induce the mismatching in the input or 

output for LNA or PA, decreasing gain in LNA, PA, and Mixer, alternating the tank capacitance 

in VCO, etc. In this chapter, the basic RF circuits, including low noise amplifier (LNA), power 

amplifier (PA), mixer, oscillator, and buffer, are analyzed first. The derived equations give the 

relationships between the performance of these RF circuits and device parameters. The 
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performance degradations due to voltage and temperature stresses are studied systematically 

through the developed model and Cadence Spectre-RF simulations. The future work, which 

focused on the performance degradation due to voltage stress in buffer, SiGe HBT VCO, and 

Gaas LNA, will be performed. 

4.2 Analysis 

4.2.1 Low Noise Amplifier 

A folded low noise amplifier (LNA), as shown in Fig. 4.1, is used as an example to 

demonstrate the RF performance degradation subject to the NBH stress. The folded structure is 

for low-voltage design [45]. The cascade transistor M2 reduces the input capacitance and enables 

a good reverse isolation, hereby enhancing the stability. On the other hand, because M2 is placed 

between the supply and ground tail, it more likely suffers from the NBH effects. The devices 

used in the LNA simulation have 0.16 µm channel length. NMOS transistor has 10 fingers 20 

µm each and pMOS transistor has 3 fingers 50µm each. The supply voltage is 1.5 V and the gate 

biasing of the device is consistent with the measurement condition for the model extraction. The 

extracted ‘fresh’ and ‘stressed’ models are used for each finger. For the ‘stressed’ model, the 

stress time is 2 hours. 

The total noise figure is given by [46]
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 (4.1) 

Where Cgs1 is the parasitic gate-source capacitance of transistor M1, gm1 is the transconductance 

of M1, Rs is the bias-dependent gate resistance. β, γ are Gate induced current noise factor and 

Channel current noise factor respectively. For long-channel model, β = 8/45, γ = 1; For short-

channel model, they need to be modified slightly to include the effect of short-channel effects, β 

= 4/15 and γ = 2/3. 

The gain is approximately equal to 

 1m LG g R=  (4.2) 

Aside from exhibiting low noise performance and high gain, an LNA should provide 

sufficient linearity to minimize IM3 from interference in adjacent frequency bands. The total 

VIP3 performance (in V) of the LNA is expressed as: 

 
2

1/ 2
2 2

1( 1
IP3

IP3,1 IP3,2

GV
V V

−= + )  (4.3) 

where VIP3,1 is VIP3 (in V) of M1, VIP3,2 is VIP3 (in V) of M2, G1 is the voltage gain of the first 

stage. 
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Figure 4.1. Simplified folded low noise amplifier. R1 is 1 kΩ, L1, L2, and ,L3 are 0.5 nH, 2.8 nH, 

and 2.8 nH, respectively. C1 is the DC block. C2, C3, and C4 are 300 fF, 600 fF, and 600 fF, 

respectively. The sizes of M1 and M2 are 0.16×200 μm2 and 0.16×150 μm2, respectively. Vdd is 

1.5 V. The operation frequency is 5 GHz. 

4.2.2 Power Amplifier 

The simplified schematic of power amplifier under study is shown in Fig. 4.2. The supply 

voltage is 1.5 V and the gate bias is 0.86 V. It is operated in class-AB mode. The power supply is 

given by 

 (sin cos )cc cc
cc

V IP θ θ θ
π

= −  (4.4) 

Efficiency for this maximum possible voltage swing is given by 

 max
2 sin 2

4(sin cos )
θ θη
θ θ θ
−

=
−

 (4.5) 

The actual output power for an output peak voltage of Vop can be found as a function of θ: 
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Figure 4.2. Schematic of PA 

4.2.3 Mixer 

The single-balanced Gilbert mixer includes two stages – transconductance or drive stage 

with a single transistor and a switching pair.  
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Figure 4.3. Schematic of single-balanced Gilbert mixer 
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The local oscillator signal is large enough to switch the tail current from one side to the 

other. In other words, the tail current is multiplied by the local oscillator wave. The conversion 

gain can be written as  

 3
2

c mG g LR
π

=  (4.7) 

gm3 is the transconductance of M3, and RL is the load resistance. 

The total third harmonic intercept voltage is [47]

 1
3

3 1 2 3

4 | ( ) |( ) 10 log( )
| ( , , ) |IP

C sV dBV
C s s s

=  (4.8) 

where C1(s) and C3(s1,s2,s3) are Volterra coefficients that describe the total mixer distortion. s(= 

jω) is the Laplace variable. s1 = jω1, s2 = jω2, s3 = -jω2. ω1 and ω2 are the angular frequencies of 

two-tone input, and ω = ω1 ≈ ω2. C1(s) and C3(s1, s2, s3) are given below: 

  (4.9) ' '
1 1 1( ) ( ) ( )C s A s B s=

 
' ' ' ' '

3 3 1 2 3 1 1 2 3 1 1 2 2 3 2 1 2

' ' ' '
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( ) ( , , ) ( ) 2 ( ) ( , ) ( , )
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3+

 (4.10) 

A1’(s1), A2’(s1, s2), A3’(s1, s2, s3) and BB1’(s1), B2’(s1, s2), B3’(s1, s2, s3) are Volterra coefficients that 

describe the distortion of transconductance and switching stages, respectively. These coefficients 

are a function of transconductance, parasitic capacitances, operation frequency ω, and other 

circuit components. 

The single-sideband (SSB) noise figure for the Gilbert is [48]

 
2

3 3 3 3 1 1
2 2 2
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m s
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NF

c c g R
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= + LR
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where α is the coefficient of PSD in M3. c is the fitting factor for conversion gain. γ1 and γ3 are 

the coefficients of channel current noise in M1 and M2, Rg1 and Rg3 are the gate resistances of 

M1 and M3, respectively. And: 

 2 SS

LO

IG
Vπ

=  (4.12) 

 
1/ 2 3/ 2

2 1ln( 2 1) 18( )
32

SS

LO

K IG
Vπ

+
≈ −  (4.13) 

Iss is the biasing current of Gilbert cell, VLO is the amplitude of input signal from local oscillator, 

K1 is the K parameter of transistor M1 or M2. 

4.2.4 LC Oscillator 

The LC tank oscillator and its equivalent circuit are shown in Fig. 4.4. A capacitor and an 

inductor in parallel form an LC tank that resonates at a frequency of 

 1
o LC

ω =  (4.14) 

If both the inductor and the capacitor are lossless and some energy is trapped in the 

resonator tank, there will be an oscillation. However, since it is impractical to fabricate any 

lossless passive components, as a result, the oscillation dies. Now if a negative resistance is 

connected to the tank, the loss in the parasitic resistances of the passive components is recovered 

by the energy supplied by the negative resistance, therefore, the circuit oscillates.  
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Figure 4.4. (a) LC Oscillator and (b) its equivalent circuit. 

 The equivalent resistance of the tank is ( )2 /eq LC dsR R g= , where, LCR  represents the 

parasitic resistance for the inductor and capacitor. The condition for sustained oscillation is 

2 / m eqg R− ≤ . In other words, the amount of energy supplied by the negative resistance has to be 

bigger than the amount of energy lost in the tank. Therefore, there is a minimum value of the 

transconductance 0 2 /m eqg R=  that ensures the oscillation. 

The fundamental component of the current is 

 ( ) ( ) ( ) ( )
2

2
0 0 0

1 4( )sin ( )sinI i t t d t i t t d t
ππ

ω ω ω
π π

= =∫ ∫ ω  (4.15) 

The current follows a sine waveform until it reaches its maximum value of   at an offset 

angle of 

/ 2tailI

θ . Thus, 

 0
4 3

4sin 4tailI I cosθ θ
π θ

⎛= ⋅ +⎜
⎝ ⎠

⎞
⎟  (4.16) 
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As a result, the resonator tank amplitude can be approximated as 

 4
m tailV Iα eqR

π
=  (4.17) 

where 3cos
4sin 4
θ θα
θ

= +  is a fitting parameter. The parameter α  for different offset angle θ  is 

plotted in Fig. 2 (b). The parameter θ  is obtained from the relation 1.5sin 2 / m eqg Rθ θ π+ = . 

This mode of operation is the current limited operation. On the other hand, the power supply 

limits the largest possible amplitude to DDV , when the tail current source transistor shuts off at 

each negative peak of the oscillation.  

The amplitude of oscillation is simulated for varying tail currents for different supply 

voltages using SpectreRF circuit simulator. Corresponding values are calculated using the 

analytical expression given in (4.17). The simulated and calculated tank voltage amplitude versus 

tail current is shown in Fig. 4.5. Obviously, a nonlinear relationship between the tail current and 

the tank voltage amplitude exists. Simulated results (lines) agree with analytical values very 

well. The parasitic series resistance of a reasonable quality inductor is very small (order of few 

ohms), therefore the voltage drop across it is negligible. Also, the overdrive voltage at the tail 

current source ,DSAT tailV  is usually kept low to allow a higher output swing. Thus, the transistors at 

the differential pair experience a DC bias voltage of DS GS DV V V D= ≈ . Moreover, the transient 

voltage across the transistors can reach as high as 2 DDV . As a result, if the oscillator is in 

operation for a prolonged time the transistors experience HC and BD simultaneously. 

 To evaluate the HC and gate oxide BD on the LC oscillator, the transistor models are 

extracted from device measurements under the HC and SBD combined stress using BSIMPro 

software. While model parameters for the transistors degrade across the board, an increase of 
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threshold voltage and decrease in mobility are most noticeable and are given in Figs. 4 (a) and 4 

(b) respectively. 
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(c) 

Figure 4.5. Threshold voltage, mobility and transconductance versus stress time. The 50/0.16 μm 

NMOS devices are stressed at V = V = 2.6 VG D  and BSIM 3 transistor models are extracted from 

measurement results with a bias condition of V = V = 2.6G D  V. Degradation of transconductance 

is obtained from direct measurements. The stress was interrupted every 1800 s to measure 

various transistor parameters. 

 

Experimental data show that the transconductance of the transistor degrades significantly subject 

to stress. Figure 4 (c) shows the transconductance versus stress time due to the HC effects. The 

transconductance was measured at a bias current of 7 mA. 
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5 CHAPTER FIVE: DEGRADATION SUBJECT TO ELECTRICAL AND 
TEMPERATURE STRESS 

5.1 Introduction 

In the previous chapters, both measured and simulated results show that the FOM degraded 

in device after voltage and temperature stress. It is predictive that the RF circuit performance 

degradation will follow. It is important to examine the stress effect on RF circuits. Good 

agreement between simulation and measurement verify that the developed model is suitable to 

evaluate the RF performance degradation in RFICs. Here, we take several building blocks – 

LNA, VCO, mixer, PA, as examples to exhibit the RF performance degradation due to dynamic 

stress.  

5.2 Analysis 

The inner sidewall depletion region near the drain or source in MOSFETs, which forms a 

partial capacitance of Cdb, is controlled by surface potential along the channel [49]. Hot carrier 

induced interface charges alter the surface potential and increase Cdb. The trapped charges at the 

drain end of the channel cause the change of Cgs. It showed a significant increase after stress. On 

the other hand, midgap interface states generated by hot-carrier stress will act as extra 

recombination centers and will lead to a decrease in Rdb. The increase in Rd is attributed to the 

interface traps and oxide trapped charged generated the drain region during stress [50], [51]. The 

decrease in Rs comes from the increase of effective source potential of the stressed MOSFET as 

Rd increases [50]. Rg includes two parts: polysilicon sheet resistance and non-quasi-static (NQS) 
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distributed channel resistance [52]. The NQS distributed channel resistance, which is inversely 

proportional to the transconductance, will change with the shift of transconductance due to 

stress. The shifts of these parameters are also reported in [50], [51], and [53]. 

The figure of merit degradation due to these parameter shifts can be expressed as: 

 i
i

FF P
P
∂

Δ = Δ
∂∑  (4.18) 

where Pi is the ith parameter, which is a factor of F and shifts after voltage and temperature 

stress. 

5.3 Performance Degradation 

5.3.1 Low Noise Amplifier 

As the first stage of a receiver, the essential requirements of an LNA are low noise, high 

gain, and high linearity. Moreover, the matching conditions are also important in the LNA for 

power delivery and noise optimization. S-parameters as a function of frequency are shown in Fig. 

4.6 (a). At 5.0 GHz, S11 and S21 change slightly. The amplitude of S12 diminishes from -46 to -

50 dB at 5 GHz (8.6 % reduction); S22 changes from -9 to -8 dB at 5 GHz. The power gain is 

degraded significantly after stress, as shown in Fig. 4.6 (b). This is mainly due to the decrease of 

the transconductance of the transistor. The noise figure versus frequency is plotted in Fig. 4.6 (c) 

as a function of frequency. After breakdown, leakage paths exist across the gate oxide, which 

form a noise source to the transistor, thus degrading the noise performance. Also, the drastic 

increase in the gate current due to NBH stress increases the real part of the complex input 
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impedance. The immediate impact of such a change affects the impedance matching condition, 

which is critical for the LNA noise performance. For linearity degradation, two-tone simulations 

were performed on the LNA at 5 GHz, with separation of 20 MHz in frequency. The power 

levels in Fig. 4.6 (d) are given for the fundamental and the third-order inter-modulation product 

(IM3). The increase of IM3 after stress results the linearity degradation. IIP3 before and after 

stress are 4.2 and -1.1 dBm, respectively. In Figs. 7-10, the temperature is 400 K and the stress 

time is 2 hours. 

 

(a) 
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 (b) 

 

(c) 
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 (d) 

Figure 5.1. (a) Amplitude of S-parameters before (□) and after (+) NBH stress for the LNA;  

(b) Power gain before and after NBH stress for the LNA; (c) Noise figure (@ 50 Ω) before and 

after NBH stress for the LNA; (d) Output power and IM3 versus input power before and after 

NBH stress for the LNA. 

5.3.2 Power Amplifier 

In the previous chapter, both measured and simulated results show that the FOMs 

degrade in device after dynamic stress. It is predictive that the RF circuit performance 

degradation will follow. Good agreement between simulation and measurement verify that the 

developed model is suitable to evaluate the RF performance degradation in RFICs. Here, we take 

the class-AB power amplifier as an example to exhibit the RF performance degradation due to 

dynamic stress. 
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The biasing of device corresponds to the condition for the model extraction measurement. 

The stress time is 2 hours. The device used in the PA simulation has 0.16 μm of channel length 

and 900 μm of channel width. It has multi-fingers and each finger of the 45 fingers is modeled by 

the extracted 0.16×20 μm2 nMOS transistor model for the fresh device as well as stressed device. 

A 1.0 MHz channel bandwidth quaternary phase shift keying excitation signal (QPSK) 

excitation signal at 900 MHz for CDMA is used as the input. Fig. 4.7 (a) shows the output 

spectrum at –30 input power. The in-band output power is reduced due to ac stress. The power-

added efficiency (PAE) as a function of the input power is given in Fig. 4.7 (b) with a 900 MHz 

input signal. It shows obvious degradation due to stress, changing from 32% to 28% with 5 dBm 

of input power. In realistic applications, PAs are operated with wideband input signals that can 

carry information, not with the standardized tow-tone excitation. A 1.0 MHz channel bandwidth 

QPSK at 900 MHz for Code Division Multiple Access applications is used as the input. The 

simulated adjacent channel power ratio (ACPR) versus output power shown in Fig. 4.7 (c) before 

and after stress. ACPR becomes worse after stress. This means the out-of-band power emission 

level effects become larger after stress. For the noise power ratio (NPR) simulation, the PA is 

excited with an input consisting of band-pass filtered white (Gaussian) noise with a small notch 

(0.25 MHz) at the center of the frequency band. The simulated NPR is given in Fig. 4.7 (d). NPR 

degrades after stress. 
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Figure 5.2. (a) Output spectrum before stress and after stress of the PA for –30 dBm input power 

with a 1.0 MHz-wide QPSK input signal. Center frequency is 900 MHz; (b) Simulated PAE 

versus input power; (c) Adjacent channel power ratio versus output power before stress and after 

stress; (d) Noise power ratio versus input power before stress and after stress. 

5.3.3 Mixer 

The single-balanced Gilbert mixer used for investigation of HC effects is used as a down-

converter with RF frequency of 1.0 GHz, LO frequency of 920 MHz, VLO of 0.8 V and supply 

voltage of 3.3 V. The SSB noise figure and conversion gain are plotted as functions of biasing 

current in Fig. 4.8 (a). One can see that there is significant degradation at the small biasing 

current region. While at the high biasing current region, the degradation becomes smaller. The 

reason is that the drain current has more compression at the high biasing current region. The 

degradation of linearity for the Gilbert mixer is shown in Fig. 4.8 (b). The IIP3 changed from 

3.168 to 1.182 after stress. The output power becomes lower and the third-order intermodulation 

distortion (IM3) shifts upward after HC stress. 
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Figure 5.3. (a) Simulated SSB noise figure and conversion gain versus bias current before and 

after stress. (b) Simulated output power and IM3 versus input power before and after stress. 

5.3.4 Oscillator 

The frequency drift for an LC oscillator is caused by two mechanisms. First, the 

degradation of amplitude due to the gate oxide BD of the varactor transistors cause the effective 

average capacitance to change; whether the capacitance will increase or decrease depends on the 

gate bias voltage  and . Second, the small-signal capacitance of the varactor is reduced for 

some internal mechanisms.  

GV ctrV

As the hardness of breakdown increases, the breakdown spot resistance is reduced to few 

kΩ, as a result, the amplitude decreases. A 2.4 GHz LC oscillator has been designed and 

simulated using an inversion type varactor. The varactor transistors have five fingers with 50 μm 

in width and 0.16 μm in length (the size of the measured devices) each. For SpectreRF 

simulation in Cadence, a 10 kΩ breakdown spot resistance is assumed for each broken finger. 

BSIM3 model parameters extracted from the measured data are used in the simulation. The 

amplitude of the oscillator has been evaluated with the different numbers of fingers experiencing 

hard BD using the analytical models in section 4.2.4 and by computer simulation. The simulation 

and analytical results for the amplitude of oscillation are shown in Fig. 4.9. Good agreement 

between the model predictions and SpectreRF simulation is obtained. 

61 



0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5

Number of breakdow n

Am
pl

itu
de

 (V
)

 
Figure 5.4. Amplitude of oscillation versus number of finger breakdown in varactor. Shaded: 

SpectreRF simulation, black: analytical. 

 

The mechanisms for phase noise have been analyzed in [54], [55]. The phase noise of an 

LC oscillator at an offset frequency of mω  from the frequency of oscillation 0ω  normalized with 

respect to the carrier is given by 

 ( )
2

0
2

410log
2

LC
m

m m

kTFR
V Q

ωω
ω

⎡ ⎤⎛ ⎞
⎢ ⎥ℑ = ⋅⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (4.19) 

where 8 82
9

eq tail
mbias eq

m

R I
F g R

V
γ

γ
π

= + + . The three terms in F  account for thermal noise for the tank 

resistance, the differential pair, and the tail current source, respectively. LC CR R R= L  is the 

equivalent resistance of the resonator tank. The loaded quality factor Q depends on the inductors 

and the capacitors. In CMOS technology on-chip inductors have low quality factor and usually 

dominates in overall quality factor. However, as we have seen the quality of the varactor can 

degrade significantly as the transistors experience BD. Also, as the amplitude of oscillation 
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degrades as the gate oxide BD progresses, the phase noise of the oscillator increases. Fig. 4.10 

shows the phase noise of the oscillator for different numbers of varactor transistor finger 

experiencing breakdown, where solid lines show SpectreRF simulation results and discrete 

points are calculated. Since we have used ideal current source during the simulation of the 

oscillator, we ignored the noise coming from the tail current source in our calculation. There is a 

good agreement between the simulation results and the model prediction. At a given offset 

frequency, the higher the number of finger breakdown, the higher the phase noise of the 

oscillator. 

 

Figure 5.5. Amplitude Normalized phase noise of the oscillator versus offset frequency.  
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6 CHAPTER SIX: 60/90 NM MOSFETS WITH HIGH-K DIELECTRICS 

6.1 Introduction 

The insulators with high-κ dielectrics are motivated by the necessity of reducing the gate 

leakage current of MOSFETs, while avoiding the problems which arise when the SiO2 thickness 

is reduced below the 1.5-1.0 nm range, as demanded by device scaling. Many materials are 

currently under consideration as potential replacement for SiO2 as the gate dielectric material for 

sub-100 nm CMOS technology [76]. The most commonly studied high-κ gate dielectric 

candidates are the Ta2O5 [77]-[78], SrTiO3 [79]-[80], and Al2O3 [81]-[82] due to their maturity in 

memory applications. Recently, a substantial amount investigation has gone into the TiO2 [83]-

[84], ZrO2 [85]-[86], and HfO2 [87]-[88], which have shown much promise in overall materials 

properties as candidates to replace SiO2. HfO2 appears promising due to its relatively high 

dielectric constant (~ 25) as compared to Al2O3 [89], high free energy of reaction with Si (47.6 

Kcal/mole at 727 OC) as compared to TiO2 and Ta2O5 [90], large bandgap [91], and good thermal 

stability.  

However, satisfying the reliability requirements, such as threshold voltage stability and 

dielectric reliability for alternative gate insulators, remains a significant challenge for integration 

[92], [93]. It is the time for the present research status of high-κ dielectrics to shift from material 

selection to reliability phase. High-κ dielectric gate insulators reduce the gate leakage and 

alleviate the associated problems in the scaling down MOSFETs. However, aggressive scaling of 

MOSFET dimensions results in the high lateral electrical field and HC effects. The reliability 
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issues for sub-100 nm MOSFETs should be paid more attention. Lugui, et. al. given the gate 

oxide breakdown effects on 90 nm NMOSFETs [94]. 

As the gate oxide thickness continues to shrink, the use of high-k dielectrics to reduce the 

gate leakage current becomes more attractive. Among most promising high-k materials, HfO2 

particularly appears a good candidate compared to Al2O3, TiO2, and Ta2O5 due to its relatively 

high dielectric constant, high free energy of reaction with Si, large bandgap, and good thermal 

stability [89]-[91].  

Recently, many papers on HfO2 devices have been published [95] - [100]. Degrave et al. 

[100] observed that polarity dependent breakdown (BD) through the Weibull slope. Loh et al. 

[101] reported the high-k or interfacial layer initiated breakdown using carrier separation 

measurement technique. Under negative stress, breakdown is initiated form high-k film, while 

under positive stress, the breakdown is initiated from the interface layer. Pantisano et al., [94] 

and Degrave et al., [103] showed that breakdown location in the short channel has different 

impact on RF performances. The impact of high-k dielectrics breakdown on circuits, however, is 

still not well understood. 

It is critical to evaluate the breakdown-induced effect on analog or digital integrated 

circuits through simulation. The equivalent circuit for simulating the SiO2 post-breakdown 

behavior has been presented  [104], [105].  The post-breakdown RF characteristics were 

evaluated using the breakdown resistances between the gate and the source and between the gate 

and the drain. Rodriguez et al.  [106] and Miranda et al. [107] modeled the soft breakdown using 

a current source, instead of the breakdown resistance for digital switching. 

 This chapter gives a thorough study on the impact of HCs on the state-of-the-art 60nm 

MOSFET with high-κ dielectrics. In section II, the analysis of RF performance, which is related 
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to the parameters of devices, is given. Experimental details are described in Section III. The 

experimental results including degradation in DC characteristics, RF FOM such as the cutoff 

frequency (fT), noise figure (NF), linearity (VIP3, IIP3), and 1/f noise level are also presented. 

Discussions give the insight of degradation of these RF performances due to HCs in 60 nm 

nMOSFETs. The HC effects on performance of integrated circuit are also investigated. This 

chapter also examines the polarity dependence and charge trapping characteristics of p- and n-

MOSFETs. A compact model of the leakage current through the breakdown path is employed. 

Transfer characteristics of a CMOS inverter and a three-stage inverter circuit subject to 

breakdown are examined by measurement and simulation. The low noise amplifier (LNA) for RF 

application is also studied using Cadence SpectreRF simulation. The effect of breakdown 

location on digital and RF circuits is also investigated. 

6.2 Analysis 

For circuit applications, the RF performance is more important. Noise figure and linearity 

are key parameters for RF circuits RF such as low-noise amplifiers (LNAs) and mixers. Low-

frequency noise is important for the phase noise of RF circuits such as voltage-controlled 

oscillators (VCOs). Phase noise and linearity specifications are severe for future wide-band 

communication systems. Optimization of these performances is the major concentration of an RF 

circuit designer. With the scaling of MOSFETs, one of the major reliability issues - hot carriers 

(HCs) because of high lateral field in short-channel MOSFETs, become even more important. 

The figures of merit (FOMs) such as the cutoff frequency, third-order inter-modulation intercept 
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point (IIP3), minimum noise figure (NF), and 1/f noise power density of drain current as 

functions of device parameters are given as [108]: 
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where gm, gm2, and gm3 are the first-, second- and third-order transconductance, respectively, f is 

the operation frequency, Kf is the FuKui factor, and RIN is the signal resistance, Cgs and Cgd are 

the gate-source and gate-drain capacitances, respectively, RG and RS are the gate and source 

series resistances, respectively, ω (= 2πf) is the angle frequency, Δω is the difference between the 

two angle frequencies in the two-tone input signal for IIP3 test, G0(ω) (= 1/RL+gd+jωCgd) is a 

factor, gd, gd2 is the first- and second-order output-conductance, respectively. Cox is the oxide 

capacitance of devices, L and W are the effective length and width of devices, and α is a fitting 

coefficient. 

From (1) – (4), one gets the normalized degradation of the FOMs. The details are given in 

Appendix A. 
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where Y11 and Z11 are the Y-parameter and Z-parameter, VGT ( = VGS – VT) is the effective gate 

bias, μ is the mobility factor. c1, c2, and c3 are coefficients given in Appendix A. 

 Equations (5) – (8) give the approximate evaluation of normalized degradation for RF 

performances in the basic DC characteristics, two-port impedance and admittance matrix. The 

impedance and admittance matrix can be obtained from the scattering matrix – S-parameters. 

Therefore, the RF performance degradation can be evaluated from the degradation of basic DC 

characteristics and S-parameters, which can be easily measured by parameter analyzer and 

network analyzer. This will give a quick insight for RF designer to evaluate the RF performance 

degradation and lifetime subject to HC effects. 

6.3 Device Degradation for 60 nm High-K MOSFETS due to HC 

6.3.1 Experiments 

The tested devices are 60 × 100 nm2 nMOSFETs with dielectrics of 10 Å SiO2 and 30 Å 

HfO2. The wafer was tested in a Cascade 12000 Probe Station. Agilent 4156B Precision 

Semiconductor Parameter Analyzer was used for dc biasing and I-V characterization. S-

parameters were measured up to 20 GHz using a HP8510 Network Analyzer. The gate-source 

and drain-source voltages of fresh devices were set at 2.5 V and 1.0 V for the HC stress, 

respectively. The source and bulk were grounded. Thermo-Chuck TP0315 was used to set test 
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temperatures (300 K). It has excellent temperature uniformity (± 0.5 °C) of the chuck 

temperature over the entire temperature range. Then, the stress was interrupted every 600 

seconds to measure various transistor parameters at different temperatures. 

6.3.2 Results 

Measured I-V characteristics are given in Fig. 1. The drain currents shift downward after 

HC stress. Fig. 2 displays shift of S-parameters before and after stress. The gate-source bias 

voltage for S-parameters measurement is 0.95 V and the drain-source voltage is set at 1.5 V. The 

devices are operated in the saturation region. One can see that all S-parameters changed after 

dynamic stress for 4800 s. The decreases in the amplitude of S21 after stress indicated the 

degradation of the drain to gate power gain. The amplitude of S12 is twice that of the gate to drain 

voltage gain, it also shows degradation after stress. The input impedance is proportional to 

|(1+S11)/(1-S11)|. After stress, S11 shifts left, which means a decrease in the input impedance. 

The minimum noise figure was measured (Fig. 3). Using the HP 8560 RF spectrum analyzer, 

Ailtech noise generator, and the Y-factor noise figure measurement method described in [116], 

the NFmin was measured. The drain and gate voltages were set at 1.5 V and 1.0 V, respectively. 

The noise figure relates to the transconductance, overlap capacitances, and terminal resistance 

(RG, RS) (Eqn. (2)) and increases with stress. In the saturation region, |gm3| increases, while |gm| 

decreases after stress. VIP3 is proportional to | gm / gm3 |. Therefore, the degradation of VIP3 in 

the saturation region is anticipated. Fig. 4 (a) gives VIP3 before and after stress. One can see that 

it degrades after stress in the saturation region. The peak in VIP3 comes from the close zero 

point of gm3. The output power versus input power at VGS = 0.95 V and VDS = 1.5 V. A two-tone 

69 



input (ω1 = 1.0 GHz, ω2 = 1.002 GHz) is used in experiment and simulation. HP 8560 RF 

Spectrum Analyzer was used to measure the fundamental (PFund) and inter-modulation (IM3) 

power. IIP3 decreases after HC stress for 4800 seconds. Fig. 4 (b) shows the output power (Pout) 

and IM3 versus the gate bias voltage. After stress, the output power reduced, and IM3 of the 

stressed device was larger than that of the fresh one when the input power is smaller than –25 

dBm. That means the linearity was degraded due to stress in this region. The low frequency noise 

before and after stress is plotted as a function of frequency in Fig. 5. It increases after HC stress. 
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Figure 6.1. Drain current before and after HC stress. Measured from 0 V to 1.5 V for the drain-

source voltage. 
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Figure 6.2. S-parameters before and after HC stress. Stress time is 4800 seconds. Measurement 

condition: VGS = 0.95 V and VDS = 1.5 V. 
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Figure 6.3. Noise figure versus frequency before and after stress. Measurement condition: Vgs = 

0.95 V and Vds = 1.5 V. 
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Figure 6.4. (a) VIP3 versus gate-source voltage before and after stress; (b) output power and IM3 

versus input power before and after stress. 
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6.3.3 Discussions 

The Eqn. (5) – (8) gives the relationship of normalized degradations in RF performances 

with DC characteristics, Y11, and Z11 degradations. Y11 and Z11 can be obtained from S-

parameters. The degradation in RF performance can be predicted from the degradation of DC 

characteristics and S-parameters directly. Fig. 6 (a) gives the normalized degradations in drain 

current, transconductance, Y11 and Z11. The ‘fresh’ values for drain current, gm, and gm3 are 2.5 

mA, 10.8 mA/V, and 40 mA/V3, respectively. They are measured under VGS = 1V and VDS = 1.5 

V. While the fresh Im(Y11) and Re(Z11) at 2 GHz are 2.2×10-4 S and 96.73 Ω. The normalized 

degradations in cutoff frequency, IIP3, minimum noise figure, which are measured under the 

same conditions, are given in Fig. 6 (b). The fresh values for cutoff frequency, IIP3, and 

minimum noise figure are 18.1 GHz, -5 dBm, and 0.3 dB. Good agreements are obtained 

between prediction and measurement. The errors ( 2

1
( ) /( 1) 100%

N

i i
i

X Y n
=

= − − ×∑ε , where i is the 

sample number, from 0 to n. Xi is the predicted value and Yi is the measured value.) are also 

calculated. They are 0.29%, 0.77%, and 0.25% for cutoff frequency, IIP3, and minimum noise 

figure, respectively. From these figures and Eqn. (5)-(8), one can get that the degradation of 

cutoff frequency due to HC effects comes from the changes in transcondectance (gm) and 

capacitance - Cgg ( ≈ IM(Y11)/ω). After stress, the trans-condectance diminished and Cgg 

increased. Cutoff frequency decreased significantly. IIP3 degrades with the shifts in 

transcondectance and third-order transcondectance (gm3). The decrease of | gm | and increase of | 

gm3 | after stress result in the degradation of IIP3. Degradation of NFmin is dominated by the shifts 

in gm, gm3, Cgg, RG, and RS. 
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In Eqn. (8), the fitting factor (α) for flicker noise increases after stress, as shown in Fig. 6 (c). It 

changed from 1.01 to 0.85 after 4800 seconds stress. The phenomena are also observed in other 

works. The changes of fitting factor have significant effects on low frequency noise degradation. 

The normalized mobility (μ) and VGT (=VG - VT) degradation are shown in the same figure. The 

reduction in mobility may inherently come from the remote phonon scattering at the high-k film 

interface. The VT increases after stress. The major mechanism is likely to be interface state 

generation. The measured and predicted normalized degradations of SId are given in Fig. 6 (c). 

The error between analytical predictions and experiments is 1.08%. The normalized degradations 

of VGT and μ are also given in the same figure. The ‘fresh’ VT and μ are 0.457 V and 100.72 

cm2/Vsec, respectively. 

6.4 HC Stress Effects on Circuit 

A cascade low noise amplifier, as shown in Fig. 7, is used as an example to demonstrate 

the RF performance degradation subject to the HC stress in integrated circuit in 60 nm transistors 

of high-κ dielectrics. The cascade transistor M2 reduces the input capacitance and enables a good 

reverse isolation, hereby enhancing the stability. Here, M1 and M2 are multi-fingered devices, 

and both of them contain 6 fingers (60 × 100 nm2). Each finger in simulation is modeled by the 

equivalent circuit model. The BSIM core is extracted from the devices using Cascade 12000 

Probe Station. Other terminal resistances and capacitances are extracted from measured S-

parameters. The matching conditions and noise figure are optimized at the operation frequency 

(2.2 GHz). 

The supply voltage is biased either at the normal mode of operation (2 V), or at the stress 
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mode (4.2 V), which accelerates the HC effects on transistors. In the stress mode, the simulation 

gives the stress conditions of the transistors: 2.5 V of drain-source voltage and 1 V of gate-

source voltage for M1; 1.5 V of drain-source voltage and 1.5 V of gate-source voltage for M2. 

The M1 suffers from the HC stress. The stress conditions are the same with HC acceleration 

experiments and the biasing of normal operation for M1 is the same with S-parameter 

measurement. The models extracted from fresh and stressed devices are applied to M1 for each 

stress time slot to evaluate the performance degradation in LNA due to HC stress. In the 

extracted core model files, many parameters were adjusted to represent the stressed device 

behaviors, including Vth0, K1, K2, K3, U0, Ua, Ub, Uc, Voff, NFactor, etc. 

As the first stage of a receiver, the essential requirements of an LNA are low noise and 

high gain. Moreover, the matching conditions are also important in the LNA for power delivery 

and noise optimization. The performance of LNA is sensitive to the device parameter changes, 

thus degrades with the HC stress. S-parameters before and after stress as a function of frequency 

are shown in Fig. 8. At 2.2 GHz, S12 changes slightly. The amplitude of S21 diminishes from 

20.7 to 20.3 dB at 2.2 GHz after stress for 2400 seconds and to 20.0 dB after stress for 4800 

seconds; S11 changes from -35 to -27 dB at 2.2 GHz after stress for 2400 seconds and to -24 dB 

after stress for 4800 seconds; S22 changes from -27.5 to -26.8 dB at 2.2 GHz after stress for 

2400 seconds and to -24 dB after stress for 4800 seconds. 

Based on [110], one can get the normalized degradation of power gain (G ≡ Pout/Pin) at 

resonant frequency and minimum noise figure. The details are given in Appendix B. 
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where gm1 is the transconductance of M1, and Cgs1 is the equivalent capacitance between gate 

and source of M1. 

High performance integrated circuits with small size devices (e. g. 60 nm nMOSFETs 

with high-κ dielectric) suffer from the hot carrier effects. If care is not taken to understand these 

issues, HC induced degradation can lead to accelerated circuit failures during operations. 

Detection of these failures may become difficult due to circuit complexity and hence lead to 

erroneous data or output conditions. The equations (9) and (10) gives a quick guidance for RF 

circuit designer that which ones are the dominant factors for the RF performance degradations in 

circuits, and how much it will affect the RF performances. 

The power gain is degraded significantly after stress, as shown in Fig. 9. This is mainly 

due to the decrease of the transconductance of the transistor. The minimum noise figure 

degradation for each stress time slot is also plotted in the same figure. The fresh values for power 

gain and minimum noise figure of the LNA are 10.37 dB and 0.8 dB, respectively. The 

predictions using Eqns. (9) and (10) are also given. There is good agreement between simulation 

and prediction. The errors for power gain and noise figure are 0.93% and 0.33%, respectively. 

6.5 Device Degradation due to Breakdown Stress 

6.5.1 Experiments 

The tested devices are 0.15 × 20 μm2 pFETs and 0.20 × 20 μm2 nFETs with 30 Å of 
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HfO2 dielectrics, 10 Å of SiO2 interfacial layer, and polysilicon gate. The wafer was tested in a 

Cascade 12000 Probe Station. Agilent 4156B Precision Semiconductor Parameter Analyzer was 

used for DC biasing and I-V characterization. The breakdowns are carried out by the constant 

voltage stress (CVS). During the stress, the gate-source was set at 4.0 V for positive bias stress 

and - 4.0 V for the negative bias stress. The drain, source, and bulk were grounded. 

 

6.5.2 Results and Discussions 

The evolution of the gate leakage current during the CVS for several p- and nFETs are 

shown in Fig. 1. The time-to-breakdown (tBD) distributions are displayed in Fig. 2. The 

experimental data show that the negative bias stress is easier to trigger the gate breakdown than 

the positive bias stress for both p- and n-channel transistors. In addition, nFET is harder than 

pFET to break down the gate dielectric under the same polarity stress. The gate oxide stacks can 

be seen as two capacitances in series – one is the bulk layer (high-k) and the other is the 

interfacial layer (SiO2). We use Cbulk and Cinterfacial to represent these two capacitances. They 

function as a voltage divider during the CVS stress. Therefore, the voltage across the bulk layer 

is 4 bulk

Bulk Interfacial

C
C C

± ⋅
+

(≈  for 0.4 V± 8.33Interfacial BulkC C≈ ⋅ ), while the voltage across the 

interfacial layer is int4 erfacial

Bulk Interfacial

C
C C

± ⋅
+

(≈ 3.6 V± ). The high stress voltage on thin interfacial 

layer initiates the interfacial layer breakdown. The Weibull slopes ( β ) for the breakdown 

distributions are about 1.85, similar to the Weibull slope for SiO2 of the same thickness (~10 Å) 

[111]. Because the defect density of p-channel device is larger than that of n-channel device by a 
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factor of 10 for the same thickness and stress voltage, the time to breakdown for the nFET is 

longer than the pFET. Under the gate injection, the high hole trapping rate and interface state 

creation suggest a fast degradation of the interfacial layer. While under the substrate injection, 

the trap creation occurs mainly in the bulk layer [111]. For either n- or p-device, the breakdown 

under gate injection (negative CVS) is easier than that under substrate injection (positive CVS). 

6.5.3 Modeling 

A compact model [13] to evaluate the stressed transistor is reported in [9]. The equivalent 

circuit model includes the terminal resistances (Rg, Rd, Rs), substrate network resistances (Rdb, 

Rsb, Rdsb), overlap capacitances (Cgd0, Cgs0), junction capacitances (Cdb, Csb), and two internal 

resistances (Rgd, Rgs). The post-breakdown RF characteristics can be accounted for by using the 

two breakdown resistances Rgs and Rgd. The intrinsic transistor is a BSIM3V3 model extracted 

from fresh or stressed devices using BSIMPro. 

The potential for the BD path is Φ(VGS, VDS, x) and the voltage across the BD path is VGS-Φ(VGS, 

VDS, x). The currents flowing through the source ( IGS ) and drain ( IGD ) are derived (see detail in 

Appendix). They are expressed as 

 (1 ) [ ( , , )]GS GS FB S DS GSI x K V V V V x α= − − − Φ  (1) 

 [ ( ,GD GS FB S DS GS , )]I xK V V V V x α= − −Φ  (2) 

where x (= y/L) is the normalized position along the channel, K and α are constants, and ΦS is the 

surface potential. 

The breakdown equivalent circuit model is given in Fig. 4. The current source IGS and IGD 

represent the gate current partitions into the source and drain, respectively. The BD path is above 
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the source or drain extension region, i.e., with x < 0.01 or x > 0.99. The gate current can be 

expressed as GSKV α  or GDKV α . For small-signal excitation at a given bias, one may use the two 

equivalent resistances RGS and RGD to replace the current sources IGS and IGD. For large-signal 

applications, (1) and (2) could be used to account for post-breakdown behavior. A simple model 

for the voltage across the BD path is expressed as (see derivation in Appendix): 

 (Cross GS DS DSV V aV b V c≈ − + + )  (3) 

where DS GS GV V V= − D  and a, b, and c are fitting coefficients. 

The gate leakage current for various n- and p-FETs after breakdown is shown in Fig. 5. In this 

figure lines represent the model predictions and symbols represent the experimental data. Good 

agreement between the measurement and simulation over a wide range of gate current is 

obtained. After breakdown, the gate leakage current density goes beyond 104 A/cm2. At high 

gate leakage, it is difficult to obtain an accurate capacitance using the conventional C-V 

measurement or LCR meter [112]. The extraction of capacitance from S-parameters at high 

frequency may be more suitable [104]. 
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Figure 6.5. Gate leakage current during stress for (a) pFET and (b) nFET 
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Figure 6.6. Weibull plot of the cumulative failure (F) distribution for (a) pFET and (b) nFET 
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Figure 6.7. Schematic of breakdown path in the MOS transistor 
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Figure 6.8. Equivalent circuit model for the n-channel transistor after breakdown 

 

6.6 RF Performance Degradations 

The S-parameters before and after breakdown were obtained through HP8510 Network 

Analyzer. The gate-source bias voltage for S-parameters measurement is set at 1 V and the drain-

source voltage is 1.5 V. The devices are operated in the saturation region. All S-parameters 

changed after breakdown. The mean values of resistances and capacitances from 1 to 10 GHz are 
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extracted [13]. In the BSIM3V3 model file, many model parameters were adjusted to represent 

the stressed device behavior. The shifts of these parameters are explained in [104]. The extracted 

‘fresh’ as well as ‘stressed’ models are used in the simulation to evaluate the breakdown-induced 

degradation. Using Agilent 8560 RF Spectrum Analyzer, Ailtech noise generator, and Y-factor 

noise figure (NF) measurement method described in [116], the noise figure for a source 

impedance of 50 Ω was measured. Noise figure versus frequency before and after stress is shown 

in Fig. 6. In Fig. 6 lines represent the model predictions and symbols represent the measurement 

data for x ranging from 0.1 to 0.9. The breakdown changes noise figures, but the breakdown 

location does not have significant impact on the noise figure of the MOSFET. 

Fig. 7(a) displays VIP3 versus gate-source voltage before and after stress for x = 0.1 to 

0.9. In the saturation region, |gm3| increases, while |gm| decreases after stress. The degradation of 

VIP3 in the saturation region is anticipated since VIP3 = 324 /m mg g  [108]. In Fig. 7(a) the 

peak of VIP3 results from a near zero value of gm3. Because of the shifts of threshold voltages in 

nFET and pFET after breakdown, VIP3 shifts right for n-device and left for p-device after 

breakdown. In Fig. 7 the breakdown position affects VIP3 at low VGS (or in saturation) more than 

that at high VGS (or in the linear region). 
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Figure 6.9. (a) – (d) Characterizations of gate leakage current for n- and p-channel transistors 

after breakdown. Lines: modeling results using fitting coefficients given in Table I; Marks: 

measurement data. ∀: Vds = 0 V; Μ: Vds = 0.5 V; +: Vds = 1.0 V; −: Vds = 1.5 V. 
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Figure 6.10. Noise figure of a 50 Ω output before and after breakdown for (a) pMOS #2, (b) 

pMOS #4, (c) nMOS #1, and (d) nMOS #3. Biasing is at Vgs = 1.0 V and Vds = 1.5 V. N-channel 

device is 0.225×10 μm2 and p-channel device is 15×10 μm2. 
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Figure 6.11. VIP3 before and after breakdown for (a) pMOS #2, (b) pMOS #4, (c) nMOS #1, and 

(d) nMOS #3 
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6.7 Integrated Circuit Degradations 

6.7.1 Invertors 

The inverters used in this paper were fabricated using nFET of 0.225×10 μm2 and pFET 

of 0.15×10 μm2. The DC transfer curves of the CMOS inverter subject to breakdown in n- and p-

device independently are examined. The experimental data and Cadence simulation results are 

shown in Fig. 8. On-wafer measurements are done through HP4156 Precision Semiconductor 

Parameter Analyzer and Cascade 12000 Probe Station. Good agreement between simulation and 

measurement results in the transfer curve characteristics is obtained. From these output voltage 

versus input voltage curves, one can see that the effect of soft breakdown (SBD) (Figs. 8 (a) and 

(b)) is less severe compared to that of hard breakdown (HBD) (Fig. 8 (c)). The effect due to SBD 

at the source end (Fig. 8 (a)) is smaller than that at the drain end (Fig. 8 (b)). The breakdown in 

p-channel transistor results in a left shift of the transfer curve. The output voltage shifts 

downward with the breakdown in pMOSFET. While for nMOSFET, the increase of threshold 

voltage causes the transfer curves shift right (or the output voltage shifts upward). 

Table 1 Parameters used to model gate leakage current after breakdown 

 

Devices K α a b c x 

NMOS #1 1.8 × 10-4 3 0.001 0.28 0.01 0.3 

NMOS #2 4.2 × 10-4 2 0 0 0 ≈ 0 

NMOS #3 1.6 × 10-3 1.3 0.12 0.256 0.04 0.8 

NMOS #4 1.3 × 10-3 1 0 0 0 ≈ 0 

PMOS #1 2.9 × 10-5 3.2 0 0 0 ≈ 0 
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PMOS #2 3.1 × 10-4 2 0.04 0.06 -0.05 0.5 

PMOS #3 8.0 × 10-5 2 0 0.15 -0.1 0.3 

PMOS #4 3 × 10-3 1 1 0 0 ≈ 1 

 

Table 2 Main extracted model parameters for FOM simulations 

 

Devices VT (V) μ (cm2/V⋅sec) Cgs (fF) NFactor Voff (V) 

Fresh PMOS - 0.521 120.01 83 2.024 -0.098 

PMOS #1 After BD - 0.543 110.23 92 2.256 -0.092 

PMOS #4 After BD - 0.645 98.04 101 3.123 -0.082 

Fresh NMOS 0.452 97.086 61 2.321 -0.096 

NMOS #1 After BD 0.478 90.32 67 2.568 -0.089 

NMOS #4 After BD 0.561 81.03 84 3.238 -0.081 

 

The devices (nMOS #1, nMOS #3, pMOS #2, pMOS #4) in Fig. 1 are used to evaluate 

the position-dependent breakdown effect on the inverter. nMOS #1 and pMOS #2 are subject to 

soft breakdown and nMOS #3 and pMOS #4 are subject to hard breakdown. The coefficients of 

the leakage currents IGS and IGD are given in Table I. Based on Cadence simulation, the high 

output voltage (VOH ) and low output voltage (VOL ) as a function of normalized position are 

displayed in Fig. 9. For both n- and pMOSFETs, the breakdown near the drain end has most 

significant impact on the output voltage of the inverter. Hard breakdown is more detrimental 

than soft breakdown and can make the inverter malfunctional (e.g., VOH  is less than 1 V or VOL is 

more than 0.2 V).  

A three-stage inverter structure is investigated to understand the circuit interaction before 

and after the main inverter. Here, the second stage inverter is considered having the breakdown. 
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Figs. 10(a) and 10(b) give the simulated transfer curves for p- and n-FET breakdown, 

respectively. The breakdown position changes from the source side to the drain side (x = 0.1 to 

0.9) of the MOSFET. The first and second inverter performances degrade significantly. The 

degradation of the first stage inverter comes from the reduction of output impedance due to 

breakdown of the following second stage. The output response of the third stage inverter, 

however, is quite good. The transfer curve shifts right due to increased nFET threshold voltage. 

The robust binary-level digital circuitry following the affected stage then rectifies the logic level. 

The circuit remains functional well even after hard breakdown. This suggests relaxation of 

digital circuit design.. 
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Figure 6.12. Output voltage versus input voltage characteristics 
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Figure 6.13. Output voltage versus input voltage of an inverter for different breakdown positions 
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Figure 6.14. (a) Transfer curves after (a) pMOS breakdown and (b) nMOS breakdown 
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6.7.2  Ring Oscillator 

A ring oscillator with 49 stage inverters and an output buffer is also studied. The 

transistors used in the ring oscillator have channel length of 0.15 μm and channel width of 1.5 

μm (nMOS) and 2 μm (pMOS). Both n- and pMOSFETs  have 10 Å of SiO2 and 30 Å of HfO2 

dielectric in the polysilicon gate. The ring oscillator was biased either at the normal mode of 

operation (VDD = 2.8 V) or at the stress mode (VDD = 0 V). The gate bias for the first stage is 4 V. 

The gate current was monitored during stress. Once a jump in the gate current was observed, the 

bias was then stopped to record the transistor characteristics. After the measurement, the ring 

oscillator was stress continuously. The gate current during stress is shown in Fig. 11 (a). In this 

figure, the nMOS breaks down at positions 2, 3, and 5 and pMOS breaks down at positions 4 and 

6. The corresponding measured oscillation waveforms are displayed in Fig. 11 (b). As seen in 

Fig. 11(b), the ring oscillator remains functional after soft and hard breakdown. Fig. 11(c) shows 

the normalized degradation in oscillation frequency and amplitude at various breakdown points. 

 

6.7.3 Low Noise Amplifier 

A folded low noise amplifier is used as an example to demonstrate the RF performance 

degradation [19] in analog application subject to breakdown. The folded structure is preferred for 

low-voltage design [119]. The devices used in the LNA have 0.15 µm channel length. The 

nMOS transistor has 100 fingers with 10 µm each and the pMOS transistor has 50 fingers with 

20µm each. The supply voltage is 1.5 V and the gate bias is 1 V. The biasing of the circuit is 

consistent with the device measurement for the model parameters extraction. 
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Figure 6.15. (a) Gate leakage current at the node A as a function of time, (b) measured voltage 

timing waveforms, and (c) amplitude and frequency degradations of a stressed ring oscillator 

subject to different breakdown conditions 

As the first stage of a receiver, the essential requirements of an LNA are low noise and 

high gain. Moreover, the matching conditions are also important in the LNA for power delivery 

and noise optimization. The breakdown in nMOS has a significant impact on the matching 

condition of the LNA, while the breakdown in pMOS has little effect on S-parameters (data 

shown in Table II). The noise figure versus frequency is plotted in Fig. 12. The noise figure 

degradation subject to nMOS breakdown is much more significant than that to pMOS breakdown 

because the input transistor dominates the overall noise figure of the LNA. Leakage current 

exists across the gate oxide forming a noise source to the transistor. In addition, the drastic 
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increase in gate current due to breakdown increases the real part of the input impedance. This 

affects the impedance matching. Thus, the low noise amplifier performance is degraded. 

However, the breakdown location has virtually no impact on the noise figure of the LNA. 
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Figure 6.16. Noise figure versus frequency for a 50 Ω output before and after breakdown 
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Figure 6.17. Noise figure degradation due to breakdown in LNA 
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7 CHAPTER SEVEN: CONCLUSIONS 

7.1 Achievement 

This dissertation has studied the voltage and temperature stress-induced performance 

degradation in CMOS devices and circuits. An improved model, which is extracted from the 

measured data, is used to evaluate the RF performance degradation in MOSFETs due to voltage 

and temperature. Good agreement between measurement and simulation has verified the 

accuracy of the model. Dynamic stress effects, which cause a smaller degradation than DC 

stress, are first investigated in RFICs. The investigations of performance degradation due to 

stress in MOSFET in low noise amplifer, mixer, oscillator, power amplifier are studied. The 

channel hot carrier and dielectric breakdown -induced DC and RF performance degradations in 

60 nm high-k nMOSFETs are examined experimentally. RF performances such as the cutoff 

frequency, noise figure, linearity, and flicker noise of high-k MOSFETs show vulnerability to the 

HC/BD effect. Analytical equations for normalized RF degradations relating to the device DC 

and AC parameters are derived. This method provides a practical and simply way to evaluate the 

performance degradation in devices and circuits due to voltage and temperature stresses.   

7.2 Future Work 

Voltage stress-induced effects on the VLSI performance are practical and important issues 

in the future VLSI designs with the devices scaling into sub-micron or even nano-scale. 

However, these issues have not been studied systematically so far. One of the major reasons is 

99 



that it is really difficult to determine which parts of the system suffer from the stress-induced 

effects. To study the reliability problem is also not practical when the voltage stress on the whole 

system.  Therefore, the simulation presents a suitable way to study these kinds of effects. The 

VLSIs – SDRAM, PLL, and ADC will be considered for my future research. 
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8  APPENDIX A. PARAMETERS EXTRACTION FOR RF MODEL 
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The equivalent circuit for the RF model presented in Chapter Two is given in Fig. A1. The 

extraction method based on the assumptions that (1) terminal resistances and substrate network 

equivalent resistances are bias- and frequency-independent; (2) Cgb << Cgd, Cgs in the saturation 

region and Cgg ≈ Cgd+ Cgs; (3) Rdsb << Rdb, Rsb and Rdb ≈ Rsb for the single-finger device [16]; and 

(4) Imb << Im, Imb is the substrate current, Im (≈ gmVgsi) is the drain current.  

The ‘Π’ network consisting of Rdb, Rsb, and Rdsb in the substrate network is transferred to ‘Y’ 

network consisting of R1, R2, and R3 as shown in Fig. A2 (a). The ‘Y’ network is transferred back 

to the ‘Π’ network (Y4, Y5 and Y6) after combining R1 and Csb to Z1, R2 and Cdb to Z2. Further, we 

combined Y4 and Rgd to Y4’, Y5, and Rs to Y5’. Then, one obtains: 

 
4 4

2

' 1/

1/ [2 ( ) ]
4

ds

db sb db
ds sb db db

Y Y R

R C CR j C C R

= +

≈ − − +
ω ω

 (A1) 

 5 5' 1/ 1/s sY Y R R j C= + ≈ + sbω  (A2) 

  (A3) 2 2
6 ( ) / 2db db db sb dbY R C C C j C≈ + +ω ω

 7 1/gsY j C Rgs= +ω  (A4) 

 8 1/gdY j C Rgd= +ω  (A5) 

After the transformation, one obtains the simplified equivalent circuit in Fig. A2 (b) and Y-

parameters (Y’) of the network without the influence of Rg and Rd are given as: 

 4 5
7

7 4 5

'11'
' 'm

Y YY Y
g Y Y Y 8Y+

=
+ + +

+  (A6) 

 4 7
8

7 4 5

'12 '
' 'm

Y YY
g Y Y Y

= − −
+ + +

Y  (A7) 
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g Y Y YY
g Y Y Y

Y−
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+ + +
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 7 5
8 6 4

7 4 5

'22 ' '
' 'm

Y YY Y Y Y
g Y Y Y

+
= + −
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 (A9) 

Taking into account Rg and Rd, Y-parameters of the whole equivalent circuit is given as: 

 
2 2 2 2 2 2

11' 12 ' 21' /(1 22 ')11
1 11' 12 ' 21' /(1 22 ')
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d d

g d g d

gs gd gs s gd d gg g
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Fig. A1 The equivalent circuit for the RF model 

 

Fig. A2 Simplified models (a) and (b) 
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9 APPENDIX B. COEFFICIENTS OF VOLTERRA SERIES 
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Kirchhoff’s voltage law (KVL) for the small-signal model shown in Fig. 3.1 gives 

  (B1) ( ) (in g gs gd gs s gs m gs dsv Z i i v Z i g V i= + + + + + )

)

)

v

where 

  (B2) ( ) /(ds ds gd gs d m gs ds gsi g C sv i g v g C s= + − +

  (B3) ( )/(gd m gs d ds gd gs d m gs ds gsi g v i g C sv i g v g C s= − + + − +

Combining (B1), (B2) and (B3), one gets 

 ( ) [1 ( ) ]i n d g sv s i sα β= + +  (B4) 

where  

 ( ) ( ) /( )ds s gs g ds gss g Z C sZ g C sα = − +  (B5) 

 ( ) ( )[ ( )/( )]g s gs m ds gd m ds gss Z Z C s g g C g g C sβ = + + + − +  (B6) 

In the saturation region, the drain current can be expressed in the Taylor series as 

  (B7) 2 3 4 5
1 2 3 4 5 ......d gs gs gs gs gsi T v T v T v T v T v= + + + + +

In the Volterra series form, vgs is given by 

  (B8) 2
1 2 1 2 3 1 2 3( ) ( , ) ( , , ) ...gs in in inv C s v C s s v C s s s v= + + 3 +

1

Combining (B4), (B7) and (B8) yields 

 1 ( ) 1 / (1 ( ) ( ) )C s s T sβ α= + +  (B9) 

 2 1 1 1 2 1 2
2 1 2

1 2 1 1 2

( ) ( ) ( )( , )
1 ( ) (

T C s C s s sC s s
s s T s s )

α
β α

+
= −

+ + + +
 (B10) 
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β α
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 1 2 1 1 2 2 3 1 2 2 1 3 1 3 2 1 2[ ( ) ( , ) ( ) ( , ) ( ) ( , )] / 3C C C s C s s C s C s s C s C s s= + +  (B12) 

The Volterra series is 

  (B13) 2
1 2 1 2 3 1 2 3( ) ( , ) ( , , ) ...d in in ini A s v A s s v A s s s v= + + 3 +

Combining (B7), (B8) and (B13) gives 

 1 1 1( ) ( )A s T C s=  (B14) 

  (B15) 2 1 2 1 2 1 2 2 1 1 1 2( , ) ( , ) ( ) ( )A s s T C s s T C s C s= +

 3 1 2 3 1 3 1 2 3 2 1 2
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A s s s T C s s s T C C
T C s C s C s
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+
 (B16) 
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10 APPENDIX C. TRANFORMATION BETWEEN S- TO Y-
PARAMETERS 
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Y- and S-parameters provide a complete description of the network. Y-parameters relate the 

total voltages and currents at the ports, while S-parameters relate the voltage waves incident on 

the ports to those reflected from the ports. For a two-port network, S11 is the input reflection 

coefficient, and the squared magnitude of S21 is the forward transducer power gain with Z0 

(characteristic impedance) as source and lead impedance. S22 is the output reflection coefficient, 

and the squared magnitude of S12 is the reverse transducer power gain with Z0 as source and 

lead impedance. The transformation between Y-parameters and S-parameters for two-port 

network is: 

 S S S SY Y
S S S S

− + +
=

+ + −
11 22 12 21

11 0
11 22 12 21

(1 )(1 )
(1 )(1 )

 (C1) 
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S S S S
−

=
+ + −

12
12 0

11 22 12 21

2
(1 )(1 )
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S S S S

−
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+ + −
21

21 0
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(1 )(1 )

 (C3) 

 
S S S SY Y
S S S S

+ − +
=

+ + −
11 22 12 21

22 0
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(1 )(1 )
(1 )(1 )

 (C4) 

where Y0 is the characteristic conductance, which is often 1/50 S in the practical situations. 
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From the equations (1), one gets the degradation of cutoff frequency: 

 

2

2 ( )

1 ( )
2 ( ) 2 ( )

( )

m
T

gd gs

T T T
T m gd gs
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m gd gs
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T T

m gd gs

gf
C C

f f ff g C C
g C C

gg C C
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C Cg f f
g C C
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π +

∂ ∂ ∂
⇒ Δ ≈ Δ ⋅ + Δ ⋅ + Δ ⋅

∂ ∂ ∂

= Δ − Δ + Δ
π + π +

Δ +Δ
= −

+

     (D1) 

The parasitic capacitances of MOSFETs can be extracted from Y-parameters: 

 gd gs gg
YC C C+ = ≈
ω

Im( 11)      (D2) 

The normalized degradation of cutoff frequency can be expressed as: 

 

gd gsmT

T m gd g

m

m

C Cgf
f g C C

g Y
g Y

Δ +ΔΔ
− = − +

+

Δ Δ
= − +

( )

Im( 11)
Im( 11)

s      (D3) 

The minimum noise figure is 

 min 1 2 ( ) G S
f gs gd

m

R RNF K f C C
g
+

= + π +      (D4) 

The normalized shifts of fitting coefficient ( /f fK KΔ ) are 0.2% after 2400s stress and 0.3% 

after 4800s stress. 
( ) ( )

/ max{ , ,
( ) ( )

gs gd gs gd m
f f

gs gd gs gd m

C C R R gK K
C C R R g

}
Δ + Δ + Δ

Δ <<
+ +

. Therefore, the 

degradation of minimum noise figure can be express as: 
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   (D5) 

The terminal resistances can be extracted from Z-parameters when ω < 2π×1010 rad/s: 

 G S
m

R R Z
g

+ ≈ −
1Re( 11)      (D6) 

Therefore, the normalized degradation of minimum noise figure can be expressed as: 

 min
1 2

min

Im 11 Re 11
1 Im 11 Re 11
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NF Y Z g

ΔΔ Δ Δ
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where c1 and c2 are coefficients and 
m
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1 Re 11
2 Re 11 1/

, 2
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Similarly, 
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In the saturation region, the transconductance ox
m

C W
GTg V

L
μ

≈ . Combining with Eqn. (4), one 

gets 

 2
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Id
g VKS

f Lα

μ
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The fitting factor (K’) keeps unchanged after stress. Therefore, 
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where . 3 lnc f α= −α
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The power gain and minimum noise figure for two-stage cascade LNA are [110]: 

      (E1) 2
1( )m LG g R≈ ⋅

     1
min

1
1 " gs

m

C
NF K

g
ω≈ +              (E2) 

where gm1 is the transconductance of the device for the first stage, RL is the equivalent output 

resistance, K’’ is a coefficient, Cgs1 is the equivalent capacitor between the gate and the source of 

the device for the first stage. 

From (E1) and (E2), one can get: 
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The surface potential is given by [120]: 

 

 
2( ) [1 1 ( )]s m mx H x
H
φφ φ= + − − − x  (F1) 

where ( ) / 2m ss sdφ φ φ= +  is the midpoint potential ( ssφ and sdφ denote the surface potentials at the 

source and drain ends of the channel respectively), 1 (1 )
2 4mx

H
φ

= +  is the coordinate of the 

midpoint potential and 1
0( / )(1 / )im t L cH q r Vα φ δ φ −= + + , where  is the midpoint inversion 

charge, 

imq

α  is the linearization coefficient, /t kT qφ ≡ , 0δ  is introduced to sharpen the drift 

velocity dependence on the lateral field, C CV E L=  (  is the critical field). CE

sφ  as a function of φ  in the Taylor series is 
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where ( )
2 2

ss sd
m DS

φ φ Vηφ +
= ≈  and d ss DSVsφ =φ φ η− ≈ . 

(F2) reduces to 

 s DS DSaV b Vφ = +  (F3) 

The voltage across the dielectrics is given by 

 Cross GS s bi GS DS DSV V V V aV b Vφ= − − = − − − c  (F4) 

where  is the built-in voltage. biV
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Assume that the current density flow through the breakdown path at x is much larger than 

that of other position ( ). The gate leakage current is therefore ( ) ( ) ,g gJ x J y y x>> ≠

 

0
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g g

x
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I W J x dx

W J x d
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The current flows to the drain is 
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and the current flows to the source is 

 

 (1 )gs g gd gI I I x I= − = −  (F7) 
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