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Abstract

The research presented in this Thesis deals with signal processing algorithms
for the classification of sensitive targets for defence applications and with novel
solutions for the detection of space objects. These novel tools include classification
algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High
Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic
Radar (PBR) designed for exploiting the advantages guaranteed by the Forward
Scattering (FS) configuration for the detection and identification of targets orbiting
around the Earth.
Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a
cloud of decoys and debris is essential in order to optimize the use of ammunition
resources. In this Thesis, two different and efficient robust frameworks are
presented. Both the frameworks exploit in different fashions the effect in the radar
return of micro-motions exhibited by the target during its flight.
The first algorithm analyses the radar echo from the target in the time-frequency
domain, with the aim to extract the mD information. Specifically, the Cadence
Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the
target, where the mD components composing the radar echo and their repetition
rates are shown. Different feature extraction approaches are proposed based on
the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD
(ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image
moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD
as 2D image. The reliability of the proposed feature extraction approaches is tested
on both simulated and real data, demonstrating the adaptivity of the framework
to different radar scenarios and to different amount of available resources. The real
data are realized in laboratory, conducting an experiment for simulating the mD
signature of a BT by using scaled replicas of the targets, a robotic manipulator
for the micro-motions simulation and a Continuous Waveform (CW) radar for the
radar measurements.
The second algorithm is based on the computation of the Inverse Radon Transform
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(IRT) of the target signature, represented by a HRRP frame acquired within an
entire period of the main rotating motion of the target, which are precession
for warheads and tumbling for decoys. Following, pZ moments of the resulting
transformation are evaluated as final feature vector for the classifier. The features
guarantee robustness against the target dimensions and the initial phase and the
angular velocity of its motion. The classification results on simulated data are
shown for different polarization of the ElectroMagnetic (EM) radar waveform and
for various operational conditions, confirming the the validity of the algorithm.
The knowledge of space debris population is of fundamental importance for the
safety of both the existing and new space missions. In this Thesis, a low budget
solution to detect and possibly track space debris and satellites in Low Earth
Orbit (LEO) is proposed. The concept consists in a space-borne PBR installed on
a CubeSaT flying at low altitude and detecting the occultations of radio signals
coming from existing satellites flying at higher altitudes. The feasibility of such a
PBR system is conducted, with key performance such as metrics the minimum
size of detectable objects, taking into account visibility and frequency constraints
on existing radio sources, the receiver size and the compatibility with current
CubeSaT’s technology. Different illuminator types and receiver altitudes are
considered under the assumption that all illuminators and receivers are on circular
orbits. Finally, the designed system can represent a possible solution to the the
demand for Ballistic Missile Defence (BMD) systems able to provide early warning
and classification and its potential has been assessed also for this purpose.
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Chapter 1

Introduction

1.1 Preface

After World War II, the progress in Ballistic Missile (BM) technology has led to
the development of efficient Weapons of Mass Destruction (WMD) and of space
technologies, with a relevant number of space mission held in the last decades.
Therefore, a particular class of radar systems has been designed in order to perform
satisfactorily the main functions of detection, tracking and recognition for Ballistic
Missile Defence (BMD), ballistic Missile Warning (MW), and Space Situational
Awareness (SSA). Both BMD and MW require the detection of incoming BM
near the radar maximum range, the target characterization into major associated
components e.g. boosters and Re-entry Vehicle (RV), in order to support target
identification, and individual targets tracking with sufficient accuracy to predict
their trajectories. The main aim of SSA is the monitoring of the space object
population, in order to provide warning of potential collisions and to identify
between operating objects and potential threats (Melvin and Scheer, 2014).

Ballistic Missile Classification Challenge

Since the early stages of the development of InterContinental-range Ballistic
Missiles (ICBMs) and Submarine-Launched Ballistic Missiles (SLBMs), many
countries invest annually a significant budget into research and production of
countermeasures in order to minimize the effectiveness of BMD systems (Sessler
et al., 2000). One of the most common practices is the use of a large number of
decoys, or false targets, with the aim to confuse the defence systems. Nowadays
different decoy strategies are available e.g. replica decoys, decoys using signature
diversity and decoys using anti-simulation (Weiner and Rocklin, 1994). The
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lightweight decoys are a very attractive strategy against exo-atmospheric defences.
Long-range Ballistic Missiles (BM) move on sub-orbital trajectories and their
ranges typically depend on the altitude achieved by using one ore more boosters.
On the other hand, the missile warhead sizes and range depends on the weight
of carried payload. Hence, missiles can be equipped with a large number of
lightweight decoys without affecting the maximum warhead range (Sessler et al.,
2000). The longer part of a BM flight takes place in the exo-atmosphere and it is
commonly known as the mid-course phase. The lightweight decoys are released
during the mid-course phase, so both the decoys and the much heavier warhead
travel on similar trajectories due to the absence of atmospheric drag in the vacuum
of space (Bankman et al., 2001). In addition to intentional decoys, missiles release
also incidental debris and deployment hardware e.g. boosters for missile launch,
which can pose an additional source of interference on radar returns. In absence of
reliable target identification, the defence system has to intercept all the detected
targets, including decoys, in order to prevent the warhead from reaching its aim.
Therefore, the challenge of Ballistic Targets (BTs) classification, identifying the
warhead into a cloud of decoys and debris is of fundamental importance to increase
the safety level. Defence system efficiency can be critically affected by decoys in
two related ways. In fact in the case in which a decoy is classified as a warhead
(false alarm), the defence may run out its limited ammunition of interceptors
prematurely. In contrast, the misclassification of a warhead (leakage) may lead to
catastrophic consequences (Weiner and Rocklin, 1994).
The BM flight is generally divided into three phases, as shown in Figure 1.1:
boost phase, which comprises the powered flight portion; mid-course phase, above
mentioned, during which the warhead separates from the rest of missile; and
the re-entry phase wherein the warhead re-enters the Earth’s atmosphere to
approach the target. The missile interception in the boost phase would be free
from the issue represented by decoys. However, the boost phase does not offer
much opportunity to track accurately for intercepting a BM since the launch point
will normally be a significant distance from the defence radar system. Moreover,
during this phase the missile separates from several boosters, which would result
in significant interference. For these reason, BMD infra-red seekers are largely
confined to exo-atmospheric operation due to sensitivity needs and atmospheric
friction effects (Melvin and Scheer, 2014). A chance to discriminate between
warheads and lightweight decoys occurs during the re-entry phase, since decoys
would slow down more rapidly due to the atmospheric drag than the warhead.
Nevertheless, the warhead interception in this phase may be not useful due its
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Fig. 1.1 Ballistic Missile flight phases.

short duration (few seconds), and because the warhead could have already passed
the minimum intercept altitude for an above-the-atmosphere interceptor (Weiner
and Rocklin, 1994). Additionally, the RVs could be armed with a nuclear or
chemical bomb such that the warhead has to be intercepted at a safety altitude to
avoid that a nuclear detonation has effects on the Earth’s surface, or chemical and
biological payloads disperse through the troposphere (Melvin and Scheer, 2014).
Hence, the mid-course phase usually represents the most useful flight part for
intercepting missiles, due to its relatively long duration and for the absence of
tactical manoeuvring of targets since they are in free-flight motion.
The development of classification algorithms with high level of efficiency, low
computational cost and short time decision is very attractive for both the ground-
based defence station and the interceptor On-Board Computer. The main reason
is that the defence may need to launch its interceptors before the lightweight
decoys could be discriminated in order to intercept threats very far from the
interceptor deployment site (Sessler et al., 2000). Moreover, once the warhead has
been identified, it is essential for the seeker on the interceptor to determine the
aim point on the RV for terminal guidance and effective impact during engagement
(Bankman et al., 2001).
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Space Debris Monitoring

In the past 60 years, since the launch of Sputnik 1, the number of objects in orbit
around the Earth has increased considerably. A good part of these objects are
classified as space debris and represent a significant hazard for all current and
future missions. The growing traffic is increasing the probability of collisions also
among functioning satellites as the Iridium-Cosmos collision in 2009 demonstrated
(Pelton, 2013). Even collisions with very small objects (few cm in size) at orbital
speed can cause catastrophic consequences. Each explosion or collision with space
junk produces additional debris, which can lead to a cascade of more collisions.
This chain reaction is known as Kessler syndrome, and some argue it has already
started. Very large objects, such as defunct satellites, rocket bodies and large
fragments, can represent a threat even for people on the ground since they may
hit the ground at unpredictable locations after re-entry. In addition to trackable
space debris, millions of non trackable small fragments, with the size of a grain
of salt, exist that can penetrate the spacesuit of an astronauts or a window on a
space vehicle with tragic consequences.
Fig. 1.2 from (Deb, 2017) shows the timeline of the growth in the number of
tracked space objects in orbit around the Earth. However, the actual numbers
is estimated being 2 to 3 times larger, since the available systems cannot track
objects in orbit smaller than 10 cm (Deb, 2017). Information about space debris
comes from a combination of ground-based and space-based measurements. One of
the entities that identifies, tracks and categorizes space objects is the United States
Space Command (Smirnov and Institute, 2002), which consists of a Space Based
Space Surveillance (SBSS) satellite and a network of radars and optical telescopes
(Ender et al., 2011). Optical sensors guarantee greater ranges with respect the
radars. However, since its operating principle requires solar illumination conditions,
their capability are limited against the low-altitude regime where space objects
are often in Earth’s shadow. On the other hand, ground-based radars generally
control the space population in the Low Earth Orbit (LEO) regime (Melvin and
Scheer, 2014).
In 2009 the European Space Agency (ESA) started a program for a European
Space Situational Awareness System (ESSAS) which required the design of a
radar system able to detect small targets with a size in the order of one decimetre
in LEO (Ender et al., 2011). Moreover, in Europe, a number of radar systems
are used to monitor space debris. An example is the BR system Grand Rséau
Adapté la Veille Spatiale (GRAVES) that has been operating in France since
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Fig. 1.2 Timeline of the growth in the number of tracked space objects in orbit
around the Earth from (Deb, 2017).

2005. In Russia 20 radars and telescopes are positioned in eight different sites. In
Germany the Tracking and Imaging Radar (TIRA) system of Fraunhofer FHR
allows for the estimation of target’s characteristics as orbital elements, intrinsic
motion parameters, target shape and size and ballistic coefficient thanks to new
signal processing techniques based on radar observations (Ender et al., 2011).
Among all sensors deployed to detect and track space debris, radar systems
represent an important contribution for their ability to provide high detection
probabilities at very large ranges in addition to capabilities of estimation of
target’s characteristics. The feasibility study of tracking space debris by using
a PBR was investigated in (Benson, 2014). Specifically, the author in (Benson,
2014) proposes a system which comprises a ground-based receiver for space object
tracking with low-power scattering observations of any objects above the horizon.
The underlying principle is to employ the occlusion phenomenons which occur in
receiving the illuminator signal when an object passes through the Line Of Sight
(LOS) between transmitter and receiver. The paper proposes several solutions
to achieve a suitable SNR at the receiver, such as the use of multiple receiving
elements and the integration of the received signal over time. The authors in
(Jayasimha and Jyothendar, 2013) show the capability to detect small space debris
by using a large-antenna earth-station communicating with geo-stationary satellite,
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exploiting self-interference cancellation. Specifically, when a space debris is at
near-LOS, the output of self-interference cancellation may contain the return from
one or two debris, which can be used for detection. However, the presented method
is dependent on whether conditions, since the debris signature can be affected by
inadequate cancellation of direct-path caused by the clutter from weather.

1.2 Motivation

Nowadays, the classification of BM and the space surveillance represent important
open challenges, with a significant impact on the military and civilian safety
of a Country, for the first, and on the safety of space missions, for the second.
Specifically, the identification of a BM warhead within a cloud of interference
factors is of fundamental importance for increasing the efficiency of BMD systems,
optimizing the use of allocated resources in terms of interceptors. The information
about target micro-motions represents a strong feature for target identification,
especially when other characteristics such as target shape, dimensions or reflectivity
are hardly estimable or they are not discriminant features between different targets.
Moreover, despite the use of many different sensors deployed to detect and track
space debris, from optic to radar systems, the minimum dimensions of detectable
targets is limited due to several factors, such as the target velocities, the significant
distance between targets and sensors, and the relative short observation times.
Based on the recent developments in the signal processing for the extraction of
micro-Doppler (mD) information and for the extraction of the High Resolution
Range Profile (HRRP) of a target, the scope of the Thesis is to propose novel
advanced radar systems and signal processing tools for the sensitive challenge of
missile warheads identification by employing the information on target motion
observed in both time-frequency and range-time analysis, guaranteeing satisfactory
performance in different radar scenarios, and for monitoring the population of
space debris in LEO, improving the capability to detect very small target.

1.3 Original Contributions

The original contributions contained in this Thesis are in the fields of radar classi-
fication of BTs and space debris population monitoring. The novel contributions
are as follows:



1.3 Original Contributions 7

• Design of a mathematical model for simulating mD components within
the radar return from BTs, considering the specific cases of precession and
nutation for warheads, and tumbling for decoys. Two shapes for warheads
are taken into account, namely cone and cone with fins, and three for decoys,
which are cone, cylinder and sphere.

• Experimental validation of mathematical model of the radar return from
BTs with micro-motions, by using scaled replica of targets of interest, a
robotic manipulator for motions simulation and a Continuous Waveform
(CW) radar.

• Design and testing different feature extraction approaches for discriminating
between missile warheads, decoys and missile debris. Four approaches
presented in (Persico et al., 2015, 2016a) are implemented into a classification
framework based on the computation of the Cadence Velocity Diagram
(CVD) from the acquired signals. The proposed approaches require different
computational complexity and allow to discriminate efficiently between
different BT motions and shapes, even in presence of high level of noise in
radar measurements. The classification performance is assessed on both
simulated data and in-home laboratory real data.

• Development of a novel framework designed for radar classification of BTs
from a sequence of HRRPs within a single period of the main target rotational
movement presented in (Persico et al., 2017b). The framework is based
on the evaluation in sequence of the Inverse Radon Transform (IRT) and
pseudo-Zernike (pZ) image moments, starting from the acquired HRRP
frame. The extracted features provide efficient classification performance
in different scenarios, being robust against radar measurement noise level,
target motion initial phases and velocities. The classification performance
is assessed on simulated data for wideband radar, considering a Stepped
Frequency Waveform (SFW) radar, and a signal model for the radar return
which takes into account two polarization, namely the vertical and the
horizontal polarization.

• The precursory study of a novel space-borne PBR system orbiting in LEO
for space debris population monitoring and early missile detection presented
in (Kirkland et al., 2016; Persico et al., 2016b). The system configuration
guarantees all the advantages provided by PBR, and allows to employ the
enhancement for target detection given by Forward Scattering (FS). The
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performance of the proposed system is examined based on Radar Range
Equation (RRE), considering the possible observation time of the target,
according to transmitter, receiver and space object orbits.

1.4 Publications

Journal Papers

• Persico, A. R., Clemente, C., Gaglione, D., Ilioudis, C. V., Cao, J., Pallotta,
L., Maio, A. D., Proudler, I., and Soraghan, J. J. (2017a). On Model,
Algorithms, and Experiment for Micro-Doppler-Based Recognition of Bal-
listic Targets. IEEE Transactions on Aerospace and Electronic Systems,
53(3):1088–1108

Submitted Journal Papers

• Persico, A. R., Kirkland, P., Clemente, C., Vasile, M., and Soraghan, J. J.
(2018b). Cubesat-based Passive Bistatic Radar for Space Situational Aware-
ness: a Feasibility Study. IEEE Transactions on Aerospace and Electronic
Systems. (accepted for being published)

• Persico, A. R., Ilioudis, C. V., Clemente, C., and Soraghan, J. J. (2018a).
Novel Classification Algorithm for Ballistic Targets based on High Resolution
Range Profile frame. IEEE Transactions on Aerospace and Electronic
Systems. (under review)

• Gaglione, D., Clemente, C., Ilioudis, C. V., Persico, A. R., Proudler, I.,
Soraghan, J. J., and Farina, A. (2018). Waveform Design for Communicating
Radar Systems Using Fractional Fourier Transform. Digital Signal Processing.
(under review)

Conference Papers

• Persico, A. R., Clemente, C., Ilioudis, C., Gaglione, D., Cao, J., and Soraghan,
J. (2015). Micro-Doppler Based Recognition of Ballistic Targets Using 2D
Gabor Filters. In 2015 Sensor Signal Processing for Defence (SSPD), pages
1–5

• Özcan, M. B., Gürbüz, S. Z., Persico, A. R., Clemente, C., and Soraghan, J.
(2016). Performance analysis of co-located and distributed MIMO radar for
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micro-Doppler classification. In 2016 European Radar Conference (EuRAD),
pages 85–88

• Gaglione, D., Clemente, C., Ilioudis, C. V., Persico, A. R., Proudler, I. K.,
and Soraghan, J. J. (2016). Fractional Fourier Transform Based Co-Radar
Waveform: Experimental Validation. In 2016 Sensor Signal Processing for
Defence (SSPD), pages 1–5

• Persico, A. R., Clemente, C., Pallotta, L., Maio, A. D., and Soraghan, J.
(2016a). Micro-Doppler classification of ballistic threats using Krawtchouk
moments. In 2016 IEEE Radar Conference (RadarConf), pages 1–6

• Kirkland, P., Clemente, C., Persico, A. R., Vasile, M., and Soraghan, J.
(2016). CubeSAT based passive bistatic radar for space debris detection and
tracking. In Stardust Final Conference on Asteroids and Space Debris

• Persico, A. R., Ilioudis, C., Clemente, C., Brueggenwirth, S., Bieker, T., and
Soraghan, J. (2016b). Ballistic Targets Discrimination based on High Resolu-
tion Range Profiles. In 11th IMA International Conference on Mathematics
in Signal Processing

• Persico, A. R., Ilioudis, C., Clemente, C., and Soraghan, J. (2017b). Novel
Approach for Ballistic Targets Classification from HRRP Frame. In 2017
Sensor Signal Processing for Defence Conference (SSPD), pages 1–5

1.5 Thesis Organization

The remainder of the Thesis is divided into six chapters organised as follows:
Chapter 2 introduces the key concepts of radar systems, describing basic and

advanced operational modes. In the second part of the chapter, the principal steps
of target classification processing are discussed, introducing some of the most
common approaches used for the extraction of information for target recognition.
Specifically, the concept of mD effect in radar context is described in details.
Following, the basic principles of radar processing for obtaining High Resolution
Range Profiles (HRRPs) of a target are introduced, explaining the main issues in
the presence of moving targets.

Chapter 3 provides an overview of the recent tools for the signature and
features extraction used in radar target classification processing. Firstly, the
concept of time-frequency analysis is introduced, with a detailed description of
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the commonly used time-frequency signal representations for Automatic Target
Recognition (ATR). Then, the use of Radon transform (RT) and and its inverse
function in radar image processing of a target is discussed. Following, an overview
of recent techniques for image classification in radar context is presented, with
particular focus on the challenge of BM classification from mD profile of the
target.

Chapter 4 demonstrates the capability to distinguish efficiently between missile
warheads and decoys by using information from different micro-motions exhibited
during the mid-course phase. Specifically, evaluating the CVD from the radar
measurement as mD based target signature, four different approaches for features
extraction are presented. The reliability of the proposed features are tested on
both simulated and in-home laboratory data, providing a detailed description of
both the mathematical model for the radar return and the experiment set up.

Chapter 5 presents a novel framework for the classification of BTs from a
sequence of HRRPs from the target. The framework is based on the computation of
the IRT in combination with pZ moments, in order to extract reliable features from
the pseudo-periodic range migrations of the principal scattering points observed
within a HRRP frame due to micro-motions. The efficiency of the proposed
framework is tested on simulated data by considering a mathematical model for
the complex coefficient of principal scatterers which takes into consideration two
possible polarizations for the radar waveform, namely vertical and horizontal
polarization.

Chapter 6 presents a novel space-borne PBR system for BMD and SSA. The
system configuration is discussed, focusing on the particular advantages guaranteed
by PBRs in the FS configuration. The performance of the proposed system in
terms of minimum size of detectable target is provided, with an analysis of the
possible target observation time depending on transmitter, receiver and target
specific orbits.

Chapter 7 presents a summary and conclusions of the Thesis, providing an
overview of possible future directions of this research work.

The appendix provides the mathematical expressions from (Ross and DIV.,
1969) of the complex coefficients of the principal scattering points for the several
target shapes used in this Thesis as target of interest in Chapter 5.



Chapter 2

Radar Systems

2.1 Introduction

The word RADAR was coined in 1940 by the United States Navy as an acronym
for RAdio Detection And Ranging for indicating a system able to detect a target
and determine its range. The development of modern technology has lead to
expansion of radar system capabilities, from the estimation of more information
on the target, such as its shape, size, and trajectory, to the more complex target
imaging (such as Synthetic Aperture Radar (SAR) image) and recognition. Mod-
ern systems apply these radar functions in a wide range of applications, from the
traditional military surveillance and target identification to collision avoidance,
Earth resources monitoring, and many others, expanding the application of radars
even in civilian and commercial sectors (Levanon and Mozeson, 2004).
In this Chapter, the basic concepts of radar systems and their different configura-
tions and functional modes are described, highlighting those particularly relevant
to the scope of this thesis. A short discussion on the principal parameters and
aspects that affect radar capabilities and performance are presented in Section
2.3, in order to identify the trade-offs and the assets, with particular focus on the
target Radar Cross Section (RCS). Section 2.4 provides a brief description of the
main steps of target classification process. Moreover, the effect of micro-Doppler
(mD) in radar return is discussed in Section 2.5, representing a useful information
which can be extracted for target classification. Finally, in Section 2.6 one of the
most advanced radar techniques for achieving a target High Resolution Range
Profile (HRRP) is discussed, analysing how target movements affect this specific
signature for target classification.
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2.2 Basic Concepts

A radar is an electrical system that generates and transmits Electromagnetic (EM)
signals toward a particular region of interest in order to detect objects in that
region. Although a radar system may be significantly simple or more complex,
the major subsystems must include a transmitter (dedicated or transmitter of
opportunity), one or more antennas, a receiver, and a signal processor. The basic
operational process can be summarized in four steps: transmission of a EM radar
signal; signal propagation through the free space; reflection of the signal from
the target, and reception of the target echo. Finally, the received signal may be
processed, in order to generate the desired information (Richards et al., 2010).
The measurement of the round-trip propagation time, t0, for the signal to travel
from the radar to the target and back, allows to estimate the distance of the target
from the radar (range). Specifically, the target range, R, can be evaluated as

R = c t0
2 (2.1)

where c is the EM wave propagation speed in vacuum, which is almost the same
in air as in a vacuum and is constant with the wavelength of the signal.

2.2.1 Monostatic And Bistatic Configurations

Radar systems can be characterized by two basic configurations: monostatic and
bistatic.
In the monostatic configuration, the radar uses the same antenna (or co-located
antennas) to perform the transmit and receive radar functions. When one antenna
is used, a transmit/receive (T/R) device which connects transmitter and receiver
to the antenna must be used in order to provide isolation between the transmitter
and receiver to protect the sensitive receiver components from the high-powered
transmit signal (Richards et al., 2010). Fig. 2.1 shows a representation of the
radar process in the monostatic configuration.
In a bistatic configuration, different antennas are dedicated to the transmitter and
receiver. However, this condition is not enough to distinguish between monostatic
or bistatic radars, because the configuration definition depends on the transmitter
and the receiver locations. An unequivocal specific for the distance between the
transmitter and receiver sites of a bistatic system is not presented in literature.
Attempts have been made to quantify this separation. Specifically, in cite (Def,
2008) the system is considered to be bistatic if there is sufficient separation between
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Fig. 2.1 The basic operational process of a radar system.

the transmitter and receiver antennas (comparable to the expected target distance)
such that the angles or ranges to the target are sufficiently different. If the two
antennas are very close, then the system is considered to be quasi-monostatic.
Bistatic Radars (BRs) are further divided into two categories: the hitchhiker,
when the transmitter is a radar, and the Passive Bistatic Radar (PBR) which
exploits RF energy transmitted by other non-cooperative systems (broadcast,
communications, or radio-navigation signal) to perform radar tasks (Melvin and
Scheer, 2014). The angle defined by the transmitter-target and receiver-target
Line Of Sight (LOS) is known as bistatic angle, β (see Figure 2.2). When β is in

Fig. 2.2 Radar system in bistatic configuration.

a neighbourhood of 180◦, the principal scattering phenomenon from the target is
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in the forward direction. In this specific case, the bistatic configuration is called
Forward Scattering (FS) configuration (Willis, 2005).

2.2.2 Continuous Wave and Pulsed Wave Radars

Radar systems can transmit two different classes of EM waveform: Continuous
Wave (CW) and Pulsed Wave.
For CW Radar, both the transmitter and the receiver are continually operating,
usually without interruption. This class of waveform is often used in the bistatic
configuration, taking advantages of the T/R isolation. As monostatic radars, the
CW systems generally works in relative low power for short-range applications,
since the isolation between the transmitter and receiver is not perfectly guaranteed.
Generally, CW radars cannot measure the delays of the echoes from the target
since they are continuously transmitting. However, it is possible to estimate the
target range by changing some characteristics of the transmitted CW over the
time. In this way a timing mark is defined on the EM waves (Richards et al.,
2010). One of the most used technique consist of changing the waveform carrier
frequency over the time, known as Frequency Modulated (FM) CW.
Pulsed radars transmit a sequence of pulses with a finite duration and separated
by time intervals. The receiver is switched off during the transmission of the single
pulse, while during the interval in between the transmission of two sequential
pulses the transmitter is switched off and the receiver is on in order to acquire the
target return. The time difference between two consequent transmission instants is
known as Pulse Repetition Interval (PRI). When a target is located at a distance
from the radar such that the round-trip propagation time is greater than the PRI,
the target echo will not return before of the next pulse transmission, leading to an
ambiguity in the range estimation. Hence, the maximum unambiguous range is

Ru = c Tp

2 (2.2)

where Tp is the PRI. A graphical representation of radar range ambiguity is shown
in Fig. 2.3.
The range resolution represents the radar capability to distinguish two (or more)
different targets of the same dimension, which are closely located. It is expressed
in terms of minimum relative distance between two targets with respect to the
radar such that the returns from different targets are acquired separated in time.
Considering the transmission of a simple unmodulated pulse, the range resolution
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Fig. 2.3 Pulsed radar waveform and radar range ambiguity.

is proportional to the pulse duration, τ , as

R∆ = cτ

2 (2.3)

The duty cycle represents the ratio between the pulse duration and the PRI, as
follows

dt = τ

Tp

= τ fp (2.4)

with fp the Pulse Repetition Frequency (PRF), which is the reciprocal of PRI.

2.3 Radar Range Equation

The principal functions of radar systems are three, namely search, track, and
recognition (Tait, 2005). The radar performance is influenced by the power of
the received signal from the target of interest and by the power of interference
factors. The interference factors can be represented by noise, clutter, or jamming.
Specifically, clutter is contributions to the radar received signal from undesired
targets and other surfaces on the ground and in the atmosphere, while jamming
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is the intentional emission of RF signals to interfere with the operation of a radar
by saturating its receiver with noise or false information. The ratio between the
target return and the noise power is called Signal-to-Noise Ratio (SNR), while in
the case of clutter signal as interfering signal, the ratio is called Signal-to-Clutter
Ratio (SCR). The ratio between the target echo power and the power of total
interfering signals is known as the Signal-to-Noise Ratio (SNR) (Richards et al.,
2010).
The Radar Range Equation (RRE) is mathematical tool used for designing the
system with the aim of guaranteeing the required SNR to perform the radar
function satisfactorily.
Considering a system transmitting a waveform using an antenna with an isotropic
or omnidirectional radiation pattern, the incident power density at the range R
would be the total power divided by the surface area of a sphere whose radius is
equal to R, as follows

Qi = Pt

4πR2 (2.5)

where Pt is the peek power of the transmitted EM wave. Generally, radars transmit
the EM wave into a finite angular sector using antennas with a directional beam
pattern. The power gain obtained using directional antennas is called antenna gain.
Considering the antenna gain in transmission, Gt, the product PtGt, known as
Effective Isotropic Radiated Power (EIRP), represents the power of an equivalent
isotropic radiator which generates the same transmitted flux in all directions. A
portion of the incident power on a target is reflected towards the radar. The
Radar Cross Section (RCS), σ, represents the target area which produces energy
scattered in the direction of the receiver, and it is measured in m2 (Skolnik, 2001).
The received power from a target in free space conditions is given by

Pr =
(
PtGt

4πR2

)(
σ

4πR2

)
Aeff

Ls

(2.6)

where Aeff is the receiver antenna effective area and Ls (≥ 1) is a loss factor
(which includes transmitter losses, propagation losses, receiver or plumbing losses,
beam-shape losses and signal processing losses) (Richards et al., 2010). The
antenna effective area can be written in terms of the receiver antenna gain, Gr, as
follows

Aeff = Gr
λ2

4π (2.7)
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where λ is the transmitted signal wavelength. Hence, by substituting (2.7) into
(2.6), it follows

Pr = PtGtGrσλ
2

(4π)3R4Ls

(2.8)

The power spectral density of thermal noise is essentially constant over all radar
frequencies. However, only the noise signals within the receiver bandwidth, Br,
affects the radar performance. Then, the receiver thermal noise power, Pn, is
given by

Pn = kTrBr (2.9)

where k is the Boltzmann’s constant, and Tr is the receiver noise temperature.
The latter is obtained by the sum of the antenna noise temperature, TA, and the
composite temperature of other components, Tcomp:

Tr = TA + Tcomp (2.10)

It is possible to express the receiver noise power through the reference temperature,
T0, (generally equal to 290 K) and the receiver noise figure, F (Skolnik, 2001). The
receiver noise figure of a receiver represents the ratio between the noise output of
the receiver and the noise output of an ideal receiver, which is due to external
sources only (Tait, 2005). It follows

Pn = kT0BrF = kT0Br

(
1 + Tn

T0

)
(2.11)

with Tn the effective noise temperature. Finally, the SNR for a single radar pulse
is given by

SNR = Pr

Pn

= PtGtGrσλ
2

(4π)3R4kT0BrFLs

(2.12)

In the case of bistatic radar systems, the RRE is given by (Willis, 2005)

SNR = PtGtGrσλ
2

(4π)3R2
tR2

rkT0BrFLs

(2.13)

where Rt and Rr are the target distances from the transmitter and receiver.
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2.3.1 Processing Gain

In many radar applications, very high values of SNR may be required, in order to
improve the ability to detect a target in the presence of noise. For this purpose,
different processing approaches can be used.

Pulse Compression: Pulse compression represents one of most common
techniques used to achieve a higher SNR. For an simple unmodulated pulse, the
bandwidth is inversely proportional to the pulse length, T . For this reason, it is
worth noting from (2.3) and (2.12) that the choice of pulse duration affects a trade-
off among the range resolution and the achievable SNR. The pulse compression
is an intra-pulse modulation (phase or frequency) which allows to maintain the
average transmission power by incorporating a wider bandwidth within the pulse
without affecting its duration. In order to take advantage of pulse compression, a
appropriate filter is applied to the target echo. Considering the transmission of
an arbitrary waveform, stx(t), defined over the time interval [0, τ ], the received
echo, stx(t), from the target is a scaled and delayed replica of stx(t) embedded in
additive white noise, as follows

srx(t) = a ejφstx(t− to) + w(t) (2.14)

where ’a’ is the amplitude of received signal, and φ the phase rotation due to
relative motion between the radar and the target. The filter which maximizes
the SNR depends on the transmitted waveform, and it is known as matched
filter. Its impulse response is a time-reversed and complex conjugated copy of the
transmitted waveform

hMF(t) = b s∗
tx(−t) (2.15)

where b is an arbitrary scale factor, commonly set to 1. The range resolution for
a pulse compressed radar signal is expressed in terms of transmitted bandwidth
as follows

R∆ = c

2B (2.16)

The maximum signal processing gain, Gsp, guaranteed by the matched filter at
the instant t0 is given by the product between the pulse duration and modulated
bandwidth, Bm. Therefore, the output SNR from the matched filter is

SNRout = PtGtGrσλ
2

(4π)3R4kT0BrFLs

Gsp = PtGtGrσλ
2

(4π)3R4kT0BrFLs

Bm τ (2.17)
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For a pulse compression system the matched filter condition is valid for a moving
target only compensating the phase rotation in the processing, otherwise a Doppler
mismatch loss is usually experienced (Richards et al., 2010).

Pulse Integration: Another common signal processing technique for achiev-
ing higher SNR is the integration of the received target echoes from the transmis-
sion of a finite number of pulses (known as burst). The received signals can be
integrated coherently or non-coherently.
The coherent processing employs both the amplitude and the phase information of
received signals in order to sum up in phase all the target contributions from each
transmitted pulses. When both the radar system and the target are stationary,
all the target returns would be in phase. Otherwise, the relative motion between
the radar and the target leads to a phase rotation (or frequency shift), well
known as Doppler effect (Chen et al., 2006). Specifically, the Doppler frequency
shift represents the difference between the frequencies of the transmitted and the
received wave. The latter is approximately given by:

fD = 2vr

λ
(2.18)

with vr the velocity component along the radial or LOS between the radar and
the target. In the case of relative moving target, it is necessary to compensate
the phase rotation before summing up all the target returns from each pulses, in
order to ensure an improved SNR. One of the most used technique for computing
the coherent sum of the radar returns in presence of moving target is the Fast
Fourier transform (FFT) processing (or Doppler processing). The SNR resulting
from the coherent integration is

SNRc(np) = np SNR(1) (2.19)

with SNR(1) the SNR obtained with a single transmitted pulse. The non-coherent
integration averages only the amplitude information of the echoes from the
transmitted pulses. The gain obtained by non-coherent integration of np pulses
SNRnc(np) is not defined unequivocally, but in most of the cases is within the
interval

[√
np SNR(1), np SNR(1)

]
(Richards et al., 2010).
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2.3.2 Target RCS

The RCS of a target represents its ability to reflect the incident transmitted
power towards the receiver. It is defined as the ratio between the power density
intercepted by the target and the power density scattered towards the radar.
Three different scattering regions from the target are defined according to the
radar wavelength and target dimensions. The Rayleigh region occurs when the
wavelength is greater than the target dimension, the resonance region when they
are comparable and the optical region when the wavelength is very small with
respect to target sizes (Skolnik, 2001). Fig. 2.4 from (Richards et al., 2010) shows
the RCS of a sphere normalized with respect to the sphere area, on varying the
ratio between the sphere radius and the EM wavelength. In the Rayleigh region
the RCS is proportional to the waveform carrier frequency, f0. In the resonance
region the RCS oscillates as a function of the carrier frequency, with a maximum
value obtained for sphere radius equal to the wavelength. Finally, in the optical
region the RCS tend to the physical area of the sphere as the carrier frequency
increases (Skolnik, 2001).

Fig. 2.4 RCS of a sphere with radius a on varying the wavelength λ, from (Richards
et al., 2010).
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According to the theory of diffraction at high frequency (short wavelength), the
signal scattered by a target may be approximated by the sum of localized sources,
represented by the principal scattering points on the object. Specifically, the RCS
of a target can be written as (Ross and DIV., 1969)

σ(f0, α) =
∣∣∣∣∣∣

Np∑
i=1

√
σi(f0, α)ejφi(f0,α)

∣∣∣∣∣∣
2

(2.20)

where √
σi(·)ejφi(·) is the complex scattering coefficient of the i-th local source,

with i = 1, · · · , Np, where Np is the total number of scatterers, f0 is the signal
carrier frequency, and α is the aspect angle defined by target orientation vector
and the direction of incident EM wave. The phase of scattered field is

φ(f0, α) = tan−1

∑Np

i=1
√
σi(f0, α) sin(φi(f0, α))∑Np

i=1
√
σi(f0, α) cos(φi(f0, α))

 (2.21)

Real targets do not reflect the incident power uniformly in all directions, indeed
the scattered EM field depends on its particular shape and sizes, hence on the
disposition in the space of target scatterers (Ross and DIV., 1969).

RCS fluctuation: Although many techniques for predicting the RCS of
several targets are present in the literature, e.g. geometrical theory of diffraction,
individual scattering center method, and caustic correction method (Singh, 2004),
the scattering phenomenon depends on a large number of factors e.g. the target
geometry, the aspect angle, the altitude with respect to radar antenna and
atmosphere factors, which lead to uncontrolled scintillation of the RCS. Therefore,
the target RCS is usually expressed as a random variable in order to take into
account these fluctuation for signal modelling.
The mathematician Peter Swerling introduced the Swerling models in 1954 in order
to describe the statistical properties of the RCS of a complex target. Specifically,
there are four different Swerling models, which represent the RCS through the
chi-square probability density function with 2m degrees of freedom (Swerling,
1997)

P(σ) = m

(m− 1)!σavg

(
mσ

σavg

)m−1

e
− mσ

σavg (2.22)

where σavg is the average over all target RCS values. In Case 1, known as
slow fluctuation, the RCS for each received pulse during an entire radar scan
is constant, but independent from scan-to-scan. The RCS is modelled by an
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exponential function, obtained from (2.22) for m = 1. In the Case 2, known as
fast fluctuation, the RCS is modelled by the exponential function as in Case 1, but
the value of the fluctuations are independent from pulse to pulse. In Case 3 the
RCS is assumed constant during a scan and independent from scan-to-scan, as for
Case 1. Moreover, the probability function for the RCS is Chi-square of degree 4,
obtained from (2.22) for m = 2. In Case 4, the probability function is the same
as in Case 3, but the fluctuation is pulse to pulse. It is worth noting that other
probability density functions can be generally used in specific cases. Through
some experimental analysis it has been shown in (Swerling, 1997) that the RCS of
missiles shows fluctuation which can be well represented by a log-normal random
variable (Liu et al., 2011). For all this cases, the RCS parameter in the RRE
is substituted by σavg, and a fluctuation loss parameter is taken into account
(Skolnik, 2001).

FSRCS: In the specific case of target with RCS very small, the use of the
Forward Scattering (FS) radar may provide higher values of SNR with respect
to the other configurations (Abdullah and Ismail, 2006; Willis, 2005). For this
reason, FS radars are very attractive for the detection of small objects. This
configuration guarantees a relative RCS enhancement since the FS depends only
on the area and shape of the target’s silhouette. The reason for this enhancement
can be found in Babinet’s principle (Willis, 2005), which affirms that, in optics, a
perfect absorbing target diffracts the same electromagnetic wave as an aperture
of the same shape and area A of the target (see Fig. 2.5). Two diffraction types

Fig. 2.5 Babinet’s model for the forward-scatter case with β = 180◦.

are possible: Fraunhofer diffraction and Fresnel diffraction. In the former case,
the target is electromagnetically far from both transmitter and receiver, while in
the latter case, the target is close to one of the two. Considering the following



2.4 Target Classification Basics 23

coefficients

Ft = d2

Rtλ
Fr = d2

Rrλ
, (2.23)

where d is the greater dimension of the object, the Fraunhofer diffraction occurs
when

Ft << 1 Fr << 1. (2.24)

When these conditions are verified, and the object dimensions are greater than
the wavelength (thus optics conditions occur) the FSRCS can be written as

σF S = 4πA2

λ2 = GF SA, (2.25)

where GF S represents the peak antenna gain of uniformly illuminated aperture
whose area is equal to A. Then within the Fraunhofer zone, the RCS, in the FS
case, increases with the target section. When the bistatic angle is smaller than
180◦, the forward-scatter RCS rolls off from σF S. The roll-off is approximated by
treating the shadow area, A, as a uniformly illuminated antenna aperture (Willis,
2005).
FS radars usually require reasonably simple hardware and lower power consump-
tion, but they have a limited operational area, such that they work properly for
bistatic angle within a narrow interval around 180◦. FS radar represents a valid
solution for detecting stealth targets since the FSRCS is practically independent
from the radar absorbing material (Gao and Yan, 2006). One of the critical draw-
backs of FS radar is that this system does not allow one to estimate directly the
target range. Nevertheless the absence of range resolution is compensated by the
advantage of absence of signal fluctuation because of the target’s natural swinging,
which represents a limit for coherent signal processing time in conventional radar.
Furthermore, the FS radar allows one to improve the power budget by employing
a long coherent integration interval.

2.4 Target Classification Basics

Introduced for detecting enemy aircraft during World War II, radar technology
has progressed trough the years providing a level of target recognition in addition
to the simple detection. In the initial stages of target recognition, a human
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operator was trained for recognizing an audible representation of received signal
from the target illuminated by the radar. Nowadays, the modern technologies and
sensors provide high resolution data encouraging the development of automated
recognition methods in order to improve the recognition capabilities and reduce
the operator workload.
Radar target classification process comprises four fundamental steps, represented
in the block scheme in Fig. 2.6. The initial step comprises the radar measurement,

Fig. 2.6 Classification processing block scheme.

by acquiring the signal reflections from the target. The received target echo is
then processed for extracting the target signature, which contains the information
used for its identification. Following, a set of features is extracted from the target
signature by a mathematical process, and given as input to a classifier in order
to estimate the target class. Classifiers are mathematical techniques designed to
compare the extracted features within a database, which contains the information
of all the targets of interest.
In order to perform target recognition, it is important to have a prior knowledge
of which are the target to be recognized and, eventually, the possible objects in
the scene which are not of interest. The database can be assembled by using
a mathematical model of the signatures (hence features) of targets of interest,
or by measurements from scaled models of these or, whereas it is possible, by
measurements from real targets. In some cases it is possible to assembly the
database by a combination of these three methods. A database has to contain
reference signatures of all targets of potential interest at all possible radar aspect
angles and under different conditions of the scenario. The complexity and the
dimension of the database depends on the classification processing and the required
features.
The classification performance can be characterized by the probabilities of correct
and wrong assignment. The effectiveness of the classification algorithm in terms
of these probabilities is affected by the quality of radar measurement, as well as
the quality of the mathematical model and the targets similarities (Tait, 2005).
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2.4.1 Target Signature Extraction

The aim of target signature extraction process is to obtain an arrays of values
for the extraction of target features trough mathematical operations. Target
signature may be a distribution function of the radar measurement, e.g. time,
frequency or space distribution, which emphasizes target characteristics used then
for the recognition process. The transmitted radar waveform has to be designed
in order to get high quality target signature compatible with the classification
algorithm and reference signature database, guaranteeing satisfactory performance.
The radar acquisition is usually pre-processed to get noise reduction and clutter
mitigation, which may affects the measurement. Once that the target is detected
(and tracked in case of moving target) from the “cleaned” data, the processing
continues with the signature extraction. The signature data are usually normalised
in order to provide robustness level required for measurements performed under
different conditions of sensitivity. Several approaches have been developed for
target signature extraction for wide range of applications. The most suitable
approach for each application is chosen according to the designed radar, the
transmitted waveform and the target characteristics e.g. motions or material
composition (Tait, 2005).

2.4.2 Target Feature Extraction

Any classification challenge requires an accurate analysis on the possible targets and
which signature can emphasize their difference. Another critical step is the selection
of a feature set which can be used to discriminate different targets. Feature
extraction processes are mathematical tools used for reducing the dimensionality
of target signature and increasing robustness. The features can be either physical
parameters, e.g. target dimension, RCS and velocity, or a set of values which
synthesize the extracted signature data, e.g. image moments. One of the most
important aspect which affects the selection process is the sensitivity of the
features with respect to the variations of target parameters e.g. dimension or the
aspect angle. In particular, the features have to be chosen in order to minimize
the feature space of each class, and maximize the distances between the spaces
of different classes. In particular, the main aim is to reduce the feature spaces
overlap, in order to achieve better performance. The feature selection affects
the complexity of the classifier. In case the feature space of each class are not
significant separated, it is necessary to use probabilistic methods and lager number
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of features in order to perform the target classification properly (Richards et al.,
2013; Tait, 2005).

2.5 Micro-Doppler Effect in Radar

In many classification challenges, objects with similar shapes and sizes may be
distinguished observing their motions with respect the radar system. As described
in Section 2.3.1, when a target is moving the Doppler effect occurs such as the
radar return is shifted in the frequency domain with respect to the transmitted
signal. A secondary motion of the target, or of any its structural component, in
addition to the bulk motion introduces an additional frequency modulation which
generates side bands around the main Doppler shift. This secondary modulation
is known in literature as micro-Doppler (mD) effect (Chen et al., 2006, 2014),
and the term micro-motion is used to refer to the additional target motions, e.g.
rotation or vibration.
The concept of mD effect was originally presented in a coherent laser system,
with the specific aim of measuring the kinematic properties of a target, e.g.
the rate and the displacement of a vibration. Laser Detection and Ranging
(LADAR) systems transmit EWs at optical frequencies being very sensitive to
phase variations of received signal, such that even vibration with very small rate
and micro displacement can be easily observed. Although even in coherent radar
the variations in range cause a phase change in the returned signal from a target,
the mD effect is harder to observe in radar systems due to longer wavelengths.
However, in case the target micro-motion has rate and displacement high enough,
the mD effect may be still observable. The mD modulation may represent a
distinctive signature for a target containing information on its operational mode
and structural components e.g. helicopter rotor blades or missile wings.
Generally, the motion of a rigid body is given by a combination of translations
and rotations. In order to describe the effect of target motion with respect the
radar three coordinates systems are considered: the radar coordinates system
(Û , V̂ , Ŵ ), centred on the radar; the reference coordinates system (X̂, Ŷ , Ẑ),
which is parallel to the previous one and whose origin is the Mass Centre (MC) of
the target; the local coordinates system (x̂, ŷ, ẑ) such that the axis ẑ corresponds
with the symmetry axis of target (Hongwei et al., 2010). Fig. 2.7 illustrates the
three reference systems, where ∠ElMC and ∠AzMC are the elevation and azimuth
angles of the LOS between the radar and the MC of the target with respect the
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radar coordinates system.
Without loss of generality and neglecting the envelope of the transmitted signal,
it is assumed that the radar transmits a sinusoidal signal as follows

stx(t) = exp(j2πf0t) (2.26)

where f0 is the radar carrier frequency. The generic received signal from a target
can be written as

srx(t) =
Np−1∑
i=0

√
σi(t) exp

(
j2πf0

[
t− 2ti(t)

c

])
(2.27)

where Np is the number of scattering points, ti(t) and σi(t) are the delay of
propagation and the scattering coefficient of the i-th scatterer, respectively. An
expression of the propagation delay for the i-th generic point is given by

ti(t) = 2ri(t)
c

(2.28)

where ri(t) is the distance between the radar and the considered point. The
distance ri(t) is the norm of the position vector rradar

i , i.e.

ri(t) = ∥rradar
i ∥ = ∥rradar

MC + vt+ ri(t)∥ (2.29)

where rradar
MC is the initial position vector of the MC with respect to the system

(Û , V̂ , Ŵ ), v is the bulk motion velocity of the target and ri(t) is the position
vector of i-th scattering point with respect to the (X̂, Ŷ , Ẑ) system. Neglecting
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Fig. 2.7 Geometry for radar and target with micro-motions.

the time dependence for conciseness, ri can be written as the following column
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vector
ri = T mR0 (rlocal

i − rlocal
MC ) (2.30)

where R0 is the Euler matrix that sets the position of the target with respect to
the second system (X̂, Ŷ , Ẑ) at the initial time instant, T m = T m(t) is the matrix
depending on the micro-motions made by the object, while rlocal

i and rlocal
MC are

respectively the positions in the local system of the i-th scattering point and the
object MC (Chen et al., 2014; Hongwei et al., 2010; Zakeri et al., 2004). It is worth
noting that in case the centre of the local coordinates system (x̂, ŷ, ẑ) is centred in
the target MC, the rlocal

MC coincides with the origin of the local coordinates system
(as shown in Fig. 2.7).
The Doppler shift of the signal contribution of the i-th scatterer is given by

fDi
= 2
λ

d

dt
ri = 2

λ

1
2ri

d

dt

[
rradar

MC + vt+ ri

] [
rradar

MC + vt+ ri

]T
= 2
λ

[
v + d

dt
ri

]T

n

(2.31)

where (·)T is the transpose operator, and n is the unit direction of the vector ri,
given by

n = rradar
MC + vt+ ri

∥rradar
MC + vt+ ri∥

(2.32)

When the target is at relative long distance, such that

∥rradar
MC ∥ >> ∥vt+ ri∥ (2.33)

then, n can be approximated as follow

n ≈ rradar
MC

∥rradar
MC ∥

(2.34)

which is the direction of radar LOS. Hence, from (2.31) the Doppler shift can
be expressed as the sum of two contributions: the first given by the main bulk
motion, and the second dependent on target micro motion, as follows

fDi
≈ 2
λ

[v]radial + 2
λ

[
d

dt
ri

]
radial

= fbD + fmDi
(2.35)

where
fmDi

= 2
λ

[
d

dt
ri

]
radial

(2.36)
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The knowledge of the micro-motion matrix T m, and of the positions and the
coefficients of the principal scattering points allows to evaluate the mD profile of
a target, useful for modelling the expected radar return. In this way, the database
for a classification algorithm may be preliminary created on simulated data, or a
model-based classification algorithm may be designed.

2.6 High Resolution Range Profile

High-Resolution Range Profile (HRRP) is a 1-Dimensional (1D) signature of an
object which can be used for target recognition of airborne, ground, sea and
even ballistic missile targets, reducing the complexity of classification algorithm
with respect to using a 2D ISAR image (Hu and Zhu, 1997; Tait, 2005). It
represents a time domain response of the target to a HRR radar pulse, which
contains information on the target shape and dimensions (Tait, 2005). HRRPs
can be either used as feature vectors input to a classifier, or processed to extract
compressed feature vectors, according to the specific classification challenge. It is
possible to extract features for the classification process directly from the HRRP
analysis, such as the length of target, the amplitude of maximum scatterer and
geometrical moments, or though transforms for getting robustness with respect
to some parameters, such as by Mellin transforming utilized to circumvent scale-
variance in HRRP caused by changes of target aspect angle (Hu and Zhu, 1997).
In radar surveillance applications, Stepped Frequency Waveforms (SFWs) are
generally used in order to achieve HRRP of a target increasing the system
bandwidth. Specifically, SFWs comprise a sequence of N narrowband sub-pulses,
known as bursts, which are integrated coherently into a single wideband signal.
The carrier frequency of each sub-pulse increases pulse by pulse. The whole
sequence transmitted with a fixed PRF can be written as

stx(t) =
N−1∑
n=0

ps(t− nT ) exp (j2πfn(t− nTp) + Φn) (2.37)

where Tp is the PRI, ps(t) is the sub-pulse envelope, fn = f0 + n∆f is the carrier
frequency of the n-th sub-pulse, with f0 the fundamental carrier frequency and ∆f
the bandwidth of sub-pulse, and Φn is the initial phase. For a full-band SFW, ∆f
is equal to the frequency step of the sub-carrier. In this analysis a LFM sub-pulse
given by

ps(t) = rect
(
t

τ

)
exp(jπµt2) (2.38)
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where µ is the chirp rate given by the ratio between the sub-pulse bandwidth ∆f
and duration τ , and where

rect
(
t

τ

)
=
 1 0 < t ≤ τ

0 t ≥ τ
(2.39)

The range resolution achieved by using a SFW radar is given by the entire
synthesized bandwidth, as follows

R∆ = c

2N∆f (2.40)

The received signal scattered by a target at range R from each transmitted
sub-pulse can be written as

srx(t, n) = Λnps

(
t− nT − 2R

c

)
exp

(
j2πfn

[
t− nT − 2R

c

]
+ Φn

)
(2.41)

where Λn is the amplitude of received n-th sub-pulse. Considering a reference
signal at the range R0, given by

s0(t, n) = rect

(
t− nT − 2R0

c

τ0

)
exp

(
j2πfn

[
t− nT − 2R0

c

]
+ Φn

)
(2.42)

where τ0 is the reference signal sub-pulse duration, the dechirp process for each
sub-pulse is computed as follows (Qun Zhang, 2016)

sd(t, n) = srx(t, n)s∗
0(t, n) =Λnrect

(
t− nT − 2R

c

τ

)
×

exp
(

−j 4π[f0 + n∆f ]∆R
c

)
×

exp
(
j

4πµ∆R
c

[
t− nT − 2R0

c

])
×

exp
(

−j 4πµ∆R2

c2

)
(2.43)

with ∆R = R −R0. It is highlighted that the duration of reference sub-pulse τ0

is chosen slightly longer than τ to avoid the width of the rectangle window not
changing after the conjugate multiplication (Qun Zhang, 2016). Let us consider
the reference instant of time t′ = t− nT − 2R0

c
, the Fourier Transform of (2.43)
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with respect t′ is

Sd(ν, n) =Λnτ sinc
(
τ
[
ν + 4πµ

c
∆R

])
exp

(
−j 4π[f0 + n∆f ]∆R

c

)
×

exp
(

−j 4πµ∆R2

c2

)

exp
(
j

4πν∆R
c

)
(2.44)

where sinc(x) = sin(πx)/(πx), which has a peak in 0 delay. It follows that Sd(ν, n)
has a peak for

ν0 = −4πµ
c

∆R (2.45)

that is the approximation range profile of the point target. The dechirp process
converts a LFM signal of large bandwidth into a narrow bandwidth signal, re-
ducing the sampling requirement with respect to the matched filter. The main
disadvantage is represented by the introduction of some phase terms not expected,
which has to be compensated in order to obtain the HRRP. Specifically, the third
phase term in (2.43) is known as Residual Video Phase (RVP) and the fourth as
the sideling term of echo envelope. The RVP and sideling term of echo envelope are
compensated for ν = ν0 by multiplying Sd(ν0, n) with the function (Qun Zhang,
2016)

SRVP = exp
(

−j 3πν2
0

µ

)
(2.46)

obtaining a final signal vector whose components are

srx(n) = Λnτe
−j 4π

c
fn∆R (2.47)

with n = 1, · · · , N . The vector srx contains information about the target range
in the phase, hence in the frequency domain, which can be converted into space
domain information through the Inverse Discrete Fourier Transform (IDFT)
(Mahafza and Elsherbeni, 2003). In particular, the HRRP can be extracted as
follows

H(ε) =
∣∣∣∣∣ 1
N

N−1∑
n=0

Λnτe
j2π n

N (ε− 2N∆f∆R
c )e−j

4πf0∆R

c

∣∣∣∣∣ (2.48)
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where | · | is the magnitude operator, and with ε = 1, · · · , N . In the simpler case
of stationary target and with Λn = 1, for n = 0, · · · , N − 1, the HRRP of target is

H(ε) =
∣∣∣∣∣ τN

N−1∑
n=0

ej2π n
N (ε− 2N∆f∆R

c )
∣∣∣∣∣ =

∣∣∣∣∣∣ τN
sin π

(
ε− 2N∆f∆R

c

)
sin π

N

(
ε− 2N∆f∆R

c

)
∣∣∣∣∣∣ (2.49)

which is a discrete function with a peak at zero delay, theoretically

ε0 = 2N∆f
c

∆R (2.50)

Since the HRRP is generated through an induced phase shift, the unambiguous
maximum range for the HRRP depends on the periodicity of the phase information
over 2π, and it can be written as

Ru = c

2∆f (2.51)

Hence, ∆f has to be designed based on the expected maximum target extension
with respect the reference range.

In case of a moving target with a radial velocity vr, the target range varies
during a set of sub-pulses, such that

∆R(n) = ∆R(0) + nTvr (2.52)

with ∆R(0) the initial target range with respect the transmission and reception
of the first sub-pulse. Sampling S(ν, n) into 4πµ∆R(n)/c for n = 0, · · · , N − 1,
thus (2.49) becomes

H(ε) =
∣∣∣∣∣ 1
N

N−1∑
n=0

Λnτe
j2π n

N (ε− 2N∆f∆R(0)
c

− 2Nf0T vr
c

− 2Nn∆fT vr
c )e−j

4πf0∆R(0)
c

∣∣∣∣∣ (2.53)

The additional phase term due to the target radial velocity leads to a distortion
of the synthesized range profile. The phase term depending on target frequency
Doppler (f0vr/c) leads to a shift of the space response of the target along the
synthesized range profile. The phase term depending on the couple velocity vr with
n produces an extension of the peak value over the fine range profile, leading to a
wider target space response. It is obvious that this effect becomes worse for higher
target velocities and longer burst durations. When the velocity compensation is
not computed, the moving target appears at a range different from the actual,
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approximately given by

R̂ ≈ R(0) + f0T

∆f vr + 2NvrT (2.54)

Fig. 2.8 shows the normalized range profiles from a target with three scattering
points for different target velocities. Specifically, Fig. 2.8a shows the HRRP
when the target is stationary, while Fig. 2.8b shows the HRRP when the target
moves with a radial velocity of 100 m/s. The HRRP is obtained by transmitting a
S-band SFW (at 3 GHz), composed by 128 sub-pulses whose each bandwidth is 6
MHz, with a PRF of 20 kHz. The range profiles start at 500 km and the relative
distances of three scatterers is 10, 12 and 20 m, respectively. Moreover, a discrete
Hamming window w(n) is applied, as follows

H(ε) =
∣∣∣∣∣ 1
N

N−1∑
n=0

w(n)srx(n)ej2π n
N

ε

∣∣∣∣∣ (2.55)

Comparing the two HRRPs in Fig. 2.8 it is worth noting when the target velocity
is not compensated, the responses of the three scatterers are wider and shifted (of
3.4 m approximately in the example).

(a) vr = 0 m/s (b) vr = 100 m/s

Fig. 2.8 Range profile of three target points (obtained with Hamming window)

The velocity compensation represents a complex problem in the BMD scenario,
since the bulk motion of the cloud of warhead and decoys accelerates and de-
celerates irregularly. In addition, the BTs flying in the exo-atmosphere have
different micro-motions, some of which may be significant even if smaller than the
bulk motion of orders of magnitude. Hence, the target velocity is not constant
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during the burst due to micro-motions as the warhead precession and the decoy
tumbling, leading to target spreading along the range profile. Furthermore, the
number of pulses composing the entire burst and the PRF have to be designed
in order to reduce the range of velocities observed during the dwell time (Clark,
1999). By contrast, the BTs micro-motions affects the positions of scatters in
the HRRP, leading to periodic tracks into a frame of sequential HRRPs, which
may be useful for target recognition. The authors in (Lei et al., 2012) proposed a
graphical analysis for distinguishing between the precessing warhead, and wobbling
or tumbling decoys, by taking into account both HRRP frame and time-frequency
characteristics of radar return from the target. Firstly, the classification between
the micro-motions is computed by analysis the presence of intersections between
the tracks of different scatterers, which correspond to specular reflection peaks
from the target, occurred only when the target is tumbling. In case the object is
tumbling, a discrimination between target shapes (cylinder or cone) is computed
by analysis if the peaks occur separated by an equal time interval or not. If
the target is not tumbling, then the precession is discriminated from wobbling
by observing a sinusoidal behaviour of the mD shifts within the radar echo. In
(Da-qing et al., 2013) the HRRP frame is used as an 2D image used as input of
an improved Viterbi algorithm used for tracking and isolating the range histories
of each scatterer. Secondly, the time-frequency analysis is performed for each
isolated scatterers.

2.7 Summary

In this Chapter, the fundamentals of radar systems were discussed, introducing
the main configurations and operational modes. Additionally, since the radar
performance are generally dependent on the received echo power and the level of
system noise, different approaches for increasing the SNR at receiver are discussed
in Section 2.3.
The principal steps for performing the target recognition from radar return are
analysed in details in Section 2.4. In this context, particular focus was on target
classification by exploiting the information about peculiar micro-motions exhibited
by an object, e.g. rotation or vibration. For this purpose, the concepts of mD
effect in radar return was reviewed. Additionally, the basic principle of the signal
processing for obtaining the HRRP of a target with a wideband radar system was
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described, representing an useful tool for target recognition. Finally, a detailed
analysis of the effect of target micro-motions in a HRRP was provided.



Chapter 3

Automatic Target Recognition

3.1 Introduction

Automatic Target Recognition (ATR) uses signal processing tools for the problem
of target identification. The ATR processing can be applied to data from different
type of sensors, comprising imaging sensors, such as Synthetic Aperture Radar
(SAR) and Inverse Synthetic Aperture Radar (ISAR), as well as non-imaging
sensors, such as High Range Resolution (HRR) radar and Raman spectrometers
(Blacknell and Griffiths, 2013; Richards et al., 2013). In the modern defence
system, ATR has a fundamental role since it increases the system efficiency for
the interception of certain tactical targets with reduced risk. Nevertheless, ATR
systems may be employed even in many civilian and commercial applications, e.g.
for landmarks recognition for a visual navigation system or a robotic system, as
well as for recognition of particular objects and faces in photographs or video
sequences. In any application, the main issue for ATR systems is represented by
the clutter and the noise introduced in the received signal by an imperfect sensor
(Dudgeon and Lacoss, 1993).
In this Chapter, the ATR in radar is discussed, with particular focus on micro-
Doppler (mD) based applications. In Section 3.2 an overview of the main time-
frequency analysis tools in the context of radar signal processing is presented,
providing a brief review of the principal mD based signatures used for target
classification. The Radon Transform (RD) and its inverse function are presented
in Section 3.3 as tools used for extracting mD parameters from radar image of a
moving target. Following, a discussion on some of the widely used methods in the
general context of image recognition is provided. Particularly, the pseudo-Zernike
(pZ) and the Krawtchouk (Kr) image moments based approaches and the Gabor
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Filter based approach are described, focusing on their application for mD based
classification challenges present in literature.

3.2 Time-Frequency Distributions

The conventional Fourier Transform (FT) of a generic signal provides a descrip-
tion of all its spectral components. However, since it does not allow for the
extraction of the time-dependent spectral components, the analysis of mD compo-
nents into a radar return is generally conducted using more sophisticated tools.
Specifically, Time-Frequency Distributions (TFD) generates a 2-Dimensional (2D)
representation in both time and frequency domains simultaneously, emphasizing
the time-varying behaviour of the signal.
One of the most used tool for displaying the time-varying spectral density of
time-varying signal is the Short-Time Fourier Transform (STFT) (Chen et al.,
2006). The STFT of a generic non-stationary signal s(t) is a linear transform
given by

SSTFT(t, f) =
∫ ∞

−∞
s(t′)w∗(t′ − t)e−j2πft′dt′ (3.1)

where w(·) is a window function centred at zero delay (Heinzel et al., 2002).
Differently from the conventional analysis in the Fourier domain obtained by
applying the FT on the entire signal duration, the basic principle of STFT is
the computation of FT onto shorter signal segments obtained by moving the
window centre t′ along the signal time duration, as illustrated in Fig. 3.1 from
(Hiatt et al., 1960). In this way, the spectral analysis of the signal for different
instants of time is provided. The window duration affects a trade-off between time
and frequency resolutions: increasing the window duration a higher frequency
resolution is obtained but with a poorer time resolution, and vice-versa (Allen and
Mills, 2003). A higher product of time and frequency resolutions may be obtained
by the window overlapping, which reduces the effects of the gaps at the edges that
are produced when using windows. However, the overlap is limited since signal
segments strongly correlated would not provide more information on the time
variant spectral components (Heinzel et al., 2002). Different types of window,
e.g. Hann or Hamming, can be used in order to achieve the required resolutions.
Specifically, the STFT computed using Gaussian windows, known in literature
as Gabor Transform, provides the minimal product between the time resolution
and the frequency resolution. The selection of the optimal window depends on
the specific characteristic of the time-variant signal. In (Jones and Parks, 1990) a
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Fig. 3.1 Illustration of STFT processing on the signal s(t) from (Hiatt et al.,
1960).

method for selecting the optimal window width of the STFT, without any prior
spectral information about the signal, is described. The adaptive STFT uses
Gaussian basis functions with different time and frequency parameters to achieve
high signal concentration everywhere.
The Wigner-Ville Distribution (WVD) is another common TFD used for extracting
information on the time variance spectral components of a signal (Allen and Mills,
2003). The WVD of a generic signal s(t) is a quadratic transform defined as the
FT of the time dependent auto-correlation function, as follows

SWVD(t, f) =
∫ ∞

−∞
s

(
t+ t′

2

)
s∗
(
t− t′

2

)
e−j2πft′dt′ (3.2)

The main advantage of the WVD with respect to the more intuitive STFT is
the absence of the trade-off among the time and frequency resolutions, since it
generates the TFD by the correlations of time and frequency shifted versions of s(t)
with each other (Boashash and Boualem, 2015). However, the WVD suffers from
cross-terms between correlated components, which may represents a significant
interference factor affecting considerably the interpretation of the time-frequency
plane (Hlawatsch and Boudreaux-Bartels, 1992). In practice, it is possible to
reduce these interference terms by smoothing in both time and frequency domains.
Specifically, the Pseudo Wigner Distribution (PWD) is obtained by inserting a
window function with respect to the time domain, and it is given by (Goncalves



3.2 Time-Frequency Distributions 39

and Baraniuk, 1998)

SPWD(t, f) =
∫ ∞

−∞
w(t′)s

(
t+ t′

2

)
s∗
(
t− t′

2

)
e−j2πft′dt′ (3.3)

It is worth noting that the PWD results from a self-correlation of the STFT across
frequency, as follows

SPWD(t, f) = 1
2π

∫ ∞

−∞
SSTFT

(
t, f − f ′

2

)
S∗

STFT

(
t, f + f ′

2

)
df ′ (3.4)

when w(t) =
√
w(2t). The PWD produces better resolution with respect to the

STFT, but the cross-terms occurs as well as for the WVD. The S-method TFD
limits the range of the integral of the PWD with a low-pass windowing function
(Stankovic, 1994). It is given by

SSM(t, f) = 1
π

∫ ∞

−∞
W(f ′)SSTFT

(
t, f − f ′

2

)
S∗

STFT

(
t, f + f ′

2

)
df ′ (3.5)

where W(f ′) is a finite frequency domain window. The S-method achieves high
concentration for auto-term along the frequency axis, removing the cross-terms.
It is worth noting that the S-method behaves as the PWD when W(f) = 1, and
as the STFT when W(f) = πδ(f), with δ(·) the delta function, being different
from 0 and equal to 1 into zero delay (Tivive et al., 2015).
The STFT and the PWD are very attractive in real-time classification applications
for their low computational complexity. In particular, the STFT is one of the
most used TFDs since it can be efficiently implemented using the Fast Fourier
Transform (FFT) (Bouchikhi et al., 2011). For this reason, the STFT is taken
into consideration as tool for the time-frequency analysis of the signal in the next
chapters of the Thesis.

3.2.1 Micro-Doppler based Target Signature

Defined as the square magnitude of the STFT of the signal, the spectrogram is often
used as a 2D target signature for classification algorithms based on mD information
due to target micro-motion. In (Fioranelli et al., 2015b,c), the spectrogram is used
to distinguish between unarmed and potential armed personnel in the context of
security and surveillance applications. A multistatic radar system is proposed
for improving the classification capabilities by taking advantages of diversity of
mD effect with respect to the aspect angle variation. Specifically, in (Fioranelli
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et al., 2015c) four features are empirically estimated from the spectrogram, which
are: mD bandwidth, as the total range of frequencies between the highest and
the lowest Doppler frequency in the spectrogram; Doppler offset, given by the
difference between the highest and the lowest Doppler frequency; mean period of
the swinging of the limbs; the ratio in dB between the value of the spectrogram
at the peaks related to the swinging arms and at the line related to the body. In
(Fioranelli et al., 2015b), a set of features is evaluated by using the Singular Value
Decomposition (SVD) on the spectrograms and estimating the standard deviation
of the first right singular vector. In (Fioranelli et al., 2015a) the authors analyse
the effect of polarimetry on the same classification scenario, investigating how the
classification performance changes by using co-polarized or cross-polarized data, or
a combination of both. In (Liu et al., 2012) the is used as a 2D target signature for
BM target recognition. The authors propose an data-adaptive window selection
approach to get the maximum concentration of the signal components in the
spectrogram. Then, the mD modulation frequency is estimated analysing the
periodic structures in the image by applying the 2D FFT.
The Cadence Velocity Diagram (CVD) is a 2D target signature obtained by Fourier
transforming the spectrogram along the time dimension, as follows

SCVD(fc, f) =
∣∣∣∣∫ ∞

−∞
|SSTFT(t, f)|2 e−j2πfctdt

∣∣∣∣2 (3.6)

The CVD is a 2D image which shows the repetition rate (or cadence) of different
velocities which produce the mD modulation on the observed signal. A mD
classification method which uses the strongest parts of the CVD for the feature
vector construction is described in (Bjorklund et al., 2012). The algorithm was
tested successfully in the case of the discrimination of human motion. However it
requires high storage capabilities as long as the feature vector is composed by the
highest cadence frequencies and sampled velocity profiles corresponding to each of
them. In (Clemente et al., 2015a) the evaluation of the CVD as target signature
was proposed for the recognition of targets which exhibit micro motions, testing
the framework on three different classification challenges, namely helicopters,
human motions and animal gaits classification. The CVD is more robust than the
spectrogram as mD target signature since it does not depends on the initial phase
of moving object, avoiding synchronization problems or the use or more complex
classification process (Clemente et al., 2015a).
Another 2D target signature used for mD based classification algorithms is the
cepstrogram. Starting from the TFD of the radar return, the cepstrogram is defined
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(a) (b) (c)

Fig. 3.2 Examples of TF target signature for a nano-sized quadcopter from
(Fuhrmann et al., 2017): (a) spectrogram, (b) CVD and (c) cepstrogram.

as the Inverse Fourier Transform (IFT) of the logarithm of the spectrogram along
the frequency domain, as follows

SCEP(t′, tq) =
∣∣∣∣ 1
2π

∫ ∞

−∞
log10

[
|SSTFT(t, f)|2

]
ej2πftqdt

∣∣∣∣2 (3.7)

where tq variable has the dimension of time, and it is known as quefrency (Noll,
1964). The cepstrogram is particularly useful when the integration interval of
radar measurements is very long with respect to periodicity of the observed target
motion. In (Harmanny et al., 2014) the cepstogram is proposed as 2D target
signature for mD based classification of small air-target, as drones and birds.
Specifically, the angular velocity of a rotor, or propeller, is directly estimated from
cepstrogram which shows the spectrogram periodicity, allowing to discriminate
between single rotor or multicopter target types. Fig. 3.2 from (Fuhrmann et al.,
2017) shows an example of a mD based target signature from radar measurement
of a nano-sized quadcopter by a CW system at Ka band, namely the spectrogram,
the CVD and the cepstogram. From Fig. 3.2a and Fig. 3.2b, it is observed that
the mD components are not clearly visible in both the Spectrogram and the CVD
due to the high rotation velocities of the blades, while from the cepstogram in
Fig. 3.2c it is possible to distinguish the mD contribution from different rotors.

3.3 Radon Transform Based ATR

Introduced by Johann Radon in 1917, the Radon Transform (RT) computes the
projection of a 2D function onto a specific direction (Deans, 2007). Considering a
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generic 2D function f (x, y) and a line L defined in R2, the RT of f (x, y) is

Rf =
∫

L
f(x, y)dl (3.8)

where x, y are coordinates of points on the plane, and, dl is the increment of
length along L. In order to define more precisely the integral in (3.8), let us
consider the definition of an arbitrary line in the normal form with respect to the
coordinate system (x, y), given by

x̆ = x cos(θ) + y sin(θ) (3.9)

with θ the inclination angle with respect to the x-axis (see Fig. 3.3). Considering
the coordinate system (x̆, y̆) obtained rotating the system (x, y) by the angle θ
such that

x = x̆ cos(θ) + y̆ sin(θ)
y = x̆ sin(θ) + y̆ cos(θ)

the RT of f (x, y) can be written as

Rf = Rf (x̆, θ) =
∫ ∞

−∞
f (x̆ cos(θ) + y̆ sin(θ), x̆ sin(θ) + y̆ cos(θ))dy̆ (3.10)

where the limits may be finite if the function f (x, y) is zero outside its domain D.
Let us consider the easier case in which the 2D function is given by a delta function
located at the point (x0, y0) as follows

f (x, y) = δ(x− x0)δ(y − y0) (3.11)

Then its RT onto the line in (3.9) is

Rf (x̆, θ) =
∫

L
δ(x− x0)δ(y − y0)dl =

∫ ∞

−∞
δ(x̆− x̆0)δ(y̆ − y̆0)dy̆

= δ(x̆− x0 cos(θ) − y0 sin(θ))
(3.12)

where

x̆0 = x0 cos(θ) + y0 sin(θ)
y̆0 = x0 sin(θ) + y0 cos(θ)
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Fig. 3.3 Representation of RT of a generic function f (x, y), whose domain D and
a generic line L are shown in the original (continuous line) and rotated (dashed
line) reference coordinate system.

It is noted that the RT of a delta function in R2 generates a sinusoidal pattern in
the 2D domain (x̆, θ) as follows

x̆ = A sin(θ + θ0) (3.13)

with

A =
√
x2

0 + y2
0

θ0 = tan−1
(
x0

y0

)

For this reason the data obtained by the RT is known as sinogram (Kertész et al.,
2017). By contrast the Inverse Radon Transform (IRT) allows to reconstruct a
2D function from its projections converting any sinusoidal pattern into a point.
The IRT can be computed in two ways: the computation in the Fourier domain
and the so-called filtered back-projection method (Bai et al., 2011). The first is
based on the relation between the RT and the Fourier transform. Specifically
the 2D Fourier transform of the generic function f along a line at the inclination
angle θ is the one dimension Fourier transform of the RT of that function onto
the same line (Deans, 2007). This means that it is possible to calculate the 2D
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Fourier transform of f(x, y) by knowing all the projections for θ ∈ [0, π[. The
filtered back projection method is widely used in the literature and it is obtained
as follows

f (x, y) =
∫ π

0
R̂f (x cos(θ) + y sin(θ), θ)dθ (3.14)

where R̂f is obtained by filtering the RT of f (x, y) by one dimensional filtered
with respect to the x̆ domain. Commonly the ramp filter is considered (Bai et al.,
2011).
Both the RT and its inverse function are widely used in computer vision appli-
cations e.g. for image reconstruction from data acquired by CT, PET or MR
scanners or for image classification (Kertész et al., 2017). Many authors propose
the use of the RT for extracting Doppler information starting from TFD of radar
echoes. In (Wood and Barry, 1994) and (Stankovic et al., 2001) the RT is used
for in order to detect linear FM signals. Since a line structure in the TF plane is
projected onto a point in the Radon transform the chirp rate value of a linear FM
signal can be estimated evaluating the concentration of the WVD along different
directions (hence, angles).
Each point of the HRRP of a target obtained by wideband radar represents the
integral of the target distribution function along the corresponding equal-phase
line. Hence, the HRRP can be seen as the projection of the target distribution
along the radar LOS. Since the effect of a rotating scatterer in the range-slow
time domain is equivalent to the RT of its space distribution function, the IRT
is proposed in the literature as a back-projection approach to reconstruct a 2D
image of the target.
In (Bai et al., 2011) two IRT based methods are presented for image reconstruction
of rotating parts of a target e.g. airplane or helicopter rotor. The first method
consists into the real-valued IRT applied directly on the echoes modulus, while the
second one applies the complex-valued IRT on the complex echoes guaranteeing
higher image resolution by performing a coherent integration. Fig. 3.4 from (Bai
et al., 2011) shows the imaging process of the An-26 plane, with a turbo on each
side of the airframe. The ISAR images of each turbo is obtained by applying the
real-valued IRT. Specifically, in Fig. 3.4(a) the image obtained from the mixed
echoes from the airframe and the turbines is shown, where two strips due to mD
signal components can be observed. The focused image of the main body is shown
in Fig. 3.4(b), where the mD components are filtered out. The four points around
the diagram centre shown in Fig. 3.4(c) and Figs. 3.4(d) represent the four blades
of the two turbines, whose diameter is approximately 3.9 m.
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Fig. 3.4 Imaging process of An-26 plane rotors from (Bai et al., 2011): (a) image
using target echoes; (b) image of main body; (c) image of first turbo; (d) image of
second turbo.

By contrast, the IRT is also proposed in the ISAR/SAR processing for separating
the echoes from target rigid body and the contribution from its rotating parts. In
the case in which the frequency modulations due to the moving parts of targets are
not filtered out, the mD effect introduces a distortion in the SAR/ISAR images.
For this reason in (Thayaparan, 2006) two techniques are proposed. The first
technique is based on the TFD analysis of radar returns. Specifically, the spectro-
gram of the echo is evaluated for various window sizes, since the contribution of
rotating parts leads to a high concentration in the narrow-window spectrogram,
while the rigid body contribution produces a high concentration into wide-window
spectrogram. The second approach is based on the IRT computation of the TFD
of the received echo. The authors in (Hua et al., 2014) describe a new approach for
cleaning the ISAR image of a target from its rotating parts applying the IRT on a
frame of target range-profiles. In particular, the rotation period is firstly estimated
by autocorrelation method on echo, then the contribution of rotating parts is
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(a) (b) (c)

Fig. 3.5 Imaging process of precessing cone from (Kangle et al., 2009): (a) echo
spectrum ; (b) TFD; (c) 2D reconstruction result using inverse Radon transform
on Time-Frequency distribution.

detected from the IRT of the range profile frame and filtered out. In (Kangle et al.,
2009) a novel technique for the extraction of precession parameters of a conical
target is presented. The proposed algorithm is based on the Doppler analysis of
the radar echo: the precession parameter (angle and rate) are estimated analysing
the spread of echo spectrum. Finally a 2D image of target is reconstructed by
applying the IRT on the echo TFD. Fig 3.5 from (Kangle et al., 2009) shows an
example of imaging process obtained from a precessing cone. Specifically, Fig.
3.5a and Fig. 3.5b show the spectrum and the spectrogram from a precessing
cone, where the two mD frequency components observed correspond to the nose
and bottom of the warhead model. From these two figures, it is observed that
the estimated spread width of the echo spectrum is equal to the amplitude of the
maximum mD frequency component. Finally, Fig. 3.5c shows the reconstructed
2D image of the cone obtained by applying IRT on the spectrogram in Fig. 3.5c,
where two peaks are observed as contributions of the cone nose and bottom.

3.4 Pseudo-Zernike Moments Based ATR

Introduced in (Bhatia and Wolf, 1954), the pZ moments of an image I(x, y) are
geometric moments computed as the projection of the image on a basis of 2D
polynomials which are defined on the unit circle. Specifically, the pZ moments of
order r and repetition l are calculated as follows

ζr,l = r + 1
π

∫ 2π

0

∫ 1

0
W ∗

r,l (ρ, θ) I (ρ cos θ, ρ sin θ) ρdρdθ (3.15)
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with r ≥ |l|, and where the polynomial Wl,r can be written as

Wl,r(x, y, ρ) = Wr,l (ρ, θ) =
r−|l|∑
h=0

ρr−h (−1)h (2r + 1 − h)!
h! (r + |l| + 1 − h)! (r − |l| − h)!e

jlθ (3.16)

where x = ρ cos θ and y = ρ sin θ, with ρ ≤ 1. Fig. 3.6 from (Clemente et al.,
2015a) shows the magnitude of pZ polynomials Wr,l(ρ, θ) with order from r = 0 to
r = 3. It is worth noting that the polynomials for positive values of l are rotated
version of the ones corresponding to negative values. Moreover, the magnitude of
all the shown polynomials for repetition l = 0 presents a pattern with concentric
circles. The orthogonality relation of the pZ polynomials is satisfied on the unit
circle, and it is expressed as follows

∫∫
x2+y2≤1

W ∗
r,l(x, y)Wm,k(x, y)dxdy = π

r + 1δrmδlk (3.17)

where δrm is the Kronecker delta function, i.e

δrm =
 1 r = m

0 r ̸= m
(3.18)

PZ moments increases the number of moments available for a given order of
the polynomial compared to Zernike moments reducing the noise sensitivity.
Specifically, the number of linearly independent pZ polynomials of degree ≤ r

is (r + 1)2, whereas for the Zernike polynomials it is 1
2(r + 1)(r + 2). Hence,

pZ moments provide more information about the image with respect to Zernike
moment at parity of order. The moments have several properties, among which
are that they are independent, since the pZ polynomials are orthogonal on the
unit circle, and their modulus is rotational invariant. The pZ moments are
widely used in image processing for pattern recognition (Nassery and Faez, 1996)
and face recognition (Sultana et al., 2014) due to their useful properties, such
as scale, translation and rotation invariance. The authors in (Clemente et al.,
2015a) propose the pZ moments based feature vector extracted by projecting the
CVD from the target observation, considered as a 2D image signature, over a
pZ polynomial basis. The algorithm has been compared with two classification
techniques based on mD features vectors presented in (Zabalza et al., 2014) and
(Molchanov et al., 2012), underlining its better performance. Moreover, the scale
invariant property is important for mD based feature due to their more robustness
with respect to the angle of view which affects strictly the maximum frequency
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Fig. 3.6 PZ polynomials for orders 0 to 3 (Clemente et al., 2015a).

shift. Specifically, scale invariance allows to apply the algorithm in a multistatic
scenario without the requirement of a multistatic training dataset or for an ATR
system which works with a carrier frequency slightly different than the one used
for the database creation.

3.5 Krawtchouk Moments Based ATR

The Kr moments of order r of an image I(x, y), introduced in (Yap et al., 2003),
are computed as the projection of the image on a basis of orthogonal polynomials
which are associated with the binomial distribution. These are calculated as the
product of the classical Kr polynomials, Kr, and a weight factor to overcome the
numerical stability problem as follows (Kaur et al., 2015; Yap et al., 2003)

Kr(x, p,N ) = Kr(x, p,N )

√√√√w(x; p,N )
ρ(n; p,N ) =

=2 F1

(
−n,−x; −N ; 1

p

)√√√√ w′(x; p,N )
w′′(n; p,N )

(3.19)

with

w′(x; p,N ) =
(

N
x

)
px(1 − p)N −x

w′′(x; p,N ) = (−1)N
(

1 − p

p

)n
n!

(−N )n

(3.20)
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where x and n belonging to (0, 1, 2, . . . ,N ), N ∈ N, with N the set of natural
numbers, p a real number belonging to the set (0, 1). The classical Kr polynomials
are defined trough the Gauss hypergeometric function 2F1, given by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k! (3.21)

with (a)k the Pochhammer symbol, given by

(a)k = a(a+ 1) . . . (a+ k − 1) = Γ(a+ k)
Γ(a) . (3.22)

Fig. 3.7 shows the weighted Kr polynomials with N = 100 for orders from 0
to 3, and p equal to 0.25, 0.50, 0.75. It is worth noting that p represents a shift

(a) (b)

(c) (d)
Fig. 3.7 Representation of the weighted Kr polynomials of order (a) r = 0, (b)
r = 1, (c) r = 2, (d) r = 3, with the parameter p = 0.25, 0.50, 0.75 and N = 100.
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parameter, such that when p varies of ∆p with respect to 0.50, the polynomial is
shifted of ∆pN , approximately (Yap et al., 2003).
Considering a 2D image I(x, y), the Kr moments of order (n,m) are defined as
(Kaur et al., 2015)

Knm =
Nx−1∑
x=0

Ny−1∑
y=0

Kn(x, p1,Nx − 1) ×Km(y, p2,Ny − 1)I(x, y) (3.23)

where Nx and Ny are the image dimensions along both the axes. Since it is
possible to write the image as a series of weighted Kr polynomials scaled by the
Kr-moments (Yap et al., 2003), such that

I(x, y) =
Nx−1∑
x=0

Ny−1∑
y=0

KnmKn(x, p1,Nx − 1) ×Km(y, p2,Ny − 1) (3.24)

hence the Kr moments are a synthetic way to represent the image intensity function
I(x, y).
The Kr moments are widely used for image processing in various applications
like image reconstruction (Yap et al., 2003), shape recognition (Kaur et al., 2015)
and face recognition (Nor’aini and Raveendran, 2009) for their some peculiar
characteristics. In (Clemente et al., 2017) the Kr moment based feature vector
is proposed for the classification and characterization of military target images.
Since they are discretely defined, they do not involve numerical approximation as
in the case of continuous orthogonal moments. In this way discretization error
does not exist and the amount of resource required to store the polynomials is
reduced thanks to the recurrence relations and the symmetry properties of Kr
moments (Yap et al., 2003). Moreover, the moments derived from Kr polynomials
benefit of scale, rotation and translation invariant properties (Yap et al., 2003).
These characteristics, together with the capability to pre-compute the polynomials,
make this image moments reliable for real time target recognition.

3.6 2D Gabor Filter Based ATR

The 2D Gabor function is the product of a complex exponential representing
a sinusoidal plane wave and an elliptical Gaussian in any rotation. The filter
response in the continuous domain can be normalized to have a compact closed
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form (Ilonen et al., 2007; Kamarainen et al., 2006)

g(x, y) = f 2
cs

πηxηy

e
−
(

f2
cs

η2
x

x′2 + f2
cs

η2
y

y′2
)
ej2πfcsx′ (3.25)

with
x′ = x cos(ϑ) + y sin(ϑ), y′ = −x sin(ϑ) + y cos(ϑ) (3.26)

where fcs is the central spatial frequency of the filter, ϑ is the anti-clockwise
rotation of the Gaussian envelope and the sinusoidal plane wave, ηx is the spatial
width of the filter along the plane wave, and ηy is the spatial width perpendicular
to the wave. The sharpness of the filter is controlled on the major and the minor
axes by ηx and ηy.The normalized filter harmonic response is (Kamarainen et al.,
2006)

G(u, v) = e
− π2

f2
cs

(
η2

x(u′−fcs)2+η2
yv′2
)

(3.27)

where
u′ = u cos(ϑ) + v sin(ϑ), v′ = −u sin(ϑ) + v cos(ϑ). (3.28)

Fig. 3.8 represents the real part of a Gabor filter response in the XY plane,
with ηx = ηy = 2π, fcs = 4 and for different orientation angles. Fig. 3.8a and
Fig. 3.8b shows that the variation of the orientation angle leads to a rotation of
the filter response. Specifically, it is possible observing that the magnitude of 2D
response in Fig. 3.8b presents a pattern with parallel lines which are oblique with
respect to the x-axis of ϑ.
Fig. 3.9, instead, represents the magnitude of the Gabor filter harmonic response
in the UV plane, obtained from the responses in Fig. 3.8. The harmonic response
is a pulse whose position depends on both fcs and ϑ. Particularly, the pulse moves
on a circumference centred in the origin and whose radius is defined by fcs, while
ϑ is the rotation angle in the anti-clockwise direction with respect to the û axis,
as shown in Fig. 3.9a and Fig. 3.9b. Hence, it is possible to extract local feature
in the Fourier domain by varying the filter parameters. Gabor filters have been
successfully employed to extract reliable features in several challenges, such as the
texture and symbol classification (Kamarainen et al., 2006; Mittal et al., 1999)
and in the context of face recognition (Ilonen et al., 2007), especially due to their
scale, translation, rotation and illumination invariant properties.
In (Lei and Lu, 2005) authors propose a Gabor filtering approach to extract a
feature vector from the mD based signatures for the classification of different
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(a) ϑ = 0◦ (b) ϑ = 45◦

Fig. 3.8 Real part of a Gabor filter response in the xy plane, with ηx = ηy = 2π
and fcs = 4.

(a) ϑ = 0◦ (b) ϑ = 45◦

Fig. 3.9 Magnitude of the Gabor filter harmonic response in the uv plane, with
ηx = ηy = 2π and fcs = 4.

target motions, such as vibration, rotation or tumbling. The proposed method
consist of three steps. The first is filtering of the 2D signature (based on TFD of
radar return) with a bank of Gabor filters, created by selecting a set of orientation
angles. Following, a set of feature vectors is obtained by concatenating the pixel
for each output images. Finally, the output images are firstly down-sampled, and
then the principal component analysis (PCA) method is used in order to reduce
the number of features. In particular, the eigen-decomposition of the matrix
containing the down-sampled images from the bank of filters is evaluated, and the
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eigenvector corresponding to the highest eigenvalues are selected as final features.
Authors in (Tivive et al., 2015) proposes a feature extraction method based on
a logarithmic version of Gabor filter for human motions classification. Specifi-
cally, the log-Gabor filter has similar shape to a Gabor filter on the logarithmic
frequency scale with an extended tail in the high-frequency region. The proposed
classification method evaluate the 2D mD based signature as the S-method TFD of
radar return. Then, a small patch centred on the torso frequency is automatically
extracted to guaranteeing robustness with respect to the target speed. The final
2D signature is filtered by a bank of Log-Gabor filters at multiple scales and ori-
entations, and each output image is then normalized with respect to its maximum
value and divided in non-overlapping sub-regions. A feature vector for each output
image is extracted, whose components are the mean value of each sub-regions.
Finally, the dimensionality of features is reduced by applying the 2-Directional
2-Dimensional (2D)2 PCA is applied for obtaining the features dimensionality
reduction. The experimental performance based on real radar shown in (Tivive
et al., 2015) demonstrates the effectiveness of the method, and the improvement
that the use of log-Gabor filter introduced with respect the normal Gabor filter
for the specific classification challenge.

3.7 Summary

In this Chapter, an overview of the recent signal processing tools for target
signature and features extraction for ATR was presented. A particular focus was
on mD based classification approaches and on feature extraction techniques for
image classification.
In Section 3.2 the principal tools for the time-frequency analysis of radar return
were discussed. Specifically, the most used TFD for obtaining mD profile of a
target which exhibits micro-motions were presented in details, highlighting the
several trade-offs that each distribution poses. The STFT takes advantage of the
implementation through FFT; however, there is a trade off between the time and
frequency resolution. The WVD is a quadratic distribution which computes the
FT of the signal autocorrelation; it guarantees finer resolutions in both time and
frequency with respect the STFT, but it introduces into time-frequency plane
cross-terms between correlated components, which may represent interference
for a classification algorithm. The PWD and S-method distribution allow to
mitigate cross terms with respect to the WVD, by windowing the autocorrelation
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in the time domain, the first, and both in time and frequency domains the second.
Moreover, the basic principles of spectrogram, CVD and cepstogram as mD based
target signature were introduced, emphasizing on their advantages in being used
for ATR. The spectrogram is used to extract information on the instantaneous
mD components within the signal. The CVD shows the the mD shifts and their
repetition rates which are present within the analysed signal, being independent
on the initial phase of the micro-motion with respect to the spectrogram. The
cepstogram is used in presence of targets moving very fast, e.g. drones with very
fast rotor blades, such that the spectrogram and CVD have not enough resolution
for showing all the mD components distinctly.
The theory of the RT and its inverse function was introduced in Section 3.3,
focusing on their application for RI. Specifically, the use of IRT as tool for focusing
the radar image of a target with rotational parts has been demonstrated. However,
the capability of IRT to extract the mD components from a TFD of radar return or
from a sequence of HRRPs has been also used for the extraction of micro-motion
parameters (e.g. angular velocity) and for the imaging of rotating target.
Following, the concepts of pZ moments and Kr moments were introduced in
the context of image classification. Computed by projecting an image onto two
bases of orthogonal polynomials differently defined, both the two mentioned types
of image moments have been employed satisfactorily for the identification of
target from SAR images thanks their proprieties of scale, translation and rotation
invariance. Additionally, the evaluation of pZ moments have been proposed for
the extraction of a feature vector in a mD based classification framework. The
framework, based on the projection of the CVD obtained from radar return onto
a base of pZ polynomials, have been tested in contexts of helicopter and human
gaits recognition with success. Finally, the use of 2D Gabor Filter for targets
recognition from mD profiles is discussed. In Chapter 4 the described mD based
classification framework is tested in the specific challenge of Ballistic Targets
(BTs) classification, for discriminating between missile warheads and decoys. In
addition, the framework is improving by considering different feature extraction
approaches, based on Kr moments and 2D Gabor Filters, which can be singularly
used according to the allocated resources for the classification. A novel technique
for the same classification challenge is presented in Chapter 5, based on the
computation of IRT on a sequence of HRRPs, in combination with of pZ moments
evaluation for the features extraction.



Chapter 4

Micro-Doppler based Recognition
of BTs

4.1 Introduction

The capability to recognize ballistic targets is an important challenge which has
attracted increasing interest in the past few years. During the mid-course phase
missiles release both warheads and some other objects (decoys) with the aim to
confuse the exo-atmospheric interceptors. Therefore, it is important to distinguish
between warheads and decoys in order to maximize the ammunition capabilities.
Warheads and decoys exhibit different micro-motions that, if appropriately ex-
ploited, may be used to distinguish them (Weiner and Rocklin, 1994). Specifically,
the warheads are typically spin-stabilized to ensure that they do not deviate from
the intended ballistic trajectories (Bankman et al., 2001). However, warheads
exhibit precession and nutation motion due to the effect of the Earth’s gravity.
By contrast, decoys tumble when released by the missiles due to the atmospheric
resistance, the gravity and the absence of a spinning motion (Sessler et al., 2000;
Weiner and Rocklin, 1994). Therefore, micro-Doppler (mD) analysis can be used
for the purpose of information extraction for target classification, because different
behaviours (motions) produce different signatures.
The anti-ballistic missile interceptors are usually equipped with an OnBoard
Computer (OBC) to perform control, guidance, target data estimation, mission
sequencing and various other critical operations during all the flight, from pre-
launch to till impact (Rathore et al., 2014). However, all these operations are
made harder due to the high velocities of the moving target and the interceptor
which demands higher data update rates from sensors, high frequent commands
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to control system. For these reasons fast and low computational classification
algorithms are required to optimally exploit the available resources.
In this Chapter, in order to understand the micro-Doppler (mD) shifts, a high fre-
quency based signal model for the targets of interest is developed that incorporates
the effects of occlusion for all the scattering points. Then, a laboratory experiment
is conducted for the validation of mathematical model. Furthermore, a framework
based on the processing of the Cadence Velocity Diagram (CVD) presented in
(Clemente et al., 2015b) for radar mD classification is proposed for performing
the classification of BTs, in combination with different information extraction
techniques. In particular, the classification framework is updated, proposing four
different techniques for features extraction from the CVD which require different
computational complexity, making the algorithm adaptable to defence system
available resources. The first approach is based on the statistical characteristics
of the unit area function obtained by averaging and normalizing the CVD. The
second method is from (Clemente et al., 2015b) based on the use of pZ moments,
while the third one consists of the Kr moments computation of the CVD. The
last method is based on the use of the 2D Gabor filters. All approaches are tested
on both simulated and experimental data.

4.2 Radar Return from Ballistic Target

In this Section, the mathematical model for the radar return from a BT with micro-
motions is described in detail. Specifically, from (2.30) and (2.31) in Section 2.5, it
is clear that the mD components due to motion of each scattering point is evaluated
defining the micro-motion matrix, T m, according to the target micro-motions.

Warheads

The missile warheads exhibit precession and nutation during the flight onto the
exo-atmospheric part of their sub-orbits. In particular, the precession is composed
by two micro-motions: the spinning of the target around its symmetry axis, and
the conical movement, such that the symmetry axis rotates conically around the
precession axis. The nutation is an oscillation of the symmetry axis perpendicular
with respect the precession axis. Therefore, in the case of warheads, the matrix
T m is given by the product of three terms, namely

T m = RcRsRn (4.1)
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where the matrices Rc and Rs depend on conical movement and spinning, respec-
tively, while Rn depends on nutation. Since the matrices Rc and Rs are related
to rotation movements, they can be obtained by the Rodrigues formula (Hongwei
et al., 2010; Murray et al., 1994)

Rc = Î + Ê(ŵc) sin(Ωc t) + Ê
2(ŵc) (1 − cos(Ωc t))

Rs = Î + Ê(ŵs) sin(Ωs t) + Ê
2(ŵs) (1 − cos(Ωs t))

(4.2)

where Î is the identity matrix of dimension 3 × 3, Ωc and ŵc are the norm and
the direction of the angular velocity vector wc of conical rotation, Ωs and ŵs are
the norm and the direction of the angular velocity vector ws of spinning, and
with Ê(·) the skew symmetric matrix defined as (Hongwei et al., 2010)

Ê(u) =


0 −uz uy

uz 0 −ux

−uy ux 0

 (4.3)

with u = [ux, uy, uz]T a generic vector.
In order to evaluate the matrix Rn, a new coordinate system (x̂n, ŷn, ẑn) has to
be considered. The unit directional vector that identifies the symmetry axis of
the conical warhead with respect to the principal system (X̂, Ŷ , Ẑ) is defined as
follows

ẑ0 = R0 a0 (4.4)

where a0 = [0, 0, 1]T , and Rn the Euler matrix which defines the initial position
of the symmetry axis into the initial instant of time t0. Due to the precession,
the coordinates of target axis depend on time for its rotation during the conical
motion, namely

ẑt = RcR0 a0 (4.5)

where ẑt represents the unit directional vector at time instant t. Considering
the cone axis oscillating in the plane given by the vectors ẑt and ŵc, the new
reference system (x̂n, ŷn, ẑn) is chosen so that x̂n coincides with the precession
axis (hence, with ŵc) while the ẑn axis is perpendicular to the oscillation plane,
as shown in Fig. 4.1. The expressions of the three unit directional vectors of the
new reference system are

x̂n = ŵc, , ẑn = ŵc × ẑt, ŷn = x̂n × ẑn. (4.6)
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Fig. 4.1 The reference system (x̂n, ŷn, ẑn).

with ∥ŵc∥ = ∥ẑt∥ = 1. Considering the three unit directional vectors (x̂, ŷ, ẑ) of
the system (X̂, Ŷ , Ẑ), the transition matrix An, which represents the relationship
between the previous and the new system, is given by

(x̂n, ŷn, ẑn) = (x̂, ŷ, ẑ) An. (4.7)

Since the reference coordinates (X̂, Ŷ , Ẑ) are the natural coordinates, which
means that (x̂, ŷ, ẑ) form a 3 × 3 identity matrix, then matrix An is obtained as
follows

An = (x̂n, ŷn, ẑn) (4.8)

from which it is clear that the transition matrix is orthonormal. The position
vector of a generic point in the new reference system at initial time instant t0 is

rnp(t0) = [xnp(t0), ynp(t0), znp(t0)]T = A−1
n rp(t0). (4.9)

Considering the case of a sinusoidal oscillation of the precession angle Θ, given by
the angle between the directions of conical rotation and spinning angular velocity
vectors, it follows

∆Θ = ∆Θ(t) = Θn sin(Ωnt+ Ωn0) (4.10)

where Ωn and Θn represent the pulsation and the maximum amplitude of the
oscillation, respectively, and Ωn0 is the nutation initial phase. Since in the new
reference system the oscillation of the cone axis is a rotation around the ẑn axis,
the position vector rnp(t) at the instant t is

rnp(t) = Bnrnp(t0) = Bn A−1
n rp(t0) (4.11)
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where Bn is the Euler rotation matrix around ẑn axis given by

Bn =


cos(∆Θ) − sin(∆Θ) 0
sin(∆Θ) cos(∆Θ) 0

0 0 1

 . (4.12)

The position vector in the natural coordinates system is given by

rt = An rnt = An Bn A−1
n rt0 . (4.13)

Finally, the nutation matrix Rn can be written as

Rn = An Bn A−1
n . (4.14)

Decoys

When the missile releases lightweight decoys, they starts to tumble due to the
Earth gravity. The tumbling is defined as the rotation of a decoy such that the
angular velocity vector is perpendicular to the symmetry axis of the object. The
matrix T m for the tumbling decoys is given by Rodrigues formula

T m = T r = Î + Ê(ŵr) sin(Ωr t) + Ê
2(ŵr) (1 − cos(Ωr t)) (4.15)

with Ωr and ŵr the norm and the direction of the angular velocity vector wr of
decoy rotation.

4.2.1 Approximation at relative EM far field

When the target is at relatively long distance, according to the relation in (2.33),
the relative distance between the radar and the i-th scatterer can be approximated
as follows

ri ≈ ∥rradar
MC ∥+ < v,n > t+ < ri,n > (4.16)

with rradar
MC and ri the position vectors of the MC and the i-th scatterer with

respect the radar system, respectively, v the target bulk velocity vector and n

the direction of LOS, and where the operator < ·, · > defines the scalar product
between the two vectors. Considering the coordinate system (x̃,ỹ,z̃) shown in Fig.
4.2, which is centred into MC, and such that x̃ ≡ ẑt and the vector rradar

MC belongs
to the plane x̃ỹ, the projection along the LOS of the distance between the i-th
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scatterer and the MC is given by

< ri,n >= −x̃i cos(α) − ỹi sin(α) (4.17)

where x̃i and ỹi are the (x̃, ỹ)-coordinates of the i-th scatterer, and the aspect
angle α is the angle between the target symmetry axis and the LOS direction.
The latter is evaluated as

α = α(t) = cos−1 (< ẑt,n >) (4.18)

with ∥ẑt∥ = ∥n∥ = 1. The received complex signal can be written as

srx(t) = ej 4π
λ

tejφMCejφbD(t)
Np∑
i=1

√
σi(t)ejφi (4.19)

with φMC and φbD(t) the phase rotations due to the initial MC range and bulk
motion, given by

φMC = −j 4π
λ

∥rradar
MC ∥ (4.20)

φbD(t) = −j 4π
λ
< v,n > t (4.21)

and where φi is the phase of the complex coefficient of the i-th scatterer, given by

φi = j
4π
λ

(x̌i cos(α) + y̌i sin(α)) (4.22)

The direction of LOS can be expressed in terms of elevation and azimuth angle
with respect to the angular velocity vector of warhead conical rotation or decoy
tumbling. Let us consider the coordinate system (û, v̂, ŵ) shown in Fig. 4.3
such that the axis û corresponds with the unit angular velocity vector of conical
rotation ω̂c, and the plane ûv̂ contains the symmetry axis of the object in the
initial observation time instant ẑ0. The vectors ẑt and n in the new coordinate
system can be written as

n = [cos(∠El) cos(∠Az), cos(∠El) sin(∠Az), sin(∠El)]T (4.23)
ẑt = [cos(Θ + ∆Θ), sin(Θ + ∆Θ) sin(Ωct), sin(Θ + ∆Θ) cos(Ωct)]T (4.24)

with ∠El and ∠Az the elevation and azimuth angle of radar position, respectively.
Substituting (4.23) and (4.24) into (4.18), the aspect angle can be written as
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𝛼 𝑥

 𝑦

 𝑧

MC

𝑆

Fig. 4.2 Representations of the reference system (x̃,ỹ,z̃).

Ω𝑐

 𝑤

∠Az

𝒏

∠El 𝒛𝑡

 𝑣

 𝑢
Θ

MC

Fig. 4.3 Representations of the reference system (û, v̂, ŵ).

α(t) = cos−1( cos(∠El) cos(∠Az) cos(Θ + ∆Θ)+
cos(∠El) sin(∠Az) sin(Θ + ∆Θ) sin(Ωct)+
sin(∠El) sin(Θ + ∆Θ) cos(Ωct))

(4.25)

It is worth noting that in the case of tumbling decoy, since the angular velocity
vector is perpendicular to the symmetry axis of the target, the aspect angle can
be calculated by (4.25) by applying the following equivalences

Θ = π

2 (4.26)

∆Θ = 0 (4.27)
Ωc = Ωr = ∥ωr∥ (4.28)
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In this analysis two possible shapes are considered for the warhead, which are
namely cone and cone with triangular fins, while three shapes for decoy, namely
cone, cylinder and sphere. The number of scattering points located on the target
depends on the considered shape. In particular, they are generally located in
proximity of the edges of the target section obtained by the intersection between
the target volume and the incident plane, defined as the plane containing both
the symmetry axis and the LOS.
For simplicity, in this analysis it is assumed that the phase rotations due to target
range and bulk motion are compensated, and the singular scattering proprieties of
each scatterer are not taken into account, considering the modulus of scattering
coefficients as a binary function whose possible values are {0, 1}. Specifically,
this function depends on the aspect angle α(t), and its value is 1 when there
is a LOS for the scattering points, and 0 otherwise. Finally, it is assumed
that the radar resolution allows to distinguish different targets in range-azimuth
such that the return from different target can be processed distinctly. These
simplifier approximations allow us to focus the analysis on the mD components
that characterized the return from a target.

Cone

For the conical targets three principal scattering points are considered: the first
is in correspondence of the cone tip; the other two points are located on the
intersection between the circumference at cone bottom and the incident plane
(x̃ỹ), as shown in Fig. 4.6a. The coordinates of the three points into system
(x̃, ỹ, z̃) are

P1(x̃, ỹ, z̃) = ( h1, 0, 0)
P2(x̃, ỹ, z̃) = (−h2, Rb, 0)
P3(x̃, ỹ, z̃) = (−h2, −Rb, 0)

(4.29)

where h1 and h2 are the distance of the cone tip and centre of the cone base with
respect to the MC, and Rb is the base radius.
Let us consider the possible variation of α(t) in the interval [0, π]. For the cone,
√
σi is 0 for P1 when α(t) ∈ [π − γ, π] and for P3 when α(t) ∈ [γ, π/2], with γ the

semi-angle of the cone; while for P2 the occlusion never occurs for α(t) ∈ [0, π].
Then √

σ2 = 1 with α(t) ∈ [0, π]. The values of the coefficients modulus on varying
the aspect angle for the cone scatterers are synthesized in Table 4.1.
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Table 4.1 Modulus of the scattering coefficients for the three principal scattering
points P1, P2, and P3 of the cone, with respect to the aspect angles α.

√
σ1(α) √

σ2(α) √
σ3(α)

α < γ 1 1 1
γ ≤ α < π

2 − γ 1 1 0
π
2 − γ ≤ α < π

2 1 1 0
π
2 ≤ α < π − γ 1 1 1
π − γ ≤ α ≤ π 0 1 1

Cone plus fins

For the the cone with fins, a scattering point in correspondence of the tip of each
triangular fin is considered in addition to the main three scatterers described
above. In case all the fins tips move on the plane containing the cone base, the
coordinates into (x̃, ỹ, z̃) system are given by

Pfini
(x̃, ỹ, z̃) = (−h2, Rb +Hfin cos (ϖi) , Rb +Hfin sin (ϖi)) (4.30)

with i = 1, · · · , Nfin, Nfin is the number of fins, Hfin the fin height and ϖi is the
angle between the i-th fin and ỹ axis, given by

ϖi = Ωst+ Ωs0 + 2πi
Nfin

(4.31)

with Ωs0 the initial phase of warhead spinning.
The occlusion function for the fins tips does not only depend on the aspect angle
α, but also on the spinning of the cone as it can cause the fins to be occluded
behind the warhead body. In order to evaluate the occlusion function for the fins,
the physical optics approximation is considered. This is a valid approximation
given the high frequency at which the radar system operates. Since the targets
of interest are within the Fraunhofer zone (Hongwei et al., 2010), the rays that
strike the targets can be considered as parallel. The occlusion of fins occur for
α(t) ∈ [γfin, π/2], where γfin is the semi-angle of an isosceles triangle whose
height is equal to the height of the cone, and the base is equal to the diameter
of circumference drawn by rotating fins. Therefore, the coefficient √

σfini
is 1

when α(t) ∈ [0, γfin] and for α(t) > π/2. The value of scattering coefficient for
α(t) ∈ [γfin, π/2] is calculated by comparing the z̃-coordinate of Pfini

with a
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suitable threshold as follows

√
σfini

(t) =
 1 if z̃fini

(t) < X
0 if z̃fini

(t) ≥ X
. (4.32)

where X = X (α) is the threshold, which depends on the aspect angle, hence on
the time. In order to evaluate X , it is necessary to calculate when the straight
line joining the radar and tip of the fin becomes tangential to the cone surface,
as represented in Fig. 4.4. Considering the reference system (x̃0,ỹ0,z̃0), obtained

𝛼 𝑥0

 𝑦0

 𝑧0

𝑃

𝑆

𝐹

𝑂

𝜒 𝑅

Fig. 4.4 Representations of the reference system (x̃0,ỹ0,z̃0).

moving the origin of system (x̃,ỹ,z̃) into centre of cone bottom as shown in Fig.
4.4, the position vectors of the generic fin tip OF , and of the radar OS are

OF = [0, (Rb +Hfin) cos(ϖi), (Rb +Hfin) sin(ϖ)]T

OS = [D′ cos(α),−D′ sin(α), 0]T
(4.33)

with ϖ the angle of the fin tip with respect to the axis ỹ0, and where

D′ ≃ D + h2 cos(α) (4.34)

with D = ∥rradar
cm ∥ the distance between the radar and the mass centre.

The conical surface is represented by the function:

f(x̃0, ỹ0, z̃0) = R̃2 −
(
ỹ2

0 + z̃2
0

)
= R2

b

(
1 − x̃0

H

)2
−
(
ỹ2

0 + z̃2
0

)
(4.35)
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where R̃ = R̃(x̃0) is the radius of the generic cone section given by

R̃(x̃0) = Rb

(
1 − x̃0

H

)
(4.36)

where H = h1 + h2 is the cone height. Considering the generic point of the cone,
P , whose position vector is

OP =
[
H

(
1 − R̃

Rb

, R̃ cos(ξ), R̃ sin(ξ)
)]T

(4.37)

where ξ is the position angle with respect to ỹ0 axis, the lines from P to F and S
are

PF = OP −OF =


H

(
1 − R̃

Rb

)
R̃ cos(ξ) − (Rb +Hfin) cos(ϖ)
R̃ sin(ξ) − (Rb +Hfin) sin(ϖ)

 (4.38)

PS = OP −OS =


H

(
1 − R̃

Rb

)
−D′ cos(α)

R̃ cos(ξ) +D′ sin(α)
R̃ sin(ξ)

 (4.39)

respectively. In order to evaluate the occlusion threshold, it is necessary to evaluate
the angle ϖ and ξ such that PF and PS are both tangent to the conical surface
as follows 

[
∂f
∂x̃0
, ∂f

∂ỹ0
, ∂f

∂z̃0

]T
· PF = 0

[
∂f
∂x̃0
, ∂f

∂ỹ0
, ∂f

∂z̃0

]T
· PS = 0

(4.40)

where the components of gradient vector for a generic cone point are evaluated
from (4.35) as

∂f

∂x̃0
= −2R2

b

H

(
1 − x̃0

H

)
= −2RbR̃

H
;

∂f

∂ỹ0
= −2yf0 = −2R̃ cos(ξ);

∂f

∂z̃0
= −2zf0 = −2R̃ sin(ξ);

(4.41)

with
x̃0 = H

(
1 − R̃

Rb

)
. ỹ0 = R̃ cos(ξ); z̃0 = R̃ sin(ξ); (4.42)
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From (4.40) and (4.41) follows


(−2R̃) [Rb − (Rb +Hfin) cos(ξ −ϖ)] = 0

(−2R̃)
[
D′ sin(α) cos(ξ) +Rb − RbD

′ cos(α)
H

]
= 0

(4.43)

which leads to
cos(ξ −ϖ) = Rb

Rb+Hfin

∀R̃ > 0
cos(ξ) =

[
D cos(α)Rb

H
−Rb

]
1

D sin(α) =
[

tan(γ)
tan(α) − Rb

D sin(α)

] (4.44)

Finally, the threshold is given by

X = (Hfin +Rb) cos(ϖ∗) (4.45)

where
ϖ∗ = cos−1

[
tan(γ)
tan(α) − Rb

D sin(α)

]
− cos−1

[
Rb

Rb +Hfin

]
(4.46)

When the radar LOS is perpendicular to the target symmetry axis, a particular
assumption for the threshold is taken into consideration when the height of the
fin is such that

ϖ∗(α,Hfin) > π

Nfin

, with α = π

2 (4.47)

In this case, the X for α = π/2 is given by

X = (Hfin +Rb) cos
(

π

Nfin

)
(4.48)

Fig. 4.5 shows how the threshold values varies as a function of aspect angle
for the cone dimensions H and Rb of 1 m and 0.375 m, respectively, fin height
Hfin = 0.200 m and at a distance of 150 km. It is worth noting, that in the
evaluation of the occlusion of fins tips, the effect of the fin area is not taken into
account for simplicity.

Cylinder

The cylindrical target is represented by four principal scattering points shown in
Fig. 4.6b, specifically two for each base, taken by intersecting the circumferences
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Fig. 4.5 Example of threshold values x̃ as a function of aspect angle (α).

at the bases and the incident plane, such that

P1(x̃, ỹ, z̃) = ( H
2 , Rb, 0)

P2(x̃, ỹ, z̃) = (−H
2 , Rb, 0)

P3(x̃, ỹ, z̃) = (−H
2 , −Rb, 0)

P4(x̃, ỹ, z̃) = ( H
2 , −Rb, 0)

(4.49)

In Table 4.2 the coefficients modulus for the cylinder scatterers on varying the
aspect angle are shown. In particular, √

σi = 0 for P1 when α(t) = π; for P2 when
α(t) = 0; for P3 when α(t) ∈ [0, π/2] and for P4 when α(t) ∈ ]0, π].

Table 4.2 Modulus of the scattering coefficients for the four principal scattering
points P1, P2, P3 and P4 of the cylinder, with respect to the aspect angles α.

√
σ1(α) √

σ2(α) √
σ3(α) √

σ4(α)
α = 0 1 0 0 1

0 < α < π
2 1 1 0 1

α = π
2 1 1 0 0

π
2 < α < π 1 0 1 0
α = π 0 1 1 0

Sphere

Due to its symmetry among all directions, a tumbling sphere, with rotation centre
coinciding with sphere centre, does not lead to variation of relative radar view
of its shape, hence no mD information can be extracted. In this analysis, it is
considered for the spherical decoy a displacement d between the tumbling rotation
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centre and the sphere centre. Three scattering point are considered, as shown
in Fig. 4.6c: two on the spherical surface along the symmetry axis, and one
corresponding to the sphere centre. The coordinates of the three points in the
coordinate system (x̃, ỹ, z̃) are

P1(x̃, ỹ, z̃) = (d 0, 0)
P2(x̃, ỹ, z̃) = (d+Rb, 0, 0)
P3(x̃, ỹ, z̃) = (d−Rb, 0, 0)

(4.50)

with Rb the sphere radius.
For the sphere, the occlusion never occurs for P1, such that √

σ1 = 1, ∀α. For
the scatterer P2,

√
σ2 = 0 when α(t) ∈ ]π/2, π], and for P3

√
σ3 = 0 when

α(t) ∈ ]0, π/2[. In Table 4.3 the values of coefficient modulus for the sphere
scatterers on varying the aspect angle are summarized.

Table 4.3 Modulus of the scattering coefficients for the three principal scattering
points P1, P2 and P3 of the sphere, with respect to the aspect angles α.

√
σ1(α) √

σ2(α) √
σ3(α)

α = 0 1 1 0
0 < α < π

2 1 1 0
α = π

2 1 1 1
π
2 < α < π 1 0 1
α = π 0 0 1

(a) (b) (c)

Fig. 4.6 Target shape model: (a) conical target; (b) cylindrical target; (c) spherical
target.
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4.3 Laboratory Experiment

In this Section the experiment conducted for the evaluation of mD effect due to BT
micro-motions is described. The radar measurements containing the target motion
information are acquired from scaled replicas of potential BTs with a 24 GHz
CW coherent radar, which transmits in vertical polarization. The different target
micro-motions are emulated by using a robotic manipulator and an additional
rotational motor. A representation of configuration for the mD experiment is
shown in Fig. 4.7. The robotic arm is used for introducing the conical rotation

Target Attachments

Additional Rotor

Tilted Support
NutationConical Rotation

End Factor

Robotic Manipulator

Target Attachments

Π

2
− Θ

Target Replica

Fig. 4.7 Experiment configuration.

and the nutation for the warhead target, while the additional rotor is used for
simulating the warheads spinning and the decoy tumbling. Specifically, the conical
rotation is simulated with revolutions of the end factor of robotic arm, while the
nutation is introduced by an sinusoidal oscillation of the radius of circumference
where the end factor moves, by varying the angles of the robotic arm joints. The
additional rotor is attached to the end factor of the robotic arm by a support
which depends on the movement. Specifically, the rotor support is tilted of an
angle equal to π/2−Θ in case of precessing warhead, and the length of the support
is set such that the target MC results stationary with respect the conical rotation.
The decoy tumbling is simulated by using only the rotor. As it can be noted from
pictures in Fig. 4.8, which shows the experiment set up, the robotic arm and
the additional rotor are wrapped with an anechoic material, avoiding that the
radar measurements contain mD information from moving objects different from
the target. It has to be underlined that the trajectory of ballistic targets is not
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Fig. 4.8 Experiment set up.

taken into account in the experiment considering that the principal movement
of the object is compensated. In this way, the classification is based only on the
micro-motions of targets of interest.
The database for experimental data contains 5 acquisitions of 20 seconds for each
target and for each of the possible 9 pair of azimuth and elevation angles formed
using 3 values for both of them, namely [0◦; 45◦; 90◦].
Fig. 4.9 represents examples of spectrograms (in the dB scale) from a conical
warhead and a warhead with fins, obtained by using both simulated and real
data for different pairs of (∠El,∠Az). Differently from the definition given in
Section 3.2.1, in this analysis the spectrogram is defined as the magnitude of the
STFT of received signal, in order to reduce the differences between the weights of
mD components within the target echo due to different scattering proprieties of
each target scatterer. As observed in Fig. 4.9a, the spectrogram from simulated
data allows the observations of echo modulations due to the conical rotation and
nutation, but not from the spinning, due to the assumption of perfect symmetric
conical target. In Fig. 4.9c, instead, it is also possible to observe some flashes due
to the target spinning into spectrogram from the acquired data due to the fact
that the target replica is not perfectly symmetric. Moreover, since the replicas are
wrapped with aluminium foil, the surfaces are not completely smooth, introducing
unexpected mD components into received signals. From Fig. 4.9b and Fig. 4.9d,
it is possible to note that the two spectrograms show the same trend, where the
precession leads to a modulation of the maximum Doppler which is due to the
fins rotation. It is pointed out that the main differences between the simulated
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(a) (b)

(c) (d)

Fig. 4.9 Example of spectrogram obtained by a received signal from a warhead for
different pairs of (∠El,∠Az): (a) simulated echo from conical warhead for (90◦, 0◦);
(b) simulated echo from conical warhead with fins for (0◦, 45◦); (c) laboratory
acquisition from from conical warhead (90◦, 0◦); (d) laboratory acquisition from
from conical warhead with fins for (0◦, 45◦).

and the real cases for the analysed cases are due to the fact that in the presented
signal model the RCS of each scatterer is not taken into account (hence, even the
dependence on signal polarization), and the initial phase of different micro-motions
exhibited by warheads is random in the both simulated and acquired signal.
Fig. 4.10 represents examples of spectrogram (in the dB scale) from the three
different shapes considered for the decoys, from both simulated echo and laboratory
acquisitions. Even in these cases, it is worth noting that the spectrograms from
both simulated and acquired data show the same trends, in term of spectrogram
periodicity and maximum Doppler shifts from main scatterers of tumbling objects.
However, the absence of a RCS and overall EM model in the simulated data leads
to some differences, as mentioned above.

4.4 Classification Framework

In this Section the algorithm proposed in (Clemente et al., 2015b) to extract mD
based features for the target classification is reviewed, introducing the different
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(a) (b) (c)

(d) (e) (f)

Fig. 4.10 Example of spectrogram obtained by a received signal from a decoy
for different pairs of (∠El,∠Az): (a) simulated echo from conical decoy for
(90◦, 0◦); (b) simulated echo from cylindrical decoy for (45◦, 0◦); (c) simulated
echo from spherical decoy for (0◦, 90◦); (d) laboratory acquisition from conical
decoy for (90◦, 0◦); (e) laboratory acquisition from cylindrical decoy for (45◦, 0◦);
(f) laboratory acquisition from spherical decoy for (0◦, 90◦).

feature extraction approaches proposed in this chapter. Fig. 4.11 shows a block
diagram of the classification method, outlining the common steps used for the four
different approaches. The starting point of the proposed algorithm is the received

Fig. 4.11 Block diagram of the proposed algorithm.

signal srx(n), with n = 0, ..., Ns, containing mD components and comprising
of Ns signal samples. The received signal has to be pre-processed before the
evaluation of the mD signature. The first block includes a notch filtering, down-
sampling and normalization. The second step is the spectrogram computation of
the pre-processed signal s̃rx(n)

SSTFT(ν,m) =
∣∣∣∣∣
Ns−1∑
n=0

s̃rx(n)w(n−m) exp
(

−j2πν n
Ns

)∣∣∣∣∣ (4.51)
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with m = 0, · · · , Nc − 1, where ν is the normalized frequency and w(·) is the
smoothing window. The spectrogram is a time-frequency distribution that allows
the signal frequency time variations to be evaluated and it is chosen for its
robustness with respect to the production of artefacts.
Observing Fig. 4.11, the next step consists in the extraction of the CVD, that is
defined as the Fourier Transform of the spectrogram along each frequency bin

SCVD(ν, ε) =
∣∣∣∣∣
Nc−1∑
m=0

SSTFT(ν,m) exp
(

−j2πε m
Nc

)∣∣∣∣∣ (4.52)

where ε is known as the cadence frequency. The CVD is chosen because it offers
the possibility of using, as discriminants, the cadence of each frequency component
within the signal and the maximum Doppler shift, and because the CVD is more
robust than the spectrogram since it does not depends on the initial phase of
moving objects. In Fig. 4.12a and Fig. 4.12b the CVDs obtained processing the
spectrograms shown in Fig. 4.9c and Fig. 4.10d, obtained from the laboratory
acquisitions of signal scattered by the conical warhead and decoy, respectively.
It is worth noting that the zero cadence component in the CVDs is filtered out.
Finally, the CVD has to be processed to extract a Q-dimensional feature vector

(a) warhead (b) decoy

Fig. 4.12 CVDs obtained processing the spectrograms from the conical warhead
in Fig. 4.9c (a) and from the conical decoy in Fig. 4.10d.

F = [F0, F1, · · · , FQ−1], which can identify each class. Before classification, the
vector F is normalized as follows

F̃ =
F − ςF
ζF

(4.53)
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where ςF and ζF are the statistical mean and standard deviation of the vector
F , respectively.
The Feature Extraction block of Fig. 4.11 for the four different approaches will
be described in the following subsections.

4.4.1 Features Vector Extraction

In this analysis 4 different feature vectors are considered for performing the target
classification.

Averaged-CVD Based Feature Vector Approach

In the Averaged-CVD (ACVD) based approach, six features are computed from
the ACVD. The starting point is the meaning of the CVD along each cadence
bin; the resulting 1D function is then normalised to have a unit area. From
the obtained 1D signature Λavg(ε), ε = 0, . . . , Nc − 1, where Nc is the number of
cadence bins, four statistical indices are extracted :

• Standard Deviation:

F0 =

√√√√√ 1
Nc − 1

Nc−1∑
ε=0

[
Λavg(ε) − 1

Nc

Nc−1∑
ε=0

Λavg(ε)
]2

(4.54)

• Kurtosis:

F1 =
1

Nc

∑Nc−1
ε=0

[
Λavg(ε) − 1

Nc

∑Nc−1
ε=0 Λavg(ε)

]4
(√

1
Nc−1

∑Nc−1
ε=0

[
Λavg(ε) − 1

Nc

∑Nc−1
ε=0 Λavg(ε)

]2)4 − 3 (4.55)

• Skewness:

F2 =
1

Nc

∑Nc−1
ε=0

[
Λavg(ε) − 1

Nc

∑Nc−1
ε=0 Λavg(ε)

]3
(√

1
Nc−1

∑Nc−1
ε=0

[
Λavg(ε) − 1

Nc

∑Nc−1
ε=0 Λavg(ε)

]2)3 . (4.56)

Three other indices, specifically the Peak Sidelobe Level (PSL) ratio and two
different definitions of the Integrated Sidelobe Level (ISL) ratio, are computed from
the normalized autocorrelation of the sequence Λavg(ε), CΛavg(m),m = 0, . . . ,M−1.
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Specifically

F3 = PSL = max
m

∣∣∣CΛavg(m)
∣∣∣∣∣∣CΛavg(0)
∣∣∣ (4.57)

while the latter are

F4 = ISL1 =
∑M−1

m=1

∣∣∣CΛavg(m)
∣∣∣∣∣∣CΛavg(0)

∣∣∣ (4.58)

and

F5 = ISL2 =
∑M−1

m=1

∣∣∣CΛavg(m)
∣∣∣2∣∣∣CΛavg(0)

∣∣∣ (4.59)

respectively. Hence, the final feature vector extracted is F avg = [F0, · · · , F5].

2D Signature Based Feature Vectors

For the other three feature extraction methods, the CVD is considered as a 2D
image representing the target signature. Firstly, the magnitude of the CVD is
normalized to obtain a matrix whose values belongs to the set [0, 1] as follows

ΛCVD(ν, ε) =
SCVD(ν, ε) − min

ν,ε
SCVD(ν, ε)

max
ν,ε

[
SCVD(ν, ε) − min

ν,ε
SCVD(ν, ε)

] . (4.60)

The different feature vectors extracted are based and pZ moments, Kr moments
and Gabor filtering, respectively.

pZ moment Based Feature Vector Approach In order to compute the
pZ moments, the support of the spectrogram, hence that of the CVD, has to be
chosen to be a unit square so that it can be inscribed in the unit circle (Clemente
et al., 2015b). A feature vector F pZ is then extracted, whose q-th element F pZ

q

is the pZ moment ζr,l of order r and repetition l calculated from the magnitude
of the CVD by (3.15), with r = l = 0, · · · ,K1 − 1 and q = 0, · · · , (K1 + 1)2 − 1,
where K1 is the maximum value considered for both the moments order and the
repetition.

Kr moment Based Feature Vector Approach In the Kr moment based
approach, a feature vector F Kr is extracted, whose q-th element FKr

q is the Kr
moment Krl of order (r, l) calculated from the magnitude of the CVD by (3.23),
with r = l = 0, · · · ,K2 −1 and q = 0, · · · , (K2 +1)2 −1, where K2 is the maximum
value considered for the moments orders.
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2D Gabor Filter Based Feature Vector Approach In the 2D Gabor
filter based approach, the resulting matrix ΛCVD(ν, ε) is filtered with a bank of
Gabor filters whose impulse responses ϱm,l are obtained for various fl and ϑm,
with l = 0, . . . , L − 1 and m = 0, . . . ,M − 1, where L and M are the numbers
of selected spatial central frequencies and orientation angles, respectively. The
choice of the fl and ϑm depends on the specific application and on the worst case
image to represent with the moments. The selection of these parameters has
to be conducted in order to get an accurate representation of the image under
test. In fact, since by varying ϑm the harmonic response of the filter moves on a
circumference, whose radius is fl, it is possible to extract local characteristics in
the Fourier domain by choosing a set of values for the two parameters. The value
of each pixel of the output image is given by the convolution product of the 2D
Gabor function and the input image, ΛCVD(ν, ε), as

Ξl,m(ν, ε; fcsl
, ϑm) = ϱl,m(ν, ε; fl, ϑm) ∗ ΛCVD(ν, ε) =

=
∫ ∞

−∞

∫ ∞

−∞
ϱl,m(ν − ντ , ε− ετ ; fl, ϑm)ΛCVD(ντ , ετ )dντdετ

(4.61)

with l = 0, . . . , L− 1 and m = 0, . . . ,M − 1, where L and M are the numbers of
central frequency and orientation angles, respectively. Finally, the outputs of the
filters are processed to extract the feature vector used to classify the targets. In
particular, a feature is extracted from the output image of each filter by adding
up the values of all pixels, as

F GF
q =

Nν−1∑
ν

Nε−1∑
ε

|Ξl,m(ν, ε; fl, ϑm)| (4.62)

where q = mL+ l, with l = 0, . . . , L − 1 and m = 0, . . . ,M − 1, Nν and Nε are
the dimensions of the image ΛCVD along both axis.

4.4.2 Classifier

The classification performances of the extracted feature vectors are evaluated
using the k-Nearest Neighbour (kNN) classifier, modified in order to account for
unknown class. In particular, let T is the training vectors set, for each class v
an hypersphere SCMv (ϱv) is considered, with centre CMv and radius ϱv. In the
case in which the tested vector does not belong to any hypersphere, it is declared
as unknown. The operation mode of this classifier is composed by three phases.
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In the first phase, the set N of nearest neighbour training vectors to the tested
vector F is selected from T as follows

N =
{

F̃1, . . . , F̃k : ∀i = 1, · · · , k,
∥∥∥F̃i − F

∥∥∥ < min
F̃∈{T −F̃1,··· ,F̃i−1}

∥∥∥F̃ − F
∥∥∥} (4.63)

The second phase consists into definition of vector ι whose elements represent a
label for each vector in N . Each label can assume an integer value in the range
[0, V ], where V is the number of possible classes. The value 0 is assigned when the
tested vector does not belong to any hypersphere of the vectors in N , while the
values [1, V ] correspond to a specific class. Specifically, ∀i = 1, . . . , k, the i-label
ιi is updated as follows

ιi =

0
∥∥∥F̃i − F

∥∥∥ > ζv

v otherwise
(4.64)

where v is the value corresponding to the belonging class of F̃i. Finally, the
(V + 1)-dimensional score vector s is evaluated, whose elements are the occurrences,
normalised to k, of the integers [0, . . . , V ] in the vector ι. The estimation rule
then may be implemented as follows:

v̂ =


arg max

v
s if max(s) > 1

2

0 otherwise
(4.65)

where 0 is the unknown class.
Assuming that the feature vectors of each class are distributed uniformly

around their mean vector, for all the Monte Carlo runs, the hypersphere radius
ϱv was chosen equal to Υv

√
12/2, where Υv = tr (Cv) and Cv is the covariance

matrix of the training vectors which belong to the class v. The choice is made
according to the statistical proprieties of Uniform distributions. In fact, for one-
dimensional uniform variables the sum of mean and the product between the
standard deviation and the factor

√
12/2 gives the maximum possible value of

the distribution.
The choice of a kNN classifier is because it is based on the evaluation of the
Euclidean distances between the vector under test and the vectors composing
the training set of each class in order to estimate the target class. Hence, the
classification performance evaluated with kNN classifier are not polarized by the
proprieties of the classifier, and it depends only on the characteristic of features
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to occupy multidimensional spaces for each class sufficiently separated. However,
in general other classifiers with similar characteristics could be also selected. The
selection of the best classifier is outside the scope of this Thesis.

4.5 Performance Analysis

In this Section the proposed model is tested with both simulated data and
laboratory data acquired from replicas of the targets of interest. The targets are
divided in two classes which are warhead and decoy. Moreover, both of them
are divided in sub-classes, which are associated to a particular type of target.
Specifically, the warhead class is composed by two sub-classes: cone and cone with
triangular fins at the base, which are replicas of warhead without and with fins,
respectively. Decoy class, in contrast, is divided in three sub-classes: sphere, cone
and cylinder.
In order to analyse the performance of the proposed algorithm, three figures of
merit are considered, which are the Probability of correct Classification (PC), the
Probability of correct Recognition (PR), and the Probability of Unknown (PU).
The meaning of classification is the ability to distinguish between the warhead
class and the object class, while recognition means the capability to identify the
actual shape of the target within the warhead and the object class. Finally, PU is
computed as the ratio of the number of analysed objects for which the classifier
does not make a decision and the total number of analysed objects.
The analysis of performance is conducted by using both simulated and real data,
considering the same the target shapes, dimensions and motion parameters. The
conical warhead has a radius, Rb, of 0.375 m and a height, H, of 1 m, while the
fin’s height, Hfin, is 0.20 m. The sizes of the decoys are usually comparable with
the dimensions of the warheads in order to confuse the anti-missile radar system.
Therefore, both the cylindrical and conical objects are chosen to have a radius
and a height equal to 0.375 m and 1 m, respectively, while the sphere diameter
is 1 m. As described in Section 4.3, the database of laboratory acquisition have
been realized using scaled replicas of the target of interest. In order to simulate
an S-Band anti-missile radar system, whose carrier frequency is 3.3 GHz, by using
a 24 GHz CW radar the actual dimension of the replicas of the targets used to
acquire the real data are scaled by a factor of 0.1375. The precession angle chosen
for both the types of warhead is 10◦ while the precession frequency is 0.25 Hz.
The angular velocity of the spinning is 1 Hz, while the nutation frequency is 5 Hz.
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For the decoys, the tumbling velocity is 1 Hz.
The performance is shown for varying the Signal to Noise power Ratio (SNR) and
observation time, which is either 10 seconds, 5 seconds or 2 seconds. Moreover,
for the 2D signature based approaches, the dimension of the feature vector is also
varied. The spectrogram is computed using a Hamming window with 75% overlap.
The number of points for the DFT computation, Nbin, is fixed for the ACVD
approach, whereas is adaptively evaluated for the pZ and the Gabor filter methods,
in order to obtain a square representation of the spectrogram. Specifically, in
these cases Nbin is given by

Nbin =
⌈
Ns −W overlap

W (1 − overlap)

⌉
(4.66)

where Ns is the number of signal samples, ⌈·⌉ represents the smaller integer
greater than or equal to the argument, and overlap is the percentage of overlap
expressed in the interval [0, 1]. Finally, it is assumed that the effect of the principal
translation motion of the targets is compensated before the signals are processed.
In this way, the classification is based only on the micro-motions of targets of
interest.

4.5.1 Simulated data

The database for simulated data is composed of 3240 realizations of the radar
return for each target of interest, obtained by considering 10 signals for each of
the possible 182 pair of azimuth and elevation angles formed using 18 values for
both of them, between 5◦ and 90◦ with a step size of 5◦. The initial phase of the
micro-motions is taken randomly in uniform distribution [0, 2π] and an additive
white Gaussian noise is added to each simulation.
A Monte Carlo approach is used in order to calculate the mean of the three figures
of merit over several cases. Specifically, the means are evaluated over 50 different
Monte Carlo runs in which all the available simulated signals are divided randomly
into training or testing sets with 70% used for training and 30% for testing. The k
value of classifier has to be chosen greater than 1 in order to consider the unknown
class; specifically, it is set to 3.

ACVD approach

The performance in terms of PC and PR obtained by using the ACVD based feature
vector approach for simulated data is shown in Fig. 4.13a. It is observed that
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(a) PC and PR (b) PU

Fig. 4.13 Performance of the ACVD based feature vector approach for simulated
data on varying the signal’s duration and the SNR.

the performance generally improves as the SNR increases, such that both of the
figures of merits increase, showing a slight difference as the signal duration varies.
In particular, the gap between the two probabilities increases as the observation
time decreases for the lower SNR scenarios considered in the analysis; however,
the gap decreases as the SNR increases. Moreover, it is worth pointing out that
the highest values are obtained for observation times of 2 and 5 seconds and SNR
greater than 5 dB, with both PC and PR close to 0.95. For a signal’s duration of
10 seconds PC and PR are independent on the SNR, being approximatively 0.90.
Observing Fig. 4.13b, which shows PU , it is noted that it is almost constant at
about 0.1, for all the values of SNR and signal’s duration of 10 seconds, while
smaller than 0.5 for 2 and 5 seconds observation times. Defining the probability
of misclassification, PM , as

PM = 1 − PC − PU (4.67)

and since PC is slightly greater than 0.9 for SNR greater than 0 dB, it is clear
that PM decreases as the SNR increases, becoming smaller than 10−2 for all the
considered observation times.

pZ moments approach

The performance obtained by using the pZ based approach for simulated data is
shown Fig. 4.14. In this case the dimension of the feature vector, Q, depends on
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.14 Performance of the pZ moments based feature vector approach for
simulated data; the analysis is conducted on varying the order, the signal’s
duration and the SNR.

the polynomial order and repetition, which determine the number of pZ moments.
Observing Fig. 4.14a, Fig. 4.14d and Fig. 4.14g it is noted that PC is greater than
0.99 independently on the value of SNR and observation time for moments order
grater than 10. For smaller values of the order, there is a drop in the performance
which is more significant as the SNR increases, such that the minimum value of
PC is about 0.95 for SNR equal to 15 dB. On the other hand, it is worth noting
that PU increases in correspondence of the mentioned drops of PC . This trend
seems likely to be due to two factors. Firstly, for small values of the SNR, the
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feature vectors of a given class occupy a wider region in the multidimensional
space: then, it is easier for the regions to intersect each other. On the other
hand, for high values of SNR, smaller regions are occupied by feature vectors for
each class, such that it is more likely that a feature vector under test is not close
enough to be classified as belonging to the correct class. Then, it is clear that
this trend strictly depends on the choice of a knn classifier. A different classifier,
less dependent on distances in the multidimensional space might produce different
results. Nevertheless, from (4.67) it is clear that even in these cases the PM is
smaller than 10−2. From Fig. 4.14b, Fig. 4.14e and Fig. 4.14h, it is clear that
the capability to recognize a target improves significantly for negative values of
the SNR by increasing the moments order. For positive value of the SNR, PC

and PR are approximatively equal. Therefore, for moments order greater than
10 and SNR greater than −10 dB, PR is greater than 0.98 for all the considered
observation time.

Kr moments approach

The results obtained by using the Kr moments based approach for simulated data
are shown in Fig. 4.15. As well as for pZ moments, even in this case Q, hence
the number of Kr moments, depends on the polynomials order. Fig. 4.15a shows
that for observation time of 2 seconds, PC increases quickly as the moments order
increases, while the performance decreases slightly as the SNR increases. One
more time, the main reason of this trend is the choice of the particular classifier,
as described above. Observing Fig. 4.15d and Fig. 4.15g it is noted that PC

is greater than 0.90 for all the considered values of moments order and SNR,
reaching values greater than 0.99 for order greater than 8 independently on the
SNR. From Fig. 4.15a, Fig. 4.15d and Fig. 4.15g it is noted that PR increases
as the moments order increases, and that the gap between PC and PR becomes
negligible for moments order and SNR greater than 8 and −10 dB, respectively.
Consequently, PU decreases as the moments order increases, as observed in Fig.
4.15a, Fig. 4.15d and Fig. 4.15g. Specifically PU is smaller than 0.05 for all
the value of SNR and moments order, when the signal’s duration is 2 seconds,
while for 5 and 10 seconds long observations it is smaller than 10−2 for all the
considered value of SNR when the order is greater than 8.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.15 Performance of the Kr moments based feature vector approach for
simulated data; the analysis is conducted on varying the moments order, the signal
duration and the SNR.

2D Gabor filter approach

The mean values of PC , PR and PU for the Gabor filter approach are shown in
Fig. 4.16 shows. For this approach, the dimension of feature vector corresponds to
the number of filters, which depends on the orientation angular step θstep. Recall
that Q is given by

Q = L

(⌈
π/2
ϑstep

⌉
+ 1

)
(4.68)



4.5 Performance Analysis 84

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.16 Performance of the 2D Gabor Filter based feature vector approach for
simulated data; the analysis is conducted on varying the number of features, Q,
the signal’s duration and the SNR.

where ϑstep is the orientation angular step and L in the number of central frequen-
cies. The latter was fixed at 4 values; 0.5, 1, 1.5 and 2. The value of ϑstep was set
to be an integer in the interval [3◦, 10◦]. In this way, an analysis on varying the
density of the considered positions of the harmonic response on each circumference
with radius equal to fcsl is conducted. The values of the orientation angle, ϑm, is
given by

ϑm = mϑstep (4.69)
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with m = 0, . . . ,M − 1 and where

M =
⌈
π/2
ϑstep

⌉
. (4.70)

From (4.69) and (4.70), it is important outlining that the features are extracted
moving the harmonic response of the filter considering only the first quadrant,
due to the symmetry of the expected image for this application.
Fig. 4.16a, Fig. 4.16d and Fig. 4.16g show that PC is greater than 0.99 for all
the considered values of SNR, observation time and Q. Fig. 4.16b, Fig. 4.16e
and Fig. 4.16h shows that in the worst case PR varies within 0.95 and 0.97 for
SNR equal to −10 dB, on varying the filter bank dimension. For all the other
considered cases, instead, PR is approximately equal to PC , being greater than
0.99. Consequently, PU is always smaller than 10−2, as shown in Fig. 4.16c, Fig.
4.16f and Fig. 4.16i. Therefore, it is worth noting that the performance does not
change significantly when varying the feature vector dimension.

4.5.2 Experimental data

The analysis of performance for real data is evaluated on varying the observation
time and the SNR, as done for the simulated data. It is worth noting that, since
the total number of acquisition is not enough for assessing the performance of
the algorithm, the laboratory acquisition acquisitions of 20 seconds have been
split into segments of 10, 5 and 2 seconds, conducting an analysis on the signal
time duration. In addition, assuming that the noise for the acquired signals in
a controlled environment is negligible, the analysis on the SNR was conducted
by adding white Gaussian noise to the real data. Finally, before processing, the
received signals are down-sampled by a factor of 10. It is worth noting that the
trajectory of ballistic targets is not taken into account in the experiment as well
as for the simulated data, considering that the principal movement of the object
is compensated.
Differently from the previous analysis, the mean of the three figures of merit for
real data are evaluated over 500 different Monte Carlo runs, since the database
dimension is smaller than the one for simulated data. Even in this case, in
each Monte Carlo run all the available experimental measurements are divided
randomly into training or testing sets with 70% used for training and 30% for
testing. The k value of classifier is set to 3 as for the analysis on simulated data.
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ACVD approach

The performance on the experimental data for the ACVD based method in terms
of PC and PR is shown in Fig. 4.17a, while Fig. 4.17b shows the PU . The

(a) PC and PR (b) PU

Fig. 4.17 Performance of the ACVD based feature vector approach for real data
on varying the signal duration and the SNR.

performance trend obtained in the previous subsection for the simulated data
is confirmed by the real data. In fact, both PC and PU increase as the SNR
increases; however, the effect of changing the observation time is more evident in
this case. Moreover, the gap between the two figures of merit decreases as both
the observation time and the SNR increase. Observing Fig. 4.17b, it is pointed
out PU is almost constant for all analysed cases and it is smaller than 0.1.

pZ moments approach

The results obtained by using the pZ moments based approach by using the
database with experimental acquisitions are shown in Fig. 4.18. Observing Fig.
4.18a, Fig. 4.18b, Fig. 4.18d, Fig. 4.18e, Fig. 4.18g and Fig. 4.18h it is worth
noting that the performance in terms of correct classification and recognition
are very sensitive to high level of noise, with unsatisfactory results for the lower
values of moments order and negative value of SNR. However, both PC and PR

generally improves as the moments order, the observation time and the SNR
increase, leading to decrement of PU , as observed in Fig. 4.18c, Fig. 4.18f and
Fig. 4.18i, it is clear that as the SNR, the observation time and the moments
order increase. The gap between PC and PR becomes smaller as the moments
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.18 Performance of the pZ moments based feature vector approach for real
data; the analysis is conducted on varying the moments order, the signal duration
and the SNR.

order increases. However, unlike the performance obtained on simulated data, the
maximum value reached by the two probabilities is around 0.90.

Kr moments approach

The graphs in Fig. 4.19 shows the results obtained by using the Kr moments based
approach. From the figure it is worth noting that the trend observed by using the
simulated data is confirmed even with real data. Fig. 4.19a and Fig. 4.19b show
that for 2 seconds long radar observations PC and PR increases significantly as
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.19 Performance of the Kr moments based feature vector approach for real
data; the analysis is conducted on varying the moments order, the signal duration
and the SNR.

the SNR increases, while from Fig. 4.19a, Fig. 4.19b, Fig. 4.19d and Fig. 4.19e
it is pointed out that they are almost constant for 5 and 10 seconds, when the
SNR is greater than −10 dB. Moreover, the gap between the two probabilities
becomes negligible for SNR greater than −5 dB and moments order greater than
10. Finally, from Fig. 4.18c, Fig. 4.18f and Fig. 4.18i it is worth noting that PU

decreases as the moments order increases. Nevertheless, the latter is smaller than
0.1 in all the analysed cases.
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2D Gabor Filter approach

The performance of the 2D Gabor filter based method are shown in Fig. 4.20.
Observing Fig. 4.20a, Fig. 4.20b, Fig. 4.20d, Fig. 4.20e, Fig. 4.20g and Fig. 4.20h,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.20 Performance of the Gabor Filter based feature vector approach for real
data; the analysis is conducted on varying the number of features Q, the signal
duration and the SNR.

it is clear that both PC and PR increase as the SNR and observation time increase.
In particular, for signal duration of 5 seconds, both PC and PR are greater than
0.98 for SNR grater than −10 dB; for observation time of 10 seconds, instead, PC

is greater than 0.99 for the all analysed cases. Finally, the gap between the two
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probabilities decreases as the SNR increases, being equal for high values of the
SNR. Fig. 4.20c, Fig. 4.20f and Fig. 4.20i show PU versus Q, which is clearly
smaller than 0.05 in all the analysed case.

Performance in presence of the Booster

The performance with real data was evaluated also in the case in which the
received signal was scattered from an additional object different from warheads
and decoys. This analysis is of interest since, during the flight, the missile releases
some debris in addition to the decoys, such as the booster used in the boost phase.
As in the case of decoys, when the booster has been released by the missile, it
starts tumbling as shown in Fig. 4.21, where the model used for the booster is
shown. However, the booster rotation velocity is smaller than the decoys’, while
its dimensions are bigger. It is assumed that the booster has a cylindrical shape,
whose diameter and height are 0.75 m and 5 m, respectively, with triangular fins,
whose base is 0.50 m and height is 1 m; the tumbling velocity is one fifteenth of
the decoy’s.

Fig. 4.21 Representation of booster: model dimensions and difference of movement
respect with warhead.

This analysis is conducted by training the classifier with feature vectors belonging
to either warhead class or decoy class, and then by testing it on the booster feature
vector. Moreover, the performance is evaluated in terms of PU , as defined above,
and probability of misclassification (Error) as a Warhead (PeW ), determined by
the ratio of the number of times in which the booster is classified as a warhead
and the total number of tests. Note, in this specific case, classifying the booster as
unknown represents the correct classification as there is no specific booster class.

Fig. 4.22 shows PU and PeW obtained by the ACVD based algorithm as
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Fig. 4.22 Performance of the ACVD based feature vector approach for real unknown
data (booster); the analysis is conducted on varying the signal duration and the
SNR.

the signal duration and the SNR are varied. From Fig. 4.22 it is observed that
even if PU increases and, consequently, PeW decreases as the signal duration
increases, PeW remains greater than PU . Moreover, the performance does not
change significantly on varying the SNR.

Results obtained by using the pZ moments based approach are shown in Fig.
4.23. Observing the figure it is clear that the probability of classifying the booster
as unknown increases as the order grows up to 4, independently of the observation
length, where the maximum value is reached, and it is above 0.80 for SNR equal
to 0 and 5 dB. Considering orders greater than 4, PU remains constant for positive
values of SNR, while it significantly decreases for SNR smaller than 0 dB. However,
for moments order of about 20, PU grows as the SNR increases. It is noticed that
PeW decreases as the observation time increases for negative value of SNR, while
it increases for SNR greater than 0 dB. However, the best results are obtained for
positive values of the SNR and for signal duration of 2 and 5 seconds, reaching
probabilities of error smaller than 0.20.

Results obtained by using the Kr moments based approach are shown in Fig.
4.24. From Fig. 4.24a it is noted that for 2 seconds long observations PU increases
as the SNR increases, but reaching a maximum value around 0.50 for the lower
values of the moments order. Indeed, PU decreases as the order, hence, the feature
vector dimension increases. This trend is because vectors composed by greater
number of Kr moments occupy wider spaces for each class such that iit is more
probable for a test vector being closer ot one of them. On the other hand, Fig.
4.24d shows that PeW increases as the moments order increases for observation
time of 2 seconds, being greater than PU for each value of SNR when r is greater



4.5 Performance Analysis 92

(a) (b) (c)

(d) (e) (f)

Fig. 4.23 Performance of the pZ based feature vector approach for real unknown
data (booster); the analysis is conducted on varying the moments order, the signal
duration and the SNR.

than 8. Observing Fig. 4.24b, Fig. 4.24c, Fig. 4.24e and Fig. 4.24f, it is worth
noting that the performance improves as the observation time increases. From the
figures, the values of PU and PeW appear almost constant as the order increases.
The best performance in terms of PU is obtained for the lowest values of the order,
equal to 2, and for the lowest considered SNR, which is −10 dB. Moreover, it is
noted that PeW decreases as the observation time increases, being lower than 0.30
for 10 seconds long signals and for all the values of moments order and SNR.

Finally, PU and PeW obtained for 2D Gabor filter based feature vector are
shown in Fig. 4.25. From the graphs, one can deduce that the performance im-
proves as the signal duration and the SNR increase. In particular, the performance
for the signal duration of 2 seconds is not satisfactory since PeW is always greater
than PU . However, for observation time of 5 seconds PU becomes greater than
PeW from SNR greater than −10 dB reaching about 0.90 for highest values of
SNR. Finally, for signal duration equal to 10 seconds, PU is constantly greater
than 0.90 independently of the values of the SNR and Q; on the other hand, PeW

is smaller than 10−2 for values of the SNR greater than 0 dB.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.24 Performance of the pZ based feature vector approach for real unknown
data (booster); the analysis is conducted on varying the moments order, the signal
duration and the SNR.

Consequently it is clear that in the case of classification of unknown objects
which are not used to train the classifier, such as the booster, the ACVD based
approach does not guarantee satisfactory performance. The pZ moments based
approach is able to give good performance for small signal duration and for high
SNR, while the Kr moments approach for longer signal duration and for low
SNR. Alternatively the Gabor filter approach provided the optimum results for an
observation time of 5 seconds, for SNR greater than −10 dB, and of 10 seconds,
independently of the noise levels.

4.5.3 Average Running Time

One of the most common requirements for ATR algorithms in defence applications
are the feasibility and reliability in real time implementation. The four feature
extraction methods presented in this Chapter have different computational load.
In this subsection, the methods are compared in terms of average running time
needed to extract the feature vectors. The algorithms are implemented on Matlab
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(a) (b) (c)

(d) (e) (f)

Fig. 4.25 Performance of the Gabor Filter based feature vector approach for real
unknown data (booster); the analysis is conducted on varying the number of
features Q, the signal duration and the SNR.

environment, and the average running time is evaluated with a Monte Carlo
approach over 1000 runs. It is worth noting that in the common steps are not
taken into account, in the analysis, starting the of the running time after the
elaboration of the CVD. Moreover, the pZ and Kr polynomials for the evaluation
of the corresponding moments are precomputed and loaded on memory, as well as
the 2D Gabor filter bank.
The ACVD based approach is a very fast method since it requires to average
the CVD along the frequency dimension, for extracting six features from a 1D
signature. Specifically, the average running time is smaller than 10−3 seconds for
all the observation time considered. Fig. 4.26 represents the average running time
for the extraction of the feature vectors for pZ moments, Kr moments and 2D
Gabor filter based approaches, on varying the the signal’s duration, hence the
CVD dimensions, and the vector dimension. It is observed from Fig. 4.26a that
the computation of pZ moments requires more time increasing the duration of
radar observation and the moments order. The highest elaboration time is about
4 seconds, required for order equal to 20 and for 10 seconds long signals. Fig.
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(a) (b) (c)

Fig. 4.26 Performance of the pZ moments, Kr moments and 2D Gabor filter based
approaches in terms of average running time for the feature vector extraction.

4.26b shows that the computation time of Kr moments is almost independent on
the considered orders, with a slightly gap between the evaluation for 2 seconds
long signals and 5 and 10 seconds, for which the difference is negligible. This
trend is because the Kr moments are computed by a matrix product, and the
matrix dimensions considered into the analysis do not affect the computational
time guaranteed by the hardware used for the evaluation. Finally, for all the
analysed cases the average running time is smaller than 10−3 seconds, such as
for the ACVD method. The main reason of the faster implementation of the
Kr moments with respect the pZ ones is that they are discretely defined, and
they not requires the inscription of the 2D signature within the unit circle, as
the pZ moments do. For the same reason, discretization error does not exist for
Kr moments and the amount of resource required to store the polynomials is
reduced thanks to the recurrence relations and the symmetry properties of Kr
moments. Fig. 4.26c shows that the average running time for the 2D Gabor
filter based features vector increases significantly as the signal duration increases,
while it slightly increases by increasing the filter bank dimension within the set of
considering values. Comparing Fig. 4.26a and Fig. 4.26c it is observed that, by
fixing the signal duration, for moments order greater than 10 pZ moments require
longer running time than the 2D Gabor filtering does for all the considered filter
bank dimension. The highest computational time for 2D Gabor filter approach is
about 2 seconds, obtained by using 124 filters in case of 10 seconds long signals.

4.6 Summary

In this Chapter the capability of mD based recognition in the specific challenge
of distinguishing between warheads and decoys has been evaluated. The signal
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model described in Section 4.2 has been used to simulate the received signal
from the different targets, with different shapes and dimensions, on varying the
elevation and azimuth angles. By using a robotic manipulator for simulating the
target motions and a CW radar, instead, a real database has been obtained by
acquiring in laboratory the signals scattered by scaled replicas of the targets of
interest. Subsequently, a framework presented in (Clemente et al., 2015b) has
been used for performing the classification, introducing four different techniques
for the extraction of mD based feature vectors from the CVD.
The reliability of these techniques has been demonstrated by testing them both
on simulated and real mD data. The results have shown that, for both simulated
and laboratory data, all the proposed approaches generally ensure a sufficient
degree of correct classification. Moreover, an analysis on real unknown data has
been conducted in order to test the presented methods also in the case in which
the feature vector under test does not belong to one of the classes of interest,
such as the booster separated from warhead. In this case, the results have shown
that the 2D Gabor based approach guarantees better performance with respect
the other approaches for a sufficient observation time, recognizing the unknown
target properly. Finally, an analysis on the average running time to evaluate the
features, as figure of merit of computational complexity of the methods, has been
conducting. The latter has showed that Kr moments based approach is the faster
method, being very suitable for real time applications, such as for the OBC of
interceptor.
In conclusion, from the analysis of the performance, one can deduce that the
framework is reliable for the classification of BTs, and it can be adapted by
choosing the best feature vector extraction approach suitability with respect to
the radar scenario and the available resources.



Chapter 5

Classification Algorithm for
Ballistic Targets based on High
Resolution Range Profile frame

5.1 Introduction

The information regarding target micro-motions can be extracted from both
Doppler and range analysis of radar returns. In the previous Chapter, an adaptive
framework for BM classification is presented, demonstrating the capability to
discriminate between warheads and decoys using the micro-Doppler (mD) informa-
tion. In particular, the framework is based on the evaluation of the spectrogram
and of the Cadence Velocity Diagram (CVD), which allows to observe the cadence
of the mD frequencies within the received echo. In order to perform the target
classification, the CVD is used as target signature from which a feature vector is
extracted by using several approaches, which are different in terms of computa-
tional cost and feature vector dimension.
On the other hand, the micro-motions exhibited by the target lead to range
migrations of its principal scattering points observable through a High Resolution
Range Profile (HRRP) frame obtained by a wideband radar. The use of SFWs for
achieving a HRRP in a BMD scenario is thoroughly analysed in (Clark, 1999).
Since in this specific scenario the profile may contain a number of objects with
different velocities, a technique for velocities compensation is presented based on
the use of Wavelets and of a velocity extraction method.
Over the past few years Frequency Stepped Chirp Radars (FSCR) have been
widely used also in missile terminal guidance (Liu and Chang, 2013). The authors
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in (Liu and Chang, 2013) proposed a novel velocity estimation algorithm for
missile-borne FSCR with the aim to compensate the distortion in the HRRP due
to relative motion between the radar and the target. Specifically, the algorithm
is based on the evaluation of the waveform entropy in the Doppler amplitude
spectrum.
The authors in (Lei et al., 2012) investigated the effect of target micro-motions
on the distribution characteristic of the HRRP over the time. In particular an
analysis on the capability to discriminate between different target shapes and
micro-motions (such as precession, wobbling and tumbling) is conducted by a
graphical analysis which combines information extracted from the HRRP frame
and a Time-Frequency Distribution (TFD).
In this Chapter a novel ATR algorithm based on IRT is presented with the aim
to classify targets in a BMD scenario from a sequence of HRRPs. Specifically
the IRT of the HRRP frame, obtained by a SFW radar, leads to a 2D target
signature containing information on target motions and the spatial distribution of
its principal scattering points. Then from the target signature a feature vector
is extracted, whose elements are the pZ moments extracted from the 2D target
signature. The pZ moments are very attractive for image classification for their
useful properties, such as scale, translation and rotation invariance. For this
specific classification approach the rotation and scale invariance are fundamental
to ensure robustness with respect to the velocity and initial phase of the target
micro-motions.

5.2 HRRP frame from BTs

Let us consider the transmission of a sequence of bursts with a fixed PRF, according
to (2.49). The transmitted signal can be written as

stx(t) =
M−1∑
m=0

N−1∑
n=0

ps(t− nT −mNT )ej2πfnt (5.1)

with M the number of bursts. The received echo from a target at RF is expressed
as the superimposition of the signals from each principal scattering point. After
de-chirping operation, by mixing the received signal with the reference signal, as
described in Section 2.6, the compensation of the Residual Video Phase (RVP)
and of the envelope sideling phase (Qun Zhang, 2016), the received sample
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corresponding to n-th sub-pulse of m-th burst is

s(n,m) =
NP −1∑

i=0

√
σi(n,m)ejφi(n,m)e−j 4π

c
fn∆R (5.2)

with m = 0, · · · ,M − 1 and n = 0, · · · , N − 1, √
σi and φi are the modulus

and the phase of the electromagnetic contribution of i-th scattering point, and
∆R = ∆R(t) = RMC(t) − R0(t), with RMC(t) the distance between the radar
and the mass centre of the target and R0(t) the reference range. As described
in Section 4.2.1, the phase of each coefficient depends on the relative distance
between the target MC and the scattering point projected onto the LOS, according
to (4.25). Specifically, it is a function of the carrier frequency of each sub-pulse
and of the aspect angle, as follows

φi(n,m) = φi(fn, α(t)) ≃ 4πfn

c
[x̃i sinα(t) + z̃i cosα(t)] (5.3)

where (x̃i, z̃i) are the coordinates of the i-th scattering points onto incident plane
x̃z̃, and where α(t) is given by (4.18). For simplicity, in the following analysis two
different motion models are taken into account: the precession, as warhead motion,
and the tumbling, as decoy motion. The effect of nutation on the HRRP frame
for precessing target is neglected, so that ∆Θ = 0. Moreover, for simplicity and
without loss of generality thanks to the symmetric geometry, the radar azimuth
angle ∠Az is set equal 0, such that

α(t) = cos−1(cos(∠El) cos(Θ) + sin(∠El) sin(Θ) cos(Ωct)) (5.4)

The conventional method for extracting the HRRPs from the echoes from each
transmitted bursts is the computation of the IDFT along the stepped frequencies,
as described in Section 2.6. Specifically the (ε,m)-th element of the HRRP frame
is

H(ε,m) =
∣∣∣∣∣∣ 1
N

N−1∑
n=0

w(n)
NP −1∑

i=0

√
σi(n,m)ejφi(n,m)e−j 4π

c
fn∆Rej 2πn

N
ε

∣∣∣∣∣∣
2

(5.5)

with ε = 1, ..., N and m = 1, ...,M , and w(·) is the smoothing window. Three
target shapes are considered, namely cone, cylinder and cone plus cylinder. The
number of scattering points depends on the target shape. As in the previous
Chapter, for a conical target three principal scattering points are considered: the
first is in correspondence of the cone tip; the other two points are located on the
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intersection between the circumference at cone bottom and the incident plane.
The cylindrical target is represented by four principal scattering points, specifically
two for each base, taken by intersecting the circumferences at the bases and the
incident plane. Finally, for a target composed by a cone and a cylinder which
share the base, five scattering points are considered. One represents the tip of the
cone, while the other four are taken on the circumferences in correspondence of
the cylinder bases on the incident plane, as shown in Fig. A.1c in Appendix A.

Complex Scattering Coefficient Models

Three different mathematical approaches are considered for the complex coefficients
of the target scattering points. For simplicity, the first approach consists of
approximation according to which the modulus of coefficients is equal to 1 when
there is LOS between radar and the scattering points, while it is 0 when occlusion
occurs , as considered in Chapter 4. The values of the coefficients modulus on
varying the aspect angle for the cone and cylinder scatterers are synthesized in
Table 4.1 and Table 4.2, respectively, for α(t) ∈ [0, π]. For the target composed
by a cone plus a cylinder, √

σi = 0 for P1 when α(t) ∈ [π − γ, π]; for P3 when
α(t) = 0; for P4 when α(t) ∈ [0, π/2]; for P5 when α(t) ∈ ]0, π]; even for the
cone plus cylinder, the occlusion never occurs for P2 with α(t) ∈ [0, π]. Table 5.1
synthesizes how the coefficients modulus for the cone plus cylinder vary on the
aspect angle. The values of complex coefficients modulus for α(t) ∈ [π, 2π] can be

Table 5.1 Modulus of the scattering coefficients for the four principal scattering
points P1, P2, P3, P4 and P5 of the cone plus cylinder, with respect to the aspect
angles α.

√
σ1(α) √

σ2(α) √
σ3(α) √

σ4(α)
√
σ5(α)

α = 0 1 1 0 0 1
0 < α < γ 1 1 1 0 1
γ < α < π

2 1 1 1 0 0
α = π

2 1 1 1 0 0
π
2 < α < π − γ 1 1 1 1 0
π − γ < α < π 0 1 1 1 0

α = π 0 0 1 1 0

easily obtained thanks to the symmetry of the targets considered in this analysis.
The other two mathematical models for the scatterer complex coefficients refer to
two different polarizations: vertical and horizontal polarization. The mathematical
expressions of the coefficients are shown in Appendix A. The phase of the complex
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coefficients for this two models is evaluated with respect to a reference phase
centre, RP , which can be different from the mass centre. Since the mass centre is
stationary with respect to the micro motions, the electromagnetic field scattered
by the target is generally calculated by considering the mass centre as the phase
reference centre. For this reason (5.2) is modified in the case of RCS model for
vertical and horizontal polarization taking into account a corrective term for the
phase as follows

s(n,m) =
NP −1∑

i=0

√
σi(n,m)ejφi(n,m)e−j 4π

c
fn∆Re−j 2π

c
dMP cos(αn,m) (5.6)

where αm,n = α(mT+nTr), dMR = MC−RP is the distance along the symmetric
axis between the mass centre MC and the phase reference centre RP , shown in
Fig. A.1a, Fig. A.1b and Fig. A.1c in Appendix A.
Fig. 5.1 shows the normalized HRRPs (in dB) obtained for a conical target varying
the aspect angle over 360◦, with ∆R = 0, for the three models for scattering
coefficients. The cone height and diameter are 1 m and 0.7 m, respectively. It
is highlighted that The HRRPs are simulated in the hypothesis that the object
is stopped during the acquisition of each burst and in absence of noise, in order
to analyse only the variation of HRRP of the target over the aspect angle. This
means that the aspect angle is considered constant during the burst, such that
αn,m = αm = α(mT ). A SFWs radar with a total bandwidth of 800 MHz between
2.6 and 3.4 GHz is considered, transmitting 128 square sub-pulses with a PRF
of 20 kHz. The range resolution guaranteed by the considered radar is 18.75 cm.
For each value of aspect angle the received signal vector is zero-padded along
the stepped frequency computing the IDFT over 512 bins to obtain the HRRP.
Moreover, a Hann window is used in order to emphasize the scatterers with lower
coefficient modulus in the vertical and the horizontal polarization. Observing Fig.
5.1b and Fig. 5.1c it is noted that the contribution of the cone tip in the scattered
field is generally lower than the contribution of the scatterers on the bottom, in
both polarizations. However in a small interval of values of aspect angle, the tip
of the cone is more visible in the vertical polarization than in the horizontal.
Fig. 5.2 shows the normalized HRRPs over 360◦, with ∆R = 0, from a cylinder
whose height and diameter are 1 m and 0.7 m, respectively. From Fig. 5.2a it is
noted that for each value of the aspect angle three scatterers are simultaneously
visible at most. Moreover, while for the vertical polarization the scattering coeffi-
cients of some scatterers are higher then the others, with horizontal polarization
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(a) (b) (c)

Fig. 5.1 Normalized HRRP from the cone for α ∈ [0, 2π]: (a) no-Polarization; (b)
Vertical Polarization; (c) Horizontal Polarization.

the scattering contributions of visible scatterers are similar between each other,
as shown in Fig. 5.2b and Fig. 5.2c.

(a) (b) (c)

Fig. 5.2 Normalized HRRP from the cylinder for α ∈ [0, 2π]: (a) no-Polarization;
(b) Vertical Polarization; (c) Horizontal Polarization.

Fig. 5.3 shows the normalized HRRPs over 360◦, with ∆R = 0, from target
composed by a cone plus a cylinder. The cone and cylinder heights are 1.4 m and
0.7 m, respectively, while the diameter is 0.4 m. Fig. 5.3b and 5.3c show that the
contribution from the cone tip is generally lower than the ones from the other
scatterers. However, even in this case the tip of the cone is more visible in the
vertical polarization than in the horizontal one.
Finally it is pointed out that even for the RCS model of cylinder and cone plus
cylinder for both the analysed polarizations, some approximations are considered
leading to errors in the HRRP evaluation for some values of the aspect angle, as
described for the cone.
As described in Section 2.3.2, the RCS of missiles shows fluctuation represented by
a log-normal random variable. For this reason, the modulus of the each received
signal sample s(n,m) is multiplied by the square-root of a coefficient Ln(n,m),
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(a) (b) (c)

Fig. 5.3 Normalized HRRP from the cone plus cylinder for α ∈ [0, 2π]: (a)
no-Polarization; (b) Vertical Polarization; (c) Horizontal Polarization.

which is a statistical sample from log-normal distribution. Finally, the expression
of the HRRP frame in presence of Additive White Gaussian Noise (AWGN) can
be written as

H(ε,m) =
∣∣∣∣∣ 1
N

N−1∑
n=0

w(n)
[√

Ln(n,m)s(n,m) + N 0(n,m)
]
ej 2πn

N
ε

∣∣∣∣∣
2

(5.7)

with ε = 1, ..., N and m = 1, ...,M , and where N 0(n,m) is the AWGN sample.
It is worth noting that for this analysis the fast fluctuation of target RCS is
considered, such that the fluctuations are independent from sub-pulse to sub-pulse
of the entire sequence of HRRPs.

5.3 Classification Algorithm

In this Section a novel classification algorithm which is able to extract reliable
feature from the HRRP frame based on the micro-motions exhibited by BTs is
presented. Specifically the algorithm is based on the IRT and the evaluation of
pZ moments of a 2D target signature. Fig. 5.4 represents a block scheme of the
presented algorithm.

Fig. 5.4 Algorithm block scheme.
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HRRP Frame Acquisition

The aim of the first block is to acquire a HRRP frame whose time duration is
approximately long as the period of rotational motion exhibited by the target.
Therefore an accurate estimation of main rotation period exhibited by the target
is needed. In the literature there are presented several method for the estimation
of rotation rate Ω̂c of a target (Bai and Bao, 2014; Kangle et al., 2009; Liu et al.,
2010; Yan et al., 2011). However, the rate estimation processing is out of the
scope of this work. The number M̂ of bursts needed for computing the target
classification depends on the estimated rotation rate value Ω̂c and the SFWs radar
parameters. Specifically it follows

M̂ =
 Ω̂c

2πBRF

 (5.8)

where BRF is the Burst Repetition Frequency, which is the number of the entire sub-
pulse sequences transmitted in a second. It is worth noting that an approximation
error may occur due to the fact that the number of bursts to cover an entire
rotation period is not an integer.
Fig. 5.5 represents the HRRP frame acquisition scheme, where two possible
configuration are illustrated. In the first configuration (case 1 in Fig. 5.5) the
estimation of the rotation rate, and consequently of the number M̂ of bursts
making up the HRRP frame, is computed by using primary observations of the
target by cooperative system. Then the SFWs radar will transmit M̂ bursts for
generating the frame for the classification algorithm. In the second configuration
(case 2 in Fig. 5.5), data acquired directly by the SFWs radar are used for the
estimation of M̂ . Then the selection data block will extract the sequence of bursts
for the classification directly from the available data.
The received signals from each burst are processed as described in Section 2.6 in
order to obtain a HRRP frame from the target. The output of the first block is
the matrix, H, whose each column contains the HRRP from a single burst.

Signature Extraction

The signature extraction block is composed by two steps (see Fig. 5.4). The
Pre-processing block consists into two steps. The first is the normalization of each
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Fig. 5.5 HRRP frame generation block scheme.

HRRP which makes up the frame with respect to its own maximum value

H̄(ε,m) = H(ε,m)
max

ε
H(ε,m) (5.9)

The second step of pre-processing block consists into resizing the normalized frame
H̄ around the range of mass centre, RMC, such that the interval of considered
ranges is greater than the maximum dimension of the targets of interest. Following
the target signature for the classification algorithm is extracted by applying IRT of
the pre-processed HRRP frame. Specifically, the filtered back-projection method
with ramp filter is considered, as commonly used in the literature (Bai et al.,
2011).
The space distribution function of principal target scatterers is a 2D function
defined on the plane x̃z̃ given by the superimposition of delta functions as follows

F(x̃, z̃) =
Np∑
i=1

δ(x̃− x̃i)δ(z̃ − z̃i) (5.10)

where (x̃i, z̃i) are the coordinates of the i-th scattering point onto plane x̃z̃. In
the hypothesis that the principal motion of the target is compensated, the range
of each scatterer Ri in the HRRP frame depends on the aspect angle as follows

Ri(t) = ∆R − x̃i cosα(t) − z̃i sinα(t) (5.11)

Fig. 5.6 shows the range maps and their IRT for the three scatterers of a cone
considering an entire rotation period, Tr, for different couple of values of (∠El,Θ).
The micro-motions exhibited by target leads to a periodic tracks in the range-slow
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time domain. Specifically each scattering point generates a sinusoidal path centred
into ∆R in the HRRP frame when α(t) varies into [0, π]. Then, applying the
IRT, all the energy recovered from the path of a single scatterer is concentrated
into a point obtaining an image which represents the profile of the object with
the exact relative distances between scatterers onto plane x̃z̃ (ISAR image of the
object). However, from (4.25) it is clear that α(t) generally varies periodically
into [|Θ − ∠El|, |Θ + ∠El|], hence each scatterer moves on a different periodic
path. In this specific case, by applying the IRT, the energy from each path is
dispersed into the final 2D image, such that each of them generates a close line,
e.g. circumference or ellipse. For example, Fig. 5.6e shows the IRT of the range
map from a precessing cone with (∠El,Θ) = (60◦, 10◦), in which each scatterer
leads to a different circumference, while Fig. 5.6f shows the IRT of the range map
from a wobbling cone with (∠El,Θ) = (60◦, 90◦), where the contribution from
the cone tip is concentrated in a point, while the points on the base generate an
ellipse. Therefore, the IRT of HRRP frame can represent the target signature
since the close lines are strictly related to the coordinates of scattering points
onto plane x̃z̃.
The 2D target signature Λ is obtained normalizing by M̂ the IRT of the output

of the pre-processing block, H̃, as follows

ΛH = IRT{H̄}
M̂

(5.12)

One of the principal property of the RT is that any rotation of the input function
f(x, y) inducts a linear shifting to the sinogram Rf (p, φ). As a result, considering
the HRRP frame of a target as the RT of its scatterers space distribution function,
then the initial phase of the micro-motion leads to a rotation of the target signature.
For this reason the choice of features which are invariant for rotation are of interest
in this classification problem.

Feature Extraction

The pZ moments are geometrical moments with several properties, among which is
that their modulus is rotational invariant, as described in Section 3.4. Specifically,
the (O + 1)2 pZ moments of the target signature ΛH are computed in order to
extract the feature vector, where O is the maximum order according to (3.15) A
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(a) (b) (c)

(d) (e) (f)

Fig. 5.6 Range map and its IRT for the three points of cone considering a whole
rotation period, Tr, for different couple of values of (∠El,Θ): (a) range map
for a complete rotation of cone with (∠El,Θ) = (90◦, 90◦), (b) range map for
precessing cone with (∠El,Θ) = (60◦, 10◦), (c) range map wobbling cone with
(∠El,Θ) = (60◦, 90◦); (d),(e) and (f) are the IRT of the range maps (a),(b) and
(c), respectively.

(O + 1)2-dimensional feature vector is obtained, whose z-th element is

F pZ
z = |ζo,l| (5.13)

where o = l = 0, · · · , O − 1 and z = 0, · · · , (O + 1)2 − 1. Since the pZ moments
are defined on the unit circle, the signature ΛH is inscribed in the unit circle.
Finally, in order to avoid that polarized vector may affect the classification process,
the final feature vector as input of classifier is statistically normalized according
to (4.53). The classification performances of the extracted feature vectors are
evaluated using a the k-Nearest Neighbour (kNN) classifier for its capability to give
as output the scores for each class and for its low computational load. Additionally,
as described in Section 4.4.2, by using the kNN classifier the performance of the
classification features are not polarized by the specific proprieties of the classifier.
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5.4 Micro-motion Velocity Effect

In presence of a target which moves with a radial velocity v along the LOS, the
target range varies during the burst acquisition about 2NvrT . Let us assume
that the target is tracked and the main Doppler shift due to the bulk motion
is compensated perfectly, such that ∆R(t) = RMC(t) − R0(t) = 0. From these
assumption follows that the HRRP frame shows how the distance between the
radar and each principal scattering point of the target changes with time due to
the micro-motions. The position of the peak value of the fine range profile for
each scatterer of the target locates at (Qun Zhang, 2016)

4π
c

∆fR̂i ≈ −4π
c

∆fRi − 4π
c
f0viT (5.14)

where R̂i is the estimated range of the i-th scatterer, Ri is the projection of the
distance between the i-th scatterer and the mass centre along the LOS, and vi

is the velocity of the i-th scatterer due to the micro-motion. It is worth noting
that the micro-motion of a target leads to a multi-targets (scatterers) scenario, in
which each of them has a different velocity profile, given by

vi = vi(t) = (x̃i sinα(t) − z̃i cosα(t)) dα(t)
dt (5.15)

with

dα(t)
dt = Ωc sin(∠El) sin(Θ) sin(Ωct+ φ)√

1 − (sin(∠El) sin(Θ) cos(Ωct+ φ) + cos(∠El) cos(Θ))2
(5.16)

Hence, the displacement from the effective range for each scatterer is different
according to its position on target surface, the target motion and the radar position.
Fig. 5.7 shows an example of how HRRP frame from the three considered shapes
varies considering the stop-and-go hypothesis (dash line) and the continuous
motion during the burst acquisition (continuous line). In the example shown,
(∠El,Θ) = (90◦, 90◦) and Ωc = 6π. Moreover, the occlusion and the polarization
scattering proprieties of the scatterers are not taken into consideration for making
clear the micro-motion effect on the HRRPs. It is worth noting that a rotational
motion leads to a circular shift of the tracks of each scatterer in the frame. This
shift leads to a rotation of the 2D image recovered by using the IRT. Additionally,
the maximum range of each scatterer is greater with respect the real value, such
that the object appears greater in the target signature. However, since the velocity
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(a) Cone (b) Cylinder

(c) Cone plus Cylinder

Fig. 5.7 Example of HRRP frame from the three considered shapes considering
the stop-and-go hypothesis (dashed line) and continuous motion during the burst
acquisition (continuous line), for (∠El,Θ) = (90◦, 90◦) and Ωc = 6π.

of each scatterer depends on the geometry of the target and their distances from
target MC, the signature shape (hence, the target shape) may appear distorted,
e.g. the conical shapes appear with a greater hight and base ratio. Finally, since
a rotation leads to an harmonic radial velocity, the velocity in even not constant
during the burst. Specifically, acceleration affects the HRRP reducing the SNR
on the 2D target signature.
The pZ moments based features guarantee robustness against rotational and scale
effects on the target signature. However, in order to reduce the deformation effect
due to the micro-motion and to improve the classification capabilities, the radar
SFW may be adaptive to the estimated rotation rate.
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5.5 Performance Analysis

In this Section the performance of the proposed classification algorithm is evaluated
with simulated data. The algorithm is tested considering three possible shapes
for the BTs which are the cone, the cylinder and the cone plus cylinder. The
cone and the cylinder have the same height and radius which are 1 m and 0.375
m, respectively. The third shape is obtained by joining a cone whose height and
radius are 1.4 m and 0.2 m, respectively, and a cylinder with a height of 0.7 m
and radius 0.2 m. Table 5.2 synthesizes the dimensions of target of interest.

Table 5.2 Target Dimensions.

h1 [m] h2 [m] r [m]
Cone 0.750 0.250 0.375
Cylinder 0.500 0.500 0.375
Cone plus Cylinder 1.400 0.700 0.200

Hence, six classes are considered, each of them corresponding to a particular shape
and motion:

1. precessing cone;

2. wobbling cone;

3. precessing cylinder ;

4. wobbling cylinder ;

5. precessing cone plus cylinder ;

6. wobbling cone plus cylinder ;

Generally the precession angle of warheads with a conical shape is relatively small
compared to the half cone angle (Bankman et al., 2001) and its value is generally
within [4◦, 12◦] (Sisan et al., 2008). In this work the precessing classes for each
shape are obtained by fixing the precession angle Θ equal to 10◦, while for the
wobbling classes Θ = 90◦.

Both the training and testing sets are simulated considering a SFWs radar
transmitting bursts composed by 128 square sub-pulses with a total bandwidth of
800 MHz and a PRF of 20 kHz. All the SFWs radar parameters are synthesized
in Table 5.3.
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Table 5.3 SFWs radar system parameters.

Carrier frequency [GHz] 2.600
Total bandwidth [MHz] 800
Number of sub-pulses N 128
Waveform bandwidth [MHz] 6.25
Pulse Repetition Frequency [kHz] 20
Burst Repetition Frequency [Hz] 156.25

The training set for each class is realized for different values of the radar elevation
angle ∠Elu, given by:

∠Elu = u 5◦ with u = 1, 2, · · · , 18. (5.17)

Each sample of training set is obtained considering the target stopped during
the acquisition of a single burst and in absence of noise. Specifically, for a each
∠Elu a 360 long HRRP frame is simulated such that the target has completed a
rotation of 1◦ between two sequential bursts with respect to its motion. Finally
the initial phase of rotation is set equal to zero.
The testing set is realized considering noisy observations and continuously moving
targets, even during a single burst. In particular, since the warhead spinning and
decoy wobbling frequencies are typically smaller than 3 Hz (Li-hua et al., 2006),
the dataset for testing each class is realized on varying the rotation rate within
[0.25, 3] Hz. Specifically the angular rotation velocities considered are

Ωcv = 2π
[1
4 + v

8

] rad
s with v = 0, · · · , 22 (5.18)

From (5.8) it is pointed out that the HRRP frame length decreases as the rotation
rate increases. Fig. 5.8 shows how the number of bursts of the frame varies with
the rotation rate for the SFWs radar described above.
The dataset for the test of each class for a fixed noise power and rotation rate is
composed by 900 samples, obtained by realizing 20 acquisitions for each value of
∠Elϵ = ϵ 10◦ with ϵ = 1, 2, · · · , 9. All the acquisition are different for the noise
observation and for the initial phase of the micro-motions. The initial phase is
drawn randomly from a uniform distribution [0, 2π].

The performance of the proposed algorithm are evaluated in terms of: Proba-
bility of correct Motion identification (PM), which represents the capability to
distinguish between precessing and wobbling targets; Probability of correct Shape
identification (PS), which represents the capability to distinguish between the
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Fig. 5.8 Number of bursts to obtain the HRRP frame on varying the angular
rotation velocity and for the SFWs radar described in Table 5.3

shapes of targets; Probability of correct Classification (PC), the capability to
identify the motion and the actual shape of the target.
The analysis is conducted on varying the Signal to Noise power Ratio (SNR),
referring to the noise which affects the received signal samples as output of the
stretch processing, and considering the RCS oscillation according to the lognormal
distribution with zero mean and variance equal to 0.4 (Kangle et al., 2009). The
mean of the three probabilities for each couple of values of SNR and rotation rate
is evaluated with a Monte Carlo approach over 104 different runs in which 100
samples for each class are randomly taken from the testing dataset and classified.
The k value of the k-NN classifier is chosen equal to 1.

Fig. 5.9 shows the performance obtained on varying the SNR and the angular
rotation rate, considering the no-polarization RCS model. In order to reduce
the distortion in the HRRP due to the variation of the aspect angle within the
burst interval a Hamming window is used. It is observed that the performance
in terms of the three probabilities increases as the SNR increases and decreases
as the rotation velocity increases. The main reason is that the IRT integrates
incoherently the HRRPs of the frame, increasing the SNR of the final image. This
incoherent processing gain depends on the frame dimension: the longer the HRRP
frame, the higher the processing gain. However Fig. 5.9a shows that PS ≥ 0.99
for SNR greater than −5dB for all the considered rotation rates. PC and PM are
very similar for SNR greater than −5dB since PS is close to 1. Specifically, for
these SNR values PC and PM varies within [0.93, 0.95] for all the rotation rates. It
is worth noting that the performance in terms of motion recognition and correct
classification are affected by the fact that the aspect angle varies in the same way
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(a)

(b)

(c)

Fig. 5.9 Performance in terms of PS (a), PM (b) and PC (c) by using the no
polarization model for the RCS.

when the values of the angles ∠El and Θ are switched. In this analysis there is a
case in which precession and wobbling lead to the same variation of aspect angle.
Specifically, since the training set for each class is composed by 18 feature vectors,
the ambiguity in the motion classification is around 1/18 ≈ 5.5%, which leads to
a maximum value for PM close to 0.95.

Fig. 5.10 shows the performance obtained on varying the SNR and the angular
rotation rate, considering the RCS model for the vertical polarization. In this
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case a Hann window is used with the aim to reduce the distortions in the HRRP
due to the variation of the aspect angle within the burst interval and to increase
the capability to observe scatterers with lower coefficients. It is observed that

(a)

(b)

(c)

Fig. 5.10 Performance in terms of PS (a), PM (b) and PC (c) by using the RCS
model for vertical polarization.

the performance obtained with the vertical polarization model confirms the trend
observed in Fig. 5.9 for the no-polarization model. Specifically Fig. 5.10a shows
that PS > 0.97 for all the considered rotation rates when the SNR is greater
than −5dB, reaching a maximum value of about 0.99. Fig. 5.10b and Fig. 5.10c
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show that PM varies within [0.92, 0.95] and PC varies within [0.91, 0.94] for all the
considered rotation rates when the SNR is greater than −5dB. Moreover, it is
observed that the performance for lower values of SNR and higher rotation rates
obtained with the RCS model for vertical polarization are better than the ones for
the no-polarization model. The scattering coefficients for the RCS model described
in (Ross and DIV., 1969) takes into consideration the target shape not only in
terms of distances between the scatterers, but also of its characteristics about
shape flatness and sharpness. This information may have particular importance
into processing of data with very low SNR values.

Fig. 5.11 shows the performance obtained on varying the SNR and the angular
rotation rate, considering the RCS model for the horizontal polarization. Even in
this case a Hann window is used to emphasize the scatterers with lower coefficients.
From Fig. 5.11a it is observed that the capability to discriminate between the
different target shapes decreases lightly by using horizontal polarization rather
than the vertical polarization. The main reason is due the scattering proprieties
of points in proximity of the sharpest parts of the object. In particular, the tips of
the cone and the cone plus cylinder are more visible using the vertical polarization
rather than the horizontal, in agreement with the mathematical model in (Ross
and DIV., 1969), as described above. However, PS varies within [0.94, 0.96] when
the SNR is greater than −2dB, for all the considered values of the rotation rate.
The performance in terms of PM are similar for both the polarization models
(observing Fig. 5.10b and Fig. 5.11b), varying within [0.92, 0.95] for all the
considered rotation rates when the SNR is greater than −5dB. The loss in the
performance in terms of PS using horizontal polarization leads to a loss in PC ,
which varied within [0.875, 0.905] for all the considered rotation rate when the
SNR is greater than −3dB. Finally, it is pointed out that even the performance
using the RCS model for horizontal polarization are better than the ones using
the no-polarization model for lower values of SNR and higher rotation rates.
The rotation rates of precession and wobbling are generally different. In fact
while the warhead spinning and the decoy wobbling frequency may be similar, the
precession frequency is typically an order of magnitude smaller with respect to
the spinning (Bankman et al., 2001). Therefore, the system capability in terms
of motion recognition may be improved considering also the estimated rotation
velocity. For this reason the capability to recognize the target shape is considered
the most relevant in this analysis. In fact the identification of the shape may be
discriminant between warheads and decoys allowing also to understand which
kind of warheads the target can be (cone plus cylinder can represent a warheads
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(a)

(b)

(c)

Fig. 5.11 Performance in terms of PS (a), PM (b) and PC (c) by using the RCS
model for horizontal polarization.

with an additional booster for manoeuvring).
Finally it is important to point out that the classification algorithm is independent
on initial phase of micro-motion and robust with respect to the receiver noise, the
RCS scintillation and the approximation error on the HRRP frame dimension.
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5.6 Summary

In this Chapter a novel framework for the radar classification of BTs has been
presented with the aim to distinguish between warheads and decoys. The pre-
sented algorithm employs the information relative to the range migrations of the
principal target scatterers due to the micro-motions, which are directly observable
from a HRRP frame.
The effect of micro-motions on the SFWs radar return is analysed emphasizing on
differences due to the signal polarization and due to the micro-motions exhibited
by missile warheads and decoys.
The presented algorithm is based on the use of RT applied on the HRRP frame
received from the target in order to extract a 2D target signature. A feature vector
for the final classification is evaluated by computing the pZ-moments from the
2D target signature, guaranteeing classification being independent on the initial
phase of the target micro-motions (no synchronization required).
The effectiveness of proposed approach is tested on simulated SFW radar data,
obtained by considering three model for the RCS of the targets of interest: no
polarization model, vertical and horizontal polarization models. The dataset for
testing the algorithm has been realized for different values for the micro-motion
parameters (e.g rotation velocities and precession angle), radar position angle and
noise power.
The results have shown that the framework facilitates the discrimination between
the warheads and the decoys with a satisfactory degree of correct shape and
motion classification. In particular, the use of vertical polarization guarantees
better performance than the horizontal polarization in terms of capability of shape
identification and, consequently, of target classification. The reason is due to
the higher scattering proprieties of points in proximity of the sharpest parts of
the objects (e.g. cone tip) in the vertical polarization. The features are robust
with respect to the SNR, the RCS oscillation and the HRRP distortions due to
micro-movements. Specifically, this algorithm performs well in noise because the
IRT has a high accumulation gain to sinusoidal curves in the target signature.
However, it is worth noting that, in order to apply efficiently the proposed algo-
rithm, it is required good estimations of target rotation rate and MC range.



Chapter 6

Space-borne Passive Bistatic
Radar for SSA and BMD: a
Precursory Study

6.1 Introduction

Recently FS radars have been used in many different scenarios for performing
radar tasks e.g. detection, tracking and imaging. In (Cherniakov et al., 2006) an
algorithm for the classification of vehicles with different size is proposed based on
different frequency Doppler shifts which characterize the target signature. In (Hu
and Zhu, 1997) the capability to detect an aircraft by a FS radar using the Global
Navigation Satellite System (GNSS) satellites as illuminator of opportunity was
demonstrated experimentally. Moreover, target classification was performed by
evaluating the Shadow Inverse Synthetic Aperture Radar image from received
signals. The authors in (Abdullah et al., 2017) show experimentally the capability
of extracting micro-Doppler (mD) information due to target secondary motions
e.g. rotation or vibration, which may be used for target classification using FS
configuration.
In this Chapter the concept of FS is exploited for Space Situational Awareness
(SSA). A novel radar system for the detection of very small space debris, which
may allow the development of target tracking and classification capabilities, is
presented. Specifically, the precursory study of a new space-borne PBR system
for space target detection is investigated, determining its detection capabilities in
terms of target dimensions based on the Radar Range Equation (RRE).
The main motivations for a space-borne PBR is that: i) it reduces the distance
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between transmitter and receiver and ii) allows for a lower relative velocity between
illuminator and receiver and iii) bypasses the atmosphere and the sources of error
and attenuation that come with it. The long distance has an impact on the required
gain of the antenna, while the relative velocity has an impact on the integration
time, and thus the ability to detect small objects. Moreover a space-borne receiver
in LEO avoids the detection of other flying objects, or bird flock.

6.2 Space-Borne Passive Radar System

In this section a new system for space debris detection and monitoring is described.
The idea is to fly a receiver at low-altitude, collect and analyse the radio waves
coming from any satellite flying at higher altitudes and broadcasting towards
the Earth. One or more nano-satellites, or cubeSats, in LEO would form a
low-cost detection system with a sufficient lifetime to collect enough data on the
existing debris population but not long enough to increase such a population. As
illustrated in Fig. 6.1, a sensing platform comprises essentially three principal
components: a Software Defined Radio (SDR) as a passive bistatic radar receiver,
a Low Noise Amplifier (LNA), and one or more antennas. The LNA is introduced
to enhance the sensing capacity by increasing the receiver gain. Any satellite

Fig. 6.1 Representation of proposed radar system for space debris detection and
tracking.

transmitting radio waves towards the Earth within the frequency band of the
antenna on the sensing platform represents a suitable illuminator. The source of
RF illumination can be selected statically or dynamically among the available
platforms (e.g. existing constellations such as Iridium, GNSS, HY2A). One of
the main features considered in this work for the illuminator selection, is the
satellite altitude. In fact, the RF source has to fly at higher orbits with respect
to the receiver, such that the FS region between transmitter and receiver can be
exploited for the detection of space debris. By using the FS configuration, an
object can be detected by measuring the variation in received power. When there
is no object along the LOS between transmitter and receiver, the received power
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is almost constant in time. When an object approaches the LOS, the FS field
starts to shadow the receiver leading to a loss of received power. The proposed
system configuration is described in Fig. 6.2. As described in Section 2.3.2, the

Fig. 6.2 Working principle of the proposed Passive Radar on a nano-satellite.

peak FS RCS is reached when the target crosses the LOS and the wavelength is
smaller than the target silhouette’s area, such that it is given by (2.25). This peak
value can be used as a signature for the detectability of an object. Note, however,
that even in the case in which the bistatic angle never reaches 180◦, the detection
via FS radar can take place considering the sidelobes effect of the diffracted field
(Cherniakov et al., 2006).
Nevertheless the absence of range resolution of FS radar is compensated by the
advantage of absence of signal fluctuation because of the target’s natural swinging,
which represents a limit for coherent signal processing time in conventional radar.
Notice that in order to obtain the maximum benefit from a long coherent processing
interval the received signal must have a zero frequency offset with respect to the
matched filter. By using a PBR on a nano-satellite or on a cubeSat, the Doppler
offset can be very small in case of transmitter, receiver and target move on similar
directions. Moreover, the attenuation and delays introduced into the received
signal by the atmosphere (e.g. by troposphere) are avoided.
In case the signal transmitted by the illuminator is known (e.g. GNSS), a way to
achieve a good performance from a such passive system is to create a replica of
the expected scattered signal from the debris for the receiving system, assuming a
preliminary knowledge of system kinematics. However, since the Doppler effect
which affects the received signal result from the relative movement of transmitter,
receiver and target (which can be about thousands of meters per second in the
worst case of opposite fly directions), it is not guaranteed to yield a constant
Doppler offset during the acquisition time interval. For this reason, a bank of
matched filters could also be used, in case of small deviations from the expected
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Doppler, assuming linear variation (Benson, 2014).
An alternative approach is proposed in (Mahmud et al., 2016), where a multi-step
processing strategy is described for reducing the computational cost. Firstly, the
received signal is correlated with a replica of the expected signal over a relative
short integration period. The latter is taken short enough such that the phase error
between the received signal and the replica is approximately constant. Through
Integrate and Dump (I&D) operations, complex observations of the beat signal
between the replica and the actual indirect arrival are obtained. Finally, the full
length coherent integration is obtained by adjusting the phase of the samples
of I&D operations and summing over the observation period. This second step
is robust against phase errors that are inconsistent over the observation period.
This approach, which has been demonstrated in case of GNSS signals, can be
potentially adapted for decoding other weak signals as well (Mahmud et al., 2016).
Another possible solution is the crystal video detector. The crystal video detector
consists into widely used detection scheme, based on the square law detector,
followed by mean level cancellation and matched filter. The authors in (Ustalli
et al., 2017) present a full characterization of the performance of the crystal video
detector for a FS radar in presence of a moving target onto linear trajectory
against Additive White Gaussian Noise (AWGN). Specifically, it is shown that
the crystal video detector has limited losses with respect to the ideal detector,
when the target is in far field. For this reason, this kind of detector can be used
for the proposed system for monitoring a specific set of orbits at suitable distance
from the space-borne receiver’s orbits and the selected illuminator’s ones.

6.3 Detection Capability Analysis

In this Section the detection capabilities of the proposed radar system are evaluated.
Before extracting the desired radar information, the SNR is generally increased
by processing the received signal. Specifically, considering the signal processing
gain Gsp from the use of matched filter for a modulated pulse in reception, and
the incoherent integration of N pulses, the SNR is

SNR = PtGtGrσλ
2

(4π)3R2
tR2

rkT0BrFLs

√
NGsp. (6.1)

Note that targets orbiting in space exhibit additional motion components on top
of the basic Keplerian one. In particular, orbital perturbations, with a frequency
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higher than the orbital period, and attitude motion lead to a fluctuation of the
area of the target’s silhouette that is measured by the radar (Qun Zhang, 2016).
Therefore, an incoherent integration of radar pulses has to be considered in order
to take into account the fluctuations of the target’s silhouette.

6.3.1 Figure of merit

The key performance indicator for the proposed passive bistatic radar system is
the minimum size of detectable targets. Since in the case of FS the RCS depends
only on the target silhouette area, the information on sizes of detectable object can
be obtained from the RCS. Rearranging (2.13), the RCS into bistatic configuration
can be written as a function of the system parameters and SNR as follows

σ = (4π)3R2
tR

2
rkT0BrFLs

PtGtGrλ2
SNR√
NGsp

. (6.2)

In this way it is possible to define what the minimum RCS of a detectable target
is by fixing the SNR at the receiver that is needed to guarantee a given probability
of detection.
From (2.25) and (6.2) it follows that the minimum silhouette’s area, Ā, of a
detectable object by a FS system in the Fraunhofer zone is obtained from the
minimum required RCS as follows

Ā =
√
λ2σmin

4π = 4πRtRr

λ

√√√√kToBrFLs ŜNR
PtGtGrGsp

√
N
, (6.3)

where ŜNR is the minimum SNR required to guarantee detection. It is worth
noting that Ā is a function of the target’s altitude, such as

Ā ∝ RtRr = f(ρst|ρrx, ρtx) = (ρst − ρrx)(ρtx − ρst), (6.4)

where ρst, ρrx and ρtx are the altitudes of the target, the receiver and the trans-
mitter, respectively. From this proportion, it is possible evaluating how Ā varies
with respect to the distance between target, transmitter and receiver, hence, for
a fixed value of Ā, the received power is highest when the target is close to the
transmitter or the receiver. Specifically, the target’s altitude which corresponds
to the higher values of minimum silhouette’s area of the detectable object, ρst, is
evaluated imposing the derivative of f(ρst|ρrx, ρtx) with respect to ρst equal to 0
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as follows

∂

∂ρst

f(ρst|ρrx, ρtx) = (ρst − ρrx) − (ρtx − ρst) = 2ρst − ρrx − ρtx = 0. (6.5)

Hence,
ρst = ρrx + ρtx

2 (6.6)

Therefore, for a certain system, fixing the transmitter’s and receiver’s altitude, the
greatest value of Ā is achieved when the object is in the middle of the baseline of
the FS radar. Since it is possible to detect objects with smaller silhouette’s area
when they are closer to the receiver or to transmitter, the altitude of the orbits of
major interest for the detection of very small debris is a key parameter for setting
the receiver’s altitude, according to the receiver gain and the characteristics of
the available illuminators.

6.3.2 Observation Zone of Interest

From the current distribution of space objects in Fig. 6.3, one can see that the
peak density in LEO is at an altitude of around 800 km. Fig. 6.3 represents the
spatial density of LEO space debris by the altitude according to NASA report to
the United Nations Office for Outer Space Affairs in 2011 (NASA, 2011). This

Fig. 6.3 Spatial density of objects in LEO, according to the 2011 NASA report to
the United Nations Office for Outer Space Affairs (NASA, 2011).

spatial density was drastically increased by two impact events that generated
as many as 6000 trackable objects (Pelton, 2013). The first was the deliberate
destruction by a missile of the Chinese Feng-Yun weather satellite. The second
impact was between the operational Iridium 33 mobile communications satellite
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and the defunct Russian Kosmos 2251 weather satellite. Given the high density
of objects in this orbit regime, without loss of generality, we will consider targets
flying in that region.

6.3.3 Selection of the Illuminators

The choice of the illuminators is driven by a number of parameters that concur to
increase the SNR. For the design of the proposed system, the key selection criteria
are the EIRP of the RF sources, their distance from the target’s zone and receiver,
the carrier frequency (or wavelength), the system bandwidth, which determines
the power of noise at the receiver, and the modulation scheme used by the source,
which determines the signal processing gain and gain of the integration time.

In this Chapter a set of two illuminators is considered for the analysis of perfor-
mance. The first is the Haiyang-2A (HY2A), which is a second generation satellite
series for ocean monitoring approved by the China National Space Administration
(CNSA) in Beijing (ESA, 2011). The satellite has been placed at an altitude
of 971 km, on a near sun-synchronous frozen orbit, with an inclination of 99.3◦.
The orbital period is of 104.45 minutes. The HY2A is equipped with an active
Radio Altimeter (RA), which works at two different frequencies (Ku-band and
C-band). The altimeter uses the LF-chirps (Low Frequency) to perform its task
with bandwidths of 320 MHz, 80 MHz and 20 MHz in Ku-band and 160 MHz in
C-band. The pulse duration is 102.4 µs, and the altimeter transmits with a PRF
between 1 kHz and 4 kHz. For this system, the achievable signal processing gain
from the matched filtering is 45.15 dB for a pulse of 102.4 ms covering 320 MHz
of bandwidth in Ku-band, and 42.14 dB for the 160 MHz wide pulse in C-band.

The second set of illuminators is the Global Star (GS) constellation. GS is a
LEO satellite constellation dedicated to satellite phone and low-speed data commu-
nications. Specifically, the system broadcasts with a C-to-S Band transponder and
receives with an L-to-C Band transponder, respectively. The GS payloads have
been placed at an altitude of about 1400 km, with an orbit inclination of about
52◦ and an Orbit Period-Nodal is about 114 minutes. Therefore, GS constellation
does not cover polar areas, due to the lower orbital inclination (Globalstar, 1997).
The GS Canada mobile-satellite network primary modulation and multiplexing
method is Code-Division Multiple Access (CDMA). The system operates in four
distinct frequency bands (Globalstar, 1997):
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1. The forward or down-link service from satellite to user terminal operates in
a band of 16.5 MHz between 2483.5 MHz and 2500 MHz where there are 13
frequency-division multiplexed channels, each 1.23 MHz wide;

2. The return or up-link service from user terminal to satellite operates in the
band between 1610 MHz and 1626.5 MHz;

3. The forward feeder link from feeder-link earth station to satellite occupies
the band from 5091 MHz to 5250 MHz where there are 8 channels 16.5 MHz
wide in right-Hand Circular Polarization (RHCP) and another 8 channels
16.5 MHz wide transmitted in LHCP;

4. The return feeder link from satellite to feeder-link earth station occupies the
band 6875 − 7055 MHz with 16 frequency-division multiplexed RF channels,
each one 16.5 MHz wide and associated with a separate antenna-pattern
beam in the 1610 − 1626.5 MHz band.

For the system proposed in this work the 16.5 MHz wide downlink, from satellite
to user, in 2483.5−2500 MHz bandwidth and the 180 MHz wide return feeder link,
from satellite to ground station, in 6875 − 7055 MHz are employed. Considering
a signal segment of 10 ms for computing the radar detection, the two signal
processing gain are 52.17 dB and 62.55 dB for the C-band and S-band downlink,
respectively.

6.3.4 Numerical Results

The new technologies allow to satisfy the demand of very small radio receiver
devices with high performance in terms of gain and noise figure. The State-of-Art
of the available electronic components already available on the market, let us to
considered for the numerical simulations in the following, a cubeSAT composed
of an SDR with a noise figure of 8 dB (ResearchTM, 2017), and a LNA which
guarantees a gain in the range of [40 , 50] dB with a noise figure within [2 , 4.5] dB
(RF-LAMBDA, 2017; RFCCOMP.com, 2017). The receiving antenna could be
either a high gain deployable parabolic dish, a foldable patch array or a membrane
antenna (Rahmat-Samii et al., 2017). Specifically, in the following analysis a
parabolic dish is considered as receiving antenna. In this case, the antenna gain is
given by

Gr = 4πηeAp

λ2 = ηe

(
πD

λ

)2
(6.7)
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where ηe is the antenna efficiency, Ap the physical aperture area, λ the wavelength,
D the antenna diameter. By fixing the antenna diameter and efficiency, the gain
of the receiving antenna is evaluated from (6.7) given the wavelength. For the
following performance analysis the efficiency ηe is set equal to 0.5 and the diameter
D equal to 0.5 m. The total receiver gain is then given by the sum of the receiver
antenna gain and LNA gain in dB domain. The values of all other parameters
are reported in Table 6.1. It is worth noting that the proposed system allows one

Table 6.1 Link Budget Parameters.

Parameter Description HY2A GSTAR
λ Wavelength. [mm] 22 57 43 120

Gr Receiver antenna gain. [dB] 34.03 25.78 28.15 19.30
EIRP EIRP. [dB] 52.5 47 19 37

BR Radar’s Bandwidth. [MHz] 320 160 180 16.5
Gsp Signal processing gain. [dB] 45.15 42.14 62.55 52.04

GLNA LNA gain. [dB] 40 42 40 50
F Radar’s noise figure. [dB] 10 10 10 12.5
k Boltzmann’s constant. [J/K] 1.38 × 10−23

T0 Noise reference temperature. [K] 290
SNR SNR at radar receiver. [dB] 10

to solve the problem of atmosphere absorption which represents one of the most
relevant loss factors. However, the FS is maximum when the signal wavelength
is small with respect the target dimensions, as described in Section 2.3.2. For
this reason, in the following analysis two values for the loss factor are taken into
consideration: loss factor equal to 0 dB, which represents the best case, and a loss
factor of 20 dB.
Fig. 6.4 show the minimum silhouette’s area of detectable object as a function
of the integration time, for Ku-band and C-band transmitted chirp signals from
a HY2A satellite, and for a C-band and S-band transmitted signal from a GS
satellite, when the receiver is placed at 300 km of altitude with the target at 800
km. It is worth noting that, since in the HY2A case, pulsed transmission is taken
into consideration, the number of non-coherently integrated pulses N is given by
the product between the altimeter PRF and the duration of integration time. In
the GS case, which involves continuous transmission, sequential segments of 10 ms
are incoherently integrated such that N is given by the ratio between the duration
of the integration time and the length of the single segment. From Fig. 6.4 it is
apparent the HYA2 as illuminator allows the detection of smaller targets with
respect to the GS payload, since the latter is at higher altitude and transmits
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(a) (b)

Fig. 6.4 Minimum silhouette’s area of detectable target as a function of cubeSAT’s
altitude and integration time, by using Ku-band and C-band transmitted signal
from a HY2A satellite and S-band and C-band signals from a GS satellite: Ls =
0 dB (a) Ls = 20 dB (b).

with a lower EIRP. Moreover, it is worth noting that higher is the signal carrier
frequency, hence smaller wavelength, than higher is the parabolic antenna gain.
Moreover, the diffraction phenomenon has a smaller effect for lower wavelength.
For this reason the best performance is obtained by using the Ku-band pulses from
the HYA2, such that, even for very small integration time, it is possible to detect
object with an area smaller than 100 cm2 (around 50 cm2 for integration times
longer than 0.5 seconds), in the best scenario without losses. The performance
obtained by using GS payload decreases of a factor 10, when the S-band signal is
used, and of a factor 100 for C-band signal. Specifically, in this analysis the use
of the S-band signal outperforms the C-band signal as consequence of higher gain
of LNA used in the first bandwidth, while the higher gain in terms of receiver
antenna and signal processing obtained with C-band signal is compensated by the
higher EIRP for the S-band channel. When a loss factor of 20 dB is considered for
all system losses (comprising losses for edge diffraction when target dimensions are
comparable with wavelength), the minimum value of detectable target’s silhouette
area increases of a factor 10 for all the analysed cases.

6.3.5 Integration time

The integration time is defined as the time interval needed to transmit and receive
the integrated pulses to perform the radar detection. For a FS PBR the maximum



6.3 Detection Capability Analysis 128

possible integration time is the interval during which the target is approximately
along the LOS between the transmitter and the receiver.
The maximum integration time for the proposed system depends on the orbits
of transmitter, receiver and space target and on both transmitter and receiver
antenna’s pointing and patterns. In this sub-section we analyse the maximum
and minimum possible integration times assuming different orbit geometries. For
simplicity only circular orbits are considered. Furthermore, the bore-sight of the
transmitter is expected to be aligned with the nadir direction and the bore sight
of the receiver antenna is aligned with the zenith direction.

Let us consider that at t = 0 transmitter, receiver and target are aligned.
The coordinate system (Ũ , Ṽ , W̃ ) is defined such that the plane Ũ Ṽ contains the
orbit flown by the receiver and the Ũ -axis is along the line going through the
transmitter, receiver and target at t = 0.
Considering the three orbit radii drx, dst and dtx, which represent the distances
from the Earth center to receiver, space target and transmitter, then the position
vectors of the three objects in the (Ũ , Ṽ , W̃ ) reference frame are defined as

prx(t) = drx[cos(ωrxt), sin(ωrxt), 0]T (6.8)
pst(t) = dst[cos(ωstt), sin(ωstt) cos(αst), sin(ωstt) sin(αst)]T (6.9)
ptx(t) = dtx[cos(ωtxt), sin(ωtxt) cos(αtx), sin(ωtxt) sin(αtx)]T (6.10)

where ωrx, ωst and ωtx are the angular velocities of receiver, space target and
transmitter, respectively, and αst and αtx represent the squint angle with respect
to the plane Ũ Ṽ of the orbits of space target and transmitter. Note that the three
orbits are coplanar if αst and αtx are 0 or π. However, in the case of squint angle
equal to π the orbits of transmitter and target are retrograde with respect to the
orbit of the receiver.
The angular velocity ωorbit for an object orbiting circularly around the Earth,
hence the orbital period, depends only on the distance from the Earth centre d.
In particular, according to Kepler’s Third Law it follows that

ω = ω(d) =
√
µ

d3 . (6.11)

where µ is the gravity constant of the Earth. According to the Cosine Rule, the
bistatic angle can be evaluated considering the relative distance between the three
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elements of the radar scenario (see Fig. 6.5) which are defined as follows

l1(t) = ∥ptx(t) − prx(t)∥ (6.12)
l2(t) = ∥ptx(t) − pst(t)∥ (6.13)
l3(t) = ∥pst(t) − prx(t)∥ (6.14)

Then the bistatic angle is

β(t) = cos−1
(
l22(t) − l21(t) + l23(t)

2l2(t)l3(t)

)
(6.15)

It is highlighted that since the Earth has not a perfect spherical shape, the

Fig. 6.5 Representation of the bistatic angle β between transmitter, receiver and
target moving on different orbits.

transmitter and the receiver at different altitudes experience different precession
of the line of the nodes (Vallado, 2007). Therefore the orbits of transmitter, target
and receiver cannot remain coplanar, and the illuminator (the transmitter) needs
to be selected dynamically to allow higher integration times.
A measure of maximum integration time is obtained evaluating the duration of
time interval during which the configuration of radar system is such that the
bistatic angle is around 180◦. Fig. 6.6 shows how the bistatic angle β varies on
time considering the initial instant such that transmitter, receiver and target are
aligned. In particular let us consider the general cases of a transmitter at 963
km 1400 km (e.g. HU2Y and GS payload) from the Earth and, as in the analysis
described above, the target and receiver at 800 km and 300 km, respectively,
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different values of the squint angles (αst, αtx) are considered. It is easily noted

(a) (b)

Fig. 6.6 Example of bistatic angle variation from the instant of alignment of
transmitter, receiver and target for different values of couple (αst, αtx); the receiver
is at 1400 km, target at 800 km, and transmitter at 963 km (a), 1400 km (b).

that the possible integration time is longer when the orbits of three elements are
coplanar and covered in the same direction. The worst case is obtained when the
orbits are coplanar but the target moves in the opposite direction with respect
to transmitter and receiver. The examples in Fig. 6.6 shows that reducing the
transmitter’s altitude, the variation of bistatic angle becomes more sensitive with
respect to squint angles of transmitter’s and target’s orbits. This trend is due to
the greater transmitter angular velocity obtained decreasing the distance from
Earth centre. Finally, from Fig. 6.4 it is worth noting that the gain in terms
of sizes of detectable object, obtained by the incoherent integration, is more
influential for shorter integration time. In fact, by increasing highly the number
of integrated pulses the size of detectable object decreases slowly. Hence, it is
possible to guarantee satisfactory system detection capability even for target
moving in the opposite direction with respect to transmitter and receiver.

6.4 BMD Application

The proposed system may be used as support for military surveillance and BMD.
A potential advantage of the proposed solution resides in the capability to fly
over sensitive zones, thus being able to support primary detection and tracking
systems enhancing their early detection capabilities. A research on the kinematics
advantages of using space-based interceptor for Missile defence against the ground-
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based one during boost phase was reported in (keun Jang et al., 2008). A
space-borne receiver at very low orbits may be used to support the early detection
of missile during its initial flight phases over 300 km and during the mid-course
phase. The maximum altitude of sub-orbital trajectories of the intercontinental
ballistic missiles (ICBMs) can be considerably more than for a LEO reaching
values greater than 1000 km. The maximum altitudes depends the covered
range based on the position of launch point and their target point (Aydin et al.,
2005). As described in Section 1.1, during the mid-course phase a ballistic missile
releases different objects in addition to the warhead, such as decoys or boosters
used to overcome the atmosphere. These targets exhibit different micro-motions
during their trajectory. It has been experimentally demonstrated the capability
to extract mD profile of a target by employing a FS radar in (Abdullah et al.,
2017). Therefore, since it has been demonstrated in Chapter 4 the capability to
distinguish between missile warheads and decoys from mD profile of a target, the
proposed configuration may be used for detection and classification of ballistic
threats by exploiting the Doppler and mD informations.

6.4.1 Target Silhouette’s Area

Let us consider the coordinate system (û, v̂, ŵ) presented in Section 4.2 shown
in Fig. 4.3. The vector b̂ represents the direction of the baseline between the
transmitter and receiver in the hypothesis that it goes through the target’s MC.
It is given by

b̂ = [cos(ε1)cos(ε2), cos(ε1)sin(ε2), sin(ε1)]T (6.16)

where ε1 and ε2 are the elevation and azimuth angle into the defined coordinate
system.
Let us consider the local coordinate system (ũ, ṽ, w̃) shown in Fig. 6.7 whose
origin is MC. The new coordinate system is defined such that the transmitter
and receiver are both approximately located on the ũ-axis and the symmetry axis
of the target is in the plane ũw̃, such that

ũ = b̂ (6.17)
ṽ = ẑt × b̂ (6.18)
w̃ = ũ× ṽ (6.19)
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The orientation angle ϕ is defines as the angle between the ẑt and w̃-axis. The
symmetry axis in the coordinate system (ũ, ṽ, w̃) is obtained as follows

ẑ∗ = MT ẑt (6.20)

where
MT = [ũ, ṽ, w̃]T (6.21)

is the transition matrix. The orientation angle varies according to the micro-
motions exhibited by the target, and it is obtained as

ϕ = cos−1 (< ẑ∗, w̃ >) (6.22)

The target silhouette’s area which determines the FSRCS according with (2.25) is
evaluated by projecting the target volume on plane ṽw̃.

 𝑢
MC

𝜑
≈≈

 𝒛𝑡

 𝑣

 𝑤

Rx Tx

Fig. 6.7 Coordinate system (x̃, ỹ, z̃).

Let us consider a conical target. The position vectors of the tip and the generic
point of the base in the local coordinate system for target the oriented by angle ϕ
are

P̄ tip =


h1 sin(ϕ)

0
h1 cos(ϕ)

 P̄ b =


Rb cos(ψ) cos(ϕ) + h2 sin(ϕ)
Rb sin(ψ)
Rb cos(ψ) sin(ϕ) − h2 cos(ϕ)

 (6.23)
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where h1 and h2 are the distances of tip and centre of the cone base from the
mass centre, respectively, Rb is the radius of the cone base, and ψ ∈ [0, 2π[. The
projection of the tip on the ṽw̃ is the point (0, h1 cos(ϕ)), while from the projection
of the base the parametric equation of a closed curve is obtained for ψ ∈ [0, 2π[,
as follows  v = Rb sin(ψ)

w = Rb cos(ψ) sin(ϕ) − h2 cos(ϕ)
(6.24)

Specifically (6.24) is the parametric equation of an ellipse whose semi-major axis
and semi-minor axis are

a1 = Rb (6.25)
a2 = Rb sin(ϕ) (6.26)

respectively, and centre in (0,−h2 cos(ϕ)). The silhouette’s area coincides with
the area of the cone base projection for orientation angles such that the projection
of the cone tip lies inside the ellipse. Otherwise, it is necessary to evaluate the
tangents from the tip projection to the ellipse. In particular, the following system
of equations has to be solved


v2

R2
b

+ (w+h2 cos(ϕ))2

R2
b

sin2(ϕ) = 1
v = m(w − h1 cos(ϕ))

(6.27)

By substituting the second equation into the first, a parametric equation in the
variable m is obtained as follows

w2[m2 sin2(ϕ) + 1] + w[2 cos(ϕ)(h2 − h1m
2 sin2(ϕ))]

+ [m2 sin2(ϕ)h2
1 cos2(ϕ) + h2

2 cos2(ϕ) −R2
b sin2(ϕ)]

= 0

(6.28)

In order to determine the tangents from the tip projection to the ellipse the
discriminant, ∆, is set equal to 0 e.g.

∆ =
[2 cos(ϕ)(h2 − h1m

2 sin2(ϕ))]2 − 4[m2 sin2(ϕ) + 1]×
[m2 sin2(ϕ)h2

1 cos2(ϕ) + h2
2 cos2(ϕ) −R2

b sin2(ϕ)]
= 0

(6.29)
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From (6.29) follows that the gradients of two tangents are

m1,2 = ∓

√√√√ R2
b

H2 cos2(ϕ) −R2
b sin2(ϕ) (6.30)

for
H2 cos2(ϕ) −R2

b sin2(ϕ) > 0 (6.31)

then
ϕ ∈

]
0, tan−1

(
H

Rb

)[⋃]
π − tan−1

(
H

Rb

)
, π
[

(6.32)

with H = h1 + h2. Since the tip projection is along the ẑ-axis and ellipse in
(6.24) is symmetric around w̃-axis itself, the two tangent points have the same
w̃-coordinate which is

w∗
1,2(ϕ) = −

[2 cos(ϕ)(h2 − h1m
2
1,2 sin2(ϕ))]

2[m2
1,2 sin2(ϕ) + 1] (6.33)

From (6.24), the angle ψ∗ corresponding to the w̃-coordinate of tangent points is

ψ∗ = ψ∗(ϕ) = cos−1
[
w∗

1,2(ϕ) + h2 cos(ϕ)
Rb sin(ϕ)

]
(6.34)

such that
ψ∗ ∈

]
0, π2

[
(6.35)

and the coordinates on the ṽ-axis are

v∗
1,2(ϕ) = ∓Rb sin(ψ∗(ϕ)) (6.36)

Finally, the silhouette’s area as function of the angle ϕ is

Acone(ϕ) =

RH ϕ = 0

R2
b sin(ϕ)(π − ψ∗(ϕ)) +H|v∗

1,2(ϕ)|cos(ϕ) 0 < ϕ < tan−1
(

H
Rb

)

πR2
b sin(ϕ) tan−1

(
H
Rb

)
≤ ϕ ≤ π

2

(6.37)

It is possible to calculate the area for the other values of ϕ due to the object’s
symmetry. Fig. 6.8 shows how the projection of the cone varies with the orientation
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angle. From Fig. 6.8c it is observed that when ϕ is equal or greater than the cone
semi-angle, the projection of the cone tip lies on the base projection, hence the
silhouette’s area is given by the base surface’s area

(a) (b) (c)

Fig. 6.8 Conical target silhouette’s area: (a) ϕ = 0; (b) 0 < ϕ < tan−1
(

H
Rb

)
; (c)

tan−1
(

H
Rb

)
≤ ϕ ≤ π

2 .

Considering a cylindrical target, the silhouette’s area coincides with the area
of projection of the surface of the side for ϕ = 0. Specifically the latter is given
by a rectangular whose height is the cylinder height and the base is its diameter,
as shown in Fig. 6.9a. Fig. 6.9b shows that for ψ =

]
0, π

2

[
the silhouette’s area is

given by the sum of the areas of an ellipse and a rectangular as consequence of
the projection of the volume on the plane ṽw̃. Finally, for ϕ = π

2 the silhouette’s
area is given by the base surface’s area (see Fig. 6.9c). Then, it follows that the
area for a cylindrical target as function of orientation angle is

Acylinder(ϕ) = πR2
b sin(ϕ) + 2RbH cos(ϕ) (6.38)

Where ψ =
]
0, π

2

[
. Even for the cylinder the silhouette’s area for the other values

of the orientation angle are easily obtained thanks to the symmetry of the object.

6.4.2 Numerical Results

In this Section the performance of the novel methods is assessed by evaluating
the capability to detect a conical and cylindrical object whose dimension are
comparable with the modern missile warhead’s dimensions.
Fig. 6.10a shows the silhouette’s area on varying the orientation angle of conical
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(a) (b) (c)

Fig. 6.9 Cylinder silhouette’s area: (a) ϕ = 0; (b) 0 < ϕ < π
2 ; (c) ϕ = π

2 .

and cylindrical targets whose radius and height are 0.375 m and 1 m, respectively
(as considered in Section 4.5). In the described example, since the cone and
the cylinder have the same base, the silhouette’s area is the same for ϕ = 90◦,
while for all the other values of aspect angle the silhouette of cylinder is greater
than the cone’s one. In more detail, the minimum area of cylinder’s silhouette
coincides with the base area obtained for an aspect angle of 90◦. For the cone
with mentioned dimensions the minimum silhouette’s area is obtained for ϕ = 0◦

and it is equal to 3750 cm2.
Fig. 6.10b, in stead, represents the minimum target area that could be detected
using a GS payload as illuminator when target is at 1000 km and receiver at
300 km from the Earth, on varying the integration time. It is observed that the
described configuration allows to detect a target with an area of 1500 cm2 by
using a single radar pulse in the best case, with Ls = 0 dB. However the minimum
silhouette’s area of detectable target is smaller than 500 cm2 after 1 second of
integration. From Fig. 6.10b and Fig. 6.10a it is worth noting that it would be
possible to detect both the cone and the cylinder for any orientation angles and
integration times by using the S-band channel from the GS payload, even in the
case of Ls = 20 dB. When the C-band channel is used, the analysed target may
be always detected for any integration times in the best scenario with Ls = 0 dB,
while when a loss factor of 20 dB is considered, for an integration time greater
than 4 seconds the cone may be detected for orientation angles smaller than 45◦

and the cylinder for angles smaller than 75◦.
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(a) (b)

Fig. 6.10 Performance in terms of minimum silhouette’s area of detectable target
at 1000 km by using Global Star payload as transmitter for a receiver’s altitude
of 300 km, on varying the integration time, for Ls = 0 dB and Ls = 20 dB (a);
cone and cylinder silhouette’s area on varying the orientation angle, whose radius
and height are 0.375 m and 1 m, respectively (b).

6.5 Summary

In this Chapter a precursory study of a new space-based passive radar system for
SSA was described. The proposed system comprises of a PBR deployed on a small
space-borne platform, equipped with an SDR and a passive antenna to perform
radar task for space surveillance. The analysis of performance showed that the
proposed system may represent a low budget solution for the detection even of
very small space objects with sizes of few centimetres. One of the most important
aspects is that the relative shorter distances between transmitter, target and space
based receiver with respect to a ground based receiver guarantees higher SNR for
the radar tasks. Moreover, the performance of the proposed system is less affected
by atmospheric absorption due to the system geometry. For the same reason the
system functionality is independent of weather conditions and interference factor
represented by flying man-made vehicles or bird flock.
It has been showed that, with integration times shorter than 10 seconds and an
appropriate choice of the illuminator, the system can detect objects with section
areas as small as 50 cm2 with a receiver positioned at 300 km in the best scenario.
It is pointed out that, at the altitudes considered in this analysis, the expected
lifetime of the receiver is such to limit the risk to increase the debris population.
The proposed system may be used for the space surveillance of sensitive areas for a
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primary detection of potential dangerous targets, such BM warheads, guaranteeing
potentially additional capability of target identification since FS radars can be
used for the acquisitions of mD profile of an object.



Chapter 7

Conclusions and Future Work

The research presented in this Thesis investigates new signal processing solutions
for the identification of sensitive targets, such as Ballistic Missile (BM) warheads,
and for monitoring the population of space debris orbiting around the Earth.
In Chapter 2 an study on the main aspects of modern radar system was pre-
sented. Both the fundamentals and the advanced concepts were introduced, with
a particular focus on common approaches for achieving higher Signal-to-Noise
Ratio (SNR) at receiver in order to better perform the generic radar tasks. Fur-
thermore, the principal steps of target recognition process were introduced in
details, emphasizing the recent approaches proposed for target identification. In
this context, the Chapter also provided a description of the micro-Doppler (mD)
effect in radar echoes from targets which exhibit secondary motions in addition
to the main bulk motion, e.g. rotation or vibration. Additionally, the processing
for obtaining the High Resolution Range Profile (HRRP) of target by using a
Stepped Frequency Waveform (SFW) was introduced, with an analysis about how
the target micro-motions affect the resulting profile.
Chapter 3 presented a research review on the recent tools used for radar classifica-
tion of moving targets. Specifically, the most used Time-Frequency Distribution
(TFD) for observing how the frequencies components of a signal varies on time
were exhaustively introduced, describing the trade-offs which each function poses
in terms of time-frequency resolution, computational complexity, and produc-
tion of artefacts which represent interference factors for classification algorithms.
Moreover, the principal mD based profiles used as target signature were reviewed,
looking with particular attention for their application for BM classification. There-
fore, the spectrogram, the Cadence Velocity Diagram (CVD) and cepstogram were
described. Following, the theory of Radon Transform (RT) and Inverse Radon
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Transform (IRT) was discussed, with particular focus on their use in Radar Imag-
ing (RI) of target with rotational motions. The Chapter also introduced some of
the recent feature extraction approaches used in the context of image classification:
the pseudo-Zernike (pZ) image moment based approach, the Krawtchouk (Kr)
image moment based approach and the 2-Dimensional (2D) Gabor Filter based
approach. The three approaches were mathematically analysed, reporting some
examples of Automatic Target Recognition (ATR) application based on Synthetic
Aperture Radar (SAR) images and mD profiles of the target. Specifically, a
mD based classification framework based on the evaluation of the pZ moments
projecting the CVD from the target onto a base of pZ polynomials was introduced.
The framework was tested with success for the classification of helicopters and
for distinguish different human gaits. The described features guarantee high level
of robustness against the initial phases of target motions and the aspect angel
between radar Line-Of-Sight (LOS) and the principal target axis.
An experimental validation of capability to distinguish between BM warheads and
decoys based on mD profile of a target was discussed in Chapter 4. A mathemati-
cal model for the radar return from warhead with precession and nutation, and
from tumbling decoys, was described in details, considering the approximation
at relative far field. In particular, two shapes were considered for the warhead,
namely cone and cone with fins, and three as decoys, namely cone, cylinder
and sphere. Moreover, a laboratory experiment was conducted for simulating
the radar returns from a BMD scenario. By using a robotic manipulator and
an additional rotor the different target micro-motions were simulated, and a
dataset was created acquiring data from scaled replicas of the target of interest
with a Continuous Waveform (CW) radar. In order to performing the target
classification, the framework described in Chapter 3 based on the evaluation of
the CVD was taken into consideration. The framework was adapted to different
feature extraction approaches, which lead to different computational complexity
and advantages. In addition to pZ moments, the Kr moments were extracted
and the 2D Gabor filter were used considering CVD as 2D image. A simpler
approach was also proposed based on the estimation of statistical indices from
the 1-Dimensional (1D) Averaged CVD (ACVD). All the described features were
tested on both simulated and experimental data with success, guarantee different
level of efficiency and robustness against noise level into radar measurements, the
duration of target observations, initial phases of target motions and radar aspect
angle.
It is worth noting that the performance of the proposed features were evaluated
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using the k-Nearest Neighbours (k-NN) classifier, which simply compares the
Euclidean distances between the vector under test with the training dataset of
each class. Hence, future research could involve a study of the best mD features
in combination with a more sophisticated classifier in terms of computational cost
and reliability for Ballistic Targets (BTs) classification. Moreover, a new model
based classification algorithm can be investigated using the mathematical model
for the radar return proposed in this Chapter, and including information on the
coefficient of principal scattering points.
In Chapter 5 a novel classification algorithm for BTs was proposed, based on
the elaboration of a sequence of target HRRPs, acquired during an entire pe-
riod of principal target rotational movement. The algorithm is based on the
evaluation of the pZ moments from the IRT of the acquired HRRP frame. For
the analysis of performance, two possible motions were taken into consideration,
namely precession and tumbling, and three possible target shapes, namely con,
cylinder and cone plus cylinder. The effectiveness of the features were tested
successfully on simulated data, considering different polarization for the radar
waveform, demonstrating high degree of robustness against noise level into radar
measurements, the initial phase and angular velocity of target motion. Specifically,
a Stepped Frequency Waveform (SFW) radar was considered for the simulation of
HRRPs of the target.
The characteristics of the designed radar waveform affects the target signature and
the performance of the classification algorithm. In particular, the effect on the
HRRP due to the target micro-motion velocity, in terms of radar range displace-
ment from the real distance of the scattering point from the radar, depends on
the number of sub-pulses used to synthesize the assigned total bandwidth and on
the Pulse Repetition Frequency (PRF). These parameters also have a significant
impact on the final SNR of the target signature. Therefore, a further research
on possible adaptable SFWs based on the estimated target micro-motion velocity
could be conducted in the context of cognitive radar, improving the performance in
presence of faster rotating object in lower SNR scenarios. Moreover, the design of
a suitable model in agreement with to the target of interest (in terms of shape and
dimension) and radar system parameters (e.g. polarization and bandwidth) can
also lead to a model based classification algorithm guaranteeing high performance.
Chapter 6 provides the precursory study of a new solution in Space Situational
Awareness (SSA) context for space target detection. The proposed system consists
of a space-borne Passive Bistatic Radar (PBR) system installed on one or more
small platforms flying at low altitude and receiving the Radio Frequency (RF)
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signals transmitted by non-cooperative illuminators at higher altitudes. This
system may represent a low cost alternative solution since the shorter distances
and smaller relative velocities between transmitter, receiver and target, allows to
achieve suitable SNR with a simpler hardware and lower costs. Specifically, the
required gain of the antenna is lower with respect to a ground-based system for the
shorter distances, while the relative velocity has an impact on the integration time,
improving the capability to detect smaller objects. Furthermore, such a system
guarantees all the advantages of PBR, in terms of low power requirement, lighter
payload and the absence of dedicated frequency allocation need. Additionally, by
exploiting the enhancement in terms of target RCS guaranteed by the Forward
Scattering (FS) configuration, the proposed system also represents a suitable
solution against the stealth technology for the detection of object with very small
RCS (obtained by using radar absorbing material). For this reason, it offers a
possible solution for supporting military surveillance of space activities in sensitive
areas and for early detection of specific targets, as BMs. Thanks to the modern
technologies it is possible to assemble a PBR on a cubeSAT with relative high
performance in terms of receiver gain and noise figure. The numerical results,
obtained by the Radar Range Equation (RRE), showed that the system, if feasible,
may allow to detect very small objects in the order of few centimetres, guaranteeing
robustness against atmospheric absorptions and weather conditions, and against
interference factor represented by flying man-made vehicles or bird flock. Since
the system capabilities depend on the distance between transmitter and receiver,
the use of LEO emitters at higher orbits as illuminator of opportunity is most
suitable for achieving better detection performance. The expected increase in
LEO emitters, such as OneWeb, could represent an important factor for improving
the performance of such a system.
The capabilities of the system can be further improved by integrating signals
from several illuminators. To this aim, wide-band antennas and suitable receiver
filters have to be considered in order to recover all the received channels. It is also
possible to use several cubeSAT receivers working together in order to perform
target localization and ranging. Moreover, since FS radar has been used with
success for target discrimination based on Doppler analysis of echoes, it is possible
to identify specific targets by analysing their peculiar micro-motions exhibited
while orbiting. The feasibility of the proposed system and all these potential
configurations could be subjects of future investigation.



Appendix A

A.1 Complex Coefficients of Target Principal
Scattering Point

In this appendix the expression of the complex coefficient for each scatterer is
described for the two polarizations, vertical and horizontal, for the three shapes
considered as target in Chapter 5, namely cone, cylinder and cone plus cylinder
(as shown in Fig. A.1). The details about the model design and validation are

(a) (b) (c)

Fig. A.1 Target shape model: (a) cone; (b) cylinder; (c) cone plus cylinder target.

presented in (Ross and DIV., 1969).
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Cone

Considering the cone semi-angle, γ, and the base radius, Rb (see Fig. A.1a), the
modulus of scattering coefficients of the cone are

√
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sin( π
n1

)
4k

√
2π n1

√
Rb csc(α)

k

[{
cos

(
π
n1

)
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]
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(A.1)
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√
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)
− cos
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(
π
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)
− 1

}−1
]
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2 , π]
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(A.3)

where

A =
sin( π

n2
)

n2

√
Rb csc(α)

k
(A.4)

with

n1 = 2 − 2 γ
π

(A.5)

n2 = n3 = 3
2 − γ

π
(A.6)

and k = 2π
λ

the propagation factor, where λ is the wavelength. The phase of the
coefficients are given by

φ1 = π

4 − 2k(h1 + h2) cos(α) (A.7)

φ2 = π

4 − 2kRb sin(α) (A.8)

φ3 = −π

4 + 2kRb sin(α) (A.9)

where h1 and h2 are the distance of the tip and the base centre with respect the
centre of mass, respectively. The choice of the sign in (A.2) and (A.3) depends on
the polarization, specifically, the upper sign is associated to the vertical polarization
for the incident electric field, while the lower to the horizontal polarization.
The expressions of coefficients for α in proximity of values 0 and π have been
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updated in (Ross and DIV., 1969), since singularities arise in (A.2) and (A.3).
Specifically, in order to evaluate magnitude and phase of the total scattered field
from a conical target for incidence at near tail-on, by using (2.20) and (2.21)
described in Chapter 2, the polarization-independent contribution from (A.2) and
(A.3) are substituted by

(√
σ2e

jφ1 + √
σ3e

jφ3
)

pol−ind
= 2

√
πkr2J1(2kRb sin(α))

(2kRb sin(α)) e−j π
2 (A.10)

for α ∈ [0, γ], where J1(·) is the Bessel function of first order.
Defining αca as the axial crossover angle, such that

2kRb sin(αca) = 2.44 (A.11)

the total scattered field for α ∈ [π − αca, π], hence from incidence at near perpen-
dicular to the cone base, is

√
σejφ =
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− 1
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(A.12)

where Ji(·), with i = 0, 1, 2, is the Bessel function of i-th order. It is worth noting
that (A.10) is independent on polarization.

Cylinder

Due to the object symmetry along both the two axis of the cylinder, shown in Fig.
A.1b, the expressions of the scattering coefficients are written for α ∈

[
0, π

2

]
. In

particular, considering the axial crossover angle, αca, and the broadside crossover
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angle, αcb, defined such that (Ross and DIV., 1969)

2kRb sin(αca) = 2.44 (A.13)
2kh cos(αcb) = 2.25 (A.14)

with Rb the base radius and h = h1 = h2 is the distance between the base centre
and the phase reference centre, the modulus of the scattering coefficients for
α ∈

]
αca,

π
2 − αcb

[
are

√
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√
σ4 = 0 (A.18)

where

B = 2
3 sin(2π

3 )
√
Rb csc(α)

k
(A.19)

and k is the propagation factor. Even for the cylinder coefficients the upper sign is
associated to the vertical polarization and the lower to the horizontal polarization.
The phase of the coefficients are given by

φ1 = π

4 − 2k[Rb sin(α) + h cos(α)] (A.20)

φ2 = π

4 − 2k[Rb sin(α) − h cos(α)] (A.21)

φ3 = −π

4 + 2k[Rb sin(α) − h cos(α)] (A.22)

φ4 = −π

4 + 2k[Rb sin(α) + h cos(α)] (A.23)

For α ∈ ]0, αca] the polarization-independent contribution due to diffraction
interjection between scatters P1 and P3 (see Fig. A.1b) is given by

(√
σ1e

jφ1 + √
σ3e

jφ3
)

pol−ind
= 2kR2

b

√
π
J1(2kRb sin(α))

2kRb sin(α) e−j π
2 −j2kH cos(α) (A.24)
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For LOS in the axial direction (α = 0), the magnitude and phase scattered filed
from the target is given by

σ(α = 0) = 4πR4
b

λ2 (A.25)

φ(α = 0) = −π

2 − 2kh. (A.26)

Considering the interval α ∈
[

π
2 − αcb,

π
2

[
, the polarization-independent contribu-

tion from (A.15) and (A.16) is substituted by
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In the broadside direction (α = π
2 ) follows

σ(α = π

2 ) = kRb(2h)2 (A.28)

φ(α = π

2 ) = π

4 − 2kRb (A.29)

The scattered field from the cylinder for the other values of α can be evaluated
thanks to the symmetry proprieties of the target.

Cylinder plus Cone

Considering a target composed by a cone and a cylinder which share the base, as
shown in Fig. A.1c, the modulus of scattering coefficients are
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where, coherently to the other target shapes, the upper sign is associated to the
vertical polarization and the lower to the horizontal polarization, and where
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with Rb the base radius, and

n1 = 2 − 2γ
π

(A.37)

n2 = 1 + γ

π
(A.38)

n3 = 3
2 (A.39)
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The phase of the coefficients are given by
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(A.44)

considering that the phase reference centre is on the symmetric axis at the same
distance from the cylinder bases centres. As done for the conical target when
incidence is at and near the nose-on axial aspect, even for target composed by a
cone and a cylinder (A.31) and (A.33) for 0 ≤ α ≤ γ are substituted by
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Defining the cross over aspect angle αca as

2kRb sin(αca) = 2.44 (A.46)

for π − αca ≤ α ≤ π, the polarization-independent contribution from (A.32) and
(A.34) is substituted by

(√
σ3e

jφ3 + √
σ5e

jφ5
)

pol−ind
= 2

√
πkr2J1(2kRb sin(α))

(2kRb sin(α)) e−j π
2 +j2kh2 cos(α) (A.47)

Finally, for the evaluation of scattered field in proximity of broadside direction,
the polarization-independent contribution from (A.32) and (A.34) is substituted
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by

(√
σ2e

jφ2 + √
σ3e

jφ3
)

pol−ind
= −2h2

√
rk

sin(2kh2 cos(α))
2kh2 cos(α) ej π

4 −j2kRb sin(α) (A.48)

for αcb ≤ α ≤ π − αcb, where the broadside cross over angle αcb verify

2kh2 cos(αcb) = 2.25 (A.49)

All other contributions to the total return from the target are well behaved in this
angular region (Ross and DIV., 1969).
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