367 research outputs found

    Multi-level agent-based modeling with the Influence Reaction principle

    Full text link
    This paper deals with the specification and the implementation of multi-level agent-based models, using a formal model, IRM4MLS (an Influence Reaction Model for Multi-Level Simulation), based on the Influence Reaction principle. Proposed examples illustrate forms of top-down control in (multi-level) multi-agent based-simulations

    SCS: 60 years and counting! A time to reflect on the Society's scholarly contribution to M&S from the turn of the millennium.

    Get PDF
    The Society for Modeling and Simulation International (SCS) is celebrating its 60th anniversary this year. Since its inception, the Society has widely disseminated the advancements in the field of modeling and simulation (M&S) through its peer-reviewed journals. In this paper we profile research that has been published in the journal SIMULATION: Transactions of the Society for Modeling and Simulation International from the turn of the millennium to 2010; the objective is to acknowledge the contribution of the authors and their seminal research papers, their respective universities/departments and the geographical diversity of the authors' affiliations. Yet another objective is to contribute towards the understanding of the overall evolution of the discipline of M&S; this is achieved through the classification of M&S techniques and its frequency of use, analysis of the sectors that have seen the predomination application of M&S and the context of its application. It is expected that this paper will lead to further appreciation of the contribution of the Society in influencing the growth of M&S as a discipline and, indeed, in steering its future direction

    Toward composing variable structure models and their interfaces: a case of intensional coupling definitions

    Get PDF
    In this thesis, we investigate a combination of traditional component-based and variable structure modeling. The focus is on a structural consistent specification of couplings in modular, hierarchical models with a variable structure. For this, we exploitintensional definitions, as known from logic, and introduce a novel intensional coupling definition, which allows a concise yet expressive specification of complex communication and interaction patterns in static as well as variable structure models, without the need to worryabout structural consistency.In der Arbeit untersuchen wir ein Zusammenbringen von klassischer komponenten-basierter und variabler Strukturmodellierung. Der Fokus liegt dabei auf der Spezifikation von strukturkonsistenten Kopplungen in modular-hierarchischen Modellen mit einer variablen Struktur. DafĂĽr nutzen wir intensionale Definitionen, wie sie aus der Logik bekannt sind, und fĂĽhren ein neuartiges Konzept von intensionalen Kopplungen ein, welches kompakte gleichzeitig ausdrucksstarke Spezifikationen von komplexen Kommunikations- und Interaktionsmuster in statischen und variablen Strukturmodellen erlaubt

    A Framework for Executable Systems Modeling

    Get PDF
    Systems Modeling Language (SysML), like its parent language, the Unified Modeling Language (UML), consists of a number of independently derived model languages (i.e. state charts, activity models etc.) which have been co-opted into a single modeling framework. This, together with the lack of an overarching meta-model that supports uniform semantics across the various diagram types, has resulted in a large unwieldy and informal language schema. Additionally, SysML does not offer a built in framework for managing time and the scheduling of time based events in a simulation. In response to these challenges, a number of auxiliary standards have been offered by the Object Management Group (OMG); most pertinent here are the foundational UML subset (fUML), Action language for fUML (Alf), and the UML profile for Modeling and Analysis of Real Time and Embedded Systems (MARTE). However, there remains a lack of a similar treatment of SysML tailored towards precise and formal modeling in the systems engineering domain. This work addresses this gap by offering refined semantics for SysML akin to fUML and MARTE standards, aimed at primarily supporting the development of time based simulation models typically applied for model verification and validation in systems engineering. The result of this work offers an Executable Systems Modeling Language (ESysML) and a prototype modeling tool that serves as an implementation test bed for the ESysML language. Additionally a model development process is offered to guide user appropriation of the provided framework for model building

    A Quantised State Systems Approach Towards Declarative Autonomous Control

    Get PDF

    A Continuous-Time Microsimulation and First Steps Towards a Multi-Level Approach in Demography

    Get PDF
    Microsimulation is a methodology that closely mimics life-course dynamics. In this thesis, we describe the development of the demographic microsimulation with a continuous time scale that we have realized in the context of the project MicMac - Bridging the micro-macro gap in population forecasting. Furthermore, we detail extensions that we have added to the initial version of the MicMac microsimulation.Mikrosimulation ist eine Prognosetechnik, die sich hervorragend eignet, um Bevölkerungsdynamik realitätsnah abzubilden. In dieser Dissertation beschreiben wir die Entwicklung einer demografischen Mikrosimulation, die wir im Rahmen des Projektes MicMac - Bridging the micro-macro gap in population forecasting erstellt haben. Zudem erläutern wir Erweiterungen, die wir an der ursprünglichen MicMac- Mikrosimulation vorgenommen haben

    Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems

    Get PDF
    Following the classical work of Norbert Wiener, Ross Ashby, Ludwig von Bertalanffy and many others, the concept of System has been elaborated in different disciplinary fields, allowing interdisciplinary approaches in areas such as Physics, Biology, Chemistry, Cognitive Science, Economics, Engineering, Social Sciences, Mathematics, Medicine, Artificial Intelligence, and Philosophy. The new challenge of Complexity and Emergence has made the concept of System even more relevant to the study of problems with high contextuality. This Special Issue focuses on the nature of new problems arising from the study and modelling of complexity, their eventual common aspects, properties and approaches—already partially considered by different disciplines—as well as focusing on new, possibly unitary, theoretical frameworks. This Special Issue aims to introduce fresh impetus into systems research when the possible detection and correction of mistakes require the development of new knowledge. This book contains contributions presenting new approaches and results, problems and proposals. The context is an interdisciplinary framework dealing, in order, with electronic engineering problems; the problem of the observer; transdisciplinarity; problems of organised complexity; theoretical incompleteness; design of digital systems in a user-centred way; reaction networks as a framework for systems modelling; emergence of a stable system in reaction networks; emergence at the fundamental systems level; behavioural realization of memoryless functions

    An object oriented/DEVS framework for strategic modelling and industry simulation

    Get PDF
    The use of simulation modelling for the development of business strategy models, at an industry level, focusing on the exploration of different scenarios and future policy, has been gaining increased acceptance and popularity over the last decade. This thesis develops a modelling and simulation framework for industry simulation, extending the approach of System Dynamics, by integrating recent concepts from software engineering and mathematical formalisms for discrete event system modelling. The current modelling view of industry simulation, based on System Dynamics, is reviewed. A critique of the capabilities of System Dynamics is presented, regarding the ability of the System Dynamics core technology to address the broad requirements of industry modelling. We focus the critique and develop a research agenda around the issues of natural model building, model structure and focus, model reusability and time representation. An overview of manufacturing simulation and the research directions in that area, is presented with the objective of identifying possible areas of cross-fertilization which can be used in modelling at the industry level in a more effective way. A review of Object Orientation is presented, along with a general review of mathematical formalisms for the description of discrete event systems, with particular focus on the Discrete Event System Specification formalism (DEVS) [Zeigler (1976, 1984)]. An innovative synthesis of Object Orientation and DEVS is proposed in order to address the research questions which resulted from our critique of System Dynamics. A Smalltalk implementation of the concepts supported by the synthesis, called OO/DEVS, has been developed. Using as a point of reference the requirements of industry simulation, we build upon a critique of previous DEVS implementations (placed within the manufacturing simulation problem domain), by presenting an innovative implementation view of DEVS, which exploits fully the concepts supported by Object Orientation. The issues related to graphical model specification within OO/DEVS, and its comparison to the modem System Dynamics graphical user interfaces, are explored. A OO/DEVS Graphical User Interface and its implementation are explored and presented. Two case studies have been employed, in order to test the capabilities of OO/DEVS as an alternative to System Dynamics, as well as to demonstrate the modelling characteristics of the framework and its implementation. A comparative study is presented, where a capacity investment model of the postprivatised UK Electricity Industry is developed in both frameworks. The model is used as a vehicle for assessing the modelling characteristics of OO/DEVS versus System Dynamics. Our initial conclusion is that the modelling properties of OO/DEVS can address at a sufficient level the research issues related to the System Dynamics core technology. Finally, a large scale modelling case study is carried out, within one of the UK Electricity Distribution companies, where a OO/DEVS model of the Electricity Markets is developed jointly with a management team. This real application establishes the value of OO/DEVS, and its modelling characteristics, as a powerful platform for building decision support industry models

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers
    • …
    corecore