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Dynamic processes in dispersions of charged spherical particles are of importance both in funda-
mental science, and in technical and bio-medical applications. There exists a large variety of charged-
particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized
colloids. We review recent advances in theoretical methods for the calculation of linear transport
coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and
electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective
diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of
ionic particle species in an external electric field. Advances by our group are also discussed, including
a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong
electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable parti-
cles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling
of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal
long- to short-time dynamics.

I. INTRODUCTION

Dispersions of charged globular particles undergoing
correlated Brownian motions are ubiquitously found with
a broad range of particle sizes, ranging from electrolyte
solutions through solutions of nanometer-sized globular
proteins to dispersions of micron-sized charge-stabilized
colloidal spheres.

Charge-stabilized colloid particles are encountered in
a rich variety in chemical industry, biology and food
science. Composite and aspherical colloidal particles
have attracted increasing attention in soft matter sci-
ence. These classes of colloids include suspensions of
rods, discs, core-shell particles with a solid core and
surrounding polyelectrolyte brush layer, star polymers
and ionic microgels, to name only a few examples. The
stimuli-dependent size and biocompatibility of microgels
such as poly (N-isopropylacrylamide) (PNiPAm) allows
for their use in biomedical applications including drug
delivery. Experimentally well-studied examples of glob-
ular proteins are, e.g., bovine serum albumin (BSA),
lyzoyzme, and apoferritin [1–6]. If dispersed in water,
the proteins are moderately charged, by an amount de-
pending on temperature, pH value, salinity, and protein
concentration. A quantitative understanding of the dy-
namics in concentrated solutions of interacting proteins
is of importance, e.g., to the evaluation of cellular func-
tions. Conduction-diffusion and viscoelastic transport
coefficients of electrolyte solutions are of relevance in elec-
trochemistry, geology, energy research, and biology [7, 8].
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They play an important role in many industrial processes
including waste water treatment and ion exchange appli-
cations. A thorough theoretical understanding of elec-
trolyte transport properties of non-dilute solutions has
still not been achieved, in spite of the large body of ac-
cumulated empirical data [9, 10].

While on first sight electrolyte ions, globular proteins
and spherical charged colloids appear to be very differ-
ent, from a simplifying theoretical viewpoint they can be
all treated as (uniformly) charged Brownian spheres, in-
teracting by Coulomb plus excluded volume forces, and
immersed in a structureless Newtonian solvent charac-
terized by the dielectric constant ε and the shear vis-
cosity η0. In this primitive model (PM) type picture,
the dynamics of all ionic species, i.e. colloid and protein
macroions as well as electrolyte microions, is taken to
be overdamped, with the configurational evolution of all
ions described by the many-particle generalized Smolu-
chowski equation (GSmE) in combination with the low-
Reynolds number creeping flow equation for the solvent.
Such a simplifying description makes good sense also for
electrolyte solutions [11], even though ion-solvent specific
effects on the molecular level [12], commonly addressed
using concepts such as hydration shells, local solvent po-
larization by ion electric fields, and structure-breaking
and structure-making ion properties, are per se not ac-
counted for in the PM-GSmE model. However, ion hy-
dration shells can be approximately accounted for in a
structureless solvent model by using mixed slip-stick hy-
drodynamic boundary conditions (BCs) on the PM mi-
croion surfaces, and by allowing for a certain solvent per-
meability.

The dynamics of macroions and microions is deter-
mined by the interplay of direct electrosteric forces
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and indirect, solvent-mediated hydrodynamic interac-
tions (HIs). The latter are long-ranged and in gen-
eral of many-body nature [13]. This causes challenging
problems in theoretical and computer simulation stud-
ies of Brownian ion systems. The dynamics of colloidal
macroions much larger than electrolyte and surface-
released counterions is therefore frequently described us-
ing the one-component macroion fluid model (OMF). In
this simplifying model, only the microion-dressed col-
loidal particles are considered which interact for non-
overlap distances by an effective screened Coulomb pair
potential. The averaged microion degrees of freedom
enter into the OMF description only through effective
colloidal charge number and electrostatic screening pa-
rameters, which in general are dependent on the ther-
modynamic state. The simplicity of the OMF allows for
a quantitative consideration of the strong colloid-colloid
HIs in dense charge stabilized suspensions. However, it
disregards electrokinetic effects on the colloid dynamics,
arising in particular from the non-instantaneous dynamic
response, to internal or external perturbations, of the mi-
croion cloud surrounding each colloidal macroion. This
so-called microion relaxation mechanism is most influen-
tial for low colloid concentrations and smaller macroion
sizes, and when the Debye effective screening length
is comparable to the macroion radius. An additional
electrokinetic mechanism of purely hydrodynamic ori-
gin becomes operative when an electric field is applied
(electrophoresis). This so-called electrophoretic mecha-
nism describes the slowing influence on the field-induced
macroion migration owing to the hydrodynamic coupling
with surrounding counter- and coions.

Colloidal electrokinetic effects have been studied in
the past mainly using the standard electrokinetic the-
ory (SET) approach where the microions are described
as continuous local charge densities coupled to the sol-
vent creeping flow, with advection-diffusion type Nernst-
Planck constitutive equations for the microion fluxes
[14, 15]. The SET equations are commonly linearized
with respect to the driving field. In this mean-field type
approach, microion correlations are disregarded which
are important when the macroions are small such as in
the case of proteins, or when the macroions are strongly
charged and non-monovalent counterions are present.
Microion correlation effects have been included approx-
imately in recent extensions of the SET equations [16–
19]. In the extension by Lozada-Cassou and collaborators
[20–22], microion finite sizes are incorporated through a
non-ideal contribution to the microionic electrochemical
potential, evaluated to first order in the external electric
field using the hybrid HNC-MSA equilibrium ionic pair
distribution functions for a restricted PM electrolyte sur-
rounding a spherical macroion. The macroion zeta poten-
tial at the slipping surface is identified with the equilib-
rium mean electrostatic potential at the closest approach
distance to the microion (see also [23]). A possible sign
reversal of the electrophoretic mobility is hereby directly
linked to a corresponding colloidal charge reversal. In the

approach by Lozada-Cassou et al., the microions are dy-
namically still treated as continuous charge density fields.
The reduced screening ability of non-zero-sized microions
reduces the relaxation effect, giving rise to an enlarged
macroion electrophoretic mobility at large zeta potential
values.

While developed originally for a single colloidal parti-
cle in an electrolyte solution, the SET approach has been
extended over the years to concentrated suspensions,
mostly on basis of simplifying cell models [14, 24–34].
These cell model SET extensions, although being quite
successful in predicting general trends in electrophore-
sis and sedimentation, are of an ad hoc nature and do
not properly account for macroion-macroion correlations
arising from overlapping colloidal electric double layers
(EDLs) and colloid-colloid HIs. This is also reflected in
the still ongoing discussion about the appropriate elec-
tric and hydrodynamic BCs at the outer cell boundary
(see, e.g. [35]). The SET cell models predict the elec-
trophoretic mobility to decrease in general with increas-
ing volume fraction, also for low-polar solvents [36], and
with increasing overlap of the colloidal EDLs. In most
calculations, either a constant surface potential or sur-
face charge density have been assumed, but chemically
charge-regulated colloidal surfaces are also considered
[37]. Moreover, cell model dc and ac electrophoretic cal-
culations for core-shell spheres with microion-penetrable
shells have been made [38, 39].

There exist also two-colloid extensions of the SET
approach which have been used, e.g., for determining
the concentration dependence of the electrophoretic mo-
bility in semi-dilute suspensions [40–42]. This two-
colloid approach gives in particular the correct solvent
backflow factor

[
1− 1.5φ+ O

(
φ2
)]

with the colloid vol-
ume fraction φ, multiplying the single-colloid Smolu-
chowski electrophoretic mobility of monodisperse and
non-conducting colloidal spheres with ultrathin EDLs.
The electrophoretic mobility and the flow behavior of
suspensions of interacting colloidal charged spheres can
be determined from the measured power spectrum using
low-angle super-heterodyne Doppler velocimetry. Exper-
imental results by this method, and an outline of the
underlying light scattering theory, are given in [43].

We point out that different from colloidal systems,
all ions in electrolyte solutions are of comparable size,
charge, and mobility. Therefore, a full PM-GSmE de-
scription of the microion electrokinetics is required for
non-dilute systems with all ions treated individually as
dynamic entities.

In this work, we review recent advances in the theo-
retical understanding of linear diffusion-convection and
rheological transport properties characterizing disper-
sions of globular charged Brownian particles. The re-
view encompasses a broad range of properties, including
microionic conductivities and electrophoretic mobilities,
high-frequency and steady-state viscosities, generalized
sedimentation coefficients, and self- and collective diffu-
sion coefficients.
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Theoretical methods for the calculation of conduction-
diffusion coefficients and the viscosity of strong elec-
trolyte solutions are reviewed in Sec. II. The section
includes new results which we have obtained using a sim-
plified mode-coupling theory (MCT) method where ion-
ion HIs are properly accounted for not only in the short-
time response, but also in the microion clouds relaxation
contribution. In Sec. III, the dynamics in solutions of
globular proteins is addressed. We demonstrate that the-
oretical methods developed originally for colloids can be
successfully applied to crowded protein solutions such as
BSA. Sec. IV reports on recent progress in the under-
standing of transport properties of concentrated suspen-
sions of charge-stabilized colloidal particles. In particu-
lar, the dynamic behavior of solvent-permeable particles,
and of ionic microgels penetrable by surrounding coun-
terions is discussed. Our conclusions are contained in
Sec. V. A list of abbreviations is included following the
acknowledgements.

II. ELECTROLYTE SOLUTIONS

We consider here strong electrolyte solutions where the
salt solute is fully dissociated. At total electrolyte con-
centrations nT lower than about 0.01 M, electrolyte ions
can be treated as pointlike, and their Coulomb inter-
actions give rise to the peculiar square-root in concen-
tration dependence of electrolyte transport properties.
This concentration dependence is the hallmark of the
Debye-Falkenhagen-Onsager-Fuoss (DFOF) limiting law
expressions for the transport coefficients characterizing
electrolyte conductivity and electrophoresis [44, 45], self-
diffusion [46], and viscosity [44, 45, 47]. The limiting law
expressions have been derived using a continuum model
for the solvent, with the ions treated as pointlike Brow-
nian particles described by equilibrium pair distribution
functions on the linear Debye-Hückel (DH) theory level.

Various routes have been followed in the past for cal-
culating conduction-diffusion and rheological properties
of non-dilute electrolytes where the excluded volume of
the ions needs to be considered. Falkenhagen [12] and
Ebeling et al. [48, 49] have extended the DFOF continu-
ity equations approach to finite ion sizes. The relaxation
mechanism contribution to the conductivity is deduced
in their approach from averaging the electrostatic force
experienced by a central ion using the perturbed ionic
pair distribution functions.

A considerable improvement over the DFOF theory
was obtained by Bernard, Turq, Blum, Dufreche and
collaborators in a series of publications [50–54] where
the DFOF approach has been combined (mostly) with
the analytic mean-spherical approximation (MSA) so-
lution [55, 56] for the ionic pair distribution functions.
They obtained results for the steady-state ion conductiv-
ity [50, 52, 54], the ion self-diffusion coefficients [57], and
the mutual (chemical) diffusion coefficient [58, 59] (see
also [60, 61]). The in general non-negligible influence of

the ion-ion HIs on the ion cloud relaxation mechanism
is disregarded in their treatment, except for the special
case of ionic self-diffusion [62]. Moreover, the electrolyte
viscosity has not been considered in their works

In recent works, Chandra, Bagchi and collaborators
have combined MCT and dynamic density functional the-
ory (DDFT) arguments to derive expressions for the mo-
lar conductivity [53, 63, 64] and viscosity [65] of elec-
trolyte solutions. The ion excluded volumes are incor-
porated in their hybrid method using Attard’s general-
ization [66] of the DH pair distribution functions. How-
ever, the influence of the ion-ion HIs on the viscosity,
and on the relaxation mechanism part of the conductiv-
ity, are disregarded in their MCT-DDFT treatment. In
related work, Dufreche et al. [62] have combined MCT
and DDFT arguments with Kirkwood’s friction formula
for electrolyte friction to calculate the ion self-diffusion
coefficients and velocity autocorrelation functions in a
binary electrolyte solution. The finite ion sizes in this
approach to self-diffusion are accounted for in MSA, and
the inter-ion HIs are treated on the point-particle (Os-
een) level of description. In [62], however, the effect of
dynamic cross correlations in the intermediate scattering
functions input is disregarded.

In a series of papers, using linear response theory we
have developed a unifying MCT method for calculat-
ing linear conduction-diffusion [67, 68] and viscoelastic
[68, 69] properties of non-dilute strong electrolyte solu-
tions. This method builds on earlier work where a general
MCT for the dynamic structure factor of Brownian par-
ticle mixtures with HIs has been developed [70–72]. Our
statistical mechanical theory of electrolyte transport on
the PM-GSmE level includes the influence of the solvent-
mediated ion-ion HIs not only in the short-time response,
but also in the relaxation mechanism contribution. It
provides hereby a complete description of steady-state
transport coefficients. This differentiates our method
from earlier theoretical work where HIs were only incom-
pletely considered, or where severe approximations such
as the Nernst-Einstein relation between ion self-diffusion
and conductivity have been invoked. Using a simplifying
solution scheme, referred to as the MCT-HIs approach,
easy-to-apply semi-analytic transport coefficient expres-
sions have been derived and evaluated for an aqueous
1 : 1 strong electrolyte solution which is an overall elec-
troneutral binary solution of monovalent cations and an-
ions in water. The predicted coefficients for stick hy-
drodynamic BC on the PM ion surfaces agree well with
experimental data for the electrolyte conductivity and
viscosity, for ion concentrations extending even up to two
molar. To analyze the dynamic influence of ion hydra-
tion shells, [68] includes a discussion on the significance
of mixed stick-slip hydrodynamic surface boundary con-
ditions, and on the effect of solvent permeability.

A thorough description of the MCT-HIs method with
numerous numerical results is contained in [67–69]. To
illustrate the method, Figs. 1 - 3 display additional re-
sults not included in the aforementioned papers. In Fig.
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1, the MSA-HIs prediction of the molar conductivity Λ
of an aqueous 1 : 1 strong electrolyte solution is com-
pared with experimental data for a NaCl solution. The
quantity Λ is the mean electric current density of ions
per unit applied electric field strength, and per mol of
salt unit. Results for mixed slip-stick BCs with three
different hydrodynamic slip lengths, lslip, are compared
to each other. Here, lslip is the distance into the interior
of a PM ion for which the linear near-surface flow ex-
trapolates to zero. The experimental conductivity data
are overall well reproduced using the standard stick BC
for which lslip = 0, even though they are underestimated
to some extent at large nT . The agreement between the-
ory and experiment becomes excellent for lslip = a/4, a
slip length compatible with the presence of ion hydration
shells which are expected to cause some hydrodynamic
slip. The slip length of an ion depends on the molec-
ular structure and width of its hydration shell, and for
a thicker shell also on the form of the local flow field
which differs in character for electrophoresis and shear
flow without external electric field. Fig. 1 depicts addi-
tionally theoretical results for the short-time (i.e. elec-
trophoretic mechanism) part, ΛS , of the conductivity,
normalized by the electrolyte conductivity Λ0 at infinite
dilution. At larger nT , the reduction of the conductiv-
ity by the relaxation mechanism becomes comparatively
large to that caused by the short-time electrophoretic
mechanism. As shown in [68], both the short-time and
relaxation parts of Λ, and of the viscosity, are consider-
ably affected by the HIs. At very low concentrations, the
DFOF limiting law result for the conductivity is recov-
ered by the MCT-HIs scheme.

Fig. 2 includes a MCT-HIs based analysis of the ap-
proximate Nernst-Einstein (NE) relation which links the
conductivity to the ionic self-diffusion coefficients. For a
symmetric 1 : 1 electrolyte, the NE relation simply reads
Λ/Λ0 ≈ dL/d0, where dL is the long-time self-diffusion
coefficient of the equally sized and equally valent anions
and cations with common single-ion diffusion coefficient
d0. Owing to the neglected ion velocity cross correlations
in the NE relation, the conductivity is severely overesti-
mated by this relation.

Similar to the conductivity, the electrolyte viscosity η
in excess to the solvent viscosity η0, is given by the sum
[69],

∆ηexc = η − η0 = ∆η∞ + ∆η ,

of a short-time (i.e. high-frequency) part ∆η∞ and a
shear-stress relaxation part ∆η. The short-time part is
of purely hydrodynamic origin and vanishes for point par-
ticles or when HIs are disregarded. Fig. 3 includes our
MCT-HIs predictions for the excess viscosity of an aque-
ous 1 : 1 electrolyte for values of the slip length as in
Fig. 1, in comparison with the measured excess viscosity
of NaCl in water. The experimental data are well de-
scribed by the MCT-HIs result when the standard stick
BC is used. Usage of the slip length lslip = a/4 results
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Figure 1. MCT-HIs based theoretical predictions for the nor-
malized molar conductivity, Λ, of an aqueous 1 : 1 electrolyte
at T = 25◦C (solid lines), for three hydrodynamic slip lengths
as indicated. The corresponding short-time conductivity con-
tributions, ΛS , are shown as dashed lines. The hydrodynamic
mean ion diameter, σ = 2a = 4.58Å, of hydrated Na+ and
Cl− ions was used in the calculations. Open circles: experi-
mental data for the molar conductivity of NaCl dissociated
in water, taken from [73]. Dotted line: DFOF limiting law
result. The lower (upper) horizontal scale is for the total ion
concentration nT (total ion volume fraction φT ).
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Figure 2. Accuracy check of the approximate Nernst-Einstein
relation, Λ/Λ0 ≈ dL/d0, for the reduced molar conductivity
of a symmetric aqueous 1 : 1 electrolyte. Solid lines are sim-
plified MCT-HIs results for dL/d0 (upper curve) and Λ/Λ0

(lower curve), respectively, for zero slip length. All other sys-
tem parameters are as in Fig. 1. Open circles: experimental
conductivity data for NaCl in water at T = 25◦C [73].

however in a significant underestimation of the viscosity.
This can be at least partially attributed to the fact that
the mean local hydrodynamic environment of particles in
shear flow is qualitatively different from the local environ-
ment in electrophoresis, with consequently different hy-
drodynamic slip lengths [67]. The strongest contribution
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Figure 3. MCT-HIs based theoretical predictions for the con-
centration dependence of the reduced excess electrolyte vis-
cosity, ∆ηexc/η0, of an aqueous 1 : 1 electrolyte at T = 25◦C.
Three hydrodynamic slip lengths are considered as indicated
(solid lines), and σ = 2a = 4.58Å is used for the mean ion di-
ameter. The corresponding reduced short-time viscosity con-
tributions, ∆η∞, are shown as dashed lines. Open circles:
experimental data for the excess viscosity of NaCl in water,
taken from [74]. Dotted line: DFOF limiting law result (see
[69]).

to the steady-state viscosity is caused by the short-time
viscosity part ∆η∞. The limiting law regime, character-
ized by the

√
nT dependence of ∆ηexc, is reached for very

small concentrations only.

III. CROWDED GLOBULAR PROTEIN
SOLUTIONS

There have been various attempts in the past to de-
scribe the collective diffusion in globular protein solutions
using a simplifying colloid-type effective sphere model
with Derjaguin-Landau-Verwey-Overbeek (DLVO)-like
pair interactions. However, calculations of the collective
diffusion coefficient dC based on this model have been ei-
ther quite approximate, in particular regarding the treat-
ment of the protein HIs [76, 77], or restricted to the first-
order correction in the volume fraction [78]. In a recent
experimental-theoretical study, dynamic light scattering
measurements of dC and rheometric measurements of the
steady-state viscosity η of crowded BSA solutions where
compared with theoretical calculations based on an ana-
lytically treatable spheroid model of BSA with isotropic
screened Coulomb interactions. For calculating the dy-
namic properties, easy-to-implement theoretical methods
were used which account for the HIs [75]. The only input
required by these methods is the colloidal static structure
factor S(q), obtained in [2] using the newly developed so-
called MPB-RMSA integral equation scheme [79, 80]. All
experimentally determined properties were reproduced
theoretically with an at least semi-quantitative accuracy.
In particular, the applicability range of the Kholodenko-
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Figure 4. Experimental-theoretical test of the long-time and
short-time KD-GSE relation with η∗ = η and η∗ = η∞, re-
spectively. Results for aqueous BSA solutions without added
salt (upper data sets), and with 150 mM of added NaCl (lower
data sets) are shown in their dependence on the protein con-
centration cp. Red symbols: combination of dLC from DLS,
η/η0 from suspended couette rheometry, and S(q → 0) from
static light scattering. Black lines: Theoretical results com-
bining dSC ≈ dLC and η∞, both calculated using the self-part
corrected δγ scheme [75], with S(q → 0) obtained from the
MPB-RMSA scheme. For the long-time KD-GSE relation,
η = η∞ + ∆η has been used, with ∆η calculated using the
MCT-HIs scheme. Lower boundaries of the theoretical curves
correspond to the short-time KD-GSE relation, upper bound-
aries to the long-time version. The effective protein diameter
is σ = 7.40 nm. Figure taken from [2].

Douglas generalized Stokes-Einstein (KD-GSE) relation
[81],

dC (φ) η (φ)

d0 η0

√
S(q → 0, φ) = 1 ,

between collective diffusion coefficient, steady-state vis-
cosity η = η∞ + ∆η (with η∞ = η0 + ∆η∞), and the
square-root of the isothermal osmotic compressibility co-
efficient S(q → 0, φ) was studied. The KD-GSE relation
has been used in the biophysics and soft matter communi-
ties to deduce the viscosity from static and dynamic light
scattering (SLS and DLS) data [82–84]. Note that the
short-time (superscript S) and long-time (superscript L)
forms of dC are practically equal to each other, whereas
η∞ < η.

Fig. 4 provides a theoretical-experimental perfor-
mance test of the short-time and long-time versions of the
KD-GSE relation for BSA solutions at low salinity, i.e.
ns = 1− 3 mM, and for the physiological salt concentra-
tion ns = 150 mM. The experimental data agree overall
well with the theoretical predictions. For low salinity and
larger protein concentrations cp, pronounced deviations
from the protein concentration independent value one of
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the KD-GSE relation are observed. A pronounced viola-
tion of this relation is predicted theoretically also for sus-
pensions of large charge-stabilized colloidal spheres. For
neutral hard-sphere suspensions up to φ . 0.4, the KD-
GSE relation is, however, decently well fulfilled [75]. An
effective charged-sphere model analysis similar to that for
BSA was made in a joint experimental-theoretical study
of suspensions of charged gibbsite platelets (with aspect
ratio 1 : 11) in the isotropic liquid phase [85]. As shown
in this work, the effect of translation-rotation interpar-
ticle coupling (disregarded in the effective sphere treat-
ment) is less pronounced for collective diffusion, but it is
particularly strong for translational and rotational self-
diffusion at larger concentrations.

IV. CONCENTRATED CHARGE-STABILIZED
COLLOIDAL SUSPENSIONS

We commence this section by shortly summarizing
recent progress made in developing computer simula-
tion and numerical schemes allowing to quantify mi-
croion electrokinetic effects on transport properties of
charge-stabilized suspensions at non-zero concentrations.
In the smoothed profile method (SMP) of Yamamoto,
Nakayama and Kim [86, 87], and in the related fluid
particle dynamics (FPD) method of Tanaka and Araki
[88], the solvent and the microions are treated as contin-
uous fields, like in the SET approach. Only the colloidal
macroions are treated explicitly as particles, i.e. as high-
viscosity liquid droplets in FPD, and as particles with
a smoothed interface to the solvent in SMP. The parti-
cles in both methods act on the solvent through continu-
ous body forces rather than through moving boundaries.
This simplification results in efficient numerical solution
schemes suitable for concentrated suspensions. The ad-
vantage of the SMP method is that larger time incre-
ments can be selected. Since the microions in both meth-
ods are described in a mean-field way, local charge order-
ing effects beyond the Poisson-Boltzmann (PB) level are
not considered. Both methods have been applied in par-
ticular to colloidal electrophoresis. The electrophoretic
mobility results by the SMP method [86] are similar to
those obtained by SET spherical cell model calculations
where overlapping colloidal EDLs are approximately ac-
counted for [25]. Giupponi and Pagonabarraga solve the
(non-linearized) SET equations by a discretized lattice
Boltzmann (LB) formulation of the solvent, coupled to
the colloid surface grid points by kinetic bounce-back
rules, and combined with a solver of the correspond-
ingly discretized SET convection-diffusion equations for
the microion densities [89]. They could show that for
microion Peclet numbers & 0.3 where flow advection
becomes comparably important to single-microion diffu-
sion, non-linear microion advection enhances the elec-
trophoretic mobility.

Lobaskin, Dünweg and collaborators [92, 93] have de-
veloped a hybrid simulation method where the microions

are considered explicitly, and where the raspberry-like
macroion model surface is coupled through a friction
term to a LB background describing the Navier-Stokes
hydrodynamics of a structureless solvent. While this sim-
ulation method includes microion correlations beyond the
PB level, the price to pay is a larger numerical effort.
Due to the more costly numerics, only the electrophore-
sis of a single macroion plus its neutralizing microion
cloud in a box with periodic BCs has been considered so
far. Non-zero colloid concentration effects are accounted
for, akin to standard cell model calculations, by adjust-
ing the box to macroion size ratio to the given volume
fraction. A similar Molecular Dynamics - LB hybrid sim-
ulation method was used by Chatterji and Horbach to an-
alyze the nature of the effective electrophoretic macroion
charge in single-colloid electrophoresis [94]. To describe
electrophoresis of a spherical macroion in a finite box
on level of the mean-field SET equations, Dünweg et al.
have developed a numerically efficient solver [95], and
they have used in addition the finite-element software
package COMSOL [96].

Except for electrophoresis and sedimentation, mi-
croionic electrokinetic contributions to linear colloidal
transport coefficients are secondary effects in magni-
tude, in particular for suspensions of strongly correlated
charged colloidal particles. Using a simplified MCT-HIs
method, this has been shown quantitatively in [97, 98] for
the long-time colloidal self-diffusion coefficient. In the
remainder of this section, we discuss colloidal diffusion
properties and the viscosity of concentrated suspensions,
which are well described on basis of the OMF model
of microion-dressed macroions. In this model, colloidal
dynamic properties can be obtained to high accuracy
using the accelerated Stokesian Dynamics (ASD) sim-
ulation method for charge-stabilized Brownian spheres
[1, 75, 99, 100] which fully accounts for the colloid HIs in-
cluding lubrication interactions. It was used so far mainly
for the calculation of short-time diffusion properties of
charge-stabilized colloids, giving results in quantitative
agreement with dynamic scattering data (see [100, 101]
for an elaborate comparison). Recently, (A)SD results
have been obtained also for long-time diffusion transport
coefficients, and for self-intermediate and collective dy-
namic scattering functions [102].

We mention here in addition the powerful hydrody-
namic force multipole simulation method by Cichocki,
Ekiel-Jezewska, Wajnryb and coworkers [103], encoded
in the HYDROMULTIPOLE program, which allows for
an easy implementation of different hydrodynamic parti-
cle models. The method has been used for a comprehen-
sive simulation study of short-time dynamic properties of
suspensions of solvent-permeable hard spheres, with uni-
form permeability [90, 104, 105], and also with internal
core-shell structure [106]. The flow inside the perme-
able region of a particle is described by the Brinkman-
Debye-Bueche fluid model. Results have been discussed
including the high-frequency viscosity η∞, and the hy-
drodynamic function H(q). The latter quantity reduces
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Figure 5. Wavenumber-dependent hydrodynamic function H(q), of solvent-permeable colloidal spheres, with values of the
inverse permeability coefficient x and volume fraction φ as indicated. Small x correspond to large, and large x to small
permeabilities. (a) Simulation results for uncharged hard spheres taken from [90]. The curve for stick hydrodynamic BC
(x =∞) agrees with the ASD simulation data. (b) Analytic results for charged spheres of diameter 2a = 200 nm and effective
particle charge number Z = 200, immersed in a 0.5 mM 1 : 1 aqueous electrolyte solution with Bjerum length LB = 7.11 nm.
The charged spheres interact by a screened Coulomb potential of DLVO type. The results in (b) were obtained by a pairwise
additive HIs approach, with truncated pair mobilities of O

(
1/r7

)
in the pair distance r taken from [91], and using the accurate

MPB-RMSA static structure factor input.
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Figure 6. Reduced high-frequency viscosity, η∞/η0, as func-
tion of φ, for a neutral hard-sphere suspension (HS, in black),
and two deionized charged-sphere suspensions (CS-1 and CS-
2, in red). The leading-order Einstein viscosity contribution,
1 + 2.5φ, is subtracted to expose the differences. Symbols:
ASD simulation results. Dashed lines: PA-approximation re-
sults. Dotted lines: δγ-scheme results. Solid lines: self-part
corrected δγ-scheme results. All analytic schemes use the
MPB-RMSA S(q) as input. The CS-1 results represented by
red filled circles are ASD data for LB = 5.617 nm, σ = 200
nm, and Z = 100. The ASD data for the more weakly charged
and smaller particles of system CS-2, where LB = 0.71 nm,
σ = 50 nm, and Z = 70, are indicated by red diamonds filled
in blue. The parameters of system CS-2 have been used in
the analytic calculations. The inset magnifies details at lower
φ. Figure taken from [75].

to the normalized mean sedimentation velocity for small
wavenumber q, and to the short-time self-diffusion coef-
ficient dS for large q.

HYDROMULTIPOLE results for the H(q) of a con-
centrated suspension of solvent-permeable, i.e. porous,
hard spheres of excluded volume radius a are depicted in
Fig. 5(a), for various values of the inverse permeability
coefficient x = a/lperm. Here, lperm is the hydrodynamic
penetration depth. As it is noticed, (short-time) self-
and collective diffusion, and sedimentation, are signifi-
cantly enhanced with increasing solvent-permeability of
the particles. The high-frequency viscosity, on the other
hand, is lowered. In [104], it is shown through compar-
ison with precise HYDROMULTIPOLE simulation data
for η∞ that the cell model approach for permeable and
non-permeable spheres [107] gives rather poor predictions
for the concentration dependence of η∞.

The force multipole method by Chichocki and col-
laborators has been applied so far to electrically neu-
tral solvent-permeable colloids only. At lower φ, how-
ever, non-pairwise additive HIs contributions are small
for charged particles due to their longer range mutual
repulsion. These contributions can thus be neglected to
a decent approximation. Fig. 5(b) shows new hydro-
dynamic function results for permeable charged spheres,
which we have obtained using truncated two-sphere hy-
drodynamic mobility tensors in combination with the
MPB-RMSA static structure factor input. According to
the figure, the influence of solvent permeability on H(q)
is substantially weaker for charged colloidal particles.

In elaborate studies, it has been shown that the ASD
simulation results for short-time diffusion properties of
charge-stabilized spheres with stick hydrodynamic BC,
and a large body of experimental data alike [100, 101],
are well reproduced, for a broad range of interaction
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Figure 7. Dynamic light scattering results for the normalized
inverse short-time diffusion function d0/DS(q) (filled black
squares, scale on left side) and inverse long-time diffusion
function d0/DL(q) (open red squares, scale on right side) of
charge-stabilized silica spheres at φ = 0.14. Solid curve: the-
oretical prediction by the δγ-scheme for the wavenumber de-
pendence of d0/DS(q), using the MPB-RMSA input for S(q)
shown in the inset together with the experimental data. Fig-
ure taken from [110].

parameters and volume fractions typical of the liquid-
phase state, using the analytic and easy-to-implement
δγ method by Beenakker and Mazur, amended by an
improved (i.e., “corrected”) self-part contribution [75].
Makuch and Cichocki [108] have critically assessed the
approximations going into the Beenakker-Mazur method.
Their revised version of the δγ method which includes
an improved hydrodynamic mobility matrix input leads
overall to larger differences from the hard-sphere simu-
lation data. This points to a fortuitous cancellation of
errors introduced by the approximations going into the
original Beenakker-Mazur method.

A self-part corrected version of the δγ method has been
successfully used in addition for the calculation of the
high-frequency viscosity of charge-stabilized colloids at
lower salinity. Results by this method are shown in Fig.
6, and compared with ASD simulation results for charge-
stabilized spheres (CS) and neutral hard spheres (HS)
with stick hydrodynamic BC. Also included are viscos-
ity results obtained using numerically accurate values for
the full pairwise-additive two-sphere hydrodynamic mo-
bilities including lubrication forces. This is referred to as
the PA-approximation. While η∞is for CS smaller than
for HS, the opposite ordering is valid in general for the
steady-state, low-shear rate viscosity η, owing to the for
CS substantially larger colloidal shear-stress relaxation
contribution ∆η. Possible correlations between η and
η∞, and the Debye screening length and macroion elec-
tric surface potential, are discussed in [109] on basis of
theories for semidilute systems with and without single-
colloid electrokinetics included.

A dynamic scaling relation for the normalized dynamic

1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0
2 6 0
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 / n

m

T  /  O C

Figure 8. Outer radius, Rtot, as a function of T for ionic PNi-
PAm dispersions (filled symbols) at microgel particle concen-
tration np = 0.0053 (black squares), 0.0074 (red circles), 0.013
(green upper triangles), 0.022 (blue lower triangles) and 0.069
M (light blue diamonds). Open symbols: Results for a dilute
particle solutions with np = 0.1 nM and pH = 6.3 (black),
and pH = 3.0 (red). Figure taken from [115].

structure factor,

S(q, t)/S(q) ≈ exp

{
−q2 DS(q)

dS
W (t)

}
,

has been shown in [110] to apply approximately to
charge-stabilized colloids, within the experimentally ac-
cessed correlation time window, and for scattering
wavenumbers q around the position, qm, of the principal
static structure factor peak. Here, W (t) =

〈
∆r2 (t)

〉
/6

is the particle mean-squared displacement with short-
time slope dS , and DS(q) = d0 H(q)/S(q) is the short-
time diffusion function. The scaling relation was initially
found empirically by Segrè and Pusey for the case of col-
loidal hard spheres [111] (see here also the MCT study
of Fuchs and Mayr [112]). It implies in particular that
DL(q)/DS(q) ≈ dL/dS , for values of q near to qm. Here,
DL(q) denotes the relaxation rate of the long-time de-
cay of S(q, t) which in the experimental time window
is single-exponential, and dL is the colloidal long-time
self-diffusion coefficient which is smaller than dS . Fig. 7
demonstrates that this relation is indeed valid to a decent
approximation for charge-stabilized spheres. The valid-
ity of the time-wavenumber factorization scaling of S(q, t)
has been repeatedly challenged, also for the reason that
the true long-time regime can hardly be reached experi-
mentally [113, 114]). As it was argued already in [110],
from a theoretical viewpoint dynamic scaling is merely an
approximate feature. This viewpoint is corroborated by
a recent study, where Stokesian dynamics, Brownian dy-
namics, and MCT calculations of S(q, t),W (t) and DS(q)
have been compared [102].

Ionic microgels belong to the subclass of ultra-soft
colloids where the effective interaction potential crosses
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over from a screened Coulomb repulsion at non-overlap
distances to a smoothly increasing repulsion of finite
interaction energy for overlapping particles [116, 117].
A fraction of the counterions released by ionic poly-
mer backbone groups of the microgel network is con-
fined to the interior of the ionic microgel particles, af-
fecting therefore their swelling behavior through the mi-
croion osmotic pressure difference. A comprehensive
experimental-theoretical study of the concentration- and
temperature dependent swelling behavior of PNiPAm
ionic core-shell microgel particles was made in [115]. Re-
sults by this study for the outer microgel radius Rtot, de-
duced as a function of microgel number density np and
temperature T , are included in Fig. 8. In the theoretical
part of the study, state-of-the art analytic OMF meth-
ods discussed also in relation to Figs. 4 - 7 have been
used. Fig. 8 highlights in particular the strong concen-
tration dependence of the (outer) microgel radius in the
non-collapsed microgel state at lower temperatures.

V. CONCLUSIONS

We have reviewed recent advances in our understand-
ing of linear diffusion-convection and viscoelastic trans-
port properties of dispersions of charged Brownian parti-
cles. Various theoretical and computer simulation meth-
ods have been discussed and compared. Regarding the
electrokinetics of electrolyte solutions, a fast and versa-
tile simplified MCT-HIs method is now available, mak-
ing predictions in good agreement with experimental
data. With some effort, this method can be extended
to frequency-dependent transport properties, and to size-
and charge-asymmetric electrolytes. Work on these ex-
tensions is in progress. The MCT-HIs method keeps
promise to tackle also the electrophoresis and conduc-
tivity of colloidal macroions and globular proteins with
overlapping EDLs. The microions are hereby treated on
equal footing with the macroions, both statically and
dynamically. While great progress has been made in
the development of numerical cell model and simulation
schemes describing colloidal electrokinetics, the proper
inclusion of electro-steric and hydrodynamic aspects of
the microion dynamics beyond the mean-field level is still
a challenging task, in particular for concentrated sus-
pensions. A detailed evaluation of the pros and cons
of the various existing simulation schemes for selected
colloidal electrophoresis benchmark problems is still on
demand. Short-time dynamic properties treated on the
level of the OMF model are meanwhile well understood,
thanks to detailed experimental and (A)SD simulation
results. Well-tested accurate theoretical methods for cal-
culating short-time dynamic properties such as the self-
part corrected δγ scheme are now available. They al-
low for a fast analysis of experimental data covering a
broad range of system parameters. Short-time dynamic
properties are of relevance not only in their own right
but are required also as input to theories describing col-

loidal long-time dynamics in concentrated systems such
as MCT and DDFT approaches, and their hybrids. A lot
remains to be learned about the long-time dynamics of
charge-stabilized suspensions and globular protein solu-
tions, in particular when macroions with internal electro-
steric and hydrodynamic structure are considered.

acknowledgement

We thank G. Abade, B. Cichocki, J. Dhont, S. Egel-
haaf, M. Ekiel-Jezewska, J. Gapinksi, Ch. Gögelein, P.
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Abbreviations:

ASD . . . . . . . . . Accelerated Stokesian Dynamics.

BSA . . . . . . . . . Bovine serum albumin.

BCs . . . . . . . . . . Boundary conditions.

CS . . . . . . . . . . . Charged spheres.

DDFT . . . . . . . Dynamic density functional theory.

DFOF . . . . . . . Debye-Falkenhagen-Onsager-Fuoss.

DH . . . . . . . . . . Debye-Hückel.

DLS . . . . . . . . . Dynamic light scattering.

DLVO . . . . . . . . Derjaguin-Landau-Verwey-Overbeek.

EDLs . . . . . . . . Electric double layers.

FPD . . . . . . . . . Fluid particle dynamics.

GSmE . . . . . . . Generalized Smoluchowski equation.

HIs . . . . . . . . . . Hydrodynamic interactions.

HNC . . . . . . . . . Hypernetted chain.

HS . . . . . . . . . . . Uncharged, pairwise additive hard spheres.

KD-GSE . . . . . Kholodenko-Douglas generalized Stokes-
Einstein (relation).

LB . . . . . . . . . . . Lattice-Boltzmann.

MCT . . . . . . . . Mode-coupling theory.

MPB-RMSA . Modified penetrating background-corrected
rescaled mean spherical approximation.

MSA . . . . . . . . . Mean spherical approximation.

NE . . . . . . . . . . . Nernst-Einstein.

OMF . . . . . . . . . One-component macroion fluid.

PB . . . . . . . . . . . Poisson-Boltzmann.

PM . . . . . . . . . . Primitive model.

PNiPAm . . . . . Poly (N-isopropylacrylamide).

SET . . . . . . . . . Standard electrokinetic theory.

SLS . . . . . . . . . . Static light scattering.

SMP . . . . . . . . . Smoothed profile method.
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J. Chem. Phys. 134, 044532 (2011).
[80] M. Heinen, P. Holmqvist, A. J. Banchio, and G. Nägele,
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[110] P. Holmqvist and G. Nägele, Phys. Rev. Lett. 104,

058301 (2010).
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