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Resumen

Una de las principales preocupaciones dentro del mundo de la aviación es la identificación rápida,
eficaz y fiable de cualquier objeto observado que se encuentre a cualquier distancia y bajo cualquier
condición atmosférica.

Gracias a los avances en tecnología radar, esto se ha conseguido. De hecho, los radares son los sensores
más adecuados para el reconocimiento de blancos en vuelo ya que pueden operar en escenarios de baja
visibilidad, como malas condiciones atmosféricas, niebla, polvo, etc.

El reconocimiento de blancos mediante radar se puede dividir en dos técnicas principales: las llamadas
técnicas cooperativas o no cooperativas. Las primeras, también conocidas por sus siglas en inglés como
IFF (Identification friend or foe), requieren de una comunicación activa entre el blanco iluminado y
el radar, mientras que las no cooperativas, llamadas NCTI (Non-cooperative target identification), no
necesitan de comunicación directa sino que se basan en la comparación del blanco observado con una
base de datos de blancos conocidos previamente observados en las mismas condiciones.

Los sistemas IFF se basan en un escenario de Pregunta-Respuesta, esto es, el blanco a identificar
recibe una pregunta desde el sistema radar en forma de señal encriptada y éste, si es amigo, será capaz
de descifrarla y enviarla de vuelta al sistema radar interrogador, o en su defecto será identificado como
hostil. Estos sistemas se encuentran operativos hoy en día, sin embargo esta necesidad de establecer
comunicación directa con el blanco presenta un punto débil. De hecho, a lo largo de los años han existido
casos donde los sistemas IFF han fallado provocando una serie de accidentes que han hecho aflorar la
búsqueda de alternativas o sistemas de refuerzo. De ahí que naciera la curiosidad de explorar sistemas
no cooperativos, en los que se puede obtener información del blanco iluminado incluso si éste no esta
dispuesto a colaborar.

Para la obtención de esta información acerca de los blancos, los sistemas NCTI hacen uso de radares
de alta resolución. Éstos ven los blancos como compuestos por diversos puntos que dispersan la energía
emitida por el radar, generando así una imagen de la reflectividad de un blanco, lo que se ha llamado su
firma radar. Comparando dicha firma radar con una base de datos de firmas radar de blancos conocidos
es posible establecer, mediante una serie de algoritmos de identificación, el tipo de blanco iluminado por
el radar.

Sin embargo, uno de los temas más cuestionados es cómo poblar y actualizar esta base de datos de
firmas radar. De manera ideal, la base de datos debería de contener medidas de blancos reales en vuelo; sin
embargo, para garantizar una cierta confianza en el reconocimiento del blanco, esto implica la recopilación
de una gran cantidad de firmas radar de la mayoría de aviones existentes. Desafortunadamente, la principal
desventaja de esta estrategia radica en la dificultad de obtener firmas radar de aviones neutrales o
enemigos, los cuales, muy probablemente no estén dispuestos a colaborar en campañas de medida.

Por esta razón, esta tesis propone utilizar firmas radar de blancos ideales, generadas mediante si-
mulaciones electromagneticas, como base de datos. Con el avance de las herramientas de predicción
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electromagnética se es capaz de obtener de manera rápida y a bajo coste firmas radar de cualquier blanco
deseado, en cualquier orientación así como en cualquiera de sus diferentes configuraciones. Así, la base
de datos podrá ser tan amplia como sea necesario y la actualización de ésta sólo implicaría el modelado
CAD de nuevos blancos y su simulación, en lugar de planificar campañas de medida que son en general
costosas, tediosas y largas en el tiempo. Además, ya que no es fácil encontrar libremente conjuntos de
datos que dispongan de estas firmas radar, ésta es una buena aproximación para el entrenamiento y
evaluación de nuevos algoritmos para la identificación.

De este modo, el principal objetivo de esta tesis yace en el desarrollo de algoritmos eficientes de
identificación de aeronaves en vuelo de manera no cooperativa, con altas tasas de acierto y empleando
una base de datos de blancos obtenida mediante simulación electromagnética. El escenario propuesto
consistirá, pues, en la comparación de firmas radar reales obtenidas en una campaña de medidas con
una base de datos compuesta por firmas radar simuladas, con ello se pretende por un lado, simular un
escenario más realista, en el que las firmas de los blancos recogidas por el radar no tienen porqué tener la
misma calidad que aquellas de la base de datos y por otro, comprobar que la identificación de un avión
real mediante simulaciones es posible.

Para ello, se diseñará toda la metodología de identificación, la cual consta del correcto procesado de
las firmas radar de alta resolución, la aplicación de las técnicas necesarias para extraer sus principales
características, el desarrollo de nuevos algoritmos de identificación y por último la evaluación de éstos
teniendo en cuenta las tasas de identificación obtenidas.



Abstract

One of the current concerns in the actual world of aviation is the lack of quick and reliable identification
of any observed object unambiguously, at long distances and under any weather conditions.

Thanks to the advances in modern radar technologies, these requirements have been achieved. Indeed,
radars are the most suitable sensors for a rapid and reliable recognition of targets as they can operate in
scenarios where visibility is very poor, such as bad weather conditions, smoky and dusty environments,
etc.

Target recognition using radar sensors can be divided into two techniques: cooperative and non-
cooperative. Cooperative techniques, known as identification friend or foe (IFF), require the commu-
nication between target and radar, while non-cooperative techniques, so-called non-cooperative target
identification (NCTI), do not establish any communication with them but rely on the comparison of the
measured targets with a reference database.

IFF systems are Question-Answer schemes, where the unidentified aircraft receives a question from
the interrogator system in the form of an encrypted signal and the target will be able to decipher it in case
of being a friend, otherwise it will be categorized as foe. These systems are operative nowadays, however,
the need of establishing direct communication with the target is a weak point of this technology. Along
the years, cases where IFF systems did not work properly have caused tragedies that have highlighted
the need for alternatives to these cooperative systems. Non-cooperative identification systems provide,
in principle, enough information to identify targets without their cooperation, even if they are not aware
of being observed.

These non-cooperative systems take advantage of high resolution radar data. To high resolution
radars, a target is composed of several points that reflect the emitted radar signal, therefore, high reso-
lution radars provide an image of the reflectivity of a target, that is, its signature. By comparison of the
acquired signature with a database of known potential targets, the identification systems apply a number
of algorithms in order to compare the observed target data with this database and to determine its class.

One of the most challenging aspects is the question of the assembly and update of the database of
potential targets. Ideally, the database should be populated with measurements of real target signatures,
nevertheless in order to guarantee a reliable recognition, it implies the previous collection of a vast number
of signatures of the majority of the existing aircraft. Unfortunately, the main drawback of this approach
is the unavailability of these radar signatures for neutral and adversary assets.

Thus, this thesis proposes the use of a database of ideal targets generated by electromagnetic simula-
tions. Electromagnetic prediction codes provide a relatively cheap way of generating target signatures of
any target in any aspect angle and configuration so the database can be as wide as required, the database
population would be fast and low-cost and its update would just imply the modelling of new targets and
simulation instead of planning expensive and lengthy cooperative measurement campaigns. Additionally,
since finding datasets of actual signatures is not straightforward, this approach is also very useful for the
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training and assessment of new algorithms.

This thesis has as a main objective the development of efficient algorithms for aircraft identification in
a non-cooperative way, with high success rates and employing a database populated with information from
electromagnetic simulations. The proposed scenario consists in the comparison of actual signatures with
a database of simulated ones, this way, a more real scenario is emulated where the collected signatures
may not have the same high SNR as the ones in the database of potential targets.

To accomplish this, the complete identification methodology will be designed, consisting in the correct
processing of the high resolution radar signatures, the application of techniques to extract their main
features, the development of new identification algorithms and finally their evaluation according to the
identification rates obtained for the observed aircraft with a certain degree of confidence.
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Chapter 1

Introduction

One of the current issues in today’s military frameworks as well as in the civil world is the lack of
quick and reliable identification of any object under observation unambiguously, at long distances and
under any weather conditions.

Until recently, radar has been mainly used as a detector and tracker of objects since only limited
information could be extracted from the radar signal reflected back from the targets. The poor resolution
(several tens of meters) made it difficult to define a proper signature of the target and thus, targets were
represented as moving spots onto the radar display. The evolution of radar since World War II along with
the development of microwave components and the increase of computer processing speed, has enabled
the possibility to obtain high resolution signatures of targets. Considering that nowadays fighter aircraft
have a comparable shape and may also fly at comparable supersonic velocities, these radar signatures
can make them distinguishable.

One approach for aircraft recognition is the obvious one, to let the aircraft identify itself, that is, a
cooperative identification where both agents take part in it. Early in World War I, fratricides motivated
the drawing of national insignia on the wings and fuselages of aircraft, and were also part of the reason
why some pilots resorted to paint their fighters in loud colors, like the well-known pilot ‘Red Baron’ and
his red fighter. With the advent of higher range weapons and considering battlefields with low visibility
the real problem lied in the identification beyond visual range. In 1928, the British speculated on the
possible use of sirens or whistles to create a signal that could be heard even if the aircraft could not be
seen, but it became unsuccessful since it also informed the enemy force about their approaching.

In those days, radar developers foresaw that radar could be used as a device for identifying aircraft.
Their first attempt was to alter the radar returns of friendly aircraft in some way that the ground operator
would know about them being one of them. In this regard, in 1937, the British mounted a few test aircraft
with an antenna wire along the fuselage. By switching the antenna on and off in a regular pattern, the
radar cross-section of the aircraft was effectively changed. Tests on individual aircraft were successful but
the system did not work with groups of aircraft since their synchronization was a difficult but essential
task. Another attempt, in this case from the U.S. Navy, was to add a set of half-wavelength rods on
a pole, where a motor rotated it changing the orientation of the rods and hence their radar returns,
unfortunately, this simple system was also unsuccessful [1].

The limitations of these attempts for passive recognition techniques led the researchers to explore new
fields in which aircraft could identify themselves cooperatively via transponders, where the ground station
could send a question or a challenge (a coded signal) and the friend force, the aircraft, could reply with
a specific coded signal. The first transponders or Identification Friend of Foe (IFF) systems, the Mark I



2 Chapter 1. Introduction

and Mark II, scanned all radar frequencies that were under use and when a radar pulse was detected, the
transponder would transmit its own pulse back at the same frequency. As the radar frequencies were not
many, this approach was useful at that time, although it rapidly became obsolete with the introduction
of new radar frequencies [1, 2].

The Mark I and II established the basis of all the cooperative IFF systems that followed and that are
still used nowadays, which are no more than Question-Answer systems, where the unidentified aircraft
receives a "Who are you?" question from the interrogator system in the form of an encrypted signal; the
target, equipped with a transponder, would decipher the challenge and generate an answer containing an
identification code, implying it is a friend, otherwise it would be classified as hostile, or foe.

The civil aviation also takes advantage of these systems, they are the base of the Air-Traffic Control
(ATC), and since it was introduced as an adjunct to the primary radar, in the civil aviation, the IFF
system is also known as the Secondary Surveillance Radar (SSR) [3], which not only provides information
about the aircraft identity, but also about its altitude and in an enhanced mode it can also provide
information such as the ground speed or the track angle [4].

Nevertheless, IFF systems have some drawbacks. The most evident is the need of an active re-
sponse from the observed target, that is, the need of cooperation. There exist some situations where
the transponder of an aircraft would fail to answer a request: the system might be malfunctioning, it
might be jammed or damaged by the hostile forces, military codes might be broken or compromised by
espionage, the challenge or the interrogation might be lost or even the system might be turned off in some
warlike or hijacking scenarios. Additionally, since the SSR transponders meet international standards,
hostile military forces might also use these transponders to pretend to be civil aircraft, deceiving the
allied force.

In fact, non-operating IFF systems have been the source of several mistakes during the last decades.
For example, a British aircraft was shot down by a US PAC-2 Patriot Missile in Iraq in 2003; the
investigation report concluded that the fighter was mistaken for an enemy aircraft after a failure of
the IFF systems. This and similar events have highlighted the need for alternatives to cooperative
identification systems [5, 6].

1.1. Motivation

IFF is still nowadays a powerful and very useful tool for target recognition, and although all the
aircraft are equipped with these transponders, as noted it is not infallible, should the question-answer
loop be interrupted for any reason, the interrogated target will be classified as hostile, leading to a possible
case of fratricide. Thus, it is important to also have an autonomous backup system that could identify
targets without their cooperation, that is, non-cooperatively and in such short time that an appropriate
defensive action could be taken. The Non-Cooperative Target Identification (NCTI) or Non-Cooperative
Target Recognition (NCTR) is, in principle, the only methodology capable of solving the aforementioned
problems. It must me noted that usually, the terms "recognition" and "identification" tend to be used
along the literature interchangeably when assigning the target type and the same criteria will be used
along this text, hence both terms NCTI and NCTR are frequently found with the same meaning.

High Resolution Radar (HRR) data have been shown to provide plenty of information to identify
unknown targets and under conditions of poor visibility, such as night, fog, rain, etc [7–11]. HRR
measurements can provide an image of target reflectivity, namely a radar signature, that depends upon
the target structure. The basic idea of NCTI is to find the features of each aircraft signature that can
be used to discriminate it from others. When the measured signature matches a pre-stored template,
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and without establishing any communication with it, the target will be identified. The basic mode of
operation of these systems is shown in Figure 1.1, where a high resolution radar illuminates an unknown
target. When the emitted signal reaches the target it gets reflected and scattered back by the different
parts of its structure, and those parts which have higher reflectivity, called scattering centres or just
scatterers will be those that return more energy; at a given orientation of the target, namely the aspect
angle, each scatterer reflects energy at a certain amplitude and phase, thus, the backscattered energy
collected by the radar contains information relative to the target geometry, that is, its signature. By
comparison of the acquired signature with a database of pre-stored and known potential targets, the
identification systems work with a number of algorithms in order to compare the observed target data
with this database and to determine the best match.

Signature Acquisition

Database

Recognition 
Algorithms

Match Found

Figure 1.1: Basic concept of NCTI systems

With these non-cooperative techniques, an aircraft may not be aware that its signature is being
measured for recognition purposes, thus, in any situation, even if the target wants to pass unnoticed,
identification could be achieved if the database is well enough populated.

Different types of signatures can be employed to perform target recognition, such as Jet Engine
Modulation (JEM), Helicopter Rotor Modulation (HERM), High Resolution Range Profiles (HRRPs),
Inverse Synthetic Aperture Radar (ISAR) images or Range-Doppler Imaging (RDI).

JEM signatures are based on the blades of a jet aircraft, which modulate the radar returns, and
HERM on the rotating parts, such as propellers or rotors of helicopters, that also cause modulation in
the backscattered radar signal; while the former needs a frequency domain analysis, in the latter detection
occurs in the time domain. Both cases do not require high range resolution signals but a high frequency
resolution waveform with high pulse repetition frequency is required to obtain proper signatures. On
the other hand, HRRP, ISAR and RDI are mainly imaging techniques since the signature consists on
an actual image of the target, one or two dimensional, such that information of its geometry can be
retrieved. When referring to one-dimensional radar image the signature is called a range profile (HRRP),
which is just a representation of the different scaterring centres of a target along the radar Line of Sight
(LOS). Taking advantage of the motion of the aircraft under certain circumstances, also information in
the direction perpendicular to the radar LOS can be extracted to form two-dimensional images, in range
(ISAR) or in Doppler (RDI) [12]. These imaging techniques are needed of high resolution in range.
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The JEM technique has been proven to be a powerful tool for the non-cooperative identification of
aircraft, as the ensemble of papers from the NATO RTO groups [13] present. However, JEM techniques
do not provide an all-aspect NCTR capability since, on the one hand, the target must be illuminated
near nose-on aspects in order to allow the radar energy to couple to the engine duct, and on the other
hand, the Signal to Noise Ratio (SNR) must be sufficiently high to be able to determine the different
frequency contribution of the blades. This implies that JEM can only be operative at short distances
[14]. Hence, early in the 90’s [13], radar imaging techniques were proposed as a promising alternative
since they do provide an all-aspect capability, do not demand such high SNR and more features of the
illuminated aircraft can be inferred. Still these imaging techniques are under research and are thought
to be the next step in the development of operative NCTI systems.

One of the most challenging aspects is the question of the assembly and update of the database of
potential targets, this question has been in mind since NCTI was first considered [13]. It is important
to develop a recognition system in which the database holds the generalization capability, that is, a
database with information about the vast majority of existing targets in as many trajectories as possible.
The complexity of this database will depend on the type of signature needed by the classification system.
The simplest database population would be the one of JEM which only needs to store the blade count
number for various compressor stages of the jet engine for nose-on aspect angles. Since the blade count
is independent of target aspect, only one or two numbers are needed to be stored. However, in the case
of the imaging techniques, it implies the generation of these images in all aspect angles.

There exist a few procedures available to accomplish the database population. They include: mea-
surements of real in-flight target signatures, measurements of scale models in anechoic chambers and
electromagnetic modelling of aircraft through prediction codes.

In principle, the measurements of real target signatures would be the best option to perform clas-
sification, nevertheless in order to guarantee the right recognition, it implies the previous collection of
information in costly and lengthy measurement campaigns, from a great number of flying targets in dif-
ferent aspect angles and configurations, which is theoretically possible for friendly aircraft but mostly
improbable for neutral and adversary assets.

The idea of obtaining measurements of scale models from knowledge of the target’s dimensions and
materials avoids the measurement campaigns of real in-flight targets, but it is highly dependent upon the
scale model being a high integrity representation of the target, moreover, to collect proper signatures,
wideband millimetre of submillimetre waves are needed in order to scale the actual radar frequencies.
Thus, other solutions are sought. Electromagnetic prediction codes provide a relatively cheap way of
generating target signatures of any target in any aspect angle and configuration so the database can be
as wide as required, the database population would be fast and low-cost and its update would just imply
Computer-Aided Design (CAD) modelling and simulation instead of planning expensive and lengthy
cooperative measurements campaigns. The main drawback lies in the fact that due to the idealism and
the approximations of the codes utilized for the simulations1 and the aircraft models, the signatures
obtained by these means are normally very "clean" [12].

The database arrangement is a recurring issue in NCTR, nevertheless, the true problem is not pop-
ulating it with the most realistic signatures that can be afforded, but to establish the degree of realism
that is required to developed a robust NCTR algorithm. A system that relies on a database of extremely
accurate images of all the targets of interest will not be particularly robust since any slight, unanticipated
variation will not be recognised.

1For the simulation of targets of great dimensions such as aircraft, asymptotic methods are usually utilized, like PO,GO
and UTD, which introduce a series of approximations. For the rigorous ones, such as FDTD, the problem is so electrically
large that a very powerful machine and a high unacceptable amount of time would be needed for their simulation
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1.2. Scope

This thesis has been developed at Instituto Nacional de Técnica Aeroespacial (INTA) (Spanish Na-
tional Institute for Aerospace Technology) in the Detectability and Electronic Warfare Laboratory where
the author has mainly developed her thesis thanks to a Formación del Personal Investigador (FPI) grant.

Although young, since its inception in 1997, the Laboratory has been taking part in different NATO
research groups related to NCTI and Radar Cross Section (RCS) estimation and its main goals are to
acquire, maintain and update knowledge, as well as to procure innovative technologies and services, in
the fields of radar and electronic warfare for defense and security applications.

Along the years, the Laboratory has specialized in the analysis, control and exploitation of radar
signatures as well as in the development of light equipment for electronic warfare. In its facilities, a
laboratory of radiofrequency and microwaves fully equipped is found, with vector network analyzers,
signal generators, osciloscopes, power sources, electronic prototyping machines, anechoic chamber, etc.
Additionally, specific software tools for electromagnetic simulation based on both rigorous and asymptotic
techniques are also available; which are mainly used to give support to the main lines of investigation of
the Laboratory and other dependencies of the Institute.

In this framework, as said, one of the main lines of investigation in which the Laboratory is involved
consists on NCTR and fruit of it are the numerous articles published and two doctoral thesis (being the
present doctoral thesis one of it). After the first doctoral thesis about NCTR presented by a former
member of the Laboratory, a number of questions arose from it, therefore, this thesis was conceived with
the idea of continuing the work proposed on it: an operative system for aircraft identification based on
ISAR images.

Consequently, the first idea of this present research was to continue with the exploitation of the
advantages that ISAR images could provide for aircraft identification and try to implement in a hardware
platform a classifier prototype. However, after a first study about the computational burden it involved,
in the form of a master thesis and in a later article (Appendix A), it was decided that working with
range profiles would be a more achievable idea. Thus, the path of this thesis slightly changed its course,
although the main subject was still maintained: the reliable non-cooperative identification of actual flying
aircraft with a database of simulated signatures.

1.3. Objectives

As well as IFF, NCTR was also first thought to be developed for military purposes, however, as noted,
civil systems will also be able to benefit from this technology, for example to avoid accidental shot down
aircraft, to find hijacked airliners, for coastal surveillance, etc.

Just as the technology of automatic speech recognition and transcription has required decades of effort
and research since its beginning until it could reach the commercial market, the problem of NCTR also
needs a wide range of research before an operative and completely trustworthy system can be deployed.
Due to the potential applications, the area is extremely interesting and great effort is being made nowadays
to develop novel and efficient recognition algorithms [8, 9, 15–20].

This thesis has as a main objective the development of efficient algorithms for aircraft identification
in a non-cooperative way, with high success rates and employing a database populated with information
from electromagnetic simulations2. To do so, the complete identification methodology should be de-
signed, consisting in the correct processing of the high resolution radar signatures, the application of the

2This approach is barely seen in the literature but of high interest as will be discussed in the following chapters
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appropriate techniques to extract their main features, the development of some identification algorithms
and finally the identification of the aircraft with a certain degree of confidence.

1.4. Outline

The organization of this thesis is as follows:

Chapter 1. Introduction. In this very first chapter a quick review about the dilemma of aircraft
identification and the evolution of different methods utilized for its accomplishment is given; followed
by the scope of the thesis and their objectives. Finally, the structure of the thesis is presented.

Chapter 2. State of the Art. This chapter is dedicated to set the reader in the context of
non-cooperative aircraft identification. To do so, different techniques are reviewed and compared
first and a decision on which one to use along the rest of the text is drawn, HRRPs. After this
decision the rest of the chapter revises the different feature extraction techniques along with different
algorithms utilized along the years in the literature to perform NCTR. In the last part of the chapter,
the problem of the database assembly is presented.

Chapter 3. Radar Range Profiles for NCTI. It is focused on HRRPs, it presents their principal
characteristics, how they are extracted from a high resolution radar measurement, the advantages
and disadvantages in their usage and their processing to obtain suitable profiles for NCTR.

Chapter 4. Datasets. This fourth chapter introduces the datasets that are utilized along the
thesis to validate the performance of the algorithms that will be proposed and also the specific
processing that is applied to these different datasets. The chapter ends with a comparison of the
given datasets with graphical examples.

Chapter 5. Algorithms for range profiles classification. The fifth chapter begins with
the feature extraction techniques chosen for this research. After that, the definition of the three
algorithms based on angle between subspaces is provided, where they are defined incrementally,
that is, each algorithm presents an evolution with respect to the previous one. It is seen that each
of the algorithms have a tuning parameter, which value should be optimized. In the case of the
first two presented algorithms, Fu and Fw, the tuning parameter consists in finding the optimum
subspace dimensionality, which is found by an energy threshold η; on the other hand, for the last
proposed algorithm, gMSM, the parameter to be found, m, is the eigenvalue that will weight the
rest of them to construct a vector of what we have called softweights. Finally, a first discussion on
the performance of the three algorithms is given.

Chapter 6. Experiments and Results. This long chapter presents the results obtained in
the aircraft recognition utilizing the algorithms defined in Chapter 5 with the datasets presented
in Chapter 4 and it is divided into three main sections: the first one is the definition of the
different test cases that are used to evaluate the algorithms, accordingly, two test cases are defined
with their corresponding subcases. The following section, provides a study on the variation of the
recognition performance of algorithms Fu and Fw with the signal subspace dimensionality controlled
by parameter η; thus, a sweep in η is carried out for the different subcases and some conclusions
about the best value and the robustness of the algorithms are drawn. The third section, evaluates
the performance of algorithm gMSM by studying the change in the success rates according to
the values of the selected softweights, which are modulated by parameter m; therefore, equally
to the prior section, a sweep of m is done to assess the performance of gMSM and to decide its
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optimum value. Finally, the chapter ends with a discussion on the obtained results as well as with
a comparison of these proposed algorithms with others given in the literature.

Chapter 7. Conclusions and future research. The last chapter of this thesis summarizes the
main contributions made by this thesis and enumerates the potential future research lines.

Appendix A. Computational Burden of an ISAR image identification system. This
Appendix presents a study which addresses the computational burden needed in an ISAR-based
NCTI system.





Chapter 2

State of the Art

The subject of Non-Cooperative Target Identification (NCTI) (or Non-Cooperative Target Recognition
(NCTR)) using radar has been under research for many years and thus, many relevant research papers
and textbooks can be found. As said in the introductory chapter, high resolution radar data are the most
appropriate to accomplish this kind of identification. There are different ways of exploitation of these
data leading to different techniques for NCTI; all of them have two things in common, firstly, the search
of features that can discriminate one aircraft from the rest and secondly, as every pattern recognition
or identification problem, the comparison with a database of templates to finally assign a class to the
illuminated aircraft.

This chapter provides an insight about the state of the art of the technology applied to airborne target
recognition, focusing this review in three main key areas which align to the main objectives of this thesis.
These are:

Different NCTR techniques

Feature extraction and classification methods

Datasets for NCTR

2.1. Non-Cooperative Target Identification Techniques

In Chapter 1 it was noted that different target signatures can be used to achieve NCTR. Roughly,
these techniques can be divided into imaging techniques and non-imaging techniques.

Non-imaging techniques are based on the modulation of the radar returns by the rotation of aircraft
engines or rotors of helicopters, while imaging techniques entail the creation of a one or a two dimensional
image of the target through the processing of the radar returns.

In the following subsections, a review of these techniques will be given, extending the information
given in the previous chapter. All these approaches have pros and cons and even if their concepts may be
relatively simple in theory, it is the many detailed issues that have challenged researchers over a number
of years.

2.1.1. Non-imaging techniques

Jet Engine Modulation (JEM) exploits the rotating parts of an aircraft, mainly their engines, to
estimate the type of aircraft seen by the radar. This technique provides an estimate of the number of
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blades located on the different stages of a jet engine. It is a frequency domain technique and a high
frequency resolution waveform with a high pulse repetition frequency (PRF) is needed to obtain a high
integrity JEM spectrum. Much of the discussion about JEM is gathered by Tait in [3]. The phenomenon
occurs when a radar observes a jet airplane at approximately nose-on or tail-on aspect angles; then,
the electromagnetic radiation enters the jet engine and is scattered back from the moving parts of its
compressor and blade assembly. To acquire the JEM signal the operation is based on the spectral analysis
of the returned target signal in order to extract the Doppler information caused by the rotational motion
of the jet engine components[21].

This phenomenon was first noticed by Gardner [22], who measured the Doppler spectra of propeller-
driven and turbojet aircraft at S-Band. He found numerous spectral lines, caused by the relative motion
of the propellers with respect to the radar, as well as a strong modulation sideband due to the engine
compressor blades in turbojet aircraft.

Even though the engines are usually enclosed, it was noticed that there is enough energy propagation
down the ducts in such manner that the blades of the different stages of the engine can modulate this
energy. These modulation sidebands produced by the blades are easily distinguished in the backstattered
energy spectra and, depending upon aspect angle and transmitter frequency, can be sufficiently strong
to provide the blade count of the first engine stages.

Cuomo and Pellegrini have deeply studied JEM. In [23] they make use of data obtained from experi-
mental measurements on ATC Radar Systems relative to different civilian aircraft in different conditions
(aspect angles and trajectories). They found out that in S- C- or X-band radars is possible to extract the
JEM spectral analysis for nose-on aspect angles between -60◦ and 60◦ and also for tail-on aspects from
-120◦ to 120◦. In [24, 25], they validate the actual data with a simulation model, showing a good degree
of accordance in the modeled spectra for S-band radar data.

Recently, JEM has been thought of as a micro-Doppler phenomenon and the application of time-
frequency analysis is being also examined. Accordingly, Lim et al. [26] analyse via the short-time
Fourier transform (STFT), the micro-Doppler signatures from four CAD and one experimental aircraft
engine models. The obtained spectrograms show that additional information beyond traditional frequency
analysis such as the length of the blades or whether their number is odd or even can be retrieved. In [27] a
modified Hilbert-Huang transform (HHT) is applied to improve the previous results. The modified HHT
allows the calculation of the spool period and the blade period, while the number of blades is estimated
using these two parameters.

Even though its simple computation and maturity, JEM does have its limitations. It requires a
specific radar waveform, target aspect angle and high SNR. The waveform needed to perform JEM
requires high frequency resolution with a high PRF in order to penetrate into the engine and to provide
the unambiguous Doppler returns caused by the blades; high SNR is desired, so the modulation can
be detected and measured, in cases of low SNR the JEM spectrum is degraded and the spectral lines
needed to infer the blade count might be masked; therefore, to apply this technique, the range at which
the aircraft is illuminated is limited. Finally, the right aircraft aspect angle is required for the radar
energy to be scattered by the engines and not by other parts. Figure 2.1 (extracted from [12]) depicts
the ideal JEM spectrum of a jet engine, where the main chopping lines, intermodulation products and
spool lines are seen. The ratio of the first stage chopping frequency (N/T) and the engine rotational
period frequency (1/T) determines the first stage blade count (N). Similarly, if the second stage chopping
frequency (M/T) can be determined, the second stage blade count (M), can be found.

But, undoubtedly, the main drawback of JEM is basically that it identifies types of engines instead
of aircraft and unfortunately, different planes can be equipped with the same engines or different engines
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can power the same planes; for example the engine F100 from Pratt and Whitney is used in the F-15
and F-16 fighter, and the airliner Airbus A310 is either powered by a CF6-80C2 from General Electric or
a PW4000 from Pratt and Whitney [28–30]. At any means, JEM should be able to distinguish between
fighters and transport aircraft since they use very different engines.

Another non-imaging technique for aircraft recognition is HERM. Its mode of operation is similar
to JEM since it also measures the modulation in the backscattered radar signal, but this time, this
modulation is generated by the rotors of helicopters. The collected features tend to be impulses from the
blades, known as blade flash, and are normally detected in the time domain, so there is no necessity to
provide high range resolution. To achieve identification, HERM uses information about the odd or even
number of blades of an helicopter and the period between blade flashes. Therefore, the main drawback
of this technique is that it works only for a small class of targets and just like JEM, it is capable of
determining the type of engine of an helicopter instead of the true helicopter type [12].

2.1.2. Imaging Techniques

Imaging techniques do demand high resolution in range, unlike the JEM, where only a high resolution
spectrum was needed. With a sufficiently wide bandwidth, radar can achieve high resolution in the
collected data, providing target signatures with enough information to infer their structure. This time,
contrary to JEM, the type of an illuminated aircraft can be inferred, not just its engine.

To high resolution radars, targets appear as composed of individual scattering points, also called scat-
tering centers, backscatter sources or just scatterers, that have a strong radar reflection. High resolution
radars have the ability to discern the different scattering centers of a target in both the propagation
and the transversal direction of the transmitted energy; being able, therefore, to identify the geometry
of a target. Thus, resolution of these radars is defined in two dimensions, on the one hand there is the
slant-range resolution, which depends on the radar bandwidth and is defined as the ability to resolve
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scatterers in the direction of the radar Line of Sight (LOS); and on the other hand, there is the cross-
range resolution which depends on the wavelength of the emitted signal and the angular sweep made
during the illumination time. The cross-range resolution is defined as the ability to resolve scatterers in
the normal direction to the plane containing the radar line of sight and the target rotation angle [31].

High resolution radar images can be one dimensional, known as High Resolution Range Profiles
(HRRPs), or two dimensional, called Inverse Synthetic Aperture Radar (ISAR) images and Range-
Doppler Imaging (RDI).

High Resolution Range Profiles

A HRRP is the projection onto the dimension of the radar line of sight of the radar energy scattered
back by the different parts of an aircraft, that is, HRRPs represent the energy reflected by every scat-
terer in a moving target as a function of distance. Each profile consists of range bins that contain the
distribution of the scattering centers of a target providing information about target structure such as its
size, location of engines, etc., and it is defined as the squared magnitude of the coherent complex radar
returns. An example of the correspondence between the scattering centers of a target and its range profile
is shown in Figure 2.2.

Figure 2.2: Example of the scattering centers of a HRRP

Signal processing needed to extract the HRRPs of a target is not very complex and also, since typically,
no phase is present, working with them is quite simple; however, since the aircraft will be moving while
collecting range profiles, they are very sensitive to the target viewing angle (aspect angle). This causes
that range profiles may suffer from occlusion of scatterers or other unwanted effects that may cause
that the scattering centers move from one range profile to the next; among these effects it is found the
speckle effect, rotational range migration (RRM) or translational range migration (TRM) and thus, some
algorithms for their compensation should be applied, hindering the complete HRRP extraction process.
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Due to their simplicity and all the information they gather, the use of HRRPs for target identification
has been a key research domain in the Defense industry and the radar Automatic Target Recognition
(ATR)1 and NCTI community during the last three decades.

Early in the 90’s, Li and Yang used range profiles in [15] as the feature vectors for data representation.
Five targets were chosen as the known targets and their scaled models were measured so as to retrieve
the HRRPs. They could identify the targets with the measured scale models using a decision rule based
on matching scores.

Bhatnagar et al. [16] in 1998, employed HRRPs for the identification of ground targets. They created
a database of HRRP templates to help with the identification of simulated targets. Starting the new
millennium, in 2001 Kim et al. [17] located the highest peaks in the range profiles using five different
methods and the resulting small dimensional feature vectors were classified via a Bayes classifier. Zwart,
van der Heiden et al. [8] tried to improve the classification performance of a system based on HRRP
through the analysis of different methods for profile alignment and the suggestion of a new one, since the
profile alignment is critical in the compensation of the translational range migration.

In 2007, in [9] it was stated that the phase of the range profiles may contain valuable target information
and thus, the use of complex HRRP for identification is suggested in their study, achieving very good
recognition results. In [18], the authors use the self-correlation function of range profiles as features for
target recognition. Templates and test data are created using measured data and the results show that
the self-correlation function is valid, regarding recognition performance, and robust against noise. Finally,
more recently, in 2013, new methodologies as fuzzy logic are applied to recognize air targets with HRRP
[19], and still nowadays, the investigation on HRRPs as base for NCTR is an open field.

Inverse Synthetic Aperture Radar

Inverse Synthetic Aperture Radar (ISAR) systems use the relative target-radar motion to obtain
information in the cross-range direction and afterwards create an image of the illuminated target. In
ISAR, the radar is stationary: it is the motion of a manoeuvring target that allows for the formulation
of an image. The cross-range resolution for ISAR is generated by the target’s motion, which provides
the required large synthetic aperture. ISAR images contain information of consecutive HRRPs with
small angular variation; these images display the distribution of scattering centers within a target in the
perpendicular direction of the target’s rotation plane [31,32]. Thus, for the creation of ISAR images the
first step is the extraction of the HRRPs.

Figure 2.3 depicts the fact that ISAR images present the scattering centers of a target in two dimen-
sions. The aircraft displayed in this figure correspond to a Fokker-100 and as depicted, each part of the
aircraft is clearly noticeable in the ISAR. Signal processing needed to achieve ISAR images is complex
and implies higher computational burden than that needed for the generation of HRRPs. The example
shown in Figure 2.3 is a quite clear image, but to retrieve it, a number of motion compensation algorithms
are required.

As stated, target motion with respect to the radar makes it possible to achieve ISAR images; never-
theless, not every movement is desired; there exist some actions that may cause blurring in the obtained
images. In order to avoid this defocusing, motion compensation techniques must be applied [32, 33].
Generally speaking, target motion can be decomposed into translational and rotational [34,35]. In order
to get focused images both the translational and rotational motion must be compensated. Translational
motion causes consecutive profiles to be misaligned, so in order to compensate it an alignment of profiles
must be completed, this procedure is also called range bin alignment. In addition to profile alignment, a

1ATR also includes the recognition of ground targets non-cooperatively. However, the term ATR can be found in the
literature to allude either to ground or air targets recognition
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Figure 2.3: Example of an ISAR image

phase adjustment procedure must be applied in order to refer every measurement to the same origin. On
the other hand, rotational motion causes Motion Through Resolution Cells (MTRC) [36] which produces
the scatterers to move from bin to bin in slant- or cross-range. This effect is present when the rotational
velocity of the target is sufficiently high to produce the scattering centers to move from one range bin to
the next, hence, it can be ignored provided that the target is small or the required resolution is coarse
[35].

For palliating these effects many algorithms have been proposed in the literature for motion compen-
sation in ISAR imaging. Range bin alignment methods are rather standard, including centroid tracking
[37, 38], envelope correlation [34], contrast/entropy based methods [39], prominent point processing or
dominant scatterer algorithm [40], zero phase representation [8], etc. To compensate the MTRC the
Polar Formatting Algorithm is frequently used [41], however, this technique can only be applied when
both the distance between the target’s center of rotation and the radar, and the variation of the aspect
angle of the target are known; the main problem is that these data are, in principle, unknown for non
cooperative targets.

Since the processing of ISAR is more complex and more computationally intensive, the use of ISAR
images for aircraft identification is not as extended in the literature as the use of HRRPs. The literature
is more focused on motion compensation techniques and on novel algorithms that will allow for better
ISAR image resolution and thus, higher recognition rates [39, 42–47]. Nevertheless, there exist a few
authors that focus their efforts in achieving NCTR with ISAR.

Rosenbach and Schiller [48] study the recognition rates obtained with a classifier based on HRRPs
and on ISAR as a function of signal bandwidth. They reduce the bandwidth of the measurements from
800 MHz to 100 MHz concluding that with the reduction of the bandwidth and consequently reduction in
slant range resolution, the identification with ISAR images is still possible and achieves good recognition
rates since it provides the information in cross-range, which is missing in the HRRPs. In [49], the
authors extract the scatterers of the targets from their ISAR images and according to their geometric
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relationships they generate a set of geometric invariants to recognize aircraft. They add noise and rotation
to the target models to variate the detected scatterer positions. The resulting identification rates show
that the method is robust against noise but, even though the method has the advantage of a simple
recognition database, it lacks of robustness against target rotation. Jurado et al.[50] face the NCTI
problem by applying a two stage recognition procedure, first they obtain the class of the aircraft using
neural networks applied to HRRPs (with the term class they refer to groups of targets with similar
features, such as civilian airplane, military aircraft, Unmanned Aerial Vehicle, etc.). After the class
in known, they extract the ISAR images and compare them with a database of synthetic images by
means of the correlation function. Although the method obtains a good performance it suffer from high
computational burden. Martorella et al. [51] propose a method based on the use of polarimetric ISAR
images. They measure point-like targets models in a turntable in an anechoic chamber and compare
them with the 2D point-like polarimetric ISAR images obtained. The results show good performance
against noise and target orientation angle estimation errors. However, the experiments are run in an ideal
scheme, and it is needed to run experiments with real targets to further prove the benefits of this method.
In [52], a neural network classifier is exploited to recognize aircraft extracted from ISAR images. With
the combination of two image processing techniques, they improve the shape and extract the features of
the images. Then, Invariant Fourier descriptors are computed and used as input features to the neural
network system.

Intuitively, a two dimensional image offers much more information about a target than a range profile
and therefore, it should lead to a higher recognition performance. However, it has not been concluded
whether the effort invested in achieving focused ISAR images is worth it in terms of performance and
time consumption. In fact, Appendix A shows a study on the computational complexity of a recognition
system based on ISAR images made by the author of this thesis, and which was the starting point of
this whole study. On the one hand, it is proven that the creation of a fairly focused ISAR is a very
time consuming task, where translational motion compensation is achieved with an envelope correlation
algorithm and reaches a computational burden of order O(N ·M2) (with N and M being the number
of profiles and the number of frequencies in a stepped-frequency waveform respectively). On the other
hand, the identification task, a template matching algorithm based on the normalized cross correlation,
have a computational complexity of order O(C · N2) (with C being a constant). Although the system
presented in the Appendix is not the most efficient, it is a good example of how cumbersome ISAR image
identification can be.

Range Doppler Imaging

In Range-Doppler Imaging (RDI), a two dimensional range-Doppler image of a target is formed by
utilizing a waveform that should be on the one hand, of enough bandwidth to provide high range resolution
and on the other hand, of the coherent pulse-Doppler type to obtain high resolution in the frequency
domain, such as chirps or impulses. RDI is somehow similar to ISAR; in the latter, the cross-range
resolution is generated by the target’s motion, which provides the large synthetic aperture required; but
in RDI, that effect can be seen as if the different parts of the target were in slightly different aspect
angles from the radar and hence, had different values of Doppler frequency. Applying a high resolution
Doppler waveform, the different parts of the target at the same range fall into different Doppler cells,
which correspond to different cross-range cells, obtaining a 2D image. An example of an RDI of a civil
airliner in a tail-on aspect angle can be seen in Figure 2.4 (extracted from [12]). As seen, the JEM lines
can be distinguished in an RDI since the needed waveform also meets the requirements for JEM, and
with this, the location of the engines in range can be determined.

RDI has not been widely explored, although it has high potential due to the use of both range and
frequency data; this property has benefits in being able to localize the aircraft propulsion systems along
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the profiles. However, the requirements on the waveform, make this technique difficult to implement and
thus, it is not as well known as the other imaging techniques [12].

2.1.3. Comparison of NCTI Techniques

This section has provided an overview of different identification techniques used in the literature for
NCTI, including JEM, HRRP and ISAR, and the two less explored, HERM and RDI.

As remarked, JEM is a mature technology, which is applied nowadays in some operational systems.
Despite the small and simple database needed and the relatively short time the target needs to be
illuminated by the radar to take measurements, JEM strongly depends on the aspect angle, that is,
on a proper geometry between radar and target; if the radar signal cannot penetrate the engines, the
identification will not be possible. Moreover, high SNR is also needed to detect the spectral lines and
finally, JEM identifies engines instead of aircraft, and as mentioned, some aircraft may use the same
engines and vice versa. The case of HERM is quite similar, it can only be used to identify helicopters,
and as JEM ,it only provides the count of blades and thus, it can only be used to know how the helicopter
is being powered.

These difficulties have made researchers to focus their attention on imaging techniques. Although
ISAR images return information in two dimensions providing more knowledge about target geometry,
the technology is not as mature as others and for the image extraction, the target must have a rotational
component perpendicular to the line of sight. Additionally, the motion compensation needed to obtain
an ISAR image is complex, not robust and computationally burdensome and also, since real-world 3D
targets are mapped onto an image plane to form 2D ISAR images, this image projection plane, which is
strongly dependent on the radar-target geometry and kinematics, should also be estimated [53]. RDI on
the other hand, seems to have more information since it exploits not only the range information but also
the Doppler, however, as seen, due to the high requirements on the radar waveform, this technique is not
as utilized and well-known as the rest.

HRRPs have been under study for many years and are thought to be the next operational NCTI
technique. Although range profiles only present scatter information on the dimension of the radar line
of sight, they have been shown to achieve classification at any aspect angle and with a relatively short
target illumination time. The only requisite for collecting range profiles is a radar waveform with large
enough bandwidth. The main drawback is their dependency on the aspect angle: changes of few degrees
mean changes in the shape of the HRRPs. Despite this, a HRRP can always be collected whereas ISAR
or JEM require special conditions for data collection. However, since HRRPs are not inherently suitable
for a radar operator interpretation, their automatic classification is desired.



2.2 Feature extraction and Classification Methods 17

In this thesis identification of range profiles have been opted since they present more advantages than
other methods; therefore, the rest of it will be focused on HRRP-based NCTI. However, the use of HRRPs
for classification purposes is still a challenging task since they suffer from target-aspect, amplitude-scale
and time-shift sensitivity. Consequently, some processing techniques will be needed in order to deal with
these issues. In general, HRRPs may not provide the best signature of a target, but their guaranteed
accessibility makes them very useful when other techniques are not available. Additionally, when feasible,
not only is it much easier to obtain reliable range profiles than focused 2D radar images, but also, the
computational time needed to obtain a recognition output is much shorter.

The rest of the thesis will focus the attention on range profiles, their processing and the formulation
of novel algorithms for aircraft identification. According to this, next section gives a brief revision of the
different feature extraction and classification methods utilized for identifying aircraft non cooperatively
with high resolution range profiles.

2.2. Feature extraction and Classification Methods

The classification of non cooperative observed objects from features measured by radar is a sub-field
of the global problem of pattern recognition. An excellent guide about pattern recognition is the one
authored by Duda et al.[54], in which the basic steps of the process of pattern recognition are explained in
the introductory chapter with a simple example of classification of two classes of fish. After that example,
it is concluded that the design of a pattern recognition system essentially involves the following aspects: 1)
data acquisition and preprocessing, 2) data representation or feature extraction, and 3) decision making,
that is, classification. According to this, Figure 2.5 redefines the system previously presented in Figure
1.1 seen in the previous chapter where the basis of a NCTI system is described. As depicted, the signature
acquisition includes a preprocessing step, in which profiles will be applied a series of techniques to enhance
their properties and a feature extraction step, in which discriminating parameters will be selected. These
features will be the input to the classifier, which will make use of a number of algorithms to check the
similarity of each input with the database of potential targets in order to assign each of them a class.

During the preprocessing stage, the raw data is prepared for a later feature extraction phase before
the classification is performed. Preprocessing techniques are mainly used to improve the quality of the
range profiles since they are very sensitive to the aircraft motion. The usual preprocessing techniques
applied to HRRPs will be reviewed in Chapter 3 which is dedicated specially to range profiles, their
extraction and their processing problems. Hence, the rest of this subsection will be dedicated to feature
extraction and classification methods that are utilized for identification or range profiles.

2.2.1. Feature extraction

After the application of preprocessing techniques to improve the quality of profiles and in order to
preserve relevant information, remove redundancies and capture significant attributes of aircraft in the
range profiles, feature extraction techniques (that include dimensionality reduction) are usually needed
before the identification process takes place. Feature extraction takes a sample as input and produces
feature values as output. The number of extracted features is normally chosen to be fewer than the total
necessary to describe the target, this causes a reduction in the initial input information. Reducing the
dimensionality of the input samples results in faster classifiers and mitigates the curse of dimensional-
ity2. Additionally, some transformed features may provide better discrimination ability, although due to

2High dimensional data is difficult to work with and, contrary to what can seem obvious, adding more features could
increase the noise and hence the error
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transformation, they may not have a proper physical meaning. With feature extraction, redundant infor-
mation that range profiles may have is removed and only a reduced representation of data will be needed
to perform classification. Thus, non cooperative target recognition will get less computationally intensive
and may have potential for real time processing. However, it must be noted that a great reduction of
features may lead to a loss in the recognition system accuracy.

There exist several feature extraction and dimensionality reduction algorithms and in this section,
the most frequently utilized techniques in NCTI along with some examples seen in the literature are
discussed.

Principal Component Analysis (PCA) is perhaps one of the most widely used linear feature extractor,
not only in NCTR but in many other disciplines. PCA computes the eigendecomposition of the covariance
matrix of range profiles and keeps the eigenvectors with the highest eigenvalues as features. Examples
of the application of PCA in HRRP-based target recognition can be observed in [9], where the authors
select the PCA feature subspace that hold the 99% of the energy of the whole feature subspace to project
a complex HRRP onto it and try to classify it; or in [55], where PCA is applied to complex range profiles
to compress them before application of a minimal euclid distance classification.

A PCA related method, the Kernel PCA (KPCA) which is a type of nonlinear PCA, maps the feature
from its original space to a high dimensional feature space via a nonlinear function, and then solves the
eigenvalue problem. Chen et al. [56] compare the performance of PCA and KPCA, concluding that
KPCA outperforms PCA although the selection of the best kernel is not straightforward.

Singular Value Decomposition (SVD) is another tool also used to perform PCA for feature extraction
and dimensionality reduction, as in [16], where SVD is used to create templates for HRRP matching, or
in [57], where it is used to represent target classes as subspaces.
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Linear Discriminant Analysis (LDA) is used to find a low-dimensional representation of the data which
preserves the differences between classes, so that a classifier can be designed in the feature domain. It is
often referred to as Fisher Discriminant Analysis since the Fisher criterion is maximised. The projections
with maximum class separability information are the eigenvectors corresponding to the largest eigenvalues
of the product of the inverse of the within-class scatter matrix and the between-class scatter matrix. An
example where LDA is used for HRRP feature extraction can be found in [58], where four different
variations of the Fisher discriminant analysis are evaluated, or in [59], where it is used to further reduce
the dimensionality of the feature vectors.

Other techniques can be also applied to extract features, but are less common in NCTI, like the
wavelet transformation, which is found very often in speech recognition. In [60], a Haar wavelet is
applied iteratively to HRRPs to obtain features of better quality on each iteration. Huether [61] also
developed a wavelet denoising method to increase classification rates of an aircraft classification scenario
based on HRRPs.

Other approaches focus on extracting translation-invariant features, thus avoiding the time-shift sensi-
tivity of the range profiles. The most common translation-invariant features used in the literature include
the magnitude of the FFT of a range profile [59, 62], utilization of the frequency spectra taken from the
raw data obtained by the radar [63], the autocorrelation function of an HRRP [18] or computing the
central moment features of range profiles produced by the MUSIC algorithm [64]. In [65], they use the
autoregressive model and its autoregressive coefficients as well as the partial correlation coefficients as
features for classification since, as the authors state, they are invariant to initial-phase, translation and
scale. The power spectrum, which is the Fourier transform of the correlation function of average profiles
is used in [66], while in [67] the differential power spectrum is introduced to extract translation-invariant
features from range profiles.

More recent papers, even propose the exploitation of the micro-Doppler caused by the rotating turbine
blades. Molchanov et al. [68] compare 4 different feature extraction methods, the first two, the magnitude
of the FFT and the 20 first central moments, are frequently utilized in the literature and are based on
the information of target structure contained in the HRRPs, on the contrary, a bicoherence estimation of
the micro-Doppler content in radar returns and the cepstrum, which are time-frequency based methods,
exploit the phase coupling caused by the rotating parts of the aircraft. They find that the time-frequency
methods show robustness with the aspect angle variations but the central moments show more immunity
against noise, concluding that micro-Doppler features can be successfully used to identify aircraft.

As seen, many feature extraction methods exist, ones are more used than others, sometimes mainly
due to simplicity or for the requirements of the classifier. This subsection has been focused on the
most common methods found in HRRP-based NCTR, but others exist that can also be applied to other
disciplines. The selection of the best feature extractor will eventually depend on the nature of the input
data, the user criteria and the classifier used.

2.2.2. Classifiers

Once the features have been selected, a classifier should be designed to determine a decision boundary
such that the extracted features can be assigned to their true class. Different approaches have been
identified for designing a classifier and in this section, a revision of the different classifiers used in the
frame of HRRP-based NCTI is provided.

The most fundamental approach is through the Bayes decision theory but the application of this
approach requires that the problem is fully formulated in probabilistic terms. Given the Probability
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Density Function (PDF) of a class, it is possible to know the optimal decision boundaries for classification.
The requirement of the full probabilistic knowledge of the problem is very restrictive since only in very
idealized cases the exact PDF of the classes will be known. In the best case, general knowledge about
the PDF may be available, together with a collection of samples from each class, the training samples.
The problem is then to find a way to estimate the PDFs using this information since they usually require
substantial training data. A number of studies are found in the literature that estimate the PDFs of
different HRRP classes for classification. Kim et al. [64], after the extraction of the HRRP features,
assume that the training data set has a multivariate normal distribution, and the a priori probability is
the same for each class, the results show that the assumed distribution is appropriate for their extracted
features. On the other hand, the research reported in [62] seeks a noise-robust statistical recognition
method for complex HRRP. Given the FFT-magnitude features extracted from the HRRPs, they model
each target via multitask Factor Analysis and employ the variational Bayesian inference for the recognition
stage. Their experiments show that the model has a good recognition performance even with small
training data and is robust to noise. The same authors described in [69] another method for HRRP
statistical recognition when SNR of test samples is lower than that of the training samples. To achieve
that, they model the HRRPs with a Probabilistic Principal Component Analysis (PPCA) while the noise
is assumed independent Gaussian distributed. Other models to describe the statistical distribution of
an HRRP include Gamma model [70] or the two-distribution compounded model comprising Gamma
distribution and Gaussian mixture distribution.

A more intuitive approach is that of the distance classifiers, that are based on the concept of similarity;
two patterns that are similar should be assigned the same class, then after defining a metric for calculating
the similarity, two samples can be classified simply by template matching or minimum distance. The
main problem of this matching technique is the definition of an adequate template that could undoubtedly
represent a class. The most common metrics used to perform classification are the Euclidean distance and
the cross-correlation of templates. When applying template matching to HRRP-based NCTI, sometimes
the raw HRRPs are taken as inputs of the classification system without first extracting the main features.
Such approach can be seen in [16], where after obtaining the templates of the HRRPs applying SVD, the
correlation between an input HRRP and each template is used for recognition. On the other hand, [18]
utilizes the self-correlation to define both the templates and the test samples.

The 1-Nearest Neighbour (1-NN) decision rule is one of the most used distance classifiers since it
provides a quite good classification performance and it is very simple. It can be seen as an extension
of the minimum distance classifier, with the difference that now no templates are defined as such; in
a set of training samples, whose classes are known, 1-NN assigns the input sample to the class of its
nearest neighbour. This method is sub-optimal; the unknown input must be checked with all the training
samples, implying that the number of operations increase with the number of samples, moreover, it will
lead to an error generally greater than the Bayes error. However, with an unlimited number of samples,
the error rate is never worse than twice the Bayes rate [54]. The generalization of the 1-NN is the k-NN
decision rule, being k the number of neighbours checked to assign a class. Application of the 1-NN is quite
common in the literature, especially when no computation restrictions exist, as an example, Zwart and
Heiden [8] validate their HRRP alignment methodology with the study of the recognition performance
obtained with the 1-NN classifier.

Subspace methods can be also considered as distance classifiers since ultimately they optimize a
distance metric. Each class is defined as a subspace, and the test sample (a feature vector, an HRRP or
another subspace) is projected onto the class subspace to find the distance between them. The distance
metric is defined for each classification problem. Du et al. [9] define each class of aircraft as a subspace
and find the minimum reconstruction error between an input profile and these subspaces by comparing
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the input HRRP with its reconstruction according to the projection onto them. In the work presented
by Pisane et al. [57] a subspace method for classifying aircraft based on the projections of a vector z
into each one of the class subspaces is evaluated. They carry out three different tests, projection based
on the energy, the orthogonal projection of the vector onto the subspace and the reconstruction of the
original vector from its projection; the combination of the tests results according to a majority voting
procedure shows a recognition rate between 70 and 90 %. More sophisticated subspace methods can be
found in the literature mainly for identification of objects in static images or face recognition. Such is
the case of the Mutual Subspace Method (MSM) or Constrained Mutual Subspace Method (CMSM) and
their variants [71,72], that present subspace methods based on principal angles. These latter techniques
are barely seen in the literature for radar target recognition based on HRRP, although Maki and Fukui
[73] have applied CMSM to ISAR image recognition proving these methods can also be useful for NCTI.

Another approach is the use of neural networks. Neural networks are inspired in the way biological
systems work, more specifically, in the way the brain works. These networks are formed by simple pro-
cessing units (called neurons) interconnected forming layers; the basic model of a neuron was introduced
by McCulloch and Pitts in 1943 [74]. Three types of layers define a neural network: the input layer, the
hidden layer and the output layer; all neurons in one layer are connected to all neurons in the next layer
and transmit their value via the synaptic weight and the activation function. The most common neural
networks are called Multi-Layer Perceptrons (MLPs).

An example of a MLP applied to the classification of flying aircraft can be found in [75], where 5
different aircraft are classified using a MLP with 2 hidden layers using backpropagation training. Two
architectures are tested, the first one has five outputs according to the 5 aircraft, while the second
has two outputs according to the two big classes into which the 5 aircraft can be divided. They also
study the optimal number of neurons in the input layer and as a result it is shown that for a better
performance the number of input neurons should be equal to the number of range bins of each HRRP;
additionally, they find that for their recognition problem, better recognition results are obtained with
two outputs, concluding that their net is useful for a big class identification, such as civilian aircraft or
unmanned aerial vehicle, but for a more specific classification further methods or a better training is
needed. In [67], a feed-forward neural network trained with backpropagation is used as classifier of four
aircraft models; the input layer is composed of 256 neurons with linear transfer function, 22 neurons
form the hidden layer with log-sigmoid transfer function and the output layer is made up of 2 neurons
with log-sigmoid transfer function. In this case, they extract the differential power spectrum and the
product spectrum of HRRPs as input features; they use six different algorithms to train the network: four
variations of the conjugate gradient algorithms, the resilient propagation and the simulated annealing
resilient propagation algorithm. They found that, for their experiment, the latter training algorithm
provides the best recognition rates.

An alternative for MLP is the use of Radial Basis Function (RBF) networks. Application of RBF
to aircraft recognition can be found in [66], where a template matching method and RBF are compared
to evaluate the recognition performance of higher order spectra features. In [76], a study of different
evolutionary algorithms for selecting the input features is provided, while in the classification stage they
use three methods, kNN, MLP and RBF.

Speech recognition is still dominated by Hidden Markov Models (HMM) but with the evolution of the
feature extraction techniques HMM have also been applied to NCTI, although not as extensively as other
methods. In HMM a finite set of states exist, each of which is associated with a probability distribution.
The transitions between states are governed by a set of transition probabilities. The main difficulty is
how to adjust the HMM parameters, so that the training set is represented by the model. Since an HRRP
usually has more than 100 range bins, it is hard to apply a HMM to process that amount of information
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directly, thus feature extraction plays a very important role especially when HMM are involved. The work
in [77] is an example where 9 different scenarios using HMM are applied to classify flying targets. The
study presented in [78] combines an eigen template match filtering method and hidden Markov modeling
for classification of range profiles, improving with this combination the average recognition rate.

The Support Vector Machines (SVM) technique offers a possibility to train generalizable, nonlinear
classifiers, in high dimensional spaces using a small training set. It maximizes the distance between classes
by selecting support vectors determined by solving a constrained quadratic problem. A binary classifica-
tion is made for the inputs of the SVM, although the extension of the binary classification problem to a
multi classification one is possible by applying a one-against-all approach [79]. Recently, the use of SVMs
in NCTI problems has increased, [80] and [81] are examples where SVMs return better recognition rates
than those obtained with other methods such as RBF or maximum likelihood algorightms, nevertheless
the time taken to construct an optimized SVM classifier could be too long for some applications.

Several classifiers used in NCTI have been reviewed, nevertheless, the choice of a classifier is a difficult
problem and it is often based on which one is available, best known to the user or on computational
requirements.

2.2.3. Discussion

In this section, a summary of different feature extraction methods and classifiers, which are applied
in problems of pattern recognition based on high resolution radar data, has been presented.

Feature extraction is mainly employed to reduce dimensionality and discard redundant information.
Several methods have been presented here that are frequently used in the frame of NCTI based on range
profiles. PCA, SVD and KPCA are very similar since they are based on eigendecomposition; they are very
common, well known and easy to use and best suited for gaussian distributed data, the main drawback
probably lies in the decision of how much information to keep as “important”, that is, the number of
eigenvectors taken as a subspace. LDA is also based on eigendecomposition, it computes the linear
discriminants that maximize the separation between multiple classes. It is also a well known procedure,
but when the number of samples per class is relatively small LDA is not so well suited for the problem.
Wavelets, that are time-frequency transformations, have also been applied to radar target recognition
although their most common use is in the speech recognition domain. Researchers have found that
wavelet methods can improve the probability of correct classification, however a thorough study about
the appropriate wavelet family needed for a specific recognition problem is usually requested. Finally,
it has been shown that translation invariant features are also powerful even when sometimes, extracting
invariant features does not mean a reduction in dimensionality.

Classifiers reviewed in the section can be grouped into five approaches: statistical classifiers, that need
an estimation of the probability distribution of the features, which is not always easy; distance classifiers,
which are simple classifiers that with a distance measure they assign a class to the test sample; neural
networks, with a computationally expensive training phase but with the advantage that this can be done
off-line; hidden Markov models, with the additional drawback of adjusting the parameters of the models;
and support vector machines, that are essentially binary classifiers that can be extended to multi-class
scenarios.

To decide the best classifier an extensive comparison over many different problems should be carried
out. With this purpose, the European Commission started the StatLog project [82], where twelve different
real world datasets were classified using symbolic learning, statistical and neural networks classifiers. The
results showed a large variability, illustrating that there exist no optimal classification rule, or quoting
the authors:
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There is no single best algorithm, and it is a case of “horses for courses”. The best
algorithm for a particular dataset depends crucially on features of that dataset.

According to this, the question of which classifier to use should be more oriented to practical questions
such as ease of implementation, quality of decision, time consumption in training and decision phases,
adaptability to new scenarios or memory consumption and computational complexity.

Keeping this in mind and after the review of feature extraction methods and classifiers given in this
chapter, a decision should be made. On the one hand, regarding the classifiers, SVM have a big limita-
tion concerning the choice of a proper kernel, additionally, their high algorithmic complexity demands
extensive memory requirements. HMM presents poor transparency in their implementation, where the
modelling of the relationship between the hidden states and the observations is not trivial. Neural net-
works need of loads of samples to train the net and as will be seen, the number of available samples in this
thesis is limited; additionally, the definition of the number of hidden layers and neurons needs also of a
thorough study and may change from one scenario to another. Statistical classifiers may be a good option
but always in the case of knowing the probability distribution of the features utilized. Distance classifiers,
on the contrary, provide an easy approach, they can be used for classification of small sets of samples
and its simplicity in implementation and adaptation to new scenarios makes them quite suitable for this
study. Among the distance classifiers, it has been proven in different papers, that the subspace methods
provide good performance in the field of face recognition, although small research on the field of NCI
with range profiles is done. If we consider a matrix of range profiles as an image, like in face recognition,
subspace methods should also provide good recognition performance. Therefore, in this thesis this latter
type of classifiers have been chosen and some new algorithms will be developed in the following chapters.

On the other hand, regarding feature extraction methods, these are usually highly related to the
selected type of classifier. Since the chosen classifiers belong to the family of subspace methods, among
the reviewed feature extraction techniques, it seems reasonable to use some of the PCA-related feature
extraction methods, since they transform the input subspace into another subspace, the feature subspace;
this feature subspace provide the ability to reduce the data dimensionality and to work in a transformed
subspace domain. Among the PCA-related feature extraction methods, PCA via SVD and via the typical
eigendecomposition is selected in this study. Both ways, via eigendecomposition or SVD are equivalent,
but maybe, SVD returns more stable results, as will be seen in the following chapters.

The ease of implementation of these techniques is one of the main reasons for their selection, but
there are other reasons for selecting PCA over others. The problem of utilizing KPCA, as said, is the
selection of the best kernel, which is not straightforward and may change between datasets, this will only
add complexity to the identification problem, involving an additional parameter. In the case of LDA,
although it might be thought, that LDA would always outperform PCA, since it deals directly with class
discrimination, this assumption is not always true [83]. Indeed, when the number of samples per class
is small or when the probability distributions of the different classes is not known a priori, PCA usually
outperforms LDA. Therefore, PCA is chosen in the first place as the feature extraction method for the
developed classifiers.

2.3. Datasets and database assembly

One of the main challenges in NCTI after years of research, apart from deciding which are the
optimal features and classifiers, is the question of the database construction: what kind of measurements,
or features extracted from these measurements, should populate the database to obtain an appropriate
recognition performance and a good generalization capability.
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It is accepted that a database should contain signatures of every allied target and preferably of a
vast number of hostile and neutral platforms. For this reason, it was thought that a NATO-central
NCTI database could be a wise alternative [84], nevertheless the type of classifier defines the database
needed and vice versa; this implies that if the intention is to make a NATO database of air targets, then
a corresponding NATO classifier should be developed as well, making this approach not as suitable as
thought in principle.

Up to now three different approaches have been employed to assemble a database [3, 85]: the most
obvious method, and the best option, should be to perform measurements of the real targets to be
identified at all aspect angles, which is not only expensive but highly improbable for hostile targets.
These real measurements can be performed in flight or mounting the targets on rotating turntables;
the drawback of turntables is that the near-field measurements obtained can differ from the far-field
measurements acquired from the air and also, effects of ground clutter that do not exist in the air will be
present in the measurement. When choosing to acquire measurements of actual in-flight targets, this can
be done by illuminating targets of opportunity that fly over a specific zone, or by scheduling cooperative
measurements campaigns, where the type of aircraft and the flightplan as well as other parameters, like
velocity, are known in advance. In both cases, the orientation of the aircraft and its associated aspect
angle with respect to the radar should be determined accurately; additionally, both approaches involve
several lengthy and expensive campaigns. However, although theoretically possible for friendly targets, it
is unlikely that hostile nations will participate in these campaigns to release the radar signature of their
most modern aircraft.

To alleviate this, the idea of using scale models and measure their signatures at a scaled frequency
in anechoic chambers came up. This depends upon knowing the target physical characteristics in detail
and even upon the use of representative materials. Although scale modelling is less expensive than
planning cooperative measurement campaigns, it is still costly since it depends on the modelling and on
the availability of the facility to measure it.

The third approach is the electromagnetic simulation of the target which also depends on its physical
characteristics (it should be designed as a 3D CAD model) and on the integrity of the prediction codes
used to extract the target signature. The techniques used to determine the radar scattering characteristics
are based on various approaches that can be used to solve Maxwell’s equations for incident signals. These
methods are rather complex and not always the complete combination of electromagnetic effects that
occur in reality can be considered, however this kind of software is commercially available, making the
design and prediction of a target signature to be highly accessible. Using synthetic signatures might
relieve the need for measuring signatures of hostile and neutral aircraft and might facilitate the database
population due to the ease of adding new targets and aspect angles.

Whatever technique chosen for the database construction, it should be noted that it is important to
develop a recognition system with a database of targets that holds the generalization capability, that is, a
database with information about the vast majority of existing targets in as many trajectories as possible.
Moreover, the associated classifier should be designed to be robust enough to compensate the deficiencies
of the database.

In order to check the performance of the developed recognition algorithms the best option will be then
to use a test set of actual HRRP measurements and compare them with a database of potential targets
previously collected via cooperative measurements. This is one common approach found in the literature
since the early 90’s, when the interest in NCTI proliferated, to nowadays [9,63,86–88]; however, as noted,
the availability of actual signatures is not very high due, mainly, to the difficulty of planning measurement
campaigns and also to their common military character, which makes the signatures not available for
many civilian researchers. Thus, when this approach is found, the signatures are usually collected by
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the researchers with experimental radars or, on the contrary, they use signatures of certain measurement
campaigns that have been released to certain purposes, hence it is very common to find studies using
the same datasets. Given the difficulty with the availability of these actual measurements and with the
evolution of software prediction codes, the approach of using simulated or synthetic signatures as both
test set and database for validate the classifiers emerged in the late 90’s and still nowadays is also applied
in the literature [16,55,60,89]. Nevertheless, when utilizing equivalently produced signatures as both the
input samples and database, that is, actual measurements vs. actual measurements or simulated profiles
vs. simulated profiles, the results may be biased and the evaluated performance of a classifier may be
considerably exaggerated compared with a system operating in the actual conditions. In both cases, the
test samples and the database samples have similar nature and usually a similar high SNR resulting in
very good recognition results. However, in a real hostile situation, e.g. at battle time, the range profiles
of an unknown target are usually collected in a scene where high SNR cannot be guaranteed due to the
measurement collection conditions, like long radar distance, and therefore, the collected actual target
signatures (the test samples) will be less clear than those in the database. Additionally, in order to
guarantee the right recognition, the unknown target must have been previously measured in a similar
aspect angle and configuration (pods, missiles, etc.) and loaded to the target database, otherwise the
classification would be erroneous.

Keeping this in mind, the interest of using predicted profiles as recognition database while using actual
measurements as test samples arose in 1998 at the RTO SCI Symposium on “Non-Cooperative Air Target
Identification Using Radar” held in Mannheim, Germany [13], where different studies on NCTI as well
as simulation codes were presented.

The use of predicted profiles as database is very interesting: as noted, it is impossible to fill a
database only with measured profiles since among other reasons, aircraft from hostile nations will never
participate in measurement campaigns. Populating a database with synthetic target signatures has certain
advantages: target signatures of any target in any aspect angle and configuration can be obtained with
the use of RCS-prediction software so the database can be as wide as required, the database population
is fast and low-cost and its update (addition of new targets, configurations or aspect angles) only implies
CAD modeling and simulation, instead of planning expensive and lengthy cooperative measurement
campaigns. On the other hand, it also has disadvantages: simulations are run in ideal environments,
software simulation tools may not take into account all electromagnetic effects and aircraft models may
not be exact replicas of real ones. These imply that synthetic signatures will be very clean compared to
an actual measurement of the same target, hindering the identification process. Thus, the identification
algorithms to be developed must be robust with the difference in shape and SNR between test and
training samples.

The approach of comparing actual vs. predicted profiles is barely seen in the open literature [8,50,90]
but as noted, it is a very interesting field due to the ease in the database population and the fast
evaluation of algorithms. In [8], the authors classify a test set of range profiles coming from an actual
measurement campaign with a database of simulated range profiles predicted using a software called
RAPPORT. However, they were only interested in the performance of different alignment methods for
HRRPs and they just chose the Euclidean distance as a metric, trivializing the recognition performance.
On the contrary, in [50], the authors present a complete methodology for NCTI on two stages, where
the input samples come from an actual measurement campaign of in-flight targets and the database is
populated with synthetic profiles computed using the FASCRO prediction code. In the first stage, actual
HRRPs are used as inputs to a neural network to pre-classify the input sample, where this neural network
has been trained with simulated range profiles; later on, with a number of consecutive actual HRRPs
they compute the ISAR image of the illuminated target and apply 1-NN to finally classify the target with
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a database of simulated ISAR images. This clever approach of utilizing two steps to differentiate aircraft,
had two main weak points: on the one hand, the test set was not broad enough to obtain enough ISAR
images to keep validating their methodology, and on the other hand, the 1-NN algorithm utilized was
very computationally intensive. In fact, in [90], the computational burden and recognition performance of
the last step is evaluated with the same test set of actual ISAR images and the same synthetic database.

As seen, not many authors tend to classify actual aircraft signatures by means of synthetic databases.
The main drawback found in this approach is that simulations provide a very clean signature while actual
HRRPs suffer from noise and other unwanted effects. However, this makes the recognition process similar
to a real situation where collected profiles could be noisier than those in the database, which adds interest
to keep validating the scheme.

Thus, due to the few studies that support this latter approach, added to the ease in the database
population and our lack of availability of a high number of actual HRRPs, the core of this thesis will
embrace the strategy of comparing profiles of different nature. As it will be seen in the following chapters,
in this thesis, FASCRO will be the tool employed for the retrieval of the synthetic profiles that will
populate the database, while when using actual profiles as test sets, they will come from a scheduled
measurement campaign.

2.4. Conclusions

The intention of this chapter was the literature review of some aspects of NCTI. The different tech-
niques used in non-cooperative target recognition have been seen, such as JEM, ISAR images or HRRP,
concluding that recognition of HRRP is the next operational NCTI system.

Under this line of thought, an overview of different feature extraction and classification methods vastly
used in the literature for HRRP-based aircraft recognition have been given and finally the last section has
reviewed the different approaches utilized along the years for populating a database of potential targets
and therefore, for validating the developed algorithms.

As a result, we have reached the conclusion that there is no “optimal” feature extraction method or
classifier that will return the best recognition performance for every identification problem. The decision
on the features used for classification and the corresponding classifier is made ultimately by the system
designer. After the analysis given in section 2.2.3, distance classifiers are chosen to be developed in this
thesis due to their simplicity, transparency and fast implementation. Lastly, to validate the recognition
methodology, a scheme where actual profiles are compared with synthetic profiles will be proposed. As
said, very few researchers focused their attention on comparing profiles of different nature but in practice
this approach is the most realistic one, since in reality the measured profile may be quite different than
those in the database; furthermore, the poor availability of a high amount of actual HRRPs to populate
a database, makes this approach the most suitable.

This way, in the following chapter a more thorough revision of range profiles will be seen, in which
their definition, their generation and their extraction will be presented.
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Radar Range Profiles for NCTI

High Resolution Range Profiles (HRRPs) are essentially one-dimensional radar images of illuminated
targets, where the contribution of their different reflecting parts, or scatterers, are projected onto the
radar line of sight. The range profiles are defined as the squared magnitude of the coherent complex radar
returns and normally, no phase information is stored. The minimum resolution cell within a range profile
is called a range bin and it can contain the contributions of one or more scatterers combined coherently.
This ability to resolve scatterers, namely the resolution of an HRRP, is inversely related to the radar
bandwidth.

Before range profiles of an aircraft can be used for identification or any other purposes, they have to
be measured with a high resolution radar. Figure 3.1 depicts a basic example of a radar illuminating an
aircraft in motion with just 4 scatterers. The emitted wave will hit first the nose of the aircraft, and
sequentially its right wing, then the stabilizer on the tail and finally, the left wing. In the same order, the
echoes will arrive back to the radar and after some processing the profile will be computed. Under the
same measurement conditions (aircraft orientation, weather conditions, radar parameters, etc.), different
aircraft will provide different HRRPs.
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Figure 3.1: Basic radar operation
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Throughout this chapter, the definition, generation and processing of HRRPs will be described. The
properties and the sources that cause profiles to differ from one another are reviewed and different
preprocessing techniques usually applied to palliate these effects are also described.

3.1. High Resolution Radar

The term radar stands for Radio Detection and Ranging. The basic principle of a radar is to calculate
the range at which a target is located. Its operation is depicted in Figure 3.1 and it is based on the time
needed by the emitted electromagnetic wave to reach the target, be scattered by its different parts and
get directed back towards the radar.

With the evolution of conventional radar to high resolution radar, not only the range of the target is
calculated but also, as already introduced, other aspects of the target, such as its shape, can be retrieved
in form of radar images. The term high resolution is typically used to denote the ability to resolve
individual scattering centers on a target, thus it is a generic term which is not linked to any particular
absolute resolution. High resolution radar implies the use of wideband signals, with these having a wide
bandwidth in absolute terms, the fractional bandwidth (the signal bandwidth divided by the carrier
frequency) may be quite narrow.

The best known characteristic of a high resolution radar is its ability to resolve scattering sources
within a target in the propagation direction, that is, in the slant-range dimension. This is known as the
range resolution, ∆r, which is directly related to the radar bandwidth, β, and is given by equation 3.1,
where c represents the speed of light.

∆r = c

2β (3.1)

On the other hand, there is the cross-range resolution, ∆rc, which depends on the wavelength of
the emitted signal and the angular sweep made during the illumination time. Cross-range resolution is
defined as the ability to resolve scatterers in the normal direction to the plane containing the radar line
of sight and the target rotation angle. As it depends on the angular sweep during the illumination time,
since the measured aircraft will be moving and changing its trajectory, it is not unusual when measuring
flying targets from the ground, to find different measurements of the same target under the same radar
with different cross-range resolution. Equation 3.2 is used to calculate the cross-range resolution where
the angular sweep is given by βa, λc is the radar central wavelength and fc is its corresponding central
frequency. The cross-range resolution is mainly defined for ISAR images and for cross-range profiles and
as discussed earlier in previous chapters, these techniques are not the main focus of this thesis.

∆rc = λc
2βa

= c

2fcβa
(3.2)

According to equation 3.1, a radar will have a better resolution in range as its bandwidth increases,
that is, if two scatterers are very close and the radar has a low bandwidth, they will be detected as being
only one; however, with the sufficient increment in bandwidth they will be correctly distinguished. This
means that as the bandwidth gets wider, the radar will be able to discriminate scatterers with a lower
separation.

The basic architecture of a high resolution radar does not differ much from the basic structure of a
monostatic primary radar. However, the emitted waveform is appropriately designed to accomplish the
high bandwidth and hence, the high resolution.
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There exist a number of waveforms than can be used to achieve high resolution, the ideal one would
be the utilization of short RF pulses, where the emitted signal consists of very narrow pulses providing
a very high resolution. The width of the transmitted pulse defines the resolution of the resulting range
profiles, the shorter the pulse, the better the resolution. However, the pulse width is limited by the power
the radar is capable of transmitting. Unfortunately, most radars are incapable of transmitting the power
required to achieve enough range resolution and a long detection range. Additionally, the transmission
chain of the radar (amplifiers, mixers, etc.) may not support this type of waveform.

To achieve a high range resolution without using short pulses it is necessary to spread the radar
waveform energy over time whilst still maintaining a high bandwidth. With pulse compression techniques
a radar can achieve high resolution even with relatively long pulse widths. This is achieved by inner
modulation of the signal and post processing of the received echoes. The following waveforms are examples
where pulse compression is employed:

Phase coded waveforms: the required bandwidth is obtained by periodically changing the phase of
the waveform as a discrete step. The rate at which the phase changes is related to the bandwidth.
In phase coded waveforms, the transmitted radar pulse can be seen as divided into a number of
sub-pulses.

Chirp or LFM: it is very common and consists of a linear FM coding of transmitted pulses. The
chirp signal starts at a defined frequency f1 and varies it at a constant rate until reaching the final
frequency f2. A variation is the stretch technique, in which the radar transmit an LFM signal and
in the receiver, a reference chirp with a higher end frequency, f3, is mixed with the received signal
to obtain the high resolution signature of the target.

Stepped frequency: narrow pulses are synthesized by transmitting wider pulses in different frequen-
cies. The technique is implemented by stepping the transmission frequency in increments of ∆f ,
from f0 to fn−1 where each frequency is sequentially transmitted. If n frequency steps are utilized,
n sets of amplitude and phase measurements are made, which are then used to generate the profiles.

When designing a high resolution radar, an evaluation of the requirements of the radar system should
be carried out in order to select the waveform, the bandwidth and the rest of the characteristics that
best satisfy the specifications. As it will be described in the following chapters, the available data for
this thesis come from real measurements of actual aircraft in motion using a stepped frequency radar.
Hence, in the following section an overview of the stepped frequency waveform and the retrieval of range
profiles is provided. For further information about the rest of the waveforms presented here, the reader
is referred to [31].

3.2. HRRP generation using a stepped frequency waveform

Instead of collecting the target scattering information in the time domain, a stepped frequency wave-
form collects the information in the frequency domain by emitting a number of pulses with linearly
increasing frequency. The required wide bandwidth is synthesised from pulses that individually have a
narrow bandwidth, but together span a large frequency range. Figure 3.2 illustrates the frequency incre-
ments in a stepped frequency waveform where the pulses can be either separated in time or sequentially
emitted.

The target is illuminated by a burst of n pulses, each pulse with a duration of τ and with a frequency
which is ∆f higher with respect to the previous emitted pulse. If the initial frequency is known as f0,
the frequency for each transmitted pulse will be given by equation 3.3.
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Figure 3.2: Stepped frequency waveform: frequency against time representation

fi = f0 + i∆f ; with i = 0, 1, . . . , n− 1 (3.3)

The waveform emitted by each pulse is expressed according to equation 3.4.

si(t) = Ai cos[2π(f0 + i∆f)t+ θi] ; with i = 0, 1, . . . , n− 1 (3.4)

where θi is the relative phase and Ai is the amplitude of the i−th pulse at a fi frequency. Accordingly,
the signal scattered back from the target will be also composed of n pulses at different frequencies
containing the signature of the target in terms of amplitude and phase, as illustrates Figure 3.3; this
implies that in the receiver, the in-phase (I) and quadrature (Q) components of a target signature are
stored for each pulse in each burst.
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Figure 3.3: Stepped frequency measurements: amplitude and phase

The synthesized effective bandwidth, βf , of the transmitted signal will be determined by the frequency
step, ∆f , and the number of pulses, n, of each burst, following equation 3.5.

βf = fn−1 − f0 = n ·∆f (3.5)

The received signal belongs to the frequency domain; the corresponding radar return in the time
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domain is then reconstructed by performing an Inverse Discrete Fourier Transform (IDFT)1 on the n
returns (equation 3.6).

x(tk) =
n−1∑
i=0

X(fi) · e2πfitk (3.6)

where X(fi) is the received signal in the frequency domain, tk is the illumination time, fi is the frequency
of each pulse and n the total number of pulses in each burst. Once the radar returns are expressed in the
time domain, the n elements that form the resulting range profile, so called range bins, are given by:

y = (y0, . . . , yn−1) = |x|2 (3.7)

According to equation 3.7, a range profile is finally defined as the squared amplitude of the coherent
complex radar returns, while the phase information is usually discarded.

From equation 3.1 and 3.5 two fundamental parameters of HRRP can be derived, which are the
amount of detail that can be seen in the range profile and the largest object that fits in a profile. Firstly,
the distance between two range bins, which is equivalent to the minimum distance at which two point
scatterers can be resolved, that is, the range resolution, ∆r of a range profile is:

∆r = c

2βf
= c

2n∆f (3.8)

And secondly, the unambiguous range interval Ru, expressed in equation 3.9, which determines the
maximum length of a target that a range profile can measure without aliasing. Targets exceeding this
unambiguous range will produce range profiles that are folded over within this range window. Figure
3.4 shows an intuitive example of this aliasing effect, in which an aircraft with a length longer than the
unambiguous range is shown, in that case, the scatterers related to the nose of the aircraft will overlap
with the ones of the tail. The unambiguous range interval must be chosen, then, such that the size of the
largest expected target does not exceed this window.

Ru = c

2∆f (3.9)

Ru

Figure 3.4: Aliasing effect when a target exceeds Ru

1To efficiently calculate the IDFT, the algorithm of Inverse Fast Fourier Transform (IFFT) is applied
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3.3. Range profile variability

As noted, the signal processing needed to obtain the HRRP of a target is not very complex, it mainly
implies a transformation of the raw data into the time domain. However, as simple as it may seem,
there exist a number of obstacles in the extraction of the range profiles related to their sensitivity to the
changes in aspect angle.

The energy reflected back from the scatterers comes from different physical parts of it, which are
separated by a few wavelengths. As a result, there exist several constructive and destructive interference
effects caused by the scatterers located in the same range bin. Each of the scatterers has its own amplitude
and phase and these combine as vectors to provide the total amplitude and phase return in the associated
range bin.

The aircraft orientation, or aspect angle, can be expressed as a coordinate pair (α, θ), with α being
the aspect azimuth and θ the aspect elevation. Although three angles would be required to completely
specify aircraft orientation, rotations of the aircraft in the plane perpendicular to the line of sight do not
influence HRRP measurements [91]. Therefore, a description of aircraft pose in terms of aspect angles
is sufficient. Figure 3.5 gives a graphical explanation; as seen, the aspect elevation, θ, is defined as the
angle between the radar line of sight and the plane through the wing-tips and nose of the aircraft, being
this θ = 90◦. The aspect azimuth, α, is defined as the angle between the direction of the nose of the
aircraft and the direction of the radar line of sight projected on the plane through nose and wing-tips.
Along this thesis, the aspect elevation will be positive if the target is viewed from above and the azimuth
aspect angle will be defined as 0◦ when the aircraft is viewed from nose-on and 180◦ if it is viewed from
tail-on.

�

�

Radar

Plane through wingtips and nose

� � 0°

Nose-on
� � 90°
� � 0°

� � 90°

� � 180°/
180°

� � 
90°

Tail-on
� � 90°

Figure 3.5: Definition of aspect angles (θ, α)
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Since the aircraft will be moving while collecting range profiles, the aspect angle and the distance
between radar and aircraft will change. This movement can cause interference between scatterers in
the same range bin and this leads to the appearance of three main sources of variation: Translational
Range Migration (TRM), known as the source of time-shift sensitivity, speckle and Rotational Range
Migration (RRM), these latter two effects related to target-aspect sensitivity. Finally, measurement noise
and occlusion can also cause variability in the measured range profiles.

3.3.1. Time-shift sensitivity

TRM is due to the translational motion of an aircraft which changes the distance between radar and
target and causes scatterers to move from one range bin to the next. In this case, the relative distance
between two scatterers does not change since they are all moved the same amount. This is known as the
time-shift sensitivity, which causes a cyclically shift in consecutive profiles, implying that the position of
the target signal within the unambiguous range window will vary with each measurement.

3.3.2. Target-aspect sensitivity

RRM is caused if HRRPs are collected during a wide rotation of the aircraft (of an order of a few
degrees), making the scatterers move from one range bin to the other.

If two profiles have aspect azimuth with a difference less than:

∆αRRM = ∆r
TD

[rad] (3.10)

where TD is the maximum distance between two scatterers within one resolution cell, then the profiles
do not differ due to RRM in azimuth. This effect also occurs if the aspect elevation changes over a large
angle. In that case, it is said that two profiles do not differ in elevation due to RRM if the variation is
less than:

∆ΘRRM = min
(

arccos
(

1− ∆r
TD

)
, arcsin

(
∆r
TH

))
[rad] (3.11)

where TD is, again, the maximum distance between two scatterers within one resolution cell , TH is
the height of the aircraft and ∆r the resolution. As a rule of thumb, over large rotations, the relative
peak positions in the profiles will change due to RRM.

On the other hand, speckle causes range profile variability for much smaller changes in aspect angle
than RRM. It occurs when the same range bin contains information about more than one scatterer.
Then, a slight motion of the aircraft can cause the scatterer contribution to turn from constructive to
destructive interference or vice versa causing the peak amplitudes to change rapidly between sequentially
collected profiles. The intrinsic aircraft movements, yaw, pitch and roll, depicted in Figure 3.6, are the
cause of this effect.

To avoid speckle, the change in aspect angle between two profiles must be smaller than:

∆αspeckle = λ
4TD [rad]

∆Θspeckle = λ
4TH [rad]

(3.12)

For non-zero elevations, TH should be replaced by TH cos Θ.
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yaw roll pitch

Figure 3.6: Intrinsic aircraft motions

Fluctuations of range profile amplitude due to speckle are multiplicative in nature and are usually
modeled as Swerling cases [92].

3.3.3. Amplitude-scale sensitivity and occlusion

Amplitude-scale sensitivity appears due to the radar transmitting power, target distance, radar an-
tenna gain, receiver gain and so on, that cause measured profiles to have different amplitude scales.
Modern radars usually have Automatic Gain Control (AGC) systems that ensure the radar signal does
not saturate the receiver. However, unless the radar data are fully calibrated, the independence of the
amplitude of the range profiles with respect to the radar signal levels cannot be guaranteed.

Additionally, the measurement noise is mainly caused by thermal noise in the receiver as well as clutter
(unwanted returns), although when illuminating flying targets clutter is not as accused as when measuring
ground targets. The SNR and the amplitude of a HRRP, are determined mainly by the distance between
radar and target since the power of the received signal is inversely proportional to the fourth power of
the distance.

Occlusion of a scatterer may occur when the target is positioned in a way such that the radar does
not illuminate it and thus, the scatter will not contribute to the backscattered signal, and finally, to the
range profile.

An example of the differences found in range profiles with the change in aspect angle is seen in Figure
3.7. The figure shows two range profiles extracted from an actual measurement of a Fokker100; their
elevation difference is almost negligible and their azimuth aspect angle differ in less than 1◦. In this
case, the amplitude of both profiles has been normalized for a better visualization and to deal with the
amplitude-scale sensitivity, the normalization is such that their total energy equals 1; additionally, both
profiles have also been aligned one respect to the other to alleviate the time-shift sensitivity. Although
two main sources of variation have been reduced, still speckle, RRM, noise and occlusion may affect the
profiles; this can be clearly observed in the example. For instance, at an azimuth of 54.17◦ a peak with
a normalized amplitude of around 0.25 can be found around range bin 150. With the change in aspect
azimuth, this peak has almost disappeared, as can be seen in the black profile, a fact that may be caused
either by RRM or occlusion. Another evidence is the amplitude fluctuation of the scatterers located
around range bins 150 and 175, they both have changed their amplitude substantially from one range
profile to the other, this effect is mainly caused by speckle since it just alter the amplitude of the scatter,
but not its position.
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Figure 3.7: HRRP variability with aspect angle

3.4. Preprocessing of range profiles

Preprocessing techniques are mainly used to improve the quality of a range profile; on the one hand,
they will be used to deal with the target-aspect, amplitude-scale and time-shift sensitivity, and on the
other hand, they will be applied to lighten other effects that are intrinsic to the profiles’ extraction
process.

3.4.1. Windowing

Sometimes the inherent nature of the radar signal produces high sidelobes in the collected profiles
that can easily obscure small returns of some scattering centers. That is the case of step frequency radars
which, since they apply Fourier transformations to the raw data to obtain HRRPs, automatically apply
a square window to the data, which produces high sidelobes in the range profiles. In those cases, a filter
to smooth this effect, at the cost of a worsened resolution, may be implemented before the application of
any Fourier transform. Many windows are available to filter the signals, but the most commonly used for
HRRP preprocessing are the family of cosine windows [91,93]. Among this family, the Hamming window,
defined in equation 3.13 is one of the most utilized since it can reduce the sidelobes in 43 dB, though
increasing the resolution by a factor of 1.3 [94]. Figure 3.8 plots both the rectangular and the Hamming
window, in time and frequency domain. As noted, the application of a Hamming window implies a
poorer resolution, this fact is appreciated in the figure, since in the frequency domain, the main lobe of
the Hamming window is wider than the rectangular window main lobe. On the contrary, the sidelobes of
the rectangular window are located at -13dB while the sidelobes of the Hamming window drop to -43dB.
The effect of applying a Hamming window to the range profiles is seen in Figure 3.9, where it is applied
to a HRRP of a Fokker100. As seen, the resolution of the windowed profile may be poorer than the one
without it but the range profile is now less abrupt.
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w(n) = 0.54− 0.46 cos
(

2π
N
n

)
, 0 ≤ n ≤ N − 1 (3.13)
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Figure 3.8: Rectangular window Vs. Hamming window
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Figure 3.9: Range profiles with and without Hamming window

3.4.2. Zero-padding

After the application of a window, the dimensionality of the profiles can be increased by adding zeros
to the returned signal. Sometimes dimensionality expansion may be needed to adapt the measurement
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dimensions to those of the database. The application of this technique to the raw data, called zero-
padding [91, 93], has the effect of interpolating the range profile by artificially increasing its number of
samples (range bins). Zero-padding is a frequency interpolation technique where the resolution of an
HRRP is not incremented, but allows for an easier detection of peaks. Nevertheless, it must be noted
that the energy of the resulting range profile will be spread out over a higher number of samples, hence, a
reduction in the HRRP magnitude is expected; moreover, the designers must be aware that an excessive
zero-padding may cause peak-splitting, that is, the division of an actual amplitude peak in two or more
fictitious peaks, hence, this technique should not be used arbitrarily. Figure 3.10 is an example of the
effect of applying zero-padding to a range profile of a Fokker100. In the upper figure the range profile
with no zero-padding is shown and in the lower figure the same range profile zero-padded to have a
total number of range bins of 512 is depicted. As said, the resolution has not been incremented but the
amplitude of the range profile has diminished. In this example, around range bin 240 of the zero-padded
range profile seems to occur the effect of peak-splitting as Figure 3.11 shows, which is a zoomed image
of the former one.
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Figure 3.10: Range profiles with and without zero-padding

3.4.3. Motion Compensation

In section 3.3, it has been noted that the aircraft motion affects the shape and amplitude of the
profiles. A few techniques can be applied in order to mitigate these effects.

In order to deal with target-aspect sensitivity some authors have opted for the application of non-
linear transformations to range profiles [8], or to average sequences of range profiles [9], which result
in a reduction of speckle and noise. To avoid the effect of RRM a small sector may be defined when
analysing sequences of HRRPs such that the aircraft rotation does not produce rotational range migration
[95]. Additionally, if the noise level is desired to be further reduced, thresholding techniques can be also
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Figure 3.11: Peak-splitting of a zero-padded range profile

applied.

On the other hand, to deal with TRM, an alignment of profiles may be accomplished. HRRP alignment
refers to aligning a HRRP with a particular reference position or a reference profile. There are three main
reasons why HRRP alignment may be necessary: alignment for HRRP averaging, in order to reduce
some effects such as speckle, alignment for ISAR processing, to retrieve target motion, or alignment
for classification, because some classifiers require the target returns to be in a fixed position within
the range window or because they make use of sequences of profiles and they need to be correctly
aligned one respect to the others to remove aircraft motion. The alignment can be achieved by using the
aforementioned compensation techniques described for ISAR in Chapter 2 (centroid tracking, envelope
correlation, contrast/entropy based methods, dominant scatterer algorithm, zero phase representation,
etc). Another solution to avoid TRM is to extract translation-invariant features. With invariant features
the target position in the HRRP is no longer an issue and also the feature vector always has the same
dimensionality regardless of the target dimensions. Translation-invariant features include the magnitude
of the FFT of a range profile [59], utilization of the frequency spectra taken from the raw data obtained
by the radar [63], the autocorrelation function of an HRRP [18] or computing the central moment features
of range profiles produced by the MUSIC algorithm [64].

Regarding amplitude-scale sensitivity, to ensure all profiles have comparable magnitudes, range profiles
normalization is usually applied. Scaling the values of range profiles so the sum of energy equals one
[9, 16] or limiting the maximum amplitude to one [50,96], are common techniques of normalization.

Finally, another common technique, which also help reduce speckle, is a gaussian normalization, a
method that transforms the non-gaussian data to normalized distributed data. One of the most effective
ways of transforming data to a suitable approximation of normality is to utilize a particular family of
power transformations extensively applied to HRRP preprocessing: the Box-Cox transformation [97] with
tunning parameter η, defined as:
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xη =

xη−1
η if 0 < η ≤ 1

log x if η = 0
(3.14)

A power transformation, like the Box-Cox, strengthens the weak scatterers and weakens the strong
ones making some characteristics of a target become clearer. The lower the η, the more the weak scatterers
are amplified; this parameter should be chosen according to the range profiles SNR: for high SNR, small
η is appropriate, while for low SNR it η is small the target may be submerged in the noise. Thus, for
different measurements, parameter η may need a re-tune [98].

3.5. Summary

High resolution radar has the ability to resolve scatterers in the direction of propagation, being able,
then, to provide signatures with information about different targets. This chapter has provided a general
view of these signatures, namely the range profiles, their generation, their important parameters and the
shortcomings found during their extraction.

As seen, the range profiles’ extraction process using a stepped frequency waveform is quite simple
since it just implies a transformation from the frequency to the time domain. Despite this simplicity,
it has been seen that range profiles are very sensitive to the motion of the target. Changes of very few
degrees in aspect angle can change completely the shape of a range profile.

Preprocessing techniques are needed to improve the nature of the range profiles and prepare them for
a later feature extraction phase. Techniques to remove noise, such as thresholding; to reduce sidelobes,
like windowing; to interpolate information, like zero padding; to normalize the inputs, such as amplitude
normalization, or those for reducing the motion of the aircraft, like profile alignment, are important in the
process of removing unwanted effects before classification takes place. As noted, not all the techniques
will be needed in all the scenarios, the decision of which techniques to employ ultimately lies in the nature
of the raw data; for example, if the input data comes from simulations, the noise removal or the motion
compensation of the aircraft might be unnecessary.

In the following Chapter, the datasets used along this thesis will be presented, as well as the selected
preprocessing techniques applied to further classify them.





Chapter 4

Datasets

One of the goals of this thesis lies in the development of novel algorithms for the identification of flying
aircraft in a non-cooperative way. To achieve it, different datasets are needed to evaluate the proposed
algorithms, hence, it is the purpose of this chapter to describe the available data utilized along this thesis.

In Chaper 2 it was already introduced the desire to evaluate the algorithms via comparison of actual
measurements against simulated ones. As said, due to their military character and the difficulty of plan-
ning measurement campaigns, the availability of actual signatures is not enough to populate a complete
database. On the other hand, testing a classifier in this scenario emulates the operational situation more
faithfully since it may exist a significant difference between the profiles measured by an operational high
resolution radar and the profiles in the database, even if this were populated also with actual profiles.
Thus, both datasets, the actual and the simulated, along with the preprocessing methods applied to them
will be presented in this chapter. After their description, different test cases for the experiments will be
presented.

Throughout this thesis we will use the terms input, training set and test set. We call training set,
for simplicity, to the data that forms the database of known potential targets, while test set will be the
unknown data to be classified. Lastly, we call input to the information that enters the classifier, which
will belong to the elements of the test set.

4.1. Actual data

The actual range profiles utilized throughout this text come from a civil measurement campaign that
took place in 1995 called ORFEO. This campaign was held in The Hague, The Netherlands at TNO-FEL
using the FELSTAR radar (a stepped frequency S-Band1 radar) and the collected data were distributed
in 2006 to the members of the NATO group RTO-SET-112 “Advanced Analysis and Recognition of Radar
Signatures for Non Cooperative Air Target Identification”.

In this section we will summarize the relevant information details on the FELSTAR radar and the
extraction of range profiles from these data, but more information can be found in its technical report
[99].

The ORFEO campaign was limited to civil targets of opportunity and provided measurements from
17 different types of aircraft. Measuring targets of opportunity implies that the radar illuminates any
aircraft within its range, that is, non-cooperatively. Thus, estimates of the target aspect angles cannot

1S-Band: 2 − 4 GHz
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be obtained from on-board equipment but have to be derived from tracking data. In the case of ORFEO,
during acquisition, information from a secondary radar was available providing the target type and an
estimate of its flightplan (the aircraft aspect). The error on the estimated aspect angle of the aircraft
did not exceed 5 degrees in both azimuth and elevation. Rapid changes in elevation, or if aircraft were
making a long turn in the trajectory, would affect the profiles causing speckle and RRM, nevertheless, in
the measurement campaign, only targets under conditions of no long turns nor approaching or leaving
an airport runway were measured.

To minimize distortions due to radial motion, a velocity-tolerant stepped frequency waveform was used
to measure the range profiles. In the velocity-tolerant waveform the pulse repetition interval decreases
smoothly from pulse to pulse instead of being constant. The idea is that the times at which the pulses
are transmitted are chosen such that the resulting range profiles are focused irrespective of the velocity.
With this waveform not only velocity and acceleration compensation are needless2, but also no JEM lines
are observed. The specification of the main parameters of the waveform can be seen in Table 4.1.

Table 4.1: ORFEO waveform parameters

Polarization Vertical
Carrier frequency f0 = 3.0738 GHz
Bandwidth β = 452.2 MHz
Number of pulses n = 324
Frequency step ∆f = 1.4 MHz
Unambiguous range Ru = 107.14 m
Nominal range resolution ∆r = 0.33 m
Minimum delay between pulses tmin = 420 µs

These parameters ensured, firstly, that targets could be measured up to a maximum range of 60 km
and secondly, that any civil aircraft3 could be contained in the unambiguous range window, Ru.

Among the 17 different types of civil aircraft that were measured in the ORFEO campaign, 7 have
been selected to carry out the experimental part of this thesis. These are: Boeing 747-400, Boeing 767-
300, Airbus A310, McDonnel Douglas MD-88, Boeing B737-500, Fokker 100 and Fokker 28. Each of them
have been assigned a 4 digit label, which are respectively: B747, B767, A310, MD88, B737, F100 and
F028. These 7 types of aircraft were chosen according to the total number of profiles that were collected
along with the diversity in trajectories the aircraft described.

As noted, during the measurements a secondary radar provided the aircraft type, however, in the
selected aircraft measurements there were two ambiguities that should be kept in mind:

- The system assigned the label B737 to both the Boeing 737 from the 300 and the 500 series. The
two are identical apart from the length of the fuselage that differ in a couple of meters4.

- The code MD88 was used to represent all aircraft from the McDonnell Douglas MD-80 series which
includes the series MD-81/-82/-83/-87 and MD-88. Externally these are all identical except for the
MD-87 which has a circa 5 meters shorter fuselage.

2The waveform is fairly insensitive to acceleration. The measured aircraft airliners can achieve maximum accelerations
that can be tolerated by this waveform, otherwise the acceleration must be compensated

3The biggest expected airliner was a Boeing 747-400 with a length around 70 m
4The length of B737-300 is 33.4 m, while for the B737-500 is 31.1 m
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Note that these two uncertainties are negligible when the aircraft is looked upon from broadside5 but
will cause additionally errors in our identification system otherwise.

The selected aircraft have the dimensions described in Table 4.2, where it is also shown the label
assigned to each type of aircraft along this text. Note that the height is calculated considering the
landing gear as stowed. As seen, the largest target expected is a B747-400 with an approximate length
of 70 m, while the smallest will be a Fokker 28 with a length of nearly 30 m.

Table 4.2: Dimensions of selected aircraft

Aircraft Length (m) Wingspan (m) Height (m) Label
Boeing 747-400 70.66 64.44 16.79 B747
Boeing 767-300 54.22 47.52 14.77 B767
Airbus A310 46.66 43.90 12.74 A310
McDonnel Douglas MD-88 45.10 32.80 7.43 MD88
Fokker 100 35.53 28.08 6.58 F100
Boeing B737-500 31.10 28.90 9.73 B737
Fokker 28 29.61 25.07 6.62 F028

The trajectories described by each aircraft, that is, the aspect angles of each measurement, are depicted
in Figure 4.1. The selected trajectories present a variety of aspect angles, they include some nose-on, tail-
on and broadside aspect angles, which are representative of the different attitudes of an aircraft. As section
3.3 in Chapter 3 already introduced, nose-on aspect angles correspond to an azimuth of approximately
α = 0◦, and an elevation of approximately θ = 90◦. As seen, all the trajectories have an elevation
75◦ < θ < 110◦ while the azimuth cover a broader range. Some trajectories cover a wider azimuth
range than others, due to this difference, as it will be seen in the following chapters, the trajectories
will be split according to their azimuth coverage. Another important thing to be accounted for, is the
number of trajectories for each aircraft. As seen in Figure 4.1a only 3 trajectories for aircraft A310 are
available while for aircraft B767 for example, 6 different trajectories are considered. This implies that less
profiles will be available for A310 and less input samples than other aircraft will be considered. Another
noticeable characteristic of these trajectories is that some of them experience a turn in elevation or in
azimuth. As said, the trajectories will be split and these abrupt changes will be avoided, that is, in the
splitting process, such a change in azimuth of elevation will not be permitted and a part of a trajectory
may be discarded.

4.1.1. Preprocessing of the actual data

As Chapter 3 introduced, the range profiles should be preprocessed in order to prepare them for the
feature extraction and classification stages. These preprocessing methods included: windowing, zero-
padding and motion compensation. As said, the nature of our data will determine the preprocessing
techniques used.

The ORFEO campaign provided the in-phase (I) and quadrature (Q) components of a target signature
in the frequency domain. Each measurement of the campaign comprises a frame ofM profiles sequentially
collected in time, with M being different for each measurement since it depends on the time the target
was illuminated by the radar. As the number of pulses used by the step frequency waveform was N = 324,

5θ = 90◦, α = 90◦
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Figure 4.1: Aspect angles of selected aircraft
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each resulting HRRP will be composed of 324 range bins. Accordingly, each measurement will provide
M profiles of N bins (matrices of dimensions N ×M).

The preprocessing included in the extraction of the actual range profiles used along this text is provided
in the flowchart of Figure 4.2.

Raw Data (I/Q)

Hamming Window

IFFT

Missaligned HRRPs

Motion Compensation

Normalization

HRRPs

P
re
p
ro
ce
ssin

g

Figure 4.2: Flowchart of the preprocessing steps applied to the actual data

As seen, a Hamming window is first applied to the raw data in order to reduce the effects of the
sidelobes of the stepped frequency waveform, as it was seen in the previous chapter. With this, the range
resolution gets increased by a factor of 1.3, therefore, instead of a resolution of 0.33 m as Table 4.1 states,
the resolution has increased to 0.43 m approximately.

After the windowing, although some authors recommend it, no zero-padding has been applied this time
since it reduces the energy of the extracted range profiles and because the datasets used for recognition,
as will be seen in the next section, have the same number of resolution cells. Therefore, the following
step is the application of an IFFT of N samples; with this, the M range profiles of a measurement are
extracted. However, these first extracted HRRPs are affected by aircraft motion and hence, this should be
compensated. As previously stated, this motion can cause, on the one hand TRM, which mainly implies
a shift in the profiles, and on the other hand, RRM and speckle, which are more difficult to distinguish
and compensate.

To alleviate the effect of TRM, translational motion compensation is applied to the profiles via profile
alignment. The algorithm used for alignment is based on the work carried out in [93], which relies on
the method of envelope correlation initially described by Chen and Andrews [34]. This latter method
calculates the correlation between two consecutive HRRP and estimates the shift between them. The
envelope correlation procedure is robust against target oscillation and its implementation is fast and easy.
The main problem lies in the fact that if one pair of profiles is not well aligned, the error propagates along
the rest of the profiles in the measurement. Hence, here, a little group of profiles are taken as reference
for avoiding the error propagation.

To easily understand it, the implemented alignment procedure is depicted in schematic form in Figure
4.3, and in Figure 4.4 with actual examples of a matrix of HRRPs. It follows the subsequent steps:
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1. Initially (Figure 4.3a), the matrix of N ×M profiles is missaligned, with N being the total number
of range bins and M the total number of HRRPs.

2. A reference group is established with the first 6 profiles of a measurement. These 6 profiles are
aligned pairwise one respect to the other. This alignment is made by applying circular correlation
between two profiles, keeping one at a fixed position and shifting the other cyclically until the
maximum correlation is found.

3. Once the 6 profiles of the reference group are aligned (Figure 4.3b), the next profile of the mea-
surement is aligned with respect to them. In order to do that, the reference group is averaged to
form a “grouped reference profile”. This “reference profile” is now circularly correlated with the
next profile and as in the former step, the shift between them is calculated by finding the position
of maximum correlation.

4. The new aligned profile becomes part of the reference group, while the first profile of the reference
group is discarded from it (Figure 4.3c).

5. Steps 3 and 4 are repeated until all the profiles in the matrix are aligned.

6. A fine alignment is completed next by aligning the profiles to a dominant scatterer (Figure 4.3d).
These last two steps (step 6 and step 7) are optional, although it can improve the initial alignment
carried out in the previous steps. One scatterer in a profile with maximum energy which is repeated
along the rest of the aligned profiles is selected, this will be the dominant one. In the next profile,
in a range of a few cells around the dominant scatterer, the scatterer with the maximum energy is
found. The profile is shifted so the two dominant scatterers are aligned.

7. Now the dominant scatterer is the one of the new aligned profile and step 6 is repeated until all the
profiles are finely aligned (Figure 4.3e).



4.1 Actual data 47

ra
n

g
e

b
in

s

Scatterer 1

Scatterer 2

M profiles

N
 r

a
n

g
e

(a) Initial HRRP matrix (N ×M missaligned
profiles)

Aligned reference group

Reference profile

(b) Aligned reference group. New profile is aligned
with respect to the reference profile.

Aligned reference group

Reference profile

(c) New reference group: the new aligned HRRP is included while the first HRRP is discarded from
it. Next profile is aligned with respect to the reference profile. Repeat this until all the matrix is

aligned.

M pre-aligned profiles

Dominant scatterer

(d) Select a dominant scatterer and proceed with
a fine alignment with respect to it.

M aligned profiles

(e) The M profiles of the HRRP measurement are
finally aligned.

Figure 4.3: Squematic of the process of profile alignment
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(c) New reference group: the new aligned HRRP is included while the first HRRP is discarded from
it. Next profile is aligned with respect to the reference profile. Repeat this until all the matrix is
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(e) The M profiles of the HRRP measurement are
finally aligned.

Figure 4.4: Process of profile alignment. Actual matrix of range profiles of dimensions 324× 20
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In the case of RRM, small sectors will be defined where the variation in azimuth and elevation change
smoothly. In the worst case, which would be that of the largest aircraft (a Boeing B747-400) with a
length of 70.66 m and a height of 16.78 m, according to equations 3.10 and 3.11, the minimum aspect
angle changes associated with RRM are ∆αRRM < 0.35◦ and ∆θRRM < 1.46◦(remember the increase in
the resolution due to the Hamming window). In order to guarantee that from one range profile to the
next one there is no RRM their aspect angle difference should satisfy these constraints. Fortunately, in
the measurements selected for the experiments this is satisfied.

In the case of speckle, it will be implicitly compensated in the classification process; as will be seen in
the next Chapter, SVD will be used to extract the main features. The first eigenvector is equivalent to
the average range profile which attenuates the speckle effect. Then, by using SVD the effect of speckle
gets reduced.

Finally, the amplitude-scale sensitivity is compensated with a normalization to unit energy of each
HRRP by applying a L2-norm. Then, if x represents a range profile of n range bins (x ∈ <n), its
normalized version, x, will be given by equation 4.1. With normalization the classification should be
independent on the magnitudes of the HRRPs.

x = x

‖x‖2
= x√∑N

i=1 x
2
i

(4.1)

4.2. Simulated data

The training samples, that is, the known potential targets that will populate the database, are synthet-
ically obtained with a computer software. This type of software is normally referred to as RCS-prediction
codes. For decades, and still nowadays, RCS-prediction techniques have been under development for
predicting the amount of energy a target is capable of reflecting under a certain aspect angle.

When the dimensions of the objects are much larger than the wavelength, high frequency techniques,
as Physical Optics (PO), Physical Theory of Diffraction (PTD), Shooting and Bouncing Ray (SBR),
Geometrical Theory of Diffraction (GTD), or Uniform Theory of Diffraction (UTD), can be used instead
of using rigorous methods, as Finite Element Method (FEM), Finite Difference Time Domain (FDTD) or
Method of Moments (MoM). The high frequency methods apply simplifications of the Maxwell equations
to calculate the RCS assuming that the target is electrically large, while the rigorous, or numerical
methods perform a direct discretization of the Maxwell equations in their integral of differential form.
Thus, the computational complexity and time consumption of these latter methods are much higher than
for the high frequency techniques. In high resolution radar the target dimensions are clearly much larger
than the wavelength and so, high frequency codes are adequate to predict HRRPs.

Different high frequency codes exist for the HRRP prediction, many of these codes have been developed
internally for experiments, like RAPPORT [95], while others like XPATCH [100] or FASCRO [101] have
been commercially distributed.

The totality of the synthetic range profiles that form the training samples of this study are generated by
FASCRO, a RCS-prediction code that was first developed by Universidad de Alcalá (UAH) and optimized
by INTA. FASCRO predicts the monostatic RCS of complex targets, which are modeled as Non-Uniform
Rational B-Splines (NURBS) surfaces, based on PO and PTD [102, 103]. In the RCS computation,
FASCRO can use the following scattering mechanisms: simple reflection, diffraction in straight edges,
double and triple mechanism between planar patches and patches-edges, creeping waves and cavities.
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However, it does not incorporate the diffraction mechanisms from curved edges or second order effects in
curved patches.

In order to validate the code, several measurements in anechoic chamber were performed over cali-
brated small targets. The results showed a general good coherence between measurements and predictions,
although in some cases some insubstantial discrepancies were found since, as said, not all electromagnetic
effects were taken into account [104–106].

The CAD models of the 7 aforementioned aircraft have been developed at INTA. These models are
defined as NURBS and can be seen in Figure 4.5. The asymptotic nature of FASCROmakes the simulation
more precise as the working frequency gets higher. For this reason, FASCRO is not able to interpret
either very small surfaces or resonant ones, implying that very high fidelity CAD models may provide
wrong results. Therefore, the cavities, antennas and other little elements that protrude from the fuselage
are not included in the CAD models; hence, it can be said that the used models are rough replicas of real
aircraft. FASCRO allows the assignment of different materials to different surfaces, although it always
consider them as coatings with a layer of Perfect Electric Conductor (PEC) underneath; in this case, the
simulations have been done considering every surface as being metallic, that is, every aircraft have been
considered as PEC.

B747

B767

A310

F100

F028

5m

10m

B737

MD88

Figure 4.5: CAD models of the simulated aircraft

The synthetic profiles that comprise the training set have been predicted by FASCRO using the
information of the estimated aspect angles given in the test set and the same waveform parameters that
were used for the acquisition of the actual profiles (Table 4.1).

Although the synthetic data (and also the CAD models) have an intrinsically lower complexity than
the measurements on real aircraft, simulated range profiles are an efficient and cheap method for obtaining
large amounts of profiles describing any desired trajectory; moreover, it is clear that it is the best option
when no real data are available.

4.2.1. Preprocessing of the synthetic data

In the case of predicted profiles, they do not undergo the same phenomena as a real measurement;
remember that FASCRO, as it uses high frequency techniques, does not take into account all electromag-
netic effects when predicting RCS, and also, although in the simulations its aspect angle changes6, the
aircraft is kept static from one measurement to the next and thus, no translational motion compensation
is needed.

The RCS is transformed into the in-phase (I) and quadrature (Q) components of the energy reflected by
the target. As the simulations have been performed with the same parameters as the actual measurements,

6The rotation axis is located in the aircraft’s geometric centre
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likewise, a Hamming window will be applied before the IFFT to reduce the sidelobes of the stepped
frequency waveform. After the IFFT, matrices of predicted profiles of dimensions N × M for each
synthetic simulation are obtained. Similarly to the actual profiles no zero-padding has been applied. As
noted, in this case the TRM is not present in the simulated profiles, thus the alignment of profiles will
not be needed. Regarding RRM and speckle, as the trajectories described by the actual measurements
are the same as the simulations, the same properties apply.

Predicted profiles are not recorded by a real radar, hence the amplitude-scale sensitivity due to
the radar system is not present. Nevertheless, since the actual profiles are normalized to unit energy by
applying L2-norm, the same criteria is applied to the synthetic profiles in order to make them comparable.

In conclusion, the synthetic profiles preprocessing steps are simpler since they are just ideal simula-
tions. These preprocessing steps include Hamming windowing, IFFT and amplitude scaling processes,
while the motion compensation, which is a critical step for the actual profiles, is not necessary.

4.3. Differences between datasets

As noted, profiles that will form the test set and the training set are different in nature; the training
set has been deployed using simulations of aircraft models with a RCS-prediction code, while the test set
comprises a compilation of actual range profiles that were collected in a measurement campaign. This is
the main difference that will produce discrepancies between simulations and actual measurements.

In this regard, Figure 4.6 shows dissimilarities between the measured profiles at a certain aspect angle
and the synthetic ones obtained with FASCRO for the same aircraft with the same orientation7.

Having a look at Figure 4.6, one can note, as expected, that the synthetic signatures may be too ideal,
mainly due to the following:

CAD modeling ambiguities

Synthetic profiles have been predicted in an ideal scenario, with no noise, no clutter and no actual
motion. The CAD models have been developed considering every aircraft as PEC and without little
protruding elements, that is, aircraft models, though close, are not exact replicas of real aircraft. Real
aircraft also have non-metallic parts, like the belly fairing, the antennas’ radomes or the windows, which
are made of plastic material. Additionally, the engine cavities of these models have been covered by flat
plates, thus, when illuminating the aircraft from nose-on aspects, high reflection peaks are expected in
the position of the engines.

CAD modeling defined as PEC is only a first approximation to the actual scattering mechanisms and
is therefore, likely to produce inaccuracies in the HRRP predictions. Having this in mind, and after
analyzing Figure 4.6, one can note how idealist these signatures are. Take for example Figure 4.6e which
depicts a F100 illuminated at an aspect which is not near nose-on or broadside; it can be easily seen
that in the measured profile a dominant scatterer exist which also exist in the simulated HRRP, however
other smaller peaks appear in the measured profile that are not present in the simulated one.

Unmodeled reflective processes

Additionally, since it uses high frequency techniques, several scattering processes that occur in reality
are not accounted for in FASCRO. A full wave EM software would be needed to properly run all these

7Aircraft B737 is not compared because that aircraft will only be used in the training set, hence no actual measurement
of this aircraft will be present in the test set
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effects with the associated increase in time and computer memory requirements.

The noise is another effect that is not considered in the simulations and although it is not a reflective
process per se, it can be included into this section. Actually, actual measurements have thermal and
processing noise, while the synthetic ones don’t. Remember that the collected radar signals come from
the real world and they must pass through the reception chain, and although its noise figure may be very
low, some of it could be leaked to the final profiles.

All these unmodeled processes can be appreciated in all the subfigures of Figure 4.6 since barely no
noise-power is present in the predicted profiles and more peaks are present in the actual profiles that do
not exist in the simulated ones.

Amplitude difference

Although in both cases amplitude normalization is applied such that the total energy equals unity,
the amplitudes of the profiles do not match very well. One of the probable causes is speckle, remember
that a difference in hundredths of a degree may change the shape of the HRRP, hence if the simulated
profiles are not predicted in the exact same aspect angles this effect may arise. The inaccuracies in the
CAD models and in the prediction codes also affect the amplitude of the profiles; as more scattering
processes occur in reality, more peaks are present in the actual HRRP and this influences the amplitudes
when normalizing. Additionally, as no noise is present in the synthetic profiles its normalization pushes
the signal components to higher values.

Estimation of aspects

Another very important source of error in the profiles resemblance is the target aspect estimate. As
mentioned before, the synthetic profiles are simulated under the same aspect angles than the measured
ones, however, the aspect angles of the actual profiles are merely predictions since the aircraft were
measured non-cooperatively and their exact orientation was unknown. These estimated aspect angles
had an error of 5 degrees at the most in both azimuth and elevation. So, even though the simulations
have been run under the same aspect angles, this inherent error may cause additional difference between
actual and simulated profiles.

Broadside vs. nose-on aspect angles

At broadside aspect angles (θ = 90◦, α = 90◦), unlike in nose-on and tail-on (θ = 90◦, α = 0/±180◦ )
orientations, there are no reflections from cavities nor turbines; it is the aircraft fuselage which produces a
very large specular return. Also, at these aspect angles, not many range cells contain multiple scatterers
that give rise to inaccurate amplitudes. Figure 4.6b is a clear example of this fact. In that figure the
normalized energy of a measured and simulated B747 at a near broadside aspect angle is depicted, and
both the synthetic and the actual HRRP have a very high predominant peak with almost the same
amplitude. On the other hand, at nose-on and tail-on aspects the radar “sees” more scattering centers
and also the cavities of the engines; resonant phenomena take place around them, causing additional
peaks in the HRRP. Hence, more peaks will be present in a representation of a range profile near nose-on
and tail-on, as in Figure 4.6a or 4.6c. However, in the simulated profiles, the covered cavities cause high
peak values and less scattering centers.
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Figure 4.6: Differences between actual and synthetic profiles
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4.4. Discussion

In the previous sections a description of the different datasets available in this thesis has been provided.
As test set, that is, the profiles that are to be classified, actual measurements of civil in-flight targets will
be taken. Due to the nature of these measurements, some preprocessing is needed before the classification
process. On the other hand, there are the simulated profiles, they will form the database of potential
targets, the training set, and are extracted from a RCS-prediction code. Section 4.3 has described the
differences between these datasets and has concluded that synthetic and actual profiles are very different
in a number of ways, mainly due to the fact that predictions are just ideal approximations of actual
profiles.

At this point, one can wonder, why do we want to use predicted HRRP for classification if there exist
such an obvious difference?

Section 2.3 gave a discussion about this. As said, in a real scenario, the measured range profiles
may have different SNR than those in the database, and thus, high similarity between them is not
expected. Additionally, it would be impossible to fill the database with measurements of range profiles
as the ones to be classified, mainly due to the fact that hostile nations would not permit their aircraft
forces to participate in measurement campaigns, and also because it is very difficult to characterize the
flying aircraft in all possible aspect angles. With a synthetic database, there is no need to perform new
measurements each time a new type of aircraft has to be included in the database. With the knowledge
of the CAD models, any aircraft can be simulated under any desired aspect angle. Finally, if we use a
different radar or apply other waveform parameters, only a resimulation is needed instead of planning a
new measurement campaign.

Taking all this into account, our final purpose will be the identification of actual profiles by means of
a database of synthetic ones, despite their discrepancies. To this end, the next chapter will introduce the
algorithms developed to achieve this goal.



Chapter 5

Algorithms for range profiles
classification

In the preceding chapters the context of this thesis has been introduced. In Chapter 2 it was noted
that a recognition system involves the tasks of : 1) data acquisition and preprocessing, 2) feature extrac-
tion and 3) classification. Following these premises, Chapter 3 gave an overview of the main properties of
range profiles and Chapter 4 described the available data, their acquisition and the suitable preprocess-
ing. Therefore, to complete the recognition system description, this chapter will deal with the feature
extraction and classification stage. Chapter 2 gave an overview of different feature extraction methods
and classifiers utilized along the years in the literature. Although there exist no definitive methods that
can resolve the problem in the best possible way, this chapter will explain the feature extraction technique
utilized for the experiments and the classifiers conceived according to it.

5.1. Feature extraction

The objective of the feature extraction techniques is to reduce the dimensionality of the problem by
keeping the valuable information while discarding the redundant one. From the wide range of feature
extraction methods described in Chapter 2, Principal Component Analysis (PCA) is the one selected in
this thesis. As said in the previous section 2.2.3 of the aforementioned chapter, this technique is quite
appropriate for the desired classification algorithms, additionally, it is a well known efficient technique
and easy to implement. The main advantage of this feature extraction method over others is that it
provides a decomposition into subspace bases that can be further used to define target classes and this
will be used in the developed classifiers, which are based on subspace methods.

PCA is useful for eliminating dimensions that do not provide valuable information of the data. In
general terms, PCA uses a vector space transform to reduce the dimensionality of large data sets. Using
mathematical projection, the original data set, which may have a number of possibly correlated variables,
can often be interpreted in just a smaller number of variables called principal components. Therefore,
selecting the principal components results in a reduction of dimensionality since negligible information is
being discarded.

PCA can be achieved via eigenvalue decomposition or via singular value decomposition. The fun-
damental difference between Singular Value Decomposition (SVD) and eigenvalue decomposition is that
SVD uses two different bases to decompose a matrix while eigen decomposition uses just one, the eigen-
vectors. Singular values and eigenvalues are highly related, the nonzero singular values of a matrix X
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are the positive square roots of the nonzero eigenvalues of XTX or XXT . The bases obtained by SVD
are orthonormal unlike the eigenvectors, that might not be, and finally, another important difference
is that not all matrices have an eigen decomposition, even the square ones, however, all matrices, even
rectangular, have a singular value decomposition [107]. For these reasons in the algorithms developed in
the next sections, SVD is used to achieve matrix decomposition.

5.1.1. Singular Value Decomposition

SVD is a robust technique for the decomposition of any matrix into orthogonal basis spaces [107–109].
It is applicable to both real and complex matrices, although here it is assumed that the data is real. With
SVD it is possible to find the best approximation of the original data points using fewer dimensions.

Let X ∈ <N×M , there exist orthogonal matrices

U = [u1, ..., uN ] ∈ <N×N (5.1)

V = [v1, ..., vM ] ∈ <M×M (5.2)

Σ = diag(σ1, ..., σp) ∈ <N×M ; p = min {N,M} (5.3)

such that

X = U · Σ · V T (5.4)

where σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 are the singular values of X, diag stands for diagonal matrix and vectors ui
and vj are the ith left and jth right singular vectors ofX respectively. Note that the diagonal matrix Σ has
the same shape as X, while U and V are always square orthogonal matrices1, that is UT ·U = U ·UT = I

and V T · V = V · V T = I. Every matrix X ∈ <N×M has a singular value decomposition2, furthermore,
the singular values σi are uniquely determined and it can be proven that σ1 = ‖X‖2 [108].

In the matter at hand, where X ∈ <N×M is a matrix of M range profiles of N range bins, the left
singular vectors in U span the orthogonal basis space in the range domain, while the right singular vectors
in V span the basis space in the angle domain. Larger singular values, σi, imply larger contribution of
the corresponding singular vector in forming the target signal. The Eckhart and Young theorem [108]
guarantees that the top singular vectors with the highest singular values provide the best approximation
of the data. Thus, the N -dimensional vector space (when referring to matrix U, or M -dimensional,
referring to V ) can be divided into two subspaces, a dominant subspace and a subdominant subspace.

The singular vectors included in the dominant subspace are defined as the bases that span the signal
subspace, the subspace that contains valuable information about the data, while the rest of the singular
vectors are the bases that span the noise subspace, the negligible data.

The division into signal and noise subspaces is done according to the obtained singular values, σi. An
energy threshold, η, is set (0 < η < 1) as in equation 5.5, such that the signal subspace is defined as the K
most significant singular vectors, that is, K is the smallest value that fulfills equation 5.5. This threshold
is frequently set such that the signal subspace contains around the 90% of the energy [9, 110], however,
this value is usually set experimentally depending on the datasets; the remaining singular vectors that
are not included in the dominant subspace will be discarded as they span an unwanted subspace.

1Unitary matrices when working with complex matrices
2When computing PCA with eigenvalue decomposition the covariance matrix (X ·XT ) is decomposed into its eigenvectors

and eigenvalues such that X ·XT = U · Λ · UT with Λ containing the eigenvalues
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Figure 5.1: Singular value decomposition

∑K
i=1 σi∑p
i=1 σi

≥ η (5.5)

As an example, Figure 5.1a shows a matrix of range profiles of dimensions N = 324,M = 361
corresponding to a B747 measured in neither broadside nor nose/tail-on aspect angles. Applying SVD
to that matrix, matrices U, V and Σ are obtained and showed in the figures 5.1b to 5.1d. As expected,
the dimensions of the obtained matrices are U ∈ <324×324, V ∈ <361×361 and Σ ∈ <324×361. Note that
only the first 150 singular values of Σ has been depicted for simplicity, but the decreasing tendency is
clearly noticed, around the 100-th singular value, they have a negligible weight and that’s the reason
why a threshold to eliminate these singular values and their associated vectors is needed. Additionally,
Figure 5.1b shows that the left singular vectors seem to follow a particular “shape” until a point where
they look as if they were just noise, which coincidentally happens when the associated singular value has
an almost zero weight. On the other hand, at first glance, the right singular vectors depicted in 5.1c do
not follow any tendency and hence, they will not be used in the identification algorithms.

Additionally, the application of SVD helps to overcome the target-aspect sensitivity (RRM and
speckle). The average profile of a real HRRP frame can reduce the target-aspect sensitivity of real
profiles [9] and in fact, the average profile of a frame and the first left singular vector of the matrix of the
same frame are similar. Accordingly, the application of SVD will help reduce the target-aspect sensitivity.
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5.2. Classifiers Definitions

The selected features will be, therefore, the singular vectors that form the bases that span the signal
subspace along with their corresponding weights, that is, their singular values. Once the features have
been selected, a classifier should be designed in accordance to determine a decision boundary so the
extracted features can be assigned to their true class. Three algorithms have been defined and tested
along this thesis. They are presented in the following subsections such that each one presents an upgrade
with respect to the previous.

Usually, the selection of the feature extraction method goes hand in hand with the classifier; therefore
since PCA decompose the data into subspaces, the formulated classifiers take advantage of this property
and they are defined as subspace methods with an optimization of a distance metric.

5.2.1. Classical Subspace Methods

The Conventional Subspace Method (CSM) [111] is a statistical pattern recognition method where
each class is represented by a subspace and the belonging to a class, namely the similarity, is determined
by the principal angle between a vector g, representing a test sample, and the subspace. Based on
this Conventional Subspace Method, two classifiers are defined in the next section with the additional
properties of accumulation and weighting.

The Mutual Subspace Method (MSM) presented in [71], on the contrary, defines the similarity by the
angle between two subspaces where the bases of the subspaces are calculated using PCA via eigenvalue
decomposition. The relationship between two subspaces, D and S, is then defined by their principal
angles, so called canonical angles, which are an extension of the angle between two vectors.

A graphical explanation of both methods can be found in Figure 5.2 where Figure 5.2a shows how in
CSM only one principal angle (Θ1) is returned since the test sample is represented by one vector; and
Figure 5.2b shows that MSM returns k canonical angles corresponding to the k vectors that compose the
smallest subspace.

In the next lines, the focus will be on MSM and the calculation of the principal angles between
subspaces. The calculation of the principal angle between vector and subspace (as in CSM) implies the
same procedure when the dimension of one of the subspaces is set to one.

In MSM, the set of profiles is modeled by the subspace spanned by the principal basis vectors: in this
case, if XD is a matrix of profiles belonging to a subspace D, by applying eigen-decomposition to XD ·XT

D

and exploiting the eigenvectors corresponding to the Kd largest eigenvalues, the bases of subspace D are
obtained as in equation 5.6:

XD ·XT
D = VD · ΛD · V TD =⇒ V̂D ∈ <N×Kd (5.6)

where VD ∈ <N×N is a matrix containing the eigenvectors, ΛD = diag(λ) ∈ <N×N is a diagonal
matrix containing the eigenvalues and V̂D ∈ <N×Kd is the selected basis of the subspace D.

As stated, the similarity measure between two subspaces (D and S) is defined as their canonical angles
(θi) [112] and these are obtained recursively as:

cos θi = max
u∈D

max
v∈S

uT · v = uTi · vi ; i = 1, . . . , k (5.7)

such that:
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Figure 5.2: Basic concepts of subspace methods

‖u‖2 = ‖v‖2 = 1
uT · ui = 0 i = 1, . . . , k − 1
vT · vi = 0 i = 1, . . . , k − 1
k = min[Kd,Ks]

where [u1, . . . , uk] and [v1, . . . , vk] are called the canonical or principal vectors between subspaces D and
S, and Kd and Ks are the number of eigenvectors taken as bases of the subspaces D and S respectively.
Note that the canonical vectors need not be uniquely defined, but the canonical angles always are. These
canonical angles satisfy 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk ≤ π/2.

For computing the principal angles and vectors, SVD will be the basic tool utilized [112, 113]. If the
columns of V̂D ∈ <N×Kd and V̂S ∈ <N×Ks define orthonormal bases for subspaces D and S respectively,
and calling M = V̂D · V̂S , the singular values and singular vectors of matrix M can be characterized by:

σi = max
‖y‖2=‖z‖2=1

(yT ·M · z) = yTi ·M · zi (5.8)

subject to:

yT · yi = 0 i = 1, . . . , k − 1
zT · zi = 0 i = 1, . . . , k − 1
k = min[Kd,Ks]

Denoting the range of a generic matrix A by R(A), such that:

R(A) = {u | Ax = u} (5.9)

and defining:

u = V̂Dy ∈ R(V̂D), v = V̂Sz ∈ R(V̂S) (5.10)

then, it follows that equation 5.8 is equivalent to equation 5.7, since:
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σi = yT ·M · z = yT · V̂ TD V̂S · z = uT · v (5.11)

and therefore, σi are the cosines of the canonical angles θi. That is:

cos θk = max
u∈D

max
v∈S

uT · v = max
y∈<Kd

max
z∈<Ks

yT · (V̂ TD · V̂S) · z (5.12)

considering ‖u‖2 = ‖v‖2 = ‖y‖2 = ‖z‖2 = 1 and yT · yi = uT · ui = 0, zT · zi = vT · vi = 0 just like
equations 5.8 and 5.7.

Finally, assuming Ks < Kd and applying SVD to matrix V̂ TD · V̂S , then k = min[Kd,Ks] = Ks and:

V̂ TD · V̂S = U ·Θ · V T (5.13)

where
U = [u1, . . . , uKd ] = V̂D · Y
V = [v1, . . . , vKs ] = V̂S · Z

}
canonical vectors

Θ = diag(cos θi) = diag(σi) −→ canonical angles’ cosines ; i = 1, . . . ,Ks

The similarity measure, SDS , can be defined as the largest singular value σmax, as the mean of the
obtained singular values, as the squared sum of the canonical angles’ cosines, etc. Here, it is chosen as
the latter option, that is, SDS = tr(Θ2). The higher the similarity, SDS , the higher the coupling between
subspaces D and S as Figure 5.3 depicts. In the case that two subspaces coincide completely with each
other, all canonical angles are zero and so their similarity defined as the sum of the canonical angles’
cosines will be SDS = k, with k being the dimension of the smallest subspace (k = Ks); on the other
hand, when the two subspaces separate, the similarity will get smaller and finally, if the subspaces are
orthogonal, it will become zero.

Figure 5.3: Similarity concept between subspaces

Selecting the dimensions (Kd and Ks) of the subspaces is crucial in the classification performance.
These dimensions are set taking into account the eigenvalues in ΛD and ΛS respectively since they
reveal the information gathered by each eigenvector: the higher the eigenvalue, the higher the amount of
information of the target contained in its associated eigenvector.
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5.2.2. Novel subspace methods

In this section, the conceived new methodology based on the previous subspace methods is explained.
Three algorithms are developed, two based on the angle between vector and subspace and another based
on the mutual subspace method. The added functionalities are based on the accumulation of the obtained
angles and on the weighting of the subspace vectors in order to make classification in a fairly way.

5.2.2.1. Cumulative angle between subspaces

Let XD ∈ <N×M be a matrix of consecutively collected HRRPs that form the test set, and let
XS ∈ <N×M be a matrix of range profiles included in the training set, that is, in the database of potential
targets, with M being the total number of profiles and N the number of range bins. After applying SVD
to XD and XS , the respective matrices of singular values and singular vectors are obtained.

XD = UD · ΣD · V TD
XS = US · ΣS · V TS

(5.14)

Since HRRPs present the target reflectivity into the range domain, only the left singular vectors,
UD = [uD1 , . . . , uDN ] and US = [uS1 , . . . , uSN ], will be used in the identification process. As section 5.1.1
introduced, taking into account the singular values and setting an energy threshold η as in equation 5.5,
the signal subspace of each dataset is defined as the K most significant ui singular vectors, while the
noise subspace is discarded.

In order to clarify the metrics, let us graphically introduce the simplified concept of subspace division
and angle between subspaces shown in the example of Figure 5.4.

e1

e2

e3

XY − plane

u2

α = π/3

β = π/6

u1

1

Figure 5.4: Angle between subspaces

Let vectors e1, e2 and e3 in Figure 5.4 be the left singular vectors, as defined in equation 5.1, obtained
after applying SVD to an input sample of the test set, XD ∈ <3×3, that is UD = [e1, e2, e3]. Imagine that
the threshold to select the signal subspace, η, is set to 0.95. Assuming that according to their associated
singular value the 95% of the energy is focused on e1 and e2 and following equation 5.5, then these are
defined as the Kd = 2 first left singular vectors that form the bases of the signal subspace, while e3 is
discarded; hence, the signal subspace of this example corresponds to the XY plane.

Let C be the total number of aircraft classes. For an input test sample, there exist c = 1, . . . , C
different aircraft to which it will be compared. Then, the training set associated with each class is
defined as Xc

S . After the application of SVD to the training set Xc
S ∈ <3×3, the left singular vectors
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obtained for an aircraft class c are U cS = [u1, u2, u3]. For the same reason as before (the energy threshold)
vector u3 is discarded and, for simplicity it is not displayed in the figure.

The angle between these remaining singular vectors of the matrices U cS , and the projection onto the
test set signal subspace is obtained in order to know their level of dependency and to decide the class of
aircraft, c, to which the test sample belongs. In order to do so, the principal angle between each singular
vector and the test set signal subspace is found, as described in section 5.2.1.

In the figure, it can be seen that u1 is closer to the XY plane than u2, in this example the angle found
for u1 is β = π/6 and the angle found for u2 is α = π/3 ; note that the smaller the angle, the closer to
the subspace.

Denoting X̂D ∈ <N×Kd as the signal subspace of the test set containing its Kd first left singular
vectors and uci as the ith left singular vector of the training set corresponding to target c; function F cu,
given by equation (5.15), is defined as the accumulated angle between a singular vector uci in the training
set and the signal subspace of the test set, where ∠(X̂D, u

c
i ) is the principal angle between the test set

signal subspace and each singular vector of the training set [108,112].

F cu(k) =
k∑
i=1

∠(X̂D, u
c
i ) ; with k = 1, . . . ,Kd and c = 1, . . . , C (5.15)

The metric F cu shows the evolution of the angle formed by each synthetic singular vector and its
projection onto the signal subspace resulting in a monotonically increasing function. Figure 5.5 depicts
an example of the results originated by this function. In this example, the input sample is a matrix of
range profiles corresponding to a B747 and 7 classes of aircraft compose the training set. The threshold
taken for the selection of the signal subspace is in this example η = 0.95, yielding in 100 range profiles
forming the signal subspace for this case3. As said, since Fu is a cumulative function, it has a monotonic
increasing tendency clearly evident in the figure. The class of the recognized aircraft, Cr, will be that
with the lowest final value of F cu, that is F cu(Kd), as equation 5.16 denotes. However, in the case of the
example depicted in Figure 5.5 the recognition result will be erroneous since the identified aircraft Cr is
not the true class of the test sample.

Cr = arg min
c

(F cu(Kd)) (5.16)

5.2.2.2. Weighted cumulative angle between subspaces

In the case of function F cu, the projected angle of every singular vector in the training set contributes
equally to the final result, i.e., singular vectors are equally important, and probably that is one of the
reasons that contribute to the erroneous recognition result in the previous example of Figure 5.5.

Imagine now that our training set consists of C = 2 different aircraft, A and B, and let vectors u1, u2

and u3 in Figure 5.4 be the left singular vectors obtained for these aircraft after applying SVD to their
respective matrices of range profiles, such that:

aircraftA =
{

UAS = [uA1 , uA2 , uA3 ] = [u1, u2, u3]
ΣAS = diag(σA1 , σA2 , σA3 ) = diag(0.8, 0.15, 0.05)

3In the next chapter a complete study for the threshold selection will take place, the value of η = 0.95 is selected here
just as an example
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Figure 5.5: Fu results for the recognition of a B747

aircraftB =
{

UBS = [uB1 , uB2 , uB3 ] = [u2, u1, u3]
ΣBS = diag(σB1 , σB2 , σB3 ) = diag(0.85, 0.10, 0.05)

where the superscript represents the aircraft class c (c = A,B;C = 2) to which the singular vectors and
singular values are related. Taking Kd = 2 as before, with the application of function F cu there would be
confusion in the identification result since:

FAu (Kd) = FBu (Kd) = π/3 + π/6

However, the singular values have revealed that not all singular vectors in the training set have the
same importance since the energy is focused on the top ones. This means that the obtained canonical
angle between the singular vectors uci and the signal subspace X̂D should be weighted in a way that
the singular value, σci , associated with uci sets the importance of this angle in the final solution. For
instance, principal angles of π/2 mean that the singular vector is orthogonal to the subspace. Thus,
obtaining results of this order when uci is associated with a high singular value mean that the aircraft to
be recognized will not, for sure, belong to that class. On the contrary, if an angle of π/2 is obtained with
a vector with a very low singular value it will not contribute to a great extent to the final solution and
therefore, it will not be involved in the identification decision. According to this, function F cu is modified
in order to add some kind of weighting to the angles between subspaces found.

Function F cw given in equation 5.17 returns the accumulated weighted angle F cw between the signal
subspace of the test matrix and the singular vectors uci for each synthetic aircraft c in the training set.

F cw(k) = 1∑Kd
j=1 σ

c
j

k∑
i=1

σci · ∠(X̂D, u
c
i ) ; with k = 1, . . . ,Kd and c = 1, . . . , C (5.17)
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In equation 5.17, σci,j are the k-th first singular values associated to each synthetic aircraft in the
training set and, as in equation 5.15, ∠(X̂D, u

c
i ) is the principal angle between the test set signal subspace

and each singular vector of the training set. Finally, the algorithm decides the test sample belongs to the
target that minimizes the cost function 5.17, that is:

Cr = arg min
c

(F cw(Kd)) (5.18)

In the previous example, in contrast to F cu, the application of equation 5.17 would result in the
identification of aircraft A since:

FAw (Kd) = 1
0.95 · (0.8 ·

π
6 + 0.15 · π3 )

FBw (Kd) = 1
0.95 · (0.85 · π3 + 0.10 · π6 )

}
FBw (Kd) > FAw (Kd)

Figure 5.6 depicts an example of the identification curves obtained with function F cw for the same
B747 measurement as the previous Figure 5.5. As seen, the curves also have a monotonically increasing
tendency until they eventually reach a point of saturation; from that point on, the synthetic singular
vector uci , due to its corresponding singular value, does not add almost any new information to the
recognition process and the solution stabilizes. In this case, the recognition is successful, the aircraft
B747 is the one that minimizes equation 5.17.
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Figure 5.6: Fw results for the recognition of a B747

5.2.2.3. The generalized Mutual Subspace Method

The generalized Mutual Subspace Method (gMSM) is based on the MSM, which has been previously
presented in section 5.2.1 and widely used along the years in image recognition.

However, the main problem of MSM (and many subspace methods, like the previous ones) is the
selection of the appropriate dimension of the subspaces (Kd for algorithms Fu and Fw, and Kd and Ks
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for MSM). In order to palliate this, Kobayashi [114] introduces the concept of softweighting for image
identification and proposes a generalized Mutual Subspace Method. Contrary to his study in which gMSM
is applied to static 2D images for object classification, here this method will be used for identification of
flying aircraft from range profiles, which, to the author knowledge, the method is used in this thesis for
the first time with this purpose.

In MSM algorithm as well as in the previous methods, when setting the dimensionality of a subspace,
the eigenvalues take an important role: only the eigenvectors with the highest eigenvalues will be consid-
ered as basis and the rest will be discarded. The eigenvalues can be seen as if they had a binary weight
(1/0) that affects the eigenvectors. A weight of 1 means that the corresponding eigenvector is a basis of
the subspace and a weight of 0 means the opposite. That is, the subspace dimensionality is set based on
a binary decision. Nevertheless, in MSM, as happened in Fu, the eigenvalue per se does not take part in
the identification algorithm, meaning that all the eigenvectors that have been chosen as bases have the
same relevance in the subspace construction.

The concept of softweighting tries to avoid this binary decision, that is, the selection of the subspace
dimension is no longer needed. Softweighting gives importance to all the eigenvectors, in a way that all
the eigenvectors will take part in the subspace but they will be weighted by a transformed value of their
corresponding eigenvalues. This transformed value is called the softweight. According to equation 5.6, if
ΛD = diag(λ) are the eigenvalues of matrix XD ·XT

D in descending order, the design of the softweights is
done in consonance with these eigenvalues. Let Ω = diag(ω) ∈ <N×N be a diagonal matrix of softweights
such that:

ω = wm(λ) = min
[
λ

λm
, 1
]

(5.19)

where λm is the m-th eigenvalue in Λ. This softweighting evaluates the importance of each eigenvector as
a basis in the subspace by the variance relative to λm. The m first values of the diagonal matrix Ω will be
the unity and the rest will be proportionally decreasing with the m-th eigenvalue. Figure 5.7 illustrates
an example of the resulting softweights of a matrix of eigenvalues when m is set to 4 and to 1. As seen,
in the dashed line, the first 4 values are equal to unity while the rest slowly decrease proportionally to
the 4th eigenvalue. On the contrary, the dotted line shows the decreasing tendency of the softweights in
relation to the first eigenvalue.

By adding the softweights to (5.12), the importance of each eigenvector as a basis of the subspace is
set. Then, the gMSM is defined as:

cos θk = max
yTΩ−2

D
y=1;

max
zTΩ−2

S
z=1

yT · (V TD · VS) · z ⇐⇒ max
y′T ·y′=1;

max
z′T ·z′=1

y′T · (ΩD · V TD · VS · ΩS) · z′ (5.20)

where y = ΩD · y′, z = ΩS · z′ and VD and VS are the eigenvectors as in equation 5.6. Eventually,
the generalized canonical angles that define the similarity measure are computed by applying SVD to
ΩD · V TD · VS · ΩS , that is:

ΩD · V TD · VS · ΩS = U ′ ·Θ · V ′T =⇒ SDS = tr(Θ2) (5.21)

As in MSM, the similarity is defined as the sum of the canonical angles’ cosines, and finally, the
algorithm will identify the class of the aircraft as the one with the highest similarity, that is:
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Figure 5.7: Softweighting of eigenvalues

Cr = arg max
c

(ScDS) (5.22)

5.3. Conclusions

In this chapter, the different algorithms that will be utilized for classification of range profiles have
been deduced, Fu, Fw and gMSM. The three of them are based on the previous extraction and definition
of subspaces and the angle between them. For the subspace definition it has been noted that PCA
is a powerful tool which permits to extract the bases that span the signal subspace while reducing
dimensionality. As said in Chapter 2, PCA can be applied via eigendecomposition or SVD. Due to
the higher stability of results, SVD is mainly chosen in the three algorithms, although for gMSM both
eigendecomposition and SVD are applied.

After the definition of the first algorithm, Fu, which accumulates angle between subspaces, it has been
noted that the singular values have an important role in the definition of these subspaces and hence, they
must be included in the recognition process. The weighted cumulative angle between subspaces (Fw) is
therefore an evolution of Fu. This way, Fw introduces the singular values of the training set weighted
by their total sum, in order to try to improve the results. The main issue of these algorithms lie in
the selection of the dimensionality of the subspaces, which is usually defined experimentally. Therefore,
finally, an upgraded method is defined, the gMSM, that makes use of the eigenvalues of both the test
and training sets while no need to set the subspace dimensionality exists; in this last method, the
eigenvalues are weighted to construct a matrix of softweights that will be involved in the recognition
process. However, the definition of this matrix depends upon them-th eigenvalue, which must be selected,
therefore, although the need for the subspace dimensionality has been eliminated, a new parameter has
arisen, the softweighting parameter m.

In the following chapter, the three algorithms will be applied to the datasets introduced in Chapter 4.
As seen, although they are quite related, each algorithm has its properties and its parameters that should
be tuned to obtain good results. Therefore, a study on the optimum parameters for each one will be
presented and also their performance and their robustness will be evaluated.



Chapter 6

Experiments and Results

Previously, the preprocessing steps carried out for the improvement of actual range profiles, the
extraction of their main features and the algorithms developed for their classification have been explained.
In the present chapter, all this knowledge will be applied to different experiments defined in order to
validate the algorithms developed in this thesis.

Chapter 4 introduced the different datasets available for the experiments, these datasets were divided
into two groups, range profiles coming from the ORFEO measurement campaign, that is, the actual range
profiles, and range profiles that were predicted in the same trajectories as the actual profiles using a CAD
model and an RCS-prediction code, that is what we have called, the synthetic profiles.

One of the goals of this thesis is to develop algorithms able to determine with fidelity the aircraft
type of an actual flying target using only a database of synthetic range profiles. Then, as noted in the
previous chapters, the given datasets (actual and synthetic) will exhibit many discrepancies. In order
to accomplish this task three algorithms have been developed and explained in Chapter 5, hence, the
purpose of this chapter is to define a series of experiments to check the validity of the algorithms and
to select the best parameters for our study. However, before proceeding to the classification of actual
aircraft, it is recommended a first study on the identification of predicted profiles. Therefore, here, for a
complete study, incremental test cases will be defined: first, the ideal test case where synthetic profiles
are identified is analyzed; after that, the identification of synthetic profiles corrupted with unwanted
effects that may occur in an actual scenario is performed, and lastly, the results for the identification of
actual profiles are provided. The intention of this incremental study is the validation of the proposed
algorithms, this way, if recognition performance is not acceptable at some point before the recognition of
actual profiles, the algorithm can be discarded straightaway.

Once again, it should be remembered that for simplicity, the database of potential targets is called
here training set, while the test set comprises the samples to be identified.

6.1. Test Cases Definitions

In this section, as said, the definition of the different test cases and subcases proposed to validate the
algorithms are explained.
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6.1.1. Test Case I

Test Case I consists of 20 trajectories taken from the ORFEO measurement campaign, depicted in
Figure 6.1a. As seen, the selected trajectories present a variety of aspect angles, they include some
nose-on, tail-on and broadside aspect angles, which are representative of the different attitudes of an
aircraft.
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(b) Test Case II - Trajectories of the test set

Figure 6.1: Sets of aircraft trajectories

These trajectories have been divided into 48 frames, which comprise from 100 up to 300 range profiles
consecutively collected in time and amplitude normalized. The criteria for dividing the trajectories was
that the aircraft cannot have a change of more than 4◦ in elevation. These frames will compose the test
set and will be classified as a whole, and the training set, will be divided the same way.

The experiments carried out under Test Case I will have as test set the aircraft A310, B747, B767,
F100 and F028; the training set will consist of aircraft A310, B747, B767, F100, F028 and B737. Since 5
aircraft will be compared to a database of 6 aircraft, this means that there is one aircraft in the database
(the B737) that only adds confusion in the recognition problem. As seen in Chapter 4, the B737 has
similar length to F028 and F100 but the distribution of its engines is like the A310 or the B767, therefore
it can cause confusion in the recognition of these aircraft.

6.1.2. Test Case II

Test Case II increases the number of trajectories and aircraft to be identified. These can be seen in
Figure 6.1b. In this case 28 trajectories are considered and 6 aircraft (A310, B747, B767, F100, F028
and MD88) will be classified using a database of 7 aircraft (A310, B747, B767, F100, F028, MD88 and
B737).

In Test Case II the trajectories are divided into frames that cover a variation of 2.5◦ in azimuth at
the most. A total number of 235 frames are obtained in this case. With this segmentation, more test
samples are obtained so the evaluation of the algorithms gets more accurate. Even though the frames
will contain less profiles than the ones of Test Case I, they still represent the evolution of the profiles in
a moving target.
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6.1.3. Subcases Definitions

In order to provide an incremental study of the algorithms several subcases are defined for each Test
Case:

a. Synthetic profiles Vs. Synthetic profiles. The starting point for any classifier is to firstly validate
it with simulations, this way, if the classifier did not provide good results, it would be worthless
to continue with the process. Therefore, in this first subcase the test set will comprise exactly the
same synthetic profiles as the training set.

Figure 6.2 is given as an example of the matrices of normalized range profiles that comprise both
the test and training sets. In this example the test sample, a matrix of synthetic range profile from
a B767 is being classified utilizing a database of 3 training samples corresponding to aircraft A310,
B767 and F100. As expected, both sets comprise ideal data, the synthetic range profiles are very
clean signatures of aircraft and accordingly, since both the test and the training sets are of the
same high quality, the recognition results are expected to be very good, near to recognition rates
of 100%.
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Figure 6.2: Synthetic profiles vs. Synthetic profiles

b. Synthetic profiles + Additive White Gaussian Noise (AWGN) Vs. Synthetic profiles. The next
step will be to start degrading the synthetic profiles in the test set by adding noise. It is common
the addition of complex white gaussian noise, with its modulus being Rayleigh distributed and its
phase uniform distributed [115]. In order to fairly corrupt the predicted profiles given by FASCRO,
the gaussian noise is added to the raw data, in the frequency domain, as if the radar would have
collected the noisy signal. That is, as Figure 6.3 depicts, before the Hamming windowing and IFFT
transformation.

The addition of noise implies that the HRRPs in the test set will still be ideal since they still are
synthetic profiles, but they will start differing from those in the database as in an actual scenario.
Hence, this is the first step to approach the final purpose of this text, which is the comparison of
very different HRRPs.



70 Chapter 6. Experiments and Results

Synthetic Raw Data 

(I/Q)

AWGN

Hamming

Windowing
IFFT+

Noisy

HRRP

Figure 6.3: Noise addition to synthetic range profiles

Test Sample Training Samples

Synt.-B767
AWGN (SNR=0dB)

R
an

ge
 b

in

 

50

100

150 Vs.

Synt-A310
 

50

100

150

Synt-B767
 

50

100

150

Synt-F100
 

50

100

150 0.5

0.6

0.7

0.8

0.9

1

Profile

R
an

ge
 b

in

 
60 120

200

250

300

Profile

 
60 120

200

250

300

Profile

 
60 120

200

250

300

Profile

 
60 120

200

250

300

0

0.1

0.2

0.3

0.4

Figure 6.4: Synthetic noisy profiles vs. Synthetic profiles

Figure 6.4 depicts an example of the matrices of normalized range profiles that comprise both the
test and training sets. In this example a synthetic matrix of range profiles with additional noise
such that SNR = 0 dB is being compared with a database of three synthetic matrices of range
profiles, all of them normalized such as their energy equals 1. The idea of this experiment is to
check the robustness against noise of the proposed algorithms. The values of the resulting SNR for
the added noise are summarized in Table 6.1.

c. Synthetic profiles + AWGN + misalignment + alignment Vs. Synthetic Profiles. In order to
simulate an even more actual scenario where profiles suffer from TRM, noisy synthetic profiles are
shifted a few samples. Remember that this effect is caused by the translational motion of an aircraft,
which causes a change in the distance to the radar and hence, scatterers are displaced from one
range bin to the next. Therefore, in order to imitate this, each profile in a frame has been shifted 3
range bins with respect to the previous profile. After the misalignment, just as if they were actual
profiles, they need to be further aligned again, as subsection 4.1.1 described, to compensate this
synthetic translational motion. The flow chart of this procedure is depicted in Figure 6.5, and an
example of how a matrix of range profiles with an SNR = 5 dB has been misaligned and further
aligned before normalization takes place is illustrated in Figure 6.6.
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Figure 6.6: Example of noise addition, misalignment and motion compensation of a matrix of synthetic
range profiles

d. Actual profiles Vs. Synthetic profiles. Finally, after checking with the previous subcases the pre-
liminary robustness against noise and TRM of the different algorithms, the actual profiles from the
ORFEO measurement campaign are classified using a database of synthetic profiles.

Figure 6.7 is an example of the comparison of a matrix of normalized actual range profiles of a
B767 with a database of normalized synthetic profiles which comprises three different aircraft in
the same trajectory. One more time, the difference in nature of the profiles is clearly noticeable in
the figure, while actual profiles are corrupted with noise, speckle, TRM, etc., synthetic profiles are
much more clear since they are the ideal signature of an aircraft. Finally, Table 6.1 summarizes the
properties of all the defined subcases.
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Figure 6.7: Actual profiles vs. Synthetic profiles

Table 6.1: Subcases specifications

Test Set Added effects Training Set
Subcase a Synthetic None Synthetic
Subcase b Synthetic + AWGN AWGN(SNR(dB)): 10;5;0;-5;-10 Synthetic
Subcase c Synthetic + AWGN + TRM AWGN(SNR(dB)): 10;5;0;-5;-10 Synthetic
Subcase d Actual None Synthetic

6.2. Experiments Definitions

6.2.1. Energy Threshold

The proposed algorithms presented in Chapter 5, are all based on a distance metric, the angle between
subspaces. The first two proposed algorithms, the cumulative angle between subspaces, Fu, and the
weighted cumulative angle between subspaces, Fw, since one is an evolution of the other, have in common
the need of setting the subspace dimensionality in advance according to a defined threshold, η, as equation
5.5 showed and reproduced here as equation 6.1 for clarity.

∑K
i=1 σi∑p
i=1 σi

≥ η (6.1)

The threshold is set experimentally according to the energy provided by the singular values of the
test set, therefore, a study of the evolution of the recognition results when varying the energy threshold
is needed to select the appropriate one for the best results. Remember that when the energy threshold
is modified, the signal subspace changes accordingly: the higher the threshold η, the higher the value of
K, that is, the higher the number of singular vectors that form the signal subspace and the smaller the
number of singular vectors discarded since they are considered as noise subspace. Thus, it is expected
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that if a very low threshold is selected (near to 0), the signal subspace will not have enough information
to properly classify the profiles, while if it is very near to 1, the signal subspace will wrongly include too
many vectors that do not provide information for a good classification but include unwanted noise.

In this experiment, the energy threshold, η, is varied from 0.1 to 0.99, with steps of 0.1 for η =
0.1, . . . , 0.8, and 0.05 for η = 0.85, . . . , 0.99. Normalization of the profiles is accomplished by applying a
L2-norm, just as said in Chapter 4 and both metrics, Fu and Fw are analyzed.

In the following subsections, the recognition results for these metrics for test cases I and II and their
respective subcases when the energy threshold, η is varied, are presented.

6.2.1.1. Test Case I. Results

In this test, 48 frames are classified; in the case of Test Cases I.a to c, since we have simulations
for the 5 input aircraft, then 240 input samples1 will be available for classification; on the contrary,
the test set of Test Case I.d will comprise only 48 frames of different aircraft (the ones that were truly
measured in the ORFEO campaign among the 5 aircraft that form the test set). A matrix of HRRPs
consecutively collected in time or synthetically obtained (depending on the subcase), motion compensated
and normalized (L2-norm) will be the input of the classifier, while the database (the training set), will
comprise the prediction of the range profiles of 6 aircraft for the very same trajectory.

In order to provide examples of the partial results obtained before the final recognition rates are
presented, a given trajectory is selected. This trajectory, taken from the ORFEO measurement campaign,
is the one depicted in Figure 6.8, named as trajectory p14.0 which belongs to a Fokker28. As seen, this
trajectory covers a nose-on aspect angle2 and comprises a total number of 226 profiles of 324 range bins
each (matrices of 324× 226). Along this chapter, all the provided partial results will be referred to this
aircraft in this trajectory.
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Figure 6.8: Trajectory p14.0 used as example

Test Case I.a. Synthetic Profiles Vs. Synthetic Profiles

The first step for any research is the study of an ideal case, here this translates into the classification
of synthetic profiles with a database of profiles of exactly the same nature. Figure 6.9a shows the matrix
of synthetic profiles of the Fokker28 taken as example and, since the feature extraction for Fu and Fw

148 frames × 5 aircraft = 240 matrices of range profiles
2Nose-on aspect angle: azimuth α ∼ 0◦ ; elevation θ ∼ 90◦
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involves the extraction of singular values and singular vectors, figures 6.9b to 6.9d depict its SVD. Note
that only the first 100 singular values have been depicted for simplicity, but the decreasing tendency
is clearly noticed. As said, the left singular vectors in matrix U will be those utilized along with their
associated singular values.
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Figure 6.9: Test Case I.a. SVD of trajectory p14.0

The singular values in Figure 6.9d show that, at first glance, the energy is concentrated approximately
around the first 15 or 20 singular vectors with the rest having a negligible value. Indeed, as matrix U
depicts in Figure 6.9b, only the first 15 or 20 vectors ui show a clean behaviour, while the rest seem to be
very noisy. The goal of the energy threshold η is therefore, to select the number, K, of singular vectors,
ui, that focus a specific amount of energy, in order to define the signal subspace. As noted in Chapter 5,
matrix V , showed in Figure 6.9c will not be used along this experiments.

Thus, when changing the energy threshold, the singular vectors of the test set that will form the
signal subspace will change accordingly. As an example, Table 6.2 shows, for the F028 in the example
trajectory, the evolution of the number of vectors taken as subspace for both algorithms, Fu and Fw.
The 99% of the total energy is focused on the 13 first singular vectors and according to the table, the
first singular vector holds approximately the 20% of the total energy in this example. Note that for each
input matrix, these values will be different since each aircraft has a different SVD.

Subcase a. is clearly special since the test set and training set are exactly the same; this means that
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Table 6.2: Test Case I.a. Evolution of the signal subspace dimensionality with η. Trajectory p14.0

Energy Threshold (η) 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Dimensionality (K) 13 9 7 6 6 4 3 3 2 2 1 1

profiles of exactly the same SNR and highly ideal are compared to each other and therefore, very high
recognition rates are expected. Table 6.3 shows these recognition rates obtained for metric Fu changing
the energy threshold of the signal subspace; exactly the same recognition results are obtained for Fw.
Taking a look at the results on the table, it is noticed that even if the energy threshold changes and the
number of vectors taken as signal subspace varies, the totality of the test set input matrices is correctly
classified to their corresponding aircraft and this is due to the high idealism of both sets. Therefore,
both algorithms have passed the first test, if they had not obtained 100% of success rates, it would be
worthless to continue with their assessment.

Table 6.3: Test Case I.a. Fu and Fw Recognition rates

Test Case II.d. Recognition rates varying η (%)
η Fu Fw

0.99 100 100
0.95 100 100
0.9 100 100
0.85 100 100
0.8 100 100
0.7 100 100
0.6 100 100
0.5 100 100
0.4 100 100
0.3 100 100
0.2 100 100
0.1 100 100

Remember that in Fu and Fw the angle between each singular vector of the training set and the
selected signal subspace of the test set is computed; Figures 6.10a and 6.10b depict the evolution of this
angle for trajectory p.14.0 and an energy threshold η = 0.9. The recognised aircraft will be the one with
the minimum final value of each metric, and as Figure 6.10 shows for both metrics, with η = 0.9, this
aircraft is the Fokker28. In the case of selecting other value of η the curves will differ, but as seen, due
to the idealism of this subcase, the right recognition is always achieved (the F028). As previously said,
these curves tend to increase, but as seen in the preceding chapter, the evolution of Fw saturates due
to the appearance of the singular values as weighting elements in the function, making the results more
stable.
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Figure 6.10: Test Case I.a. Fu and Fw partial results for F028; trajectory p14.0; η = 0.9

Test Case I.b. Synthetic Profiles with AWGN Vs. Synthetic Profiles

As the results of the preceding subcase have shown, due to the idealism of the scenario, the obtained
recognition rates are also ideal, that is, the 100% of the input samples have been correctly classified. The
present subcase tries to simulate a first approach where the test and training sets differ; therefore the
expected recognition rates will not be as high as the ones obtained for Test Case I.a.

Figure 6.11a shows the matrix of synthetic profiles of the Fokker28 taken as example (trajectory p.14.0)
with AWGN such that the resulting SNR = -5 dB and figures 6.11b to 6.11d its SVD. As appreciated in
Figure 6.11a, around profile number 100 the noise is apparently more prominent, however, this effect is
caused by the normalization of the profiles, which causes a normalization in the energy of each profile.
As noted, not only the addition of noise has affected the shape of the matrix of range profiles, but also its
SVD has changed. The singular values have been degraded and apparently, the singular vectors have also
been distorted by the noise; this distortion has caused an increase in the value of those singular values
that without noise had a nearly null weight, while decreasing the weight of the first ones. This will cause
a change in the division into signal and noise subspaces as illustrates Table 6.4. Similar to the previous
subcase, the evolution of the number of vectors taken as subspace for both metrics Fu and Fw is shown
in the table; note that the results are shown for SNR = -5 dB and this noise is added randomly, so here it
is presented just an example of the values to illustrate the variation of the signal subspace dimensionality
with the addition of noise.

Due to the degradation of the range profiles, the signal subspace has also been corrupted. Taking
a look at both Table 6.2 and Table 6.4 it is clearly seen that, with a low SNR (SNR = -5 dB), if the
chosen energy threshold is the highest (η = 0.99), the number of vectors taken as signal subspace has
been increased from 13 to 198; this indicates that the selection of the energy threshold is very important,
since taking 198 singular vectors as subspace may actually imply the introduction of noise in the test set
signal subspace.

As the SNR gets higher, the subspace dimensionality gets more similar to the initial example without
noise, as depicts Figure 6.12. According to this assumption, the lower the SNR, the worse the recognition
rates expected for both algorithms, Fu and Fw. This can be seen in Figure 6.13 and 6.14 where the
evolution of the recognition rates for both metrics according to the change in the energy threshold (η)
with different values of SNR are depicted. The figures show, on the one hand, that the selection of the
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Synt. F028 + AWGN (SNR=−5dB)− Tr.p14.0
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Figure 6.11: Test Case I.b. SVD of trajectory p14.0; SNR = -5 dB

subspace dimensionality is not a trivial issue and on the other hand, that the addition of noise to the
test set has clearly degraded the recognition rates.

Regarding the noise, obviously the higher the SNR the better the returned results. This fact is clearly
seen in the cyan plot on Figures 6.13 and 6.14. However, at this point, a remark can be made: Fu is
highly affected by the noise added to the test set, such that when the SNR is very low, only good results
are obtained for very low values of η. Figure 6.13 shows the evolution of the recognition rates of Fu with
the noise: with a SNR of 10 dB the results are very good even with a high η, while when the SNR takes
values of 5 dB and 0 dB, it is seen that not only the recognition rates have been reduced but also, the
energy threshold needed to obtain fair results also reduces. On the contrary, Fw presents an elevated
robustness against the noise for any value of η, although of course, as the SNR gets lower, the recognition
rates returned also degrade as Figure 6.14 illustrates.

In Test Case I.a. where no noise was added, the change of dimensionality provided by the energy
threshold did not affect the recognition rates, and for any value of η the recognition rate was ideally
100%. On the contrary, the figures of the present subcase show that setting an energy threshold very
near to 1 does not return such good results in this case; this is due to the added noise and the degradation
of the singular values, which implies the selection of too many singular vectors as signal subspace and as
seen in Figure 6.11, these may be corrupted by the noise. On the other hand, as the dimensionality of
the subspace reduces, the recognition rates increase and even with the smallest energy threshold, both
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Table 6.4: Test Case I.b. Evolution of the signal subspace dimensionality with η; SNR = -5 dB.
Trajectory p14.0

Energy Threshold (η) 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Dimensionality (K) 198 151 124 108 95 73 55 40 26 14 4 2
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Figure 6.12: Signal subspace dimensionality evolution with η for different SNR. Trajectory p14.0

algorithms return good results, since the noise subspace is actually being discarded.

Table 6.5 gathers the recognition rates presented in Figure 6.13 and 6.14. As said, the best rates are
obtained for high SNR and unexpectedly, very good results are returned for low values of η, especially
when the SNR reaches negative values. This is because when having a poor SNR the obtained singular
vectors will be so contaminated by the noise that just a very few of them will keep valuable information.
For Fw the best recognition rate is 99.17%, obtained for a SNR = 10 dB and a threshold of η = 0.5 or
η = 0.1, while for Fu the best recognition rate achieved is 99.58% for the same SNR and a threshold of
η = 0.7 or η = 0.2, as seen, with high SNR, large energy threshold also return good results. However, as
seen in the table, for algorithm Fw, even if the threshold is not optimally selected, the recognition rates
are always above the 90% regardless of the value of SNR. On the other hand, Fu, even though it achieved
a higher recognition rate for the optimum η and SNR than Fw, the fluctuation in recognition rates with
η and the noise denotes that it lacks robustness against noise and energy threshold selection.



6.2 Experiments Definitions 79

0.10.20.30.40.50.60.70.80.91
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
u
 Recognition rates. Test Case I.b.

Energy Threshold (η)

R
ec

og
ni

tio
n 

ra
te

 

 

AWGN
SNR=−10dB

AWGN
SNR=−5dB

AWGN
SNR=0dB

AWGN
SNR=5dB

AWGN
SNR=10dB

Figure 6.13: Fu - Test Case I.b. Evolution of recognition rates with η
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Table 6.5: Subcase I.b. Fu and Fw Recognition rates

Test Case I.b. Recognition rates varying η (%)
SNR 10dB 5dB 0dB -5dB -10dB
η Fu Fw Fu Fw Fu Fw Fu Fw Fu Fw

0.99 62.92 96.67 60.42 95.00 53.33 93.33 42.08 91.67 36.25 90.00
0.95 93.75 96.67 73.33 95.42 47.92 93.33 40.00 93.33 28.33 90.00
0.9 98.75 96.67 89.58 94.17 60.83 93.75 42.92 92.92 31.67 91.67
0.85 98.75 97.08 93.33 94.17 73.75 93.33 48.75 93.33 32.92 90.83
0.8 98.75 97.50 97.92 95.00 85.83 93.33 57.92 92.50 38.75 91.25
0.7 99.58 98.75 98.33 94.17 93.75 94.17 73.33 92.92 47.08 90.00
0.6 98.75 98.33 97.92 95.83 95.83 93.75 86.25 91.67 58.75 90.42
0.5 98.75 99.17 98.75 96.25 96.67 94.58 89.17 92.92 72.50 90.83
0.4 99.17 98.33 98.33 96.67 96.67 94.17 92.08 93.75 79.58 90.83
0.3 99.17 98.33 98.33 97.50 97.92 96.25 95.83 93.33 88.75 89.58
0.2 99.58 97.92 98.75 98.75 97.92 97.08 95.42 95.83 95.00 92.92
0.1 98.33 99.17 97.92 99.17 97.50 97.08 92.92 93.33 87.50 87.50



6.2 Experiments Definitions 81

Test Case I.c. Synthetic misaligned Profiles with AWGN Vs. Synthetic Profiles

The previous subcase showed that Fw is quite robust against the noise while Fu fails when the SNR
is very poor. Moreover, it was also seen that the energy threshold should be set according to this SNR
and preferably to a relatively low value. Now, the robustness of the algorithms against both the noise
and the profiles motion compensation is studied in this subcase.

Figure 6.15 shows an example of a matrix of range profiles that has been shifted in order to emulate
a wrong alignment, first it is shown the initial aligned matrix, and then the misaligned matrix of range
profiles. In Figure 6.16 their obtained left singular values are depicted, and as seen, the shape of the
matrix of singular vectors has slightly changed due to the profiles misalignment and also the weights
of the singular values have been reduced as Figure 6.17 shows. Therefore, this misalignment causes a
decrease in the quality of the range profiles and the SVD. However, the impact of the addition of noise
is higher, such that apparently the misalignment has negligible influence when AWGN is added. This is
illustrated in Figure 6.18, which depicts the obtained singular vectors of the misaligned matrix of range
profiles where SNR = 10 dB.
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Figure 6.15: Misaligned synthetic range profiles

Even though after the example it can be thought that the misalignment of range profiles will not
affect the recognition rates, Figures 6.19 and 6.20 and Table 6.6, which contains the recognition rates
obtained for this test case, shows that indeed, misalignment of range profiles does affect the identification
process. Thus, the alignment of range profiles is very important and a bad alignment will produce poor
recognition rates.

Again, in Table 6.6 the best results are highlighted in bold and as previously demonstrated in Test
Case I.b, Fu is quite noise and energy-dependent while Fw keeps the recognition rates at a high level
with little variation with η. As expected, additional distorting effects lead to worse recognition rates,
while the best result for Test Case I.b for Fw was 99.17%, now the best result obtained for a SNR = 10
dB is 94.17% with an energy threshold of η = 0.4. Thus, it can be observed that not only the success
rates have been reduced, but also the energy threshold for the best result has been decreased. Note that
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Figure 6.16: Left singular vectors of misaligned range profiles
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Figure 6.17: Singular values of misaligned range profiles

when the SNR is very poor, the best results are obtained with η = 0.1, while in the previous example it
was enough with η = 0.2; with higher SNR, the previous example showed that good results are achieved
with η between 0.5 and 0.2, in this subcase the optimum energy threshold would be between 0.4 and
0.2 when the SNR has a high level. The reason for this reduction in the energy threshold is the high
noise level added to the misalignment of range profiles; the more noise corrupts our profiles, the noisier
will get the left singular vectors, furthermore, as the previous figures have shown, the incorrect profiles
alignment also causes a degradation of the singular vectors and singular values, therefore, the signal
subspace dimensionality must be set accordingly. In conclusion, Fw is still more robust than Fu although
the misalignment has slightly degraded the results, in fact, this effect translates into both algorithms
suffering more with a demanding SNR.
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Figure 6.18: Left singular vectors of misaligned range profiles with SNR = 10 dB

Table 6.6: Subcase I.c. Fu and Fw Recognition rates

Test Case I.c. Recognition rates varying η (%)
SNR 10dB 5dB 0dB -5dB -10dB
η Fu Fw Fu Fw Fu Fw Fu Fw Fu Fw

0.99 57.92 88.75 54.58 89.58 46.25 89.58 37.08 86.67 26.25 73.33
0.95 85.42 88.33 64.17 89.58 43.75 89.17 34.17 86.25 21.67 75.00
0.9 88.75 89.58 79.58 89.58 55.42 88.75 37.08 86.25 24.17 73.75
0.85 90.83 90.42 82.92 89.17 65.42 88.75 45.42 86.67 21.25 73.75
0.8 89.58 90.42 86.67 89.17 74.17 89.58 50.83 86.67 25.42 72.50
0.7 92.50 91.67 88.75 90.00 80.83 89.17 62.92 87.08 26.67 72.92
0.6 93.75 93.75 89.58 90.00 83.33 90.42 69.17 86.67 32.08 73.75
0.5 93.75 93.75 93.75 92.50 85.42 89.17 75.00 86.67 41.67 73.75
0.4 93.33 94.17 93.33 92.50 91.25 89.58 76.67 86.25 51.67 75.83
0.3 93.75 93.75 92.92 91.67 92.92 92.50 86.67 87.08 61.67 76.67
0.2 94.58 93.75 94.58 92.08 90.83 92.08 89.58 88.33 77.50 79.58
0.1 92.92 92.50 93.75 92.92 92.08 92.50 89.58 89.17 80.42 80.83
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Figure 6.19: Fu - Test Case I.c. Evolution of recognition rates with η
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Figure 6.20: Fw - Test Case I.c. Evolution of recognition rates with η
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Test Case I.d. Actual Profiles Vs. Synthetic Profiles

Lastly, this test case will validate the recognition rates and the conclusions drawn in the previous
subcases and will assess the validity of the scenario proposed in this thesis, that is the non-cooperative
recognition of actual range profiles by means of a synthetic database. In the previous subcases, it has
been proven that Fw is quite robust against noise and incorrect motion compensation, and also that
the selection of an energy threshold highly affects the recognition rates, especially those provided by
Fu, unlike Fw, which, although also affected by this energy threshold, it keeps high average recognition
rates. Following with the example, Figure 6.21 depicts the actual range profiles of trajectory p14.0 and
their SVD. Note that the SNR of this matrix of range profiles is not as poor as the ones that have
been simulated in the previous subcases b and c, since both the range profiles and the obtained matrices
of singular vectors are clearer. Therefore, according to the previous results, high recognition rates are
expected for metric Fw in almost any η, while for Fu only good results are expected with low η. To
illustrate this, Figure 6.22 provides the graphical evolution of the obtained recognition rates while Table
6.7 collects its numerical results.
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Figure 6.21: Test Case I.d. SVD of trajectory p14.0

Note that the recognition rates obtained in this Test Case I.d where actual profiles are classified by
means of a synthetic database, are not as good as the ones obtained in the previous subcases. This
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Figure 6.22: Fu and Fw - Test Case I.d. Evolution of recognition rates with η

is obvious since even though in Test Cases I.b and c unwanted effects are added to the test set, both
test and training sets come from the same ideal simulations and here, on the contrary, the nature of the
profiles is different. Additionally, just as section 4.3 in Chapter 4 introduced, there exist a number of facts
that produce disagreement between actual and synthetic profiles. Remember that the CAD models used
to generate the training set considered every aircraft as PEC and they were just rough replicas of real
aircraft since small elements were not modelled. Additionally, FASCRO does not take into account all the
reflective processes that occur in reality and thus, synthetic profiles are highly ideal in comparison with
the actual ones. Another very important source of difference between range profiles is the target aspect
estimate; recall that even though the input profiles are compared to the profiles in the database which
belong to the same trajectory, these trajectories are mainly predictions since the actual aircraft were
measured non-cooperatively. The error of the estimated aspect angles can be at the most of 5 degrees
in both azimuth and elevation and as seen in Chapter 3, a small variation in the aircraft aspect can
cause occlusion of scattering centres. Thus, synthetic profiles may not be extracted exactly in the same
trajectory described by the actual aircraft and therefore, the comparison is not carried out accurately,
unlike the cases where test and training sets comprised synthetic profiles. Additionally, although in
principle of less importance, there also exist amplitude differences between actual and synthetic profiles,
mainly due to idealism of the latter. And also, the speckle effect, although tried to be compensated with
the use of SVD, may not be totally removed. These discrepancies justify the fact that the recognition
rates obtained for both algorithms, Fu and Fw, do not reach the high values of the previous test cases,
although the obtained rates can also be considered as good ones since in a real scenario, the collected
range profiles may not have the same SNR of those in the database and may not be oriented in exactly
the same aspect angles.

Regarding Fu, similarly to the prior cases, the algorithm is highly dependent on the noise and the
energy threshold, and the reduction of η translates into a better recognition rate, reaching the highest
value of 75% when η = 0.1. As for Fw, the recognition rates obtained, as expected after the study of Test
Cases I.a to c, are more or less maintained constant around a level near to 80%, where the highest value,
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Table 6.7: Subcase I.d. Fu and Fw Recognition rates

Test Case I.d. Recognition rates varying η (%)
η Fu Fw

0.99 31.25 50.00
0.95 27.08 58.33
0.9 47.92 70.83
0.85 50.00 77.08
0.8 54.17 72.92
0.7 64.58 70.83
0.6 68.75 70.83
0.5 70.83 72.92
0.4 72.92 79.17
0.3 68.75 75.00
0.2 72.92 72.92
0.1 75.00 75.00

79.17%, is obtained for η = 0.4. This agrees with the results of the optimum energy threshold already
seen in the above test cases where the best recognition rates were obtained for η = 0.5 and η = 0.4.

Figure 6.23 shows the evolution of Fw with the samples (k)3, for different η; in Figure 6.23a is presented
the one that achieved the best recognition rate, η = 0.4, and in Figure 6.23b the one with the second best
recognition rate, η = 0.85. Note that, as expected the dimensionality of the signal subspace is different
according to the selected η, such that for this example, Kd = 7 for η = 0.4 and Kd = 37 for η = 0.85.

The examination of these figures leads to question the accuracy of the results when η = 0.4 because
as Figure 6.23a illustrates, even though the aircraft is correctly classified as a Fokker28, the confidence
degree between the winner and the next aircraft is very small. A good classifier will be that which not
only achieves a high recognition rate but also that has the capability to unambiguously separate the
targets; therefore, with such a low energy threshold the latter condition seems to be not accomplished.
On the contrary, for a threshold of η = 0.85 the obtained recognition rate is 77.08%, (very near to 80%)
and also, as seen in Figure 6.23b, there is greater class separation. The issue of class separation was not
of great importance in Test Cases I.a to c, since due to the idealism of both sets of profiles, both low and
high energy thresholds provided good class separation.

There is a trade-off between recognition rates and class separation and it is the task of the designer
to choose the best η for his system. To give an idea of the confidence degree of this test case, Figure
6.24 presents the mean difference of the final value of the metric Fw between the winner aircraft and
the second one for the 48 input samples and its standard deviation; as seen, with high energy thresholds
the distinction between aircraft will be less clear but with thresholds between 0.7 and 0.5 this mean
difference is greater4. According to this, the chosen threshold for the case where matrices of actual
profiles are classified utilizing a database of synthetic profiles will be η = 0.5, since it provides one of
the best recognition results, 72.92% of success, and also a fair confidence interval between the recognised
aircraft. Table 6.8 shows the results of Fw for the selected energy threshold in form of a confusion matrix,
where the rows represent the true type of the test samples and the columns represent the recognition made

3Remember that k = 1, . . . ,Kd with Kd being the test set signal subspace dimensionality
4Figure 6.23a showed a bad class separation between winning aircraft, however, this is just a particular case, since the

results of Figure 6.24 include the results of all the trajectories in the test set
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by the algorithm. For example, one element cij of the confusion matrix is the number of the members of
type i that were recognized as type j by the algorithm. According to this, aircraft B767 is the one with
the highest partial success rate, followed by the B747. On the other hand, the two Fokker, F028 and
F100, due to the similarity between them and their smaller dimensions, provide the worst success rates.
However, 48 input samples is not enough to draw firm conclusions, although it is a first step to predict
the behaviour of Fw algorithm .
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Table 6.8: Subcase I.d. Fw Confusion matrix; η = 0.5

A310 B747 B767 F028 F100 B737 Success (%) Error (%)
A310 3 1 0 0 0 0 75.00 25.00
B747 0 8 2 0 0 0 80.00 20.00
B767 1 0 9 0 0 1 81.82 18.18
F028 0 0 0 9 1 2 69.23 30.77
F100 0 1 0 1 6 2 60.00 40.00

Average rates 72.92 27.08

Test Case I. Discussion

In Test Case I, 5 aircraft classes have been classified utilizing a database of 6 aircraft classes syn-
thetically generated. In order to have information about the change in the range profiles due to the
variation in the orientation of the aircraft along the different trajectories, matrices of range profiles have
been utilized as input samples instead of individual range profiles; these matrices comprise a number of
HRRPs that vary from 100 up to 300.

The study of the energy threshold of Test Case I has been completed sequentially along 4 subcases,
whose conclusions are summarized here:

- First, the ideal study of Test Case I.a, where 240 matrices of synthetic profiles have been compared
with synthetic profiles, has provided ideal results with recognition rates reaching 100% for both
metrics and for any value of energy threshold. Result that was expected since the same ideal
matrices of range profiles were compared to each other.

- Test Case I.b has studied the robustness of both metrics, Fu and Fw, against noise by applying
additive white gaussian noise to the 240 matrices of range profiles that formed the test set. It has
been demonstrated that the addition of noise not only has caused a degradation of the HRRPs, but
also a deterioration of the signal subspace, broadening it for any selected η and hence, including
undesired information in the classification process. With this test case it has been proven that
the selection of the energy threshold is crucial in these metrics and it should not be set to values
very near to the unity, otherwise all the unwanted noise will take part in the signal subspace.
Additionally, Fu has shown to be highly affected by the noise and the threshold, while Fw has
shown more stability, providing high recognition rates above 90% for any value of SNR and any
η. However, the optimum threshold found is different for each metric, Fu provides the best results
with low η, near to 0.2 or even 0.1, while for Fw, although reaching good results with any value of
η, the best rate is obtained for an energy threshold between 0.2 and 0.5.

- The next subcase in this increasing model comprised the evaluation of the robustness of both metrics
with noise and TRM, which is compensated via alignment of range profiles. For this study, the
240 matrices of noisy range profiles from Test Case I.b have been misaligned and further aligned to
simulate the motion compensation. It has been seen that the incorrect alignment of profiles causes,
similarly to the addition of noise, a change in the singular vectors and singular values; however, the
addition of noise has more influence. Test Case I.c. has shown that, for both metrics, supplementary
distorting effects result in a reduction of the necessary energy threshold for obtaining the best results
(now the optimum threshold found for Fw is between 0.1 and 0.4) and in poorer recognition rates;
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although these rates are still around 90% for Fw and this metric has shown robustness, now with a
demanding SNR, it has slightly lost robustness.

- Test Case I.d finally classified actual range profiles by means of a synthetic database. Unlike the
previous subcases, where 240 matrices of range profiles where classified, now only 48 matrices of
actual range profiles are available for classification5. As expected after the evaluation of the prior
subcases, Fu is highly affected by the selection of the energy threshold, reaching the best recognition
rates when η = 0.1 as in Test Case I.c. On the other hand, and as predicted, Fw has a more constant
tendency and it is not as noise and energy-dependent as Fu, reaching the highest recognition rates
when the threshold is set to 0.4, similarly to Test Case I.c. However, the additional problem of the
confidence in the results has arose, and a trade-off between recognition rates and confidence interval
should be considered. Finally, the best option for Test Case I.d is the selection of η = 0.5, which
provides good agreement between success rate and confidence degree. Nevertheless, the recognition
rates obtained in this Test Case I.d are not as high as the ones obtained in the previous test cases,
since the same effects that actual profiles undergo cannot be exactly reproduced in the simulations.
Despite this, Fw is still quite robust, obtaining recognition rates up to 80%.

Thanks to the use of singular values as weights, Fu has been upgraded to Fw, achieving more robustness
against noise, against the selection of the signal subspace dimensionality and also against the discrepancies
between test and training sets. However, still the issue of setting the dimensionality is present; not only
η should be set such that the best recognition rates are obtained, but also the ability of good class
separation should be taken into account when choosing this threshold.

Even though good recognition rates have been achieved with these metrics and a conclusion about the
energy threshold has been reached, Test Case I is just a first approach since the number of input samples
that have been classified is not high enough to draw firm conclusions about the classifier’s robustness.
Hence, next Test Case II will try to further validate the conclusions of Test Case I by increasing the
number of trajectories and aircraft to be identified.

6.2.1.2. Test Case II. Results

In this test, a new aircraft model is added to both the test and training sets, hence the identification
problem consists now in the classification of 6 aircraft with a database of 7 aircraft models. Moreover, a
few more trajectories are considered and also, these are divided into smaller frames, covering a variation of
2.5◦ in azimuth. So now, in total, instead of 48 frames, 235 frames corresponding to 6 different aircraft are
available to be classified. As in Test Case I, regarding Test Cases II.a to c, since they study predictions,
the 6 aircraft of the test set have been simulated, and therefore, 1410 matrices6 of range profiles will be
classified. For Test Case II.d, only the actual 235 matrices of measured range profiles will be available
for classification. With this upgrade in both the input samples and the database, an improvement in the
confidence of the results is expected.

Equally to Test Case I, trajectory p14.0 is used as example, but now this trajectory is divided into 10
frames and among these frames, for simplicity, frame 1 is taken, containing a total number of 15 HRRPs
covering the portion of trajectory that corresponds to nose-on aspect angles.

5Remember that the actual range profiles are extracted from the ORFEO measurement campaign and it collected profiles
of targets of opportunity

6235 frames × 6 aircraft = 1410 matrices of range profiles
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Test Case II.a. Synthetic Profiles Vs. Synthetic Profiles

As the prior Test Case I, the ideal scenario is studied here, where matrices of synthetic range profiles
are compared with matrices of synthetic range profiles. The matrix of HRRPs of the example trajectory
is shown in Figure 6.25a, and in Figures 6.25b to 6.25d its SVD is depicted. Note that now, as the matrix
only contains 15 range profiles of 324 range bins, the dimensions of the matrices of singular vectors and
singular values will be U ∈ <324×324, V ∈ <15×15 and Σ ∈ <324×15. However, even if matrix U has
such size, only the 15 first left singular vectors (ui) are truly singular vectors with information about the
target; the rest, as no information exist to calculate them, have been obtained automatically, explaining
the strange shape of matrix U7.
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Figure 6.25: Test Case II.a. SVD of trajectory p14.0, frame 1

Regarding the variation of the subspace dimensionality when changing the value of the energy thresh-
old, for the frame 1 of trajectory p14.0, the number of vectors that form the test set signal subspace is
presented in Table 6.9 as an example. As seen, from η = 0.7 to η = 0.1 the signal subspace comprises only
1 singular vector and hence the results of the identification will be the same in that range. In any case,
as happened in Test Case I.a, due to the idealism of this study, the 100% of the matrices of range profiles
are correctly classified8, that is, the average recognition rates obtained for Test Case II.a are 100% for
both metrics Fu and Fw for any value of η.

7Additionally these extra ui do not have an associated σi, therefore they will not take part in the classification process
in any case.

8The table of recognition rates is not presented here for this test case but is exactly the same as Table 6.3
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Table 6.9: Test Case II.a. Evolution of the signal subspace dimensionality with η. Trajectory p14.0,
frame 1

Energy Threshold (η) 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Dimensionality (K) 4 3 2 2 2 1 1 1 1 1 1 1

Test Case II.b. Synthetic Profiles with AWGN Vs. Synthetic Profiles

The previous subcase, still with an enlarged database, returns ideal results, just as was expected after
the examination of Test Case I.a. In this section, the influence of the addition of noise to both metrics is
studied, with the difference that now the trajectories are divided into smaller groups and comprise a few
number of range profiles.

Test Case I.b proved that the addition of noise affected both the shape of the matrix of HRRP and
its SVD (by degrading the weight of the obtained singular values and the shape of matrix U). Therefore,
the noise will also cause a change in the signal subspace extraction; since now both test and training sets
differ, the recognition rates achieved will not reach the 100%. The dimensionality of the signal subspace
for frame 1 of trajectory p14.0 with an added noise resulting in SNR = -5 dB is presented in Table 6.10
and as foreseen, this dimensionality has been worsened. In Test Case I.b, the addition of noise was of
great impact: the number of vectors that composed the target signal was 13 when no noise was present
in Test Case I.a for η = 0.99, and it changed to 198 vectors when SNR = -5 dB. Now, as the initial
dimensionality of the matrices of range profiles is lower than Test Case I, the effect of the noise in the
subspace dimensionality is not as pronounced, changing from 4 vectors (in Test Case II.a), to 15 for
η = 0.99 and SNR = -5 dB. Therefore, as a first approach, it can be said that the effect of noise will not
be as high as for the previous test case.

Table 6.10: Test Case II.b. Evolution of the signal subspace dimensionality with η; SNR = −5dB.
Trajectory p14.0, frame 1

Energy Threshold (η) 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Dimensionality (K) 15 12 8 6 3 2 1 1 1 1 1 1

Table 6.11 and Figures 6.26 and 6.27 gather the results of the obtained recognition rates when varying
η and the added noise. It should be noted that now the highest recognition rates obtained are of lower
value than those of Test Case I.b, although a higher robustness in this Test Case II was expected. However,
it should be remembered that now the number of aircraft classes to be identified has increased, hindering
the identification process. In any case, the rates still maintain the similar high levels of the previous test
case, for Fw, above 95% of success when the noise is minimum and around 85% when the noise is too
high. In the case of Fu, although still noise and threshold dependent, a change in the energy threshold
does not have such a high influence in the success rates due to the fact that, as said before, studying
smaller matrices of range profiles provides more robustness against subspace dimensionality and noise.
Indeed, in the previous Test Case I.b, taking the worst scenario where SNR = -10 dB and η = 0.99, the
success rate of Fu was only 36.25% while now, the resulting rate is 54.54%. With regard to the optimum
η, in this Test Case II.b, it gets slightly different values as Test Case I.b, where for Fw the optimum
energy threshold took values of η ≤ 0.5 and for Fu, η ≤ 0.7, and on the present case for Fw the best
rates are obtained for η ≤ 0.8, while for Fu, η ≤ 0.2. That is, in the case of function Fw the optimum
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Table 6.11: Subcase II.b. Fu and Fw Recognition rates

Test Case II.b. Recognition rates varying η (%)
SNR 10dB 5dB 0dB -5dB -10dB
η Fu Fw Fu Fw Fu Fw Fu Fw Fu Fw

0.99 91.49 97.94 85.60 96.60 76.45 94.89 66.10 89.65 54.54 87.23
0.95 94.47 98.37 88.65 96.31 79.57 93.62 69.29 90.28 56.45 86.24
0.9 95.39 98.09 91.35 96.45 81.84 94.26 71.42 90.92 59.50 85.04
0.85 95.53 98.01 92.62 96.60 84.82 94.04 73.19 90.14 60.14 86.45
0.8 96.03 98.65 92.70 97.02 86.17 93.97 74.96 91.13 63.12 86.03
0.7 96.24 98.44 95.46 97.30 88.23 94.40 78.79 90.07 66.24 85.74
0.6 96.60 98.01 95.39 97.66 91.63 94.61 81.56 91.35 69.43 86.74
0.5 97.23 98.58 96.31 97.16 93.26 95.39 87.02 91.42 72.84 86.81
0.4 98.01 98.44 96.38 96.81 93.55 94.61 88.58 90.92 76.31 86.81
0.3 98.09 97.80 97.30 97.23 94.89 95.11 89.50 91.21 80.92 86.60
0.2 98.09 98.01 97.16 96.60 94.82 94.68 90.14 91.49 83.97 84.18
0.1 97.52 97.45 96.31 96.31 94.18 94.33 90.57 90.07 82.27 81.77

threshold has increased while for Fu it has been decreased.
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Figure 6.27: Fw - Test Case II.b. Evolution of recognition rates with η

Test Case II.c. Synthetic misaligned Profiles with AWGN Vs. Synthetic Profiles

The previous subcase showed that, even if additional aircraft classes are involved, working with smaller
matrices of HRRPs results in higher robustness against noise and energy threshold, mainly for Fu. As
before, this subcase c will go further into the degradation of range profiles in order to study the evolution
of the obtained average recognition rates; with this purpose, after adding AWGN to the range profiles,
a misalignment of 3 samples with respect to the previous profile is applied to each profile in the test set
and before classification, the motion compensation technique of section 4.1.1 is employed to eliminate
the misalignment. As was concluded in Test Case I.c, the impact of the addition of noise is higher, but
a wrong alignment will also affect negatively the identification process.

Table 6.12 and Figures 6.28 and 6.29 show the recognition rates obtained for the different values
of energy threshold and SNR. Equally to the previous subcase, Fu is more robust against the energy
threshold now in comparison with Test Case I.c, although still not as robust as Fw. In both metrics, to
obtain the best results, η should be set to a value between 0.4 and 0.2, depending on how corrupted the
input matrix is. That is, equally to Test Case I.c, the introduction of the misalignment causes a decrease
in the optimum energy threshold.

As seen in the previous test case and in the table, by including additional misalignment, the recognition
results deteriorate for both metrics, the recognition rates for the best case (SNR = 10 dB) with the
optimum η are 96.17% for Fu, and 96.81% for Fw, while for the worst case (SNR = -10 dB), are 75.46%
for Fu, and 81.35% for Fw. The study of Test Case I resulted in a decay of an average of 5 percentage
points from Test Case I.b to Test Case I.c, now this decay from Test Case II.b to Test Case II.c is, on
average, of 3 percentage points. This agrees with the fact that smaller matrices provide more robustness,
not only against noise and energy threshold, but also against errors in the profile alignment; this was quite
easy to infer, since the lesser the number of profiles that compose a matrix, the smaller the probability
of wrong alignment between them.
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Table 6.12: Subcase II.c. Fu and Fw Recognition rates

Test Case II.c. Recognition rates varying η (%)
SNR 10dB 5dB 0dB -5dB -10dB
η Fu Fw Fu Fw Fu Fw Fu Fw Fu Fw

0.99 89.86 96.38 82.13 93.76 73.55 90.78 61.42 87.02 46.52 80.00
0.95 92.34 96.38 85.39 93.69 75.11 90.71 63.40 87.45 46.95 79.86
0.9 93.33 96.31 86.81 93.83 78.16 90.57 65.25 87.30 49.29 80.50
0.85 93.76 95.89 87.30 93.97 79.65 90.71 66.95 87.09 51.99 79.93
0.8 93.83 95.74 88.87 94.18 80.85 90.71 67.80 87.16 53.26 81.35
0.7 94.26 96.03 89.93 93.55 82.98 90.99 71.49 86.81 57.02 80.50
0.6 94.33 95.82 91.21 94.18 84.54 90.99 74.47 87.23 60.50 80.57
0.5 94.82 96.03 91.91 94.47 87.94 91.35 77.94 87.87 63.33 81.06
0.4 95.60 96.45 92.48 94.89 90.00 92.20 81.49 88.16 68.16 81.35
0.3 95.89 96.81 94.61 95.39 91.21 91.56 83.12 87.45 71.77 80.35
0.2 96.17 96.38 95.18 95.46 91.21 91.99 85.04 87.16 75.46 79.36
0.1 95.67 95.60 93.97 94.04 90.28 90.28 83.26 83.33 69.50 69.50
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Test Case II.d. Actual Profiles Vs. Synthetic Profiles

Finally, the classification of the 235 matrices of actual range profiles is studied in this section. In
the previous subcases it has been seen that, equally to Test Case I, Fw is less affected by the addition
of noise and misalignment than Fu. Additionally, it was shown that the use of small matrices of range
profiles not only enlarge our database of both test and training samples, but also these matrices still
have enough information to provide good recognition results. Indeed, the range profiles’ misalignment
and further alignment had little effect in comparison with the previous case where the matrices of range
profiles comprised between 100 and 300 profiles. According to the results seen in the previous sections,
high recognition rates are expected for Fw in almost any η, but the best are expected with a threshold
between 0.4 and 0.2. As for Fu, Test Case II has returned more stable results than Test Case I, yet the
the results are still highly dependent on the noise and the energy threshold and good recognition rates
are expected only for very low η.

The results obtained for this subcase are summarized in Table 6.13 and Figure 6.30.
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Figure 6.30: Fu and Fw - Test Case II.d. Evolution of recognition rates with η

As predicted, Fw achieves the best results when η = 0.4, 84.26%, while Fu increases its recognition
rates from 45.53% when η = 0.99 to 84.26% when η = 0.1. As already explained, the recognition rates
of this subcase do not reach the very high values of the cases where synthetic profiles are compared to
each other, even though these synthetic profiles had been noticeably corrupted; the reason is, again, that
profiles of different nature are compared here, and there exist some discrepancies between simulations
and measurements of actual aircraft that affect the identification. In spite of that, high success rates are
achieved in this section for metric Fw and Fu, although the latter needs a more precise energy threshold
selection; Fw maintains recognition rates around 80− 84%, higher average rates than Test Case I.d with
more aircraft classes and input samples to identify; therefore, it is proven that it is better to divide
trajectories into small sectors than having frames with too many HRRPs.

In Test Case I.d, it was seen that the difference between the result of the winner aircraft and the
following one for the optimum energy threshold (η = 0.4) was not sufficient to guarantee a certain
confidence degree, therefore, a similar analysis is given here to evaluate the optimum threshold for this
test case. Figure 6.31 shows for trajectory p14.0 frame 1, the evolution of Fw for different energy
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Table 6.13: Subcase II.d. Fu and Fw Recognition rates

Test Case II.d. Recognition rates varying η (%)
η Fu Fw

0.99 45.53 66.81
0.95 51.49 68.51
0.9 57.87 72.34
0.85 59.57 74.04
0.8 60.85 75.32
0.7 69.36 78.30
0.6 71.06 82.55
0.5 76.17 83.83
0.4 81.70 84.26
0.3 82.13 82.98
0.2 83.40 84.26
0.1 84.26 84.26

thresholds. As seen, unlike Test Case I.d, here, with the optimum threshold (η = 0.4) the winner aircraft
is clearly separated from the rest with a high confidence, and the same happens for other η. Nevertheless,
this is an specific example, hence to study the confidence of the results, Figure 6.32 shows the mean
difference of Fw between the winning aircraft and the next one for all the 235 input samples for every
energy threshold and its standard deviation. As seen, the best results are obtained for a value of η around
0.4 or 0.3, although between 0.7 and 0.4 the difference between the standard deviation and the mean
difference is a bit lower. Anyway, as the standard deviation is quite high for almost any η, it can be said
that in this case a threshold of η = 0.4 is appropriate for obtaining very good results as Table 6.14 shows
in form of a confusion matrix.

As seen in this confusion matrix, aircraft B747 is the one with the highest success rate, mainly due
to its bigger dimensions, and on the other hand the two Fokker, just as Test Case I.d, are the ones with
the lowest success rate, due to the similarity between their fuselages and dimensions that causes wrong
classifications.

Table 6.14: Subcase II.d. Fw Confusion matrix; η = 0.4

A310 B747 B767 F028 F100 MD88 B737 Success (%) Error (%)
A310 35 0 3 0 0 0 1 89.74 10.26
B747 0 39 1 1 0 1 0 92.86 7.14
B767 2 1 30 0 0 1 0 88.24 11.76
F028 0 0 0 31 6 1 0 81.58 18.42
F100 0 0 0 7 29 1 6 67.44 32.56
MD88 1 0 1 0 3 34 0 87.18 12.82

Average rates 84.26 15.74
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Figure 6.31: Test Case II.d. Fw partial results for F028
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Test Case II. Discussion

In Test Case II, an additional aircraft class has been included in the classification problem in both test
and training sets, resulting in an enlargement of the sets, where 6 different classes have been identified
against 7 different synthetically generated aircraft classes. The trajectories described by the aircraft have
been divided into small frames covering 2.5◦ in azimuth, so now the matrices of range profiles always
contain less than 100 HRRPs, contrary to Test Case I.

As in the previous Test Case I, an incremental study has been carried out, starting from the ideal
scenario to end with the most realistic one, where profiles of different nature and SNR would be compared.
The conclusions reached for this test case are summarized below:

- Test Case II.a has shown that the totality of the 1410 synthetic matrices of range profiles have
been correctly classified regardless of the value of the energy threshold. This was obvious after the
analysis of Test Case I but it was the first step to keep evaluating the metrics with bigger sets of
range profiles.

- After the ideal results obtained by Test Case II.a, the robustness of the metrics after adding white
gaussian noise to the test samples has been evaluated in Test Case II.b. Now, as well as in Test
Case I.b, the recognition rates have not reached 100%, since due to the noise, the signal subspace
dimensionality has broaden for every η; this change in the signal subspace dimensionality produces
the inclusion of information that in reality would belong to the noise subspace, hence degrading the
results. These obtained results have proven the importance of the energy threshold selection, and
as for Test Case I.b, this should not be set to high values. The best results have been obtained
for a threshold of η ≤ 0.8 in the case of Fw, and η ≤ 0.2 for metric Fu. Similarly to Test Case I,
results have shown that Fw provides high recognition rates and is more stable against the energy
threshold selection while Fu is more noise and energy threshold dependent. However, in this test
case, it has been proven that Fu behaves a bit better when working with smaller matrices rather
than with big ones.

- Test Case II.c has studied the robustness against profiles’ misalignment. As said before, the addition
of noise has more effect than the wrong alignment of profiles, however, this alignment is very
important and thus, its effects should be taken into account. In fact, as expected after Test Case
I, the introduction of the misalignment has caused a decrease in the optimum energy threshold,
which now has resulted in 0.4 ≥ η ≥ 0.2 for both metrics. The results given in this test case have
shown, especially, that working with small matrices of profiles performs better against TRM, since
having less profiles translates into a reduced error in their alignment.

- Lastly, the actual scenario, where actual profiles are compared with synthetic ones, agrees with the
fact that smaller matrices lead not only to better results, but also to an enlargement of the test
set, providing more confidence in the results. Fu has returned more stable results than Test Case
I.d, although it still is highly noise and threshold dependent. On the other hand, Fw, with more
input samples and aircraft classes, has achieved higher success rates than Test Case I.d (84.26%),
and also the optimum η = 0.4 provided a good confidence interval as well.

The division of trajectories into small frames with little variation in azimuth has been proven to be a
wise choice; the advantages are two-fold, on the one hand, more samples are provided to check the validity
of our algorithms, and on the other hand, information about the aircraft trajectory is still contained in
these frames.
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Test Case II has been formulated to confirm the conclusions drawn after Test Case I. After its analysis,
it can be stated that Fw is an evolution of Fu, much more stable against noise, dimensionality selection,
TRM and differences between test and training samples. The selection of the optimum energy threshold
to define the signal subspace dimensionality needs of a thorough study as the one given here and for other
sets this threshold may be different. However, Fw provides high success rates for almost any η, (although
the optimum one is, as seen, around 0.4 for this study, always providing recognition rates above 80%),
thus, it can be said that, Fw could be a good classifier even if the chosen threshold is not the optimum
one.

6.2.2. Softwheights evolution with m

In the methods previously studied , as seen, setting the subspace dimensionality is always an issue, if
the threshold is not properly selected, results may be degraded, although using metric Fw instead of Fu
will return better results even if the threshold is not optimum.

The algorithm gMSM, introduced in section 5.2.2.3, avoids selecting the subspace dimensionality by
introducing the concept of softweighting. In this algorithm, all the eigenvectors obtained take part in
the signal subspace but not with the same importance since these vectors are weighted by a transformed
value of their corresponding eigenvalues. With this concept of softweighting, there is no need to set the
subspace dimensionality in advance. Nevertheless, even though this dimensionality is not literally set,
there exist the need of selecting the optimum value of parameter m. Remember that this parameter
provides the index of the eigenvalue that will weight the rest of the eigenvalues in order to obtain the
softweights as equation 5.19 in Chapter 5 showed, and duplicated here as equation 6.2 for clarity.

ω = wm(λ) = min
[
λ

λm
, 1
]

(6.2)

The selection of this parameter is of importance since it must be noted that the higher the m is, the
more eigenvectors are treated with a softweight of 1. This implies, on the one hand, if m is very high,
algorithm gMSM gets equivalent to MSM with large dimension of subspaces; on the other hand, and highly
related to the former statement and the previous metrics, with a high value ofm, eigenvectors representing
the noise subspace may be considered as part of the signal subspace with the same importance; this can
cause the similarity between subspaces to be very close for all aircraft classes, and thus, recognition
performance can be negatively affected.

Accordingly, m is previously thought to be set to low values. In order to clarify these assumptions,
a study on the parameter m should be carried out. Firstly, m is chosen dynamically for the test and
training samples: if λi is the i-th eigenvalue out of N, m is calculated (separately for test and training
sets) according to a threshold η (0 ≤ η ≤ 1), such that:

arg min
m

(∣∣∣∣∣
m∑
i=1

λi − η ·
N∑
i=1

λi

∣∣∣∣∣
)

(6.3)

Different thresholds for test and training samples will be set (ηD and ηS respectively) and the mean
value of parameter m for both sets according to these threshold will be calculated (mD and mS). The
thresholds taken are varied equally to the study of Fu and Fw, that is, ηD and ηS will be varied from
0.1 to 0.99, with steps of 0.1 for ηD,S = 0.1, . . . , 0.8, and steps of 0.05 for ηD,S = 0.85, . . . , 0.99. The
normalization of the profiles is also accomplished by applying a L2-norm.
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6.2.2.1. Test Case I. Results

Remember that Test Case I consists on the classification of 48 different trajectories of 5 aircraft
utilizing a database of 6 synthetic aircraft. As before, an incremental study is carried out along this
whole subsection.

Test Case I.a. Synthetic Profiles Vs. Synthetic Profiles

As usual, a first ideal classification of a test set consisting of synthetic profiles is done with the purpose
of predicting the behaviour and evolution of the algorithm under review. In Figure 6.33a the tendency of
the recognition performance with the variation of m depending on η is presented for Test Case I.a where,
as noted, different thresholds for test and training samples are set. Each curve in the figure depicts the
evolution of the recognition rates according to a fixed threshold of the training set (ηS) while varying
the threshold of the test set (ηD). The equivalence between the selected ηD and ηS and parameter m
is depicted in Figure 6.33b where the mean value of the obtained parameter is given for both test and
training sets (mD and mS respectively). As expected, a higher η means a higher m and in particular in
this test case, as we are dealing with the same ideal profiles in both sets, the mean values of the respective
parameters mD and mS are basically the same.

To clarify the results given in Figure 6.33a, the corresponding recognition rates are given also in Table
6.15. Similarly to the study of Fu and Fw, this ideal case returns a perfect recognition rate independently
of the values of the softweigths. This result was expected due to the same ideal nature of both sets,
additionally, it denotes that the algorithm should be further evaluated in the subsequent sections to draw
conclusions about its performance.

Table 6.15: Subcase I.a. gMSM Recognition rates

Test Case I.a. Recognition rates varying ηD and ηS (%)
ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.95 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.85 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Figure 6.33: Test Case I.a. gMSM performance with dynamic softweights

Test Case I.b. Synthetic Profiles with AWGN Vs. Synthetic Profiles

The previous section, just as the study of Fw and Fu when evaluating Test Case I.a and II.a, does not
return a conclusion about which would be the best value of parameter m in order to create the softweights
that will control the importance of each eigenvector in the recognition process. However, it is seen that
gMSM algorithm is, at a first glance, as worth considering as Fw and Fu since when both sets of profiles
are exactly the same (synthetic profiles), recognition rates of 100% are reached.

Test Case I.b is thought to evaluate the robustness of the algorithm against unwanted information
that profiles may have, more specifically against noise. So, by adding AWGN to the test set and applying
the same sweep of thresholds ηD and ηS as in Test Case I.a, the recognition rates obtained for this
experiment are shown in Figure 6.34 and its corresponding subfigures.

The mean value of the corresponding m for each value of SNR is given in Figure 6.35 where, as can
be appreciated, the noisier the test set, the higher the parameter value for a given threshold. For the
training set, as it is not applied any additional effect, that is, it is just formed by the synthetic profiles,
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the same mean values of mS as the previous subcase are obtained.

As expected, the higher the value of the SNR, the best results are returned; with SNR = 10 dB, the
success rates are always above 95% and the best results are obtained for thresholds ηD ≤ ηS .

The addition of noise causes a degradation of the test set and therefore, as happened in the experiments
of section 6.2.1, where for the same energy threshold, the subspace dimensionality became larger when
adding noise, here, this is translated into a higher m and hence, into a bigger number of softweights with
a value of 1, just as Figure 6.35 depicts. Therefore, selecting smaller thresholds will mean that a smaller
number of softweights are equal to 1 and thus, their eigenvectors are not all considered equally important.
When changing the SNR to 5 dB, a degradation in the recognition rates takes place, just as section 6.2.1.
Figure 6.34b and Table 6.17 illustrate this fact, where now, despite this degradation, the recognition rates
still maintain a very high percentage of success, overall, above 94%. As said, the thresholds should be
diminished in order to prevent the effect of the noise. In any case, keeping both thresholds at the same
value also returns very good recognition rates, and if the threshold of the test set is set smaller than the
threshold of the training set the best recognition results can be achieved, that is, ηD ≤ ηS .

Continuing with the noise degradation, Figures 6.34c 6.34d and their corresponding Tables 6.18 and
6.19 contain, respectively, the algorithm results for SNR = 0 dB and SNR = -5 dB. In both cases the
best results are obtained for the threshold ηD = 0.5 and for different values of ηS , although, obviously
the rates are a bit worse for SNR = -5 dB (97.92%). The tendency of obtaining good results when both
thresholds are set to equal values still holds but apparently, when the noise is very high (negative SNR),
selecting high thresholds to calculate m is not a good option (the obtained recognition rate when both
ηD and ηS are 0.99 is 89.17% when the SNR is -10 dB). It seems that selecting a ηD ≤ ηS is more obvious
in that case, and setting ηD around 0.5 is the best option. Lastly, Figure 6.34e and Table 6.20 show the
results for the last value of SNR, here the profiles of the test set are highly degraded by the noise and
consequently, so are their eigenvalues and eigenvectors. One more time, the effect of the noise causes the
energy threshold of the test set to diminish in order to obtain the best recognition results.

After this noise evaluation, it can be said that this algorithm is quite robust against it only if the
selection of parameter m is appropriate. Regarding the value of this parameter, it has been seen that
the higher the contamination of the test set, the smaller its corresponding mD should be, and regarding
mS , since the training set is not affected by the unwanted noise, the bet results are usually obtained for
a value of ηS around 0.9, which corresponds to a mean value of mS ∼ 5.

Very good recognition rates are obtained in general for this algorithm. For this same test case, Fu
and Fw achieved also really good recognition results, however, gMSM outperforms those results in the
cases of poor SNR considering the appropriate energy threshold selection for each algorithm.

For example, recall the best situation where SNR = 10 dB, it was shown that the best results for
these two metrics Fu and Fw were 99.58% and 99.17% respectively, on the other hand, applying gMSM
as a classifier, success rates of 99.17% are reached, just as Fw. On the other hand, in the worst situation
(SNR = -10 dB), Fu and Fw with their optimum energy threshold reached success rates of 95% and 92.92%
respectively, good results also, but gMSM improves these results since it obtains a 97.50% of success.
Therefore, apparently gMSM exhibits a higher robustness against noise than the other two algorithms.
Regarding the tolerance to the threshold selection, it was shown for this very same test case, that Fu
was highly affected by a wrong selection of this threshold while Fw could achieve fairly good results even
with a non-optimum one. For the case being, gMSM can also reach fairly good results with non-optimum
thresholds, similarly to metric Fw; however, for the best results the thresholds should follow ηD ≤ ηS .
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Table 6.16: Subcase I.b. gMSM Recognition rates - SNR = 10 dB

Test Case I.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=10dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 97.08 96.25 96.25 96.67 96.67 96.67 95.42 95.83 96.67 95.42 95.83 95.00
0.95 97.92 97.50 97.92 98.33 98.33 97.92 96.67 95.83 96.67 97.08 95.83 96.25
0.9 98.75 98.33 98.33 98.33 98.33 97.92 96.67 97.08 97.50 97.50 96.25 96.67
0.85 97.50 98.75 98.75 97.92 97.92 98.33 97.50 97.50 97.08 97.08 97.50 96.67
0.8 98.33 97.92 98.33 98.33 98.33 99.17 97.50 97.50 96.67 97.08 97.92 97.50
0.7 98.75 98.75 98.75 98.33 98.33 98.33 97.92 97.50 98.33 97.92 97.50 97.92
0.6 99.17 98.75 98.33 98.33 98.33 99.17 98.33 99.17 97.50 98.33 98.33 97.50
0.5 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.33 97.50 97.50
0.4 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.33 97.92
0.3 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.33 97.92
0.2 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.33 98.33 98.33 98.33
0.1 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.33 98.33 98.33

Table 6.17: Subcase I.b. gMSM Recognition rates - SNR = 5 dB

Test Case I.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=5dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 95.00 94.58 94.58 94.17 94.58 94.58 93.33 93.33 92.92 93.33 93.75 94.58
0.95 96.25 96.67 96.67 95.83 95.42 96.67 95.42 95.42 95.42 95.00 94.17 94.17
0.9 96.67 96.67 95.83 95.83 96.25 96.67 95.83 95.83 95.00 95.42 95.42 95.42
0.85 96.25 96.67 95.83 96.25 97.08 96.25 95.83 96.25 96.25 96.25 95.83 95.42
0.8 96.25 97.92 97.08 97.08 97.08 97.08 96.25 96.25 95.83 95.42 95.42 96.25
0.7 98.75 99.17 98.75 97.92 97.50 97.50 97.50 96.67 96.25 95.42 96.25 96.25
0.6 98.75 97.92 98.75 98.75 98.75 98.33 97.92 96.67 97.08 97.08 97.92 96.25
0.5 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.33 98.33 97.08 97.08 96.67
0.4 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.33 97.92 97.50
0.3 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.33 98.75 98.33 98.33 98.33
0.2 98.33 98.33 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 97.92 98.33
0.1 98.33 98.75 98.33 98.75 98.75 98.75 98.75 98.75 98.75 98.33 97.92 97.92
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Figure 6.34: Test Case I.b. gMSM performance with dynamic softweights for different SNR
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Table 6.18: Subcase I.b. gMSM Recognition rates - SNR = 0 dB

Test Case I.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=0dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 93.33 92.92 93.75 93.33 93.75 93.33 92.50 92.08 91.67 91.67 90.42 90.83
0.95 92.08 92.92 93.33 92.92 92.50 92.92 91.67 91.25 91.25 91.25 91.67 92.08
0.9 94.58 93.33 94.17 94.58 94.58 94.17 94.17 95.00 92.92 93.33 92.08 92.50
0.85 95.00 94.17 94.17 95.83 95.00 95.00 94.58 95.00 94.17 93.75 93.33 94.17
0.8 95.00 94.17 94.17 95.00 95.00 94.58 94.58 94.17 93.33 94.17 93.75 92.50
0.7 96.25 96.25 95.83 96.25 96.25 95.83 95.00 95.42 95.00 93.75 94.17 93.75
0.6 97.92 97.50 97.08 97.92 98.33 97.50 97.08 96.25 95.00 95.42 95.00 95.42
0.5 98.33 98.33 98.33 98.33 98.33 98.33 97.92 98.33 97.50 96.25 95.00 94.17
0.4 98.33 98.33 98.33 98.33 98.33 98.33 98.33 98.33 98.33 97.50 96.67 96.25
0.3 97.08 97.92 98.33 98.33 98.33 98.33 97.92 97.92 97.92 97.08 96.67 97.08
0.2 96.67 97.92 98.33 98.33 98.33 98.33 97.50 97.92 97.92 97.08 97.08 97.92
0.1 97.50 97.92 98.33 98.33 98.33 98.33 97.92 97.92 97.92 97.50 97.08 97.50
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Table 6.19: Subcase I.b. gMSM Recognition rates - SNR = -5 dB

Test Case I.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=−5dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 91.25 92.92 91.67 91.25 92.08 91.25 91.67 90.42 90.00 89.58 90.83 87.50
0.95 92.50 92.50 93.33 92.50 92.50 91.25 90.00 89.58 90.00 88.75 90.00 90.42
0.9 90.42 92.08 92.08 92.08 90.83 90.42 92.08 89.17 89.17 87.92 88.33 89.17
0.85 92.50 92.50 91.67 92.50 92.08 91.67 91.67 90.42 89.58 88.33 90.42 90.42
0.8 91.67 92.92 91.25 92.50 91.25 92.08 92.08 91.67 90.42 91.25 89.17 91.25
0.7 95.00 95.00 93.75 94.58 93.75 93.75 93.33 91.67 90.42 90.83 90.00 91.67
0.6 97.50 96.25 96.67 96.25 94.58 95.83 94.58 93.33 91.25 91.67 90.83 91.25
0.5 97.92 97.92 97.92 97.92 97.92 97.50 96.67 95.83 94.17 94.17 93.33 92.50
0.4 97.08 97.50 97.50 97.08 97.08 97.50 97.08 96.67 95.83 95.42 95.42 95.42
0.3 94.58 96.67 96.67 96.25 96.67 96.67 96.25 95.83 95.42 95.00 94.17 94.58
0.2 95.42 96.67 96.67 96.67 96.67 96.67 96.25 95.83 95.42 95.83 94.58 94.58
0.1 95.00 96.67 96.67 96.67 96.67 96.67 96.25 95.83 95.42 95.00 94.17 94.17

Table 6.20: Subcase I.b. gMSM Recognition rates - SNR = -10 dB

Test Case I.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=−10dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 89.17 90.00 90.00 88.75 89.58 90.42 88.33 87.92 88.33 86.67 88.33 85.42
0.95 85.83 90.00 89.17 90.00 89.58 88.75 87.50 87.92 88.33 85.42 85.83 87.92
0.9 87.50 90.83 90.00 90.83 89.58 90.83 90.42 87.92 87.08 87.50 87.92 87.50
0.85 87.92 92.08 90.42 90.00 89.58 90.00 89.58 90.00 88.33 86.25 87.92 87.50
0.8 87.50 88.75 88.75 91.67 89.17 90.00 90.00 87.92 87.50 86.25 86.25 89.58
0.7 87.08 90.42 89.58 88.75 87.50 88.33 90.42 88.75 88.33 88.33 88.75 86.25
0.6 91.25 91.67 92.92 92.08 92.08 90.42 88.75 88.33 88.33 85.83 86.25 86.25
0.5 94.58 95.83 97.50 96.67 97.08 95.83 92.50 90.42 88.75 85.42 85.00 85.42
0.4 85.00 89.17 92.92 92.50 93.33 92.50 91.67 90.83 89.58 89.58 89.58 89.17
0.3 84.17 89.58 91.25 92.50 94.17 92.92 91.67 90.42 90.00 90.00 90.00 89.58
0.2 83.75 89.17 91.67 92.92 92.92 92.50 91.67 90.83 90.83 90.00 89.58 90.42
0.1 84.58 90.00 90.83 92.92 92.92 92.50 92.50 91.25 89.58 90.00 89.58 89.58
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Test Case I.c. Synthetic misaligned Profiles with AWGN Vs. Synthetic Profiles

After the evaluation of the behaviour of gMSM against noise, it was seen that even though the noise
affects negatively the recognition results, keeping ηD ≤ ηS could bring to good recognition rates and
when these are set to their optimum value, the results can outperform those obtained with the previously
studied metrics, Fu and Fw. In this section, additional misalignment is applied in order to keep evaluating
the effects of perturbing the profiles in the recognition performance of gMSM algorithm . As it was shown
in section 6.2.1, the effect of profiles’ misalignment is less relevant in the obtained results than the addition
of noise, but it is really important to study it in depth since the profiles’ alignment is a critical point
during the recognition process.

In Figure 6.36 and its subfigures, the recognition performance of gMSM algorithm changing the value
of the softweights according to ηD and ηS is given, and in Figure 6.37 the corresponding mean value of the
obtained mD and mS is depicted. At fist sight, there is almost no difference in recognition performance
and mean m between Test Case I.b and c. However, although slightly, the recognition results have been
altered due to the profiles’ misalignment. Tables 6.21 to 6.25 present this almost negligible difference in
the recognition performance. As these tables illustrate, the recognition rates obtained for the optimum
thresholds have experienced a reduction, and not only that, but also these optimum thresholds have
changed from Test Case I.b. The analysis of Table 6.21 reveals that the addition of a little misalignment
of profiles when SNR = 10 dB has caused a reduction in the best recognition rates from 99.17% to 97.8%
and also, for obtaining these values, the energy thresholds have been also degraded, while Test Case I.b
obtained the best success rate for ηS = 0.99 and ηD = 0.6, now, with an additional unwanted effect, the
optimum thresholds are ηS = 0.9 and ηD ≤ 0.4. When the SNR is 5 dB, the best success rate obtained is
96.25% with selected thresholds ηS = 0.95 and ηD = 0.4, 3 percentage points less than Test Case I.b and
also with a reduction of one of the thresholds (ηD). In the case when the AWGN provides SNR = 0 dB
the best recognition rates (95.42%) are obtained for an even more reduced value of thresholds (ηS = 0.8
and ηD ≤ 0.3), which gives us the idea that the more corrupted the test set is, the lesser the value of
parameter m should be to get the best results. Getting into the negative values of SNR, it is found that
for SNR = -5 dB the results of Test Case I.b have been reduced until obtaining a success rate of 94.58%
when ηS = 0.7 and ηD ≤ 0.3, and finally the worst case of SNR returns a recognition rate of 89.58% of
success when ηS = 0.9 and ηD = 0.5. In this last case, the effect of the profiles’ misalignment is clearly
significant, since even if the rule of setting ηD ≤ ηS is followed, the performance of the algorithm is not
as good as expected, anyway, the study of metrics Fu and Fw showed a similar tendency in Test Case I.c
with SNR = -10 dB, where the performance of both algorithms experienced a significant drop.

Similar to the aforementioned metrics, not only the success rates have suffered a reduction, but also
the threshold for selecting the optimum m. After evaluating the behaviour of the system with ideal
scenarios, it is clear that ηD ≤ ηS , since the test set is the one with the additional unwanted information
and therefore, the one with distorted eigenvalues and eigenvectors. It can be said that, generally, taking
0.4 ≥ ηD ≥ 0.1 and 0.9 ≥ ηS ≥ 0.6 good recognition results are expected even if the profiles in the
input are very corrupted. The corresponding mD and mS mean values seen in Figure 6.37 would be
1.33 ≥ mD ≥ 1 and 5.23 ≥ mS ≥ 2.91 for the best case (SNR = 10 dB). As seen, the noisier the input,
the closer mD should be set to 1, which is quite related to the case of Fu and Fw. Remember that with
those algorithms when the input was really corrupted, the energy threshold had to be set to very low
values, meaning that very few singular vectors would form the subspace. In gMSM, it means that very
few eigenvectors will have the same importance while the rest will be getting less relevance proportionally
to the selected m-th eigenvalue.
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Table 6.21: Subcase I.c. gMSM Recognition rates - SNR = 10 dB

Test Case I.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=10dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 89.58 87.92 87.92 87.92 88.33 89.17 89.17 89.58 88.75 87.92 88.33 88.33
0.95 91.25 92.92 92.92 90.83 89.17 89.58 88.75 89.58 90.00 89.58 89.58 89.58
0.9 92.08 93.33 94.17 93.75 92.08 90.83 91.25 90.83 90.83 90.42 90.42 90.42
0.85 92.50 93.75 94.17 91.67 92.08 91.67 91.67 91.25 90.42 90.42 90.42 90.42
0.8 91.67 93.33 94.17 93.33 93.33 92.08 92.50 92.50 91.25 90.83 91.25 91.25
0.7 93.75 95.00 95.42 94.17 94.17 93.75 93.75 92.50 91.67 91.25 91.67 91.67
0.6 93.33 95.83 95.42 95.00 94.58 94.58 94.58 92.50 92.08 92.08 91.67 91.67
0.5 93.75 95.83 95.83 95.83 95.42 95.00 95.42 94.58 93.75 92.92 92.50 92.08
0.4 94.58 96.25 97.08 96.25 95.42 95.42 96.67 95.42 94.58 93.75 92.50 92.50
0.3 94.58 96.25 97.08 96.25 95.83 96.25 97.08 95.83 95.00 94.58 94.17 94.17
0.2 94.58 96.25 97.08 96.25 95.83 96.25 97.08 95.83 95.00 94.58 94.17 94.17
0.1 94.58 96.25 97.08 96.25 95.83 96.25 97.08 95.83 95.00 94.58 94.17 94.17

Table 6.22: Subcase I.c. gMSM Recognition rates - SNR = 5 dB

Test Case I.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=5dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 88.75 86.67 86.67 85.83 86.25 86.25 85.42 85.83 86.67 87.08 86.67 86.67
0.95 90.42 89.17 90.00 89.17 88.33 88.75 88.33 88.75 88.33 87.92 87.50 87.50
0.9 90.83 91.25 92.08 91.25 90.00 90.00 89.58 90.42 88.75 88.75 89.17 89.17
0.85 91.67 91.67 93.33 91.67 91.25 90.83 91.25 90.83 89.58 90.00 90.00 90.00
0.8 90.83 91.67 92.08 91.67 92.08 92.50 92.50 91.67 90.83 90.83 91.25 91.25
0.7 92.08 92.50 92.50 92.08 92.92 92.08 92.92 91.25 90.83 90.00 90.42 90.42
0.6 93.75 95.00 94.17 92.92 93.75 92.50 92.50 92.50 91.25 91.25 90.83 91.25
0.5 93.75 95.42 94.58 93.75 94.17 92.92 93.33 93.75 92.50 91.67 92.92 93.33
0.4 93.75 96.25 95.00 94.17 93.75 93.33 93.75 94.58 93.33 92.08 92.92 93.33
0.3 93.33 95.83 95.00 95.00 94.58 95.42 94.58 95.00 94.17 93.33 93.33 93.33
0.2 93.33 95.42 95.00 95.00 94.58 95.42 94.58 95.00 94.17 93.33 93.33 93.33
0.1 93.33 95.42 95.00 95.00 94.58 95.42 94.58 95.00 94.17 93.33 93.33 93.33
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Figure 6.36: Test Case I.c. gMSM performance with dynamic softweights for different SNR
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Table 6.23: Subcase I.c. gMSM Recognition rates - SNR = 0 dB

Test Case I.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=0dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 85.83 84.58 85.00 86.25 87.50 87.92 88.75 87.50 87.08 86.67 86.25 86.25
0.95 86.25 86.67 86.67 86.25 87.50 87.50 88.33 87.92 85.83 86.25 86.25 86.25
0.9 88.33 87.50 87.92 88.33 90.00 88.75 89.17 88.33 86.25 86.25 85.83 85.83
0.85 89.58 90.00 88.33 89.17 90.42 90.83 90.42 89.58 88.75 89.17 89.58 89.58
0.8 90.00 90.83 90.00 90.83 90.83 90.83 90.42 90.00 88.75 88.75 89.17 89.17
0.7 90.42 90.83 90.42 91.67 91.67 91.67 92.92 91.67 88.33 89.17 88.75 88.75
0.6 93.33 92.50 92.92 93.33 92.50 92.08 92.92 90.83 89.58 90.42 89.58 89.17
0.5 92.92 93.75 95.00 94.58 93.75 94.17 93.75 91.25 91.67 91.25 90.42 90.42
0.4 93.33 94.58 95.00 94.58 93.75 94.17 93.75 91.67 91.67 90.83 90.00 90.00
0.3 92.50 94.17 94.58 95.00 95.42 94.58 93.33 92.08 92.50 91.67 90.83 91.67
0.2 92.50 94.17 94.58 95.00 95.42 94.58 93.33 92.08 92.50 91.67 90.83 91.67
0.1 92.50 94.17 94.58 95.00 95.42 94.58 93.33 92.08 92.50 91.67 90.83 91.67
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Table 6.24: Subcase I.c. gMSM Recognition rates - SNR = -5 dB

Test Case I.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=−5dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 83.33 84.58 84.17 82.92 83.75 84.17 83.75 82.92 83.33 82.50 82.50 82.50
0.95 82.50 84.17 85.00 82.92 82.92 83.33 84.17 82.50 83.33 82.92 82.92 82.92
0.9 84.17 86.67 85.83 83.75 84.17 84.17 84.58 83.33 83.33 83.33 82.92 82.92
0.85 82.92 85.00 84.58 83.33 83.33 84.17 84.58 84.58 85.83 85.00 85.00 85.00
0.8 82.50 84.58 85.42 83.75 84.58 85.83 86.67 86.67 87.08 84.58 84.17 84.17
0.7 87.08 87.92 87.92 87.50 87.50 89.58 89.17 87.92 88.75 86.25 85.83 85.83
0.6 90.00 91.25 90.83 90.42 90.42 90.00 91.25 90.00 89.17 88.33 88.33 88.33
0.5 90.00 92.08 92.92 92.50 94.17 92.50 92.50 89.58 89.17 87.92 87.50 87.92
0.4 89.58 92.08 92.92 93.75 94.17 93.33 92.50 90.00 88.75 87.50 86.67 87.08
0.3 89.17 92.50 92.92 93.75 93.75 94.58 93.75 90.42 89.17 88.75 86.25 86.67
0.2 89.17 92.50 92.92 93.75 93.75 94.58 93.75 90.42 89.17 88.75 86.25 86.67
0.1 89.17 92.50 92.92 93.75 93.75 94.58 93.75 90.42 89.17 88.75 86.25 86.67

Table 6.25: Subcase I.c. gMSM Recognition rates - SNR = -10 dB

Test Case I.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=−10dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 67.92 72.92 70.00 71.25 70.83 72.08 73.75 74.17 71.67 70.42 71.67 72.08
0.95 69.17 73.33 70.83 72.08 70.83 72.08 74.17 74.17 71.67 71.67 72.08 72.50
0.9 68.75 72.92 71.67 72.08 71.67 74.17 75.00 74.17 71.67 70.83 71.67 72.08
0.85 69.17 73.33 72.92 72.50 72.08 75.00 75.83 74.58 72.92 73.33 72.50 73.33
0.8 69.58 73.33 73.75 72.08 73.75 74.58 76.25 75.42 73.75 73.33 73.33 74.17
0.7 70.00 74.17 75.00 74.17 75.42 76.67 77.50 76.25 75.83 74.58 74.17 75.00
0.6 74.17 77.08 77.92 75.00 75.83 78.33 79.17 76.25 75.00 75.42 75.00 75.42
0.5 84.58 87.50 89.58 87.08 87.50 86.25 85.00 82.92 80.00 78.33 76.25 76.67
0.4 68.33 74.58 79.17 81.67 82.08 81.67 81.25 79.17 75.83 74.58 72.50 72.08
0.3 68.33 74.17 79.17 81.67 82.08 81.67 81.25 78.75 75.42 74.17 72.50 72.08
0.2 68.33 74.17 79.17 81.67 82.08 81.67 81.25 78.75 75.42 74.17 72.50 72.08
0.1 68.33 74.17 79.17 81.67 82.08 81.67 81.25 78.75 75.42 74.17 72.50 72.08



114 Chapter 6. Experiments and Results

Test Case I.d. Actual Profiles Vs. Synthetic Profiles

As previously done with Fu and Fw in section 6.2.1.1, the evaluation of gMSM algorithm in a more
realistic scenario is evaluated in this section. In the preceding subsections, it has been seen that just as
Fw, gMSM is quite robust against noise but unlike this metric, the energy threshold that controls the
softweighting parameter, m, should be selected more carefully. Indeed, the thresholds should follow the
rule: ηD ≤ ηS , and just as the previous subcase c showed, good recognition results will be expected for
0.4 ≥ ηD ≥ 0.1 and 0.9 ≥ ηS ≥ 0.6 despite having corrupted profiles as input samples.

Figure 6.38a illustrates the obtained success rates for every value of ηD and ηS when classifying
actual range profiles with a database of synthetic profiles and Table 6.26 gathers these success rates;
their corresponding mean values of parameter m are depicted in Figure 6.38b. Just as occurred with the
prior metrics, the results of this Test Case I.d noticeably differ from the ones obtained in Test Case I.a
to c due to the fact that now the input samples and the database of potential targets strongly deviate.
Remember that on the one hand, the electromagnetic simulation did not account for every scattering
effect that may occur in an actual measurement and the models utilized to run these simulations are
rough replicas of real aircraft, and on the other hand, the aspect angles of the actual measurement and
the ones utilized for the synthetic profiles may not be exactly the same since these angles have been
predicted from the measurement.

Nevertheless, the gMSM algorithm reaches recognition rates of almost 80% when actual profiles are
compared with synthetic ones, like metrics Fu and Fw. More specifically, for example, setting both
thresholds to 0.5 returns a success rate of 79.17%. The statement that ηD should be set such that its
value is equal of smaller than ηS to obtain good results remains true. As expected, good recognition
results are obtained for 0.4 ≥ ηD ≥ 0.1 but on the contrary, the best results are not returned for
0.9 ≥ ηS ≥ 0.6 but for ηS ≤ 0.6 which translates, according to Figure 6.38b in a mean value of parameter
m of 1.06 ≥ mD ≥ 1 and mS ≤ 2.27. That is, the higher the difference between input and database, the
lower the value of parameter m should be set.

Table 6.26: Subcase I.d. gMSM Recognition rates

Test Case I.d. Recognition rates varying ηD and ηS (%)
ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 68.75 72.92 72.92 72.92 77.08 75.00 72.92 72.92 70.83 70.83 70.83 70.83
0.95 70.83 72.92 72.92 72.92 72.92 70.83 68.75 68.75 68.75 68.75 68.75 68.75
0.9 70.83 75.00 72.92 72.92 70.83 72.92 72.92 75.00 75.00 75.00 75.00 75.00
0.85 70.83 79.17 72.92 79.17 72.92 75.00 72.92 77.08 72.92 75.00 75.00 75.00
0.8 68.75 77.08 75.00 75.00 70.83 70.83 70.83 68.75 66.67 72.92 72.92 72.92
0.7 64.58 79.17 75.00 75.00 75.00 70.83 75.00 79.17 70.83 75.00 75.00 75.00
0.6 62.50 70.83 72.92 75.00 75.00 68.75 72.92 72.92 64.58 72.92 70.83 70.83
0.5 60.42 60.42 66.67 72.92 75.00 72.92 75.00 79.17 70.83 75.00 75.00 75.00
0.4 60.42 60.42 66.67 70.83 70.83 68.75 72.92 79.17 72.92 75.00 77.08 77.08
0.3 60.42 60.42 66.67 70.83 70.83 68.75 72.92 79.17 72.92 75.00 77.08 77.08
0.2 60.42 60.42 66.67 70.83 70.83 68.75 72.92 79.17 72.92 75.00 77.08 77.08
0.1 60.42 60.42 66.67 70.83 70.83 68.75 72.92 79.17 72.92 75.00 77.08 77.08
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Figure 6.38: Test Case I.d. gMSM performance with dynamic softweights

Regarding the confidence in the recognized aircraft, as before, Figure 6.39 depicts the mean difference
between the similarities of the winning aircraft, calculated taking into account the maximum value that
gMSM can reach for each threshold. As the graphic presents, the highest mean difference between the
winner aircraft and the next is achieved for the thresholds ηS ≤ 0.4 and ηD = 0.8; however, these
thresholds do not meet the rule ηD ≤ ηS . Checking the values of ηD and ηS which return the best
recognition rates, the combinations that not only achieve the best recognition rate, but also an acceptable
confidence degree in the results is ηS ≤ 0.4 and ηD ≤ ηS , which corresponds to a mean value of both
parameters mD and mS very close to 1. Thus, as said, the higher the difference between input and
database, the lower the value of parameter m should be set.

The tuning of parameter m adds computational cost to the algorithm, thus, in order to present a faster
and more general algorithm with no need to be tuned every time a new test/training sample is introduced,
m is eventually wished to be set to a fixed value for all the input samples and the database. Thus,
according to the study made along this whole section, the best option would be to select mD = mS = 1,
and with these values the algorithm gives the following results, presented in Table 6.27 in form of a
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confusion matrix. As usual, the aircraft with the worst recognition rates are the two Fokker and the best
rates are obtained for the two bigger aircraft, B747 and B767. The total average recognition rate obtained
for gMSM in this Test Case I.d is 77.08%, in contrast, the confusion matrix of Table 6.8, seen in section
6.2.1 showed that with its optimum energy threshold (η = 0.5), Fw algorithm returned a total average
recognition rate of 72.92%. Therefore, gMSM seems to outperform Fw, especially in the identification of
aircraft A310 and F100 where it has achieved a better recognition rate. Nevertheless, as only 48 input
samples are present, the results are only a first prediction of the algorithm performance.
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Figure 6.39: Test Case I.d. gMSM mean difference between aircraft similarities

Table 6.27: Subcase I.d. gMSM Confusion matrix; mD = mS = 1

A310 B747 B767 F028 F100 B737 Success (%) Error (%)
A310 4 0 0 0 0 0 100.0 0.00
B747 1 8 1 0 0 0 80.00 20.00
B767 2 0 9 0 0 0 81.82 18.18
F028 0 0 0 9 3 1 69.23 30.77
F100 0 0 0 0 7 3 70.00 30.00

Average rates 77.08 22.92

Test Case I. Discussion

Along this Test Case I, the behaviour of gMSM when classifying large sets of range profiles as input
samples has been reviewed. Note that only 48 different frames of different aircraft have been utilized
along the experiments of this test case, where for the first three subcases the input samples ascend to 240,
since 48 frames of 5 synthetic aircraft are considered, while for the last subcase only 48 input samples
are classified, each belonging to a specific actual flying aircraft. However, just as said in the discussion
of section 6.2.1.1, the number of input samples utilized for these experiments is not enough to draw firm
conclusions about the quality of an algorithm, but it helps us understand its operation. Therefore, after
the study of Test Cases I .a to .d, the following observations can be made:
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- First, Test Case I.a has studied the ideal case of classifying synthetic profiles by means of a database
populated with the same synthetic profiles. After the study of algorithms Fu and Fw, that returned
a 100% of success rates independently of the energy threshold selected, the achievement of the same
ideal results was expected. As foreseen, gMSM has also classified every test sample correctly.

- Taking into account the previous result, for Test Case I.b, where now the input samples have been
modified with noise, poorer average recognition rates were expected. Note that the addition of noise
causes a degradation of the test set samples and therefore, their eigendecomposition will differ from
the ideal case, corrupting the eigenvectors with unwanted information and also the eigenvalues, in
fact, it has been seen that the noisier the test set gets, the higher mD

9 is for a given threshold.

In this subcase it was observed that when adding noise a degradation of the recognition rates is
experienced, just as the previous metrics, but contrary to what was previously thought, better
recognition rates are obtained in general for this algorithm in comparison with Fu and Fw consider-
ing the appropriate energy threshold for each of the algorithms. However, gMSM is still affected by
the softweighting, since in contrast to Fu and Fw two thresholds control the value of the softweights.
As seen, as long as ηD ≤ ηS the results show a high level of success even if the thresholds are not
the optimum, similar to Fw. This translates into trying to keep mD similar to mS and hence, into
having a similar number of eigenvectors in the subspaces with a softweight of 1.

- After checking the robustness against noise and seeing that gMSM can be quite robust against it
as long as ηD ≤ ηS in principle, Test Case I.c has evaluated an additional corrupting effect, the
slightly wrong alignment of the range profiles of the test set, that is, the effect of TRM. It has been
seen that even though the effect of noise is more relevant, a little misalignment in the range profiles
causes also a degradation in the obtained results. However, a great reduction is not experienced
in the recognition rates but in the optimum thresholds, and hence, in the optimum mD and mS .
One more time, this is due to the fact that the eigenvectors and eigenvalues get more distorted and
setting the same threshold as before means a different value of parameter mD; as noted earlier, the
tendency of this algorithm is keeping mD similar to mS .

In comparison with Fu and Fw, since they are all based in the same principles, gMSM keeps the
tendency of these metrics of reducing the thresholds ηD and ηS as the input gets sequentially
distorted. Nevertheless, the gMSM algorithm seems to slightly outperform the recognition rates,
not only for the optimum thresholds but also for the thresholds that follow the rule ηD ≤ ηS .

- Lastly, the final evaluation of gMSM facing the recognition of actual profiles by means of a synthetic
database has been provided in Test Case I.d. As expected, since the datasets are highly dissimilar,
just as happened in the evaluation of Fu and Fw the results have been not as high as the other test
cases. Nevertheless, it reaches recognition rates of almost 80%, similarly to Fw evaluated in the
same test case, although gMSM outperforms the latter.

As before, Test Case I has provided a first evaluation of gMSM algorithm, showing that good recog-
nition results can be achieved with a proper value of softweights. The gMSM algorithm can be highly
affected by the softweights value, but it has been noted that ηD should be set such that its value is equal
to or smaller than ηS to obtain good results and also that the higher the difference between the database
and the test set, the smaller these values should be set.

Next Test Case II will provide more confidence in the results since the database and the number of
test samples will be expanded. However, after this study it can be concluded that gMSM seems to be
robust against noise, achieving high success rates.

9mS will not change with respect to Test Case I.a since no noise is added to the synthetic profiles of the training set
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6.2.2.2. Test Case II. Results

In order to keep evaluating gMSM, a new aircraft model is added to both the test and training set,
so now the test set comprises profiles of 6 different aircraft while the database is composed of profiles
of 7 aircraft models. Remember also that now more trajectories are included in the study and they are
divided into small frames that cover a variation of 2.5◦ in azimuth, resulting in a total number of 235
frames available for classification. As in section 6.2.1.2, Test Cases II.a to c contain 1410 matrices of
simulated range profiles in the test set while Test Case II.d, contains only the actual 235 matrices of
measured range profiles.

Test Case II.a. Synthetic Profiles Vs. Synthetic Profiles

The ideal case of identifying test samples that come from simulations, that is, synthetic profiles with
a database of profiles of the same nature, returned in Test Case I.a the ideal result of a 100% of success
rate regardless of the selected thresholds (ηD and ηS). Therefore, for this subcase the same ideal results
are expected. Indeed, with the expansion of samples in this Test Case II.a. those results are achieved as
Table 6.28 and Figure 6.40a shows. This fact denotes that expanding the database and the samples do
not influence negatively in the results but still provide the perfect recognition performance.

Note that, in comparison with Test Case I.a. the mean value of parameterm for the different thresholds
has been reduced, Figure 6.33b showed a mean value of both mS and mD very near to 10 when their
respective thresholds were set to 0.99, and now for the same thresholds, as Figure 6.40b depicts, the
returned mean values are around 4. The reason for this reduction is simple, the number of profiles that
compose a frame in this test case is much lower than the previous test case, therefore, the application of
the eigendecomposition will return less eigenvectors and hence, their energy will be distributed differently.

The analysis of this first ideal subcase shows that by reducing the number of profiles that compose
a frame, the recognition performance of the algorithm still return the ideal good recognition rates as
the previous Test Case I.a. This way, it encourages the further study of the different subcases to keep
assessing the algorithm and the conclusions drawn in the previous test cases.
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Table 6.28: Subcase II.a. gMSM Recognition rates

Test Case II.a. Recognition rates varying ηD and ηS (%)
ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.95 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.85 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Test Case II.b. Synthetic Profiles with AWGN Vs. Synthetic Profiles

The behaviour of algorithm gMSM under an ideal scenario with test samples consisting on frames of
a few profiles has been evaluated in the previous subcase where very good recognition rates have been
obtained. Now it is the turn to evaluate the operation of the algorithm under the effect of noise and
check if the success rates deteriorate with the same tendency as Test Case I.b or if, on the contrary, the
reduction of the number of profiles that form a frame influences positively in these results.

Equally to the previous Test Case I.b, AWGN is added to the test set resulting in different values of
SNR, and both parameters mD and mS are varied according to their corresponding energy thresholds
ηD and ηS . The recognition rates obtained for the different values of SNR of this experiment are shown
in Figure 6.41 and its corresponding subfigures. The mean value of the corresponding mD and mS for
each value of SNR is also given in Figure 6.42, where as expected, the mean value of the softweighting
parameters increases with the increment of the noise; as it can be seen in the figure, the value of both
mS and mD rapidly reach the mean value of 1 with the decrease of their respective energy threshold.

A first glance of Figures 6.41a to 6.41e leads to the idea that a reduction in the size of the test
samples have resulted in very good recognition rates independently of the selected energy thresholds;
these figures show, for a given value of ηS a quite uniform tendency with the change of ηD, and when
SNR is positive these rates are always above 90%. As expected, the more noise added to the test set,
the worse the recognition performance of the algorithm, as Figure 6.41e and its corresponding Table 6.33
show where the added noise is very corrupting (SNR = -10 dB). In fact, the best recognition results
drop from 98.37% for a SNR = 10 dB to 88.01% for the worst case (SNR = -10 dB), while the worst
recognition rates obtained reach the values 97.09% for the best case and 77.38% for the worst case, as
Tables 6.29 and 6.33 show respectively.

One interesting property is appreciated, since now the results seem to be less influenced by the value of
the thresholds, the rule ηD ≤ ηS still holds for good results, however when the noise is highly corrupting
(SNR = -10 dB), the best results are not achieved under that assumption but for ηD ≥ 0.6, independently
of ηS , as Figure 6.41e and its corresponding Table 6.33 portray. The assumption that ηD ≤ ηS was of
great importance in the previous Test Case I since, as in that case more profiles are considered in each
frame of a test sample, an increment in ηD implied a high increment in mD, especially when SNR =
-10 dB. Here, as there are less profiles in a test sample, there are less eigenvectors and hence, although an
increment in ηD also implies an increment in mD, this change in the value of mD is not so pronounced
and neither is the change in the obtained recognition rates.

The best results are obtained generally for 0.7 ≥ ηD ≥ 0.6 and 0.99 ≥ ηS ≥ 0.95, which translates into
both m having a mean value between 2 and 4. Certainly, with SNR = 10 dB the best recognition rate
(98.51%) is obtained for ηD = 0.7 and ηS = 0.99, with SNR = 0 dB a 95.67% of success rate is obtained
for ηD = 0.6 and ηS = 0.9 and for SNR = -10 dB, the best result (88.01%) is obtained for ηD = 0.6 and
ηS = 0.95. Nevertheless, it must be noted that Test Case I.b reached higher best values of recognition
performance when selecting the proper value of both thresholds, however, it should be remembered that
Test Case II has expanded the number of test samples that take place in the recognition along with the
number of potential aircraft existing in the database. So, considering this, and that now the impact of
the thresholds is not as important, it can be said that gMSM applied to small frames of consecutive range
profiles is quite robust against an improper selection of parameter m, and even though the addition of
noise clearly affects the performance, as expected, the recognition rates still maintain a good level of
success. Actually, the behaviour of this algorithm is quite similar to Fw under these first two subcases,
reaching very similar success rates.
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Table 6.29: Subcase II.b. gMSM Recognition rates - SNR = 10 dB

Test Case II.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=10dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 97.52 98.23 97.87 97.73 97.80 98.09 97.09 97.45 97.38 98.01 97.45 97.73
0.95 97.66 98.16 97.94 97.94 97.94 98.44 97.16 97.38 97.59 98.01 97.73 97.87
0.9 97.80 98.37 98.23 98.01 97.80 98.37 97.38 97.52 97.73 98.16 97.87 97.87
0.85 98.09 97.59 97.94 97.80 98.23 97.73 98.23 97.87 97.80 98.23 98.09 97.66
0.8 98.09 98.16 97.80 98.16 98.23 98.09 98.44 98.09 98.16 98.44 98.23 98.16
0.7 98.51 98.37 98.16 98.16 98.01 97.80 97.80 98.09 98.01 98.23 97.59 97.66
0.6 98.30 98.01 98.09 98.37 98.16 98.01 97.73 97.73 97.94 97.94 98.01 97.66
0.5 97.59 97.52 97.45 97.59 97.59 97.80 97.66 97.30 97.09 97.30 97.38 97.38
0.4 97.23 97.59 97.52 97.66 97.66 97.45 97.38 97.80 97.45 97.45 97.23 97.38
0.3 97.30 97.59 97.38 97.73 97.73 97.73 97.38 97.87 97.45 97.30 97.45 97.45
0.2 97.30 97.45 97.45 97.38 97.52 97.52 97.52 97.38 97.66 97.38 97.45 97.59
0.1 97.45 97.38 97.52 97.38 97.66 97.45 97.38 97.73 97.52 97.52 97.59 97.66

Table 6.30: Subcase II.b. gMSM Recognition rates - SNR = 5 dB

Test Case II.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=5dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 95.67 96.52 96.67 96.10 95.96 96.60 96.52 95.60 95.89 96.03 96.31 96.17
0.95 96.67 97.02 96.60 96.38 96.31 95.96 96.03 96.03 96.31 96.03 96.24 95.89
0.9 96.52 96.74 96.81 96.10 96.81 96.45 96.60 96.31 96.45 96.52 95.96 96.52
0.85 96.95 96.60 96.52 96.60 96.38 96.17 96.88 96.17 96.31 96.31 96.81 95.82
0.8 96.74 97.09 96.60 96.60 96.95 96.88 97.16 96.60 96.67 96.38 96.60 96.60
0.7 97.16 97.23 96.60 96.45 96.38 96.52 96.88 96.38 97.09 96.17 96.67 96.67
0.6 97.30 97.23 96.88 97.02 96.81 97.09 96.24 96.31 96.67 96.88 96.60 96.74
0.5 96.17 96.17 96.38 96.10 95.96 96.38 96.10 96.52 96.10 96.17 96.24 96.03
0.4 96.10 96.31 96.60 96.17 96.38 96.31 95.96 96.60 96.38 96.10 96.45 96.45
0.3 96.24 96.52 95.96 96.17 96.88 96.38 96.17 96.31 96.45 96.31 96.45 96.24
0.2 96.03 96.45 96.31 96.31 96.31 96.38 96.52 96.74 96.38 96.60 96.52 96.38
0.1 95.89 96.24 96.03 96.17 96.60 96.81 96.60 96.74 96.60 96.17 96.60 96.45
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Figure 6.41: Test Case II.b. gMSM performance with dynamic softweights for different SNR



124 Chapter 6. Experiments and Results

0.10.20.30.40.50.60.70.80.91
0

5

10

15

20

25

30

35

40
Parameter m − mean value. Test Case II.b.

Energy Threshold (η)

M
ea

n 
va

lu
e

 

 
m

S

m
D

 − AWGN
SNR=−10dB

m
D

 − AWGN
SNR=−5dB

m
D

 − AWGN
SNR=0dB

m
D

 − AWGN
SNR=5dB

m
D

 − AWGN
SNR=10dB

Figure 6.42: Test Case II.b. Mean value of parameter m

Table 6.31: Subcase II.b. gMSM Recognition rates - SNR = 0 dB

Test Case II.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=0dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 92.48 93.05 93.55 93.40 94.26 93.62 93.19 92.20 92.77 92.91 93.33 93.69
0.95 93.62 93.19 93.55 93.76 93.19 93.33 93.40 93.40 92.84 93.69 93.90 92.84
0.9 93.83 93.48 94.11 94.47 93.62 92.48 94.18 94.11 93.19 93.48 93.62 93.83
0.85 94.68 94.26 94.04 93.12 92.91 93.55 93.40 93.05 93.19 94.40 93.97 93.76
0.8 94.18 94.26 93.83 93.62 93.76 93.40 94.04 93.76 93.83 94.18 94.18 93.69
0.7 95.18 94.47 94.33 94.47 94.61 94.33 94.40 93.62 93.97 93.97 94.33 94.54
0.6 95.32 94.96 95.67 94.89 95.32 95.25 94.96 93.90 94.04 94.61 94.54 94.89
0.5 93.62 94.18 94.40 94.40 94.26 94.04 94.18 94.40 94.18 94.11 93.55 93.97
0.4 93.40 94.11 94.18 94.47 94.33 94.61 94.11 94.61 94.33 93.97 94.40 94.40
0.3 94.11 94.33 94.11 94.33 94.47 94.82 94.18 94.54 94.61 94.47 94.33 94.68
0.2 93.62 94.33 94.40 94.68 94.18 94.26 94.75 94.54 94.47 94.04 94.26 94.40
0.1 93.19 93.97 94.33 94.47 94.47 94.68 94.11 94.33 94.54 94.33 94.75 94.75
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Table 6.32: Subcase II.b. gMSM Recognition rates - SNR = -5 dB

Test Case II.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=−5dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 87.59 89.08 89.29 88.87 91.21 88.79 88.37 88.58 88.72 88.51 88.87 89.50
0.95 89.57 88.94 89.72 89.65 89.65 89.29 88.51 89.15 88.51 90.64 89.29 88.44
0.9 89.29 89.01 89.86 90.64 89.65 88.23 89.50 89.72 88.09 89.50 89.43 89.65
0.85 90.43 90.14 89.86 89.57 89.93 88.37 88.09 89.36 89.08 89.50 89.29 89.36
0.8 90.21 90.35 90.14 90.14 90.43 88.79 88.79 89.93 89.22 89.15 89.72 90.14
0.7 91.06 91.42 91.77 90.99 89.43 90.00 88.87 90.71 89.72 89.86 89.86 90.07
0.6 92.84 92.55 91.56 92.34 91.63 90.28 90.50 90.28 90.50 90.00 90.78 90.57
0.5 87.94 89.15 89.72 89.65 89.72 89.72 89.72 89.72 89.29 89.29 89.29 89.50
0.4 87.80 89.22 89.93 90.00 90.07 90.57 90.43 90.85 90.35 90.07 90.35 90.35
0.3 87.87 89.93 89.86 89.43 89.72 90.35 90.57 90.64 90.28 90.64 90.21 90.28
0.2 88.23 89.22 89.50 89.36 89.57 90.35 90.07 90.57 90.21 90.50 90.64 90.92
0.1 88.09 89.29 89.57 90.35 90.00 90.21 90.00 90.28 90.35 89.79 90.28 90.71

Table 6.33: Subcase II.b. gMSM Recognition rates - SNR = -10 dB

Test Case II.b. Recognition rates varying ηD and ηS (%) - AWGNSNR=−10dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 84.04 84.26 84.18 84.40 84.26 84.04 82.48 85.46 84.40 83.90 84.75 85.53
0.95 82.91 85.32 85.67 85.11 85.25 83.62 84.26 84.40 85.18 84.89 85.11 85.39
0.9 84.33 84.61 86.17 85.53 84.89 84.54 84.47 83.83 84.26 84.54 84.40 84.11
0.85 82.98 85.89 84.75 85.60 85.04 85.67 84.54 86.03 84.04 84.96 83.76 84.89
0.8 83.40 84.47 86.81 85.74 85.53 84.82 83.19 84.04 85.74 84.18 84.96 83.76
0.7 85.04 85.04 85.25 85.39 86.03 84.40 85.39 85.32 85.32 85.74 85.18 84.11
0.6 86.24 88.01 86.31 87.45 85.96 86.10 85.53 86.10 85.32 85.32 84.82 85.46
0.5 78.37 80.92 80.78 80.50 80.71 80.92 80.50 81.99 80.57 80.92 80.99 81.91
0.4 77.38 79.57 80.85 80.00 81.42 81.49 82.48 82.27 83.05 82.62 81.84 82.34
0.3 77.66 80.00 79.86 81.13 80.92 82.20 81.70 81.21 82.41 81.63 81.70 81.49
0.2 78.37 80.50 81.13 81.42 80.57 82.77 81.70 81.91 82.06 81.77 81.63 82.13
0.1 78.16 80.14 80.50 80.85 81.13 81.91 81.99 82.20 82.06 82.13 81.56 81.99
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Test Case II.c. Synthetic misaligned Profiles with AWGN Vs. Synthetic Profiles

Next step in the process of evaluating gMSM is the addition of the effect of TRM on the profiles
by introducing a small misalignment between some consecutive profiles although, as happened in the
previous section 6.2.1, this effect is expected to be less relevant in the final results than the addition of
noise.

Figures 6.43a to 6.43e summarize the recognition performance of this test case given in Tables 6.34
to 6.38. As expected, the rates have experienced a slight degradation due to the effect of TRM, and the
degradation is more prominent when more noise is present, that is, when the SNR is negative (especially
when it is -10 dB). Indeed, the maximum degradation that the recognition rates have suffered from
the previous Test Case II.b to this one when SNR = 10 dB is only of 4 percentage points, while when
SNR = -10 dB the recognition rates can experiment a degradation up to 13 percentage points.

Similar to the previous section, where only noise was added, the evolution of the recognition rates
has the same nearly uniform tendency with the change of energy thresholds, except for the case where
SNR = -10 dB, as can be appreciated in the Figures 6.43a to 6.43e; however, despite this uniformity,
in order to obtain the best recognition results, generally, the value of ηD should be set lower or equal
to the value of ηS , although when the noise increments (negative SNR), better results are obtained for
ηD ≥ 0.6 and 0.5 ≥ ηS ≥ 0.1. More specifically, and like the previous subcase, the best results are
obtained generally for ηD = 0.6 and 0.95 ≥ ηS ≥ 0.9, which according to Figure 6.44 means that the
mean mD is between 1 and 3 depending on how corrupted with noise are the profiles, and the mean mS

is around 2. Indeed, for the best case (SNR = 10 dB), as Table 6.34 shows, the best rate (97.87%) is
obtained for these values of energy thresholds, but even if the thresholds are not set to their optimum
values, due to the aforementioned uniformity, the rates obtained are still very high, always around 95%.
On the other hand, when the test set is highly corrupted (SNR = -10 dB), the best rate (82.48%) differs
in around 15 percentage points from the worst rate (65.39%) with an unsuitable threshold selection.
Therefore, it can be concluded that the selection of the threshold is not as important as having clear and
well aligned test samples. That is, if the test samples are highly corrupted and misaligned, the selection
of a proper threshold is of high importance, while if the test samples are quite clear and well aligned, a
proper threshold will of course return the best results, but the results are not so threshold dependent.
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Table 6.34: Subcase II.c. gMSM Recognition rates - SNR = 10 dB

Test Case II.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=10dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 95.11 94.33 94.40 94.40 94.89 95.53 95.89 96.31 96.31 96.31 96.31 96.31
0.95 95.89 95.18 94.61 94.04 94.40 95.11 95.89 96.31 96.45 96.45 96.45 96.45
0.9 96.38 96.10 95.60 94.89 95.25 95.18 95.89 96.45 96.60 96.60 96.60 96.60
0.85 96.67 96.67 96.24 95.53 95.46 95.74 96.31 96.52 96.67 96.67 96.67 96.67
0.8 97.02 96.74 96.67 96.17 96.10 96.10 96.31 96.60 96.74 96.74 96.74 96.74
0.7 97.09 97.45 97.45 97.09 97.16 96.95 96.95 97.30 97.23 97.23 97.23 97.23
0.6 97.66 97.80 97.87 97.30 97.45 97.30 97.02 97.23 97.16 97.16 97.16 97.16
0.5 96.38 96.60 96.31 95.89 96.03 96.24 95.82 95.96 95.82 95.82 95.82 95.82
0.4 96.24 96.52 96.45 96.17 96.17 96.31 95.89 96.10 95.96 95.96 95.96 95.96
0.3 96.24 96.52 96.45 96.17 96.17 96.31 95.89 96.10 95.96 95.96 95.96 95.96
0.2 96.24 96.52 96.45 96.17 96.17 96.31 95.89 96.10 95.96 95.96 95.96 95.96
0.1 96.24 96.52 96.45 96.17 96.17 96.31 95.89 96.10 95.96 95.96 95.96 95.96

Table 6.35: Subcase II.c. gMSM Recognition rates - SNR = 5 dB

Test Case II.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=5dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 92.06 92.13 91.28 90.78 91.06 91.84 92.77 93.40 93.69 93.69 93.69 93.69
0.95 93.12 93.33 91.84 91.77 91.99 92.20 93.05 93.26 93.62 93.62 93.62 93.62
0.9 93.76 93.97 92.84 92.48 92.62 92.41 93.33 93.83 94.04 94.04 94.04 94.04
0.85 94.04 94.47 93.69 93.19 93.26 93.05 93.55 94.04 94.26 94.26 94.26 94.26
0.8 94.47 95.11 94.54 93.76 93.83 93.40 93.69 94.04 94.33 94.33 94.33 94.33
0.7 95.32 95.32 94.96 94.40 94.68 94.04 94.33 94.61 95.11 95.11 95.11 95.11
0.6 96.38 95.82 95.46 95.18 95.60 94.82 94.82 94.89 95.46 95.46 95.46 95.46
0.5 94.89 95.04 94.96 94.61 94.89 94.54 94.47 94.54 94.61 94.61 94.61 94.61
0.4 94.54 94.96 94.96 94.54 94.68 94.61 94.54 94.54 94.47 94.47 94.47 94.47
0.3 94.54 94.96 94.96 94.54 94.68 94.61 94.54 94.54 94.47 94.47 94.47 94.47
0.2 94.54 94.96 94.96 94.54 94.68 94.61 94.54 94.54 94.47 94.47 94.47 94.47
0.1 94.54 94.96 94.96 94.54 94.68 94.61 94.54 94.54 94.47 94.47 94.47 94.47
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Figure 6.43: Test Case II.c. gMSM performance with dynamic softweights for different SNR
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Table 6.36: Subcase II.c. gMSM Recognition rates - SNR = 0 dB

Test Case II.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=0dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 87.80 88.37 87.09 88.01 88.79 88.65 89.36 90.64 90.64 90.64 90.64 90.64
0.95 87.87 89.01 87.38 87.94 88.87 89.01 89.86 90.78 90.92 90.92 90.92 90.92
0.9 89.01 89.79 87.87 88.44 89.29 89.01 89.86 90.85 90.99 91.06 91.06 91.06
0.85 89.93 90.35 89.01 88.94 90.00 89.79 90.21 91.13 91.21 91.21 91.21 91.21
0.8 90.28 90.14 89.65 89.57 90.43 89.79 90.00 90.92 91.06 91.06 91.06 91.06
0.7 91.13 91.56 91.77 91.49 91.77 91.28 90.99 91.42 91.56 91.56 91.56 91.56
0.6 92.48 92.84 92.98 92.41 92.70 92.41 91.91 92.20 92.27 92.27 92.27 92.27
0.5 90.28 90.99 91.77 91.28 91.42 91.91 90.71 90.64 90.85 90.78 90.78 90.78
0.4 89.65 90.50 90.85 90.50 90.99 91.56 90.71 90.64 90.78 90.71 90.71 90.71
0.3 89.65 90.50 90.85 90.50 90.99 91.56 90.71 90.64 90.78 90.71 90.71 90.71
0.2 89.65 90.50 90.85 90.50 90.99 91.56 90.71 90.64 90.78 90.71 90.71 90.71
0.1 89.65 90.50 90.85 90.50 90.99 91.56 90.71 90.64 90.78 90.71 90.71 90.71
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Table 6.37: Subcase II.c. gMSM Recognition rates - SNR = -5 dB

Test Case II.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=−5dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 83.69 84.47 84.82 85.18 85.96 85.53 86.10 86.67 86.95 87.02 87.02 87.02
0.95 83.55 84.33 84.89 85.53 86.10 86.03 86.60 86.88 87.23 87.30 87.30 87.30
0.9 84.26 84.75 85.53 85.74 86.31 85.96 86.45 86.88 87.23 87.30 87.30 87.30
0.85 84.54 85.18 85.67 85.60 86.03 85.60 86.52 87.09 87.45 87.52 87.52 87.52
0.8 85.32 85.67 86.52 86.60 86.95 86.17 87.09 87.73 87.94 88.01 88.01 88.01
0.7 87.23 87.73 87.94 87.87 88.09 87.23 87.94 88.79 88.72 88.79 88.79 88.79
0.6 89.01 89.36 89.29 89.15 88.94 88.30 88.44 89.08 89.29 89.36 89.36 89.36
0.5 83.48 84.47 84.96 84.26 84.33 84.54 84.11 84.33 84.54 84.54 84.54 84.54
0.4 81.49 83.05 83.48 83.05 83.12 83.69 83.26 83.55 83.55 83.55 83.55 83.55
0.3 81.49 83.05 83.48 83.05 83.12 83.69 83.33 83.55 83.55 83.55 83.55 83.55
0.2 81.49 83.05 83.48 83.05 83.12 83.69 83.33 83.55 83.55 83.55 83.55 83.55
0.1 81.49 83.05 83.48 83.05 83.12 83.69 83.33 83.55 83.55 83.55 83.55 83.55

Table 6.38: Subcase II.c. gMSM Recognition rates - SNR = -10 dB

Test Case II.c. Recognition rates varying ηD and ηS (%) - AWGNSNR=−10dB

ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 76.24 77.80 79.36 78.72 79.15 80.07 79.36 79.72 79.79 79.79 79.79 79.79
0.95 76.38 77.59 78.94 78.87 79.22 80.14 79.29 79.65 79.65 79.57 79.57 79.57
0.9 76.67 77.59 79.22 79.36 79.57 80.14 79.43 79.50 79.43 79.36 79.36 79.36
0.85 77.09 78.16 79.79 79.79 79.79 80.64 80.00 80.14 80.00 79.93 79.93 79.93
0.8 77.16 78.79 80.43 80.21 80.28 80.64 80.00 80.28 80.14 80.14 80.14 80.14
0.7 77.94 79.29 80.64 79.65 80.07 80.00 79.93 80.71 80.57 80.57 80.57 80.57
0.6 80.21 81.56 82.48 81.06 81.35 80.71 80.57 81.35 81.42 81.49 81.49 81.49
0.5 70.00 71.91 73.05 72.62 73.33 73.62 72.98 73.33 73.33 73.33 73.33 73.33
0.4 65.39 67.59 69.08 69.01 70.07 70.43 69.93 69.93 70.00 70.00 70.00 70.00
0.3 65.39 67.59 69.01 68.94 70.00 70.43 69.86 69.86 69.93 69.93 69.93 69.93
0.2 65.39 67.59 69.01 68.94 70.00 70.43 69.86 69.86 69.93 69.93 69.93 69.93
0.1 65.39 67.59 69.01 68.94 70.00 70.43 69.86 69.86 69.93 69.93 69.93 69.93
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Test Case II.d. Actual Profiles Vs. Synthetic Profiles

To finally complete the assessment of gMSM algorithm , the classification of actual profiles by means
of a synthetic database is taking place in this last subcase, where 235 matrices of actual range profiles
belonging to 6 different aircraft form the test set, and matrices of synthetic profiles of 7 potential aircraft
compose the database, so called the training set. The results expected will obviously be worse than the
previous ones obtained using synthetic profiles as test set (even if they had been corrupted with noise)
due to the unmodelled effects of a real scenario and to the prediction of the trajectories that the aircraft
described while acquiring their signatures.

According to the previous results, the selection of an appropriate value of parameter m to control
the softweights is important but with a certain degree of freedom since the results have shown a quite
uniform tendency in the recognition rates with the variation of parameters ηD and ηS . Now, as can be
seen in Figure 6.45a, due to the difference in nature of the range profiles, this quite uniform tendency is
not as pronounced as in the test cases that classified synthetic profiles, but it is still visible. Nevertheless,
in the previous subsections it was said that generally, with a value of ηD lower or equal to ηS quite good
recognition results are obtained, even though in some cases where the profiles were so corrupted this
property did not apply, in this case, that statement is still obeyed.

The previous subcases concluded that the best results were obtained for values 0.7 ≥ ηD ≥ 0.6 and
0.95 ≥ ηS ≥ 0.9, which was translated into mean values of the respective m parameters around 1 and 3
approximately. Keeping this results in mind, the results for those ηD and ηS in this case return recognition
rates between 74% and 80% according to Table 6.39, which is moderately good, considering the previous
results. Nevertheless, in order to obtain the best results, the selected values should be ηS ≤ 0.7 and
ηD ≤ ηS , corresponding to mean values of parameters mD ≤ 1.65 and mS ≤ 1.36, that is, these values
have been decreased due to the dissimilarity between actual and synthetic profiles, just as happened in
Test Case I.d, where it was seen that the higher the difference between test and training samples the
lower the value of parameters m. The highest recognition rates obtained are 83.83% for a quite wide
range of ηD and ηS , although not only the highest recognition rate is important but also the confidence
in the result; here, this confidence has been measured as the previous Test Case I.d, by calculating the
mean difference between the similarities of the winning aircraft taking into account the maximum value
that the algorithm can reach for each threshold.

In agreement with this, Figure 6.46 depicts the evolution of this confidence degree for Test Case II.d,
where according to the figure, the highest confidence degree will be returned for thresholds ηD = 0.8 and
ηS = 0.5, which although they do not return bad recognition rates (around 82%), they do not obey the
rule ηD ≤ ηS that has been followed along the study of the softweights. However, selecting ηS ≤ 0.5 and
ηD ≤ ηS the average confidence degree is stable in an acceptable value and also the recognition rate.
Therefore, just as Test Case I.d, if parameters m are desired to be set to a fixed value for all the test and
training samples, according to this last conclusion and Figure 6.45b, the best would be to select both
values mD = mS = 1.

Table 6.40 shows the confusion matrix of the obtained recognition results selecting both m to the
value of unity. As usual, Fokker100 and Fokker28 are the two aircraft with the worst recognition rates
due to their mutual similarity, however, Fokker100, which obtained rates under 70% for the previous
subcases and algorithms, has experienced an increment in success rate using gMSM. This indicates a
better discrimination between similar aircraft of gMSM algorithm.
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Figure 6.45: Test Case II.d. gMSM performance with dynamic softweights
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Table 6.39: Subcase II.d. gMSM Recognition rates

Test Case II.d. Recognition rates varying ηD and ηS (%)
ηS

ηD 0.99 0.95 0.9 0.85 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.99 68.51 71.06 71.91 71.91 74.47 72.34 73.62 75.32 75.32 75.32 75.32 75.32
0.95 72.34 77.02 79.15 77.45 78.72 76.60 76.60 78.30 78.72 78.72 78.72 78.72
0.9 76.60 79.57 80.00 77.87 77.45 77.45 78.72 80.00 80.43 80.43 80.43 80.43
0.85 75.74 77.02 79.57 79.15 79.57 77.87 79.15 80.00 80.43 80.43 80.43 80.43
0.8 74.04 79.15 79.57 79.57 80.85 80.00 80.85 82.13 82.55 82.55 82.55 82.55
0.7 74.04 77.45 78.72 79.57 81.70 80.85 81.70 82.13 82.13 82.13 82.13 82.13
0.6 77.87 79.57 80.85 82.98 82.55 82.55 82.98 83.40 83.83 83.83 83.83 83.83
0.5 78.30 78.72 80.00 82.55 82.98 83.40 83.40 83.40 83.83 83.83 83.83 83.83
0.4 78.30 78.72 80.00 82.55 82.98 83.40 83.40 83.40 83.83 83.83 83.83 83.83
0.3 78.30 78.72 80.00 82.55 82.98 83.40 83.40 83.40 83.83 83.83 83.83 83.83
0.2 78.30 78.72 80.00 82.55 82.98 83.40 83.40 83.40 83.83 83.83 83.83 83.83
0.1 78.30 78.72 80.00 82.55 82.98 83.40 83.40 83.40 83.83 83.83 83.83 83.83
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Figure 6.46: Test Case II.d. gMSM mean difference between aircraft similarities

Table 6.40: Subcase II.d. gMSM Confusion matrix; mD = mS = 1

A310 B747 B767 F028 F100 MD88 B737 Success (%) Error (%)
A310 35 0 2 1 0 0 1 89.74 10.26
B747 5 35 0 2 0 0 0 83.33 16.67
B767 2 0 32 0 0 0 0 94.12 5.88
F028 0 0 0 31 6 1 0 81.58 18.42
F100 0 0 0 5 31 1 6 72.09 27.91
MD88 2 0 2 0 2 33 0 84.62 15.38

Average rates 83.83 16.17
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Test Case II. Discussion

Finally, this Test Case has provided a more complete study of the behaviour of gMSM by introducing
new aircraft and new test samples. Just as the previous study of the energy threshold for algorithms Fu
and Fw, along this whole Test Case II, it has been proven that the reduction of the number of profiles
forming a frame achieves better recognition results in comparison with Test Case I. Additionally, due
to the increment in the test samples, the results are more representative of the actual behaviour of the
algorithm; bearing this in mind, the observations made along this test case are summarized bellow.

- Firstly, and as done before, the ideal scenario has been studied taking a test set of synthetic profiles
that are equal to those in the database. As expected, very high recognition rates (100%) are
accomplished, independent of the value of the selected thresholds just like Test Case I.a predicted.

- After the ideal subcase, the addition of noise has been studied in Test Case II.b. Similar to Test
Case I, the noisier the test set, the higher the value of mD is for a given threshold, however now it
must be noted that the mean values of both paramaters mD and mS have been lower than in Test
Case I10. It has been shown that the property ηD ≤ ηS is still valid for very good results and the
best ones are obtained for mean values of both m between 2 and 4, so, as seen, the tendency is to set
both to low values. In conclusion, the addition of noise has provided more robust recognition rates
than in Test Case I.b, hence confirming that classifying small frames is easier and more reliable
than working with bigger frames of profiles. Furthermore, when the noise is not very pronounced
the recognition rates keep an approximately uniform tendency and even though the thresholds are
not set to the optimum values, very good recognition rates can be achieved; therefore, one of the
main conclusions of this test case is that gMSM presents a certain robustness against noise and
selection of the softweighting parameters.

- Test Case II.c has studied the effect of TRM on the recognition rates. As happened in all the
previous subcases, the effect of noise covers up the effect of profiles misalignment, mainly because
this misalignment is not very prominent, but anyway the recognition rates undergo a degradation
which is important to consider. Just like before, it has been observed that the rates have an
approximately uniform tendency with the selection of the energy thresholds, and with low noise the
recognition rates maintain very high values even with the wrong threshold. It has been proven, one
more time, that ηD should be smaller or equal to ηS in order to achieve the best recognition results
and also it has been seen that when the best results are considered, mS should be kept around 2
just as before, but mD varies its value between 1 and 3, that is, the more different the test samples
and the training samples are, the optimum values of their respective m turn to lower values.

- Finally, and after the ideal study of the algorithm, the identification of actual profiles has taken
place in the last Test Case II.d. Considering all the above test cases, good recognition performance
was expected for a wide range of ηD and ηS , although obviously a bit worse than the ideal cases.
Eventually, it has been confirmed the rule ηD ≤ ηS , and also, a property that was observed in Test
Case II.c, has been more noticeable here; the optimum values for ηD and ηS have been decreased
in comparison with the prior ideal cases, resulting in lower respective mean values of parameters
mD and mS , that is, similar to what happened in Test Case I.d, the higher the difference between
range profiles in test and training set, the lower their respective m. The recognition performance
obtained for a fixed value of mD = mS = 1 has provided recognition rates up to almost 85%, which

10Recall that since the number of profiles that compose a frame now is smaller than previously studied, the number of
eigenvectors and eigenvalues will also be smaller and their energy will be differently distributed
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are similar results than those obtained with Fw
11. The fact that both algorithms return similar

results seems to be useful for noting that they both are valid for recognition of range profiles of
actual aircraft by means of a synthetic database.

The division of the aircraft trajectories into small frames of little variation in azimuth has provided
better recognition performance to gMSM, just as algorithms Fu and Fw. After the assessment of Test
Case II, it can be stated that gMSM is quite robust against noise and TRM.

The selection of the optimum threshold for the softweighting parameters needs of an exhaustive
analysis like the one provided here; the initial idea of using softweights was to eliminate the need of
selecting a subspace dimensionality in advance, therefore, the subspaces of both the test and training
set are fully considered in the identification algorithm but it is the task of the softweights to assign the
importance of each of the vectors composing the subspace.

This study was made with the purpose of assessing the optimum value of parameter m. Selecting
m dynamically for each sample in the test and the training sets just adds computational cost to the
algorithm, furthermore it was found that the higher the difference between datasets, the lower the value
of their respectivem should be set, thus, when identifying actual profiles by means of a synthetic database,
selecting the first eigenvalue as the one that weights the rest, that is, selecting mD = mS = 1 is the best
option for obtaining very good recognition results.

6.3. Algorithm comparison

The present chapter was focused on the results obtained with the algorithms developed in Chapter 5.
As concluded, very good recognition results are obtained for a certain value of their respective parameters,
however, every algorithm presented here provided an evolution with respect to the previous one. Indeed,
the Fw algorithm is an evolution of Fu, more robust against noise and energy threshold selection, and
the gMSM algorithm improves them by eliminating the subspace dimensionality selection; anyway, the
3 algorithms developed here are based on PCA and angle between subspaces, and are an advance of the
Mutual Subspace Method (MSM) algorithm.

The final purpose of this thesis is to develop algorithms able to classify range profiles coming from
actual measurements with a database of range profiles coming from simulated aircraft models. As seen,
the obtained final recognition rates provided recognition performances around 85% of success, these rates
are thought to be very good considering the difficulties found in the study with the different nature of
the profiles; however, one way to emphasize the validity of these results is to compare them with other
algorithms found in the literature and/or with other datasets. The latter option is more complicated
since we are dealing with datasets that are not easy to obtain freely, in fact, many datasets belong to the
military and are hardly accessible. Thus, validation by comparison with mature algorithms is carried out
here.

For this comparison, only the results of Test Case II.d will be evaluated, since, as seen, on the one
hand the utilization of small matrices of range profiles provides better recognition results, and on the
other hand, because the evaluation of the actual vs. synthetic profiles case is desired. Nevertheless, due
to the instability of Fu, it can be directly discarded from this assessment since, as seen, the confidence
in the results are highly dependent on the energy threshold selection and Fw provides an improvement.

11Fw returned an 84.26% of success against the obtained 83.83% of success achieved by gMSM; this difference is caused
by the wrong classification of just one frame.
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The algorithms selected to take part in this comparison are also related somehow to PCA and sub-
spaces, in fact, the first of these algorithms is the MSM, previously explained in section 5.2.1 and in [71].
The second algorithm is the one presented in [9], which is called the PCA-based minimum reconstruction
error approximation, for simplicity we will call it PCA-MRE; in this algorithm, the input to the classifier
is each of the HRRPs in the test set, individually; firstly, PCA is also used in the algorithm to extract the
feature subspace of a frame of HRRPs belonging to the training set and once the subspaces are defined,
the algorithm decides the input class considering its minimum reconstruction error in each of the previous
obtained feature subspaces. The reader is referred to the cited papers for more information about the
algorithms.

The algorithms presented in this thesis will be tuned to their own optimum parameters; for the case of
PCA-MRE the optimum parameter proposed in its respective paper will be evaluated, while for MSM due
to the similarity with both Fw and gMSM, the selected threshold parameter will be set according to both
algorithms: the same energy threshold as for Fw will be selected to define the subspaces of MSM since
that value also follows the same rules than gMSM for the best results, therefore MSM can be compared
with both algorithms in a more fair way. Table 6.41 summarizes the parameters used in the comparison
as well as their corresponding final recognition rates obtained.

Table 6.41: Algorithm comparison. Specifications

Algorithm Parameter Value Success Rate (%) Confidence deg.(mean) Confidence deg.(std)
Fw η = 0.4 84.26 0.1989 0.1593

gMSM m=1 83.83 0.2512 0.2040
MSM ηS = ηD = 0.4 84.26 0.2506 0.2052

PCA−RME η = 0.99 82.82 0.2522 0.2558

This comparison was made with the purpose of validating the performances of the proposed algorithms
and, as seen, Fw and MSM return the same success rates, while gMSM and PCA-RME slightly lower
rates. The fact of obtaining similar results for all these algorithms proves that the algorithms proposed
along this thesis are also good candidates for aircraft recognition since the obtained rates fall into the
same range as other algorithms seen in the literature.

Apart from the success rates, Table 6.41 also shows the mean difference between the winning aircraft
and the next, and the standard deviation of these mean differences found for the algorithms and their
optimum parameters. The difference is expressed normalized by the maximum value that each algorithm
can reach, so the results are comparable. As seen, the confidence degrees obtained for gMSM, MSM
and PCA-RME are quite similar, around 0.25, while for Fw a lower value is obtained (around 0.20).
The standard deviations are quite high for their respective mean confidence degree, which denotes a
great fluctuation in the results for all the algorithms. In the case of PCA-RME this is more accused,
and therefore, it may denote more instability in this algorithm. Regarding gMSM, Fw and MSM, these
fluctuations will be less accused, but in all cases this is caused by the dissimilarities between the test
and training samples. Taking this into account, the best confidence degree found will be that of gMSM,
mainly due to the lack of subspace dimensionality selection.

After the analysis of these results, it can be said that both algorithms Fw and gMSM are appropriate
to perform classification of actual range profiles with a database of synthetic profiles; however, the main
drawback of Fw is the need of the subspace dimensionality selection. Even though it was seen along
this chapter that it is not as important as in other algorithms like Fu, a selected dimensionality far from
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the optimum one can provide much lower success rates; additionally, a change in the datasets can cause
the optimum dimensionality to vary, as seen along the different subcases. On the other hand, gMSM
skips that step and considers the whole subspace although weighting their bases with their corresponding
modified eigenvectos, so-called softweights, so, instead of having truncated subspaces as Fw and Fu, it
works with softweighted ones. Obviously, the parameter that controls the softweights also needs of a
proper selection, however, as seen along section 6.2.2, its range of variation for good results is more
limited and it was proven that by setting a low value very good recognition results are achieved. In
conclusion, it seems that gMSM provides a certain higher degree of confidence in the classification since
it considers the whole subspace, and on the other hand if Fw were used, even though we had a very
complete database and the parameter η had been tuned to find its optimum value for that case study, the
introduction of new data into the database would need of a whole new process of selection of its proper
value. Nonetheless, since gMSM takes the whole weighted subspace, the addition of new samples into
the datasets is not that problematic.

On the other hand, the truncation of the subspaces carried out in Fw lowers the computational
complexity and memory requirements of the algorithm, while for gMSM more computational resources
will be needed. This way, it can be said that, even though it was concluded that gMSM provides more
confidence, the selection of one or another may also depend on the nature of the database (how well
populated it is and if many new aircraft will be frequently added) and the speed and available memory
of our operative system.





Chapter 7

Conclusions and future research

This thesis was mainly focused on the research and definition of different algorithms for identifying
flying aircraft in a non-cooperative way. The fact that identification is made non-cooperatively requires
the null communication between our system and the aircraft itself; therefore, information about the target
has to be gathered in other ways.

Chapter 2 reviewed the different techniques for Non-Cooperative Target Identification, like JEM,
ISAR or HRRP and finally it was concluded that HRRPs are a simple and powerful tool to achieve
this type of recognition since they provide information about target structure, their simplicity makes
them easy to work with, and thanks to the radar properties they can be collected under adverse weather
conditions even with the target being unaware of it.

Along this text, an incremental study of three different algorithms whose main purpose was the
classification of HRRP has been developed. To do so, a selection of feature extraction techniques and
different classifiers have been reviewed first; the problem of choosing a classifier is not trivial, in fact,
there is no optimal classification rule for every problem; therefore, after the evaluation of the advantages
and disadvantages of the reviewed types of feature extraction and classification techniques, it was finally
decided that feature extraction will be provided by eigendecomposition and the classifiers to be developed
will be included in the family of distance classifiers.

Due to the lack of high availability of measurements of in-flight aircraft in many aspect angles to
populate the database of potential targets, one last decision was made in Chapter 2: the database will be
populated with range profiles generated by a simulation software, that is what we have called synthetic
profiles. This approach is barely seen in the literature although is very interesting since synthetic profiles
can be generated at any aspect angle and aircraft configuration and any aircraft could be added to the
database just by knowing its CAD model, so the database can be as wide as wanted. However, the main
issue is the high idealism of the synthetic profiles that makes them differ somehow from an actual HRRP
and adds difficulty to the classification process.

Chapter 3 described more accurately the properties of range profiles and the few difficulties found in
their extraction that need to be compensated in a preprocessing step before classification takes place.
Taking this into account, Chapter 4 presented the datasets used in this thesis along with the specific
preprocessing techniques applied to them. In such manner, two datasets were proposed, the test set
(the input of the classifier) and the training set (the database); the test set consists of actual range
profiles coming from the ORFEO measurement campaign, while the training set contains synthetic range
profiles simulated by FASCRO. As seen in the aforementioned chapter, there exist dissimilarities between
actual and synthetic profiles mainly due to CAD modeling ambiguities, unmodeled reflective processes
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and the estimation of aspect angles. Keeping that in mind, Chapter 5 formulated the three algorithms
proposed in this thesis to achieve NCTR in an incremental way, Fu, Fw and gMSM. The three algorithms
have in common the feature extraction method, Principal Component Analysis, and are based on the
calculation of angle between subspaces, on the contrary, their main differences lie in how they weight
their corresponding subspaces. While Fu and Fw need to set the dimensionality of the subspaces in
advance according to the highest singular values, gMSM takes the complete subspaces but weights each
of their bases according to a modified value of their corresponding eigenvalues; this modified value is the
softweight.

After the definition of the proposed algorithms, Chapter 6 presented an incremental study of the
performance of each of them according to their respective tuning parameters, which are: the energy
threshold (η) to extract the subspaces for Fu and Fw, and for gMSM, the softweigthing parameter of test
and training samples (mD and mS) that are firstly modulated by a threshold (ηD and ηS) in order to
finally find their optimum value. For the incremental study, two test cases were proposed, one in which
the test and training sets were divided into big frames of HRRPs and 5 aircraft were recognized utilizing a
database of 6 aircraft, while in the second one the test and training sets were divided into smaller frames
of HRRPs and 6 aircraft were identified with a database of 7 aircraft. Both test cases were divided into
smaller subcases, beginning with an ideal case where both test and training sets comprised the same
synthetic profiles; after that, the ideal case with additive white gaussian noise added only to the test
set was studied, followed by the third subcase where besides the noise, the effects of TRM where also
evaluated; finally, the last subcase into which the test cases were divided took the actual range profiles as
test set and the synthetic range profiles as training set, in order to ensure that the conclusions made on
the previous ideal subcases were on the right direction and that the recognition of actual range profiles
can be achieved with a database of just synthetic profiles.

7.1. Conclusions

After this brief summary of the different chapters of this text, in this section the conclusions drawn
and the lessons learned after the evaluation of the three proposed algorithms are gathered.

First of all, after the analysis of the two test cases in Chapter 6, it has been proven that the
classification of small frames of range profiles returns better recognition performance than the
classification of bigger ones. As seen, Test Case II, which divided the trajectories into frames
covering 2.5◦ in azimuth and that always had a number of profiles smaller than 100, led to much
better success rates than Test Case I, that classified frames with a number of profiles up to 300.

Among the three algorithms proposed in this thesis, Fu can be considered as invalid for the recogni-
tion of HRRPs. As seen, it is not robust against noise or TRM, and the results obtained are highly
dependent on the threshold selected for the subspace dimensionality.

The Fw and gMSM have both returned very good results which are comparable with other algo-
rithms provided in the literature. Thus, both can be considered as proper classifiers for the problem
presented here:

• Algorithm Fw improves Fu by adding a weighting element. With this, high recognition results
and robustness against noise and TRM is obtained. The subspace dimensionality should be
set with an energy threshold, η, which in the ideal cases, where test and training sets do not
highly differ, has a certain degree of freedom. However, when the datasets get more different,
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the energy threshold should lower its value and thus, the dimensionality of the subspace will
be reduced.

• In the case of gMSM, the subspace dimensionality selection is not necessary. The softweighting
controls the importance of each eigenvector in the subspace. Now, the energy threshold is not
needed to be set unlike Fw, but the selection of the softweighting parameter is needed for both
datasets (mD and mS). The study has shown that these parameters should be set to small
values as the datasets get more different, in particular if both m are set to 1, the algorithm
has shown very good recognition results for all the test cases. Additionally, gMSM has also
shown robustness against noise and TRM regardless of parameter m.

Both Fw and gMSM yielded very similar success rates and showed robustness against noise and
TRM, however each of them has their advantages and disadvantages that may make us opt for one
or another.

• Fw needs to set the subspace dimensionality, which is not a trivial issue, in fact as the datasets
differ, the algorithm becomes more sensitive to this dimensionality selection. However, the
advantage of choosing the dimensionality is the less computational resources needed.

• On the other hand, the great advantage of gMSM over Fw is the absence of the step of subspace
dimensionality selection. By taking the whole softweighted subspace, more robustness is added
to gMSM, fact denoted by the higher confidence degree seen in the comparison of algorithms
in Chapter 6. However, this has the drawback of needing more computational resources.

Lastly, whatever algorithm chosen between these two, it has been proven that the recognition of
actual profiles by means of a synthetic database is achievable, reaching success rates of nearly 85%.

7.2. Main Contributions

This thesis has provided a complete study about non-cooperative target identification and the previous
section has summarized the conclusions drawn along its different chapters. Recognition of flying targets
non-cooperatively utilizing range profiles has been long studied for years, however, there is still a lot to
do to make it a reality and thus, research on this field is still essential. That is why, at this point, it is
important to emphasize the main contributions made within this study.

First of all, three new algorithms have been developed for NCTI, the cumulative angle between sub-
spaces (Fu), the weighted cumulative angle between subspaces (Fw), and the generalized Mutual Subspace
Method (gMSM), all of them based on subspace methods. In the literature, this kind of methodologies
are mainly used for image recognition, while here they are used for range profiles recognition, which in a
way, it can be seen as a sort of image recognition.

Among the three, only one method has provided non-stable results, Fu, being very sensitive to noise
and additional unwanted effects. Nevertheless, thanks to its poor results, and the thorough study of the
rest of the algorithms, it has been proven that the application of weighting elements based on eigen or
singular values to the metrics leads to more robust algorithms.

An incremental study has been developed to asses these algorithms. This incremental study has been
conceived with the purpose of evaluating the algorithms according to different scenarios. With this, we
were able to isolate the results obtained for a given scenario and to evaluate, therefore, the robustness
and performance of each algorithm in each framework.
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Additionally, instead of identifying each profile individually as many other authors do, the recognition
of matrices of range profiles is carried out in order to know more information about the illuminated target
and its trajectory. In this regard, it has been seen that matrices of too many range profiles provide worst
results than smaller matrices for two main reasons: on the one hand, the bigger the matrix, the fewer the
number of input samples and therefore, the final recognition results are less reliable; on the other hand,
as the number of profiles in a matrix gets higher, although more information is included, the system is
not able to handle it and therefore, it is not efficient. Thus, it was seen, that taking matrices up to 20 or
25 profiles provide much better and reliable results.

Finally, the identification of actual range profiles with a database of synthetic range profiles has been
proven to be possible and with an acceptable level of success. As said at the beginning and along this
whole thesis, the problem of NCTI encompasses also the problem of populating a database of potential
targets. As seen, it is not an easy task and this is still an open field.

The database of targets should provide range profiles of all the existing aircraft in many orientations
such that, when an unknown aircraft is illuminated by the radar, the system can search for its class. To
obtain such a database, a measurement campaign is necessary, where all nations provide their aircraft
and the trajectories are commonly defined such that they include a wide range of orientations. However,
in reality, this is highly improbable, not only because of the cost it will involve, but also because of
the refusal of many nations that might not be interested in providing the others with their aircraft’s
signatures.

Therefore, due to the difficulty in obtaining range profiles of actual flying targets and thanks to
the evolution of the electromagnetic simulation tools, in this thesis the database has been populated
with synthetic range profiles. Additionally, to make the study more reliable and close to reality, the
range profiles utilized as input of our system comprised actual range profiles obtained in a measurement
campaign. With this, a real scenario is outlined where the measured profiles are not exactly the same
profiles that populate the database.

All the conclusions and contributions summarized in this chapter can be also found in different papers
written by the author along the course of these years of investigation. First, the most important papers
are cited below, given their inclusion in renowned scientific journals:

P. López-Rodríguez, R. Fernández-Recio, I. Bravo, A. Gardel, J. L. Lázaro, and E. Rufo, “Com-
putational burden resulting from image recognition of high resolution radar sensors”, Sensors, vol.
13, no. 4, pp. 5381-5402, 2013.

P. López-Rodríguez, D. Escot-Bocanegra, R. Fernández-Recio and I. Bravo, “Non-Cooperative
Target Recognition by Means of Singular Value Decomposition Applied to Radar High Resolution
Range Profiles”, Sensors, vol. 15, pp. 422-439, 2015.

P. López-Rodríguez, D. Escot-Bocanegra, R. Fernández-Recio and I. Bravo, “Non-cooperative
identification of civil aircraft using a generalised mutual subspace method”, IET Radar, Sonar &
Navigation, vol. 10, no. 1, pp. 186-191, 2016.

Additionally, other papers related to the topic have been presented in national and international
conferences including:

P. López-Rodríguez, R. Fernández-Recio, I. Bravo and A. Gardel, “Tendencias actuales de la lóg-
ica reconfigurable en sistemas radar”, XII Jornadas de Computación Reconfigurable y Aplicaciones
(JCRA) 2012, Elche, Spain.
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P. López-Rodríguez, R. Fernández-Recio, I. Bravo, E. de Diego-Custodio, D. Poyatos-Martínez,
D. Escot-Bocanegra, “Identificación no cooperativa de blancos reales aéreos mediante radar uti-
lizando una base de datos sintética y descomposición en valores singulares”, Congreso Nacional de
I+D en Defensa y Seguridad - DESEi+d 2013, Madrid, Spain.

P. López-Rodríguez, D. Escot-Bocanegra, R. Fernández-Recio and I. Bravo, “Singular Value
Decomposition Applied to Automatic Target Recognition with High Resolution Range Profiles”,
1st International Electronic Conference on Sensors and Applications 2014, e-conference.

O. Hernán-Vega, P. López-Rodríguez, D. Escot-Bocanegra, R. Fernández-Recio and I. Bravo,
“Non-Cooperative Target Identification Based on Singular Value Decomposition”, International
Radar Symposium (IRS) 2015, Dresden, Germany.

O. Hernán-Vega, P. López-Rodríguez, D. Escot-Bocanegra, R. Fernández-Recio and I. Bravo,
“Evaluación de algoritmos de identificación no cooperativa de blancos aéreos mediante perfiles de
alta resolución”, Congreso Nacional de I+D en Defensa y Seguridad DESEi+d 2015, Pontevedra,
Spain.

O. Hernán-Vega, P. López-Rodríguez, D. Escot-Bocanegra and D. Poyatos-Martínez, “ Singular
Value Decomposition Applied to Non-Cooperative Target Identification”, 2nd International Elec-
tronic Conference on Sensors and Applications 2015, e-conference.

O. Hernán-Vega, P. López-Rodríguez, D. Escot-Bocanegra and D. Poyatos-Martínez, “On the
Application of SVD to Non-Cooperative Target Identification Problems”, STO - Specialists Meeting
on Radar Imaging for Target Identification (SET-228), 2015, Pisa, Italy.

7.3. Future research

A doctoral thesis is not a concluded study but a living investigation that opens the door to new ideas
and projects. In effect, along this text it has been proven that classification of actual range profiles with
the only help of a synthetic database using subspace methods is feasible, however the path is still long
and there are a number of tasks that are still pendent and even more questions will arise. Among these
opened tasks we can highlight:

Expansion and improvement of datasets. The datasets utilized along this thesis come from an
actual measurement campaign of civil targets and from synthetic simulations, as said, the utilization
of synthetic profiles to populate the database gives us the possibility to expand it as required just
by obtaining the CAD model of new targets and defining their aspect angles; therefore, a few
more targets could be modeled and simulated to be added to the database; additionally, these new
potential targets need not have a corresponding actual measurement in the test set, hence we would
be adding new obstacles to the algorithms. Regarding the actual range profiles forming the test
set, new targets could be retrieved from the ORFEO measurement campaign, this way, the bigger
the datasets, the more accurate the evaluation of the algorithms will be.

It would be also highly desirable to own new measurements of the same or different targets than the
ORFEO campaign; as said, finding free access measurements of HRRPs is not that easy and many
of them belong to the military and cannot be published; INTA, for example, could provide new
measurements of fighter planes but the results cannot be distributed and that is why those profiles
were not used here. However, in order to keep validating the algorithms, those measurements could
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be used. With the new datasets, it is desired to assess the optimum parameters again for the
presented algorithms, that is the energy threshold for Fw and m for gMSM, this way, more robust
conclusions can be drawn about them.

Even though the classification of actual profiles with synthetic ones returns good success rates for
both algorithms, it is thought that these rates may be raised by making the test and training
samples more similar. One way to do so could be to degrade the synthetic profiles in the database
as it was done in the different subcases for the test samples; however, the question of how much
noise should be added or what other effects could be added and how to deteriorate the profiles is not
trivial. Another way, more feasible, could be to apply algorithms of noise reduction to the test set,
improve the profiles alignment to avoid the effects of TRM or add some kind of profile averaging.

Lastly, remember that for the simulations of the synthetic range profiles, the trajectories of the
actual profiles were utilized to define their aspect angles, nevertheless there was a certain degree of
uncertainty since those aspect angles were just estimations of the real ones described by the aircraft
and they may have an error up to 5◦. This uncertainty proves that the algorithms are robust against
target aspect angle to a certain extent, but the closer the aspect angle of the simulated profiles to
the real ones, the higher their similarity. Thus, a point cloud of ±5◦ in azimuth and elevation
could be defined around the estimated aspect angles and synthetic range profiles for those could
be obtained; this way when identifying, the system should also try to find the best match for the
trajectories.

Implementing an operative demonstrator. Every algorithm is conceived with the purpose of
taking part in a real system, thus, one of the future research lines could be the efficient implemen-
tation of the algorithms developed here into a suitable platform. Should this platform be selected
properly, it would be of high interest first to study the computational burden of the algorithms by
means of analyzing the order of magnitude of the calculations that should be made and to see how
many operations could be parallelized and optimized. First, the algorithms could be implemented
into small platforms to create a demonstrator and later on, it could be embedded into a real high
resolution radar.

In addition, the option for an unknown target can be provided. This way, the classifier is not forced
to assign a class to a target which returns a poor match with any database entry, instead the target
would be declared as unknown. This would be the case for an aircraft which is measured for the
first time and its signature is not in the database.

Algorithm generalization. The algorithms proposed here are developed for the application
of NCTI; however, they are just classifiers and as said, they belong to the global problem of
patter recognition; as such, they can be generalized to be used in other applications such as image
recognition, face detection, ground target identification, speech recognition, crop fields classification,
etc. Furthermore, by generalizing the algorithms to be used in other fields of research could provide
us with more datasets to keep validating and improving the algorithms; so, the advantages are
two-fold: the experience of exploring new disciplines and the acquisition of new datasets which may
have different properties and may challenge our algorithms.

Enhancing and exploring new classifiers. According to Chapter 2 there exist a broad col-
lection of types of classifiers and among them, due to our own experience, to the simplicity in
implementation and ease in adaptation to new scenarios, distance classifiers based on subspaces
are developed in this thesis. Nevertheless, as seen in the aforementioned chapter, other methods
have also their advantages, so, why not try with some of them? Neural networks, support vector
machines or hidden Markov models are utilized in the literature also for the classification of range
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profiles, however, not many of them try to classify actual profiles with synthetic ones, so exploring
new classifiers under this scenario could be of great interest. Additionally, the change in the clas-
sification method may produce also a change in the feature extraction method so it should also be
revised.

Lastly, along this thesis, all the work is done with range profiles, that are a real magnitude, however,
the last tendency is to keep the phase of the range profiles and try to classify the complex range
profiles. Few studies deal with this option so it could be interesting to analyze the properties of the
complex profiles and check the viability of classifying actual complex range profiles, whose phase
will change according to the environment in which the measurement was taken, with synthetic
complex range profiles, whose phase will be ideal.

As said, these are a few suggestions but more ideas will arise, since, quoting the Irish writer George
Bernard Shaw:

Science never solves a problem without creating ten more.
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Appendix A

Computational Burden of an ISAR
image identification system

In operational systems the analysis of the computational burden is important in order to examine
whether the systems meet the requirements and whether some elements can be improved with the selection
of a specific technology or implementation platform.

This Appendix presents the study published in [90], which addresses the computational burden needed
in an ISAR-based NCTI system. After a brief introduction about high resolution radar systems and the
algorithms used to obtain ISAR images, the computational complexity calculation is divided in two stages:
ISAR image extraction and ISAR image recognition.
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need to obtain higher spatial resolution has emerged. Consequently, radars have evolved into more 
flexible devices with the ability to generate high resolution imagery for mapping purposes or target 
identification [3]. Radars are the most suitable sensors for a rapid and reliable recognition of targets as 
they can operate in scenarios where visibility is very poor, such as bad weather conditions, smoky and 
dusty environments, etc. Their ability to resolve targets at a long range as well as  
their operation under any weather conditions makes them differ from other sensors like thermal or  
optical ones [2].  

Target recognition using radar sensors can be divided into two techniques: cooperative and  
non-cooperative [1]. Cooperative techniques, known as identification friend or foe (IFF), require the 
communication between target and radar, while non-cooperative techniques, so-called non-cooperative 
target identification (NCTI), do not establish any communication with them but rely on the comparison 
of the measured targets with a reference database. This database is usually populated with actual target 
measurements obtained in scheduled measurement campaigns [4]; however, it implies the collection of 
information from a great number of flying targets in different aspect angles and configurations and 
even so, the main problem lies in the fact that not all existing aircrafts may be measured. For this 
reason, other methods have been deployed to populate the database. These methods include 
measurements in anechoic chamber and electromagnetic simulations [5]. The latter is of great interest 
due to its low cost and the simplicity of obtaining a vast number of CAD aircraft models for 
electromagnetic simulations.  

In this paper a target recognition methodology based on high resolution radar imagery is presented. 
Algorithms related to high resolution radar image creation and the problems found are introduced, as 
well as a target recognition methodology based on image cross correlation. High resolution radar 
image generation and target recognition processes are complex and time consuming. The goal of a 
NCTI system is the reliable recognition of targets in real time; therefore, studies on the computational 
burden of the whole process are of great interest. These studies will make it easy to identify the 
computationally critical points of the system in order to previously choose an implementation platform 
that could perform these operations efficiently. Accordingly, the computational burden of the proposed 
system is revised distinguishing the complexity of image generation from the complexity of target 
recognition. With these results conclusions about implementation platforms and calculation efficiency 
are drawn in order to reduce time consumption in a possible future implementation. 

The article is organized as follows: Section 2 introduces high resolution radars as image sensors 
bringing into focus inverse synthetic aperture radars (ISAR). Section 3 presents the methodology used 
in this study for ISAR image generation from actual flying aircrafts data and its recognition, based on 
the previous work by [6]. The methodology presented requires complex computations implying a high 
computational burden as it is explained in Section 4. Finally, Section 5 discusses the results and 
conclusions, calling for further work and research in the area. 

2. High Resolution Radars 

To high resolution radars (HRRs) targets appear as comprised of individual scattering points, also 
called scattering centers, backscatter sources or scatterers [7]. Figure 2 shows an example of these 
scattering centers projected on the radar line of sight direction. At a given viewing angle (target aspect 
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angle), each scatterer reflects energy at a certain amplitude and phase. High resolution radars have the 
ability to discern the different scattering centers of a target in both the propagation and the transversal 
direction of the transmitted energy; being able, therefore, to identify the geometry of a target. Thus, 
resolution of these radars is defined in two dimensions, on the one hand there is the slant-range 
resolution which depends on the radar bandwidth and is defined as the ability to resolve scatterers in 
the direction of the radar line of sight; on the other hand, there is the cross-range resolution which 
depends on the wavelength of the emitted signal and the angular sweep made during the illumination 
time. Cross-range resolution is defined as the ability to resolve scatterers in the normal direction to the 
plane containing the radar line of sight and the target rotation angle. 

Figure 2. Example of scattering centers in a target. 

 

There exist mainly two different types of HRR: synthetic aperture radars (SAR) and inverse 
synthetic aperture radars (ISAR). Both make use of the relative motion of target and radar to achieve 
high resolution in the cross-range direction.  

SAR radars achieve high resolution in the cross-range dimension by taking advantage of the motion 
of the vehicle carrying the radar to synthesize the effect of a large antenna aperture [2,7,8]. These 
sensors are usually used for imaging the Earth’s surface to provide maps for military or civilian 
reconnaissance, measurements of sea state, geological and mineral explorations and other sensing 
applications. SAR requires coherence between signals and the means necessary for the storing and 
subsequent processing of the received echoes. ISAR imagery is based on the same principle as SAR 
imagery, but in contrast it is the target rotational motion which will generate the necessary information 
for obtaining the image while the radar remains stable [8,9].  
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2.1. Inverse Synthetic Aperture Radar  

High resolution radar imagery obtained by ISAR radars can be 1-dimensional or 2-dimensional. On 
the one hand, 1D images present the scatterers of a target projected on the dimension of the radar line 
of sight (LOS) that is in slant-range, or the scatterers of a target projected on the cross-range 
dimension. 1D images projected on slant-range are called high resolution range profiles (HRRP) while 
those projected on the cross-range dimension are called cross-range profiles [7,9]. 

Usually the stop & go assumption is held, which means that the target is assumed stationary during 
the transmission and the reception of a pulse. Sometimes however, this statement cannot be assumed 
valid because the pulse repletion time is too long or because the target moves very fast. In such cases 
an autofocusing technique is also needed to form HRRP [10,11]. The cross-range profiles are obtained 
by exploiting the target motion with respect to the radar and by using the aspect angle changes to 
synthesize the aperture. Obviously an auto-focusing step is needed first. This paper works with range 
profiles (HRRP) instead of cross-range profiles and the stop & go approximation is assumed to be 
valid so no autofocusing technique is needed to obtain HRRP. 

HRRP represent the energy reflected by every scatterer in a moving target as a function of distance. 
Each profile is comprised of range bins that can contain energy from different scattering centers. 
Figure 3 depicts how high resolution range profiles present the energy reflected by the scatterers of a 
target in the dimension of the radar line of sight. Signal processing needed to obtain the HRRPs  
of a target is not very complex; however, they are very sensitive to the target viewing angle (aspect  
angle) due to occlusion of scatterers or other unwanted effects such as speckle or rotational range  
migration (RRM) [4]. 

Figure 3. High resolution range profile. 

 
The resolution of a range profile is dependent on the bandwidth of the emitted signal; the shorter the 

emitted pulse, the wider the bandwidth and the finer the resolution [2,7]. Unfortunately, there are 
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limitations in the reduction of the width of the emitted pulse since it is limited by the energy the radar 
is capable of transmitting. Most radars are not able to transmit the power needed to achieve high 
resolution with a pulse waveform. Nevertheless, the pulse compression [8] technique allows radars to 
obtain high resolution using long pulse widths. This technique consists of modulating the frequency of 
the emitted waveform along the total pulse width. The receiver is in charge of the quadrature 
demodulation of the received signal using a matched filter to maximize the Signal-to-Noise  
Ratio (SNR). Typical waveforms used in pulse compression techniques are chirp [12] and  
stepped-frequency [13]. Radars using pulse compression technique sense the total radar returns in the  
frequency domain; hence, HRRPs are obtained by applying an inverse Fourier transform to the radar  
complex returns [9]. 

On the other hand, 2D images, named ISAR images, represent the geometry of a target in both 
slant- and cross-range. ISAR images contain information of consecutive HRRPs with small angular 
variation; these images display the distribution of scattering centers within a target in the perpendicular 
direction of the target’s rotation plane [14]. Figure 4 depicts the fact that ISAR images present the 
scattering centers of a target in two dimensions. The aircraft displayed in this figure correspond to  
a Fokker-100.  

Figure 4. Scattering centers in an ISAR image. 

 

Signal processing needed to achieve ISAR images is complex and implies higher computational 
burden than that needed for the generation of HRRPs. There are several methods used in literature to 
form ISAR images including back-projection methods [15] or range-instantaneous Doppler algorithms 
(RID), such as Radon-Wigner transform (RWT) method [16], joint time-frequency analysis 
method [17], reassigned smoothed pseudo Wigner-Ville distribution [18], fractional Fourier 
Transform [19], etc. The algorithm used in this paper for the creation of ISAR images is called range-
Doppler algorithm (RDA) [7,9]. This technique is the most common since it is the simplest one. It 
mainly consists in the application of a double Fourier transformation; first, an inverse Fourier 
transform is applied to the quadrature demodulated data (I/Q samples) in order to obtain a matrix filled 
with high resolution range profiles and second, a Fourier transform is applied to every range bin of 
these profiles in order to acquire information of the scatterers in the cross-range dimension. The basic 
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approach of this algorithm is depicted in Figure 5 where A denotes the profiles matrix and AT is  
its transpose.  

Figure 5. RDA Algorithm. 

 

Target motion with respect to the radar makes it possible to achieve ISAR images; nevertheless, not 
every movement is desired and this may cause blurring in the obtained images. In order to avoid this 
defocusing, motion compensation techniques must be applied [9,20].  

Generally speaking, target motion can be decomposed into translational and rotational [14,21,22]. 
In order to get focused images both the translational and rotational motion must be compensated. 
Translational motion causes consecutive HRRPs to be misaligned, so in order to compensate it an 
alignment of profiles must be completed, this procedure is also called range bin alignment. In addition 
to profile alignment, a phase adjustment procedure must be applied in order to refer every 
measurement to the same origin [9]. In the past decades, translational motion compensation has been 
of great interest and now it has become a well-established technology. Range bin alignment methods 
are rather standard, including centroid tracking [23,24], envelope correlation [14], contrast/entropy 
based methods [25], prominent point processing or dominant scatterer algorithm [26], etc.  

On the other hand, rotational motion causes motion through resolution cells (MTRC) [27] which 
produces the scatterers to move from bin to bin in slant- or cross-range. However, it can be ignored 
provided that the target is small or the required resolution is coarse [22]. 

Many algorithms have been proposed in the literature for motion compensation in ISAR imaging. 
What is presented here is the computational complexity analysis of a combination of translational 
motion compensation methods (envelope correlation and dominant scatterer algorithm) in order to get 
a focused ISAR image. The driving idea is to achieve an affordable processing chain, in terms  
of computational burden which is the mandatory requirement for a future possible implementation in  
real time. 

3. ISAR Generation and Target Recognition System 

The complete system under study is implemented in Matlab® (R2008a) and consists, firstly, of the 
generation of an ISAR image from a dataset of flying aircrafts. To that end, motion compensation of 
high resolution range profiles must be implemented. Secondly, after an ISAR image is obtained, the 
comparison with a database of ISAR images is carried out with the final purpose of aircraft 
recognition. This database is populated with ISAR images generated synthetically with 
electromagnetic software. Figure 6 depicts the flowchart of this procedure.  
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Figure 6. System identification flowchart. 

 

3.1. Data Set 

The use of actual data in the generation of ISAR images is of great importance since it is possible to 
obtain realistic images that could not be obtained by any other means. However, it must be noted that 
actual data is not usually accessible and not easy to measure since the use of high level technology 
resources is required.  

The North Atlantic Treaty Organization (NATO) performs different activities under its Research 
and Technology Organization (RTO). Data used in this work comes from the ORFEO civilian airliner 
measurement campaign, held in 1995 and obtained with the FELSTAR radar. FELSTAR is a  
stepped-frequency S-band radar owned by TNO-FEL and located in The Hague, The Netherlands [28]. 
This measurement campaign was carried out as part of the RTO-SET-040 Task Group activity and up 
to 17 different civilian aircrafts were measured as targets of opportunity. By using actual data from the 
ORFEO campaign and applying the RDA algorithm explained in previous sections, ISAR images of 
different civilian aircrafts are obtained.  

3.2. ISAR Image Formation 
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This section describes the algorithm used for the generation of an ISAR image from actual data 
using Matlab®; this procedure is based on the flowchart in Figure 7. As mentioned above, for the 
generation of a focused ISAR image, in addition to the implementation of RDA the implementation of 
a motion compensation method is also necessary. 

Figure 7. ISAR image formation flowchart. 

 

In order to acquire a more focused image a Hamming window [4,29] is first applied to the samples 
since it reduces sidelobes in 43 dB. In case a Hamming window was not employed, with the inverse 
Fourier transform needed to obtain the profiles, a rectangular window would be automatically applied 
which has high sidelobes that can produce the occlusion of scattering centers [30]. 

The next step after windowing and application of inverse Fourier transformations (using the IFFT 
algorithm) is the translational motion compensation of the obtained HRRPs. To align the profiles an 
algorithm based on the envelope correlation method [14,31] is applied first. In the case covered in this 
article, a reference profile is first established defined as a sum of six aligned profiles after applying 
correlation between them. The remaining profiles will then be aligned by correlating them to the 
reference one. Note that the reference profile must be updated after a new profile is aligned by 
including the new one to the reference profile and discarding the oldest one. After pre-alignment using 
envelope correlation (coarse alignment), a fine alignment is applied. This fine-alignment comprises 
three steps: first, a prominent scatterer must be selected; second, profiles are re-aligned by tracking the 
prominent scatterer along the profiles matrix; to do so, profiles maxima are found within a small band 
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from the prominent scatterer and, when necessary, profiles are realigned. Finally, phase adjustment is 
carried out by using the dominant scatterer algorithm (DSA) [26,32] where the phase of the dominant 
scatterer previously selected is subtracted from the phase of the rest of the profiles already aligned. 
Figure 8 shows the whole translational motion compensation process; Figure 8(a) presents the initial 
10 HRRPs of a measured Boeing-767, and as can be seen, these profiles are completely misaligned. By 
employing envelope correlation profiles are pre-aligned as shown in Figure 8(b). Lastly, after phase 
adjustment profiles are finally aligned as in Figure 8(c). 

Figure 8. Profile alignment process; (a) initially misaligned HRRP; (b) pre-aligned HRRP; 
(c) aligned HRRP after translational motion compensation.  

 
(a) (b) (c) 

Figure 9(a) shows the initially misaligned profiles as in Figure 8(a), but in a 2D plot. This figure 
presents the whole set of profiles of a measured Boeing-767 in the ORFEO campaign. Figure 9(b) 
shows the resulting aligned profiles as in Figure 8(c) in 2D. With this last figure it is easy to observe 
the evolution from a misaligned set of HRRPs to an aligned set. 

Regarding rotational motion compensation [9,33], it has already been noted that it would only be 
necessary when the resolution needed is very fine or target rotation is very high. Neither case is present 
in this study; hence, this step is omitted.  

Finally, application of Fourier Transformation (using the FFT algorithm) to the range bins of the 
aligned profiles is applied and an ISAR image is obtained. Examples of different ISAR images 
obtained by means of the procedure described in this section are displayed in Figure 10. As expected, 
ISARs obtained are not of great quality if compared to a video or an IR sensor image although they 
have enough quality to discern the existence of an aircraft with certain geometry and dimensions.  

As observed in Figure 10, a blurred band exists approximately in the middle of every image. This 
blurring is due to the fact that these images were produced using actual data and some noise and clutter 
could not have been completely removed. This will probably affect in the identification stage, resulting 
in a degradation of the final result. 
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Figure 9. Profile alignment process—2D; (a) initially misaligned HRRP; (b) aligned 
HRRP after translational motion compensation. 

 
 (a)                 (b) 

Figure 10. ISAR images obtained from the ORFEO measurement campaign; (a) ISAR 
image of a Boeing 767; (b) ISAR image of a Fokker 100; (c) ISAR image of a Boeing 747. 

 
(a) 

 
(b) 

 
(c) 
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3.3. ISAR Image Comparison (Target Recognition) 

Target recognition is accomplished by applying a template-matching technique where targets are 
recognized based on the template that best matches the reconstructed ISAR images. The recognition is 
carried out by comparing ISAR images obtained from actual data to a database populated with 
synthetic ISAR images, that is to say images obtained with electromagnetic software. FASCRO is the 
tool employed in this paper in order to generate the synthetic images that will populate the database. 
The software is based on the work by [34,35]. Its operation lies in a combination of two high 
frequency techniques, physical optics (PO) and physical theory of diffraction (PTD) applied to targets 
modelled as non-uniform rotational B-splines surfaces (NURBS) [36,37]. Figure 11 displays some of 
the synthetic images that populate the database.  

Figure 11. Examples of ISAR images populating the synthetic database; (a) Synthetic 
ISAR image of a Boeing 767; (b) Synthetic ISAR image of a Fokker 100; (c) Synthetic 
ISAR image of a Boeing 747. 

 
(a) 

 
(b) 

 
(c) 

As can be easily noticed, synthetic ISAR images are in many ways different from those obtained 
from actual data; the images obtained synthetically are much clearer; this is due to the fact that 
electromagnetic software runs an ideal scheme, without considering any noise or clutter. Synthetic 
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ISAR images do not suffer from measurement noise, and also application of translational motion 
compensation to HRRPs is not needed for their generation. Moreover, all the aircrafts are considered 
PEC (perfect electric conductors) in the simulations and also CAD models are approximations of 
aircraft geometry. Thus, electromagnetic software cannot simulate all the effects present in a real 
environment. Additionally, for the construction of a good database of synthetic aircrafts the image 
projection plane (IPP) must be taken into account since the target reflectivity is strongly dependent on 
the aircraft aspect angle and can affect the recognition process. Moreover, the estimation of the angular 
velocity of target rotation should be carried out since cross-range scaling of the ISAR image depends 
on it. In [38,39] an attempt to solve the question of building a robust database can be found taking into 
account the image projection plane. In [40] an iterative method to estimate the angular parameters of 
non-cooperative targets using the estimates of the range and radial velocity of two prominent 
scatterers as inputs is addressed. 

 In the study presented here the flight plans of the different aircrafts are known and the database has 
been built according to them. This implies that the image projection plane and the angular velocity of 
the targets in the database used in this paper for recognition are the same as the ISAR images 
generated from actual data; this means that their estimation is not necessary. However, in a real 
application of non-cooperative target recognition flight plans are unknown and the aspect angle of the 
aircrafts as well as their angular velocity should be estimated. Consequently, the database should be 
populated with ISAR images of aircrafts in different aspect angles and trajectories and the ISAR 
images of the targets should only be compared to those with the same resolution and image projection 
plane in order to reduce computational burden. The proposed template-matching technique to compare 
ISAR images is the normalized cross-correlation between them [41–43] although there is no generally 
accepted way of performing this task. Normalized cross correlation (NCC) is one of the most robust 
measures for determining similarity between points in two or more images providing an accurate 
result. However, this method can be computationally intense, especially for large images [44]. 
Equation (1) presents the formula of the NCC: 

 (1) 

where A and B are images of size N × N and M × M respectively, and  and denote their mean 
value. In the present case, both images have the same size. Table 1 summarizes some of the results 
obtained using normalized cross-correlation for target identification. 

Table 1.Target identification results 

 Synt.-B747 Synt.-Fokker 100 Synt.-B767 
B-767 from actual data 0.1927 0.2473 0.3129 

Results of the identification method show low correlation between images, even though the highest 
value is obtained for the aircraft to be recognized. The reason why these results are obtained lies in the 
fact that synthetic images are much clearer than those obtained from actual data. To improve these 
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correlation results further image processing should be applied to either image set. Note that this 
additional image processing does not have to do with RDA or motion compensation but with 
noise/clutter rejection techniques; however, that is not the purpose of the present work but the study  
of the computational cost of the generation of ISAR images from actual data and the comparison with  
a database. 

4. Computational Burden Results 

One of the requirements in an automatic target recognition method is to obtain a result in real time. 
Real time can be considered as the time needed to process a result sufficiently rapid in order for the 
radar operator to be able to make decisions. For this purpose high performance devices are usually 
needed to achieve these time requirements.  

Prior to the selection of a device to implement a system it is of high interest to study the 
computational burden by means of analyzing the order of magnitude of the calculations. Matlab® 
Profiler [45] is an excellent tool for a preliminary study on computational cost, it was first developed 
to provide information for the debugging and optimization of code but it also provides information 
about execution time of functions, the number of times a function is called, computing time in CPU 
and even the memory consumed by each function. Consequently, a study of computational burden of 
both the generation and the comparison process is carried out using Matlab® Profiler (R2008a) in order 
to identify critical computational points.  

In the next subsection the computational complexity of ISAR image formation is studied, 
establishing for each stage in which the process can be decomposed into the number of  
operations needed. Finally, computational complexity of ISAR image comparison for target 
recognition is revised. 

4.1. ISAR Generation Process Computational Cost 

ISAR generation process, as noted in previous sections, is comprised of the subsequent stages: 

 HRRP Generation 
 Motion Compensation 
 ISAR Formation 

Each stage comprises operations dependent on the number of high resolution range profiles (N) and 
the number of different frequencies in a burst of the transmitted stepped-frequency signal (M). 
According to the results given by Matlab® Profiler, Table 2 and Figure 12 show the operations needed 
and the percentage of time spent in each stage of the process. The operations grouped under “Others”  
in Figure 12 are those needed to plot images, load/save data or display Matlab® Profiler main  
window. The ISAR image generation process was run in an Intel Xeon @ 2.66GHz and 3.50 GB RAM  
PC and the average total time spent for the generation of an image of size 361 × 324 pixels  
(N = 361 profiles × M = 324 frequencies in a burst) was approximately 40 seconds. 
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Table 2. Operations needed to obtain an ISAR image. 

Stage Substage Number of Operations % Time 

HRRP Generation 
Windowing N products of M complex samples 3.24% 
HRRP Formation N IFFTs of M complex samples 0.05% 

Motion Compensation 
Range Bin Alignment (N-1) circular correlation of M real samples 86.81% 
Scatterer Selection N circular shifts 0.39% 
Phase Adjustment N products of M complex samples 0.10% 

ISAR Formation  M FFTs of N complex samples 2.48% 

According to Table 2 and Figure 12 the most expensive (computationally speaking) stage is the 
motion compensation, and more specifically the process of the range bin alignment which involves the 
realization of (N − 1) circular correlation of M real samples and needs an 86.81% of the total time. 

Figure 12. Time spent in the generation of an ISAR image.  

 

Being x[m] and y[m] two profiles of M samples, circular cross correlation is accomplished by 
applying Equation (2), where the term x[m+k]M denotes x[(m+k) mod M], that is to say, the circular 
shift of x[m]: 

 (2) 

Analysis of Equation (2) reveals that for every circular correlation of M samples a total of M2 
products, M·(M − 1) sums and M circular shifts are employed. These operations will be complex or 
real depending on the nature of data. In this particular case, operations needed for circular correlations 
in the range bin alignment stage are real. Moreover, the normalization of the correlation is not needed 
since all profiles will be scaled by the same factor and it will not have effect in the alignment. It should 
be noticed that another technique to perform correlation between signals is through the use of FFT, 
which converts correlations into a product of transforms. 
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The method revised here for range bin alignment, based on the envelope correlation, requires the 
creation of an initial reference profile made up of the first six aligned HRRPs. The alignment and 
creation of this reference profile implies the execution of five correlations out of the (N − 1) needed to 
accomplish the whole alignment process. Next step is the correlation with the following profile, the 
alignment with it and the update of the reference profile. This process will be repeated until all profiles 
are aligned, therefore, it will be repeated (N − 6) times. The update of the reference profile implies 5M 
sums. The total number of operations needed for range bin alignment of a total number of N profiles 
made up of M samples is summarized in Table 3. 

Table 3. Operations needed for range bin alignment. 

Real Products (N − 1)·M2

Real Sums (N − 1)·M·(M − 1) + 5M·(N − 6)
Shifts M·(N − 1) + 2(N − 1)

From Table 3 it can be deduced that this operation has an order of magnitude of O(N·M2). That 
means, for an image of size 361 × 324 pixels, 37,791,360 real products, 38,249,820 real sums and 
117,360 circular shifts. With the implementation of the range bin alignment process in a parallel 
device, the computational burden could be reduced to a magnitude of order O(N·M), or even further to 
a magnitude of O(N) in cases where the implementation device has enough resources.  

This order of magnitude could not be further reduced, at least initially, since parallelization of more 
operations could not be applied due to the dependence of correlations. This means that only one 
correlation is done at a time because the reference profile must be computed before the next correlation 
can be executed. 

Although FFTs/IFFTs have not been very time consuming operations compared to the range bin 
alignment stage, it should be noted that a high number of operations are also required. Matlab® FFT 
algorithm is based on a library called FFTW [46] which has a computational complexity of 
O(N·log2(N)), where N is the number of samples. Only if the magnitude of the range bin alignment 
was reduced to O(N), would FFT computational cost and alignment process cost be comparable.  

4.2. ISAR Image Comparison (Target Recognition) Computational Cost 

The method proposed to compare ISAR images is the normalized cross-correlation between them 
showed in Equation (1). It is worth noting that template-matching techniques like the one proposed 
here are computationally expensive since ISAR images are normally of large dimensions. To speed  
up the recognition process other approaches have been proposed in the literature based on the  
comparison between a set of features extracted from the ISAR image to be recognized and a database  
of features [38,39,47]. 

In the present case both images will be squared of the same size N × N, so by using normalized  
cross-correlation one can deduce that a computational complexity of order O(N2) is needed. 
Nevertheless, images are not centered at the same point so image matching should be additionally 
applied. This matching implies the increase of the computational complexity to an order of O(N4), 
since additional N2 comparisons are executed, one per pixel image. This high burden leads to an 
average time of 10 minutes to complete one comparison of two images of size 256 × 256 in an Intel 
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Figure 14. Computational complexity of normalized cross correlation. 

  

Another relatively efficient way of calculating the NCC is by using the FFT to compute the 
numerator of Equation (1), however, the denominator of the NCC in Equation (1) does not have a 
correspondingly efficient frequency domain expression [44,41]. In order to simplify computation of 
the denominator a sum-table of precomputed data acting as a lookup table should be used, resulting in 
a reduction of the computational complexity. Other methods to compute the NCC include the 
utilization of basis functions to approximate the image template [41].  

In the method studied in this paper, as Figure 14 shows, a great reduction in the number of 
operations executed is achieved with this approach and hence, running time has been lowered from an 
average of 10 minutes to an average of 25 seconds. However, by selecting a more suitable 
implementation platform operations could be parallelized and execution time could be further reduced.  

As already stated, in the study presented in this paper the estimation of the angular velocity of the 
targets is not done since the simulated aircrafts have the same trajectories than the actual 
measurements. However, in a real application of non cooperative target recognition angular velocity of 
targets should be estimated resulting in an increase of the computational complexity. As an example of 
how much the computational burden could be increased can be found in [40] where an iterative 
process to estimate the angular parameters of an aircraft is presented. That iterative method is of order 
O(L3) per iteration, with L belonging to the interval (50,150) and the iterations being a maximum of 
15. Hence, considering the estimation of the angular parameters is needed, an additional computational 
burden of O(L3) should be added to the order of O(C·N2) found in the realization of the image 
comparison. However, the order of magnitude in the estimation of the angular parameters is lower than 
the computational burden of the ISAR image comparison based on the NCC studied in this paper. 

5. Conclusions 

The use of radar sensors for non-cooperative target identification purposes is of great interest in 
civilian and military schemes. To this end a methodology for target recognition from ISAR images and 
the signal processing needed has been presented. It is always interesting the study of the computational 
complexity of any system with the aim of selecting the best implementation platform to achieve system 
requirements. In order to find the critical points in the target recognition system proposed in this paper, 
computational burden of ISAR image generation and comparison with a synthetic ISAR image have 

1E +05

1E +06

1E +07

1E +08

1E +09

1E +10

1E +11

1E +12

1E +13

N
u

m
b

er
 o

f 
F

lo
at

in
g

 
P

o
in

t 
P

ro
d

u
ct

s

128 256 512 1024

Im a g e  Ax is S iz e

'g ' S hifting

No 'g ' S hifting



Sensors 2013, 13 5399 
 
been analyzed using Matlab® Profiler (R2008a). Results have revealed two critical points in the system 
presented here. On the one hand, in the ISAR generation process the bottleneck has been found in the 
profiles alignment. This alignment was based on the envelope correlation algorithm and had a 
computational complexity of O(N·M2), with N and M being the number of profiles and the number of 
frequencies in a stepped-frequency waveform respectively. On the other hand, in the target recognition 
process the bottleneck is found in images cross-correlation; it has been proved that by applying a 
certain shifting grid the computational complexity of the normalized cross-correlation could be 
reduced from O(N4) to O(C·N2) with the corresponding decrease in execution time. 

According to the results obtained the main bottlenecks of the whole system lie in the high amount 
of correlations needed in both the alignment and recognition procedures. These operations can be 
decomposed into sums and products that can be efficiently executed in high performance parallel 
devices due to their high speed, internal resources and parallel execution. In conclusion, tools like 
programmable logic devices (FPGAs) or GPUs could be good candidates to implement and perform 
the system presented in this paper in real time with the additional advantage of fast reconfiguration and 
low cost. 

Nonetheless, further investigation is being considered in the identification process where the 
resemblance between generated ISAR images and database images is very low resulting in poor 
reliable target recognition. In future work the target recognition process must be improved by adding a 
decision procedure based on image features which are present in both synthetic and real ISAR images. 
Additionally, computational burden of other recognition methods based on the comparison between 
image features should also be studied in order to contrast results.  

Acknowledgments 

This research project was funded by the Spanish Ministry of Education and Science (MEC) and the 
project ESPIRA (REF-DPI2009-10143). The authors would like to thank the Spanish National 
Institute for Aerospace Technology (INTA) for the F.P.I. grant awarded to P.L.R. and also to the 
members of NATO-RTO SET-112 Task Group on “Advanced analysis and Recognition of Radar 
Signatures for Non-Cooperative Target Identification” for providing the actual data obtained in the 
measurement campaigns organized in the framework of this group. 

References 

1. Moir, I.; Seabridge, A. Military Avionics Systems, 1st ed.; John Wiley & Sons, Ltd.: West Sussex, 
UK, 2006. 

2. Skolnik, M. Radar Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA, 2008. 
3. Wei, Y.; Meng, H.; Liu, Y.; Wang, X. Extended target recognition in cognitive radar networks. 

Sensors 2010, 10, 10181–10197. 
4. Swart, J.P. Aircraft Recognition from Features Extracted from Measured and Simulated Radar 

Range Profiles. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 2003. 
5. Generation of Synthetic Databases for Non-Cooperative Air Target Identification by Radar; 

Technical Reports RTO-TR-SET-040 March 2005 SET-040; Sensors & Electronics Technology 



Sensors 2013, 13 5400 
 

(SET) 040 Task Group 22, Research & Technical Organization (RTO): Neuilly-sur-Seine Cedex, 
France, 2005. 

6. Jurado-Lucena, A.; Errasti-Alcalá, B.; Escot-Bocanegra, D.; Fernández-Recio, R.;  
Poyatos-Martínez, D.; Montiel Sánchez, I. Methodology to Achieve Accurate Non Cooperative 
Target Identification Using High Resolution Radar and a Synthetic Database. In Trends in 
Applied Intelligent Systems; García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J., Ali, M., Eds.; 
Springer: Berlin/Heidelberg, Germany, 2010; Volome 6096, pp. 427–436. 

7. Wehner, D.R. High-Resolution Radar, 2nd ed.; Artech House: Norwood, MA, USA, 1995. 
8. Skolnik, M. Introduction to Radar Systems, 2nd ed.; McGraw-Hill: Singapore, 1981. 
9. Son, J.S.; Thomas, G.; Flores, B.C. Range-Doppler Radar Imaging; Artech House: Norwood, 

MA, USA, 2001. 
10. Giusti, E.; Martorella, M. Range doppler and image autofocusing for FMCW inverse synthetic 

aperture radar. IEEE T. Aero. Elec. Sys. 2011, 47, 2807–2823. 
11. Cacciamano, A.; Giusti, E.; Capria, A.; Martorella, M.; Berizzi, F. Contrast-Optimization-Based 

Range-Profile autofocus for polarimetric stepped-frequency radar. IEEE T. Geosci. Remote 2010, 
48, 2049–2056. 

12. Escamilla-Hernández, E.; Ponomaryov, V.; Ikuo, A.; Endo, H. Uso de FPGA para realizar 
compresión del pulso de radar. Científica 2005, 9, 73–81. 

13. Levanon, N. Stepped-frequency pulse-train radar signal. IEE P. Radar Son. Nav. 2002, 149,  
297–309. 

14. Chen, C.-C.; Andrews, H.C. Target-Motion-Induced radar imaging. IEEE T. Aero. Elec. Sys. 
1980, 16, 2–14. 

15. Demirci, S.; Cetinkaya, H.; Tekbas, M.; Yigit, E.; Ozdemir, C.; Vertiy, A. Back-projection 
Algorithm for ISAR Imaging of Near-Field Concealed Objects. In Proceedings of 2011 XXXth 
URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011;  
pp. 1–4. 

16. Li., W.-C.; Wang., X.-S.; Wang, G.-Y. Scaled Radon-wigner transform imaging and scaling of 
maneuvering target. IEEE T. Aero. Elec. Sys. 2010, 46, 2043–2051. 

17. Chen, V.C.; Qian, S. Joint time-frequency transform for radar range-Doppler imaging. IEEE T. 
Aero. Elec. Sys. 1998, 34, 486–499. 

18. Wang, R.; Jiang, Y.-C. ISAR Ship Imaging Based on Reassigned Smoothed Pseudo  
Wigner-Ville Distribution. In Proceedings of 2010 International Conference on Multimedia 
Technology (ICMT), Ningbo, China, 29–31 October 2010; pp. 1–3. 

19. Liu, M.; Gao, M.; Fu, T. Real time ISAR Imaging Algorithm of Maneuvering Targets Based on 
the Fractional Fourier Transform. In Proceedings of APSAR 2007. 1st Asian and Pacific 
Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 667–670. 

20. Muñoz-Ferreras, J.M. Enfocado de Imágenes de Radar de Apertura Sintética Inversa—Nuevas 
Técnicas y Aplicaciones. Ph.D. Thesis, Universidad Politécnica de Madrid: Madrid, Spain, 2008. 

21. Delisle, G.Y.; Wu, H. Moving target imaging and trajectory computation using ISAR. IEEE T. 
Aero. Elec. Sys. 1994, 30, 887–899. 

22. Xing, M.; Wu, R.; Bao, Z. High resolution ISAR imaging of high speed moving targets. IEE P. 
Radar Son. Nav. 2005, 152, 58–67. 



Sensors 2013, 13 5401 
 
23. Itoh, T.; Sueda, H.; Watanabe, Y. Motion compensation for ISAR via centroid tracking. IEEE T. 

Aero. Elec. Sys. 1996, 32, 1191–1197. 
24. Perez-Martinez, F.; Garcia-Fominaya, J.; Calvo-Gallego, J. A shift-and-convolution technique for 

high-resolution radar images. IEEE Sens. J. 2005, 5, 1090–1098. 
25. Li, X.; Liu, G.; Ni, J. Autofocusing of ISAR images based on entropy minimization. IEEE T. 

Aero. Elec. Sys. 1999, 35, 1240–1252. 
26. Berizzi, F.; Martorella, M.; Haywood, B.; Mese, E.D.; Bruscoli, S. A Survey on ISAR 

Autofocusing Techniques. In Proceedings of IEEE International Conference on Image Processing 
(IClP), Singapore, 6–10 September 2004; Volume 1, pp. 9–12. 

27. Brown, W.; Fredricks, R. Range-Doppler imaging with motion through resolution cells. IEEE T. 
Aero. Elec. Sys. 1969, 5, 98–102. 

28. Heiden, R.V.d.; Vries, J. The ORFEO Measurement Campaign; TNO Defence, Security and 
Safety Report; The Hague, The Netherlands, 1996. 

29. Oppenheim, A.V.; Willsky, A.S.; Nawab, S.H. Signals and Systems; 2nd ed.; Prentice Hall: New 
York, NJ, USA, 1997. 

30. Harris, F. On the use of windows for harmonic analysis with the discrete fourier transform. P. 
IEEE 1978, 60, 51–83. 

31. Munoz-Ferreras, J.M.; Perez-Martinez, F. Extended Envelope Correlation for Range Bin 
Alignment in ISAR. In Proceedings of 2007 IET International Conference on Radar Systems, 
Edinburgh, UK, 15–18 October 2007; pp. 1–5. 

32. Steinberg, B. Microwave imaging of aircraft. P. IEEE 1988, 76, 1578–1592. 
33. Munoz-Ferreras, J.M.; Perez-Martínez, F. Uniform rotational motion compensation for inverse 

synthetic aperture radar with non-cooperative targets. IET Radar Son. Nav. 2008, 2, 25–34. 
34. Perez, J.; Catedra, M.F. Application of physical optics to the RCS computation of bodies modeled 

with NURBS surfaces. IEEE T. Antenn. Propag. 1994, 42, 1404–1411. 
35. Conde, O.M.; Perez, J.; Catedra, M.P. Stationary phase method application for the analysis of 

radiation of complex 3-D conducting structures. IEEE T. Antenn. Propag. 2001, 49, 724–731. 
36. Farin, G. Curves and Surfaces for CAGD.: A Practical Guide, 5th ed.; Morgan Kaufman 

Publishers: Burlington, MA, USA, 2002. 
37. Zhao, Y.; Shi, X.-W.; Xu, L. Modeling with NURBS surfaces used for the calculation of RCS. 

Prog. Electromagn. Res. 2008, 78, 49–59. 
38. Martorella, M.; Giusti, E.; Demi, L.; Zhou, Z.; Cacciamano, A.; Berizzi, F.; Bates, B. Target 

recognition by means of polarimetric ISAR images. IEEE T. Aero. Elec. Sys. 2011, 47, 225–239. 
39. Giusti, E.; Martorella, M.; Capria, A. Polarimetrically-Persistent-Scatterer-Based automatic target 

recognition. IEEE T. Geosci. Remote 2011, 49, 4588–4599. 
40. Munoz-Ferreras, J.M.; Perez-Martínez, F. Non-uniform rotation rate estimation for ISAR in case 

of slant range migration induced by angular motion. IET Radar Son. Nav. 2007, 1, 251–260. 
41. Briechle, K.; Hanebeck, U.D. Template matching using fast normalized cross correlation. Proc. 

SPIE 2001, 4387, 95–102. 
42. Wang, X.; Wang, X. FPGA Based Parallel Architectures for Normalized Cross-Correlation. In 

Proceedings of 2009 1st International Conference on Information Science and Engineering 
(ICISE), Nanjing, China, 26–28 December 2009; pp. 225–229. 



Sensors 2013, 13 5402 
 
43. Kincses, Z.; Voroshazi, Z.; Nagy, Z.; Szolgay, P.; Laviniu, T.; Gacsadi, A. Investigation of Area 

and Speed Trade-offs in FPGA Implementation of An Image Correlation Algorithm. In 
Proceedings of 2012 13th International Workshop on Cellular Nanoscale Networks and Their 
Applications (CNNA), Turin, Italy, 29–31 August 2012; pp. 1–5. 

44. Hii, A.J.H.; Hann, C.E.; Chase, J.G.; Houten, E.E.W.V. Fast normalized cross correlation for 
motion tracking using basis functions. Comput. Methods Prog. Biomed. 2006, 82, 144–156. 

45. MathWorks Documentation Center. Available online: http://www.mathworks.com/help (accessed 
on 14 October 2012). 

46. The Faster Fourier Transform in the West (FFTW). Available online: http://www.fftw.org 
(accessed on 23 January 2013). 

47. Martorella, M.; Giusti, E.; Capria, A.; Berizzi, F.; Bates, B. Automatic target recognition by 
means of polarimetric ISAR images and neural networks. IEEE T. Geosci. Remote 2009, 47, 
3786–3794. 

48. Jurado-Lucena, A. Desarrollo y Evaluación de Algoritmos de Identificación no Cooperativa de 
Blancos Radar Reales Mediante una Base de Datos Sintética: Aproximación Hacia una Solución 
Operativa. Ph.D. Thesis, University of Alcalá: Madrid, Spain, 2011. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 




	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Objectives
	1.4 Outline

	2 State of the Art
	2.1 Non-Cooperative Target Identification Techniques
	2.1.1 Non-imaging techniques
	2.1.2 Imaging Techniques
	2.1.3 Comparison of NCTI Techniques

	2.2 Feature extraction and Classification Methods
	2.2.1 Feature extraction
	2.2.2 Classifiers
	2.2.3 Discussion

	2.3 Datasets and database assembly
	2.4 Conclusions

	3 Radar Range Profiles for NCTI
	3.1 High Resolution Radar
	3.2 HRRP generation using a stepped frequency waveform
	3.3 Range profile variability
	3.3.1 Time-shift sensitivity
	3.3.2 Target-aspect sensitivity
	3.3.3 Amplitude-scale sensitivity and occlusion

	3.4 Preprocessing of range profiles
	3.4.1 Windowing
	3.4.2 Zero-padding
	3.4.3 Motion Compensation

	3.5 Summary

	4 Datasets
	4.1 Actual data
	4.1.1 Preprocessing of the actual data

	4.2 Simulated data
	4.2.1 Preprocessing of the synthetic data

	4.3 Differences between datasets
	4.4 Discussion

	5 Algorithms for range profiles classification
	5.1 Feature extraction
	5.1.1 Singular Value Decomposition

	5.2 Classifiers Definitions
	5.2.1 Classical Subspace Methods
	5.2.2 Novel subspace methods
	5.2.2.1 Cumulative angle between subspaces
	5.2.2.2 Weighted cumulative angle between subspaces
	5.2.2.3 The generalized Mutual Subspace Method


	5.3 Conclusions

	6 Experiments and Results
	6.1 Test Cases Definitions
	6.1.1 Test Case I
	6.1.2 Test Case II
	6.1.3 Subcases Definitions

	6.2 Experiments Definitions
	6.2.1 Energy Threshold
	6.2.1.1 Test Case I. Results
	6.2.1.2 Test Case II. Results

	6.2.2 Softwheights evolution with m
	6.2.2.1 Test Case I. Results
	6.2.2.2 Test Case II. Results


	6.3 Algorithm comparison

	7 Conclusions and future research
	7.1 Conclusions
	7.2 Main Contributions
	7.3 Future research

	Bibliography
	A Computational Burden of an ISAR image identification system

