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Preface to “Non-Linear Lattice”: 
Living in a Complex World 

Since the epoch-making work of Pasta–Fermi–Ulam–Tsingou on non-linear 
relaxation of discrete chains, the lattice has proven an invaluable tool to explore 
the complexities of non-linear phenomena through computer simulation. In this 
field the complexity is twofold: The nonlinearity allows cooperative phenomena 
which are simply impossible in the linear regime; the lattice aspect sets a scale of 
interest, and often changing such scale also changes the type of observed 
behavior. The development of mathematical techniques, combined with new 
possibilities of computational simulations, have greatly broadened the study of 
non-linear lattices, one of the most advanced and interdisciplinary themes of 
mathematical physics. 

Over the years, the role of lattices has extended to virtually all walks of 
physics, from classical non-linear field theory, to quantum chromodynamics, all 
the way down to quantum gravity. 

From a practical standpoint, the lattice serves as a natural regulator of UV 
infinities by providing a finite cutoff to otherwise divergent interactions. In this 
respect, the lattice is a generous friend, which helps in providing finite answers, 
then leaving the stage in the continuum limit, the place where “true” physics is 
supposed to take place. 

This is the ground of discretized systems, those that result from placing a 
continuum theory on a discrete spacetime for the “mere” matter of computational 
convenience and viability. 

For all the importance of discretized systems, the role of the lattice in modern 
physics runs far deeper than mere discretization. We refer here to genuinely 
discrete dynamical systems, whose dynamics are formulated ab initio on a lattice, 
because this is the most natural way of encoding the physics at hand. Among 
others, discrete chains, Hubbard models, lattice gas and lattice Boltzmann belong 
to this class. The relevant physics, though, is still believed to live in the continuum 
limit, where the lattice spacing is sent to zero. 

Finally, there is a third class that we call “inherently discrete” (ID), in which 
the “true” physics is believed to take place at finite mesh spacing; the continuum 
limit, if existing at all, being a mere idealization. Quantum gravity is 
quintessential ID, and so is a broad class of cellular automata, sandpile models 
and similar rule-driven lattice systems. The “transferability” of class two to class 
three models is one of the most interesting fields of modern mathematical physics 
research. 

Just think of the quantum Bose-Hubbard model as a toy model for emergent 
spacetime in quantum gravity. In 1611, Johannes Kepler wrote Strena seu de nive 
sexangula (the six cornered snowflake), which suggested that the macroscopic 
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symmetry of a snow flake depended on the structure of its constituents. In this 
way, he linked the system symmetries with a "nuts and bolts” explanation: a 
splendid work of theoretical physics and an ideal procedural model! It seems that 
Nature often likes to play the same game at different scales. In a way, we could 
say that the renormalization group is a sort of “mathematical zoom device” that 
allows us to watch this game and distinguish it from other types of scale-
dependent behaviors. 

This volume deals mostly, but not exclusively, with discrete systems in the 
second class, with various instances of non-linear lattice systems ranging from 
non-linear spin chains, to optical lattices, lattice gas and lattice Boltzmann models 
for fluids. It is hoped that this Special Issue will foster further work in the 
direction of bringing all the three aforementioned families under the unifying 
umbrella of “lattice physics”, fostering cross-fertilization of new ideas and 
techniques to further our understanding of the beautiful complexity of non-linear 
dynamical systems, through a synergistic combination of analytics, experiments 
and computer simulations. 

Ignazio Licata and Sauro Succi 
Guest Editors 







Exact Solutions of Non-Linear Lattice
Equations by an Improved
Exp-Function Method
Sheng Zhang, Jiahong Li and Yingying Zhou

Abstract: In this paper, the exp-function method is improved to construct exact
solutions of non-linear lattice equations by modifying its exponential function ansätz.
The improved method has two advantages. One is that it can solve non-linear lattice
equations with variable coefficients, and the other is that it is not necessary to balance
the highest order derivative with the highest order nonlinear term in the procedure
of determining the exponential function ansätz. To show the advantages of this
improved method, a variable-coefficient mKdV lattice equation is considered. As
a result, new exact solutions, which include kink-type solutions and bell-kink-type
solutions, are obtained.

Reprinted from Entropy. Cite as: Zhang, S.; Li, J.; Zhou, Y. Exact Solutions of
Non-Linear Lattice Equations by an Improved Exp-Function Method. Entropy 2015,
17, 3182–3193.

1. Introduction

The work of Fermi, Pasta and Ulam in the 1950s [1] has attached much attention
on exact solutions of non-linear lattice equations arising different fields which include
condensed matter physics, biophysics, and mechanical engineering. In the numerical
simulation of soliton dynamics in high energy physics, some non-linear lattice
equations are often used as approximations of continuum models. In fact, the
celebrated Korteweg–de Vries (KdV) equation can be considered as a limit of the Toda
lattice equation [2]. Non-linear lattice equations can provide models for non-linear
phenomena such as wave propagation in nerve systems, chemical reactions, and
certain ecological systems (for example, the famous Volterra equation). Unlike
difference equations which are fully discretized, lattice equations are semi-discretized
with some of their spatial variables discretized while time is usually kept continuous.
In the past several decades, many effective methods for constructing exact solutions
of non-linear partial differential equations (PDEs) have been presented, such as
the inverse scattering method [3], Bäcklund transformation [4], Hirota’s bilinear
method [5], homogeneous balance method [6], tanh-function method [7], Jacobi
elliptic function expansion method [8], Lucas Riccati method [9], differential
transform method [10], and others [11–17]. Generally speaking, it is hard to
generalize one method for non-linear PDEs to solve non-linear lattice equations
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because of the difficulty in finding iterative relations from indices n to n± 1(here n
denotes an integer). When the inhomogeneities of media and non-uniformities of
boundaries are taken into account, the variable-coefficient equations could describe
more realistic physical phenomena than their constant-coefficient counterparts [18],
such as seen, e.g., in the super-conductors, coastal waters of oceans, blood vessels,
space and laboratory plasmas and optical fiber communications [19]. Therefore, how
to solve non-linear lattice equations with variable coefficients is worth studying.

Recently, He and Wu proposed exp-function method [20] to solve non-linear PDEs.
It is shown in [20–31] that the exp-function method or its improvement is available
for many kinds of nonlinear PDEs, such as Dodd–Bullough–Mikhailov equation [20],
sine-Gorden equation [21], combined KdV-mKdV equation [23], Maccari’s system [24],
variable-coefficient equation [25], non-linear lattice equation [26], stochastic
equation [27], and generalized Klein–Gordon equation [31]. For some recent
applications of the method itself, we can refer to Fitzhugh–Nagumo equation [32],
extended shallow water wave equations [33] and generalized mKdV equation [34].
In [35–37], there are two remarkable developments of the exp-function method.
One is that the exp-function method with a fractional complex transform was
generalized to deal with fractional differential equations [35,36], and the other is
that the method was hybridized with heuristic computation to obtain numerical
solution of generalized Burger–Fisher equation [37]. On the other hand, it is
necessary to check the solutions obtained by the exp-function method carefully [38]
because some authors have been criticized for incorrect results [39,40]. Besides, for a
given non-linear PDEs with independent variables t, x1, x2, · · · , xs and dependent
variable u:

F(u, ut, ux1 , ux2 , · · · , uxs , ux1t, ux2t · · · , uxst, utt, ux1x1 , ux2x2 , · · · , uxsxs , · · · ) = 0, (1)

the exp-function method can also be used to construct different types of exact
solutions. This is due to its exponential function ansätz:

u(ξ) =
∑

g
n=− f an exp(nξ)

∑
q
m=−p bm exp(mξ)

, ξ =
s

∑
i=1

kixi + wt, (2)

where an, bm, ki and w are undetermined constants, f , p, g and q can be determined
by using Equation (2) to balance the highest order non-linear term with the highest
order derivative of u in Equation (1). It is He and Wu [20] who first concluded that
the final solution does not strongly depend on the choices of values of f , p, g and q.
Usually, f = p = g = q = 1 is the simplest choice. More recently, Ebaid [41] proved
that f = p and g = q are the only relations for four types of nonlinear ordinary
differential equations (ODEs) and hence concluded that the additional calculations of
balancing the highest order derivative with the highest order non-linear term are not
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longer required. Ebaid’s work is significant, which makes the exp-function method
more straightforward. The present paper is motivated by the desire to prove that
f = p and g = q are also the only relations when we generalize the exp-function
method [20] to solve non-linear lattice equations. Thus, the exp-function method
can be further improved because it is not necessary to balance the highest order
derivative with the highest order non-linear term in the process of solving non-linear
lattice equations.

The rest of this paper is organized as follows. In Section 2, we generalize
exp-function method to solve non-linear lattice equations with variable coefficients.
In Section 3, a theorem is proved and then used to improve the generalized
exp-function method in determining its exponential function ansätz of non-linear
lattice equations. In Section 4, we take a variable-coefficient mKdV lattice equation
as an example to show the advantages of the improved exp-function method.
In Section 5, some conclusions are given.

2. Generalized Exp-Function Method for Non-Linear Lattice Equations

In this section, we outline the basic idea of generalizing the exp-function
method [20] to solve a given non-linear lattice equation with variable coefficients,
say, in three variables n, x and t:

P(unt, unx, untt, unxt, · · · , un−1, un, un+1, · · · ) = 0, (3)

which contains both the highest order nonlinear terms and the highest order
derivatives of dependent variables. Here P is a polynomial of un, un−θ(θ =

±1,±2, · · · ) and the various derivatives of un. Otherwise, a suitable transformation
can transform Equation (3) into such an equation.

Firstly, we take the following transformation:

un = Un(ξn), ξn = dn + c(x, t) + ω, (4)

where d is a constant to be determined, c(x, t) is the undetermined function of x
and t, and ω is the phase. Then, Equation (3) can be reduced to a non-linear ODE
with variable coefficients:

Q(U′n, U′′n , · · · , Un−1, Un, Un+1, · · · ) = 0. (5)

Secondly, we suppose that the ansätz of Equation (5) can be expressed as:

Un =
∑

g
N=− f aN(x,t) exp(Nξn)

∑
q
M=−p bM exp(Mξn)

=
a− f (x,t) exp(− f ξn)+···+ag(x,t) exp(gξn)

b−p exp(−pξn)+···+bq exp(qξn)
. (6)
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Thirdly, we substitute Un and Un−θ(θ = ±1,±2, · · · ) determined by Equation (6)
into Equation (5) and then balance the highest order derivative with the highest
order nonlinear term in Equation (5) to obtain the integers f , p, g and q. Finally, we
determine the coefficients a− f (x, t), · · · , ag(x, t), b−p, · · · , bq, d and c(x, t) by solving
the resulting equations from the substitution of Un and Un−θ(θ = ±1,±2, · · · ) along
with the obtained values of f , p, g, q into Equation (5).

In order to identify the highest order nonlinear term, we define in this paper the
negative order N(·) and the positive order P(·) of ansätz (6) as follows:

N(Un) = − f − (−p) = p− f , P(Un) = g− q (7)

under the condition that the functions a− f (x, t) and ag(x, t), and the constants b−p

and bq are all nonzero coefficients. Therefore, we can easily obtain N(Un−θ) = p− f
and P(Un−θ) = g− q. For the derivatives of Un, we have a general formula:

U(r)
n =

τr(x, t) exp[−( f − p + 2r p)ξn] + · · ·+ σr(x, t) exp[(g− q + 2rq)ξn]

δr exp[(−2r p)ξn] + · · ·+ ςr exp[(2rq)ξn]
, (8)

where τr(x, t) and σr(x, t) are functions of x and t, δr and ςr are constants, and r ≥ 1 is
an integer. If τr(x, t), σr(x, t), δr and ςr are nonzero coefficients, then N(U(r)

n ) = p− f
and P(U(r)

n ) = g− q.
Since

N(Un) = N(Un−θ), P(Un) = P(Un−θ), (9)

we define the product

Uh
nUi1

n−1U j1
n+1Ui2

n−2U j2
n+2 · · ·U

iz
n−zU jz

n+z(U
′
n)

l1(U′′n )
l2 · · · (U(s)

n )ls (10)

as the highest order nonlinear term of Equation (5). Here h, i1, j1, i2, j2, · · · , iz, jz, l1,
l2, · · · , ls are nonnegative integers which satisfy

h + i1 + j1 + i2 + j2 + · · ·+ iz + jz + l1 + l2 + · · ·+ ls ≥ 2. (11)

With above preparations, we can see that Equations (8) and (10) include all
possibilities of the highest order derivative and the highest order nonlinear term
of Equation (5). In what follows, we shall proof that f = p and g = q are the only
relations when using the exponential function ansätz (6) to balance the highest order
derivative (8) with the highest order nonlinear term (10).

Remark 1. If we let a− f (x, t), · · · , ag(x, t) be nonzero constants and take c(x, t) as a linear
function kx + lt, k and l are undetermined constants, then the generalized exp-function
method described in this section is also effective for non-linear lattice equations with constant
coefficients. So the starting point of this paper is to generalize the exp-function method [20]
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to solve Equation (3) with variable coefficients. In the next section, we shall further improve
this generalized exp-function method.

3. Theorem and Improvement

Theorem 1. Suppose that Equations (8) and (10) are respectively the highest order derivative
and the highest order nonlinear term of Equation (5), then the balancing procedure using the
exponential function ansätz (6) leads to f = p and g = q.

Proof. By contradiction, we suppose that f 6= p and g 6= q. Then a computation
shows that τr(x, t), σr(x, t), δr, and ςr in Equation (8) are all nonzero coefficients.
Using Equations (6) and (8), we have

Uh
n =

ah
− f (x, t) exp(−h f ξn) + · · ·+ ah

g(x, t) exp(hgξn)

bh
−p exp(−hpξn) + · · ·+ bh

q exp(hqξn)
, (12)

Ui
n−θ =

ai
− f (x,t) exp(−i f ξn) exp(i f dθ)+···+ai

g(x,t) exp(igξn) exp(−igdθ)

bi
−p exp(−ipξn) exp(ipdθ)+···+bi

q exp(iqξn) exp(−iqdθ)
, (13)

(U(r)
n )l =

τl
r (x,t) exp[−l( f−p+2r p)ξn ]+···+σl

r(x,t) exp[l(g−q+2rq)ξn ]

δl
r exp[(−2r lp)ξn ]+···+ςl

r exp[(2r lq)ξn ]
. (14)

With the help of Equations (12)–(14), the left hand side and the right hand side
of Equation (8) can be respectively written as:

ϑ(x,t) exp{−[ f (h+i1+j1+···+iz+jz)+l1( f+p)+···+ls( f−p+2s p)]ξn}+···
κ exp[−p(h+i1+j1+···+iz+jz+2l1+···+2s ls)ξn ]+··· , (15)

···+µ(x,t) exp{[g(h+i1+j1+···+iz+jz)+l1(g+q)+···+ls(g−q+2sq)]ξn}
···+λ exp[q(h+i1+j1+···+iz+jz+2l1+···+2s ls)ξn ]

, (16)

with nonzero coefficients

ϑ(x, t) = ah+i1+j1+···+iz+jz
− f (x, t)τl1

1 (x, t) · · · τls
s (x, t) exp[(i1 − j1 + 2i1 − 2j1 + · · ·+ ziz − zjz) f d], (17)

µ(x, t) = ah+i1+j1+···+iz+jz
g (x, t)σl1

1 (x, t) · · · σls
s (x, t) exp[−(i1 − j1 + 2i1 − 2j1 + · · ·+ ziz − zjz)gd], (18)

κ = bh+i1+j1+···+iz+jz
−p δl1

1 · · · δ
ls
s exp[(i1 − j1 + 2i1 − 2j1 + · · ·+ ziz − zjz) f d], (19)

λ = bh+i1+j1+···+iz+jz
q ςl1

1 · · · ς
ls
s exp[−(i1 − j1 + 2i1 − 2j1 + · · ·+ ziz − zjz)gd]. (20)

Multiplying Equations (15) and (16) by

δr exp[(−2r p)ξn] + · · ·+ ςr exp[(2rq)ξn]

δr exp[(−2r p)ξn] + · · ·+ ςr exp[(2rq)ξn]
,
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we have

ϑ(x,t)δr exp{−[ f (h+i1+j1+···+iz+jz)+l1( f+p)+···+ls( f−p+2s p)+2r p]ξn}+···
κδr exp[−p(h+i1+j1+···+iz+jz+2l1+···+2s ls+2r)ξn ]+··· , (21)

···+µ(x,t)ςr exp{[g(h+i1+j1+···+iz+jz)+l1(g+q)+···+ls(g−q+2sq)+2rq]ξn}
···+λςr exp[q(h+i1+j1+···+iz+jz+2l1+···+2s ls+2r)ξn ]

. (22)

We further use

κ exp[−p(h + i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls)ξn] + · · ·

+λ exp[q(h + i1 + j1 + · · ·+ iz + jz + 2l1 + · · ·+ 2sls)ξn]

to multiply the numerator and denominator of Equation (8), then the left hand side
and the right hand side of Equation (8) can be respectively written as:

κτr(x,t) exp{−[p(h+i1+j1+···+iz+jz+2l1+···+2s ls)+( f−p+2r p)]ξn}+···
κδr exp[−p(h+i1+j1+···+iz+jz+2l1+···+2s ls+2r)ξn ]+··· , (23)

···+λσr(x,t) exp{[q(h+i1+j1+···+iz+jz+2l1+···+2s ls)+(g−q+2rq)]ξn}
···+λςr exp[q(h+i1+j1+···+iz+jz+2l1+···+2s ls+2r)ξn ]

. (24)

Balancing the lowest order of the exponential function in Equations (21) and (23)
and the highest order of the exponential function in Equations (22) and (24) yields

(p− f )(h + i1 + j1 + · · ·+ iz + jz + l1 + · · ·+ ls − 1) = 0, (25)

(q− g)(h + i1 + j1 + · · ·+ iz + jz + l1 + · · ·+ ls − 1) = 0. (26)

It is easy to see from Equation (11) that

h + i1 + j1 + · · ·+ iz + jz + l1 + · · ·+ ls − 1 6= 0, (27)

then Equations (25) and (26) give f = p and g = q. This contradicts with our
assumption that f 6= p and g 6= q. Thus we complete the proof of Theorem 1.

Theorem 1 shows that f = p and g = q are the only relations when using
the exponential function ansätz (6) to balance the highest order derivative (8) with
the highest order nonlinear term (10). Therefore, the simplest choice f = p =

g = q = 1 is often selected so that some additional calculations in determining the
exponential function ansätz (6) are not longer required. Thus, Theorem 1 improves
the generalized exp-function method described in Section 2.
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4. Application

To give a concrete application of our improved exp-function method in Sections 2
and 3, we consider in this section the mKdV lattice equation with variable coefficient [42]:

dun

dt
= [α(t)− u2

n](un+1 − un−1), n ∈ Z, (28)

where un = u(n, t), α(t) is an arbitrary differentiable function of t. When α(t) =

0, 1, α(const.), Equation (28) can give three known constant-coefficient versions of the
mKdV lattice equation.

Using the transformation

un = Un(ηn), ηn = dn + c(t) + η0, (29)

where d is a constant to be determined, c(t) is the undermined function of t, and η0

is the phase, we transform Equation (28) into

dc(t)
dt

U′n = [α(t)−U2
n](Un+1 −Un−1). (30)

According to the exp-function method improved in Sections 1 and 2, we directly
suppose that:

Un =
a−1(t) exp(−ηn) + a0(t) + a1(t) exp(ηn)

b−1 exp(−ηn) + b0 + b1 exp(ηn)
, (31)

Un−1 =
a−1(t) exp(d) exp(−ηn) + a0(t) + a1(t) exp(−d) exp(ηn)

b−1 exp(d) exp(−ηn) + b0 + b1 exp(−d) exp(ηn)
, (32)

Un+1 =
a−1(t) exp(−d) exp(−ηn) + a0(t) + a1(t) exp(d) exp(ηn)

b−1 exp(−d) exp(−ηn) + b0 + b1 exp(d) exp(ηn)
, (33)

Substituting Equations (31)–(33) into Equation (30), and using Mathematica,
equating the coefficients of all powers of exp(jηn)(j = 0,±1,±2,±3) to zero yields
a set of equations for a1(t), a0(t), a−1(t), b1, b0, b−1 and c(t). Solving the system of
equations by the use of Mathematica, we have:

a0(t) = 0, a1(t) = ±b1

√
α(t) tanh(d), a−1(t) = ∓b−1

√
α(t) tanh(d), (34)

b0 = 0, c(t) = 2 tanh(d)
∫

α(t)dt, (35)

and
a0(t) = ±2

√
−b1b−1α(t) tanh(

d
2
), a1(t) = ±b1

√
α(t) tanh(

d
2
), (36)
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a−1(t) = ∓b−1

√
α(t) tanh(

d
2
), b0 = 0, c(t) = 4 tanh(

d
2
)
∫

α(t)dt, (37)

where b1 and b−1 are arbitrary constants.
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Figure 1. Spatial structures of solution (38) with (+) branch: (a) n ∈ [−10, 10],
t ∈ [−10, 10]; (b) n = −10, t ∈ [−10, 10]; (c) n = 0, t ∈ [−10, 10]; (d) n = 10,
t ∈ [−10, 10]; (e) n ∈ [−10, 10], t = 0; (f) n ∈ [−10, 10], t = 2.
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Figure 2. Spatial structures of solutions (39) with (+,+) branch: (a) n ∈ [−10, 10],
t ∈ [−10, 10]; (b) n = −10, t ∈ [−10, 10]; (c) n = 0, t ∈ [−10, 10]; (d) n = 10,
t = [−10, 10]; (e) n ∈ [−10, 10], t = 0; (f) n ∈ [−10, 10], t = 2.

We, therefore, obtain from Equations (29), (31), (34) and (35) a pair of new
kink-type solutions of Equation (28):

un = ±
√

α(t) tanh(d)
b1 exp(ηn)− b−1 exp(−ηn)

b1 exp(ηn) + b−1 exp(−ηn)
, (38)
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where ηn = dn + 2 tanh(d)
∫

α(t)dt + η0. If set b1 = 1, then solutions (38) become
the known solutions [42].

With the help of Equations (29), (31), (36) and (37), we obtain two pairs of new
bell-kink-type solutions of Equation (28):

un = ±
√

α(t) tanh(
d
2
)

b1 exp(ηn)± 2
√
−b1b−1 − b−1 exp(−ηn)

b1 exp(ηn) + b−1 exp(−ηn)
, (39)

where ηn = dn + 4 tanh( d
2 )

∫
α(t)dt + η0.

In Figure 1, the spatial structures of solutions (38) with (+) branch are shown,
where the parameters are selected as α(t) = 1 + 0.5sintsecht, b1 = −1.5, b−1 = −2,
d = 1, η0 = 0. Figs. 1(a)–(d) show that the amplitude of wave changes periodically
in the process of propagation. It is shown in Figure 1c that the “breather”-like
phenomena has occurred at the location n = 0. In Figure 2, we show the structures
of solutions (39) with (+,+) branch, where α(t) = 1 + secht, b1 = 1.5 and the other
parameters are same as those in Figure 1. From Figure 2c, we can see that u0 has a
singularity in the interval t ∈ (0, 1). It is easy to see that when b1 = 1.5 and b−1 = −2,
solutions (39) are unbounded. Such unbounded solutions develop singularity at
a finite time, i.e. for any fixed n = n0, there always exists t = t0 at which these
solutions “blow-up”. In view of the physical significance, they do not exist after
“blow-up”. In the actual experimental physical system, there is no “blow-up”, but a
sharp spike [43]. Thus, the finite time “blow-up” can provide an approximation to
the corresponding physical phenomenon.

5. Conclusions

In summary, we have improved the exp-function method [20] for solving
non-linear lattice equations by modifying its exponential function ansätz. In order to
show the advantages of the improved method, the variable-coefficient mKdV lattice
equation (28) is considered. As a result, kink-type solutions (38) and bell-kink-type
solutions (39) are obtained. To the best of our knowledge, they have not been reported
in the literature. Solutions (38) and (39) contain arbitrary function α(t) and arbitrary
constants b1 and b−1, which provide enough freedom for us to describe rich spatial
structures of these obtained solutions. Applying the improved exp-function method
to some other non-linear lattice equations with variable coefficients are worthy of
study. This is our task in the future.
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The Effect of a Long-Range
Correlated-Hopping Interaction
on Bariev Spin Chains
Tao Yang, Fa-Kai Wen, Kun Hao, Li-Ke Cao and Rui-Hong Yue

Abstract: We introduce a long-range particle and spin interaction into the standard
Bariev model and show that this interaction is equivalent to a phase shift in the
kinetic term of the Hamiltonian. When the particles circle around the chain and
across the boundary, the accumulated phase shift acts as a twist boundary condition
with respect to the normal periodic boundary condition. This boundary phase term
depends on the total number of particles in the system and also the number of
particles in different spin states, which relates to the spin fluctuations in the system.
The model is solved exactly via a unitary transformation by the coordinate Bethe
ansatz. We calculate the Bethe equations and work out the energy spectrum with
varying number of particles and spins.

Reprinted from Entropy. Cite as: Yang, T.; Wen, F.-K.; Hao, K.; Cao, L.-K.; Yue, R.-H.
The Effect of a Long-Range Correlated-Hopping Interaction on Bariev Spin Chains.
Entropy 2015, 17, 6044–6055.

1. Introduction

One dimensional (1D) (quasi-1D) systems exhibit some of the most diverse and
intriguing physical phenomena seen in all of condensed matter physics, such as
charge (spin) density waves, quantum wires, quantum Hall bars, Josephson junction
arrays, polymers and 1D Bose-Einstein condensates. The complete description of
a solid is a complex many body problem. The particles are strongly correlated
and cannot be understood by removing the interactions between them or by
considering the effects of interactions as a perturbation. However, for some realistic
low-dimensional strongly correlated systems a proper understanding has yet to be
established through the examination of simplified exactly solvable models, in which
the integrability has been considered to be one of the striking properties from the
points of view of physics and mathematics. The 1D Hubbard model, in which the
electron hopping is strongly disturbed by the on-site Coulomb interaction, has been
mainly investigated with regard of Mott-transition through its exact solution [1].
The supersymmetric t − J model [2], which includes the spin fluctuations via
antiferromagnetic coupling, is relevant to the description of electronic mechanisms
in high-Tc superconductivity. The 1D Bariev (interacting XY) chain [3,4] is also
a Hubbard-like integrable model of special interest, as it supports Cooper type
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hole pairs. Motivated by the inclusion of additional interactions, whether through
internal impurities or external boundary fields, many works have been carried out
to generalize these models for different boundary fields [5–16]. This provides a
non-perturbative method to study the boundary impurity effects in one-dimensional
quantum systems in condensed matter physics. Bariev model has been generalized
in many ways. The Hamiltonian studied in [17] included the onsite interaction
and pair hopping processes. The Bariev chains with correlated single-particle and
uncorrelated pair hopping were studied in [18], but there is only one type of particle.
Bariev et al. [19,20] have considered the situations with multi-particle hopping and
interchain tunneling, respectively. However, most of the investigated systems include
only the nearest neighbor interactions; the question of how to find an integrable
system with long range interaction is an interesting topic.

Schulz and Shastry [21] presented a class of lattice and continuum fermion
models which are exactly solvable by a pseudo-unitary transformation, leading to
nontrivial and non-Fermi-liquid behavior, with an exponential dependence upon the
interaction. The idea behind this approach is the finding of a basis (through a unitary
transformation of the original Fock basis [22,23]) in which the model takes the form of
the original Hubbard or XXZ model up to boundary twists which do not affect their
solvability. Furthermore, the Schultz-Sharstry model was generalized by introducing
an exponential interaction involving two spins with same orientation [24].

In this paper, we generalize the Bariev model by introducing an Schultz-Sharstry-
like exponential interaction which is dependent on the spin orientations of particles
in the system. We note that the applied long-range spin-dependent interaction in
the hopping term can be treated as a boundary phase twist. The phase change is in
turn a function of number of particles and spins. When the Aharonov-Bohm effect
is added to a 1D Hubbard chain with periodic boundary conditions it contributes
to an extra phase shift related to the external magnetic flux [25,26], however our
model can be applied both in the situation with external magnetic field and with
internal field induced by impurities or spin fluctuations. We find the charge and spin
excitations in our generalized model is a function of band filling, which is similar to
the model proposed by Hirsch [27] for studying the high-Tc superconductivity. The
latter, however, is not integrable in 1D. By applying an unitary transformation we
prove the integrability of our model. The model is solved in the framework of the
coordinate Bethe ansatz [28,29]. All charge and spin momenta are determined by
a set of Bethe equations. The energy spectrum is listed based on the classification
of varying number of particles. These may be useful in the systems where the
long-range interactions cannot be ignored by only taking account of the nearest
neighbour interactions.

15



2. From Long-Range Interactions to a Twist Boundary Condition

To include long-range spin interactions, we introduce some coordinate
dependent parameters, α, β and κ into the Hamiltonian of the standard Bariev
model. The Hamiltonian of the generalized Bariev model to be studied is in the form

H = −t ∑L
j=1 ∑σ=↑,↓

{
c†

j+1,σcj,σeiκj(σ)ei∑L
l=1[αj,l(σ)nl,−σ+βj,l(σ)nl,σ] + h.c.

}
× e−η∑σ′ 6=σ nj+θ(σ−σ′),σ′ , (1)

with c†
j,σ (cj,σ) being the creation (annihilation) operator of a particle with spin σ (σ

being either ↑ or ↓) located at the jth site, nj,σ
.
= c†

j,σcj,σ being the number operator,
and θ(x) being a step function, i.e., θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0. The
anti-commutation relation is satisfied by

{cj,σ, c†
l,σ′} = δj,lδσ,σ′ , {c†

j,σ, c†
l,σ′} = {cj,σ, cl,σ′} = 0. (2)

η is a coupling constant that influences the hopping amplitude of particles.
Positive and negative values of η correspond to attractive and repulsive inter-particle
interactions, respectively. It is clear that the system is reduced to standard Bariev
model and is integrable if α,β and κ all vanish. The exponential term of αj,l and βj,l
is a generalized Jordan-Wigner transformation which includes interactions between
the particle on the jth site and the occupation state of all sites on the spin chain.
This can be seen clearly if we make an expansion around small α and β. If we
set αj,l = βj,l = π and take the summation of l from 1 to j − 1, the generalized
Jordan-Wigner transformation will degenerate into Jordan-Wigner transformation.

For arbitrary values of α, β and κ the system described by Equation (1) is not
integrable by direct coordinate Bethe ansatz because all particles in the system are
coupled through the long-range interaction. So the question now turns into how
to determine these free parameters but keep the integrability. For this purpose, we
introduce a special unitary transformation

U .
= exp

L+1

∑
l,m=1

∑
µ,ν=↑,↓

[
i(ξµ,ν

l,m nl,µnm,ν + ζl,µnl,µ)
]

, (3)

where ξl,m is the spin interaction strength between two sites and ζl ∈ R is a parameter
related to the local chemical potential and magnetic field. They are all free parameters
to be confirmed by specific physical models. The subscripts l and m are coordinate
indices, and the superscripts µ, ν are spin indices. This is similar to choosing a
different basis for the coordinate Bethe ansatz calculations. We will show later that
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α, β and κ can be expressed in the form of ξ and ζ. Under the transformation

cj,σ
U−→ Ucj,σU−1, the hopping term in Hamiltonian Equation (1) turns into

c†
j+1,σcj,σ

U−→ c†
j+1,σcj,σ exp

[
2i(ξσ,µ

j+1,m−ξ
σ,µ
j,m )nm,µ+ i(ζj+1,σ−ζj,σ− 2ξσ,σ

j,j+1)
]

, (4)

while the particle number operator keeps unchanged.
For normal periodic boundary conditions, there will be a phase change of pkL

when one particle hops from site L to L + 1 = 1 (j = L in Hamiltonian Equation (1)),
where k = 2π/L and p is an integer. We will give up the original boundary condition
of the standard Bariev model but apply new boundary conditions which can keep the
integrability of model Equation (1). For the transformation Equation (3), the phase
shift across the boundary is determined by the relations ξ1,m ↔ ξL,m, ξL,1 ↔ ξL,L+1

and ζ1,m ↔ ζL,m. Without loss of generality, we can set the phase change across the
boundary to be

ξσ,−σ
L+1,m

.
= ξσ,−σ

1,m −Φ⊥(σ), (5)

ξσ,σ
L+1,m

.
= ξσ,σ

1,m −Φ‖(σ), (6)

ζL+1,σ− 2ξσ,σ
L,L+1

.
= ζ1,σ − 2ξσ,σ

L,1 −Φ(σ). (7)

If we set

αj,m(σ)
.
= 2(ξσ,−σ

j,m − ξσ,−σ
j+1,m) , (8)

βj,m(σ)
.
= 2(ξσ,σ

j,m − ξσ,σ
j+1,m), m ∈ {1, · · · , j− 1, j + 2, · · · , L} , (9)

κj(σ)
.
= (ζj,σ − ζj+1,σ + 2ξσ,σ

j,j+1) , (10)

we can see easily that the Hamiltonian Equation (1) can reduce to the original Bariev
model by the unitary transformation UHU−1, up to a set of boundary conditions,
and is integrable if α,β and κ all vanish. Through Equations (5)–(10), we obtain

αL,m(σ) = 2(ξσ,−σ
L,m − ξσ,−σ

1,m ) + Φ⊥(σ) , (11)

βL,m(σ) = 2(ξσ,σ
L,m − ξσ,σ

1,m ) + Φ‖(σ), m ∈ {2, · · · , L− 1} , (12)

κL(σ) = (ζL,σ − ζ1,σ + 2ξσ,σ
L,1 ) + Φ(σ) . (13)
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Then for the given boundary phase shift Φ⊥, Φ‖ and Φ the specific expressions
for α, β and κ are obtained by Equations (8)–(10) with the constraints

L

∑
j=1

αj,m(σ) = Φ⊥(σ) , (14)

L

∑
j=1

j 6=m,m−1

βj,m(σ) + βm,m−1(σ) + βm−1,m+1(σ) = Φ‖(σ) , (15)

L

∑
j=1

[
κj(σ) + βj,j(σ)

]
= Φ(σ) . (16)

The total boundary twist is given by

γσ = Φ(σ) + Φ⊥(σ)N−σ + Φ‖(σ)(Nσ − 1) , (17)

where Nσ is number of particles with spin σ. We note that the coefficient of the
last term in Equation (17) is Nσ − 1 because the terms for m = j and m = j + 1
in constraint Equation (9) do not exist. This boundary condition we will call a
twist boundary condition. When Φ⊥, Φ‖ and Φ all take a value pkL, the twist
boundary condition reduces to the trivial periodic boundary condition. For any
chosen twist boundary condition other than the normal periodic boundary condition,
if one can find parameters α, β and κ satisfying the constraints Equations (8)–(10)
and (14)–(16), the Hamiltonian Equation (1) is then solvable. The transform of
Hamiltonian Equation (1) under U is

H U−→ UHU−1 = −t
L−1

∑
j=1

∑
σ=↑,↓

{
c†

j+1,σcj,σ + h.c.
}

exp

[
−η ∑

σ′ 6=σ

nj+θ(σ−σ′),σ′

]

−t ∑
σ=↑,↓

{
c†

1,σcL,σ exp[iγσ] + h.c.
}

exp

[
−η ∑

σ′ 6=σ

nj+θ(σ−σ′),σ′

]
, (18)

with the boundary term

c†
L+1,σcL,σ = exp[iγσ]c†

1,σcL,σ . (19)

Generally, the sites of the chain are chosen with a homogeneous distribution.
So it is natural to think the effect of this boundary phase term γσ as an average
phase shift δσ = γσ/L when a particle hops from one site to its neighbour sites.
The corresponding Hamiltonian is then

H′ = −t
L

∑
j=1

∑
σ=↑,↓

{
eiδσ c̃ †

j+1,σ c̃j,σ + h.c.
}

exp

[
−η ∑

σ′ 6=σ

ñj+θ(σ−σ′),σ′

]
, (20)
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where
c̃ †

j,σ = e−ijδσc†
j,σ , c̃j,σ = cj,σeijδσ , ñj,σ = c̃ †

j,σ c̃j,σ , (21)

and the basic commutation relations are kept unchanged. δ is a function of σ, N and
N↓, which is different from the case of a periodic chain. By comparing this with the
standard Bariev model (α = β = κ = 0 in Equation (1)), one can see clearly that the
introduced long-range spin interactions are equivalent to applying a twist boundary
condition. However, we note that the phase shift between the neighbour sites may as
well be distributed in any other way such that the sum equals γσ without changing
any results.

3. Bethe Equations and Energy Spectrum

In the standard Bethe ansatz approach, modified for the twist boundary
condition, any eigenfunction of the Hamiltonian takes a form similar to tensor
products of plane waves [30]. We consider the eigenstate corresponding to N particles

|Ψ〉 =
L

∑
xq=1

f (xq1 , · · · , xqN )
N

∏
j=1

c†
xj ,σj
|Ω〉 (22)

in which the number of spin-down particles is N↓. In the region xq1 ≤ · · · ≤ xqN , the
function f can be written as [31]

f (xq1 , · · · , xqN ) = εP Aσq1 ,··· ,σqN
(kp1 , · · · , kpN )× exp


i

N

∑
j=1

kpj xqj


 θ(xq1 ≤ · · · ≤ xqN ) . (23)

By solving the Schrödinger equation H|Ψ〉 = E|Ψ〉, the energy eigenvalue of the
Hamiltonian Equation (18) is given by

E = −2t
N

∑
j=1

cos k j . (24)

We note that the form of the energy eigenvalue does not change from the
standard Bariev chain. However, we will see later that the momentum k j is now spin
dependent. Two-particle scattering matrices are given by

Sα1 α2
α1 α2

=
sin[(k1 − k2)/2]

sin[(k1 − k2)/2 + iη]
(α1 6= α2)

Sα1 α2
α2 α1

=
sin[iη]

sin[(k1 − k2)/2 + iη]
exp

[
i
k1 − k2

2
sign(α1 − α2)

]
(α1 6= α2) (25)

Sα0 α0
α0 α0

= 1 (α1 = α2 = α0) ,
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which are similar to the R−matrices of the standard 6-vertex models. The two are
related via a simple gauge transformation as [32]

S12(λ) = V1(λ)R12(λ)V−1
1 (λ), V(λ) = diag

(
eiλ/4, e−iλ/4

)
. (26)

for λ = (k1 − k2).
In general, we have

S12(λ1 − λ2) = V1(λ1)V2(λ2)R12(λ1 − λ2)V−1
1 (λ1)V−1

2 (λ2). (27)

It is easy to show
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which are similar to the R−matrices of the standard 6-vertex models. The two are related via a simple
gauge transformation as [32]

S12(λ) = V1(λ)R12(λ)V −1
1 (λ), V (λ) = diag

(
eiλ/4, e−iλ/4

)
. (26)

for λ = (k1 − k2).
In general, we have

S12(λ1 − λ2) = V1(λ1)V2(λ2)R12(λ1 − λ2)V −1
1 (λ1)V −1

2 (λ2). (27)

It is easy to show

S12(λ1 − λ2)S13(λ1 − λ3)S23(λ2 − λ3)

= V1(λ1)V2(λ2)V3(λ3)R12(λ1 − λ2)R13(λ1 − λ3)R23(λ2 − λ3)V −1
1 (λ1)V −1

2 (λ2)V −1
3 (λ3), (28)

which will satisfy the Yang-Baxter equation. So the integrability of the present model is kept. One can
also solve the problem by constructing the R-matrix of this model following the the techniques in [33].

The charge momentum kj and spin momentum Λµ satisfy the Bethe equations

eikjL = e−iγ↑
N↓∏

µ=1

sin
[

(kj−Λµ)

2
+ iη

2t

]

sin
[

(kj−Λµ)

2
− iη

2t

] , (29)

N↓∏

ν=1,ν 6=µ

sin
[

(Λµ−Λν)
2

+ iη
t

]

sin
[

(Λµ−Λν)
2
− iη

t

] = e−i(γ↓−γ↑)
N∏

j=1

sin
[

(Λµ−kj)
2

+ iη
2t

]

sin
[

(Λµ−kj)
2
− iη

2t

] . (30)

The structure of roots for these equations depends strongly on the hopping amplitude η.
The interactions between particles are repulsive when η > 0, all particles with different spins cannot form
a pair. In this situation all kj must be real, which can be proved under the thermodynamical limit. η < 0

corresponds to attractive interactions in the system. Particles with different spins tend to exist in the form
of cooper-pairs. The solution kj = Λ + i|η| corresponds to these bound states for charge excitations.
If we choose two sets of quantum numbers Ij and Jµ and set θ(x; a) = arctan

(
tan(x/2) coth(a/2)

)
,

Equations (29) and (30) then take the form

Lkj = −γ↑ + 2πI ′j +

N↓∑

µ=1

{π− 2θ(kj − Λµ;η)}

= −γ↑ + 2πIj −
N↓∑

µ=1

{2θ(kj − Λµ;η)} , (31)

(28)

which will satisfy the Yang-Baxter equation. So the integrability of the present
model is kept. One can also solve the problem by constructing the R-matrix of this
model following the the techniques in [33].

The charge momentum k j and spin momentum Λµ satisfy the Bethe equations

eikj L = e−iγ↑
N↓

∏
µ=1

sin
[
(kj−Λµ)

2 + iη
2t

]

sin
[
(kj−Λµ)

2 − iη
2t

] , (29)

N↓

∏
ν=1,ν 6=µ

sin
[
(Λµ−Λν)

2 + iη
t

]

sin
[
(Λµ−Λν)

2 − iη
t

] = e−i(γ↓−γ↑)
N

∏
j=1

sin
[
(Λµ−kj)

2 + iη
2t

]

sin
[
(Λµ−kj)

2 − iη
2t

] . (30)

The structure of roots for these equations depends strongly on the hopping
amplitude η. The interactions between particles are repulsive when η > 0, all
particles with different spins cannot form a pair. In this situation all k j must be
real, which can be proved under the thermodynamical limit. η < 0 corresponds to
attractive interactions in the system. Particles with different spins tend to exist in the
form of cooper-pairs. The solution k j = Λ + i|η| corresponds to these bound states
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for charge excitations. If we choose two sets of quantum numbers Ij and Jµ and set

θ(x; a) = arctan
(

tan(x/2) coth(a/2)
)

, Equations (29) and (30) then take the form

Lk j = −γ↑ + 2πI′j +
N↓

∑
µ=1
{π− 2θ(k j −Λµ;η)}

= −γ↑ + 2πIj −
N↓

∑
µ=1
{2θ(k j −Λµ;η)} , (31)

γ↓ − γ↑ = 2πJ′µ −
N↓

∑
ν=1;ν 6=µ

[π− 2θ(Λµ −Λν; 2η)] +
N

∑
j=1

[
π− 2θ(Λµ − k j;η)

]

= 2πJµ +
N↓

∑
ν=1;ν 6=µ

[2θ(Λµ −Λν; 2η)]−
N

∑
j=1

[
2θ(Λµ − k j;η)

]
, (32)

where I′j and J′µ are both common integers. The quantum numbers Ij = I′j + N↓/2 and
Jµ = J′µ+(N↑+ 1)/2 depend upon the charge and spin property in the system. From
Equations (31) and (32) we can see that Ij and Jµ are either integer or half-integer,
according to the number of total particles and the number of spin-up (spin-down)
particles. There are four cases,

• Ij and Jµ are both integers if N and N↑ are both odd;
• Ij and Jµ are both half-integers if N is odd and N↑ is even;
• Ij is a half-integer and Jµ is an integer if N is even and N↑ is odd;
• Ij is an integer and Jµ is a half-integer if N and N↑ are both even.

By taking the summation of Equations (31) and (32) over the coordinate and
spin indices respectively, the momentum of the system is given as

P =
N

∑
j=1

(
k j −

1
L
γ′
)
=

2π
L

(
N

∑
j=1

Ij +
N↓

∑
µ=1

Jµ

)
, (33)

where γ′ = (γ↓ − γ↑)− (N↑γ↓ + N↓γ↑)/N. In the above calculations we have used

the relation ∑
N↓
µ=1 ∑

N↓
ν=1 2θ(Λµ −Λν, 2η) = 0 .

In the limiting case η −→ ∞ (coth (η) −→ 1), we get

Lk j = 2π

[
Ij +

N↓
N(L + N↓)

N

∑
l=1

(Il − Ij) +
1
N

N↓

∑
λ=1

Jλ

]
+ γ′ . (34)
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Substituting it into Equation (24) we obtain the energy of the system

E0(γ) = −2tD cos

[
2π
L

(
1
N

N↓

∑
λ=1

Jλ + I +
γ′

2π

)]
, (35)

where D = sin(Nπ/L)/ sin(π/L) and I = (Imin + Imax)/2. We will not consider the
situation where N = L, which occurs when the chain is half filled and D is 0. Then
for arbitrary combinations of N and N↓ we have four different cases

E
even N↓
even N = −2tD cos [ 2π

L ( γ′
2π + g + 1

2 +
N↓
N h)] ,

E
odd N↓
even N = −2tD cos [ 2π

L ( γ′
2π + g +

N↓
N h)] ,

E
even N↓
odd N = −2tD cos [ 2π

L ( γ′
2π + g +

N↓
N h +

N↓
2N )] ,

E
odd N↓
odd N = −2tD cos [ 2π

L ( γ′
2π + g + 1

2 +
N↓
N h +

N↓
2N )] ,

(36)

where g and h are any integers and also quantum numbers which describe the charge
and spin excitations.

If we treat γ′ as the phase shift induced by an external field, for a given N and
N↓ the external field can only vary within a small range

2L− 1
2N

<
γ′

2π
+ Ī <

2L+ 1
2N

, L = −
N↓

∑
λ=1

Jλ . (37)

otherwise the spin inversion will occur.

4. Results for General η

Generally, for a finite η it is difficult to get exact solutions of the Bethe equations.
In this section we try to discuss some properties of the system when L → ∞. The
root distribution of Bethe equations turns to a continuous density distribution, σ, in
this case. We define functions

Zc(k) = Lk + γ↑ +
N↓

∑
µ=1

2θ(k−Λµ;η) , (38)

Zs(Λ) = γ↑ − γ↓ −
N↓

∑
µ=1

2θ(Λ−Λν; 2η) +
N

∑
j=1

2θ(Λ− k j;η) . (39)
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In the limiting case of large L Equations (38) and (39) can be expressed in the
form of integrals

2πσc(k) = lim
L→∞

1
L

d
dk

Zc(k), 2πσs(Λ) = lim
L→∞

1
L

d
dk

Zs(Λ) , (40)

where

n =
∫ K

−K
σc(k)dk =

N
L

, n↓ =
∫ Λ0

−Λ0

σs(Λ)dΛ =
N↓
L

. (41)

Now, we can see from Equations (31) and (32) that the relations

Zc(k j) = 2πIj, Zs(Λ) = 2πJλ , (42)

Ij+1 − Ij = 1, Jµ+1 − jµ = 1 , (43)

must be satisfied by roots of the Bethe equations. We are ready to obtain a set of
integral equations

2πσc(k) = 1 +
∫ Λ0

−Λ0

2θ(k−Λ;η)σs(Λ)dΛ , (44)

2πσs(Λ) = −
∫ Λ0

−Λ0

2θ′(Λ−Λ′; 2η)σs(Λ′)dΛ′ +
∫ K

−K
2θ′(Λ− k;η)σc(k)dk , (45)

where θ′(x; y) = dθ/dx = −sin(y)/4[cos(x) + cosh(y)].
Through a Fourier transform we obtain

θ̃′(ω; y) =
∫ π

−π
θ′(x; y)e−iωxdx =

1
2

e−ωy . (46)

For Λ0 = K = π, we have σc(ω) = 1/π and σs(ω) = 1/2π. The corresponding
particle densities in Equation (41) are n = 2 and n↓ = 1, which means that the
numbers of two spin species are the same if there is no external field.

For a more general situation, the values of K and Λ0 are determined by
Equation (41). When the external field vanishes, the value of Λ0 must be π. From
Equations (44) and (45) we get

2πσc(k) = 1 +
∞

∑
ω=0

e−ikω

1 + e2ηω

∫ K

−K
eiµωσc(µ)dµ . (47)

The numerical solutions of the Bethe Equations (29) and (30) and the
corresponding eigenvalues of the Hamiltonian Equation (18) for L = 2 and L = 3
with different occupation numbers are shown in Tables 1 and 2 respectively. As
mentioned before, we will only consider the cases where N < L. By analyzing the
structure of Bethe equations, we can see that if N↓ = 0 or N = N↓ the roots of the
Bethe equations do not depend on η. These numerical results coincide with those

23



obtained from the exact diagonalization of the Hamiltonian Equation (18) and the
analytical results in the limiting case, η→ ∞, obtained through Equation (36). For
the L = 2 chain, we also give the eigenvalues E with varying γσ, which do not
change with η, as shown in Figure 1.

Figure 1. The eigenvalues E calculated from the exact diagonalization of the
Hamiltonian Equation (18) with respect to γσ for L = 2. (a) N = N↑ = 1.
(b) N = N↓ = 1.

Table 1. The numerical results calculated from Equations (29) and (30) for the
parameters, L = 2, t = 0.5, η = 0.3, γ↑ = 0.2, and γ↓ = 0.1.

Occupation Number k1 Λ1 E

N = N↑ = 1 −0.100000 N/A −0.995004
N = N↑ = 1 3.041593 N/A 0.995004
N = N↓ = 1 −0.050000 3.754988 −0.998750
N = N↓ = 1 3.091593 0.613395 0.998750

Table 2. The numerical results calculated from Equations (29) and (30) for the
parameters, L = 3, t = 0.5, η = 0.3, γ↑ = 0.4, and γ↓ = 0.2.

Occupation Number k1 k2 Λ1 Λ2 E

N = N↑ = 1 −0.066667 N/A N/A N/A −0.997779
N = N↑ = 1 2.027728 N/A N/A N/A 0.441197
N = N↑ = 1 −2.161062 N/A N/A N/A 0.556582
N = N↓ = 1 −0.033333 N/A −2.834687 N/A −0.999444
N = N↓ = 1 2.061062 N/A −0.740291 N/A 0.470860
N = N↓ = 1 −2.127728 N/A 1.354104 N/A 0.528584
N = N↑ = 2 −0.133333 1.961062 N/A N/A −0.610690
N = N↑ = 2 −2.227728 −0.133333 N/A N/A −0.380434
N = N↑ = 2 1.961062 −2.227728 N/A N/A 0.991124
N = N↓ = 2 −0.066667 2.027728 −0.405569 + 1.839956i −0.405569− 1.839956i −0.556582
N = N↓ = 2 −0.066667 −2.161062 −2.499964− 1.839956i −2.499964 + 1.839956i −0.441197
N = N↓ = 2 2.027728 −2.161062 1.688826 + 1.839956i 1.688826− 1.839956i 0.997779
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5. Conclusions

In this paper we have constructed a generalized 1D Bariev model which
describes spin-1/2 particles with long-range interaction on a lattice. By employing
an unitary transformation we find the Hamiltonian is equivalent to a standard Bariev
Hamiltonian with twist boundary conditions. This phase twist may be used to
explain the effects of an external magnetic potential and the internal fluctuations
on the system. For a strong external magnetic field, spin inversions can occur in
the system. By solving the Bethe equations in the limiting case where η → ∞ we
give the specific forms of energy spectrum in different system configurations with
respect to total particle number and spin distributions. More general cases have
been discussed but the analytical result can only be obtained in the situation where
there is no external field. We also solve Bethe equations numerically and conduct the
exact diagnalization of the transformed Hamitonian. The numerical results and the
analytical results coincide with each other very well. To relate our model with real
physical systems we need to determine the specific values of ξ, ζ and η and calculate
some other physical properties of the system. This could be an interesting topic for
further study.
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Short-Lived Lattice Quasiparticles for
Strongly Interacting Fluids
Miller Mendoza Jimenez and Sauro Succi

Abstract: It is shown that lattice kinetic theory based on short-lived quasiparticles
proves very effective in simulating the complex dynamics of strongly interacting
fluids (SIF). In particular, it is pointed out that the shear viscosity of lattice fluids is
the sum of two contributions, one due to the usual interactions between particles
(collision viscosity) and the other due to the interaction with the discrete lattice
(propagation viscosity). Since the latter is negative, the sum may turn out to be orders
of magnitude smaller than each of the two contributions separately, thus providing
a mechanism to access SIF regimes at ordinary values of the collisional viscosity.
This concept, as applied to quantum superfluids in one-dimensional optical lattices,
is shown to reproduce shear viscosities consistent with the AdS-CFT holographic
bound on the viscosity/entropy ratio. This shows that lattice kinetic theory continues
to hold for strongly coupled hydrodynamic regimes where continuum kinetic theory
may no longer be applicable.

Reprinted from Entropy. Cite as: Jimenez, M.M.; Succi, S. Short-Lived Lattice
Quasiparticles for Strongly Interacting Fluids. Entropy 2015, 17, 6169–6178.

1. Introduction

The study of transport properties of strongly interacting fluids (SIF) has
gained central stage in modern condensed matter research, with many fascinating
connections with quantum-relativistic hydrodynamics, high-energy physics and
string theory [1]. By definition, SIF are moving states of matter in which the
interactions are strong to the point of preventing the microscopic degrees of freedom
from propagating freely over significant distances as compared with the range of
their interactions. More precisely, the mean-free path becomes smaller than the
interaction range, and, eventually, the De Broglie length. Remarkable examples in
point are found mostly in the framework of quantum fluids, namely quark–gluon
plasmas [2], electrons in graphene [3] and Bose–Einstein condensates in optical
lattices [4]. Note that these extreme and exotic states of matter cover a breathtaking
range of densities and temperatures, from one particle/fm3 and trillions Kelvin
degrees in ultra hot-dense quark–gluon plasmas, to about 1012 particles/cm3 and
tens of nanokelvins in ultra-cold Bose–Einstein condensates. Thus the SIF regimes
show an impressive degree of universality, whose understanding stands as a great
challenge at the crossroad of statistical fluid mechanics, condensed matter and
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high-energy physics. Under SIF conditions, most of the familiar and powerful
notions of kinetic theory call for a profound revision. In particular, it is argued that
not only Boltzmann’s kinetic theory, but also the very notion of quasiparticles as
weakly-interacting collective degrees of freedom, would lose meaning due their
inconspicuously short lifetime [5]. Hence, new ideas and methods, both analytical
and numerical, are in great demand.

Among the analytical ones, a most prominent role has been taken by the
AdS-CFT (Anti-de Sitter Conformal Field Theory) duality between gravity in
(d + 1)-dimensions and conformal field theory in d-dimensions [6]. The beauty, and
practical import, of the dual-holographic picture is that one can solve an otherwise
intractable strongly coupled CFT by dealing with its weakly coupled gravitational
analogue, an approach sometimes known as holographic principle. One of the major
outcomes of the holographic approach is the so-called minimum-viscosity bound [7]

η

s
≥ 1

4π

h̄
kB

, (1)

where η is the shear viscosity and s the entropy per unit volume. It has been found
that many quantum relativistic fluids, such as quark–gluon plasmas and electrons
in graphene, come much closer to matching the above bound than any previously
known fluid, including superfluid Helium-III. Moreover, the holographic AdS-CFT
picture shows that hydrodynamics continues to apply even though kinetic theory
does (may) not. Besides the conceptual challenge of developing statistical mechanics
without quasiparticles, the ultra-low values of η/s open up the exciting possibility
of observing dynamical instabilities and the ensuing (pre) quantum turbulence
phenomena in these extreme states of matter [8].

It is hereby maintained that a proper lattice formulation of effective kinetic
theory can effectively describe the dynamics of SIF by making use of very short-lived
quasiparticles. The two main conceptual ingredients are as follows. (1) Top-down
approach: design kinetic equation solely based on symmetry and conservation
properties of the macroscopic field-theory (hydrodynamics), including entropic
constraints. This just the reverse of the canonical route of deriving kinetic theory
from first-principles, i.e., by coarse-graining underlying microscopic dynamics (which
is the process generating quasiparticles). (2) The existence of negative propagation
viscosity, as an emergent property due to the interaction of the free-streaming
quasiparticles with the discrete lattice. Item (2) is crucial to sustain ephemeral
quasiparticles, with lifetimes as little as one millionth of the free-flight time, hence
to achieve ultra-low viscosities, well below the natural kinematic lattice viscosity
νL = ∆x2/∆t, ∆x and ∆t being the lattice spacing and hopping time, respectively.
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2. Results and Discussion

The typical lattice kinetic equation reads as follows [9]:

fi(~x, t) − fi(~x−~ci∆t, t− ∆t) = −∆t
τ [ fi − f eq

i ](~x−~ci∆t, t− ∆t), (2)

where fi(~x, t) is the probability of finding a particle at position ~x in the lattice at
time t with discrete velocity ~v = ~ci. The left hand side represents the free-streaming
from site to site while the right hand side encodes collisional relaxation to a local
equilibrium distribution f eq

i on a time scale τ (see Figure 1). The discrete Boltzmann
distributions (“populations”) are quintessential quasiparticles, as they encode the
dynamics of a collection of molecules in a lattice of size ∆x3 (in three dimensions),
moving along the direction ~ci. The local equilibrium is a universal function (e.g.,
Maxwell–Boltzmann, Bose–Einstein, Fermi–Dirac, etc.) of the locally conserved
quantities (hydrodynamic modes), such as flow density ρ = m ∑i fi and current
J = ρ~u = m ∑i~ci fi, and dictates the structure of the inviscid macroscopic equations
(Euler). Here m denotes a characteristic mass. The relaxation time, on the other hand,
corresponds to the rate at which this equilibrium is reached, and dictates the fluid
transport coefficients.

In the Boltzmann kinetic theory, in the strong-coupling regime τ → 0, viscosity
is directly proportional to this relaxation time, ν ∼ c2

s τ, cs =
√

kBT/m being
the thermal speed [10]. In the lattice, however, this expression receives a crucial
contribution from the discrete free-streaming. Indeed, by performing the appropriate
Chapman–Enskog asymptotic expansion in the Knudsen number Kn = csτ/L, L
being a typical hydro-scale, one obtains:

ν = c2
s (τ − ∆t/2) , (3)

where the negative term at the right hand side is the contribution of the
free-streaming. Given the minus sign, it is immediately seen that ultra-low viscosities
of order ενL can be achieved by near-matching the free-flight and collisional time,
i.e., by choosing τ = ∆t(1 + ε)/2. In lattice units, one can write Equation (3) as

ν = C2
s νL(1/ω− 1/2) , (4)

where νL = ∆x2

∆t is the natural lattice viscosity and we have set ω = ∆t/τ. In
the above Cs is the sound speed in lattice units, typically 1/

√
3 in most common

lattices. Crucial for the correct recovery of the hydrodynamic equations is that the
lattice exhibits enough symmetry to ensure the proper conservation laws as well as
rotational invariance [11].
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To further appreciate the point of ultra-low viscosity, let us now recast the kinetic
Equation (2) in the most compact stream-collide form:

fi(~x, t) = f ′i (~x−~ci∆t, t− ∆t) , (5)

where
f ′i ≡ (1−ω) fi + ω f eq

i , (6)

is the post-collisional distribution (see Figure 1). The latter expression highlights
three distinguished updates:

1. ω = 0, f ′i = fi. The particles are fully uncoupled (no collision), perform ballistic
motion and never equilibrate, corresponding to infinite diffusivity.

2. ω = 1, f ′i = f eq
i . The particles reach equilibrium in a single time-step.

According to Equation (4), this gives a viscosity ν = νLC2
s /2, i.e., comparable to

the lattice viscosity νL.
3. ω = 2, f ′i = fi − 2 f neq

i . Collisions send the populations exactly “on the other
side”, to the mirror state f ∗i ≡ f eq

i − f neq
i , defined by complete reversal of the

non-equilibrium component f neq
i ≡ fi − f eq

i . Based on Equation (4), this yields
formally zero viscosity, i.e., infinitely strong coupling.

Hence, by choosing τ = ∆t/2, the quasiparticles have literally zero lifetime,
even though both free-streaming and collisional time-scales are finite. Far from
being a mere mathematical nicety, this regime is crucial to the operation of the
Lattice Boltzmann (LB) scheme in the very-low viscous regime relevant, say, to fluid
turbulence. Indeed, given the current computer resolutions, (iii) is precisely the
regime that needs to be approached in order to simulate strongly coupled classical
fluids, such as turbulent flows at Reynolds number above a few thousands. To clarify
the point, let us recall that the strength of fluid turbulence is measured by the
Reynolds number, Re = UL/ν, where U and L are macroscopic velocity and length
scales, respectively. In LB units, ∆x = ∆t = 1, this gives Re = MaN/νlb, where
Ma = U/cs is the thermal Mach Number, N = L/∆x is the number of lattice sites per
linear dimension and νlb ≡ ν/νL = (1/ω− 1/2) is the viscosity in LB units. Current
computers allow at best N ∼ 104, so that with Mach numbers of order 1, reaching
Re = 107 (air flowing around a standard car), requires νlb ∼ 10−3, i.e., three orders of
magnitude below the natural lattice viscosity νL. This simple example highlights the
necessity of operating with very short-lived quasiparticles, where short means very
small as compared with the physical free-streaming and collisional time scales, ∆t
and τ, both O(1) in LB units.
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Figure 1. Schematics of the Lattice Boltzmann (LB) scheme: the quasiparticle
distributions hop along the links defined by the discrete velocities and, once on the
same site, they scatter into the post-collisional state. One- (top) and two- (bottom)
dimensional lattices. Here ∆x is the size of the lattice.

These quasiparticles function pretty well in the discrete world they live in, if
only very shortly. In fact, by promoting the relaxation parameter ω to the status of
a dynamic field responding self-consistently to the local constraints of the second
principle (Boltzmann’s H-theorem), the lifetime of these “ephemeral” quasiparticles can
be made as small as one millionth of their natural value, i.e., ω ' 2(1− 10−6) [12–14].
In order to appreciate why this is remarkable, let us consider the lattice kinetic update
in compact form, Equation (5). The realisability constraint imposes that the discrete
populations be non-negative, hence, starting with a non-negative pair ( fi, f eq

i ), the
collisional update should return a non-negative f ′i . A moment thought shows that this
is indeed the case in the safe under-relaxation regime 0 < ω < 1. However, we have
just shown that such regime does not provide access to the large Reynolds numbers
typical of most turbulent flows.Hence, the LB update needs to operate deeply into
the potentially unprotected over-relaxation regime, 1 < ω < 2. The remarkable
fact is that this is indeed possible, thanks to the existence of a lattice analogue of
the H-theorem [12–14]. Note that the regime 1 < ω < 2 is called over-relaxation
because the time step is larger than the relaxation time, τ < ∆t, and consequently,
the post-collisional distribution is no longer bounded between the pre-collisional one
and the local equilibrium, which is a potential threat to positive-definiteness.

32



2.1. Propagation Viscosity in Luttinger Liquids

Let us apply this concept to Luttinger liquids. By dealing with a unitary Fermi
gas, one should distinguish two different regimes, weak and strong coupling. Since
the present work is focused on strongly interacting fluids, we consider the regime
of large values of the Lieb–Liniger parameter, γ ≡ mg/(h̄2n) � 1, where m is
the atomic mass, n the atomic density, and g the coupling constant [15]. It proves
expedient to define the dimensionless quantity K ≡ h̄nπ/(mcs). Note that γ and
K relate to each other through an expression that, for 1 < γ < 10, takes the form

K ' π
[
γ− (1/2π)γ3/2

]−1/2
[15].

In the strongly interacting regime and for weak external potentials, a quantum
phase transition from Mott insulator to superfluid occurs for γ > γc and Kc = 2 [15,16].

Let us next define, from Equation (3), νc = c2
s τ and νp = c2

s ∆t/2, denoting
“collision” and “propagation” viscosities, respectively. In order to estimate the
propagation viscosity for a strongly interacting fluid at quantum criticality, we recast
Equation (3) in the form:

νp/νc = ∆t/2τ . (7)

Assuming that ∆t = l/c, where l is the lattice periodicity and c the light speed, and
τ = λ/cs, where λ is the characteristic mean-free path, the above relation reads:

νp/νc = (1/2)(cs/c)(l/λ) . (8)

In the sequel, we shall take c ' cs. Since at criticality, Kc = 2, taking into account
that the density n ' 1/l (commensurate density [15]), it follows that λB = 4l, where
λB is the De Broglie length. Inserting this into the viscosity ratio, we obtain

νp

νc

∣∣∣∣
crit

=
1
8

λB
λ

. (9)

Note that SIF regimes are characterized by the condition λ < λB. To determine the
ratio λB/λ of the lattice fluid, we follow the same procedure adopted in [17] to obtain
the AdS-CFT viscosity bound. Based on the Heisenberg principle, kBTτ > h̄/2, so
that τ = λ/c = h̄B/(2kBT), B > 1 being a constant.

Consequently,

λ =
B

4π
λB . (10)

The relations between the lattice size l, the mean-free path λ, the De Broglie length
λB and the predicted lattice mean-free path λe f f , can be appreciated from Figure 2.
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Figure 2. Representation of the Luttinger liquid. Shown are the mean-free path
λ, the De Broglie length λB, the lattice size ∆x = l, and the effective mean-free
path predicted by the lattice λe f f . Note that due to the negative contribution
(−l/2), lattice kinetic fluids can attain ultra-low viscosity even though the standard
collisional viscosity is of the same order of the lattice viscosity νL.

Note that the constant B is related to the AdS-CFT bound by [4],

η

s
=

B
4π

h̄
kB

. (11)

Inserting Equation (10) into Equation (9), we obtain

νp

νc

∣∣∣∣
crit

=
π

2B
. (12)

This result calls for a number of comments. First, we note that the condition of
non-negative viscosity, νp/νc ≤ 1, implies B ≥ π/2 ' 1.6, which corresponds to
a bound η/s ' 0.13h̄/kB. In this case, the lattice quasiparticles can model even
more “perfect” fluids than the Luttinger liquid. On the other hand, if we assume
that τ = ∆t, which means that the quasiparticles thermalise in a single time step, we
obtain B = π, yielding a bound η/s ' 0.25 h̄/kB, which is very close to the value
measured in experiments for two- and three-dimensional Fermi gases at unitarity [18].
Note that in order to get Equation (12), we have not only used lattice kinetic theory
but also the Heisenberg principle, which shows that we still need quantum mechanics
contributions for this particular example. However, this does not imply that lattice
kinetic theory cannot handle quantum systems by itself. In fact, a quantum lattice
Boltzmann model exists since long [19] to solve the Dirac equation. It is based on the
same stream-collide paradigm of the classical lattice Boltzmann equation, although
with a skew-symmetric collision matrix, where τ is related to h̄ via τ = h̄/mc2.

3. Conclusions

In summary, one can conclude that lattice kinetic schemes endowed with
an H-theorem support ultra-short-lived computational quasiparticles, down to
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viscosities several orders of magnitude below their natural scale (the lattice viscosity).
This is a strict consequence of the fact that, due the discrete nature of the lattice,
free-streaming also contributes a viscosity and, most importantly, a negative one.
It is as if, in the process of hopping from site to site, the lattice quasiparticles would
“surrender” part of their collisional viscosity to the lattice itself, and precisely in
proportion of half of the flight time. This is plausible, since negative viscosity
corresponds to dynamic instability, namely the system moving away from local
equilibrium, a sort of backward move in time (rejuvenation), as opposed to the
standard forward move due to collisions. It is also plausible to speculate that this
ultra-low viscosity could be regarded as an effect of lattice criticality, in the sense that
the two competing processes, collisions and streaming, come to a near exact balance
through the interaction of the quasiparticles with the lattice.

This process follows in the footsteps of similar phenomena in condensed matter:
electrons in graphene behave like effective near mass-free excitations precisely
because, due to the special symmetry of the honeycomb lattice, the electrons near the
Dirac point “release” most of their mass to the lattice [20]. Since mass dictates the
(Compton) collision frequency, ωc = mc2/h̄, and the collisional viscosity is inversely
proportional to ωc, it is clear that negative viscosity and near mass-free electrons in
graphene belong somehow to the same family of lattice-induced phenomena. In the
continuum, ∆t/τ → 0, the negative viscosity is totally negligible, but in the discrete
world it becomes crucial to attain ultra-low kinematic viscosities.

By using lattice kinetic theory, one can indeed achieve zero viscosity, and the
same can be done in the continuum theories, such as continuum Boltzmann and
Navier–Stokes equations. However, when the physical system possesses intrinsic
discrete properties, e.g., quantum liquids in optical lattices, the viscosity can take
very small values due to the presence of the negative viscosity induced by the lattice.
For these particular systems, the lattice kinetic theory may describe the transport
properties better than the continuum kinetic theory, as is the case of the lower bound
in the shear viscosity of quantum liquids, which is overestimated by the continuum
Boltzmann equation. On the other hand, in the classical context, a perfect fluid has
zero viscosity, which in our case corresponds to ω = 2. Thus, in the continuum
limit, the lattice kinetic theory becomes just a numerical tool and recovers the Euler
equations. However, in strongly coupled fluids, which are the focus of this paper
and usually are governed by quantum mechanics, fluids do not have zero but a finite
value of viscosity. Here we show that considering ω = 1 one can get instantaneous
relaxation and at the same time a lower bound for the viscosity of the physical system.

A few concluding remarks regarding strongly coupled fluids are in order. One
may argue that most of these fluids are quantal, hence not captured by classical
lattice kinetic models, for instance, the LB schemes discussed in this work. To this
regard, it is worth pointing out that the lattice Boltzmann method has been already
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used to study two-dimensional Fermi gas at unitarity [21], providing a procedure to
calculate transport coefficients precisely. Furthermore, the LB versions for quantum
wave functions are available since long, and they are based on exactly the same
stream-collide paradigm, if only with a suitable scattering matrix for collisions [19].
Incidentally, such quantum LB versions provide exact realisations of the Dirac
equation in one spatial dimension and can be extended to d > 1 by proper operator
splitting [22]. Finally, we wish to point out that matrix extensions of the quantum
LB scheme have been recently connected with the Hubbard model for strongly
correlated quantum fluids [23], thereby lending further weight to the main idea
proposed in this paper, namely that lattice kinetic theory may provide a new angle of
investigation for strongly interacting fluid regimes where continuum kinetic theory
may no longer hold.
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Two-Dimensional Lattice Boltzmann
for Reactive Rayleigh–Bénard and
Bénard–Poiseuille Regimes
Suemi Rodríguez-Romo and Oscar Ibañez-Orozco

Abstract: We perform a computer simulation of the reaction-diffusion and convection
that takes place in Rayleigh–Bénard and Bénard–Poiseuille regimes. The lattice
Boltzmann equation (LBE) is used along with the Boussinesq approximation
to solve the non-linear coupled differential equations that govern the systems’
thermo-hydrodynamics. Another LBE, is introduced to calculate the evolution
concentration of the chemical species involved in the chemical reactions. The
simulations are conducted at low Reynolds numbers and in terms of steady
state between the first and second thermo-hydrodynamics instability. The results
presented here (with no chemical reactions) are in good agreement with those
reported in the scientific literature which gives us high expectations about the
reliability of the chemical kinetics simulation. Some examples are provided.

Reprinted from Entropy. Cite as: Rodríguez-Romo, S.; Ibañez-Orozco, O.
Two-Dimensional Lattice Boltzmann for Reactive Rayleigh–Bénard and Bénard–Poiseuille
Regimes. Entropy 2015, 17, 6698–6711.

1. Introduction

The Rayleigh–Bénard convection phenomenon is common in nature,
governing various phenomena such as atmospheric fronts [1], thermal inversion
(Bénard–Marangoni), ocean currents [2], circulation of the mantle [3], etc. In the
chemical industry, convective rolls are present in the chemical and electrochemical
reactors [4], fuel cells, distillation columns, selective membranes, ion exchange,
among others. To characterize these phenomena in complex systems, a wide variety
of numerical methods have been used: such as the finite element [5–8] and finite
differences [9,10], among others.

Other methods of statistical physics have also been successfully used, such as
Monte Carlo algorithms in the study of microscopic aspects of the Rayleigh–Bérnard
dynamics as a phase transition [11,12]. Recently, the Lattice Boltzmann Method
(LBM) has emerged [13,14] as one of the most powerful tools to describe complex
thermos-hydrodynamic system [15–17]. The introduction of the BGK collision
operator approach permits to significantly simplify the LB algorithm, although at
some expenses of numerical stability in very low viscous regimes. Most importantly,
in LBM the transport (free-streaming) is linear and can be dealt with exactly,
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while diffusion emerges from the relaxation dynamics of the collision operator,
which is fully local. These are major advantages over macroscopic formulations
of hydrodynamics.

When a fluid is heated from below and the Reynolds number is small, the
heat transfer takes place by conduction. However, if a critical value is exceeded,
natural convection is the predominant phenomena. The so-called Rayleigh–Bénard
convection occurs due to the competition between the gravity and buoyant forces,
creating instabilities in the fluid, which induces convective currents.

There are two thermo-convective instabilities in the Rayleigh–Bénard
systems [18]. The first corresponds to the transition from a steady-state thermal
conduction towards a state of thermal convection, formed by well-defined
bidimensional stationary rollers. This transition occurs, theoretically, at a Rayleigh
number of 1707.76, regardless of the value of the Prandtl number. The second
transition occurs when the Rayleigh value increases until it can be considered
a function of the Prandtl number. It consists of a bifurcation from a single
frequency oscillating state, to a quasiperiodic double frequency flow. An additional
increment of the Rayleigh number leads to a chaotic regime in a fully developed
turbulence. Recently, a large number of articles with regard to the LBM applied on
Rayleigh–Bénard convection, mainly between the first and second transition, where
the Boussinesq approximation is valid, have been published. The first approach to
Rayleigh–Bérnard systems by LBM is introduced by 1993 [19,20].

Many theoretical and experimental results restricted to low Reynolds and
Rayleigh numbers have shown that layered Bénard–Poiseuille flow remains also
stable, as long as the Prandtl number does not exceed a critical value. There are
several articles based on finite differences [3,4,10] and in LBM [21] that have to
do with the theory and numeric of this type of flow analysis. However, so far,
there are few publications related to reactive systems under Rayleigh–Bénard and
Bénard–Poiseuille regimes despite their importance among the applications above
mentioned [22].

In order to simulate the dynamics of chemical reactions in two-dimensional
systems with thermal and convective phenomena, a D2Q9 LBM is used in this
paper at mesoscopic scale by taking into account (virtual) particles which move
synchronously in a regular lattice, in accordance with discrete time steps. Then,
when these particles reach simultaneously the same node of this lattice, they interact
among themselves following collision rules that comply with the principles of
mass, momentum and energy conservation, recovering in the macroscopic limit
(through multiscale expansion), a number of differential equations, relying on the
described phenomena. After the interaction, which is assumed to be instantaneous,
the particles are scattered through first or second neighbors in the lattice. These
define a distribution function of pseudo-particles fi; namely, the probability that
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a particle is in a site-specific lattice node at time t, moving with speed ci [23,24].
There are several other researches on coupled chemical reactions (electrokinetic)
and reactive transport within micropores using mesoscopic modeling [25]. Pioneer
work in the study of chemical kinetics using LBM has also been considered
in this paper [26–28]. We perform a simulation in the Rayleigh–Bénard and
Bénard–Poiseuille regimes for the Nitrous Oxide decomposition where Boussinesq
approximation is valid, introducing the chemical kinetics as a function of the
temperature via the Arrhenius law.

2. Thermal Decomposition of Nitrous Oxide

In this section, we address two different cases; the first pertains to the thermal
decomposition of nitrous oxide (so called laughing gas) in the bulk of a fluid
containing air plus the different species involved in this well characterized chemical
reaction. This fluid performs a laminar flow through a rectangular open channel.
The second case is similar but in a closed cavity; namely, the Rayleigh–Bénard and
Bénard–Poiseuille regimes. See Figure 1.
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Figure 1. The non-isothermal closed and open cavities used in this paper.

In 1903, Boussinesq noted that when the differences of temperature were
small, the thermodynamic properties of the fluid, such as the viscosity, the thermal
diffusivity and the specific heat were also small, thus the fluid was approximately
incompressible, while buoyant fluid effects were significant. This is due to the
fact that the acceleration of the fluid is considerably less than the gravitational
acceleration. Namely, the product of the gravity acceleration g and a small density
difference is not negligible compared to other terms in the vertical movement
component of the fluid in the Navier–Stokes equation. Boussinesq proposed an
equation of state in which the fluid density is a linear function of the temperature and
does not depend on the pressure. Following this hypothesis, the nonlinear coupled
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partial differential equations governing the thermos-hydrodynamic instability are as
follows [29].

• The continuity equation
∂tρ + ∆ · ρu = 0 (1)

• The Navier–Stokes equation with buoyant forces (G).

ρ[∂tu + u∇ · u] = −∇ · τ −∇ · P + G (2)

• The infinitesimal balance of heat transfer, based on the Fourier’s law, including
effects of natural convection and viscous dissipation.

∂t
(
ρCpT

)
= ∇ · kT∇T −∇ · ρuT − τ : ∇u (3)

• The linear Bousinesq equation of state.

ρ = ρ0[1− β (T − T0)] (4)

In these equations ρ, Cp and kT are the density, heat capacity and thermal
conductivity of the fluid, respectively. Besides, u, P and T are the speed, pressure
and temperature of the fluid; τ is the molecular momentum flux tensor. In this paper,
we use the dimensionless version of Equations (1)–(3), namely;

∇∗ · u∗ = 0 (5)

1
Pr

[
δu∗

δt∗
+ u∗ · ∇u∗ +∇P∗

]
−∇∗2

u∗ −
√

RaT∗y∗ = 0 (6)

δT∗

δt
+ u∗ · ∇∗T∗ −

√
Rau∗ · y∗ −∇∗2

T∗ = 0. (7)

where Ra, Pr are the Reynolds and Prandtl dimensionless numbers.
The chemical dynamics are governed by the following equation of

reaction-diffusion and convection is used in this paper.

∂tCi = ∇ · Di∇Ci − u · ∇Ci + RQ (8)

The left side of this equation represents the changes of the chemical species in
accordance to the concentration of i. Meanwhile, on the right side for each species
i, the first term corresponds to the molar diffusion flux, with Di as the diffusion
coefficient; the second term represents the convective transport drew by currents of
fluid moving with speed u; finally, the third term corresponds to the speed of the
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different species production by the chemical reaction. This equation is considered in
dimensionless form.

Equations (5)–(8) are a set of nonlinear differential equations, regardless of the
nature of the chemical reaction, that pose a serious challenge to its resolution.

The decomposition of the laughing gas is considered as an example in this paper:

N2O→ N2 +
1
2

O2 (9)

Experimental evidence indicates that the corresponding chemical kinetics is
given by [28]

RQ = −rN2O =
k1 [N2O]2

1 + k2 [N2O]
. (10)

here k1 and k2 are constants obtained through experiments. Obviously, the N2O
decomposition is not elemental; i.e. if we assume that two molecules of N2O
collide and spontaneously disappear, at certain required conditions, becoming two
molecules of N2 and one of O2, then the kinetics should be RQ = −rN2O = k [N2O]2,
which experimentally is not the case. Thus, this is a non-elemental chemical reaction
and needs a new proposed mechanism for itself; namely, a set of elemental reactions
take place at the decomposition rate. At a fixed temperature, it is proportional to the
collision of molecules (or the spontaneous decomposition of one molecule), and also
proportional to the concentration of the species involved. In such a case, we must
introduce some molecular non-stable structures (they are produced and immediately
consumed in another elemental reaction) whose concentration cannot be measured
by experiments and are small enough to have a rate of production (or decomposition)
equal to zero. These structures are called intermediate complex chemical states.

We propose the following reaction mechanism that suits this kinetics as follows:

2N2O
k1′
�
k2′

X∗ + N2O (11)

X∗
k3′→ N2 +

1
2

O2. (12)

here, k1′ , k2′ , k3′ are theoretical constants (k1 and k2 are related with these hypothetical
constants). Equations (11) and (12) are added together to build the chemical
reaction (9) experimentally obtained and are assumed to be elemental, so we have
four differential equations (one for each rate of production or decomposition of the
species; N2O, X*, N2 and O2) and the corresponding algebraic equations obtained
by stoichiometry; thus it is possible to write, in this mechanism, the global N2O
decomposition rate only in terms of the N2O concentration. From the full set of
available equations all species’ concentrations and rates follow. In the first step of
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our mechanism (Equation (11)), N2O disappears following Equation (13), and it may
be noted that we deal with this as elemental kinetics.

− d [N2O]

dt
= k1′ [N2O]2 − k2′ [N2O] [X∗] (13)

By the hypothesis of non-stable intermediate steady-state (rX∗ = 0), the speed
of production of the intermediate complex chemical state X* is zero. Considering
elemental kinetics:

d[X∗]
dt

= k1′ [N2O]2 − k2′ [N2O] [X∗]− k3′X
∗ = 0 (14)

From Equations (13) and (14) and the algebraic equations from stoichiometry
follow the kinetics given by (10).

In this study, the following simplifying considerations are taken into account.

1. The gaseous fluid (air and different species involved in the thermal decomposition
of the laughing gas) is incompressible and Newtonian.

2. The thermal conductivity, viscosity, coefficient of thermal expansion and
coefficient of diffusion of chemical species are all constant throughout the
studied temperature range.

3. The variation of density is only significant in terms of buoyant forces.
4. Viscous dissipation is negligible.
5. The Reynolds number is small (for Bénard–Poiseuille flow).
6. The laughing gas decomposition is the only chemical reaction that takes place

in the system.
7. In the top and bottom plates, temperature is constant. This means that the heat

generated by the chemical reaction is assumed to be efficiently removed from
the system.

8. In the bottom plates, there are two heat sources (or hot spots) for both the opened
and closed channels at a higher temperature than the low constant temperature
set in 7. These heat sources trigger the (N2O decomposition) reaction.

9. The concentrations of chemical species are kept sufficiently small so that they
dominate the properties of air during the phenomenon of natural convection.

There are experimental values for the kinetic constants k1 and k2 in (10), which
we assume follow the Arrhenius law [30].

k1 = 1019.39e−81800/RT (15)

k2 = 108.69e−28400/RT (16)
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We chose temperatures in order that the chemical reaction rate is relatively slow
so the heat generated by it is also small.

3. The Lattice Botlzmann Model

In this section, we introduce the general lattice Boltzmann framework used in
this paper.

3.1. Open Channel

As mentioned above, three lattice Boltzmann structures are used in this paper.
The first one concerns the thermo-hydrodynamics issue. We proposed for the
momentum distribution function the following equation:

fi (x + ci∇t, t +∇t)− fi (x, t) = −∆t
τF

[
fi (x, t)− f eq

i (x, t)
]
+ Ji (17)

For Ji, the buoyant term, we use the Boussinesq approximation, namely

Ji = 3wigyβ · [T (x, t)− T∞] · ρ (x, t) · ciy (18)

A second LBE is formulated for the temperature field. The equation for the
thermal distribution function is:

gi (x + ci∆t, t + ∆t)− gi (x, t) = −∆t
τT

[
gi (x, t)− geq

i (x, t)
]

(19)

A third LBE is formulated for the chemical reaction kinetics that rules the species’
concentration evolution.

hα
i (x + ci∆t, t + ∆t)− hα

i (x, t) = −∆t
τD

[
hα

i (x, t)− hα,eq
i (x, t)

]
+

∆t
Q

RQ (20)

here, τD is the diffusion relaxation time τD = Dα

c2
s
+ 1

2 , being Dα the α’s chemical specie
Fick diffusion coefficient. The corresponding (three LBE) distribution equilibrium
functions are defined by the following equations:

f eq
i (x, t) = wtρ

[
1 +

ciAuA
c2

s
+

uAuB

2c2
s

(
ciAciB

c2
s
− δAB

)]
, (21)

geq
i (x, t) = wtT

[
1 +

ciAuA

c2
s

+
uAuB

2c2
s

(
ciAciB

c2
s
− δAB

)]
, (22)

hα,eq
i (x, t) = wαci

[
1 +

cα
i · u
c2

s
+

(
cα

i · u
)2

2c4
s
− u2

2c2
s

]
. (23)
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In a reactive system, we have as many equations ((20) and (23)) as needed (the
same number as the chemical species involved in the reactions). The macroscopic
variables are obtained as usual in the LBM. For example, the different species´
concentrations are obtained from the mesoscopic distribution functions as follows:

Cα = ∑
i

hα
i . (24)

In Figure 2, we schematically introduce the so-called open channel system.
The N2O current (mixed with air) enters by the open rectangular channel on the left
side with a fixed and uniform speed and laminar regime (low Reynolds numbers).
The internal part the channel interacts with heat sources which triggers the N2O
thermal decomposition, following the mechanism’s reaction proposed in this paper
by Equations (13) and (14). Simultaneously, the very same heat sources cause the
appearance of convection rolls, and the reaction evolves at different rates, depending
on the local temperature achieved by the reactive molecules in the fluid at each site
of the channel.

As for the boundary conditions we set the following scheme in the open
channel case:

1. For the top plate, bounce back boundary conditions for the fluid dynamic
LBE and a low constant isothermal boundary conditions for the thermic LBE
are used.

2. Inlet and outlet periodic boundary conditions, for the moment and thermal
LBE, are set.

3. For the bottom plate, bounce back boundary conditions are imposed in all the
nodes for the hydrodynamic LBE, while for thermal LBE we used bounce back
conditions as well, except in the heat sources sites where Dirichlet boundary
conditions are set.

After obtaining the profiles of velocity and temperature in steady-state, we
assess the evolution of the concentration of the chemical species for the reactive
diffusional LBE. This procedure results from the fact that kinetics is coupled with the
temperature field through the Arrhenius law, namely the concentration rate changes
due to kinetic law by both concentration and temperature fields.

These boundary conditions are:

1. Top and bottom bounce back boundary conditions.
2. Invariable concentration in the inlet of the channel.
3. Null gradient concentration in the outlet of the channel (von Neumann condition).
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Figure 2. The lattice Boltzmann model for a reactive flow (a mixture of nitrous
oxide and air), with heat sources that promote its thermal decomposition in an
open channel.

3.2. Closed Channel

Now consider nitrous oxide initially confined to a vessel at 250 K and suddenly
the sources located in the bottom plate rise their temperature to 300 K (by the hot
spots) producing the thermal decomposition of the laughing gas (Rayleigh–Bénard
flow). All the settings given by the open channel case are kept except for the boundary
conditions. In the closed channel case, these are the following:

1. Bounce back boundary conditions at all the sites for the fluid and thermal LBE
on all borders, except at the heat’s sources.

2. Diritchlet boundary conditions at all high temperature sites (heat sources).
3. Initial state with uniformly distributed nitrous oxide in the closed vessel, with

initial concentration C0 and initial temperature T0, smaller than the temperature
of the sources.

4. Bounce back boundary conditions at all the sites for the reaction-diffusion LBE
on all borders.

Figure 3 is a schematic representation of this system.
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Figure 3. The lattice Boltzmann model for a reactive flow containing nitrous oxide
mixed with air, with heat sources that promote its thermal decomposition in a
closed vessel.

4. The Lattice Botlzmann Algorithm

In the following we describe the LBM algorithm used in this paper to perform
the simulation of our models that allowed us to obtain our results.

4.1. Open Channel

After the discretization of the rectangular 2D domain, a D2Q9 lattice is
implemented and then the following standard LBM steps are applied:

1. The distribution functions f and g for the velocity u and temperature T fields,
respectively, were evaluated simultaneously in a coupled fashion, taking into
account iterative calculations performed by the following steps:

1.1 Propagation (streaming) of the f and g distribution functions.
1.2 Calculation of the distribution functions at equilibrium; feq and geq.
1.3 Actualization of the f and g distribution functions.
1.4 Introduction of thermal and fluid dynamics boundary conditions.
1.5 Calculation of the u and T fields from the new f and g distribution functions.
1.6 Assessment of the new and preceding values of u and T, if they are

closed enough, finish the iterations; else, return to step 1.1.

2. Once obtaining the steady temperature and velocity profiles, the temporal
evolution of the distribution functions hi for each one of the three chemical
species is calculated, solving the LBM equations for the reaction-diffusion
advection phenomena. This is a non-iterative procedure, structured practically
by the same steps as the ones in the thermo-hydrodynamic analysis, except
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for that in the formulation of the diffusional distribution functions for each
chemical species. The chemical kinetics term (Arrhenius law also considered) is
introduced, keeping the 1:1:1/2 stoichiometric relationships between reactants
and products.

After a short period of time, the concentrations of the three chemical species
reach a steady-state, due to the constant in-and-out reagent.

4.2. Closed Channel

In this case, we use the open channel algorithm modifying a few instructions
in the algorithm concerning the new boundary conditions and establishing a speed
equal to zero in the input stream. The remaining instructions are kept unchanged in
the algorithm.

5. Results and Conclusions

The results of our calculations are presented in Figures 4 and 5 for the open
channel and in Figures 6 and 7 for the closed channel.
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Figure 5. Species concentration field evolution for the Bénard–Poiseuille reactive
flow as iterations that are carried out for 5, 10 and 20 s.

One goal of this paper is the analysis of the chemical reactions’ dynamics that
are carried out on systems presenting thermo-hydrodynamic instabilities, using
Boussinesq approximation since this is considered a main stream topic. The study
presented here is a new step towards this direction. The model presented in
this paper includes a non-stationary thermo-hydrodynamic system where the heat
generated by the chemical reactions has an important role in the temperature interval
studied. The reaction enthalpy data of several chemical reactions are available in the
literature and can be plugged into the algorithm. The heat generated would lead to
a different evolution of the Bénard convection rolls. In this case, the solution of the
Boussinesq approach and the associated coupled chemical is quite different and shall
be addressed elsewhere.
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Finally, data numerical analysis can be performed by Fourier series on the
bidimensional images (or rough data on the plane) providing precise functions from
the contours depicted in Figures 4–7. For example, in Figure 5, for the Nitrogen
produced after 5 s, the upper contour of the lowest and second lowest concentration
areas can be approached by the following function; y = −204 + 166.71cos (.0034x) +
361.2sin (.0034x) with a correlation of 0.994, being x and y space coordinates in the
channel. Further work should be done in the near future to take full advantage of
our approach.

Entropy 2015, 17 6708 

 

 

 

Figure 5. Species concentration field evolution for the Bénard–Poiseuille reactive flow as 

iterations that are carried out for 5, 10 and 20 s.  

 

Figure 6. Temperature field evolution for the Rayleigh–Bénard reactive flow as iterations 
that are carried out to reach the thermo-hydrodynamic steady state, x  and y  are the space 

coordinates in the cavity. 

Figure 6. Temperature field evolution for the Rayleigh–Bénard reactive flow as
iterations that are carried out to reach the thermo-hydrodynamic steady state, x and
y are the space coordinates in the cavity.
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Figure 7. Species concentration field evolution for the Rayleigh–Bénard reactive flow as 
iterations that are carried out for 5, 15, 25 and 50 seconds, here x  and y  are the space 

coordinates in the cavity.  
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Extension of the Improved Bounce-Back
Scheme for Electrokinetic Flow in the Lattice
Boltzmann Method
Qing Chen, Hongping Zhou, Xuesong Jiang, Linyun Xu, Qing Li and Yu Ru

Abstract: In this paper, an improved bounce-back boundary treatment for fluid
systems in the lattice Boltzmann method [Yin, X.; Zhang J. J. Comput. Phys. 2012, 231,
4295–4303] is extended to handle the electrokinetic flows with complex boundary
shapes and conditions. Several numerical simulations are performed to validate
the electric boundary treatment. Simulations are presented to demonstrate the
accuracy and capability of this method in dealing with complex surface potential
situations, and simulated results are compared with analytical predictions with
excellent agreement. This method could be useful for electrokinetic simulations
with complex boundaries, and can also be readily extended to other phenomena
and processes.

Reprinted from Entropy. Cite as: Chen, Q.; Zhou, H.; Jiang, X.; Xu, L.; Li, Q.; Ru, Y.
Extension of the Improved Bounce-Back Scheme for Electrokinetic Flow in the Lattice
Boltzmann Method. Entropy 2015, 17, 7406–7419.

1. Introduction

With growing interest in bio-Micro Electro Mechanical Systems (MEMS) and
bio-Nano Electro Mechanical Systems (NEMS) applications and fuel cell technologies,
electrokinetic flows have become one of the most important non-mechanical
techniques in the application of microfluidics and nanofluidics [1,2]. Electro-osmotic
flow (EOF) is a promising approach to drive the microfluidics under an external
electric field, such as sample injection, chemical reaction, species separation and
energy supply [3,4]. Due to these important applications, EOF in microchannels has
received interesting attention [5–11].

Electro-osmotic flow (EOF) is a basic electrokinetic phenomenon, where an
electrical double layer (EDL) is formed due to the interaction between an electrolyte
solution and a dielectric surface [12]. From the macroscopic point of view, the
EOFs are governed by the Navier–Stokes (NS) equations for fluid flow and the
Poisson–Boltzmann equation for the electrical potential. Many studies have been
carried out on electro-osmotic flow in microchannel. The lattice Boltzmann method
(LBM) has been generally accepted as a useful simulation method for complex
flows [13–15]. The LBM approach is advantageous in dealing with complex
boundary geometries [16,17] and could be potentially more efficient with advanced
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computational technologies. Because of its distinctive advantages over conventional
numerical methods, the lattice Boltzmann method has introduced to simulate
electro-osmotic flow in micro devices. Warren [18] made the first attempt to apply the
LBM to solve the Navier–Stokes equations for the solution, while the conservation
equation for each ionic species and the Poisson equation for the electrical potential
were solved via the “moment propagation” method. He and Li [19] proposed a lattice
Boltzmann scheme for analyzing the electrochemical processes in an electrolyte
based on a locally electrically neutral assumption. With a multiple-component LBM
model, this scheme has also been utilized to study the electrohydrodynamic drop
deformation in an electric field [20]. The electrokinetic flows in microchannels is
simulated by the lattice Boltzmann method with one-dimensional linearized solution
of the Poisson–Boltzmann equation [5,7,8]. Melchionna and Succi [21] solved the
nonlinear Poisson–Boltzmann equation by an efficient multi-grid technique and
then predicted the flow behavior using a lattice Boltzmann scheme. The multi-grid
technique has great efficiency to solve the nonlinear Poisson–Boltzmann equation;
however it has rarely been extended for complex geometries [22]. Recently, The
LBM has been applied to study the mixing enhancement in heterogeneously charged
microchannels [23–28] and the roughness and cavitation effects in electro-osmotic
microfluidics [29,30].

As with other numerical methods, boundary conditions play crucial roles for
the simulation validity and stability. However, unlike the tremendous efforts in
developing accurate boundary treatments for LBM models for fluid flows and
convection-diffusion systems [31–36], boundary methods for LBM models of electric
field have not been addressed adequately. Typical electric field LBM simulations
are performed in regular domains with flat boundaries aligned along the lattice
grid lines. Several studies have considered rough surfaces [26,30]; however, the
rough surfaces were actually modeled as flat, stair-like patches. Recently, Yin and
Zhang [32] developed an improved bounce-back method for fluid flows, which is
discussed in [37–39].

In this paper, an improved bounce-back method for fluid flows [32] is extended
to simulate the electrokinetic flows with arbitrary boundary shapes. Numerical
simulations demonstrate that the boundary treatments have accurately represented
the spatial geometry as well as the surface potential. An example calculation is also
performed to illustrate the application of our boundary treatment for electrokinetic
studies. This study could be useful for LBM simulations of electric fields in systems
with complex surface geometry and surface conditions.
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2. Macroscopic Governing Equations for EOF

For incompressible EOF in microfluidic channel, the governing equations
including the continuity equation and the momentum equation can be described
as follows:

∇ · u = 0 (1)

ρ
∂u
∂t

+ ρu · ∇u = −∇P + ρυ∇2u+F (2)

where u is the velocity vector, ρ is the density of solution, P is the pressure, υ is the
kinetic viscosity of the flow, F represents the external force and is given as:

F = ρeE (3)

where ρe is the net charge density, and E is the external electric field.
The drive force of the EOF is indicated by the body force term (ρeE) in the

momentum equation and is caused by the action of the induced electrical field on
the net charge density in the EDL region. EDL theory [40] related the electrostatic
potential and the ion distribution in the bulk solution can be well approximated by
the Poisson equation as follows:

∇2ψ = − ρe

εε0
(4)

where ψ is the electrical potential, ε and ε0 are the dimensionless dielectric constant
and permittivity of vacuum, respectively.

For the flows over a non-conducting stationary surface, the ion distribution can
be well approximated by the Boltzmann distribution:

ni = ni,∞sinh
(
− zieψ

kbT

)
(5)

where ni is the ionic number concentration of the i-th species, ni,∞ is the ion
concentration in the bulk solution, zi is the valence of type-i ions, e is the charge of
an electron, kb is the Boltzmann constant and T is the absolute temperature. For a
symmetric electrolyte (zi = z and ni,∞ = n∞) considered in the present study, the net
charge density is given as follows:

ρe = −2n∞zesinh
(

zeψ

kbT

)
(6)
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Combining Equations (4) and (6) yields the nonlinear Poisson–Boltzmann
distribution for the EDL potential in the dilute electrolyte solution:

∇2ψ =
2n∞ze

εε0
sinh

(
zeψ

kbT

)
(7)

For the surfaces with low surface electric potentials, the Debye–Hückel
approximation (sinh

(
zeψ
kbT

)
≈ zeψ

kbT ) can be applied and the Poisson–Boltzmann
equation can be linearized to:

∇2ψ =
2n∞z2e2

εε0kbT
ψ = κ2ψ (8)

where:

κ =

√
2n∞z2e2

εε0kbT
(9)

and its reciprocal κ−1, the so-called Debye length, is usually used as a measure of the
EDL thickness in Debye–Hückel theory.

3. Numerical Method

The numerical method adopted in this work requires the solution of the
Navier–Stokes equations for fluid flow and the Poisson–Boltzmann equation for
electric potential distribution. A lattice structure D2Q9 with complex boundary
conditions is proposed to solve the governing equations using two LBM model,
corresponding to the fluid flow and electric potential, respectively. It is necessary to
introduce the LB evolution equations and the boundary treatments in this section.

3.1. Lattice Boltzmann Model for the NS Equations

The evolution equation corresponding to the NS equations with external force
is given as:

fα(x + eα∆t, t + ∆t)− fα(x, t) = − 1
τf

[
fα(x, t)− f eq

α (x, t)
]
+ ∆tFα (10)

where fα(x, t) is the distribution function for the flow fields at location x and time t
and the subscript α indicates the lattice direction. ∆t is the time step. The parameter
τf is the relaxation time for the density distribution function. Fα is the forcing term
corresponding to the applied external electric field.
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In order to recover the correct NS equation, the density equilibrium distribution
in this work can be typically expressed as:

f eq
α = ωαρ

[
1 + 3

eα · u
c2 + 9

(eα · u)2

2c4 − 3u2

2c2

]
(11)

where c is the lattice speed defined as ∆x/∆t, ∆x the lattice grid size. For the D2Q9
lattice model, the lattice weight factors depends on the length of the corresponding
lattice vector, and is given by ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36.

The relaxation time for fluid flow is related with the fluid viscosity by:

τf =
3υ

c∆x
+ 0.5 (12)

The forcing term caused by the interaction of the EDL field with the externally
applied electrical field is incorporated into the discrete Boltzmann equation by
following the method described:

Fα =

(
1− 1

2τf

)
ωα

[
3 (eα − u)

c2 +
9 (eα · u)

c4 eα

]
· F (13)

The Chapman–Enskog expansion can be used to recover the macroscopic NS
equations, and Macroscopic quantities such as the density and fluid velocity can then
be evaluated from the distribution functions as:

ρ = ∑
α

fα (14)

ρu = ∑
α

eα fα +
∆t
2

F (15)

3.2. Lattice Boltzmann Model for Poisson–Boltzmann Equation

Here, to solve the Poisson–Boltzmann equation, we adopt an LBM algorithm
proposed by Oulaid et al. [41] because of its good numerical accuracy. The
Poisson–Boltzmann equation can be considered as a convection-diffusion equation
at the steady state. A lattice distribution function gα is introduced, and its evolution
is described by the following lattice Boltzmann equation:

gα(x+ eα∆t, t+∆t)− gα(x, t) = − 1
τg

[
gα(x, t)− geq

α (x, t)
]
+∆tGα +

∆t2

2
DαGα (16)
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where gα(x, t) is the distribution function for electric potential. τg is the relaxation
time for the electric potential distribution function. Gα is related to the net charge
term in Equation (4) by:

Gα = −ωαχ
ρe

εε0
(17)

and the operator Dα = ∂t + θeα · ∇, with θ ∈ [0, 1] as a parameter for different
schemes. Both the minimum and maximum values of θ (0 and 1) have been tested
with diffusion and convection-diffusion systems, and no significant influence on the
solution accuracy is found. In this work we use a forward scheme for the temporal
derivative with θ = 1 for simplicity:

DαGα =
Gα (x, t)− Gα (x− eα∆t, t− ∆t)

∆t
(18)

The electric potential ψ can be calculated from the distribution functions by:

ψ = ∑
α

gα (19)

and the equilibrium distribution geq
α of electrical potential evolution function is:

geq
α = ωαψ (20)

Following the spirit for the fluid flow, the following differential equation through
the Chapman–Enskog analysis can be derived:

∂ψ

∂t
= χ∇2ψ+χ

ρe

εε0
(21)

and the solution to the Poisson Equation (4) can be obtained at the steady state of the
simulation when the partial differential term on the left-hand side approaches zero.
The potential diffusivity in Equation (21) is defined as:

χ =

(
2τg − 1

)
c∆x

6
(22)

3.3. Boundary Conditions

As with any other numerical methods, correct and accurate boundary treatments
play a crucial role in LBM simulation. Many useful schemes for boundary condition
have been developed for solving different physical problems. To model the fluid-solid
interaction on the complex geometries, the mid-point bounce-back scheme [30] is
used for the flow field. As shown in Figure 1, the link between the fluid node x f and
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the solid node xs intersect the physical boundary at xb. The fraction of the intersected
link in the solid domain region is ∆ = |xs − xb| /

∣∣∣xs − x f

∣∣∣.
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As we known, the evolution equations consist of two computational steps:
Collision:

ϕ∗α(x, t)− ϕα(x, t) = − 1
τ

[
ϕα(x, t)− ϕ

eq
α (x, t)

]
(23a)

Streaming:
ϕα(x + eαδt, t + δt) = ϕ∗α(x, t) (23b)

with ϕα = fα or gα. When implementing the boundary conditions with LBM, the
difficulty is how to finish the collision and streaming steps at the boundaries. In
Figure 1, after the collision step at the fluid node x f , the distribution function f ∗α
leave x f , and is then assumed to be bounce-back at the midpoint xm in the reversed
direction and with a modified magnitude as fα:

fα = f ∗α −
2ρωα

c2
s

um · eα (24)

where eα = −eα, um is the midpoint velocity at the point xm to be determined.
For ∆ ≤ 1/2, the midpoint xm locates between xb and x f , and the midpoint

velocity um can be readily obtained with a linear interpolation:

um =
1
2 ub + ( 1

2 − ∆)u f

1− ∆
(25)
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where ub is the imposed boundary velocity at the intersection point xb, and u f is the
flow velocity calculated at the fluid node x f . For ∆ > 1/2, the midpoint xm is in the
solid domain and therefore an extrapolation is needed to obtain velocity um:

um =
3
2 ub − (∆− 1

2 )u f f

2− ∆
(26)

where u f f is the velocity at the fluid point x f f .
Following the above velocity boundary treatment, here, we use the electric

potential ψm at the midpoint to calculate the electric potential distribution function
at the bounce-back nodes:

gα(x f , t + δt) = −g+α (x f , t) + 2ωαψm (27)

with the midpoint electric potential ψm obtained via:

ψm =


1
2 ψb+( 1

2−∆)ψ f
1−∆ ∆ ≤ 1/2

3
2 ψb−(∆− 1

2 )ψ f f
2−∆ ∆ > 1/2

(28)

where ψb is the imposed boundary electric potential at the intersection point xb, ψ f is
the electric potential calculated at the fluid node x f , and ψ f f is the electric potential
at the fluid point x f f .

4. Validation and Discussions

4.1. Electric Potential with Flat Surface

First, we apply the improved bounce-back scheme to calculate the potential
profile between two parallel plates, both of constant potential, immersed in an
electrolyte solution. Near the charged surfaces, ions in the electrolyte solution
will be redistributed and the electric diffuse layer will be established. The ion
charge density can be related to the local potential via the Boltzmann distribution.
For surfaces with low surface potentials, the Debye–Huckel approximation can be
applied and the Poisson–Boltzmann equation can be solved by Equation (8). The
solution of this linearized Poisson–Boltzmann equation between two identical plates
of a separation H is:

ψ(x) = ψ0
cosh(κx)

cosh(κH/2)
(29)

where x is the transverse location across the gap with x = 0 at the centerline. We
use ψ0 = 1, κ = 0.02, and different channel heigh H = 16, 32, 64, 128 in our
simulation. The calculated potential profile is plotted in Figure 2. The symbols are
results from LBM simulations, and the black lines are theoretical solutions predicted

61



from Equation (29). Excellent agreement can be seen with different channel height
between the simulation results and theory.
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Figure 2. Electric potential distributions from our LBM simulation (symbols) and
the analytical solution (black lines) with different height between two identically
charged plates in an electrolyte solution.

For a more quantitative analysis, the simulations with channel height H = 16
and different offset (∆=0.2, ∆=0.5, and ∆=0.7) are implemented by the classical
bounce-back treatment and the improved bounce-back treatment, as shown in
Figure 3. When the offset ∆=0.5, the results from different treatment are identical.
When the offset ∆=0.2 or ∆=0.7, for the classical bounce-back methods, these different
offset values have no influence on the electric potential distribution. However, the
improved bounce-back method can correctly follow the theoretical solution.
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Figure 3. Electric potential distributions from present treatment, classical
Bounce-Back treatment and the analytical solution with different offset (red symbol
∆=0.5; blue symbol ∆=0.7; green symbol ∆=0.2).
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As for typical LBM boundary models, the numerical accuracy is studied. We
choose different channel heigh H = 16, 32, 64, 128 and calculate the error between
the LBM results and theoretical solutions. The errors are plotted in Figure 4, and
linear fitting are conducted in the logarithmic graph. The fitting slope is usually
considered as the accuracy order of a numerical model. As show in Figure 5, the
accuracy order is 1.97, about 2, indicating a second-order for this system by the
improved bounce-back treatment.
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4.2. Electric Potential with Complex Geometry

Next, to examine the performance of our method for more complex boundary
shapes and conditions, we consider the electric field between two coaxial circular
surfaces with inner and outer radii Rin and Rout, respectively. With no net charge,
the general solution is given as:

ψ(r) = C1lnr + C2 (30)

where the constants C1 and C2 can be determined by the boundary conditions on
the surfaces. For the Dirichlet boundary conditions, the electric potential on both
surfaces are ψ(Rin) = ψ1 and ψ(Rout) = ψ2.

The corresponding exact solution for this case is:

ψ(r) = ψ1 + (ψ2 − ψ1)
ln(r/Rin)

ln(Rout/Rin)
(31)

In the simulation, we set Rin = 40, Rout=80, ψ1=1.5 and ψ2=1. The domain size
is 201 × 201 and the surfaces are put at the center of the domain. Simulation result
for this system is plotted in Figure 3. We also find that the results agree well with
analytical solution.

4.3. Application in Electro-Osmotic Flows

In this section, a charged spherical particle immersed in an electrolyte solution is
considered with a side length of 2 µm. A 100× 100× 100 uniform grid is used and the
particle center (xc, yc, zc) locates at the center of the cubic domain. Detailed numerical
results on electro-osmotic flow and the effects of variation of ionic concentration,
the sphere radius, external electric field and electric potential on velocity profile are
presented. The numerical results are also compared with analytical solutions. In the
simulation, the Poisson–Boltzmann equation is solved to obtain a steady solution
firstly. And then the Navier–Stokes equations with the external force term is solved.
We select a symmetric solution with z : z = 1 : 1 (for example, KCl, NaCl, etc.) and
assume the solution has similar physical properties. The parameters are the ionic
molar concentration c∞ = 0.01M, n∞ = c∞NA, where NA is Avogadro’s number,
the dielectric constant of the solution εε0 = 6.95× 10−10C2/Jm, the temperature
T = 273K, the density ρ = 1.0× 103kg/m3, and the electric potential with ψ0 as a
constant. The external electric field is only applied in x-direction, i.e., E = (Ex, 0, 0).
The dimensionless relaxation time τf and τg are set to be 1.0. Periodic boundary
conditions are applied in all the three directions, and hence the simulated system
actually represents a cubic array of spheres uniformly distribution in space.
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The algorithm and boundary treatment described in previous sections have
been used to simulate the electric flow with curved boundary. For the purpose
of validation, the solution of the Poisson–Boltzmann equation around a spherical
particle with thin EDL layers is given as:

ψ (r) = ψ0
R
r

e−κ(r−R) (32)

where r is the distance to the spherical center. We use ψ0 = 10 mV and Ex = 500V/m
in our simulation. The particle has a radius of R = 0.6 µm.

Figure 6a shows the electric potential as a function of the distance to the particle
center. The red circles are from our LBM calculation and the black curve is the theory
solution according to Equation (32). Good agreement can be observed between
them. The potential distribution at y = yc is presented in Figure 6b. The distribution
appears circularly symmetric and isotropic, and this is confirmed by the fact that all
the simulated ψ~r data points fall approximately on a single curve in Figure 6a.

When an external electric field is applied, an electric force F will be generated in
the electrolyte solution near the surface due to non-zero charge in that region, and the
electrostatic force can thus induce fluid flows along the electric field direction. This
phenomenon is called the electro-osmosis. Figure 6c displays the velocity component
u in the y = yc with different locations x = 1.0 µm, x = 1.5 µm, and x = 2.0 µm. Only
the upper half (z ≥ zc = 1.0 µm) is shown for these symmetric curves. At x = 1.0 µm
(black solid line), the velocity increases from 0 at the surface to a plateau value
near the top boundary. This is similar to the typical plug-like velocity profile of
electro-osmotic flows in straight channels, since the electric force only exists in the
thin EDL near the surface. Away from this particular location, the cross-sectional
area for the flow passage increases, and therefore the flow velocity decreases due to
the mass conservation. The electro-osmotic flow streamlines in the y = yc plane are
plotted in Figure 6d. The red arrows indicate the velocity magnitude and direction.
The flow pattern is symmetric about both x = xc and z = zc due to the symmetric
system geometry and the creeping electro-osmotic flow. These simulation results
demonstrate that our method for electro-kinetic flows is useful.
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Figure 6. The electric potential distribution (a) and (b) and electro-osmotic flow
(c) and (d) around the spherical particle in the y = yc plane.

5. Conclusions

In this paper, we have extended the improved bounce-back boundary treatment
for LBM flow simulations to electric field simulations. Several simulations have
also been performed to examine our boundary methods in term of ability to deal
with complex boundary situations. An example simulation of electro-osmotic flow
with a charge sphere particle immersed in an electrolyte solution has also been
presented. Comparisons with theoretical predictions show excellent agreement for
all simulations, and our method therefore could be useful for future electrokinetic
simulations with complex boundary geometries. Furthermore, the boundary
treatment in this work can be applied to LBM simulations for other processes and
phenomena that can be described by similar differential equations.
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A Truncation Scheme for the
BBGKY2 Equation
Gregor Chliamovitch, Orestis Malaspinas and Bastien Chopard

Abstract: In recent years, the maximum entropy principle has been applied to a
wide range of different fields, often successfully. While these works are usually
focussed on cross-disciplinary applications, the point of this letter is instead to
reconsider a fundamental point of kinetic theory. Namely, we shall re-examine
the Stosszahlansatz leading to the irreversible Boltzmann equation at the light of the
MaxEnt principle. We assert that this way of thinking allows to move one step further
than the factorization hypothesis and provides a coherent—though implicit—closure
scheme for the two-particle distribution function. Such higher-order dependences
are believed to open the way to a deeper understanding of fluctuating phenomena.

Reprinted from Entropy. Cite as: Chliamovitch, G.; Malaspinas, O.; Chopard, B.
A Truncation Scheme for the BBGKY2 Equation. Entropy 2015, 17, 7522–7529.

1. Introduction

While the formulation of equilibrium statistical mechanics in terms of the
maximum entropy (“MaxEnt”) principle goes back to Jaynes’ seminal work [1,2] in
the 50s, the last decade has seen a spectacular revival of this approach. In particular,
the MaxEnt-based characterization of complex systems presented in [3] paved the
way to applications in a variety of fields ranging from linguistics to biology [4–8].
First focussed on equilibrium situations, these works soon turned their attention to
non-equilibrium properties as well [9–12].

However, it seems that these authors paid comparatively little attention to
more “fundamental” issues. In the present letter, we would like to reconsider some
aspects of the kinetic theory of gases at the light of the MaxEnt philosophy. More
precisely, kinetic theory relies heavily on the so-called Stosszahlansatz which asserts
that, before colliding, particles are uncorrelated. While this bold assumption can be
motivated physically, it is not completely clear how it should be generalized when
considering higher-order distribution functions. Our point is that if one considers
the Stosszahlansatz as a heuristically motivated assumption, it generalizes naturally
to higher-order cases—even though this raises extra mathematical challenges!

We start with a brief reminder on MaxEnt distributions as well as on the BBGKY
hierarchy leading to kinetic equations, and bridge both in the last two sections.
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2. Maximum Entropy Distributions

The Shannon entropy H(X) = −
∫

dxP(x) ln P(x) has all properties one
would expect from an uncertainty measure [13,14]. In other terms, among a set of
distributions, the least biased guess an observer can make is the one having the largest
entropy while still satisfying available observational constraints. Assume for instance
we try to maximize H(X) under the constraint 〈O〉 =

∫
dxO(x)P(x) = µ. Introducing

a multiplier for the constraint and another for the probabilistic normalization, one
has to compute

∂
∂P

(∫
dxP(x) ln 1

P(x) + λ0
∫

dxP(x) + λ
∫

dxO(x)P(x)
)
=
∫

dx
(

ln 1
P(x) − 1 + λ0 + λO(x)

)
. (1)

Letting this expression vanish yields

P(x) = exp (−1 + λ0 + λO(x)) , (2)

where the multipliers have to be determined to match the constraints. This
result extends straightforwardly to the case of several constraints, namely 〈Ok〉 =∫

dxOk(x)P(x) = µk for k = 1, 2, ..., K. Then

P(x) =
1
Z

exp

(
K

∑
k=1

λkOk(x)

)
. (3)

In what follows we shall be concerned primarily with constraints on marginals
instead of averages. An appropriate use of δ functions allows to generalize the
previous result. As an example consider the case of a quadrivariate variable
x = (w, x, y, z) the marginal P123(a, b, c) of which is assumed to be known. Putting
O(x) = δ(w, a)δ(x, b)δ(y, c) we can write

〈O〉 = ∑
x

O(x)P(x)

= ∑
w,x,y

δ(w, a)δ(x, b)δ(y, c)∑
z

P(x)

= ∑
w,x,y

δ(w, a)δ(x, b)δ(y, c)P123(w, x, y)

= P123(a, b, c). (4)

Using the result (3) derived for the averages one gets

P(x) =
1
Z

exp

(
∑
a,b,c

λ(a, b, c)O(x)

)
=

1
Z

exp λ(w, x, y), (5)
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λ now denoting a function. This result can be extended to any number of marginals
of any order. If for instance besides P123 the marginals P124 and P34 are given we get

P(x) =
1
Z

exp (λ1(w, x, y) + λ2(w, x, z) + λ3(y, z)) (6)

for functions λ1, λ2 and λ3 to be determined. Unfortunately, this determination is
difficult except in the case of univariate constraints. Then λ1(w) = ln P1(w), etc.,
obviously solves the problem, so that the corresponding MaxEnt distribution is the
factorized distribution. When turning our attention to the applicability of this result
to the realm of kinetic theory, it will appear that in that context the problem can be
slightly simplified due to the structure of reduced distributions.

3. The BBGKY Hierarchy

Let us consider N particles of mass m, the coordinates of which in phase space
are their positions qi and momenta pi. It will be convenient to define a condensed
notation xi = (qi, pi). Let fN(x1, ..., xN , t) denote the joint distribution function
characterizing the system, which obeys Liouville’s equation

d fN
dt

=
∂ fN
∂t

+
N

∑
i=1

pi
m

∂ fN
∂qi

+
N

∑
i=1

Fi
∂ fN
∂pi

= 0, (7)

where Fi denotes the force exerted on particle i. We shall restrict ourselves to the case
without external force and where particles interact pairwise through some radial

potential V(|qi − qj|) = Vij. Then Fi = −∑j 6=i
∂Vij
∂qi

.
Reminding that fN itself is normalized to N!, we now introduce the reduced

s-particle distribution fs(x1, ..., xs, t) = N!
(N−s)!

∫
dxs+1...dxN fN(x1, ..., xN , t). The

standard result [15] is that by integrating Liouville’s equation, one obtains a
dynamical equation for fs given by the so-called BBGKY hierarchy (from the
non-chronological list of its co-discoverers’ names : Bogoliubov, Born, Green,
Kirkwood, Yvon) :

∂ fs

∂t
+

s

∑
i=1

pi
m

∂ fs

∂qi
−

s

∑
i=1

s

∑
j 6=i

∂Vij

∂qi

∂ fs

∂pi
−
∫

dxs+1

s

∑
i=1

∂Vi,s+1

∂qi

∂ fs+1

∂pi
= 0. (8)

This expression forms a hierarchy since the dynamics for fs is expressed in terms
of the higher-order distribution fs+1. Of course each equation can be deduced from
its higher-order precursor by integration, at the cost of an information loss. In what
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follows we shall denote the s-th equation of the hierarchy as BBGKY-s. BBGKY1 and
BBGKY2, in which we are primarily interested here, are

∂ f1

∂t
+

p1

m
∂ f1

∂q1
=
∫

dx2
∂V12

∂q1

∂ f2

∂p1
(9)

and

∂ f2
∂t + p1

m
∂ f2
∂q1

+ p2
m

∂ f2
∂q2
− ∂V12

∂q1

(
∂

∂p1
− ∂

∂p2

)
f2 =

∫
dx3

(
∂V13
∂q1

∂ f3
∂p1

+ ∂V23
∂q2

∂ f3
∂p2

)
, (10)

where of course f1 = f1(p1, q1, t), f2 = f2(p1, q1, p2, q2, t) and f3 =

f3(p1, q1, p2, q2, p3, q3, t). The purpose of this paper is to investigate the second
of these equations. As stressed above, we shall not try to express BBGKY1 and
BBGKY2 as a set of coupled equations relating f1 and f2, since such an approach
would not “fit” nicely in the spirit of the BBGKY approach. Instead, we shall manage
to truncate BBGKY2 in order to obtain a single, self-standing equation for f2.

4. The Stosszahlansatz for BBGKY2

The procedure leading from the BBGKY1 equation to a consistent kinetic
equation for f1 is standard: the Stosszahlansatz asserts that before colliding two
particles are uncorrelated, i.e., f2 factorizes as f2(x1, x2) = f1(x1) f1(x2). This allows
us to express the collision integral in terms of f1, so that BBGKY1 becomes a closed
equation for f1. Since this factorization hypothesis may be supported from a physical
standpoint, it is tempting to use this ansatz in the collision term for BBGKY2 as well.
But this raises an issue: if BBGKY2 can be cast into an equation relating a streaming
term expressed in terms of f2 to a collision term expressed in terms of f1, then this
equation is obviously not consistent by itself and has to be supplemented, so as to
obtain a system of coupled equations.

Our point is that this issue vanishes if the Stosszahlansatz is reconsidered as
a heuristic ansatz instead of a physically-grounded assumption. We propose to
reformulate it as follows: since the exact codependence of particles entering the
collision range is unknown, one has to make a reasonable guess on it, and the
MaxEnt distribution steps out at this point. The MaxEnt guess for f2, compatible
with the univariate distribution appearing in the streaming term, is the factorized
one, but on the contrary the guess for f3, compatible with the f2 appearing in the
left-hand side, will be quite different from a factorized distribution (as exemplified
by (6)).
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Let us now see to what extent the result (6) obtained for the MaxEnt distribution
may be particularized to our current purpose. We showed that, given bivariate
marginals, the MaxEnt estimate for f3(x1, x2, x3) was given by

f ME
3 (x1, x2, x3) =

1
Z

exp (λ1(x1, x2) + λ2(x1, x3) + λ3(x2, x3)) (11)

for some λ1, λ2 and λ3. The point is that these marginals are the same for each pair
by definition of the reduced distribution f2, and accordingly all three λs are the same.
Absorbing the normalization, one is therefore allowed to write that

f ME
3 (x1, x2, x3) = g(x1, x2)g(x1, x3)g(x2, x3) (12)

for a function g that is nevertheless unknown, except for the fact that it has to satisfy
the marginal constraint

g(x, y)
∫

dzg(x, z)g(y, z) = f2(x, y). (13)

5. The Collision Term

Using this ansatz we now proceed to write down the kinetic equation for f2. All
through, we shall retain the usual assumptions of kinetic theory, leading us to neglect
triple collisions: the streaming term for the two-particle distribution characterizing
particles “1” and “2” will thus be altered by (1) binary collisions between “1”and
another particle, “2” being spectator, and (2) binary collisions between “2”and
another particle, “1” being spectator.

The binary interaction is defined as occurring when two particles meet in a
ball B of radius R. Defining ternary interactions is more subtle since, inasmuch as
the interaction potential is the same whatever the order of the interaction, it seems
artificial to introduce a specific cutoff. We shall therefore define the range of triple
collisions as the lenticular overlap of balls B(1)

R and B(2)
R characterizing the domain of

interaction with “1” and “2” respectively. Neglecting triple collisions thus amounts
to assuming that |q1 − q2| > 2R.

We first compute the contribution of collisions of “2” with “3”, “1” being left
aside. Let us recall that the collision term is given by

(
∂ f2

∂t

)

coll
=
∫

dx3

(
∂V13

∂q1

∂ f3

∂p1
+

∂V23

∂q2

∂ f3

∂p2

)
. (14)

In the usual derivation of the Boltzmann equation from the BBGKY hierarchy,
the right-hand side of BBGKY1 is transformed using BBGKY2. Similarly, we can
transform (∂t f2)coll using BBGKY3, namely
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for a function g that is nevertheless unknown, except for the fact that it has to satisfy the marginal
constraint

g(x, y)

∫
dzg(x, z)g(y, z) = f2(x, y). (13)

5. The Collision Term

Using this ansatz we now proceed to write down the kinetic equation for f2. All through, we shall
retain the usual assumptions of kinetic theory, leading us to neglect triple collisions: the streaming term
for the two-particle distribution characterizing particles “1” and “2” will thus be altered by (1) binary
collisions between “1”and another particle, “2” being spectator, and (2) binary collisions between “2”and
another particle, “1” being spectator.

The binary interaction is defined as occurring when two particles meet in a ball B of radius R.
Defining ternary interactions is more subtle since, inasmuch as the interaction potential is the same
whatever the order of the interaction, it seems artificial to introduce a specific cutoff. We shall therefore
define the range of triple collisions as the lenticular overlap of balls B(1)

R and B(2)
R characterizing the

domain of interaction with “1” and “2” respectively. Neglecting triple collisions thus amounts to
assuming that |q1 − q2| > 2R.

We first compute the contribution of collisions of “2” with “3”, “1” being left aside. Let us recall that
the collision term is given by

(
∂f2
∂t

)

coll

=

∫
dx3

(
∂V13
∂q1

∂f3
∂p1

+
∂V23
∂q2

∂f3
∂p2

)
. (14)

In the usual derivation of the Boltzmann equation from the BBGKY hierarchy, the right-hand
side of BBGKY1 is transformed using BBGKY2. Similarly, we can transform (∂tf2)coll using
BBGKY3, namely

∂f3
∂t

+
p1

m

∂f3
∂q1

+
p2

m

∂f3
∂q2

+
p3

m

∂f3
∂q3

− ∂V12
∂q1

(
∂

∂p1
− ∂

∂p2

)
f3 −

∂V13
∂q1

(
∂

∂p1
− ∂

∂p3

)
f3 −

∂V23
∂q2

(
∂

∂p2
− ∂

∂p3

)
f3 =

(
∂f3
∂t

)

coll

(15)

(we do not make explicit the collision term (∂tf3)coll since we shall cancel it soon anyway). Under usual
dimensional assumptions, we can write ∂tf3 ≈ 0 and (∂tf3)coll ≈ 0, so that, substituting in the collision
term, (∂tf2)coll is rewritten as
(
∂f2
∂t

)

coll

=

∫
dx3

(
p1

m

∂f3
∂q1

+
p2

m

∂f3
∂q2

+
p3

m

∂f3
∂q3

− ∂V12
∂q1

(
∂

∂p1

− ∂

∂p2

)
f3 +

(
∂V13
∂q1

+
∂V23
∂q2

)
∂f3
∂p3

)

=

∫
dx3

(
p2

m

∂f3
∂q2

+
p3

m

∂f3
∂q3

)
(16)

(the last term vanishes due to the boundary condition f3(|p| → ∞) = 0, the penultimate since “1”
and “2” are supposed far apart from each other and the first because f3 depends but weakly on q1).
More precisely, (

∂f2
∂t

)

coll

=

∫

q3∈B(2)
R

dq3dp3

(
p2

m

∂f3
∂q2

+
p3

m

∂f3
∂q3

)
. (17)

(15)

(we do not make explicit the collision term (∂t f3)coll since we shall cancel it
soon anyway). Under usual dimensional assumptions, we can write ∂t f3 ≈ 0 and
(∂t f3)coll ≈ 0, so that, substituting in the collision term, (∂t f2)coll is rewritten as

(16)

(the last term vanishes due to the boundary condition f3(|p| → ∞) = 0, the
penultimate since “1” and “2” are supposed far apart from each other and the first
because f3 depends but weakly on q1). More precisely,

(
∂ f2

∂t

)

coll
=
∫

q3∈B(2)
R

dq3dp3

(
p2

m
∂ f3

∂q2
+

p3

m
∂ f3

∂q3

)
. (17)

The following is standard [15]. We introduce the relative coordinate r23 = q3 − q2

and use Gauss’ theorem in order to rewrite (∂t f2)coll as a surface integral, so that

(
∂ f2

∂t

)

coll
=
∫

r23∈BR

dr23dp3
p3 − p2

m
∂

∂r23
f3(q1, p1, q2, p2, q3, p3, t)

=
∫

SR

dp3dΣ · p3 − p2

m
f3(q1, p1, q2, p2, q3, p3, t)

=
∫

S−R∪S+R
dp3dΣ · p3 − p2

m
f3(q1, p1, q2, p2, q3, p3, t), (18)

where dΣ denotes the surface element of the sphere SR such that |r23| = R. The
southern hemisphere is interpreted as the contribution of oncoming collisions since
(p3 − p2) · dΣ < 0, while the northern one is the contribution of ending collisions
since (p3 − p2) · dΣ > 0.

Orienting the polar axis along p3 − p2, we have dΣ · (p3 − p2) = |p3 −
p2|R2 sin θ cos θdθdφ. This can be re-expressed in terms of the surface element of
the azimuthal plane such that θ = π/2. Letting r denote the radial component on
the plane, we obviously have r = R sin θ, whence dr = ±R cos θdθ (depending on θ
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being lesser or larger than π/2) and dΣ · (p3 − p2) = ±|p3 − p2|dω. The collision
term can thus be rewritten as (approximating q3 ≈ q2)

(
∂ f2

∂t

)

coll
=
∫

a f ter
dp3dω

|p3 − p2|
m

f3(q1, p1, q2, p2, q2, p3, t)

−
∫

be f ore
dp3dω

|p3 − p2|
m

f3(q1, p1, q2, p2, q2, p3, t). (19)

Now comes the ansatz. Before the collision we obviously have

f3(q1, p1, q2, p2, q2, p3, t) = g(q1, p1, q2, p2, t)g(q1, p1, q2, p3, t)g(q2, p2, q2, p3, t). (20)

The ansatz may be extended after the collision using the fact that, by Liouville’s
equation, f3(q1, p1, q2, p2, q2, p3, t) = f3(q−τ

1 , p1, q−τ
2 , p′2, q−τ

2 , p′3, t− τ), where τ is
the retardation such that at t− τ the particles are entering the collision range with
momenta p′2, p′3. Since q−τ

i ≈ qi and t ≈ t− τ, and since p′2, p′3 are pre-collisional
momenta, the ansatz may be introduced in the first integral as well with arguments
p′2, p′3. We are therefore eventually led to the following Boltzmann-like form for the
BBGKY2 equation:

∂ f2
∂t

+
p1
m

∂ f2
∂q1

+
p2
m

∂ f2
∂q2
− ∂V12

∂q1

(
∂

∂p1
− ∂

∂p2

)
f2

=
∫

dp3dω
|p3 − p2|

m
(g(q1, p1, q2, p′2)g(q1, p1, q2, p′3)g(q2, p′2, q2, p′3)

− g(q1, p1, q2, p2)g(q1, p1, q2, p3)g(q2, p2, q2, p3))

+ (1↔ 2). (21)

The last term accounts for the contribution of collisions undergone by particle “1”.

6. Final Remarks

As promised, equation (21) is coherent for f2 since g can—in principle—be
solved in terms of f2. Unfortunately, we are not aware of any readily available
solution to the integral equation (13). It is interesting to note that kinetic theory
provides a motivation for studying the mathematical object (12), which proves
surprisingly involved in spite of its deceptive apparent simplicity. In the authors’
opinion, it might turn sound to tackle the problem from a linearized vantage point,
considering situations where the particles are almost uncorrelated, that is where g is
almost factorizable. Such an approach would also be in line with usual methods of
kinetic theory [16].

This current implicit form of the collision term bears a close ressemblance with
the one appearing in the standard Boltzmann equation. This ressemblance might
however turn deceptive since g is likely to be a complicated functional of f2. We
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hope that the present letter can prompt further work on this collision term, which
might eventually lead to a form susceptible of a hydrodynamical treatment. Our
hope is that such a treatment could lead to a deeper understanding of fluctuating
phenomena, for which the first-order theory provides only lacunary insights. In
particular, it seems reasonable to expect that (21) can be cast in the lattice-based
formalism which proved so successful for the usual Boltzmann equation.
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From Lattice Boltzmann Method to Lattice
Boltzmann Flux Solver
Yan Wang, Liming Yang and Chang Shu

Abstract: Based on the lattice Boltzmann method (LBM), the lattice Boltzmann flux
solver (LBFS), which combines the advantages of conventional Navier–Stokes solvers
and lattice Boltzmann solvers, was proposed recently. Specifically, LBFS applies the
finite volume method to solve the macroscopic governing equations which provide
solutions for macroscopic flow variables at cell centers. In the meantime, numerical
fluxes at each cell interface are evaluated by local reconstruction of LBM solution.
In other words, in LBFS, LBM is only locally applied at the cell interface for one
streaming step. This is quite different from the conventional LBM, which is globally
applied in the whole flow domain. This paper shows three different versions of LBFS
respectively for isothermal, thermal and compressible flows and their relationships
with the standard LBM. In particular, the performance of isothermal LBFS in terms
of accuracy, efficiency and stability is investigated by comparing it with the standard
LBM. The thermal LBFS is simplified by using the D2Q4 lattice velocity model and its
performance is examined by its application to simulate natural convection with high
Rayleigh numbers. It is demonstrated that the compressible LBFS can be effectively
used to simulate both inviscid and viscous flows by incorporating non-equilibrium
effects into the process for inviscid flux reconstruction. Several numerical examples,
including lid-driven cavity flow, natural convection in a square cavity at Rayleigh
numbers of 107 and 108 and transonic flow around a staggered-biplane configuration,
are tested on structured or unstructured grids to examine the performance of three
LBFS versions. Good agreements have been achieved with the published data, which
validates the capability of LBFS in simulating a variety of flow problems.

Reprinted from Entropy. Cite as: Wang, Y.; Yang, L.; Shu, C. From Lattice Boltzmann
Method to Lattice Boltzmann Flux Solver. Entropy 2015, 17, 7713–7735.

1. Introduction

Since its earliest appearance in 1988 [1], the lattice Boltzmann equation
(LBE)-based method [2–11] has been developed into an effective and efficient
solver for simulating a variety of complex fluid flow problems, such as isothermal
and thermal flows [9,10,12], multi-phase and multi-component flows [8,13–15],
compressible flows [16–18] and micro non-equilibrium flows [19–21]. To effectively
study these problems, a large number of LBE-based methods have been continuously
proposed and refined [9–23].
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Historically, the LBM was developed from the lattice gas cellular automata
(LGCA) method, aiming to remove its statistical noise and limitation to use Boolean
numbers. It was later proven that the solid foundation of LBM roots in gas kinetic
theory and the Chapman–Enskog expansion analysis, through which both continuous
and lattice Boltzmann equation can recover the Navier–Stokes equations. This confers
the LBM with an appealing kinetic nature. Besides, LBM has very simple numerical
algorithms with algebraic manipulations. In particular, two simple steps of streaming
and collision are involved in its solution process. The streaming process is linear,
which moves particles with different distribution functions to neighboring points, but
effectively considers non-linear physics in fluid dynamics. The collision process takes
place locally in either lattice velocity space or macroscopic moment space according
to different collision models [2,4,22]. Both single relaxation time (SRT) model (lattice
Bhatnagar–Gross–Krook (LBGK) model) [4] and multiple-relaxation-time (MRT)
model [22] can be applied. It seems that the MRT model eliminates some defects of
the LBGK model and enriches the connotation of LBM, although the computational
effort is also increased. With these distinguishing features, the LBM has emerged
as an alternative powerful tool in many complex fluid flow problems [13,20,23–25].
However, the LBM also suffers from some drawbacks. Due to lattice regularity,
the standard LBM usually restricts its applications to uniform grids, which hinders
its direct application in certain problems with curved boundaries. In addition, as
compared with conventional Navier–Stokes solvers, LBM usually needs more virtual
storage to store both the distribution functions and flow variables. Furthermore, the
time step in LBM is coupled with mesh spacing, which presents a great challenge for
applications on multi-block and adaptive grids. Moreover, LBM is mostly applied to
simulate incompressible flows since the equilibrium distribution function is obtained
from low Mach number approximation.

To remove the drawbacks of standard LBM, some efforts [5–7,21] have been
made to directly solve the discrete velocity Boltzmann equation (DVBE) with
well-established numerical approaches. This way eliminates the coupling issue
between the mesh spacing and time step in standard LBM and can be effectively
applied on non-uniform grids. However, it loses the primary advantages of LBM
such as simple implementation and algebraic operation. It may also involve a large
numerical dissipation and encounter numerical instability [26,27].

Recently, from Chapman–Enskog (C-E) analysis, several versions of lattice
Boltzmann flux solver (LBFS) [8–11] have been developed based on the standard
LBM for simulating isothermal, thermal, multiphase and compressible flows. LBFS
is a finite volume solver for direct update of the macroscopic flow variables at cell
centers. The key idea of the LBFS is to evaluate numerical fluxes at each cell interface
by local application of LBM solution for one streaming step. In other words, in LBFS,
LBM is applied locally and independently at each interface, and the streaming time
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step is nothing to do with the real time step. Instead, it is only applied to calculate
the relaxation parameter used in the process of solution reconstruction by LBM.
For a control cell with four cell interfaces of a two-dimensional case, the local LBM
solution at different interface is reconstructed independently and the streaming time
step could be different. This gives us a great flexibility for application of the solver
to non-uniform meshes and complex geometry. This feature effectively removes
the drawback of coupling issue between the mesh spacing and time step in the
conventional LBM. In addition, the LBFS does not track the evolution of distribution
function and the dependent variables are the macroscopic flow variable. As a
consequence, the required virtual memory is reduced substantially, and the physical
boundary conditions can be implemented directly without converting to those for
distribution functions. Moreover, as compared with conventional incompressible
Navier–Stokes solvers, such as the well-known semi-implicit method for pressure
linked equations (SIMPLE) method and its variants [28], the LBFS overcomes their
drawbacks of tedious discretization of the second order derivatives, the requirement
of staggered grids for preventing pressure oscillations and slow convergence on
fine grids [29]. Indeed, the LBFS combines the advantages of lattice Boltzmann
solver (simplicity and kinetic nature) with those of Navier–Stokes solver by the finite
volume method (FVM) (geometric flexibility and easy implementation of boundary
conditions). It shows the progressive development from LBM to LBFS.

Since LBFS is a new solver, its performance has not been fully investigated
and further improvements and simplifications for different flow problems may be
required. Particularly, there is a lack of a systematic investigation on its accuracy,
efficiency, stability and capability in simulating isothermal flows, thermal flows at
high Reynolds/Rayleigh numbers, and compressible flows. Motived by this, the
LBFS will be refined and examined comprehensively in this paper. Firstly, numerical
simulations of two-dimensional lid-driven cavity flows [30–34] are considered.
A detailed comparison of its performances with the standard LBM will be carried out.
Secondly, the thermal LBFS will be simplified in this work by using the D2Q4 model
and then applied to simulate natural convection at two high Rayleigh numbers of
Ra = 107 and 108. The obtained results on different grids will be compared with
those by MRT-based LBM [35]. Thirdly, the compressible LBFS will be improved by
incorporating non-equilibrium effects into the process for inviscid flux reconstruction
and introducing a switch function to control numerical diffusion. Its performance
will be examined by simulating transonic inviscid and viscous flows around a
staggered-biplane configuration on unstructured grids. The obtained results will be
compared with the published data.
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2. Lattice Boltzmann Method

For a general case, we consider incompressible thermal fluid flows and the LBE
with BGK approximation can be written as [34,36]:

fα(r + eαδt, t + δt) = fα(r, t) +
f eq
α (r, t)− fα(r, t)

τv
, α = 0, 1, ..., N, (1)

gα(r + eαδt, t + δt) = gα(r, t) +
geq

α (r, t)− gα(r, t)
τc

, α = 0, 1, ..., M, (2)

where fα and gα are density distribution functions (DDF) and temperature
distribution functions (TDF) respectively; f eq

α and geq
α are equilibrium states of fα and

gα; τv and τc are relaxation parameters; δt is the streaming time; M and N are the
total number of discrete particles for fα and gα. The macroscopic fluid properties of
density ρ, velocity u and temperature T are evaluated from lattice moments of fα

and gα:

ρ =
N

∑
α=0

fα, ρu =
N

∑
α=0

fαeα, T =
M

∑
α=0

gα (3)

The equilibrium DDF f eq
α is given by [4]:

f eq
α (r, t) = ρwα

[
1 +

eα · u
c2

s
+

(eα · u)2 − (cs |u|)2

2c4
s

]
(4)

The D2Q9 model, whose lattice components are written as eα = (0, 0) , (±1, 0),
(0,±1) and (±1,±1), is commonly applied for f eq

α . The weights wα and the sound
speed cs in Equation (4) are w0 = 4/9, w1∼4 = 1/9, w5∼8 = 1/36 and cs = 1/

√
3.

The equilibrium TDF geq
α is given by [37]:

geq
α (r, t) =

T
4
[1 + 2eα · u] (5)

The D2Q4 lattice velocity model, whose lattice components are written as eα =

(±1,±1), is usually used for geq
α . τν and τc are respectively calculated by the dynamic

viscosity µ and thermal diffusivity κ:

µ =

(
τν −

1
2

)
ρc2

s δt (6a)

κ =
1
2

(
τc −

1
2

)
δt (6b)

Note that Equations (1) and (2) are applied to simulate thermal flows. If
isothermal flows are considered, we can just apply Equation (1). For the application
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of LBM, we have to apply Equations (1) and (2) in the whole computational domain
and track the evolution of distribution functions fα and gα. In addition, physical
boundary conditions for macroscopic variables are converted to those for fα and gα.
For no-slip condition, bounce-back scheme can be easily applied. In some cases,
accurate implementation of other boundary conditions in the LBM may not be as
straightforward as in Navier–Stokes solvers.

3. Chapman–Enskog Analysis

As a mesoscopic method with microscopic particle distribution functions, the
LBM described in Section 2 has been well applied to study weakly compressible fluid
flows in incompressible limit. Conventionally, such flows are governed and solved by
the macroscopic conservation laws of mass, momentum and energy. This indicates
that the solution of a physical flow problem can be either obtained by applying
the mesoscopic LBM or the macroscopic Navier–Stokes solver. It is interesting to
note that these two intrinsically different numerical methods, one from microscopic
statistical physics and the other from macroscopic conservation laws, are both able
to study the same fluid flow problem. From this point of view, it can be inferred that
these two methods should have some connections. Indeed, it has been proven that the
lattice Boltzmann equation is able to recover the Navier–Stokes equation through the
multi-scale Chapman–Enskog expansion analysis, which is briefly introduced below.

A multi-scale expansion of the DDF, TDF, the temporal derivative and the spatial
derivative can be respectively given by:

fα = f (0)α + ε f (1)α + ε2 f (2)α (7a)

gα = g(0)α + εg(1)α + ε2g(2)α (7b)

∂

∂t
= ε

∂

∂t0
+ ε2 ∂

∂t1
(7c)

∇r = ε∇r1 (7d)

where ε is a small parameter proportional to the Knudsen number. Applying the
second order Taylor-series expansion to Equations (1) and (2) gives:

(
∂

∂t
+ eα · ∇) fα +

δt

2
(

∂

∂t
+ eα · ∇)

2
fα +

1
τδt

( fα − f eq
α ) + O(δ2

t ) = 0, (8)

(
∂

∂t
+ eα · ∇)gα +

δt

2
(

∂

∂t
+ eα · ∇)

2
gα +

1
τδt

(gα − geq
α ) + O(δ2

t ) = 0. (9)
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The macroscopic Navier–Stokes equations for conservation laws can be
recovered by substituting Equation (7) into Equations (8) and (9) [9,10]:

∂W
∂t

+∇ · F = 0 (10)

where:

W =


ρ

ρu
T

 and F =


P
Π

Q

 (11)

In Equation (11), P, Π and Q are respectively mass, momentum and energy
fluxes and can be given by lattice summations of DDFs and TDFs [9,10]:

P = ρu =
N

∑
α=0

f eq
α eα (12a)

Π = ρu⊗ u + pI− µ
(
∇u + (∇u)T

)
=

N

∑
α=0

eαeα fˆα (12b)

Q = uT − κ∇T =
N

∑
α=0

eα ĝα (12c)

where:

fˆα = f eq
α +

(
1− 1

2τν

)
f neq
α and ĝα = geq

α +

(
1− 1

2τc

)
gneq

α (13)

f neq
α = − τνδt

(
∂

∂t
+ eα · ∇

)
f eq
α (14a)

gneq
α = − τcδt

(
∂

∂t
+ eα · ∇

)
geq

α (14b)

In the conventional LBM, the Chapman–Enskog (C-E) analysis is usually used
to verify that the flow variables obtained by LBM can satisfy the macroscopic
Navier–Stokes equations. In some interesting works, this C-E analysis is also
applied to build a hybrid solver by combing the LBM with the FVM scheme for
Navier–Stokes equations [37–39]. In our recent work [9,10], it was found that the
relationship between flow variables/fluxes and particle distribution functions given
in Equation (12) can be applied to build a new solver named LBFS with a better
performance, which effectively combines the advantages of Navier–Stokes solver
and lattice Boltzmann solver and at the same time removes some of their drawbacks.
The reliability and flexibility of the LBFS have been demonstrated in [8–10].
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4. LBFS for Isothermal and Thermal Incompressible Flows

Based on the LBM given by Equations (1) and (2), the LBFS [9] has been
proposed by solving Equation (10) directly. Unlike conventional Navier–Stokes
solver, which applies well-established schemes to discretize Equation (10), the LBFS
is a finite volume solver and reconstructs its fluxes locally with Equation (12) derived
from Chapman–Enskog analysis. It may be pointed out that Equation (12) for flux
reconstruction can be applied with different lattice velocity models. In our previous
work [9], the D2Q9 thermal model for temperature field is applied, which is obviously
complex and inefficient as compared with the D2Q4 model [34]. In this work, this
drawback will be removed by applying the D2Q4 model. The details are given below.

4.1. Finite Volume Discretization

A finite volume discretization of Equation (10) over a control volume Ωi gives
the following formulation:

dWi
dt

= − 1
dVi

∑
k

Rkdlk, Rk = (n · F)k (15)

where dVi is the area of the control cell Ωi, dlk is the length of the k-th control surface
enclosed Ωi and n =

(
nx, ny

)
is the unit normal vector on the k-th control surface.

With the D2Q9 and D2Q4 models, the flux Rk at each cell interface can be written
as follows:

Rk =


nx

(
f eq
1 − f eq

3 + f eq
5 − f eq

6 − f eq
7 + f eq

8

)
+ ny

(
f eq
2 − f eq

4 + f eq
5 + f eq

6 − f eq
7 − f eq

8

)
nx
(

fˆ1+ fˆ3+ fˆ5+ fˆ6+ fˆ7+ fˆ8
)

+ny
(

fˆ5 − fˆ6+ fˆ7 − fˆ8
)

nx
(

fˆ5 − fˆ6+ fˆ7 − fˆ8
)

+ny
(

fˆ2+ fˆ4+ fˆ5+ fˆ6+ fˆ7+ fˆ8
)

nx
(

ĝ1 − ĝ3
)
+ ny

(
ĝ2 − ĝ4

)


k

(16)

As can be seen, the formulation of the energy flux reconstructed by the simplified
D2Q4 lattice velocity model is much simpler than that given by the original D2Q9
model [9]. In Equation (16), the unknowns are fˆα and ĝα defined in Equation (13),
which include both equilibrium and non-equilibrium density and temperature
distribution functions f eq

α , f neq
α , geq

α and gneq
α . All these unknowns can be obtained

through local reconstruction of the LBE solution without tracking the evolution of
the DDF and TDF.

4.2. Local Reconstruction of Fluxes at Each Interface

Figure 1 shows an interface between two adjacent control cells for local
reconstruction of fluxes [10], in which the D2Q9 and D2Q4 lattice velocity models
respectively for DDF and TDF are embedded. The non-equilibrium parts for DDF and
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TDF are given by Equation (14). At each cell interface, discretization of Equation (14)
with the second-order Taylor-series expansion gives the following equations [9]:

f neq
α (r, t) = −τν

[
f eq
α (r, t)− f eq

α (r− eαδt, t− δt)
]

(17a)

gneq
α (r, t) = −τc

[
geq

α (r, t)− geq
α (r− eαδt, t− δt)

]
(17b)

where r represents the location of the cell interface. Equation (17) shows that both f neq
α

and gneq
α can be approximated from f eq

α and geq
α at the interface and its surrounding

points r− eαδt. Following the convention in LBM, f eq
α and geq

α at the position and
time (r− eαδt, t− δt) are computed by using Equations (4) and (5). The involved
flow quantities of density ρ, velocity u and temperature T at (r− eαδt, t− δt) can be
obtained through interpolations:

ψ(r− eαδt, t− δt) =

{
ψ(ri) + (r− eαδt − ri)∇ψ(ri), when r− eαδt is in Ωi

ψ(ri+1) + (r− eαδt − ri+1)∇ψ(ri+1), when r− eαδt is in Ωi+1
(18)

where ri and ri+1 are the locations of the two cell centers and ψ represents any of the
flow variables. After interpolation, f eq

α (r− eαδt, t− δt) and geq
α (r− eαδt, t− δt) can

be obtained.Entropy 2015, 17 7720 
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Figure 1. Evaluation of flux at an interface between two control cells.

Similarly, f eq
α (r, t) and geq

α (r, t) can be calculated by Equations (4) and (5) if
macroscopic flow variables are known. So, the challenging issue is to evaluate ρ,
u and T at the cell interface (r, t). Previous studies [9,10] have shown that they
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can be reconstructed locally by streaming the particle from the neighboring point
(r− eαδt, t− δt) to the cell interface. As a result, we have:

ρ(r, t) =
N

∑
α=0

f eq
α (r− eαδt, t− δt), (19a)

ρ(r, t)u(r, t) =
N

∑
α=0

f eq
α (r− eαδt, t− δt)eα (19b)

T(r, t) =
N

∑
α=0

geq
α (r− eαδt, t− δt) (19c)

With the flow quantities obtained from Equation (19), f eq
α (r, t) and geq

α (r, t) can
be computed by using Equations (4) and (5). Once f eq

α , f neq
α , geq

α and gneq
α are obtained,

the fluxes at each cell interface can be evaluated numerically. Then Equation (15) can
be solved by conventional Runge–Kutta scheme.

5. LBFS for Compressible Flows

5.1. Navier–Stokes Equations Discretized by FVM and Compressible Lattice
Boltzmann Model

In Section 4, the local LBM solution is reconstructed by using the conventional
lattice Boltzmann model, which is limited to incompressible flows. Thus, LBFS
in Section 4 can only be applied to simulate incompressible flows. To simulate
compressible flows by LBFS, we need to use the compressible lattice Boltzmann
model to reconstruct the solution at the cell interface. However, the existing
compressible lattice Boltzmann models are very complicated and inefficient for
2D and 3D cases. To simplify the solution process and make LBFS be applicable for
simulation of compressible flows, we apply the 1D compressible lattice Boltzmann
model along the normal direction of cell interface to evaluate the inviscid flux, and
the viscous flux is still approximated by conventional finite difference schemes. This
process is equivalent to developing a Riemann solver by 1D compressible lattice
Boltzmann model.

In LBFS, the Navier–Stokes equations are discretized by FVM and the fluxes at
the cell interface are evaluated by local reconstruction of LBM solutions [11]. Thanks
to the application of FVM, it is convenient for LBFS to apply on arbitrary meshes.
The compressible Navier–Stokes equations discretized by FVM can be written as:

dWi
dt

= − 1
dVi

N f

∑
k=1

(Fck − Fvk) dlk (20)

87



where i is the index of a control volume, dVi and N f represent the volume and the
number of interfaces of the control volume i, respectively. W, Fc and Fv are the
conservative variables at the cell center and the inviscid and viscous fluxes at the cell
interface given by:

W =


ρ

ρu
ρv
ρE

 , Fc =


ρUn

ρuUn + nx p
ρvUn + ny p
(ρE + p)Un

 , Fv =


0

nxτxx + nyτxy

nxτyx + nyτyy

nxΘx + nyΘy

 (21)

Here, ρ and p are the density and pressure of mean flow, respectively. (u, v) and
(nx, ny) denote the velocity vector and unit normal vector on the control surface in
the Cartesian coordinate system, respectively. E is the total energy of mean flow. Un

represents the normal velocity. Furthermore, τij denotes the components of viscous
stress tensor and Θi represents the term describing the work of viscous stress and
the heat conduction in the fluid.

To compute Fc by LBFS, the compressible lattice Boltzmann model is required.
In this work, the non-free parameter D1Q4 model [11] is utilized. The configuration
of this model is shown in Figure 2, and it is given by:

g1 =
ρ(−d1d2

2−d2
2u+d1u2+d1c2+u3+3 uc2)

2d1(d2
1−d2

2)

g2 =
ρ(−d1d2

2+d2
2u+d1u2+ d1c2−u3−3 uc2)

2d1(d2
1−d2

2)

g3 =
ρ(d2

1d2+d2
1u−d2u2− d2c2−u3−3 uc2)

2d2(d2
1−d2

2)

g4 =
ρ(d2

1d2−d2
1u−d2u2− d2c2+u3+3 uc2)

2d2(d2
1−d2

2)

(22)

d1 =
√

u2 + 3c2 −
√

4u2c2 + 6c4

d2 =
√

u2 + 3c2 +
√

4u2c2 + 6c4
(23)

where c represents the peculiar velocity of particles defined as c =
√

p/ρ. Note that
in Equation (22), g is the equilibrium distribution function f eq. As D1Q4 model is
a one-dimensional model, it needs to be applied along the normal direction of cell
interface for multi-dimensional problems [11]. That is, the velocity u in Equations (22)
and (23) should be replaced by normal velocity Un when multi-dimensional problems
are considered.
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where: 
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Here, pe  is the potential energy of particles;  0,if t  is the distribution function at the cell  
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Figure 2. Configuration of non-free parameter D1Q4 model.

Suppose that the cell interface is located at r = 0. For simplicity, a
local-coordinate system with x-axis pointing to the normal direction and y-axis
pointing to the tangential direction of the cell interface is used. As a result, the
inviscid flux at the cell interface in the local-coordinate system can be written as:

F∗c =
[

ρUn ρUnUn + p ρUnUτ (ρE + p)Un

]T
= Fn

c + Ft
c (24a)

Fn
c =

[
ρUn ρUnUn + p 0

(
ρ
(

1
2 U2

n + e
)
+ p

)
Un

]T
(24b)

Ft
c =

[
0 0 ρUnUτ

1
2 ρU2

τUn

]T
(24c)

Here, Fn
c and Ft

c are respectively the flux attributed to the normal velocity and
tangential velocity, e is the potential energy of mean flow. From Chapman–Enskog
analysis, and with the use of non-free parameter D1Q4 model, Fn

c can be computed by:

Fn
c =

4

∑
i=1

ξiϕi fi (0, t) (25)

where:

fi (0, t) = f eq (0, t) + f neq (0, t) = gi (0, t)− τ0 [gi (0, t)− gi (−ξiδt, t− δt)] , (26)

ξi is the particle velocity in the i-direction, i.e., ξ1 = d1, ξ2 = −d1, ξ3 = d2 and
ξ4 = −d2. ϕi stands for the moments:

ϕi =

(
1, ξi, 0,

1
2

ξ2
i + ep

)T
(27)

Here, ep is the potential energy of particles; fi (0, t) is the distribution
function at the cell interface. gi (0, t) and gi (−ξiδt, t− δt) are respectively the
equilibrium distribution function at the cell interface and the surrounding point
of the cell interface. The non-equilibrium part in Equation (26) is viewed as the
numerical dissipation since only the inviscid flux is computed by LBFS. τ0 is the
dimensionless collision time, which can be regarded as the weight of the numerical
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dissipation [40,41]. Substituting Equation (26) into Equation (25), we have the final
expression of Fn

c as follows:

Fn
c = (1− τ0) Fn,I

c + τ0Fn,I I
c (28)

where:

Fn,I
c =

4

∑
i=1

ξiϕagi (0, t) and Fn,I I
c =

4

∑
i=1

ξiϕagi (−ξiδt, t− δt) (29)

To evaluate the flux attributed to the tangential velocity, one of the feasible ways
can be expressed as:

Ft
c(3) = ∑

i=1,3
ξi fi (0, t)UL

τ + ∑
i=2,4

ξi fi (0, t)UR
τ (30a)

Ft
c(4) =

1
2

[
∑

i=1,3
ξi fi (0, t)

(
UL

τ

)2
+ ∑

i=2,4
ξi fi (0, t)

(
UR

τ

)2
]

(30b)

where, UL
τ and UR

τ are the tangential velocity at the left and right side of cell interface,
respectively. From F∗c , the actual inviscid flux Fc in Equation (20) in the Cartesian
coordinate system can be obtained by a transformation [41]:

Fc = [ F∗c (1) F∗c (2)nx − F∗c (3)ny F∗c (2)ny + F∗c (3)nx F∗c (4) ] (31)

Equation (31) forms the LBFS for inviscid compressible flows. It can be treated
as a Riemann solver developed by 1D compressible lattice Boltzmann model. As for
the viscous flux Fv, it is still approximated by conventional finite difference schemes
in this work.

5.2. Evaluation of Inviscid Flux by LBFS

To compute Fn,I
c , the equilibrium distribution function at the cell interface should

be computed in advance. As the equilibrium distribution function is the function of
conservative variables, we just need to calculate the conservative variables at the cell
interface first. The conservative variables at the cell interface in the local-coordinate
system can be expressed as:

W∗ =
[

ρ ρUn ρUτ ρE
]T

= Wn + Wt (32a)

Wn =
[

ρ ρUn 0 ρ
(

1
2 U2

n + e
) ]T

(32b)

Wt =
[

0 0 ρUτ
1
2 ρU2

τ

]T
(32c)
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Like Equation (19), the conservative variables at the cell interface attributed to
the normal velocity can be evaluated by:

Wn =
4

∑
i=1

ϕigi (−ξiδt, t− δt) (33)

It is assumed that a local Riemann problem is formed at the cell interface. Then,
the equilibrium distribution function gi (−ξiδt, t− δt) can be given by:

gi (−ξiδt, t− δt) =

{
gL

i if i = 1, 3
gR

i if i = 2, 4
(34)

where gL
i and gR

i are the equilibrium distribution functions at the left and right
sides of cell interface as shown in Figure 3. In addition, the conservative variables
attributed to the tangential velocity can be approximated by:

Wt(3) = ∑
i=1,3

gi (−ξiδt, t− δt)UL
τ + ∑

i=2,4
gi (−ξiδt, t− δt)UR

τ (35a)

Wt(4) =
1
2

[
∑

i=1,3
gi (−ξiδt, t− δt)

(
UL

τ

)2
+ ∑

i=2,4
gi (−ξiδt, t− δt)

(
UR

τ

)2
]

(35b)

Once the conservative variables at the cell interface W∗ are obtained, the flux
attributed to the equilibrium distribution function at the cell interface Fn,I

c can
be calculated by substituting the above conservative variables directly into the
expression of inviscid flux. As for the flux Fn,I I

c , it can be obtained by substituting
Equation (34) into Equation (29) directly.
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6. Numerical Examples and Discussion

In this section, several benchmark cases will be studied to examine the
performance of newly-developed LBFS. In particular, lid-driven cavity flows and
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steady natural convection in a square cavity at high Rayleigh numbers of 107 and 108

will be simulated on non-uniform grids by the incompressible LBFS. Transonic flows
around a staggered-biplane configuration will be studied on unstructured grids by
using the compressible LBFS.

6.1. Lid-Driven Cavity Flows

As a benchmark problem, the classical lid-driven cavity flow has been studied
extensively by many researchers [30–34]. This problem involves several geometrical
and flow parameters: the length of the cavity L, the velocity of the lid U and the
density and dynamic viscosity of the fluid ρ and µ. With these parameters, the
Reynolds number is defined as Re = ρUL/µ. In present study, this problem will be
solved by using the LBFS and the standard LBM to compare their accuracy, stability
and efficiency in detail.

At first, the accuracy of the LBFS and LBM are examined by comparing the
pressure and velocity profiles for lid-driven cavity flows at Re = 5000. In the
computation, a non-uniform grid of 101× 101 for the LBFS and uniform grid of
301× 301 for LBM are applied. Note that much finer grid is required for the LBM
to maintain numerical stability at this Reynolds number. Figure 4 compares the
pressure and velocity profiles obtained by these two methods. It can be seen that
excellent agreements have been achieved. Note that the LBFS uses about one-ninth of
the total grid points adopted by the LBM, which shows its advantage and capability
in applying non-uniform grids. It may also be noted that both LBFS and LBM have
the second order of accuracy and quantitatively similar solutions will be obtained
when the same grids are applied [8–10].

After that, the pure stability of the LBFS and LBM is investigated without
considering numerical accuracy. This test is conducted by simulating the lid-driven
cavity flows at Reynolds numbers from 100 to 5000. The minimum grids to get stable
solution required respectively by the LBFS and LBM are recorded and shown in
Table 1. It can be seen that, with the increase of Reynolds number, the LBM requires
more grid points to maintain stability while the LBFS only needs a grid size of 4 × 4
for all cases considered. This feature indicates that the LBFS is more stable than
LBM. In addition, the stability of these two methods can be further examined by
comparing numerical solutions for pressure. Figure 5 compares the pressure contours
of lid-driven cavity flows at Reynolds number of 5000. A grid size of 101× 101 is
applied by the LBFS and 301× 301 is applied by the LBM. It is obvious that the
results of LBM for pressure field have substantial unphysical oscillations at the top
left, top right and bottom right corners while those of the LBFS are smooth all over
the flow domain. This phenomenon indicates that the stability of LBFS is superior to
that of the LBM.
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methods [35,37,42]. For instance, Peng et al. [42] simulated this problem at Rayleigh numbers from  
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Moreover, the efficiency of the LBFS and LBM are investigated by considering
two cases. The first one is their efficiency on the same uniform grid of 301× 301 by
simulating the lid-driven cavity flow at Re = 5000. The other case is to examine the
computational effort of the LBFS on non-uniform grids when its results agree well
with those of the LBM. Table 2 compares the CPU time consumed by each solver in
these two cases. As can be seen, when applied on the same grid, the LBFS takes about
3.8 times the computational time and 47% of the virtual memory that are required
by the LBM. This is mainly attributed to the fact that, in the LBFS, interpolations of
physical quantities are performed at each cell for flux reconstruction, which degrades
its efficiency. On the other hand, when the solution of the LBFS compares well
with that of LBM as shown in Figure 4, the LBFS only needs a non-uniform grid of
101× 101. As compared with those of LBM, only about 16.6% of computational time
and 5.3% of virtual memory are consumed by the LBFS. This indicates that the LBFS
needs less computational resources and can be more efficient for applications on
non-uniform grids.

Table 2. Comparison of performance of the lattice Boltzmann flux solver (LBFS)
and lattice Boltzmann method (LBM) on different grids for 2D lid-driven cavity
flows at Re = 5000.

Object Type Method Min. Max. Avg. Std. Dev.

V2SFCA 5 67 25.53 13.95
EV2SFCA 5 118 27.71 23.88

Population V2SFCA 5 63 23.20 15.08
EV2SFCA 5 70 25.49 17.54

6.2. Natural Convection in a Square Cavity at High Rayleigh Number

Natural convection in a square cavity is a benchmark case for validating various
numerical methods [35,37,42]. For instance, Peng et al. [42] simulated this problem
at Rayleigh numbers from Ra = 103 to 106 to validate their simplified SRT-based
thermal LB model. Guo et al. [37] studied this problem to examine their D2Q4
thermal LB model. Contrino et al. [35] validated their MRT-based thermal LB model
by simulating this flow at high Rayleigh numbers of 107 and 108. Recently, with
SRT-based D2Q9 thermal LB model, the LBFS [9] has also been validated through
its application to simulate this problem from Ra = 103 to 106. It is noticed that, to
study this problem, all versions of LBM restrict their computations on uniform grids.
However, non-uniform grids may be more accurate and efficient to capture thin
boundary layers, especially for flows at high Rayleigh numbers. This provides a
good chance to examine the performance of the LBFS with D2Q4 thermal LB model.
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The flow pattern of this problem is characterized by two normalized parameters:
the Prandtl number Pr and the Rayleigh number Ra, which can be respectively
defined as:

Pr =
ν

χ
, Ra =

gβ · ∆T · L3

ν · χ =
V2

c · L2

ν · χ (36)

where L is the length of the square cavity, ∆T is the temperature difference between
the hot and cold walls and Vc =

√
gβL · ∆T is the characteristic thermal velocity. The

flow parameters are set as follows: L = 1, Vc = 0.1, Pr = 0.71. Two high Rayleigh
numbers of Ra = 107 and 108 are considered. Non-uniform grids with different grid
sizes (201× 201 and 301× 301 for Ra = 107; 301× 301 and 401× 401 for Ra = 108)
are applied. To quantify the result, the mean Nusselt number Nu1/2 along the line of
x = L/2 is computed and compared:

Nu1/2 =
L

χ · ∆T
· 1

L

∮
x=L/2

(
uT − χ

∂T
∂x

)
dl (37)

Tables 3 and 4 show the maximum absolute value of the stream-function |ϕ|max
and its position, the mean Nusselt number Nu1/2 along the vertical centerline, the
maximum u-velocity Umax along x = L/2 and its vertical position, the maximum
v-velocity Vmax along y = L/2 and its horizontal position. The numerical results of
Contrino et al. [35] obtained by the MRT-LBM and those of Quere [43] obtained by
a high order pseudo-spectral method are also included for comparison. With the
increase of the grid size, the present solution is closer to the benchmark solution of
Quere [43] for all cases considered. In particular, the relative error of |ϕ|max between
the present solution on the finest grid and those of Quere [43] is within 0.26% and
that of Nu1/2 is within 0.08%. This indicates that both the strength of the flow field
represented by the stream-function and the heat transfer rate represented by the
mean Nusselt number are well predicted by the LBFS. Figures 6 and 7 show the
streamlines and isotherms at Rayleigh numbers of 107 and 108 respectively. At
Ra = 107, a large clock-wise recirculation is formed and attached to all walls. Both the
flow and temperature boundary layers close to the hot and cold walls are very thin.
The temperature at the same height of the cavity is almost a constant near central
area. As Ra is increased to 108, the boundary layer separates near the bottom left
and top right region. Figure 8 shows the u-velocity along the vertical centerline and
v-velocity along the horizontal centerline. As can be seen, the velocity component v is
almost zero in a large zone except for those near the wall. This indicates that vertical
convection in the central area can be very weak and heat conduction dominates this
region. This is consistent with the observation that the temperature on the same
latitude is almost a constant in the central area of the cavity.
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Table 3. Comparison of representative quantities for natural convection in a square
cavity at Ra = 107.

Grid Size
Present Contrino et al. [35]

Quere [43]
2012 3012 3792 10192 15312

|ϕ|max 30.165 30.164 30.349 30.310 30.185 30.165
x 0.0868 0.0857 0.0848 0.0856 0.0857 0.86
y 0.5545 0.5559 0.5578 0.5562 0.5559 0.556

Nu1/2 16.550 16.543 16.526 16.523 16.523 16.52
Umax 148.17 148.84 148.48 148.57 148.58 148.59

y 0.8788 0.8789 0.8794 0.8793 0.8793 0.879
Vmax 699.19 699.91 699.11 699.27 699.31 699.18

x 0.0204 0.0216 0.0214 0.0213 0.0213 0.021

Table 4. Comparison of representative quantities for natural convection in a square
cavity at Ra = 108.

Grid Size
Present Contrino et al. [35]

Quere [43]
301 4012 3792 10192 15312

|ϕ|max 53.955 53.893 54.870 54.106 53.953 53.85
x 0.0482 0.4760 0.0469 0.0478 0.0480 0.048
y 0.5536 0.5528 0.5594 0.5545 0.5533 0.553

Nu1/2 30.353 30.301 30.257 30.229 30.227 30.225
Umax 316.07 323.65 315.08 320.74 321.37 321.9

x 0.9267 0.9288 0.9239 0.9273 0.9276 0.928
Vmax 2221.1 2222.9 2221.4 2222.1 2222.3 2222

y 0.0118 0.1192 0.0121 0.0120 0.0120 0.012
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taken from the work of Jawahar and Kamath [44]. It comprises two NACA0012 airfoils, staggered by 

half a chord length in the pitchwise as well as chordwise directions. At first, the inviscid flow with the 

free-stream Mach number of 0.7 and the angle of attack of 0 degree is simulated. In the test, the 

unstructured grid containing 256 points on each airfoil and 36,727 triangular cells in the computational 

domain is utilized, and its partial view is shown in Figure 9a. The pressure contours obtained from 

present scheme are shown in Figure 9b. It can be seen from the figure that, a strong normal shock is 

formed between two airfoils and near the trailing edge of bottom airfoil, which is in line with those 

observed by Jawahar and Kamath [44] and Lerat and Wu [45]. Figure 10 shows the pressure coefficient 

distribution on the airfoil surface computed by present scheme. Also displayed in this figure are the 

Figure 7. Streamlines and isotherms for natural convection at Ra = 108.
(a) Streamlines; (b) Isotherms.
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6.3. Inviscid and Viscous Transonic Flows Around a Staggered-Biplane Configuration

To validate the compressible LBFS for simulation of flows with complex
geometry, the inviscid and viscous transonic flows around a staggered-biplane
configuration are simulated. This test example is taken from the work of Jawahar and
Kamath [44]. It comprises two NACA0012 airfoils, staggered by half a chord length
in the pitchwise as well as chordwise directions. At first, the inviscid flow with the
free-stream Mach number of 0.7 and the angle of attack of 0 degree is simulated.
In the test, the unstructured grid containing 256 points on each airfoil and 36,727
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triangular cells in the computational domain is utilized, and its partial view is shown
in Figure 9a. The pressure contours obtained from present scheme are shown in
Figure 9b. It can be seen from the figure that, a strong normal shock is formed
between two airfoils and near the trailing edge of bottom airfoil, which is in line
with those observed by Jawahar and Kamath [44] and Lerat and Wu [45]. Figure 10
shows the pressure coefficient distribution on the airfoil surface computed by present
scheme. Also displayed in this figure are the results of Jawahar and Kamath [44]
and Lerat and Wu [45]. Clearly, the results of current scheme agree well with the
published data.
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In addition, the viscous flow with the free-stream Mach number of 0.8, the Reynolds number of 500 

and the angle of attack of 10 degree is simulated. In the simulation, the unstructured grid containing  

512 points on each airfoil and 65,861 cells in the computational domain is used, and its partial view is 

shown in Figure 11a. Figure 11b shows the streamline pattern obtained from present scheme. From this 

figure, it can be observed that the separation region on the upper surface of top airfoil reveals two 

vortices. This observation is consistent with the results reported in [44]. As pointed out by Jawahar and 

Kamath [44], the secondary vortex is introduced by the bottom airfoil. The comparison of pressure 

coefficient and skin friction coefficient distributions on the airfoil surface obtained by present scheme 

Figure 9. Partial view of computational mesh and pressure contours for inviscid
biplane configuration. (a) Computational mesh; (b) Pressure contours.

In addition, the viscous flow with the free-stream Mach number of 0.8, the
Reynolds number of 500 and the angle of attack of 10 degree is simulated. In the
simulation, the unstructured grid containing 512 points on each airfoil and 65,861
cells in the computational domain is used, and its partial view is shown in Figure 11a.
Figure 11b shows the streamline pattern obtained from present scheme. From this
figure, it can be observed that the separation region on the upper surface of top airfoil
reveals two vortices. This observation is consistent with the results reported in [44].
As pointed out by Jawahar and Kamath [44], the secondary vortex is introduced by
the bottom airfoil. The comparison of pressure coefficient and skin friction coefficient
distributions on the airfoil surface obtained by present scheme with those reported
in [44] is shown in Figure 12. Once again, the results obtained by present scheme
compare well with the reference data.
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7. Conclusions 

As a finite-volume solver, the LBFS directly updates macroscopic flow variables at cell centers by 

solving macroscopic governing equations. Its fluxes are reconstructed locally at each interface through 

lattice moments of particle distribution functions, in which the relationships obtained from the 

Chapman–Enskog theory are applied. During local reconstruction, the LBM is applied locally in one 

streaming time step, which is different from the global application of the conventional LBM. As a 

consequence, the LBFS is able to combine the advantages of the finite volume method and the LBM. 

Figure 11. Partial view of computational mesh and streamline pattern for viscous
biplane configuration. (a) Computational mesh; (b) Streamline pattern.
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Figure 12. Comparison of pressure coefficient and skin friction coefficient
distributions for viscous biplane configuration. (a) Pressure coefficient distribution;
(b) Skin friction distribution.

7. Conclusions

As a finite-volume solver, the LBFS directly updates macroscopic flow variables
at cell centers by solving macroscopic governing equations. Its fluxes are
reconstructed locally at each interface through lattice moments of particle distribution
functions, in which the relationships obtained from the Chapman–Enskog theory are
applied. During local reconstruction, the LBM is applied locally in one streaming
time step, which is different from the global application of the conventional LBM.
As a consequence, the LBFS is able to combine the advantages of the finite volume
method and the LBM.

In this work, the historic development from the LBM to the LBFS is briefly
introduced and their relationships with the macroscopic conservation laws are also
described through the multi-scale Chapman–Enksog analysis. The major contribution
of this work is to refine and examine three different versions of the LBFS, proposed
respectively for isothermal, thermal and compressible flows. In particular, the
accuracy, stability and efficiency of the isothermal LBFS are compared with the
LBM in detail. The LBFS for temperature field is simplified by the D2Q4 model,
which reduces computational effort as compared with that by D2Q9 model. The
LBFS for compressible flows is improved by incorporating non-equilibrium effects
into the process for inviscid flux reconstruction, in which numerical dissipation can
be controlled through a switch function.

Several benchmark problems, including lid-driven cavity flows, natural
convection in a square cavity at high Rayleigh numbers of 107 and 108 and transonic
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flows around a staggered-biplane configuration, have been carried out to examine the
solvers. Numerical results show that the LBFS is able to obtain comparable solutions
with much less non-uniform grid points and its efficiency can be greatly improved.
It is also shown that LBFS is much more stable than LBM and does not generate
unphysical pressure oscillations for lid-driven cavity flows. With the application of
one-dimensional compressible lattice Boltzmann model, the LBFS can be effectively
applied for simulation of compressible flows on unstructured grids.
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Abstract: Entropy feedback is reviewed and highlighted as the guiding principle to
reach extremely low dissipation. This principle is illustrated through turbulent flow
simulations using the entropic lattice Boltzmann scheme.

Reprinted from Entropy. Cite as: Karlin, I.V.; Bösch, F.; Chikatamarla, S.S.; Succi, S.
Entropy-Assisted Computing of Low-Dissipative Systems. Entropy 2015, 17,
8099–8110.

1. Introduction

The operation of many natural and engineered systems depends crucially on their
ability to function at very low dissipation rates, the lower most often the better [1].
Zero-dissipation, however, is an ideal limit which could only be reached if these
systems could operate at virtually infinite processing speed. Hence, a very general
question arises: how low can one keep dissipation in a given thermodynamic system?

Here we show that the ability of a specific class of fluid-kinetic systems [2–4]
to function at a very low dissipation is dramatically enhanced by enforcing the
second principle of thermodynamics in the form of an entropic feedback [5].
Through concrete examples of turbulent flows, we highlight how entropy-assisted
simulation maintains the system at low viscosity, through a highly orchestrated and
self-consistent interplay between local enhancement and reduction of the dissipation.
Balancing of these dissipation fluctuations leads to a spatial distribution of the
average effective viscosity which keeps the simulation “alive and well”. We envisage
the entropy-assisted computing procedure to offer a general paradigm for the
computer simulation of a wide class of low-dissipative complex phenomena, such as
classical and quantum turbulence and wave propagation in active media.

2. Survival below Minimum Dissipation Threshold

The second principle of thermodynamics stands out as one of the most general
and inescapable laws of physics, with profound bearings on the time evolution of
virtually all natural systems [1]. In its essence, it states that any natural system
is driven towards a state of maximum entropy (equilibrium), characterized by a
maximum number of microscopic configurations. However, it says little about
a most relevant question: how long does it take for a given system to reach its
equilibrium state? This question, the heart of non-equilibrium thermodynamics, is all
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but academic, since most natural phenomena, life in the first place, depend on the time
the system is able to borrow from temporary elusion of the second principle [1]. The
rate of decay to equilibrium is measured by transport coefficients, such as kinematic
viscosity, and can change widely from system to system, from seconds in an ordinary
gas, to years and centuries in glassy materials.

The typical form of kinematic viscosity is given by ν ∼ v2
Tτ, where vT =√

kBT/m is the thermal speed, τ a typical relaxation time. The kinematic viscosity
measures the diffusivity of momentum across the system: such diffusivity results from
the competition between kinetic energy, which sustains the free motion of molecules,
and potential energy, which controls their interactions (collisions). Kinetic energy
drives the system out of equilibrium, while molecular collisions pull it back to a local
equilibrium, in which entropy is locally maximized (Boltzmann’s H-theorem) [6–8].
Thus, a low-viscous fluid is not one with nearly no collisions, but one where collisions
are so frequent and effective that they inhibit any migration of momentum from place
to place, which is the source of macroscopic dissipation. From the above argument,
it is seen that zero-viscosity is a mirage because it would imply instantaneous
relaxation, i.e., τ → 0. Given that strictly zero-viscosity is a chimera in a real
(finite-speed) world, a natural question arises: what is the minimum dissipation which
can be sustained by a given physical system? While the answer depends on the specific
system in mind, here we shall focus on discrete dynamical systems, i.e., featuring a
fundamental minimal length scale a and minimal time scale h.

For the case of simulated fluids, for instance, the condition is that the smallest
coherent structures (eddies) capable of surviving dissipation be resolved by the
discrete grid, i.e., lK > a, where lK ∼ L/Re3/4 is the so-called Kolmogorov’s length [9],
the smallest active scale in the game and Re = UL/ν is the Reynolds number, i.e., the
ratio of nonlinear energy transfer to dissipation, for a fluid moving at a macroscopic
speed U on a domain of macroscopic size L. As a result, the minimal viscosity is
given by νmin = (u/N1/3)νl , where N = L/a is the grid size, u ≡ U/Ul, Ul = a/h
and νl = a2/h being the natural lattice speed and lattice viscosity, respectively. Given
that u < 1 for reasons of numerical stability, we see that the minimal viscosity is
always smaller than the lattice viscosity, the ratio of the two decreasing like 1/N1/3,
so that the minimum viscosity can be brought to zero only in the continuum limit
N → ∞. Another face of the same chimera. The message is that fluids cannot
support viscosity below their minimum bound νmin. Breaking such constraint leads
to two basic scenarios: a mild reaction (loss of accuracy), whereby the resolved eddies,
l > a, still survive, although with a corrupted dynamics, the degree of corruption
increasing as they approach a. The second, more dramatic, possibility is loss of
realizability: the system develops disruptive instabilities, typically in the form of
an uncontrolled growth of the smallest eddies. This is nothing short of a survival
problem, except that it concerns a discrete dynamical system. From the practical
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point of view, the art of keeping the system alive and well in the forbidden regime
ν < νmin is known as turbulence modeling, a topic of utmost practical and conceptual
importance. Essentially, the idea is to replace the nominal viscosity with an effective
one, representing the effects of unresolved eddies as “random” collisions on the
resolved ones. This picture explicitly draws upon an analogy with kinetic theory, where
there is a clear scale separation between molecular and hydrodynamic degrees of
freedom. Turbulence, on the contrary, features a continuum spectrum of scales, hence
the notion of eddy viscosity, although very useful, still resists a rigorous justification.

3. Minimum Viscosity in Discrete Phase-Space-Time

However, a modern formulation of continuum fluid mechanics in a form which
explicitly ingrains the discreteness of space-time is known as the lattice Boltzmann
equation [4]

fi(x + cih; t + h) = f ′i ≡
(

1− h
2τ

)
fi(x, t) +

(
h

2τ

)
f mirr
i (x, t) (1)

In the above fi is the probability of finding a “particle” at position x in the lattice
at time t, moving with discrete velocity ci along b lattice links; f mirr

i is the so-called
mirror state. In the simplest case [4], it is taken as f mirr

i = 2 f eq
i − fi, with f eq

i
the local equilibrium, which is a universal non-linear function of the local order
parameters. For standard fluids, these are the fluid density n(x, t) = ∑i fi(x, t) and
velocity u(x, t) = n−1 ∑i ci fi(x, t). The left-hand side of Equation (1) represents the
free-streaming step, while the right-hand side describes the interactions among the
discrete populations fi at each given lattice site. On condition that the lattice obeys
proper symmetries, the lattice Boltzmann Equation (1) reproduces fluid dynamics
with the viscosity

ν ∼
(

τ

h
− 1

2

)
νl (2)

The negative shift, −1/2 in Equation (2) is crucial; indeed, if only in principle, it
permits to achieve zero viscosity in the limit τ → h/2, i.e., without sending τ → 0,
unlike in the continuum. This negative shift is the result of the broken time-symmetry,
which contributes a negative viscosity (sometimes called propagation viscosity) to
the overall momentum diffusivity, besides the conventional contribution due to the
collisional relaxation. Thus, in a discrete world, the viscosity receives contributions
from both dynamical steps of the kinetic description: free streaming and collisions.
They carry opposite signs, hence, if only in principle, they can cancel each other,
leaving the time step and relaxation time both finite. This property, typically regarded
as a very useful numerical artifact, has played a major role in the lattice Boltzmann
simulation of a variety of complex flows, and most notably turbulent ones [10].
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Amazingly, suitably designed discrete kinetic systems keep describing correct
fluid behavior several orders of magnitude below the hydrodynamic minimum viscosity
bounds mentioned earlier in this paper. How come the minimal viscosity can be
eluded by several orders of magnitude?

The key is the second principle in fully discrete setting. Indeed, the lattice
Boltzmann Equation (1) is compatible with a discrete-time H-theorem, based on
the H-function (negative of the entropy), H[ f ] = ∑i fi ln( fi/wi), where wi are
suitable positive-definite weights. Lattice Boltzmann systems equipped with the
H-theorem are known as entropic [5] and function on a feedback mechanism, whereby
the local relaxation τ is adjusted in space and time, so as to secure the entropic bound,
H[ f ′] ≤ H[ f ], where f and f ′ are the pre- and post-collisional states, respectively.

The working principle is explained in Figure 1 and amounts to using in
Equation (1) the entropy-supervised mirror state f mirr

i = (1− α) fi + α f eq, where the
stretch α is found from the isentropic constraint, H[ f mirr] = H[ f ]. This can be
interpreted as the effective viscosity,

νeff ∼
(

τeff
h
− 1

2

)
νl (3)

with the effective relaxation time, τeff = 2τ/α. The entropy-assisted computation
thus informs the pre-collision state f about its isentropic mirror f mirr and stipulates
the single condition that the second law is respected by the post-collision state f ′.
Whenever non-equilibrium effects become strong enough to endanger realizability,
the entropic constraint adjusts the relaxation time so as to secure compliance with the
second principle. This feedback is self-activated “on demand”, i.e., only whenever
and wherever the need arises. And when the danger is gone, most elegantly, the
entropic feedback, leaves the stage unsolicited. The second principle decides by itself:
sometimes viscosity is increased (νeff > ν) to smooth out sharp features, sometimes
it is reduced (νeff < ν) to sharpen the dying ones. In the most demanding cases, the
effective viscosity may even drop negative (τeff < h/2) to promote local instabilities
and sustain the system against dissipative death. The effective viscosity self-adapts
to the actual state of turbulence to literally protect it against defective evolution and
disruptive instabilities.

In Figure 2 we illustrate the above by the vorticity field of a flow past a
circular cylinder at Re ∼ 3300, in which many active scales of motion are visible.
The Reynolds number, Re = UD/ν, is based on the diameter of the cylinder,
which is here taken as D = 30 a, while the mean flow velocity is U = 0.03 (a/h),
corresponding to a viscosity ν = UD/Re ∼ 2.7× 10−4 (a2/h). With these parameters,
the minimum viscosity is νmin = 0.03/301/3 ∼ 0.01 (a2/h), so that ν/νmin ∼ 1/40.
The flow structures in Figure 2a are colored with the effective viscosity, normalized
as R = (νeff − ν)/ν. The high quality of resolution of the flow structures (vortex
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tubes, tangles etc.) is maintained by a concerted action of dampers (R > 0) and
promoters (R < 0). The tiniest structures would not be able to survive unless the
effective viscosity is enabled to go negative from time to time, in order to compensate
for over-dissipation and “regenerate” small scale structures otherwise doomed by
over-damping. Also to be noted (Figure 2b) is the spottiness of the effective viscosity,
with a highly fine-grained mixing of dampers and promoters.

Figure 1. Entropy-assisted computing. The initial state f is over-relaxed to the
state f ′ with the entropy function H value strictly below the value at the entropy
mirror state f mirr. The zigzag trajectory of over-relaxations eventually ends up at
the bottom of the well—at the equilibrium f eq.

(a)

(b)

Figure 2. (a) Turbulent flow generated by a round cylinder. Snapshot of the vorticity
iso-surfaces are shown, colored with the effective viscosity. Blue: R > 0 (dampers);
Red/Yellow: R < 0 (promoters). The interplay between the dampers and promoters
along each vortex tube is clearly seen. (b) Snapshot of the intertwining of dampers
(R > 0, blue) and promoters (R < 0, red). Essential dampers (R > 1.5) and
promoters (R < −0.6) are shown. The entropic feedback is concentrated in
the region behind the obstacle, where the transition to turbulence occurs. Gray
background: Vorticity.
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All of the above configures a very elegant preemptive scenario which we can
take as the hallmark of entropic computing: very attentive “guardian angels”.
Amazingly, the spatial pattern of the time-averaged effective viscosity shown
in Figure 3 resembles indeed a “guardian angel”, protecting the system against
numerical crisis!
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Figure 3. Distribution of the time-averaged normalized effective viscosity R =

(νeff − ν)/ν at the mid-section of the flow past a round cylinder. Red/Yellow:
Promoters (R < 0); Blue: Dampers (R > 0); Green: Nominal (R = 0). While
the snapshot in Figure 2 demonstrates a larger variation of the effective viscosity,
the time-average picture is much milder: most of the activity (strongest damping
neighboring the strongest promotion) is concentrated at and around the twin shear
layers, just behind the cylinder. In the rest of the domain, the deviation of the
effective viscosity from its nominal value is less than a fraction of a percent.

4. Entropic Lattice Boltzmann Algorithm

Here we describe the essentials of the simulation method used above. In the
entropic lattice Boltzmann scheme, populations associated with the discrete velocities
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ci evolve according to (1). The local equilibrium f eq
i was found by minimizing the

entropy function H[ f ]. The entropic mirror state f mirr
i = (1− α) fi + α f eq is specified

by the stretch α, which is computed as the positive root of the entropy condition:
H[ f + α( f eq − f )] = H[ f ]. Whenever the simulation is resolved at a particular grid
node x, the stretch α becomes fixed automatically to the value α = 2 at that node, and
the effective viscosity νeff (3) reduces to the nominal viscosity ν (2). The stretch was
obtained numerically at each grid point using Newton-Raphson method. For the
simulation presented above, we used the lattice with b = 15 discrete velocities [11].
Apart from an entropy-supported kinetic equation, we require augmenting boundary
conditions that are capable of simulating both resolved and under-resolved flows.
Existing boundary conditions such as the bounce-back scheme [4], provide reliable
results for resolved simulations but with reducing grid sizes and increasing the
Reynolds number, the quality of the simulations is lost due to shock-like instabilities
generated at the walls. Hence, we used here the recently proposed Tamm–Mott-Smith
boundary condition [12] for circumventing these instabilities. Entropy-supported
kinetic Equation (1) provides reliable simulations for any choice of lattice and flow
velocity as long as the Mach number remains small. Armed with stable boundary
condition, the present scheme was extensively tested for various flow setups such as
decaying turbulence (ν/νmin ∼ 10−4) [13], turbulent channel (ν/νmin ∼ 10−3) [12],
grid generated turbulence (ν/νmin ∼ 10−3), flow past an airfoil (ν/νmin ∼ 10−4) and
others. For the particular simulation of the flow past a circular cylinder presented in
Figures 2 and 3, we used a computational domain that is 9D long in the span-wise
direction, 35D along in the stream-wise direction with 10D upstream of the cylinder
and 25D downstream of it; along vertical direction the domain was 21D long
with cylinder axis in the mid-plane. The cylinder was resolved with the diameter
D = 30 grid points. Apart from the simulation of turbulent flows, the entropy
feedback has significantly improved stability of thermal flows with temperature
gradients [14], multiphase flows [15] and other fluid dynamics problems. This gives
us strong confidence that entropy-guidance can be extended to other low-dissipative
physical systems.

5. ELBM: Questions and Answers

Here we answer some typical questions to the entropic lattice Boltzmann method
(ELBM) reviewed above. For the sake of convenience, we rewrite the ELBM equation
setting the time step h = 1:

fi(x + ci, t + 1) ≡ f ′i = (1− β) fi(x, t) + β f mirr
i (x, t) (4)
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where β ∈ [0, 1], while the entropic mirror state f mirr is

f mirr
i = fi + α( f eq

i − fi) (5)

The stretch α is defined by the entropy balance between the pre-collision state f and
the mirror state f mirr,

H( f mirr) = H( f ) (6)

A discrete-time H-theorem states: If the non-trivial solution α exists for the entropy
balance (6), then the total entropy H̄(t) = ∑x H( f (x, t)) is not increasing, H̄(t + 1) ≤
H̄(t). Note that the validity of the H-theorem requires not just the equilibrium to
be evaluated through the minimization of H but also, and most importantly, the
fulfillment of the entropy balance condition (6).

1. Is the entropic feedback in ELBM a stabilizing technique or a physically sound
subgrid-scale model for turbulence?

A: The ELBM should be viewed as a built-in subgrid model rather than a
mere stabilization technique. Stabilization in ELBM is a by-product of the
discrete-time H-theorem. Instead of a mere addition of artificial viscosity, the
ELBM allows the effective viscosity to fluctuate around the target value ν. In
order to clarify this point, note a few general features of the entropic stretch α.

• Over-relaxation: Thanks to convexity of the entropy function, the solution
to Equation (6) always leads to over-relaxation, α > 1;

• Duality: Let f be a population vector, and f (α) ≡ f + α( f eq − f ) its
entropic mirror state, with the same value of the entropy, H( f (α)) = H( f ).
If the entropy estimate is applied to f (α) instead of f , then the initial state
is recovered in the form f = f (α) + α∗( f eq − f (α)), with another stretch
α∗ > 1 which satisfies a duality relation:

α∗α = α∗ + α. (7)

Equation (7) implies that whenever α ≶ 2, the opposite holds for the dual,
α∗ ≷ 2.

• Hydrodynamic limit: whenever the simulation is resolved (populations stay
close to the local equilibrium), the stretch α tends to the fixed value α = 2
(and so does also the dual stretch, α∗ = 2, according to (7)). Then ELBM
self-consistently becomes equivalent to the lattice Bhatnagar–Gross–Krook
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(LBGK) equation (α = 2) and recovers the Navier-Stokes equations with
the kinematic viscosity,

ν = c2
s

(
1

2β
− 1

2

)
(8)

where cs is speed of sound (a O(1) lattice-dependent constant).

Note that the above is a direct implication of the built-in H-theorem.
Indeed, the resolved simulation, at the kinetic level, is characterized by the
fact that all populations are asymptotically close to the local equilibrium.
Then, the entropy function becomes well represented by its second-order
approximation: at fixed locally conserved fields (density and momentum
here), if δ f = f − f eq, |δ f / f eq| � 1, then H( f ) ≈ Heq + (1/2)∑i δ f 2

i / f eq
i .

The levels of the entropy are then asymptotically close to the levels of
the above quadratic form. It is under such condition that the entropy
estimate (6) results in α = 2. Note that the standard Chapman–Enskog
approximation is valid under precisely the same condition of closeness to
the local equilibrium, thereby the viscosity ν is the same for both ELBM
and LBGK.

• Effective viscosity and self-averaging: The effective viscosity in the above
notation reads,

νeff = c2
s

(
1

αβ
− 1

2

)
(9)

Depending on the outcome for stretch α, the effective viscosity νeff(αβ) is
larger than the viscosity ν ≡ νeff(2β) if α < 2, and it is smaller than ν if
α > 2. In the first case, the (larger) effective viscosity leads to smoothing
the velocity gradient at the given node, while in the second case, the
smaller viscosity leads to a sharpening of the velocity gradient. Note
that, when β → 1 (vanishing viscosity ν → 0), the effective viscosity (9)
can drop to even negative values if α > 2. This asymmetry between the
over-relaxation being “shorter” (α < 2) or “longer” (α > 2) than the
LBGK over-relaxation α = 2 is the crucial implication of the compliance
with the H-theorem: even if the effective viscosity becomes negative at
some lattice nodes, this does not lead to numerical instability because even
in that case the H-theorem (and the proper behavior of the total entropy)
remains valid.

Parameterization with the effective viscosity νeff(αβ) can be seen as an
alternative to the parameterization with the over-relaxation α. Let us note
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that, if a pair {α, α∗} is connected by the duality relation (7), then the mean
value of the corresponding effective viscosity is equal to the viscosity (8),

νeff(αβ) + νeff(α
∗β)

2
= νeff(2β) ≡ ν (10)

The relation (10) is termed self-averaging, and provides important albeit
heuristic argument that the averaged-in-time effective viscosity in ELBM
simulation is close to the viscosity ν. In other words, we expect that it is
only the matter of resolution that the average effective viscosity deviates
from ν. This assertion, while not rigorous, is supported by simulation (see
Figure 3). The rapid fluctuations of the stretch α around α = 2 at a given
monitoring point chosen at random in the simulation domain are clearly
seen in Figure 4.

Figure 4. Top: History of the entropic strech α at a monitoring point; Middle:
Histogram of α; Bottom: Close-up of the hystogram around the dominant value α = 2.

In summary, the ELBGK exploits the self-adaptive mechanism of effective
viscosity by choosing automatically the over-relaxation α at each node to
guarantee the H-theorem at all sites and all discrete time-steps. When the grid
is coarsened, over-relaxation α becomes “smeared” in an interval, [αmin, αmax],
with 1 < αmin < 2, and αmax > 2. The self-adapted over-relaxation set up by
(6), results in two oppositely directed effects: if α < 2, the effective viscosity is
larger than ν, and the ELBM will tend to smoothen any flow perturbation. On
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the other hand, if α > 2, the flow perturbation is enhanced (effective viscosity is
smaller than ν). In ELBM simulations, these two effects act simultaneously on
various nodes, with the net effect combining stabilization (through smoothing,
α < 2) with the preservation of the resolution (through sharpening, α > 2).
Note that, as β → 1, the effective viscosity can even drop to negative values
when α > 2. This, however, does not lead to instabilities as the total entropy
balance remains under control by the discrete-time H-theorem. This all is
very different from a conventional perspective on “eddy viscosity” turbulence
modeling, and it is not surprising that ELBM does not reduce to familiar large
eddy simulation (LES) models [16].

2. What is the relation of ELBM to the entropic stabilizing techniques proposed in CFD?

A: During the last four decades numerous entropic stabilizing techniques
have been proposed in computational fluid dynamics (CFD) (see, e.g.,
Refs [17–25] and references therein). The idea behind is, roughly speaking, to
maintain an appropriate amount of artificial viscosity through the analysis of
discretization of the entropy balance (physical or artificial). In this regards,
ELBM is based on a different premise: it applies to strictly discrete systems
(in velocity-space-time), and the discrete-time H-theorem does not reduce to
the estimate of the entropy production (cf., e.g., [26]).

3. How ELBM performs in comparison to other stabilizing techniques proposed for LBM?

A: The closest analog of the conventional stabilization techniques in the LBM
setting is perhaps the method of entropic limiters [27–29]. The idea behind is
to measure the closeness of the pre-collision state to the corresponding local
equilibrium (in the sense of the entropy difference), and to apply equilibration
instead of over-relaxation if the difference exceeds a user-defined threshold.
This is similar to conventional artificial viscosity stabilization techniques in
CFD. Various versions of limiters were considered [27–29]. The authors of [29]
claimed that entropic limiters “perform better” than ELBM.

4. What is the main numerical mechanism promoting stability in ELBM?

A: Stability is promoted by the discrete-time H-theorem. Note that the
implication of the H-theorem in the presence of the over-relaxation allows
post-collision distributions to be both closer to the equilibrium than the LBGK
outcome (α < 2) or further away from the equilibrium (α > 2). It must be noted
that, in principle, for some pre-collision states, the corresponding entropic
mirror state may not exist (and hence no entropy balance is possible). However,
this happens beyond the domain of validity of the lattice Boltzmann models,
and is of no concern in practice. In particular, pathological cases (no solution
for α) occur in none of the simulations referred to in this paper.
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5. Very recently, in Ref. [30], Karlin et al. presented a new entropic stabilizer for LB
schemes. How is it different from the ELBM?

A: ELBM is based on the discrete-time H-theorem which is imposed in a
rather “orthodox” manner through the entropy balance condition (6) for
the over-relaxation. A different realization of the entropic control was
introduced recently by three of the present authors in [30] (we refer to this
as KBC model). The idea is to replace the entropic over-relaxation on all the
non-conserved moments as it is done in ELBM by a combination of the standard
(unsupervised) over-relaxation of the stresses with the proper equilibration
of the rest of the non-conserved moments. More specifically, if we write
a moment representation of the populations, fi = ki + si + hi, where ki is
the contribution of locally conserved fields, si are the stresses and hi are the
remaining higher-order moments, then the mirror state for KBC models reads,

f mirr
i = ki + [2seq

i − si] +
[
(1− γ)hi + γheq

i

]
(11)

where γ is the entropic stabilizer which is found by minimizing the entropy in
the post-collision state (4) with the mirror state (11):

dH[ f ′(γ)]
dγ

= 0 (12)

The rationale behind is this: The over-relaxation of the stresses in the mirror
state is the only formal condition to recover the viscosity ν (8); hence, an optimal
post-collision state should minimize the entropy under this constraint. Thus,
the KBC post-collision state is a quasi-equilibrium which corresponds to the
minimum of the entropy function once all the relevant constraints are applied.
Moreover, Equation (12) admits the following approximate solution,

γ =
1
β
−
(

2− 1
β

) 〈δs|δh〉
〈δh|δh〉 , (13)

with 〈X|Y〉 = ∑i,j Xi[∂
2H/∂ fi∂ f j]eqYj the entropic scalar product, and δsi =

si− seq
i , δhi = hi− heq

i . While (11) lumps together all the higher-order moments
in the h-part of the populations, a generalization which makes a distinction
within these moments is straightforward: For hi = ∑m hmi with m labeling
the different higher-order moments (or groups of such moments), we have
instead of (11),

f mirr
i = ki + [2seq

i − si] + ∑
m

[
(1− γm)hi + γmheq

i

]
(14)
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while the formula (13) generalizes to

γm =
1
β
−
(

2− 1
β

)
∑
n
[C−1]mn〈δs|δhn〉 (15)

with C−1 the inverse of the correlation matrix Cmn = 〈δhm|δhn〉. While the
H-theorem is not directly imposed in the KBC models (unlike the ELBM),
simulations of various setups demonstrated they are ‘virtually indestructible’
(Ref. [31]).

Note that in both ELBM and KBC models (and eventually in any lattice
Boltzmann model) a statement that “it recovers the viscosity ν” refers only to a
fully resolved simulation. Validity of the Navier-Stokes equation at small scales
for a given simulation is checked independently, for example, by measuring
the viscosity in the energy and enstrophy balance equations. For a detailed
analysis of these aspects for the KBC models we refer to recent papers [32,33].

6. Conclusion

The second law of thermodynamics provides a parameter-free solution to the
problem of controlling the effective turbulent viscosity, so as to tame numerical
disruption. Besides turbulence, to which the above findings have an immediate
impact on, the general notion of entropy-assisted computing, likely with different
realizations of the entropy feedback, is expected to apply to other states of matter
characterized by extremely low dissipation, such as superfluids [34] and cosmological
fluids [35] near black-hole horizons. It is also of interest to explore whether a similar
paradigm might inform the behavior of active matter systems [36]. Finally, one
may extrapolate even further and conjecture that entropy-assisted feedback systems,
functioning according to the feedback loop discussed above, may be engineered
outside the realm of fluid mechanics, typically at the intersection of information,
biology and statistical physics [37–39]. In an even broader perspective, we surmise
that entropy-assisted procedures might also inspire the design of novel active
feedback systems in natural, biological and possibly also medical sciences.
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Hydrodynamic Force Evaluation by
Momentum Exchange Method in Lattice
Boltzmann Simulations
Binghai Wen, Chaoying Zhang and Haiping Fang

Abstract: As a native scheme to evaluate hydrodynamic force in the lattice Boltzmann
method, the momentum exchange method has some excellent features, such as
simplicity, accuracy, high efficiency and easy parallelization. Especially, it is
independent of boundary geometry, preventing from solving the Navier–Stokes
equations on complex boundary geometries in the boundary-integral methods. We
review the origination and main developments of the momentum exchange method
in lattice Boltzmann simulations. Then several practical techniques to fill newborn
fluid nodes are discussed for the simulations of fluid-structure interactions. Finally,
some representative applications show the wide applicability of the momentum
exchange method, such as movements of rigid particles, interactions of deformation
particles, particle suspensions in turbulent flow and multiphase flow, etc.

Reprinted from Entropy. Cite as: Wen, B.; Zhang, C.; Fang, H. Hydrodynamic
Force Evaluation by Momentum Exchange Method in Lattice Boltzmann Simulations.
Entropy 2015, 17, 8240–8266.

1. Introduction

Fluid-structure interaction plays an important role in a variety of physical
phenomena and many fields of engineering applications. For the computational
fluid dynamics (CFD), hydrodynamic force evaluation is a key junction reflecting
the interaction between fluid and structure. Especially, for the simulations of an
object moving in fluid, accurate hydrodynamic force evaluation is a prerequisite to
exactly depict the behaviors of the object. Over the past two decades, the lattice
Boltzmann method (LBM) [1–5] has developed into a promising and alternative
numerical approach for the simulations of complex fluid flows [6–9]. Hydrodynamic
force evaluation in LBM mainly includes the momentum exchange method [10–13],
the stress integration method [14–16], the immersed boundary method [17–19],
etc. The methods based on the boundary integration have difficulty to solve the
Navier–Stokes equations on complex boundary geometries, as well as a challenge
to find a suitable computational mesh to compute fluid flow [10]. Owing to the
regular lattice, the discrete velocities and the handy density distribution functions in
LBM, the momentum exchange method is convenient to implement and is highly
efficient for parallel performance. In recent years, some improvements are proposed
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to make the method more accurate [20–22]. Remarkably, the Galilean invariant
improvement [13] promotes the momentum exchange method to become an exact
scheme for hydrodynamic force evaluation without any loss of its simplicity and
efficiency. Nowadays, it is very easy to implement the momentum exchange method
for the simulations of fluid-structure interactions based on LBM.

The review is organized as follows. Section 2 briefly summarizes the lattice
Boltzmann method. Section 3 describes the origin, theory and development of the
momentum exchange method in detail. Section 4 is focused on the refill of new
fluid nodes for the simulations of moving boundaries. Section 5 introduces a few
kinds of application of the momentum exchange method, including rigid particle
movements, deformable particle interactions, particle suspensions in turbulent flow
and in multiphase flow. Finally, Section 6 presents the conclusions.

2. The Lattice Boltzmann Method

With its roots in the cellular automaton concept and kinetic theory, the lattice
Boltzmann equation can recover the incompressible Navier–Stokes equations in the
nearly incompressible limit [6–8]. Discretized fully in space, time and velocity, the
lattice Boltzmann equation (LBE) can be concisely written as

fipx` ei, t` 1q ´ fipx, tq “ Ωp fiq (1)

where fipx, tq is the particle distribution function at lattice site x and time t, moving
along the direction defined by the discrete speeds ei with i “ 0, ..., N, Ωp fiq is the
collision operator and the time step takes 1 in the review. The mass density and the
momentum density are defined by

ρ “
ÿ

fi, ρu “
ÿ

ei fi ` τg (2)

where g is the acceleration due to force of gravity. One can consider fi to be a mass
component of a lattice node, and ei fi to be the corresponding momentum component.

With the different collision operators, several variations of the LBE can be read as
the single-relaxation-time model [2–5], the multiple-relaxation-time model [23,24], the
two-relaxation-time model [25], the entropic lattice Boltzmann equation [26,27], etc.
It should be noted that the momentum exchange method is based on the momentum
components and is independent of the given form of collision operator.

Using the two-dimensional model with nine velocities on a square lattice, of
which the discrete velocity set is e = {(0, 0), (1, 0), (0, 1), (´1, 0), (0, ´1), (1, 1), (´1, 1),
(´1, ´1), (1, ´1)}, the single-relaxation-time collision operator can be written as [2]

Ωp fiq “ ´
1
τ

”

fipx, tq ´ f peqq
i px, tq

ı

(3)
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while the equilibrium distribution function is

f peqq
i “ ρωir1` 3pei ¨ uq `

9
2
pei ¨ uq

2
´

3
2

u2s (4)

where ωi is the weighting coefficient ω0 “ 4{9, ω1,2,3,4 “ 1{9, ω5,6,7,8 “ 1{36, and
u is the fluid velocity calculated by Equation (2). The viscosity in the macroscopic

equations is ν “
2τ´ 1

6
.

With the most general form which is derived from the linearized collision model,
the multiple-relaxation-time collision operator can be defined as [28–30]

Ωp fiq “ ´M-1 ¨ S ¨
”

m´mpeqq
ı

(5)

where m and mpeqq represent the velocity moments of the distribution functions
and their equilibria, respectively. For the model with two dimensions and nine
discrete velocities, i is an integer 0 ď i ď 8 and the velocity moments are m “

(ρ,e,ε,jx,qx,jy,qy,pxx,pxy)T. The conserved moments are the density ρ and the flow
momentum j “ (jx,jy) “ ρu, u is the local velocity. The equilibria of nonconserved

moments depend only on the conserved moments: epeqq “ ´2ρ`
3
ρ

(j2x ` j2y), εpeqq “

ρ ´
3
ρ

(j2x ` j2y), qpeqq
x “ ´jx, qpeqq

y “ jy, ppeqq
xx “

1
ρ

(j2x ´ j2y), ppeqq
xy “

1
ρ

(jx jy). M is a

linear transformation matrix mapping between discrete velocity space and moment
space, m “ M ¨ f and f “ M-1 ¨m. S is a diagonal matrix of nonnegative relaxation
factors and is given by S “ diag(0,se,sε, 0,sq, 0,sq,sν,sν). Then the shear viscosity is

ν “
1
3

ˆ

1
sv
´

1
2

˙

.

The evolution of the LBE can be decomposed into two elementary steps, namely
collision and advection, to reveal the flow phenomena at the mesoscopic scale [6]:

collision: rfipx, tq “ fipx, tq `Ωp fiq (6)

advection: fipx` ei, t` 1q “ rfipx, tq (7)

where fi and rfi denote pre-collision and post-collision states of the particle
distribution functions, respectively. The collision step, as the dominant part of
the computations, is completely local, hence the full discrete equation is natural
to parallelize.
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3. The Momentum Exchange Method

3.1. The Original Particulate Suspensions by Ladd

Ladd created the original momentum exchange method in the lattice Boltzmann
method in order to evaluate hydrodynamic interactions for the numerical simulations
of particulate suspensions [10,11]. His pioneer studies promoted the lattice Boltzmann
method to develop into a popular tool for the simulations of fluid-solid interaction,
which, nowadays, is still one of the most active fields in LBM. Ladd defined the
suspension particle by a boundary shell and treated all lattices, both inner and outer
of the solid particle, in an identical fluid fashion. The particulate boundary, as shown
in Figure 1, is laid approximately and discretely at the middle of every fluid-solid
links, each of which crosses the boundary and connects a fluid node with a solid node.
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Figure 1. Location of boundary nodes for a curved surface. The velocities along
links cutting the boundary surface are indicated by arrows. The locations of
the boundary nodes are shown by solid squares, and the fluid nodes by solid
circles. The open circles indicate those nodes in the solid adjacent to fluid nodes.
(Ladd, 1994 [10]).

Taking into account the movement of the particulate surface, each of the
distribution functions on the fluid-solid links is then updated by the following
simple rule. Assuming that a moving boundary is intersected at xb by a fluid-solid
link which connects a solid node xs and a fluid node x f , and the discrete velocity ei

123



is from x f to xs, a momentum item computed by the boundary velocity is added to
the distribution functions which are bounced back from the particulate boundary

fi(x f ,t` 1) “ rfi(x f ,t)´
2ωiρ

c2
s

(ei ¨ ub) (8)

fi(xs,t` 1) “ rfi(xs,t)´
2ωiρ

c2
s

(ei ¨ ub) (9)

where cs is the sound speed and ub is the boundary velocity at the
intersection. The momentum-exchange occurs during the advection step, and the
momentum-exchange value on a fluid-solid link in a time step, namely the force, is
written as [10,11]:

Fipxb, t`
1
2
q “ 2

„

rfi(x f ,t)´ rfi(xs,t)´
2ωiρ

c2
s

(ei ¨ ub)


ei (10)

For a circular or spherical rigid particle suspended in fluid, the total
hydrodynamic force F as well as the torque T exerting on the particle are calculated by

Fptq “
ÿ

Fpxb, tq (11)

and
Tptq “

ÿ

pxb ´Rq ˆ Fpxb, tq (12)

where R is the mass center of the solid particle. The summations in Equations (11)
and (12) run over all the fluid-solid links. The boundary velocity of point xs is
computed by the particulate translational velocity U and the angular velocity Ω [31]

ubptq “ Uptq `Ωptq ˆ pxb ´Rq (13)

The time evolutions of the particle velocity and angle velocity are found by
solving Newton’s equations of motion,

Upt` 1q ” Uptq `
Fptq
M

`
pρp ´ ρq

ρp
g (14)

and
Ωpt` 1q ” Ωptq `

Tptq
I

(15)

where I is the moment of inertia, M is the mass of the particle and ρp is the particle
density. For an uniform circle or sphere with the radius r, the particle mass is
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computed by M “ πr2ρp and M “
4
3
πr3ρp, while the moment of inertia is computed

by I “
1
2

r2M and I “
2
5

r2M, respectively.
Ladd’s method treats both fluid node and particle node as fluid, therefore it

is very simple to update the motion of particles. Especially, the method remains
the conservations of mass and momentum locally. However, the solid particle is
indeed different from the interior fluid. Although the fluid movement in the particle
is closely similar to that of a rigid solid [11], the inertial lag of the fluid is obvious
at short times, and the contribution of the interior fluid on the force and torque of
the particle reduces the stability of the particle velocity update [8]. Nguyen and
Ladd [32,33] upgraded the original model by removing the effect of the interior
fluid from fluid-particle momentum exchanges and proposed an effective lubrication
force for particles in near contact. Başağaoğlu et al. [34,35] applied the upgraded
model to investigate the lateral migration of a particle in a horizontal channel and a
microchannel at different Reynolds numbers.

3.2. The Direct Particle Simulations by Aidun et al.

Aidun et al. [12,36] removed the interior fluid from the suspending particle and
considered the particle as a real and impermeable one. They arranged the particle
boundary approximately at the midpoint of fluid-solid links same as Ladd’s method
and applied the halfway bounce-back condition to calculate the distribution functions
from solid to fluid. A momentum item including the boundary velocity is added
into the distribution function which is bounced back from the particle boundary. For
a post-collision distribution function rfi, whose discrete velocity ei has the direction
from a fluid node to a solid one, the momentum component ei

rfi moves into the
particle and gives the particle a momentum increment. On the opposite direction,
ei
rfi moves out of the particle and gives the particle a momentum decrement. Thus,

the momentum change value of the boundary on the fluid-solid link in a time step,
namely the force, is written as [12,36,37]:

Fipxbq “ ei
rfipx f , tq ´ ei

rfipxs, tq “ eir
rfipx f , tq ` rfipxs, tqs (16)

where rfipxs, tq is calculated by the half-way bounce-back boundary condition

rfipxs, tq “ rfi(x f ,t)´
2ωiρ

c2
s

(ei ¨ ub) (17)

Equation (17) was also derived by the work of Nguyen and Ladd [32], in which
fluid occupies the entire region, but fluid inside the particle does not contribute to
particle-fluid hydrodynamics. This approach ensures the continuity in the flow field
and avoids large artificial pressure gradients, which are caused by the expansion and
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compression of the fluid near the particle surface. We call the Equation (16) as the
conventional momentum exchange (CME) equation.

A common drawback in Ladd’s and Aidun’s methods is that the boundary
geometry, which is located at the middles of fluid-solid links, is zigzag. Mei et al. [37]
employed the curved boundary conditions [38–40] in the momentum-exchange
method, thus, on the grid level, the particulate geometry could be accurately
depicted. The distribution functions bounced back from the solid boundary are
calculated by curved boundary condition, and the force evaluation is based on
the real particulate geometry instead of the previous stepping edges. They also
verified that the momentum exchange method, namely Equation (16), is accurate on
a stationary boundary for both two-dimensional and three-dimensional flows.

Another improvement by Aidun et al. [12] was that the hydrodynamic force
evaluation of moving solid particles involved the momenta raised from the lattice
type changes of the covered and uncovered nodes. Ding and Aidun [41] further
studied lubrication forces between particles in near contact and hydrodynamic
interactions between two solid objects in relative motion. Wen et al. [20] investigated
carefully the effect of these type-changing lattices and applied the curved boundary
conditions [38–40,42–45] to simulate moving boundaries.

In the numerical simulations of fluid-structure interactions in LBM, every of
the momentum components moving through the boundary will alter the boundary
momentum. Figure 2A shows that, in a time step, a boundary shifts from the dotted
curve to the real one, the initial fluid node (a1) is devoured by the solid boundary
and changes into a newborn solid lattice node. Every of momentum components
on the lattice node moves into the particulate boundary and provides a momentum
increment. Thus, the impulse force caused by the type changing of the node (a1) is
written as [12,20]:

Fpxcq “
ÿ

i

ei
rfipxc, tq (18)

where xc represents the lattice node altering from fluid to solid and relates to the
node (a1) in Figure 2A.

In the same style, when a boundary shifts, the previous solid lattice node (a2)
is uncovered and changes into a newborn fluid one, as shown in Figure 2B. Every
of momentum components on the lattice shifts out of the boundary and provides a
momentum decrement. Thus, the impulse force produced by the newborn lattice
node (a2) is written as [12,20]:

Fpxcq “ ´
ÿ

i

ei
rfipxc, tq (19)

where xc represents the lattice node altering from solid to fluid and concerns to the
node (a2) in Figure 2B.
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lattice shifts out of the boundary and provides a momentum decrement. Thus, the impulse force 
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( )   ( , )c i i c
i

f t F x e x  (19)

where xc represents the lattice node altering from solid to fluid and concerns to the node (a2) in  
Figure 2B. 

 
(A) (B)

Figure 2. The lattice type is changed if the boundary shifts from the dotted curve to the real one. 
Squares denote the particle and circles denote the fluid. (A) The shaded square a1 represents a 
newborn solid lattice node changing from a fluid one. (B) The shaded circle a2 represents a newborn 
fluid lattice node changing from a solid one. (Wen et al., 2012 [20]). 

The impulse forces exerted by the covered/uncovered lattice nodes are added into the 
conventional momentum exchange equation, therefore the hydrodynamic force on a moving 
boundary includes two parts: one is calculated on fluid-solid links, and the other is complemented 
by the impulse forces on type-changing lattices. Therefore, the total hydrodynamic force and torque 
acting on the particle are now defined as: 

( ) ( )b c  F F x F x  (20)

and 

( ) ( ) ( ) ( )b b c c      T x R F x x R F x  (21)

where the summation of xb is on all fluid-solid links and the summation of xcis on all 
covered/uncovered lattice nodes. 

Wen et al. [20] verified the accuracy of the method by simulating a series of cylinder 
sedimentations and the Segré–Silberberg effects [46,47]. However, it is really a discrete event that a 
lattice node passes through a moving boundary. Therefore, the impulse force leads to a significant 
force fluctuation and may reduce the simulation stability, so that a time average of velocity is 
necessary to smooth the velocity profile. 

3.3. The Improved Schemes by Caiazzo, Chen, Hu, et al. 

In recent years, a few schemes were proposed to improve the accuracy and Galilean invariance 
of the momentum exchange method. Caiazzo and Junk [48] presented an modified momentum 
exchange method according to the asymptotic expansion technique,  

22 2 2( ) ( , ) ( , ) 2 ( )i b i i f s i i i s s i b b ii if t f t c c       F x e x e x e e u u e   (22)

Clausen and Aidun [49] obtained a similar correction to reduce the error of normal stress and 
investigated the effect on the rheological properties in particle suspensions. Lorrenz et al. [50] 
investigated Galilean invariance and accuracy of the improved method by simulating particle 
suspensions with Lees-Edwards boundary conditions [51] and a shear flow test. 

Figure 2. The lattice type is changed if the boundary shifts from the dotted curve
to the real one. Squares denote the particle and circles denote the fluid. (A) The
shaded square a1 represents a newborn solid lattice node changing from a fluid one.
(B) The shaded circle a2 represents a newborn fluid lattice node changing from a
solid one. (Wen et al., 2012 [20]).

The impulse forces exerted by the covered/uncovered lattice nodes are added
into the conventional momentum exchange equation, therefore the hydrodynamic
force on a moving boundary includes two parts: one is calculated on fluid-solid
links, and the other is complemented by the impulse forces on type-changing lattices.
Therefore, the total hydrodynamic force and torque acting on the particle are now
defined as:

F “
ÿ

Fpxbq `
ÿ

Fpxcq (20)

and
T “

ÿ

pxb ´Rq ˆ Fpxbq`
ÿ

pxc ´Rq ˆ Fpxcq (21)

where the summation of xb is on all fluid-solid links and the summation of xc is on
all covered/uncovered lattice nodes.

Wen et al. [20] verified the accuracy of the method by simulating a series of
cylinder sedimentations and the Segré–Silberberg effects [46,47]. However, it is really
a discrete event that a lattice node passes through a moving boundary. Therefore, the
impulse force leads to a significant force fluctuation and may reduce the simulation
stability, so that a time average of velocity is necessary to smooth the velocity profile.

3.3. The Improved Schemes by Caiazzo, Chen, Hu, et al.

In recent years, a few schemes were proposed to improve the accuracy and
Galilean invariance of the momentum exchange method. Caiazzo and Junk [48]
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presented an modified momentum exchange method according to the asymptotic
expansion technique,

Fipxbq “ ei
rfipx f , tq ´ ei

rfipxs, tq ´ 2ωiei ´ωic´2
s (c´2

s |ei ¨ ub|
2
´ u2

bqei (22)

Clausen and Aidun [49] obtained a similar correction to reduce the error of
normal stress and investigated the effect on the rheological properties in particle
suspensions. Lorrenz et al. [50] investigated Galilean invariance and accuracy of the
improved method by simulating particle suspensions with Lees-Edwards boundary
conditions [51] and a shear flow test.

For a particle suspension model without fluid inside, simulations by
Wen et al. [20] and Chen et al. [22] showed when the impulse force was not included,
the numerical results of the conventional exchange equation deviated from both
results of finite element method and LBM with the stress integration method,
no matter the curved boundary condition or the halfway bounce-back boundary
condition was used. Because the conventional momentum exchange equation,
namely Equation (16), for stationary boundaries was verified to be accurate [37]
and the impulse force was not necessary for LBM with the stress integration method,
Chen et al. [22] thought that the problem could lie in the calculation of momentum
exchange in the moving boundary treatment.

Considering a distribution function as a mass component, the distribution
function will gain an additional momentum when it collides with a moving boundary.
Due to the constant discrete velocities in LBM, the additional part has to be modified
by adjusting the particle distribution function in the bounce back procedure like
the last part of Equation (17). The modification leads to a net mass transfer on a
fluid-solid link through the physical boundary for the direct simulation of suspending
particles without interior fluid. From another angle, the net mass transfer can be seen
as a bit of fluid mass which is covered (or uncovered) and is injected, at the time step,
back to (or down from) the fluid field [22], as shown in Figure 3. The initial momenta
of the net fluid mass must be complemented to CME and a straightforward correct is
given by Chen et al. [22]:

Fipxbq “ ei
rfipx f , tq ´ ei

rfipxs, tq ´
2ωiρ

c2
s

(ei ¨ ub)ub (23)

Associating with the Aidun’s method [12,20], the total impulse produced from
Equations (18) and (19) is equal to the total initial momenta of the fluid which is
covered or uncovered by the unit length boundary when the boundary shifts from a
lattice node to its neighbor.
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s
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Associating with the Aidun’s method [12,20], the total impulse produced from Equations (18) 
and (19) is equal to the total initial momenta of the fluid which is covered or uncovered by the unit 
length boundary when the boundary shifts from a lattice node to its neighbor. 

 
Figure 3. A schematic illustration of a moving boundary on lattice grid. (Chen et al., 2013 [22]). 

Based on the finite-volume lattice Boltzmann method, Hu et al. [52] proposed a modified 
momentum exchange method to compute the interactions between fluid and particle. Their aim is to 
remove the common restriction in the momentum exchange method, in which the boundary points 
are set at the middle of the grid lines or the intersection of the solid boundaries and the grid lines. 
The particulate surface is described by some arc (area) elements, and the inside fluid is also used. 
Considering the control volume, the momentum exchange method is modified by 

2
( ) 2 ( , ) ( )i

i b i s i bi i
s

f t V
c

  
   

 
F x e x e u  (24)

Figure 3. A schematic illustration of a moving boundary on lattice grid. (Chen et al.,
2013 [22]).

Based on the finite-volume lattice Boltzmann method, Hu et al. [52] proposed a
modified momentum exchange method to compute the interactions between fluid
and particle. Their aim is to remove the common restriction in the momentum
exchange method, in which the boundary points are set at the middle of the grid
lines or the intersection of the solid boundaries and the grid lines. The particulate
surface is described by some arc (area) elements, and the inside fluid is also used.
Considering the control volume, the momentum exchange method is modified by

Fipxbq “ 2ei

„

rfipxs, tq ´
ωiρ

c2
s

(ei ¨ ub)


Vi (24)

where Vi is the area (volume) of the local curved edge. By means of numerical
integration, the fluid mass which collide with an arc (area) element in the control
volume is obtained.

3.4. The Galilean Invariant Hydrodynamics Force by Wen et al.

The interfacial momentum transfer can be generalized by a common schematic
diagram as shown in Figure 4, in which a moving boundary is located between
a fluid node x f and a boundary node xs and the boundary has a velocity v at the

point of intersection b. In the collision step, the distribution function rfipxb,tq has
to be calculated by the half-way bounce-back boundary condition [10,12] or the
curved boundary conditions [20,22,37,53], in which the forcing terms [54–56] must
be included based on the boundary velocity.
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where iV  is the area (volume) of the local curved edge. By means of numerical integration, the fluid 
mass which collide with an arc (area) element in the control volume is obtained. 

3.4. The Galilean Invariant Hydrodynamics Force by Wen et al. 

The interfacial momentum transfer can be generalized by a common schematic diagram as 
shown in Figure 4, in which a moving boundary is located between a fluid node fx  and a boundary 
node sx  and the boundary has a velocity v  at the point of intersection b . In the collision step,  
the distribution function ( , )bif tx  has to be calculated by the half-way bounce-back boundary 
condition [10,12] or the curved boundary conditions [20,22,37,53], in which the forcing terms [54–56] 
must be included based on the boundary velocity. 

 
Figure 4. A common schematic diagram to illustrate a moving boundary crossing a fluid-solid link at 
the point of intersection b. xf and xs denote the adjacent fluid and solid nodes. The boundary has a 
velocity v at the point b. (Wen et al., 2014 [13]). 

Galilean invariance is a fundamental physical property; however, although the dynamics of 
lattice Boltzmann equation in hydrodynamic restrict meets Galilean invariance [57], this property 
needs a specific consideration in the treatment of the fluid-structure interactions. According to the 
theorem of momentum, the momentum transfer through a moving boundary is correlated to the 
relative velocity and then is independent of the speed of reference frame. Crossing the point of 
intersection b , the mass component ( , )i ff tx  has the velocity ( )i e v  relative to the boundary and 

contributes a momentum increment ( ) ( , )i i ff te v x  to the boundary. Simultaneously, the mass 

component ( , )sif tx  has the relative velocity ( )i e v  and decreases a momentum ( ) ( , )si if te v x  
from the boundary. Thus, the Galilean invariant momentum exchange method (GME) can be  
defined by 

( ) ( ) ( , ) ( ) ( , )i b i i f si if t f t   F x e v x e v x   (25)

It is clear that GME turns into CME when the boundary is motionless. GME evaluates the 
hydrodynamic force in the fluid-structure interaction and works on the motion state of a moving 
boundary, but has not any direct influence on distribution functions. The similar relative velocity 
was mentioned in the study of Krithivasan et al. [58]. 

A simple theoretical analysis is employed to compare GME and CME. Suppose the system in 
Figure 4 is relative static and is physically related to a reference frame with arbitrary uniform 
velocity v . It is equivalent to an equilibrium system in which the fluid and boundary have the 
same uniform velocity v . Substituting Equation (4) into Equation (16), the hydrodynamic force on a 
fluid-solid link can be evaluated: 

( ) ( )

2 2 2 2

2 2

( , ) ( , )

9 3 9 3
[1 3( ) ( ) ] [1 3( ) ( ) ]

2 2 2 2

2 3 [3( ) ]  .

eq eq
i i i f si i

i i i i i i i i

i i i i i

f t f t 

             

     

F e x e x

e e v e v v e e v e v v

e e v v e

 (26)

Because of the term 2 23 [3( ) ]i i i  e v v e , the hydrodynamic force is abnormally connected to 
the speed of the reference frame, and thus the conventional equation presents an inherent flaw of 
Galilean invariance.  

Figure 4. A common schematic diagram to illustrate a moving boundary crossing a
fluid-solid link at the point of intersection b. x f and xs denote the adjacent fluid and
solid nodes. The boundary has a velocity v at the point b. (Wen et al., 2014 [13]).

Galilean invariance is a fundamental physical property; however, although the
dynamics of lattice Boltzmann equation in hydrodynamic restrict meets Galilean
invariance [57], this property needs a specific consideration in the treatment of
the fluid-structure interactions. According to the theorem of momentum, the
momentum transfer through a moving boundary is correlated to the relative velocity
and then is independent of the speed of reference frame. Crossing the point of
intersection b, the mass component rfipx f ,tq has the velocity pei ´ vq relative to the

boundary and contributes a momentum increment pei ´ vqrfipx f ,tq to the boundary.

Simultaneously, the mass component rfipxs,tq has the relative velocity pei ´ vq and
decreases a momentum pei ´ vqrfipxs,tq from the boundary. Thus, the Galilean
invariant momentum exchange method (GME) can be defined by

Fipxbq “ pei ´ vqrfipx f ,tq ´ pei ´ vqrfipxs,tq (25)

It is clear that GME turns into CME when the boundary is motionless. GME
evaluates the hydrodynamic force in the fluid-structure interaction and works
on the motion state of a moving boundary, but has not any direct influence on
distribution functions. The similar relative velocity was mentioned in the study of
Krithivasan et al. [58].

A simple theoretical analysis is employed to compare GME and CME. Suppose
the system in Figure 4 is relative static and is physically related to a reference frame
with arbitrary uniform velocity´v. It is equivalent to an equilibrium system in which
the fluid and boundary have the same uniform velocity v. Substituting Equation (4)
into Equation (16), the hydrodynamic force on a fluid-solid link can be evaluated:

Fi “ ei f peqq
i px f ,tq ´ ei f peqq

i
pxs,tq

“ eiρωir1` 3pei ¨ vq `
9
2
pei ¨ vq

2
´

3
2

v2s ´ eiρωir1` 3pei ¨ vq `
9
2
pei ¨ vq

2
´

3
2

v2s

“ 2ρωiei ` 3ρωir3pei ¨ vq
2
´ v2sei.

(26)
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Because of the term 3ρωir3pei ¨ vq
2
´ v2sei, the hydrodynamic force is

abnormally connected to the speed of the reference frame, and thus the conventional
equation presents an inherent flaw of Galilean invariance.

As the discrete velocity ei is constant, Galilean invariance cannot be satisfied
on a single fluid-solid link, just like a single ei cannot express the fluid velocity of
a lattice node. However, since the discrete velocity set is symmetrical, the Galilean
invariant force evaluation can be achieved locally on the lattice. Without loss of
generality, the boundary is assumed to intersect with the discrete velocities, e1,
e5 and e8. Substituting Equation (4) into Equation (25) and summating the three
directions, the local hydrodynamic force can be analyzed

F “ F1 ` F5 ` F8

“
ř

i“1,5,8
rpei ´ vq f peqq

i px f ,tq ´ pei ´ vq f peqq
i
pxs,tqs

“
ř

i“1,5,8
t2ρωiei ` 3ρωir3pei ¨ vq

2
´ v2sei ´ 6ρωipei ¨ vqvu

“
ř

i“1,5,8
2ρωiei.

(27)

The local hydrodynamic force remains constant regardless of the reference
speed, therefore GME is proven to be completely Galilean invariant in the
equilibrium system.

Another simple simulation can quantitatively show the difference between
GME and CME. A vertical thin plate is placed in the relatively static fluid without
boundary. GME and CME are used to compute the one-sided pressure of the plate
and the equilibrium system is connected to a reference frame. The percentage of the
computational errors by GME and CME are shown in Figure 5. It is clear that CME
violates Galilean invariance whereas GME fully satisfies in the equilibrium system.
The case is independent of the relaxation time and the plate’s length.

GME is further examined in a dynamic fluid field in which a cylinder
sedimentates in a vertical channel. The width of the channel is 0.4 cm and the cylinder
diameter is 0.1 cm. The fluid and particle densities are 1 g/cm3 and 1.03 g/cm3, and
the kinematic viscosity is 0.01 cm2/s. The cylinder is located at 0.076 cm to the left
channel wall, and then it moves under the gravity acceleration |G| = 980 cm2/s.
The width of the channel is 120 lattice units and the length is 10 times the width. The
simulations apply the second-order interpolation boundary condition [56] on the
single-relaxation-time model with the relaxation time τ “ 0.6. The particle mass is
8.0896 ˆ 10´3 g and the inertia moment is 1.0112 ˆ 10´5 g¨cm2. The Reynolds
numbers is defined by Re “ dup{v, where d is the channel width, up is the final
velocity of the particle and v is the kinematic viscosity. The highly consistent
results are obtained by using the multireflection boundary condition [59] on
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i
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The local hydrodynamic force remains constant regardless of the reference speed, therefore 
GME is proven to be completely Galilean invariant in the equilibrium system. 

Another simple simulation can quantitatively show the difference between GME and CME. A 
vertical thin plate is placed in the relatively static fluid without boundary. GME and CME are used 
to compute the one-sided pressure of the plate and the equilibrium system is connected to a 
reference frame. The percentage of the computational errors by GME and CME are shown in Figure 5. 
It is clear that CME violates Galilean invariance whereas GME fully satisfies in the equilibrium 
system. The case is independent of the relaxation time and the plate’s length. 

 
Figure 5. Relative errors in the one-sided pressure on a vertical thin plate in the relatively stationary 
fluid without boundaries. This equilibrium system is connected to various velocities of the reference 
frame. Since it properly considers the boundary velocity, Galilean invariant momentum exchange 
method (GME) is the Galilean invariant and thus has a very high computational accuracy. (Wen et al., 
2014 [13]). 

GME is further examined in a dynamic fluid field in which a cylinder sedimentates in a vertical 
channel. The width of the channel is 0.4 cm and the cylinder diameter is 0.1 cm. The fluid and 
particle densities are 1 g/cm3 and 1.03 g/cm3, and the kinematic viscosity is 0.01 cm2/s. The cylinder is 
located at 0.076 cm to the left channel wall, and then it moves under the gravity acceleration  
|G| = 980 cm2/s. The width of the channel is 120 lattice units and the length is 10 times the width. The 
simulations apply the second-order interpolation boundary condition [56] on the single-relaxation-time 
model with the relaxation time 0.6  . The particle mass is 8.0896 × 10−3 g and the inertia moment is 
1.0112 × 10−5 g∙cm2. The Reynolds numbers is defined by /pRe du v , where d is the channel width, 
up is the final velocity of the particle and v  is the kinematic viscosity. The highly consistent results 
are obtained by using the multireflection boundary condition [59] on the multiple-relaxation-time 
model with the diagonal relaxation matrix diag(0, 1.64, 1.54, 0, 1.9, 0, 1.9, 1 , 1 )  S  [23,30]. 

Figure 6a,b draws the compare with the simulating results from the momentum exchange 
methods by Aidun et al. (ALD) [12] and the lattice-type-dependent momentum exchange method 
(LME) [20], together with the benchmarks calculated by the arbitrary Lagrangian–Eulerian 

Figure 5. Relative errors in the one-sided pressure on a vertical thin plate in the
relatively stationary fluid without boundaries. This equilibrium system is connected
to various velocities of the reference frame. Since it properly considers the boundary
velocity, Galilean invariant momentum exchange method (GME) is the Galilean
invariant and thus has a very high computational accuracy. (Wen et al., 2014 [13]).

Figure 6a,b draws the compare with the simulating results from the momentum
exchange methods by Aidun et al. (ALD) [12] and the lattice-type-dependent
momentum exchange method (LME) [20], together with the benchmarks calculated
by the arbitrary Lagrangian–Eulerian technique (ALE) [60,61]. The hydrodynamic
forces computed by GME extremely agree with the benchmarks, while the results
by ALD and LME have large fluctuations. Please note that all of the data from GME
are raw, whereas the data from ALD and LME have been smoothed by using the
adjacent-averaging method per 30 points for the horizontal forces and per 100 points
for the vertical forces. As so much improvement in the force evaluation is achieved,
the force fluctuation of GME is very small and the time average becomes unnecessary.

Figure 7a,b draws the accuracy of the velocity and angle velocity computed
by GME, ALD and LME. All velocities from GME are very smooth and in excellent
agreement with the ALE benchmarks, whereas the results from ALD and LME clearly
fluctuate with some deviations. The GME results are so accurate and steady that the
time average of the velocities is totally unnecessary.
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data from GME are raw, whereas the data from ALD and LME have been smoothed by using the 
adjacent-averaging method per 30 points for the horizontal forces and per 100 points for the vertical 
forces. As so much improvement in the force evaluation is achieved, the force fluctuation of GME is 
very small and the time average becomes unnecessary. 

 
(a) (b)

Figure 6. (a) Time-dependent horizontal forces and (b) time-dependent vertical forces evaluated by 
GME, lattice-type-dependent momentum exchange method (LME), and Aidun’s method (ALD), 
compared with the ALE benchmark. The density of the cylinder is 1.03 g/cm3. The GME data is raw, 
whereas the ALD and LME data have been smoothed by the adjacent-averaging method. (Wen et al., 
2014 [13]). 

Figure 7a,b draws the accuracy of the velocity and angle velocity computed by GME, ALD and 
LME. All velocities from GME are very smooth and in excellent agreement with the ALE 
benchmarks, whereas the results from ALD and LME clearly fluctuate with some deviations. The 
GME results are so accurate and steady that the time average of the velocities is totally unnecessary. 

 
(a) (b)

Figure 7. Time-dependent (a) horizontal velocities and (b) angular velocities evaluated by GME, 
LME, and ALD, compared with the ALE benchmark. (Wen et al., 2014 [13]). 

The deviations of forces and velocities are quantitatively analyzed by a relative L2-norm error, 
which is defined by  
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To investigate the effects of lattice scale, the lattice width of the channel increases gradually 
from 50 to 200 lattice units, while the length remains 10 times the width. For Equation (28), f(t) is a 
LBM result and F(t) is an ALE result. Figure 8a illustrates that the relative errors of the GME results 
rapidly decrease with the increase of the lattice scale. However, the relative errors of the ALD and 
LME results always remain very high and are more than one order larger than those from GME. To 

Figure 6. (a) Time-dependent horizontal forces and (b) time-dependent vertical
forces evaluated by GME, lattice-type-dependent momentum exchange method
(LME), and Aidun’s method (ALD), compared with the ALE benchmark. The
density of the cylinder is 1.03 g/cm3. The GME data is raw, whereas the ALD
and LME data have been smoothed by the adjacent-averaging method. (Wen et al.,
2014 [13]).
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technique (ALE) [60,61]. The hydrodynamic forces computed by GME extremely agree with the 
benchmarks, while the results by ALD and LME have large fluctuations. Please note that all of the 
data from GME are raw, whereas the data from ALD and LME have been smoothed by using the 
adjacent-averaging method per 30 points for the horizontal forces and per 100 points for the vertical 
forces. As so much improvement in the force evaluation is achieved, the force fluctuation of GME is 
very small and the time average becomes unnecessary. 
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whereas the ALD and LME data have been smoothed by the adjacent-averaging method. (Wen et al., 
2014 [13]). 

Figure 7a,b draws the accuracy of the velocity and angle velocity computed by GME, ALD and 
LME. All velocities from GME are very smooth and in excellent agreement with the ALE 
benchmarks, whereas the results from ALD and LME clearly fluctuate with some deviations. The 
GME results are so accurate and steady that the time average of the velocities is totally unnecessary. 
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Figure 7. Time-dependent (a) horizontal velocities and (b) angular velocities evaluated by GME, 
LME, and ALD, compared with the ALE benchmark. (Wen et al., 2014 [13]). 

The deviations of forces and velocities are quantitatively analyzed by a relative L2-norm error, 
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Figure 7. Time-dependent (a) horizontal velocities and (b) angular velocities
evaluated by GME, LME, and ALD, compared with the ALE benchmark.
(Wen et al., 2014 [13]).

The deviations of forces and velocities are quantitatively analyzed by a relative
L2-norm error, which is defined by

E “
t
ş

r f ptq ´ Fptqs2dtu
1
2

t
ş

rFptqs2dtu
1
2

(28)
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To investigate the effects of lattice scale, the lattice width of the channel increases
gradually from 50 to 200 lattice units, while the length remains 10 times the width.
For Equation (28), f(t) is a LBM result and F(t) is an ALE result. Figure 8a illustrates
that the relative errors of the GME results rapidly decrease with the increase of the
lattice scale. However, the relative errors of the ALD and LME results always remain
very high and are more than one order larger than those from GME. To investigate the
influences of Reynolds number, we perform a set of simulations in which the particle
densities increase from 1.02 to 1.22 g/cm3, and the corresponding Reynolds number
grows gradually from 6.13 to 34.75. As shown in Figure 8b, the relative L2-norm
errors reflect the fluctuation range in particle velocities. Here, f(t) is the simulation
result and F(t) is the smoothed simulation result by the adjacent-averaging method
per 20 points. It is clear that the GME results are more accurate and far steadier than
the ALD and LME results. Peng et al. [62] confirmed the computational accuracy and
Galilean invariance of GME by theoretical analyses and numerical simulations.
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Figure 8. (a) The relative L2-norm error of the horizontal forces (Fx, black) and vertical forces  
(Fy, blue) with increasing lattice scales; (b) The relative L2-norm errors of the horizontal velocity  
(Vx, black) and the angular velocity (ω, red) with various Reynolds numbers. (Wen et al., 2014 [13]). 

4. Refill of New Fluid Nodes 

While a suspended particle is moving in fluid some lattices will be covered and uncovered by 
the particle, and then the type of these lattices will be changed consequently. Ladd’s method does 
not need a further process because all lattice nodes, both inside and outside of a particle, are treated 
as fluid nodes. When an interior node changes into an exterior node, it is justified if the density of the 
interior node approximates the right characteristic of the exterior one. This may be only true in the 
situations that the particulate acceleration is low. If a particle is accelerated, the fluid directly behind 
the particle typically suffers a lower pressure while the adjacent inner node bears a rather high 
pressure [50]. This may reduce the stability of the particle velocity update. For the methods without 
inner fluid node, when a lattice node is changing from a particle node to a fluid one, its properties 
has to be refilled, such as density, velocity and distribution functions [13,20,22]. Here, we introduce 
some algorithms used in practice as follows. 

Aidun et al. [12] presented a simple algorithm to refill the newborn fluid node when  
they directly simulated particle suspensions. When a boundary node is uncovered due to the 
movement of the solid particle and becomes a new fluid node, its density is obtained with the 
following relation:  
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   x x e  (29)

where x  is the newborn fluid lattice node and N  indicates the number of fluid nodes adjacent to 
this lattice node. The equation shows that the fluid density of the newborn node is equal to the 
average density of its neighboring lattice nodes. The velocity of the solid boundary node at the same 
time step is used as the macroscopic velocity of the new fluid node,  

( , ) ( ) ( ) ( ( ))t t t t   u x U Ω x R  (30)

where U  is the particle translational velocity, Ω  is the angular velocity and R  is the particulate 
mass center. The distribution functions on the newly uncovered node are set as the equilibrium 
distribution functions calculated by the density and velocity above. 

Figure 8. (a) The relative L2-norm error of the horizontal forces (Fx, black) and
vertical forces (Fy, blue) with increasing lattice scales; (b) The relative L2-norm
errors of the horizontal velocity (Vx, black) and the angular velocity (ω, red) with
various Reynolds numbers. (Wen et al., 2014 [13]).

4. Refill of New Fluid Nodes

While a suspended particle is moving in fluid some lattices will be covered
and uncovered by the particle, and then the type of these lattices will be changed
consequently. Ladd’s method does not need a further process because all lattice
nodes, both inside and outside of a particle, are treated as fluid nodes. When an
interior node changes into an exterior node, it is justified if the density of the interior
node approximates the right characteristic of the exterior one. This may be only true
in the situations that the particulate acceleration is low. If a particle is accelerated, the
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fluid directly behind the particle typically suffers a lower pressure while the adjacent
inner node bears a rather high pressure [50]. This may reduce the stability of the
particle velocity update. For the methods without inner fluid node, when a lattice
node is changing from a particle node to a fluid one, its properties has to be refilled,
such as density, velocity and distribution functions [13,20,22]. Here, we introduce
some algorithms used in practice as follows.

Aidun et al. [12] presented a simple algorithm to refill the newborn fluid node
when they directly simulated particle suspensions. When a boundary node is
uncovered due to the movement of the solid particle and becomes a new fluid
node, its density is obtained with the following relation:

ρpx,tq “
1
N

ÿ

N

ρpx` ei,tq (29)

where x is the newborn fluid lattice node and N indicates the number of fluid nodes
adjacent to this lattice node. The equation shows that the fluid density of the newborn
node is equal to the average density of its neighboring lattice nodes. The velocity of
the solid boundary node at the same time step is used as the macroscopic velocity of
the new fluid node,

upx,tq “ Uptq `Ωptq ˆ px´Rptqq (30)

where U is the particle translational velocity, Ω is the angular velocity and R is
the particulate mass center. The distribution functions on the newly uncovered
node are set as the equilibrium distribution functions calculated by the density and
velocity above.

Lallemand and Luo [56] used a second-order normal extrapolation to calculate
the missed distribution functions. Along the direction of a chosen discrete velocity ei,
the extrapolation considers the boundary normal direction to maximize the quantity
n̂ ¨ ei, where n̂ is the normal vector out of the wall. For instance, the unknown
distribution functions t fipxqu at node x as drawn in Figure 9 can be calculated by the
extrapolation formula as follow:

fipxq “ 3 fipx1q ´ 3 fipx2 q ` fipx3 q (31)

where x3 is the next lattice node along the direction x1 to x2 .
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Figure 9. A boundary is moving with velocity uw. The circles (○) and disks (●) denote fluid and 
boundary nodes, respectively. The squares (□) denote the nodes turning from boundary nodes to 
fluid ones at a time step. The solid and dotted curves are the positions of wall boundary at time t and 
t + 1, respectively. (Lallemand and Luo, 2003 [56]). 

Caiazzo [63] suggested a refill scheme by reconstructing the equilibrium and non-equilibrium 
parts separately according to an asymptotic analysis prediction. The initialization of the populations 
includes an approximation of the non-equilibrium part which, in practice, can be copied simply from 
a neighbor of the new fluid node. The equilibrium part is computed basing on the density and 
velocity which can be gotten by a simple first order extrapolation. 
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where je  indicates the extrapolation direction according to the boundary velocity at a point of 
interface close to the new fluid node. Lorenz et al. [50,51] employed a similar approach, in which the 
equilibrium part was calculated basing on the local pressure. 

Krithivasan et al. [58] recently developed a diffuse bounce-back boundary condition to simulate 
moving boundaries instead of imposing the no-slip conditions. This scheme ensures 
positive-definite populations and retains the simplicity of bounce-back technique. Meanwhile it 
suggests a refill algorithm to model distributions at the fluid nodes uncovered due to solid 
movement by quasi-equilibrium distributions. The scheme is demonstrated to reduce force 
fluctuations and diminish the requirements of interpolation or extrapolation. However, a diffuse 
boundary condition will introduce some degree of boundary slip [64–66], which would damage 
simulating accuracy and Galilean invariance. 

Fang et al. [13,67] used the fluid nodes around the newborn fluid nodes to extrapolate the 
distribution functions of the newborn fluid nodes. If the extrapolating participants are more than 
one, the newborn distribution functions are assigned as their average. Three extrapolation 
algorithms, namely neighbor-node average (A1), linear extrapolation (A2) and second order 
extrapolation (A3), are as follows [13] 

Figure 9. A boundary is moving with velocity uw. The circles (#) and disks ( )
denote fluid and boundary nodes, respectively. The squares (˝) denote the
nodes turning from boundary nodes to fluid ones at a time step. The solid and
dotted curves are the positions of wall boundary at time t and t + 1, respectively.
(Lallemand and Luo, 2003 [56]).

Caiazzo [63] suggested a refill scheme by reconstructing the equilibrium and
non-equilibrium parts separately according to an asymptotic analysis prediction. The
initialization of the populations includes an approximation of the non-equilibrium
part which, in practice, can be copied simply from a neighbor of the new fluid node.
The equilibrium part is computed basing on the density and velocity which can be
gotten by a simple first order extrapolation.

fipx, tq “ f eq
i px, t, ρ, uq ` f neq

i px` ej, tq (32)

where ej indicates the extrapolation direction according to the boundary velocity at a
point of interface close to the new fluid node. Lorenz et al. [50,51] employed a similar
approach, in which the equilibrium part was calculated basing on the local pressure.

Krithivasan et al. [58] recently developed a diffuse bounce-back boundary
condition to simulate moving boundaries instead of imposing the no-slip
conditions. This scheme ensures positive-definite populations and retains the
simplicity of bounce-back technique. Meanwhile it suggests a refill algorithm
to model distributions at the fluid nodes uncovered due to solid movement by
quasi-equilibrium distributions. The scheme is demonstrated to reduce force
fluctuations and diminish the requirements of interpolation or extrapolation.
However, a diffuse boundary condition will introduce some degree of boundary
slip [64–66], which would damage simulating accuracy and Galilean invariance.
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Fang et al. [13,67] used the fluid nodes around the newborn fluid nodes to
extrapolate the distribution functions of the newborn fluid nodes. If the extrapolating
participants are more than one, the newborn distribution functions are assigned as
their average. Three extrapolation algorithms, namely neighbor-node average (A1),
linear extrapolation (A2) and second order extrapolation (A3), are as follows [13]

A1 : fipxq “
1
N

ÿ

N

fipx1q (33)

A2 : fipxq “
1
N

ÿ

N

2 fipx1q ´ fipx2 q (34)

A3 : fipxq “
1
N

ÿ

N

3 fipx1q ´ 3 fipx2 q ` fipx3 q (35)

where N is the number of extrapolation participants. The density and velocity of
the newborn fluid node at the present time step are computed by the resulting
distribution functions,

ρpx, tq “
ÿ

i

fipxq (36)

upx, tq “
1

ρpx, tq

ÿ

i

ei fipxq (37)

They investigated the three algorithms in the simulations of cylinder
sedimentation as shown in Figure 10. It is evident that the algorithm with second
order extrapolation can remarkably reduce the fluctuations.

Peng et al. [62] proposed a refill scheme by velocity-constrained normal
extrapolation based on the multiple-relaxation-time LBM. After the missing
distribution functions of a newborn fluid node are completed by the normal
extrapolation refill scheme, all moments at the newborn node are computed by
multiplying the transfer matrix M,

m(x,t) “ M ¨ f̂(x,t) (38)

where f̂ indicates the temporary distribution functions. Then the momentum
moments are constrained to use the velocity of the nearest boundary,

J “ ρ0ub (39)

This makes a new moment vector m˚(x,t). Finally, transfer m˚(x,t) back to the
distribution functions as

f(x,t) “ M-1 ¨m˚(x,t) (40)
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They found that this constraint could significantly reduce the fluctuations in the
hydrodynamic forces.

Entropy 2015, 17, 1–26 

13 

A1: 1
( ) ( )i i

N

f f
N

 x x  (33)

A2: 1
( ) 2 ( ) ( )i i i

N

f f f
N

  x x x  (34)

A3: 1
( ) 3 ( ) 3 ( ) ( )i i i i

N

f f f f
N
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where N  is the number of extrapolation participants. The density and velocity of the newborn fluid 
node at the present time step are computed by the resulting distribution functions, 
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Figure 10. It is evident that the algorithm with second order extrapolation can remarkably reduce the 
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Peng et al. [62] proposed a refill scheme by velocity-constrained normal extrapolation based on 
the multiple-relaxation-time LBM. After the missing distribution functions of a newborn fluid node 
are completed by the normal extrapolation refill scheme, all moments at the newborn node are 
computed by multiplying the transfer matrix M ,  

ˆ( , ) M ( , )t t m x f x  (38)

where f̂  indicates the temporary distribution functions. Then the momentum moments are 
constrained to use the velocity of the nearest boundary, 

0 b J u  (39)

This makes a new moment vector ( , )t*m x . Finally, transfer ( , )t*m x  back to the distribution 
functions as 
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They found that this constraint could significantly reduce the fluctuations in the 
hydrodynamic forces. 

 
Figure 10. The horizontal forces in cylinder sedimentation. GME is coupled with the different 
algorithms to fill newborn fluid nodes, neighbor-node average (A1), linear extrapolation (A2) and 
second-order extrapolation (A3). (Wen et al., 2014 [13]). 

Obviously, the scheme is not unique to compute the unknown values, such as density, 
velocities and distribution functions, on the lattice nodes which move from non-fluid to fluid region. 
In the particle sedimentation in low Reynolds number, these schemes will produce similar 

Figure 10. The horizontal forces in cylinder sedimentation. GME is coupled with
the different algorithms to fill newborn fluid nodes, neighbor-node average (A1),
linear extrapolation (A2) and second-order extrapolation (A3). (Wen et al., 2014 [13]).

Obviously, the scheme is not unique to compute the unknown values, such as
density, velocities and distribution functions, on the lattice nodes which move from
non-fluid to fluid region. In the particle sedimentation in low Reynolds number,
these schemes will produce similar macroscopic results. However, at the micro-scale,
they lead to different fluctuating ranges in hydrodynamic forces, which inevitably
influence the accuracy and stability of simulations.

5. Applications

As a method to evaluate hydrodynamic force, the momentum exchange
method possesses the advantages of simplicity, efficiency, accuracy and robustness.
Remarkably, it is independent of the boundary geometry, preventing from solving the
Navier–Stokes equations in complex boundary geometries in the boundary-integral
methods [10]. Since the pioneer works of Ladd [10,11] and Aidun [12,36], the
lattice Boltzmann method has developed into a popular tool for simulations of
particle suspensions. In this section, we review some representative applications,
such as movements of rigid particles, interactions of deformation particles, particle
suspensions in turbulent flow and multiphase flow, etc. Particle Brownian motion
due to thermal fluctuations and particle surface charges are not covered.

5.1. Rigid Particle Movements

The sedimentation of a single rigid particle is a common case in the simulations
of particle suspensions [68–71] and is often used as a benchmark [13,20,22].
Qi [72] simulated sedimentations of spherical and non-spherical particles in
finite-Reynolds-number flows and observed phenomena of drafting, kissing and
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tumbling motion of two particles in a smooth-walled channel. Recently, Wen et al. [13]
used circle sedimentations to verify Galilean invariance of the momentum exchange
method. The configuration is the same to that in Section 3.4. The simulation
system is related to several uniform frames of reference in order to investigate
Galilean invariance of the hydrodynamic force [13]. Explicitly, the additional
uniform velocities V = 0, 0.01, 0.02 are initially assigned to the fluid, the particle and
the channel.

Figure 11 presents the time-dependent trajectories, angular velocities, horizontal
velocities and vertical velocities relative to the channel, comparing with the results by
CME and ALE [60,61]. Obviously, regardless of the reference speeds, the GME results
are always in excellent agreement with the ALE benchmarks. This supports that
GME is highly accurate and Galilean invariant in dynamic fluid. Oppositely, even if
the reference frame is motionless, the CME results show noticeable deviations from
the benchmark. And the differences become larger and larger when the reference
speed increases. These suggest that CME is non-Galilean invariant and is not suitable
for moving boundaries.

The lateral migration of a particle suspended in a Poiseuille flow is a classic
case. A suspending biconcave particle in a tube flow is studied by using
the multiple-relaxation-time lattice Boltzmann method together with GME. The
biconcave shape of a red blood cell (RBC) follows the descriptive equation proposed
by Fung et al. in 1980s [73] and the characteristic radius is 15 lattice units.

The biconcave particles are located at 0.04 and 0.02 cm away from the low
channel wall and at the center of the channel in the horizontal direction. Figure 12
draws the particle trajectories at Reynolds numbers 12 and 3, respectively. The
biconcave particle shows lateral migrating movement and equilibrium state, which
are close to the classic Segré–Silberberg effect [46,47]. Because of the interaction of
the parabolic velocity distribution of Poiseuille flow and the biconcave shape, the
particulate movement exhibits regular waves and nonuniform rotation. Remarkably,
they observe two lateral equilibrium positions corresponding to the particulate
releasing positions [74]. The biconcave particle is in successive postures in a rotating
period and Figure 13 illustrates a set of velocity contours to draw the dynamic
flow field.

GME can be easily implemented in 3D simulations. The Segré–Silberberg
effect [46,47] is repeated by simulating a neutrally buoyant rigid sphere migrating
laterally in a tube Poiseuille flow. Figure 14 draws two trajectories of the spheres,
which are released at the dimensionless radial positions of r*/R = 0.66 and 0.21,
where r* is the radial distance from the tube centerline. The numerical results are
highly consistent with the experiments by Karnis et al. [47]. This verifies that GME is
competent to 3D simulations of particle suspensions.
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Figure 11. Time-dependent (a) trajectories; (b) angular velocities; (c) horizontal velocities; and (d) 
vertical velocities relative to the channel. The density of the cylinder is 1.03 g/cm3 and the terminal 
Reynolds number is 8.33. The dynamic simulation system is connected to three velocities of the 
reference frame, i.e., V = 0, 0.01, and 0.02. (Wen et al., 2014 [13]). 

 
Figure 12. The trajectories of a suspending biconcave particle migrating in a Poiseuille flow. The 
Reynolds numbers are (a) Re = 3 and (b) Re = 12. The biconcave particles are located at 0.04 and 0.02 
cm away from the low channel wall. The classic Segré–Silberberg effect with a circular particle is 
represented by the black trajectories. (Wen et al., 2013 [74]). 

Figure 11. Time-dependent (a) trajectories; (b) angular velocities; (c) horizontal
velocities; and (d) vertical velocities relative to the channel. The density of the
cylinder is 1.03 g/cm3 and the terminal Reynolds number is 8.33. The dynamic
simulation system is connected to three velocities of the reference frame, i.e., V = 0,
0.01, and 0.02. (Wen et al., 2014 [13]).

Chen et al. [22] simulated an elliptical particle sedimentating in a vertical channel
in order to verified their improved momentum exchange method. The major axis
is 0.05 cm and the minor axis is 0.025 cm. The kinematic viscosity of the fluid is
1 ˆ 10´6 m2/s. The channel width is 0.4 cm and is 104 lattice units in the numerical
simulation. The density ratio of the solid particle and fluid is 1.1. Figure 15 shows an
elliptical sedimentation with a moderate Reynolds number 6.6. It is clear that the
results of the three improved schemes agree very well with the benchmarks of the
finite element method.
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Figure 13. The velocity contours of the fluid around the biconcave particles. (a)–(f) represent six 
different postures in a half rotation period. (Wen et al., 2013 [74]). 

GME can be easily implemented in 3D simulations. The Segré–Silberberg effect [46,47] is 
repeated by simulating a neutrally buoyant rigid sphere migrating laterally in a tube Poiseuille flow. 
Figure 14 draws two trajectories of the spheres, which are released at the dimensionless radial 
positions of r*/R = 0.66 and 0.21, where r* is the radial distance from the tube centerline. The 
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Figure 14. Three-dimensional simulations of the Segré–Silberberg effect by the lattice Boltzmann 
equation with GME. (Wen et al., 2014 [13]). 

Figure 13. The velocity contours of the fluid around the biconcave particles. (a)–(f)
represent six different postures in a half rotation period. (Wen et al., 2013 [74]).
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Figure 15. The trajectories and orientations of the particle with Reynolds number 6.6 obtained by the 
finite element method [75] and LBM with the curved boundary condition. The results of the three 
improved schemes [12,20,22,48] are in good agreement with the benchmark. (Chen et al., 2013 [22]). 

To determinate the critical parameters in platelet margination, Reasor et al. [76] investigated the 
margination dependences on hematocrit, platelet shape, and viscosity ratio of plasma to cytoplasm. 
The hydrodynamic force is evaluated by the momentum exchange method. Their results emphasize 
that an increase in hematocrit increases the rate of margination. The viscosity ratio between the 
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Figure 16. Temporal evolution of platelet distributions for the concentration 0.2 for (a) spheres; (b) 
platelets; and (c) disk shaped particles. The initial and ending end views of the tube are also given to 
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Figure 15. The trajectories and orientations of the particle with Reynolds number
6.6 obtained by the finite element method [75] and LBM with the curved boundary
condition. The results of the three improved schemes [12,20,22,48] are in good
agreement with the benchmark. (Chen et al., 2013 [22]).

To determinate the critical parameters in platelet margination, Reasor et al. [76]
investigated the margination dependences on hematocrit, platelet shape, and
viscosity ratio of plasma to cytoplasm. The hydrodynamic force is evaluated by the
momentum exchange method. Their results emphasize that an increase in hematocrit
increases the rate of margination. The viscosity ratio between the interior cytoplasm
and suspending fluid can considerably alter the rate of margination. Spherical
particles tend to migrate more quickly than disks. The effect of platelet aspect ratio
is demonstrated in Figure 16. The spherical-shaped particles have a diameter of
1.73 µm. The platelet-shaped particles are oblate spheroids and rigid, with a major
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diameter of 2.3 µm and a thickness of 1.0 µm. The disk-shaped particles with a major
diameter of 3.26 µm and a thickness of 0.523 µm. It can be seen that both the mean
distance to the wall and the standard deviation are reduced with decreasing aspect
ratio. The peak concentrations at the wall are larger for the spherical particles and the
distributions evolve more rapidly than the disk-shaped particles. The simulations
also show the lateral migration of particles with various shapes in tube flow.
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Figure 16. Temporal evolution of platelet distributions for the concentration 0.2 for
(a) spheres; (b) platelets; and (c) disk shaped particles. The initial and ending end
views of the tube are also given to display the distribution of platelets before and
after margination. (Reasor et al., 2013 [76]).

5.2. Deformation Particle Interactions

A growing interest in the simulations of deformation suspensions has promoted
the development of coupled methods, in which LBM is combined with an appropriate
boundary model to capture the particle deformations. Aidun et al. implemented a
spectrin-link red blood cell membrane method coupled with the lattice Boltzmann
method [7,76–79]. In the method, the particle is represented by a triangular
shell mesh, on which the local hydrodynamic force is calculated by momentum
exchange method.

To capture the deformation process, Reasor et al. [77,78] took a spherical capsule
to create a baseline RBC mesh whose surface includes a network of 613 points. Then,
59% of its initial volume was deflated while the surface area keeps constant. The RBC
radius was 12 lattice units which approximately equates to 4 µm. Figure 17 illustrates
the continuous deformation from a sphere to a biconcave RBC. The equilibrium
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biconcave shape was reached after 25,000 time steps and is an artifact of minimizing
the Helmholtz free energy which involves contributions due to bending.

The spectrin-link method is further compared with experiments [80] and other
computational approaches [81] by an optical tweezer experiment performed by
Mills et al. [80]. The RBC is initially static and is immersed in fluid which simulates
blood plasma and hemoglobin. The axial and transverse diameters of an RBC are
stretched by optical tweezers with silica beads attached at both ends. As shown in
Figure 18, the simulating results are in good agreement with previous researches.
MacMeccan et al. [77] simulated multiply deformable particle suspensions by
coupling the lattice Boltzmann method with finite element analysis. They studied
more than 200 fluid-filled and initially spherical capsules in unbounded shear flow.
The capsules occupied 40% volume fraction and had identical properties with
RBC membranes. Aidun and Clausen [7] further investigated the deformation and
interaction of more than 2000 deformable particle suspensions. Melchionna et al. [82,83]
simulated cardiovascular blood flow, aiming to cardiovascular diagnosis for
commodity clinical applications.
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Figure 17. A spherical particle is deflated and become biconcave particle of red blood cell. (a) t = 0; 
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Figure 17. A spherical particle is deflated and become biconcave particle of red
blood cell. (a) t = 0; (b) t = 5000; (c) t = 10000; (d) t = 15000; (e) t = 20000; (f) t = 25000.
(Reasor et al., 2012 [78]).

144



Entropy 2015, 17, 1–26 

19 

 
Figure 18. The axial and transverse diameters, DA and DT, in μm of the RBC plotted against the 
applied force. The simulating results are compared to the high-resolution spectrin-level  
modeling [81], the high-resolution the finite element method [84], the experiments [80], and using 
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Figure 18. The axial and transverse diameters, DA and DT , in µm of the RBC
plotted against the applied force. The simulating results are compared to the
high-resolution spectrin-level modeling [81], the high-resolution the finite element
method [84], the experiments [80], and using the LB–FE implementation [77].
(Reasor et al., 2012 [78]).

5.3. Particle Suspensions in Turbulent Flow

Turbulent flows laden with gas bubbles, small droplets or solid particles are
relevant to a wide variety of engineering applications and natural processes, such as
plankton dynamics, dust storms, pollutant transport [85]. Using the lattice Boltmzann
method coupled with the momentum exchange method, Wang et al. [85–87] made a
comparative analysis to single-phase turbulence and particle-laden turbulence and
studied a decaying isotropic turbulence laden with finite-size particles of Kolmogorov
to Taylor microscale sizes. Zhang et al. [88,89] investigated the differential settling
of cohesive sediment and the non-equilibrium flocculation of cohesive sediments in
homogeneous turbulent flows.

For the particle-laden turbulence simulations, Gao et al. [85] randomly released
particles into the fluid domain after the single-phase flow field developed till
a converged velocity-derivative skewness. They implemented a second-order
interpolation boundary condition [56] and MPI parallel acceleration based on
multiple-relaxation-time LBM. A short-range repulsive force is indroduced to prevent
particles from voerlap. Figure 19 draws the vorticity contours of the two evolution
times, 1.27 Te and 2.12 Te, where Te is the eddy turnover time. The compuational
domain is 2563 and contains 2304 rigid particles with uniform diameter 11 lattice
units. The density ratio of particle and fluid is 2.56. A top layer of fluid has been
removed in order to show the scatter of a portion of the particles. It is clear that the
magnitude of vorticity diminishes with the time evolution.

145



Entropy 2015, 17, 1–26 

19 

 
Figure 18. The axial and transverse diameters, DA and DT, in μm of the RBC plotted against the 
applied force. The simulating results are compared to the high-resolution spectrin-level  
modeling [81], the high-resolution the finite element method [84], the experiments [80], and using 
the LB–FE implementation [77]. (Reasor et al., 2012 [78]). 

5.3. Particle Suspensions in Turbulent Flow 

Turbulent flows laden with gas bubbles, small droplets or solid particles are relevant to a wide 
variety of engineering applications and natural processes, such as plankton dynamics, dust storms, 
pollutant transport [85]. Using the lattice Boltmzann method coupled with the momentum exchange 
method, Wang et al. [85–87] made a comparative analysis to single-phase turbulence and 
particle-laden turbulence and studied a decaying isotropic turbulence laden with finite-size particles 
of Kolmogorov to Taylor microscale sizes. Zhang et al. [88,89] investigated the differential settling of 
cohesive sediment and the non-equilibrium flocculation of cohesive sediments in homogeneous 
turbulent flows. 

For the particle-laden turbulence simulations, Gao et al. [85] randomly released particles into 
the fluid domain after the single-phase flow field developed till a converged velocity-derivative 
skewness. They implemented a second-order interpolation boundary condition [56] and MPI 
parallel acceleration based on multiple-relaxation-time LBM. A short-range repulsive force is 
indroduced to prevent particles from voerlap. Figure 19 draws the vorticity contours of the two 
evolution times, 1.27 Te and 2.12 Te, where Te is the eddy turnover time. The compuational domain 
is 2563 and contains 2304 rigid particles with uniform diameter 11 lattice units. The density ratio of 
particle and fluid is 2.56. A top layer of fluid has been removed in order to show the scatter of a 
portion of the particles. It is clear that the magnitude of vorticity diminishes with the time evolution. 

 
Figure 19. Vorticity contour at (a) 1.27 Te and (b) 2.12 Te. A layer of fluid is removed to show the 
particles in the top portion. (Gao et al., 2013 [85]). 

Figure 19. Vorticity contour at (a) 1.27 Te and (b) 2.12 Te. A layer of fluid is removed
to show the particles in the top portion. (Gao et al., 2013 [85]).

The two-dimensional visualizations of the vorticity magnitude and the particle
scatter are provided by horizontally cutting the fluid through the slice near the center
of the domain [86,87]. The compuational domain is 2563 and contains 6400 rigid
particles with uniform diameter 8 lattice units. The density ratio of particle and fluid
is 5. The Reynolds number of particles are about 10. The turbulent flow is driven by
the well-known stochastic forcing scheme of Eswaran and Pope [90]. The particles
are observed often associating with high voritcity values (the red spots), as shown in
Figure 20. This suggests that, in turbulent flow, motions of finite size particles can
produce small-scale flow structures near their surfaces.

5.4. Particle Suspensions in Multiphase Flow

Particles or colloids suspended in multiphase flow are commonly encountered
in scientific researches and engineering applications such as particle self-assembly,
emulsion stabilized by particles and microbe transport in air-water flow. Joshi and
Sun [91] combined the Shan-Chen multiphase flow model [9,92–95] with particle
suspension to study the capillary interactions between two suspended particles,
which were on a liquid-vapor interface and suffered different external forces. The
pseudopotential model is applied to calculate the nonideal force in multiphase flow
and the momentum exchange method is employed to evaluate the fluid-particle
interactions, coupling with the lubrication and Hookean force between pairs of
particles. The computational domain uses a 3002 lattice with periodic boundaries.
36 suspended particles of radius 4.8 lattice units are arrayed in the multiphase flow.
The liquid-vapor density ratio is about 30 and the relaxation time is 1. Figure 21
exhibits particle movements during a phase transition process. The adhesive force in
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the multiphase system is ´0.04 and is corresponding to a 77˝ equilibrium contact
angle. Therefore, the particles are hydrophilic. With the development of the two
phases, particles are inclined to stay at the gas-liquid interface and then obstruct the
phases from growing.

Entropy 2015, 17, 1–26 

20 

The two-dimensional visualizations of the vorticity magnitude and the particle scatter are 
provided by horizontally cutting the fluid through the slice near the center of the domain [86,87]. 
The compuational domain is 2563 and contains 6400 rigid particles with uniform diameter 8 lattice 
units. The density ratio of particle and fluid is 5. The Reynolds number of particles are about 10. 
The turbulent flow is driven by the well-known stochastic forcing scheme of Eswaran and Pope [90]. 
The particles are observed often associating with high voritcity values (the red spots), as shown in 
Figure 20. This suggests that, in turbulent flow, motions of finite size particles can produce 
small-scale flow structures near their surfaces. 
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The combined model is further extended to a three-dimensional droplet simulations, 
considering drop evaporation and particle deposition [96,97]. Adjusting the substrate surface 
wettability, namely the surface energy, the substrate patterning can control the particle deposition. 
The computational domain is 250 × 250 × 100 in lattice unit for investigating the surface wetting 
effect on drop dynamics. In the pattern, the central band is 70 lattice units in width and is 
hydrophilic, while the side bands are relatively hydrophobic. The equilibrium contact angle of the 
central hydrophilic band is 30°, and those of the side bands are 60°, 90°, and 120°, respectively. The 

Figure 20. Horizontal snapshots of vorticity contour and particle location in
particle-laden turbulent channel flow. The presence of particles can be observed
often associating with high vorticity values (represented by the colors towards
the red end). This indicates relatively larger dissipation near particle surfaces.
(Wang et al., 2014 [86]).

The combined model is further extended to a three-dimensional droplet
simulations, considering drop evaporation and particle deposition [96,97]. Adjusting
the substrate surface wettability, namely the surface energy, the substrate patterning
can control the particle deposition. The computational domain is 250 ˆ 250 ˆ 100 in
lattice unit for investigating the surface wetting effect on drop dynamics. In the
pattern, the central band is 70 lattice units in width and is hydrophilic, while
the side bands are relatively hydrophobic. The equilibrium contact angle of the
central hydrophilic band is 30˝, and those of the side bands are 60˝, 90˝, and 120˝,
respectively. The liquid drop includes 90 particles (10% by volume). Due to an initial
offset, the drop impacts the substrate outside the central band. Figure 22 shows that
repelling from the bands with relatively low energy, the initially offset drop with
suspending particles gradually and automatically moves into the hydrophilic central
band. The moving velocities of the drops are affected both by the effective viscosity
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of the drop and the relative wetting strengths of the bands. Similarly, Liang et al. [98]
simulated the self-assemblies of colloidal particles on the substrate and investigated
the lateral capillary forces and many-body effects.
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Figure 21. Spinodal decomposition with suspended particles simulated by LBM. The particles are 
initially arranged in a uniform array. The particles tend to inhibit coarsening of the interface and 
accumulate at the liquid-vapor interface, as the green liquid domains begin to coalesce and form. 
(Joshi et al., 2009 [91]). 

 
Figure 22. Effect of surface wetting strength on drop dynamics for a liquid drop containing 
suspending particles. The hydrophilic bands (red) keep 30° contact angle, while the hydrophobic 
bands are (a) 60°, (b) 90°, and (c) 120° contact angle. The faster driving velocity can be clearly seen in 
the case (c). (Joshi et al., 2010 [96]). 

Particle stabilized emulsions are ubiquitous in the food and cosmetics industry. Jansen and 
Hurting [99] simulated interactions of multiple spheroidal particles in a multiphase flow lattice 

Figure 21. Spinodal decomposition with suspended particles simulated by LBM.
The particles are initially arranged in a uniform array. The particles tend to inhibit
coarsening of the interface and accumulate at the liquid-vapor interface, as the
green liquid domains begin to coalesce and form. (Joshi et al., 2009 [91]).

Particle stabilized emulsions are ubiquitous in the food and cosmetics industry.
Jansen and Hurting [99] simulated interactions of multiple spheroidal particles in a
multiphase flow lattice Boltzmann method. They demonstrated that the transition
from a Bijel to a Pickering emulsion is dependent of the particle concentration,
the contact angle, and the ratio of the solvents. Günther et al. [100] investigated
anisotropic particles at liquid interfaces by simulating emulsions stabilized by
particles with complex shapes. The computational domain is a cubic volume with
a side length 256 lattice units and periodic boundary conditions are applied. The
particles are ellipsoids with major axis 12 and minor axis 6 lattice units and occupy
a volume concentration of 0.2. The particle surface has equilibrium contact angles
of 90˝. As shown in Figure 23 in which the ratio of two phase fluids is 5:2, the
ellipsoid particles assemble to some clusters surrounding a fluid phase in an other
phase and become Pickering emulsions. They also simulated the Bijel in which the
ratio of two phase fluids is 1:1.
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Figure 22. Effect of surface wetting strength on drop dynamics for a liquid drop
containing suspending particles. The hydrophilic bands (red) keep 30˝ contact
angle, while the hydrophobic bands are (a) 60˝, (b) 90˝, and (c) 120˝ contact angle.
The faster driving velocity can be clearly seen in the case (c). (Joshi et al., 2010 [96]).
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Boltzmann method. They demonstrated that the transition from a Bijel to a Pickering emulsion is 
dependent of the particle concentration, the contact angle, and the ratio of the solvents.  
Günther et al. [100] investigated anisotropic particles at liquid interfaces by simulating emulsions 
stabilized by particles with complex shapes. The computational domain is a cubic volume with a 
side length 256 lattice units and periodic boundary conditions are applied. The particles are 
ellipsoids with major axis 12 and minor axis 6 lattice units and occupy a volume concentration of 
0.2. The particle surface has equilibrium contact angles of 90°. As shown in Figure 23 in which the 
ratio of two phase fluids is 5:2, the ellipsoid particles assemble to some clusters surrounding a fluid 
phase in an other phase and become Pickering emulsions. They also simulated the Bijel in which the 
ratio of two phase fluids is 1:1. 

 
Figure 23. A snapshot of Pickering emulsions stabilized by ellipsoidal particles with an aspect ratio 2 
and a volume concentration 0.2. (Günther et al., 2013 [100]). 

6. Conclusions 

The momentum exchange method is a native scheme in the lattice Boltzmann method. It 
directly uses discrete velocity and distribution function to evaluate hydrodynamic force. This is 
totally different from the stress integration method and the immersed boundary method, which 
have to compute the stress tensor before force evaluation. Therefore, the momentum exchange 
method has a gift to obtain the simplest and most accurate hydrodynamic force in LBM. Since 
hydrodynamic force is evaluated based on the momentum transfer on each fluid-solid link, the 
momentum exchange method only needs local data and is independent of boundary geometry. This 
endues it with excellent computational efficiency and parallel performance.  

Thus far, the momentum exchange method has promoted LBM to become a popular tool for 
numerical simulations of fluid-structure interactions. Its computational accuracy and Galilean 
invariance on stationary and moving boundaries in moderate Reynolds numbers have been  
verified [13,37]. In practice, all kinds of simulations of fluid-structure interactions can benefit from 
the efficient method. An open issue is to further investigate its computation accuracy in more 
complex circumstances, such as high Reynolds number flow even turbulence, slip boundary, 
multiphase flow and so on. 
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Figure 23. A snapshot of Pickering emulsions stabilized by ellipsoidal particles
with an aspect ratio 2 and a volume concentration 0.2. (Günther et al., 2013 [100]).
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6. Conclusions

The momentum exchange method is a native scheme in the lattice Boltzmann
method. It directly uses discrete velocity and distribution function to evaluate
hydrodynamic force. This is totally different from the stress integration method and
the immersed boundary method, which have to compute the stress tensor before
force evaluation. Therefore, the momentum exchange method has a gift to obtain the
simplest and most accurate hydrodynamic force in LBM. Since hydrodynamic force is
evaluated based on the momentum transfer on each fluid-solid link, the momentum
exchange method only needs local data and is independent of boundary geometry.
This endues it with excellent computational efficiency and parallel performance.

Thus far, the momentum exchange method has promoted LBM to become a
popular tool for numerical simulations of fluid-structure interactions. Its computational
accuracy and Galilean invariance on stationary and moving boundaries in moderate
Reynolds numbers have been verified [13,37]. In practice, all kinds of simulations
of fluid-structure interactions can benefit from the efficient method. An open issue
is to further investigate its computation accuracy in more complex circumstances,
such as high Reynolds number flow even turbulence, slip boundary, multiphase flow
and so on.
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A Lattice Gas Automata Model for the
Coupled Heat Transfer and Chemical
Reaction of Gas Flow Around and Through
a Porous Circular Cylinder
Hongsheng Chen, Zhong Zheng, Zhiwei Chen and Xiaotao T. Bi

Abstract: Coupled heat transfer and chemical reaction of fluid flow in complex
boundaries are explored by introducing two additional properties, i.e., particle type
and energy state into the Lattice gas automata (LGA) Frisch–Hasslacher–Pomeau
(FHP-II) model. A mix-redistribute of energy and type of particles is also applied
on top of collision rules to ensure randomness while maintaining the conservation
of mass, momentum and energy. Simulations of heat transfer and heterogeneous
reaction of gas flow passing a circular porous cylinder in a channel are presented.
The effects of porosity of cylinder, gas inlet velocity, and reaction probability on
the reaction process are further analyzed with respect to the characteristics of solid
morphology, product concentration, and temperature profile. Numerical results
indicate that the reaction rate increases with increasing reaction probability as well as
gas inlet velocity. Cylinders with a higher value of porosity and more homogeneous
structure also react with gas particles faster. These results agree well with the basic
theories of gas–solid reactions, indicating the present model provides a method for
describing gas–solid reactions in complex boundaries at mesoscopic level.

Reprinted from Entropy. Cite as: Chen, H.; Zheng, Z.; Chen, Z.; Bi, X.T. A Lattice Gas
Automata Model for the Coupled Heat Transfer and Chemical Reaction of Gas Flow
Around and Through a Porous Circular Cylinder. Entropy 2016, 18, 2.

1. Introduction

The simulation of heat transfer and chemical reaction of fluid flow in
porous media is of considerable importance in many practical applications such
as combustion chambers, heat exchangers, food processing, catalytic reactors,
refrigeration, air cooling and thermal energy storage devices. Simulation results can
be found for porous catalyst particles, packed catalyst beds, and arranged pipes.
Among these studies, methods based on conventional partial differential equations
such as volume-averaging theory [1] and Darcy models [2–4], or discrete methods,
e.g., lattice Boltzmann methods (LBM) [5–8] have been the major approaches.
However, to the best of our knowledge, the porous media reported in the literature are
relatively simple and usually consist of regular arranged solid cylinders. Few studies
have been carried out to investigate the characteristics of heat transfer coupling by
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chemical reaction in porous media. Additionally, the conventional methods based
on nonlinear partial differential equations (PDEs) also suffer difficulties such as
truncation error and high sensitivity to boundary conditions, making it difficult to
describe the detailed structure of porous media or simulate complex processes in
porous media.

Lattice gas automata (LGA) is a mesoscopic simulation method from the
viewpoint that fluids consist of a large number of particles that “live” on regular
lattices with interactions conserving mass and momentum [9]. It is a “bottom-up” and
“equation-free” method capturing both macroscopic and mesoscopic characteristics
of complex/multi-scale systems, quite distinctive from molecular dynamics (MD),
kinetic theory of gases and other methods based on the discretization of partial
differential equations. Although LGA suffers drawbacks like statistical noise, the lake
of Galilean invariance and velocity-dependent pressure, LGA preserves the particle
nature and numerical stability compared with lattice Boltzmann methods [10]. More
detailed microscopic interaction among particles or between particles and walls can
be obtained when using LGA. Thus, various investigations on flow past obstacles
or reaction using lattice gas automata have been carried out, such as flow over
cylinders or plat plate [11–13], reaction and diffusion systems [14–16], first order
reactions [17], motivation phenomena of atom and molecule [18,19], kinetically
and thermodynamically controlled reactions [20–22], and Lindemann theory [23,24].
However, investigations on flow, heat transfer and chemical reaction around a porous
cylinder using LGA were rarely reported.

Therefore, in this paper, we intend to explore the application of a LGA method
to the heat transfer and chemical reaction of fluid flow around and through a porous
circular cylinder in a channel. An algorithm based on the Frisch–Hasslacher–Pomeau
(FHP-II) LGA model was developed to deal with the coupled heat transfer and
chemical reaction. Quartet structure generation set (QSGS) was used to construct
the porous circular cylinder. The influences of porous structure, i.e., porosity, pore
size and homogeneity, as well as that of reaction probability and flow velocity were
further discussed.

2. Simulation Method

2.1. Lattice Gas Automata Model for Heat Transfer and Chemical Reaction

In FHP-II, particles interact with each other according to a number of pre-defined
collision and propagation rules detailed by Frish et al. [25], as shown in Figure 1.
Based on these simple rules, LGA is capable of displaying complex fluid flow
behavior, and consequently, it can be used as a simulation tool for describing
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physical phenomena. The mass and momentum conservation can be written as
below, respectively,

ÿ

i

nipt` 1, r` ciq “
ÿ

i

nipt, rq (1)

ÿ

i

cinipt` 1, r` ciq “
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i

cinipt, rq (2)

where nipt, rq is the occupation state of the cell in i-th direction at time t and place r if
the cell is empty, its value is 0, otherwise, its value is 1. ci is the lattice velocity in i-th
direction, and
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Figure 1. Evolution process of FHP-II, where arrows denote moving particles and points represent 
static particles: (a) node at (t, r); (b) initialization; (c) after collision; and (d) after propagation. 
Figure 1. Evolution process of FHP-II, where arrows denote moving particles and
points represent static particles: (a) node at (t, r); (b) initialization; (c) after collision;
and (d) after propagation.

In the conventional LGA model, particles in the system are of same mass
(assumed as 1) and velocity scale (assumed as |ci| = 1), in other words, they are
indistinguishable. In order to describe problems involving heat transfer and chemical
reactions, the particles should be distinguishable on temperature and substance type.
In current model, every particle is at either of the two energy states [26] ei, i.e., 0 or 1,
which represent low (minimum) and high (maximum) temperatures, respectively.
Particularly, if the cell is empty, ei is fixed as 0. Particles are also marked by finite
kinds of substance types si, and in this paper, si is equal to 0 or 1, representing reactant
and product, respectively. Besides mass and momentum, extra conservations are
also taken into account with respect to energy state and substance type, given as

ÿ

i

nα,β
i pt` 1, rq “

ÿ

i

nα,β
i pt, rq (3)

where α and β are the substance type and energy state of the cell in i-th direction,
respectively. To ensure the conservation of the number of particles with different
energy states and substance types at each node during the collision step of FHP-II
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model, the substance type and energy state need to follow Equations (4) and (5),
respectively, known as component conservations

ÿ

i

sα
i pt` 1, rq “

ÿ

i

sα
i pt, rq , α “ 1 or 0 (4)

ÿ

i

eβ
i pt` 1, rq “

ÿ

i

eβ
i pt, rq , β “ 1 or 0 (5)

Afterwards, the energy states and substance types of each node are mixed
and re-distributed. In fact, the energy states and substance types will be arbitrarily
attached to the particles at the node after collision. The overall conservations of
mass and momentum will still follow Equations (1) and (2). However, for the
propagation process, the particle will move with energy state and substance type,
which is described as Equation (6). The evolution process of this model is illustrated
in Figure 2.

nsipt`1,r`ciq,eipt`1,r`ciq
i pt` 1, r` ciq “ nsipt,rq,eipt,rq

i pt, rq (6)
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product, respectively. Besides mass and momentum, extra conservations are also taken into account 
with respect to energy state and substance type, given as  
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i i
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where α and β are the substance type and energy state of the cell in i-th direction, respectively. To 
ensure the conservation of the number of particles with different energy states and substance types 
at each node during the collision step of FHP-II model, the substance type and energy state need to 
follow Equations (4) and (5), respectively, known as component conservations 
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Afterwards, the energy states and substance types of each node are mixed and re-distributed.  
In fact, the energy states and substance types will be arbitrarily attached to the particles at the node 
after collision. The overall conservations of mass and momentum will still follow Equations (1)  
and (2). However, for the propagation process, the particle will move with energy state and 
substance type, which is described as Equation (6). The evolution process of this model is illustrated 
in Figure 2. 
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Figure 2. Evolution process of present model, where red represents particles with high energy state, 
black represents particles with low energy state, and double arrows mean product particles and 
single arrows denote reactant particles: (a) initialization; (b) after collision; and (c) after propagation. 
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the following dimensionless forms: 
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In FHP-II, the density and momentum are defined as

ρpt, rq “
6
ÿ

i“0

nipt, rq (7)

ρu “
6
ÿ

i“0

cinipt, rq (8)
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The temperature and product concentration at a node are described as the
proportion of particles with high energy state (β = 1) and the proportion of product
particles (α = 1), respectively, as the following dimensionless forms:

T “

ř

i
nα,1

i pt, rq

ř

i,β
nα,β

i pt, rq
(9)

C “

ř

i
n1,β

i pt, rq

ř

i,α
nα,β

i pt, rq
(10)

2.2. Chemical Reaction Scheme

The scheme of chemical reaction is based on the algorithm proposed by Bresolin
and Oliveira [27] to simulate unimolecular and bimolecular reactions. For first-order
reactions considering unimolecular collision, the rate constant, k, is described as

k “
ż 8

0
vpEqPpEqdE (11)

where vpEq is the frequency of collisions with energy E above the minimum
energy E˚, PpEq is the energy distribution of the molecules, which is given by the
Maxwell–Boltzmann distribution, and for a molecule with n classic energy states, the
fraction of molecules with energy states E1,E2, . . . ,En can be written as

PpE1, E2, . . . Enq “
e
´pE1 ` E2 ` . . . Enq

RT
RT

“
e
´E
RT
RT

(12)

Integrating Equation (12) over all energy values yields:

PpEq “
ˆ

E
RT

˙n´1 e
´E
RT

pn´ 1q!RT
(13)

According to Rice–Ramsperger–Kassel (RRK) model [28–30], the frequency of
collisions vpEq is suggested to be the formula as follows:

$

&

%

vpEq “ 0 i f E ă E˚

vpEq “ Cp1´
E˚

E
qn´1 i f E ě E˚

(14)
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where C is a constant. For the simulation of chemical reaction in LGA, the collisions
between molecules can be interpreted as taking place among particles at a node.

In this paper, each reactant particle propagates with an associated probability r
deciding it reacts and converts to a product particle or not, generally described as
the probability of effective collision. This probability is determined by a probability
distribution function and a threshold for reaction. Herein, for simplification, the
standard Gaussian distribution was used as the probability distribution function
instead of Maxwell–Boltzmann distribution, a threshold K˚ was used instead of E˚ to
decide the critical energy state of a reactant particle. During the collision step of LGA,
a random number K following the probability distribution function is generated and
compared to K˚; if K > K˚, the reaction is consider to be able to take place, otherwise,
no reaction occurs.

Moreover, the frequency of collisions in LGA is supposed to be 1.0 per iteration
when K > K˚, otherwise its value is 0, similar to Equation (14). Thus, the specific
reaction constant equals to the integration of energy distribution function above K˚

according to Equation (11). Therefore, reaction probability r is equal to the proportion
of the particles with energy above K˚, as well as the specific reaction constant.
As shown in Figure 3, the curve represents the probability distribution function
(PDF), and K˚ is a threshold for reaction, the shaded area (beyond K˚) represents the
frequency of collisions of hot populations, i.e., reaction probability r. For a given K˚,
reaction probability is obtained, and vice versa. In this work, K˚ was determined
by a given reaction probability from the inverse of normal distribution [31]. The
applications of the chemical reaction scheme will be further discussed.
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Figure 3. Standard Gaussian distribution function for determining the probability of chemical reaction. 

3. Results and Discussion 

3.1. Validation of the Chemical Reaction Scheme 

The chemical reaction scheme was applied to irreversible first-order reaction A B  and 
reversible first-order reaction A B , such as nuclear decay and transformation of isomers. The 
reactions take place in a square enclosure with area 200 × 200 (lattice units). Every site was initially 
filled with six A-type particles and bounce-back type boundary condition was employed to all walls, 
where the momentum of particle is directly reversed while the substance state keeps unchanged 
during the collision process. Additionally, no heat transfer was taken into consideration in these  
two cases.  

Molecules collide and react at random. Nevertheless, the time evolution of macroscopic 
amounts or concentrations of molecules is usually quite reproducible due to the reproducibility of 
experimental conditions. Such laws are called deterministic. More detailed introduction can be 
found in reference [32]. For reaction A B , the deterministic half-life period can be obtained by 
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A-type particle by half during the simulation process. The reaction probability, r, from A to B was set 
to be 0.03, 0.04 and 0.05, and K* was determined as 1.88, 1.75 and 1.65, respectively. During the 
collision process, a normal distributed random number was generated to compare with K* to decide 
to react or not. As shown in Figure 4, it can be observed that the concentration of particle A, obtained 
by Equation (10), decreases with increasing reaction time, and the reaction rate, i.e., the slope of 
curve in Figure 4a, increases as reaction probability increases. Figure 4b shows reasonable 
agreement has been achieved between deterministic method and present simulation. Additionally, 
for a system with 100 × 100, and reduction probability r = 0.001, the deterministic half-life period is 
693.1 iterations, Seybold et al. [17] reported 688.3 ± 9.7 iterations, and 691 iterations using present 
model, which also indicates the feasibility of present model in reaction systems.  
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3. Results and Discussion

3.1. Validation of the Chemical Reaction Scheme

The chemical reaction scheme was applied to irreversible first-order reaction
A Ñ B and reversible first-order reaction A é B , such as nuclear decay and
transformation of isomers. The reactions take place in a square enclosure with area
200 ˆ 200 (lattice units). Every site was initially filled with six A-type particles
and bounce-back type boundary condition was employed to all walls, where
the momentum of particle is directly reversed while the substance state keeps
unchanged during the collision process. Additionally, no heat transfer was taken
into consideration in these two cases.

Molecules collide and react at random. Nevertheless, the time evolution of
macroscopic amounts or concentrations of molecules is usually quite reproducible
due to the reproducibility of experimental conditions. Such laws are called
deterministic. More detailed introduction can be found in reference [32]. For
reaction A Ñ B , the deterministic half-life period can be obtained by t1{2 “ ln2{R,
where r represents the probability of one A-type particle changes to one B-type
particle at each time, while the half-life period means the iterations needed for
reducing the number of A-type particle by half during the simulation process. The
reaction probability, r, from A to B was set to be 0.03, 0.04 and 0.05, and K˚ was
determined as 1.88, 1.75 and 1.65, respectively. During the collision process, a
normal distributed random number was generated to compare with K˚ to decide
to react or not. As shown in Figure 4, it can be observed that the concentration of
particle A, obtained by Equation (10), decreases with increasing reaction time, and
the reaction rate, i.e., the slope of curve in Figure 4a, increases as reaction probability
increases. Figure 4b shows reasonable agreement has been achieved between
deterministic method and present simulation. Additionally, for a system with
100 ˆ 100, and reduction probability r = 0.001, the deterministic half-life period
is 693.1 iterations, Seybold et al. [17] reported 688.3˘ 9.7 iterations, and 691 iterations
using present model, which also indicates the feasibility of present model in
reaction systems.

While A
k1
é
k2

B is an equilibrium system, from the law of mass action, the

deterministic equilibrium coefficient is defined as Keq “ k1{k2 “ RpA, Bq{RpB, Aq,
and the equilibrium coefficient can be obtained by the ratio of the final concentration
of B and A as Keq “ rBs{rAs in a stochastic system, like simulations using lattice
gas automata. The reaction probability from A to B was set as 0.05, 0.06, and 0.07,
corresponding to the reaction probability from B to A 0.04, 0.03, and 0.02, and for
reaction probability of 0.02 and 0.07, K˚ is 2.05 and 1.48, respectively. Similar results
are obtained compared to A Ñ B , as shown in Figure 5, however, Figure 5a presents a
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platform as time advances, meaning an equilibrium state has been reached. Figure 5b
indicates that good agreement has been achieved between the stochastic method and
deterministic method. The chemical reaction scheme will be further used for the
simulations of gas–solid reaction described latter.
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of results obtained by deterministic method and present model. 

3.2. Heat Transfer and Reaction across a Porous Circular Cylinder 

The characteristics of the flow and heat transfer over a solid circular cylinder in a square 
enclosure and a rectangular channel have been investigated by us using this model previously, 
showing reasonable feasibility and reliability of the application of this model to the problems of flow 
and heat transfer, details can be found in reference [33]. Herein, simulations of flow, heat transfer 
and reaction around and through a porous circular cylinder in a channel were carried out. The 
schematic diagram of the simulated system is shown as Figure 6, where a porous circular cylinder 
with diameter D = 1/4W is placed at the coordinates (x = 1/3L, y = 1/2W) of a channel with width  
W = 400 and length L = 1200 (lattice unit). Reactant gas entering from the inlet at a velocity u, flows 
around and through and react with the porous cylinder. The effects of porous structure, reaction 
probability and gas velocity at inlet on the characteristics of the system will be further discussed  
in detail. 

The porous media investigated were generated by a comprehensive approach termed as quartet 
structure generation set (QSGS) [34,35], which has been demonstrated capable of generating 
morphological features close to many real porous media [34]. Following the steps illustrated by  
Wang et al. [23], a porous two-dimensional cylinder can be generated with a set of three construction 
parameters, including (i) growing phase (fluid) distribution probability, Cd, which decides initial 
number of fluid seeds in the system; (ii) directional growth probability of fluid, Di, which is 
considered the same for all directions in this work; and (iii) fluid volume fraction P. 
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Figure 4. Simulation of A Ñ B , (a) processes at different reaction probabilities;
and (b) comparison of results obtained by deterministic method and present model.
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3.2. Heat Transfer and Reaction across a Porous Circular Cylinder

The characteristics of the flow and heat transfer over a solid circular cylinder in
a square enclosure and a rectangular channel have been investigated by us using this
model previously, showing reasonable feasibility and reliability of the application
of this model to the problems of flow and heat transfer, details can be found in
reference [33]. Herein, simulations of flow, heat transfer and reaction around and
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through a porous circular cylinder in a channel were carried out. The schematic
diagram of the simulated system is shown as Figure 6, where a porous circular
cylinder with diameter D = 1/4W is placed at the coordinates (x = 1/3L, y = 1/2W)
of a channel with width W = 400 and length L = 1200 (lattice unit). Reactant gas
entering from the inlet at a velocity u, flows around and through and react with the
porous cylinder. The effects of porous structure, reaction probability and gas velocity
at inlet on the characteristics of the system will be further discussed in detail.

The porous media investigated were generated by a comprehensive approach
termed as quartet structure generation set (QSGS) [34,35], which has been
demonstrated capable of generating morphological features close to many real
porous media [34]. Following the steps illustrated by Wang et al. [23], a porous
two-dimensional cylinder can be generated with a set of three construction
parameters, including (i) growing phase (fluid) distribution probability, Cd, which
decides initial number of fluid seeds in the system; (ii) directional growth probability
of fluid, Di, which is considered the same for all directions in this work; and (iii) fluid
volume fraction P.Entropy 2016, 18, 1–16 
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Figure 6. Schematic diagram of the processes happened in the circular cylinder with porous media structure. 

Figure 7 presents the inner morphology of the porous circular cylinders of diameter D = 100 
(lattice unit) resulted from different combinations of construction parameters, where shaded area is 
solid phase and the rest to be pores. As can be seen in Figure 7a–d, the solid phase disappears 
homogenously with increasing porosity, leading to larger pore sizes; and for Figure 7e–h, more 
agglomeration of solid phase, i.e., less surface area and bigger pore size, appeared for larger 
directional growth probability; on the contrary, for Figure 7i–l, more homogenous structure as well 
as smaller pore size of porous media can be obtained as the distribution probability increases, as a 
result, more react-able surface area is generated. Porous cylinders of different porosity, pore size, 
and surface area could be obtained by adjusting the three parameters (Cd, Di, P), for the purpose of 
comparison. 

 

 

 

Figure 7. Porous cylinder generated with different construction parameter. (a–d) Effect of porosity 
on the morphology of cylinder, where Cd = 0.02, Di = 0.2 and (a) P = 0.2, (b) P = 0.4, (c) P = 0.6, and  
(d) P = 0.8. (e–h) Effect of directional growth probability on the morphology of cylinder, where  
Cd = 0.02, P = 0.2 and (e) Di = 0.05, (f) Di = 0.15, (g) Di = 0.25, and (h) Di = 0.35. (i–l) Effect of distribution 
probability on the morphology of cylinder, where Di = 0.2, P = 0.2 and (i) Cd = 0.005, (j) Cd = 0.015,  
(k) Cd = 0.025, and (l) Cd = 0.035.  

Figure 6. Schematic diagram of the processes happened in the circular cylinder
with porous media structure.

Figure 7 presents the inner morphology of the porous circular cylinders of
diameter D = 100 (lattice unit) resulted from different combinations of construction
parameters, where shaded area is solid phase and the rest to be pores. As can be seen
in Figure 7a–d, the solid phase disappears homogenously with increasing porosity,
leading to larger pore sizes; and for Figure 7e–h, more agglomeration of solid phase,
i.e., less surface area and bigger pore size, appeared for larger directional growth
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probability; on the contrary, for Figure 7i–l, more homogenous structure as well as
smaller pore size of porous media can be obtained as the distribution probability
increases, as a result, more react-able surface area is generated. Porous cylinders
of different porosity, pore size, and surface area could be obtained by adjusting the
three parameters (Cd, Di, P), for the purpose of comparison.
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Figure 7. Porous cylinder generated with different construction parameter.
(a–d) Effect of porosity on the morphology of cylinder, where Cd = 0.02, Di = 0.2
and (a) P = 0.2, (b) P = 0.4, (c) P = 0.6, and (d) P = 0.8. (e–h) Effect of directional
growth probability on the morphology of cylinder, where Cd = 0.02, P = 0.2 and
(e) Di = 0.05, (f) Di = 0.15, (g) Di = 0.25, and (h) Di = 0.35. (i–l) Effect of distribution
probability on the morphology of cylinder, where Di = 0.2, P = 0.2 and (i) Cd = 0.005,
(j) Cd = 0.015, (k) Cd = 0.025, and (l) Cd = 0.035.

Table 1 lists the simulation cases with different parameter sets, with Cases 1
to 4 selected from Figure 7 to investigate the influence of the parameters of QSGS
algorithm on the reaction process, Cases 1, 5 and 6 to study the effect of reaction
probability, and Cases 1, 7 and 8 are used to investigate the inlet velocity.
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Table 1. Parameter sets for simulation cases.

Case No.
Parameters of QSGS r u

Cd Di P

1 0.02 0.2 0.2 0.1587 1.0
2 0.02 0.2 0.4 0.1587 1.0
3 0.035 0.2 0.2 0.1587 1.0
4 0.02 0.35 0.2 0.1587 1.0
5 0.02 0.2 0.2 0.0668 1.0
6 0.02 0.2 0.2 0.3085 1.0
7 0.02 0.2 0.2 0.1587 0.5
8 0.02 0.2 0.2 0.1587 0.8

A conceptual first order heterogeneous reaction between the reaction gas and
the porous cylinder illustrated in Equation (10) is considered in this research, with A
being the inlet reactant gas, B the porous solid material, and C as the product gas.

Apgq ` Bpsq Ñ Cpgq (15)

This reaction happens at the solid surface and is simply interpreted as one
reactant gas particle reacting with one solid site and generating one product gas
particle at mesoscopic level, where the (microscopic level) inner structures or
properties of the gas particle or solid site are ignored. The conversion of solid
phase B can be defined by the ratio of the number of reacted solid sites to the initial
number of solid sites, and a formula as follows is defined

X “ 1´
Nt

N0
(16)

where Nt is the number of solid sites at time t, and N0 is the initial number of solid
sites. Thus, the reaction rate can be further obtained from the time derivative of
Equation (11) as dX{dt.

Instead of heat generated during the reaction process, a simplified heat transfer
case is considered, where solid sites are set as hot heat source with constant
temperature (i.e., 1.0). Gaseous particles will be enhanced to high energy state
at impact with solid surface. The gas particles initially entering the channel are of
constant low temperature state as 0.

Bounce-back and adiabatic boundary conditions are applied to the channel
walls except the outlet which is a free boundary where all particles are released. Solid
sites are set as bounce-back boundaries, where gaseous particles will also decide to
reaction with according to the chemical reaction scheme.
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The simulation carried out in such an order that reaction is not considered in the
first 2000 iterations to test the coupling of flow and heat transfer only, also to ensure
that the reaction takes place at a stable flow field. Reaction is introduced thereafter to
investigate its effect to the flow and heat transfer.

The statistical result of temperature, component concentration, and solid phase
conversion are obtained from the simulation by space average. It is noted that
the statistics level has impacts on the detail of macroscopic picture. This effect
is, however, not discussed in this work. Instead, to ensure consistency, the space
averaged results in every 2 ˆ 2 grids are presented for all cases.

3.2.1. Effect of Inner Porous Structure

As discussed in the previous part, the inner porous structure will be influenced
by the parameters of QSGS. In this section, the influence of inner structure on the
behavior of flow, heat transfer and chemical reaction around and through the cylinder
will be investigated. The inlet velocity is constant as 1.0 with a site density ρ = 1.0,
and based on FHP-II model, Re = 158.2 using D as the characteristics parameter.

Figure 8 shows the temperature contours around and inside the porous cylinder
before chemical reaction takes place at t = 2000 iterations. A large number of
fluid particles are activated to high energy state when they flow over and in the
porous circular cylinder, forming a high temperature zone at surrounding and inside
the porous structure. As time elapses, the high temperature zone extends to the
neighboring field gradually, and no clear eddies have developed behind the cylinder.
The field of gas velocity also appeared to have impacts on the profile of temperature.

The heterogeneous reaction is started after 2000 iterations. A product zone
is then formed as fluid particles flow over and through the porous cylinder and
react with the solid sites according to the reaction scheme. Figure 9 shows the
product concentration around the solid cylinder at different times for Case 4. The
solid sites disappear gradually as time goes on. It can be observed that the product
emerges mainly at some hot points, and distributes homogeneously around the
cylinder at the beginning, and then diffuses off from the reaction interface to the
surrounding. Figure 10 shows the corresponding temperature contour around the
cylinder for Figure 9. The structure of cylinder changes with time, thus the heat
transfer characteristics changes as a result.
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Figure 8. Temperature contour before reaction with different inner structures,
t = 2000 iterations.

In order to compare the reaction characteristics of computational cases with
porous inner structure, contours of product concentration are shown as Figure 11,
for t = 2500. It can be observed that the solid cylinder has disappeared completely at
t = 2500 for Case 2 which has higher porosity than the other three cases. Figure 12
shows the conversion of porous cylinders with different inner structure, as a function
of time. It is also notable that solid conversion of higher porosity (Case 2) is faster.
This is considered due to the less amount of solid phase, as well as the larger pore
size, which facilitates the diffusion of reactant and product. The other three cases
with same porosity of 0.2 proceed similarly, but it can still be noted that Case 3 with
larger distribution probability progress faster than the other two cases for the former
part of time, about 2500 iterations. This can be attributed to the higher homogeneity
resulting from larger distribution probability, leading to a larger surface area (reacting
sites) to mass ratio. However, this improvement on reaction speed is limited by the
relatively smaller pore size slowing down the gas diffusion. Knowing this, it is
understandable that Case 4, with larger solid agglomeration and bigger pore size due
to higher value of directional growth probability, has the exact opposite performance
compare to Case 2.
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Figure 9. Product concentration at different times for Case 4, where Cd = 0.02, Di = 0.35, and P = 0.2. 
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larger surface area (reacting sites) to mass ratio. However, this improvement on reaction speed is 
limited by the relatively smaller pore size slowing down the gas diffusion. Knowing this, it is 
understandable that Case 4, with larger solid agglomeration and bigger pore size due to higher 
value of directional growth probability, has the exact opposite performance compare to Case 2.  
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Figure 11. Product concentration with different inner structures, t = 2500. 
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Figure 12. Dependence of conversion on reacting time for cylinders with different inner structure. 
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Figure 12. Dependence of conversion on reacting time for cylinders with different
inner structure.

3.2.2. Effect of Reaction Probability

In order to obtain the influence of reaction probability on the process evolution,
the value of K˚ was set to be 0.5 and 1.5, and the reaction probability was determined
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as 0.3085 and 0.0668 according to the normal distribution function. The reaction
probability decides the reaction velocity, as Equation (9). The product concentration
and temperature contour around the cylinder at t = 2500 are shown as Figure 13.
It can be obviously noted that the reaction processes faster with a higher value of
probability, which also can be seen from Figure 14. The conversion increases as
reacting time advances and reaction probability increases. For instance, the complete
reaction time increases from 696 iterations to 1140 iterations when the reaction
probability decreases from 0.3085 to 0.0668.
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Figure 13. Product concentration and temperature contour of Case 5 and Case 6, where reaction 
probability is 0.0668 and 0.3085, respectively, and t = 2500. 
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Figure 14. Reaction processes with different reaction probabilities. 

Figure 13. Product concentration and temperature contour of Case 5 and Case 6,
where reaction probability is 0.0668 and 0.3085, respectively, and t = 2500.

3.2.3. Effect of Inlet Gas Velocity

The equilibrium mean occupation numbers are calculated by Fermi–Dirac
distribution, as follows

neq
i “

1
1` expph` q ¨ ciq

(17)

where h is a real number and q is a D-dimensional vector. The two parameters
are termed as Lagrange multipliers. For simplification, the Lagrange multipliers of
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the equilibrium distributions for lattice gas automata can be obtain by the algebra
formula [9]

nipuq “ d` 2dci ¨ u` 2d
1´ 2d
1´ d

c2
iαu2

α ´ d
1´ 2d
1´ d

u2 (18)

where d is equal to ρ{7 for FHP-II, and u is the node velocity. Thus, the variable ni at
the inlet nodes can be initialized by Equation (18) with a given particle density d and
a node velocity u.
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For this section, the effect of velocity at inlet on the reaction process is discussed,
and the parameters are listed in Table 1, as Cases 1, 7 and 8. Particle density ρ is fixed
as 1.0 for all numerical computation cases, thus d is equal to 1/7. The product and
temperature contour of cases with different inlet velocities are shown as Figure 15, it
can be seen that Case 8 reacts faster than Case 7 and slower than Case 1 compared
with Figure 11a, indicating that the reaction velocity increases as the velocity at inlet
increases. This information can also be obtained from the dependence of conversion
on the reacting time, as shown in Figure 16, which shows that the extent of conversion
increases with increasing reacting time, as well as inlet velocity. This agrees well with
the theories of surface reaction in gas–solid systems, such as unreacted shrinking
core model [36] and pore model [37], which indicate that the increase of gas velocity
promotes the collision between gas particles as well as between gas particles and
solid sites, facilitating the diffusion and external dispersion of reactant and product.
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(a) product concentration, u = 0.5. (b) temperature contour, u = 0.5. 

 
(c) product concentration, u = 0.8. (d) temperature contour, u = 0.8. 

Figure 15. Product concentration and temperature contour of Case 7 and Case 8, where inlet gas 
velocity is 0.5 and 0.8, respectively, and t = 2500 iterations. 
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Figure 16. Reaction processes at different inlet velocities. 

4. Conclusions  

A two-dimensional lattice gas automata model is developed to simulate the flow, heat transfer 
and chemical reaction around and through porous cylinders constructed by QSGS algorithm. In this 
model, two additional particle properties, i.e., particle type and energy state, are introduced to 
account for involved chemical species and fluid temperature, respectively. Heat transfer on the 
interface of gas–solid is then simulated by the change of gas particle energy state at impact. A 
chemical reaction scheme based on collision theory is developed, where chemical reaction is also 
interpreted as the change of particle type according to the probability of reaction.  

By controlling the construction parameters of the QSGS method, porous cylinders of different 
pore sizes, solid agglomeration, porosity and surface to mass ratio are generated for the 
investigation. Their effects, together with that of reaction probability and inlet fluid velocity on the 
profiles of temperature, solid conversion rate, and reaction product concentration, are discussed. 
Numerical results indicate that cylinders with a higher porosity, larger pore size, and more surface 
area to mass ratio react with gas particles faster. Moreover, the reaction velocity increases with 
increasing reaction probability as well as gas velocity at inlet. These results agree well with the basic 
theories of the gas dispersion, pore diffusion, and solid surface reaction. The proposed LGA model is 
therefore believed to provide a prospective modeling strategy for describing gas–solid chemical 
reaction occurring at complex boundaries from the viewpoint of mesoscopic level. 
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4. Conclusions

A two-dimensional lattice gas automata model is developed to simulate the flow,
heat transfer and chemical reaction around and through porous cylinders constructed
by QSGS algorithm. In this model, two additional particle properties, i.e., particle
type and energy state, are introduced to account for involved chemical species and
fluid temperature, respectively. Heat transfer on the interface of gas–solid is then
simulated by the change of gas particle energy state at impact. A chemical reaction
scheme based on collision theory is developed, where chemical reaction is also
interpreted as the change of particle type according to the probability of reaction.

By controlling the construction parameters of the QSGS method, porous
cylinders of different pore sizes, solid agglomeration, porosity and surface to mass
ratio are generated for the investigation. Their effects, together with that of reaction
probability and inlet fluid velocity on the profiles of temperature, solid conversion
rate, and reaction product concentration, are discussed. Numerical results indicate
that cylinders with a higher porosity, larger pore size, and more surface area to mass
ratio react with gas particles faster. Moreover, the reaction velocity increases with
increasing reaction probability as well as gas velocity at inlet. These results agree
well with the basic theories of the gas dispersion, pore diffusion, and solid surface
reaction. The proposed LGA model is therefore believed to provide a prospective
modeling strategy for describing gas–solid chemical reaction occurring at complex
boundaries from the viewpoint of mesoscopic level.
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Three-Dimensional Lattice Boltzmann
Simulation of Liquid Water Transport in
Porous Layer of PEMFC
Bo Han, Meng Ni and Hua Meng

Abstract: A three-dimensional two-phase lattice Boltzmann model (LBM) is
implemented and validated for qualitative study of the fundamental phenomena of
liquid water transport in the porous layer of a proton exchange membrane fuel
cell (PEMFC). In the present study, the three-dimensional microstructures of a
porous layer are numerically reconstructed by a random generation method. The
LBM simulations focus on the effects of the porous layer porosity and boundary
liquid saturation on liquid water transport in porous materials. Numerical results
confirm that liquid water transport is strongly affected by the microstructures in a
porous layer, and the transport process prefers the large pores as its main pathway.
The preferential transport phenomenon is more profound with a decreased porous
layer porosity and/or boundary liquid saturation. In the transport process, the
breakup of a liquid water stream can occur under certain conditions, leading to the
formation of liquid droplets inside the porous layer. This phenomenon is related
to the connecting bridge or neck resistance dictated by the surface tension, and
happens more frequently with a smaller porous layer porosity. Results indicate that
an optimized design of porous layer porosity and the combination of various pore
sizes may improve both the liquid water removal and gaseous reactant transport in
the porous layer of a PEMFC.

Reprinted from Entropy. Cite as: Han, B.; Ni, M.; Meng, H. Three-Dimensional Lattice
Boltzmann Simulation of Liquid Water Transport in Porous Layer of PEMFC. Entropy
2016, 18, 17.

1. Introduction

The proton exchange membrane fuel cell (PEMFC) is considered one of the
most promising energy conversion devices for future transportation applications,
due to its high energy efficiency, high power density, and environment-friendly
operations. Figure 1a shows a schematic of a single piece of a PEMFC, which is
mainly composed of a polymer electrolyte membrane (PEM), bipolar plates with
the built-in gas channels, gas diffusion layers (GDLs), and catalyst layers (CLs).
The GDLs and CLs are heterogeneous porous media, in which the chemical species
diffusion, electrochemical reactions, and migration of protons and electrons occur,
as shown in Figure 1b,c. During PEMFC operations, water is produced by the
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electrochemical reactions in the cathode catalyst layer (CCL). Water is needed to fully
hydrate the polymer membrane to increase its proton conductivity and thus improve
the PEMFC performance, but excessive water, particularly liquid water in the porous
materials (GDLs and CLs), can block hydrogen/oxygen transport to the reaction
sites and consequently decrease the cell performance. Therefore, water management
in a PEMFC, particularly the liquid water transport and distribution in the porous
materials, play a key role in fuel cell operations [1,2].

Over the past decades, many experimental and numerical studies have been
conducted to investigate the complex transport phenomena in the porous media
of PEMFCs [3–14]. These studies, however, focused mainly on the macro-scale
transport processes. To obtain a deeper understanding of the underlying transport
mechanisms in the porous materials of a PEMFC, fundamental studies have also
been conducted to reveal the microstructures of the porous materials and further
examine their effects on the transport processes. Hizir et al. [15] used the optical
profilometry and SEM to scan the surface morphology of the CL of a PEMFC. Their
studies indicated that there are surface cracks in the CL, which could significantly
affect the multi-phase liquid water transport behaviors. Based on images from SEM,
Thiele et al. [16] reconstructed a three-dimensional geometry of the cathode catalyst
layer (CCL) of a PEMFC. The pore size distribution in the CCL was revealed in
detail. Due to the great complexity of the microstructures in PEMFCs, it is difficult
to directly observe liquid water transport inside the porous materials using the
present experimental techniques. Therefore, the micro- and meso-scale numerical
modeling and simulation approaches are widely used as effective tools to study the
detailed transport processes in the porous media. For example, Wang et al. [17] and
Mukherjee et al. [18] developed a direct numerical simulation method to study the
pore-scale species transport in the cathode catalyst layer of a PEMEC. The CCL was
reconstructed using a stochastic technique.
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Figure 1. (a) Schematic of a single piece of a PEMFC; (b) Schematic of the
microstructure and mass transport phenomena in porous layers; (c) Schematic
of transport and reaction mechanism in CL.
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Although good progress has been made in studying transport phenomena at
the micro scale, it is still a challenging issue in fully understanding the liquid water
transport mechanisms inside the porous materials of a PEMFC. Recently, the lattice
Boltzmann method (LBM), which is well established for simulating multi-phase
and multi-component fluid flows [19–26], has been applied to study liquid water
transport in PEMFCs. In LBM, the density distribution functions are directly solved
by implementing the collision and streaming procedures at discrete lattices, and thus
this method can handle the gas´liquid and solid´liquid interactions automatically
and accurately. Sinha et al. [27] performed a two-phase LBM simulation to study the
effects of wetting property on the liquid water dynamic behaviors in a reconstructed
carbon-paper GDL. Park et al. [28] conducted an LBM simulation of the liquid droplet
transport through a GDL made of woven carbon cloth. Hao et al. [29,30] used
a free-energy LBM to study the dynamic behaviors of liquid droplets in the gas
channel and analyzed the effects of the micro-scale porous structure on the relative
permeability of a porous material. Mukherjee et al. [31] conducted LBM simulation to
examine the two-phase transport process and liquid water flooding phenomena in the
porous media of a PEMFC. Han et al. [32–34] conducted two-dimensional two-phase
LBM simulations to analyze the formation, growth, and interaction of liquid droplets
inside the GDL and gas channel. Effects of several important parameters, including
the gas flow velocity, surface contact angle, and gas channel shape, on the liquid
water transport characteristics were investigated. These early studies prove that LBM
simulations are suitable for numerical study of the micro-scale two-phase transport
in the complex porous media of a PEMFC.

In this paper, a three-dimensional two-phase lattice Boltzmann method is
employed to simulate the liquid water transport dynamics in the porous layer of a
PEMFC. A random method is employed to numerically reconstruct the micro-scale
structures of a porous medium. The numerical model is validated with two test cases
concerning the gas´liquid phase separation and liquid–solid surface interaction. The
numerical studies focus on the effects of the porous layer porosity and boundary
liquid saturation on liquid water transport behaviors. Results obtained herein can
help to improve fundamental understanding of the liquid water transport processes
in porous materials of PEMFCs.

2. Lattice Boltzmann Model and Its Validation

2.1. Lattice Boltzmann Model

The present three-dimensional two-phase LBM simulation is based on the single
relaxation time Bhatnagar–Gross–Krook (BGK) evolution equation and Shan–Chan
model [22,23]. The Boltzmann–BGK equation, which is an approximation of the
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continuum Boltzmann equation, is discretized in time, space, and velocity domains
to obtain a full discrete LBM equation:

fα px` eα∆t, t` ∆tq ´ fα px, tq “
1
τ

´

f eq
α px, tq ´ fα px, tq

¯

, (1)

where f is the density distribution function, x is the space position vector, eα is
the lattice velocity vector at the αth direction, t is the time, and τ is the relaxation
time that can be determined using the fluid kinematic viscosity. Generally, there
are two important steps in numerical solution of the LBM equation, streaming and
collision, which need to be implemented separately in the numerical treatment. In the
streaming step, the distribution function representing discrete particles is moved into
the neighboring lattices in a fixed velocity scheme. In the collision step, the density
distribution function is relaxed toward its equilibrium state at a given relaxation
time. In the present simulation, the equilibrium distribution function is defined as:

f eq
α px, tq “ ωαρ

«

1`
eα¨ueq

c2
s

`
peαueqq2

2c4
s

´
pueqq2

2c2
s

ff

, (2)

where ωα is the weighting factor, ρ is the macroscopic fluid density, ueq is the
macroscopic equilibrium velocity, and cs is the lattice sound velocity. In order to
determine these parameters, the D3Q19 scheme that includes 19 discrete velocities in
three space dimensions is used, as shown in Figure 2.

Figure 2. D3Q19 scheme for three-dimensional lattice Boltzmann simulations.

The relevant parameters in Equation (2) are defined in detail in the following:
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‚ The weighting factor:

ωα “

$

’

&

’

%

1{3, α “ 1
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. (3)

‚ The macroscopic fluid density:
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ÿ19

α“1
fα . (4)

‚ The lattice velocity vector:
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1

fi

ffi

fl

, (5)

where c is defined as the ratio of the space distance between lattice nodes to the
time step.

In the Shan–Chen two-phase model, extra forces are included in the equilibrium
state distribution function to handle the fluid´fluid and fluid´solid interactions.
The forces are calculated as:

F “ Fint px, tq ` Fads px, tq ` Fg pxq , (6)

In Equation (6), the term Fg pxq is the gravity force or uniform steady body force,
and Fint px, tq is the inter-particle cohesive force that is introduced to account for the
interaction between fluid particles. The adsorption force Fads px, tq , which is used to
account for the fluid´solid interaction, is expressed as:

Fadspx, tq “ ´Gψ pρ px, tqq
ÿ

α

ωαψ pρwq s px` eα∆t, tqeα (7)

where G is a constant representing the interaction strength between neighboring
particles, Ψ is a density-dependent potential function, and ρw is a free parameter that
can be tuned to obtain different contact angles.

The forces in Equation (6) are implemented into LBM by changing the
equilibrium velocity in Equation (2). Therefore, the new equilibrium distribution
function for the present two-phase simulation is expressed as:

f eq1
α px, tq “ ωαρ

»

—

—

—
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ρ

˙
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s

`

ˆ
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ˆ
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ρ
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2c4
s

´

ˆ

u`
τF
ρ
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fi

ffi

ffi

ffi

fl

, (8)
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where u is the microscopic velocity, which can be calculated as:

u “
1
ρ

ÿ19

α“1
fαeα. (9)

More details concerning the two-phase lattice Boltzmann model can be found in
the previous publications [22,23,32].

2.2. Model Validation

The preceding three-dimensional two-phase lattice Boltzmann model has
been developed into a computational program in our research group. Before it
is used for detailed numerical studies of liquid water transport in the porous
layer of a PEMFC, two numerical test cases, concerning the gas´liquid two-phase
separation and contact angle effect on liquid droplet behaviors, were conducted for
model validations.

The first test concerns the gas´liquid two-phase separation and maintaining of
a single liquid droplet after the two-phase separation. A single liquid droplet with a
specified radius was initially placed in a gas phase domain, which was divided into
80ˆ 80ˆ 80 lattices at the x, y, and z directions, respectively. The boundary condition
was set to be fully periodic in the simulations. Without the body force effect, the
droplet should reach an equilibrium state with unchanged shape and size. As shown
in Figure 3a,b, the figures on the left side illustrate two spherical droplets at a radius
of 10 lu and 20 lu, respectively, at the equilibrium state. The two-dimensional views
of the liquid droplets in the y-z cross section in the middle of the x direction are
shown in the figures on the right side. The red region represents the liquid phase,
and the blue one is the gas phase. It can be observed that the interface between gas
phase and liquid phase is very sharp and clear, verifying that the present model is
capable of handling the gas´liquid two-phase interaction and phase separation.

In addition, according to Laplace’s law, the static pressure difference across a
droplet interface should be proportional to the fluid surface tension and inversely
proportional to the droplet radius. To test Laplace’s law, a series of LBM simulations
with various droplet radii were performed. As shown in Figure 4, the solid line
represents the results directly calculated from Laplace’s law, and the dots are obtained
from the LBM simulations. Two cases were simulated using different numbers of
lattices, including case 1 with 80ˆ 80ˆ 80 lattices and case 2 with 60ˆ 60ˆ 60 lattices.
At a relatively large droplet radius, the simulation results from the two cases are
both consistent with Laplace’s law. However, at a small droplet radius, results
from case 1 show better agreement than those from case 2, because of the finer grid
resolution. For instance, when the droplet radius is equal to 10 lu, the pressure
difference calculated in case 1 is 1.14, which is very close to the result from Laplace’s
law, but the pressure difference in case 2 is only 1.04, showing a relatively large
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error. Therefore, the simulation results indicate that the present two-phase model is
sufficiently accurate for numerical studies, using a set of 80 ˆ 80 ˆ 80 lattices.

Figure 3. Model validations concerning two-phase separation: (a) A liquid droplet
with a radius of 10 lu; (b) A liquid droplet with a radius of 20 lu.

The second test was carried out to study the effect of the surface contact angle
on liquid water droplet behaviors on a solid surface. The computational domain was
again divided into a total of 80 ˆ 80 ˆ 80 lattices. The periodic boundary condition
was used at the x and y directions, and the wall bounce-back boundary condition
was set for the top and bottom boundaries at the z direction. The body force effect
was neglected in the simulations. Initially, a spherical liquid droplet was placed
on the solid surface at the bottom boundary. The contact angle of the solid surface
was adjusted to represent different interaction strengths between the liquid droplet
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and solid surface. The LBM simulations were performed until the droplet reached
the steady state. Figure 5 clearly shows the proper characteristics with interaction
between the liquid droplet and solid surface at a contact angle of 90˝ (Figure 5a) and
180˝ (Figure 5b), respectively. Results further verify that the present two-phase lattice
Boltzmann model can also accurately treat the liquid´solid interaction.

Figure 4. Model validations against Laplace’s law.

It should be mentioned that because of the numerical problem in treating a large
density ratio in the LBM simulations, the density ratio in the present studies is set
at 10, and the dynamic viscosity is also at 10. Therefore, the two-phase flows solved in
the above tested cases and following numerical simulations concern the liquid water
transport in a dense gaseous phase. However, the previous studies [23,25,27,31–34]
and the present test results have clearly shown that the LBM simulations are capable
of capturing the fundamental physics in two-phase flows.
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Figure 5. Model validations concerning liquid´solid interactions: (a) At a contact
angle of θ “ 90; (b) At a contact angle of θ “ 180.

3. Results and Discussion

After model validations, numerical studies of liquid water transport in the
porous layer of a PEMFC are conducted in this section, focusing mainly on
the effects of the porous layer porosity and boundary liquid saturation on the
transport behaviors.

3.1. Microstructure Reconstruction

Reconstruction of the microstructure of a porous layer is a prerequisite prior
to conducting LBM simulations. In the open literature [35–37], two methods were
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generally used to reconstruct the microstructures of a porous material. One method
is based on the three-dimensional experimental imaging techniques, such as the
scanning electron microscopy. Another method is based on the numerical random
generation, which has lower cost and higher computational efficiency compared
with the experimental method. Due to the complexity of the porous layer structures
in PEMFCs, the second method is used in the present study to reproduce the porous
structures. The following assumptions are made in the reconstruction procedure:

(a) the porous material is formed by spherical particles with various sizes;
(b) the spherical particles are randomly distributed.

Since the porous material (e.g., GDL) in a PEMFC is generally made of carbon
paper with very complex microstructures, the second assumption is reasonable, but
the first assumption is only a simplification for the present qualitative study.

Based on these assumptions, an effective numerical model, in which a random
function is introduced to account for the pore distribution characteristics, is
developed to reproduce the three-dimensional porous layer. In this reconstruction
method, the porosity is an important controlling parameter, which is defined as the
ratio of the pore volume to the total volume of the porous material.

εp “
Vp

V
“ 1´

Vs prsq

V
, (10)

where Vp represents the pore volume, V is the total volume of the porous medium,
and Vs prsq is the solid phase volume that is related to the radius rs of the
spherical particles.

A spherical particle can be generated using a random method to satisfy the
following condition:

px´ x0q
2
` py´ y0q

2
` pz´ z0q

2
ď r2

s , (11)
$

’

’

’

&

’

’

’

%

rs “ ris ` ran f
x0 “ xi0 ` ran f
y0 “ yi0 ` ran f
z0 “ zi0 ` ran f

, (12)

where px0, y0, z0q and rs are the center coordinates and radius of a spherical particle,
which are allowed to vary with a random function, ran f , to account for the complex
characteristics of a porous medium in a PEMFC. The solid particles are allowed to
contact each other, depending on their positions and radii. To start the reconstruction
procedure, the parameters, pxi0, yi0, zi0q and ris, which represent the initial center
coordinates and an initial radius of a spherical particle, are specified.
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A discriminant function is used to distinguish the fluid and solid lattice nodes.
The function is defined as:

g px, y, zq “

#

1, Solid lattice
0, Fluid lattice

. (13)

As shown in Figure 6, two porous materials with different porosities have been
reconstructed. The computational domain is set to be 80ˆ 80ˆ 80 lattice nodes at the
x, y, and z directions, respectively. Since the thickness of a GDL in a PEMFC is around
200 µm, a lattice unit thus represents about 2.5 µm in the present study. Figure 6a
shows a reconstructed porous medium with a porosity of 0.4, while Figure 6b shows
one with a porosity of 0.7. The difference between the two reconstructed porous
materials can be clearly observed, and the reconstruction can capture the random
micro-pore structures. It should be noted that the mean pore size in the reconstructed
porous material is around 15 µm, which is in the practical range of a PEMFC. In
the computational domain, six lattices are located in each dimension of the pore,
and it should be sufficient for obtaining reasonably accurate results in the present
qualitative study.

Figure 6. Reconstructed porous layers using a random numerical generation
method: (a) Porosity: 0.4; (b) Porosity: 0.7.

3.2. Liquid Water Transport in Reconstructed Porous Materials

Liquid water transport in the porous layer of a PEMFC is studied in this
section, based on the two reconstructed porous layers in Figure 6 and using the
three-dimensional two-phase lattice Boltzmann method described and validated in
the previous sections. The effects of the porous layer porosity and boundary liquid
saturation on liquid water transport behaviors are examined.
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In the present LBM simulations, three types of boundary conditions are used,
including: (a) the pressure boundary condition that is imposed on the up (inlet) and
down (outlet) boundaries in the computational domain; (b) the periodic boundary
condition that is set to another four boundaries; (c) the bounce-back boundary
condition that is used to simulate the interactions between the fluid particles and
solid surfaces inside the reconstructed porous structure. In the present studies,
all the solid surfaces in the porous material are assumed to be hydrophobic with
a contact angle of 160˝. At the inlet, the liquid water distribution is randomly
specified, in consistency with the boundary liquid saturation, and a small velocity at
0.5 ˆ 10´5 ms´1 is defined for the liquid water to start the numerical simulations.

Figure 7 illustrates the transient liquid water transport process in the
reconstructed porous layer of a PEMFC, with a porosity of 0.7, as presented in
Figure 6b. In this case, the boundary liquid saturation at the top surface, which may
represent the chemical reaction sites in a PEMFC, is set to 0.19. In PEMFC operations,
liquid water is produced in the CL, penetrates through the porous CL and GDL,
and moves into the gas channel (refer to Figure 1b,c). Figure 7a shows the detailed
liquid water distribution at a time step of t = 100 ts. It can be observed that at the
early stage of the transport process, when the time step is less than 100 ts, the liquid
water front moves relatively uniformly from the inlet boundary of the reconstructed
porous layer. The figure on the right side in Figure 7a shows the two-dimensional
cross-sectional views of liquid water distribution at different x positions. It can be
seen that more liquid water exists in the middle section, because in this case, there
are larger pores in this region. Liquid water transport in a porous material is mainly
controlled by the capillary pressure, and thus prefers the large empty area as the
preferential transport pathway [31]. The capillary pressure in the porous layer can
be evaluated using the following analytical expression [38]:

pc “ σcosθ
´ ε

K

¯1{2
J psq , (14)

where σ is the surface tension of liquid water, θ is the contact angle of the porous
material, ε is the porosity, K is the permeability that is related to the pore sizes, and
J psq is a function that is related to the liquid saturation s. This formulation has been
widely used in the macro-scale numerical studies of liquid water transport in the CL
and GDL of a PEMFC [38].

As the time step increases to 2000 ts, liquid water penetrates deeper into the
porous layer, as shown in Figure 7b. At this instant, many separate liquid water
fronts exist. The preferential transport characteristics of liquid water in the porous
layer can be clearly observed. Results on the left side of Figure 7b clearly show that
liquid water in some small pores, instead of move forward, retracts and changes its
transport pathway to the neighboring large pores. These results clearly elucidate the
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effect of the microstructures on liquid water transport in a porous layer of a PEMFC.
Since the large pores serve as the main pathway for liquid water transport, the small
pores are thus available for the gaseous reactant transport. This indicates that a good
combination of large and small pores in a porous material can help gaseous species
transport and consequently improve the fuel cell performance.

Figure 7. Liquid water evolution and distributions in a reconstructed porous layer
with a porosity of 0.7 and a boundary liquid saturation of 0.19. (a) At a time step of
t = 100 ts; (b) At a time step of t = 2000 ts.

Since the amount of liquid water generated by the electrochemical reactions
on the cathode side in a PEMFC varies with different cell operation conditions, it is
thus important to study the effect of the boundary liquid saturation on liquid water
transport and distribution in the porous layer. As shown in Figure 8, the boundary
liquid saturation is increased to 0.31, meaning that more liquid water is produced in
this case by the electrochemical reactions. According to Equation (14), the variation
of liquid water saturation can have a direct effect on the capillary pressure and thus
may influence the liquid water transport and distribution.
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Figure 8a,b displays the evolution of liquid water in the reconstructed porous
medium at two different time steps, with a boundary liquid saturation of 0.31. Liquid
water moves more uniformly and faster in this case with a larger amount of liquid
water, compared to the case with a boundary liquid saturation at 0.19. At a time
step of t = 2000 ts, separate liquid water fronts can be observed, but it appears
that the preferential transport characteristics in this case are not as profound as the
preceding case, as shown in Figure 7. An interesting physical phenomenon is also
clearly observed; during liquid water invasion, it appears that the breakup of a liquid
water stream can occur under certain conditions, leading to the formation of a liquid
droplet in the porous layer. This phenomenon is related to the connecting bridge or
neck resistance dictated by the surface tension. As the feeding pore becomes smaller
or the invasion pore becomes larger, the connecting resistance will be weakened,
resulting in the detachment of a liquid droplet from the feeding stream.

Figure 8. Liquid water evolution and distributions in a reconstructed porous layer
with a porosity of 0.7 and a boundary liquid saturation of 0.31. (a) At a time step of
t = 100 ts; (b) At a time step of t = 2000 ts.
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The effect of the porous layer porosity on liquid water transport and distribution
was studied next. Figure 9 shows results obtained from LBM simulations of liquid
water transport in a reconstructed porous medium with a porosity of 0.4. In this case,
the boundary liquid saturation is set to be 0.19. It is found that liquid water transport
is very sensitive to the porous layer porosity. The preferential liquid water transport
characteristics are more profound in this case with a smaller porous layer porosity,
compared with the results in Figure 7. According to Equation (14), the variation of
the porous layer porosity can also have a direct effect on the capillary pressure and
thus can influence the liquid water transport and distribution. It is also observed that
the detachment and formation of liquid droplets occur earlier and more frequently
in this case, as compared to results calculated with a larger porosity, as shown in
Figures 7 and 8.

Figure 9. Liquid water evolution and distributions in a reconstructed porous layer
with a porosity of 0.4 and a boundary liquid saturation of 0.19. (a) At a time step of
t = 100 ts; (b) At a time step of t = 2000 ts.

Figure 10 shows liquid water evolution in the reconstructed porous layer with
a porosity of 0.4, but the boundary liquid saturation is increased to 0.31. Again,
liquid water penetrates faster and deeper in this case with more liquid water, similar
to the trend shown in Figure 8. However, the preferential liquid water transport
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characteristics become more profound in this case with a decreased porous layer
porosity, compared with the results in Figure 8.

Figure 10. Liquid water evolution and distributions in a reconstructed porous layer
with a porosity of 0.4 and a boundary liquid saturation of 0.31. (a) At a time step of
t = 100 ts; (b) At a time step of t = 2000 ts.

4. Conclusions

In this paper, a three-dimensional two-phase lattice Boltzmann model is
implemented to qualitatively study liquid water transport behaviors in the porous
layer of a PEMFC. The model is validated against two test cases concerning the
gas´liquid separation and liquid´solid interaction. Model validations prove that
the lattice Boltzmann model is capable of accurately simulating the two-phase
transport phenomena. A random numerical generation method is used to reconstruct
the microstructures of a porous layer. The solid surfaces in the porous material
are assumed to be hydrophobic with a contact angle of 160˝. The present LBM
simulations focus on the effects of the porous layer porosity and boundary liquid
saturation on liquid water transport in porous materials.

Numerical results confirm that liquid water transport is strongly affected by
the microstructures in a porous layer, and liquid water prefers the large pores as
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its main pathway. It is found that during the transport process, liquid water in
some small pores may retract and change its pathway to the neighboring large pores.
The preferential transport phenomenon is more profound with a decreased porous
layer porosity and/or boundary liquid saturation. In the transport process, the
breakup of a liquid water stream can occur under certain conditions, leading to the
formation of liquid droplets inside the porous layer. This phenomenon is related to
the connecting bridge or neck resistance dictated by the surface tension, and happens
more frequently with a smaller porous layer porosity.

Results obtained in this paper indicate that an optimized design of porous
layer porosity and the combination of various pore sizes may improve both the
liquid water removal and gaseous reactant transport in a porous layer. The LBM
simulations can help to improve the fundamental understanding of liquid water
transport phenomena in the porous materials of PEMFCs.
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Long-Range Electron Transport
Donor-Acceptor in Nonlinear Lattices
Alexander P. Chetverikov, Werner Ebeling and Manuel G. Velarde

Abstract: We study here several simple models of the electron transfer (ET) in a
one-dimensional nonlinear lattice between a donor and an acceptor and propose a
new fast mechanism of electron surfing on soliton-like excitations along the lattice.
The nonlinear lattice is modeled as a classical one-dimensional Morse chain and the
dynamics of the electrons are considered in the tight-binding approximation. This
model is applied to the processes along a covalent bridge connecting donors and
acceptors. First, it is shown that the electron forms bound states with the solitonic
excitations in the lattice. These so-called solectrons may move with supersonic
speed. In a heated system, the electron transfer between a donor and an acceptor is
modeled as a diffusion-like process. We study in detail the role of thermal factors
on the electron transfer. Then, we develop a simple model based on the classical
Smoluchowski–Chandrasekhar picture of diffusion-controlled reactions as stochastic
processes with emitters and absorbers. Acceptors are modeled by an absorbing
boundary. Finally, we compare the new ET mechanisms described here with known
ET data. We conclude that electron surfing on solitons could be a special fast way for
ET over quite long distances.

Reprinted from Entropy. Cite as: Chetverikov, A.P.; Ebeling, W.; Velardee, M.G.
Long-Range Electron Transport Donor-Acceptor in Nonlinear Lattices. Entropy 2016,
18, 92.

1. Introduction

Taking into account the high interest in the development of molecular electronics,
we study here several models for the transfer of electrons along molecular chains
modeled as one-dimensional (1d) nonlinear lattices. It is worth noting that, recently,
it has been suggested that DNA and possibly other (bio)macromolecules could
serve as electronic conductors otherwise said (bio)molecular wires that can conduct
charge carriers with virtually no resistance [1–7]. Experiments are now starting to
provide the first clues about the mechanisms that underlie charge transport. The field
has recently been revived with the advent of measurements on artificial DNA-like
molecules. Barton and colleagues [3] measured the fluorescence produced by an
excited molecule and found that the fluorescence quenching was due to the charge
on the excited donor molecule leaking along the length of the DNA to a nearby
acceptor molecule, thus indicating that such DNA is a conducting molecular wire.
Their findings, however, are not without criticism as the physical mechanism offering
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transport has not been clearly identified. The essential aspect here is the study of
the temperature influence on transfer processes; for other studies of the thermal
dependence of macroscopic transport, see [8–14].

2. One-Dimensional Dynamical Model of Electron Transfer

Long-range electron tunneling through biomolecules (e.g., azurin and DNA) has
been studied in substantial detail both experimentally and theoretically over the past
twenty years [2,4,15–20]. In previous work, [11–14,21–27] we studied the influence
of nonlinear lattice excitations on electron transfer (ET). It was shown that electron
trapping by solitons and a new form of electron transport mediated by solitons
is possible in an anharmonic 1d lattice. Here, we focus attention on the process
that occurs between two units in the chain, the donor D and the acceptor A, with
in-between a bridge consisting of n elements denoted by b: D-b-b-b-b-b.........-b-b-b-A.
We shall show that solitons may help to transfer electrons along the bridge. We will
not consider in detail the processes D-b and b-A, referring to the literature [17,18].

If solitons are excited by an external source, stable bound states of electrons
and solitons may be formed, which may move with supersonic or slightly
subsonic velocity. In a heated system, solitons are excited thermally. These
solitons and the corresponding solectrons have a finite life time and change their
direction stochastically. The electrons may surf on thermal solitons from donor to
acceptor. Under these conditions, we may consider the ET as a process similar to a
diffusion-controlled reaction.

Building upon earlier work [11–14,21–27], our interest is here in developing a
dynamical theory which allows the description of ET over long distances, including
the influence of thermal excitations. Adopting a 1d nonlinear lattice model to portray
the backbone of the biomolecular chain (polypeptide, polynucleotide or other), we
investigate the consequences of nonlinear, running, lattice excitations on electron
transport. The theoretical model studied here is based the quantum mechanical “tight
binding” approximation (TBA) [28] for the electrons which are moving on a lattice
with Morse interactions. Note that the use of Morse potentials is just for numerical
convenience and is not a must for the results. We study in detail the role of thermal
factors on electron transfer and the transition times, and give a thorough discussion
of the role of nonlinearity. One of the tasks is to develop a simple model based
on the Smoluchowski–Chandrasekhar picture of diffusion-controlled reactions as
stochastic processes with emitters and absorbers. We estimate the time-distance
relations for the new non-standard mechanisms of ET and the dependence on
temperature at moderate temperatures. The lattice interactions allow for phonon-and
soliton-longitudinal vibrations with compressions governed by the repulsive part of
the potential [11–14,29–32]. Thus, we consider a 1d anharmonic lattice with dynamics
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described by the following Hamiltonian: H = Hlattice + Helectron. The lattice part
includes nearest-neighbor Morse interactions:

Hlattice = ∑
n

{
p2

n
2M

+ D (1− exp [−B (qn − qn−1)])
2
}

. (1)

Here, M denotes the mass of a lattice unit (all units have equal mass),
the coordinates and momenta qn, pn; (n = 1, ..., N) describe their respective
displacements from equilibrium positions (nσ) and momenta, B characterizes the
stiffness of the spring-like constant in the Morse potential, D is the depth of the
potential well, and σ defines equilibrium lattice spacing. These compressions were
shown to be responsible for electron trapping by the lattice excitations thus leading
to the formation of dynamic bound states (solectrons) of the electron with the soliton
(the same phenomenon is valid also for the solitonic peaks of a periodic cnoidal
wave moving through the lattice). Furthermore, we consider the whole system
in a “thermal bath” characterized by a Gaussian white noise, ξ j, of zero mean
and delta-correlated.

We add electrons to the system of Morse particles assuming that the electrons are
in reality in 3d space though the lattice is 1d. Thus, for the electron-lattice dynamics,
we have

Hel = En (qk) c∗ncn −∑
n

Vnn−1 (qk)
(
c∗ncn−1 + cnc∗n−1

)
, (2)

where n denotes the site where one electron is “placed” on the lattice, the complex
numbers cn give the n-th component of the wave function and pn = |cn|2 gives the
probability of finding the electron residing at the site n. The bound state energy at site
n may depend on the relative distances between neighbors. We will use the ansatz

En = E0
n + χ0 (qn+1 − qn−1) . (3)

This is a translation-invariant modification of the linear shift used by Holstein
and Kalosakas et al. [33,34]. In view of its minor role, in what follows, we shall
neglect the second term in Equation (3). With this approximation, we want to keep
the effect of energy shifts rather small, concentrating more on the influence on
the transfer elements. The quantity Vnn−1 defines the transfer matrix element or
overlapping integral responsible for the transport of the electron along the chain
(considering only nearest neighbors). This matrix is the key ingredient, allowing
for the coupling of the electron to the lattice displacements, and hence the lattice
vibrations, phonons or solitons. Following Slater [35–37], we take

Vnn−1 = V0 exp [−α0 (qn − qn−1)] , (4)
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where the parameter α0 accounts for the strength of the coupling added to parameter
V0. If we measure all energies in units 2D, it is convenient to measure also the energy
levels in these V0 which gives

En = 2Dεn. (5)

For the sake of universality, it is best to rescale quantities and consider a
dimensionless problem. We take as unit of time, Ω−1

Morse, where ΩMorse =
(
2DB2/M

)1/2

denotes the frequency of harmonic oscillations (linear, first-order approximation to
the Morse exponential). For displacements, we take B−1 as the unit, for momenta
we take (2MD)−1/2, hence for the interaction force we have α0V0/2BD, and α0 is
measured in

(
B−1) units. Then, expecting no confusion in the reader, denoting the

new dimensionless quantities with the same symbols as the old ones, the dynamics
of the Hamiltonian system Equations (1) and (2), is given by the following equations
for the components of the electronic wave function electron cn, and the lattice
vibrations, qn

i
dcn

dt
= εncn − τ {exp [−α (qn+1 − qn)]cn+1 + exp [−α (qn − qn−1)]cn−1} , (6)

(7)

where
V = V0/2D, α = α0/B, τ = V0/ΩMorseh̄. (8)

Not counting the energy levels, there are four parameters, the last one relates the
time scales of the electron and lattice dynamics. Needless to say, in general, the two
time scales are not the same (which in frequency terms refer to ultraviolet/electronic
versus infrared/acoustic), for most cases with electrons and phonons. Instead of
the ansatz Equation (3), other equivalent expressions may be used [12,38–40]. For
purposes of illustration, we take the following parameter values:

(9)

These numerical values are relevant, e.g., for electron transport along hydrogen
bonded polypeptide chains such as α-helices [9,25–27,38–42]. Let us note what
Muto et al. [43] give for DNA other values, which, in our model, correspond to:

σ = 3.4 Angstrom, B = 2.1 Angstrom−1, D = 0.23eV,
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csound = 16.9 Angstrom/ps, ΩMorse = 5.0× 1012s−1.

3. Electrons Surfing on Solitons—A Guided Tour of Electrons from
Donor to Acceptor

We shall estimate how the path of an electron may be influenced by a lattice
soliton which was generated by an external perturbation of the lattice. The added,
excess electron is placed at t = 0 at a donor located at site n = 100 at time
t = 0 (Figure 1). Due to the electron-lattice interaction (α = 1.75), we observe
soliton-assisted ET. The electron is dynamically bound to the soliton thus creating
the travelling supersonic or slightly subsonic solectron excitation. Indeed when
the electron-lattice interaction is operating, we see that the electron moves with the
soliton with a slightly subsonic velocity vel = (130/160)vsound and is running to
the right border of the square (n, t) plot. Let us assume that an acceptor is located
there. This means that the electron is guided by the soliton from donor to acceptor.
Note that, in transport processes, several solitons may be involved including those
moving in opposite direction. Therefore, the above given soliton velocity is an upper
bound for the soliton-assisted ET. In order to study the superposition of several
solitons acting on one electron, we studied, in another experiment, the evolution of
an electron in the presence of two solitons. Figure 2 illustrates the splitting of the
electron probability density. The existence of bound states between electrons and
lattice deformations in 1d-lattices has been first studied in the continuous picture by
Davydov and his school [41,44].
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Figure 1. Evolution of one electron in probability density starting at position 100
and a soliton starting at position 70. Then, 20–40 time units after the start the
electron is catched by the soliton and forms with it a bound state (called solectron)
which moves with slightly subsonic velocity.
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In principle, the above solectron effect may be used as a way to manipulate
or otherwise to control the transport of electrons between donor and acceptor.
Clearly, in our case, we may have a polaron-like effect due to the electron-phonon
(or soliton) interaction coupled to a genuinely added lattice solitonic effect due
to the anharmonicity of the lattice vibrations. This permits soliton rather than
phonon-assisted long range hopping.
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Figure 2. Evolution of an electron starting at position 100 between two solitons
emitted at positions 70 and 130, respectively. The electron probability density splits
between the two solitons.

4. Dynamics of Electrons Interacting with Thermal Solitons

Let us study now a lattice heated to some temperature T. Then, thermal solitons
are excited due to the influence of thermal energy-rich collisions. However, we do not
have just one or two solitons, but many of them are generated by the heat bath [38–40].
To be expected is that this completely changes the picture. In previous work, we have
shown that we do not find any more long-living soliton excitations in the chain [24].
Instead, we see up to the range of physiological temperatures many small local
soliton portions in the system which have a finite lifetime up to a few picoseconds.
The electron probability density may split between all of them.

The general picture is now that the electron probability density is concentrated in
the local “hot spots” created by the local soliton thermal excitations. In order to study
the influence of this effect on donor-acceptor ET in more detail, we performed a series
of computer simulations. In this series of experiments, we release an electron into an
already heated lattice by means of the friction and noise sources. These sources are
switched off at an instant that we now denote t = 0. In Figure 3, we represent the
electron probability density developing in a lattice heated up to T = 0.1. We see that
the electron density is for t > 0 confined more or less in a cone. A similar picture
is obtained for T = 0.5, with a mere narrowing of the evolutionary cone. Clearly,
the electron probability density splits into many small spots which are localized at
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thermally excited solitons. These “hot spots” comprise up to 10 lattice (take up to
50 Å) sites and have a short life time which is in the range of a few picoseconds. The
little maximum of the electron density “dies” with the soliton or without destruction
of the latter and moves eventually to the next nearby soliton. The whole process is
time dependent as the “hot spots” are created and annihilated in the thermal process.
Note that the spots denote only probabilities; in reality, the electron is localized at
one of the spots.

Figure 3. Evolution of the electron probability density of an electron released into a
heated lattice (T = 0.1, τ = 10, α = 1.75) gets concentrated at places of local soliton
excitations (with a size up to 10 lattice units) and survives there for a finite time
(may be a few picoseconds), and then it moves to another solitonic “hot spot”.

Modeling the netto-transfer of the electrons theoretically is rather difficult due
to the complexity of the life of an electron after injection. At first glance at the
temperatures which we study here, it looks like a diffusion-like process. Let us
discuss whether the ET is a proper diffusion process. As is well known, according
to a linear Schrödinger equation, the electron probability density spreads in some
respect similar to a diffusion process, meaning that the mean square displacement
growths linearly in time. On the other hand, as shown by Brizhik and Davydov [44],
the nonlinear Schrödinger equation corresponds to processes which are much more
complicated, e.g., the spreading of the density may be fractal-like and may depend
on the initial conditions. This way, we cannot expect that the ET is at T = 0 or near
to zero temperature a diffusion-like in all respects. Being aware of this complication,
we take here a diffusion approach for temperatures T > 0, or more precisely T > 0.1
(in units 2D), since we expect that the thermal motion smoothes the expansion
processes. Possible complications at low T including tunneling have been discussed
elsewhere [13,14]. The quantum-mechanical processes at low temperatures, in
particular the tunneling at T = 0, is certainly not diffusion-controlled. In order
to decide the question of whether the ET-processes at finite temperatures are
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diffusion-like, we have to study in more detail the mean square displacement of the
spreading of a free electron on the heated lattice.

5. Mean Square Displacement of Electrons

For simplicity, we place the injected electron initially at t = 0 at n = n0 = 0 (for
simplicity). The mean square displacement is given by〈

n2 (t)
〉
= ∑ n2cn (t) c∗n (t) , (10)

where the quantities cn(t) have to be calculated according to the discrete Schrödinger
Equation (6). This procedure gives, however, only the quantum-mechanical mean.
Still, we need here a second average with respect to the stochastic trajectories of the
lattice according to Equation (10). This way, we define a diffusion-function of time

d(t) =
〈
< (n(t)− n0)

2 >
〉
=
〈
∑ n2cn(t)c∗n(t)

〉
. (11)

The outer bracket means that we have to take the average over many realizations
(time evolutions) of the lattice dynamics. The result has to be drawn as a function
of time. We expect that this function is linear in time at least in certain temperature
range, that is, d(t) = 2De f f t. This is confirmed by computer simulations (Figure 4).
For the case of a linear lattice model, the linear dependence of the mean square
displacement with time was obtained by Lakhno and collaborators [45,46].
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Figure 4. The diffusion function d(t) over the time t for the temperature T = 0.5.
It shows this ET process as diffusion-like.

The results of a stochastic simulation based on the master equation is shown by
the thin line in Figure 5 [38–40] together with De f f derived using the Schrödinger
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equation (fat points). We see that both approaches disagree at low temperatures.
As far as we see, the (theoretical) diffusion coefficient of the hopping process at
T = 0 (no lattice dynamics) should be τ (or may be proportional to τ). Therefore, we
believe that the calculation of d Equation (11) at low T < 0.1 with the Schrödinger
equation is incorrect due to the problems of fractality and other difficulties with the
Schrödinger equation [8]. In order to avoid all these difficulties, as already said, we
concentrate in this work only on T > 0.1, where the two approaches go together.
In the TBA, we model a heat bath corresponding to a temperature T by introducing
a Langevin source for the temperature and wait for complete thermalization. Then,
we switch-off the heat bath, i.e., the stochastic source and friction, and start with
the initial conditions for velocities and positions the simulations of the coupled
TBA-Hamiltonian system. This procedure guarantees for a short simulation time
thermal conditions. In the case of using a master equation the method corresponds
to a standard Monte-Carlo thermalization. For the diffusional regime, the diffusion
theory is telling us that an electron initially concentrated at the position n0 has an
evolving probability density described by

ρ (n, t) = C exp

[
− (n− n0)

2

2De f f t

]
. (12)
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Figure 5. The effective diffusion coefficient, De f f , based on thermal electron
hopping between solitons leads to two different outcomes. The fat points are based
on quantum-mechanical hopping modeled in TBA whereas the thin line is obtained
by solving quantum-statistical master equations and include quantum-mechanical
and thermal hopping effects in the stochastic description.

If we identify n0 with the donor, this formula shows how the electron probability
density evolves at some distance, in particular, also at the place where the absorber
is located. For diffusion processes, the mean square displacement is given by〈

(n (t)− n0)
2
〉
= 2De f f t. (13)
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This tells us that the distance travelled by the electron goes as the square root
of time t. This is still a relatively fast mechanism, though is slower than ballistic
surfing on solitons. On the other hand, the density decays exponentially with the
distance, this means the log of the density decays with the square of the distance
from the source. As we will discuss later, many authors report a linear decay of the
log of time with the distance. This remains still an open problem. Evidently, the ET
donor-acceptor is not solely diffusion-controlled. Surely there are other contributions
such as tunneling [4,14,47].

Let us discuss now the findings (and conjectures) on ET presented so far.
Electrons injected into the lattice may form very stable bound states which move with
supersonic or slightly subsonic velocity along the lattice and may transfer the electron
over hundreds of lattice sites. This affects points in the direction of the observation
of electron transfer over long distances with only a small loss of energy [17,18]. The
problem, however, remains how stable solitons may be excited. In principle, any
fast mechanical deformation or structural reconformation could be responsible for
the emission of solitons running along the lattice. This, however, requires some
coincidence between the electron emission and the soliton emission. It seems to be
more natural to use the assistance of thermal solitons, which are always present in
the nonlinear lattice.

We have seen above that the electron probability density may spread freely
according to the Schrödinger equation, and then it may be trapped in solectron bound
states, a process which is not diffusion-like, described by a nonlinear Schrödinger
equation. The most important step is, however, the decay of the hot spot and the
occupation of the electron by another hot spot. Such charge trapping in vibrational
hot spots was observed also in the work of Kalosakas, Rasmussen and Bishop [34].
From the overall view, our process is diffusion-like in spite of the fact that it might be
not diffusion-like in some steps. However, in the thermal average, it seems to be well
approximated as “normal diffusion”. As a consequence of the fact that, at least in our
model, the ET is diffusion-like it is characterized by a mean-square displacement and
not by a well-defined speed. From this background (of a diffusion-like character), we
will develop now an absorber model.

6. A Diffusion-Type Absorber Model of the ET Donor-Acceptor

The model which we will develop now is based on the concept developed by
Smoluchowski and Chandrasekhar that an acceptor reaction can be modeled as a
stochastic absorber problem [48,49]. Accordingly, we study a 1d model with periodic
boundary conditions but containing an absorbing boundary. In fact, we consider
the (1d) chain including a barrier consisting of some sites where electron probability
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density is absorbed, but these sites are fully transparent for the chain excitations.
The absorbing coefficient is defined by a Gaussian function

ρ (n) = exp

[
− (n− N + M)2

2m2

]
. (14)

We use N = 100 as the number of particles and here M = 4 (where ρ = 1 that is
maximal), m = 1 (m defines the width of the absorbing barrier). To start, we used an
absorbing gap ρ = 1 at n = 100 (that is at the right wall only), ρ = 0 at other sites, but
then the electron is reflected mainly from such a barrier. Therefore, we used a smooth
absorbing barrier, preventing reflection of the wave function of an electron from the
barrier. The procedure of computer simulation is the following. We make a step of
integration as usual, then multiply the component of an electron wave function by
the absorbing coefficient (more precisely by 1− ρ(n)). It means that the absorption
process in an insertion is considered to be instantaneous, without inertia.

To demonstrate the influence of thermal effects, we studied first the absorption
of the electron of a solectron in a cold lattice (Figure 6) by following the electron
probability density and the total probability (Figure 7)

P = ∑
n
|cn|2 . (15)
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Figure 6. Evolution of the probability density, pn, of an electron approaching an
absorbing boundary.

We observe that the solectron reaches the absorbing boundary at time t ∼ 42,
then the electron is absorbed almost entirely. Note that this corresponds in our model
to the “time of arrival at the acceptor” or, in other words, as the “transition time
donor-acceptor”. Note also that within the model a very small “part” of the electron
probability density penetrates across the barrier. That the soliton keeps on moving is
a specific feature of our model and may even increase its velocity when loosing its
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electron in the absorbing barrier. (Parameter values for the simulation are N = 100,
α = 1.75, Bσ = 1, V = 1, τ = 10). Next, we considered the heated lattice with
the same parameter values for several temperature values. Initially, the electron
is supposed to be localized (in the form of the Gaussian function) in the center of
the chain.
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Figure 7. Total probability P(t) according to Equation (15) to find the electron in
the lattice system, the probability decreases due to escape through the absorbing
boundary. The blue line shows the value 1/e which is used for defining the
“life-time” of residence of the electron in the lattice before being absorbed by
the boundary.

The results presented in Figure 8 are based so far on one computer simulation
for each temperature. Those figures show typical distributions of probability |cn|2(t)
(to find an electron at site “n”, the local electron density, left) and the total density
P(t) (right). However, in order to estimate the transition time in a more correct way,
we have to perform a set of computer simulations with different realizations of noise
influence and then calculate an average characteristic value (Figure 9).
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Figure 8. Heated lattice (top-down values: T = 0.01, 0.1 and 0.5 in 2D units). (Left
panels): evolution of the local electron probability density (pn). (Right panels):
total density (P) at different temperatures in the regime of thermal solitons.
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Figure 9. The same problem as in Figure 8 but for a set of noise realizations
(T = 0.15, in 2D units).
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The averaged transition time as a function of temperature is presented in
Figure 10. The transition time is defined as a time when the total probability to fix an
electron in a lattice becomes less than e−1 ≈ 0.37 (note that sometimes authors use as
criterium “1/3” instead of 1/e). One may see that there is a minimum at temperature
T ∼ 0.15, corresponding to the most effective interaction of the electron with solitons.
Note that the transiton time is here a sum of two time intervals: first, the time to
extract an electron from an “electron” potential well and, second, the travelling time
of an electron along the lattice from the donor to the acceptor. Note also that the
tunneling does not “work” at such long distances δn = 40, as the tunneling time is
practically infinite [13,14]. In the case studied here, thermal transitions interfering
with quantum effects dominate. The large values of the transition time ttr at low
temperatures observed in Figure 10 are to be explained by the fact that the first time
interval grows sharply with temperature decreasing, although the electron travels
along a lattice quickly. In contrast, at high temperature the electron is extracted from
a well rapidly, but thermal solectrons become less stable.

 0
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 0  0.1  0.2  0.3  0.4 T
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Figure 10. Transition time ttr for moving from the donor to an absorbing acceptor
divided by the distance δn = 40 as a function of temperature. These results were
obtained using TBA. (dotted green line with the portion for T < 0.1 being spurious
as discussed in the main text) and a master equation approach (solid red line [13]).

To exclude the influence of characteristics of an initial potential well and exclude
the contribution of “extracting” time to the transition time, a set of computer
simulations have been performed for the initial state of an electron in the form
of a narrow localized Gaussian bell in a non-deformed lattice consisting only of
an absorber at the same position (Figure 10). These results were obtained with a
stochastic algorithm solver of master equations.

The results shown in Figures 9 and 10 agree for high enough temperatures
T > 0.1 but disagree somehow for lower temperatures T < 0.1. This is due to the
different behavior of the diffusion coefficient obtained in both formalisms (the purely
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quantum-mechanical and the quantum-statistical). In some sense, these two curves
(Figure 10) remind the two curves presented in Figure 5; however, the details and
the deeper reasons still remain unexplained. We have to take into account that the
quantum mechanical diffusion (dispersion of the density) is not a physical diffusion
process but just dispersion of wave functions. Our results strictly speaking are
reliable only for T > 0.1.

7. Discussion of the ET Donor-Absorber and the Transition Times

At very low temperature T = 0.01, an initially localized wave function of the
electron spreads along the lattice and the total probability P(t) to find the electron
along the chain decreases in time approximately like an exponential function of time.
Note that (1 − P(t)) is the probability of absorption. At T = 0.1 (weak nonlinearity),
the total electron density P(t) decreases much slower and does not look like an
exponential function of time. At T = 0.2, several steps in the dependence P(t) are
observed. In this case, the electron originally localized is quickly transformed to
several solectronic maxima; the steps in P(t) correspond to the absorption of these
solectronic maxima. At T = 0.5, several solitons are excited which are moving
oppositely carrying parts of the electron probability density. The probability of
existence decreases rather slowly, it takes a very long time before the absorption
occurs, and the electron may overcome a quite a long distance before absorption,
provided the acceptor is placed far enough from the donor. In our diffusion model,
the process is considered as a diffusion-controlled reaction. In the framework of the
the Smoluchowski theory, the reaction rate of an electron with density ne and one
absorber with radius rA at a fixed position is given by

r = nerADe. (16)

We see that the rates are proportional to the diffusion coefficient of the electron,
De. The electron probability density is decreasing with the distance and develops in
time according to the diffusion law Equation (12).

According to our estimate of the diffusion constant, reaction rates based on
diffusion would first increase with temperature, then reach a maximum at T ∼ 0.2
and then decay. The optimal temperature is somewhere around T ∼ 0.2 in units of
2D. At this time, we are not aware of data which are in agreement with this prediction.
Most data seem to show an exponential relation between distance and time. This
point to the existence of other mechanisms for ET, such as tunneling [4,13,14,47,50,51].

Nevertheless, let us try to give some estimates based on the two mechanisms
studied here: surfing on external solitons and diffusion-like transport on
thermal solitons.
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Different computer simulations with absorbing boundary have been shown in
Figure 9. As shown by Chandrasekhar, diffusion transport is based on the mean
square displacement which is given by Equation (13) [49]. He estimated the mean
flow through an absorbing boundary located at x1 and found

q (t, x1) =
x1

t
√

4De f f t
exp

[
−

x2
1

4De f f t

]
. (17)

Introducing here a dimensionless time τ, we get

q(τ) =
q (t, x1)(

4De f f /x2
1

) =
1√
τ3

exp
[
− 1

τ

]
. (18)

We show the flow d’ as a function of time according to the Chandrasekhar model
in Figure 11.
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Figure 11. The (dimensionless) flow through an absorbing boundary at,
say, location x1 according to the model of Chandrasekhar as a function of
(dimensionless) time.

As Figure 11 shows, the overwhelming amount of probability is absorbed within
the (dimensionless) time

τ = 2 =
4De f f t

x2
1

, x2
1 = 2De f f t. (19)

By returning to quantities with dimensions as Å and picoseconds,

t = 2σ2D′e f f
t
t0

, De f f =
σ2

t0
D′e f f . (20)
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This corresponds just to the mean square displacement which is

x2
1 =

〈
∆x2

〉
= 2De f f t = 2σ2D′e f f

t
t0

. (21)

For the dimensionless effective diffusion coefficient D′e f f , we estimated a value
around 30 close to to the maximum with respect to the temperature. This way, we
estimate in dimensional quantities a value around 80 Å2/ps and, correspondingly,
we find 〈

(x1 [Angstrom])2
〉
= 160

(
Angstrom2/ps

)
t(ps) (22)

The empirical data are usually given as a log of the reciprocal time over the
traveled distance given in Å [18]. In our case, we get for the log of the reciprocal time
the electron needs to travel the distance l(t) the following estimate

lg [1/t (s)] = 14.2− 2 lg [l (t) /Angstrom] (23)

This estimate in Figure 12 is shown by the green curve (time is measured in
seconds and the distance in Å, so the 12 (ordinate) corresponds to a picosecond, the
six to a microsecond).
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Figure 12. Estimated time t (log-scale) which an electron needs to travel a distance
l(t) (on the abscissa in Å units) by using several alternative mechanisms. On the
y-axis, we represent (corresponding to standard plots) the log of the reciprocal
time in seconds. The green curve shows the estimate obtained from our diffusion
mechanism. The blue curve corresponds to the surf on an externally excited soliton
which moves with sound velocity. The red curve represents an average of data
points (denoted by crosses) measured for azurin and other biomolecules [18].

The estimate based on the diffusion mechanism is surely only a first rough
result; in detail, things might be more complicated. Indeed, ET is more complicated
than the simple diffusion-controlled reaction studied by Smoluchowski and
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Chandrasekhar [48,49]. Let us consider now the other mechanism of surfing on
one externally excited soliton such that the electron will travel approximately with
sound velocity from the donor to the acceptors: l(t) = ct. We estimate the sound
velocity c here as approximately 20 Å/ps. Let us mention that in some experimental
work [52] a sound velocity of 16.9 Å/ps was measured for DNA. We have

lg [1/t (s)] = 12 +
20

l (Angstrom)
. (24)

This is the blue curve we have drawn in Figure 12. We see that the
soliton-assisted mechanism (blue curve), which we discussed here is much faster
than the estimated average of the observed data given by the lowest (red) curve
where slower processes not yet understood seem to dominate in the overall balance.

8. Conclusions

We studied here several mechanisms of electron transfer in nonlinear lattices.
We have shown that soliton-assisted electron transfer is one possible rather fast
mechanism in a heated nonlinear lattice. We modeled the lattice dynamics with
Morse interactions and the electron dynamics as well as the electron-lattice interaction
in the quantum mechanical “tight binding” approximation. We have shown that,
while the thermal solitons which comprise around 10 lattice sites provide the
carrier, the electron “localization” on the lattice, strongly affects the ET-dynamics.
The general tendency is that, due to this mechanism, the transfer is much slower
and the living times of the solectrons are much higher than previously expected.
A similar conclusion has been made based on a completely different method [53].
These authors conclude, that “electronic coupling is most likely determined by
nonequilibrium geometries beyond a critical distance (6–7 Å in proteins and 2–3 Å in
water)”. In our work, some kind of “nonequilibrium geometries” are identified as
local deformations due to thermal lattice soliton excitations.

In conclusion, regarding the role of solitons, we may say that electron surfing
on lattice solitons generated by external sources provides an extremely fast way of
ET (see the blue curve in Figure 12); however, in this case, the source of solitons
is yet to be identified. A possible candidate for the source for externally excited
solitons are Volkenstein’s conformons [54–56]. An alternative way of ET studied
here, which is more natural, is the surfing on thermal solitons. The latter provides a
slower transport mechanism, due to the quick change of thermal soliton directions.
However, this surf is free since thermal solitons are always present. Note that
this is a significant improvement relative to the less realistic model used in [11].
A second mechanism, which is slower but still rather fast, is diffusion-based on
thermal solitons (green curve in Figure 12). We estimated here the needed times
for donor-acceptor transitions based on the Smoluchowski–Chandrasekhar model
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of absorbing boundaries. The comparison with times observed in experiments (see
lowest curve and data points in Figure 12) shows that, under realistic conditions,
the transition times are much longer, which means, in reality, the transitions are
slowed down by other yet unknown mechanisms such as capturing by impurities.
Indeed, as noted by Giese [4] and others, the question of how electrons migrate
over long distances was raised about thirty years ago and still is a matter of debate.
One may assume that, in reality, one has a combination of several mechanisms,
between them the very slow mechanism of tunneling may play quite a significant
role [4,13,14,38–40,47].

In conclusion, the computer simulations based on our simple models show that
the real processes of donor-acceptor transitions may be very complex. It is to be
understood with the interplay of several components such as tunneling, thermal
activation, diffusion, electron surfing on lattice solitons and other effects. Clearly, the
soliton-assisted transport is the fastest of them all eventually allowing the longest
path (or shortest time). All this illustrates the rather difficult problem of dissipative
quantum transport [47].
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Nonlinear Phenomena of Ultracold Atomic
Gases in Optical Lattices: Emergence of
Novel Features in Extended States
Gentaro Watanabe, B. Prasanna Venkatesh and Raka Dasgupta

Abstract: The system of a cold atomic gas in an optical lattice is governed by two
factors: nonlinearity originating from the interparticle interaction, and the periodicity
of the system set by the lattice. The high level of controllability associated with such
an arrangement allows for the study of the competition and interplay between these
two, and gives rise to a whole range of interesting and rich nonlinear effects. This
review covers the basic idea and overview of such nonlinear phenomena, especially
those corresponding to extended states. This includes “swallowtail” loop structures
of the energy band, Bloch states with multiple periodicity, and those in “nonlinear
lattices”, i.e., systems with the nonlinear interaction term itself being a periodic
function in space.

Reprinted from Entropy. Cite as: Watanabe, G.; Venkatesh, B.P.; Dasgupta, R.
Nonlinear Phenomena of Ultracold Atomic Gases in Optical Lattices: Emergence of
Novel Features in Extended States. Entropy 2016, 18, 118.

1. Introduction

Following a long series of developments in the experimental techniques of
atomic and optical physics, the Bose–Einstein condensation (BEC) of cold alkali
atomic gases was realized in 1995 (see, e.g., [1–3] and references therein). The creation
of this new state of quantum matter has opened up a new research field, the physics
of ultracold atomic gases. The novelty of this system lies in its high controllability:
various system parameters such as the dimensionality, the configuration of the
external potentials, and the strength and the sign of the inter-atomic interaction can
be manipulated dynamically as well as statically. In addition, this system has high
measurability: since both the spatial and temporal microscopic scales of this system
are relatively large, real time observation and direct imaging are possible. With these
unique features, ultracold atomic gases serve as an unprecedented playground of the
quantum world.

Due to the emergence of the superfluid order parameter, BECs acquire a
nonlinear character originating from the interparticle interaction. Here, nonlinearity
means that the basic equation governing the state of the system depends on the state
itself. A variety of phenomena caused by nonlinearity such as solitons [4–7] and
matter-wave mixing [8], etc. have been predicted and realized in BECs. Remarkably,
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the strength of the nonlinearity in BECs of cold atomic gases is controllable. This is
because here s-wave scattering length as, the parameter characterizing the interatomic
interaction, can be tuned using the Feshbach resonance. Therefore, the realization
of BECs of cold atomic gases has opened up a new horizon for the study of nonlinear
phenomena (see, e.g., [9]).

With further development of technology and tools, superfluidity has been
realized using cold fermionic atoms as well. It has been shown that, by increasing the
interatomic attraction using Feshbach resonances, the state of an atomic Fermi gas can
be varied in a controlled manner from a Bardeen–Cooper–Schrieffer (BCS) superfluid
of delocalized Cooper pairs to a BEC of tightly-bound dimers [10]. Furthermore, these
two limits are smoothly connected without a phase transition: the so-called BCS-BEC
crossover [11–14]. The experimental confirmation of the BCS-BEC crossover is one of
the prime achievements in the field of cold atomic gases. Using BCS-BEC crossover,
we can understand both the Bose and Fermi superfluids from a unified perspective.

Another important development in the field of cold atomic gases is the
realization of the external periodic potential called an “optical lattice”: Pairs of
counter-propagating laser fields detuned from atomic transition frequencies, act as
a free-of-defect, conservative potential for atoms via the optical dipole force. The
realization of optical lattices has opened up the connection between the physics of
cold atomic gases and solid state/condensed matter physics (see, e.g., [14–17] for
reviews), and especially enables the simulation of theoretical models of solid state
physics using cold atoms.

As a consequence of the competition and interplay between the effects of the
periodic potential and nonlinearity, rich phenomena are expected to emerge in cold
atomic gases in optical lattices. Especially, equipped with Feshbach resonance, a knob
for controlling the strength of the nonlinearity, cold atomic gases in optical lattices
allow us to enter a regime in which the effect of the nonlinearity is comparable to
(or even dominates over) that of the periodic potential. Such a strongly nonlinear
regime beyond the tight-binding approximation has not been well-explored in
conventional solid state physics. For example, a loop structure called “swallowtail”
in the Bloch energy band [18,19] is a representative novel phenomenon emerging in
this regime. In addition, using cold atomic gases, direct observations of the resulting
nonlinear phenomena are possible, which is also a difficult task using solids.

In this short review article, we discuss nonlinear phenomena of superfluid
cold atomic gases in optical lattices. Especially, we consider extended states and
focus on the following phenomena: the swallowtail band structure, Bloch states
with multiple periods of the applied optical lattice potential called multiple period
states, and those in nonlinear lattices, i.e., systems with a periodically modulated
interaction strength in space. This article is complementary to the existing review
article on nonlinear phenomena in lattices [20], which focuses mainly on localized
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states. Superfluidity is the most important macroscopic quantum phenomena
and superfluid flow in a periodic potential is ubiquitous in many other systems,
such as superconducting electrons in superconductors and even in astrophysical
environments such as superfluid neutrons in “pasta” phases in neutron star crusts
(see, e.g., [21,22] and references therein). Through the study of cold atomic gases in
optical lattices, one may also expect to get deeper insights into these other systems.

This article is organized as follows. In Section 2, we explain the setup of
our system and basic theoretical formalism employed in the later discussions.
In Sections 3–5, we provide a comprehensive overview of the selected nonlinear
phenomena in optical lattices starting with a simple physical explanation for each
topic: swallowtail loops in Section 3, multiple period states in Section 4, and nonlinear
lattices in Section 5. Finally, summary and prospects are given in Section 6.

2. Theoretical Framework

2.1. Setup of the System

In the present article, we discuss superfluid flows of either fermionic or bosonic
atoms in the presence of the externally imposed periodic potentials. For the external
periodicity, we mainly consider one of the most typical cases: one-dimensional (1D)
sinusoidal potential of the form,

V(r) = V(x) = sER sin2 qBx ≡ V0 sin2 qBx , (1)

either in quasi-1D or 3D systems. Here, ER = h̄2q2
B/2m is the recoil energy, m is the

mass of atoms, qB = π/d is the Bragg wave number (note that qB is different from
the fundamental vector of a 1D reciprocal lattice, 2π/d, by a factor of 2), and d is the
lattice constant, V0 ≡ sER is the lattice height, and s is the dimensionless parameter
characterizing the lattice intensity in units of ER. For simplicity, we also assume
that the superflow is in the same direction as the periodic potential (i.e., x direction).
Throughout the present article, we set the temperature T = 0.

The systems which we discuss in this article consist of a large number of particles
(the number of particles per site is also large) at temperatures close to absolute
zero. One of the most convenient ways to deal with such many-body systems is to
use the mean-field approximation. In this formalism, one focuses on a particular
single particle, and the interactions produced by all the other particles are replaced
by an averaged interaction described by the “mean field”. Thus the complicated
many-body problem is effectively reduced to a far simpler one-body problem.

The mean-field theory provides a minimal framework to study the nonlinear
phenomena emerging from the presence of the superfluid order parameter. The
mean-field theory enables us to predict novel nonlinear phenomena and obtain

222



qualitative understanding of them although its validity is not always guaranteed. We
resort to a mean-field description throughout as it readily fits our motivation in the
present review—to provide a physical explanation of some selected, novel nonlinear
phenomena of superfluids in periodic systems.

In the rest of this section, we provide a brief explanation of the theoretical
framework used in the discussions in the remaining part of this article. The main
purpose of this section is to provide a minimal explanation and define the notation.
Therefore, interested readers are encouraged to refer to other references (e.g., [1,2,13,23])
for further details.

2.2. Bosons

The mean-field theory describing Bose–Einstein Condensates (BECs) at zero
temperature is given by the Gross–Pitaevskii (GP) equation [1,2,23–26]:

ih̄
∂ψ(r, t)

∂t
=

[
− h̄2

2m
∇2 + V(r) + g|ψ(r, t)|2

]
ψ(r, t) . (2)

Here ψ(r, t) is the superfluid order parameter (or the condensate wave function) and
g is the effective coupling constant between two interacting bosons given by

g =
4πh̄2as

m
, (3)

where as is the s-wave scattering length. The average number density n is

n =
N
V =

1
V
∫
|ψ(r)|2 dr , (4)

where N is the total number of particles and V is the volume of the system. Note
that the GP equation can be viewed as the dynamical equation that results from a
governing Hamiltonian known as the GP energy functional given by:

E[ψ] =
∫

dr

(
h̄2

2m
|∇ψ|2 + V(r)|ψ|2 + g

2
|ψ|4

)
. (5)

The stationary solution of Equation (2) is given by

µψ(r) =

[
− h̄2

2m
∇2 + V(r) + g|ψ(r)|2

]
ψ(r) , (6)

where µ is the chemical potential.
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Nonlinearity of the GP equation (the third term in the rhs of Equations (2)
and (6)) originates from the interaction between bosonic atoms. Many previous
studies have shown that GP equation describes BECs of dilute, weakly interacting
bosons at zero temperature quite successfully (see, e.g., [23] and references therein).

2.3. Fermions

A useful method for treating superfluid Fermi gases is the standard BCS
mean-field theory of superconductivity. Such a mean-field theory for inhomogeneous
systems is given by the Bogoliubov-de Gennes (BdG) equations [13,27]:(

H′(r) ∆(r)
∆∗(r) −H′(r)

)(
ui(r)
vi(r)

)
= εi

(
ui(r)
vi(r)

)
. (7)

Here H′(r) = − h̄2

2m
∇2 + V(r) − µ. Also, vi(r) and ui(r) are the quasiparticle

amplitudes, associated with the probability of occupation and unoccupation of
a paired state denoted by an index i, while εi is the corresponding eigen-energy.
The quasiparticle amplitudes vi(r) and ui(r) satisfy the normalization condition∫

dr [u∗i (r)uj(r) + v∗i (r)vj(r)] = δi,j. ∆ is the order parameter (or the pairing field),
which reduces to the pairing gap in the single quasiparticle spectrum in the region of
µ > 0 for the uniform system. The pairing field ∆(r) and the chemical potential µ in
Equation (7) are self-consistently determined from the gap equation,

∆(r) = −g ∑
i

ui(r)v∗i (r) , (8)

and the average number density

n =
N
V =

1
V
∫

n(r) dr =
2
V ∑

i

∫
|vi(r)|2dr . (9)

Since ∆ depends on {ui} and {vi}, the BdG Equations (7) are nonlinear for nonzero
interatomic interaction parameter g.

The superfluid Fermi systems bear a direct analogy with traditional
superconducting systems, and likewise g, the contact interaction, plays similar role
as the weakly attractive interaction term in the BCS-model. Only, now g can be
both small or large, and its value can be externally tuned using Feshbach resonances
by applying a magnetic or an optical field. This controllability leads to a crossover
between two ends: a weakly attractive BCS-like superfluid and a condensate of
tightly bound bosonic molecules of a pair of fermionic atoms; popularly called the
BCS-BEC crossover [11,12].
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For contact interactions, the right-hand side of Equation (8) has an ultraviolet
divergence, which has to be regularized by replacing the bare coupling constant g
with the two-body T-matrix related to the s-wave scattering length [28]. A standard
scheme [28] is to introduce a cutoff energy Ec ≡ h̄2k2

c /2m in the sum over the BdG
eigenstates and to replace g by the following relation:

1
g
=

m
4πh̄2as

− ∑
k<kc

1

2ε
(0)
k

, (10)

with ε
(0)
k ≡ h̄2k2/2m.

2.4. Discrete and Continuum Models

The systems of cold atomic gases can be studied by solving the GP equation
(bosons) or the BdG equations (fermions) for the full continuum model. Let us,
for the sake of simplicity, consider quasi-1D bosonic systems. So instead of V(r),
we think of a potential in x direction only: V(x). If there is a periodicity in the form
of V(x), or, if g itself is a periodic function of x, one approach is to try the Bloch
solutions ψ(x) = eikxφ(x), where h̄k ≡ P is the quasimomentum of the superflow
and φ(x) is a periodic function with the same periodicity as the externally imposed
periodicity by V(x) or g(x). One can expand φ(x) in terms of plane waves to give
the following form for the order parameter:

ψ(x) = eikxφ(x) = eikx
lmax

∑
l=−lmax

alei2πlx/d , (11)

to find the Bloch solutions. The normalization condition yields ∑l |al |2 = 1.
Instead of going for the full solution, one easier approach is to map the system

to a discrete model, borrowed from the idea of tight-binding model in solid-state
physics. In this approach the density of bosonic/fermionic atoms is assumed to be
concentrated around the minima of the optical lattice potential. For example, in
a quasi-1D periodic potential, the condensate wave function can be approximated
by a superposition of wave functions φj(x) localized at the lattice sites, denoted
by j, which are normalized as

∫
|φj(x)|2dx = 1. Thus, ψ(x, t) = ∑j ψj(t)φj(x). The

coefficient ψj is dependent on the site index j.
The Hamiltonian for such a discrete model is

H = −K ∑
j
(ψ∗j ψj+1 + ψ∗j+1ψj) +

U
2 ∑

j
|ψj|4 . (12)
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In the case of the periodic solution with the same periodicity as that of the lattice
(lattice constant d), the normalization condition is given by

∫ d/2

−d/2
|ψ(x)|2dx = ν , (13)

where ν is the filling factor (number of particles per site) with

ν = |ψj|2 . (14)

In evaluating the normalization condition, one neglects the overlap between φj’s
localized at different sites.

The first term in the Hamiltonian describes hopping between the
nearest-neighbor sites. The hopping parameter K is given by K = −

∫
φj[− h̄2

2m∇2 +

V(x)]φj+1dx. The on-site interaction parameter U characterizes the interaction
energy between two atoms on the same site, and gives the nonlinear term. This
U is connected to the interatomic interaction parameter g by U = g

∫
|φj(x)|4dx.

In a manner similar to the continuum model one can also derive a dynamical
equation for the amplitudes ψj from an extermisation of the energy functional
corresponding to Equation (12). Such a dynamical equation is known in literature
as the discrete nonlinear Schrödinger equation (analogous to Equation (2) for the
continuous case) [29,30] and has served as an important tool to study ultracold atoms
in optical lattices.

2.5. Energetic and Dynamical Stability

Once one can solve for the system, either from the full continuum model or the
discrete version, the next step is to study the energetic and dynamical stability of
the stationary solutions. Energetic stability guarantees that the stationary states are
a local energy minimum of the energy functional (Equation (5)) and dynamical
stability means that the time evolution of the system is stable with respect to
small perturbations (this issue will be discussed in detail later in Section 3.2.2).
The standard approach in this context is the linear stability analysis described
below [1,31–33].

Let δφq(x) be the deviation from the stationary Bloch wave solution φ(x) for a
given quasimomentum h̄k of the superflow. This can be written in the following form:

δφq = u(x, q)eiqx + v∗(x, q)e−iqx . (15)
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Here h̄q is the quasimomentum of the perturbation. The energy deviation from the
stationary states can be written in the following form

δE =
∫

dx
(

u∗ v∗
)

M(q)

(
u
v

)
. (16)

The matrix M(q) is Hermitian and gives the curvature of the energy landscape
around the stationary solution. The system is energetically stable as long as all of the
eigenvalues of M(q) are positive. When even one of the eigenvalues is non-positive,
the solution is no longer a local minimum and the system is energetically unstable.
This is often termed as “Landau instability”.

For the same perturbation δφq, the time-evolution of the system for each k is
found to be:

i
∂

∂t

(
u
v

)
= σz M(q)

(
u
v

)
, (17)

with

σz =

(
1 0
0 −1

)
. (18)

Unlike M(q), the matrix σz M(q) is not Hermitian. If the eigenvalue of σz M(q) is
complex, the perturbation corresponding to an eigenvalue with positive imaginary
part grows exponentially in time: in this case the stationary solution is dynamically
unstable. If the imaginary part is zero, the stationary state remains stable
(i.e., dynamically stable). Therefore, by noting the eigenvalues of M(q) and σz M(q),
one can learn whether the system belongs to an energetically stable region to start
with, and how it evolves during the course of time. This is important because
for BECs and superfluid Fermi gases, this stability translates to the sustenance of
superfluidity in the system.

3. Swallowtail Loops in Band Structure

In this section we consider one unique manifestation of the nonlinearity (see
Equation (2)) governing the dynamics of BECs in optical lattices—the so-called
swallowtail loops in band structures. In the first Section 3.1 we provide the basic
physical idea and the context in which swallowtail structures arise in the energy
dispersions. Moreover, we discuss the key implication of having such swallowtail
dispersions—breakdown of adiabaticity even at very slow driving. The purpose
of this subsection will be to communicate the central physical picture succinctly,
hence we shall sacrifice chronology and use the most clear presentation (in our
opinion) following [19,32,34,35]. In the second Section 3.2 we present a more detailed
account of the various theoretical results on swallowtail band structures including
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their energetic and dynamical stability. In the third Section 3.3 we present some
experimental results that consider the effects of such nonlinear structures. In the
following Section 3.1, we present a brief account of more recent developments
that extend the swallowtail phenomena to situations beyond the standard s-wave
interacting Bosons in optical lattices including dipole-dipole interactions, superfluid
Fermi gases, etc. We conclude the section with some brief remarks indicating
future prospects.

3.1. Basic Physical Idea: The Nonlinear Landau–Zener Model and Variational Ansatz for
Condensate Wavefunction in Optical Lattices

The GP Equation (2) for the order parameter describing a BEC at zero
temperature differs from the Schrödinger equation for a single particle in one key
aspect — the presence of the interaction term g|ψ(r, t)|2 in addition to the externally
applied potential term V(r). When the order parameter ψ(r) is expanded in terms of a
given complete basis set of single particle wavefunctions, the nonlinear term in the GP
equation essentially leads to an effective potential that is dependent on the occupation
probability of the different single particle states. One may anticipate that in the limit
that the nonlinearity is comparable to the external potential, i.e., gn ∼ V(r), the
resulting dynamics as well as the stationary solutions of the GP Equation (6) can be
very different from the equivalent ones for the non-interacting g = 0 case which are
simply governed by the eigen-energies of the Schrödinger equation.

The simplest model to see the structures that emerge in the limit of large
nonlinearities is the nonlinear two-level system introduced in [34]:

i
∂

∂t

(
a
b

)
= H(γ)

(
a
b

)
, (19)

H(γ) =

(
γ
2 + c

2
(
|b|2 − |a|2

)
v/2

v/2 − γ
2 − c

2
(
|b|2 − |a|2

)) . (20)

Here γ gives the level separation and v/2 is the coupling between the levels.
With γ = αt, and g = 0, the above Hamiltonian is the well known Landau–Zener (LZ)
model [36,37]. Equation (19) represents an extension of the LZ model representing
the dynamics of a BEC with an order parameter whose overlap with the two relevant
single particle levels has the amplitude a and b. Let us now consider the main results
of such a model. In the limit of the small c = 0.1, as shown in Figure 1 left, the
adiabatic energy levels (or the chemical potential µ in the language of our theoretical
framework) is qualitatively similar to the linear case with the characteristic avoided
crossing. When the nonlinearity exceeds the coupling strength v, the adiabatic
energy levels are drastically changed with the development of the characteristic
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looped structures. Note that the shape of the loop for the chemical potential is not a
swallowtail, the energy function has such a swallowtail structure.

While the modification of the energy level structure due to the strong
nonlinearity is novel, what makes the looped energy structures particularly
interesting from a physical point of view is the crucial implication of the looped
structure for the transition probability between adiabatic energy levels. In the
linear case (c = 0), the transition probability for the LZ model is given by
r0 = exp(−πv2/2α). In this case in the so-called adiabatic limit of α → 0, the
transition probability vanishes. On the other hand in the nonlinear case, as shown
in Figure 1 right, for strong enough nonlinearity such that c > v there is a finite
transition probability even in the adiabatic limit. A simple explanation for this
behavior is discernible from the looped energy structure in the third panel of Figure 1
left—starting from the lower energy state initially, in the adiabatic limit there is very
little tunneling as the system passes the point “X” and continues upwards along the
loop to reach the final point “T”. At this point the system has to make a non-adiabatic
transition to either the upper or lower level irrespective of how slow the sweep rate
α is. This breakdown of adiabaticity is the key implication as well as an indication of
the loop structure arising from the nonlinearity.

(Left) Energy levels. (Right) Transition probability.

Figure 1. (Left) Adiabatic energy levels (or the chemical potential µ) as a function
of the nonlinearity c for the nonlinear LZ problem showing the emergence of loops
for c > v. The dashed lines represent the adiabatic energy levels for the c = 0 case.
(Right) Tunneling probability as a function of drive speed α at different values of c.
For the linear case the result of the classic formula r0 = exp(−πv2/2α) is displayed
by the open circles. The figures are taken from [34].
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Having captured the basic setting in which loops arise via the nonlinear LZ
model, we move on now to the system central to this review—BEC in an optical
lattice. We are interested in the stationary states of the GP equation that satisfy
Equation (6). In analogy to the LZ model, when the nonlinearity gn is comparable
to the applied lattice potential strength V(x) we can expect interesting energy
dispersions to arise. To be specific, henceforth we follow the treatment in [19,32] and
consider a one-dimensional potential of the form:

V(x) = V0 cos(2πx/d), (21)

and look for stationary states of the Bloch form, i.e., ψ(x) = eikx f (x) with f (x + d) =
f (x). Here k denotes the quasimomentum of the condensate and is the proper
quantum number in a periodic system. A key quantity of interest is the energy per
unit volume given by

E =
1
d

∫ d/2

−d/2
dx

[
h̄2

2m
|∇ψ|2 + V0 cos(2πx/d)|ψ|2 + g

2
|ψ|4

]
. (22)

In the absence of interactions, i.e., g = 0, the energy per unit volume is arranged
into the usual band structure which repeats after every reciprocal lattice momentum
k = 2π/d and has gaps at the zone edges k = rπ/d with r an odd integer in
the extended zone representation of the bands (or at k = ±π/d in the reduced
zone schemes).

Equation (11) gives the full plane wave expansion for a Bloch state but a
variational ansatz restricting to just three plane wave states, i.e., lmax = 1 can already
capture much of the physics as shown in [32]. Since the relative phases of the plane
wave amplitudes (a0, a1, a−1) do not change the energy, they can be chosen as real
and using their normalization property restricted to the form:

a0 = cos θ, a1 = sin θ cos φ, a−1 = sin θ sin φ . (23)

The trial wavefunction (11) with the coefficients of the form (23) is inserted into
the energy per unit volume expression (22) and extremized with respect to the
parameters θ and φ. Also the recoil energy E0 = h̄π2/2md2 (E0 = ER in the notation
of this review article) serves as a convenient unit for different energies in the problem.
Let us first consider the situation close to the Brillouin zone edge k = ±π/d. Using
intuition from the nearly free particle models for periodic potentials, the ansatz (23)
may further be simplified by taking φ = {0, π/2} [19] giving:

ψ(x) =
√

n eikx
(

cos θ + sin θ e−i2πx/d
)

(24)
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with n the average particle density. In fact it was shown in [34] that such an ansatz
can indeed be used to map the problem to that of the nonlinear LZ discussed earlier.
At the zone edge k = π/d, upon extremization of energy density functional (22)
yields the solutions cos 2θ = 0 or sin 2θ = V0/(gn). When gn < V0, the only possible
solutions are θ = π/4 or θ = 3π/4 representing the zone edge solutions of the lowest
and first excited band and are qualitatively similar to their counterparts in the linear,
g = 0, limit. The condensate current density J, given by the derivative of energy E
with respect to k, is zero for such solutions. When the interaction is strong enough
such that ng > V0, the other solution with θ = sin−1 [V0/(gn)]/2 is also allowed.
Moreover this solution has no linear counterpart and has non-zero current even at
the zone edge with:

J = ± h̄π

md

√
n2 − V2

0
g2 . (25)

For values of k away from the zone edge with g > V0/n, the two solutions originally
located at θ = π/4 and sin−1 [V0/(gn)]/2 approach each other and finally merge
giving rise to the typical loop structure depicted in Figure 2 top. Also note that
the band-gap at k = π/d in the weak lattice limit V0 � E0 is given by V0 and the
condition to have looped energy dispersion is that the interaction energy per particle
gn be greater than this band gap.

Remarkably, the variational trial wavefunction (24), with θ values such that E
is extremized, is identical with an exact analytical solution found in [18,38]. While
this initially leads one to suspect that loops are somehow a restricted phenomenon
subject to the availability of such exact solutions, further work in [32] dispelled this
notion by demonstrating the possibility of loops even at the zone center, i.e., with
k = 0, without any known exact solutions (see Figure 2 bottom). Such solutions are
also captured by the variational ansatz (23). In this context the key solution in the
linear limit is the one corresponding to the top of the second band with k = 0 and
energy E/n = 4E0 per particle in the absence of interactions g = 0 and V0 � E0.
This solution with an equal admixture of a1 and a−1, and very small contribution
from a0 has θ = π/2 and φ = 3π/4 (the solution with φ = π/4 corresponds to the
third band now) persists even when g 6= 0. However, it was shown in [32] that, for
sufficiently large values of g, this solution becomes unstable and two new solutions
emerge signaling the lower and upper point of the loop at k = 0 depicted in Figure 2
bottom. The condition for emergence of loops at the zone center is given by:

gn > (16E2
0 + V2

0 )− 4E0 . (26)

In the weak lattice limit, the above condition simplifies to gn > V2
0 /(8E0) which is

precisely analogous to the condition that interactions exceed the band gap similar to
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the criterion to have loops at the zone edge. Figure 2 bottom illustrates the zone-edge
and zone-center loops computed using the ansatz (23). Furthermore it was found
in [32] that the size of the loops, i.e., their extent in k increases monotonically as
the ratio gn/V0 is increased. Most interestingly in the limit of vanishing lattice
potential V0 → 0, the swallowtail loops extend over the entire Brillouin zone and
the upper edge of the swallowtail becomes degenerate with the states in the bands
above. As we discuss more in detail in the next subsection, this behavior stems from
the fact that the states in the upper edge of the swallowtail correspond to periodic
soliton solutions of the GP equation in free space whose degeneracy is lifted by the
application of a periodic potential.

(Top) Zone-edge loop.

(Bottom) Zone-center & zone-edge loops.

Figure 2. (Top) Swallowtail loop structure of the energy per particle as function
of k computed from the variational ansatz (24) for V0 = 3h̄(4V0/m)1/2π/d and
n = 1.2V0/U0. Figure was taken from [19]. (Bottom) Energy per particle obtained
using the variational ansatz (23) demonstrating the presence of swallowtail loops
at both the zone edge and zone center for sufficiently strong nonlinearity. U0 in the
figure is g in our notation. Moreover, the loops persist and extend over the entire
band in the limit V0 → 0. Taken from [32].

Finally, the swallowtail loop structures discussed so far may be intuitively
viewed as generic features that arise in hysteretic systems as clarified in the work
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of [35]. Moreover the specific case of loops in the energy band structure of a BEC
in an optical lattice can also be understood as a manifestation of superfluidity and
extended to other analogous systems such as superfluids in annular rings that have
been realized experimentally [39]. The key insight of [35] can be explained from
Figure 3. In Figure 3a, the approximately sinusoidal energy dispersion (lowest band)
of a quantum particle in a periodic potential is shown. The corresponding Bloch
eigenstates at different quasimomentum h̄k have periodic probability distributions
commensurate with applied lattice potential. When a uniform external force is
applied, the particle adiabatically follows this energy dispersion and performs
periodic Bloch oscillations. In contrast for a BEC with interactions obeying the GP
equation, i.e., a superfluid in a periodic potential, the interaction term tends to prefer
uniform density distributions. Hence for strong enough interactions, as shown in
Figure 3b, the adiabatic band structure tends to be more similar to the quadratic free
particle dispersion. This behavior has been referred to as the screening of the lattice
potential by the superfluid in [35]. As a result, the velocity of the superfluid does not
go to zero at the zone edge leading to non-zero current as expressed by Equation (25).
As shown in Figure 3b, the velocity cannot increase indefinitely and the dispersion
terminates (gray circle in Figure 3b) when the velocity becomes comparable to the
Landau critical velocity of the superfluid giving rise to the swallowtail structure.
Clearly adiabatic evolution along such a trajectory has to breakdown beyond this
terminal point and forcing the system across this point from left to right and back
will not restore the initial state—which is a clear sign of hysteresis. Also looking at
the vicinity of the zone edge, it is clear that there are two possible minima for the
energy which naturally leads to a saddle point separating the two minima given by
the upper branch of the loop (the dotted lines in Figure 3b).

(a) (b)

Figure 3. (a) The dashed line schematically shows the energy dispersion for a free
particle which is modified to the solid line showing the (lowest) band structure on
the application of a periodic potential of period L. (b) Schematic plot of energy
bands for a superfluid in an optical lattice that screens out the lattice to maintain
non-zero flow velocity at the zone edge. Plots taken from [35].

The presence of multiple minima is a general characteristic of hysteretic systems.
The number of minima for the superfluid in a periodic potential can be “controlled”
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by varying the quasimomentum h̄k or the interaction strength g that sets the size of
the swallowtail loop (remember that the swallowtail loops disappear if the g is below
some critical value). In the purview of catastrophe theory [40], which is the study of
singularities of gradient maps (any physical theory where a generating function is
minimized to identify the stationary states of the system such as Fermat’s principle in
optics or the extremization of the GP energy functional here are examples of gradient
maps), the swallowtail structures of energy bands represents a cusp catastrophe
where two control parameters (g and k) may be varied to change the number of
extrema of the energy by 2.

3.2. Swallowtail Loops Structures for Bosons in Optical Lattices

Having provided a physical picture of swallowtail loops in the previous
subsection we proceed now to a comprehensive overview of the main results. We will
divide this subsection into two parts. In the first part we provide an account of the
different results obtained regarding the occurrence of swallowtail loop structures for
BECs in optical lattices and in the second part focus on the energetic and dynamical
stability of the solutions.

3.2.1. Occurrence of Loop Solutions

The phenomenon of swallowtail loops in energy band structures arising from
the GP equation were first investigated by Wu and Niu in [34] for the nonlinear LZ
introduced in detail in the previous subsection. In this work it was also pointed out
that the nonlinear LZ model naturally arises near the zone edge in the dispersion for
a BEC in a periodic optical lattice potential. The key results from this pioneering work
are noted in Figure 1. Following this work, an exact solution for the GP equation
in a periodic potential of the form V(x) = −V0sn2(x, κ) with sn(x, κ) denoting the
Jacobian elliptic sine function (with elliptic modulus 0 ≤ κ ≤ 1) was discovered
in [38]. These solutions for κ = 0 (Equation (2.1) of [18] or Equation (10) of [38] with
elliptic modulus k = 0 in their notation) take the following form in our notation:

ψexact(x) =
√

c− v +
√

c + v
2
√

c
eiπx/d +

√
c− v−√c + v

2
√

c
e−iπx/d (27)

with c = gn/(8E0) and v = V0/(8E0), which is of the Bloch wave form for the
zone edge k = kL = π/d. When c > v (which is also the condition for loops to
appear at the zone edge), Equation (27) gives the solution with finite current (see
Equation (25)).

While on the one hand the exact solution lent more credibility [18] to the looped
dispersions found from numerical solutions in [34], they also led to the suspicion that
such solutions may not be a general feature. This was quickly dispelled by a simple
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variational calculation for the loops at zone edge by Diakonov et al. [19], followed by
a more comprehensive analysis by Machholm et al. [32] demonstrating loops at the
band center which we described in the previous subsection. Machholm et al. [32] also
provided a thorough analysis of the width of the swallowtail loops, defined as the
extent in quasimomentum space in an extended zone scheme, as the key parameters
gn and V0 are varied for both the zone-edge loops (Figure 4a) and zone-center loops
(Figure 4b).

(a) Zone-edge loops. (b) Zone-center loops.

Figure 4. Contour plot of width of swallowtail loops from a numerical minimization
using the variational wavefunction (11) as a function of interaction (nU0 is ng in
the notation of this review) and optical lattice depth V0 for zone-edge loops (a) and
zone-center loops (b). Dashed lines in (a) are for truncation with lmax = 2 and solid
lines for lmax = 3. Taken from [32].

The results in Figure 4 were calculated by a numerical minimization of the
GP energy functional (5) with the ansatz (11). An unexpected feature of the results
in Figure 4 is that the width of the swallowtail loops remain non-zero even in the
limit V0 → 0. In this limit the swallowtail solutions correspond to periodic soliton
solutions of the GP equation. The zone edge solution with k = π/d represents
an equally spaced array of dark solitons (in one dimension, a dark soliton’s wave
function vanishes at some point in space whereas for a gray soliton there is a density
dip of non-zero value at some point in space) with one soliton per lattice spacing d.
The wave number of the solution k = π/d can then be justified as the average phase
change per unit length giving the right change in phase of π across the dark solitons
in each period. When V0 = 0, soliton array solutions with density dips located at
x = rd and x = (r + 1/2)d (with r integer) are degenerate and correspond to the
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highest energy state in the first band and the one immediately above in the second
band, respectively. The lattice potential breaks this degeneracy as the solution with
soliton centers at potential maxima x = rd have lower energy giving rise to the
energy gap at the center of the swallowtail loop. The loops at k = 0 can also be
understood with an analogous argument. The solutions with k 6= 0 correspond
to arrays of gray solitons. The phase change across a gray soliton is less than π

and they move with some finite velocity vsoliton in the absence of the potential. In
order to create a stationary state from such solutions at finite V0, one has to imagine
boosting the condensate velocity by −vsoliton giving a spatial dependent phase to
the condensate wave function. The wave vector corresponding to such solutions
now depends both on the density and the phase shift implied by the finite velocity
boost. Moving away from k = 0 or π/d, the minimum density and vsoliton increases
eventually going to zero and the sound speed (gn/m)1/2 respectively leading to the
loop branch merging with the free particle dispersion as shown in Figure 2 bottom.
This manner of understanding the emergence of swallowtail loop structures from
the soliton solutions provides a complementary physical picture of the phenomenon.

The work by Mueller in [35] provides a general way to understand swallowtail
loops from the point of view of hysteresis and superfluid response. A corollary of
such an approach is that it is possible to extend the phenomena of loops to systems
beyond the standard system in this review (BEC in a periodic potential). Amongst
the various examples discussed in [35], the case of a BEC in an annular trap is of
particular interest in the context of the experiment [39]. The Hamiltonian in the
rotating frame describing a bosonic superfluid (mass m) in a 1D ring of length L,
rotating at a frequency Ω is

H
h̄2/2mL2

= ∑
j
(2π j + Φ)2c†

j cj +
g̃
2 ∑

j+k=l+m
c†

j c†
k clcm + λ ∑

j

(
c†

j cj−1 + c†
j cj+1

)
. (28)

In the above, cj stands for the annihilation operator for bosons with angular
momentum jh̄ in a quantized picture or the amplitude of occupation of the same
mode within a mean-field GP-like picture, Φ = 2mL2Ω/h̄ is the rotation speed
in a dimensionless form, g̃ = 4πasL/d2

⊥ is the effective interaction for a trap
perpendicular to the ring with harmonic oscillator length d⊥, and λ is an impurity
term that breaks the rotational symmetry coupling different angular momenta. This
can arise naturally due to imperfections in the container or be generated, for instance,
by applying a laser potential externally. The key point is that there is a one-to-one
correspondence between the Hamiltonian (28) and the GP energy functional (5) after
substituting the Bloch ansatz (11) with Φ playing the role of quasi-wave number
k and λ playing the role of the periodic potential strength leading to swallowtail
loops as shown in Figure 11 in [35]. We will revisit Equation (28) in Section 3.3.
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Seaman et al. [41] and Dong and Wu [42] provided an interesting insight into the
swallowtail loop structures for both repulsively (g > 0) and attractively (g < 0)
interacting BECs for the special case of a Kronig–Penney periodic potential which is
of the form,

V(x) = V0

∞

∑
j=−∞

δ(x− jd). (29)

The Bloch states in such a potential can be solved analytically. For the repulsive
interactions case, the results in [41] agreed qualitatively with the earlier numerical
and approximate calculations but had unique features such as the fact that the critical
interaction strength to have loops gn > 2V0 for all bands of the energy spectrum
unlike the sinusoidal band case discussed in [32]. In the case of attractive interactions
with g < 0, they found the loop structures occurred in the upper branch at the band
gaps, starting from the second band as shown in Figure 5. Moreover for the strongly
attractive case gn = −10E0 shown in Figure 5 the loop in the second band spans the
entire Brillouin zone and splits from the original band.

Figure 5. Energy bands with swallowtail loops in the excited bands for a
Kronig–Penney potential (Equation (29)) with V0 = E0 and attractive interaction
gn = −10E0. Taken from [41].

3.2.2. Stability of Loop Solutions

In the discussion of swallowtail loops so far, we have completely ignored the
stability properties of the solutions. In what follows, we discuss results regarding
the energetic and dynamical stability of steady state solutions of the Bloch form
(of which swallowtail loops are special cases) for BECs in periodic potentials. The
stability of the solutions we find by extremizing the GP energy functionals (5) are
crucial as they will provide us clues as to whether in an experiment the system can
reach such equilibrium solutions and if they do how long can they be stable. As a
part of the the theoretical framework Section 2.5, we provided the conditions for
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energetic stability but a physical picture of the two kinds of stability as exemplified in
Figure 6a is helpful—for energetic stability the equilibrium solution has to be a local
minimum of the energy functional (5) whereas for dynamical stability perturbations
about the equilibrium state should not grow with time when evolved according to
the time-dependent GP Equation (2).

The stability of Bloch states in the lowest band excluding loops was discussed
by Wu and Niu in [31] and [43]. Figure 6b represents the results from a numerical
calculation mapping out the stability of Bloch states with quasimomentum h̄k under
perturbations of the Bloch wave form with quasimomentum h̄q for different values of
the potential v = V0/(8E0) and nonlinearity c = gn/(8E0). Let us denote the stability
matrix, Equation (16), for a state with quasimomentum h̄k under a perturbation of
quasimomentum h̄q as Mk(q). For the special case of a free BEC with no lattice,
i.e., v = 0, the eigenvalues of the matrix can be computed analytically and the
requirement for positivity of eigenvalues leads to the well-known Landau criterion
given by

|k| ≥
√

q2/4 + c. (30)

The shaded light and dark regions in Figure 6b represent regions of energetic
instability with Mk(q) having negative eigenvalues. In the limit of small v the equality
in the expression (30) accurately reproduces the energetic stability region shown
by triangles in the plot. Another key feature to note in Figure 6b is that even at v
comparable to c, as the nonlinearity c is increased, the BEC is energetically stable over
an increasing area in the k-q space, which can be anticipated from expression (30).
Entropy 2016, 18, 118 15 of 39

(a) Schematic.

(b) Stability of Bloch solutions.

Figure 6. (a) Schematic illustration of the physical principle behind the definitions of energetic
and dynamical stability. A dynamically unstable state is always energetically unstable whereas the
vice-versa is not true. (b) Stability phase diagram at different values of lattice depth and nonlinearity
parameter for a BEC in an optical lattice. The relation between the notation in the picture and this
review article is scaled potential v = V0/(8E0) and nonlinearity parameter c = gn/(8E0). q is the wave
number of the perturbation modes and k the quasimomentum in units of 2K = 4π/d. In the shaded
dark and light areas the system is energetically unstable while in the shaded dark area it is dynamically
unstable. Triangles in (a.1–a.4) represent the boundary q4 + c = k2 expected for v = 0 and full dots
in first column are from the results of an analytical calculation using Equation (31) valid for v � 1.
Broken curves indicate the most unstable modes for each quasimomentum. The open circles in (b.1)
and (c.1) represent analytical result valid for c� v (see Equation (5.14) of [43]). Figure taken from [43].

Figure 6. Cont.
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Figure 6. (a) Schematic illustration of the physical principle behind the definitions of energetic
and dynamical stability. A dynamically unstable state is always energetically unstable whereas the
vice-versa is not true. (b) Stability phase diagram at different values of lattice depth and nonlinearity
parameter for a BEC in an optical lattice. The relation between the notation in the picture and this
review article is scaled potential v = V0/(8E0) and nonlinearity parameter c = gn/(8E0). q is the wave
number of the perturbation modes and k the quasimomentum in units of 2K = 4π/d. In the shaded
dark and light areas the system is energetically unstable while in the shaded dark area it is dynamically
unstable. Triangles in (a.1–a.4) represent the boundary q4 + c = k2 expected for v = 0 and full dots
in first column are from the results of an analytical calculation using Equation (31) valid for v � 1.
Broken curves indicate the most unstable modes for each quasimomentum. The open circles in (b.1)
and (c.1) represent analytical result valid for c� v (see Equation (5.14) of [43]). Figure taken from [43].

Figure 6. Schematic illustrations for the mid-point bounce-back scheme.

In Figure 6b, the system is dynamically unstable in the dark shaded regions.
The first thing to notice is that energetic instability is a pre-requisite for dynamical
instability and this can also be shown in general (see appendix of [43]). Further
insight into dynamical stability can be obtained by considering the structure of the
eigenvalues of the matrix σz Mk(q) since the requirement for dynamical stability is to
have real eigenvalues for this matrix. The states represented by the eigenvectors of
σz Mk(q) can also be viewed as quasiparticle excitations in the BEC, i.e., phonons [43],
with the positive eigenvalues giving the phonon spectrum. In general the eigenvalues
of σz Mk(q) can be complex but always occur in complex conjugate pairs [32,43]
owing to the real nature of the matrix in momentum representation. In the case
of v = 0, the eigenvalues of σz Mk(q) are always real and given by ε±(q) = kq±√

q2c + q4/4 where k and q are measured in units of 4π/d. This implies that in
free space BEC, flows are always dynamically stable. However, Figure 6b shows
that situations change significantly when the lattice potential is introduced as also
evidenced in experiments [44–46]. In general for all parameter regimes there is a
critical wave number kd beyond which Bloch waves are dynamically unstable. At
k = kd, dynamical stability always sets in for q = π/d, which interestingly also
corresponds to a period doubling revealing a link further explored in Section 4. At
the point where dynamical instability sets in, the eigenvalues of σz Mk(q) change
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character from real to pairs of complex conjugates, i.e., with equal real parts. Hence
as explained in [31,32,43], dynamical instability can be viewed as arising from a
lattice induced resonance between a pair of excitations that are degenerate in the
v = 0 limit. Thus when the instability sets in, two phonons with the sum of their
momenta given by the primitive reciprocal lattice vectors ±G = ±2π/d are created
from zero energy, i.e., they satisfy

ε+(q) + ε+(2π/d− q) = 0 . (31)

This can be used to clearly justify the observation (valid at small lattice depths V0)
that instability at the critical wave number kd always sets in with q = G/2 = π/d
and the critical vector satisfies |kd| = (π/d)(gn/2E0 + 1/4)1/2 agreeing with the
numerical results in Figure 6b.

In the stability analysis of [32], in addition to standard Bloch states, also the ones
corresponding to the loop solutions (lower branch) were considered. In Figure 7 the
results of this analysis is shown by plotting the largest Bloch wave vector k for which
the states are energetically stable as a function of ng and V0. States with 0 ≤ k ≤ π/d
correspond to states with the lowest energy and k > π/d represents lower edge-loop
states. In general it was found that the range of quasimomentum values at which
the system is energetically stable increases with the interaction strength gn. They
also found that the wave vector of the tip of the swallowtail sets a natural limit for
the wave vector at which instability sets in for parameter regimes where swallowtail
loops occur. Moreover they found, in agreement with [31], with increasing k the long
wavelength perturbations with q → 0 become energetically unstable first. Hence
a hydrodynamic description can be constructed [47–49] and it also gives analytical
predictions for the instability contour as a function of V0 and gn for the zone edge
with k = π/d which compares favorably with the numerical calculations [49]. Note
that as expected the states on the upper edge of the loop are always energetically and
dynamically unstable.

Finally, the discussion so far was limited to only the linear stability of
equilibrium solutions but the full response of the solutions of time dependent GP
Equation (2) to perturbations was also studied numerically in [41]. Here the stable
lifetime of a given initial equilibrium state was defined as the time taken for the
variance of the Fourier spectrum of the time-dependent order parameter from the
initial Fourier spectrum (normalized to the initial spectrum) to exceed the value
1/2, i.e., the time at which the order parameter becomes very different from the
initial solution and taken as an indicative time for onset of dynamical instability.
They found that for weakly attractive condensates the zero quasimomentum Bloch
state in the first band is long-lived under white noise perturbations but highly
unstable for time periodic perturbations. For both weak and strong attractive
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interactions the higher band Bloch states are unstable but the first band Bloch states
with non-zero quasimomentum can be stable even to harmonic perturbations owing
to their negative effective mass (defined as the inverse of the Band curvature). For
weak repulsive interactions, Bloch states in the lowest band are stable as long as the
quasi-wave number k < π/d, as at larger quasi-wave numbers the effective mass
becomes negative, for the particular choice of Kronig–Penney potential (29) used
in [41]. However, in agreement with the linear stability analysis, as the interaction
strength grows, larger parts of the energy band including the lower branch of the
loops are stable. In a later publication the same authors [50,51] showed that there
is always a small part of the loop in the repulsive case that has negative effective
mass but this area’s extent monotonically decreases as gn is increased. A clear
discussion of the dynamical stability of attractive BECs in an optical lattice is provided
in [52]. A recent review [53] also provides detailed treatment of stability of BECs in
optical lattices.

(a) Energetic stability. (b) Dynamical stability.

Figure 7. Contour plot of maximum quasimomentum k for energetic stability
(a) and dynamical stability (b) as a function of interaction and lattice depth for
zone-edge loops. k ≤ π/d represents states on the lowest branch of the ground
band and k > π/d the states on the lower edge of the swallowtail loop. The dashed
lines in (b) are energetic stability curves for comparison. Taken from [32].

3.3. Experimental Realization

In the past decade and half there has been tremendous progress in the field
of ultracold atoms in optical lattices [14,15] with a range of experiments tackling
interesting many-body physics. In this light it must be said that specific experiments
dealing with nonlinear energy dispersions in optical lattices have been few and far
in between.
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The earliest relevant experiment concerns the instability of superfluids in optical
lattices by the group at LENS, Florence reported in Burger et al. [44–46]. In this
experiment a cigar shaped quasi-1D BEC was localized in an harmonic trap and an
optical lattice potential was also turned on. Following this, the center of the trap
was suddenly shifted, corresponding to a sudden change of the quasimomentum
in our language. For small shifts ∆x the dynamics of the BEC was coherent but
for shifts greater than a critical value ∆x > ∆xc, the oscillations are disrupted and
the dynamics became dissipative. The authors of the experiment attributed this
to the energetic Landau instability of the condensate. But theoretical work from
Wu and Niu [43,45,46] showed that it may be more appropriate to associate this
behavior with dynamical instability especially considering that the experimental
parameters fall in a regime (c ∼ 0.02, v ∼ 0.2) where dynamical instability is
rampant (see Figure 6b) and the critical displacement ∆xc increases with decrease
of lattice depth in the experiment (the energetic stability is essentially independent
of lattice depth in the linearized stability treatment). A follow-up comment from
the authors of the experiment [45,46] was essentially inconclusive but hinted that
even the GP equation may not be a valid description for some of their experimental
results and beyond mean-field effects may have to be included. Following this,
in [54] a thorough theoretical treatment of the problem including 3-dimensional
GP equations and effective 1-dimensional GP equations taking into account the
transverse degrees of freedom was undertaken. This theoretical treatment adapted
to the experiment [44] clearly showed that the onset of instability observed in the
experiment was due to dynamical instability. There are two main reasons that led to
some uncertainty regarding the conclusions in the experiments [44]—the inability
to distinguish experimentally between dynamical and energetic stability as both
processes manifest as an enhanced loss of atom number from the condensate and
the inability to accurately set the initial quasimomentum of the condensate as a
mean displacement from the harmonic trap center can in general lead to a mixture of
quasimomenta and band eigenstates.

In the follow-up experiment from the LENS group [55,56] both these issues
were succesfully resolved. In [55], a moving optical lattice was implemented by
frequency detuning the two laser beams creating the lattice. The ground state in
a moving lattice is simply a state with a finite quasimomentum. By varying the
amount of detuning, they were able to load the BEC adiabatically into states with
a given quasimomentum both in the ground and excited bands. A subsequent
measurement of the loss rates as a function of quasimomentum revealed a threshold
for the onset of dynamical instability in very good agreement with the theoretical
expectation for the lattice depth used. In [56] they were able to also distinguish
between the onset of energetic and dynamical instability by an ingenious use of a
radio-frequency (RF) shield to selectively control the thermal fraction of the atomic
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cloud. The presence of the thermal cloud can effectively trigger energetic instability,
which has generally a lower threshold in quasimomentum, by providing a dissipation
channel. Hence when a large thermal fraction is present, the onset of dynamical
instability is marred by energetic instability. On the other hand when the RF shield
is turned on to remove the thermal fraction and experiments are performed with
nearly pure condensate, the onset of dynamical instability stands out via a dramatic
loss of atom number. It is important to emphasize at this point that experiments
such as [44] are performed at small lattice depths v. In this regime, as evident
from Figure 6b, there are significant regions of quasimomentum space that are
energetically unstable but dynamically stable. On the other hand at large lattice
depths (see Figure 1 of [56]), the region of quasimomentum space that exhibits only
energetic instability is tiny. Thus in this so called tight-binding lattice limit, there was
unambiguous agreement between experiments [57] and the theoretical [43,58] and
numerical [59,60] treatments that predicted dynamical instability. It was also shown
in [58] that the dynamical instability in this regime can also be viewed as a kind
of modulational instability which is a general feature of nonlinear wave equations
where a small perturbations of a carrier wave can exponentially grow as a result of
interplay of dispersion and nonlinearity.

In [61], the behaviour of the critical quasimomentum upto which superfluidity
persisits across the superfluid-Mott insulator (SF-MI) quantum phase transition was
studied. Within a mean-field GP picuture, as we have discussed in Section 3.2.2,
the stability of the superfluid is in general enhanced with increasing interaction
and lattice depth. On the other hand, within the full quantum model, there is a
critical interaction strength to tunneling ratio beyond which the system is no longer
superfluid and goes into the Mott insulating phase where the critical quasimomentum
is trivially equal to 0. This study maps the behaviour of the critical quasimomentum
as it goes from a finite value in the SF phase to zero in the MI phase giving an accurate
determination of the phase boundary. In [62] beyond dynamical instability at the zone
edge is investigated experimentally and theoretically within the truncated Wigner
approach which can account for beyond GP effects including the thermal depletion of
the condensate. Finally, in recent experiments [63] dynamical instability of spin-orbit
coupled (SOC) BECs in moving optical lattices was investigated and a manifestation
of the breakdown of Galilean invariance predicted for SOC systems was evidenced
by the difference in the strength of the dynamical instability (measured by atom loss
rate) depending upon the direction of motion of the lattice.

In the seminal experiment of the Bloch group [64], some aspects of the nonlinear
LZ tunneling phenomena originally considered in the theoretical work of Wu and
Niu [34] was explored. The experimental system consisted of an array of tubes of
BECs in a 2D optical lattice potential. A superlattice potential along x direction
allows pair-wise coupling between tubes giving many copies of coupled double
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wells. In the experiment they effectively realize the nonlinear LZ energy function of
the the form:

E[ψR, ψL] ≈
∆
2

(
|ψR|2 − |ψL|2

)
− J(ψ∗RψL + c.c.) +

U
2
〈δn̂2〉

(
|ψR|4 + |ψL|4

)
, (32)

where ψL and ψR represent the amplitude to occupy either the left or the right tube.
∆, the energy detuning between the tubes, and J, the tunnel coupling between the
tubes can be controlled by varying the relative phase and lattice depth respectively
of the superlattice potential along x direction.

The experimental protocol consists of preparing all the atoms initially in the
left tube with the initial detuning ∆i either chosen to be negative (ground state) or
positive (excited state) and sweeping the detuning at the linear rate α and finally
measuring the number of atoms in the left and right tube. As already anticipated by
Wu and Niu [34], the model (Equation (32)) is exactly the same as the one introduced
in Equation (19) except for the interaction term’s sign is switched. As a result once
the ratio of interaction to tunneling η = U〈δn̂2〉/J (c/v in [34]) is large, there is a
loop in the upper branch as shown in lower panel of Figure 8 left. In the experiment,
for sweeps along the ground state branch (gray dots in Figure 8 left) there is no
adiabaticity breakdown observed. In the sweep starting with the excited state (left
tube at higher energy), there is a complete breakdown of adiabaticity even for
reasonably small sweep rates α (red dots in Figure 8 left). Moreover, for small sweep
rates the transfer efficiency, given by number of atoms nR in the final state, decreases
with decreasing sweep rate completely opposing the expected LZ behavior. The
presence of the loop in the upper branch contributes to this adiabaticity breakdown
for small sweep rates, as the atoms follow the upper branch and are self-trapped in the
middle branch of the loop, (see lower panel of Figure 8 left) which is a local maxima.
They finally make a diabatic transition to the adiabatic ground state at the loop edge
leading to the sharp breakdown of transfer efficiency near zero detuning seen in
Figure 8 left upper panel. A confirmation of the effect of loops on the adiabaticity
breakdown is provided by the non-monotonic behavior of the transfer efficiency
(number of atoms in the initially empty right tube at the end) at a given sweep rate
and tunnel coupling as a function of the z-lattice depth shown in top panel of Figure
8 right. At small z-lattice depths, an increase in lattice depth effectively increases the
on-site interaction U〈δn̂2〉, leading to larger loop sizes which leads to lower transfer
efficiency but eventually beyond a certain lattice depth the suppression of on-site
fluctuations 〈δn̂2〉 dominates leading to a decrease in the effective interaction and
increase of transfer efficiency restoring standard LZ behavior. Moreover as shown in
the lower panel in Figure 8 right, the experimentally determined minimum transfer
efficiency agrees with a theoretical calculation for the position of the maximum loops
size as a function of the z-lattice depth and tunnel coupling.
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(Left) (Right)

Figure 8. (Left) (a) Transfer efficiency nR from filled to unfilled well (tube) as a
function of the energy detuning for ground state sweep (gray dots) and excited
state sweep (red dots) for constant sweep rate of 2π J2/h̄|α| = 2.1(1); (b) Adiabatic
energy levels for the excited (with loops) and ground state levels including
strong repulsive interaction (solid lines) and excluding interactions (dashed lines).
The curved lines indicate the relaxation process enabling non-adiabatic transitions.
|nR, nL〉 is a shorthand denoting the left- and right-well (tube) population
respectively. (Right) (a) Transfer efficiency as a function of z-lattice depth at
constant sweep rate 0.53(3); (b) Phase diagram of the metastable excited condensate
branch. In the gray shaded area there is a loop in the adiabatic energy level. Data
points represent minima in the measured transfer efficiency and agree well with
the solid line depicted for the calculated maximum loop size. Taken from [64].

In the experiment by Eckel et al. [39], a physical situation approximately
corresponding to the Hamiltonian in Equation (28) was realized for a BEC of 23Na
atoms confined in a ring shaped trap. The goal of this experiment was to observe
hysteresis between quantized states of circulation of the superfluid BEC caused by
the presence of swallowtail loops in the energy landscape of such a system [35,65].
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In the experiment [39], they were concerned with the quantized circulation states
with winding numbers n = 0 and n = 1 with frequency n times the rotational
quanta Ω0 = h̄/mR2 and drive transitions between these states by tuning the relative
angular velocity between the trap and the superfluid Ω which can be controlled by
applying a repulsive rotating laser potential.

In the absence of coupling between the different circulation states, the energy
landscape of the interacting superfluid forms a swallowtail loop shape as a function
of the relative angular velocity Ω. At a fixed value of Ω in the swallowtail region,
n = 0 (red line in Figure 9 left) and n = 1 (blue line in Figure 9 left) states form the
minima of a double-well energy landscape with a barrier state (green dashed line)
separating them. If the system begins in the n = 0 state and its angular velocity is
increased, the flow will be stable as long as Ω < Ωc+ when it reaches the edge of
the swallowtail and after this it will make a transition to the lower energy n = 1
state. Beginning with the n = 1 state, a similar stable flow can exist as long as
Ω > Ωc−, leading to the hysteresis loop shown in lower panel of Figure 9 left. The
rate at which the repulsive potential created using a blue detuned laser is rotated,
controls the flow velocity Ω and the strength of the potential U controls and drives
transitions (via phase slips) [66] between different circulation states. Comparing
to the Hamiltonian (28) the repulsive potential actuates two of the terms namely
the rotation frequency Φ = Ω/Ω0 and the “impurity” term λ whose strength is
controlled by U.

In order to observe this hysteresis loop in the experiment, the BEC is prepared
initially in either the n = 0 or n = 1 state in the trap and then this repulsive trap
potential with a chosen strength U2 and different rotation velocity Ω2 is applied for a
fixed time of 2 s, followed by a time of flight image to determine the final rotational
state n. Due to the swallowtail loop structure, at a given strength U2, as shown
in upper panel of Figure 9 right, the transition from 0 to 1 and vice-versa clearly
happen at different angular momenta Ωc±. Moreover as the strength of the applied
potential U2 is increased, Ωc± → Ω0/2 and the swallowtail loop size decreases and
eventually vanishes. The size of the loop as a function of U2 was determined from
the experiment and is plotted in the bottom panel of Figure 9 right. The discrepancy
from theoretical calculations that include relaxation effects required to accomplish the
non-adiabatic transitions indicate that further work may be required to understand
some quantitative aspects of the experiment. A detailed treatment of modeling the
relevant excitations leading to the dissipation by vortex-antivortex pairs was already
provided by the authors in [39].
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Figure 9. (Left) (a) Schematic plot of the energy landscape of a hysteretic system
as a function of the applied field F (for example Ω the rotation rate of the
superfluid) showing stable states of different energies separated by a barrier;
(b) Energy diagram for a superfluid as a function of Ω showing a swallowtail
loop and the related hysteresis loop; (c) The swallowtail structure is periodic in
the rotation quanta Ω0. (Right) (a–f) Measured hysteresis loop with sigmoid fits
at different values of potential strength U2 shown in (g). The red up-triangles
(blue down-triangles) are results from 20 shot averages while starting from n = 0
(n = 1). (g) Experimentally determined size of the hysteresis loop (green dots) as
a function of U2 and open and filled cyan diamonds are results of numerical GP
calculation of dynamics with differing amounts of phenomenological dissipation.
Taken from [39].

3.4. Other Extensions

Owing to the general nature of swallowtail shaped dispersions resulting from
the interplay of atom-atom interactions and periodicity, they have been predicted
to occur in a variety of systems different from the setting mainly considered in this
review—namely that of BECs in an optical lattice with effectively 1D dynamics.
In this subsection we catalogue these developments without going into the details
owing to the restricted scope of the review.

Lin et al. [67] study BECs with magnetic dipole-dipole interactions in optical
lattices. In this case the effective atom-atom interaction can be controlled by changing
the alignment of the atomic dipoles to the optical lattice axis by applying magnetic
fields. At strong enough interaction, they observe swallowtail loops whose sizes and
stability may be controlled by modifying the magnetic dipole orientations. In [68],
Venkatesh et al. study band-structures of atoms confined in optical lattices formed
inside optical cavities that are continuously driven by an external laser. In the
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limit of very dilute gases, s-wave contact interactions do not play a role but the
cavity-induced atomic interactions in the strong coupling regime of cavity quantum
electrodynamics (QED) can lead to swallowtail loop structures in the atomic bands.
Moreover this also corresponds to bistable solutions for the steady state photon
number in the cavity. In the work of Watanabe and colleagues [69], swallowtail band
structures of superfluid Fermi gases in optical lattices in the BEC-BCS crossover
are investigated. They find that typically the width of the swallowtail is largest at
unitarity. In addition, they find that the microscopic mechanism of the emergence
of the swallowtail in the BCS side of the crossover is very different in nature from
that of the BEC case: a narrow band in the quasiparticle energy spectrum close to
the chemical potential plays a crucial role for the appearance of the swallowtail in
the BCS side. It is also pointed out that, as a consequence, the incompressibility
experiences a profound dip. Chen and Wu extend the study of interplay between
interactions and band structures of superfluid systems in optical lattices to two
dimensions in [70] considering BECs in honeycomb shaped optical lattices. Such
optical lattices serve as analogues to the structure of graphene and support Dirac
points in their band close to which the energy dispersion is linear in 2D having
characteristic conical shape. In [70] the authors show that even for arbitrarily small
interaction strength, the Dirac point is extended into a closed curve and a tube like
structure, a 2D version of the 1D swallowtail loop, arises around the original Dirac
point. Moreover in work that followed closely thereafter Hui et al. showed that even
in the case of 2D optical lattice with double-well superlattice like geometry along
one direction, swallowtail loop structures emerge for any interaction strength [71].
Thus, the possibility of having swallowtail loops structures or analogues thereof for
arbitrary small interactions seems to be a more ubiquitous feature in 2D as opposed
to 1D where a the nonlinearity given by interactions has to be comparable to the
lattice potential. In [72], a BEC trapped in a double-well potential with an additional
degree of freedom given by a single bosonic impurity atom that interacts with the
condensate is considered. In this setup, as the impurity-BEC interaction strength
is tuned above tunneling energy of the bosons, swallowtail loops appear in the
adiabatic energy dispersions as a function of the tilt of one of the wells relative to the
other. The relation between swallowtail loops and self-trapping of the condensate in
one well or the other as well as relation to the Dicke model are explored.

3.5. Future Prospects

Presently, experiments showing direct evidence for looped band structures for
BECs in optical lattices have not been performed. One of the impediments preventing
the experimental observation of loops in optical lattices is the requirement of large
atom-atom interactions so that a large part of the loop solution is energetically
stable [41,50,51]. The simplest way to ascertain breakdown of adiabaticity caused
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by the loop is to study Bloch oscillations in optical lattices. In this regard it is quite
important to control and characterize other sources of loss of adiabaticity such as LZ
tunneling to higher bands and distinguish them from the effect of the loops. Clearly
for this a control of atom-atom interaction from very small to large enough to obtain
loops is required. In this context, some recent experiments in the group of Nägerl
with the ability to tune interactions using Feshbach resonances is promising [73,74].
Also, the extended theoretical schemes for 2D optical lattices [70,71] may be easier to
implement in an experiment as they do not require large atom-atom interactions to
have looped energy dispersions. On the theoretical side, a clear understanding of the
quantum mechanical underpinnings of the mean-field loops is already available for
the case of repulsive and attractive interacting BECs in double-well potentials [64,75].
An extension of such a study to optical lattices in two dimensions or for fermionic
atoms can be interesting. Another interesting theoretical consideration would be
examine the idea of shortcuts to adiabaticity [76] that has received a lot of attention of
late to systems where the underlying evolution equation is not linear and understand
if one may conceive of protocols where the loss of adiabaticity predicted due to the
loops could be avoided.

4. Multiple Period States in Cold Atomic Gases in Optical Lattices

Density structures and patterns caused by the interplay of competing effects
are ubiquitous in nature. In the case of superfluids flowing in a periodic potential,
non-trivial density patterns can emerge due to the interplay of spatial periodicity
imposed by the external potential and the nonlinearity due to the superfluid
order parameter.

According to the conventional wisdom of the Bloch theorem, in the linear
system described by the Schrödinger equation, the density pattern of the stationary
solution in a lattice is periodic with periodicity coinciding with that of the lattice
potential. However, nonlinearity can cause non-trivial density patterns with different
periodicity. For BECs in a periodic potential, it has been found that nonlinearity of
the interaction term can cause the appearance of stationary states whose period does
not coincide with that of the lattice; instead, a multiple of it [1,33]. Such states are
called multiple (or n-tuple) period states.

In this section, we discuss multiple period states of superfluid atomic gases
in optical lattices. In the Section 4.1, we provide the basic physical idea of the
emergence of the multiple period states due to nonlinearity. To provide a physical
picture concisely, we take the BEC case as an simple example. In the Section 4.2,
we present an account of existing results of the multiple period states in BECs.
In the Section 4.3, we present some theoretical results of the multiple period states
in superfluid Fermi gases along the BCS-BEC crossover focusing on their unique
features in contrast to the multiple period states in BECs.
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4.1. Basic Physical Idea: A Simple Explanation of the Emergence of Multiple Period States
by a Discrete Model

The emergence of the multiple period states in BECs can be explained by the
discrete model (Equation (12)) in a simple manner [33]. In the following exposition,
we follow the discussion given in the above cited paper. For clarity, here we focus on
the period-2 states: states whose period is equal to twice of the lattice constant d.

The stationary states with a fixed total number of particles N can be obtained
by the variation of H′ ≡ H − µN with respect to the amplitude ψ∗j at site j, where µ

is the chemical potential and N = ∑j |ψj|2,

δH′

δψ∗j
= −K(ψj+1 + ψj−1) + U|ψj|2ψj − µψj = 0 . (33)

We then separate from ψj a plane wave part at site j, eikjd, as ψj = eikjdgj with h̄k being
quasimomentum of the bulk superflow flowing in the same direction of the periodic
potential and gj being the complex amplitude at site j. Equation (33) becomes

− K(gj+1eikd + gj−1e−ikd) + U|gj|2gj − µgj = 0 . (34)

Due to the boundary conditions of the period-2 states, we have g0 = g2 and
g1 = g3. We solve combined two Equations (34) for j = 1 and 2 with these boundary
conditions. Subtracting these two equations, we obtain

− 2K cos kd
( |g2|
|g1|

ei(φ2−φ1) − |g1|
|g2|

ei(φ1−φ2)

)
+ U(|g1|2 − |g2|2) = 0 , (35)

with gj ≡ |gj|eφj .
For the linear case (U = 0), we can readily see that |g1| 6= |g2| cannot satisfy

Equation (35) except at kd = π/2, which corresponds to a trivial solution of g1 =

g2 = 0. On the other hand, solutions with |g1| = |g2| exist provided φ2 − φ1 = 0
(modulus of 2π): thus these solutions are normal period-1 states.

For the nonlinear case (U 6= 0), nonzero contribution from the kinetic energy part
(the first term in the left-hand side of Equation (35)) can be compensated by that from
the interaction energy part (the second term in the left-hand side of Equation (35)) so
that this equation can be satisfied. Therefore, the emergence of the period-2 states is
a purely nonlinear phenomenon. Since the second term in the left-hand side is real,
the phase difference φ2 − φ1 should be 0 or π, namely:

± 2K cos kd
( |g2|
|g1|
− |g1|
|g2|

)
= U(|g1|2 − |g2|2) . (36)
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Thus we obtain

± cos kd
Uν
2K

=
|g1||g2|

ν
, (37)

where the filling factor ν ≡ (|g1|2 + |g2|2)/2 is the average number of particles per
cell (in the present case of the period-2 states, the cell consists of two lattice sites).
Since the right-hand side of Equation (37) takes 0 ≤ |g1||g2|/ν ≤ 1, solutions with
period 2d exist when | cos kd| ≤ Uν/2K [33].

In Figure 10, we show the energy bands of the period-1 and period-2 states for
Uν/2K = 1/2, 1, and 2. Note that, in the case of the Figure 10a for Uν/2K = 1/2, the
period-2 states exist in the limited region of 1/6 ≤ kd/2π ≤ 1/3. At infinitesimally
small Uν/2K, the period-2 states exist only at kd/2π = 1/4. As Uν/2K increases,
the region in which the period-2 states exist increases and it finally extends over the
whole Brillouin zone for Uν/2K ≥ 1 (see Figure 10b,c).
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Figure 10. Energy per particle ε as a function of k for period-1 (blue dashed lines)
and period-2 (red solid lines) states of BECs in a periodic potential obtained from
the discrete model, for (a) Uν/2K = 1/2; (b) Uν/2K = 1; (c) Uν/2K = 2. In the
case of the (a), period-2 states exist in the limited region of 1/6 ≤ kd/2π ≤ 1/3.

Note that there is another class of period-2 states called the phase states [33].
From Equation (35), we see that, at |k|d = π/2, |g1| = |g2| is a solution for arbitrary
phase difference φ2 − φ1. The periodicity of the density distribution and the energy
of the phase states are the same as the normal Bloch state at |k|d = π/2, but only the
phase profile has the period 2d [32].

4.2. Multiple Period States in BECs

Multiple period states in BECs in optical lattices were first predicted by
Machholm et al. [33]. Using both (1) the simple discrete model within the
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tight-binding approximation to the mean-field GP equation and (2) the more general
continuum GP equation, they studied BECs flowing along the 1-dimensional external
periodic potential of the form given by Equation (1) (multiple period states of BECs in
a Kronig–Penney potential (a periodic delta-function potential) were studied in [77]).
They have shown the existence of the multiple period states as stationary states and
have clarified that they emerge due to nonlinearity originating from superfluidity.

Figure 11 shows the lowest energy bands obtained by solving the GP equation
for the continuum model. A striking difference from the energy bands obtained from
the discrete model discussed in Section 4.1 is that the phase states form a band in
the continuum model (see the lower thick solid lines in Figure 11) and their density
profiles have period 2d.

Figure 11. Energy per particle E/n of BECs in a periodic potential as a function of k
for the lowest bands obtained from the GP equation for the continuum model. The
bands of the period-2 states are shown by the thick solid lines. In the notations of
the present article, U0 = g and V0 = sER/2. This figure is taken from [33].

Figure 12 shows the density profiles of the lower-energy and higher-energy
period-2 states. By comparing with the external potential V(x) shown in the
lower panel, we can see that the periodicity of these states is indeed 2d. Here,
the quasi-wave number k of the superflow is at k = π/2d corresponding to the first
Brillouin zone edge of the system with period 2d, and thus the condensate wave
function ψ has a node in each period. The density profile shown by the solid (dashed)
line, which has nodes at the potential maxima (minima), is that of the period-2 state in
the lower (higher) energy branch (see the lower (upper) thick solid line in Figure 11).
According to the energy bands shown in Figure 11, we can also see that the lowest
band of the period-2 states appears as an upper edge of the swallowtail for the period
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2d system. Connection between the period-2 states and the swallowtail was studied
in depth in [78].

It was pointed out that the lowest band of the period-2 states is closely connected
with the dynamical instability [33]. The linear stability analysis has shown that,
with increasing k, the dynamical instability of the normal Bloch state sets on at
the quasimomentum where the band of the normal Bloch states merges with the
lowest band of the period-2 states. There, the dynamical instability is caused by the
growing perturbation mode with wavelength 2d [31,32,43,54]. The growth of the
mode with wavelength 2d accompanying the dynamical instability has been observed
experimentally as well [79]. Since the lowest band of the period-2 states appears as
the saddle of the swallowtail for the period 2d system and it forms the upper edge of
the swallowtail, these period-2 states are dynamically unstable [32] while the upper
branch of the period-2 states can be dynamically stable in some region of k [33]. The
lowest multiple period states can be dynamically stable by introducing long-range
interactions. For example, it was demonstrated that, in dipolar BECs, multiple period
states with period 2d and 3d can be dynamically stable even at k = 0 provided the
dipole-dipole interactions are repulsive and sufficiently strong [80,81].

Figure 12. Density profiles |ψ(x)|2 of period-2 states (upper panel) of BECs and the
periodic external potential V(x) (lower panel). The solid (dashed) line in the upper
panel shows |ψ(x)|2 for the lower-energy (higher-energy) period-2 state of Figure
11a at kd/2π = 1/4, gn = ER, and s = 0.2. This figure is taken from [33].

4.3. Multiple Period States in Superfluid Fermi Gases

The emergence of the multiple period states in BECs in optical lattices is one
of the novel nonlinear phenomena caused by the presence of the superfluid order
parameter. However, in the normal repulsively interacting BECs without long-range
interaction, the lowest multiple period states are higher in energy than the normal
Bloch states and are dynamically unstable. Yoon et al. [82] have shown that the
situation is very different for the multiple period states of superfluid Fermi gases in
the BCS regime.
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Figure 13 shows the profiles of the magnitude of the pairing field |∆(x)| and the
density n(x) of the lowest period-2 states of superfluid Fermi gases in the BCS-BEC
crossover obtained by solving the BdG equations for the continuum model (7). The
striking difference from the BEC case shown in Figure 12 is that the feature of the
period doubling shows up in the pairing field rather than the density. The difference
between the regions of −1 < x/d ≤ 0 and 0 < x/d ≤ 1 can be clearly seen in |∆(x)|
at any value of 1/kFas. On the other hand, the difference in n(x) between these two
regions is small in the deeper BCS side (1/kFas = −1) (see the red line in Figure 13b)
and finally disappears in the BCS limit.
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Figure 13. Profiles of (a) the magnitude of the pairing field |∆(x)| and (b) the
density n(x) of the lowest period-2 states of superfluid Fermi gases in the BCS-BEC
crossover: 1/kFas = −1 (red solid line), −0.5 (green dashed line), and 0 (blue
dotted line). The quasimomentum P of the superflow is set at the Brillouin zone
edge P = Pedge/2 = h̄qB/4 of the period-2 states, and other parameters are set at
s = 1 and EF/ER = 0.25. This figure is adapted from [82].

Figure 14 shows the energy bands of the lowest period-2 states in the BCS
regime (1/kFas = −1) together with that of the normal Bloch states. In the region of
small P, the line of the period-2 states coincides with that of the normal Bloch states,
as they are equivalent in this region, the states with period 1 being just a subset of
any multiple period states with integer periods. Unlike the period-2 states in BECs,
which form the concave upper edge of the swallowtail (see Figure 11), here the band
of the period-2 states is convex upward. Remarkably, the lowest period-2 states are
energetically more stable compared to the normal Bloch states around the Brillouin
zone edge of the period-2 states (P/Pedge ∼ 0.5).

The manner in which the energy of the lowest period-2 states relative to that
of the normal Bloch states changes along the BCS-BEC crossover can be seen in
Figure 15. As we have already seen, the period-2 states are energetically more stable
(i.e., ∆E < 0) in the deep BCS regime, where the band of the period-2 states is convex
upward. With 1/kFas increasing from the deep BCS regime, ∆E increases from a
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negative value and finally period-doubled states become higher in energy than the
normal Bloch states (i.e., ∆E > 0) in the BEC side, where the band of the period-2
states forms the concave upper edge of the swallowtail.
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Figure 14. Energy E per particle of superfluid Fermi gases in a periodic potential
as a function of the quasimomentum P. Parameter values are s = 1, EF/ER = 0.25,
and 1/kFas = −1. The normal Bloch states with period d are shown by the blue
dotted line with • symbols, and the period-2 states are shown by the red solid line
with +. Note that the period-2 states are energetically more stable than the normal
Bloch states in the region of 0.2 . P/Pedge ≤ 0.5.
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Figure 15. Difference ∆E ≡ E2 − E1 of the total energy per particle between the
period-2 states (E2) and the normal Bloch states (E1) at P = Pedge/2 along the
BCS-BEC crossover. The red solid line with + is for s = 1 and the blue solid line
with × is for s = 2; EF/ER = 0.25. The green dashed line shows the results by the
GP equation for parameters corresponding to s = 1 and EF/ER = 0.25. This figure
is taken from [82].
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The energetic stability of the period-2 states in the BCS regime can be physically
understood as follows. Let us consider the different behavior of ∆(x) and n(x) for a
period-2 state and a normal Bloch state at P = Pedge/2. In the case of the normal Bloch
state, since |∆(x)| is exponentially small in the BCS regime, we can distort the order
parameter ∆(x) to produce a node, like the one in the period-2 state, with a small
energy cost (per particle) up to the condensation energy |Econd|/N � EF, where
Econd ≡ g−1

∫
d3r |∆(r)|2. However, making a node in ∆(x) kills the supercurrent

j = V−1∂PE, which yields a large gain of kinetic energy (per particle) of the superfluid
flow of order ∼ P2

edge/m ∼ ER. Even if ∆(x) is distorted substantially to have a node,
the original density distribution of the normal Bloch state is almost intact so that the
increase of the kinetic energy and the potential energy due to the density variation
is small. Therefore, the period-2 state is energetically more stable than the normal
Bloch state in the BCS regime. In the above discussion, the key point is that ∆(x) and
n(x) can behave in a different way in the BCS regime. On the other hand, in the BEC
limit, the density is directly connected to the order parameter as n(x) ∝ |∆(x)|2, and
distorting the order parameter accompanies an increase of the kinetic and potential
energies due to a large density variation.

In the deep BCS regime, the period-2 states are not only energetically stable,
but also they can be long-lived although dynamically unstable. The black solid line
in Figure 16 shows the growth rate γ of the fastest exponentially growing mode
|η(t)| = |η(0)| eγt of the deviation |∆(x, t)| − |∆0(x)| from the true stationary state
∆0(x) for the period-2 states. We see that γ is suppressed with decreasing 1/kFas,
which makes the period-2 states long-lived in the BCS regime. The growth rate γ

corresponds to the imaginary part of the complex eigenvalue for the fastest growing
mode obtained by the linear stability analysis [1,83], which is an intrinsic property of
the initial stationary state independent of the magnitude of the perturbation.

On the other hand, the actual survival time τsurv, the timescale for which the
initial state is destroyed by the large-amplitude oscillations, depends on the accuracy
of their initial preparation. The survival time can be estimated by η̃(0)eγt ∼ 1, where
η̃(0) is the relative amplitude of the initial perturbation with respect to |∆0| for the
fastest growing mode. In Figure 16, we show τsurv for various values of η̃(0). This
result suggests that if the initial stationary state is prepared within an accuracy of 10%
or smaller, this state safely survives for time scales of the order of 100h̄/ER or more
in the BCS side, corresponding to τsurv of more than the order of a few milliseconds
for typical experimental parameters [84]: for ER,b = 2π × 7.3kHz× h̄ used in the
experiment of [84], 1h̄/ER = 0.0109 ms. In the deep BCS regime (1/kFas � −1), τsurv

increases further and may become larger than the time scale of the experiments,
so that the period-doubled states can be regarded as long-lived states and, in
addition, they have lower energy than the normal Bloch states in a finite range of
quasimomenta. Therefore, by (quasi-)adiabatically increasing the quasimomentum

256



P of the superflow starting from the ground state at P = 0, multiple-period states
such as the period-doubled states could be realized experimentally in the deep
BCS regime.
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Figure 16. Growth rate γ of the fastest growing mode (black solid line) and survival
time τsurv of the period-2 state at P = Pedge/2 (s = 1 and EF/ER = 0.25). Blue
dashed-dotted, green dotted, magenta dashed double-dotted, and red dashed lines
show τsurv for relative amplitude η̃(0) of the initial perturbation of 10%, 1%, 0.1%,
and 0.01%, respectively. This figure is taken from [82].

5. Nonlinear Lattices

This section deals with a special kind of optical lattices, called “nonlinear
lattices”. Here the coupling constant of the nonlinear term itself (i.e., the interatomic
interaction strength or the scattering length) has a space-periodic dependence. This
is quite different from the systems which we have discussed so far: unlike cold
atomic gases in a linear external periodic potential, those in a nonlinear lattice
with periodically modulated interaction in space can be designed to have no linear
periodic counterpart at all. While, in the former, properties are determined by
the competition between the linear periodic potential and a nonlinear term, in the
latter, periodicity and nonlinearity are generated by a single term. This leads to
unique stability properties of the superfluid, and imposes additional conditions on
its survival [85,86].

In the first subsection, we provide a basic sketch of how the sustenance of
superfluidity depends on the geometry (homogeneous/in a linear lattice/in a
nonlinear lattice) of the BEC system. In the second subsection, we explain the
stability properties of BECs in a nonlinear lattice in terms of a simple discrete model.
The third subsection presents the results of studies on ultracold bosons and fermions
in nonlinear lattices for various parameter regimes. Finally, in the last subsection, we
present a short outline of the experimental setup that constructs such a space-periodic
dependence of the interatomic interaction strength.
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5.1. Dynamical Stability of the Superfluid: Special Properties of Nonlinear Lattices

For uniform and homogeneous BECs, the dynamical stability of the superfluid
is determined by the nature of the interatomic interaction. If it is repulsive (i.e., the
scattering length is positive), the superfluid remains dynamically stable for any
value of the momentum h̄k of the superflow. On the other hand, if the interaction is
attractive (i.e., the scattering length is negative), the long-wavelength modes with

q2 <
4mng

h̄2 (38)

grow or decay in time exponentially for any value of h̄k, thus invoking an instability
in the system (e.g., [1]). However, shorter-wavelength modes are stable because for
them, the kinetic energy dominates over the interaction energy.

The dynamical stability properties of the superfluid changes in the presence of
an external periodic potential. The periodic nature of the system may lead to Bloch
solutions of the form ψ(x) = eikxφ(x), where φ(x) is a periodic function with the
same periodicity as that of the lattice. The quasimomentum of the superflow is given
by h̄k, k being the corresponding Bloch wave number. Here, for simplicity, we have
assumed that the superfluid flows in the same x direction as the periodic potential.
Unlike the homogeneous system, the system has a nonzero critical value of k above
which the Bloch states are dynamically unstable [31] as has been seen in Section 3.2.2:
in other words, the k = 0 state is always dynamically stable.

For a nonlinear lattice, however, this picture changes still further. The coupling
constant g in the GP Equation (2) for bosons and the BdG Equations (7) and (8)
for fermions now depends on the space coordinate x. It can be thought of having
a form as

g(x) = V1 + V2 cos 2k0x , (39)

i.e., g(x) consists of one constant part and one sinusoidal component. k0 is related to
the period d of the modulation by k0 = π/d. If the nonlinear lattice is realized by
an optical Feshbach resonance (details are given in the last part of this section), k0

is equivalent to the wave number of the laser beam. This special type of periodic
nonlinearity gives rise to a dynamical instability for the k = 0 state [85], which is in
contrast with the linear lattice case (i.e., the case of an external periodic potential).
We shall explain this in the following subsection.

5.2. Basic Physical Idea: The Dynamical Stability of Nonlinear Lattices

Zhang et al. [85] and Dasgupta et al. [86] studied extended states of BECs
in quasi-one-dimension with a periodically modulated interaction in space, i.e., a
nonlinear lattice with no periodic linear potential. It was observed that when the
coefficient of the nonlinear term is purely sinusoidal (i.e., V1 = 0 and V2 6= 0), Bloch
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states at k = 0 are dynamically (and energetically) unstable [85]. In addition, even
though k = 0 state is dynamically unstable, states for nonzero k could be dynamically
stable in some region in 0.25 ≤ k/k0 ≤ 0.5 (this point will be seen in more detail
later) [85].

Why is the k = 0 state unstable in the nonlinear lattice, in contrast to the stable
k = 0 state in the linear periodic potential? Why are the states with higher values of
k possibly dynamically stable even though the k = 0 state is unstable? To explain
these, we take resort to a simple discrete model [86]. We map the 1D nonlinear lattice
with V1 = 0 and V2 6= 0 to a discrete model with the on-site interaction alternating
between U and −U (with U > 0):

H = −K ∑
j
(ψ∗j ψj+1 + ψ∗j+1ψj) +

U
2

[
∑

j=even
|ψj|4 − ∑

j=odd
|ψj|4

]
. (40)

So, if we denote the distance between two adjacent sites in the discrete model as
d̃, the actual lattice constant d of the unit cell in the original system is 2d̃ (i.e., the
unit cell in the original system corresponds to a “supercell” with two sites in the
discrete model).

(a) (b)

(c) (d)

Figure 17. Density distributions in the lowest band of the normal Bloch states
(i.e., period-1 states whose period is one supercell) as functions of k for different
values of Uν/2K. Panels (a,b): Populations of |g1|2 (attractive site) and |g2|2
(repulsive site) for Uν/2K = 6, respectively. Panels (c,d): Populations of |g1|2 and
|g2|2 for Uν/2K = 0.75, respectively. This figure is taken from [86].
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Assuming the state is in the Bloch form, we write the amplitude ψj at site j as

ψj = gjeikjd̃, where h̄k is quasimomentum of the superflow and gj is the complex
amplitude at site j with the periodic boundary conditions, gj = gj+2 (Note that
the unit cell contains 2 sites.). In addition, the amplitudes gj’s are subject to the
normalization condition |g1|2 + |g2|2 = ν, where ν is the total number of particles
in a unit cell with two sites. One can obtain the stationary solutions of g1 and g2 by
solving the combined equations of δH/δψ∗1 = 0 and δH/δψ∗2 = 0 in almost the same
manner as in Section 4.1. Resulting populations |g1|2 and |g2|2 in the attractive and
the repulsive sites, respectively, for the lowest Bloch band are

|g1|2
ν

= n+ and
|g2|2

ν
= n− (41)

with

n± =
1
2

1±
[(

cos kd̃
Uν/2K

)2

+ 1

]−1/2
 . (42)

The populations |g1|2 and |g2|2 for two different values of Uν/2K are shown in
Figure 17 as functions of k within the first Brillouin zone.

As seen from Figure 17, the population difference between the adjacent sites
is the smallest at the zone center k = 0 while it increases as going toward the zone
edge at which all the particles are accumulated in the attractive sites. To understand
why k = 0 state is dynamically unstable, it is instructive to see the interaction energy
averaged over one unit cell (with 2 sites) [85]. From Equations (41) and (42), we
obtain the average interaction energy per particle for the lowest Bloch band as

Eint/K
N

= − U
2Kν

(|g1|4 + |g2|4) = −
Uν

2K

[(
cos kd̃

Uν/2K

)2

+ 1

]−1/2

< 0 . (43)

Note that, in the lowest Bloch band, the average interaction energy per particle is
negative for any value of k. So, roughly speaking, this situation resembles a BEC
with attractive interparticle interaction, which is dynamically unstable as we have
mentioned in the last subsection, and the dynamical instability of BECs in nonlinear
lattices at k = 0 could be understood as a consequence of the net attractive interaction
energy [85].

Figure 18 shows the dynamical stability diagram of the stationary states in
the lowest Bloch band in the k–q plane, where q is the quasi-wave number of the
perturbation on the stationary states. It is noted that there is a region at larger values
of k in which the lowest Bloch states are dynamically stable (e.g., the gray-shaded
region of 0.5 . 2kd̃/π ≤ 1 in Figure 18a) even though they are dynamically unstable
at smaller values of k including the zone center at k = 0. To understand this somewhat
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counterintuitive fact, we shall take a closer look at the populations |g1|2 and |g2|2
shown in Figure 17. As we have briefly mentioned before, we note that almost all
the particles are accumulated in the attractive sites and thus the repulsive sites are
almost empty near the zone edge at 2kd̃/π = 1: at the zone edge, only alternate
sites are occupied and fragments of the BEC in these alternate sites are isolated.
Since the transition amplitude between the states with populations {|g1|2, |g2|2} and
{|g1|2 ± 1, |g2|2 ∓ 1} is ∼

√
|g1||g2|K, tunneling of particles between neighboring

sites is suppressed (i.e., the inter-site dynamics is frozen), and thus the dynamical
instability is suppressed near the zone edge. Therefore, in nonlinear lattices, the
lowest Bloch states can be dynamically stable at higher values of k near the zone
edge [86]. On the other hand, at the zone center k = 0, the difference between
the respective populations in adjacent sites is the smallest: No sites are empty
and inter-site tunneling is non-negligible. Thus the suppression of the dynamical
instability does not work around the zone center, rendering the system dynamically
unstable due to the net attractive interaction mentioned before. Since the isolation
of fragments of the BEC is a result of the attractive interaction in alternate sites and
this new mechanism of dynamical stability is more effective for larger Uν/2K (see
wider gray-shaded area in Figure 18a than that in Figure 18b) resulting in larger
net attractive interaction energy, this mechanism can be called “attraction-induced
dynamical stability” [86].

2.5

1.5

0.5

(a) (b)

0.8

0.6

0.4

0.2

0.4

0.2

Figure 18. Dynamical stability diagrams for the normal Bloch states (i.e., period-1
states) for Uν/2K = 6 (a) and 0.75 (b). Quasi-wave numbers k and q are in units of
π/2d̃. The white regions are the dynamically unstable regions and the gray-shaded
regions are the dynamically stable regions. The contours show the growth rate
of the fastest growing mode, i.e., the largest maximum absolute value of the
imaginary part of the eigenvalues of matrix σz M(q) in Equation (17) in units of K.
This figure is taken from [86].
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We note that, in addition to the net attractive interaction energy and the
suppression of the tunneling near the zone edge, there would be other factors to
determine the dynamical stability of the nonlinear lattice system. When Uν/2K
is sufficiently small, we observe that a dynamically unstable region appears near
the zone edge (see, e.g., Figure 18b) and the dynamically stable region is located at
the intermediate values of k (0.65 . 2kd̃/π . 0.8 in the case of Figure 18b ). This
non-trivial reentrant behavior suggests that there are several other factors that affect
the stability, which are collectively responsible for the complicated stability diagram
like Figure 18b.

As a final comment in this subsection, we mention that the discussion here is
based on the discrete model, but the attraction-induced dynamical stability has been
confirmed in the continuum model as well [86]. The main difference is that, in the
continuum model, if the value of V2 is increased beyond a certain point, the attractive
interaction between intra-site particles becomes dominant and eventually leads to
the collapse of fragments of the BEC. This intra-site dynamics cannot be accounted
for by the discrete model, which does not include the intra-site degrees of freedom.

5.3. Superfluid Cold Atomic Gases in Nonlinear Lattices

Extended states of BECs in nonlinear lattices were first studied by
Zhang et al. in [85] (Localized states such as solitons in nonlinear lattices
were studied earlier in, e.g., [87,88] (see also [20] and references therein).).
In this work, they considered quasi-1D BECs in nonlinear lattices described
by the 1D version of the GP Equation (2) with the periodically modulated
interaction strength in space given by Equation (39): g(x) = V1 + V2 cos 2k0x
with V1 and V2 ≥ 0. They studied stationary Bloch states in nonlinear lattices
and their energetic and dynamical stability summarized in Figure 19. As
we have discussed in the previous subsection, the key result is that, when
V1 = 0, k = 0 state is dynamically (and energetically) unstable for any value of
V2 6= 0 (see black regions in the lower panels of Figure 19 for c1 = 0). This is in
contrast to BECs in a linear external periodic potential whose dynamically unstable
region is restricted in the domain of 1/4 < k/2k0 ≤ 1/2 (i.e., the right half of each
panel in Figure 6b). In addition, states at higher values of k near the zone edge
can be dynamically stable even though k = 0 state is dynamically unstable. It
was pointed out that the dynamical instability of the k = 0 state can be partially
explained by the net attractive average interaction energy as we have discussed in
the previous subsection. They also discussed the stability of the superfluidity due
to the competition between the spatially modulated part (V2 term) and the uniform,
repulsive component (V1 term); the latter tends superfluids to be stable. With
increasing V1 from zero for a fixed nonzero V2, state at k = 0 becomes dynamically
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Figure 19. Stability diagrams in nonlinear lattices for various values of c1 ≡
mnV1/(4h̄2k2

0) and c2 ≡ mnV2/(4h̄2k2
0), where n is the average number density.

The quasi-wave numbers k and q are in units of 2k0 = 2π/d with d being the lattice
constant of the unit cell in the notation of this review. The Bloch states are stable
in the white area. In the gray area the Bloch states are energetically unstable but
dynamically stable while, in the black area, they are unstable both energetically
and dynamically. This figure is taken from [85].

Dasgupta et al. [86] studied multiple-period states of BECs in nonlinear lattices.
They discussed stationary states with larger integer periodicity and their energetic
and dynamical stability using the GP equation for both the discrete and continuum
models. The main result of this work is that they found a new mechanism of
dynamical stability called “attraction-induced dynamical stability” and provided
the understanding of the dynamical stability around the Brillouin zone edge due
to the isolation of fragments of the BEC in each attractive domain in the nonlinear
lattice as discussed in the previous subsection. This attraction-induced dynamical
stability is even better manifested for the period-2 case because the majority of the
particles are stored in every second attractive domain (i.e., every fourth site in the
discrete model) making the fragments of the BEC more firmly separated, while for
period-1 case they are stored in every attractive domain (i.e., every second site in the
discrete model). Figure 20 shows the dynamical stability diagrams for period-2 Bloch
states calculated for the discrete model at the same values of Uν/2K as Figure 18.
It is noted that the growth rate of the fastest growing mode in Figure 20a is much
smaller than the period-1 counterpart shown in Figure 18a; the dynamically stable
region in Figure 20b is larger than the period-1 counterpart shown in Figure 18b.
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Superfluid Fermi gases in nonlinear lattices were studied by Yu et al. [89]. They
considered quasi-1D 2-component superfluid Fermi gases based on the 1D version
of the BdG Equation (7) with spatially modulated interaction strength of the form
g(x) = V1 + V2 cos 2k0x with V1 < 0 and V2 ≥ 0. Note that it has been assumed that
the uniform component is attractive (V1 < 0) so that the system is in the superfluid
phase. The properties of the Bloch states in this system for various parameter values
of V1 and V2 are summarized in Figure 21.

(a)

0.1

0.08

0.04

0.01

0

(b)

0.7

0.5

0.3

0.1

0

Figure 20. The same as Figure 18, but for period-2 Bloch states. Taken from [86].

The key point is the competition between the effects of the nonlinear uniform
interaction by V1 and the periodicity of the system induced by V2. It was found that
the former dominates over the latter for lager |V1|/V2 (the region denoted by “SW”
in Figure 21), the Bloch band has a swallowtail loop around the Brillouin zone edge.
This situation is similar to superfluid Fermi gases in a periodic potential, where the
swallowtail appears due to the effect of the nonlinear interaction dominating over
the periodicity of the system induced by the external potential [69]. On the other
hand, for smaller |V1|/V2 (the region denoted by “FFLO-like” in Figure 21), it was
predicted that the state at the Brillouin zone edge with nonzero quasimomentum of
the superflow (quasimomentum per atom P = h̄k0/2 in the notation of this review
article) becomes the ground state of the system. They call this state as “FFLO-like
state” because of the nonzero value of the quasimomentum of the superflow (Note
that the current of this state, however, is zero.). The stability of the Bloch states of
superfluid Fermi gases in nonlinear lattices has yet to be studied.
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Figure 21. Phase diagram of the Bloch states of superfluid Fermi gases in nonlinear
lattices in the |U1|–U2 plane, where U1 = V1 and U2 = V2 in the notation of
this review. In the parameter region denoted by “SF-N”, the system has a critical
quasimomentum of the superflow above which the normal state has lower energy
compared to the superfluid state while, in the regions denoted by “SF” and “SW”,
there is no such critical value and the superfluid state is always lower in energy
than the normal state in the whole Brillouin zone. Particularly, in the region of
“SW” at larger |U1|/U2, the energy band has a swallowtail loop around the zone
edge. In the region denoted by “FFLO-like” (Fulde–Ferrell–Larkin–Ovchinnikov) at
smaller |U1|/U2, the ground state has a nonzero quasimomentum of the superflow.
Taken from [89].

5.4. Experimental Setup

Finally we give a brief sketch how nonlinear lattices can be created
experimentally. With the aid of modern experimental techniques, it is now indeed
possible to construct systems where the nonlinear term has an explicit spatial
dependence. A very efficient way to do this is to employ optical Feshbach resonances
(OFRs) [90,91].

Ultracold atoms offer an immense controllability over physical quantities like
scattering length. It all started with magnetic Feshbach resonances, that use Zeeman
shifts to make the scattering states resonate with a bound molecular state. It was
later suggested [92] that lasers can be used to induce the resonance optically. This
Feshbach resonance via optical fields offers additional advantages over magnetic
ones: the intensity as well as the frequency of the laser beams can be rapidly and
precisely controlled. In addition, high resolution (submicron level) spatial control of
the scattering length is possible by creating specially structured laser fields.

In OFRs, the basic scheme is to use a laser beam (tuned near the photoassociation
resonance) that couples an initial state of free atoms to a molecular bound state.
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The scattering length is accordingly modified. If the OFR is driven by a standing
wave with a certain periodicity, the interparticle interaction derived from it has
the same periodic nature. Thus, a nonlinear lattice is generated. Using OFRs,
Yamazaki et al. [93] demonstrated rapid, spatial modulation of the scattering length
periodically at the submicron level. In this particular setup, a pulsed optical standing
wave was applied to a BEC of Ytterbium atoms. The resonant wavelength was 556
nm, and the optical pulse could generate a scattering length periodically modulated
in space with wavelength 278 nm.

6. Conclusions

Over the last two decades ultracold atoms in optical lattices [14–17] have
emerged as a key paradigm to study the ideal realizations of many important
problems in highly controllable settings, ranging from single particle quantum
mechanical effects such as Bloch oscillations to strongly correlated many-body
effects such as the superfluid-Mott insulator quantum phase transition. In the
recent past the focus in the field has shifted more towards observing equilibrium and
non-equilibrium quantum many-body effects and topological phenomena [94]. In this
light the subject of this review, namely, the interplay of mean-field atomic interactions
and the periodicity of the applied external potential serves to re-emphasize the fact
that there are unique and interesting phenomena even in a much simpler setting. Our
hope is that such a review can rekindle some interest in this area especially from the
experimental side as to date there has not been a clear observation of swallowtail loop
structures or period-doubled solutions for optical lattices. Moreover, in striving to
control complex quantum systems such as ultracold atoms to an ever greater degree
in order to realize complex many-body ground states [94] it becomes very important
to be aware of and understand fundamental limitations on state preparation due
to unavoidable adiabaticity breaking imposed by phenomena such as swallowtail
loop dispersions.

In this review we focused on some interesting phenomena originating from the
nonlinear, mean-field interactions of superfluid atomic gases in periodic potentials.
We began with a summary of the basic theoretical description of Bose–Einstein
condensates (BECs) and superfluid Fermi gases within the mean-field framework in
Section 2. In Section 3 we provided a comprehensive overview of the phenomenon
of swallowtail loops in the band-structure of superfluid atomic gases in an optical
lattice, followed by the the discussion of Bloch states with multiple periods of the
applied optical lattice potential in Section 4, and Bloch states in nonlinear lattices,
i.e., situations in which the nonlinear interaction term is itself a periodic function
in space in Section 5. While we have covered a substantial portion of the various
interesting phenomena that can arise due to the nonlinearity in the mean-field theory
of superfluids, this is by no means complete. For instance, as mentioned in the
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introduction, we have made no attempt to describe localized soliton solutions to the
Gross–Pitaevskii equation and suggest the excellent review [20] on this topic for the
interested reader.

Although considerable amount of research work has already been accomplished
in this field, it is still relatively young and has flourished only over the last two
decades beginning with the experimental discovery of BECs. As a result we believe
there are still a range of open problems that can be investigated. Some examples
include, the stability of Bloch and swallowtail loop states of superfluid Fermi gases
in nonlinear lattices, Bloch oscillation dynamics for both bosons and fermions in
regimes with swallowtail loops, the study of quantum equivalents of mean-field
nonlinear phenomena including solitons and loops, and nonlinear phenomena in
more exotic systems such as BECs with spin-orbit interactions or spinor BECs etc.
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