58 research outputs found

    A Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids

    Full text link
    We present a new simulation scheme based on the Lattice-Boltzmann method to simulate the dynamics of charged colloids in an electrolyte. In our model we describe the electrostatics on the level of a Poisson-Boltzmann equation and the hydrodynamics of the fluid by the linearized Navier-Stokes equations. We verify our simulation scheme by means of a Chapman-Enskog expansion. Our method is applied to the calculation of the reduced sedimentation velocity U/U_0 for a cubic array of charged spheres in an electrolyte. We show that we recover the analytical solution first derived by Booth (F. Booth, J. Chem. Phys. 22, 1956 (1954)) for a weakly charged, isolated sphere in an unbounded electrolyte. The present method makes it possible to go beyond the Booth theory, and we discuss the dependence of the sedimentation velocity on the charge of the spheres. Finally we compare our results to experimental data.Comment: 18 pages, 5 figures, to appear in Phys. Rev.

    Non-Linear Lattice

    Get PDF
    The development of mathematical techniques, combined with new possibilities of computational simulation, have greatly broadened the study of non-linear lattices, a theme among the most refined and interdisciplinary-oriented in the field of mathematical physics. This Special Issue mainly focuses on state-of-the-art advancements concerning the many facets of non-linear lattices, from the theoretical ones to more applied ones. The non-linear and discrete systems play a key role in all ranges of physical experience, from macrophenomena to condensed matter, up to some models of space discrete space-time

    Electrokinetic and hydrodynamic properties of charged-particles systems: From small electrolyte ions to large colloids

    Get PDF
    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics

    Thermal fluctuations and boundary conditions in the lattice Boltzmann method

    Get PDF
    The lattice Boltzmann method is a popular approach for simulating hydrodynamic interactions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose nodes are populated by particle distributions that propagate on the discrete links between the nodes and undergo local collisions. On large length and time scales, the microdynamics leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis, several extensions to the lattice Boltzmann method are developed. In complex fluids, for example suspensions, Brownian motion of the solutes is of paramount importance. However, it can not be simulated with the original lattice Boltzmann method because the dynamics is completely deterministic. It is possible, though, to introduce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics. In this work, a generalized lattice gas model is used to systematically derive the fluctuating lattice Boltzmann equation from statistical mechanics principles. The stochastic part of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy the condition of detailed balance. This leads to an expression for the thermal fluctuations which implies that it is essential to thermalize all degrees of freedom of the system, including the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann equation is simultaneously consistent with both fluctuating hydrodynamics and statistical mechanics. This establishes a foundation for future extensions, such as the treatment of multi-phase and thermal flows. An important range of applications for the lattice Boltzmann method is formed by microfluidics. Fostered by the “lab-on-a-chip” paradigm, there is an increasing need for computer simulations which are able to complement the achievements of theory and experiment. Microfluidic systems are characterized by a large surface-to-volume ratio and, therefore, boundary conditions are of special relevance. On the microscale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by a slip boundary condition. In this work, a boundary condition for lattice Boltzmann is constructed that allows the slip length to be tuned by a single model parameter. Furthermore, a conceptually new approach for constructing boundary conditions is explored, where the reduced symmetry at the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow in a plane channel, it is shown that a special choice of the collision operator is required to reproduce the correct flow profile. This systematic approach sheds light on the consequences of the reduced symmetry at the boundary and leads to a deeper understanding of boundary conditions in the lattice Boltzmann method. This can help to develop improved boundary conditions that lead to more accurate simulation results

    Quantification for micromixing using the lattice Boltzmann method

    Get PDF

    Quantification for micromixing using the lattice Boltzmann method

    Get PDF

    Simulation of the Flow of a Single Stranded Dna in a Channel Using Dissipative Particle Dynamics

    Get PDF
    Separation of DNA has significant importance in understanding the genome of an organism for genetic engineering and DNA profiling for forensics. The purpose of the study was to simulate a system containing solvent and DNA particles through a pressure-driven two-dimensional microchannel using Dissipative Particle Dynamics. This computational fluid method is simulated in Matlab using the modified velocity-Verlet algorithm. The computational method DPD was modified and the simulated channel flow was compared to the theoretical flow between two-dimensional parallel plates. The boundary conditions include both solid `frozen' particle walls and periodic boundary conditions. The DNA particles are then inserted into the channel to understand their physical properties as they migrate through a pressure-driven channel. Their extension due to stretching and folding is studied to understand the relaxation time of the DNA strand in the channel for a set of varied conditions. no-slip boundary region was altered to enforce the wall boundary conditions and to prevent the wall penetration by DPD fluid particles. The modified DPD weighting functions resolve the low Schmidt number and low viscosity typical of DPD and increase particle interaction between DPD fluid particles. However, this modification cannot be performed when simulating DNA particles as worm-like chain models as they do not generate accurate physical properties of DNA particles. The extensions of the DNA strands are simulated under the influence of different external forces and the relaxation time was reported.Mechanical & Aerospace Engineerin

    Optimization of a Micromixer with Automatic Differentiation

    Get PDF
    As micromixers offer the cheap and simple mixing of fluids and suspensions, they have become a key device in microfluidics. Their mixing performance can be significantly increased by periodically varying the inlet pressure, which leads to a non-static flow and improved mixing process. In this work, a micromixer with a T-junction and a meandering channel is considered. A periodic pulse function for the inlet pressure is numerically optimized with regard to frequency, amplitude and shape. Thereunto, fluid flow and adsorptive concentration are simulated three-dimensionally with a lattice Boltzmann method (LBM) in OpenLB. Its implementation is then combined with forward automatic differentiation (AD), which allows for the generic application of fast gradient-based optimization schemes. The mixing quality is shown to be increased by 21.4% in comparison to the static, passive regime. Methodically, the results confirm the suitability of the combination of LBM and AD to solve process-scale optimization problems and the improved accuracy of AD over difference quotient approaches in this context

    Computer simulation of boundary effects and multiphase flows on the mesoscopic scale

    Get PDF
    corecore