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Abstract

Classification of targets is a key problem of modern radar and sonar systems.

This is an activity carried out with great success by echolocating mammals,

such as bats, that have evolved echolocation as a means of detecting, selecting

and attacking prey over a period of more than 50 million years. Because they

have developed a highly sophisticated capability on which they depend for

their survival, it is likely that there is potentially a great deal that can be

learnt from understanding how they use this capability and how this might

be valuably applied to radar and sonar systems. Bat-pollinated plants and

their flowers represent a very interesting class of organisms for the study

of target classification as it is thought that co-evolution has shaped bat-

pollinated flowers in order to ease classification by bats. In this thesis, the

strategy that underpins classification of flowers by bats is investigated. An

acoustic radar has been developed to collect data to perform a floral echoes

analysis. Results show that there is a relative relevance of specific parts of

the flower in displaying information to bats and show that there are different

characteristics in the flowers’ echo fingerprints, depending on age and stage

of maturity, that bats might use to choose the most suitable flowers for

pollination. We show that, as suggested by the floral echoes analysis, a

more intelligent way to perform target classification can result in improved

classification performance and, investigate biologically inspired methods and

ideas that might become important tools for the study and the development

of radar and sonar target classification.
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Chapter 1

Introduction

1.1 Overview and motivations

In recent years with the development of high range resolution radar and sonar

systems, the desire to be able to identify targets under all weather and clut-

ter conditions has become of great importance. This is an activity carried

out with considerable success by echolocating bats that are able to detect,

select and attack prey even in a dense clutter environment [3] [4] [5]. Bats

have evolved echolocation as a means of detecting, selecting and attacking

prey over 50 million years, and there is (potentially) a great deal that can

be learnt from understanding how they use these capabilities and how this

might usefully be applied to radar and sonar systems. Although classifica-

tion of targets is a very important task for modern radar and sonar systems

and much has been published on these topics, there have been rather lim-

ited efforts to learn from nature. Target recognition performance obtained

by modern radar and sonar systems is a long way short of that obtained
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by bats. Limitation can result from the fact that typical classifiers do not

take into account the characteristics of the targets that they have to rec-

ognize, and more importantly do not operate under any particular strategy

aimed at maximizing classification performance. The common approach to

classification of targets consists of comparing radar measurements, such as

high resolution range profiles (HRRP), ISAR images or Doppler modulations,

with templates contained in reference libraries which have been created in

advance and are used to perform classification [6] [7] [8] [9] [10]. However,

the problem associated with these libraries is that they require a significant

amount of data to be stored. This approach leads to classification perfor-

mance that appears not to be robust, as small changes in the target (such as

an open door in a car, or a slightly different way of training the classifiers)

could lead to significantly different results in terms of classification perfor-

mance [11]. Although some feature extraction algorithms, such as Principal

Component Analysis (PCA) and Fisher’s Linear Discriminant Analysis, have

been developed, none of them was realized to best perform with any partic-

ular targets of interest [12]. Common sense suggests that concentrating on

features such as specific parts or particular behaviours of targets could re-

duce the complexity of the classification process and at the same time could

enhance classification performance. In nature, echolocating mammals such

as bats, whales, and dolphins have an imperative to detect, recognise and

attack prey in order to feed. Thus it seems there is a great deal that could

be learnt by investigating how the natural world operates.

Classification of insects by bats has been reported in the literature [13] [14].

This classification is performed through the combined information available
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in both the time and the frequency domains. The amount of power reflected

from targets gives the bats information on the size of the target itself. The

bigger the target, the greater the fraction of power that is reflected. The

same type of information can be obtained by looking at modulations in the

amplitude of the echo. It has been shown that there is a positive correla-

tion between body size and wing beat period in insects. Also, the periodic

amplitude modulation by moving the wings is directional, giving the bats

information on the look angle. Doppler shift and micro Doppler modulations

are of great interest as well. It has been shown that each species of insect

has a characteristic micro Doppler signature even when the wing beat fre-

quency is the same [13] [14]. Although several works have looked at how bats

recognize moving targets, the literature shows a lack of knowledge on how

these mammals perform classification of static targets. Nectar feeding bats

play an important role in the process of pollination of plants. Bat-pollinated

plants and their flowers represent a very interesting class of organisms for the

study of target classification as it is thought that co-evolution has shaped

bat-pollinated flowers in order to ease classification by bats. Firstly, flowers

are motionless and silent so that bats cannot rely on Doppler information

or passive echolocation based on target sounds, and secondly their habitat

is often a densely cluttered environment. Although classification of flowers

in such an environment is demanding, nectar-feeding bats succeed in their

pollination task. Finding and approaching a flower is a gradual process that

involves all the bats’ senses. Long range attraction is by scent and the bat’s

excellent spatial memory [15]. However, their sense of smell is not accurate

enough to localize and approach the flower and bats have to rely largely on
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echolocation to plan their approach flight and detect the flowers against the

cluttered background. Evidence of this is provided in [16]. Choosing the

most suitable flowers to be visited within a plant is a task that cannot be

done by scent and is therefore mainly carried out by echolocation [2] [17].

1.2 Aim

The aim of this thesis is therefore to better understand the methodologies

used by bats to perform classification of static targets and how these can be

usefully applied to radar and sonar systems by an analysis of floral echoes.

Specifically, this work aims at understanding the strategies that underpin

the process of classification of flowers of bat-pollinated plants by bats and

investigates whether the common idea that co-evolution between these two

organisms enables high level classification performance is plausible. The fi-

nal goal is to open up a discussion and a first investigation of how lessons

from nature might be applied directly or indirectly, i.e. in the form of other

supporting techniques, to radar and sonar systems to enhance target classi-

fication performance.

1.3 Thesis layout

This thesis is organised as follows. Chapter 2 contains a review of the main

publications on the methods used to perform target classification in mod-

ern radar and sonar systems, and a review of the main publications on the

methodologies deployed by bats to recognise objects and, in particular, the
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targets they depend on for their survival. A detailed review of the publi-

cations that focus on the relation between bats and bat-pollinated plants is

also given and their weaknesses highlighted to motivate the necessity of this

research work.

Chapter 3 contains a description of the main concepts used in typical modern

radar and sonar systems necessary to understand how the results reported

in this thesis were obtained and assessed. In Chapter 4 a typical series of

echolocation calls is analysed to provide the reader with a direct example of

the type of echolocation calls deployed by bats in real scenarios. A prelimi-

nary analysis of floral echoes is given in Chapter 5 where a dataset provided

by the University of Bristol is analysed. This allowed us to identify weak-

nesses of previous data collection procedures and to understand how to build

a more efficient acoustic radar to gather the data that was needed to improve

this study. This chapter concludes with a detailed description of the acoustic

radar instrument which has allowed collection of all the floral data that was

analysed to produce the results of this thesis. Results from the floral echoes

analysis are given in Chapter 6 and Chapter 7. In Chapter 8 a bio-inspired

intelligent strategy to gather target data and perform classification of tar-

gets is described and classification results assessed on the flower data. In

Chapter 9 airborne ultrasound tomographic images are generated to inves-

tigate whether they can be successfully used to create images of very small

objects. Finally in Chapter 10 it is investigated how ultrasound data might

be used for the study of classification of radar and sonar targets, and the

bio-inspired approach to target classification in tested on scaled man made

targets. The conclusion of this work and the suggestions for future research
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are given together in Chapter 11.

1.4 Achievement of this work

The work presented in this thesis represents a novel interdisciplinary study

that, as such, has resulted in achievements on both biological aspects and

radar and sonar systems aspects.

• In Chapter 4 it is shown that the use of harmonics can enhance the

characteristic of the ambiguity function of typical radar and sonar wave-

forms.

• In Chapter 5 it is shown that the output of a multi-perspective classi-

fier testing floral targets presents close similarities with respect to the

output obtained when classical radar targets are tested.

• In Chapter 6 experiments show the relative importance of specific parts

of the flower in displaying information to bats and that, in particular,

pistils and petals may add critical components to the echo fingerprint

that might contain the information bats use to decide to visit specific

individuals flower.

• They also show that echoes from wilting flowers and closed buds present

characteristics that are very different from those of the open flower.

• These findings are related to a typical bat trajectory and it is shown

that the angular perspectives explored during an approach flight are
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in agreement with the angular windows in which the scattering from

flowers’ features are very obvious.

• Experiments show that open flowers are highly directional on both the

horizontal and the vertical plane with respect to closed buds and flow-

ers without the corolla (Calyx) within an inflorescence. They also show

that scattering from open flowers at the angle of interest is higher than

that generated by closed buds. Results support the commonly accepted

idea that, as in nature, radar and sonar systems should operate adap-

tively with the target in space and time.

• In Chapter 8 it is shown that a bio-inspired intelligent approach to radar

and sonar target classification can result in a significant improvement

in classification performance.

• In Chapter 9 it is shown that the acoustic radar is capable to capture

detailed information of small static targets and in particular allow de-

tection of differences due to small changes in their shape. We also show

that bio-inspired ultrasound tomographies in air are possible and can

lead to good imaging of small static targets.

• In Chapter 10 first results aiming to show that there are close sim-

ilarities between RF data and ultrasound data are presented. It is

argued that the acoustic radar can be deployed to gathered data from

real scaled targets to carry out preliminary analysis of classification

performance and produce predictions for real scenarios.
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It is my hope that the results reported in this thesis and our suggestions

for future works may play an important role for future studies in this highly

challenging and motivating topic.
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1.5 Publications arising from this research work
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thesis.

Journal Papers

1. A. Balleri, C.J. Baker, K. Woodbridge and M.W. Holderied, ”Flow-
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International Conference Papers
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Multi-Harmonic Waveforms”, in 2010 International Waveform Diver-

sity and Design Conference, Toronto, Canada, 8-13 Aug. 2010.
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Conference 2010, Washington DC, USA, 10-14 May 2010.

4. A. Balleri, C.J. Baker, H.D. Griffihts, K. Woodbridge and M.W. Holderied,

”Bat-pollinated plants: feature extraction for target recognition in the

natural world”, in International Radar Conference - Surveillance for a
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the natural world”, NATO Workshop on Machine Intelligence For Au-
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Chapter 2

Research context

The idea of developing a system capable of detecting objects by sending elec-

tromagnetic waves and receiving the corresponding echoes started to grow

at the beginning of the last century. Since the 1930s there has been a lot

of interest in investigating and improving the capabilities of these systems,

which a few years later took the name of RADAR (RAdio Detection And

Ranging). The basic task of a radar system was to detect the presence of

a target by sending an electromagnetic waveform and waiting for a possible

echo. More sophisticated systems have then been developed to satisfy the

more demanding need of being able to localise and identify the target as well

[18].

Classification is a very important task to be accomplished by radar systems

and there has been considerable interest and substantial published research

on radar target classification, not all with much success. Classification of

targets by radar and sonar systems is a very difficult task to accomplish.

Firstly, all the desired information on the targets of interest is not commonly
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available. Secondly, even when some information is available, the data de-

pends significantly on the target aspect angle and on small changes in the

target as well. In addition to this, in some applications, targets are counter

designed to be stealthy with respect to the task of target classification and

are designed to reflect the least possible energy and information. Finally,

radar and sonar systems commonly operate against highly cluttered back-

grounds that together with weather conditions deteriorate the quality of the

data significantly.

Here the reader is taken through some of the main publications on radar

target classification with a particular emphasis on techniques concerning

high range resolution profile target classification. The main publications on

echolocation by bats and its role in target selection and recognition are then

reviewed so that both the similarities and any differences can be extracted

and understood.

A very good insight on the topic is given in the books by Tait [19], by Duda

[12] and by Looney [20]. The word classification started to appear in the radar

scene in the early 1970s when the international radar community became in-

terested in exploiting resonance frequencies of targets [21] [22]. Attention on

this technique was fueled by the fact that resonance frequencies are practi-

cally independent of aspect angle and hence it was hypothesised that they

could be used to perform robust recognition with high performance. Unfor-

tunately this technique proved not to be too practical as high powers are

required to stimulate the frequencies of interest [23].

After high resolution radars became available, research on classification of

targets by resonance frequencies slowed down considerably and the attention
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started focusing on techniques such as high range resolution profile classifi-

cation. This looks at the shape of the target echo response as a function of

range. A way to look at exploiting the shape of a target is to use a two dimen-

sional signature (2-D) obtained by SAR or ISAR processing. A very good

overview of high resolution radar techniques is given in [24] and excellent ref-

erences covering the wide literature on high range resolution profiles methods

can be found in [25], [26], [27], [7] and [28]. In [8] and [6] multi perspective

target classification using high range resolution profiles was performed and

the authors showed that it is possible to obtain better classification perfor-

mance by increasing the number of aspect angles. However, whilst this work

used real radar data and targets, the targets were located on a turntable and

were free from multipath and clutter (i.e. ideal conditions).

The main problem associated with the use of high range resolution profiles

is their dependency on aspect angle and the difficulty of building a reliable

reference library to be used to train the classifiers. For example, a small

change physically in the target, such as opening a car door, can have a dis-

proportionally large effect on the echo.

Because of these problems higher order spectra techniques for feature extrac-

tion, such as radially, axially and circularly integrated bispectra [29] [30] [31],

were studied in order to resolve the time shift sensitivity of HRRPs and to

reduce the library data set complexity [32][33]. Calculation of bispectra re-

sulted in a significant computational overhead. Attempts to resolve this were

presented in [34] where a method for calculating the Euclidean distances in

the higher order spectra feature space was proposed. This avoided calculat-

ing the higher order spectra with a resulting drop in computation complexity
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and storage requirements.

Methods exploiting full and micro motion have also been examined [35][10]

[36] [37] [38]. Recently there has been the attempt to classify targets by using

micro-Doppler signatures, i.e. time varying frequency modulations that are

generated by moving parts of the targets. The advantage of this technique is

that it does not require high resolution and is easily applied even to cheaper

and older systems (legacy). In [9] and [39], classification results of a wheeled

vehicle, a tracked vehicle and a walking person showed that micro-Doppler

can provide crucial information leading to enhancement of performance up

to correct classification probability peaks of about 96%.

Echo locating mammals, and in particular bats, have been studied for many

years and there is a huge body of research published. Indeed the text by

Altringham provides an excellent introductory treatment of the subject [5].

Bats use a wide range of signals designs in echolocation [3]. Factors such as

frequency bandwidth, pulse interval and intensity are all shaped by natural

selection according to environmental features in the bat’s surroundings [4].

So strong is the influence of environmental features in shaping signal design,

that bats in different evolutionary lineages have evolved similar signals to

orientate and find prey in similar environments [3] [40]. Classification in bat

echolocation is defined as the use of patterns of information in echoes to cate-

gorize targets [41]. In the past years a lot of research has focused on bats that

emit continuous frequency (CF) signals. Figure 2.1 shows an example of a

CF waveform that is composed of three main harmonics at about 30 kHz, 60

kHz and 120 kHz that are initiated and terminated by frequency modulated

sweeps. It has been argued that the portions at the beginning and end of the
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Figure 2.1: Example of a multi-harmonic CF signal with initial and final
sweep.

waveform function in target localization, while the long constant frequency

component eases the detection and the classification of targets [42]. Indeed,

this type of waveform is not being used by any radar system and the fact that

mammals perform amazingly by using it makes worth exploiting the impact

that its use would have on radar target classification. In flight most species

of CF bats, such as horseshoe bats, lower their call frequency in relation

to their flight speed in order to compensate for Doppler shifts induced by

their own movement so that echoes always return at a best suited frequency

for the hearing of the bats [43]. Bats that emit CF signals can detect and

classify fluttering insects from amplitude and frequency modulations of the

echoes caused by the movement of the insect’s wing [44][45]. These modu-

lations, called ’acoustical glints’, potentially provide information about the
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wing beat rate and flight angle, and are very specific for each species of in-

sect. Glints turn out to be useful not only for the detection of the prey but

also for the identification of it. Amplitude modulations are the result of the

fact that echo strength is strongest when the insect wings are perpendicular

to the sound source and gets weaker as the insect wing moves away from the

perpendicular position. Interestingly, the precise timing of the glint depends

on the angular orientation of the insect [13], then amplitude modulations

give information about the target elevation that affect the timing of the glint

production [46]. Figure 2.2 shows an example of amplitude modulated echo

from a flying moth Autographa gamma at three different angles with equidis-

tant starting phase. In the figure the amplitude modulation is given with

its corresponding wingbeat phase at each time. In the experiment the loud-

speaker was placed at the same height as the insect. The plot shows that

at 90 degrees the glint is produced at the top of the stroke, i.e. when the

moth wings are perpendicular to the sound source. At 0 degree (frontal) and

180 degrees (rear), the glint occurs two phases after the upstroke suggesting

that, in both cases, the same part of the wings produces the glint [13]. The

wing movement towards and away from the receiver induces Doppler shifts

in the echoes, taking information of wing beat movement, that are important

signatures for species identification since insect wing beat frequency scales

with body size [47]. Because the way in which a given insect species moves its

wings is highly specific, the structure of glints varies across different species

and even insects with the same wing beat may provide different spectral sig-

nature in the echo [14]. Figure 2.3 shows the spectrogram of four echoes from

four different insects: Deilephila elpenor, Scotia exclamationes, Melolontha
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Figure 2.2: Amplitude-modulated echoes from a flying Autographa gamma
at three different angles with equidistant phases of 2 wing beat cycles and
their corresponding wingbeat phases. At 90 degrees the glint is produced
at the top of the stroke, i.e. when the moth wings are perpendicular to the
sound source. At 0 degree (frontal) and 180 degrees (rear), the glint occurs
two phases after the upstroke suggesting that, in both cases, the same part
of the wings produces the glint. Taken from [13].
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Figure 2.3: Echoes from four insect species all fluttering at 50 Hz but with
different spectral patterns in echoes from their wing beats. For each insect,
the upper trace represent the spectrogram of the echo and the lower trace
the time oscillation. Taken from [14].

melolontha and Tipula oleracea. These were flying with the same wing rate

and were illuminated from 0, 90 and 180 degrees with respect to the sound

source. The figure shows that spectrograms related to each species present

different characteristics, although the fluttering frequency is the same. It

also shows that for the same insect the property of the spectrogram are also

dependent on the angle from which the sound source was coming, confirming

that spectral cues provide information on angular position as well [46] [48].

Finally, the trace of the time oscillation confirms that the same considera-

tions are valid in the time domain. Schnitzler showed that at 0 degrees (i.e.

frontal view) spectral broadenings in echoes due to glints, typically fall below

the carrier frequency (i.e. the micro-Doppler signature concentrated below
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the carrier frequency), while at 180 degrees they show negative and positive

Doppler shift, and that the width of the broadening is related to the wing

beat frequency of the insect [48]. Roverud showed that bats that use shorter

signals need greater differences in wing beat frequencies than bats that emit

longer signals, in order to discriminate between different fluttering targets

[49]. However, behavioural experiment tests show that neither amplitude or

frequency modulations alone are sufficient to achieve recognition of insects

and that differences in glints from series of echoes play an important role in

target classification. This highlights the fact that whilst it is clear that bats

are able to use echo location sources in a comprehensive way, it is not fully

understood how they do this. For example, von der Emde and Schinitzler

showed that greater horseshoe bats are even able to discriminate insects of

a given species when presented with echoes from the insect illuminated at

angles that they had not previously experienced [14].

The way which CF bats classify fluttering insects has a very close parallel

with the attempt, in radar systems, to classify targets by using micro-Doppler

information in the echo spectrogram. A big difference though is that bats

are able to combine information that derives, at least, from both amplitude

modulations and frequency modulations and manage to obtain remarkable

performance in a very difficult task. Bats, in fact, have shown a peculiar

ability to distinguish between insects that present the same wing beat rate

and that have very similar dimension and obtain performance which cur-

rently is enormously better than what a radar system can do. It is evident

that all this might open the way to a new branch of research that not only

looks at the micro-Doppler signature of a moving target but also at how this
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movement modulates the amplitude of the echo and at how this information

can be possibly combined and utilized to enhance radar target classification

performance.

Although most research has focused on classification of fluttering targets by

bats that emit CF signals, bats that emit broadband signals have the same

ability to do so [50] [51] and there is a lot interest in understanding how they

classify targets as well. Since for these species of bat the duration of the call

is often too short and produced at low rates, Sum and Menne, and Gros-

sete and Moss argued that the bats perform discrimination after receiving

two different echo components, one from the stationary part of the targets

and the other from the fluttering component of the target. These species of

bats can transmit multi-harmonic frequency modulated signals, mostly LFM

(Linear Frequency Modulated) and HFM (Hyperbolically Frequency Mod-

ulated), whose main component (i.e. the component which contains most

of the energy) is not always the fundamental harmonic [3]. Krumbholz and

Schmidt argued that multi harmonic calls allow bats to perceive local spectra

changes in echoes that result from the effect of glints interference on each in-

dividual harmonic, allowing the bats to extract extra information from echo

call consisting of a single harmonic. Moreover they showed that narrow spec-

tral notches are particularly perceivable in echoes from multi harmonic calls

[52]. Indeed, another hypothesis is that harmonics could be used for different

individuals to distinguish their calls in a multi-signal environment [53].

Accuracy in measuring echo delays is strongly dependent on the transmitted

waveform bandwidth, and it was shown that delay acuity (precision of esti-

mation of the delay) declines in relation to the reciprocal of the relative echo
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Figure 2.4: Diagram of the cochlear block of the SCAT receiver. The input
signal is first processed by a bank of 81 parallel 10-th order Butterworth IIR
filters with constant 4 kHz bandwidth. Each bandpass filter is followed by
half-wave rectification and filtering with a 3 kHz low-pass filter. Taken from
[56].

bandwidth [54]. An ideal receiver functions by cross-correlating the emit-

ted signal and the incoming echo to produce a time-domain representation

where, if an echo returns from a point target, the autocorrelation function of

the signal approximates the cross-correlation function of the acoustic trans-

mission and echo accurately [55] i.e. the equivalent to matched filtering in

radar. The most sophisticated model of auditory computations used in rang-

ing by broadband echolocation has been the spectrogram correlation and

transformation (SCAT) model developed by Saillant [56] and also described

by Simmons [57]. As shown in Figure 2.4, the SCAT model assumes that the

bat’s cochlea breaks up the frequencies in calls into parallel bandpass-filtered
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channels, half-wave rectifies and then smooths the resulting frequency seg-

ments of sounds, and then triggers neuronal responses from these excitation

patterns. The simulated neuronal responses triggered from auditory spec-

trograms can then be used in computations to reconstruct the positions of

echo sources along a range axis. The SCAT model consists of three process-

ing blocks that represent signal processing characteristics at different levels

within the bat’s auditory system. First there is a cochlear block, and then two

parallel pathways for processing temporal features (spectrogram correlation

block) and spectral features (spectrogram transformation block) in echoes.

The model therefore includes consideration of how glints along the range

dimension create interference patterns in echoes, and how spatial images of

range can be represented. Finally, it considers how the auditory system’s

representation of spectral features can be transformed into a quite different

time-domain metric that gives the bat an image of shape. The SCAT model

was developed to give a plausible mechanism by which bats can distinguish

ideally two echoes. In reality, echoes from a target are composed of many

echoes returning from lots of reflecting surfaces. The sum of all these echoes

is called the impulse response (IR) of the target. Bats are able to evaluate

statistical property IRs and possibly able to classify by using these properties

[1]. Grunwald et al. considered IRs from foliage targets and showed that the

phyllostomid bat Phyllostomus Discolor, which emits multi-harmonic broad-

band echolocation calls, was able to classify phantom echoes that contained

up to 4000 stochastically distributed reflections [1]. Figure 2.5 shows the

time plot and power spectrum of the three different IRs that were used in

the experiment by Grunwald. Every IR has the same time duration of 16.4
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Figure 2.5: Representation of complex echoes with different degrees of rough-
ness as impulse responses (IRs) as in [1].

msec but a different degrees of roughness (variability). The magnitude spec-

trum is frequency independent showing the fact that the bats can actually

classify by using stochastic properties without any frequency information.

Indeed it is claimed by Simmons [57] that bats can resolve targets spaced

at a distance much closer that the bandwidth implies. There is no common

agreement on how this could be achieved.

Another class of organism that is particularly interesting for the study of ob-

ject classification by echolocation is bat pollinated plants and their flowers,

which have evolved to attract nectar feeding bats not only by their scent and

appearance but also by their echo acoustic signature. There has been some

research focusing on species of flower that provide nectar for bats, since it is

thought that co-evolution eases the bat’s task of finding and exploiting these
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flowers. Finding and approaching a flower is a gradual process that involves

all the bats’ senses. Long range attraction will be by scent and the bats’s

excellent spatial memory [15]. However, their sense of smell is not accurate

enough to localize and approach flowers on a plant and bats have then to

rely largely on echolocation to plan their approach flight, to detect flowers

against the vegetation background, and to find the opening of the nectarium.

Evidence of this was provided by von Helversen and von Helversen in [16].

Here the authors, to exclude the role of visual and olfactory cues, altered with

unscented cotton pads the echo-reflecting properties of the Mucuna holtonii

flower (without altering the smell of the flower) and counted the number

of visits by bats to both original flowers and altered ones. Results showed

that very few manipulated flowers were visited (17% of the total number of

visits) with respect to the intact ones (66%). Nectar-feeding bats approach

flowers in fast flight, slowing down over the last centimetres to accurately

reach the flower’s nectarium, which often measures only a few millimetres.

Von Helversen and Winter showed that hovering flights last only fractions

of seconds, during which the bats extract nectar from the flower [58], and

von Helversen and von Helversen also have shown that, in nature, bats of-

ten inspect a flower in a first approach and that they return a few seconds

later for the actual feeding visit [59]. Recognition of flowers turns out to

be a very challenging task for bats. Firstly flowers are motionless and silent

so that bats cannot rely on Doppler information or hearing and secondly

their habitat is often a dense cluttered environment. Even if recognition of

flowers seems to require a lot of effort, bats show remarkable performance.

However, this performance has not been fully quantified. For example, von
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Helversen found that with artificial objects nectar-feeding bats were not only

able to discriminate between different types of artificial hollow forms, but

even generalized certain shapes independent of absolute size [60]. Simon et

al. showed that size discrimination of hollow hemispheres requires a con-

stant size difference of approximately 16% of the radius, irrespective of the

actual size of the hemispheres as if bats based object discrimination on the

spectral cues generated by size-specific interference [17]. Von Helversen and

von Helversen showed that the long-tongued bat Glossophaga commissarisi

could find the flowers of the bat-pollinated vine Mucuna holtonii with the

help of echolocation and could even recognize the degree of ripeness of the

bud [59]. In order to complete the pollination task, nectar feeding bats have

firstly to identify and localize the flower and then have to get a fine image of

its structure in order to decide the best strategy of approach. Many flowers

grow on stems or branches and usually closer to the plant, but because of

several echo acoustic cues the flower manage to be unique and thus recogniz-

able. Von Helversen and von Helversen showed that floral echoes last longer

and can be stronger that echoes from leaves because of their bell shape and

that for the same reason the echo field produced by flowers is often omni-

directional [58] [16]. Moreover, von Helversen and Holdereid showed that

because flowers are complex targets and consist of many different reflectors

at different distances, interference generates specific peaks and notches in the

echo spectra, giving them a coloured spectral appearance [2]. This literature

review has had the aim to give evidence of the ability of bats to detect and

classify flowers, but there has been rather little research that has aimed to

understand what are the factors that allow bats to achieve such great per-
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formance. It is evident that further research exploiting in more detail the

characteristics of the echoes from these particular flowers and possible critical

features in their shape that might allow correct classification, is required, and

this is one of the main topics of our research. Also, a better understanding

on the strategy behind flower recognition such as instantaneous position of

the bat with respect to the flowers and transmitted waveform is necessary

to address the problem. All this might be applied to automatic radar target

recognition to attempt to improve classification performance.

Finding the entrance of the flower and the nectarium requires some structural

perception of the floral object behind the echo. The duration of the echo is

a good indicator of the depth of the flower [2] but additional information

about the structure of the flower derives from the fact that the bat receives

two different echoes at its two ears. These differences, called binaural dispar-

ities, are quoted as being important perceptual cues for object recognition

[61] [62]. Differences in magnitude between the two echoes received at each

ear, called interaural intensity differences (IIDs), give information about the

orientation of the flower, and Holderied and Helversen showed that such IIDs

may allow the bat to discriminate flower’s orientation with a resolution of

below 1 degree at a distance of 20 cm [61]. On the other hand, differences

in time between reflection from different part of the flower, called interaural

time differences (ITDs) allow the bat to reconstruct the position of these

reflectors on the horizontal plane [61]. Figure 2.6 shows the reconstruction

of a horizontal 2D flower structure from impulse responses received at the

two ears for eleven angle between -5 and 5 degrees. At 3 degrees the echo

received at the right ear presents two main glints, one of which is split into

51



two parts at the left ear, meaning that the left ear only can resolve two sep-

arate scatterers from the corolla. To better understand the detailed results

a careful reading of [61] is recommended. This research show that binaural

differences do exist and are likely to be used to elaborate a fine image of the

target. It is evident that this could be applied to automatic recognition of

targets by sensors as well, and specifically to image reconstruction and could

open the way to research in the radar field that has to further investigate its

possible advantages and disadvantages.

2.1 Summary

In this chapter the main publications on radar target classification and the

main publications on the role that echolocation by bats has in target selection

and recognition have been reviewed. Similarities and differences have been

noted in order to understand which methodologies, successfully deployed by

bats, can then be applied to radar (and sonar) systems to improve classifica-

tion performance. This analysis has raised a few questions of great interest.

It was shown that CF bats use a type of waveform composed of constant

frequency harmonics initiated or terminated with a frequency sweep. These

type of waveforms are not used in radar systems and suggest that further

investigation is required to exploit how their use might impact on radar tar-

get classification performance. These species of bat perform classification of

fluttering targets, in particular insects, combining information that derives

at least from both amplitude and frequency modulations that are induced

on the echo by the insect wing beat. Classification by using micro-Doppler
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Figure 2.6: Reconstruction of horizontal 2D flower structures from impulse
responses of V. gladioliflora for eleven different angles between bat and flower
axis from -5 to 5 degrees. (A) Impulse responses picked up by right ear. (C)
Impulse responses picked up by left ear. At 3 degrees the echo received at
the right ear presents two main glints, one of which is split into two parts at
the left ear, meaning that the left ear only can resolve two separate scatterers
from the corolla [61].
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signatures is a very close parallel in radar system, but there is a lack in

understanding how multiple information can be combined in order to im-

prove classification performance. Bats that emit broadband waveforms were

then reviewed in order to understand how amazingly these bats can detect

and classify complex static targets, such as flowers suitable for pollination,

even in dense clutter environments. There has been rather little research

that aims to understand what the factors that allow such performance are.

Research looking at crucial features that characterize these flowers and fur-

ther comparisons with radar targets is necessary and is likely to generate an

important understanding on target classification. Moreover, the trajectory

strategy of the bats with respect to the flower and relative transmitted wave-

forms as function of the trajectory itself, are likely to contribute to enhance

classification performance and then require some detailed investigations. In-

deed, this thesis opens a discussion on these last two topics and present the

related results. Finally research on binaural differences was reviewed in order

to understand how these might be used to create a fine image of an object.

Further research exploiting how this could be applied to automatic target

recognition represents another area of interest of this thesis.

54



Chapter 3

Fundamentals of radar and

sonar systems

In this Chapter a number of processing concepts that are used in the subse-

quent chapters, and that the reader needs to understand in order to be able

to comprehend this work are introduced.

3.1 Range resolution

In the previous chapter the ability of bats to resolve targets has been re-

viewed. As well as for bats, for a radar system there is the necessity of

Figure 3.1: Example of a reflection from a static target.
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knowing the minimum separation of two targets in order for the radar to

resolve them as two separate identities, and this is a fundamental parameter

to characterise a radar system. The range resolution Rr is defined as the

minimum distance d = |R2 −R1| that there must be between two targets in

order for the radar to be able to distinguish them. Because the echo from a

target arrives at the radar after a delay τ = 2R/c (see Figure 3.1), it is easy

to show that two echoes from two different targets do not overlap when they

obey the relation

R2 −R1 ≥
cT

2
, (3.1)

where c is the speed of propagation and T is the pulse duration. This def-

inition, however, leads to the need to clarify what is meant by saying that

two echoes are distinguishable from each other. It is self evident that when

two echoes do not overlap they are distinguishable. The traditional Rayleigh

criterion, for example, establishes that two echoes are distinguishable when

their whole main lobes do not overlap. In practise, it is often assumed that

two echoes are distinguishable when their main lobes at -3 dB do not overlap.

According to the latter criterion, when the receiver uses a filter matched to

the transmitted signal, the range resolution is given by

Rr =
c

2B
, (3.2)

where c is the speed of propagation and B is the bandwidth of the trans-

mitted signal. The formula shows that the range resolution is a function of

the bandwidth of the transmitted signal, and in particular that the range

resolution increases as the bandwidth becomes wider. Figure 3.2 shows a
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Figure 3.2: Example of two non-overlapping reflections from two targets
delayed by 1.5 msec before the matched filter.

simple example of two non overlapping reflections of a square waveform of

duration T = 1 msec, received with a delay equal to 1.5 msec, whose main

lobes (the line at −3 dB is indicated by the red line) are distinguishable after

matched filtering.

3.2 Doppler shift and Doppler resolution

A good number of publications have argued that bats can classify targets by

looking at frequency modulations in the received echo that are induced by

moving targets such as insects. Indeed, there is very close parallel in radar

systems. When two targets cannot be resolved in range, and in other words

belong to the same range cell, radars have still the ability to try to detect
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Figure 3.3: Output of the matched filter when the input is represented by
two non-overlapping reflections delayed by 1.5 msec.

them by looking at a shift in the frequency domain, called Doppler shift,

that is induced by the motion of the target. In this section the concept of

frequency Doppler shift is introduced and the definition of Doppler resolution

given. If the target of Figure 3.1 starts moving with a velocity ~V towards

the target as in Figure 3.4 it produces an echo whose delay τ(t) is a function

Figure 3.4: Example of reflection from a moving target.
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of time t and given by the formula

τ(t) =
2(R− vt)

c
(3.3)

and then the received signal r(t), if the radar emits a continuous waveform

of frequency f0, is

r(t) = cos

(
2πf0

(
t− 2(R− vt)

c

))
. (3.4)

The instantaneous frequency of the signal fi, which is related to the time

derivative of the phase, is given by the expression

fi = f0 +
2f0v

c
, (3.5)

and therefore has been shifted by a quantity fD, called Doppler shift, equal

to

fD = fi − f0 =
2f0v

c
. (3.6)

The Doppler Resolution is defined as the minimum difference that there must

be between the Doppler shifts induced by two distinct targets in order for

the radar to distinguish them in the frequency domain.

3.3 Wideband ambiguity function

A fundamental tool that is widely used for the analysis of radar signals

in order to assess their range and Doppler characteristics is the ambiguity
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function [63]. In this section the mathematical basis that are necessary to

understand the theory behind the definition of ambiguity function are given

and then the ambiguity function is defined for both narrow band and wide

band waveforms.

Given a real signal x(t) with mean value equal to zero, its corresponding

analytic signal ẋ(t) is defined as

ẋ(t) = x(t) + jx̂(t) (3.7)

where x̂(t) is obtained by filtering x(t) with a Hilbert filter

x̂(t) = x(t)⊗ hH(t). (3.8)

In Eq. 3.8, hH(t) represents the impulse response in time of a Hilbert filter

whose Fourier Transform is given by HH(f) = −jSign(f). Thus Eq. 3.7 and

Eq. 3.8 lead to the relation:

Ẋ(f) =


2X(f) f ≥ 0

0 f < 0.
(3.9)

Eq. 3.9 describes how the Fourier transform X(f) of a real signal x(t) is

related to the Fourier transform Ẋ(f) of its analytical signal x̂(t) and shows

that the Fourier transform of an analytic signal is equal to zero for negative

frequencies.

From Eq. 3.7 it is very easy to derive that given an analytical signal the
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correspondent signal x(t) can be obtained as

x(t) = Re{ẋ(t)}, (3.10)

which can be also expressed in polar coordinates as

x(t) = Re{a(t)ejφ(t)}, (3.11)

where a(t) and φ(t) represent the amplitude and the phase of ẋ(t) respec-

tively. The instantaneous frequency fi(t) of the signal x(t) can now be defined

as

fi(t) =
1

2π

dφ(t)

dt
. (3.12)

If a signal x(t) is the input of a linear and invariant filter with impulse

response h(t), the analytic signal of the output y(t) given by the formula

ẏ(t) =
∫ ∞
−∞

ẋ(τ)ḣ(t− τ)dτ , (3.13)

where ẋ(t) and ḣ(t) are the analytical signals of the input x(t) and the impulse

response of the filter h(t) respectively. When the filter is designed to match

to the signal x(t), and then ḣ(t) = ẋ∗(−t), the expression above (Eq. 3.13)

can be written as

ẏ(t) =
∫ ∞
−∞

ẋ(τ)ẋ∗(τ − t)dτ . (3.14)

In radar and sonar systems the ambiguity function has been defined to ex-

ploit the property of the possible echo signals that can be measured at the

receiver after filtering the transmitted waveform with a filter that is matched
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to the transmitted signal itself. The ambiguity function represents the time

response of a filter matched to a given finite signal, when that signal is re-

ceived with a delay τ and a Doppler shift fD, relative to nominal delay and

Doppler (0,0) [64].

When a narrow band signal is reflected by a static target the received signal

is a delayed and attenuated copy of the transmitted waveform. If the target

moves, the Doppler effect induces a shift in frequency of the echo dependent

on the target velocity as in Eq. 3.6. The ambiguity function for these types

of signals is defined as

|χ(τ, fD)| =
∣∣∣∣∫ ∞
−∞

ẋ(τ)ẋ∗(τ − t)ej2πfDτdτ
∣∣∣∣ . (3.15)

When the transmitted signal is a wideband waveform, the echo from a static

target is still a delayed and attenuated copy of the transmitted waveform but

when the target moves the Doppler effect induces a time compression of the

signal. The ambiguity function in this case is defined as

|χ(τ, η)| = 1

|η|

∣∣∣∣∫ ∞
−∞

ẋ(t)ẋ∗(η(t− τ))dt
∣∣∣∣ (3.16)

in order to take this effect into account. In the equation, η is the parameter

that represents the Doppler compression and is equal to η = c+v
c−v , where c is

the speed of propagation and v is the target velocity. It is self evident that the

ambiguity function is directly related to the range and Doppler resolution.

Indeed, the range resolution corresponds to the width of the main lobe of the

ambiguity function as a function of τ computed in fD = 0 (χ(τ, 0)) and, the
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Doppler resolution is the width of the main lobe of the ambiguity function as

a function of fD computed in τ = 0 (χ(0, fD)). Some examples of ambiguity

functions are given in the next section where frequency modulated signals are

introduced together with a detailed discussion on their ambiguity functions.

3.4 Amplitude and frequency modulations

The literature review has shown how bats can be mainly divided into two

classes depending on the type of signals they transmit. There are, in fact,

bats that echolocate by using a CF waveforms often composed of a few har-

monics characterized by an initial or final sweep, and bats that instead use

broadband waveforms. Indeed, in the latter class, a further classification

can be made in relation to the type of frequency modulation these bats use

in their echolocating calls. There are in fact bats that use linear frequency

modulated calls and others that use hyperbolic modulated ones. These two

types of waveform have been very much studied for radar systems and linear

chirps are currently widely used in existing radar systems. In this section the

theory that is needed in order to understand the concepts of amplitude and

frequency modulation is given with particular attention to linear and hyper-

bolic chirps as these are common waveforms used by bats. The mathematical

expressions for these two waveforms are also given and their properties and

differences discussed.

A signal x(t) is amplitude-only modulated if the instantaneous frequency
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fi(t) is constant and can be expressed as

x(t) = Re{a(t)ej2πf0t+φ0} = a(t)cos(2πf0t+ φ0). (3.17)

Similarly a signal x(t) is frequency-only modulated when its amplitude is

constant, and can be expressed as

x(t) = Re{Aejφ(t)} = Acos(φ(t)). (3.18)

3.4.1 Linear frequency modulation

A signal x(t) that obeys the expression

x(t) = Rect
(
t−T/2
T

)
cos(2π(f0t+ γt2))

= Rect
(
t−T/2
T

)
Re

{
ej2πγt

2
}
,

(3.19)

is characterized by an instantaneous frequency equal to

fi(t) = f0 + 2γt, (3.20)

and therefore takes the name of Linear Chirp or linear frequency modulated

(LFM) signal. From Eq. 3.20 it is easy to derive the expression for the

bandwidth of signal, defined as the magnitude of the difference between the

initial and the final frequency of the sweep, which is given by

B = |f(0)− f(T )| = f1 − f2 = 2γT. (3.21)
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Figure 3.5: Power spectrum and spectrogram of a linear down-chirp spanning
the frequencies from 50 kHz to 20 kHz. The duration of the pulse is 3 msec
and the bandwidth, defined as the magnitude of the difference between the
initial and the final frequency of the sweep, is 30 kHz.

Figure 3.5 plots the power spectrum and the spectrogram of a LFM signal

with f1 = 50kHz and f2 = 20kHz respectively, and shows clearly how the

instantaneous frequency in the spectrogram changes linearly as a function of

time.

3.4.2 Hyperbolic frequency modulation

Similarly to a linear chirp, a signal x(t) defined as in Eq. 3.19 is characterized

by an instantaneous frequency that changes hyperbolically with time (3.20)

and is called Hyperbolic Chirp or hyperbolic frequency modulated signal

(HFM).

x(t) = Rect
(
t−T/2
T

)
cos(2πa log(1− kt))

= Rect
(
t−T/2
T

)
Re{ej2πa log(1−kt)}

(3.22)
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The expression for the bandwidth of a hyperbolic chirp is given in Eq. 3.24

fi(t) =
ak

kt− 1
(3.23)

B = f(0)− f(T ) = f1 − f2 (3.24)

and its parameters can be easily derived accordingly (Eq. 3.25).


a = −f1

k

k = f2−f1
f2T

(3.25)

Figure 3.6 plots the power spectrum and the spectrogram of a HFM sig-

nal with f1 = 50kHz and f2 = 20kHz respectively and show clearly how the

instantaneous frequency in the spectrogram changes hyperbolically as a func-

tion of time. Interestingly, one of the consequences of the non linear chirp

is that power/unit bandwidth is not constant and therefore the spectrum is

not flat.

3.4.3 Comparison of LFM and HFM ambiguity func-

tion

In the last two sections amplitude and frequency modulations have been de-

scribed giving particular emphasis to linear frequency modulated (LFM) and

hyperbolic frequency modulated (HFM) signals as these are the waveforms

bats use for echolocation. In section 3.1 the definition of range resolution

has been given and has highlighted that range resolution is a function of

the bandwidth of the transmitted signal and in particular that the range

66



Figure 3.6: Power spectrum and spectrogram of a hyperbolic chirp spanning
the frequencies from 50kHz to 20 kHz. The duration of the pulse is 3 msec
and the bandwidth, defined as the magnitude of the difference between the
initial and the final frequency of the sweep, equal to 30 kHz.

resolution improves as the bandwidth increases. This is the main reason why

frequency modulated signals have been deployed in radar systems, as they

allow to reach wider bandwidths without varying the duration of the pulse.

In this section the differences and the advantages of using LFM or HFM are

investigated by looking at their wideband ambiguity functions.

Figure 3.7 and Figure 3.9 plot the wideband ambiguity functions for a

linear chirp and an hyperbolic chirp that sweep the frequencies between 50

kHz and 20 kHz, respectively. In both cases the bandwidth and the duration

of the pulse are the same (B = 30 kHz, T = 3 msec). The plots of their

relative χ(τ, 0) and χ(0, fD) function are given in Figure 3.8 and Figure

3.10. As expected, because the bandwidth of the two signals is the same,

the χ(τ, 0) plots show that the range resolution is approximately the same

for both the signals. The χ(0, fD) plots instead show that the hyperbolic

frequency modulation is desirable as it provides a better Doppler tolerance
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Figure 3.7: WAF for a linear chirp with a bandwidth equal to 30 kHz which
spans the frequencies between 50 kHz and 20 kHz.

Figure 3.8: Range and Doppler cuts of the WAF of a linear chirp with a
bandwidth equal to 30 kHz which spans the frequencies between 50 kHz and
20 kHz.
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Figure 3.9: WAF for a hyperbolic chirp with a bandwidth equal to 30 kHz
which spans the frequencies between 50 kHz and 20 kHz.

Figure 3.10: Range and Doppler cuts of the WAF of a hyperbolic chirp with
a bandwidth equal to 30 kHz which spans the frequencies between 50 kHz
and 20 kHz.
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[65].

3.5 Basis of automatic target recognition

3.5.1 High Range Resolution Profiles

The literature review has highlighted how much research has been done on

radar target classification with particular emphasis to high range resolution

profile target classification (HRRP). Since high range resolution radar be-

came available, in fact, these new techniques have had a great impact on

latest research because of the simplicity which range profiles can be col-

lected.

As range profiles will be widely used for the purpose of this thesis, in this

section the concept of range profiles is introduced together with a description

of how HRRPs are measured.

Consider a target on a platform as shown in Figure 3.11. A radar that illumi-

nates the target receives an echo from the target itself. Since real targets are

composed of many scatterers the echo that the radar receives is a complex

signal that in first approximation, supposing that the target behaves as a

linear system, can be seen as the sum of the echoes from each scatterer. As

the echo enters the receiver it is usually matched filtered and then sampled

into a vector ~y = (y1, y2, ..., yN) that forms the range profile. When the dis-

tance between these main scatterers is greater than the range resolution the

echo will present peaks corresponding to each scatterer. Range profiles are

strictly dependent on the angle at which the radar is looking at the target. It
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Figure 3.11: Radar measuring a range profile

is evident that range profiles might give a lot of information about the struc-

ture of the targets such as number of scatterers, distance in range between

them, orientation of the target etc. Because of these properties range profiles,

usually referred as High Range Resolution Profile (HRRP) to highlight that

the radar is operating with a high resolution, have been widely studied for

radar target classification. In this thesis, HRRPs will be referred to as the

baseband version of the output of the matched filter, with both amplitude

and phase information.

3.5.2 Classifiers

Classification of objects, or targets for the radar case, is the process of as-

signing a particular element to a set of known objects called a class. Figure
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Figure 3.12: Block diagram of the classification process.

3.12 shows in a block diagram the main steps of the classification process.

The raw data measured by the radar, or a sensor in general, are given as

an input to a feature extraction block that has to reduce the dimensionality

of the raw data by identifying the main features of the targets that will be

used to perform classification. A few feature extraction algorithms, such as

Principal Component Analysis (PCA) and Fisher Linear Discriminant [12],

have been studied and tested to serve this purpose. Once the main features

of the targets have been extracted the actual classification takes place in the

classifier. The book by Duda [12] gives an insight on the different types of

classifier that are present in the literature. Classifiers can be mainly divided

into two types: parametric and non-parametric. Parametric classifiers as-

sume that the raw data are governed by one or more stochastic parameters

that present a particular probability density distribution (PDF). The classi-

fication task is performed under the assumption of having prior knowledge of

the distribution of these parameters and then use their estimates to classify

the object. Non-parametric methods are much more direct and mostly do not

require any a priori knowledge on the properties of the data. Here, for sim-

plicity reason and because there was no simple probability distribution that

well fitted our data, a non-parametric classifier, called Knn, is introduced.
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3.5.3 K-Nearest Neighbour classifier

As introduced above, classification is performed by using a pattern, such as

a process realization or a feature vector extracted from a process realiza-

tion, that is given as an input to a classifier that has to automatically decide

for the class the object belongs to. A few classifiers have been developed

and implemented to serve this purpose. In this thesis, a non-parametric

method called K-Nearest Neighbour classifier Knn is used to assess classi-

fication performance. The approach consists of computing the K nearest

distances between the input pattern, called test, and a number of patterns

from each class known by the classifier. It is evident that in order to work

the classifier needs to have what is called a a priori knowledge, represented

by these training patterns, that is fundamental to train the classifier. Once

all the possible distances between the test and the trainers are calculated the

K nearest ones are selected for each class and then ordered from the smallest

to the greatest in a vector ~V of NK elements, where N is the number of

classes Ci. The last step consists of looking at the K smallest elements of

the vector ~V and then choosing for the class that has a greater number of

elements between them. Figure 3.13 shows that choosing the number K is

quite a critical aspect for the Knn classifier. In this particular example, for

instance, choosing K = 1 would lead to assigning the test element to Class

1 while choosing K = 2 would result in deciding for unknown. K = 3 would

result in deciding for Class 2. There is not an optimal way to decide the

value of K and an approach that can be used is testing some known patterns

and then choosing the number K that give sufficient performance for them.
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Figure 3.13: Example of Knn classification [12] highlighting the importance
of the selection of the parameter K. Choosing K = 1 would lead to assigning
the test element to Class 1 while choosing K = 2 would result in deciding
for unknown. K = 3 would result in deciding for Class 2.
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3.6 Imaging

In the previous section classification performed by processing HRRPs has

been introduced and described. However, as the discussion carried out in

Chapter 2 has shown there is a lot of ongoing research that is exploiting how

to improve target classification and target recognition by looking at images

of the targets themselves. In this section two algorithms that are widely used

to perform imaging of targets, such as tomographies and SAR processing, are

given.

3.6.1 Tomography

Given a function f(x, y) in the two variables x and y, the projection of f(x, y)

over the line described by relation xcos(ϑ) + ysin(ϑ) = r is defined as

pϑ(r) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(xcos(ϑ) + ysin(ϑ)− r)dxdy. (3.26)

The Fourier transform of the function pϑ(r)

Pϑ(R) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(xcos(ϑ) + ysin(ϑ)− r)e2πRrdxdydr,

(3.27)

after a simple mathematical calculation can be expressed as

Pϑ(R) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)e2π(xRcos(ϑ)+yRsin(ϑ))dxdy, (3.28)

which corresponds to the 2-D Fourier transform F (X, Y ) of the function

f(x, y) calculated at the spatial frequencies (Rcos(ϑ), Rsin(ϑ)). The relation
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Pϑ(R) = F (Rcos(ϑ), Rsin(ϑ)) is well known with the name of the Fourier

Slice theorem.

Let us now suppose that the image of an object described by a 2-D function

f(x, y) has to be reconstructed given a set of projections pϑ(r). The relation

between the function f(x, y) and its 2-D Fourier transform, given by

f(x, y) =
∫ +∞

−∞

∫ +∞

−∞
F (X, Y )e2π(xX+yY )dXdY , (3.29)

can be expressed as

f(x, y) =
∫ π

0

∫ +∞

−∞
pϑ(R)|R|e2πR(xcos(ϑ)+ysin(ϑ))dRdϑ. (3.30)

This has been obtained after a simple variable transformation from cartesian

co-ordinates to polar co-ordinates (X = Rcos(ϑ), Y = Rsin(ϑ)). Let us now

define the function W (t) as the convolution between the projections pϑ(r)

and a filter whose frequency response is given by H(R) = |R|. The Fourier

trasform W (R) of W (t) is given by

W (R) = pϑ(R)|R|, (3.31)

and the function W (t) can then be re-written (through a simple Inverse

Fourier Transform) as

W (t) =
∫ +∞

−∞
pϑ(R)|R|e2πRtdR. (3.32)

Eq. 3.30 can now be expressed as
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f(x, y) =
∫ π

0
W (xcos(ϑ) + ysin(ϑ))dϑ (3.33)

to show that the image of the object represented by the function f(x,y) is

only dependent on the projections of the object. In a real scenario where

only a finite number of projections is available the expression above can be

well approximated with

f(x, y) =
N∑
i=1

W (xcos(ϑi) + ysin(ϑi)). (3.34)

3.6.2 Synthetic aperture radar (SAR)

Synthetic Aperture Radar (SAR) is a technique that is widely used in radar

systems to improve azimuth or cross-range resolution of a target scene with

respect to that obtained by using a single antenna of length L illuminating

the same area. This technique can be used for sonar systems as well and in

this case it takes the name of Synthetic Aperture Sonar or SAS.

The angular azimuth resolution of a linear antenna of length L can be ap-

proximated as ϑz = λ0
L

and thus the antenna footprint on the ground ∆X at

a distance R is given by ∆X = λ0
L
R. Many applications of radar and sonar

systems require a much higher cross range resolution and thus new techniques

looking at improving azimuth resolution without changing the physical size

of the antenna have become an imperative. Synthetic aperture radar pro-

cessing is a technique that allows improvement of cross range resolution by,

as its name suggests, synthesising a longer aperture or antenna.

Suppose that an antenna moving a constant speed v transmits and receives
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Figure 3.14: Sketch of a sensor illuminating the ground while flying on a
straight line.

Figure 3.15: Received signal coming from an angle ϑ. This is given by the
sum of the signals received at each flight step.

a pulse with a time period equal to T as described in Figure 3.14.

The received signal, given by the coherent sum of all the received pulses,

can be expressed as

Sr(t) = ej2πf0(t−t0−
2ndsin(ϑ)

c
), (3.35)

where d = vT is the distance that the antenna has covered between two

consecutive transmissions (Figure 3.15). After some calculations Eq. 3.35

can be expressed as

Sr(t) = ej2πf0(t−t0)
N−1∑
n=0

e
− 4πndsin(ϑ)

λ0 . (3.36)
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It can be shown that for small values of ϑ the amplitude of the expression

above can be written as

|Sr(t)| =
|sin(N2dπϑ

λ0
)|

|sin(2dπϑ
λ0

)|
. (3.37)

Eq. 3.37 shows that echoes arriving from different directions are attenuated

as a function of the angle ϑ and in particular that the first zero point cor-

responds to the look direction ϑ = λ0
2Nd

, where the quantity Nd corresponds

to the azimuth resolution of the real aperture (equal to λ0
L
R). The azimuth

resolution that can be achieved by a SAR system is then defined as

Razimuth =
λ0

2Nd
R =

L

2
, (3.38)

which is considerably higher than the one given by a single antenna of length

L as desired.

Another interesting way to introduce SAR processing is to look at it from

a Doppler point of view. Suppose that the sensor is carried by a platform

that is moving with a constant velocity v as described in Figure 3.16 and

to be transmitting continuously a tone at a frequency f0 . In this case, the

received signal

Sr(t) = ej2πf0(t−
2R(t)
c

) (3.39)

will arrive at the receiver with a variable time delay that depends on the

distance R(t), equal to

R(t) =
√
R2

0 + (vt)2 ≈ R0 +
(vt)2

2R0

, (3.40)
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Figure 3.16: Target moving on a straight line with respect to a static sensor.

between the transmitter and the receiver at each instant. It is easy to show

that the instantaneous Doppler frequency

fD(t) = fi(t)− f0 = − 2

λ0

dR(t)

dt
= −2

v2t

λ0R0

(3.41)

depends on the position in azimuth of the target and thus it shows that two

targets can ideally be resolved by looking at their correspondent Doppler

shift. It is also interesting to highlight that the Doppler bandwidth

∆fD = 2
v2T

λ0R0

(3.42)

does not depend on the azimuth position of the target and that it remains

constant if the velocity is constant. Because the resulting return is a linear

frequency modulated chirp, the process of forming the synthetic aperture is

one of matched filtering the Doppler history.

The theory described above can be extended to the case of a static sensor

that is looking at a moving target. SAR processing, in fact, suggests that
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Figure 3.17: ISAR. Target rotating on a turntable with respect to a static
sensor. Movement of the target allows imaging of the target itself.

when a radar or sonar system cannot move there is still some type of in-

formation that can be extracted from a moving target. In this case SAR

processing takes the name of Inverse SAR (ISAR) and can be divided in two

different classes; co-operative ISAR and non co-operative ISAR. It is cooper-

ative when the motion related to the target can be somehow controlled, and

non co-operative when the motion of the target is not controlled and thus

all the parameters that describe its trajectory and any small changes in the

position have to be estimated. Below, the simple case of a target placed on

a turntable that rotates with a constant angular velocity w is described and

some results are given.

Consider the situation as described by Figure 3.17 in which a scatter located

in the point (x, y) of a 2-D plane is rotating with a constant angular veloc-

ity w. If the distance of the radar from the centre of rotation R0 is much

greater than the length of the radious r the instantaneous distant between
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the scatterer and the radar can be approximated as

R(t) = R0 − rsin(ϑ), (3.43)

and thus its instantaneous Doppler shift is given by

fD = − 2

λ0
wrcos(ϑ) = − 2

λ0
wx. (3.44)

As for the case of a moving sensor the Doppler frequency is directly propor-

tional to the position of the scatterer in cross range and thus this method

can be used to resolve two moving scatterers in azimuth by looking at their

Doppler shifts.

3.7 Summary

In this chapter the basic concepts of signal processing and radar theory that

are useful for the reader to comprehend the results of the thesis were given.

The concepts of range and Doppler resolution were defined and explained

together with the definition of the ambiguity function, useful to exploit radar

signal properties. By using the ambiguity function a deeper analysis LFM

and HFM waveforms was carried out and differences and similarities of these

two signals were discussed. These concepts will be used in Chapter 4 to

exploit the properties of the waveforms deployed by bats to detect and select

targets. An explanation of what range profiles are and how these can be

collected and deployed for classification of targets was given together with

an introductory discussion on the classifiers. In particular, a non-parametric
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classifier, the K-Nearest Neighbour, was described in details. This will be

used in Chapter 5 and Chapter 8 to support our classification performance

analysis. Finally, two common algorithms used to perform target imaging,

such as tomographies and SAR-ISAR, were given as well to support the

analysis carried out in Chapter 9.
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Chapter 4

Analysis of an echolocation

buzz

In this chapter a feeding buzz sequence as emitted by a Epetesicus nilssoni

bat while first searching and then attacking a slow moving target is analysed,

and results are discussed in order to give the reader the necessary knowledge

to fully comprehend and enjoy the topics of this thesis. Part of the data

analysed in this chapter was already processed prior to the commencement

of this work and the results relative to this first study can be found in [66]

[67]. The goal of this research was to repeat the processing of the data in

order to consolidate the results and to open up a more detailed discussion

that could be part of a wider study like the one presented in this thesis.
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Figure 4.1: Feeding buzz by an Epetesicus nilssoni bat.

4.1 Description of the data

Figure 4.1 plots the feeding buzz sequence emitted by an Epetesicus nilssoni

bat while first searching and then attacking a slow moving target. During

data collection the bat was constantly changing its orientation, such that it

viewed the target over a total angle range of approximately 270 degrees, and

gradually getting closer and closer to the target. The signal was digitised

using a sampling frequency of 220.5 kHz. Unfortunately, no further infor-

mation is available on the experiment setup. From Figure 4.1 it is evident

that the buzz sequence can be divided into two main phases. The first phase,

called searching phase, corresponds to the initial part of the buzz in which it

is believed the bat is looking for a possible target and performing classifica-

tion. Ideally, this phase should include the task of target detection although,
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for this particular experiment, not enough information on the experiment is

available to decide whether the bat had already detected the target or not

before the recording started. This phase is composed of echolocation calls

characterised by amplitudes of about 0.3 V which are separated in time from

each other by a PRI (Pulse Repetition Interval) of about 0.2 sec. The second

phase, called terminal phase, is the last part of the buzz and corresponds to

the time when the bat attacks the prey that has been selected. Pulses be-

longing to this phase of the buzz are separated by a much lower PRI (about

1 msec) and present amplitudes up to 5-6 times lower than those recorded in

the searching phase. It is believed this is because in the terminal phase the

bat is closer to the target and therefore can operate with lower power trans-

missions in order to save precious energy that can instead be used to transmit

with a higher PRF to keep tracking the target before the final attack. Figure

4.2 and Figure 4.3 show the spectrogram and the normalised mean spectrum

of the first pulse in the searching phase. The pulse is characterised by a

time duration of about 9 msec and it is composed of three non-overlapping

harmonics (in frequency) with peaks in power at about 30 kHz, 60 kHz and

90 kHz, respectively. Most of the energy is concentrated on the fundamen-

tal harmonic which can be fitted well to a hyperbolic function. The mean

spectrum clearly shows the three non overlapping harmonics which present

a non constant power/unit bandwidth that is typical of non-linearly modu-

lated chirps. Figure 4.8 and Figure 4.9 show the ambiguity function for the

same pulse together with its relative range and Doppler cuts. The range cut

shows that the bat is operating with a range resolution of about 1.8 cm. The

Doppler cut instead present a very narrow peak indicating that the bat is
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trying to acquire fine Doppler information on the target. This is in very good

agreement with the previous literature showing that Doppler information is

critical for the task of classification and support the hypothesis that target

classification takes place in the searching phase. Figure 4.4 and Figure 4.5

plot the spectrogram and the spectrum of the second pulse extracted from

the same phase. Unlike all the other pulses in the searching phase this is

composed of a fundamental hyperbolic modulated harmonic only that spans

the frequencies between 60 kHz and 30 kHz. The mean spectrum shows the

distribution of the mean power as a function of frequency. The peak is at

about 30 kHz and again the mean power is not constant over the pulse band-

width. Interestingly, the amplitude of this pulse is only about 1.2 V, i.e. half

the amplitude of all the other pulses belonging to this part of the buzz. Un-

fortunately, it is impossible to determine whether the lack of the harmonics

was deliberate by the bat or just the results of a lower output or redirected

beam, as the recording of the signal at the microphones location may not

necessarily reflect the output from the bat. The information on the location

of both the microphone and the bat, the orientation of the microphone and

its beam pattern, and the orientation of the bat at each call is unfortunately

not available.

Figure 4.6 and Figure 4.7 give the same plots for a pulse in the final phase that

is composed of two overlapping (in frequency) harmonics. The fundamental

harmonic is well fitted to a linear chirp that spans frequencies between 75

kHz and 25 kHz, while the second harmonic decreases from about 90 kHz to

55 kHz. The pulse length is reduced to 4 msec, more than 50% with respect

to the pulses described above, in order to conserve energy and avoid eclips-
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ing. At the same time the degree of hyperbolic curvature increases to extend

the bandwidth and improve range resolution. The plots of the wideband am-

biguity functions for this pulse and its relative range and Doppler cuts are

given in Figure 4.10 and Figure 4.11, respectively. As expected, the range

cut of the ambiguity function is now much more narrow that the one asso-

ciated to the pulse extracted from he searching and show that the bat now

operates with a range resolution of about 8 mm. The Doppler cut instead

has become much larger providing a poorer Doppler resolution. Overall, it

is common to waveforms in the terminal phase to provide tolerance to any

differential Doppler. This is likely to indicate that the bat at this stage has

already gained the Doppler information for classification and is gathering the

range information before the final attack.

Unfortunately, there is no direct knowledge of how the bat was changing

its position and orientation with respect to the target during this specific

recording. To show an example of a common bat-trajectory, Figure 4.12

plots the 3D position of a bat with respect to a static insect for a similar

experiment that was carried out by the University of Maryland [68]. This

was extracted by a video showing a feeding bat in a room foraging on an

insect by echolocation. Each point in the plot corresponds to a position in

which the bats emitted an echolocation call. From this sequence it is evi-

dent that, as in the previous experiment, the PRI (Pulse Repetition Interval)

used by the bat tends to become shorter as the bat gets closer to the tar-

get and also shows that the bat tends to go around the target to acquire

multi-perspective information before the actual attack [69]. As discussed

in Chapter 2 it is known that multi-perspective information together with
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Figure 4.2: Normalised spectrogram of a pulse in the searching phase. The
time axis limit corresponds to the duration of the longest pulse in the feeding
buzz. It is kept constant in each plot to highlight how the duration of the
calls is diversified throughout the sequence.

Figure 4.3: Normalised spectrum of a pulse in the searching phase.
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Figure 4.4: Normalised spectrogram of a pulse in the searching phase that is
characterised by the fundamental harmonic only.

Figure 4.5: Normalised spectrum of a pulse in the searching phase that is
characterised by the fundamental harmonic only.
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Figure 4.6: Normalised spectrogram of a pulse in the final phase.

Figure 4.7: Normalised spectrum of a pulse in the final phase.
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Figure 4.8: WAF of a pulse in the searching phase.

Figure 4.9: Range aand Doppler cuts of the WAF of a pulse in the searching
phase.
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Figure 4.10: WAF of a pulse in the final phase.

Figure 4.11: Range and Doppler cuts of the WAF of a pulse in the final
phase.
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Figure 4.12: Trajectory of a bat (blue) with respect to a static insect (red)
in a similar experiment performed at the University of Maryland [68].

Doppler information are likely to be key to target classification. The simi-

larity of the two experiments suggests that these considerations are likely to

be valid for our dataset as well.

In conclusion, results show that the bat sent very sophisticated waveforms

which were intelligently diversified during the mission. Throughout the se-

quence the ambiguity function turns anti-clockwise through the sequence in

order to achieve the appropriate range resolution and Doppler tolerance de-

pending on the bat’s final goal. The way the bat changes the waveform

parameters is remarkable example of resource management which, it can be

argued, to be much more sophisticated than what modern radar and sonar

systems can do. These results show how the choice of a particular waveform

and its parameters, such as bandwidth and duration, can be intelligently
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diversified during a mission in order to achieve high level detection, localisa-

tion and classification performance. Indeed, it is self evident that this is an

extraordinary example of waveform diversity and agility, which is the envy

of modern radar and sonar systems [70]. The more demanding question that

remains to be addressed is what are the appropriate adjustments that need

to be made to maximise classification performance, and this would be an in-

teresting and challenging topic for future research. As mentioned above the

information on the relative position of the bat with respect to the insect was

not available for this particular experiment but further research is necessary

to address this problem.

4.2 Multi-component waveforms

Results show that bats tend to transmit waveforms composed of more than

one harmonic. The function of these harmonics is as yet unclear. Figure

4.4, shows the spectrogram of a pulse composed of one fundamental har-

monic only, suggests that E. nilssoni bats intentionally use harmonics and

are able not to do so, although this type plot is not typical. They might do

this in order to broaden the transmitted bandwidth and then obtain higher

range resolutions when this is not possible with a single harmonic waveform

because either it could be too challenging or they have pulse duration re-

strictions [71]. However, there is no proof yet of any physiological constraint

that would impede transmission of a large bandwidth using the fundamental

only. Indeed, another hypothesis is that harmonics could be used for differ-

ent individuals to distinguish their calls in a multi-signal environment, i.e.
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to give a distinctive ’voice’ [53].

We believe that, if evolution has resulted in multi-harmonic waveforms and

these are commonly used by bats during their tasks, it is likely that there

can be advantages obtained by doing so. The fact that harmonics, or more

in general multi-component waveforms, are not commonly used by radar and

sonar systems suggests that investigating their effect on the ambiguity func-

tion of typical radar and sonar waveforms would be of interest. Here, multi-

component linear chirps are simulated and the the properties of the range

cut of their ambiguity functions are explored in order to exploit advantages

and disadvantages for radar and sonar sytems.

4.2.1 Waveform analytic model

The analytic signal corresponding to a linear chirp characterised by a starting

frequency f0, a phase shift θ0, and a chirp rate γ0 can be written as

y0 = ej2π(f0t+γ0t
2)+jθ0 (4.1)

over a time interval 0 < t < T of duration T. Let us consider a waveform

given by the sum of two linear chirps, y0 and y1, with y1 described by the

parameters f1, γ1, θ1 as

y1 = ej2π(f1t+γ1t
2)+jθ1 . (4.2)
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It can be easily shown that the analytic signal of the resulting waveform

y(t) = y0(t) + y1(t) can be written as

y0 + y1 = (1 + ej2π(fdt+γdt
2)+jθd)ej2π(f0t+γ0t

2)+jθ0 , (4.3)

with fD = f1 − f0, γD = γ1 − γ0 and θD = θ1 − θ0.

As discussed in Chapter 3, for wideband waveforms such as echolocation

calls, the Doppler effect induces a time compression of the signal and the

ambiguity function is defined in order to take this effect into account (Eq.

3.16). Here, the properties of the range cut of the ambiguity function of the

signal y(t) are exploited as a function of fD and γD and are compared with the

performance obtained by a single linear chirp spanning the same bandwidth.

The two chirps y0 and y1 generating y(t) were assumed to present the same

signal levels and to be in phase, and therefore θD was set to zero (θ0 = θ1) for

all the simulations. Because these assumption are not commonly satisfied by

bat-signals, where the level of the secondary harmonics can be -20 dB weaker

than the primary harmonic, the results of this analysis may not necessarily

apply to the bat case. However, the main goal of this analysis is to assess

advantages and disadvantages deriving by using multi-components waveforms

for radar and sonar systems.

A set of waveforms y(t) with f0 = 70 kHz, γ0 = −5x106 Hz/sec and fD =

10 kHz were simulated for γD varying from −4x106 Hz/sec to 0 Hz/sec. The

duration of the pulse was set to T = 3 msec. All the parameters were chosen

in order to closely agree with those characterising real echolocation calls.

The range cut of the WAF of y(t) was calculated for all γD. Fig. 4.13 shows
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Figure 4.13: Range cuts of the wideband ambiguity function of a signal y(t)
with f0 = 70 kHz, θ0 = 0 and γ0 = −5x106 Hz/sec as a function of γD
(fD = 10 kHz, θD = 0).

Figure 4.14: Range cut of the wideband ambiguity function of a signal y(t)
with f0 = 70 kHz, θ0 = 0 and γ0 = −5x106 Hz/sec for γD = 0 Hz/sec
(fD = 10 kHz, θD = 0).
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Figure 4.15: Range cut of the wideband ambiguity function of a signal y(t)
with f0 = 70 kHz, θ0 = 0 and γ0 = −5x106 Hz/sec for γD = −4x106 Hz/sec
(fD = 10 kHz, θD = 0).

Figure 4.16: Estimated range resolution as a function of γD (f0 = 70 kHz,
θ0 = 0 and γ0 = −5x106 Hz/sec, fD = 10 kHz, θD = 0). The green line
represents the range resolution achieved by a single linear chirp with 40 kHz
bandwidth.
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the range cuts of the WAF as a function of γD and range. Results show that

when γD assumes values from zero to about −1.3x106 the auto-correlation

function of the resulting signal presents a main lobe at zero range and two

additional −10 dB sidelobes located at about ±18 cm. With the increase of

γD these distant sidelobes gradually tend to move closer to the main lobe up

to around γD = −1.5x106. For γD < −1.5x106 the energy spreads out in a

greater number of sidelobes around the main lobe whose peaks reach a level

of about −18 dB. A detailed view of the range cut for γD = 0 is given Fig.

4.14. In this case the resulting waveform y(t) is composed of two parallel

(in frequency) linear chirps spanning the frequencies between 70 kHz and 40

kHz and between 80 kHz to 50 kHz, respectively. Results show that the first

sidelobes drop to about −30 dB. The highest sidelobes in the vicinity of the

main lobe are at −20 dB and are located at about ±1.5 cm from the main

lobe itself. As previously discussed, the two main sidelobes at -10 dB are

obvious and located 18 cm away from the main lobe. Fig. 4.15 shows the

range cut for γD = −4x106. In this case the main sidelobes are all located

in the vicinity of the main lobe and they reach levels of about −18 dB. Even

in this case the very first sidelobes are about −22 dB lower than the main

lobe. Considering that a typical linear chirp presents its highest sidelobes at

-13 dB both the cases investigated above provide lower first sidelobes at the

expense of having to deal with highest sidelobes away from the main lobe. To

complete our first analysis the value of the range resolution was calculated

as a function of γD. Results are given in Fig 4.16. As expected, because

the waveform bandwidth remained the same for γD ≥ −1.66x106 Hz/sec,

differences in range resolution, calculated as the width of the main lobe at
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−4 dB, are not such to justify significant improvements with respect to a

typical chirp with 40 kHz bandwidth (green line in the plot), whose range

resolution is theoretically equal to c/2B = 0.43 mm (where c = 343 m/sec is

the speed of sound in air and B = 40 kHz is the chirp bandwidth).

The analysis of the range cut of the ambiguity function was repeated on

a multi-component waveform with f0 = 70 kHz, γ0 = −5x106 Hz/sec and

γD = 0 Hz/sec for fD varying from 10 kHz to 70 kHz. The case corresponding

to fD = 70kHz and therefore f1 = 140kHz is when the second component of

the waveform is exactly a second harmonic of the signal. Fig. 4.17 shows the

results for this analysis. It is evident how highest far-out sidelobes behave as

a function of the frequency shift between the two components. In particular

it is evident that these sidelobes assume high values between 10 kHz and 30

kHz. They then disappear from about 30 kHz onwards. Here the sidelobes

closest to the main lobe start to rise significantly. Fig. 4.18 show the details

of the range cut for fD = 70 kHz. For this case the sidelobes show peaks

that are higher than −4 dB, making this waveform useless for range analysis.

Fig 4.19 plots the estimates of the range resolution achieved by y(t) as a

function of fD. As expected, because the bandwidth of y(t) increases as a

direct function of fD the range resolution improves when fD increases. For

high values of fD range resolution improves with respect to a typical linear

chirp (blue line), however, these correspond to the values of fD that give the

highest sidelobes.

The usual way of lowering sidelobes is by an amplitude taper or by wave-

form codes. Waveforms composed of extra portions of chirps with different

slopes at the beginning and at the end of the main chirp have been used as

101



Figure 4.17: Range cuts of the wideband ambiguity function of a signal y(t)
with f0 = 70 kHz, θ0 = 0 and γ0 = −5x106 Hz/sec as a function of fD
(γD = 0 Hz/sec, θD = 0).

Figure 4.18: Range cut of the wideband ambiguity function of a signal y(t)
with f0 = 70 kHz, θ0 = 0 and γ0 = −5x106 Hz/sec for fD = 70 kHz (γD = 0
Hz/sec, θD = 0).
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Figure 4.19: Estimated range resolution as a function of fD (f0 = 70 kHz,
θ0 = 0, γ0 = −5x106 Hz/sec, γD = 0 Hz/sec, θD = 0). The green line
represents the range resolution achieved by a single linear chirp with the
same bandwidth (equal to f0 + fD) at each step.

well, in the past, to lower sidelobes [72]. Here, results show that an intelligent

use of the harmonics might enhance some of the parameters characterising

radar and sonar waveforms and this may offer an extra degree of freedom

in waveform design. However, these are very recent results and, therefore,

require further research aiming at corroborating these findings and at devel-

oping the necessary mathematical background.
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Chapter 5

Analysis of floral echoes

In the previous chapter a sequence of echolocation calls transmitted by a feed-

ing bat has been analysed in order to explore the ability of bats to change

their waveform parameters in relation to the task they have to perform. This

helped understanding the possible type of information the bat tries to exploit

during detection, classification and selection of targets and how this infor-

mation is prioritised during the task as well. It is clear though that the way

bats adapt and the information available to them largely depends on specific

target signatures, and therefore a study that looks at the characteristics of

those targets which are attractive to bats is also of great interest. This last

consideration becomes particularly interesting in the case of nectar-feeding

bats, i.e. a class of bats which feed on nectar and by doing so play an im-

portant role in pollination of bat-pollinated plants. Although classification

of flowers of bat-pollinated plants is a very challenging task, bats still obtain

remarkable performance. The reason why they can do so is yet unclear and

the hypothesis of a co-evolution between bats and bat-pollinated plant is be-

104



coming widely agreed. Most bat-pollinated flowers can be assigned to one of

two different morphological types: flowers with long and numerous stamina,

and bell-shaped flowers. Bell-shaped flowers may differ significantly in size.

Large flowers allow the bat to land and typically are visited by a number

of unspecialised bat species. Small flowers can instead be exploited by spe-

cialised bats only [2]. It is believed there might be some characteristics in the

’echo fingerprint’ of flowers of bat-pollinated plant such that the information

allows them to succeed in finding the nectarium, extract the nectar and thus

pollinate the flower. Under this hypothesis, the aim of this work is to assess

the type of information that is available to bats and which allows them to

succeed so impressively in the task of flower recognition, with the goal to un-

derstand what are the methodologies deployed by bats to perform the task of

classification of flowers and how this knowledge can be applied to radar and

sonar systems. In order to address this problem a detailed exploitation of

the characteristics of the echoes from these flowers with the goal to identify

possible critical features in their shape that might allow correct classification

is required.

5.1 Floral Echoes: Radar Comparisons

A first preliminary analysis of floral echoes was performed on a set of data

provided by the School of Biological Sciences at the University of Bristol.

These contained high range resolution profiles of four flower heads belonging

to four different species: Amphitecna latifolia, Markea neurantha, Crescentia

cujete and Vriesea gladioliflora. The flowers to be irradiated were impaled
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by a long, very thin insect pin mounted at the top of a thin holder placed in

the centre of a small turntable. Revolving the turntable allowed irradiation

of the objects from all directions in one plane. The front view of the object

was adjusted to 0 degrees. A custom-built condenser speaker and a micro-

phone fixed at a distance of 20 cm from the target at the same height as

the target object were used. The distance between the centre of the micro-

phone and the loudspeaker was 18 mm. The microphone was placed parallel

to the loudspeaker, approximately 45 degrees laterally above the horizontal

with respect to the midpoint of the loudspeaker membrane. A picture of the

experimental setup is given in Figure 5.1. Echoes were measured as impulse

response functions of the flower heads by transmitting maximum length se-

quences (MLS), theoretically characterised by an unlimited bandwidth and a

auto-correlation function which is equal to unity for perfect ovelapping and

zero elsewhere. The received echo was sampled at 500 kHz and the impulse

response functions of the flower heads were computed as the convolution be-

tween the transmitted and the received waveforms. The frequency response

of the loudspeaker and microphone allowed measurements between 20 kHz

and 140 kHz, covering the frequency range of the echolocation calls used

by most flower-visiting bats, and leading to a theoretical range resolution of

about 1.5 mm. Unfortunately, the actual range resolution was not verified at

the time of the recordings. A more detailed description of the experiment and

the data can be found in [2]. Before processing, the raw data were scaled so

that in each image the maximum value of the amplitude was equal to unity.

The Signal to Noise Ratio (SNR) was estimated in each image by selecting a

noise only window and a signal plus noise window. The noise only windows
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Figure 5.1: A sketch of the experimental setup. Taken from [2].

had to be taken in the region after the last arrival from the flowers because

all echoes received before the flowers had been cut from the images that were

provided. Both the windows were selected manually from the images of the

flowers and therefore the regions that were used to estimate the SNR were

different for each case. An example of selected windows is given in Figure

5.2.

An estimate of the power of the noise Pn and an estimate of the power of

the signal plus noise Ps+n were computed as the root mean squared value of

the squared samples of the respective window as

P =
1

N

N∑
i=1

x2i , (5.1)

where N is the total number of samples and xi is the ith sample in the
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Figure 5.2: Window selection for SNR estimation. a) is the window that
contains only noise and has been extracted to estimate Pn. b) is the window
that contains signal plus noise and has been extracted to estimate Ps+n.

reference window, and the SNR was estimated as

SNR =
Ps+n
Pn
− 1. (5.2)

The results are reported in Table 5.1 for each of the four flower heads. The

variation in SNR is quite considerable and requires care to be taken in the

interpretation of the results when applying a classifier. To examine multi-

perspective classification performance a Knn classifier with Knn = 3 was

implemented. A total of 16 range profiles, corresponding to 16 different

angular perspective separated in angle by 5 degrees, were extracted from

each dataset to train the classifier. These were selected to give the classifier

full knowledge of the target over all angular negative perspectives using non-

correlated range profiles. Because all the flowers visually presented a high
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Table 5.1: SNR estimates for each image.

Flower Species SNR (dB)

Amphitecna latifolia 22

Markea neurantha 9.5

Crescentia cujete 15

Vriesea gladioliflora 22

level of symmetry no training profiles were selected between the positive

perspectives, i.e. those between 0 and +90 degrees. The training profiles

were removed from the data to be classified, and all the remaining angular

perspectives (180− 16 = 164 test profiles) were used to form the test set on

which performance was assessed. In both the training set and the test set

the amplitude of all range profiles was scaled to lie between [0, 1]. For the

single perspective classification, the decision was made by using only one test

profile at the time. The amplitude of the test profile was compared with the

amplitude of all 16 training profiles, by calculating their Euclidean distances.

Among the resulting 16 distances only the smallest 3 (Knn = 3) were used

to make the decision. No use was made of the known angle between the

training profiles nor of the knowledge of the angle corresponding to the test

profile itself. Each test profile was assigned to the class that owned the higher

number of training profiles that generated the Knn = 3 lowest distances and

all the ambiguous cases (i.e. draws) were not assigned to any class. For

the multi-perspective analysis each decision was made by comparing jointly

two or three test profiles, separation for each other of 10 degrees, with the

training set. For each decisions, the Knn = 3 lowest distances were selected
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between the resulting 32 (two perspectives case) or 48 (three perspectives

case) distances. As in case of a single perspective, no use was made of the

known angle between the training profiles nor of the knowledge of the angle

corresponding to the test profiles. Figure 5.3 shows the output of the classifier

when all the four classes were tested. White noise was simulated and added

to the images in order to plot the performance as a function of signal to noise

ratio. There are two clear conclusions that may be drawn. The first is that, as

is the case for radar, for low SNRs there can be an increase in classification

performance in going from one to two perspectives and there is a further,

but lesser, improvement in going from two to three perspectives [8]. For

high SNRs there is both an increase in classification performance in going

from one to two perspectives and from two to three perspectives. Secondly,

as the SNR increases the classification performance, as might be expected,

also increases. As noise is added eventually there is a drop in performance,

indicative of the loss of key information, possibly embedded in scatterers of

smaller echo values. This may well be indicative of the mutually beneficial

arrangement that nature has provided. Because classification performance

was tested on a limited set of data it remains difficult to conclude on the

actual significance of drops or increases in classification performance as there

is not enough knowledge of the statistical fluctuation around the results.

As the image for V. gladioliflora presented a SNR = 9 dB the plot had to

be stopped at 9 dB but the behaviour shows a clear tendency to increase

further. In order to assess performance at higher SNRs the data related to

the V. gladioliflora were removed from testing. Figure 5.4 shows the output

of the classifier when only the three flowers that presented the highest signal
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to noise ratios were tested. The behaviour in the plot is similar to that

shown in Figure 5.3. Performance keeps on increasing after 9 dB as predicted

although there is a change in the slope of the plot at around 8 dB. Below 8

dB performance falls off more rapidly. This may indicate that scatterers key

to good classification are swamped by noise. Overall, as in the radar case

the results do not appear to be very robust in either case. Small changes in

processing such as the use of different range profiles to train the classifier or

slightly different lengths of profile to be processed could lead to quite different

results even when the images to be processed remained the same [11]. This

could depend on the limited numbers of range profiles that were available to

train the classifier though it might be the case that the classification approach

is not robust itself. It is therefore not certain that the classifier performance

can be improved by adding more training profiles. Further investigation is

required to compare a greater number of images, possibly with higher signal

to noise ratio, and to contrast and exploit the form of the four types of range

profiles. In addition to this, it needs to be considered that here classification

performance has been tested on data that were taken from the same set of

measurements and that were gathered with the same system. Because of this,

it remains impossible to exclude that the classifier has used some features

in the return signals that were related to the specific background or to the

collection system rather than features exclusively related to the flowers. In

order to avoid any possible classification ”bias”, ideally, one should classify

data collected in different scenarios by means of different systems. However,

this work was aiming to relate images of flower heads to classic radar targets

rather than quantify the performance of the classifier itself. In these terms
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Figure 5.3: Output of the classifier when four classes are tested.

the obtained results are valuable and show close similarities to the radar case.

These results confirm the hypothesis of a close parallel between radar

target classification and the task of classification by bats and, more specifi-

cally give evidence of close similarities between echoes from floral targets and

those from classical radar targets.

Later on in this thesis an investigation of which features make these flowers

so well recognizable by bats, and which role these features play in automatic

target classification is presented together with results. Finding the right an-

swers to these questions could give an important contribution to the way

radar target classification is carried out nowadays.

The work described in this chapter present some limitations due to the way

the data was collected. MLS sequences generate a waveform that is theoret-

ically characterised by an ideal flat Fourier transform over an infinite band-
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Figure 5.4: Output of the classifier when three classes are tested. Scales are
different from the previous case.

width and an ideal autocorrelation function that is equal to 1 only when

two replicas of the same sequence are perfectly overlapped and equal to zero

otherwise. In real scenarios, because real systems are characterised by a lim-

ited bandwidth, MLS sequences are filtered before transmission and thus the

ideal properties discussed above are altered. In addition to this, the impulse

response of a real system is not flat over the entire system bandwidth and

thus the properties of the signal obtained after cross-correlation between the

signal recorded by the microphones and the transmitted MLS sequence do

not match those of the theoretical case. There is also another effect to be

taken into account. Because of the filtering of the system, the transmitted

waveform, and thus the output from the cross-correlator, become bandpass

signals and contain the carrier. If this is not removed the output after cross-

correlation is likely to contain modulations due to the carrier that can have
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a significant impact on the images of the targets and, in particular, these

could show peaks that do not belong to real scattering from the target itself.

For these reasons it is fundamental to assess the performance that can be

achieved by a real system any time a measurement is done. This procedure

commonly takes the name of calibration of the system. For this experiment,

calibration results are not available and therefore it is now unknown what

the performance of the system, such as range resolution and sidelobe levels,

was.

To address these problems and to be able to carry out additional and inde-

pendent experimentations, and thus collect a greater number of experimental

data, an acoustic system capable of transmitting and receiving waveforms at

the same frequencies deployed by bats has been implemented as part of this

research work. This system, called an acoustic radar as it works as a radar

that transmits ultrasound frequencies, is presented in the next section with

a detailed description of the hardware together with an assessment of its

performance.

5.2 Description of the acoustic radar

The acoustic radar used to collect data is composed of a transmitter and

two receivers that represent respectively the mouth and the two ears of the

bat. The transmission system is composed of a signal generator, an amplifier

and a piezoelectric custom built loudspeaker (about 1.5 cm x 2 cm in size)

capable of producing acoustic waveforms at the same range of frequencies de-

ployed by echolocating bats (≈ 20kHz− ≈ 200kHz). A detailed description
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of the principal of operation of the loudspeaker is given in [73]. Table 5.2

reports the values of the loudspeaker beamwidths at 50 kHz, 100 kHz, 150

kHz and 200 kHz. For each frequency the level of the main lobe measured

with respect to the maximum level achievable in the range of frequencies

between 10 KHz and 220 kHz is also given [74]. The system is designed to

produce a wide beam so that the whole flowers can be insonified as uniformly

as possible. Indeed, bats show an excellent capability to adapt their beam

pattern as well. They scan their beam around to detect the target and then

modified its directionality once the target is on track [75] [76]. The signal

generator is a National Instruments PCIe-6251 card capable of transmitting

500 kS/sec (16-bit resolution) on 16 channels simultaneously and thus 16

waveforms, each one characterised by a bandwidth of up to 250 kHz. The

receiver is composed of two G.R.A.S. ultrasound microphones (type 40 BF)

followed by one two-channel amplifier that is capable of amplifying each sig-

nal from the two microphones of an amplification factor equal to x40. Echoes

recorded by the two ultrasound microphones are sampled at a rate of 500 kHz

Table 5.2: Beamwidth of the loudspeaker (calculated @-3dB) at 50 kHz, 100
kHz, 150 kHz and 200 kHz and the corresponding level of attenuation with
respect to the maximum level obtained between 10 KHz and 220 kHz [74].

Main lobe width [degrees] Main lobe level

50 kHz 15 −7 dB

100 kHz 10 −7 dB

150 kHz 11 −2 dB

200 kHz 8 −20 dB
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Figure 5.5: Photo of the instrumentation that controls the setup.

using the same National Instruments DAQ card (14-bit resolution) and then

are matched filtered to the transmitted waveform using Matlab (v7.5 The

Mathworks. Inc., Natick, USA). A picture of the ultrasound radar is given

in Figure 5.5. For the purpose of this thesis, the acoustic radar was operated

in a 6x2 meters ultrasound anechoic chamber at the School of Biological Sci-

ences of the University of Bristol.

As discussed in the previous chapter, the goal of this thesis is to understand

the methodologies deployed by echolocating bats when they perform clas-

sification of static targets. Because of this, in order for the results to be

consistent, it is important to make sure that the information contained in

the experimental data is as close as possible to the actual information that

is available to a real bat that is echolocating. As this information critically

depends on the spatial arrangements of all the sensors, the loudspeaker and

the microphones were placed in an artificial bat head in order to reproduce

the real spatial arrangements of a typical bat head. A picture of the artificial

bat head is given in Figure 5.6.
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Figure 5.6: Artificial bat head with one loudspeaker and one microphone
reproducing the spatial arrangements of a real bat head. The empty hole in
the artificial head can host an additional microphone when binaural data are
collected.

Because classification of static targets do not require any Doppler infor-

mation, the performance of the system was assessed solely in terms of range

resolution. This was estimated by sending a chirp towards a flat plate (45.4 x

41.1 cm), placed about 30 cm from the artificial bat-head and perpendicular

to the signal direction, functioning as a mirror, and then matched filtering

the echo to the transmitted signal. The matched filter was implemented in

Matlab by cross-correlating the analytic signal of the received echo with the

analytic signal of the transmitted waveform. The analytic signals were ob-

tained by applying the Matlab Hilbert function to the original waveforms.

Selecting the return from the mirror, in the plot of the amplitude of the

matched filter output, and then looking at the width of its corresponding

main lobe gives a good estimate of the range resolution that is achievable by

the system. As previously discussed, this measure is of great importance be-

cause it takes into account any undesired effects from the hardware system.
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Figure 5.7: Fourier transform of the transmitted linear down-chirp spanning
the frequencies between 250 kHz and 50 kHz.

The first measurement was performed by sending a linear down-chirp span-

ning the frequencies from 250 kHz to 50 kHz. The spectrum of the signal is

given in Figure 5.7 and the spectrogram of the echo before being matched

filtered to the transmitted chirp is given in Figure 5.8.

The spectrogram in Figure 5.8 shows the presence of a direct signal from

the loudspeaker to the microphone. The echo from the mirror is well visible

and shows that frequencies over 180 kHz are much more attenuated with re-

spect to the lower ones. This is due to the effect of the acoustic propagation

in air as well as to the attenuation due to the system hardware components.

Distortions due to non-linearity in the system are clearly visible in the spec-

trogram in the form of harmonics after aliasing. These are introduced by the

amplifier in transmission that had to be fed with a too high signal voltage in

order to reach the right output voltage that was required by the loudspeaker.
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Figure 5.8: Spectrogram of the received waveform before the matched filter
when a down-chirp from 250 kHz to 50 kHz was transmitted.

The impact of these unwanted effects, mainly due to the hardware, on the

performance of the system in terms of range resolution are obvious in both

Figure 5.9 and Figure 5.10. These show the amplitude of output signal from

the matched filter and an expanded view of the return of interest from the

flat plate.

As expected, the compressed pulse presents the return from the mirror

at a distance of about 32 cm. The direct signal from the loudspeaker to the

microphone, separated by just a few millimetres in the artificial bat head,

and additional multiple reflections due to the artificial bat head are clearly

visible as well. The width of the main lobe of the return from the mirror

is the range resolution that is achievable by the system when this particular

linear chirp is transmitted. Theoretically, the range resolution of such a chirp,

characterised by a bandwidth B = 200 kHz, considering that the speed of
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Figure 5.9: Magnitude of the output of the matched filter when a down-chirp
from 250 kHz to 50 kHz was transmitted.

Figure 5.10: Expanded view of the return from the flat plate obtained from
the magnitude of the output of the matched filter when a down-chirp from
250 kHz to 50 kHz was transmitted.
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sound in air c is about 343 m/s, is equal to c/2B = 0.85 mm. Because the

bandwidth of the system is not flat over the entire transmitted bandwidth

and because of the effects of the non linearities in the amplifier, the width

of the lobe and therefore the range resolution is slightly poorer than the

theoretical one and equal to 1 mm. In addition to this, Figure 5.10 shows

the main lobe belonging to the return from the flat plate is not as that of a

linear chirp as described in the previous chapter. The lobe presents two peaks

as if some multiple reflection was taking place at the time of the recordings,

and further investigation was required to address this problem. Eventually it

turned out that a grid placed on the end of the microphone in order to protect

the membrane was the cause of these multiple reflections. Figure 5.11 shows

the spectrogram of the received waveform before matched filtering when the

same down-chirp from 250 kHz to 50 kHz was transmitted and received by

the microphone with no protection grid. Again, for the reasons previously

discussed, the higher frequencies are more attenuated with respect to the

lower ones. Figure 5.12 and Figure 5.13 show the signal at the amplitude

of the output of the matched filter. In this case the main lobe given by the

return from the mirror presents, as expected, one peak only that is much more

similar to a typical main lobe that characterises a linear chirp. Because the

impulse response of the system and the non linearities are still diminishing

the performance of the system, the width of the main lobe is still greater

than the theoretical one and again the range resolution is about 1 mm.

The results described above clearly show how the impulse response of the

system can significantly impact the performance of the acoustic radar and,

in particular, diminish the range resolution. Because the frequency response
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Figure 5.11: Spectrogram of the received waveform before the matched filter
when a down-chirp from 250 kHz to 50 kHz was transmitted and the grid
covering the microphone was removed.

Figure 5.12: Magnitude of the output of the matched filter when a down-
chirp from 250 kHz to 50 kHz was transmitted and the grid covering the
microphone removed.
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Figure 5.13: Expanded view of the magnitude of the output of the matched
filter when a down-chirp from 250 kHz to 50 kHz was transmitted and the
grid covering the microphone removed.

is not flat over a large bandwidth, it is interesting to explore how the system

performs when lower bandwidth and thus lower frequencies are transmitted.

The same type of analysis described above was then repeated transmitting

another linear down-chirp characterised by a bandwidth B = 100 kHz span-

ning the frequencies between 150 kHz and 50 kHz. Figure 5.15 shows the

spectrogram of the echo before the matched filter. Both the direct signal

from the loudspeaker and the reflection from the mirror are well visible. In

this case higher frequencies are not much more attenuated with respect to

lower ones, indicating that the impulse response of the system is much more

flat at these range of frequencies. This also depends on the attenuation in

air due to the propagation of sound waves. For the same reasons discussed

above, as expected, non linearities due to the amplifier in transmission are
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Figure 5.14: Fourier transform of the transmitted linear down-chirp spanning
the frequencies between 150 kHz and 50 kHz.

Figure 5.15: Spectrogram of the received waveform before the matched filter
when a down-chirp from 150 kHz to 50 kHz was transmitted and the grid
covering the microphone was removed.
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still present because the amplitude of the voltage input in the amplifier in

transmission was the same.

How the system performs when lower frequencies are transmitted is clearly

visible in both Figure 5.16 and 5.17 where the amplitude of the output from

the matched filter is given together with an expanded view of the main lobe

due to the reflection from the mirror. In this case, in fact, the shape of

the reflection from the mirror at about 32 cm is much more similar to the

theoretical one presenting sidelobes that decayed as expected with the first

sidelobe at about −13dB. In this case the measured range resolution is about

1.7 mm and therefore close to identical to that expected in theory (343m/sec

over 200kHz equal to 1.7mm). This result confirms the scaling effect of

changing the bandwidth of the transmitted waveform. The experiments de-

scribed above were obtained without applying any sort weighting to the data.

Weighting the data before match-filtering would certainly help reducing the

sidelobes at expense of the range resolution.

5.2.1 3D data collection

In the previous section the acoustic radar has been described together with

an assessment of its performance. This allows transmission of waveforms

towards a target and reception of their echoes that, depending on the type

of waveform that was transmitted, contain different information on the tar-

get. In particular, processing of the echo allows to distinguish scatterers in

the target separated by a distance greater than the range resolution. It is

self evident, though, that the information from the target varies depending
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Figure 5.16: Magnitude of the output of the matched filter when a down-
chirp from 150 kHz to 50 kHz was transmitted and the grid covering the
microphone removed.

on the angle that the sensors forms with the target, commonly called look

angle or look direction. As it is in the interest of this research to exploit the

type of information that can be extracted from a multi perspective analysis

a setup that allowed collection of three dimensional multi perspective target

data was built and a picture of this setup is given in Fig. 5.18. The setup

is composed of two LinearX System precision turntables, model LT360, ca-

pable of rotating with a step angle of 0.1 degrees. These can be controlled

by sending digital pulses into a pulse step input that is available on each

turntable. The digital pulses that trigger the turntables are generated by the

same LabView program that controls the acoustic radar so that the setup

can be synchronised with the acoustic radar in order to guarantee that any

measurement is taken when the target is not moving. The target is placed
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Figure 5.17: Expanded view of the magnitude of the output of the matched
filter when a down-chirp from 150 kHz to 50 kHz was transmitted and the
grid covering the microphone removed.

on the horizontal turntable at a height of about 20 cm by means of a thin

pin. High range resolution profiles are measured by transmitting a waveform

and receiving its echo at each step of the turntable. By doing so 2D high

range resolution profiles of the target can be taken over 360 degrees. An

arm carrying the artificial bat head that contains the loudspeaker and the

microphones is connected to the vertical turntable. Rotating the arm allows

collection of the data at different vertical angles as well leading to collection

of 3D data set.

5.2.2 Summary

In this chapter a first analysis of floral echoes of a dataset collected at Uni-

versity of Bristol has been carried out and a discussion of similarities and
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Figure 5.18: Photo of the setup that was used for data collection in the
ultrasound anechoic chamber at University of Bristol.

differences with radar/sonar target echoes has been presented. The acoustic

radar system that has been developed to collect the data that will be anal-

ysed later in this thesis has been described, and its performance in terms

of range resolution assessed. Results have shown that a range resolution of

better than 2 mm can be achieved and have been used to describe what the

impact of the deployment of high bandwidth, and thus high frequencies, can

be on this type of systems. Finally, a description of the setup that allows

collection of 3D data has been given as well.
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Chapter 6

Floral echoes from a single

individual

The acoustic radar described in the previous chapter represents a fundamen-

tal achievement of this research. As previously discussed, it is the aim of this

work to investigate what type of information is made available to bats by

floral echoes and to exploit how this changes as a function of physical flower

features, stage and age of the flowers. Because bats successfully detect and

select flowers of bat-pollinated plants, under the hypothesis of co-evolution,

it is expected that there is a lot of information in floral echoes. In particu-

lar, because bats have to distinguish between good flowers, wilting flower and

buds, characteristics in the echo fingerprint in floral echoes between these dif-

ferent cases are expected to be such to allow high level performance. From

this perspective the dataset described in the previous chapter contained a

lot of limitations and was just not enough to carry out this type of analy-

sis. Firstly, the dataset consisted of only one image for each species of flower.
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Secondly, all of the images were taken by ensonifing flowers that were suitable

for pollination. In addition to this, as discussed earlier, calibration results

were not available for these measurements, so that it remained impossible to

conclude on parameters such as the achieved range resolution. The acous-

tic radar provides us with the flexibility and the full system control that is

needed to carry out the experiments that will follow.

In this chapter an analysis of floral echoes from flowers of two bat-pollinated

plants, the Rhytidophyllum auriculatum and the Cobaea scandens is carried

out. The way the information contained in floral echoes can change as func-

tion of specific parts of the flower, such as anthers and petals (see Figure

6.1), and as a function of their stage is investigated by processing a dataset

consisting of HRRPs that was collected with the ultrasound radar.

6.1 Rhytidophyllum auriculatum

The plant Rhytidophyllum auriculatum hook is a bat-pollinated plant which

grows in the Caribbean region and produces small flowers whose nectar is

very attractive to bats. A photo of a typical R. auriculatum flower is given in

Figure 6.2. In order to exploit the contribution associated with specific phys-

ical part of the R. auriculatum flower and determine how these change as a

function of the age and stage of maturity of the flower itself, two datasets con-

taining HRRPs of R. auriculatum flowers are analysed. In particular, here,

the contribution associated to the distal parts of the petals of the corolla and

the anthers is investigated by examining high range resolution profiles (see

Figure 6.1). This data was collected at the School of Biological Sciences at
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Figure 6.1: Sketch representing the structure and indicating the main phys-
ical parts of a flower.

the University of Bristol where one R. auriculatum plant is currently grown

and perennially produces flowers that therefore are available for experiments

at any time of the year. The first dataset, collected in October 2008, consists

of HRRPs of an open flower and two modified flowers obtained by manu-

ally removing the distal part of the petals and the anthers from an open

one. The second dataset, collected in June 2009, consists of HRRPs of an

additional open flower and a bud taken from the same plant. Because the

Rhytidophyllum auriculatum is successfully pollinated by bats, it is likely that

co-evolution has shaped its flowers in order to display critical information to

bats. The goal of this section is to investigate what are the physical parts of

the flower which add such information to the flower echo fingerprint. Because

of its bell shape, scattering from the inside of the corolla might be expected

to be stronger than the scattering associated with other parts of the flower.
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Figure 6.2: Photo of a Rhytidophyllum auriculatum open flower. During the
experiments the loudspeaker and the microphones were placed at the same
height as the flower and arranged in order to look straight into the corolla
when the perspective was 0 degrees.

As it is part of the classification task to distinguish open flowers from closed

buds, the HRRPs fingerprint of the bud is expected to be significantly differ-

ent from that associated with the open flower. Finally, buds are closed and

smaller than open flowers and so it is likely that the amount of energy they

can reflect is considerably lower than that of open flowers.

The data was collected as described in the previous chapter. The flowers

were impaled on a thin metallic pin (1.5 mm of diameter) placed at the

centre of the horizontal turntable (Figure 5.18), set to rotate over 90 degrees

(between -45 degrees to +45 degrees) with an angular resolution of 1 degree,

and were ensonified using the same custom-built loudspeaker fed with a linear

chirp spanning the frequencies between 50 kHz and 250 kHz (1 mm range
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resolution). The echoes were recorded with the ultrasound microphone and

sampled at a rate of 500 kHz. Unfortunately, only one microphone was

available at the time of this experiment and thus, for this dataset, binaural

information is not available. A measure of the background was taken before

gathering data with the flowers. However, in this experiment, subtracting

the background from the data was not enough to cancel the imperfections

introduced by the amplifier, which was then replaced and this was not a

problem in the following experiments. Collection of the second dataset was

performed as for the previous one but the data was measured by rotating

the horizontal turntable over a wider angular window in order to collect

180 perspectives spaced by 1 degree. Because another microphone became

available before the time of the experiment, two microphones were placed into

the artificial bat head and thus binaural data is available for this dataset.

Unfortunately, a measure of the background is not available for this dataset.

Figure 6.3 shows the image representing HRRPs of the open flower in the first

dataset. Scattering from the inner part of the bell-shaped corolla, including

additional multiple reflections, is visible between 25 cm and 26 cm. The

maximum amplitude is at 0 degrees, i.e. when the artificial bat-head was

directly facing the flower. Petals are visible between 25 cm and 25.5 cm and

cover the entire angular window between -45 degrees and +45 degrees. The

scattering beyond the petals at -30 degrees and at a distance of about 26

cm may be due to the sepals covering the back of the corolla. Results show

that, on average, the scattering originating from the inside of the corolla is

comparable to that originating from the petals, although at 0 degrees the

scattering from the inside of the corolla is about 5 dB higher than that
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Figure 6.3: Magnitude of the HRRPs of a Rhytidophyllum auriculatum open
flower. Colour scale is in [dB].

originated from the petals.

Figure 6.4 shows the HRRPs fingerprint of the flower after the anthers were

manually removed from the corolla. The image shows that in this case, at

0 degrees the scattering from the inside of the corolla is much stronger than

that originating from the petals with respect to the previous case, in which

the anthers were partly obstructing/filling the opening of the flower. The

overall structure of the echo has not changed. The distal parts of petals were

manually removed from the corolla as well and results for this case are given

in Figure 6.5. As expected, the scattering associated with the petals between

25 cm and 25.5 cm disappears and the HRRP fingerprint loses complexity.

Also, removal of the petals results in a less directional scattering from the

nectarium ( i.e. the inside of the corolla that contains the nectar).

Figure 6.6 shows HRRPs of another open Rhytidophyllum auriculatum
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Figure 6.4: Magnitude of the HRRPs of a Rhytidophyllum auriculatum open
flower after the anthers were manually removed from the corolla. Colour
scale is in [dB].

Figure 6.5: Magnitude of the HRRPs of a Rhytidophyllum auriculatum open
flower after the anthers and the distal parts of the petals were manually
removed from the corolla. Colour scale is in [dB].
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flower taken from the dastaset collected in 2009. This dataset was collected

by means of another amplifier (Piezo Driver/Amplifier Series, Treck, PZD

350 M/S) and by transmitting a linear chirp from 200 kHz to 50 kHz. The

range resolution was slightly poorer and equal to 1.4 mm. As with the previ-

ous dataset the structure of the scattering from the corolla, visible from -60

degrees to +60 degrees, remains complex. The petals significantly contribute

to the amount of energy that is reflected and, as expected, are visible over a

wide angular window that goes between -90 degrees and +90 degrees. The

structure of the open flower appears different with respect to that shown in

Figure 6.3 and this is most likely due to the position of the anthers growing

out from the corolla. Results obtained when the bud was ensonified are given

in Figure 6.7. The structure of the echo in this case is very different from

that associated with the open flower. The scattering is present over all angles

but does not present the same complex structure. The image indeed is very

similar to the typical sinogram that is obtained when an ideal point-target

is ensonified. At zero degrees, i.e. when the bat head was facing the bud,

the scattering is weaker with respect to other look angles because the surface

that is ensonified is smaller with respect to any other angle. The scattering

originated by the sepals that cover the back of the corolla is also visible at

around 21.5 cm over all angles between -90 and +90 degrees.

Results confirm that, as expected, there is a relative relevance of specific

parts of the flower in displaying information to bats. In particular, anthers

and petals may add components to the HRRP fingerprint that might contain

the information bats use to decide to visit specific individuals flower. Results

show that, on the average over all perspectives, in the unmodified flower the
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Figure 6.6: Magnitude of the HRRPs of a Rhytidophyllum auriculatum open
flower. Colour scale is in [dB].

Figure 6.7: Magnitude of the HRRPs of a Rhytidophyllum auriculatum bud.
Colour scale is in [dB].
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amount of scattering originating from the inside of the corolla is comparable

to that originating from the petals. This might be due to the protruding

anthers that obstruct the opening of the corolla and hence attenuate the

signal. From a frontal view though, scattering from the inside of the corolla

is about +5 dB stronger than that from the petals. This information might

be used by the bat as a directional cue to orientate and find the nectarium.

The echo fingerprint of the flower changes significantly after the distal parts

of the petals is removed. It is evident that, on the other hand, a further

investigation looking at how it is likely that bats actually explore the same

characteristics or features by adaptive flight and echolocation behaviour is

required and these topics will be covered later in this chapter. As expected,

results show that the HRRPs fingerprint of the closed bud present character-

istics that are very different from those of the open flower. Also, differences

in the dynamic range confirm the hypothesis that scattering from the open

flower is much higher than that of the closed bud.

6.2 Cobaea scandens

The plant Cobaea scandens Cav. (Cup-and-Saucer Vine) is a bat-pollinated

plant that grows in tropical America and produces flowers that are about 5

cm large (about 4-5 times bigger than the Rhytidophyllum auriculatum). A

photo of a C. scandens flower is given in Figure 6.8. Here, a similar analysis

to that which was carried out in the previous section on the R. auriculatum

flower is repeated on C.scandens flowers. Because these flowers are larger

than the Rhytidophyllum auriculatum results are expected to show a better
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detail when the same range resolution is achieved. In particular, in this sec-

tion the aim is at assessing how the information available to the bat changes

when going from an open flower, suitable for pollination, to a wilting flower

that has started to lose the interest of the bat. Exploiting how the shape of

the corolla can change as the flower wilts, i.e. stops producing nectar hence

losing attractiveness to bats, could contribute to understand which features

in the flowers are responsible for high level recognition by bats. This will

be done by comparing three different horizontal images, each one represent-

ing HRRP fingerprints of a C. scandens flower in three different cases: (i)

a flower in ideal condition for pollination, (ii) a desiccated flower, (iii) and

a flower whose distal part of the petals were removed by hand. The flowers

were provided by the Botanic Gardens of the University of Bristol and the

data was collected at the School of Biological Sciences of the same university

in October 2008.

Under the hypothesis of co-evolution, because bats can detect and identify

the flowers that are suitable for pollination between a number of individuals

of different age and stage, HRRPs of the wilting flower are expected to differ

significantly with respect to those of the flower suitable for pollination which

is under full turgor. In particular, the energy reflected by a wilting flower is

expected to be lower because the loss of turgor reduces the reflectivity of the

flower which is related to the acoustic impedance (which is proportional to

the difference between the density of the air and the density of the reflecting

surface). The details of the HRRPs fingerprint are also expected to change

as the flower’s general shape changes in the wilting process.

An image containing HRRP of an individual of C. scandens that is ready
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Figure 6.8: Photo of the wilted Cobaea scandens flower used for the mea-
surement. This is characterised by protruding anthers, a bell-shaped corolla
of largely merged petals whose unmerged petal ends fold back, and a ring of
partly merged sepals at its base.

for pollination is shown in Figure 6.9. The image contains HRRPs over look

angles ranging between -90 and +90 degrees, where the 0 degree line cor-

responds to the case when the flower was facing the microphone and the

loudspeaker. As expected, there is a huge increase in detail in the HRRRPs

and the SNR is higher with respect to the case of the Rhytidophyllum auric-

ulatum flower. The figure shows strong reflections at a distance of between

21 cm and 23 cm from the microphone that are originating from the distal

parts of the petals of the corolla. The weaker reflections between 20 cm and

21 cm are from the anthers protruding from the corolla (see Figure 6.8). An

overall weaker scattering originates from the bell-shaped inner part of the

flower’s corolla between 25 cm and 27 cm. This is the part of the corolla

that contains nectar and from which the pistil grows. Weaker scattering due
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Figure 6.9: Magnitude of the HRRPs over 180 degrees of a C. scandens ready
for pollination. 0 degrees is to the front of the flower as shown in Figure
6.10. HRRPs direction is horizontal, i.e. from left to right with respect to
the flower’s bell-shaped corolla. Colour scale is in [dB].

to the echo generated by the ring of sepals that cover the external back side

of the flower is also visible from about 28.5 cm to 29.5 cm. It is interesting

to observe how the petals can scatter a considerable amount of power over

a wide range of angles that goes between -60 degrees and +60 degrees. This

could be important to allow flower classification and selection from a wide

angle range and could be helpful also in terms of multi-perspective informa-

tion. The image is normalized to its maximum value located at about 22

cm when the corolla faced the microphone (0 degrees). HRRPs of another

individual of C. scandens that had started to wilt due to an overnight frost

are displayed in Figure 6.11. The figure shows that the scattering due to

the petals between 21 cm and 23 cm is less complex with respect to that in

Figure 6.9. A wide scattering that goes between -60 degrees and 0 degrees is
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Figure 6.10: Acoustic radar gathering the 0 degree perspective of a Cobaea
scandens (the flower in the photo is not the same flower related to the results
of this thesis). The -90 degrees perspective corresponds to the flower’s opened
corolla facing the vertical turntable on the left of the photo.

Figure 6.11: Magnitude of the HRRPs over 180 degrees of a desiccated flower
of C. scandens. Colour scale is in [dB].

142



Figure 6.12: Magnitude of the HRRPs over 180 degrees of a modified des-
iccated C. scandens; the petals and the pollen sacs were removed by hand
from the flower. Colour scale is in [dB].

still present at about 22 cm and probably due to one petal that was still in

good shape at the time of recording. However, most of the scattering from

the petals is no longer visible, leading to a marked loss of information. The

scattering from inside the corolla does not show any loss of complexity but

it is weaker than before after normalisation with respect to the maximum

value of the image. To investigate what the image of the flower would be

without petals at the corolla, the front ends of the petals from the same indi-

vidual were removed manually using a pair of scissors. Figure 6.12 shows the

HRRPs fingerprint obtained from this modified flower. The scattering from

the petals disappears over all angles. A fraction of power is still scattered

at 0 degrees probably originated by some residuals of petals that might have

not been removed properly or simply by the line delimiting the aperture of
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the corolla. Scattering from the inside of the flower is now more visible than

in Figure 6.11, but no relevant change in the complexity of the echo is ob-

served. This is for effect of the data normalisation because after removal of

the petals the dynamic range of the image is reduced.

Results confirm that, as expected, there are significant differences between

the HRRPs fingerprint of an open flower suitable for pollination and that of

the flowers that started to wilt. In particular, results show that the scatter-

ing from the petals tends to disappear when the flowers start to wilt. This

might be because the petals tend to fold back during the wilting process

resulting in a lower sonar cross section than that associated to the petals

being in the upright position. The fact that the HRRPs fingerprint of the

modified flower is very similar to the one obtained from the wilting flower

further proves that the scattering from the petals tends to disappear when

the flower is no longer suitable for pollination. It is evident that a greater

number of data from flowers must be analysed in order to corroborate these

findings and in particular to relate differences in the echo fingerprints to the

wilting process of the flower. As, previously discussed, the loss in turgor

might also negatively affect reflective properties of the plant tissue resulting

in a diminishment of the reflected power. The acoustic impedance, that de-

termines the reflectivity of a layer and that is proportional to the difference

between the density of the propagation mean (the air) and the flower, is

in fact expected to be higher when the flower is moist and lower when the

flower is dry. This is not evident in the results reported above and it is going

to be further investigated in the next section. Overall, I believe that the

fact that scattering from petals tend to disappear with the wilting process
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might be a key info towards classification and selection performance and this

is something that will have to be addressed in future work, with an exper-

iment aiming to quantify differences in selection performance of bats when

presented with open flowers and desiccated ones.

6.2.1 Power reflection as a potential cue

One cue available to bats is the overall power of the echo. In order to inves-

tigate differences in the received power and assess if these might be useful

to distinguish between suitable and less suitable flowers for pollination, the

mean scattered power in each of the three cases was estimated. This was

achieved by selecting a window that covered all the angular perspectives and

which contained only the return from the flowers (plus background noise).

The background noise, that was the same in all the three images, was not

removed from the results. This did not affect the calculation of the relative

differences in the received power. The window was selected manually from

the images and remained the same in the three cases. Indeed, a more quan-

titative way to select the window could be to use a threshold over the noise

level and then calculate the power associated with the pixels over the thresh-

old only. Selecting a rectangular window to estimate the power of the flower,

for example, did not allow repetition of this analysis on the Rhytidophyllum

auriculatum because either the background noise level was too high (and not

always stochastic because of the unwanted effects introduced by the system)

and therefore comparable with the flower return, or it was impossible (like

in the case of the bud) to choose a rectangular window containing the target
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Table 6.1: Mean power scatterred by flowers.

Full Flower Desiccated Modified

Cobaea scandens 62 dB 59 dB 57 dB

return only.

The mean power was calculated in each window as

P =
1

NiNj

Ni∑
i=1

Nk∑
i=1

|x(i, j)|2, (6.1)

where Ni and Nj are the number of rows and columns respectively, and

x(i, j) is the received complex sample in the (i, j) position of the window.

The results are reported in Table 6.1 and show a maximum difference in the

power of 4 dB between each of the three cases. Figure 6.13 plots the mean

power of the echo for each look angle calculated as

P (j) =
1

Ni

Ni∑
i=1

|x(i, j)|2 withj = 1, 2, ..., Nj. (6.2)

As expected, in the case of the full flower the mean power of the echo presents

higher values over a larger angular view due to the presence of the petals.

There are differences in the power depending on the perspective that might

be used by bats as a clue for classification [17], although this information is

not available over at all angles.
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Figure 6.13: Mean power received at each look angle. Estimated as in Eq.
6.2.

6.3 Bat Behaviour

The results presented in the previous section clearly show how the informa-

tion that the flowers display to bats can change depending on the flowers’

suitability to be pollinated. However, it is of great importance to exploit how

the bats relates to this type of information and thus a further analysis that

looks at assessing the behaviour of the bat is also required. Here, a typical

bat trajectory is exploited in order to assess if it is possible that bats may try

to acquire the information on the same flower’s features by moving around

the flower.

Figure 6.14 shows the horizontal and vertical projection of a typical trajec-

tory of a nectar feeding bat approaching an artificial feeder that contains

nectar from a distance of about 2.5 m. This data was collected during be-
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havioral experiments carried out in Germany in 2006 and kindly provided

to us by A. Volz [77]. The reported results are computed assuming that the

feeder was placed at the origin of the XYZ plane corresponding to the coordi-

nates (0,0,0). Figure 6.15 shows the horizontal and vertical angular position

of the bats with respect to the feeder at each call. The figures shows that

the bat emits about 10 calls before directing towards the feeder following a

straight line at a constant angle of about -40 degrees below the horizontal

plane. Within these ten calls the bat has already exploited an angular view

range of about 40 degrees on the vertical plane and about 15 degrees on

the horizontal plane. After this first exploration the bat keeps emitting calls

at a higher pulse repetition frequency (PRF) and gathers a further angular

information on the horizontal plane. At the end of the approach the bat

has gained an overall angular information collected over about 40 degrees on

both the horizontal and vertical plane. The bat takes almost a straight line

on the XY axes and hence exploited a wider angle on the vertical plane. This

might be due to the orientation of the feeder and the dimension of the flight

tunnel for this particular experiment.

It is very interesting to observe that the angular range used during this

approach flight is in agreement with the angular window in which the scat-

tering from petals is very obvious in C. scandens and it might be the case

that a bat needs the same angular view because it has to gather the right

information before making the final decision on whether the flower is worth

being visited or not. However, this result has to be treated with caution as

in the experiments the bat was presented with artificial feeders containing

nectar instead of the actual flower. Also, because of the short distance from
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Figure 6.14: Trajectory taken by a nectar feeding bat that is approaching a
feeder with nectar. Each localisation corresponds to the position the bat has
produced an echolocation call. Trajectory from the bat species Choeronyc-
teris mexicana. Data provided by [77].
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Figure 6.15: Angular position of the bat in the horizontal and vertical plane
with respect to the feeder.

the target it might be argued that at that stage the bat had already classified

the feeder and made the decision to visit it. In this case the bat would be

using the information from echoes rather to orientate itself to feed in the

correct way. Also, it is assumed that the bat is looking straight towards the

flower at each call although there is a small probability that the bat’s head

might have a different orientation. These two last points are important and

then require further investigations in future works. If there was a match

between angular sampling by bats and the directional information content in

different flowers, different approach strategies should be taken depending on

the flower type and orientation.
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6.4 Summary

Results show that floral echoes are a very important means for bat pollinated

plants to display information to bats in order to support high recognition per-

formance [61]. The scattering from the petals and the way this changes as a

function of the state of the flower could be a way of letting bats know which

flower is most suitable for pollination, i.e. holds a nectar reward, and hence

plays an important role for recognition and selection of the flowers. Results

show that HRRPs differences between flowers of different age and stage of

maturity are also obvious. On the other hand the results also show that a

type discrimination that looks at the backscattered energy is also possible

although may be restricted to certain looking angles. If co-evolution has

shaped flowers to ease recognition by bats, then radar and sonar systems

could be modelled accordingly in order to allow a better classification of spe-

cific targets. The analysis of a trajectory has shown that the bat gathers multi

perspective information on the target on both the horizontal and vertical axis

prior and during the final approach into the flowers. The angular perspec-

tives that are exploited are in agreement with the angular window in which

features, such as petals, are present in real flowers’ echoes. Nature suggests

that classification is not only about knowing the actual geometrical charac-

teristics of the target and that performance can probably be enhanced by the

use of intelligent feature extraction algorithms and by taking into account

the target behavior, such as spatial changes in echo structure as experienced

during exploration flights, for classification. This study also suggests that

having a good strategy is the key to high level classification performance.
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The lesson that can be learnt from these results is that radar and sonar sys-

tems could possibly deploy a better way of performing target classification

than just comparing a great number of measured data with look up tables.

Future work must look into relating these findings to other adaptive aspects

of the behaviour of the bat, such as the signals that these bats transmit and

the initial trajectories that they take before detecting and deciding to visit

the flowers from greater distances. Unfortunately, having access to this kind

of information requires more behavioural experimentation.

In the next chapter the information available to the bat within a plant inflo-

rescence is exploited. As bat pollinated plants can be densely populated with

flowers, it is important to investigate what kind of information is contained

in the sum of the echoes of a large number of individual flowers.
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Chapter 7

Inflorescence

An inflorescence is a group or cluster of flowers arranged on a stem that is

composed of a main branch or a complicated arrangement of branches. In a

real scenario, the bat often has to detect an individual flower on a plant or

even within an inflorescence composed of many individuals flowers/buds of

different age and status. The bat has to be able to process a complex echo

by the inflorescence to gather the right information for the success of the

mission [59]. In these terms it seems likely that the in-flight trajectory that

the bat takes before approaching the flower is, in a first stage, of great impor-

tance to extract useful information for the detection of the open flowers. On

the other hand, because it is in the interest of the plant too that pollination

takes place successfully it is likely that the spatial and shape arrangements

between individual flowers, buds and flowers without corolla (Calyx) are such

to give the bat all the necessary information to succeed in the task of flower

recognition. The aim of this chapter is to exploit the information available

to a bat in 3D space by measuring HRRPs of an inflorescence from points in
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the space that are likely to belong to a typical bat trajectory.

In the previous chapter results have shown that flowers of different age, sta-

tus, and closed buds present significantly different HRRP fingerprints when

they are ensonified individually. On this same line, there is a high expectation

that differences between buds, flowers without the corolla (Calyx) and open

flowers are also obvious within an inflorescence to allow the bat to detect the

right target (the open flower). In particular, because flowers of bat-pollinated

plants are commonly bell-shaped, they are expected to scatter more energy

and to be more directional than closed buds and Calyxes. If open flowers

within the inflorescence are visible only over limited angular windows, on

both the vertical and the horizontal plane, it is likely that the bat uses the

information deriving from their directionality to plan its approaching trajec-

tory into the nectarium. Also, because the bat must be physically facilitated

and thus have enough space to approach open flowers, it is common sense to

make the hypothesis that these must be arranged where they are easily reach-

able by bats and protruding from the rest of the plant. In addition to this,

it is also expected that this spatial arrangement is such to enable high level

detection performance against background clutter. In order to exploit this,

a real dataset containing high range resolution profiles of a bat-pollinated

plant inflorescence from different vertical angular perspectives is analysed

and results are discussed and related to the case of radar and sonar systems.

The data analysed in this chapter consists of HRRPs of one inflorescence

of Rhytidophyllum auriculatum composed of an open flower, three buds, and

three dead branches with Calyx whose spatial arrangement is given in the

sketch of Figure 7.1 and in the photos of Figure 7.2 and Figure 7.3. The
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Figure 7.1: Sketch of the spatial arrangements of the portion of
R.auriculatum plant composed of an open flower, three buds, and three flow-
ers without corolla (Calyx).

Figure 7.2: Frontal photo of the inflorescence. The pin is fixed at the centre
of rotation.
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Figure 7.3: Photo of the inflorescence from the vertical direction. The pin is
fixed at the centre of rotation.

data was collected at the School of Biological Sciences of the University of

Bristol in July 2009. The inflorescence to be ensonified was impaled on a

thin metallic pin (1.5 mm diameter) that was placed at the centre of the

horizontal turntable set up to rotate with an angular resolution of 1 degree.

A linear down chirp spanning the frequencies between 50 kHz and 200 kHz

was transmitted towards the plant with the custom-built loudspeaker. The

echo, recorded with the ultrasound microphone (G.R.A.S. type 40 BF), was

sampled at a rate of 500 kHz using the National Instruments PCIe-6251

DAQ card and matched filtered to the transmitted waveform using Matlab

(v7.5 The Mathworks. Inc., Natick, USA). During these experiments, both

the loudspeaker and the microphone were placed into the artificial bat-head

and thus binaural data is available for this entire dataset. Rotating the

vertical turntable, connected to the arm containing the artificial bat-head,

allowed data collection of HRRPs of the plant from different vertical angles

and heights as shown in Figure 7.4. The initial calibration procedure showed
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Figure 7.4: Sketch of the experiments setup. Revolving the vertical turnable
allowed measurements from various vertical perspectives.

that measurements were taken with a range resolution of less than 2 mm.

Figure 7.5 shows the horizontal angular HRRPs obtained when the bat-head

was facing the plant inflorescence from a vertical angle of 0 degrees, i.e. when

the metallic arm was parallel to the floor plane (Figure 7.4). In the figure,

the y-axis represents the distance in metres between the artificial bat-head

and the centre of rotation of the horizontal turntable located at about 20 cm,

and the x -axis represents the angle that the horizontal turntable formed with

the bat-head at each step. The 0 degree line corresponds to the case when

the bat-head was facing the plant. The image is normalised to its maximum

value. The scattering from the two buds, which are located on the right of

the open flower from a frontal view, is clearly visible at a distance between 16

cm and 18 cm and is present over a large angular window that goes between

-80 degrees and 0 degrees. The scattering from the bud located on the same

side as the open flower superimposed with echoes from the dead branches

is visible between -30 degrees up to +80 degrees at a distance from 16 cm

to about 19 cm. This component on the average is 20 dB weaker than the
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Figure 7.5: Inflorescence of a R.auriculatum plant composed of an open flower
and three buds measured from a vertical angle of 0 degrees. Colour scale is
in [dB].

scattering produced by the two frontal bud on the other side, most likely, due

to the their vertical orientation. The open flower is protruding maximally

from the inflorescence and hence is visible at a range of about 14 cm and,

as expected, its reflections are more directional than those associated with

the buds. This is interpreted as a cue to separate open flowers from closed

buds and give the bat information on the best approach direction. Figure

7.6 shows the image obtained when the bat-head was ensonifing the plant

from a vertical angle of -25 degrees, i.e. from below the target. From this

vertical perspective the scattering associated with the two buds that were

dominating the previous image is weaker than the scattering due to the bud

located next to the open flower. This is well visible over an angular window

that goes from +10 to +80 degrees with its highest value at about 40 degrees
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Figure 7.6: Inflorescence of a R. auriculatum plant composed of an open
flower and three buds measured from a vertical angle of -25 degrees. Colour
scale is in [dB].

and 16.3 cm. As in the previous case the open flower is visible around 14 cm

and over a smaller angular window that goes between -10 degrees and + 20

degrees. In this case reflections from the open flower are visible between -10

degrees to about 30 degrees and cover a range of 1 cm corresponding to the

typical length of an open individual. The interjection between two scatter-

ers belonging to the flower (probably two anther lines) at about 10 degrees

at 14 cm from the bat-head, also bring information on the center of flower

itself. This is the point from where the bat has to extract the nectar. This

significant increase in the amount of information on the flower is likely to be

related to the downward deflection of the flower, meaning that ensonifying

the flower from an optimal angle might results in an improvement in the

quality of information. The fact that the corolla was pointing downwards
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Figure 7.7: Inflorescence of a R. auriculatum plant composed of an open
flower and three buds measured on a vertical plane when the horizontal angle
was 0 degrees. Colour scale is in [dB].

means the bat-head looked more straightly into the opening of the corolla

which resulted in a longer and more structured echo. Unfortunately, at the

time of the experiment, it remained impossible to characterise in any quanti-

tative way such deflection. Because both the images of Figure 7.5 and Figure

7.6 were normalised to their mean power, calculated over all available angles,

the power associated to the open flower seems to be weaker than that asso-

ciated to the buds. Under the hypothesis that the reflected power represent

an important cue, what is really important to the bat though is the total

acoustic energy reflected by the open flower compared to that from a single

bud at the angles where the flower is actually visible. This will be exploited

better in the next experiment.

In order to investigate what information is available to the bat on the vertical
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plane HRRPs were collected rotating the vertical turntable from -25 degrees

(below the flower) to +25 degrees (above the flower) as well. In this case

the horizontal angle was kept at a constant angle of 0 degrees (i.e. frontal)

corresponding to one of the angles where the open flower was visible. Results

relative to this experiments are given in Figure 7.6 and show that scattering

from the buds and the dead branches with Calyx are visible from a distance

of 16 cm and are present over almost all perspectives. The open flower is

visible at a range of 14 cm and over a smaller angular window that goes

between -25 degrees and around -10 degrees. This further corroborates the

comparatively higher directionality of floral echoes also in the vertical plane

and shows and the bat is provided with critical information to decide the best

vertical approaching angle into the nectarium. Finally, Figure 7.6 confirms

that, as expected, the scattering from the open flower at the angles where

this is visible is stronger than that from the buds.

Results corroborate the hypothesis of high directionality of open flowers on

both the horizontal and the vertical plane with respect to closed buds and

Calyxes. There is no doubt that nectar-feeding bats must have a remarkable

ability to process the information gained by exploring a number of vertical

and horizontal perspectives, and then decide for the best approaching angle

into the corolla. Results confirm that, in this case, the open flower was pro-

truding maximally from the inflorescence and thus, as expected, was easily

separable, in the range domain, from buds, Calyxes, and even from the back-

ground clutter. Finally, results corroborate the hypothesis that scattering

from open flowers at the angle of interest is much higher than that origi-

nated by buds and Calyxes. Future work will have to exploit differences at
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the two ears of the bat as binaural disparities are likely to provide important

information for object localisation and recognition as well. This is a very in-

teresting and fundamental topic and will form the centre of future research.

From an engineering perspective, the results presented in this chapter show

that the information that is available to the bat during the pollination task

highly depends on the in-flight trajectory that the bat takes around the plant.

This suggests there is another close parallel between nature and the radar

and sonar case, where the target detection and classification performance sig-

nificantly depends on the location of the sensors as well. Results support the

commonly accepted idea that, as in nature, radar and sonar systems should

operate adaptively with the target in space and time.
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Chapter 8

Bio-Inspired Target

Classification

In this thesis introduction it has been argued that classification of bat-

pollinated flowers by bats might provide important clues to exploit the pro-

cess of recognition of targets in synthetic sensors such as radar and sonar.

The results presented in the previous chapters represent a contribution that

fuels the commonly shared thought that bats might adjust position and flight

speed, together with sensor signal parameters such as bandwidth and wave-

form design, in order to gain the best possible information on the target and

hence maximise recognition. Also, results have shown that although they

transmit a limited number of calls and exploit the targets over a limited an-

gular window, they still obtain high recognition performance. The analysis

of floral echoes and bat trajectories suggests that bats might change their

trajectories as a function of the position of the main features of a target.

An investigation that aims at relating trajectories to features is therefore
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necessary as this could lead to a different approach to the task of radar

and sonar target classification and enhance classification performance. This

could also yield advantages in terms of efficiency. A good strategy, in fact,

might allow high performance target classification by deploying only a small

number of appropriately designed calls together with a small number of care-

fully selected angular perspectives. This might be particularly important in

congested environments, i.e. when a number of sensors are present simulta-

neously (although bats do so even when they are left alone [77]).

Here, a bat inspired approach to radar and sonar target classification is dis-

cussed and then tested on real data. In particular there is an attempt to

take into account the fact that classification by bats presents a number of

challenging constraints that are likely to occur in the case of radar or sonar

systems as well. It is, in fact, common sense to accept the idea that radar

and sonar systems have not always the freedom to move around a target

over wide angles and to transmit as many pulses as desired. It is interesting

to exploit how classification performance varies as a function of the degree

of freedom of these two parameters and relate the results to the features of

targets.

8.1 Description of scenario and classification

approach

Let us suppose to be in the situation described in Figure 8.1 where a re-

mote sensor has to perform classification of a target and at the same time
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follow some operational requirements. In particular it is assumed that the

sensor is only allowed to transmit a limited number of calls Ncalls around a

main looking direction α0 and, at the same time is restricted to exploiting

the target over a limited window of angular perspectives α. Under these

circumstances, the step angle between two successive calls is assumed to be

uniformly distributed over look angle during the task, and is therefore given

by the expression α
Ncalls

. This assumption is in close agreement with the

functionality of the turntables that were used to collect experimental data,

which were capable to rotate with a constant step angle only. No restriction

is made on the look direction α0 of the sensor with respect to the target so

that the sensor system is able to choose to perform classification from any

desired angle. It seems evident that under these restrictions the direction α0

from which the sensor chooses to look at the target is a critical parameter

for the task of classification and can widely affect the success of the mission.

Here, classification performance is exploited as a function of the look direction

by testing the same dataset, discussed in Chapter 6, containing HRRPs of

C.scandens, and the results are related to the features of the flower that were

identified in the previous section. In particular classification performance is

measured when only two of the three classes, represented by the desiccated

flower and the modified one, are tested. The fact that the modified flower

was obtained by removing petals from the desiccated individual, guaranteed

that the only differences between the two classes were due to the removed

features. The aim here is not to develop a new classifier or a new mathemati-

cal algorithm to perform target classification, but it is to investigate whether

a more intelligent use of even simple and well known classifiers, such as the

165



Knn, can lead to higher performance. As described in the previous chapter,

each of the two images of Cobaea scandens was composed of 180 HRRPs

corresponding to the angular perspectives going from -90 degrees and +89

degrees and collected with an angular step of 1 degree. In both images, all

HRRPs were normalised to mean value equal to zero and mean power equal

to unity before classification. 6 HRRPs were extracted from each image to

train the classifier leading to a total Np = 12 HRRPs training profiles. These

corresponded to the 6 angular perspectives that starting with the one gath-

ered at -90 degrees were then separated of 30 degrees. Classification was

performed by means of a Knn classifier characterised by a parameter Kn

with n = 3. The test set was formed by selecting, in both the images, the

profile corresponding to the perspective at α0 degrees plus the (Ncalls− 1)/2

profiles collected soon before and soon after it, for a total of 2 ∗ Ncalls test

profiles. The separation angle between the test profiles determined the size

of the angular window α around the main looking direction α0. Each test

profile was compared with the training set by calculating the maximum value

of the magnitude of its cross-correlation function with each training profile

as

Cj(k) =
1

N

∑
i

xtest(i)x
j
train(k − i) i = 1, .., 2N − 1 j = 1, .., Np. (8.1)

In the equation, xtest is the range profile under test, carrying both the am-

plitude and the phase information (complex number), that is compared with

the jth training profile xjtrain. N is the length in number of samples of the

range profiles. For each test profile, between all the Np = 12 maximum values
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of all the cross-correlation functions, only the n = 3 highest values were used

to make the decision. Each test profile was assigned to the class that owned

the highest number of training profiles between those generating the selected

n values. The probability of correct classification was estimated, for each

looking angle α0, as the ratio between the number of correct decisions and

the total number of test profiles. This analysis was then repeated for each

looking angle α0. It is worthwhile to highlight that although the training set

remained the same for each α0 the test set did not, and for this reason this

approach is clearly different from the one used in Chapter 5.

8.2 Results

Figure 8.2 shows classification performance when Ncalls was limited to 11

and the angular step angle between two successive calls was set to 2 degrees,

leading to a maximum angular view of the target α of only 20 degrees. These

parameters are in very good agreement with the ones chosen by the bat in the

experiment described above and reported in Figure 6.15. Figure 8.2 shows

that classification performance presents its maximum values at around -25

degrees and +25 degrees. As α = 20, this corresponds to the case when

the target is observed over the angular windows that go between -35 degrees

and -15 degrees, and between +15 degrees and +35 degrees, respectively.

As expected, these are the two angular windows in which the features that

were removed from the desiccated individual of the C. scandens were very

clearly visible before removal (Figure 6.11 and Figure 6.12). These parts of

the flowers seem to be key determinants to establishing good classification
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performance. The drop in performance at 0 degrees might be due to the

scattering from petals that disappears at these angles. Scattering from the

pollen sacs, which were also removed from the desiccated flower, was not

strong enough to support high recognition between these two classes using

this classifier. Anthers scattering was very clearly visible at around 0 de-

grees and 18 cm range in Figure 6.11. Classification performance drops to

0.5 between -80 and -60 degrees and between 50 and 80 degrees i.e. in corre-

spondence of the parts of the flowers that were not modified. As expected,

0.5 is the probability of randomly choosing either classes assuming that they

are characterised by the same probability of occurring equal to 0.5. Results

reveal an oscillation around the mean line that is due to the fact that the

estimation of the probability of correct classification has been averaged over

a small number of calls. Figure 8.3 shows the behaviour in classification per-

formance when the number calls is Ncalls = 7 and the step angle is equal to

2 degrees, meaning that the target could be observed over a maximum an-

gular window α = 12 degrees. Even in this case classification performance is

maximised when the classifier has the information on the features that were

removed available. In order to investigate classification performance when

the angular window was enlarged the case with Ncalls = 21 and a step angle

equal to 2 degrees was performed on the two classes from the same dataset.

In this case the parameter led to an angular view range of 40 degrees on the

target. Results are reported in Figure 8.4. As expected classification per-

formance as a function of looking angle is much smoother and more or less

constant at a level equal to 0.8 over a wide range of looking angles between

-40 and 40 degrees. This is because when the angular window is large the
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Figure 8.1: Schematic drawing of a sensor that has to accomplish classifica-
tion of a target by sending a limited number of pulses Ncalls and is restricted
to move around the target over a limited angular window α.

information available at each step de-correlates more slowly. As the classifier

does not use any a priori information on the position of the features, classi-

fication with large windows is performed on profiles that either do or do not

carry feature information. This results in lowering the probability of correct

classification at each step.

8.3 Summary

In this chapter classification performance of a classifier that is allowed to

transmit only a limited number of pulses and exploit the target from a lim-

ited angular window have been reported. Results show that the classifier

performs better when it is exploiting those frontal angular windows that

contain the information on the main features of the target, i.e. in our case
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Figure 8.2: Classification performance as a function of look direction angle
of a Knn classifier (Ncalls = 11, α = 20 degrees).

Figure 8.3: Classification performance as a function of look direction angle
of a Knn classifier (Ncalls = 7, α = 12 degrees).
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Figure 8.4: Classification performance as a function of look direction angle
of a Knn classifier (Ncalls = 21, α = 40 degrees).

the petals of the flower, as might be expected.

Overall, these results suggest that target recognition could be widely im-

proved via a general knowledge of what the main features that distinguish

particular targets from one another are. Knowing under which angular win-

dows these features are available is of great importance in order to adjust the

look angle of the sensor with respect to the target under test. This might

require changing the position of the radar or sonar itself to collect data from

perspectives where these main features are available. Multi perspective data

would help to accomplish imaging of the target as well as to track the spatial

changes of these characteristic features. Tracks can be compared with prior

knowledge of the behaviour of the features of interest in order to make sure

that classification is based on the most relevant features. It seems that this
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approach is worth being exploited towards typical radar and sonar targets

as this could lead to high performance target classification as well as to a

reduction of the overall complexity of current target recognition algorithms.
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Chapter 9

Bio-inspired ultrasound

tomography

Results showing the performance of the acoustic radar, and those obtained

from the analysis of floral echoes and their relation to the bat behavior, gen-

erate a few further considerations. Firstly, the fact that the acoustic radar

can achieve very high range resolutions suggests that similar setups might

be potentially used to help detect and classify small objects in real scenarios

to allow detailed surveillance. Secondly, the way the bat moves around the

target collecting multi perspective information and, in particular, the fre-

quency (step) of the angular sampling (irregular of a few degrees) suggests

the bat might be trying to perform some sort of imaging on the target itself.

Although there is no real evidence of bats performing imaging of targets, a

further investigation on this topic at this range of ultrasound frequencies in

air would be of interest. In this chapter the ability of the acoustic radar to

achieve very high range resolution is reviewed against a dataset obtained by
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Figure 9.1: Picture of the 1:400 metallic scale model Boeing 737-500 used for
the experiment.

ensonifying real scaled targets. Bio-inspired ultrasound tomographies in air

are also exploited from the same dataset and related to the bat trajectory pre-

sented in Chapter 6. Results are given together with a discussion on how the

acoustic radar and airborne ultrasound tomographic imaging might be used

to exploit and enhance radar and sonar target classification performance.

9.1 HRRPs of a scale model Boeing 737

In this section the performance of the acoustic radar when a scaled radar

target is ensonified is exploited, with the goal to assess what level of detail

can be extracted from small objects in the acoustic regime using ultrasound

frequencies. In order to do this, data from a metallic scaled model Boeing

737-550 was collected using the acoustic radar in May 2009.

This data consists of high range resolution profiles (HRRP) of a 1:400 scaled

Boeing 737-500 (Figure 9.1) collected as described in Chapter 5. The techni-
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Figure 9.2: Sketch of the 1:400 scale model Boeing 737-500 used for the
experiment. During the experiment the scaled aircraft was impaled on a thin
pin at the same height as the microphone and the loudspeaker at a distance
of about 21 cm from the artificial bat head. The centre of rotation of the
target was between the two wings as indicated. The target was insonified
uniformly.

cal specifications of the aircraft are summarised in both Table 9.1 and Figure

9.2. The scaled aircraft was impaled on a thin pin (at the same height as the

microphone and the loudspeaker) that was placed at the centre of the hori-

zontal turntable set to rotate with an angular step of 1 degree, at a distance

of about 21 cm from the artificial bat head. A linear down chirp spanning the

frequencies between 50 kHz and 200 kHz was transmitted towards the object

with the custom-built loudspeaker and the echo was recorded with the ultra-

sound microphone (G.R.A.S. type 40 BF) and sampled at a rate of 500 kHz.

This was then matched filtered to the transmitted waveform using Matlab.

The loudspeaker and the two microphones were placed into the custom built

artificial bat-head providing binaural data for this entire dataset. The setup

allowed measurements with a range resolution of less than 2 mm. Data was
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Table 9.1: Specifications of the Boeing 737-500 and its 1:400 scaled version.
Information taken from www.geminijets.com.

Boeing 737-500 Boeing 737-500 (metric) Scaled Aircraft

Lenght 101ft. 9 in. 31.01 m 7.75 cm

Wingspan 94ft. 9 in. 28.87 m 7.25 cm

Height 36ft. 6 in. 11.13 m 2.78 cm

acquired for three different cases: (i) the original unmodified aircraft, (ii) the

aircraft with one engine only, (iii) engines and wings only. A measure of the

background was removed from the raw data. Figure 9.3 shows HRRPs of the

unmodified scaled aircraft taken over angles from -90 degrees to 90 degrees

(where the 0 degree line corresponds to the bat head facing the nose of tar-

get) with an angular step resolution of 1 degree. The front of the aircraft is

clearly visible for all perspectives and its signature follows a cosine-like fluc-

tuation that varies from 17 cm and 20 cm presenting its minimum value at

0 degrees. The tail is visible over the same angles between 21 cm and 24 cm

and its scattering follows the same behaviour, characterised by a phase shift

of the sinogram equal to 180 degrees with respect to the scattering associated

with the front of the aircraft. As expected, at 0 degrees, reflections from the

tails are much weaker than elsewhere both because of the attenuation due to

the propagation of acoustic waveforms in air and because this is the config-

uration where the sonar cross section of the tail assumes the lowest values.

Scattering due to the engines is visible between 20 cm and about 21 cm. It

is interesting to observe how the engines can generate strong returns. This is

likely to be due to their convex cowling that makes them perform like small
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Figure 9.3: HRRPs over 180 degrees of a scaled Boeing 737. Colour scale is
in [dB].

reflectors and enhance reflectivity. Their signature is clearly visible and their

corresponding sinograms cross at 0 degrees. Analysis of floral echoes and

the assessment of classification performance as a function of the look angle

carried out in Chapter 8 have shown that finding the right target features

is one of the keys to high level target classification and thus, here, the same

analysis that was performed on the flowers is repeated for the scale target.

This is done with the main aim to assess if the acoustic radar is capable to

characterise the contribution of features, needed for good classification, in

small targets, and to identify the main features of the target under test (the

scaled aircraft). If this is possible the acoustic radar can become an impor-

tant tool to support detection and classification of small object in a number

applications including surveillance.

Figure 9.4 shows HRRPs of the scaled aircraft when the left engine was
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manually removed from the wing. All scattering at about 20 cm covering the

angular window between -40 degrees and 0 degrees almost disappears except

for some reflections due the pin that allows connection between the engine

and the wings that could not be removed.

Such changes in a target might significantly affect classification performance

and thus lead to different results at the output of a typical classifier. A way

to quantify the impact of these changes in the target is to calculate the cross-

correlation function between corresponding HRRPs taken from the unmodi-

fied scaled aircraft and the modified one, and then investigate the properties

of the resulting cross-correlation matrix. For the case of the scaled aircraft,

this is displayed in Figure 9.5. In the image the y-axis corresponds to the

range shift between profiles in range, and the x-axis indicates the angular

perspective from which the two profiles to be cross-correlated were gathered.

In other words, each pixel Ci,j has been calculated as

Ci,j = |
2N−1∑
k=1

xk,jy
∗
i+k,j|, (9.1)

where xi,j and yi,j indicate the i, j pixel of Figure 9.3 and Figure 9.4 respec-

tively. Results show that the cross-correlation function drops off by at least 8

dB at the angles where the scattering from the removed engine is obvious in

Figure 9.3. As expected, elsewhere HRRPs are highly correlated. It is clear

that, if classification is performed by using the cross-correlation function as a

measure of distance between training profiles and test profiles, classification

should drop significantly when such changes in the target occur. This type

of information is significant as it allows us to better understand the impor-
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Figure 9.4: HRRPs over 180 degrees of a scaled Boeing 737 when one of the
two engines was manually removed from the fuselage. Colour scale is in [dB].

tance and the role of the engines as a feature for target recognition. Figure

9.6 shows the results when both the engines and the wings were detached

from the aircraft fuselage and separately ensonified. Because all the images

are normalised to their maximum values, that corresponded in most case to

the fuselage being orientated at -90 degrees and +90 degrees with respect to

arm containing the bat head, here scattering from the engines appears to be

stronger and then better visible. The inside of the engines is clearly visible

as in the previous images while part of the remaining scattering is due to the

two pins that connect the wings to the fuselage. The cross-correlation matrix

between the full scaled aircraft and the wings with engines only is given in

Figure 9.7. As expected, the angular window between -35 degrees and +35

degrees present most of the highest values of the cross-correlation function,

and this corresponds to the angular perspectives where the engines are visi-
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Figure 9.5: Cross-correlation function between the unmodified scaled aircraft
and its counter part without an engine. Profiles taken from the same angular
perspectives were cross-correlated. Colour scale in [dB].

ble in both the images. Results obtained from the stand alone fuselage are

given in Figure 9.8. The front of the fuselage is clearly visible starting from

21 cm at -90 degrees and then getting closer to the bat-head reaching the

closest point at 0 degrees. The tail is also visible between 22 cm and 15 cm

and its contribution does not differ to that of Figure 9.3. Scattering from

the front wheel that was left open is also visible in the frontal view between

- 40 degrees and +40 degrees. The line at an almost constant range must

be due to the pin and the scattering around it to the discontinuity caused

by the hole left from the point of attachment to the wings. The image of

the cross-correlation matrix, given in Figure 9.9, now presents its highest

values between -90 degrees and -60 degrees, and between 60 degrees and 90

degrees. As expected the window between -60 degrees and +60 degrees, do
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Figure 9.6: HRRPs over 180 degrees of the part containing the two engines
and the wings that was manually removed from the scaled Boeing 737. Colour
scale is in [dB].

Figure 9.7: Cross-correlation function between the unmodified scaled aircraft
and its counter part with engines only. Profiles taken from the same angular
perspectives were cross-correlated. Colour scale in [dB].
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Figure 9.8: HRRPs over 180 degrees of the fuselage that was manually re-
moved from the scaled Boeing 737. Colour scale is in [dB].

not present high values in the cross-correlation for the obvious effect of the

removal of the engines from the fuselage.

Overall, the results presented in this section show that a very high level of

details can be achieved by using sound waves at ultrasound frequencies and,

more importantly, show that it is possible to detect small changes in targets

that can be used to assess the robustness of classification performance of

specific targets.

As previously discussed, the way the bat moves around the target collect-

ing multi perspective information suggests it might try to perform some sort

of imaging on the target itself. As it is shown in Chapter 6 the bat tends

to move around the target to collect information from a number of angular

perspectives that are commonly separated by 3 or 4 degrees. This means

that even for small targets, such as flowers, migration of scatterers through
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Figure 9.9: Cross-correlation function between the unmodified scaled aircraft
and its counter with fuselage only. Profiles taken from the same angular
perspectives were cross-correlated. Colour scale in [dB].

range cells is likely to occur after a short number of calls, i.e. the range cell

containing the scatterer changes due the movement of the bat. Figure 9.10

displays a sketch describing range migration of a scatterer within a target.

In the figure, it is assumed that the source (transmitter and receiver) is sta-

tionary in a point (−L, 0) along the y axis, with L much greater than the

dimension of the target r. The target is rotated on a turntable centered in

(0, 0), corresponding to the origin of the xy plane. Under these assumptions,

the iso-range points from the source are circumferences characterised by a

radius that is much greater than the target, and therefore can be approxi-

mated with lines parallel to the x axis. The range shift of a scatterer due

to an angular rotation ∆ϑ can be approximated with the shift ∆y on the

y-axis only. Table 9.2 reports typical values of range shifts (∆y) for two
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Table 9.2: Analysis of range migration for a scaled target whose longer di-
mension is r (∆ϑ = 3 degrees).

r ϑ0 = 90o ϑ0 = 45o ϑ0 = 0o

4 cm 0.06 mm 1.4 mm 2.1 mm

5 cm 0.07 mm 1.8 mm 2.6 mm

targets whose longest dimensions are 2r = 8 cm and 2r = 10 cm assuming

an angular separation between perspectives of ∆ϑ = 3 degrees. The val-

ues of these parameters have been chosen to closely reproduce a real scenario

where bats operate. The range shifts were calculated following the expression

∆y = |rsin(ϑ0 + ∆ϑ)− rsin((ϑ0)|. Results show that the scatterers that are

located at ϑ0 = 0 degrees and those located at ϑ0 = 45 degrees present range

shifts that are comparable with the value of the range resolution Rr = 2

mm, meaning that their range migration occurs after the first call. These

results suggest that, under the hypothesis that bats use classic target imag-

ing, SAR, SAS or ISAR imaging would be too challenging to perform, as

this would require the bat to compensate for range migrations [78] [79]. The

frequency of the angular sampling, instead, is typical of tomographic imaging

techniques and suggests a further investigation of tomography at this range

of ultrasound frequencies in air would be of interest.

To exploit tomographic imaging at ultrasound frequencies in air the back-

projection algorithm was applied to the data to generate the tomographic

images of the scaled aircraft. In order to do so, the inverse Radon transform

was applied, for each target, to the matrix composed of all the measured

HRRPs arranged in order of collection one next to each other, with each col-
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Figure 9.10: Range migration for a scatterer within a scaled target. The
source (transmitter and receiver) is stationary in a point (−L, 0) along the y
axis, with L much greater than the dimension of the target r. The target is
rotating on a turntable centered in (0, 0), corresponding to the origin of the
xy plane. The range shift of a scatterer due to an angular rotation ∆ϑ can
be approximated with the shift ∆y on the y-axis only.
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umn of the matrix therefore corresponding to one angular perspective. Each

HRRP was obtained by matched filtering the analytic signal of the echo, for

each angular perspective, with the analytic signal of the transmitted signal.

The analytic signals were obtained through a Hilbert transform with Matlab.

The Matlab code used to generated the images can be found in Appendix

A. In the matrix formed by all the perspectives, the mean value of each row

was set to zero to get rid of the non variable unwanted clutter. The inverse

Radon transform was applied to the data with the iradon.m Matlab standard

toolbox function. Because, this Matlab function assumes that the centre of

rotation of the target (the centre of our horizontal turntable at about 20 cm)

is exactly at half the number of rows making the matrix, zero padding was

necessary at the bottom of the images to adjust the centre of rotation. A

wrong choice of the centre of rotation results in a badly focuses image. This

analysis was firstly performed on the data by using both the amplitude and

phase information of the HRRPs (coherent analysis), and was then repeated

by using the amplitude information only (non-coherent analysis).

Figure 9.11 shows the image that was obtained when the back-projection

algorithm was applied to the measured HRRPs of the unmodified scaled air-

craft. It was generated using a frontal view of the target made up of 180

profiles. This corresponds to the angular window that covered the angles be-

tween -90 degrees and +90 degrees, with the 0 degree profile corresponding

to the range profile acquired when the aircraft was facing the microphone

and the loudspeaker. The image shows a high level of detail. The front of

the fuselage is clearly visible and well focused, as well as the two engines that

are very well distinguishable. The dimensions of the image are close to those
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of the real scaled target. As expected, the scattering from the two wings is

very weak in comparison to that from the engines and the fuselage. This is

because during the measurements the object was placed on the same horizon-

tal plane with the microphone and the loudspeaker. This is the configuration

where the cross section of the two wings is expected to be small. As range

profiles over 180 degrees were used, the back of the target is not visible and

not focused. Results obtained from the non-coherent processing of the same

data are given in Figure 9.12. The shape of the nose of the aircraft plus the

two engines is still visible although there is an evident drop in the quality of

the image that qualitatively appears much more noisy. The two wings are

not visible in the image, probably due to the fact that their contribution falls

below the noise level.

Figure 9.13 shows the image of the scaled aircraft obtained when the left

engine was removed from the fuselage. As in the previous case the level of

detail remains high. The front of the fuselage is still visible and focused. The

shape of the unmodified engine remains the same and, as expected, the scat-

tering from the engine that was removed disappears from the image although

some residual reflections, due to the pin that allows the junction between the

wing and the engine, is still visible.

In order to exploit whether the level of detail that was achieved can allow a

further investigation of the feature of the targets, the engines and the wings

were taken off the fuselage and range profiles were acquired. For this case

HRRPs over 360 degrees were gathered. Figure 9.15 shows the tomographic

image that was obtained by processing the range profiles recorded from the

removed parts. The two engines are very well distinguishable and impres-
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Figure 9.11: Tomographic image of the scaled aircraft obtained by using a
frontal view of 180 profiles obtained from coherent data.

sively the two tiny pins that connect the fuselage to the wings plus engines

are very well visible and very well focused too. As in the previous cases the

wing are visible but very weak for the reasons already discussed. Figure 9.14,

Figure 9.16 and Figure 9.18 show the results obtained from the non-coherent

processing in the last three cases. Overall, the same considerations resulting

from the non-coherent analysis of the unmodified aircraft remain valid. Non-

coherent processing results, on the average, in a drop in the quality of the

image although the structure and shape of the objects remains visible in all

cases. Only the parts that present a weaker contribution in the coherent im-

ages, such as the wings or the small connecting pins, disappears after falling

under the noise level.

Although, as previously stressed, there is no real scientific proof that bats

perform any sort of target imaging, it remains interesting to assess what
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Figure 9.12: Tomographic image of the scaled aircraft obtained by using a
frontal view of 180 profiles obtained from non-coherent data.

Figure 9.13: Tomographic image of the scaled aircraft without an engine over
a frontal view of 180 profiles obtained from coherent data.
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Figure 9.14: Tomographic image of the scaled aircraft without an engine over
a frontal view of 180 profiles obtained from non-coherent data.

Figure 9.15: Tomographic image of the engines and wings of the scaled air-
craft obtained from coherent data over a complete view of 360 profiles.
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Figure 9.16: Tomographic image of the engines and wings of the scaled air-
craft obtained from non-coherent data over a complete view of 360 profiles..

Figure 9.17: Tomographic image of the fuselage of the scaled aircraft obtained
from coherent data over a complete view of 360 profiles.
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Figure 9.18: Tomographic image of the fuselage of the scaled aircraft obtained
from non-coherent data over a complete view of 360 profiles.

type of information would be available under the hypothesis that they do so.

The results presented earlier have been obtained by processing HRRPs of the

target gathered by collecting perspectives around the target with a constant

angular step over a wide angular window of at least 180 degrees. The bat

trajectory presented in Chapter 6 clearly shows that firstly bats do not send

pulses from angular perspectives which are separated by a constant angle and,

secondly that they only use a small number of angular perspectives before

approaching the target. This considerations suggest that to really exploit the

information that would be available to a bat, in the case it performed tomo-

graphic imaging, it is important to repeat the results of the above analysis

by processing only the echoes that were measured from the angular perspec-

tives that were really exploited by the bat in the available trajectory dataset.

Results from this analysis are given in Figure 9.19. As expected because only
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Figure 9.19: Tomographic image of the unmodified scaled aircraft obtained
by processing only the angular perspectives that were exploited by the bats
in the available trajectory data.

17 HRRPs were used to create the image the quality of the image degrades

significantly. These correspond to only 10% of the data that were used to

build the previous images. The image shows that although target outline

information may not be available to the bat, there remain information cor-

responding to the features that were visible at the angular perspectives that

were actually exploited. In this particular case information on the left engine

is available.

Results show that the acoustic radar is capable of capturing detailed infor-

mation of small static targets and in particular allow detection of differences

due to small changes in their shape. They also show that ultrasound to-

mographic imaging in air is possible and can lead to good imaging of small

static targets. Because the results presented in this chapter were obtained
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by processing data gathered in an ultrasound chamber further investigations

aiming at assessing the impact of multipath (if and when multipath overlaps

in time with the return from the target) and clutter on these results are an

imperative and will be at the centre of future research works. Finally, results

suggests that ultrasound systems, such as the acoustic radar, might poten-

tially be used in real scenarios to allow detection and classification of very

small objects. Because the speed of sound in air at this range of frequencies,

typically used by echolocating bats, is only about 343 m/sec the acoustic

radar allows a very high range resolution that cannot be easily achieved by

other sensors. This could be also used as support to other sensors, such as

typical radar systems, to enable a better and more efficient surveillance of

areas of interest, such as ports, airports or stations.

Another point to note is that the size of the target to range resolution ratio

in the ultrasound case is comparable to that of air surveillance radar systems

and air targets. This suggests that the acoustic radar could be deployed to

gather data of scaled targets in order to carry out a preliminary analysis of

classification performance and produce predictions for real radar scenarios.

These could be validated when data collected by actual radar systems be-

comes available.

It is evident that this required an analysis aiming at proving that ultrasound

data and real RF data are sufficiently similar, i.e. present the same charac-

teristics, with respect to the task of classification and a preliminary analysis

on this topic is going to be presented in the next chapter.
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Chapter 10

Radar Comparisons

The results presented in the previous chapter have shown that the acoustic

radar can sense fine object details and detect differences in the scattering

due to small target components. Understanding how target classification

performance varies as a function of these parts/features of real targets is of

great interest to the radar and sonar community. The work presented in this

thesis suggests that it is likely that this analysis can be carried out by test-

ing data gathered from scaled targets with the acoustic radar, so to obtain

a set of preliminary results that then can be validated with data collected

by an actual radar or sonar system. If it can be proved that ultrasound

data and real RF data are similar ’enough’, i.e. present the same charac-

teristics, with respect to the task of target classification, the acoustic radar

might become an important tool to ease data collection for the study and

the development of radar and sonar target classification. This has a number

of advantages. Firstly, the acoustic radar allows very high range resolution

at a much lower cost than a real radar or sonar system and secondly exper-
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iments in the ultrasound regime are generally much easier to perform with

respect to their counterpart in the RF regime. Ultrasound experiment can

be easily performed indoors and in better controlled environments, such as

ultrasound chambers, and do not require a lot of space. In addition to this,

data collection is much faster. Gathering the data required to produce the

results presented in this thesis took only a few hours and the duration of the

experiments depended on the angular resolution required. On the contrary,

experiments with real radar targets can be very expensive and time consum-

ing. Scaled targets can be easily made available and more importantly allow

manual removal of parts of the target so that classification performance can

be assessed as a function of target features (geometrical features).

For all this to be possible an investigation of possible similarities between

the electromagnetic regime and the acoustic regime is an imperative. It is, in

fact, obvious that the physics of the scattering mechanisms that take place in

the ultrasound regime is very different from that related to the RF regime for

radar systems. Also, in the ultrasound regime there is no the equivalent of

the polimetry (i.e. the use of different electro-magnetic polarisations) in the

RF regime, which represent a key degree of freedom for radar systems. This is

one of the fundamental differences that might have an impact in the informa-

tion contained in target echoes. Here, a dataset consisting HRRPs collected

by ensonifing a scaled version of a T-55 tank (Figure 10.1 and Figure 10.2)

with the acoustic radar are compared to another dataset containing HRRPs

of a T-55 Russian tank (Figure 10.3) collected by a real radar and results

are discussed. Figure 10.4 shows the image obtained when the unmodified

scaled tank was ensonified by the acoustic radar. These were obtained by
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Figure 10.1: Photo of the scaled tank in the ultrasound chamber during the
experiments.

Figure 10.2: Photo of the scaled tank.
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Figure 10.3: Photo of the Russian T-55 tank.

turning the horizontal turntable from -90 degrees to +90 degrees with a step

angle equal to 1 degree. In the image the zero degree line corresponds to

the frontal view of the target. The image was normalised to its maximum

value. Results show a complex echo structure in which the features of the

tank are not as clearly distinguishable as those of the aircraft presented in

the previous chapter. Scattering from the gun, looking forward towards the

artificial bat-head, is visible between -30 degrees and +30 degrees although

its scattering is much weaker than the scattering associated with the body of

the tank. The highest scattering occurs at both -90 degrees and +90 degrees,

i.e. when the longer side of the tank was facing the arm bringing the artificial

bat-head. Figure 10.5 shows the same results when the turret and the gun

were manually removed from the scaled tank. As expected, the scattering

associated with the gun disappears and the echo structure changes in the

area from 20 cm to 21.5 cm between -20 degrees and +20 degrees. No other
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differences are to be reported. The maximum values in the scattering occur

as in the previous case around 20 cm at -90 degrees and +90 degrees.

A cross-correlation analysis as that performed on the scaled aircraft in Chap-

ter 9 was repeated on the tank. HRRPs taken from the same angular per-

spective were extracted from the two images and cross-correlated. Results,

given in Figure 10.6, show that the profiles taken from -90 degrees to about

-30 degrees and those taken from +30 degrees to +90 degrees are highly cor-

related. This suggests that at these angles the characteristic features of the

profiles were not highly impacted by removing the turret. On the other hand,

between -30 degrees and +30 degrees the cross-correlation function drops.

Because the only difference between the two experiments is represented by

the missing turret this can only be the cause of the cross-correlation drop.

These results are consistent with the qualitative observation that resulted

from the comparison between the two images of Figure 10.4 and Figure 10.5.

To make a radar comparison the results obtained with the acoustic radar

were compared to those obtained with a step-frequency X-band radar, with

a central operating frequency equal to 9.25 GHz, characterised by a range

resolution of 30 cm. More information on the data collection can be found

in [80]. This represents a good example where the value of ratio between the

size of the target and the range resolution, i.e. the number of range cells

covering the targets, is comparable in the two cases. In particular, because

the size of the scaled tank on its longest dimension is L = 9 cm and the range

resolution of the acoustic radar is about Rr = 2 mm, the number of range

cells covering the target Nc that follows the expression Nc = L/Rr results

to be equal to 45. In the radar case where the range resolution is about 30
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Figure 10.4: HRRPs of the unmodified scaled tank over a angular window
between -90 degrees and +90 degrees. Colour scale is [dB].

Figure 10.5: HRRPs of the scaled tank without gun over a angular window
between -90 degrees and +90 degrees. Colour scale is [dB].
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Figure 10.6: Cross-correlation function between the unmodified and modified
scaled tanks. Profiles taken from the same angular perspectives were cross-
correlated. Colour scale in [dB].

cm and the size of the real tank on its longest dimension about 6.5 m the

number of cells that covers the target is about 22. This is comparable with

the scaled version of the experiment meaning that, in both case, the same

level of detail in the target is achievable. Another parameter that needs to

be considered is the number of wavelengths contained in the target, as this is

the parameter that defines that reflection properties in the two cases. In the

ultrasound regime, the number of wavelengths contained in the scaled target

varies between 13 (@50 kHz) and 52 (@200 kHz) while in the radar case the

number of wavelength contained in the tank equal to 216. Because of this

parameter differs by a factor 10 it is possible that because of the reflection

properties the comparison between radar and sonar data may become diffi-

cult to sustain. In particular there is the possibility that, in the ultrasound
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Figure 10.7: HRRPs of the real tank over an angular window between -90
degrees and +90 degrees. Colour scale is [dB].

case, scatterers presenting a dimension which is smaller or comparable to a

wavelength can generate interferences that may make the data different.

Results obtained by the radar are given in Figure 10.7. Qualitatively it seems

that the properties of the image obtained by the radar are close to those ob-

tained in the ultrasound case. Both cases show their maximum values at -90

degrees and + 90 degrees, and another maximum corresponding to 0 degrees.

The structure of the scattering is highly complex in both cases and this does

not allow an easy comparison even if the overall behaviour looks alike. To

make a quantitative comparison of the data a cross-correlation analysis of

each image was carried out. In particular each HRRPs of each image was

cross-correlated to any other HRRPs taken from its same image and, math-

ematically, each element of the cross-correlation matrix Cij was calculated
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as

Cij =< x̂i, x̂j > i = 1...N, j = 1...N, (10.1)

where x̂i is the ith high range resolution profile and < . > indicates a typ-

ical scalar product between vectors. Results obtained for the two dataset

representing the unmodified and the modified tank are reported in Figure

10.8 and Figure 10.9 respectively. Figure 10.10 shows the results of the same

analysis in the radar case. Results firstly show that differences between the

unmodified case and the unmodified case can be slightly seen between -20 de-

grees and + 30 degrees. In particular when the turret is not present HRRPs

de-correlates more slowly at the angle of interest. As expected maximum

values are all distributed on the diagonal of the matrix as in this point the

cross-correlation function corresponded to the autocorrelation of each single

profile. In the ultrasound case the two profiles taken at -90 degrees and +90

degrees, respectively, are highly correlated as well. Results show that in both

the ultrasound case and the radar case HRRPs de-correlates quickly with an-

gle. In particular both the result show that a movement of the sensor of a

couple of degrees only is enough to obtain a drop in the autocorrelation func-

tion. This leads to expect the necessity to increase the number of HRRPs

needed to train a classifier that operates with range profiles. It is self evident

that a target whose HRRPs decorrelates quickly with angle contains more

independent information than a target whose HRRPs decorrelates slowly,

and thus results more challenging to be recognised. Results contain another

important information on the level of symmetry of the target. Because only

one of the two diagonals of the cross-correlation matrix is visible means that
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Figure 10.8: Autocorrelation matrix obtained as in Eq. 10.1 for the un-
modified scaled tank. Each element i, j is the maximum value of the cross-
correlation function between the ith and the jth range profile. Colour scale
is in [dB].

specular perspectives are not highly correlated and lead to the conclusion that

symmetry of the target is not significant. Symmetric targets should present

cross-correlation matrix in which both the diagonals should be well visible.

This is obvious when observing Figure 10.11 showing the cross-correlation

matrix related to the unmodified scaled aircraft described in the previous

chapter. As expected, because the aircraft is fully symmetrical around the

profile collected at 0 degree both the diagonal of the cross-correlation matrix

are well visible. In addition to this results show that HRRPs decorrelates

more slowly with respect to those of the tank and highlights zones of the

targets at high level of correlation that might represents weaknesses in terms

of target stealth. In particular HRRPs taken at angles from -60 degrees to

+90 degrees result to be high correlated. Finally, results showing the cross-
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Figure 10.9: Autocorrelation matrix obtained as in Eq. 10.1 for the modified
scaled tank. Each element i, j is the maximum value of the cross-correlation
function between the ith and the jth range profile. Colour scale is in [dB].

Figure 10.10: Autocorrelation matrix obtained as in Eq. 10.1 for the real
tank. Data was collected with a real radar. Each element i, j is the maximum
value of the cross-correlation function between the ith and the jth range
profile. Colour scale is in [dB].
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correlation matrix of the same scaled aircraft when one of the two engines

was removed (Figure 10.12) highlight once again the importance of specific

features in targets. In particular, in this case, the secondary diagonal in the

image disappears as result of the removal of the engine on the symmetry

properties of the target. Unfortunately, because RF data of the Boeing 737

are not available it has not been possible to perform a direct comparison

between these results and their RF counterpart.

Results show that, for this experiment, ultrasound data and RF data present

similar characteristics when the range resolution to size of the target ratio

assumes similar values. In particular, the properties of the cross-correlation

function between HRRPs taken from different perspective in the RF regime

are similar to those of the ultrasound regime suggesting that performance

of a classifier is likely to be similar as well. It remains to address the im-

pact of different reflection properties, due to the possible different number

of wavelengths contained in the target, on the results. Some scatterers in

the ultrasound regime may, in fact, present dimension which are smaller or

comparable to the wavelength and can generate interferences that may make

the data different. This will have to be taken into account in future works.

It is self evident that a greater number of data must be processed before

drawing any final conclusions. Once this data becomes available it will be

possible to compare classification performance of classifiers testing RF data

to that of classifiers testing ultrasound data. Indeed, this is an interesting

topic that can have a huge impact on the study of radar and sonar target

classification and thus is worth being at the centre of future research works.
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Figure 10.11: Autocorrelation matrix obtained as in Eq. 10.1 for the scaled
Boeing 737 described in the previous chapter. Each element i, j is the maxi-
mum value of the cross-correlation function between the ith and the jth range
profile. Colour scale is in [dB].

Figure 10.12: Autocorrelation matrix obtained as in Eq. 10.1 for the modified
scaled Boeing 737 described in the previous chapter. Each element i, j is the
maximum value of the cross-correlation function between the ith and the jth

range profile. Colour scale is in [dB].
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10.1 Classification of man-made scaled tar-

gets

In order to investigate the performance of the bio-inspired classification ap-

proach presented in Chapter 8 on man made targets, the same classification

performance analysis carried out on the Cobaea Scandens flower data, was

carried out on the T-55 tank, a M4A3 Sherman scaled tank (Figure 10.13)

and a scaled Ford car (Figure 10.14). A photo of the three targets next to

each other is given in Figure 10.15, and their geometric dimensions are given

in Table 10.1.

HRRPs were collected by transmitting a linear down chirp spanning the

frequencies between 200 kHz and 50 kHz towards the targets, which were

impaled on a thin pin placed on the horizontal turntable, at a distance of

about 21 cm from the artificial bat-head containing the microphone and the

loudspeaker. The horizontal turntable was set to rotate with an angular res-

olution of 1 degrees. A background measurement was subtracted from the

echo, at each angular step, and the resulting signal was matched filtered with

Table 10.1: Specifications of the Boeing 737-500 and its 1:400 scaled version.
Information taken from www.geminijets.com.

Length of shortest side Length of longest side (incl. gun)

T55 4.5 cm 12.5 cm

M4A3 Sherman 3.7 8 cm

Ford Car 3.5 cm 9.9 cm
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Figure 10.13: Photo of the scaled M4A3 Sherman tank.

Figure 10.14: Photo of the scaled Ford car.
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Figure 10.15: Photo of the scaled M4A3 Sherman tank, the T55 tank and
the Ford car next to each other.

Matlab to the analytic signal of the transmitted signal. The analytic signals

were obtained from the raw data through a simple Hilbert transform with

Matlab. The achieved range resolution was about 2 mm.

Figure 10.16 shows the amplitude of the HRRPs of the T55 tank for the

angular perspectives between -90 degrees and +90 degrees. In the image

reflections from the gun are visible between -30 and about +20 degrees from

14 cm to 16 cm from the bat head. The strongest return is achieved at -90

degrees and +90 degrees, i.e. when the tank presented its longer sides to the

loudspeaker and the microphone. The scattering from the turret is present

over all angle between 19 cm and 23 cm. However, this is very complex and

the details of the turret, whose dimensions are smaller than the insonifying

wavelengths, are not resolved. One scatterer, on the turret can be tracked

in the sinogram between -70 and -30 degrees ranging from 23 cm to 19 cm.
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Figure 10.16: Amplitude of the HRRPs of the scaled T-55 tank over a angular
window between -90 degrees and +90 degrees. Colour scale is [dB].

This is likely to be generated by the point of junction between the gun and

the turret. Another strong contribution, probably due to a reflector located

at the base of turret, is visible between +10 and +80 degrees ranging from

about 20.5 cm to about 21.cm. Reflections from the back of the tank, that

carries two cylindrical tanks, are weak over all this frontal view.

Figure 10.17 plots the amplitude of the HRRPs of the M4A3 Sherman scaled

tank versus their corresponding angular perspectives. As for the T-55 tank,

the strongest return is achieved at -90 degrees and + 90 degrees. The turret,

contributes with a strong return over all angular perspective at a range be-

tween 20 cm and 21 cm. For the same reasons discussed above, small details

of the turret are not distinguishable. As expected, reflections from the short

gun are superimposed with those from the main bulk of the tank, and there-

fore the gun cannot be not distinguished. The secondary gun of the tank,
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Figure 10.17: Amplitude of the HRRPs of the scaled M4A3 Sherman tank
over a angular window between -90 degrees and +90 degrees. Colour scale is
[dB].

located on top of the turret, is visible between -10 degrees and +20 degrees at

about 23 cm. Reflections from the back are only weakly visible between +15

degrees and +40 degrees ranging from 26 cm to 24 cm. The amplitude of the

HRRPs of the scaled Ford car are given in Figure 10.18. The maximum of

the return is at -90 degrees and +90 degrees. The front of the car scatters the

maximum power between -10 degrees and +10 degrees at a range of about 17

cm from the artificial bat-head. The corner made by the front cowling and

the front window of the car is also clearly visible between -20 degrees and

+20 degrees at about 20 cm in range. Two additional scatters give a strong

contribution at the back of the car. The first one, visible from +5 degrees to

about +40 degrees from 23 cm to 22 cm must be the corner made by the end

of the roof and the back window. The other scatterer, visible at the same
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Figure 10.18: Amplitude of the HRRPs of the scaled car over a angular
window between -90 degrees and +90 degrees. Colour scale is [dB].

angles and between 24 cm to 22 cm, is likely to be the other corner made by

the back window and the back cowling.

Classification performance was assessed in pairs to highlight differences be-

tween the targets and to identify the main physical features of the targets

that could lead to high level classification performance. In each image, all

HRRPs were normalised to mean value equal to zero and mean power equal

to unity before classification. 6 HRRPs were extracted from each image

to train the classifier leading to a total Np = 12 HRRPs training profiles

(because two classes were tested at a time). These corresponded to the 6

angular perspectives that starting from the one gathered at -90 degrees were

then separated of 30 degrees. Classification was performed by means of a

Knn classifier characterised by a parameter Kn with n = 3. The test set was

formed by selecting, from each image under test, the profile corresponding
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to the perspective at α0 degrees plus the (Ncalls−1)/2 profiles collected soon

before and soon after it, for a total of 2 ∗Ncalls test profiles. The separation

angle between the test profiles was set to 1 degree and this determined the

size of the angular window α around the main looking direction α0. Each

test profile was compared with the training set by calculating the maximum

value of the magnitude of its cross-correlation function with each training

profile as described in Chapter 8 (Eq. 8.1). For each test profile, between

all the Np = 12 maximum values of all the cross-correlation functions, only

the n = 3 highest values were used to make the decision. Each test profile

was assigned to the class that owned the highest number of training profiles

between those generating the selected n values. The probability of correct

classification was estimated, for each looking angle α0, as the ratio between

the number of correct decisions and the total number of test profiles (Ncalls).

This analysis was then repeated for each looking angle α0.

Figure 10.19 plots the performance of the classifier when the scaled Ford

car was tested against the scaled T-55 tank. The first peak in classification

performance (95% correct classification) is achieved at about -50 degrees,

i.e. over the angular sector between -60 degrees and -40 degrees. This is

the sector where the T-55 tank presents the reflections from the point of

junction between the gun and the turret. The second peak in classification

performance, with about 80% correct classification, is for α0 = 0 degrees

corresponding to the angular window between -10 degrees and + 10 degrees.

Over this angular sector, the tank shows clear reflections from the gun and

the car shows reflections from the corner reflectors made by the front cowl-

ing and the front window. The highest probability of correct classification
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(over 95%) is achieved for α0 = +50 degrees, i.e. where the sinogram of the

tank presents a strong contribution from the reflector located at the base of

turret and the one related to the car contains part of the reflections from

the back corner reflectors made by the back cowling and the back window.

Classification is poor at -80 degrees and +80 degrees, i.e. when the two tar-

gets were facing the artificial bat-head and most of their physical features

were masked. Figure 10.20 shows the results of the same analysis when the

scaled Ford car was compared to the scaled M4A3 Sherman tank. In this

case classification performance are slightly higher on the average. The first

peak in performance, with over 95% correct classification, is for αo = 0 de-

grees (corresponding to the angular window between -10 degrees and +10

degrees). Over this sector, the car shows strong reflections from the corners

located at the front cowling and at the front window. The second peak in

classification performance, is achieved for α0 varying between +40 degrees

and +50 degrees and corresponds to those angular windows where the scat-

tering from the corner reflectors at the back of the car are dominant. As in

the previous case classification performance drops to 50% at -80 degrees and

+80 degrees most likely due a masking effect on the features. To conclude

this analysis, the same results are given for the case in which the T-55 tank

and the M4A3 Sherman tank were compared against each other. On the

average classification performance is lower due to close similarities between

the two targets. As expected, one of the peak in classification performance

is for α0=0, where the sinogram of the T-55 tank clearly presents the gun

and that of the M4A3 Sherman tank present a strong scattering from the

secondary gun. The other peak in performance (about %80 correct classifi-

215



cation) is achieved at α0 = +50 degrees. Here, the T-55 tank shows the re-

flections from the scatterer located at the base of the turret. Finally, another

area characterised by high level performance is that between -80 degrees and

about -50 degrees. The sector between -50 degrees to -70 degrees contains

the scattering from the point of junction between the gun and the turret. At

-80 degrees, instead, the two targets face the bat-head and therefore most of

their physical features are likely not to be resolved in range. Because, the

targets under test are different, and not simply obtained by removing phys-

ical parts from an original sample as in the case of the flowers, it remains

impossible to conclude that the classifier was always making decision based

solely on the physical features of the targets. For example, it is possible that

at -80 degrees the classifier was using additional information, such as the

total scattered mean power, to decide on the targets.

Results show that, as in the flower case, also for man made targets classi-

fication performance can be improved by exploiting those angular windows

that contain the information on the main features of the targets. Also, the

analysis of classification performance as a function of the looking direction

α0 can allow the identification of these main features. This confirms that,

given the knowledge on the targets to be classified, a good strategy aiming

at choosing the right trajectories to explore key features is an imperative for

high level target classification. How to choose and adapt the trajectory to

improve classification performance remains a challenge that will have to be

addressed in future works.
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Figure 10.19: Classification performance as a function of look direction angle
of a Knn classifier testing the scaled T-55 tank and the scaled Ford car
(Ncalls = 21, α = 20 degrees).

Figure 10.20: Classification performance as a function of look direction angle
of a Knn classifier testing the scaled M4A3 Sherman tank and the scaled Ford
car (Ncalls = 21, α = 20 degrees).
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Figure 10.21: Classification performance as a function of look direction angle
of a Knn classifier testing the scaled T-55 scaled tank and the scaled M4A3
Sherman tank (Ncalls = 21, α = 20 degrees).
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Chapter 11

Conclusions and suggestions for

future work

In this work the methodologies used by nectar-feeding bats to perform the

task of classification of bat-pollinated flowers have been investigated. Results

have been discussed and related to the task of target classification in radar

and sonar systems. In Chapter 4 an example of a series of echolocation calls

emitted by a foraging bat has been given with a discussion on similarities and

differences with typical radar and sonar waveforms. Results clearly show the

ability of bats to intelligently diversify the waveforms they emit for the suc-

cess of the mission and highlight the presence of harmonics in echolocation

calls. The purpose of harmonics is yet unclear and is a fascinating topic that

is worth being considered for future research. Here, the effect that multi-

components could have on radar and sonar waveforms has been exploited.

Results have shown that an intelligent use of multi-component signals can

result in advantages on the range cut of the ambiguity function, such as a
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drop of the sidelobes.

An acoustic radar fully synchronised with a setup that allows collection of

high range resolution profiles of small targets was improved to gather data

from two different species of flowers: Rhytidophyllum auriculatum and Cobaea

scandens. A number of experiments aiming at investigating what is the strat-

egy that underpins the process of classification of bat-pollinated flowers by

bats have been described together with a discussion of the results. In particu-

lar these experiments aimed at exploring the information that bat-pollinated

plants display to bats through their flowers and how this information changes

depending on their age and maturity stage. Also, the parts of the flowers that

plays a leading role in this task were identified and the differences in infor-

mation as a function of these parts was investigated as well. Results suggest

that flower petals can be a very important feature for bat pollinated plants

to display information to bats in order to support high recognition/selection

performance. The scattering from the petals and the way this changes as a

function of the state of the flower could be a way of letting bats know which

flower is most suitable for pollination, i.e. holds a nectar reward, and hence

play an important role for recognition and selection of the flowers. These

results were related to a typical trajectory of a nectar feeding bat in order

to understand and make an hypothesis of how bat sample this information

in the 3D space. This preliminary analysis showed that the angular per-

spectives that are exploited are in agreement with the angular window in

which features, such as petals, are present in real flowers’echoes. Analysis of

an inflorescence of Rhytidophyllum auriculatum composed of closed buds an

open flowers and Calixes confirmed the hypothesis of the importance of the
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trajectory to identify open flowers between clutter and closed buds. Results

show that open flowers are much more directional than buds and Calyxes,

i.e. visible from a limited number of angular perspectives only. This allow

the bat understand the visiting direction into the flower. These results show

how nature operates under a high level of space time adaptivity and indeed

this is between the current challenges in radar and sonar systems.

Results relating the available information to the the way bats sample this

information contain a fundamental limitation that must be addressed in fu-

ture works. This is represented by the fact that the information available

to the bat and the behaviour of the bats in terms of echolocating calls and

trajectory separately was gathered in different experiments. It would be of

great interest to carry out an experiment where the bat, in the same room

with the flower or an object, has the task to detect recognise and approach

the target to get the nectar reward. This experiment has to be carried out

in a fully controlled environment allowing recording of video and ultrasound

information. Doing so, full knowledge of each call emitted by the bat during

the mission would be available together with the information on the position

where each call was emitted with respect to the position of the targets and,

more importantly, to the features of the target. Indeed such experiment is

an imperative to corroborate the arguments of this thesis.

This analysis showed that bats gather the information displayed by flow-

ers over a limited angular window. It is likely that they intelligently base

their decision by testing the angular perspectives where critical information

on the main features of the flowers is available to obtain high level target

classification performance. This suggests that a similar approach could be
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tested for radar and sonar systems as well. In Chapter 8 a bat inspired

approach to radar and sonar target classification is discussed and tested on

real data. In particular classification performance of a Knn classifier testing

HRRPs measured by a sensor limited to exploit a limited number of angular

perspective and emit a small number of pulses only was assessed. Results

show that indeed exploiting the angular windows that contain critical fea-

tures can enhance performance significantly and at the same time show that

operating without a specific and intelligent strategy may result in a drop in

performance. Indeed these results make worth investigating these concepts

further against typical radar and sonar targets. In addition to this, there

are still a number of uncertainties that must be addressed in future work. It

is self evident that in order to operate this strategy in real radar and sonar

scenarios the development of a reliable and automatic algorithms capable

of identifying and selecting the angular perspectives that contain the main

target features is necessary. These concept require further investigations and

results must be corroborated with a greater number of data, and a number

of dataset gathered under several conditions. This study suggests that these

are fundamental topics that should be targeted by further research on radar

and sonar target classification .

The way the bat moves around the target collecting multi perspective infor-

mation suggests it might even be trying to perform some sort of imaging on

the target itself. The frequency of the angular sampling in particular is typi-

cal of tomographic imaging techniques and inspired us to an investigation of

tomography at this range of ultrasound frequencies in air. This investigation

has been carried out on a real scaled radar target in Chapter 9 where multi
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perspectives profiles of a scaled Boeing 737 were collected with the acoustic

radar. Results confirm the ability of the acoustic radar to capture detailed

information of small static targets and in particular allow detection of differ-

ences due to small changes in their shape. They also show that ultrasound

tomography in air are possible and can lead to good imaging of small static

targets. This suggests that ultrasound systems, such as the acoustic radar,

might potentially be used in real scenarios to allow detection and classifica-

tion of very small objects. Because the speed of sound in air at this range

of frequencies (typically used by echolocating bats) is only about 343 m/sec

the acoustic radar allows a very high range resolution that cannot be eas-

ily achieved by other sensors. This could be also used as support to other

sensors, such as typical radar systems, to enable a better and more efficient

surveillance of high risk areas. Because the results presented in this thesis

were obtained by processing data gathered in an ultrasound chamber further

investigation aiming at assessing the impact of multipath and clutter on these

results are an imperative and represent another potential area of interest of

future research. Finally in Chapter 10 it has been investigated whether ul-

trasound systems, such as the acoustic radar, can be used to gather data of

scaled targets in order to carry out a preliminary analysis of classification

performance and produce predictions for real radar scenarios that can be

validated when data collected by actual radar systems becomes available. A

datasets containing HRRPs of a Russian scaled tank is compared to another

dataset consisting of HRRPs of Russian T-55 tank gathered by using a real

radar systems. Results in the two cases are compared and results show that

there are close similarities between the ultrasound case and the radar case.
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A discussion on the advantages resulting by using the acoustic radar for this

purposes is given as well. Obviously the comparison between the radar case

and the ultrasound has been carried out on a limited number of data and a

further investigation corroborating the results of this thesis is necessary.

Investigation of binaural differences is a key point that has been receiving

a growing interest in the last few years. The acoustic radar was developed

to allow collection of binaural information and at this stage of our research

binaural data is available for most of the experiment presented in this re-

search work. This data has not been fully analysed yet but it remains clear

that understanding the role that differences at the two ears play in the task

of detection and recognition of targets is an important point that cannot be

neglected. For these reasons this will be at the centre of our future research

work.
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Appendix A

Matlab Code

This appendix contains the Matlab code that has been used to produce the

tomographic images presented in this thesis. Following, for completeness,

two examples of tomographic images obtained on one the flowers (the fresh

unmodifiedCobaea scandens) and on the scaled T-55 tank are shown.

clear all

clc

close all

load(’ScaledAircraft.mat’); %File .mat that contains all the HRRPs of the

scaled aircraft

Madd1=zeros(300,180);

Madd2=zeros(300,360);

step=1;

M=[M1;Madd1];

%M=M(:,45:1:135);

S=mean(M’)’;
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MEA=S*ones(1,size(M,2));

M=M-MEA;

beg=1;

en=300;

i=1;

for i=10:1:30

T=abs(M(beg:en+2*i,:)); % For non-coherent analysis

%T=M(beg:en+2*i,:); % For coherent analysis

R=iradon(T,[-90:89]);

Res=abs(R);

Res=Res/max(max(Res));

figure

imagesc([1:size(R,1)]*343/500e3/2,[1:size(R,2)]*343/500e3/2,20*log10(Res),[-

40 0]);

axis xy

xlabel(’Range [m]’)

ylabel(’Cross-Range [m]’)

colorbar

end

226



Figure A.1: Tomographic image of the scaled T-55 tank developed by using
a complete view of 360 profiles obtained from coherent data. This image was
developed by processing the HRRPs of the tank as described in Chapter 9.

Figure A.2: Tomographic image of the Cobaea scandens flower developed
by using a frontal view of 180 profiles obtained from coherent data. This
image was developed by processing the HRRPs of the flower as described in
Chapter 9.
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