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Chapter 1

Introduction

This introductory chapter starts out with a general historical view in the context of
the thesis, followed by notes concerned with the motivation of the work presented
and closes with an outline of the remainder of the document.

1.1 A historical view

Fluids are all around us and in fact in us as well. From the air we breath to the
water sustaining all life on earth, the physics of fluids must have been subject to
human curiosity since its very beginning. As every aspect of physics, fluid dynamics
has seen exponential growth in insight, application and diversification over the course
of the last 300 years [1]. The field of kinetic theory allows today to describe fluids
in direct relation to the mechanical properties of their constituting molecules and
their statistics. In particular, modern formalisms like the Bogoliubov Born Green
Kirkwood Yvon (BBGKY) hierarchy [2–5] allow it to draw a continuous line from
classical Hamilton mechanics of particle motion [6] to the Navier-Stokes continuum
equations of fluid motion [7,8]. In the course of the paradigm shift towards a particle-
centric view of the world, former phenomenological properties have become directly
accessible to scientists and engineers [9].

Between the microscopic scale, where transport properties such as diffusivity and
viscosity and heat conductance can be modelled according to molecular properties
and the macroscopic description viewing a fluid as a continuum, the mesoscopic scale
has been defined. The term is used here to designate a scale locally comprising
enough particles for thermostatistics to be valid and at the same time being fine
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2 Chapter 1. Introduction

grained enough to capture non-continuum effects. This has to be distinguished from
the use of mesoscopic physics in the context of quantum mechanics, where the scale
is considered to still include quantum effects while this work is only concerned with
statistical systems in the classical limit.

In today’s fluid dynamics research, the level of complexity has lead to the formation of
various fields of specialisation, commonly divided along the lines of certain dominant
phenomena like e.g. rarefied gas flows [10–13] or turbulence [1, 14]. Other fields of
specialisation have been formed through the development of detailed descriptions of
the non-ideal, real world such as multiphase flows [9, 15] and complex fluids where
next to the fundamental fluid dynamics descriptions, the interplay of different fluids
and solids results in different, new physics [15].

Another important aspect of a fluid dynamics description in all fields and on all
scales is the formulation of accurate boundary conditions. Given no-slip boundary
conditions, assuming the relative fluid velocity at a solid boundary is equivalent to
the wall velocity, with the Poiseuille and Couette flow exact solutions to the Navier-
Stokes equations can be obtained. However this is in general not the case [1, 16]
(see section 2.2.1). The applicability of higher order continuum approximations, the
Burnett and Super-Burnett equations [17, 18], suffers from difficulties to formulate
boundary conditions at all. This is in part due to the fact that the higher order ther-
modynamics included here give especially in the boundary layer rise to inherently
non-continuous effects, where in the Knudsen-layer (see 2.3.4) the kinetic properties
of the particles constituting the fluid become dominant [10, 11]. A phenomenon oc-
curring in the early onset of this regime is slip-flow (see section 2.3.3), where a fluid is
observed to have a non-vanishing velocity relative to a solid boundary [11, 13]. This
can also be the case at hydrophobic and super-hydrophobic surfaces, there due to
repulsive solid-liquid interactions and entrapped gas, respectively [19,20]. Moreover,
certain multiphase flows can be modelled by means of boundary conditions as well,
as it is done in numerical boundary- or interface-tracking methods [21–24].

Besides deeper theoretical insight and enhanced experimental capabilities, fuelled by
new imaging [25–27] and fabrication technology [28–30], computer simulation tech-
niques have made large contributions to the development as well as utilisation of fluid
dynamics principles. From meteorology over architecture and mechanical and civil
engineering to the life sciences, numerical fluid dynamics models on the micro, meso
and macro-scale are an integral part of ongoing research and application. Increasingly
accurate models of realist multiphase flow situations have only been enabled recently
by the ever growing capabilities of modern microcomputers.

The term Computational Fluid Dynamics (CFD) algorithms [31,32] commonly refers
to solvers for the continuum (Navier-Stokes) equations, but particle based methods
are applied to fluid dynamics simulations as well. While the applicability of Molecu-
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lar dynamics (MD) simulations, modelling the mechanical equations of motions of all
particles, is limited by the reachable time and length scales, so-called coarse grained
approaches use thermostatistics to dramatically reduce the necessary number of sim-
ulated particles. An important example in this class, employed for the simulation
of rarefied gases, where the continuum approximation does no longer hold, is the
Direct Simulation Monte Carlo (DSMC) method [33–35]. In the spirit of the Boltz-
mann equation representative particles execute free movement and random collisions
parameterised by the laws of thermodynamics [33].

Developed from cellular automata [36–38] namely lattice gas automata [39, 40], the
lattice Boltzmann method is another example for a coarse grained simulation method
based on the statistics of the single particle distribution function formulated in anal-
ogy to the Boltzmann equation [38, 41–48] (see sections 2.2.2 and 2.4). Contrary to
the DSMC approach it is however originally set up to efficiently solve the Navier-
Stokes equations rather than Boltzmann approximations of higher order [45]. Here
as well the algorithm is constructed by modelling free movement of particles and
binary collisions, they are however executed in terms of a discretised single particle
velocity distribution function on a discrete phase space [49]. Owing to the regular
discretisation, locality and simplicity of the basic algorithm, the method has become
a popular alternative to classical CFD codes and has seen a lot of extension and refine-
ment [38,46–48,50]. Additions include turbulence [46,48,51–55] as well as multiphase
models and phenomenological extensions to account for e.g. thermal fluctuations or
rarefied gas properties in the lower Knudsen regime. Moreover the method has been
coupled to various other numerical methods. Examples include here different strate-
gies to integrate molecular dynamics particles as well as coupling to finite element
and other mesoscopic discrete particle simulation algorithms.

Making use chiefly of the LBM as a Navier-Stokes solver, the work reported here
focuses on aspects of dewetting surface interactions and slip modelling as well as the
optimisation of a multiphase model for increased boundary accuracy. In the final
results chapter a hybrid model integrating aspects of DSMC with LBM is aimed at
simulation of the transition regime for non-negligible Knudsen numbers, where e.g.
slip flow occurs. The relevance of these investigations is motivated in the next section,
followed by a more in-depth outline of the thesis.

1.2 Motivation

In recent years developments in the engineering of functional surfaces and micro elec-
tromechanical systems (MEMS) [29, 30, 56, 57] have sparked a renewed interest in a
deeper understanding of boundary conditions in fluid dynamics [19, 20]. Superhy-
drophobic surfaces are created by a combination of hydrophobic material and surface
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roughness suitable to entrap gas in the surface and thus create partial slip areas, allow-
ing the fluid to exhibit an effective slip [58–61]. MEMS are promising more efficient
analysis of medical and chemical samples in so-called lab on a chip environments [62]
with applications for example in stem cell research [63] or detection and identification
of microorganisms [64, 65]. Other examples of current application include accelera-
tion sensors used in airbags and mobile phones [66] as well as developments towards
parallel micro reactors [67, 68]. Large slip lengths would allow to dramatically in-
crease the efficiency of MEMS by improving flow rates. While early reports of large
slip in the order of one micrometer could not be reproduced, it has been found that
(super-)hydrophobic or dewetting surfaces indeed can exhibit slip length of several
ten nanometers [69]. Ongoing research into a combination of hydrophobic surfaces
and electroosmotically driven flow shows however promising results to increase this
further [70]. Another area of interest in the field is both active and passive control of
flow [71, 72]. In some sense combining the two aspects, this work reports on results
into the investigation of patterns of varying slip length suitable to be applied to bend
flow.

Another field of active research where the boundary condition is of grave importance,
is concerned with the investigation of multiphase flows in porous media, where the
surface to volume ratio is very large [73–75]. Examples here comprise an array of
very different systems, ranging from enhanced oil recovery [76] and carbon dioxide
capture over soil processes [77], reactor processes [78–81], filtration [82,83] and print-
ing [84] to food processing [85]. In most of these applications, besides two or more
immiscible fluids like water and oils, components interacting with both of two re-
spective immiscible species are of interest. These solvents and surfactants (SURFace
ACTive AgeNTS) are dramatically influencing the behaviour of fluid mixtures [86].
For example in enhanced oil recovery, surfactants are used in a third step to extract
oil after first relying on the reservoir pressure and second water injection generated
pressure. Once these processes seize to produce oil up to 60 percent of oil remain in
the reservoir [76]. This application suits the scope of our implementation very well
as there are no reactive flows and no expected strong thermal effects.

In very small channels the continuum approximation made by the Navier-Stokes equa-
tion breaks down. The reason for this is that the mean free path of the particles
becomes comparable with the typical length scales of the channel and the geometry
rather than thermostatistics governs the particle movement [10–13]. This regime is
commonly referred to as Knudsen regime. Also here, one of the immediate effects is
the existence of slip at solid boundaries, further however, the reduction in mean free
path introduced by the additional collisions with the wall change the fluid properties
at the wall resulting in the so-called Knudsen layer. From the argumentation it is
clear that these effects do not only occur for very narrow channels, but very dilute
systems as well, where the mean free path becomes very large compared to the ge-
ometries as it is the case e.g. in vacuum technology applications [87] or flight in the
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outer atmosphere [34]. In current UV lithography machines used in CPU produc-
tion [88, 89], contaminants emitted by plastic parts of the setup cause hazing of the
immensely complex optical systems used to produce sharp images on the nanometer
scale [90]. To avoid contamination with organic molecules the optics, operated at very
low ambient pressures of a few Pascal, are flushed with Hydrogen. The prediction of
the efficiency of such efforts has however proven difficult [91].

1.3 Outline

The chapter 2 gives an outline of the scientific context and details on physical pro-
cesses as well as algorithms and boundary conditions as they are necessary for a closed
presentation of the work. Starting from a brief historical discussion, the Navier-Stokes
equations are introduced accompanied by an overview of their features and proper-
ties. This is followed by a brief introduction of the Boltzmann equation, its relation to
general thermostatistics as well as some solutions. The physical parameters relevant
to the flow problems treated here are introduced and discussed. Starting with some
comments on phase space models, the text introduces the lattice Boltzmann method
followed by a discussion of its properties and some collision model aspects. Then fol-
lows an overview of multiphase extensions to the model, where the pseudo-potential
method employed in chapter 4 is discussed in detail. The boundary conditions ap-
plied throughout are described with focus on in- and out-flux as well as solid boundary
conditions.

In the first results chapter 3, the outcome of work towards the parameterisation and
simulation of slip flow in anisotropically patterned channels is reported. Quantitative
comparison with theoretical results suggesting the occurrence of tensorial effective
slip is successfully made. The introduction describes the theoretical model and its
solution as developed in prior research [92–97]. After a discussion of the simulation
requirements and optimisations made [98], the results presentation starts out with
slip flow over anisotropic surfaces in the thick channel limit where both discrete
stripes and sinusoidal patterns are considered. Interesting features in this context are
the effective slip as well as properties of the velocity field in the vicinity of the slip
boundaries. The chapter closes with discussion of possible extensions of the model.

The following chapter 4 is concerned with an optimisation to a ternary LBM imple-
mentation, where a multi relaxation time collision scheme was introduced to improve
accuracy and stability of the method for the simulation of flow in porous media.
After describing the changes introduced to the model and its implementation, the
algorithm is evaluated against standard problems. Here, surface tension, wettabil-
ity, diffusivity and (relative) permeability are evaluated. As a showcase qualitative
simulation results of forced imbibition into a pseudo-2d model porous medium are
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presented. Pressure gradient, wettability, surfactant concentration and viscosity con-
trasts are varied, evaluating the resulting permeability and flow features. Finally,
possible future applications and further corrections to the model are discussed.

The final results chapter 5 treats simulations in the intermediate Knudsen regime by
means of a new hybrid simulation approach. Starting out with detailing the basic
assumptions made in model development as well as discussing coupling aspects of
the algorithms, the section goes on with a report of results to important benchmark
simulations such as the recovery of the Boltzmann distribution in thermodynamic
equilibrium and the accurate quantitative simulation of capture of diffusivity and
the transport equation. As a model application for the formalism, contaminant sup-
pression by a low pressure gradient flow through a wall opening is measured. The
influence of flow rates and contaminant molecular weight on the suppression coeffi-
cient is reported in context of an example experiment reproduction.

The thesis closes with a summary of the presented work, concluding remarks and a
discussion of future work suggested by the results.



Chapter 2

Principles

This chapter aims to put the research performed in the scope of this dissertation
in context with the current scientific knowledge. It is attempted to give a general
overview over the fluid dynamics phenomena considered here as well as to discuss
modelling aspects of different approaches of numerical simulation. It is in part based
on

H. Liu, Q. Kang, C. R. Leonardi, B. D. Jones, S. Schmieschek, A. Narváez,
J. R. Williams, A. J. Valocchi and J. Harting.
Multiphase lattice Boltzmann simulations for porous media applications - a review.
In press, 2015. pre-print available from arXiv:1404.7523 [physics] [50].

2.1 A short history of fluid dynamics research

What is it that makes a fluid fluid? A scientific attempt to answer this question
has of course to take into account successful models of fluid behaviour. Building on
the continuum theory introduced by Euler [99], in the 19th century Navier [7] and
Stokes [8] discovered that fluid dynamics can be modelled by assuming mass conser-
vation and Newton’s second law being fulfilled by each infinitesimal fluid volume as
well as stress being proportional to strain (incompressibility).

The simple nature of the resulting equations (see section 2.2.1) easily betrays their
inherent complexity. Employing suitable boundary conditions, exact solutions can be
obtained for simple systems such as Poiseuille and Couette flow. In turbulent regimes,

7
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characterised by the dominance of inertial over viscous forces (i.e. high Reynolds
numbers, see section 2.3.4) however, the non-linearity of the equations gives rise to
effects on numerous scales resulting in chaotic behaviour. The scope of this text will
however be limited to non-turbulent flows at low Reynolds numbers [100].

The chapters 3 and 4 of this thesis focus on obtaining and evaluating solutions to
the Navier-Stokes equations. The principles employed to obtain these solutions will
however be rooted in the broader kinetic theory based on the assumption that all
macroscopic properties of a fluid are determined by the state of individual particles
constituting it [12,101].

Atomistic views of the world have already been developed in ancient Greece, coining
the term of the indivisible smallest particles constituting the world. While we today
know that this is not the whole truth, this text will deal with classically describable
particles at low energies. After the dark ages, Bernoulli was the first to revisit the
idea in the eighteenth century, formulating his Hydrodynamica using the concept
of all matter being comprised of particles and the consequences thereof to describe
liquid properties and behaviour [102]. But it would take until the early twentieth
century for the idea to reach general acceptance.

Pioneering works along the way include contributions by Lomonosov, Clausius who
first introduced the mean free path as a concept [103, 104] and Maxwell formulat-
ing the first statistical physics equation to describe the dependency of mean particle
velocity on the temperature [105]. Gibbs introduced the ensemble formalism in ther-
modynamics and did extensive work on free energy [106,107]. Boltzmann formulated
a minimal model for particle movement and collision, assuming only binary collisions
independent in time. This allowed him to formulate the Boltzmann equation and de-
rive a generalisation of the Maxwell distribution as well as the so-called H-Theorem
providing a rational for entropy growth in thermostatistic systems [108]. Einstein and
Smoluchowski presented compelling treatments on the theory behind Brownian mo-
tion in the early 20th century which finally lead to broad acceptance of an atomistic
view of the world [109,110].

Around the same time Chapman [111,112] and Enskog [113] independently developed
a multivariate expansion of the Boltzmann equation yielding the continuum model
expressions. In first order approximation those are the Euler and in second order
approximation the Navier-Stokes equations, closing the gap between particle and
continuum based fluid descriptions and enabling the extension of the formalism to
higher orders as well [17, 18].

The middle of the 20th century saw more attention to kinetic theory, where in 1946
the BBGKY-hierarchy was introduced [2–5], providing solutions to the Liouville equa-
tion formulated by Gibbs to describe the phase space continuum of thermodynamic
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ensembles in terms of probability distributions of 1, 2 . . . interacting particles. From
which it follows that it contains the Boltzmann equation as second order approxima-
tion. Bhatnagar, Gross and Krook introduced a linear approximation of the collision
operator, sufficient to approximate the Navier-Stokes equations in a regime close to
equilibrium [114]. And in 1949, Harold Grad introduced a Hermite expansion method
as a means to solve the Boltzmann equation for rarefied gas flows further from equi-
librium [12].

Before, far from equilibrium, Knudsen had discovered fascinating effects in rarefied
gases not accessible by the Navier-Stokes equations. In particular he observed the
Knudsen paradox of increasing flow rates with decreasing pressure in very low pres-
sure regimes. Another discovery is a pump relying only on temperature gradients to
induce gas flows in rarefied regimes [10,11]. The Knudsen number (Eq. 2.29), relates
the mean free path of the fluid particles to typical length scales of the system. If
it cannot be approximated as zero, the individual particles’ movement cannot be ig-
nored and the Navier-Stokes equations are not a valid model anymore [10]. Modelling
of flow in this regime will be the subject of section 5.

While higher order approximations to the Boltzmann equation may be able to mend
these shortcomings and are subject to ongoing research [101, 115, 116], the most
promising models for flows in this regime have been developed in the field of nu-
merical simulation.

The most straightforward way to describe a system of interacting classical particles
is of course to directly solve all of their equations of motion and thereby implicitly
solving the Boltzmann equation. With the advent of microcomputers this ludicrous
proposition became thinkable for the first time. Molecular dynamics algorithms mod-
elling particles behaving according to classical mechanics were among the first to be
executed [117]. Since then the method has celebrated numerous successes in various
fields from chemistry to engineering and there exist many mature, well maintained
codes with large user bases [118–120]. Given the typical number of particles given
by the Avogadro number in the order of 1023 it is however not surprising that even
after more than 60 years of exponential growth in computing power and algorithm
optimisations the use of such models to solve fluid dynamics problems on relevant
time and length scales is still limited to very small systems, e.g. nano-droplets [121].

On the other end of the spectrum of approaches to the simulation of fluid dynamics
and traditionally referred to as computational fluid dynamics methods are algo-
rithms aiming to solve the Navier-Stokes equations iterative piece wise on a suitably
discretised space [31, 32]. Following this principle various algorithms focusing on
optimisations for various problems, most prominently turbulence, have been devel-
oped [32,122,123]. Many mature implementations of the algorithm exist [124–126].
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Between the microscopic picture keeping account of every single atom and the macro-
scopic description of the fluid as a continuum, the insight into the collective prop-
erties of particle ensembles provided by thermostatistics and in particular kinetic
theory allows to take a middle ground commonly called the mesoscopic scale. With
respect to the change in resolution stepping down from fully resolved molecular dy-
namics methods, this regime may also be referred to as coarse grained. Here, a
host of different methods has been developed including dissipative particle dynamics
(DPD) [127], Multi-particle Collision Dynamics (MPC) or Stochastic Rotation Dy-
namics (SRD) [128], Smooth Particle Hydrodynamics (SPH) [129], lattice Boltzmann
methods (LBM) [41–45] and direct simulation Monte Carlo (DSMC) [33].

In the 1980s a class of algorithms named cellular automata became popular, which
simulated dynamic system behaviour for interacting entities with minimal rule sets
[36–38]. One of these, coined lattice gas automata simulated particles hopping along
the edges of a (hexagonal [39, 40]) lattice and performed momentum conserving col-
lisions when encountering each other [38–40]. It could be shown that this minimalist
approach was in fact able to solve the Navier-Stokes equations in two dimensions,
given sufficiently large time and spatial scales [40]. The model suffered however from
difficulties such as noise and lack of Galileian invariance. To answer these problems,
the individual particles were replaced by a projection of the Boltzmann distribution
and the approach was subsequently called lattice Boltzmann method [41–45].

The lattice Boltzmann method [38,41–48] and a variation of the DSMC method [33–
35] will be employed in the scope of this thesis.

2.2 Fluid dynamics and kinetic theory

2.2.1 The Navier-Stokes equations

The Navier-Stokes equations are describing momentum conservation in a fluid with
respect to any given infinitesimal volume. They have been derived from imposing
Newton’s second law for such elements [7, 8]. A general formulation is given by

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇σ+ F, (2.1)

in terms of the mass density ρ, the velocity u, time t, pressure p, stress σ and
body force F. It relates inertia comprised of a term of local acceleration ∂u

∂t
and

a convective term u · ∇u scaled by the mass density ρ on the left hand side, to a
pressure gradient ∇p, viscous stresses ∇σ and additional external forces F on the
right hand side, thus formulating a balance of momentum [130]. In incompressible,
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Newtonian fluids ∇u = 0, and the contribution of viscous stresses can be shown to
reduce to a scalar factor in a function of the second spatial derivative in the velocity,
σ∆u, interpretable as a diffusive term of momentum as well (compare sec. 2.3.1). To
enable the formalism fully to describe fluid behaviour, mass conservation is assumed,
introducing the continuity equation

∇ · u = 0. (2.2)

While numerical methods can produce solutions to these equations, the existence (and
smoothness) of a general solution to the Navier-Stokes equation in three dimensions
is still to be proven and part of the Millennium Prize Problems [16]. In a regime of
large Reynolds number (Eq. 2.25), the non-linearity of the equation results in chaotic
behaviour, i.e. turbulence [1, 14].

Many extensions as well as simplifications to the equations have been introduced to
account for the application to specific systems and states. Of particular interest in the
context of this work is the simplification of the model for Stokes flow or creeping flow
for which the inertial terms on the right hand side of equation 2.1 vanish. Assuming
in addition constant fluid density which can be interpreted as assuming an isothermal
system, the continuity equation is as well reduced to only consider derivatives of the
velocity. The equations read then

−∇p+∇σ+ F = 0. (2.3)

This form of approximation was formulated by Stokes who in his work independent
of Navier’s focused on viscous effects rather than inertial [8]. It can also be seen as
the limit of the equations 2.1 for a vanishing Reynolds number.

To extend the formalism to compressible flows, the continuity equation has to be
generalised to include deviations in density to

∂ρ

∂t
+∇ · (ρu) = 0. (2.4)

Another important variation from the Navier-Stokes equations is made for the de-
scription of complex fluids, where the viscosity in general has to be expressed as a
tensor, introducing non-linear strain response into the formalism (see 2.3.1) [130,131].

Boundary Conditions

In order to formulate solutions to the Navier-Stokes equations as a differential equa-
tion, suitable boundary conditions have to be formulated [1, 130] (see sections 2.3.3,
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2.5, 3.2.2). Here in principle Dirichlet boundary conditions, giving a variable at a
boundary and Neumann boundary conditions giving the normal derivative to a vari-
able at a boundary are to be distinguished. In the context of fluid dynamics this
can oftentimes be related to Dirichlet boundary conditions defining the pressure at a
boundary and Neumann BC defining velocity or mass flux (see section 2.5). A differ-
ent kind of boundary conditions is to be applied to solid surfaces in the case of finite
surface slip. While the no-slip case can easily be formulated in terms of a velocity of
zero, in a partial slip case the effective treatment of parallel and normal components
of variables at the boundary has to become anisotropic (see section 3.2.2).

2.2.2 The Boltzmann equation

The Boltzmann equation is a model for the statistical description of particle move-
ment. In the introduction to his publication on a solution to the Boltzmann equation,
Harold Grad gives a very concise overview of the formalism in relation to general ther-
mostatistics and continuum approximations [12]. A minimal complete introduction
can be found for example in [38]. In-depth information on derivation and application
of the formalism can be found in [132].

A central feature in Boltzmann’s approach is that all particles in a system are in fact
interchangeable, implying that all interactions do not depend on former events. This
assumption is named molecular chaos. A second assumption, the Stoßzahlansatz
designates the limitation to independent, binary interactions between particles. To-
gether these form the basis for the description of a thermodynamical system based on
the dynamics of a single representative. This implies that a model for the complete
dynamics of a gas can be formulated entirely in terms of the single particle veloc-
ity distribution. The integro-differential equation for the single particle phase space
distribution function f(x,u, t)d3xd3u, the Boltzmann equation

∂tf+ u∂xf+
F

m
∂uf = Ω(f, f), (2.5)

describes the probability to find a particle at time t in a phase space volume d3xd3u
as changing over time ∂tf, through movement u∂xf and through acceleration by an
external body-force F

m
∂uf. Therein m is the particle mass. This is balanced by

collisions on the right hand side represented in the approximation of independent
binary collisions by the collision integral

Ω(f, f) =
∫
d3u1

∫
dΦσ(Φ) |u− u1| [f(x,u ′, t)f(x,u ′1, t) − f(x,u, t)f(x,u1, t)] ,

(2.6)
wherein σ is the collisional cross section andΦ is the area of the unit sphere. Primes
denote post collisional values. The double integral therefore covers all existing particle
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velocities u1 and collision normals. The repeated use of the distribution designation
f emphasises here that both the particle 0 and 1 are of properties drawn from the
same single particle velocity distribution.

While Boltzmann was not able to obtain a closed solution to the original equation,
working with its properties allowed him to extract ground breaking results - a general
formulation of the Maxwell-Boltzmann distribution of temperature dependent particle
equilibrium velocities as well as the H-Theorem, providing a rational for entropy and
the irreversibility of thermodynamical processes [108,132,133]. By taking into account
the invariants of the collision integral Ω, it can be shown that distribution functions
exist for which it vanishes [132]. One of these is the Maxwell distribution [134]

fMB(x,u, t) = n
(

1

2πa2

)3/2
exp

[
−
1

2a2
(u− 〈u〉)2

]
. (2.7)

It is the distribution of a combination of three orthogonal normal distributed variables
(i.e. momentum vector components). With the particle density n and the mean
velocity 〈u〉 = 1

n

∫
d3uuf(x,u, t). Boltzmann extended this result by identifying the

thermal molecular speed as the scaling argument

a = uT =

√
kBT

m
, (2.8)

with the Boltzmann constant kB, temperature T and particle mass m.

Only ten years after Boltzmann’s suicide, Chapman and Enskog independently for-
mulated a multivariate expansion in the collisional invariants around a smallness
parameter interpretable as the Knudsen number (A measure for the applicability of
the continuum approximation formulated as the ratio of the mean free path λ0 of a
particle and a typical system length, details on which are given in section 2.3.4 and
section 5.1). This is a valid assumption since the continuum approximation is im-
plying small deviations from thermodynamic equilibrium as well, but is not required
for the formalism in general. Thus taking small deviations from the equilibrium
distribution 2.7 into account, they were able to devise solutions to the Boltzmann
equation turning out to coincide with the continuum approximations. Here, in first
order the Euler equation is found. The expansion up to second order produces the
Navier-Stokes equations. An important aspect of their work is the direct accessibility
of transport coefficients such as the diffusivity (section 2.3.1) in the formalism. In
the 1930s Burnett extended the expansion to higher orders [17, 18]. The resulting
equations named Burnett and Super-Burnett equations have due to difficulties to for-
mulate boundary conditions however been without broad application [135]. In what
is called Chapman Enskog theory the method was extended to multiphase flows as
well [9].

Another approach to an approximation of the Boltzmann equation in order to obtain
a closed solution has been made by means of expansion of the particle distribution
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function in Hermite polynomials by Harold Grad. Using Hermite coefficients as state
variables, he finds that without approximations the first significant coefficients are the
stresses and heat flow, which treatment he details [12]. He further states that he be-
lieves that the approach is able to accurately reproduce higher order thermodynamics
in general, something which is still subject of ongoing research [101,115,116].

In 1954 Bhatnagar, Gross and Krook introduced a linear approximation for the colli-
sion integral which was shown to be sufficient to recover the Navier-Stokes equations
for systems close to equilibrium [114]. Introducing a single relaxation time scale τ for
a linear approach to equilibrium, the resulting collision operator reads.

Ω (x, t) = −
1

τ

(
f (x, t) − fMB (x, t)

)
. (2.9)

Here, the assumption of small deviations from the equilibrium imposes an additional
restriction to low Mach numbers, necessary for the expansions to accurately recover
the Navier-Stokes equations. It has been widely applied as a simplification of the
lattice Boltzmann method (see section 2.4) [43,45].

2.3 Relevant physical properties

An important aspect of modelling physical systems is the balancing of simplification
and completeness of an abstraction. The underlying assumptions and limitations of
the model determine the applicability of a model here in the same way as the level of
complexity which may prohibit a universal approach. In this section the properties
and parameters relevant to the employed numerical models, chiefly the LBM with few
additions for the DSMC hybrid approach are discussed. In addition to the physical
properties dimensionless numbers used for the characterisation of system behaviour
are introduced.

Even though the LBM is as derived from the Chapman Enskog expansion in prin-
ciple weakly compressible [38, 47], incompressible behaviour can be assumed as well.
Furthermore, the models employed are isothermal as only small deviations from equi-
librium are considered. These limitations imply that heat flux can be neglected as a
transport coefficient, leaving viscosity and diffusivity to be discussed.

In the context of multiphase simulations, surface tension or surface energy are the
governing properties determining system behaviour. In case of the multi-component
pseudo-potential model detailed below, it is modelled as an explicit forcing term
proportional to density contrasts.

Finally with contact angles, surface slip and permeability some phenomenological
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properties are introduced as they are required for a closed description here.

2.3.1 Transport coefficients

Viscosity

The viscosity of a fluid can be understood as a measure of its response to a given strain
rate ε̇kl = ∂uk/∂xl quantifying the change of deformation. Here and throughout, the
Einstein summation convention is applied with lower case Latin letters designating
Cartesian coordinate direction indices. It enters the Navier-Stokes equations 2.1 as
viscosity tensor in the definition of the deviatoric stress

σij = ηijklε̇kl. (2.10)

In an isotropic Newtonian fluid the viscosity tensor can be shown to have but two
degrees of freedom, allowing to formulate it as

ηijkl = ν (δikδjl + δilδjk) +

(
νv −

2

3
ν

)
δijδkl, (2.11)

in terms of the kinematic shear viscosity ν measuring the response to shearing defor-
mation and the bulk or volume viscosity νv related to volume deformations as e.g.
occurring in pressure waves.

Instead of the kinematic shear viscosity, many calculations make use of the dynamic
viscosity η = νρ which is scaled with the mass density ρ.

Diffusivity

Diffusion is the process moving a substance in direction of a density gradient, leading
to equal concentration throughout a system in thermodynamic equilibrium. The
diffusivity D is a parameter for the speed of spreading. The first and second law of
Fick defines diffusivity with respect to density gradients in time and space. The first
one relates the diffusive flow rate Q̇ to the concentration gradient

Q̇i = −D
∂n

∂xi
, (2.12)

while the second one defines the diffusion equation, with the diffusivity relating the
dynamics of the concentration to its second spatial derivative

∂n

∂t
= D

∂2n

∂x2i
. (2.13)
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In section 4.3.3 equation 2.13 is used for the measurement of the mutual diffusivity
in binary and ternary mixtures.

The quantitative prediction of diffusivity is in general very complex. Depending on
the context different properties can be taken into account for a prediction. A very
intuitive approach is given in the context of the mean free path theory. There the
(self-)diffusivity, the process observed to equilibrate density fluctuations in a single
component fluid (defined via the chemical potential [136]), is considered. It can be
shown to be expressible directly proportional to the mean free path λ0 and mean
thermal speed uT of a substance as

D =
1

3
λ0uT . (2.14)

This approximation is however far from accurate in the case of general substance
mixtures as is discussed in chapter 5 (see also [9]).

2.3.2 Forces and energies

Body force and pressure

In the scope of the lattice Boltzmann method, a straightforward way to drive a flow
is given by applying a constant body force throughout the system. The accuracy of
this approach can be impeded by issues arising from discretisation and boundary con-
ditions, as well as low order accurate force integrations [137–139]. In plain channels,
a straightforward integration yields however a simple equivalence to a given pressure
gradient

∇p = −ρF. (2.15)

This allows for relative ease in driving flow in our benchmark problems as well as
coupling different methods able to express interactions as forces or pressure gradients
at an interface.

Surface tension

The physical effect stabilising a free interface is called surface tension. Depending on
the point of view it can be expressed as a force per unit length or, as surface energy,
rather as an energy per unit area. For fluid systems, both formulations can be shown
to be equal, while the formalism of surface energy can also be extended to describe
solid surfaces.
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Following Gibbs [107], the surface energy

γ =

(
∂G

∂A

)
T ,V,N

(2.16)

is formulated as the change of free energy G with area A for a given temperature T ,
volume V and particle count N. In section 4.3.1 we evaluate the surface tension via
the Young-Laplace equation

∆p = γ k, (2.17)

which contains the surface tension as proportionality factor between the Laplace
pressure ∆p across an interface to its curvature k. The latter is defined as the sum of
reciprocals of the principal radii of curvature per surface dimension k =

∑D−1
i 1/Ri.

In what is called its mechanical definition, the surface tension γ is given by the
anisotropy of the normal p⊥ and transversal p‖ eigenvalues of the pressure tensor
integrated over an interface area A

γ =

∫
A

dA p‖ − p⊥. (2.18)

2.3.3 Phenomenological properties

Contact angle

The contact angle is an important phenomenological measure for the wetting proper-
ties of a surface. It is defined as the angle a droplet surface spans with a solid surface
at the contact line. In this definition, neutral wetting can be expressed in terms of a
contact angle of Θ = π or 90◦ while perfectly wetting surfaces exhibit a contact angle
of Θ = 0 (0◦) a perfectly dewetting surface of Θ = 2π (180◦). This phenomenological
description can for static force free systems be related to the surface tension γ existing
between a solid s, a liquid l and a gas g in a straightforward way by the Young law

Θ = tan−1
(
γsg − γsl
γlg

)
. (2.19)
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Θ

R

H

B

γlg

γslγsg

Figure 2.1: Illustration of the static contact angle and Young’s law, Eq. (2.19).
The contact angle is measured as the inner angle the droplet fluid component
encloses with the surface. It can be related to the surface tensions γαᾱ acting
between the respective phases, solid s, liquid l and gas g. With zero gravity or
for sufficiently small droplets, a spherical shape can be assumed. In this case
the droplet Radius R and contact angle Θ can be calculated from the droplet base
B and droplet height H via Eq. (2.20).

Figure 2.1 illustrates Young’s law. Furthermore here the length of the droplet base B
and droplet height H are marked. Together with the assumption of a droplet formed
as a spherical cap, i.e. neglecting gravity effects (The simulations are free of gravity)
these allow to calculate the radius R and contact angle as [140,141]

Θ = π− tan−1
(
B/2

R−H

)
, R =

4H2 + B2

8H
. (2.20)

In realistic and application relevant contexts this description, which serves as excellent
basic benchmark for our model, falls of course short of capturing additional effects like
contact line pinning, surface roughness entrapped gas, effects of gravity or hysteresis,
for which more elaborate formulations for the contact angle can be found [142,143].

Surface slip

As discussed above, the assumption of the no-slip boundary cannot be motivated by
first principles. Aware of this, already Navier formulated boundary conditions for the
general case of finite velocity of a fluid at a boundary [144]. Here, he identified the
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solid boundary

u3

x2

u
slip

b
∂u
∂x3

Figure 2.2: Illustration of the slip boundary condition with the slip length b as
introduced by Navier. The slip length is the depth in which linear extrapolation
of the surface velocity in relation to the shear stress at the surface hypothetically
reaches zero.

slip-length

b =
uslip(
∂u
∂x

) , (2.21)

relating the speed uslip at a boundary to the shear stress ∂u
∂x3

, as a good parameter
to characterise surface slip as a property independent of the actual flow velocity. It
is illustrated in figure 2.2.

A Hagen-Poiseuille equation for the flow velocity in a plain channel adjusted for
finite wall slip can be formulated. With regard to the specific situation of systems
investigated in chapter 3, the flow velocity profile

u3(y) =
aH2

2η

(
(y−H)2

H2
−

(y−H) + b

(H+ b)

)
, (2.22)

in direction z is found. It is a function of the acceleration a over the channel height
H in direction y with terms to account for a finite surface slip of b on the channel
boundary at y = 0 and no-slip at the boundary at y = H.
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Permeability

The permeability κ, together with viscosity, forms the proportionality factor for the
flow rate Q̇ of fluid through a medium and an applied pressure gradient ∇p. It is a
material property of porous media. It is defined by Darcy’s law [145]

Q̇ =
−κ

η
∇p, (2.23)

which is a phenomenological law derived from measurements in the late 19th century.
For the case of fluid mixtures, the relative permeability κrα of a component α is given
as ratio of its permeability κα in the mixture to the absolute permeability of the
medium for a fluid of the same viscosity

κrα =
κα

κ
. (2.24)

The definition of the property betrays the extraordinary complexity in determining
meaningful approximations. Relative permeabilities are depending on the interplay
of many parameters ranging from surface wetting, porosity, fluid fractions and per-
colation to the means driving a flow and hysteresis effects. Surfactants and diffusive
effects on longer time scales complicate the modelling even more [75,146,147].

2.3.4 Dimensionless numbers

Effects in fluid mechanical systems can be characterised by their governing physical
properties. To this extend, many dimensionless numbers have been formulated, al-
lowing the qualitative assessment of system properties by a single number relating
the magnitude of different parameters. Table 2.1 gives an overview of dimensionless
numbers relevant to the work presented here, together with some values of interest.

The Reynolds number

Re =
ρuL

η
, (2.25)

relates inertial forces to viscous forces. The former are here quantified by the product
of momentum (the product of mass density ρ and mean speed u) and a characteristic
length L, the latter by the dynamic viscosity η. It is a measure for the presence and
extend of turbulence in a flow system. Classically, systems are called purely laminar
for Re 6 10 and fully turbulent for Re > 2000 [1]. The systems considered in the
scope of this work are always laminar (compare section 2.2.1).
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Number Symbol Definition Regimes

Reynolds Re Inertial forces
Viscous forces Laminar flow:

Fully turbulent flow:

Re 6 10

Re > 2000

Capillary Ca Viscous forces
Surface tension Gov. surface tension: Ca 6 10−5

Peclét Pe Advective transport
Diffusive transport Diffusivity negligible: Pe� 1

Mach Ma Flow speed
Speed of sound Supersonic/Shock:

LBGK approx. valid:

Ma > 1

Ma 6 0.03

Knudsen Kn Mean free path
System length Continuum approx.:

Slip flow regime:

Transition regime:

Free molecular flow:

Kn ≈ 0

Kn 6 0.1

Kn ≈ 1

Kn > 100

Table 2.1: Overview of some dimensionless numbers and their regimes.

The Capillary number

Ca =
η U

γ
, (2.26)

relates viscous forces, quantified by the product of the viscosity η with a representative
flow velocity U to surface tension forces. For very small capillary number Ca 6 10−5

a system can be thought of as governed by surface tension effects, while these become
negligible for larger values of Ca.

The Peclét number

Pe =
UL

D
, (2.27)

relates advective effects given by the product of a typical speed U and length-scale
L and the diffusivity coefficient D in order to measure whether diffusivity has to be
taken into account. It can be formulated both for mass and heat transport. Here, in
the context of isothermal systems, only mass diffusion is of interest.
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The Mach number

Ma =
u

cs
, (2.28)

relates the mean speed u in a system to the speed of sound in the material cs. Its
transition through 1 is designating transition to a super-sonic regime where shock
wave effects become important. Certain lattice discretisations and collision approxi-
mations used in the LBM require it to be small for the Chapman Enskog expansion
to recover the Navier-Stokes equations.

The Knudsen number

Kn =
λ0

L
, (2.29)

is relating the mean free path λ0 of the molecules constituting a fluid to a typical
length scale L of the system taken into consideration. In order for continuum ap-
proximations to be fully valid it has to vanish. Systems exhibiting finite Knudsen
numbers include dilute gas flows (compare as well section 5) or small geometries [13].

The most prominent macroscopic effect exhibited by flows at a finite Knudsen number
is the breakdown of the hydrodynamic (no-slip) boundary condition at a solid surface.
A consequence of this Knudsen Paradox is that the flow rate through a thin pipe
of radius r, resulting from a fixed pressure gradient ∇p does not linearly decrease
with the mean pressure p but rather exhibits a minimum once the mean free path
λ0 associated with the pressure p becomes of the order of r (Kn ≈ 1) [10]. Another
interesting feature of this non-intuitive regime allows to construct a pump without
moving parts as a temperature gradient in a thin pipe is found to induce a pressure
gradient [11].

Both phenomena can be explained by the existence of a boundary layer in which
discontinuities in velocity- and temperature fields exist. This Knudsen layer can
extend to the order of several mean free paths from a boundary. In this region, the
collision rate between fluid particles is reduced. This is due to the collisions between
particles and the surface. As the ratio drops, it reaches a threshold beyond which
a local equilibrium description of the flow is void. While this has no implications
for the validity of the kinetic picture of the Boltzmann equation, the linear relations
for shear stress and heat flux assumed in the formulation of the Navier-Stokes equa-
tions are no longer valid. However different strategies can be employed to recover
working macroscopic models. For the slip flow regime at Kn of the order of 0.1
the integration of slip flow boundary conditions into the Navier-Stokes formalism is
possible [148]. Up to the so called transition regime, starting at Kn of the order



2.4. The lattice Boltzmann method 23

of 1, higher order approximations of the Boltzmann equation or moment equations
of the single particle velocity distribution can constitute analytical solutions to some
flow fields and provide valuable information about the transport properties in the
system [12, 149–151]. Systems comprising flows at Knudsen numbers of an order of
Kn > O(10) require in general discrete particle models to be correctly resolved. As
directly solving the Boltzmann equation due to the high dimensionality and general
complexity remains a formidable task, models of the transition regime rely on numer-
ical methods. For free molecular flow at even higher Knudsen numbers Kn > 100,
collision-less Boltzmann models are employed in which kinetic particle interactions
are neglected altogether [152].

2.4 The lattice Boltzmann method

The lattice Boltzmann equation was originally formulated as extension of a lattice
gas formalism [41–45,153], but can be derived directly from the Boltzmann equation
by discretisation in time and phase space as well [49,154]. For a k-dimensional lattice
comprising k− 1 discrete velocities ck and a rest-vector, it reads

fk (x+ ck∆t, t+ ∆t) − fk (x, t) = Ωk (x, t) . (2.30)

Furthermore the formalism requires a discretised formulation of the Maxwell Boltz-
mann distribution of particle velocities in thermodynamic equilibrium. Throughout
this thesis, an expansion to third order

f
eq
k =wkρ

[
1+

1

c2s
ck ·u+

1

2c4s
(ck ·u)2 −

1

2c2s
|u|2 +

1

2c6s
(ck ·u)3 −

1

2c4s
(ck ·u) |u|2

]
,

is employed, which has been shown to increase numerical stability in combination with
the ternary multi-component model described in detail below. Therein the lattice
weights wk and the speed of sound cs are determined by the lattice discretisation
chosen [43,155]. Figure 2.3 shows the widely used so-called D3Q19 lattice of Q = 19
velocities, comprising 18 discrete velocity vectors ck and a zero velocity in D = 3
dimensions with implementation specific indexing

c =

 1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0
0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1 0
0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1 1 −1 1 −1 0

 .

It will be employed throughout the work presented here, their values are given by

wk =


k = 1 . . . 6 : 1/18

k = 7 . . . 18 : 1/36

k = 19 : 1/3

(2.31)

Here, indices 1 . . . 6 designate the main axes, 7 . . . 18 the vectors pointing to the centre
of the edges of a cube and vector 19 is the rest vector of zero length.
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Figure 2.3: The so-called D3Q19 lattice, comprising 19 velocities in 3 dimen-
sions. Illustration adapted from [156].

The speed of sound is given by:

cs =
1√
3

∆x

∆t
, (2.32)

with the lattice constant of discretisation, the length ∆x and the modelled time-step
∆t. Typically these units are chosen as unity. They do however indicate the entry
points for conversion to SI-units as well.

Physical properties can be expressed as moments of the discretised single particle
velocity distribution f. Of central interest are the conserved moments, the density
given by the zeroth order moment∑

k

fk (x, t) = ρ (x, t) , (2.33)

and the momentum given by the first order moment∑
k

fk (x, t) ck = ρ (x, t)u (x, t) . (2.34)
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The shear stress is given by the second order moment∑
k

fk (x, t) cikc
j
k ≈ ρ (x, t) Tδij + ρ (x, t)ui (x, t)uj (x, t) , (2.35)

wherein the term ρ (x, t) Tδij represents the pressure of a non-ideal gas [157]. In the
usual athermal interpretation of the model this is equivalent to the equation of state
below, relating the temperature parameter to the lattice speed of sound.

The above discussion has left out the complexity of the collision term. In 1954,
Bhatnagar, Gross and Krook published a very simple and elegant model for collision
processes in gases, relying on the assumption that all collision processes serve to
approach thermodynamic equilibrium. By introducing a single relaxation time scale,
this yields the so called BGK, or discretised - lattice BGK (LBGK) collision operator

Ωk (x, t) = −
∆t

τ

(
fk (x, t) − f

eq
k (x, t)

)
. (2.36)

It has been shown to provide above properties and is for many systems a sufficient
approximation to allow to calculate solutions to the Navier-Stokes equation up to
second order. The Chapman Enskog expansion requires here a small Mach number
(compare Eq. 2.28) with respect to the lattice speed of sound, Eq. 2.32.

In the LBGK approximation this fixes the viscosity, which is determined by the
relaxation time τ by

ν = cs∆t

(
τ

∆t
−
1

2

)
, (2.37)

where kinematic shear viscosity ν and bulk viscosity νv are equal.

The equation of state for the case of a single component fluid system is simply

p = c2sρ. (2.38)

It is equivalent to the isothermal ideal gas equation. Naturally model extensions for
non-ideal fluids and multiphase flows will introduce additional terms here.

Another algorithm to model particle collisions in the framework of the lattice Boltz-
mann model is given by so-called multiple-relaxation-time (MRT) models. Concep-
tually similar to Grad’s 13 moment method for the approximation of the Boltzmann
equation, this approach performs relaxation on various time-scales in a space formed
by a subset of moments of the single particle velocity distribution function [158–160].
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2.4.1 Lattice Boltzmann multiphase models

Already around the time of its perception, the LBM was extended to include multi-
ple phases [161], building on a multiphase model introduced for lattice gas models,
already [162]. From there, a number of different multiphase models with different
strengths and limitations has been devised [161, 163–168]. Here, different princi-
ple approaches can be discriminated, the most commonly employed models are the
colour-field models [161,169–172], pseudo-potential models [163,164,173–178], free-
energy models [165,166,179–181,181,182], mean-field models [167,168,183,184] and
hybrid models employing e.g. the immersed boundary methods [21, 185] or level-set
methods [22] for interface tracking.

Colour-field Originally devised for the simulation of binary immiscible fluids in the
context of lattice gas automata [161], so-called colour-field models for the LBM have
been extended to model arbitrary number of fluid components [161,169–172]. In addi-
tion to separate velocity distributions for the respective components, the dynamics of
an order-parameter field are modelled, resulting in sharp interfaces compared to e.g.
the free-energy and pseudo-potential models. The collision operator comprises addi-
tional terms to the LBGK model, namely a perturbation step introducing a surface
tension term into the model, as well as a recolouring step instating phase separation
for a minimal interface thickness. The original algorithms has here been modified
to recover correct two-phase NS equations and surface tension [172, 186]. Also the
original recolouring approach, assuming maximal work of the recolouring operator
has been modified, greatly improving the range of stability and Galileian invariance
of interactions [171].

Free-energy Based on the phase-field model, the free-energy functional approach
to multiphase and multi-component LB methods introduces interfacial interaction in
a thermodynamically consistent formulation [165, 166, 187]. In the multi-component
formulation, in addition to a velocity density field, an order parameter field is evolved
on the LB lattice. Introducing conservation laws and suitable equilibrium distribu-
tions the formalism can be shown to recover the NS equations. By comparison to
free-energy models, direct parameterisation by thermodynamic properties is possi-
ble [187]. Extensions of the model include modifications to instate Galileian in-
variance [179, 180] and increase the achievable density ratios by modification of the
interface integration [181, 181, 182]. Recently, the formulation has been shown to
be algorithmically equivalent to inter-particle potential models, where the latter are
however parameterised phenomenologically (see also below) [188].
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Mean-field theory So-called mean-field models are based on employing a velocity
density distribution and an additional order parameter evolved on a lattice of the
same discretisation as well [167, 168, 183, 184]. Instead of the free-energy functional,
in these models the interaction is calculated from inter-molecular interactions. While
this approach is in general numerically more robust than colour-field and free-energy
models as well as the pseudo-potential method, it is quite limited in the achievable
density gradients between the components just the same.

The Shan and Chen pseudo-potential method

In 1993 Shan and Chen introduced a simple efficient way to qualitatively simulate
multiphase fluid phenomena. To simulate multiple fluid components they introduced
a two-fold coupling relying on the modification of the equilibrium velocity used to
calculate the equilibrium distribution, Eq. (2.4).

The first modification required is the definition of a collective equilibrium velocity
uΦ of Φ components in the absence of interactions. It is calculated as the ratio of
the summed local momentum over the summed local mass density as

uα = u =

∑Φ
α m

α
∑
k ckf

α
k∑Φ

α m
α
∑
k f
α
k

, (2.39)

which can be shown to correctly model a mixture behaving as an ideal gas [43, 45].
Therein mα is the molecular mass and fαk is the density of the single particle distri-
bution function on the kth lattice vector.

In a second step an inter-component potential is defined as Ψ = Gαᾱψ
αψᾱ. This

general formulation is simplified by limiting interactions to nearest neighbour lattice
sites and choosing the green function Gαᾱ to be approximated by a scalar value. For
thermodynamic consistency [164] the density dependent pseudo-potential is chosen
to be

ψα = 1− e−ρα . (2.40)

The momentum change imposed by this definition of a potential can then be formu-
lated as the force

Fα (x, t) = Gαᾱψ
α (x, t)

∑
k

wkψ
ᾱ (x+ ck∆t, t) . (2.41)

The modified momentum equation for a component α then reads

ραuα = ραu+ ταF
α. (2.42)
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While this implies that local momentum is not conserved anymore, it was shown that
the global conservation of momentum is still assured by this approach [163].

This method can be applied two-fold to yield either a phase transition within a single
fluid component as well as to simulate a system of immiscible components. The
respective behaviour is determined by the coupling parameter Gαᾱ. If it is chosen to
be negative, thus implying attractive interactions, a van der Waals like behaviour is
observed and for coupling above a critical value a phase transition towards a liquid
and a steam phase can be observed. For repulsive interactions the miscibility of fluid
components is determined by the coupling strength again in a fashion to exhibit phase
separation above a critical coupling value.

A major drawback of this phenomenological approach is the absence of a proper energy
formulation. The model is still isothermal or even athermal and energy conservation
laws cannot be formulated. From this it is clear that while phase transitions are
modelled, there is no dynamic temperature model included here.

Later extensions of the formalism include multi-range interactions, allowing to tune
the surface tension independently from the phase separation governing order param-
eter [177,178,189].

Further theoretical investigation of the formalism has produced solutions to the pres-
sure tensor resulting from the model. Here it could be shown that the formulation is
equivalent to free energy multi-component models [190].

Stability and accuracy has been improved by reformulating the force integration as
well as modifications of the potential [175,176]

2.5 Lattice Boltzmann method boundary conditions

2.5.1 Periodic boundaries

The most basic boundary condition commonly applied to domain boundaries in the
LBM are periodic boundary conditions. They are implemented by copying the lattice
velocity density values of lattice vectors pointing out of the simulated domain to their
inwards pointing counterparts on the domain opposite boundary and vice versa. In
one Cartesian coordinate x for a domain comprising 1..nx lattice sites this reads

ck(x = 1) = ck(x = nx), where x(ck) = 1 (2.43)
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and

ck(x = nx) = ck(x = 1) where x(ck) = −1 (2.44)

The local nature of the lattice Boltzmann formalism requires the application of this
condition in general only to be applied in the advection step. The resulting system
resembles an infinite array of identical copies of the domain in x-direction. This simple
approach conserves mass and momentum and can be apply in any number of Cartesian
coordinates. Furthermore, the combination with other boundary conditions such as
the bounce-back BC (sec. 2.5.2) and on-site-velocity BC (sec. 2.5.2) is straightforward
when executed in the right order (periodic BC first).

When nearest neighbour information is required by elements of the algorithm, such as
in the calculation of the pseudo-potential force Eq. 2.41, it becomes more convenient
to not only copy the minimal required data(sub-)set but rather create copies of the
lattice sites on the opposite domain boundary, sometimes referred to as halo or ghost
layers - a strategy also employed in domain decomposition in parallelised systems. The
computational domain is then extended beyond the physical boundaries, allowing to
otherwise keep the algorithm kernel unmodified, e.g.

f(x = 0) := f(x = nx) ∧ f(x = nx+ 1) := f(x = 1). (2.45)

In this case the existence of a halo layer on either side of a simulation domain al-
ready anticipates the need for full site information in these regions as it arises e.g.
for the calculation of Shan Chen interaction forces. More simplified cases may reduce
to communicate a minimal half-set of velocities and that in one direction only. Of
course on the other end of the spectrum kernels requiring information from yet ex-
tended shells might require to even further extend the halo region. Another possible
motivation for this is the optimisation of parallel algorithms for minimal numbers of
communication operations (The information provided by a five lattice site deep halo
remains accurate at the physical domain boundary for four time steps).

While periodic boundaries allow for enormous gains in efficiency when dealing with
inherently periodic problems such as the patterned surfaces treated in section 3 or the
simple Poiseuille flow benchmarks in section 4.3.4, in general close attention has to
be paid to avoid artefacts introduced into a system due to periodicity. For example,
the droplets used for surface tension and contact angle measurement in section 4.3
may in a too small domain interact with their mirror counterparts and coalesce to
form lamellae and films. As well, the jet-like outflow of the bezel opening in section 5
would have the potential to disturb the homogeneous inflow if periodic boundaries
were employed there. In these cases the use of periodic boundaries may, in order
to minimise or avoid artefacts, require the simulation of significantly larger domains
than the problem size initially suggests.
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2.5.2 Wall boundary conditions

As motivated above, appropriate treatment of boundaries is essential for the suc-
cessful modelling of fluid flow. The choice of boundary condition to be employed
in a numerical model depends here on different aspects. First, of course the qual-
ity of surface properties to be included in the model has to be taken into account.
The range of parameters includes here without limitation for example no-slip vs.
slip boundary conditions [156, 191–197], wettability [61, 198, 199], static vs. moving
boundaries [200–204], resolution of curvature [200, 205] and inclination with respect
to the discretisation axes [206,207] as well as Knudsen layer correction beyond the slip
flow regime, typically introducing additional wall functions which take effect beyond
the immediate boundary layer [193,196,208–215].

Simple mid-grid bounce back boundary condition

Originally developed in the context of lattice gas models, bounce-back boundary con-
ditions provide a straightforward way to model solid surfaces imposing no-slip at a
wall [216–218]. As the name suggests this is achieved by reflecting velocity compo-
nents pointing into the boundary back into the inverse parallel direction, rendering
the resulting mean velocity zero. In case of the simple mid-grid bounce back this is
implemented by modifying the advection step such that

fk(x+ ckt, t+ 1) = fk̄(x+ ckt, t), (2.46)

where ck points towards a site defined as boundary and the index k̄ signifies the
inverse direction ck̄ = −ck. The resulting plane of zero velocity is then located mid-
grid between the centre of the fluid and boundary node. In LBGK models the exact
wall position is however depending on the relaxation time and especially for under-
relaxed systems at high values of τ the error growing super-linear with it becomes
large [219,220]. A context in which this can lead to significant error is the simulation
of porous media [139, 160]. Computational constraints here oftentimes lead to small
features being resolved by a few lattice sites only which dramatically increases the
relative error [221]. Multi relaxation time collision models allow, given adequate pa-
rameterisation [222], to eliminate the viscosity dependence of the boundary position,
while more sophisticated bounce back boundary conditions implementing interpola-
tion schemes allow to reduce the error [160, 223]. In the scope of this work it was
opted to integrate MRT collisions in order to preserve the simplicity of the bounce
back scheme, especially in the light of the straightforward combination with multi-
phase boundary conditions (see section 2.5.2).
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Pseudo-potential interactions

The prudential interaction model described in section 2.4.1 can not only be employed
to introduce non-ideal terms into the equation of state, but also offers an elegant way
of adding fluid solid interactions to a system [224]. Here, in addition to the simple
mid-grid bounce back boundary condition used to close the surface, a wall potential
is defined simply as

s =

{
0 : fluid
1 : solid

(2.47)

Then in the calculation of pseudo-potential interaction for the fluid component α an
additional interaction is taken into account. It is quantified by the force

Fαω (x, t) = Gαωψ
α (x, t)

∑
k

wks (x+ ck∆t, t) (2.48)

proportional to a new scalar wall interaction parameter Gαω which can be interpreted
as surface tension.

In single component systems, repulsive interaction of this type has been used to model
dewetting surfaces exhibiting slip [225]. In single component multiphase models, the
strength of attractive interaction determines whether the surface will behave wetting
or dewetting for the liquid phase. If the coupling is chosen in the order of the attractive
self-interaction of the minority phase dewetting behaviour will be induced, while for
coupling strengths in the order of the liquid phase self interaction, wetting will be
observed.

In chapter 4 two interaction parameters Gαω and Gᾱω are introduced allowing to vary
the contact angle Θ to be varied according to independent solid-fluid surface tension
of the respective components. Here identical static contact angles can for example
be achieved by difference in relative positive surface tension as well as positive to
negative surface tension.

On-site velocity boundary conditions

A remarkable feature of the LBM is the direct access to the stress tensor local to a
lattice site via the non-equilibrium part of the distribution

fneq = f− feq (2.49)

By combining this knowledge with a bounce-back scheme for the equilibrium portion
of the distribution and using the conservation laws, Qisu Zou and Xiaoyi He arrived
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at an elegant formulation for Dirichlet (pressure) boundary conditions and Neumann
(velocity) boundary conditions for the LBM [226]. In combination, the two variants
allow furthermore to fix the mass flow, a property used in the contaminant suppression
simulations in section 5.4.

Originally formulated for D2Q9 lattices as well as D3Q15 lattices using both compress-
ible and incompressible LBM formulations, the approach was subsequently extended
to D3Q19 lattices [227, 228] and arbitrary flow orientation [156]. In order to achieve
this, explicit correction terms for the transverse momentum had to be introduced.
Details of the formalism used in this work are found in [156]. Since the ansatz relies
on the continuity equation, Eq. 2.4 to hold, it is not sound to combine these bound-
ary conditions with the pseudo-potential multiphase model, as it does in general not
conserve local momentum.

A consequence of the extension to arbitrary flow orientation is the applicability of the
formalism not only to inflow and outflow boundaries, but to solid boundaries as well.
Here again, access to the stress tensor allows not only to formulate an on-site no-
slip boundary condition, but enables the calculation of arbitrary slip flow velocities
for a given slip length as the only free parameter as well [156, 229]. By introducing
a inverse accommodation coefficient ζ varying between 0 in the case of no-slip,
interpretable as stochastic limit of diffusive reflection and 1 in the case of full slip,
resembling specular reflection on the lattice, the resulting slip length is found to be
approximated by [229]

b =
λζ

3(1− ζ)
. (2.50)

Evaluations show a remarkable accuracy of this formulation, allowing to tune slip
lengths at the order of millions of lattice sites in systems resolved by only hundreds
of lattice sites (see section 3.3.4). The boundary condition is used to simulate the
slip properties in superhydrophobic striped channels in chapter 3.

2.5.3 Knudsen regime boundary conditions

As detailed in section 2.3, for flows in systems either at very low pressure or of geom-
etry on the nanometer scale the characteristic dimensionless number, the Knudsen
number Kn becomes none negligible. For Kn > 0.01 rarefication effects gain no-
ticeable influence on the flow characteristics and slip at the walls has to be taken
into account [213]. Thus, to correct the lattice BGK (LBGK) Navier-Stokes solver
for the discontinuous velocity field in the Knudsen layer, a slip boundary condition
proposed by Zhang et al. [230] has been implemented. Other suitable boundary con-
dition modifications were proposed by amongst others Tao et al. [213], Ansumali and
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Karlin [196,231] and Toschi and Succi who extended the Ansumali Karlin treatment
by virtual collisions in the bulk [211]. Here, so-called wall-function approaches intro-
duce phenomenological corrections either to the entire distribution calculation in the
boundary layer, or its parameterisation. While Ansumali and Karlin and Toschi et
al. chose to modify the equilibrium distribution function, in the scope of this thesis
an approach proposed by Zhang et al. is used, modifying the relaxation parameteri-
sation or effective viscosity at the boundary by adjusting it according to a Knudsen
number in a LBGK model.

In the work conducted for this thesis a two-fold boundary modification is imple-
mented, combining a slip boundary condition with the wall function correcting for
the variable mean free path in the boundary layer outlined above. The first employed
boundary condition allows to control the reflective behaviour and thereby implic-
itly the slip by an accommodation parameter a defined between a = 0 relating to
no-slip or bounce-back and a = 2 implementing full-slip or specular reflection. In
the simulations described in the scope of this work, an accommodation parameter of
a = 1 is chosen. This corresponds to model diffuse deflection at a rough wall, re-
spectively [230]. As with higher Kn and/or increase in resolution the Knudsen layer
extends to scales resolved by the simulation, simple slip boundary conditions over-
estimate the velocity at the boundary. The reason for this is a significant reduction
in the mean free path of particles in the vicinity of a surface, effectively lowering the
local Knudsen number. Recently, several methods have been introduced to reflect this
by the introduction of an effective mean free path λe. Integrations with the lattice
Boltzmann method have been introduced by Ansumali and Karlin, Tao et al., Hyodo
et al. and Zhang et al. [196,213–215].

These boundary conditions are detailed and applied in chapter 5 to model the flow
of a background gas. Evaluations of the proposed methods have shown the more
elaborate phenomenological approaches to allow to reach higher Knudsen numbers
than the model used here. The advantage of the given approach lies however in
its relative simplicity - Beyond the input of a local relaxation parameterisation no
modifications of the algorithms are necessary in order to account for the effective
viscosity resulting from the shortened mean free path at the boundary. At the same
time the algorithm works well in the considered low intermediate Knudsen range.
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Chapter 3

Tensorial slip of channels with
anisotropic patterns

The content of this chapter is based on

S. Schmieschek, A. V. Belyaev, J. Harting and O. I. Vinogradova.
Tensorial slip of superhydrophobic channels.
Physical Review E, 85:016324, 2012. [98]

and

E. S. Asmolov, S. Schmieschek, J. Harting and O. I. Vinogradova.
Flow past superhydrophobic surfaces with cosine variation in local slip length.
Physical Review E, 87:023005, 2013. [232]

where all simulation data where contributed, as well as

A. L. Dubov, S. Schmieschek, E. S. Asmolov, J. Harting and O. I. Vino-
gradova.
Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhy-
drophobic striped plane.
The Journal of Chemical Physics 140:034707, 2014. [233]

where simulations where supervised.
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3.1 Introduction

Recent advances in the engineering of functional surfaces on the microscopic level [58–
61] and their integration into micro electromechanical devices (MEMS) [29,30,56,57]
spark renewed interest in hydrodynamic boundary conditions [19,234]. On the micro
and nanometer scale, slip flow is identified not only in the Knudsen regime of very
dilute and/or confined systems, but in hydrophobic and superhydrophobic systems as
well [13,29,30,56,57]. Experimental and numerical investigations suggest here that the
observed slip is in fact an effective property, emerging from the interplay of different
system aspects, such as electromagnetic and/or chemical interactions, roughness and
gas entrapment [60,61,235]. In the light of these results, theoretical models have been
constructed which introduce effective local slip lengths of smooth surfaces to allow
for a simplified treatment of complex hydrodynamic problems [19, 92, 234, 236, 237].
An example is the application to the Cassie-Baxter-state of superhydrophobic sur-
faces [238,239], where gas entrapped in surface roughness features leads to very high
contact angles and large contact angle hysteresis. Furthermore comparably large slip
has been reported, making this state particularly interesting for engineering applica-
tions [240].

While the treatment of isotropic patterns has been shown to be exactly solvable in
general, recent work has been aimed at models for anisotropically patterned surfaces.
The most basic abstract model for this case is given by a pattern of stripes, intro-
ducing anisotropy in exactly one dimension. An interesting feature in this case is the
applicability of such surface structures to not only optimise flow rates [96, 241], but
also to bend flow, relevant in flow control as well as aiding passive mixing applica-
tions [97,242].

In the following, effective slip over a striped surface is introduced as a tensorial prop-
erty of a channel [92] with a discussion of applications of theoretical models in different
limits of the governing parameters [98]. In section 3.2.1 the tensorial nature of the
effective slip is motivated by comparison to the permeability of a channel exhibit-
ing slip [92]. Section 3.2 outlines some general solution strategies for anisotropic
flow problems and presents solutions to selected problems used in comparison with
simulations in the section 3.4.

Section 3.3 is central to the work presented in that it discusses aspects relevant to
the numerical investigations performed in the scope of this thesis. It comprises the
selection of boundary conditions, derivation of numerical system scales and related
parameters as well as criteria for convergence and error estimation in the context of
different measurement techniques.

The chapter closes with the presentation of simulation results and their comparison
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with theoretical predictions in the cases of stripe slip patterns in the thick and thin
channel limit as well as a cosine varying slip pattern in the thick channel limit (section
3.4). Aspects of boundary modelling aiming at simulation of atomic force microscope
systems are introduced as they are drawing from the results presented earlier [233].
Finally, a general summary and outlook of the chapter is given.

3.1.1 Effective tensorial slip

In earlier work, the concept of effective slip is exploited for thick (compared to the
texture characteristic length, L) channels [56, 243]. For anisotropic textures, it is
shown to depend on the direction of the flow and to be a tensor [236], beff ≡ {beffij },
representable by a symmetric, positive definite 2× 2 matrix

beff = SΘ

(
b
‖
eff 0

0 b⊥eff

)
S−Θ, (3.1)

diagonalized by a rotation with angle Θ

SΘ =

(
cosΘ sinΘ
− sinΘ cosΘ

)
. (3.2)

For all anisotropic surfaces its eigenvalues b‖eff and b⊥eff correspond to the fastest
(largest forward slip) and slowest (smallest forward slip) orthogonal directions [236].
In the general case of arbitrary flow orientation, inclined by an angle Θ, this means
that the flow past such surfaces becomes misaligned with the driving force. This
tensorial slip approach, based on a consideration of amacro scale fluid motion instead
of solving hydrodynamic equations at the scale of the individual pattern, is supported
by statistical diffusion arguments [236], and has recently been justified for the case
of Stokes flow over a broad class of periodic surfaces [244].

The effective slip formalism represents a useful tool to quantify properties of superhy-
drophobic surfaces in thick and thin channels. In many situations however dramatic
changes in flow can be observed in the critical regime between the two limiting cases,
when the length scales of system height H and pattern length L are of the same order.
Besides the limiting cases, section 3.2 thus includes a generalisation of the definition of
the effective slip length tensor Eq. (3.1) to an arbitrary channel thickness as well [98].

3.1.2 Discussion of parameters and limits

Effective slip in a thick channel is a characteristic of a heterogeneous interface only
(being expressed through its parameters, such as local slip lengths, fractions of phases,
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and a texture period) [97,237]. Recently it was recognised and justified in the context
of theory of heterogeneous porous materials [92], that a similar concept of effective slip
can be also exploited for a flow conducted in a thin channel with two confining surfaces
separated by a distance H� L. In such a situation, a natural definition of the effective
slip length can be based on the permeability of a hypothetical uniform channel with
the same flow rate. The effective tensorial slip is then determined by flow at the
scale of the channel width, and in particular depends on the channel height H [92].
Thus, a so formulated effective boundary condition reflects not only parameters of
the liquid-solid interface, but also depends on the flow configuration [97,98].

Further limits in the theoretical model can be identified by comparison of the pattern
period length L and the local partial slip length b, where it is found that the system
behaviour is governed by the respective smallest of the parameters of local partial
slip b, periodicity length L and channel height H, where the no-slip fraction φ1 and
inflow angle Θ present additional variables for the stripe slip patterned surfaces. In
the case of cosine variation of the local slip length, instead of φ1 the mean slip b0
and amplitude of the variation b1 are considered. This is elaborated on in the next
section.

There are furthermore results in the so-called weakly slipping stripe case in the thick
channel limit reported. This case where the slip lengths are very small in comparison
with system geometry parametres are originally discussed by Asmolov et al. [245].

3.2 Theory of tensorial slip

The basic assumptions of the theoretical model developed by collaborators in the
group of Olga I. Vinogradova are as follows. A channel consisting of two parallel walls
located at y = 0 and y = H and unbounded in the x and z directions as sketched in
Fig. 3.1 is considered. The upper plate is a no-slip hydrophilic surface, and the lower
plate is a superhydrophobic surface. The origin of coordinates is placed in the plane of
the liquid-gas interface in the centre of the region of partial slip. The x axis is defined
along the pressure gradient. This (superhydrophobic vs. hydrophilic) geometry is
relevant for various setups, where the alignment of opposite textures is inconvenient
or difficult. Moreover such a geometry allows to avoid the gas bridging and long-range
attractive capillary forces [246], which appear when dealing with interactions of two
hydrophobic solids [247,248].

A superhydrophobic plate is modelled as a flat interface with no meniscus curvature,
so that the superhydrophobic surface appears as perfectly smooth with a pattern of
boundary conditions [94, 96, 237]. In this idealisation, by assuming a flat interface,
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Figure 3.1: Sketch of a slip stripe surface (a): Θ = π/2 corresponds to transverse
stripes, whereas Θ = 0 to longitudinal stripes; (b) situation in (a) is approx-
imated by a periodic cell of size L, with equivalent flow boundary conditions
on the gas-liquid and solid-liquid interfaces. Illustration as published in [98],
courtesy of A.V. Belyaev.

additional mechanisms for dissipation connected with the meniscus curvature are
neglected [249–251]. It may however be argued that in the limit of laminar flow an
adjustment of the assumed partial slip length in the gas/liquid area could account for
such effects when evaluating experimental data.

The flow is governed by the Stokes equation 2.3 and incompressible continuity equa-
tion 2.2, where assuming unit mass a pressure gradient is introduced by a constant
acceleration in x-direction

〈∇p〉 = (−a, 0, 0). (3.3)

The local slip boundary conditions at the walls are defined as

u(x, 0, z) = b(x, z) · ∂u
∂y

(x, 0, z), uy(x, 0, z) = 0, (3.4)

u(x,H, z) = 0, uy(x,H, z) = 0. (3.5)

Here the local slip length b(x, z) at the striped surface is in general a function of both
lateral coordinates.

At the striped surface b(x, z) is comprised of a no-slip (b1 = 0) portion over solid/liquid
areas and partial slip (b2 = b) over the regions of gas/liquid interface. The length δ
is of typical scale of gas/liquid areas. The fraction of the solid/liquid areas is denoted
φ1 = (L− δ)/L, and of the gas/liquid areas φ2 = 1− φ1 = δ/L, respectively.

In case of the cosine varying slip, a one-dimensional periodic texture with the local
slip length

b = b0 + 2b1 cos (2πy) (3.6)
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Figure 3.2: Sketch of a surface with a cosine relief and its equivalent represen-
tation in terms of flow boundary conditions. Illustration as published in [232],
courtesy of E.S. Asmolov.

is considered. The coefficients therein are required to satisfy b0 > 2b1 > 0, in order
to obey b (y) > 0 for any y.

The resulting effective slip length in each case is the slip length

beff =
〈u〉〈(
∂u
∂y

)〉 , (3.7)

determined from the mean values in the xz-plane denoted by 〈. . .〉.

3.2.1 Relation of slip and permeability

For anisotropic textures different ways exist to define an effective slip length. A
natural approach is to define a slip-length tensor by evaluating the permeability of a
channel exhibiting slip flow

κ‖,⊥ =
H3

12

(
1+

3b
‖,⊥
eff

H+ b
‖,⊥
eff

)
, (3.8)

utilising the analogy with a hypothetical, uniform channel. This definition was
introduced and justified for thin superhydrophobic channels, using the lubrication
limit [92].

Considering a situation where the direction of largest forward slip of an anisotropic
texture is inclined at an angle Θ to the pressure gradient, the downstream effective
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permeability of the channel can be expressed in terms of the effective downstream
slip length as

k
(x)
eff =

H3

12

(
1+

3b
(x)
eff

H+ b
(x)
eff

)
. (3.9)

Following [236], it can also be obtained from the permeability tensor:

k
(x)
eff =

k‖k⊥

k‖ sin2Θ+ k⊥ cos2Θ
(3.10)

By substituting Eq. (3.8) into Eq. (3.10) and after subtracting the latter from Eq. (3.9)
the effective downstream slip length tensor can be written in terms of its respective
eigenvalues of largest and smallest slip length as

b
(x)
eff =

b⊥effH+ 4b
‖
effb
⊥
eff + (b

‖
eff − b⊥eff)H cos2Θ

H+ 4b
‖
eff − 4(b

‖
eff − b⊥eff) cos2Θ

. (3.11)

Note that b(x)eff does generally depend on H and b‖,⊥eff (H). For this reason, b(x)eff cannot
be viewed as a local property of the surface, except for in the thick channel limit.
Rather it is the effective slip length of the channel and thus in general its global
characteristic.

3.2.2 Theoretical solutions for effective slip over patterned surfaces

To illustrate the general theory, this section focuses on flat patterned surfaces con-
sisting of periodic stripes, where the local (scalar) slip length b varies only in one
direction. The problem of flow past striped superhydrophobic surfaces has previ-
ously been studied in the context of a reduction of pressure-driven forward flow in
thick [93–95] and thin [92] channels, and it is directly relevant for mixing [97, 242],
and the generation of tensorial electro-osmotic flow [97, 252, 253]. The formalism is
based on an ansatz for effective boundary conditions [97] and represents a theory for
an arbitrary gap, which in the asymptotic limits describes the situation in thin and
thick channels, respectively. Here merely sketches of the necessary steps to obtain
the expressions for effective slip as needed for the comparison with simulation results
are given, the interested reader finds details in [95,98,232,245].

For transverse stripes, the velocity u = (u(x,y), v(x,y), 0), can be described by two
components u(x, 0) = b(x)uy(x, 0), and v(x, 0) = 0. For longitudinal stripes, the
flow is also two dimensional: u = (u(y, z), v(y, z), 0), u(0, z) = b(z)uy(0, z), and
v(0, z) = 0. As the problem is linear in u, a solution can be expressed as

u = u0 + u1, (3.26)
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Property Limits Approximation

b
‖
eff H� L

b
‖
eff

∣∣∣
H→0 =

bHφ2

H+ bφ1
. (3.12)

b
‖
eff H� L,

b� L b
‖
eff

∣∣∣
H�b,L

' φ2
φ1
H ∝ H (3.13)

b
‖
eff H� L,

b� L b
‖
eff

∣∣∣
b�H�L

' bφ2 ∝ b. (3.14)

b⊥eff H� L

b⊥eff
∣∣
H→0 = bHφ2

H+ 4bφ1
. (3.15)

b⊥eff H� L,

b� L b⊥eff |H�b,L '
1

4

φ2

φ1
H ∝ H, (3.16)

b⊥eff H� L,

b� L b⊥eff |b�H�L ' bφ2 ∝ b. (3.17)

b
(x)
eff H� L

b
(x)
eff '

Hφ2

4φ1

4φ2 + φ1 + 3φ1 cos2Θ
4φ2 + φ1 − 3φ2 cos2Θ

. (3.18)

Table 3.1: Thin channel limit solutions of dual series (3.28),(3.29) and
(3.30),(3.31) for the effective slip length tensor b(x)eff and its maximum b

‖
eff and

minimum b⊥eff eigenvalues for channels with stripe slip pattern [98]. Considered
are the limits of the channel height H and additional relations of local partial
slip b and periodicity length L. The tensorial slip is governed by the respective
smallest parameter. Additional parameters are the no-slip surface ratio φ1 and
partial slip surface ratio φ2 as well as the inflow inclination Θ with respect to
the pattern orientation.

where u0 is the velocity of the usual no-slip parabolic Poiseuille flow

u0 = (u0, 0, 0), u0 = −
σ

2η
y2 +

σH

2η
y (3.27)
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Property Limits Approximation

b
‖
eff H� L

b
‖
eff '

L

π

ln
[
sec
(
πφ2

2

)]
1+

L

πb
ln
[
sec
(
πφ2

2

)
+ tan

(
πφ2

2

)] (3.19)

b
‖
eff H� L,

b� L

b
‖
eff

∣∣∣
b�L�H

' b
ln
[
sec
(
πφ2

2

)]
ln
[
sec
(
πφ2

2

)
+ tan

(
πφ2

2

)] ∝ b (3.20)

b
‖
eff H� L,

b� L b
‖
eff

∣∣∣
L�b,H

' L

π
ln
[
sec
(
πφ2

2

)]
∝ L (3.21)

b⊥eff H� L

b⊥eff '
L

2π

ln
[
sec
(
πφ2

2

)]
1+

L

2πb
ln
[
sec
(
πφ2

2

)
+ tan

(
πφ2

2

)] (3.22)

b⊥eff H� L,

b� L

b⊥eff
∣∣
b�L�H ' b

ln
[
sec
(
πφ2

2

)]
ln
[
sec
(
πφ2

2

)
+ tan

(
πφ2

2

)] ∝ b (3.23)

b⊥eff H� L,

b� L b⊥eff
∣∣
L�b,H '

L

2π
ln
[
sec
(
πφ2

2

)]
∝ L (3.24)

b
(x)
eff H� L

b
(x)
eff '

(
b
‖
eff − b⊥eff

)
cos2Θ+ b⊥eff (3.25)

Table 3.2: Thick channel limit solutions of dual series (3.28),(3.29) and
(3.30),(3.31) for the effective slip length tensor b(x)eff and its maximum b

‖
eff and

minimum b⊥eff eigenvalues for channels with stripe slip pattern [98,245]. In ad-
dition, relations of local partial slip b and periodicity length L are considered.
The tensorial slip is governed by the respective smallest parameter out of b, H
and L.



44 Chapter 3. Tensorial slip of channels with anisotropic patterns

and u1 is the slip-driven superimposed flow.

For the case of longitudinal stripes, the flow is homogeneous in x-direction and pe-
riodic in z-direction, leaving the perturbation u1 with a single non-zero component
in x-direction. It can be determined by solving the Laplace equation with the appro-
priate boundary conditions. Making use of the Fourier method, a trigonometric dual
series

a0

(
1+

b

H

)
+

∞∑
n=1

an [1+ bλn coth(λnH)] cos(λnz)

= b
σH

2η
, 0 < z 6 δ/2, (3.28)

a0 +

∞∑
n=1

an cos(λnz) = 0, δ/2 < z 6 L/2, (3.29)

where
a0 = P0; an = Pn(1− e

−2λnH), n > 1

is obtained, which provides a complete description of the hydrodynamic flow and
effective slip. Simplified solutions to limits in the different scales are given in table 3.1
for the thin channel limit and table 3.2 for the thick channel limit, respectively. Details
on the derivation and numerical solution can be found in [98] and references given
there. Moreover the weakly slipping stripe solutions in the thick channel limit, Eqs.
(3.20),(3.23) are discussed by Asmolov et al. [245].

For flow over transverse stripes, the calculation is more involved, making use of the
stream function and vorticity vector to solve the flow perturbation in two dimensions.
The principal strategy however remains the same. Using periodicity of the problem
and boundary conditions, a trigonometric dual series

a0

(
1+

b

H

)
+

∞∑
n=1

an [1+ 2bλnV(λnH)] cos(λnx)

= b
σH

2η
, 0 < x 6 δ/2, (3.30)

a0 +

∞∑
n=1

an cos(λnx) = 0, δ/2 < x 6 L/2, (3.31)

is obtained by the Fourier method. Herein,

a0 = P0; an =
cosh(2λnH) − 2λ2nH2 − 1

λnH2
Pn, n > 1

and
V(t) =

sinh(2t) − 2t
cosh(2t) − 2t2 − 1

. (3.32)
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Its evaluation in terms of the limits in the respective scales is given in table 3.1 for
the thin channel limit and table 3.2 for the thick channel limit.

If the stripes are inclined at an angle Θ, the effective slip length of the channel, b(x)eff
can be calculated with Eq. (3.11), making use of the solutions to the Eigenvalues
detailed above.

It is noteworthy that the thin channel limit b(x)eff does not depend on b, being a
function of only H and the fraction of gas/liquid area. At small b according to
Eqs. (3.14) and (3.17), b‖eff ' b⊥eff ' b

(x)
eff , so that the flow becomes isotropic.

In the limit of a thick channel and sufficiently large local slip, equation (3.11) can be
simplified to define the downstream effective slip length, equation 3.25. In the limit
of perfect local slip this can be further simplified to

b
(x)
eff ' b⊥eff(1+ cos2Θ). (3.33)

Using Eqs. (3.20) and (3.23) it is found that the flow is isotropic b‖eff ' b⊥eff ' b
(x)
eff if

b is much smaller than the texture period.

The initial approach to the application of a cosine modulated slip length follows
the same idea of introducing a perturbation component to the flow field which is
subsequently solved by Fourier analysis and either consideration of convergence in
limiting cases or solution by general numerical methods for linear systems under
boundary conditions.

In the limit of large slip, b0 > 2b1 � 1, an asymptotic solution can be constructed,
giving the effective slip eigenvalue

b
‖
eff =

√
b20 − 4b

2
1. (3.34)

This same ansatz can further be evaluated to obtain an expression for the velocity
gradient

∂u

∂z
= −

2t1 exp (−2πz) [cos (2πy) − q exp (−2πz)]
s

, (3.35)

which can be integrated over z to give

u = −
t1

2πq
ln s, (3.36)

with the parameters

q =
−(b0/b1)+

√
(b0/b1)2−4

2
,

t1 =
b1

b0+qb1
,

s = 1− 2q cos (2πy) exp (−2πz) + q2 exp (−4πz).
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For the transverse configuration it was found in [254] that the velocity components
for the transverse configuration can be expressed in terms of the longitudinal one
calculated for twice larger local slip, u2 = u [2b (y)]

vslip =
u2

2
, (3.37)

Using (3.37) the same expression for the effective slip is derived

b⊥eff = b
‖
eff =

√
b20 − 4b

2
1. (3.38)

Considering the velocity, the values q, t1, s remain the same for a twice larger local
slip length since they depend on the ratio b1/b0 alone. As a result, the obtained
velocity perturbation term reads

u2 = u = −
t1

2π
ln s,

and the additional components of the velocity vector are given by

v = −
t1

4πq
ln s−

zt1 exp (−2πz) [cos (2πy) − q exp (−2πz)]
s

,

w =
zt1 exp (−2πz) sin (2πy)

s
. (3.39)

3.3 Aspects of LB simulation of anisotropically patterned
channels

The successful verification of a theoretical framework is dependent on different as-
pects. After assessing the suitability of a method and determining appropriate bound-
ary conditions, in general some effort is required to understand the quantitative re-
lation of scales in the theoretical and numerical context in order to instate compa-
rability. This goes hand in hand with the evaluation of measurement techniques
to access the properties in question in the simulation data. Lastly, throughout the
whole process sufficient resolution of a problem has to be ensured, balancing it with
computational cost constrictions.

As detailed above, the theoretical model taken into consideration here is concerned
with the solution of pressure driven Stokes flow in smooth channels under different
velocity boundary conditions. While many simulation methods have the ability to
simulate this quite minimal model system, the LBM offers some advantages over
other methods. Efficient fluid dynamics solvers have to be parameterised with the
exact theoretical boundary conditions. The LBM on the other hand by means of
local boundary conditions allows to observe an emergent solution based on kinetic
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theory assumptions. The local nature of the boundary conditions also implies that
the resolution and convergence related errors and limits obtained in the framework
of this evaluation can henceforth be applied in the context of arbitrary geometries.

3.3.1 Choice of boundary conditions

Within the LB method a common approach to describe the interaction between hy-
drophobic surfaces and the fluid is by means of a repulsive force term [191, 199, 249,
255, 256]. This force applied at the boundary can be linked to the contact angle to
quantitatively describe the wettability of materials [140,141,199,257]. Alternatively,
slip can be introduced by generalising the no-slip bounce-back boundary conditions
in order to allow specular reflections with a given probability [194, 195, 213], or to
apply diffuse scattering [196, 197, 258]. The method applied here follows the latter
idea and uses a second order accurate on-site fixed velocity boundary condition to
simulate wall slippage, as introduced in section 2.5.2.

To adjust the parameterisation of the simulation to coincide with that of the theo-
retical model, a layer calculating the local slip according to the boundary definitions
of the theory is implemented (see also the next section).

Figures 3.1 and 3.2 depict the boundaries assumed by the theoretical models. As-
sessing the periodicity of the problems, it is clear that the application of periodic
boundary conditions (see section 2.5.1) in the two directions orthogonal to the pat-
tern and parallel to the boundary can in these cases drastically reduce the simulation
domain. Since these directions coincide with the x- and z- axes only in the case of
inflow parallel to the pattern, Θ = 0, it was furthermore important to be able to
rotate the flow rather than the surface, something enabled by the on-site velocity
boundary conditions as well (section 2.5.2).

3.3.2 Scales and parameterisation

Due to the Fourier analysis outlined in section 3.2.2, all heights H and slip-lengths
b for the theoretical solutions of striped surfaces are non-dimensionalised for a stripe
length of L = 2π. The resolution of the simulated system is then given by the lattice
constant

∆x =
H

2πN
, (3.40)

where N is the number of discretisation points used to resolve the height of the
channel. Table 3.3 shows the resulting lattice measures (in lattice units (l.u.) for
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the respective height to periodicity ratios H/L as well as the relative error ε(H/L)
introduced by the discretisation.

Non-dim. Height

H/L

Domain Height

H [l.u.]

Domain Width

L [l.u.]

Relative Error

ε(H/L)

100 1024 64 +5.3 · 10−3

10 102 64 −4.0 · 10−4

1 32 200 +1.4 · 10−3

0.1 70 4400 +5.3 · 10−3

0.01 102 64000 +1.4 · 10−3

Table 3.3: Domain size parameters according to Eq. 3.40, employed for the sim-
ulation of striped surfaces presented in section 3.4. The relative error introduced
by the discretisation can be kept in the order of 10−3.

In case of the solutions obtained by the cosine slip variation, no re-scaling is necessary,
as only the thick channel limit is considered. Thus, all simulations are carried out
with a height to periodicity ratio of H/L = 10 resolved by a domain of 960 × 96 × 1
lattice sites size.

To model the slip stripe pattern, two simulation parameters are introduced, corre-
sponding to the partial slip section length δ and periodicity length L, respectively
(compare fig. 3.1). In contrast to the theoretical model, the origin is set to the onset
of the partial slip portion of the surface rather than its centre, resulting in an offset
of −δ/2.

In case of the cosine pattern the parameters b0 for the mean slip value and b1 for the
amplitude are introduced with appropriate calculations for the local slip to be set in
the boundary condition, distributing a complete period of 2π over the given domain
width (in y-direction).

The slip length in the on-site velocity boundary condition introduced in section 2.5.2
is entering the simulation as coefficient of the boundary condition

ζ =
3b

τ(1+ 3b/τ)
. (3.41)

To drive the flow, a pressure gradient is applied by means of a homogeneous accel-
eration, a, throughout the whole fluid domain (viz. sec. 2.3.2). The acceleration
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is implemented to be applied along the Cartesian directions, thus flow rotation is
imposed by parameterisation as

a = (a sinΘ, 0,a cosΘ). (3.42)

In all thin channel simulations the value of acceleration is chosen to be a = 10−6 l.u.
and a = 10−7 l.u. in thick channel simulations, respectively. Furthermore, the LBGK
relaxation time is set to τ = 1 without loss of generality, throughout all presented
simulations.

3.3.3 Spatial resolution and convergence in time

The number of time steps required to reach a steady state depends on the channel
height, the velocity of the flow as determined by the driving acceleration as well as the
fraction of slip and no slip area at the surface. For the simulations conducted in the
thin channel limit a steady state velocity field exactly fitting the theoretical prediction
develops after one to four million time steps. In the thick channel limit, however,
the number of time steps required can be an order of magnitude larger, limiting the
maximum feasible system height. Moreover, the transition between slip and no slip
stripes induces a distortion of the flow field with a range of ' 3∆x. In order to keep the
induced error below an acceptable limit, a minimum resolution of the channel length
of 64∆x is maintained. Additionally, the maximum flow velocity is limited due to the
low Mach number assumption of our lattice Boltzmann implementation. In effect, the
acceleration modelling the pressure gradient has to be reduced increasing the time
required for convergence. For example, a simulation domain of 1 × 1024 × 64∆x3 as
used to model the thick channel limit at H ' 100 requires 12.5 million time steps to
equilibrate.

3.3.4 Measurement of effective slip

To validate the concept of a tensorial slip by simulations of a flow past tilted stripes,
it is feasible to not rotate the surface pattern with respect to the lattice, but rather
change the direction of the acceleration in the yz-plane. This avoids discretisation
errors due to the underlying regular lattice occurring in case of a rotated surface
pattern. The downstream slip is extracted by projecting the slip measured on the
main axes onto the pressure gradient direction.

Measurements of beff by permeability estimates and velocity profiles, respectively
have been compared. The permeability is calculated from measurements of the flow
rate, according to Eq. (2.23). This allows to determine the effective slip by Eq. (3.9).
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Figure 3.3: Illustration of the measurement of effective slip eigenvalues from
lattice Boltzmann simulations. The velocity information of the whole domain
is projected onto a single plane. To this cloud of data, Eq. (3.43) is fitted,
effectively averaging the flow field over the whole channel.

Alternatively, the profiles of the velocity in flow direction are averaged over the whole
system by projecting the velocity information of the whole domain onto a single
plane. Then, the effective slip length beff is found by a Levenberg-Marquardt fit of
the adjusted Hagen-Poiseuille equation

ux(y) =
aH2

2η

(
(y−H)2

H2
−

(y−H) + beff
(H+ beff)

)
, (3.43)

with the known acceleration a and channel height H (see Fig. 3.3 for an illustration).

Due to the overall better data quality at reasonable resolutions, in the remainder of
this thesis slip measurements by comparison of the flow profiles are presented (see
also next section).
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3.3.5 Discussion of error

The error of the effective slip measurements is determined by two factors, namely the
resolution of the channel height and the absolute slip length of the partially slipping
stripes. For poorly resolved channels with 10 < N < 30 and small slip lengths the
permeability measurements still produce accurate results, whereas a fit of the velocity
profiles does not converge or produces strongly deviating results. This is due to the
mode of measurement in both cases, where the permeability approach is primarily
limited by the accuracy with which the mean velocity in the channel is determined.
The fit of slip flow is however primarily parameterised by the slip length, i.e. slip-
velocity at the stripe boundary. Therefore, if b� H, the quality of the data obtained
by permeability measurement declines as the measurement of the mean velocity in
the channel is not sensitive enough to capture subtle changes in the boundary layer
velocity. For an increase in resolution (30 < N 6 100) both approaches allow mea-
surements with an error well below one percent for intermediate slip lengths of up to
two orders of magnitude larger than the channel height. However, if b is increased
further, due to the discretisation error in the effective slip determined by the perme-
ability measurement again increases significantly, rendering this method inefficient
since in order to reach the same precision of measurement, a higher resolution would
be required. For example, to keep the error in the determination of a prescribed slip
in the order of 105∆x below 5% the permeability method requires the channel height
to be resolved by 200 lattice sites, while for the measurement by fitting the velocity
profiles 100 sites suffice.
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Figure 3.4: Eigenvalues of the effective slip length tensors simulated in the limit
of a thin channel (symbols). The lines represent results of theoretical calculations
by Eqs. (3.12) and (3.15). The data show that at small b the eigenvalues of beff
decrease as compared to a large local slip at the gas sector, and that the slip-
length tensor becomes isotropic resulting in b⊥,‖eff to become hardly distinguishable
in the b = 10−3H case.

3.4 Slip flow in anisotropically patterned channels

3.4.1 Stripe pattern in the thin channel limit

In order to reach the thin channel limit, a dimensionless height of H = 0.01 is chosen.
The slip lengths are set to b = 10−3H (0.1∆x) and b = 103H (102000∆x), differing
each three orders of magnitude from the channel height and reaching the limits of
small - (cf. Eqs. (3.14) and (3.17)) as well as large slip (Eqs. (3.13) and (3.16)).
A minimum channel height of H = 100∆x is required to measure slip-lengths of
b = 103H corresponding to 105∆x. For each of the two slip lengths, longitudinal
and transverse flow was simulated for different fractions of surface gas phase, ranging
from no-slip (φ2 = 0) to homogeneous partial slip (φ2 = 1).

Fig. 3.4 shows the exact eigenvalues of the effective slip tensor in the thin channel
limit, Eqs. (3.12), (3.15), for both slip lengths b. The fit of the simulation data and
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the analytical limits is excellent for all separations. In case of small local slip in a
thin channel, the effective slip remains isotropic despite of the inhomogeneity of the
boundary. For large local slip, truly tensorial effective slip is observed as well as highly
anisotropic flow over the surface. These simulations demonstrate that finite size effects
and resolution effects are well controlled, and the size of the system is sufficient to
avoid artefacts. Another important point to note is that in the theoretical analysis, all
equations were derived ignoring stripe edge effects. An excellent agreement between
theoretical and simulation results indicates that the edge effects do not influence
the simulation results significantly. The data show however, that already very small
fractions of no slip surface have a profound impact on the magnitude of the resulting
effective slip, where the relative effect is less pronounced for lower slip.

To check the validity of the tensorial slip approach, it is necessary to investigate the
effects of rotating the texture relative to the x-axis, which here is synonymous with
the direction of the applied pressure gradient. As mentioned above, in the simulation
in fact the pressure gradient direction is varied rather than the boundary pattern in
order to reduce discretisation effects. Figs. 3.5, 3.6 show a set of effective downstream
slip lengths simulated with several Θ, but fixed H = 0.1 and φ2 = 0.5, which results
in a maximum transverse flow in a thin channel situation [242].
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angle Θ (symbols). Lines are theoretically predicted downstream slip lengths
calculated with Eq. (3.18).

Thin channels with varied relative slip lengths b/H from 1 to 1000 are considered.
Fig. 3.5 shows simulation data obtained using a channel of height H = 0.1. Further,
theoretical curves calculated with Eq. 3.1 are presented. Here, eigenvalues of the slip-
length tensor are obtained by numerical solution of a dual series [98]. The simulation
data are in very good agreement with the numerical solutions of the dual series
suggesting the validity of the concept of a tensorial slip in a thin channel situation.

Note that the simulation results of Fig. 3.5 cannot be compared with the analytical
expression, Eq. (3.18), because Fig. 3.5 is based on a relatively moderate value of
local slip at the gas sectors, whereas Eq. (3.18) requires very large b. To validate
predictions of this analytical formula, the channel height was decreased down to
H = 0.01. Simulation results are presented in Fig. 3.6, confirming the surprising
accuracy of a simple analytical expression, Eq. (3.18). In this important limit of
validity of Eq. (3.18), b(x)eff /H is quite large, although b(x)eff itself is small. This may
have implications for a reduction of a hydrodynamic drag force [96,241].

Also passive mixing might be an interesting application, since the anisotropy of flow
is very large, which is optimal for a transverse flow generation [242]. This simple
asymptotic result could be intensively used to simplify the theoretical analysis of
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these important phenomena. From the numerical model perspective, the agreement
suggests this simulation setup to be applicable to model more complex systems, not
directly accessible to theory as well.
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Figure 3.7: Simulation results of eigenvalues of beff as a function of fraction of
gas sectors, φ2, in the limit of thick channel (symbols). Lines represent cor-
responding theoretical values obtained by a numerical solution of (3.28), (3.29)
and (3.30), (3.31). Dash-dotted is the theoretical weakly slipping stripe solution,
Eqs. (3.20),(3.23) as reported by Asmolov et al. in [245]. The inset shows the
full curve including the full slip surface data point.

3.4.2 Stripe pattern in the thick channel limit

To evaluate the validity of the formalism in arbitrary channel geometries, an inves-
tigation of the thick channel limit is necessary. In addition, results found in this
investigation are relevant to models of free surfaces as well. Fig. 3.7 shows the eigen-
values of the effective slip length tensor as a function of φ2 for a thick gap. For these
simulations the acceleration has been reduced down a = 10−7∆x/∆t2 to obey the low
Mach number limit (see section 2.4). The time to reach a stable state increased then
to 15 ·106∆t. Simulation results are presented for two different slip lengths of b = 1.0
and b = 10.0 in a system of H = 0.1, where L is now resolved by 4400 lattice sites.
The theoretical solutions represented by the lines were obtained by the dual series
approach. The plot further contains the theoretical weakly slipping stripe solution,



56 Chapter 3. Tensorial slip of channels with anisotropic patterns

Eqs. (3.20),(3.23) as reported by Asmolov et al. in [245] as limiting curve. The inset
shows the full curve including the full slip surface data point. Excellent agreement
for all fractions of slipping area is found, indicating that the semi-analytical theory
is very accurate. The data presented in Fig. 3.7 show larger effective slip lengths for
a lower slip to height ratio, i.e. a thicker channel. This illustrates well the earlier
suggestion that effective boundary conditions for this channel geometry are controlled
by the smallest length scale of the problem [96].

0

0.02

0.04

0.06

0.08

0.10

0.12

E

�

e



t

i

v

e

s

l

i

p

t

e

n

s

o

r

b
( x

)

e

�

/
H

0.0 π/4 π/2

Flow inlination Θ

b
‖
e�

: b = 100H

b⊥
e�

: b = 10−2H

b
‖
e�

: b = 10−3H

Figure 3.8: Effective downstream slip lengths for tilted stripes (in the thick chan-
nel limit) simulated at φ2 = 0.5 (symbols). All the lines are predicted theoreti-
cally downstream slip lengths. Calculated by using Eq. (3.1) [or Eq. (3.11)] with
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In the second set as shown in Figs. 3.8, 3.9 a thick channel (of height H = 100) is
simulated. Fig. 3.8 depicts simulation results for several b/H varying from 10−3 to
1 (symbols). Similarly to previous examples, very good agreement between simulation
results and predictions of tensorial Eq. (3.1) with eigenvalues computed by semi-
analytical theory is found. Already for the case b = H = 100 the simulations reach
the limit of large slip in the thick channel, so that the comparison with analytical
solutions is possible. To examine this more closely, the simulation results obtained in
this limit are reproduced in Fig. 3.9. Also included there are the theoretical results
calculated with asymptotic formulae, Eqs.(3.21) and (3.24), which perfectly fit the
simulation data.
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3.4.3 Stripe pattern in channels of arbitrary height

Lastly, the downstream slip length as a function of the channel thickness with the
focus on the intermediate gap situation is investigated. Fig. 3.10 illustrates typical
simulation results. The example given corresponds to parameters of b/L = 5.0 and
φ2 = 0.75. It demonstrates that the effective slip lengths increase with H and sat-
urate for a thick gap. This fully confirms the statement that an effective boundary
condition is not a characteristic of the liquid-solid interface alone, but depends on
the flow configuration and interplay between the typical length scales of the problem.
Again, the simulation and theoretical data are in excellent agreement for longitudinal,
transverse, and tilted stripes. Thus, Fig. 3.10 unambiguously shows that the tensorial
slip boundary condition, originally justified for a thick channel, can be generalised to
arbitrary channel thickness.
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3.4.4 Cosine pattern in the thick channel limit

In case of stripes the perturbation of piece-wise constant local slip has a step-like
jump on the heterogeneity boundary, which leads to a singularity both in pressure
and velocity gradient by introducing an additional mechanism for a dissipation [254].
It is natural to assume that an anisotropic one-dimensional texture with a continuous
local slip could potentially lead to a larger effective tensorial slip. Therefore, in this
section, work on the effective slip of flat surfaces with cosine variation in the local
slip length, which corresponds to modulated hydrophobic grooved surfaces with a
trapped gas layer (the Cassie state) as shown in Fig. 3.2 is presented.

For variation of the amplitude of cosine perturbations of the slip length, b1, at fixed
b0 = 1, Fig. 3.11 compares simulation data for b‖eff and b⊥eff as a function of b1/b0.
The results show that the largest possible value of beff/b0 is obtained when b1 = 0,
i.e. for a smooth hydrophobic surface with b(y) = b0. In this situation the effective
slip is (obviously) isotropic and equal to the area-averaged slip b0. When increasing
the amplitude b1, a small anisotropy of the flow appears, and the eigenvalues of the
slip-length tensor decrease. Therefore, in the presence of a cosine variation in slip
length, the effective slip always becomes smaller than average. This conclusion is
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line.

consistent with earlier observations made for different textures [97,259].

To obtain theoretical values, a linear system is solved numerically [232]. Excellent
agreement to simulations is found for all b1/b0, indicating that the asymptotic theory
is very accurate.

In particular, this confirms the factor 2 relation (3.37) between the longitudinal and
transverse slip lengths. Also included in Fig. 3.11 is the asymptotic formula (3.38)
obtained in the limit of large b0.

Fig. 3.12 (a) shows the simulation data for effective slip lengths as a function of an
average slip, b0/L, for a texture with a no-slip point (b1/b0 = 1/2). Also included
are theoretical (Fourier series) curves. The agreement is quite good for b0/L up to
10, but for larger average slip there is some discrepancy. The simulation results for
b
‖
eff and b⊥eff give smaller values than predicted by the theory. A possible explanation
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for this discrepancy is that the major contribution to the shear stress at large b0/L
and b1/b0 = 1/2 comes from a very small region near the no-slip point (as discussed
below). The discretisation error of the LB simulation becomes maximal in this region,
and is particularly pronounced for the velocity gradients of systems with large effective
slip. While deviations around the no slip extremal value are observed, the curves
converge fast when stepping away from it and the excellent agreement of the measured
effective slip suggests that the influence of discretisation errors on the mean flow is
negligible at the resolution used.

Since the effective slip lengths for a texture decorated with perfect-slip stripes, Eqs.
(3.21), (3.24), also show a logarithmic growth (with the no-slip area fraction φ1 =

1 − φ2), in order to compare these two one-dimensional anisotropic textures the
theoretical curve for stripes is included in Fig. 3.12. It can be seen that in the
limit of large average slip the asymptotic curves for longitudinal effective slip for
stripes and a cosine texture nearly coincide. This means that both textures gener-
ate the same forward flow in the longitudinal direction. Simple estimates suggest
b
‖
eff (b0) ' b

‖
ideal [1/ (3b0)] . Perhaps the most interesting and important aspect of
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Figure 3.13: The cosine profile of the local slip length with b0/L = 5, b1/b0 = 0.5
(solid curve) and the stripe profile with φ = 0.06 (dashed line) with the same
longitudinal effective slip lengths.

this observation is that, from the point of view of the longitudinal effective slip, the
‘wide’ cosine texture with b0 = 5 is equivalent to patterns of stripes with the ex-
tremely low fraction of no-slip regions, φ = 0.06 (see Fig. 3.13). These results may
guide the design of superhydrophobic surfaces for large forward flows in microfluidic
devices. Note, however, that in the situation when longitudinal slip for both textures
are similar, the cosine texture shows a larger effective slip in the slowest (transverse)
direction as seen in Fig. 3.12. This means that b‖eff/b

⊥
eff < b

‖
ideal/b

⊥
ideal = 2, so that

textures with the cosine variation in the local slip length generate a less anisotropic
flow as compared to a perfect stripe geometry.

In order to understand the pronounced effect on no-slip portions of the surface on
the resulting effective slip, it is instructive to investigate the flow profile.
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Figure 3.15: The normal velocity gradients along the wall for the textures with
b1/b0 = 1/3, b0/L = 0.2 (solid curve, diamonds), b0/L = 1 (dashed curve,
circles), b0/L = 5 (dash-dotted line, crosses). Dotted curves show predictions of
asymptotic formulae, Eqs. (3.36) and (3.35).
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The flow direction is associated with hydrodynamic pressures in the film, which is
related to the heterogeneous slippage at the wall. Fig. 3.14 shows the profiles of the
velocity and Fig. 3.15 of the normal velocity gradient along the wall for different b0
and b1/b0 > 1/2. The velocity dependence u (x,y, 0) is smooth, and ∂u

∂z
(x,y, 0) is

finite for any b0 and b1, unlike the striped textures with piece-wise-constant b [254].
Asymptotic predictions (3.36) and (3.35) are in a good agreement with numerical
results and simulation data.
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Figure 3.16: The velocities along the wall for the no-slip textures b1/b0 = 1/2,
b0/L = 0.2 (solid curve, diamonds), b0/L = 1 (dashed curve, circles), b0/L = 5

(dash-dotted line, crosses). Dotted curves show predictions of asymptotic for-
mulae, Eqs. (3.36) and (3.35).

Similar theoretical and simulation results, obtained for a texture with no-slip point,
b1/b0 = 1/2, are shown in Figs. 3.16 and 3.17. In this situation it is found that
∂u/∂z (1/2) = 2πb0 for all b0.

It should be emphasised, that a very small region near the no-slip point gives a main
contribution to the shear stress at large b0/L. For the major portion of the texture
far from this region ∂u/∂z ' −1, so that the total shear stress is zero, and this part of
the texture is shear-free. Since the maximum values of the normal velocity gradients
grow like b0/L one can expect that a length scale of this small region is L2/b0 � L,
or, equivalently, the curvature radius, r =

(
d2b/dy2

)−1
= L2/

(
4π2b0

)
, at the

no-slip point.



64 Chapter 3. Tensorial slip of channels with anisotropic patterns

−0.5

0.0

0.5

1.0

V

e

l

o



i

t

y

g

r

a

d

i

e

n

t

(2
π
b
0
/
L
)−

1
d
u
3
/
d
x
3

0 0.2 0.4 0.6 0.8 1.0`

Coordinate x2

Figure 3.17: The normal velocity gradients along the wall for the no-slip textures
b1/b0 = 1/2, b0/L = 0.2 (solid curve, diamonds), b0/L = 1 (dashed curve,
circles), b0/L = 5 (dash-dotted line, crosses). Dotted curves show predictions of
asymptotic formulae, Eqs. (3.36) and (3.35).

In spite deviations from theory caused by insufficient resolution of the simulation
around the no-slip minimum, the simulation model is still able to capture the flow
velocity in the remainder of the channel. This suggests that an extension of the slip
patterning formalism to account for complex patterns derived from measurements
might be feasible. In this spirit, in the next section a further reaching application of
the model is discussed briefly.

3.5 Drag force on a sphere approaching a slip striped
plane

The boundary condition extension and experiences with the parameterisation have
been put to use in the context of an example application. The calculation of forces
exerted on a spherical probe approaching a surface in a fluid is of interest in certain
AFM setups. Simulations of this type for approaches to smooth wetting and rough
surfaces have been conducted by Kunert [61]. The problem is sketched in Fig. 3.18.
For plain surfaces, the problem has been solved theoretically by Brenner and Maude.
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Figure 3.18: Sketch of the simulated system. A sphere is approached towards a
striped slip wall. Illustration as published in [233], courtesy of A.L. Dubov.

Comparison of such such simulations with experiments furthermore offer an opportu-
nity to gauge the model for boundary effects neglected by the theoretical approach. If
effects of e.g. interface deformation can be factored into the boundary description in
the numerical model, the accuracy and efficiency of the simulation of heterogeneous
complex boundaries can be improved.

The boundary condition setup was used to model a (superhydrophobic) surface with
striped slip pattern, approached by a sphere at a constant speed the force onto which
was measured. The problem requires to simulate the system in full three dimensions.
Figure 3.19 shows the velocity field in a plane above the surface, illustrating that
important features of flow and hydrodynamic interactions are not captured by 2d
simplifications of the model.

Another requirement introduced by the theoretical model is given by the assumption
of the sphere radius being large as compared to the pattern periodicity. Moreover, em-
ploying periodic boundary conditions in the plane orthogonal to the sphere movement,
the sphere has to keep several radii distance from the simulation domain boundary in
order to minimise periodicity artefacts. Figure 3.19 shows that in y-direction parallel
to the pattern this requirement is already hardly maintained as the vortex features
at x/L = −0.75, 0.25 are clearly reaching to the y boundaries. Given the outlined
limitations, in contrast to the high resolved pattern analysis detailed above, in this
case the stripe resolution was limited to a periodicity length of L = 16 with a sphere
radius of R = 32 and and domain width of 256 lattice sites, where the system height
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in the direction of approach was chosen to comprise 512 lattice sites.

As it turns out, the grave changes in resolution of the surface and critical period-
icity effects are however not the main source of error. In order to create a neutral
interacting boundary, the upper edge of the simulation domain was bounded by a
no-slip surface. Given that in the lubrication limit this boundary would be 16 sphere
radii away, a minimal disturbance by this change in the model is originally assumed.
Detailed analysis of the data shows that the assumption of minimal perturbation by
the upper no-slip boundary is invalid. A quantitative correction could be determined
as a function of radius and system height, indicating that confinement effects are
prominent.

Despite the issues encountered with the modelling restrictions in this case, the model
can serve as an important point of comparison of numerical results and experiment,
ultimately allowing the assess the feasibility of effective slip models for systems ex-
hibiting surface deformation and other quasi-static phenomena influencing friction
and slippage behaviour.
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Figure 3.19: Vector field of horizontal velocity for z = L/8, h = 3L/4, grey and
white regions correspond to no-slip and slip stripes, respectively. Courtesy of
A.L. Dubov.

3.6 Conclusion and outlook

The development of theoretical and numerical models for the evaluation of complex
functional surfaces like superhydrophobic surfaces in the context of MEMS can further
advance the understanding of the hydrodynamic boundary as well as help to design
such systems. Interesting parameters in this context are the flow rate as well as lateral
velocities for flow control and passive mixing. They can be related to the tensorial
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permeability as well as tensorial slip properties.

In this section a theoretical framework for the calculation of the effective slip ten-
sor in smooth anisotropic patterned channels of arbitrary height has been evaluated
by means of the LBM. At the same time the excellent agreement of the LBM and
the theory allows confidence in the capability of LBM to model patterned surfaces
exhibiting variation in local slip lengths in more complex cases beyond the theory.

Challenges in the original work where results were presented in sections 3.4.1 and
3.4.2 are detailed in section 3.3. Here included is the selection and parameterisation
of boundary conditions. Further, the investigation of minimal resolution requirements
of the local slip length and simulation steps required to reach fully developed flow
have to be considered. The adaptation of suitable measurement techniques is closely
related to this and is also of importance in the determination of error estimates to
balance against minimal computational effort.

Besides the quantitative agreement found between the models, the consideration of
anisotropic slip patterned surfaces allowed to revisit and verify some interesting qual-
itative observations with regard to such systems. The work presented clearly verifies
effective slip in small geometries as a channel rather than a surface effect. Here it is
found that the behaviour is governed by the smallest length scale parameterising the
problem, between local slip b, pattern measure L and channel height H. Furthermore,
a strong impact on even small no-slip portions on the shear-stress in the system and
reduction of effective slip has been found. Re-investigation of the anisotropic bound-
ary using cosine varying patterns to avoid possible influences of the slip step in striped
channels verifies this. Here, rather than the (lack of) smoothness of slip variation,
the existence of no-slip portions of the surface is impeding large effective slip.

The agreement with numerical simulations found was overall very satisfying. In the
case of the very poorly resolved (single site) zero-slip point of the cosine variation
simulation, a local deviation was found which was however without strong impact
on the global field due to the individual local parameterisation of each lattice site,
suggesting that robust parameterisation can to some extend make up for limited local
resolution.

A key issue linked to this is the assessment of parameterisation of the numerical as
well as theoretical model with respect to experimentally obtained data. To this end,
the framework was applied to simulate a model system comparable to AFM measure-
ment setups. While in the first instance problems with the boundary model suggested
limited applicability, the formulation of a correction allows optimism towards eval-
uation measurements addressing the very important aspect of surface deformation
in real superhydrophobic surfaces. There highly deformable interfaces exist between
fluids and entrapped gas. Results here may be used to gauge the model.
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These results allow confidence in the application of the created framework to model
complex boundary conditions also for situations not accessible to theoretical models.

Another example for channel flow systems with local varying slip pattern where the
evaluation of effective slip is of interest is given by electro-osmotically driven flow
where local slip length can be influenced by the means of electro-magnetic fields.
Collaborative work with Stefan Frijters [260], who implemented an extension of the
LBM to include elctrochemical interactions into LB3D, is currently in the state of
boundary condition evaluations. Here qualitative agreement with theoretical predic-
tion has been found, but work still is necessary towards scaling analysis and possible
invalid boundary interactions in the hydrodynamic and electro-chemical model.
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4.1 Introduction

Multiphase flows are ubiquitous in natural and technological processes. Following
popular use, the term multiphase is used here not only to designate systems in-
volving different aggregation states but general inhomogeneous systems including
so-called complex fluids. The term complex fluids refers in general to emulsions and
suspensions as well as mixtures of gases and liquids [15]. Examples include biolog-
ical systems and fluids such as blood but also fluid processes in soil and industrial
setups [131, 262]. For many systems of interest also complex geometries of porous
systems have a significant impact on the flow properties. Porous media range in this
context from freeze dried food stuffs over filters and membranes to sand and stone
systems with applications like enhanced oil recovery [76] and carbon dioxide capture
over soil processes [77], reactor processes [78–81], filtration [82, 83], printing [84] and
food processing [85].

In order to successfully model such systems, besides the bulk flow properties of various
fluids, their interaction with each other [263,264] needs to be captured with sufficient
accuracy. The same is true for the system geometry, since the surface to volume ratio
is very large in porous materials [73–75]. Depending on the properties of interest
different simplifications can be introduced. For example influences of turbulence can
be neglected in laminar flows. In systems close to thermodynamic equilibrium many
systems can be assumed to behave isothermal as well.

In many of the applications mentioned above, besides two or more immiscible fluids
like water and oils, components interacting with both of two respective immiscible
species are of interest. These solvents and/or surfactants (SURFace ACTive AgeNTS)
are dramatically influencing the behaviour of fluid mixtures [86, 265]. Also particles
in solution can alter the behaviour of mixtures. This field of ongoing research is
however not part of this presentation [266–268]. For example in enhanced oil recovery,
surfactants are used in a third step to extract oil after first relying on the reservoir
pressure and second water injection generated pressure. Once these processes seize
to produce oil up to 60 percent of oil remain in the reservoir [76]. Furthermore, many
complex fluid systems do not only contain independently interacting components, but
surfactants as well.

This chapter reports on work extending a ternary pseudo-potential lattice Boltzmann
implementation to incorporate a multi relaxation time collision scheme. This is done
in order to reduce and subsequently remove errors in the simulation introduced the
interaction of bounce-back boundary models and LBGK collision schemes. These
have been found to introduce non-resolvable errors introduced by dependence of the
boundary position on the relaxation parameter [222]. In the context of permeabil-
ity measurements in porous media the removal of this error is the most prominent
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improvement introduced by utilising a MRT collision scheme. In addition, the MRT
formalism has been found to increase numerical stability of the method [158–160] as
well as allowing consistent introduction of thermal fluctuations [269–271]. The surfac-
tant model in question has been introduced by Chen and Nekovee et al. [272,273]. It
comprises three fluid components, two of which are coupled by repulsive interaction
to be partially miscible or immiscible, while the third models surfactant behaviour
interacting with both the immiscible components as well as a dipole field representing
the effective orientation of amphiphilic particles.

The next section 4.2 provides details on the additions to the method described above
as implemented for this work. Following this in section 4.3, results of simulations veri-
fying the correct behaviour of the implementation with respect to different benchmark
problems are presented. After measurement of the surface tension by means of the
Laplace law in a system of pseudo-2d droplets, a wall boundary is introduced to in-
vestigate the contact angle parameterisation. The effect of the surfactant component
in both systems is studied. This is followed by a study on the diffusion behaviour
for the case of miscible fluids where the influence of surfactant concentration is taken
into account as well. Finally the absolute and relative permeability for the flow of the
mixture in a square duct is compared against theoretical results. The quantitative
analysis of the error introduced by viscosity variation shows that the exponential er-
ror exhibited by LBGK simulations of multi-component permeability can be reduced
to an error linear in the viscosity. This can be further improved by use of a higher
order force coupling mechanism.

The chapter closes with parameter studies of forced imbibition into a pseudo-2d
porous medium. Here, the interplay of forcing, wettability and viscosity contrasts
as well as surfactant concentration is investigated. These qualitative benchmarks
hold up to benchmark results obtained by LBGK simulations performed in similar
systems.

4.2 Modelling aspects

In addition to the basic LB algorithm properties and strategies introduced in chap-
ter 2, this section elaborates on two concepts of relevance in the context of the work
reported in this chapter, only. While the amphiphile or surfactant model used here is
an unmodified version of the approach originally introduced by Chen et al. [273], the
combination of this model with a multi-relaxation time collision scheme in a form
introduced by d’Humieres et al [158] is original code integration and evaluation work.
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4.2.1 An amphiphilic fluid component

α

α

Figure 4.1: Illustration of the dipole model introducing a directional interaction
component between fluids α and ᾱ.

Characteristic for surfactant molecules is their anisotropic interaction. Typically po-
lar and non-polar components are present in parts of a single molecule resulting in
hydrophilic and hydrophobic interactions, respectively. Most surfactant substances
are organic compounds where examples include soaps and lipids. The textbook by
Rosen and Kunjappu gives a broad overview of the matter [86]. Due to their rel-
evance in industrial as well as natural processes, the configuration and behaviour
of surfactants has been subject to a wealth of research [86, 274]. Numerical inves-
tigations span the whole range from molecular simulations [121] over finite-element
treatments [275,276] and diffuse interface models [277] to phase-field [278] and lattice
Boltzmann investigations [273,279–281].

Chen et al. [273] suggested an extension of the pseudo-potential interaction to include
surfactant molecule effects. True to the idea of representing physical properties in
terms of a discrete field of statistical properties, a field of dipole vectors d, one
at each lattice site is added to the model. The equilibrium orientation of these
vectors is determined by a free energy approach, minimising the Gibbs measure.
Here, two mean fields are considered calculating energy values including information
from nearest neighbours with respect to the surfactant orientation relative to other
surfactant molecules, which tend to (anti-)align, as well as with respect to a colour
or component density gradient, respectively. Introducing an additional relaxation
parameter τd, the dipole orientation is subsequently calculated using a process similar
to the BGK approximation

d(x, t+ ∆t) =
1

τd
[d(x, t) − deq(x, t)] . (4.1)

It is relaxed on a single timescale towards an equilibrium orientation derived from
the Boltzmann distribution to be

deq = d0

[
coth(βh) −

1

βh

]
ĥ, (4.2)
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with a free parameter d0, representing the strength of the dipole moment, and the
inverse temperature β, both chosen to equal 1 here, as well a mean field of magnitude
h and unit orientation ĥ. The latter can be constructed from contributions of the fluid
and dipole-dipole interactions. Furthermore, additional forcing terms parameterised
by the coupling parameters Gασ = −Gσα = Gσσ = −0.005 are introduced.

Following this approach, additional forces can be formulated. These are, for the force
imposed by the surfactant on the non-surfactant fluid components

Fσα (x, t) = −2Gασψ
α (x, t)

∑
k6=0

d (x+ ck∆t, t) · θkψσ (x+ ck∆t, t) , (4.3)

wherein θk = I−Dckck
c2k

, with the second rank unit tensor I and the spatial dimension
D is the component of a trace-less second rank tensor accounting for the alignment of
surfactant molecule orientations. Similarly, the force imposed by the non-surfactant
components on the surfactant component reads

Fασ (x, t) = 2ψσ (x, t)d (x, t)
∑
α

Gασ
∑
k6=0

θkψ
α (x+ ck∆t, t) . (4.4)

Finally, the force acting between surfactant components on neighbouring sites is given
by

Fσσ (x, t) = −
12

|cs|2
ψσ (x, t)Gσσ

∑
k6=0

ψσ (x+ ck∆t, t) ·

·
(
d (x+ ck∆t, t)θkd (x, t) ck+

[
d (x+ ck∆t, t)d (x, t)+d (x, t)d (x+ ck∆t, t)

]
ck

)
.

(4.5)

Details on the derivation can be found in [272, 273]. These forces are added in the
algorithm analogous to the pseudo-potential force inducing the phase transition in
the binary multi-component system introduced in section 2.4.1.

The equations (4.3)-(4.5) introduce in principle three additional coupling parame-
ters, Gασ,Gασ and Gσσ, where for reasons of interaction symmetry to ensure global
momentum conservation, however Gασ = −Gσα at all times, resulting in a single
simulation parameter. From the nature of surfactant interactions follows furthermore
the requirement for the surfactant interactions to be attractive, i.e. Gσσ 6 0 and
Gσσ 6 0.

4.2.2 Multi relaxation time collision scheme

In order to remove the dependency of the boundary position on the fluid viscosity,
described in section 2.4, and increase stability and accuracy for the application of
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the ternary fluid model, a multi relaxation time collision scheme was implemented.
Starting from the work of d’Humieres et al. [158] the collision operator is redefined
introducing an invertible transformation matrix M, such that it maps the discrete
single particle velocity distribution f onto a suitable space of a subset of its moments

mk = Mfk, fk = M−1mk. (4.6)

The collision operator reads then

ΩMRT = −M−1SM
[
|f(x, t)〉− |feq(x, t)〉

]
, (4.7)

where the equilibration rates are governed by the diagonal relaxation matrix S in the
space of moments given in table 4.1. This allows for individual adjustment of the re-
laxation time scales of the respective hydrodynamic properties and non-hydrodynamic
properties, or ghost-modes, represented by the moments. The diagonality of S fol-
lows from isotropy considerations. Its eigenvalues are not linearly independent but
are related by the underlying physics, see e.g. [282]. By executing a Gram-Schmidt
orthogonalisation, the transformation matrix

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8 −30

−4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1 12

1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0

−4 4 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0

0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1 0

0 0 −4 4 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1 0

0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1 1 −1 1 −1 0

0 0 0 0 −4 4 0 0 1 −1 0 0 1 −1 1 −1 1 −1 0

2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0

−4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0

0 0 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 0 0 0 0 0

0 0 −2 −2 2 2 1 1 −1 −1 1 1 −1 −1 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0

0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1 0 0 0 0 0

0 0 0 0 0 0 −1 1 0 0 −1 1 0 0 1 1 −1 −1 0

0 0 0 0 0 0 0 0 1 −1 0 0 1 −1 −1 1 −1 1 0


(4.8)

can be obtained. It yields the moments detailed in table 4.1, from the D3Q19 lattice
vector set. The transformation has been adapted from [158] with respect to a differ-
ent lattice indexing in the employed code which may in general result in a shift in
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parameters, but reduces here to a mere resorting of elements. The equilibrium mo-
ments were recalculated using a third order equilibrium distribution which has been
shown to improve the stability of the surfactant force integration in earlier LBGK
simulation and was preserved to keep the simulation setup comparable. The equilib-
rium properties described in the table are functions of the conserved kinetic moments,
the density ρ and momentum j. The employed pseudo-potential method breaks local
momentum conservation, but can be shown to still ensure it globally [283]. Due to
this, the relaxation parameter for the momentum, described in table 4.1 is kept at
1.0, since the originally conserved property needs to be integrated (its information
kept) in order to be conserved. The equilibria of all moments are describable in terms
of these. As this model is isothermal (or athermal) the energy of the system and the
related moments, the density independent kinetic energy e and its square ε are not
conserved. Furthermore the mass flux independent energy flux q and the viscous
stress tensor p as well as a quartic order moment of equivalent symmetry π and a
third order moment m are taken into account.

Special attention has to be paid to the parameterisation of this collision approach.
Besides the free weight parameters wε,wεj and www resulting from the orthogonal-
isation, in principle there are 19 relaxation parameters λ to be determined. Taking
into account the physics described here, this number reduces immediately to six as
the components of tensorial properties represented by different moments still need to
behave in the same way. This is further reduced by conservation requirements. As
is directly clear the relaxation of the conserved moments is arbitrary and the param-
eters are chosen λ0 = 0, λ3 = λ5 = λ7 = 1. Furthermore owing to isotropy of the
system considered, components of a single property represented by different moments
are assigned equal relaxation parameters. In detail these are the ones for the energy
flux λ4 = λ6 = λ8 = λq, the viscous stress tensor λ9 = λ11 = λ13 = λ14 = λ15 = λν
the fourth order moment of viscous stress tensor symmetry λ10 = λ12 = λπ and the
third order moment λ16 = λ17 = λ18 = λm.

In order to recover the LBGK relaxation behaviour with τ = 1.0, the weights need
to be set wε = 3,wεj = −11/2 and www = −1/2 as well as all relaxation parameters
λ0 . . . λ18 = 1.0.

Researching the accuracy of solutions obtained by the generalised lattice Boltzmann
formalism, Ginzburg et al. introduced a two relaxation time (TRT) scheme in which
two relaxation parameters are defined for moments of even and odd order respec-
tively (which is equivalent to apply relaxation rules per signum of the lattice vector,
dependent on the form) [284]. This approach can be shown to completely remove the
viscosity dependent error of boundary conditions. Moreover certain different choices
of relaxation parameter relations allow for optimisation of accuracy in other prop-
erties, such as diffusivity [222]. An in depth evaluation of the influence of collision
schemes and boundary conditions can be found in [285].
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Index Moment Equilibrium Relaxation frequency λ

BGK TRT MRT

0 ρ ρ 0 0 0

1 e −11ρ+ 19
ρ0

(
j2x + j

2
y + j

2
z

)
1 λν λe

2 ε wερ+
wεj
ρ0

(
j2x + j

2
y + j

2
z

)
1 λν λε

3 jx jx 0 1 1

4 qx −2
3
jx +

5
2
jx
ρ2

(
j2y + j

2
z

)
1 λq λq

5 jy jy 0 1 1

6 qy −2
3
jy +

5
2

jy
ρ2

(
j2z + j

2
x

)
1 λq λq

7 jz jz 0 1 1

8 qz −2
3
jz +

5
2
jz
ρ2

(
j2x + j

2
y

)
1 λq λq

9 3pxx
1
3ρ0

[
2j2x −

(
j2y + j

2
z

)]
1 λν λν

10 3πxx
www
3ρ0

[
2j2x −

(
j2y + j

2
z

)]
1 λν λπ

11 pww
1
ρ0

(
j2y − j

2
z

)
1 λν λν

12 πww
www
ρ0

(
j2y − j

2
z

)
1 λν λπ

13 pxy
1
ρ0
jxy 1 λν λν

14 pyz
1
ρ0
jyz 1 λν λν

15 pxz
1
ρ0
jxz 1 λν λν

16 mx
3
2
jx
ρ2

(
j2y − j

2
z

)
1 λq λm

17 my
3
2

jy
ρ2

(
j2z − j

2
x

)
1 λq λm

18 mz
3
2
jz
ρ2

(
j2x − j

2
y

)
1 λq λm

Table 4.1: Overview of the moments, equilibria and relaxation parameters em-
ployed by different models. Different to models prominently reported on, the
third order expansion equilibrium distribution, Eq. (2.4) yields additional terms
∝ ji
ρ2

(
j2j ± j2k

)
in the odd ordered energy flux related moments q and m. Weights

are kept at the BGK parameterisation wε = 3,wεj = −11/2 and www = −1/2 for
all collision schemes.

As we are using the equilibrium formulation of the TRT approach, the shear viscos-
ity determining relaxation parameter for the non-conserved moments of even order
remains

λν =
1

τ
=

1

3ν+ 1
2

, (4.9)

and the one for the non-conserved moments of odd order, the energy flux q and ghost
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modes m is [284,285]

λq = 8
(2− λν)

(8− λν)
= 8

(2τ− 1)

(8τ− 1)
=

16ν

8ν+ 1
. (4.10)

Even though the development of the method started some decades ago in the context
of lattice gas systems already [286], there are still current developments especially
in the understanding and extending of collision formalisms, including discussions on
energy conserving schemes [287]. This is also relevant in the context of a consis-
tent parameterisation of the MRT collision scheme making use of the bulk viscosity
parameterisation. Only recently it has been found that in order to be able to vary
the relaxation times of the energy modes another constant relation has to be estab-
lished [282].

4.3 Validation

In order to validate the implementation of the multi relaxation time collision scheme
introduced in section 4.2.2 benchmark runs were executed to evaluate the behaviour of
the model with respect to variation of the relevant coupling and transport parameters
on their own and in the interplay with boundary conditions, respectively.

4.3.1 Surface tension

Figure 4.2: Illustration of simulated systems used to measure the surface tension
via the Laplace pressure in a pseudo-2d system. The post-processing defines
the mean density of the droplet component α as black. This is emphasising the
interface in renditions of the density data as the mean value is assumed only
there. Depicted are system states for droplets initialised with discrete radii of
15, 20, 25, 30 and 35 lattice sites in a system with no surfactant and a coupling
of Gαᾱ = 0.12 in the steady state after 200, 000 time steps.

The surface tension parameterisation of the model is tested by evaluation of the
Laplace law, Eq. (2.17), in pseudo-2d systems as depicted in Fig. 4.2. In this case,
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the curvature term is given by k = 1/R and as expression for the surface tension
follows

γ = R∇p. (4.11)

The pressure inside and outside of the droplet is measured by an extended pressure
term taking into account the non-ideal contributions of the pseudo-potential forces

p(x) = cs
[
ρα + ρᾱ + ρσ + 2

(
Gαᾱψ

αψᾱ + Gασψ
αψσ + Gασψ

ᾱψσ
)
+ Gσσψ

σψσ
]
.

(4.12)
Herein restrictions of the coupling have been included, namely the equality of inter-
actions of the immiscible components with the surfactant Gᾱσ = Gασ and the absence
of self interactions in those components Gαα = Gᾱᾱ = 0.
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Figure 4.3: Reproduction of the Young-Laplace law in a pseudo-2d system of size
128×128×2. Plotted is the pressure difference across the surface of a droplet as
determined by measurement of the lattice Boltzmann lattice density in the system
centre and a corner point. The surface tension observed in the system increases
with the coupling parameter Gαᾱ (see inset). Deviations in linearity can be
attributed to slight differences in system initialisation pressures for different
droplet sizes (As the droplet mass doubles as parameter for the pressure as
well - compare Eq. (4.12)). Error bars of the curvature values are given by the
deviations in droplet radius measurement due to the diffuse interface. The error
is in particular pronounced for droplets with high curvature, i.e. small radii.

For the measurements we initialise a system of size 128× 128× 2 lattice sites with a
centred droplet of varied radius Rinit ∈ {15, 20, 25, 30, 35} in lattice units. Taken into
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account the chosen form of the pseudo-potential Eq. (2.40) and stability considera-
tions, initial densities are chosen to be ρα = ρᾱ = 0.7. The surface tension is varied
by the coupling strength Gαα ∈ {0.10, 0.11, 0.12, 0.13, 0.14, 0.15}. Where the lower
bound is motivated by a restriction to a maximum interface width of 5 lattice sites
taken into consideration. The upper bound is determined by numerical instability
arising for higher interaction strengths. Depending on the coupling parameter the
systems equilibrate after a run time between 100, 000 and 200, 000 time steps, where
for convenience we measure all values at 200, 000 time steps.
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Figure 4.4: Surface tension as a function of the coupling parameter Gαᾱ for
different initial surfactant densities ρinitσ , measured in a pseudo-2d droplet sys-
tem. A consistent reduction in surface tension can be observed. The derivation
of these values from perturbed surface tension data points increases the error
observed to the order of 6 per cent. Nonetheless, the qualitative reduction of
surface tension by added surfactant in the order of 40 to 50 per cent can be
seen.

Due to the diffuse interface and the non-negligible minority concentration of the
droplet fluid component in the equlibrated system outside of the droplet, the resulting
droplet radius differs from the initial values and has to be measured for each case. This
is done measuring the droplet volume with respect to an effective density, a procedure
introduced by Stefan Frijters [260]. In order to account for the finite minority density
the effective density is defined as the difference between the majority density ρ+α
measured in the droplet centre and the minority density ρ−α measured in the system
corner at the point of maximum distance to the droplet centre ρeffα = ρ+α − ρ−α . With
this, the mass of the droplet is equivalent to the integral over the effective density in
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the system m =
∑
ρeffα and the radius can be calculated as

R =

√
1

4π

m

ρα
. (4.13)

Alternatively, the droplet radius has been determined by simple measurement of the
radius proportional to a density offset of

ρα =
ρ+α − ρ−α

2
(4.14)

from the density field of the droplet component α. The variance in the radius as
determined by the two methods is in the order of a few percent.

Figure 4.5: Illustration of over-saturation effects for initial surfactant densities
larger than ρinitσ = 0.25 (Depicted is a snapshot for ρinitσ = 0.30,Gαᾱ = 0.12). The
interaction of the dipole field modelling the surfactant orientation introduces a
dominant interaction alongside the lattice edges rendering the model nonphysi-
cal. The droplet radius in comparison to the simulation domain (R = 35 l.u. vs
X = 128 l.u.) is contributing to the error as well.

The expected linear dependence of the surface tension on the coupling strength is
found. Figure 4.3 shows the measured pressure difference between the centre of
the droplets and a corner of the system for different coupling strength and initial
droplet radii together with a fitted line through the origin. Deviations can here be
attributed to variations in the initial pressure of the system in the order of under
one per cent and, more prominently, errors in the geometrical measurement of the
droplet curvature. The diffuse interface introduces here especially for small droplets
with high curvatures errors of up to 10 per cent.

Values for the surface tension are determined by a Levenberg-Marquart fit of a linear
function through the origin. Despite the variation the error in the fitting algorithm is
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controlled well in the order of a few percent. Omitting the extremal coupling values,
excellent agreement of the surface tension as linear function of the coupling is found
for

γ = 0.67 · Gαᾱ. (4.15)

In order to investigate the influence of added surfactant on the surface tensions mea-
sured in the system, the surfactant concentration is varied by adding an initially
homogeneous surfactant concentration χσinit ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. Here,
in order to limit the parameter space, the coupling strengths are kept to values deter-
mined by stability considerations Gασ = Gσσ = −0.005. Here, again an equilibration
time of 200, 000 time steps is prescribed before measurements are taken. In this time
the system reaches a completely stationary state.

Figure 4.4 shows the resulting surface tension measurements over initial surfactant
concentration. A consistent reduction in surface tension can be observed. Fitted lin-
ear functions suggesting a qualitative reduction in surface tension, where zero surface
tension can be reached for non-zero coupling strengths. The data exhibit however
large variance. This can be attributed to the system resolution and the interplay of
the interface regions with the surfactant concentration, introducing another source
of finite size effects. A significant increase in size of the simulated domain to mend
these issues has been omitted in the scope of this work. Further deviations can be
introduced by non-physical over-saturation effects observed for surfactant concentra-
tions larger than χσinit = 0.25 as illustrated in figure 4.5. Further investigation and
possible correction of these effects is possible by exploration of the parameter space
of Gασand Gσσ. Due to the extensive work required to do so, this can however not
be part of this thesis.

The measurements allow to qualitatively approximate the maximum relative reduc-
tion of surface tension induced by the parameter set in use to be of the order of 40
per cent. The investigations presented below suggest however, that already this range
suffices to significantly change system behaviour of the ternary model.

4.3.2 Wettability

In section 2.5, Eq. (2.48) a pseudo-potential wall interaction is introduced. Here it is
employed to vary the static contact angle Θ of a droplet at a wall boundary where in
addition simple bounce-back boundary conditions 2.5.2 are applied to model a no-slip
surface.

For a constant wall potential s = 1.0 the surface tension at the wall is varied by
prescribing individual wall coupling strengths Gωα and Gωᾱ. The whole range of
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Figure 4.6: Illustration of contact angle measurements in the dewetting regime.
The post-processing defines the mean density of component α as black, em-
phasising the interface in renditions of the density data. Depicted are sys-
tem states for droplet initialised with wall interactions of Gωα = −Gωᾱ =

0.0, 0.005, 0.010, 0.015, 0.017, 0.018 in a system with no surfactant and a coupling
of Gαᾱ = 0.12 in the steady state after 200, 000 time steps. Nonphysical super
critical interaction is observed for the strongest coupling strength, effectively
repelling the droplet.

Figure 4.7: Illustration of contact angle measurements in the wetting regime.
The post-processing defines the mean density of component α as black, em-
phasising the interface in renditions of the density data. Depicted are sys-
tem states for droplet initialised with wall interactions of Gωα = −Gωᾱ =

0.0,−0.005,−0.010,−0.015,−0.017,−0.018 in a system with no surfactant and a
coupling of Gαᾱ = 0.12 in the steady state after 200, 000 time steps. Film forma-
tion is observed for the strongest coupling strength.
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contact angles is covered by tuning attractive and repulsive interactions between the
wall and the respective components. With this, the Young law can be approximated
in terms of the coupling parameters as [140]

Θ = tan−1
(
Gωᾱ − Gωα

Gαᾱ
ρ+
α−ρ−

α

2

)
. (4.16)

The approach allows to model different resulting contact angles both by e.g. active
dewetting by repulsive interactions as well as by relatively smaller attractive interac-
tions. For our first study we consider exclusively attractive interactions, reaching the
neutral wetting case for both wall coupling values vanishing Gωα = Gωᾱ = 0.

In the current setup, surfactant wall interactions are neutral, i.e. there is no direct
forcing component in place with respect to dipoles and surfactant density. Indirect
interactions exist however due to the interaction between wall and fluid components
and subsequent change in densities coupled to the surfactant component. The qual-
itative validity of this approach is documented in the context of Fig. 4.9 where the
fluid fluid interaction has been scaled with the effective reduction observed in Laplace
measurements involving surfactant, compare Fig. 4.4.

Contact angle

The resulting dependency of the contact angle on the coupling strengths is shown
in Figure 4.8. System illustration can be found in Figs. 4.6 and 4.7. Here we have
varied the coupling strength in the respective attractive range for either the droplet or
ambient component in the range Gωᾱ ∈ {−0.018...0.018} in steps of 0.001. Simulations
have been performed in a pseudo-2d system of 64x2x128 lattice sites size. The droplet
is initialised as a circular column of radius 16 lattice sites in contact with a wall in
the z = 0 plane, centred in x-direction at x = 64. Both initial densities are chosen to
be ρα = ρᾱ = 0.7.

As in [140], in order to determine the contact angle, a spherical shape of the droplet
surface is assumed. The contact angle can then be calculated from the droplet base
radius and height

Θ = π− tan−1
(
B/2

R−H

)
, R =

4H2 + B2

8H
. (4.17)

Here we make use of the measurement technique introduced in 4.3.1 to set the density
cut-off at which we define the droplet interface for our calculations to ρ ≈ 1.5ρ−α .
As attractive interaction in the wall vicinity can lead to a significant increase in local
density in the boundary layer, (interpretable as equivalent to precursor formation)
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the algorithm is modified for the determination of the base width. Here, instead of the
global minimum density, the minimum density in the boundary layer is considered
to calculate the threshold.
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Figure 4.8: The contact angle measured from the droplet geometry, Eq. (4.17)
plotted over the wall coupling of the binary components Gᾱω = −Gαω, compare
section 2.5.2. for a fluid-fluid coupling strength of Gαᾱ = 0.12. The prediction
by Eq. (4.16) shows good agreement. For stronger attractive coupling, the local
density field in the vicinity of the wall is increasingly distorted by the solid-
fluid interactions, introducing a perturbation to the fluid density threshold in
the prediction and subsequently a larger error in the geometry measurements.

Also in this system, the effect of adding a surfactant component is studied. Initial
surfactant densities of ρinitσ ∈ {0.05, 0.10, 0.15, 0.20, 0.25} are introduced. Figure 4.9
shows the qualitative change in behaviour of the contact angle of a droplet with the
introduction of surfactant. Due to the reduction in fluid-fluid interaction strength,
the influence of the solid-fluid interaction strength is emphasised. This results in a
stronger reaction of the system to changes in fluid-solid interactions and a narrowed
parameter space. Both respective hydrophobicity and hydrophilicity are enhanced by
the introduction of soluble surfactants with negligible wall interactions.
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Figure 4.9: Plot of the contact angle Θ over coupling strength Gαω for different
Surfactant concentrations. In the chosen parameterisation as a soluble surfac-
tant with minimal wall interaction, an increase in contact angle is observed
following from the reduction in fluid-fluid surface tension. While the dewetting
case is matching the model prediction of Eq. (4.17) very well, the local density
variations occurring in the boundary layer in the wetting case are leading to
lower measured contact angles and larger uncertainty. The outlier In the maxi-
mally wetting case for the binary mixture results from interplay of the evaluation
algorithm and the diffuse interface for very low contact angles.

4.3.3 Diffusivity

In order to evaluate the diffusivity behaviour in the method, a pseudo-1d system
measuring 2x2x64 lattice sites is initialised with demixed miscible fluid components.
Employing periodic boundary conditions this is sufficient to capture the full 3d be-
haviour. The system contains pure fluid of either component in half the z-direction,
starting with component α from z = 0 and ᾱ from z = 32. The initial densities are
set to equal ρα = ρᾱ = 0.7, in a second step again, surfactant is added at homoge-
neous concentration throughout the system. The time to reach equilibrium differs
strongly, ranging from a couple of thousand to several ten thousand time steps. For
convenience all systems were simulated for 30, 000 time steps.

Mutual diffusivity of the components in the miscible regime is measured for coupling
parameters of Gαα ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}.
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Figure 4.10: Diffusivity D over coupling strength Gαᾱ in lattice units. A clear
linear correlation between the coupling parameter Gαᾱ and the diffusivity Dαᾱ is
observed. The influence of even high surfactant concentration on the diffusive
behaviour of the system is negligible. This is due to the homogeneous distribution
of the surfactant component in the system, resulting in symmetrical interactions
which cancel out.

Two sources of error are taken into account. The first one is a shock-wave like dis-
tortion resulting from the discrete initialisation of the system. The second one is
introduced when the system approaches equilibrium, when the time and second spa-
tial derivatives compared both are approaching zero and small deviations introduce
a very large error.

The initial distortion is proportional to the coupling strength and is therefore more
pronounced at high coupling and low diffusivity. In this case the equilibration is how-
ever delayed, so that a longer window of measurement exists. Without any coupling
the measurement window chosen is between 1, 500 and 2, 500 time steps, whereas for
the highest tested coupling the measurement window is between 15, 000 and 30, 000
time steps.

Special attention has to be paid on the data resolution in time and space in order
to minimise the error of measurement of both the time derivative as well as second
spatial derivative [288]. We find that in order to adequately reproduce Eq. (2.13)
data from every single time step has to be taken into account. Figure 4.10 shows the
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diffusivity according to Eq. (2.13) over the coupling parameter. Excellent functional
agreement is found, where the fitted equation is

D = −
5

2
Gαᾱ +

1

6
. (4.18)

The simulation series was repeated adding surfactant concentrations of
ρinitσ ∈ {0.05, 0.10, 0.15, 0.20} to the system. Even for rather high concentrations, no
effect on the diffusivity between the fluid components α and ᾱ is found. This is
due to the homogeneous initialisation of the surfactant component, introducing a
symmetrical contribution to the interactions. The change in time and space then
keeps to be governed by the asymmetrical fluid fluid interaction strengths which thus
determines the diffusivity of the ternary system.

4.3.4 Permeability

As outlined in the introduction, one of the central motivations to introduce the over-
head of a MRT collision scheme is the resolution of the viscosity dependent error
observed in boundary conditions. Not only does this help to increase the overall ac-
curacy, but furthermore allows a trade off between discretisation error and a reduction
in the required resolution for systems in which many constrictions govern the flow.

As benchmark to evaluate the reduction in viscosity dependent error, the theoretical
accessible permeability of a square duct is evaluated [139,260,289]. Here we compare
three relaxation approaches, the classic LBGK model, a naive MRT approach where
all relaxation parameters not related to the kinematic shear stress are kept equal
to one (MRT1) and a two relaxation time approach where two coupled relaxation
times are employed to reduce (eliminate) the viscosity dependency of the simulated
boundary position.

The permeability κ, together with viscosity, forms the proportionality factor for the
flow rate Q̇ of fluid through a medium and an applied pressure gradient ∇p. It is
a material property of porous media defined based on experiments by Darcy in the
19th century [145] (see also Sec. 2.3.3).

Following similar work on boundary conditions and collision schemes in single phase
simulations performed by Narvaez et al. [139], results are compared with a theoretical
solution for Poiseuille flow through a square duct of side length B that has been
constructed by the series [289]

κth = lim
M→∞

B2

4

(
1

3
−
64

π5

M∑
n=0

tanh((2n+ 1)(π/2))

(2n+ 1)5

)
. (4.19)
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Here the exact solution is obtained in the limit limM→∞ u(x,y,M). For practical
purposes, a result convergent at machine precision is obtained for M = 200, already
(compare [139]).

The value determined by the theory is compared against measurements in the lattice
Boltzmann system using the transformed Darcy law Eq. (2.23), giving the permeabil-
ity

κsim = η
〈u〉
〈ρFz〉 , (4.20)

where for the flow rate Q̇ the mean velocity 〈u〉 is substituted and the expression
〈ρFz〉, the mean body force applied in z-direction multiplied by the fluid density, is
equivalent to the applied pressure gradient.

Two evaluate Poiseuille flow, a pseudo-2d system measuring only 2 lattice sites in
y-direction is sufficient. Two series of simulations were conducted to approximate
the error in permeability obtained for a variation in system resolution at a fixed
kinematic viscosity on the one hand, and for a variation in kinematic viscosity at a
fixed resolution on the other hand.

Figure 4.11 shows the relative error of permeability

εκ =
κth − κsim

κth
(4.21)

measured in the numerical systems as compared to the theoretically obtained values.
Keeping the relaxation parameter at τ = 1.0, The side-length B of the system in
x- and z-direction is varied between 4 lattice sites and 128 lattice sites. For this
case, the MRT1 parameterisation considered here coincides with the LBGK case.
The flow is driven by a body force / acceleration of a = 1 · 10−6 throughout the
system. Simple bounce back boundary conditions are employed in the xy-plane at
x = 0 and yz-plane at z = 0, respectively. For both the LBGK as well as the TRT
parameterisation an exponential decrease in relative error with an increase of channel
resolution is observed. This is the case, because the error in the overall channel
geometry description is limited to the boundary sites and reduces with their relative
importance. The error introduced by the TRT scheme is smaller than that of the
LBGK for all cases considered. Both models exhibit outliers of reduced error for
certain relaxation parameters. These are reproducible and related to discretisation
artefacts in the intentionally poorly resolved channel, where certain staircase effects
will have an over proportional effect on the measured mean flow rate.

The figure 4.12 compares different collision parameterisation employing a LBGK
scheme, a naive MRT approach where all relaxation parameters not related to the
kinematic shear are kept at λX = 1.0 and a TRT approach, designed to eliminate the
viscosity depended deviation in simulated boundary position. Simulation data were
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Figure 4.11: Error in permeability measurement as calculated by Eq. (4.21)
over the channel side-length B in lattice units. Depicted are two series for the
BGK and TRT model, respectively. While for the TRT approach a small error
depending linearly on the viscosity parameter is observed, for the LBGK model
the error grows exponentially. For the TRT model the dependence should vanish
completely [222], the nature of force implementation in our model reintroduces
however a small deviation to be fixed in future work.

obtained in a channel of lateral length B = 10 and permeability values compared
calculated from Eqs. 4.19 and 4.20.

The earlier reported functional dependency of error in permeability for the respective
LBGK and MRT schemes is recovered, exhibiting non-linear behaviour in the case
of LBGK and linear behaviour in the case of MRT implementations. However, in
the current form the model cannot recover the theoretically possible elimination of
viscosity dependent error. This is true for the non-optimised approach MRT1 as well
as for the TRT parameterisation. The reason for this behaviour is the utilisation of
the classic Shan-Chen coupling of the interaction forces via the equilibrium velocity
value.

Another side effect of this variant of force integration with the MRT implementation
detailed above is the undetermined time scaling when compared with the original
LBGK formalism. There the force is scaled with the relaxation time to relate to the
resulting pressure gradient. When employing the TRT scheme this scaling changes
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Figure 4.12: Error in permeability measurement as calculated by Eq. (4.21)
over the shear viscosity relaxation parameter λν. Depicted are three series for
the BGK, TRT and simple MRT model, respectively. For the TRT approach
a small error depending linearly on the viscosity parameter is observed while
for the LBGK model the error grows exponentially. For the TRT model the
dependence should vanish completely [222], the nature of force implementation
in our model reintroduces however a small deviation to be fixed in future work.
The simple MRT setup, where only the shear viscosity related relaxation rate
is varied from one, exhibits even larger errors while the dependency on the
parameter is still linear. See text for further discussion.

however with respect to the relaxation time-scales. This leads for the employed Shan
Chen scheme to increased numerical instability rather than a gain in stability. For
this reason in the scope of this thesis, the MRT1 parameterisation will be employed.
While by this the ultimate goal of elimination of the error is not yet reached, the
implementation in its current form is sufficient to evaluate the correctness of the al-
gorithm and serve as a milestone on the way to a modified force implementation in
the near future. In order to instate second order correctness for of the forcing for
multiphase NS equations, the force term has to be introduced as second order trun-
cated expansion in a smallness parameter, analogous to the discretised equilibrium
distribution [159]. Working on this thesis, this approach was not taken into account in
order to perform the initial implementation work on a system of minimal complexity.
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Figure 4.13: Relative permeability in a square duct for mixed and demixed binary
fluid components over their mass fraction in the system. As errors in permeabil-
ity measurement are of the same order for both the single component and mixture
measurements, they cancel each other out in this case. Thus exact agreement
between mass fraction and relative permeability is found for this simple model
regardless of the presence of an interface in the measurement volume.

For the case of fluid mixtures, the relative permeability κrα of a component α is given
as the ratio of its permeability κα in the mixture to the absolute permeability of the
medium for a fluid of the same viscosity

κrα =
κα

κ
. (4.22)

While approximations for the prediction of relative permeabilities have been made,
its determination remains one of the most challenging problems in models of mul-
tiphase flows in porous media, dependent on a wealth of different factors such as
diffusivities, viscosities, wall interactions, concentration fractions and the percolation
of phases [73, 75, 290, 291]. In section 4.4 more complex flow examples will be dis-
cussed. Figure 4.13 shows that in the case of a simple, neutrally wetting square duct,
the relative permeability is solely depending on the mass fraction per component in
the system. Varying coupling strengths, the method of measurement was verified to
work for both mixed and demixed binary fluids.
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4.4 Forced imbibition of a model porous medium

Figure 4.14: Illustration of the simulation domain, a pseudo-2D system measur-
ing x = 640,y = 2, z = 128 lattice sites. In the region between the x = 20 and
x = 300 solid columns of radius R = 4 lattice sites have been randomly placed,
corresponding to a porosity of 1.68 in this region. In the initial state, the first
half between x = 0 and x = 320 is filled with component α at a density of ρα = 0.7.
The latter half ranging from x = 320 to x = 640 is filled with component ᾱ at a
density of ρᾱ = 0.7. The coupling strength is chosen to be Gαᾱ = 0.12 throughout
the simulations described.

After evaluation of the model where the principal function is verified, but poten-
tial further gains in accuracy by employment of a higher order accurate forcing
scheme were identified, here results of simulations of forced imbibition in a pseudo-2d
porous medium are presented. This well controlled and comparably computational
lightweight model allows for the assessment of the interplay of the parameters and
phenomena considered separate from each other in the validation section.

4.4.1 Overview

Figure 4.14 illustrates the simulation domain, a pseudo-2D system measuring x =

640,y = 2, z = 128 lattice sites. In the region between x = 20 and x = 300, solid
columns of radius R = 4 lattice sites have been randomly placed, respecting periodic
boundaries. A porosity of ≈ 0.60 in this region is calculated from the ratio of fluid
sites to total sites (26754/44926).

In the initial state, the first half between x = 0 and x = 320 is filled with component
α at a density of ρα = 0.7, the latter half ranging from x = 320 to x = 640 is filled
with component ᾱ at a density of ρᾱ = 0.7. The coupling strength is chosen to be
Gαᾱ = 0.12 throughout the simulations described. To avoid perturbations due to the
initialisation with sharp density values, before any imbibition simulation the system
is simulated for 1 million time-steps. Subsequent variations in parameters are applied
starting from a checkpoint of this system state, where for variations in wettability
another relaxation run of 500, 000 time steps is performed before starting to drive the
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flow. Surfactant is initialised throughout the whole domain at varying concentrations
ρσ.

4.4.2 Force variation

Figure 4.15: Illustration of final states for different pressure gradients (Body
force applied in the range x = 0 to x = 20). From left to right (in lattice units)
F =
{
−1.0 · 10−3,−1.2 · 10−3,−1.4 · 10−3,−1.6 · 10−3,−1.8 · 10−3

}
. Respective time

spans to the stationary state are given in Fig. 4.16.

As central to forced imbibition, this section starts out with variation of the force
parameter over the widest possible range in order to assess the different regimes
accessible by the model.

All simulations here are executed in a neutrally-wetting system containing no sur-
factant. Neutral wetting is achieved by deactivating the solid fluid interactions,
Gωα = Gωᾱ = 0.0. The capillary interaction is then determined by the solid bound-
aries being force free with respect to the fluid fluid interface, resulting in a contact
angle of Θ = 90◦. Figure 4.15 illustrates the respective reached stable states of the
simulation runs. In figure 4.16, the relative density of the displaced component α in
the porous region x = 20 . . . 300 over simulation time is depicted.

The body force, directly proportional to the pressure gradient in our model, was varied
between F = 0.8 · 10−3 and F = 2.0 · 10−3. At lower forcing of up to F = 1.4 · 10−3,
eventual arrest of the flow by capillary forces is observed. Starting from F = 1.6·10−3,
the flow eventually breaks through the porous section, but is leaving a constant
residual concentration of the displaced component α behind. With further increasing
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Figure 4.16: Relative density of the displaced component α in the porous region
x = 20 . . . 300 over simulation time for varied pressure gradients (driving force)
in a neutrally-wetting system containing no surfactant. The body force, directly
proportional to the pressure gradient in our model, was varied between F = 1·10−3
and F = 2 · 10−3. At lower pressure gradients flow is eventually inhibited by the
resistance imposed through capillary forces. At higher pressures, a flow through
the medium is established were a stable residual concentration of component
α exists. Subsequently raised pressure reduces the residual fluid concentration,
compare Fig. 4.15.

pressure the amount of residual fluid is further decreased.

4.4.3 Wettability variation

For a case of an intermediate driving force of F = 1.0 · 10−4, where early arrest of the
flow was observed, simulations varying the wetting behaviour of the displaced fluid
are performed with a focus on the dewetting behaviour. The contact angle is varied
in 7 steps ranging from Θ ≈ 30◦ to Θ ≈ 150◦, corresponding to strong wetting and
strong dewetting behaviour.

This is achieved by variation of the solid liquid interaction parameters Gωα and Gωᾱ,
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Figure 4.17: Relative density of the displaced component α in the porous region
x = 20 . . . 300 over simulation time for wettability variation at a driving force
of F = 1.6 · 10−4 in a system containing no surfactant. The contact angle of
the displaced fluid was varied between Θ = 30◦ and Θ = 150◦ In the regime
considered to drive the flow, even small wetting contact angles induce early
arrest of the flow. In case of very high wettability (Θ = 30◦), the fluid is stabilised
in the medium and no flow is observed at all. At a very high contact angle of
Θ ≈ 150◦, a change in the resulting differences in the stationary fluid distribution
is observed. With vanishing friction in the system, the preferred path of flow
changes and the structure of the residual fluid volume actually increases.

where following [140], the parameters were changed as

Gωα = −Gωᾱ ∈ {−0.015,−0.010,−0.005, 0.0, 0.005, 0.010, 0.015} .

The solid potential was set to be ψω = 1 (compare section 2.5.2).

In figure 4.16, again the relative density of the displaced component α in the porous
region x = 20 . . . 300 over simulation time is depicted. Wetting interactions move the
interface further forward and eventually prohibit intrusion of the displacing fluid into
the porous medium altogether. Already very weak dewetting interactions induce a
breakthrough of the flow. With increasing dewetting interaction strength the flow
rate is consistently increased. In case of the superhydrophobic regime, the amount of
residual fluid however increases again, suggesting that the absence of friction serves
here to change the principal flow through the medium.
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4.4.4 Surfactant concentration variation
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Figure 4.18: Relative density of the displaced component α in the porous region
x = 20 . . . 300 over simulation time for varied inflow surfactant concentration
at F = 1.6 · 10−4 and Θ = 90◦ The concentration of surfactant species in the
in-flowing fluid was varied between ρσ = 0.0 and ρσ = 0.3

In a last set of parameter studies, the influence of an added surfactant concentration
in the imbibing fluid is investigated. The driving force is kept constant at F =

1.6 · 10−4. In addition, neutral wetting behaviour (Θ = 90◦) is prescribed again. The
concentration of surfactant species in the fluid domain is varied between ρσ = 0.0
and ρσ = 0.3 in steps of ρσ = 0.05.

To limit the parameter space, in these simulations the strength of the surfactant-
liquid interaction is limited to a single set of parameters Gασ = Gσσ = −0.005. The
sole attractive interactions of the amphiphilic molecule reflected by the negative sign
of the coupling parameters, result in soluble surfactant behaviour. The value has
been determined by stability considerations. In the current parameterisation setup,
the surfactant has only indirect interaction with solid boundaries by means of altering
the interactions of the immiscible components at the wall. The reduction in capillary
force induced by the addition of surfactant is expressed as an increase in the flow rate
towards the steady state.

Figure 4.18 illustrates the central reduction in fluid-fluid interactions as opposed to
fluid-solid interactions. While there exist significant differences in displacement veloc-
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ity observed for low and high surfactant concentrations, the final density configuration
assumed in these simulations is very similar.

While lower concentrations do not alter the principal density distribution in the sys-
tem, for higher concentration dissolving of fluid-fluid interfaces can be observed.
Here, in addition to the advective transport induced by the driving force a diffu-
sive regime can be observed. This effect becomes even more pronounced when the
surfactant component is added only to the invading fluid component. In the scope
of this work this qualitative observation has however not been investigated more
closely for a lack of suitable initialisation conditions. In combination with the cur-
rent pre-relaxation process aiming to reduce distortions at the solid boundaries, non-
homogeneous initialisation of the surfactant component resulted in leakage of the
invading fluid into the system and prevented comparability of the imbibition results.
In the interest of more realistic system modelling, the diffusivity of the surfactant com-
ponent, both in the respective components as well as in the interfaces and boundary
layers remains a matter of strong interest.

4.5 Conclusion and Outlook

This chapter provides results of validation and preliminary parameter studies of a
new implementation approach to multi-component lattice Boltzmann simulations. A
multi-relaxation time collision scheme has been combined with a surfactant model
formulated as an extension to the popular pseudo-potential lattice Boltzmann multi-
component model.

This step is motivated by applications in multi-component flows in porous media.
Such systems are relevant in biological, geological and technological contexts. The
inherent locality of lattice Boltzmann implementations lends itself well to the simula-
tion of complex geometries. The simple and efficient LBGK models introduce however
in combination with simple boundary conditions significant errors in the boundary
positions in systems where only limited resolution is available.

The work presented here makes use of a massive parallel implementation of a surfac-
tant model introduced by Chen et al. While in its current form the model is limited to
soluble surfactants with neutral/indirect solid surface interactions, valid qualitative
behaviour in terms of effect on the liquid-liquid interaction is reported.

The quantitative analysis of systems containing surfactant component concentrations
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has due to the complexity of interplay between the components to be excluded from
the scope of this thesis. In the section 4.3, the validity of the newly implemented
algorithm with respect to prior simulations in the LBGK context is tested. Here, not
only the surface tension and wettability parameterisation of the model is tested, but
multi-component diffusive behaviour and permeability as well.

In the context of the permeability measurement evaluation it becomes clear that the
current force integration strategy which is left unchanged from the original formula-
tion of the pseudo-potential model is not suitable to ensure error minimisation when
combined with the multi relaxation time scheme as it has been implemented here.
Thus, after the instructed initial integration of algorithms of minimal complexity, the
immediate next steps necessary to maximise accuracy are including the reintegration
of the forcing terms as a separately expanded parameter in order to remove the relax-
ation parameter dependence of the boundary position entirely as well as to increase
the implementation stability. Even with this qualification, the results of the model
evaluations document the viability of the approach as well as a for now moderate
improvement of permeability measurement.

The chapter closes with preliminary parameter studies for the forced imbibition of a
model pseudo-2d porous medium, where the impact of variation in pressure gradient,
wettability and surfactant concentration in the system are evaluated.

In all cases the average displaced fluid volume is linear over time, where the speed
of displacement is directly proportional to the driving force applied to the system.
The residual distribution of displaced and displacing fluid components is depending
on the geometrical setup where different forcing strengths may result in very similar
final states reached at different points in time.

Different from this observation of similar stable configurations for variation in the
driving force, in the case of variation in surface wetting, a qualitative change in the
flow behaviour is observed in the case of particularly dewetting surfaces. Here, the
removal of friction from the balance of forces leads to new flow paths and less efficient
displacement.

The addition of surfactant in the concentrations accessible to the model chiefly re-
duces the required time to reach a final state while the density distribution configura-
tions remain very similar. This can be attributed to the neutral interaction between
surfactant and solid considered in these tests.

The range of body force parameters applicable to the model, resulting in stable states
of various levels of fluid displacement is identified. In the range of low driving pressure
considered, very sensitive behaviour to changes in wettability is observed. There are
indications to changes in preferred flow pattern in highly dewetting systems as well.
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The introduction of increasing concentrations of surfactant into the system reduced
the capillary forces and increases the flow rates.

Sensible next steps to better understand the capabilities and limitations of the model
are parameter evaluations of the surfactant component with a possible integration of
surfactant wall interactions. A first step into this direction would be the comparison
of the parameterisation to 1d porous media models, as e.g evaluated recently at the
group of mesoscopic transport phenomena [292, 293]. Additional effects that need
further investigation, especially in the context of more involved relative permeability
estimation for real media, are diffusive regimes and precursor formation on the pore
scale.

The extension of the model to increase accuracy and stability of simulations in com-
plex geometries allows further investigation of physics and applications beyond the
original formulated problem of enhanced oil recovery. Critical flow phenomena like
viscous fingering in porous media and the impact of surfactant are open for investi-
gation. Self-organisation phenomena like amphiphilic meso-phases can be revisited
in the context of bounded systems potentially suited to control behaviour by manip-
ulating surface interactions.
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Chapter 5

Contaminant transport in dilute
gas flows

The content of this chapter is based on

S. Schmieschek, D. K. N. Sinz, F. Keller, U. Nieken and J. Harting.
Mesoscopic simulation of diffusive contaminant spreading in gas flows at low pressure
in preparation, 2015

5.1 Introduction

In this chapter the modelling of contaminant transport in a dilute atmospheric flow
is investigated. The problem is amongst other applications motivated by the engi-
neering of suppressive flow, expelling and/or keeping organic contaminant molecules
out of optical setups. Plastics components utilised in the construction of e.g. UV-
lithography optics emit organic molecules which are responsible for the so-called haz-
ing of lenses introducing high replacement or maintenance costs. In order to keep the
disturbance of the light paths in the optical systems to a minimum, such systems are
operated at very low pressures in the order of single digit Pascals. In some setups,
Hydrogen flows are introduced to flush the organic contaminants out of the system.
Due to the low pressure, in such systems a non-negligible Knudsen number (com-
pare Sec. 2.3.4) and related rarefication effects, mainly slip flow, is observed. The
method developed here is focusing on the introduction of a thermal diffusivity model
into such a system by the addition of stochastic al contaminant representatives. The
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nature of these systems, the extraordinarily low concentration of contaminants, lim-
its the interactions relevant to a model to the background-gas-contaminant coupling.
Contaminant-contaminant and contaminant-background-gas coupling can be omitted
since they do contribute very little if anything to the statistics.

With technological advances in the 20th century, such as miniaturisation of micro
electrical and bio-medical devices [294, 295], vacuum technology [87], space explo-
ration [34] and production techniques requiring low pressure environments [88, 295]
flow systems have become of interest in which the mean free path λ of individual
fluid particles is not negligible in comparison to geometry length-scales l. Therefore
hydrodynamic models assuming a fluid continuum lose validity as non-equilibrium,
kinetic effects gain importance. This transition is commonly quantified by the Knud-
sen number Kn = λ/l. In this chapter, results of the development of a model for
two phase flow systems with large concentration imbalances in complex geometries
at low pressures are reported. These types of system are of importance e.g. for
reduction of disturbances and quality improvement in the operation of advanced op-
tical systems used in microchip production [88, 89] and chemical vapour deposition
applications [296].

The most prominent macroscopic effect exhibited by flows at a finite Knudsen number
is the breakdown of the hydrodynamic (no-slip) boundary condition at a solid sur-
face. A consequence of this, later dubbed Knudsen Paradox, was first systematically
described by the Danish physicist Martin Knudsen. He found in 1909 that the flow
rate through a thin pipe of radius r, resulting from a fixed pressure gradient ∇p does
not linearly decrease with the mean pressure p but rather exhibits a minimum once
the λ associated with p becomes of the order of r (Kn ≈ 1) [10]. In the same year
Knudsen described another interesting feature of this unintuitive regime, devising a
pump without moving parts as he found a temperature gradient in a thin pipe to
induce a pressure gradient [11].

Both phenomena can be explained by the existence of a boundary layer in which
discontinuities in velocity- and temperature fields exist. This Knudsen layer can
extend in the order of several mean free paths from a boundary. In this region, the
collision rate between fluid particles is reduced. This is due to the collisions between
particles and the surface. As the ratio drops, it reaches a threshold beyond which
a local equilibrium description of the flow is void. While this has no implications
for the validity of the kinetic picture of the Boltzmann equation, the linear relations
for shear stress and heat flux assumed in the formulation of the Navier-Stokes equa-
tions are no longer valid. However different strategies can be employed to recover
working macroscopic models. For the slip flow regime at Kn of the order of 0.1
the integration of slip flow boundary conditions into the Navier-Stokes formalism is
possible [148]. Up to the so called transition regime, starting at Kn of the order
of 1, higher order approximations of the Boltzmann equation or moment equations
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of the single particle velocity distribution can constitute analytical solutions to some
flow fields and provide valuable information about the transport properties in the
system [12, 149–151]. Systems comprising flows at Knudsen numbers of an order of
Kn > O(10) require in general discrete particle models to be correctly resolved. As
directly solving the Boltzmann equation due to the high dimensionality and general
complexity remains a formidable task, models of the transition regime rely on numer-
ical methods. For free molecular flow at even higher Knudsen numbers Kn > 100,
collision-less Boltzmann models are employed in which kinetic particle interactions
are neglected altogether [152].

While numerous numerical approaches capable of simulating flows at finite Knudsen
number, including molecular dynamics [297,298], direct numerical simulation includ-
ing slip corrections up to second order [148], discrete velocity methods [299], lattice
Boltzmann methods [211,231] and Direct Simulation Monte Carlo (DSMC) [34] exist,
the latter is by far the most common and has been largely used to benchmark other
approaches. Despite its success in modelling aerodynamics problems in the upper
atmosphere it has however become evident that for the case of flows in the lower
transient and slip regime the DSMC approach still requires a very large number of
particles to properly resolve a given flow problem [300].

Based on directly solving the Boltzmann formalism as well, lattice Boltzmann meth-
ods (LBM) too are in principle capable to describe gas flows in arbitrary flow regimes [47].
The commonly used D3Q19 single relaxation time Lattice Boltzmann or lattice BGK
model dealing with a linear approach to a discretised Maxwell-Boltzmann equilibrium
distribution is however originally set up to recover the Navier-Stokes equations [43].
To extend its applicability to the simulation of low pressure gas flows in the slip
flow regime of small non-negligible Knudesn numbers, boundary conditions can be
extended to include slip at solid walls [195, 211, 230, 301]. For simulating flows up to
moderate Knudsen numbers, phenomenological higher order lattice Boltzmann mod-
els introducing wall function formalisms are used [196,302]. Due to the existing high
density gradients and dominating thermal velocity effects however, the LBM alone is
not suited for the simulation of diffusive spreading of low concentrated components in
rarefied gases. On the other hand the assumed low concentration of the second phase
allows for a greatly simplified simulation approach, fully resolving particles where
necessary, while maintaining computational efficiency (detailed in Sec. 5.2.2).

In order to increase the numerical efficiency of simulations at low Mach numbers/in
the slip flow and transition regime, several approaches involving the extension of
existing models and (spatial) hybrid methods have been published. Fan et al. devel-
oped a modified DSMC method, called Information Preservation technique to reduce
statistical fluctuations associated with DSMC at low Mach numbers [303]. Chun and
Koch reduced these fluctuations by solving the linearized Boltzmann equation to-
gether with a correction of the particle velocities after the collision step [304]. Hybrid
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approaches combining classical Navier-Stokes solvers and DSMC are developed to re-
duce numerical costs [305, 306]. In these approaches, the computational domain is
divided with respect to the local flow regimes and the DSMC method is only used in
regions where non-equilibrium effects are dominant. Since the coupling between the
grid-based Navier-Stokes solver and the particle based DSMC method is problematic,
Burt et al. replaced the grid-based method with a simplified DSMC approach in the
continuum region [307]. Besides these hybrid approaches with increase in efficiency
in mind other hybrid models have been developed to achieve a higher precision in ap-
proximations to solutions of the Boltzmann equation, such as e.g. MD-DSMC hybrid
methods [308].

To extend the applicability of the hybrid approach to length and timescales imme-
diately relevant to engineering problems, in the following a new hybrid approach
integrating LBM and DSMC simulation elements in a shared simulation domain is
detailed. Here, the lattice Boltzmann method serves as an efficient (slip boundary
augmented) Navier-Stokes solver for flows in complex geometries whereas a Monte
Carlo particle model is used to study diffusion of the dilute contaminants through-
out the system. The focus on contaminant transport in a low pressure environment
allows to simplify the model significantly as here the global flow field can be con-
sidered without perturbation by the contaminants. Thereby the computational cost
as compared to the hybrid models given above is further reduced- the contaminant
molecules are assumed to behave at equilibrium with the background-gas where the
explicit simulation of particle representatives adds a thermodynamically consistent
diffusion model to the athermal LB flow solver.

After further elaborating on aspects of this newly developed approach, contaminant
transport aspects in terms of thermal velocity, diffusivity and advection diffusion
problems are evaluated. Preliminary results of simulations performed in a model of
an experimental setup are reported before the chapter closes with concluding remarks.

5.2 Modelling aspects

The model aims to simulate dilute contaminants in a homogeneous atmosphere. This
situation arises when low pressurised gas flows are employed to flush systems of certain
contaminants. The dilution is very important for the simplification of the model to
hold. In particular for such cases it is possible to neglect the action of the contaminant
on the atmospheric gas.

The LBM with intermediate Knudsen regime boundary corrections is employed to
simulate the background gas. Single local contaminants are simulated as particles,
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where the collision processes with the background gas are solved implicitly by per-
forming a Monte Carlo algorithm where the equilibrium velocity is Galileian shifted
to account for advection.

In effect, the simulation of the contaminant component can be understood as com-
pletely independent from the background gas model as long as a (quasi-)static veloc-
ity field and thermodynamic state are known. In the remainder we briefly revisit the
modifications made to the LBM and give an overview of the Monte Carlo algorithm.
Finally, the parameterisation is discussed in the context of an example thermody-
namic configuration.

5.2.1 Lattice Boltzmann methods for intermediate Knudsen flow

As detailed in the introduction, for flows in systems either at very low pressure or
of geometry on the nanometer scale the characteristic dimensionless number, the
Knudsen number Kn becomes none negligible. The mean free path for gases under
ambient pressure (1.013 bar) is in the order of a few tens of nm, for classical technical
flow problems in geometries much larger than this effects associated with higher
Knudsen numbers can therefore be neglected.

For Kn > 0.01 rarefication effects gain noticeable influence on the flow characteristics
and slip at the walls has to be taken into account [213]. This becomes relevant in the
regime of only a few Pascal pressure considered here. Thus, to correct the lattice BGK
(LBGK) Navier-Stokes solver for the discontinuous velocity field in the Knudsen layer,
a slip boundary condition as proposed by Zhang et al. [230] has been implemented.
Other suitable slip boundary conditions were proposed by amongst others Tao et
al. [213], Ansumali and Karlin [231] and an extension of existing boundary conditions
by Toschi and Succi introducing updated collision statistics by so-called virtual wall
collisions [211].

In the remainder of this work, a two-step extension of the boundary condition by a
diffusive reflection regime as well as a wall function modifying the effective mean free
path is used as proposed by Zhang et al.. Following their formulation, the Knudsen
number in a LBGK model is given by

Kn =

√
8

3π

τ− 0.5
L

, (5.1)

where L is the number of lattice sites used to resolve the characteristic length. From
this it is immediately clear that the mean free path is here depending on the relaxation
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time τ only. It is thereby linked to the fluid viscosity. The boundary conditions were
implemented by David Sinz in the scope of his diploma thesis work at the University
of Stuttgart [309].

A first employed boundary condition allows to control the reflective behaviour and
thereby implicitly the slip by an accommodation parameter a defined between a = 0

relating to no-slip or bounce-back and a = 2 implementing full-slip or specular
reflection. In the simulations described in the scope of this work, an accommodation
parameter of a = 1 is chosen. This corresponds to model diffuse deflection at a rough
wall [230].

As with higher Kn and/or increase in resolution the Knudsen layer extends to scales
resolved by the simulation, simple slip boundary conditions overestimate the velocity
at the boundary. The reason for this is a significant reduction in the mean free path
of particles in the vicinity of a surface, effectively lowering the local Knudsen number.
Recently, several methods have been introduced to reflect this by the introduction of
an effective mean free path λe. Integrations with the lattice Boltzmann method have
been introduced by Tao et al., Hyodo et al. and Zhang et al. [213–215].

Here the correction proposed by Zhang et al. is applied, formulating the effective
mean free path

λe =
λ

1+ 0.7e−∆y/λ
, (5.2)

that contains a dependence on the distance from the nearest boundary node ∆y.
Using Eq. (5.1) and Eq. (5.2) the correction can be shown to correspond to a change
in local kinematic viscosity, entering the model via a (now local) relaxation time
parameter [215]

τ =

√
3π

8

[
λ

1+ 0.7e−∆y/λ

]
+ 0.5. (5.3)

5.2.2 A Monte Carlo Model for Contaminants

To describe a second component present in very low concentrations only, a method
derived from the DSMC approach is employed. As a solver to the Boltzmann equation,
this model relies as well on the principal independence of the free movement and
collision processes of particles.
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DSMC algorithms solve the Boltzmann equation in terms of free movement and col-
lisions of particles representative of a thermodynamical state. Free movement is cal-
culated straightforward at a given (thermal) velocity assigned to the particles. The
distinction of the method lies in its approach to model particle collisions. After free
flight for the duration of a given collision interval particles are binned and randomised
collision partners in a bin volume are drawn. Each of these pairs is subsequently cal-
culated to perform a momentum conserving collision assigning a new particle velocity.
This coarse grained collision model increases simulation efficiency dramatically as in-
tegration of the particle movement to predict explicit collisions is not necessary. At
the same time the method has been shown to produce thermodynamically accurate
results, especially in the context of dilute systems with finite Knudsen numbers.

In the approach presented here, the observation of collision time intervals is replaced
by collision time calculation from the mean free path travelled in the system. Taking
into account only atmosphere-contaminant interactions, atmospheric collision part-
ners are not drawn from representative particles in a volume but rather created as
pseudo-particles parameterised by properties of the LB field in the vicinity of a con-
taminant particle.

An event driven algorithm focusing on collision events is implemented. Assuming
local equilibrium, according to the massmζ of contaminant species ζ and temperature
T the individual particle velocity is drawn from a Maxwell distribution. From the
mean particle velocity uζ, the time span δt to the next collision event is calculated
as δt = λζ/uζ, implicitly assuring the mean free path to be

λζ =
1

πσ2αζnα

√
m?
αζ

mζ
. (5.4)

In this derivation, properties of atmospheric species α were used. The particle density
per unit volume nα is calculated for an ideal gas. The symbolsm?

αζ = (mαmζ)/(mα+

mζ) designate the reduced mass and σαζ the effective collision radius, calculated
as the arithmetic average of atomic radii approximated by Lennard-Jones potential
parameters given by Karniadakis et al. [295].

At collision time the LBM lattice is used as binning grid. All contaminant particles
present at a given lattice site undergo a collision with an ad hoc created pseudo par-
ticle, generated as a representative of the local atmospheric gas flow. In particular,
the atmosphere gas particles are assigned a velocity uα according to a Maxwell dis-
tribution whose mean value ū is shifted to reflect the velocity uLBM of the lattice
Boltzmann field. Per direction i this reads

uα,i =

√
mα

2πkBT
exp

{
−mα (ūi − uLBM,i)

2

2kBT

}
. (5.5)

Subsequent binary collisions between hard spheres are implemented classically, assum-
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ing conserved velocity of the centre of mass and thus global momentum conservation,
while updating the relative velocity of the collision partners [34]. The centre of mass
velocity um and the relative velocity ur of a contaminant particle ζ and a pseudo
particle α are given by

um = (uζmζ + uαmα)(mζ +mα)−1, (5.6)

and
ur = uζ − uα, (5.7)

respectively. With u∗m and u∗r denoting the post collision centre of mass and relative
velocity respectively, kinetic energy and momentum is conserved in the collision by
imposing u∗m = um and |u∗r | = |ur|. Since particles are assumed to be hard spheres
all directions for u∗r are equally likely as scattering of hard spheres is isotropic. The
post collision velocities of the particles can then be determined using a randomly
chosen direction for the relative velocity considering |u∗r | = |ur| and the post collision
equivalents of Eq. (5.6) and (5.7). The updated contaminant velocity is employed
for the calculation of the time interval δt elapsed until the next collision event. The
information of the pseudo particle is discarded. This collision process serves both to
couple the contaminant particles to the atmospheric flow and as a thermostat (see
section 5.3.2).

In the scope of this work the respective lattice Boltzmann velocity field is pre-
simulated until an equilibrium state is reached. There exists however no principle
limitation on the synchronisation of the relaxation processes. Rather the quality of
the modelling of dynamics in the style of DSMC is improved by taking into account
the local time-dependent equilibrium determined by the LBGK algorithm. Analytical
approximations of transport coefficients in this regime suggest e.g. that the mutual
diffusivity can under these assumptions be expressed as a Lorentz-approximation
(mass-ratio) corrected self-diffusivity coefficient of the atmosphere gas (see section
5.3.3).

Rarefication effects are prominent in the Knudsen layer only. Thus special attention
has to be paid to the boundary condition in the particle perspective as well. Since the
main focus of the algorithm lies on true reproduction of the subscribed mean free path
by timing collision events, the implementation of an accurate boundary condition is
however straightforward. For the sake of simplicity again the lattice Boltzmann site
decomposition is used to define the boundary geometry, introducing discretisation er-
rors in systems with curved boundaries. For these cases the method may be improved
by another choice of surface definition, e.g. using interpolation techniques [207,310].
However, it has been shown that by resolving the Knudsen layer by as little as four
lattice sites the error observed in the flow field can be limited to the order of 5 per-
cent. For a resolution of 8 lattice sites the deviation reduces to some per cent. As
discussed above for a working model of flow in the intermediate Kn regime surface
slip has to be taken into account as well as the reduction in phase space volume in
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the vicinity of a boundary. Both requirements are met by a boundary condition re-
ducing a particle’s travelled distance if encountering a wall. The algorithm evaluates,
whether during free movement a particle is travelling into a different LB node and
subsequently whether it is a boundary node. If the particle would enter a boundary
node, its position is reset to the point of contact, effectively reducing its travelled
path. The subsequent collision event is modelled as diffusive reflection inverting the
velocity component normal to the boundary surface. The thermal velocity is drawn
from the half set with an inverted velocity component normal to the wall. This treat-
ment is implicitly reducing the mean free path proportional to the surface to volume
ratio in the system as well as reducing the phase space volume. The boundary con-
dition is evaluated for a simple advection diffusion problem for which an analytical
solution is available (see section 5.3.4).

In the first part of this section the proposed model is validated by comparison of
simulation results with selected benchmark problems for which analytical solutions
are available. The second part comprises application of the model to investigate
contaminant transport in varying complex geometries for different flow situations.

5.2.3 Parameterisation

The validity of the LBM is chiefly limited by the underlying (thermo-) statistical
principles and approximations in expansions. It is possible to define a LB specific
Knudsen limit based on the idea that the local equilibrium approximation on a lattice
site does not hold anymore. Another way of putting this is given with the low Mach
number limit which requires the transported momentum density on the lattice to be
low. This clarifies that all modifications made to capture the intermediate Knudsen
regime can only be phenomenological. As the evaluation of channel flow in the low
Knudsen regime illustrates, modified continuum models can be suited to simulate
flows in this regime. Nonetheless, when working with the modification of choice,
leaving the core algorithm unmodified, the original restrictions have of course still to
be observed.

In order to be able to understand the units captured by the model, a conversion of
the core units is instructive. The scaling units of length, time and mass are typically
calculated by use of the constant speed of sound on the lattice as well as the kinematic
shear viscosity imposed by the collision scheme. When aiming to model real systems,
the usual choice of unit mass might be dismissed to calibrate the system in order to
preserve numerical stability in cases were realistic pressures otherwise lead to very
high densities or in cases where the relaxation rates are getting very low.

In the cases employed here, starting out from length-scaling the lattice to match a
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physical system, length and time scales are fixed by comparing the speed of sound
in the desired physical system with the one on the lattice. Keeping the lattice mass
at unity, the overall mass scaling is then determined by comparison of the resulting
dynamic shear viscosity with the one of the desired physical system.

A typical approach to the parameterisation of a simulation system is made by deciding
on the spatial resolution of a system, determining the lattice spacing ∆x. Together
with the lattice discretisation and the thereby determined speed of sound cs this
immediately fixes the time step ∆t = ∆x/cs and the conversion units for the kinematic
viscosity ν. For the case of a single fluid adhering to the ideal gas law Eq. (2.38) for
the relation of pressure and fluid density, the consideration of the thermodynamic
state and modelled substance, i.e. temperature, mass and pressure fixes a mass scale
∆m. Conversion of the dynamic viscosity η then allows to determine the relaxation
time or shear viscosity relaxation parameter τ or λν via Eq. (2.37). Here, some tuning
flexibility is given by the mass scaling, allowing to adjust the simulated mean fluid
density against the relaxation time parameter. Table 5.1 gives some example numbers
for arbitrary length scaling and Hydrogen at room temperature and 4 Pascal pressure
obtained from the NIST chemistry webbook [311].

Property Formulation Physical example

Length scale ∆x ∆x = xphys/xLB 1 m/1000 l.u. = 1.0 · 10−3 m

Time scale ∆t ∆t = cLBs /c
phys
s · ∆x ∆x/

√
3/1280ms = 4.5105 · 10−7 s

Mass scale ∆m ∆m = (∆x3 · ρphys)/ρLB (∆x3 · 2.445 · 10−6 kg
m3 )/0.1 l.u. =

2.445 · 10−14 kg

Kinem. viscosity ν νLB = νphys/ ∆x
∆t2

3.581 m
s2 /

∆x
∆t2

= 1.6152

Table 5.1: Example numbers for arbitrary length scaling and Hydrogen at room
temperature and 4 Pascal pressure obtained from the NIST chemistry web-
book [311].

5.3 Validation

This section starts out with the re-evaluation of the implementation of the interme-
diate Kn corrected LBM boundary conditions as described by Zhang et al. [215,230].
Comparison is made to results of the linearized Boltzmann equations in a narrow
channel published by Ohwada et al. [312,313]. Non-dimensionalised values are com-
pared. In a second part the thermal properties of the particle model as well as the
coupling algorithm are tested. Throughout evaluations of the hybrid model SI units
are used as they have been employed explicitly in the implementation of the parti-
cle model. Here, we compare the simulation velocity distribution to the respective
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Figure 5.1: Volumetric flow rate through a simple channel as a function of the
Knudsen number, normalised by the flow rate measured at Kn=0.1. Reproduc-
tion of a validation published by Zhang et al. [215]. The simulation results are
obtained in a channel of 32 lattice units width. A finite slip boundary condition
was employed both alone and with a viscosity correction accounting for a varying
mean free path in the vicinity of a boundary [215, 230]. The reference values
(symbols) are results of an exact solution to the linearized Boltzmann equation
for hard spheres by Ohwada et al. [312, 313]. Using the combined boundary
conditions good agreement can be obtained for the lower intermediate regime of
Kn ≈ 0.05..0.5.

Maxwell distribution both for the pseudo- and contaminant-particles over a range of
temperatures. Third, the diffusive behaviour of the model is checked. By focusing
on a simple quasi-1D diffusion problem we ensure the validity of our choice of both
mean free path λ and diffusivity D. Finally the lattice Boltzmann velocity field, the
coupling and the diffusivity model are integrated with our contaminant boundary
condition. Our results are compared to a solution of the transport equation in one
dimension.
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5.3.1 Intermediate Knudsen numbers - The LBM implementation

In order to assure the accuracy of the implementation of the boundary corrections by
Zhang et al., flow at prescribed Knudsen numbers in a simple channel is simulated.
Evaluations are made both for slip boundary conditions only, as introduced in [230],
and for combinations of a slip boundary condition and a viscosity correction to ac-
count for a locally varying Knudsen number at the boundary [215, 309]. Simulations
are executed in a pseudo-1d channel of a size of 1x1x32 lattice units allowing for good
numerical efficiency. The flow is driven by a body force of F = 1 · 10−7 in lattice
units. To assure to reach a steady state simulations are in all cases run for 100,000
time steps.

The flow profiles of the original publication are reproduced, reaching satisfactory
agreement of simulated flow profiles and analytical solution to the linearized Boltz-
mann equation for hard spheres by Ohwada et al. [312,313]. As depicted in figure 5.1
the combined boundary corrections allow to recover the theoretical flow rates within a
few percent even up to low single digit Kn. The shown flow rate has been normalised
by the respective flow rate assumed at Kn=0.1. Furthermore the Knudsen-Paradox
is captured by the model. The minimum flow rate measured in the simulations is
reached around Kn≈ 0.5 in good agreement with the results of the analytical calcula-
tions as well as other numerical results reported by Toschi [211] and Cercignani [314].
These measurements allow for confidence in the capability of the extended lattice
Boltzmann model to capture fluid behaviour in the intermediate regime.

5.3.2 The Maxwell speed distribution - The coupling algorithm

To evaluate the coupling approach described in section 5.2.2 and ensure sound ther-
mostatistic behaviour of the contaminant particles, the particle velocity statistics per
collision event for a range of temperatures are measured. Parameters kept fixed are
the ambient pressure p = 3 Pa, a contaminant mass of mζ = 100 au and an at-
mosphere particle mass of mα = 2 au. Figure 5.2 documents the exact agreement
between the simulation velocity field and the theoretical solution

f(u) = 4πu2
(

m

2πkBT

)3/2
exp
{
−
mu2

2kBT

}
. (5.8)

This result suggests correct thermalization of the pseudo-particle’s velocity compo-
nents as well as functionality of the collision algorithm, serving in addition to the
coupling as a thermostat to the contaminants.
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Figure 5.2: Probability density of contaminant particle velocity for different sys-
tem temperatures. Theoretical values are given by the Maxwell speed distribution
for particles of a mass of 100 au at the respective temperature (Eq. 5.8). We find
exact agreement with the theory, verifying the correct operation of the coupling
algorithm (Sec. 5.2.2).

5.3.3 The second law of Fick - Diffusion in a binary mixture with
large density contrast

As detailed above, a main focus of application of the proposed model is the efficient
simulation of diffusive transport in low pressure environments. The validity of the
event driven algorithm, parameterised by the mean free path λ is tested by comparison
of the measured resulting diffusivity. The second law of Fick

∂

∂t
nζ(x) = Dαζ∇2nζ (5.9)

defines the contaminant-atmosphere diffusivity Dαζ in term of the second spatial and
first time derivative of a concentration or density field. A solution in one dimension
gives the particle density nζ(x, t) at a locus x different from the initial position x0
and time t in terms of the absolute particle number Nζ and Dαζ as

nζ(x, t) =
Nζ√
4πDαζt

exp
{
−
(x− x0)

2

4Dαζt

}
. (5.10)
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Figure 5.3: Particle density distribution at different times. All particles have been
initialised in the point of origin. We find quantitative agreement with the theory
(Fick’s second law, Eq. 5.10) over a wide range of parameters. Here depicted
is an example configuration; a system comprised of a Hydrogen atmosphere at
p = 3 Pa and T = 295 K containing contaminants of mass mζ = 100 au. The
diffusivity is calculated according to Eqs. 5.11, 5.12 to Dαζ ≈ 1.31 · 10−2m2/s.

Figure 5.3 illustrates the dynamics of the particle density field of a system comprised
of a Hydrogen atmosphere at p = 3 Pa and T = 295 K containing contaminants of
mass mζ = 100 au. For the presented results, 1 million particles are initially placed
at the origin. Using a mass corrected diffusivity

Dαζ = Cm
3

8σ2αζnα

√
kBT

2πm?
αζ

, (5.11)

with a mass correction factor

Cm =
2mα + 4mζ
3 (mα +mζ)

, (5.12)

excellent quantitative agreement of simulation and theoretical predictions is found.
The correction factor given by Eq. 5.12 has allowed quantitative predictions for the
diffusivity over a wide range of atmosphere/contaminant mass contrasts. It can be
motivated by the non-trivial expectation values of momentum transfer at large mass
contrasts. Even for simplified models of hard spheres, the asymmetry in momentum
carried by species of different mass, travelling at different respective thermal speeds,
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requires higher order mass corrections. For a more in-depth discussion and example
calculations see the book of Chapman and Cowling [9]. The form of mass correction
reported here is again depending on the simplifying assumptions limiting interaction
to atmosphere-contaminant collisions. For a mass contrast of one Cm reduces to unity.

5.3.4 The transport equation - The particle boundary condition
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Figure 5.4: Equilibrium particle density distribution in systems combining con-
stant flow in positive x-direction and a diffusivity of Dαζ ≈ 1.31 · 10−2m2/s.
At x/xmax = 1 the system is delimited by a boundary acting on the contami-
nants (see section 5.2.2). The curves are given by the solution Eq. 5.15 to the
transport equation assuming an infinite particle reservoir at x > 1 and an open
boundary at x < 0. The simulation particle densities are re-normalised to the
density measured 5 lattice sites in front of the wall. Outside of the boundary
layer we find the differential equation 5.13 excellently approximated. The fluc-
tuating densities due to thermalised reflection at the wall do however not justify
the infinite reservoir assumption of the theory. This results in strong variation
of the obtained result.
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In this final evaluation of the model, the stationary state of a system described by
the transport equation

∂

∂t
nζ(x) = −Dαζ∇2nζ + uα(x)∇nζ = 0 (5.13)

is considered. Assuming the boundary conditions

nζ(0) = 0 ; nζ(x/xmax = 1) = 1, (5.14)

the particle number density is normalised by a maximum value assumed at x = 1.
This situation is describing a system with a constant flow velocity in positive x-
direction and an infinite particle reservoir at x > 1 as well as an open boundary
at x < 0. The infinite particle reservoir is here modelled by a boundary visible for
the contaminant particles only. As before for the example system parameterisation a
Hydrogen atmosphere at p = 3 Pa and T = 295 K containing contaminants of mass
mζ = 100 au is selected. This corresponds to a diffusivity of Dαζ ≈ 1.31 · 10−2m2/s.
Figure 5.4 depicts the normalised particle density over the normalised x-coordinate.
Solid lines represent solutions to equation 5.13, given by

nζ(x) =

(
exp
{
x
u

Dαζ

}
− 1

)(
exp
{
u

Dαζ

}
− 1

)−1

. (5.15)

It is found that in order to agree with the theory an area of five lattice sites in
front of the wall has to be neglected. In the immediate vicinity of the wall the local
density is fluctuating strongly, introducing large deviations to the normalisation and
thus the measurements. Omitting 5 lattice sites however, the model is quantitatively
reproducing the theoretically expected behaviour, verifying the correct interplay of
now coupled advection and diffusion. This correction is necessary as the system and
theoretical model deviate - a thermal wall is not an infinite reservoir.

5.4 Simulation of contaminant suppression by bezels

The model is applied to a setup where contaminant suppression by low speed flows
through different openings at low pressure is measured. The simulations have been
performed in a two-step process. First, a solution to the flow of the background
gas was obtained by means of an adjusted LBM. Contaminants were subsequently
simulated coupled to the quasi-static solution. In this part the LB parameterisation
outlined in the preceding section 5.2.3 is employed.
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Figure 5.5: Illustration of the flow path through the system. The velocities are not
to scale. In the centre opening, the velocity is up to three orders of magnitude
larger than in the remainder of the system.

5.4.1 System setup

Figure 5.5 shows a ray-traced image of the simulation geometry used. The cylindrical
shape of the chamber is reflecting an experimental setup. The system is resolved by
256× 256× 256 mm3, where in the centre-plate a round opening with a diameter of
14 mm is placed.

The system geometry has been adapted from a typical experimental measurement
setup. Here variable openings are introduced into the centre of a system with ad-
justable absolute pressure as well as relative pressure gradient. Flow rates controlled
by the pressure gradient are verified by additional flow measurement in the in- and
outlets. Contaminants are injected on one side, whereas their partial pressure is mea-
sured on both chambers. The simulation parameterisation is operating in a regime
close to experimental description, where exactly comparable results of experiment
and simulation have yet to be obtained.

Single component fluid flow is parameterised by choice of mean lattice density ρ =

0.1 l.u. and a relaxation time of τ = 5.3457. At the given discretisation the viscosity
wall-function (5.3) is found to have a non-zero value over 5 lattice sites. Full refractive
boundary conditions are employed in the immediate vicinity of the bezel opening
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Figure 5.6: Gas flow rate as a function of the pressure gradient. The LB simula-
tion has been parameterised to the kinematic viscosity ν = 3.581m

2

s and speed of
sound cs = 1280ms of Hydrogen gas at a mean pressure of p = 4 Pa and temper-
ature T = 295 K. A clear linear dependence of the flow rate Q̇ on the pressure
gradient is found even at very high flow speeds violating the low Mach number
assumption (Ma ≈ 0.27).

only. This has been established to enhance the stability of the LB in regimes of
higher pressure gradients. This is justified as, while introducing an error in the exact
form of the flow field throughout the system, flow rates in the central opening are not
affected by this measure.

The flow is driven by Zou-He type boundary conditions, establishing a flow rate by a
Neumann condition on the influx at x = 0 against a fixed pressure Dirichlet condition
at x = nx = 256. A snapshot illustration of the resulting flow field is depicted in
figure 5.5. It is noteworthy that the flow rate in the region of the opening is up to
three orders of magnitude higher than in the rest of the system, where vectors have
been scaled equally to illustrate the flow path rather than the scales.

In figure 5.6 atmosphere gas flow rates are plotted over the applied pressure gradients.
The LB simulation has been parameterised to the kinematic viscosity ν = 3.581m

2

s
and speed of sound cs = 1280 m

s of Hydrogen gas at a mean pressure of p = 4 Pa
and temperature T = 295 K [311]. The mean free path of hydrogen in this setup
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is calculated from tabulated data of the collisional cross section and mass to be
λ0α ≈ 2.70 · 10−3m, implying a Knudsen number of Kn ≈ 0.2 using the opening
diameter as limiting length scale.

A clear linear dependence of the flow rate Q̇ as measured in the volume of the opening
on the pressure gradient is found. Even though in the simulations exceeding a pressure
gradient of 1 Pa, the low Mach number limitation is clear violated (at the highest
value the Mach number in the peak flow is Ma ≈ 0.27), the functional dependence
holds surprisingly well. The LB simulations are run for 300,000 time steps after which
the change in the field per time step is in the order of 10−7 and below.
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Figure 5.7: Snapshot of simulation data at the lowest and highest flow rates,
respectively 100,000 collision events into the simulation where a total of
10,000,000 collision events was simulated. The data is a histogram of the
amount of particles present in the respective lattice layer volume. The total
number of particles was 100,000. The suppression coefficient is calculated from
fitting a constant function to these data in the ranges x ∈ {0.0050..0.0100} m
and x ∈ {0.0175..0.0225} m. The step deviations in the central region reflect that
the data is not normalised for the variation in local volume in the geometry.
In particular, the opening in the region x ∈ {0.015..0.0152} m is clearly visible
as minimum. For the calculation of the suppression coefficient by Eq. (5.16)
particle numbers left and right of the opening are simply summed.
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5.4.2 Contaminant suppression

The contaminant particles are initialised in the upstream chamber in the range of
x = 0.0153 m to x = 0.0256 m. Each particle receives random spatial coordinates
outside of the obstacle volume, as well as Maxwell-Boltzmann distributed random
velocity components for a temperature of T = 295 K and particle mass of 100au. The
effective cross section is estimated from tabular values for Hydrogen and Heptane (as
an example of a heavy organic molecule of a weight of 100 a.u.) to be [295]

σαζ ≈
1

2

(
2.915 · 10−10 + 6.663 · 10−10

)
m = 4.789 · 10−10m,

suggesting with equation (5.4) a mean free path of the contaminant of approximately
λ0ζ ≈ 1.98 · 10−4m. Using the bezel opening diameter as typical scale, the obtained
Knudsen number is Kn ≈ 0.014.

The contaminant dynamics are evaluated from concentration histograms of the sys-
tem in the Cartesian coordinates. Figure 5.7 illustrates these data in the main flow
direction for the minimum and maximum flow rates employed (Q̇ ≈ 40 SCCM and
Q̇ ≈ 500 SCCM, respectively) after 100,000 of 10,000,000 collision events. The dif-
ference in the system dynamics is already at this early stage distinctly visible. The
concentrations χ+ and χ− used to determine the suppression coefficient as

S =
χ+

χ−
(5.16)

are measured by fitting a constant in regions of undisturbed concentrations in the
ranges x ∈ {0.0050..0.0100} m for the downstream and x ∈ {0.0175..0.0225} m for the
upstream chamber. The deviations in the concentrations in the central region reflect
that the data is not normalised for the variation in local volume in the geometry.
In particular, the opening in the region x ∈ {0.0150..0.0152} m is clearly visible as
minimum.

The suppression coefficients obtained for the various flow rates are presented in fig-
ure 5.7. In agreement with findings involving an earlier model, an exponential de-
pendence of the suppression on the flow rate is found [309].

This test case illustrates qualitative agreement of the hybrid model with preliminary
reports on experiments, where the initial validations are able to document quan-
titative reproduction of thermostatistic predictions. Quantitative comparison with
experimental data is a natural next step.
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Figure 5.8: Measured suppression coefficients over varying flow rate through the
opening. The suppression behaviour of the system can be approximated by an
exponential relation to the flow rate observed in the system.

5.5 Conclusion and Outlook

Motivated by industrial applications requiring contaminant suppression in low vac-
uum environments, a hybrid simulation model has been refined and validated. Start-
ing from original work performed by David Sinz on a phenomenological model, a
Monte Carlo algorithm to introduce a diffusivity model to a LBM setup has been
redeveloped and improved in thermostatistic context.

The original problem concerned an ideal gas flushing a system pressurised in the
single digit Pascal range, where medium sized aromatic contaminants are present in
the system. The sparsity of the contaminant molecules allows complete neglect of
their impact on the gas flow. As a result it is necessary to couple the solution of the
gas flow into the simulation of the contaminants only.

This important simplification allows efficient calculation of the diffusive transport
(The contaminant simulations are executed as a single process and finish in a matter
of hours). By only requiring a quasi static solution to the flow field, the Monte Carlo
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portion of the model is furthermore independent of the choice of flow solver used to
obtain said solutions.

With the intermediate goal of simulating and predicting flow on scales relevant to en-
gineering, the LBM has been selected due to its adaptability to complex geometries.
While the method is not readily applicable to intermediate Knudsen flow regimes,
phenomenological corrections can be introduced to recover the flow behaviour ob-
served in rarefied systems with sufficient accuracy.

The Monte Carlo model is distinguished by combination of two central ideas. First,
the coupling of a local advective velocity by shift of the expectation values of the
Gaussian thermal velocity distributions constituting the local Maxwellian. Second
the parameterisation of a collision event-driven algorithm determining time scales by
the mean free path and equilibrium velocities.

The resulting algorithm has been validated to recover correct thermal velocity dis-
tributions as well as superposed advective velocities. Since the coupling algorithm
implicitly acts as a thermostat, the Maxwell-Boltzmann distribution of particle ve-
locities is assured at all times.

Using collision properties of hard spheres with an additional mass contrast correction,
quantitative prediction of the diffusivity of the contaminants for a given thermody-
namical state and particle mass has been successful. The mass correction term found
here may be of practical relevance to more than this application as it illustrates and
quantifies the relevance of mass contrasts in momentum transfer and resulting diffu-
sivity.

A more complex test case combines an effective advection-diffusion, or transport
model with a test of the boundary conditions. It has to be refrained from developing a
quantitative solution to the particle distribution in the boundary layer. Quantitative
agreement with the approximation of an infinite fixed concentration source could
however be obtained when a density integrated over the boundary layer was used.

In a final step the developed combined method has been applied to suppression of con-
taminant diffusive transport by gas flows through an opening in the low intermediate
Knudsen regime. Qualitative evaluation of gas flow rate and resulting suppression has
yielded promising results. As expected exists a well defined linear dependence of the
flow rate on the applied pressure gradient. Furthermore is the resulting suppression
an exponential function of the flow rate.

Further development and application of the model can be envisioned in both exper-
imental as well as theoretical context. True to the original motivation of the work a
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natural next step is the comparison with experimental results. To this end, this work
provides a parameterisation framework both of the LBM and the Monte Carlo algo-
rithm where input can be provided in SI units. While some limitations such as the
low Mach number limit and the principal continuity assumption apply, the method
is able to cover a wide range of technically relevant scales.

Theoretical extensions of the model can be made by means of refining the algorithm
to increase its overall accuracy. A very obvious flaw of the current model living on
the LBM lattice is the very limited resolution of boundary shapes. Also the coupling
to models capable of providing exact solutions to the Knudsen layer flow to some
problems could be very interesting. Also extension of the collision model to include
soft potentials, etc. is of interest.
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Chapter 6

Summary and outlook

This thesis reports work conducted on different aspects of multiphase flow simulation
methods on the mesoscopic scale. The focus is here on optimisations and simplifica-
tion of the principal problems in order to be able to apply the methods to address
engineering applications. The volume of problems and methods even in this rather
special field must prevent any contribution from being comprehensive. The reported
results have rather to be understood as reporting different aspects of ongoing work
on development and application of simulation in the field.

Starting out from a historical view of fluid dynamics research, the different aspects of
classical fluid dynamics and kinetic theory are discussed. In addition to the central
equations of motion, dimensionless numbers are defined and discussed as essential
tools to classify fluid system properties. Central are here the dominantly low Reynolds
number, the low Mach number requirement of the LBM and finite Knudsen numbers
in the transition from continuum to particle approximations.

Motivated by developments in fabrication technology and engineering applications on
the micro- and nano-scale, theoretical models to capture complex boundary condi-
tions for functional surfaces are being developed. Chapter 3 reports the results of
simulations conducted to verify the predictions of a simplified theory for patterned
surfaces. The model in question is concerned with the description of anisotropically
patterned surfaces by means of a variable slip length condition. Starting from the
most simple anisotropic case of stripes, with cosine varying slip and aspects of the
model extension to the description of AFMmeasurements, development of the method
towards application in engineering production are laid out.

Understanding the theoretical model as involving a phenomenological boundary con-
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dition, the comparison of the simulation data obtained in the context of a model of
an AFM as an actual measurement device will allow to determine the scope of appli-
cability of the model. While earlier research has already found that deformations of
the interface cannot be neglected in general, it may well be possible to identify rules
formulate effective boundary parameters nonetheless.

Different from the implicit description of multiple system components and aggregate
phases by adjustment of the boundary condition of a single phase, chapter 4 is involved
with explicit modelling of multiple fluid components. Motivated by application in
enhanced oil recovery, but applicable to a much wider range of problems, a pseudo-
potential multi-component LB model including a surfactant species is integrated with
a multi relaxation time collision scheme. The resulting new algorithm is evaluated
to preserve properties that have been used in a LBGK context. Surface tension,
wettability and diffusivity have been considered. In addition a significant reduction in
error of permeability calculations of fluids of higher viscosity in low resolved channels
has been verified. Necessary re-implementation of the interaction algorithm has been
identified as a means to further optimise the method. In a basic parameter study the
new implementation has been employed with the simulation of forced imbibition in a
random 2d porous medium, building confidence for research of diffusivity effects and
relative permeability in more demanding 3d systems.

Here, the investigation and further optimisation of different model aspects can be
taken into account. Revisiting the parameter space of the surfactant model more in
depth, e.g. by comparing to experimental results, may enable quantitative comparison
of system behaviour. This extends to the integration of specific coupling between the
surfactant species and the solid boundaries as well. Besides further aiding precision
and stability of the model, adjustment of the forcing strategy may also be used to
develop a better understanding of precursor formation and diffusive effects on the
pore- and network scale. By this, effective explicit simulation of the parameter space
determining relative permeability in ternary mixtures could be enabled.

Considering a different type of multi component system, chapter 5 lays focus on flow
on the fringes of validity of fluid continuum descriptions. Contaminant transport
in low vacuum systems is of interest e.g. when dealing with so-called hazing of
lenses in lithographic optics systems. The presence of a very sparse contaminant
component allows for significant simplification of the model. The large contrast in
masses between the flushing gas and contaminants required however intensive work
in order to identify a valid mass correction in the diffusivity terms. An event driven
Monte Carlo algorithm is coupled to an advective field by means of a shift in the
expectation value of the local Maxwellian components. The mean free path is a
central parameter in this model. Great attention has been paid on the development
of a parameter framework allowing to adjust the model in terms of physical units.
After verifying quantitative agreement with thermostatistic predictions of particle
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velocities and diffusivity, first qualitative tests of modelling suppression in a complex
geometry at technical relevant scales are reported.

In addition to comparison with experiments on the technological relevant scales, the-
oretical extension of the model promises to be interesting. The integration of more
precise boundary conditions as well as a straightforward change in the coupled advec-
tion model could allow for comparison with exact predictions at even higher Knudsen
numbers. Alteration of the collision algorithm can allow to account for particle de-
formability and even reactivity. Verification of the applicability of the model can
enable simulations to aid future system design.

In particular on the mesoscopic scale, coarse grained computer simulation models
are developing quickly towards tools capable of aiding design and understanding of
real fluid systems. Besides the ever growing computational power available, a key
ingredient to this development is a deeper understanding of fluid dynamics, as it
allows to manage complexity and enable more efficient use of calculations. While
dealing with a subset, this work has touched all aspects of optimisation, increasing
complexity to gain accuracy and stability at points, while radically simplifying system
aspects not relevant to the parameters of interest in others. While work in this scope
is unlikely to reach an end, it is hoped that the presented results tell somewhat
enough to begin with.



128



Bibliography

[1] R. W. Johnson. Handbook of Fluid Dynamics. CRC Press, 1998.

[2] M. Born and H. S. Green. A General Kinetic Theory of Liquids. I. The Molec-
ular Distribution Functions. Proceedings of the Royal Society of London A,
188(1012):10–18, 1946.

[3] N. N. Bogoliubov. Kinetic Equations. Journal of Physics, 10(3):265–274, 1946.

[4] J. Yvon. La théorie statistique des fluides et l’équation d’état. Hermann &
Cie, Paris, 1935.

[5] J. G. Kirkwood. The Statistical Mechanical Theory of Transport Processes I.
General Theory. The Journal of Chemical Physics, 14(3):180–201, 1946.

[6] W. R. Hamilton. On a General Method in Dynamics; By Which the Study of the
Motions of All Free Systems of Attracting or Repelling Points is Reduced to the
Search and Differentiation of One Central Relation, or Characteristic Function.
Philosophical Transactions of the Royal Society of London, 124:247–308,
1834.

[7] C. L. M. H. Navier. Résumé des leçons données sur l’application de la
mécanique. Carilian, 1838.

[8] G. G. Stokes. On the theories of the internal friction of fluids in motion, and
of the equilibrium and motion of elastic solids. Math. Phys. Papers. by G.
G. Stokes Transactions of Cambridge University Press, Cambridge Phil.
(reprint), 3:287, 1845.

[9] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-uniform
Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduc-
tion and Diffusion in Gases. Cambridge University Press, 1970.

[10] M. Knudsen. Die Gesetze der Molekularströmung und der inneren Reibungsströ-
mung der Gase durch Röhren. Annalen der Physik, 333(1):75–130, 1909.

129



130 Bibliography

[11] M. Knudsen. Eine Revision der Gleichgewichtsbedingung der Gase. Thermische
Molekularströmung. Annalen der Physik, 336(1):205–229, 1909.

[12] H. Grad. On the kinetic theory of rarefied gases. Communications on Pure
and Applied Mathematics, 2(4):331–407, 1949.

[13] G. Karniadakis, A. Beskok, and N. Aluru. Microflows and Nanoflows: Fun-
damentals and Simulation. Springer Science & Business Media, 2006.

[14] J. T. Davies. Turbulence Phenomena: An Introduction to the Eddy Transfer
of Momentum, Mass, and Heat, Particularly at Interfaces. Elsevier, 2012.

[15] C. E. Brennen. Fundamentals of Multiphase Flow. Cambridge University
Press, 2005.

[16] C. L. Fefferman. The Millenium Challenge - The Navier-Stokes Equation, 2000.
http://www.claymath.org/sites/default/files/NavierStokes.pdf.

[17] D. Burnett. The Distribution of Velocities in a Slightly Non-Uniform Gas.
Proceedings of the London Mathematical Society, 39(1):385–430, 1935.

[18] D. Burnett. The Distribution of Molecular Velocities and the Mean Motion
in a Non-Uniform Gas. Proceedings of the London Mathematical Society,
s2-40(1):382–435, 1936.

[19] O. I. Vinogradova. Slippage of water over hydrophobic surfaces. International
Journal of Mineral Processing, 56:31–60, 1999.

[20] E. Lauga, M. P. Brenner, and H. A. Stone. Handbook of Experimental Fluid
Dynamics. Springer, NY, 2007.

[21] P. Lallemand, L.-S. Luo, and Y. Peng. A lattice Boltzmann front-tracking
method for interface dynamics with surface tension in two dimensions. Journal
of Computational Physics, 226(2):1367–1384, 2007.

[22] G. Thömmes, J. Becker, M. Junk, A. K. Vaikuntam, D. Kehrwald, A. Klar,
K. Steiner, and A. Wiegmann. A lattice Boltzmann method for immiscible
multiphase flow simulations using the level set method. Journal of Computa-
tional Physics, 228(4):1139–1156, 2009.

[23] D. R. Noble and J. R. Torczynski. A Lattice-Boltzmann Method for Partially
Saturated Computational Cells. International Journal of Modern Physics C,
09(08):1189–1201, 1998.

[24] T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting. Numerical simu-
lations of complex fluid-fluid interface dynamics. European Physics Journal:
Special Topics, 222:177, 2013.

[25] R. S. Macomber. Complete introduction to modern NMR spectroscopy. Wi-
ley, New York, 1998.



Bibliography 131

[26] A. F. Craievich. Synchrotron SAXS Studies of Nanostructured Materials and
Colloidal Solutions: A Review. Materials Research, 5(1):1–11, 2002.

[27] G. Binnig, C. F. Quate, and C. Gerber. Atomic Force Microscope. Physical
Review Letters, 56(9):930–933, 1986.

[28] B.-H. Jo, L. Van Lerberghe, K. Motsegood, and D. Beebe. Three-dimensional
micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal
of Microelectromechanical Systems, 9(1):76–81, 2000.

[29] J. J. Allen. Micro Electro Mechanical System Design. CRC Press, 2005.

[30] S. E. Lyshevski. MEMS and NEMS: Systems, Devices, and Structures. CRC
Press, 2013.

[31] J. Anderson. Computational Fluid Dynamics. McGraw-Hill Education, 1995.

[32] T. J. Chung. Computational Fluid Dynamics. Cambridge University Press,
2010.

[33] G. A. Bird. Direct Simulation and the Boltzmann Equation. Physics of Fluids,
13(11):2676–2681, 1970.

[34] G. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows.
Clarendon, 1994.

[35] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method.
John Wiley & Sons, 2011.

[36] S. Wolfram. Cellular Automata and Complexity. Perseus Books Group, 1994.

[37] B. Chopard and M. Droz. Cellular Automata Modeling of Physical Systems.
Cambridge University Press, Cambridge, UK, 2005.

[38] D. A. Wolf-Gladrow. Lattice-Gas Cellular Automata and lattice Boltzmann
models. Springer, 2000.

[39] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-
Stokes equation. Physical Review Letters, 56(14):1505, 1986.

[40] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. Rivet.
Lattice gas hydrodynamics in two and three dimensions. Complex Systems,
1:649, 1987.

[41] G. R. McNamara and G. Zanetti. Use of the Boltzmann Equation to Simulate
Lattice-Gas Automata. Physical Review Letters, 61(20):2332–2335, 1988.

[42] F. J. Higuera and J. Jiménez. Boltzmann Approach to Lattice Gas Simulations.
Europhysics Letters, 9(7):663, 1989.



132 Bibliography

[43] Y. H. Qian, D. D’Humières, and P. Lallemand. Lattice BGK Models for Navier-
Stokes Equation. Europhysics Letters, 17(6):479, 1992.

[44] D. d’Humières. Generalized lattice Boltzmann equations. Rarefied gas dynam-
ics: theory and simulations. Progress in Astronautics and Aeronautics, 159,
1992.

[45] H. Chen, S. Chen, and W. H. Matthaeus. Recovery of the Navier-Stokes equa-
tions using a lattice-gas Boltzmann method. Physical Review A, 45(8):R5339–
R5342, 1992.

[46] S. Chen and G. D. Doolen. Lattice Boltzmann Method for Fluid Flows. Annual
Review of Fluid Mechanics, 30(1):329–364, 1998.

[47] S. Succi. The Lattice Boltzmann Equation: For Fluid Dynamics and Be-
yond. Oxford University Press, 2001.

[48] C. K. Aidun and J. R. Clausen. Lattice-Boltzmann Method for Complex Flows.
Annual Review of Fluid Mechanics, 42(1):439–472, 2010.

[49] X. He and L.-S. Luo. A priori derivation of the lattice Boltzmann equation.
Physical Review E, 55(6):R6333–R6336, 1997.

[50] H. Liu, Q. Kang, C. R. Leonardi, B. D. Jones, S. Schmieschek, A. Narváez, J. R.
Williams, A. J. Valocchi, and J. Harting. Multiphase lattice Boltzmann simu-
lations for porous media applications – a review. Computational Geoscience,
in press, 2015. arXiv: 1404.7523.

[51] H. Chen, S. Succi, and S. Orszag. Analysis of subgrid turbulence using the
lattice Boltzmann BGK kinetic equation. Physical Review E, 59:R2529, 1999.

[52] C. M. Teixeira. Incorporating turbulence models into the Lattice-Boltzmann
method. International Journal of Modern Physics C, 9(8):1159, 1998.

[53] H. Yu, S. S. Girimaji, and L.-S. Luo. DNS and LES of decaying isotropic
turbulence with and without frame rotation using lattice Boltzmann method.
Journal of Computational Physics, 209(2):599–616, 2005.

[54] J. Lätt, B. Chopard, S. Succi, and F. Toschi. Numerical analysis of the averaged
flow field in a turbulent lattice Boltzmann simulation. Physica A, 362(1):6–10,
2006.

[55] L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi, and
R. Tripiccione. High resolution numerical study of Rayleigh-Taylor turbulence
using a thermal lattice Boltzmann scheme. Physics of Fluids, 22(11):115112,
2010.

[56] H. Stone, A. Stroock, and A. Ajdari. Engineering flows in small devices -
Microfluidics Toward a Lab-on-a-Chip. Annual Review of Fluid Mechanics,
36:381–411, 2004.



Bibliography 133

[57] T. M. Squires and S. R. Quake. Microfluidics: Fluid physics at the nanoliter
scale. Reviews of Modern Physics, 77(3):977–1026, 2005.

[58] M. Ma and R. M. Hill. Superhydrophobic surfaces. Current Opinion in Colloid
& Interface Science, 11(4):193–202, 2006.

[59] P. Roach, N. J. Shirtcliffe, and M. I. Newton. Progess in superhydrophobic
surface development. Soft Matter, 4(2):224, 2008.

[60] B. Bhushan, M. Nosonovsky, and Y. C. Jung. Lotus Effect: Roughness-Induced
Superhydrophobic Surfaces. In Nanotribology and Nanomechanics, pages
995–1072. Springer Berlin Heidelberg, 2008.

[61] C. Kunert and J. Harting. Roughness induced apparent boundary slip in mi-
crochannel flows. Physical Review Letters, 99:176001, 2007.

[62] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle. Microfluidic
lab-on-a-chip platforms: requirements, characteristics and applications. Chem-
ical Society Reviews, 39(3):1153, 2010.

[63] K. Gupta, D.-H. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, K.-Y. Suh,
and A. Levchenko. Lab-on-a-chip devices as an emerging platform for stem cell
biology. Lab on a Chip, 10(16):2019, 2010.

[64] Y. Sun, R. Dhumpa, D. D. Bang, J. Hogberg, K. Handberg, and A. Wolff. A
lab-on-a-chip device for rapid identification of avian influenza viral RNA by
solid-phase PCR. Lab on a Chip, 11(8):1457, 2011.

[65] E. J. Smith, W. Xi, D. Makarov, I. Mönch, S. Harazim, V. A. Bolan̋os Quin̋ones,
C. K. Schmidt, Y. Mei, S. Sanchez, and O. G. Schmidt. Lab-in-a-tube: ultra-
compact components for on-chip capture and detection of individual micro-
/nanoorganisms. Lab on a Chip, 12(11):1917, 2012.

[66] K. Maenaka. MEMS inertial sensors and their applications. In 5th Interna-
tional Conference on Networked Sensing Systems, 2008. INSS 2008, pages
71–73, June 2008.

[67] D. Qin, Y. Xia, J. A. Rogers, R. J. Jackman, X.-M. Zhao, and G. M. White-
sides. Microfabrication, Microstructures and Microsystems. In P. A. Manz and
D. H. Becker, editors, Microsystem Technology in Chemistry and Life Sci-
ence, number 194 in Topics in Current Chemistry, pages 1–20. Springer Berlin
Heidelberg, 1998.

[68] T. Zech, G. Bohner, O. Laus, J. Klein, and M. Fischer. Design, fabrication, and
application of a massively parallel single-bead microreactor system for high-
throughput experimentation in heterogeneous catalysis. Review of Scientific
Instruments, 76(6):062215, 2005.



134 Bibliography

[69] C. Neto, D. R. Evans, E. Bonaccurso, H. J. Butt, and V. S. J. Craig. Bound-
ary slip in Newtonian liquids: a review of experimental studies. Reports on
Progress in Physics, 68:2859, 2005.

[70] A. M. Afonso, L. L. Ferrás, J. M. Nóbrega, M. A. Alves, and F. T. Pinho.
Pressure-driven electrokinetic slip flows of viscoelastic fluids in hydrophobic
microchannels. Microfluidics and Nanofluidics, 16(6):1131–1142, 2014.

[71] P. Dutta, A. Beskok, and T. Warburton. Electroosmotic flow control in complex
microgeometries. Journal of Microelectromechanical Systems, 11(1):36–44,
2002.

[72] T. Vestad, D. W. M. Marr, and J. Oakey. Flow control for capillary-pumped
microfluidic systems. Journal of Micromechanics and Microengineering,
14(11):1503, 2004.

[73] J. Bear. Dynamics of fluids in porous media. Elsevier (New York), 1972.

[74] M. Sahimi. Flow and Transport in Porous Media and Fractured Rock: From
Classical Methods to Modern Approaches. VCH, Weinheim, Germany, 1995.

[75] A. Hunt and R. Ewing. Percolation Theory for Flow in Porous Media.
Springer, 2009.

[76] L. Lake. Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs, 1989.

[77] F. Alonso-Marroquin, H. J. Herrmann, and I. Vardoulakis. Micromechanical
Investigation of soil plasticity: An investigation using a discrete model of polyg-
onal particles. In Proceeding of II international symposium of continuous
and discontinuous modeling of cohesive-frictional materials, Stuttgart, Ger-
many, 2004.

[78] M. H. Al-Dahhan, F. Larachi, M. P. Dudukovic, and A. Laurent. High-pressure
trickle-bed reactors : A review. Industrial & engineering chemistry research,
36(8):3292–3314, 1997.

[79] J. Zaman and A. Chakma. Inorganic membrane reactors. Journal of Membrane
Science, 92(1):1–28, 1994.

[80] J. Coronas and J. Santamaría. Catalytic reactors based on porous ceramic
membranes. Catalysis Today, 51(3-4):377–389, 1999.

[81] M. A. Mujeebu, M. Z. Abdullah, M. Z. A. Bakar, A. A. Mohamad, and M. K.
Abdullah. Applications of porous media combustion technology - A review.
Applied Energy, 86(9):1365–1375, 2009.

[82] J. C. Slattery. Flow of viscoelastic fluids through porous media. AIChE Jour-
nal, 13(6):1066–1071, 1967.



Bibliography 135

[83] J. Herzig, D. Leclerc, and P. Legoff. Flow of Suspensions Through Porous Media
- Application to Deep Filtration. Industrial and Engineering Chemistry,
62(5):8, 1970.

[84] E. Carrilho, A. W. Martinez, and G. M. Whitesides. Understanding Wax Print-
ing: A Simple Micropatterning Process for Paper-Based Microfluidics. Analyt-
ical chemistry, 81(16):7091–7095, 2009.

[85] A. K. Datta. Porous media approaches to studying simultaneous heat and
mass transfer in food processes. I: Problem formulations. Journal of Food
Engineering, 80(1):80–95, 2007.

[86] M. J. Rosen and J. T. Kunjappu. Surfactants and Interfacial Phenomena.
John Wiley & Sons, 2012.

[87] K. Jousten. Handbook of Vacuum Technology. John Wiley & Sons, 2008.

[88] B. Mertens, M. Weiss, H. Meiling, R. Klein, E. Louis, R. Kurt, M. Wedowski,
H. Trenkler, B. Wolschrijn, R. Jansen, A. van de Runstraat, R. Moors, K. Spee,
S. Ploger, and R. van de Kruijs. Progress in EUV optics lifetime expectations.
Microelectronic Engineering, 73-4(Sp. Iss. SI):16–22, 2004.

[89] M. A. Gallis, J. R. Torczynski, and D. J. Rader. An approach for simulating the
transport of spherical particles in a rarefied gas flow via the direct simulation
Monte Carlo method. Physics of Fluids, 13(11):3482–3492, 2001.

[90] D. A. Kinkead, A. Grayfer, and O. P. Kishkovich. Prevention of optics and resist
contamination in 300-mm lithography: improvements in chemical air filtration.
In SPIE Proceedings, volume 4344, pages 739–752, 2001.

[91] A. J. Dallas, K. M. Graham, M. Clarysse, and V. Fonderle. Characterization
and control of organic airborne contamination in lithographic processing. In
SPIE Proceedings, volume 4689, pages 1085–1109, 2002.

[92] F. Feuillebois, M. Bazant, and O. Vinogradova. Effective Slip over Superhy-
drophobic Surfaces in Thin Channels. Physical Review Letters, 102(2), 2009.

[93] E. Lauga and H. A. Stone. Effective slip in pressure-driven Stokes flow. Journal
of Fluid Mechanics, 489:55–77, 2003.

[94] N. V. Priezjev, A. A. Darhuber, and S. M. Troian. Slip behavior in liquid films
on surfaces of patterned wettability. Physical Review E, 71:041608, 2005.

[95] A. V. Belyaev and O. I. Vinogradova. Effective slip in pressure-driven flow past
super-hydrophobic stripes. Journal of Fluid Mechanics, 652:489–499, 2010.

[96] A. V. Belyaev and O. I. Vinogradova. Hydrodynamic interaction with super-
hydrophobic surfaces. 1004.0794, 2010.



136 Bibliography

[97] O. I. Vinogradova and A. V. Belyaev. Wetting, roughness and flow boundary
conditions. Journal of Physics: Condensed Matter, 23(18):184104, 2011.

[98] S. Schmieschek, A. V. Belyaev, J. Harting, and O. I. Vinogradova. Tensorial
slip of superhydrophobic channels. Physical Review E, 85:016324, 2012.

[99] L. Euler. Die Gesetze des Gleichgewichts und der Bewegung flüssiger Kör-
per. S.L. Crusius, 1806.

[100] O. Reynolds. An Experimental Investigation of the Circumstances Which De-
termine Whether the Motion of Water Shall Be Direct or Sinuous, and of the
Law of Resistance in Parallel Channels. Philosophical Transactions of the
Royal Society of London, 174:935–982, 1883.

[101] Y. Sone. Kinetic Theory and Fluid Dynamics. Springer Science & Business
Media, 2002.

[102] D. Bernoulli. Hydrodynamica. Johannis Reinholdi Dulseckeri, 1738.

[103] R. Clausius. Über die bewegende Kraft der Wärme und die Gesetze, welche
sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik,
155(3):368–397, 1850.

[104] R. Clausius. Über verschiedene für die Anwendung bequeme Formen der Haupt-
gleichungen der mechanischenWärmetheorie. Annalen der Physik, 201(7):353–
400, 1865.

[105] J. Maxwell. On stresses in rarified gases arising from inequalities of temperature.
Philosophical Transactions of the Royal Society of London, 70:287, 1879.

[106] J. W. Gibbs. Elementary Principles in Statistical Mechanics. C. Scribner’s
sons, 1902.

[107] J. W. Gibbs. Scientific papers. Longmans, Green, London, 1906.

[108] L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gas-
molekülen. In Kinetische Theorie II, number 67 in WTB Wissenschaftliche
Taschenbücher, pages 115–225. Vieweg+Teubner Verlag, 1970.

[109] A. Einstein. Investigations on the Theory of the Brownian Movement.
Courier Dover Publications, 1956.

[110] M. von Smoluchowski. Zur kinetischen Theorie der Brownschen Molekularbe-
wegung und der Suspensionen. Annalen der Physik, 326(14):756–780, 1906.

[111] S. Chapman. On the Law of Distribution of Molecular Velocities, and on
the Theory of Viscosity and Thermal Conduction, in a Non-Uniform Simple
Monatomic Gas. Philosophical Transactions of the Royal Society of London
A, 216(538-548):279–348, 1916.



Bibliography 137

[112] S. Chapman. On the Kinetic Theory of a Gas. Part II: A Composite Monatomic
Gas: Diffusion, Viscosity, and Thermal Conduction. Philosophical Transac-
tions of the Royal Society of London A, 217:115–197, 1918.

[113] D. Enskog. Kinetische Theorie der Vorgänge in mässig verdünnten Gasen.
Dissertation, Uppsala Universitet, 1917.

[114] P. L. Bhatnagar, E. P. Gross, and M. Krook. A Model for Collision Processes in
Gases. I. Small Amplitude Processes in Charged and Neutral One-Component
Systems. Physical Review, 94(3):511–525, 1954.

[115] H. Struchtrup. Macroscopic transport equations for rarefied gas flows. In
Macroscopic Transport Equations for Rarefied Gas Flows, Interaction of
Mechanics and Mathematics, pages 145–160. Springer Berlin Heidelberg, 2005.

[116] S. Jin and M. Slemrod. Regularization of the Burnett Equations via Relaxation.
Journal of Statistical Physics, 103(5-6):1009–1033, 2001.

[117] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics. I. General
Method. The Journal of Chemical Physics, 31(2):459–466, 1959.

[118] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.
Shirts, J. C. Smith, P. M. Kasson, D. v. d. Spoel, B. Hess, and E. Lindahl.
GROMACS 4.5: A high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics, page 845, 2013.

[119] M. T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. V. Kalé, R. D. Skeel,
and K. Schulten. NAMD: a Parallel, Object-Oriented Molecular Dynamics Pro-
gram. International Journal of High Performance Computing Applications,
10(4):251–268, 1996.

[120] S. Plimpton, P. Crozier, and A. Thompson. LAMMPS-large-scale
atomic/molecular massively parallel simulator. Sandia National Laboratories,
2007.

[121] L. Rekvig and D. Frenkel. Molecular simulations of droplet coalescence
in oil/water/surfactant systems. The Journal of Chemical Physics,
127(13):134701, 2007.

[122] D. C. Wilcox. Turbulence Modeling for CFD. DCW industries, La Canada,
CA, 1998.

[123] C. Hirsch. Numerical Computation of Internal and External Flows: The
Fundamentals of Computational Fluid Dynamics: The Fundamentals of
Computational Fluid Dynamics. Butterworth-Heinemann, 2007.

[124] ANSYS 16.0 Capabilities - Brochure, 2015.
http://www.ansys.com/Products/ANSYS+16.0+Release+Highlights.



138 Bibliography

[125] H. Jasak, A. Jemcov, and Z. Tukovic. OpenFOAM: A C++ library for com-
plex physics simulations. In International workshop on coupled methods in
numerical dynamics, volume 1000, pages 1–20, 2007.

[126] A. Comsol. COMSOL multiphysics user’s guide. Version: September, 2005.

[127] P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating Microscopic Hydrody-
namic Phenomena with Dissipative Particle Dynamics. Europhysics Letters,
19(3):155, 1992.

[128] A. Malevanets and R. Kapral. Mesoscopic model for solvent dynamics. The
Journal of Chemical Physics, 110(17):8605, 1999.

[129] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory
and application to non-spherical stars. Monthly Notices of the Royal Astro-
nomical Society, 181(3):375–389, 1977.

[130] L. Landau and E. Lifshitz. Fluid mechanics. Pergamon Press, 1959.

[131] J.-L. Barrat and J.-P. Hansen. Basic Concepts for Simple and Complex
Liquids. Cambridge University Press, 2003.

[132] C. Cercignani. The Boltzmann equation and its applications, volume 67 of
Applied Mathematical Sciences. Springer, New York, NY, 1988.

[133] L. Landau and E. Lifshitz. Statistical Physics Part 1, volume 5 of Course of
Theoretical Physics. Pergamon Press, 1980.

[134] J. Maxwell. Theory of Heat. Courier Dover Publications, 2012.

[135] R. K. Agarwal, K.-Y. Yun, and R. Balakrishnan. Beyond Navier-Stokes: Bur-
nett equations for flows in the continuum-transition regime. Physics of Fluids,
13(10):3061–3085, 2001.

[136] Self-diffusion coefficient. In M. Nič, J. Jirát, B. Košata, A. Jenkins, and A. Mc-
Naught, editors, IUPAC Compendium of Chemical Terminology. IUPAC,
Research Triagle Park, NC, 2.1.0 edition, June 2009.

[137] Z. Guo, C. Zheng, and B. Shi. Discrete lattice effects on the forcing term in the
lattice Boltzmann method. Physical Review E, 65(4):046308, 2002.

[138] R. Mei, D. Yu, W. Shyy, and L.-S. Luo. Force evaluation in the lattice Boltz-
mann method involving curved geometry. Physical Review E, 65(4):041203,
2002.

[139] A. Narváez, T. Zauner, F. Raischel, R. Hilfer, and J. Harting. Quantitative anal-
ysis of numerical estimates for the permeability of porous media from lattice-
Boltzmann simulations. Journal of Statistical Mechanics: Theory and Ex-
periment, 2010(11):P11026, 2010.



Bibliography 139

[140] H. Huang, D. T. Thorne, M. G. Schaap, and M. C. Sukop. Proposed approxi-
mation for contact angles in Shan-and-Chen-type multicomponent multiphase
lattice Boltzmann models. Physical Review E, 76(6):066701, 2007.

[141] S. Schmieschek and J. Harting. Contact angle determination in multicomponent
lattice Boltzmann simulations. Communications in computational physics,
9:1165–1178, 2011.

[142] J. S. Rowlinson and B. Widom. Molecular Theory of Capillarity. Dover
Publications, 2002.

[143] P.-G. d. Gennes, F. Brochard-Wyart, and D. Quere. Capillarity and Wetting
Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science & Business
Media, 2004.

[144] C. L. M. H. Navier. Mémoire sur les lois du mouvement des fluides. Mémoires
de l’Académie Royale des Sciences de l’Institut de France, 6:389–440, 1823.

[145] H. Darcy. Les fontaines publiques de la ville de Dijon. Dalmont, Paris, 1856.

[146] P. Toledo. Fluids in Porous Media: Porosimetry, Pore Structure, Flow and
Transport. PhD thesis, Chemical Engineering, University of Minnesota, 1990.

[147] F. Dullien. Porous Media: Fluid Transport and Pore Structure. Academic
Press, San Diego, 2 edition, 1992.

[148] N. G. Hadjiconstantinou. The limits of Navier-Stokes theory and kinetic ex-
tensions for describing small-scale gaseous hydrodynamics. Physics of Fluids,
18(11):111301, 2006.

[149] S. Chapman and T. G. Cowling. The mathematical theory of non-uniform
gases: an account of the kinetic theory of viscosity, thermal conduction
and diffusion in gases. Cambridge university press, 1991.

[150] E. A. Mason, A. P. Malinauskas, and R. B. Evans. Flow and Diffusion of Gases
in Porous Media. The Journal of Chemical Physics, 46(8):3199–3216, 1967.

[151] H. Struchtrup and P. Taheri. Macroscopic transport models for rarefied gas
flows: a brief review. IMA Journal of Applied Mathematics, 76(5):672–697,
2011.

[152] J. Gibbons. Collisionless Boltzmann equations and integrable moment equa-
tions. Physica D, 3(3):503 – 511, 1981.

[153] R. Benzi, S. Succi, and M. Vergassola. The lattice Boltzmann equation: theory
and applications. Physics Reports, 222(3):145–197, 1992.

[154] X. He and L.-S. Luo. Theory of the lattice Boltzmann method: from the
Boltzmann equation to the lattice Boltzmann equation. Physical Review E,
56, 1997.



140 Bibliography

[155] K. K. Mattila, D. N. Siebert, L. A. Hegele, and P. C. Philippi. High-order
lattice-Boltzmann equations and stencils for multiphase models. International
Journal of Modern Physics C, 24(12):1340006, 2013.

[156] M. Hecht and J. Harting. Implementation of on-site velocity boundary condi-
tions for D3q19 lattice Boltzmann simulations. Journal of Statistical Mechan-
ics: Theory and Experiment, 2010(01):P01018, 2010.

[157] M. Sbragaglia and X. Shan. Consistent pseudopotential interactions in lattice
Boltzmann models. Physical Review E, 84(3):036703, 2011.

[158] D. d’Humières. Multiple-relaxation-time lattice Boltzmann models in three
dimensions. Philosophical Transactions of the Royal Society of London A,
360(1792):437–451, 2002.

[159] K. N. Premnath and J. Abraham. Three-dimensional multi-relaxation time
(MRT) lattice-Boltzmann models for multiphase flow. Journal of Computa-
tional Physics, 224(2):539–559, 2007.

[160] C. Pan, L.-S. Luo, and C. T. Miller. An evaluation of lattice Boltzmann schemes
for porous medium flow simulation. Computers & Fluids, 35(8-9):898–909,
2006.

[161] A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti. Lattice Boltz-
mann model of immiscible fluids. Physical Review A, 43(8):4320–4327, 1991.

[162] D. Rothman and J. Keller. Immiscible cellular-automaton fluids. Journal of
Statistical Physics, 52(3-4):1119, 1988.

[163] X. Shan and H. Chen. Lattice Boltzmann model for simulating flows with
multiple phases and components. Physical Review E, 47(3):1815–1819, 1993.

[164] X. Shan and H. Chen. Simulation of nonideal gases and liquid-gas phase transi-
tions by the lattice Boltzmann equation. Physical Review E, 49(4):2941–2948,
1994.

[165] M. R. Swift, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simulation
of nonideal fluids. Physical Review E, 75(5):830, 1995.

[166] E. Orlandini, M. R. Swift, and J. M. Yeomans. A lattice Boltzmann model of
binary-fluid mixtures. Europhysics Letters, 32(6):463, 1995.

[167] X. He, X. Shan, and G. D. Doolen. Discrete Boltzmann equation model for
nonideal gases. Physical Review E, 57(1):R13–R16, 1998.

[168] X. He, S. Chen, and R. Zhang. A Lattice Boltzmann Scheme for Incompressible
Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instabil-
ity. Journal of Computational Physics, 152(2):642–663, 1999.



Bibliography 141

[169] D. Grunau, S. Chen, and K. Eggert. A Lattice Boltzmann model for multiphase
fluid flows. Physics of Fluids A, 5(10):2557–2562, 1993.

[170] S. V. Lishchuk, C. M. Care, and I. Halliday. Lattice Boltzmann algorithm
for surface tension with greatly reduced microcurrents. Physical Review E,
67:036701, 2003.

[171] M. Latva-Kokko and D. H. Rothman. Diffusion properties of gradient-based
lattice Boltzmann models of immiscible fluids. Physical Review E, 71:056702,
2005.

[172] T. Reis and T. N. Phillips. Lattice Boltzmann model for simulating immiscible
two-phase flows. Journal of Physics A, 40(14):4033, 2007.

[173] J. Chin, E. S. Boek, and P. V. Coveney. Lattice-Boltzmann simulation of the
flow of binary immiscible fluids with different viscosities using the Shan-Chen
microscopic interaction model. Proceedings of the Royal Society of London
A, 360:547, 2002.

[174] Q. Kang, D. Zhang, S. Chen, and X. He. Lattice Boltzmann simulation of
chemical dissolution in porous media. Physical Review E, 65(3):036318, 2002.

[175] P. Yuan and L. Schaefer. Equations of state in a lattice Boltzmann model.
Physics of Fluids, 18(4):042101, 2006.

[176] R. S. Qin. Mesoscopic interparticle potentials in the lattice Boltzmann equation
for multiphase fluids. Physical Review E, 73(6):066703, 2006.

[177] G. Falcucci, G. Bella, G. Shiatti, S. Chibbaro, M. Sbragaglia, and S. Succi.
Lattice Boltzmann Models with Mid-Range Interactions. Communications in
computational physics, 2:1071–1084, 2007.

[178] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi. Gen-
eralized lattice Boltzmann method with multirange pseudopotential. Physical
Review E, 75(2):026702, 2007.

[179] T. Inamuro, N. Konishi, and F. Ogino. A Galilean invariant model of the
lattice Boltzmann method for multiphase fluid flows using free-energy approach.
Computer Physics Communications, 129(1-3):32–45, 2000.

[180] A. N. Kalarakis, V. N. Burganos, and A. C. Payatakes. Galilean-invariant
lattice-Boltzmann simulation of liquid-vapor interface dynamics. Physical Re-
view E, 65(5):056702, 2002.

[181] H. W. Zheng, C. Shu, and Y. T. Chew. A lattice Boltzmann model for mul-
tiphase flows with large density ratio. Journal of Computational Physics,
218(1):353–371, 2006.



142 Bibliography

[182] T. Inamuro, T. Ogata, S. Tajima, and N. Konishi. A lattice Boltzmann method
for incompressible two-phase flows with large density differences. Journal of
Computational Physics, 198(2):628–644, 2004.

[183] T. Lee and C.-L. Lin. A stable discretization of the lattice Boltzmann equation
for simulation of incompressible two-phase flows at high density ratio. Journal
of Computational Physics, 206(1):16–47, 2005.

[184] S. Mukherjee and J. Abraham. Lattice Boltzmann simulations of two-phase
flow with high density ratio in axially symmetric geometry. Physical Review
E, 75(2):026701, 2007.

[185] T. Krüger, F. Varnik, and D. Raabe. Efficient and accurate simulations of
deformable particles immersed in a fluid using a combined immersed boundary
lattice Boltzmann finite element method. Computers & Mathematics with
Applications, 61(12):3485–3505, 2011.

[186] H. Liu, A. J. Valocchi, and Q. Kang. Three-dimensional lattice Boltz-
mann model for immiscible two-phase flow simulations. Physical Review E,
85(4):046309, 2012.

[187] M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans. Lattice-
Boltzmann simulations of liquid-gas and binary fluid mixtures. Physical Review
E, 54(5):5041, 1996.

[188] M. Sbragaglia, H. Chen, X. Shan, and S. Succi. Continuum free-energy formu-
lation for a class of lattice Boltzmann multiphase models. Europhysics Letters,
86(2):24005, 2009.

[189] S. Chibbaro, G. Falcucci, G. Chiatti, H. Chen, X. Shan, and S. Succi. Lattice
Boltzmann models for nonideal fluids with arrested phase-separation. Physical
Review E, 77(3):036705, 2008.

[190] X. Shan. Pressure tensor calculation in a class of nonideal gas lattice Boltzmann
models. Physical Review E, 77(6):066702, 2008.

[191] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi. Mesoscopic mod-
eling of a two-phase flow in the presence of boundaries: The contact angle.
Physical Review E, 74:021509, 2006.

[192] C. Y. Lim, C. Shu, X. D. Niu, and Y. T. Chew. Application of lattice Boltzmann
method to simulate microchannel flows. Physics of Fluids, 14(7):2299–2308,
2002.

[193] X. Nie, G. D. Doolen, and S. Chen. Lattice-Boltzmann Simulations of fluid
flows in MEMS. Journal of Statistical Physics, 107(112):279, 2002.



Bibliography 143

[194] M. Sbragaglia and S. Succi. Analytical calculation of slip flow in lattice
Boltzmann models with kinetic boundary conditions. Physics of Fluids,
17(9):093602, 2005.

[195] S. Succi. Mesoscopic modeling of slip motion at fluid-solid interfaces with het-
erogeneous catalysis. Physical Review Letters, 89(6):064502, 2002.

[196] S. Ansumali and I. V. Karlin. Kinetic boundary conditions in the lattice Boltz-
mann method. Physical Review E, 66(2):026311, 2002.

[197] V. Sofonea and R. F. Sekerka. Diffuse-reflection boundary conditions for a
thermal lattice Boltzmann model in two dimensions: Evidence of temperature
jump and slip velocity in microchannels. Physical Review E, 71(6):066709,
2005.

[198] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, and F. Toschi. Surface roughness-
hydrophobicity coupling in microchannel and nanochannel flows. Physical Re-
view Letters, 97:204503, 2006.

[199] J. Harting, C. Kunert, and H. J. Herrmann. Lattice Boltzmann simulations of
apparent slip in hydrophobic microchannels. Europhysics Letters, 75:328–334,
2006.

[200] M. Bouzidi, M. Firdaouss, and P. Lallemand. Momentum transfer of a
Boltzmann-lattice fluid with boundaries. Physics of Fluids, 13(11):3452–3459,
2001.

[201] R. Verberg and A. Ladd. Accuracy and stability of a lattice-Boltzmann model
with subgrid scale boundary conditions. Physical Review E, 65:016701, 2001.

[202] A. J. C. Ladd. Numerical simulations of particulate suspensions via a dis-
cretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid
Mechanics, 271:285–309, 1994.

[203] A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized
Boltzmann equation. Part 2. Numerical results. Journal of Fluid Mechanics,
271:311–339, 1994.

[204] P. Lallemand and L. S. Luo. Lattice Boltzmann method for moving boundaries.
Journal of Computational Physics, 184(2):406–421, 2003.

[205] R. Mei, L.-S. Luo, and W. Shyy. An Accurate Curved Boundary Treat-
ment in the Lattice Boltzmann Method. Journal of Computational Physics,
155(2):307–330, 1999.

[206] R. Verberg and A. J. C. Ladd. Lattice-Boltzmann Model with Sub-Grid-Scale
Boundary Conditions. Physical Review Letters, 84(10):2148–2151, 2000.



144 Bibliography

[207] I. Ginzburg and D. D’Humières. Multireflection boundary conditions for lattice
Boltzmann models. Physical Review E, 68(6):066614, 2003.

[208] Z. Guo, T. S. Zhao, and Y. Shi. Physical symmetry, spatial accuracy, and
relaxation time of the lattice Boltzmann equation for microgas flows. Journal
of Applied Physics, 99(7):074903, 2006.

[209] Z. Guo and C. Zheng. Analysis of lattice Boltzmann equation for microscale gas
flows: Relaxation times, boundary conditions and the Knudsen layer. Interna-
tional Journal of Computational Fluid Dynamics, 22(7):465–473, 2008.

[210] T. Lee and C.-L. Lin. Rarefaction and compressibility effects of the lattice-
Boltzmann-equation method in a gas microchannel. Physical Review E,
71(4):046706, 2005.

[211] F. Toschi and S. Succi. Lattice Boltzmann method at finite Knudsen numbers.
Europhysics Letters, 69(4):549, 2005.

[212] S. H. Kim, H. Pitsch, and I. D. Boyd. Slip velocity and Knudsen layer in the lat-
tice Boltzmann method for microscale flows. Physical Review E, 77(2):026704,
2008.

[213] G. H. Tang, W. Q. Tao, and Y. L. He. Lattice Boltzmann method for gaseous
microflows using kinetic theory boundary conditions. Physics of Fluids,
17(5):058101, 2005.

[214] X.-D. Niu, S.-A. Hyodo, T. Munekata, and K. Suga. Kinetic lattice Boltzmann
method for microscale gas flows: Issues on boundary condition, relaxation time,
and regularization. Physical Review E, 76(3):036711, 2007.

[215] Y.-H. Zhang, X.-J. Gu, R. Barber, and D. Emerson. Capturing Knudsen layer
phenomena using a lattice Boltzmann model. Physical Review E, 74(4):046704,
2006.

[216] R. Cornubert, D. d’Humières, and D. Levermore. A Knudsen layer theory for
lattice gases. Physica D, 47(1-2):241–259, 1991.

[217] P. Lavallée, J. P. Boon, and A. Noullez. Boundaries in lattice gas flows. Physica
D, 47(1-2):233–240, 1991.

[218] D. P. Ziegler. Boundary conditions for lattice Boltzmann simulations. Journal
of Statistical Physics, 71(5-6):1171–1177, 1993.

[219] I. Ginzburg and P. Adler. Boundary flow condition analysis for the three di-
mensional lattice Boltzmann model. Journal Physique II, 4, 1994.

[220] M. A. Gallivan, D. R. Noble, J. G. Georgiadis, and R. O. Buckius. An evaluation
of the bounce-back boundary condition for lattice Boltzmann simulations. In-
ternational Journal for Numerical Methods in Fluids, 25(3):249–263, 1997.



Bibliography 145

[221] X. He, Q. Zou, L.-S. Luo, and M. Dembo. Analytic solutions and analysis on
non-slip boundary conditions for the lattice Boltzmann BGK model. Journal
of Statistical Physics, 87(1/2):115–136, 1997.

[222] D. D’Humières and I. Ginzburg. Viscosity independent numerical errors for Lat-
tice Boltzmann models: From recurrence equations to "magic" collision num-
bers. Computers & Mathematics with Applications, 58(5):823–840, 2009.

[223] I. Ginzburg. Generic boundary conditions for lattice Boltzmann models and
their application to advection and anisotropic dispersion equations. Advances
in Water Resources, 28(11):1196–1216, 2005.

[224] N. S. Martys and H. Chen. Simulation of multicomponent fluids in complex
three-dimensional geometries by the Lattice Boltzmann method. Physical Re-
view E, 53(1):743, 1996.

[225] J. Harting, C. Kunert, and J. Hyväluoma. Lattice Boltzmann simulations in
microfluidics: probing the no-slip boundary condition in hydrophobic, rough,
and surface nanobubble laden microchannels. Microfluidics and Nanofluidics,
8(1):1–10, 2010.

[226] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model. Physics of Fluids, 9(6):1591–1598, 1997.

[227] M. E. Kutay, A. H. Aydilek, and E. Masad. Laboratory validation of lattice
Boltzmann method for modeling pore-scale flow in granular materials. Com-
puters and Geotechnics, 33(8):381–395, 2006.

[228] K. Mattila, J. Hyväluoma, and T. Rossi. Mass-flux-based outlet boundary con-
ditions for the lattice Boltzmann method. Journal of Statistical Mechanics:
Theory and Experiment, 2009(06):P06015, 2009.

[229] N. K. Ahmed and M. Hecht. A boundary condition with adjustable slip length
for lattice Boltzmann simulations. Journal of Statistical Mechanics: Theory
and Experiment, 2009(09):P09017, 2009.

[230] Y. Zhang, R. Qin, and D. R. Emerson. Lattice Boltzmann simulation of rarefied
gas flows in microchannels. Physical Review E, 71(4):047702, 2005.

[231] S. Ansumali, I. Karlin, C. Frouzakis, and K. Boulouchos. Entropic lattice Boltz-
mann method for microflows. Physica A, 359:289–305, 2006.

[232] E. S. Asmolov, S. Schmieschek, J. Harting, and O. I. Vinogradova. Flow past
superhydrophobic surfaces with cosine variation in local slip length. Physical
Review E, 87(2):023005, 2013.

[233] A. L. Dubov, S. Schmieschek, E. S. Asmolov, J. Harting, and O. I. Vino-
gradova. Lattice-Boltzmann simulations of the drag force on a sphere approach-
ing a superhydrophobic striped plane. The Journal of Chemical Physics,
140(3):034707, 2014.



146 Bibliography

[234] E. Lauga, M. Brenner, and H. Stone. Microfluidics: The No-Slip Boundary Con-
dition. In P. C. T. Dr, P. A. L. Y. Dr, and P. J. F. F. Dr, editors, Springer Hand-
book of Experimental Fluid Mechanics, pages 1219–1240. Springer Berlin Hei-
delberg, 2007.

[235] A. Lafuma and D. Quéré. Superhydrophobic states. Nature Materials, 2:457,
2003.

[236] M. Z. Bazant and O. I. Vinogradova. Tensorial hydrodynamic slip. Journal of
Fluid Mechanics, 613:125–134, 2008.

[237] L. Bocquet and J. L. Barrat. Flow boundary conditions from nano- to micro-
scales. Soft Matter, 3:685–693, 2007.

[238] A. B. D. Cassie and S. Baxter. Wettability of porous surfaces. Transactions
of the Faraday Society, 40(0):546–551, 1944.

[239] A. B. D. Cassie. Contact angles. Discussions of the Faraday Society, 3(0):11–
16, 1948.

[240] P. Joseph, C. Cottin-Bizonne, J. M. Benoit, C. Ybert, C. Journet, P. Tabeling,
and L. Bocquet. Slippage of water past superhydrophobic carbon nanotube
forests in microchannels. Physical Review Letters, 97:156104, 2006.

[241] E. S. Asmolov, A. V. Belyaev, and O. I. Vinogradova. Drag force on a sphere
moving toward an anisotropic superhydrophobic plane. Physical Review E,
84:026330, 2011.

[242] F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova. Transverse flow in thin
superhydrophobic channels. Physical Review E, 82:055301(R), 2010.

[243] C. Ybert, C. Barentin, C. Cottin-Bizonne, P. M. Joseph, and L. Bocquet.
Achieving large slip with superhydrophobic surfaces: Scaling laws for generic
geometries. Physics of Fluids, 19:123601, 2007.

[244] K. Kamrin, M. Z. Bazant, and H. A. Stone. Effective slip boundary conditions
for arbitrary periodic surfaces: the surface mobility tensor. Journal of Fluid
Mechanics, 658:409–437, 2010.

[245] E. S. Asmolov, J. Zhou, F. Schmid, and O. I. Vinogradova. Effective slip-length
tensor for a flow over weakly slipping stripes. Physical Review E, 88(2):023004,
2013.

[246] D. Andrienko, P. Patricio, and O. I. Vinogradova. Capillary bridging and long-
range attractive forces in a mean-field approach. The Journal of Chemical
Physics, 121:4414–4423, 2004.



Bibliography 147

[247] G. E. Yakubov, H. J. Butt, and O. I. Vinogradova. Interaction Forces between
Hydrophobic Surfaces. Attractive Jump as an Indication of Formation of "Sta-
ble" Submicrocavities. The Journal of Physical Chemistry B, 104(15):3407
– 3410, 2000.

[248] J. W. G. Tyrrell and P. Attard. Images of Nanobubbles on Hydrophobic Surfaces
and Their Interactions. Physical Review Letters, 87(17):176104, 2001.

[249] J. Hyväluoma and J. Harting. Slip flow over structured surfaces with entrapped
microbubbles. Submitted to Phys. Rev. Lett., arXiv:0801.1448, 2008.

[250] A. M. J. Davis and E. Lauga. Geometric transition in friction for flow over a
bubble mattress. Physics of Fluids, 21:011701, 2009.

[251] M. Sbragaglia and A. Prosperetti. A note on the effective slip properties for mi-
crochannel flows with ultrahydrophobic surfaces. Physics of Fluids, 19:043603,
2007.

[252] S. S. Bahga, O. I. Vinogradova, and M. Z. Bazant. Anisotropic electro-osmotic
flow over super-hydrophobic surfaces. Journal of Fluid Mechanics, 614, 2009.
in press.

[253] A. V. Belyaev and O. I. Vinogradova. Electro-osmosis on anisotropic super-
hydrophobic surfaces. Physical Review Letters, 107:098301, 2011.

[254] E. S. Asmolov and O. I. Vinogradova. Effective slip boundary conditions for
arbitrary one-dimensional surfaces. Journal of Fluid Mechanics, 706:108–117,
2012.

[255] L. Zhu, D. Tretheway, L. Petzold, and C. Meinhart. Simulation of fluid slip at
3d hydrophobic microchannel walls by the lattice Boltzmann method. Journal
of Computational Physics, 202:181, 2005.

[256] J. Zhang and D. Y. Kwok. Apparent slip over a solid-liquid interface with a
no-slip boundary condition. Physical Review E, 70:056701, 2004.

[257] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi. Mesoscopic two-
phase model for describing apparent slip in micro-channel flows. Europhysics
Letters, 74(4):651, 2006.

[258] X. D. Niu, C. Shu, and Y. T. Chew. A lattice Boltzmann BGK model for
simulation of micro flows. Europhysics Letters, 67:600, 2004.

[259] A. A. Alexeyev and O. I. Vinogradova. Flow of a Liquid in a Nonuniformly
Hydrophobized Capillary. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 108:173 – 179, 1996.

[260] S. Frijters. Liquid-liquid and liquid-solid interactions on the mesoscale. 2015.



148 Bibliography

[261] S. Schmieschek, A. Narváez Salazar, and J. Harting. Multi relaxation time
lattice Boltzmann simulations of multiple component fluid flows in porous me-
dia. In M. R. W. Nagel, D. Kröner, editor, High Performance Computing in
Science and Engineering ’12, page 39. Springer, 2013.

[262] A. Fasano. Complex Flows in Industrial Processes. Springer Science & Busi-
ness Media, 2000.

[263] W. Shyy and R. Narayanan. Fluid Dynamics at Interfaces. Cambridge Uni-
versity Press, 1999.

[264] H.-J. Butt, K. Graf, and M. Kappl. Physics and Chemistry of Interfaces.
Wiley-VCH, 2003.

[265] D. Myers. Surfactant Science and Technology. John Wiley & Sons, 2005.

[266] S. Frijters, F. Günther, and J. Harting. Effects of nanoparticles and surfactant
on droplets in shear flow. Soft Matter, 8(24):6542, 2012.

[267] F. Günther, F. Janoschek, S. Frijters, and J. Harting. Lattice Boltzmann sim-
ulations of anisotropic particles at liquid interfaces. Computers & Fluids,
80:184–189, 2013.

[268] G. B. Davies, T. Krüger, P. V. Coveney, J. Harting, and F. Bresme. Assembling
Ellipsoidal Particles at Fluid Interfaces Using Switchable Dipolar Capillary In-
teractions. Advanced Materials, 26(39):6715–6719, 2014.

[269] R. Adhikari, K. Stratford, M. E. Cates, and A. J. Wagner. Fluctuating lattice
Boltzmann. Europhysics Letters, 71:473, 2005.

[270] B. Dünweg, U. D. Schiller, and A. J. C. Ladd. Statistical mechanics of the
fluctuating lattice Boltzmann equation. Physical Review E, 76(3):036704, 2007.

[271] M. Gross, R. Adhikari, M. E. Cates, and F. Varnik. Thermal fluctuations in the
lattice Boltzmann method for nonideal fluids. Physical Review E, 82(5):056714,
2010.

[272] M. Nekovee, P. V. Coveney, H. Chen, and B. M. Boghosian. Lattice-Boltzmann
model for interacting amphiphilic fluids. Physical Review E, 62(6):8282–8294,
2000.

[273] H. Chen, B. Boghosian, P. Coveney, and M. Nekovee. A ternary lattice-
Boltzmann model for amphiphilic fluids. Proceedings of the Royal Society
of London A, 456:2043, 2000.

[274] J. B. Grotberg and D. P. G. III. A synopsis of surfactant spreading research.
Journal of Colloid and Interface Science, 178:377, 1996.



Bibliography 149

[275] C. Pozrikidis. A finite-element method for interfacial surfactant transport, with
application to the flow-induced deformation of a viscous drop. J. Eng. Math.,
49(2):163–180, 2004.

[276] A. J. James and J. Lowengrub. A surfactant-conserving volume-of-fluid method
for interfacial flows with insoluble surfactant. Journal of Computational
Physics, 201(2):685 – 722, 2004.

[277] R. van der Sman and S. van der Graaf. Diffuse interface model of surfactant
adsorption onto flat and droplet interfaces. Rheologica Acta, 46:3–11, 2006.

[278] H. Liu and Y. Zhang. Phase-field modeling droplet dynamics with soluble
surfactants. Journal of Computational Physics, 229(4):9166–9187, 2010.

[279] O. Theissen, G. Gompper, and D. M. Kroll. Lattice-Boltzmann Model of am-
phiphilic systems. Europhysics Letters, 42:419, 1998.

[280] P. J. Love, M. Nekovee, P. V. Coveney, J. Chin, N. González-Segredo, and
J. M. R. Martin. Simulations of amphiphilic fluids using mesoscale lattice-
Boltzmann and lattice-gas methods. Computer Physics Communications,
153(3):340, 2003.

[281] J. Harting, J. Chin, M. Venturoli, and P. V. Coveney. Large-scale lattice Boltz-
mann simulations of complex fluids: advances through the advent of computa-
tional grids. Philosophical Transactions of the Royal Society of London A,
363:1895, 2005.

[282] S. Khirevich, I. Ginzburg, and U. Tallarek. Coarse- and fine-grid numerical
behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere
packings. Journal of Computational Physics, 281:708–742, 2015.

[283] X. Shan and G. Doolen. Multicomponent lattice-Boltzmann model with inter-
particle interaction. Journal of Statistical Physics, 81(112):379, 1995.

[284] I. Ginzburg. Equilibrium-type and link-type lattice Boltzmann models for
generic advection and anisotropic-dispersion equation. Advances in Water
Resources, 28(11):1171–1195, 2005.

[285] L.-S. Luo, W. Liao, X. Chen, Y. Peng, and W. Zhang. Numerics of the lat-
tice Boltzmann method: Effects of collision models on the lattice Boltzmann
simulations. Physical Review E, 83(5):056710, 2011.

[286] F. J. Higuera, S. Succi, and R. Benzi. Lattice gas dynamics with enhanced
collisions. Europhysics Letters, 9(4):345, 1989.

[287] P. Lallemand and F. Dubois. Some results on energy-conserving lattice Boltz-
mann models. Computers & Mathematics with Applications, 65(6):831–844,
2013.



150 Bibliography

[288] A. Sarkar, A. Narváez, and J. Harting. Advection versus diffusion: A multicom-
ponent lattice Boltzmann study of enhanced fluid mixing in passive micromix-
ers. In preparation, 2015.

[289] K. Wieghardt. Theoretische Strömungslehre. Göttinger Klassik, 1957.

[290] K. Vafai. Handbook of Porous Media, Second Edition. CRC Press, 2005.

[291] F. Dullien. Porous Media Fluid Transport and Pore Structure. Elsevier,
2012.

[292] D. K. N. Sinz, M. Hanyak, J. C. H. Zeegers, and A. A. Darhuber. Insoluble sur-
factant spreading along thin liquid films confined by chemical surface patterns.
Physical Chemistry Chemical Physics, 13(20):9768, 2011.

[293] M. Hanyak, D. K. N. Sinz, and A. A. Darhuber. Soluble surfactant spreading
on spatially confined thin liquid films. Soft Matter, 8(29):7660, 2012.

[294] W. H. Fissell, A. T. Conlisk, S. Datta, J. M. Magistrelli, J. T. Glass, A. J.
Fleischman, and S. Roy. High Knudsen number fluid flow at near-standard
temperature and pressure conditions using precision nanochannels. Microflu-
idics and Nanofluidics, 10(2):425–433, 2011.

[295] G. Karniadakis, A. Beskok, and N. Aluru. Microflows and Nanoflows. Springer
Science+Business Media Inc., 2000.

[296] T. J. Burns, R. W. Davis, and E. F. Moore. Dynamical Systems Approach
to Particle Transport Modeling in Dilute Gas-Particle Flows with Application
to a Chemical Vapor Deposition Reactor. Aerosol Science and Technology,
26(3):193–211, 1997.

[297] C. Liu and Z. Li. Molecular Dynamics Simulation of Composite Nanochannels
as Nanopumps Driven by Symmetric Temperature Gradients. Physical Review
Letters, 105(17):174501, 2010.

[298] Y. Li, J. Xu, and D. Li. Molecular dynamics simulation of nanoscale liquid
flows. Microfluidics and Nanofluidics, 9(6):1011–1031, 2010.

[299] J. E. Broadwell. Study of rarefied shear flow by the discrete velocity method.
Journal of Fluid Mechanics, 19(03):401–414, 1964.

[300] E. Oran. DIRECT SIMULATION MONTE CARLO: Recent Advances and
Applications. Annu. Rev. Fluid Mech., 30(1):403, 1998.

[301] G. Tang, W. Tao, and Y. He. Lattice Boltzmann method for simulating gas flow
in microchannels. International Journal of Modern Physics B, 15(2):335–347,
2004.



Bibliography 151

[302] X. Shan, X.-F. Yuan, and H. Chen. Kinetic theory representation of hydrody-
namics: a way beyond the Navier&#8211;Stokes equation. Journal of Fluid
Mechanics, 550:413–441, 2006.

[303] J. Fan and C. Shen. Statistical simulation of low-speed rarefied gas flows.
Journal of Computational Physics, 167(2):393–412, 2001.

[304] J. Chun and D. Koch. A direct simulation Monte Carlo method for rarefied gas
flows in the limit of small Mach number. Physics of Fluids, 17(10), 2005.

[305] R. Roveda, D. Goldstein, and P. Varghese. Hybrid Euler/particle approach for
continuum/rarefied flows. Journal of Spacecraft and Rockets, 35(3):258–265,
1998.

[306] H. Wijesinghe, R. Hornung, A. Garcia, and N. Hadjiconstantinou. Three-
dimensional hybrid continuum-atomistic simulations for multiscale hydrody-
namics. Journal of Fluids Engineering - Transactions of the ASME,
126(5):768–777, 2004.

[307] J. M. Burt and I. D. Boyd. A hybrid particle approach for continuum and
rarefied flow simulation. Journal of Computational Physics, 228(2):460–475,
2009.

[308] S. V. Nedea, A. J. H. Frijns, A. A. van Steenhoven, A. J. Markvoort, and
P. A. J. Hilbers. Hybrid method coupling molecular dynamics and Monte Carlo
simulations to study the properties of gases in microchannels and nanochannels.
Physical Review E, 72(1):016705, 2005.

[309] D. K. N. Sinz. Simulation of Rarefied Gasflows using the Lattice Boltzmann
Method and Molecular Dynamics. Diplom-Ingenieur, University of Stuttgart,
Stuttgart, Germany, October 2008.

[310] B. Chun and A. J. C. Ladd. Interpolated boundary condition for lattice Boltz-
mann simulations of flows in narrow gaps. Physical Review E, 75(6):066705–12,
2007.

[311] National Institute of Standards and Technology. Thermophysical Properties of
Fluid Systems, 2011.

[312] T. Ohwada, Y. Sone, and K. Aoki. Numerical analysis of the Poiseuille and ther-
mal transpiration flows between two parallel plates on the basis of the Boltz-
mann equation for hard-sphere molecules. Physics of Fluids A, 1(12):2042–
2049, 1989.

[313] T. Ohwada, Y. Sone, and K. Aoki. Numerical analysis of the shear and thermal
creep flows of a rarefied gas over a plane wall on the basis of the linearized
Boltzmann equation for hard-sphere molecules. Physics of Fluids A, 1(9):1588–
1599, 1989.



152 Bibliography

[314] C. Cercignani, M. Lampis, and S. Lorenzani. Variational approach to gas flows
in microchannels. Physics of Fluids, 16(9):3426–3437, 2004.



List of publications

Journal articles

S. Schmieschek, A. V. Belyaev, J. Harting and O. I. Vinogradova.
Tensorial slip of superhydrophobic channels.
Physical Review E, 85:016324, 2012.

E. S. Asmolov, S. Schmieschek, J. Harting and O. I. Vinogradova.
Flow past superhydrophobic surfaces with cosine variation in local slip length.
Physical Review E, 87:023005, 2013.

A. L. Dubov, S. Schmieschek, E. S. Asmolov, J. Harting and O. I. Vino-
gradova.
Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhy-
drophobic striped plane.
The Journal of Chemical Physics 140:034707, 2014.

H. Liu, Q. Kang, C. R. Leonardi, B. D. Jones, S. Schmieschek, A. Narváez,
J. R. Williams, A. J. Valocchi and J. Harting.
Multiphase lattice boltzmann simulations for porous media applications - a review.
In press, 2015. pre-print available from arXiv:1404.7523 [physics].

153



154 List of publications

S. Schmieschek, P. V. Coveney and J. Harting.
Evaluation of a MRT lattice Boltzmann model for the simulation of surfactant-
containing multiphase flows in porous media
in preparation, 2015.

S. Schmieschek, D. K. N. Sinz, F. Keller, U. Nieken and J. Harting.
Mesoscopic simulation of diffusive contaminant spreading in gas flows at low pressure
in preparation, 2015.

Proceedings

S. Schmieschek, A. Narváez, J. Harting.
Multi relaxation time lattice Boltzmann simulations of multiple component fluid flows
in porous media.
High Performance Computing in Science and Engineering ’12, 39-49, 2013.



List of figures

2.1 Illustration of the static contact angle and Young’s law, Eq. (2.19).
The contact angle is measured as the inner angle the droplet fluid
component encloses with the surface. It can be related to the surface
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Summary

The dissertation is concerned with computer simulations of systems of fluid mixtures
in interaction with solid boundaries. Three distinct groups of problems motivated
by different technical applications are treated. These are the flow over patterned,
superhydrophobic surfaces, the behavior of fluid mixtures in porous media and the
behaviour of contaminant molecules in dilute gas flows. Inherently governed by micro-
scopic effects, the systems share accessibility to modelling on the so-called mesoscopic
scale. In the context of fluid dynamics the term designates the description of a fluid
using (thermo-) statistics of microscopic systems to model emergent macroscopic ef-
fects while maintaining access to local properties.

Superhydrophobic surfaces are comprised of rough dewetting structures which enable
the entrapment of gas between the surface and a fluid. This setup leads to remarkable
properties, such as a high contact angle which allows droplets to roll over a surface as
well as reduced friction of a fluid in contact with the surface where so-called slip, a non-
zero velocity in the boundary layer is observed. The work on tensorial slip of channels
with anisotropic patterns is focusing on the latter situation. Modeling entrapped
gas by an effective slip, i.e. a finite velocity boundary condition fluid flow over
anisotropic patterns (stripes) is simulated by the lattice Boltzmann method (LBM).
This particular situation has been predicted to exhibit anisotropic tensorial slip not
only resulting in an overall effective slip and reduced drag of the surface but capable
of directing the flow as well. Furthermore this regime is not depending on the surface
alone, but also on the height of a channel making it a channel property. In the scope
of this work these predictions, relevant to the construction of microfluidic devices,
are verified. The parameterisation and resolution requirements devised are applied
to cosine varying anisotropic slip patterns and have informed simulations relevant to
atomic force apparatus setups. This enables future comparison to experiments.

Enhanced oil recovery, soil process investigations, fuel cell construction and freeze
dried food processing share the interest in multiphase flow of different fluid compo-
nents such as water, oil and surfactants, in porous media. The discrete nature of the
LBM and its extensibility to account for multiple fluid components makes it an ideal
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candidate for modelling such systems. The popular lattice Bhatnagar Gross Krook
(LBGK) formulation of the method allows the recovery of the Navier-Stokes equations
(NSE) of fluid motion with a single relaxation time parameter. It has however been
shown to have shortcomings with respect to the accuracy of boundary conditions.
The single relaxation time introduces a dependency between the simulated fluid vis-
cosity and the effective boundary position. This leads in particular for highly viscous
fluids to large errors in the observed flow. The high surface to volume ratio in porous
media is increasing the impact of this effect further. Multi relaxation time (MRT)
collision schemes allow mending this problem. The work on a ternary multicompo-
nent model for flows in porous media is concerned with the integration of a MRT
scheme and a pseudopotential multicomponent LBM capable of simulating two im-
miscible fluid components (e.g. water and oil) as well as an amphiphilic (surfactant)
fluid component. The implementation is verified to maintain valid physical modelling
of surface tension and diffusivity effects while dramatically improving permeability
measurements in highly viscous flows. It is found that future improvements to the
force-integration can eliminate the error in certain systems altogether. The model is
applied to basic parameter studies in a model pseudo-2d porous medium where forced
imbibition in binary and ternary fluid systems is considered.

In most conditions encountered by humans, the individual movement of molecules
can be neglected in favour of sole statistical treatment. Modern developments, such
as space exploration and vacuum technology used in research and manufacturing
systems, are including the so-called Knudsen regime where the mean free path of
individual particles becomes of the order of system scales and continuum approxi-
mations are no longer valid. This is true in chip fabrication lithography where the
complex optical systems required for resolving structures on the nanometer scale are
flushed with hydrogen gas at low pressures of some Pascal to minimize disturbance
of the light paths. Unfortunately plastic parts used in the setups emit under these
conditions single organic molecules which over time agglomerate on the lens surfaces
and cause so-called hazing. The desire to control and ideally avoid hazing motivates
the investigation of contaminant transport processes in low pressure environments.
In order to account for non-continuum effects a hybrid method has been set up by
integrating a particle model based on the direct simulation Monte Carlo (DSMC)
approach with a LBM modified to include the phenomenology of Knudsen effects for
the atmospheric flow. Here most interaction can be neglected and only collisions of
contaminants and background gas are relevant. This dramatically increases the effi-
ciency of the method. The implementation is tested for consistency by quantitative
evaluation of the Maxwell Boltzmann distribution and advection diffusion accessible
to theory. The model is applied to the simulation of contaminant suppression by low
pressure flows in example geometries relevant to technical applications. The results
obtained here will allow for future comparison to experimental results.

In particular on the mesoscopic scale, coarse grained computer simulation models
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are developing quickly towards tools capable of aiding design and understanding of
real fluid systems. Besides the ever growing available computational power, a key
ingredient to this development is a deeper understanding of fluid dynamics, as it
allows to manage complexity and to enable more efficient use of calculations. While
dealing with a subset, this work has touched all aspects of optimisation, increasing
complexity to gain accuracy and stability at points, while radically simplifying system
aspects not relevant to the parameters of interest in others.
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Samenvatting

Dit proefschrift betreft computersimulaties van systemen bestaande uit meerdere
vloeistoffen, die interacties aan gaan met vaste grensvlakken. Drie types problemen
worden behandeld, gemotiveerd door verschillende technische toepassingen: Stro-
ming over oppervlakken met superhydrofobische patronen, het gedrag van vloeistof-
mengsels in poreuze media, en het gedrag van ongewenste moleculen in verdunde-
gasstromingen. Hoewel deze gedragingen bepaald worden door microscopische ef-
fecten lenen zij zich toch voor modellering op mesoscopische schalen. In de context
van de vloeistofdynamica betekent dit het gebruik van (thermo-)statistiek van micro-
scopische systemen om de hieruit voorkomende macroscopische effecten te modelleren,
en toch ook nog toegang te hebben tot lokale eigenschappen.

Superhydrofobische oppervlakken bestaan uit ruwe waterafstotende structuren die
kunnen leiden tot de opsluiting van gas tussen het oppervlak en een vloeistof. Dit leidt
tot opmerkelijke eigenschappen, zoals een grote contacthoek die toelaat dat druppels
over een oppervlak rollen, en verminderde weerstand van een vloeistof in contact met
het oppervlak, waardoor de snelheid van de vloeistof in de grenslaag niet nul is: de
zogenoemde ’slip’. Het onderzoek naar tensorische slip in kanalen met anisotrope pa-
tronen (strepen) richt zich op deze tweede situatie. Het modelleren van opgesloten gas
door een effectieve slip - een randvoorwaarde waarbij de vloeistofstroming een eindige
snelheid heeft - gebeurt door middel van de rooster-Boltzmann methode. Over deze
configuratie is voorspeld dat zich anisotrope tensorische slip voordoet, wat niet alleen
leidt tot een effectieve slip en verminderde weerstand, maar ook de richting van de
stroming kan sturen. Dit hangt niet alleen af van het oppervlak, maar ook van de
hoogte van het kanaal, zodat dit beschouwd kan worden als een kanaaleigenschap. In
het kader van dit werk worden deze voorspellingen, die van belang zijn bij het maken
van microfluïdische apparaten, getoetst. De eisen die de parametrisatie en resolutie
stellen worden toegepast op anisotrope slip die variëert als een cosinus. Verder wordt
het gebruik van deze resultaten voor simulaties waarin bollen oppervlakken met su-
perhydrofobische patronen naderen besproken. De gepubliceerde resultaten zijn van
belang voor opstellingen met atoomkrachtmetingen.
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De stroming van mengels van meerdere vloeistoffen, zoals water, olie, en oppervlakte-
actieve stoffen in poreuze media is van belang voor uiteenlopende processen, zoals
verbeterde oliewinning, het onderzoeken van bodemprocessen, het maken van brand-
stofcellen en het verwerken van gevriesdroogd voedsel. Omdat de rooster-Boltzmann
methode discreet is, en makkelijk uitbreidbaar naar de simulatie van meerdere vloeistof-
fen, is deze methode uitermate geschikt voor het modelleren van zulke systemen. Met
de populaire rooster-Bhatnagar-Gross-Krook formulering van deze methode kunnen
de Navier-Stokes vergelijkingen worden teruggevonden, maar alleen met een enkele
relaxatie-tijd parameter. Dit is niet altijd genoeg voor de gewenste nauwkeurigheid
van randvoorwaarden: Door de enkele relaxatie-tijd is er een afhankelijkheid tussen de
viscositeit van de gesimuleerde vloeistof, en de effectieve positie van de randvoorwaar-
den. In het bijzonder voor vloeistoffen met hoge viscositeit leidt dit tot grote fouten in
de berekende stroming. Het relatief grote oppervlak ten opzichte van het vloeistofvol-
ume in poreuze media maakt dit probleem nog groter. Multi-relaxatie-tijd botsingss-
chema’s verhelpen dit probleem. Het werk aan een ternair multicomponentmodel
voor stromingen in poreuze media betreft het samenvoegen van een multi-relaxatie-
tijd schema met een pseudo-potentiaal rooster-Boltzmann methode, die zowel twee
onmengbare vloeistoffen (bijvoorbeeld water en olie) als een amfifiele (oppervlakte-
actieve) vloeistofcomponent kan simuleren. Deze implementatie zorgt voor correcte
modellering van oppervlaktespanning en diffusie-effecten, en verbetert de meting van
permeabiliteit voor hoogvisceuze vloeistoffen sterk. Het is gebleken dat toekomstige
verbeteringen aan de integratie van de krachten de fout in bepaalde systemen geheel
kunnen wegnemen. Het model is toegepast op een pseudo-tweedimensionaal poreus
medium waarbij het gedwongen opzuigen van binaire en ternaire vloeistofmengsels
wordt bestudeerd.

Op de meeste menselijke schalen kunnen de individuele bewegingen van moleculen
worden verwaarloosd en kan de collectieve beweging op een statistische manier be-
handeld worden. Nieuwe ontwikkelingen, zoals ruimtevaart en vacuümtechnologie
gebruikt in onderzoeks- en productiesystemen vinden plaats in het Knudsen-regime,
waar de vrije weglengte van losse deeltjes zo lang wordt als andere schalen in het sys-
teem en continuümbenaderingen niet meer geldig zijn. Dit doet zich voor in lithografie
voor de productie van chips, waarbij de complexe optische systemen die nodig zijn
voor het behalen van de resolutie die nodig is voor het maken van structuren op de
nanometer-schaal doorgespoeld worden met waterstofgas onder lage druk van enkele
Pascal, om zo een minimale verstoring van de lichtweg te hebben. Helaas stoten
plastic onderdelen in deze opstellingen onder deze omstandigheden losse organische
moleculen uit. Deze slaan in de loop van de tijd neer op de lenzen en veroorzaken
vertroebeling. De wens om dit proces te beheersen, of idealiter te vermijden, is de
motivatie achter het bestuderen van transportprocessen van ongewenste deeltjes in
een lage-druk omgeving. Een hybride-methode gebaseerd op directe Monte Carlo
simulatie van de deeltjes, gekoppeld aan een rooster-Boltzmann model, aangepast
om Knudsen-effecten voor de gasstroming in acht te nemen, is ontwikkeld om de
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niet-continuüm eigenschappen te kunnen simuleren. De meeste interacties kunnen
hierbij verwaarloosd worden: alleen de botsingen van de deeltjes met het gas zijn
van belang. Dit verhoogt de efficiëntie van de methode enorm. De implementatie
is getest op consistentie door quantitatieve analyse van de Maxwell-Boltzmann dis-
tributie en advectie/diffusie die theoretisch beschreven kan worden. Het model is
toegepast op de onderdrukking van ongewenste deeltjes door stromingen onder lage
druk in voorbeelden van geometrieën die relevant zijn voor technische toepassingen.
De hier verkregen resultaten kunnen in de toekomst gebruikt worden voor vergelijking
met experimentele resultaten.

In het bijzonder op de mesoscopische schaal ontwikkelen grofkorrelige computersimu-
laties zich snel tot gereedschappen die kunnen helpen bij het ontwikkelen en begrijpen
van echte vloeistofsystemen. Naast de immer toenemende beschikbare rekenkracht is
een beter begrip van vloeistofdynamica belangrijk, omdat zo de rekenkracht beter be-
nut kan worden. Dit werk heeft beide aspecten van optimalisatie benut: waar nodig is
de complexiteit verhoogd voor betere nauwkeurigheid en stabiliteit, en waar mogelijk
zijn aspecten die niet van belang zijn voor de relevante resultaten sterk versimpeld.
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List of symbols 177

〈· · · 〉 Mean value
|a| Vector value
a · b Scalar product
α, ᾱ Immiscible fluid components
a Acceleration
A Area
b Slip length
b
(x)
eff Effective slip tensor
b⊥eff ,b

‖
eff Min/max EV of effective slip

B Width (droplet/channel)
χ concentration
c Lattice Velocity
cs Speed of sound
Ca Capillary number
∆ Laplace operator
d Dipole moment
d Diameter
D Number of dimensions
D Diffusivity
ε Kinetic energy squared
ε Error value
ε̇ Strain rate
η Viscosity tensor
η Dynamic viscosity
e Kinetic energy
φ1 No-slip area fraction
φ2 Partial slip area fraction
Φ Surface of unit sphere
Φ Number of components
f Probability distribution
F Force
γ Surface tension
G Free energy
G Coupling coefficient
H Height
I Unit tensor
j Momentum
κ permeability
k Curvature
kB Boltzmann constant
Kn Knudsen number
λ0 Mean free path
λ Relaxation parameter
L (Periodicity) Length

L Characteristic length
m Mass
mi Stochastical moment
Ma Mach number
M Transformation matrix
ν Shear viscosity
νv Bulk viscosity
n Particle density
nx Maximum lattice coord.
N Particle count
ω Wall pseudodensity
Ω Collision integral/operator
π ∝ Viscous stress tensor
ψ pseudoPotential
p Pressure
p Viscous stress tensor
Pe Peclét number
q energyFlux
Q̇ Mass flux
ρ Mass density
ρ Lattice density
R Radius
Re Reynolds number
σ Deviatoric stress
σ collisionalCrossSection
σ Surfactant component
s Wall potential
S Relaxation matrix
S Suppression coefficient
θ Dipole weights
Θ Inflow angle
Θ Contact angle
τ Relaxation time
T Temperature
∆t Time step
u Speed
u Velocity
U Characteristic Velocity
V Volume
w Lattice weights
∆x Lattice discretisation
x point
x,y, z Cartesian coordinates
ζ accommodationCoefficient
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