18 research outputs found

    Bispectrum- and Bicoherence-Based Discriminative Features Used for Classification of Radar Targets and Atmospheric Formations

    Get PDF
    This chapter is dedicated to bispectrum-based signal processing in the surveillance radar applications. Detection, recognition, and classification of the targets by surveillance radars have various applications including security, military intelligence, battlefield purposes, boundary protection, as well as weather forecast. One of the particular and effective discriminative features commonly exploited in modern radar automatic target recognition (ATR) systems is the micro-Doppler (m-D) contributions extracted from joint time-frequency (TF) distribution. However, a common drawback of the energy-based strategy lies in the impossibility to retrieve additional particular information related to frequency-coupling and phase-coupling contributions containing in the radar backscattering. Phase coupling contains additional discriminative features related to individual target properties. Bispectrum-based strategy allows retrieving a phase-coupled data containing unique discriminative features related to individual target properties. Bispectrum tends to zero for a stationary zero-mean additive white Gaussian noise (AWGN), providing smoothing of AWGN in TF distributions. Hence, bispectrum-based approach allows improving extraction of robust discriminative features for ATR radar systems

    Advanced signal processing tools for ballistic missile defence and space situational awareness

    Get PDF
    The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose.The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose

    Radar target classification by micro-Doppler contributions

    Get PDF
    This thesis studies non-cooperative automatic radar target classification. Recent developments in silicon-germanium and monolithic microwave integrated circuit technologies allows to build cheap and powerful continuous wave radars. Availability of radars opens new applications in different areas. One of these applications is security. Radars could be used for surveillance of huge areas and detect unwanted moving objects. Determination of the type of the target is essential for such systems. Microwave radars use high frequencies that reflect from objects of millimetre size. The micro-Doppler signature of a target is a time-varying frequency modulated contribution that arose in radar backscattering and caused by the relative movement of separate parts of the target. The micro-Doppler phenomenon allows to classify non-rigid moving objects by analysing their signatures. This thesis is focused on designing of automatic target classification systems based on analysis of micro-Doppler signatures. Analysis of micro-Doppler radar signatures is usually performed by second-order statistics, i.e. common energy-based power spectra and spectrogram. However, the information about phase coupling content in backscattering is totally lost in these energy-based statistics. This useful phase coupling content can be extracted by higher-order spectral techniques. We show that this content is useful for radar target classification in terms of improved robustness to various corruption factors. A problem of unmanned aerial vehicle (UAV) classification using continuous wave radar is covered in the thesis. All steps of processing required to make a decision out of the raw radar data are considered. A novel feature extraction method is introduced. It is based on eigenpairs extracted from the correlation matrix of the signature. Different classes of UAVs are successfully separated in feature space by support vector machine. Within experiments or real radar data, achieved high classification accuracy proves the efficiency of the proposed solutions. Thesis also covers several applications of the automotive radar due to very high growth in technologies for intelligent vehicle radar systems. Such radars are already build-in in the vehicle and ready for new applications. We consider two novel applications. First application is a multi-sensor fusion of video camera and radar for more efficient vehicle-to-vehicle video transmission. Second application is a frequency band invariant pedestrian classification by an automotive radar. This system allows us to use the same signal processing hardware/software for different countries where regulations vary and radars with different operating frequency are required. We consider different radar applications: ground moving target classification, aerial target classification, unmanned aerial vehicles classification, pedestrian classification. The highest priority is given to verification of proposed methods on real radar data collected with frequencies equal to 9.5, 10, 16.8, 24 and 33 GHz

    Novel classification algorithm for ballistic target based on HRRP frame

    Get PDF
    Nowadays the identification of ballistic missile warheads in a cloud of decoys and debris is essential for defence systems in order to optimize the use of ammunition resources, avoiding to run out of all the available interceptors in vain. This paper introduces a novel solution for the classification of ballistic targets based on the computation of the inverse Radon transform of the target signatures, represented by a high resolution range profile frame acquired within an entire period of the main rotation of the target. Namely, the precession for warheads and the tumbling for decoys are taken into account. Following, the pseudo-Zernike moments of the resulting transformation are evaluated as the final feature vector for the classifier. The extracted features guarantee robustness against target's dimensions and rotation velocity, and the initial phase of the target's motion. The classification results on simulated data are shown for different polarizations of the electromagnetic radar waveform and for various operational conditions, confirming the validity of the algorithm

    Biologically inspired radar and sonar target classification

    Get PDF
    Classification of targets is a key problem of modern radar and sonar systems. This is an activity carried out with great success by echolocating mammals, such as bats, that have evolved echolocation as a means of detecting, selecting and attacking prey over a period of more than 50 million years. Because they have developed a highly sophisticated capability on which they depend for their survival, it is likely that there is potentially a great deal that can be learnt from understanding how they use this capability and how this might be valuably applied to radar and sonar systems. Bat-pollinated plants and their flowers represent a very interesting class of organisms for the study of target classification as it is thought that co-evolution has shaped bat-pollinated flowers in order to ease classification by bats. In this thesis, the strategy that underpins classification of flowers by bats is investigated. An acoustic radar has been developed to collect data to perform a floral echoes analysis. Results show that there is a relative relevance of specific parts of the flower in displaying information to bats and show that there are different characteristics in the flowers' echo fingerprints, depending on age and stage of maturity, that bats might use to choose the most suitable flowers for pollination. We show that, as suggested by the oral echoes analysis, a more intelligent way to perform target classification can result in improved classification performance and, investigate biologically inspired methods and ideas that might become important tools for the study and the development of radar and sonar target classification

    Toward Deep Learning-Based Human Target Analysis

    Get PDF
    In this chapter, we describe methods toward deep learning-based human target analysis. Firstly, human target analysis in 2D and 3D domains of radar signal is introduced. Furthermore, range-Doppler surface for human target analysis using ultra-wideband radar is described. The construction of range-Doppler surface involves range-Doppler imaging, adaptive threshold detection, and isosurface extraction. In comparison with micro-Doppler profiles and high-resolution range profiles, range-Doppler surface contains range, Doppler, and time information simultaneously. An ellipsoid-based human motion model is designed for validation. Range-Doppler surfaces simulated for different human activities are demonstrated and discussed. With the rapid emergence of deep learning, the development of radar target recognition has been accelerated. We describe several deep learning algorithms for human target analysis. Finally, a few future research considerations are listed to spark inspiration

    Subspace-based methodologies for the non-cooperative identification of aircraft by means of a synthetic database of radar signatures

    Get PDF
    Una de las principales preocupaciones dentro del mundo de la aviación es la identificación rápida, eficaz y fiable de cualquier objeto observado que se encuentre a cualquier distancia y bajo cualquier condición atmosférica. Gracias a los avances en tecnología radar, esto se ha conseguido. De hecho, los radares son los sensores más adecuados para el reconocimiento de blancos en vuelo ya que pueden operar en cualquier condición. El reconocimiento de blancos mediante radar es hoy un hecho, existiendo sistemas IFF (Identification Friend or Foe) capaces de comunicarse con una aeronave haciendo posible que ella misma se identifique por sí sola. Sin embargo, esta necesidad de comunicación directa puede ser un inconveniente en ciertos momentos. Así, aparecen las técnicas no cooperativas o NCTI (Non-Cooperative Target Identification), que no establecen ninguna comunicación con el blanco y normalmente hacen uso de radares de alta resolución. Éstos ven los blancos como compuestos por diversos puntos que dispersan la energía emitida por el radar, generando así una imagen de la reflectividad de un blanco, lo que se ha llamado su firma radar. Comparando dicha firma radar con una base de datos de firmas radar de blancos conocidos es posible establecer, mediante una serie de algoritmos de identificación, el tipo de blanco iluminado por el radar. Uno de los temas más cuestionados es cómo poblar y actualizar esta base de datos de firmas radar. De manera ideal, la base de datos debería de contener medidas de blancos reales en vuelo; desafortunadamente, la principal desventaja de esta estrategia radica en la dificultad de obtener firmas radar de aviones neutrales o enemigos. Por esta razón, esta tesis propone utilizar firmas radar de blancos ideales, generadas mediante simulaciones electromagnéticas, como base de datos. Con el avance de las herramientas de predicción electromagnética es posible obtener de manera rápida y a bajo coste firmas radar de cualquier blanco deseado y en cualquier orientación. De este modo, el principal objetivo de esta tesis yace en el desarrollo de algoritmos eficientes de identificación de aeronaves en vuelo de manera no cooperativa, con altas tasas de acierto y empleando una base de datos de blancos obtenida mediante simulación electromagnética. El escenario propuesto consiste en la comparación de firmas radar reales obtenidas en una campaña de medidas con una base de datos compuesta por firmas radar simuladas, con ello se pretende por un lado, simular un escenario más realista, en el que las firmas de los blancos recogidas por el radar no tienen porqué tener la misma calidad que aquellas de la base de datos y por otro, comprobar que la identificación de un avión real mediante simulaciones es posible

    Introduction to Drone Detection Radar with Emphasis on Automatic Target Recognition (ATR) technology

    Full text link
    This paper discusses the challenges of detecting and categorizing small drones with radar automatic target recognition (ATR) technology. The authors suggest integrating ATR capabilities into drone detection radar systems to improve performance and manage emerging threats. The study focuses primarily on drones in Group 1 and 2. The paper highlights the need to consider kinetic features and signal signatures, such as micro-Doppler, in ATR techniques to efficiently recognize small drones. The authors also present a comprehensive drone detection radar system design that balances detection and tracking requirements, incorporating parameter adjustment based on scattering region theory. They offer an example of a performance improvement achieved using feedback and situational awareness mechanisms with the integrated ATR capabilities. Furthermore, the paper examines challenges related to one-way attack drones and explores the potential of cognitive radar as a solution. The integration of ATR capabilities transforms a 3D radar system into a 4D radar system, resulting in improved drone detection performance. These advancements are useful in military, civilian, and commercial applications, and ongoing research and development efforts are essential to keep radar systems effective and ready to detect, track, and respond to emerging threats.Comment: 17 pages, 14 figures, submitted to a journal and being under revie

    An introduction to radar Automatic Target Recognition (ATR) technology in ground-based radar systems

    Full text link
    This paper presents a brief examination of Automatic Target Recognition (ATR) technology within ground-based radar systems. It offers a lucid comprehension of the ATR concept, delves into its historical milestones, and categorizes ATR methods according to different scattering regions. By incorporating ATR solutions into radar systems, this study demonstrates the expansion of radar detection ranges and the enhancement of tracking capabilities, leading to superior situational awareness. Drawing insights from the Russo-Ukrainian War, the paper highlights three pressing radar applications that urgently necessitate ATR technology: detecting stealth aircraft, countering small drones, and implementing anti-jamming measures. Anticipating the next wave of radar ATR research, the study predicts a surge in cognitive radar and machine learning (ML)-driven algorithms. These emerging methodologies aspire to confront challenges associated with system adaptation, real-time recognition, and environmental adaptability. Ultimately, ATR stands poised to revolutionize conventional radar systems, ushering in an era of 4D sensing capabilities

    Study of radar signatures of drones equipped with threat payloads

    Get PDF
    The authors acknowledge the funding received by the Army Research Laboratory under Cooperative Agreement Number: W911NF-19-2-0075.Commercial or customised drones with the ability to carry payloads have the potential to cause security threats so the need to accurately detect and identify them with suitable sensors has increased in recent times. Radar sensors are well capable of detecting and classifying a drone by using the unique signatures produced from both the stationary and rotating parts of the target. In this study we have examined the radar signatures of drones carrying different types of payloads which simulate the following three hazardous scenarios: 1) liquid spray, 2) Inertial forces simulating a gun recoil effect, and 3) heavy payloads. The main objective was to model the radar signatures of these scenarios and analyse the characteristic signatures. Two radars, operating at 24 GHz and 94 GHz, have been used to collect data to validate the modelling. The results of the study demonstrate that the payloads produce unique radar return signals, mainly in the Doppler domain, which can be used for robust classification.Publisher PD
    corecore