
Old Dominion University
ODU Digital Commons
Engineering Management & Systems Engineering
Theses & Dissertations Engineering Management & Systems Engineering

Summer 2018

A Framework for Executable Systems Modeling
Matthew Amissah
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

Part of the Industrial Engineering Commons, Systems Architecture Commons, and the Systems
Engineering Commons

This Dissertation is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It has
been accepted for inclusion in Engineering Management & Systems Engineering Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Amissah, Matthew. "A Framework for Executable Systems Modeling" (2018). Doctor of Philosophy (PhD), dissertation, Engineering
Management, Old Dominion University, DOI: 10.25777/f1h6-e712
https://digitalcommons.odu.edu/emse_etds/31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217295518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/31?utm_source=digitalcommons.odu.edu%2Femse_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A FRAMEWORK FOR EXECUTABLE SYSTEMS MODELING

by

Matthew Amissah

B.Sc. June 2009, Kwame Nkrumah University of Science and Technology

M.E. August 2013, Old Dominion University

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT AND SYSTEMS ENGINEERING

OLD DOMINION UNIVERSITY

August 2018

 Approved by:

 Holly Handley (Director)

 Mamadou Seck (Member)

 C. Ariel Pinto (Member)

 D. Heimerdinger (Member)

ABSTRACT

A FRAMEWORK FOR EXECUTABLE SYSTEMS MODELING

Matthew Amissah

Old Dominion University, 2018

Director: Dr. Holly Handley

Systems Modeling Language (SysML), like its parent language, the Unified Modeling Language

(UML), consists of a number of independently derived model languages (i.e. state charts, activity

models etc.) which have been co-opted into a single modeling framework. This, together with the

lack of an overarching meta-model that supports uniform semantics across the various diagram

types, has resulted in a large unwieldy and informal language schema. Additionally, SysML does

not offer a built in framework for managing time and the scheduling of time based events in a

simulation.

In response to these challenges, a number of auxiliary standards have been offered by the Object

Management Group (OMG); most pertinent here are the foundational UML subset (fUML),

Action language for fUML (Alf), and the UML profile for Modeling and Analysis of Real Time

and Embedded Systems (MARTE). However, there remains a lack of a similar treatment of

SysML tailored towards precise and formal modeling in the systems engineering domain. This

work addresses this gap by offering refined semantics for SysML akin to fUML and MARTE

standards, aimed at primarily supporting the development of time based simulation models

typically applied for model verification and validation in systems engineering.

The result of this work offers an Executable Systems Modeling Language (ESysML) and a

prototype modeling tool that serves as an implementation test bed for the ESysML language.

Additionally a model development process is offered to guide user appropriation of the provided

framework for model building.

iv

Copyright, 2018, by Matthew Amissah, All Rights Reserved.

v

Dedicated to Mathew and Emma, I cannot thank you enough.

vi

ACKNOWLEDGMENTS

I owe so much to so many for their love and kindness towards me these past five years. While I

cannot recount all the names here, I am deeply grateful for the support I have received from my

family, friends, colleagues, and professors. This work would not be possible, but for the grace of

God and the kindness of the people in my life.

I will be remiss to not acknowledge the contribution of my doctoral advisor Dr Holly Handley, to

this work and altogether my development as an Academic. I still remember your notes on my

first ever draft for a peer reviewed publication. You will agree my writing is much better these

days. Thank you so much for taking the time to teach and advise me.

To Dr Heimerdinger, Dr Vance, and Exostrategies at large; I literally owe you for making my

dreams come true, also for introducing me to the world of enterprise modeling. I am forever in

your debt. I am grateful to Dr Mamadou Seck for sound technical and philosophical advice. How

else would I have known the world of difference that merely switching from Java to Python

could bring? Or the many problems that resolve themselves once you assume a different

perspective. I am grateful to Dr Pinto for helping me scope and clearly organize my expectations

and goals for this work.

I am very grateful to Dr. Kim Sibson for her kindness and time taken to review this manuscript. I

would like to thank my colleagues and the entire EMSE department, especially our head of

department Dr Andres Sousa-Poza. You made the hard work of the PhD exhilarating and

worthwhile. Thank you all for the love, support, good conversations, and certainly for all the free

coffee and food.

vii

Finally, Briana-Allyn I am grateful for the laughter, peace, and new found meaning you have

brought to my life; “Nyametsease ampa”.

viii

NOMENCLATURE

ESysML Executable Systems Modeling Language

SysML Systems Modeling Language

MBSE Model Based Systems Engineering

UML Unified Modeling Language

CPN Colored Petri Nets

fUML Foundational UML

DEVS Discrete Event Simulation

TFM Time Flow Mechanism

MDA Model Driven Architecture

SE Systems Engineering

OMG Object Management Group

Alf Action Language for fUML

PSCM Precise Semantics for Composite Structures

DSR Design Science Research

MARTE UML Profile for Modeling and Analysis of Real Time Embedded Systems

DSL Domain Specific Language

API Application Program Interface

ix

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

Chapter

1. INTRODUCTION ... 1

1.1. Motivation .. 1

1.2. Terminology ... 3

1.3. Research Goal .. 5

1.4. Research Strategy ... 5

1.5. Methodology and Thesis Outline ... 8

2. BACKGROUND & LITERATURE REVIEW ... 10

2.1. Model Based Systems Engineering (MBSE): .. 10

2.2. SysML Model Execution ... 17

2.3. Simulation Languages .. 21

2.4. Summary .. 29

3. AN EXECUTABLE SYSTEMS MODELING LANGUAGE .. 31

3.1. Ontological Foundations .. 31

3.2. Language Concepts .. 33

3.3. Overview of Textual Syntax .. 37

3.4. Model Specification ... 39

3.5. Model Diagrams ... 45

3.6. Summary .. 49

4. TOOLS & IMPLEMENTATION ... 50

4.1. Prototype Tool: ESysML Modeler ... 50

4.2. Model Parsing and Implementation ... 53

4.3. Model Execution and Observation ... 54

4.4. Model Library .. 58

4.5. Summary .. 59

5. DEVELOPMENT PROCESS & SAMPLE MODEL ... 61

5.1. Modeling & Simulation – Systems Development Framework (MS-SDF) 61

5.2. Sample Implementation.. 65

5.3. Summary .. 73

6. SYSTEMS MODELING FORMALISMS .. 74

6.1. High Level Petri-Nets... 75

x

6.2. Overview of DEVS .. 78

6.3. Object Process Methodology ... 81

6.4. Summary .. 84

7. CONCLUSION ... 85

7.1. Challenges & Limitations... 86

7.2. Research Contributions .. 87

7.3. Future Research .. 90

REFERENCES ... 92

APPENDICES .. 97

A: ESYSML PARSING EXPRESSION GRAMMAR (PEG) SPECIFICATION 97

B: DESCRIPTION OF TEXTUAL LANGUAGE CONSTRUCTS .. 98

C: ESYSML MODELER PARSING & MODEL IMPLEMENTATION CODE 101

D: BUILT-INS & MODEL LIBRARY .. 109

E: SAMPLE MODEL ... 112

VITA ... 114

xi

LIST OF TABLES

Table .. Page

Table 1: An Application of Hevner’s Guiding Criteria for DSR .. 7

Table 2: Approaches for SysML Model Execution via Model Transformation 20

Table 3: Capabilities & Features of Simulation Tools (Adapted from (Pidd, 2006)) 29

Table 4: Concepts of the BWW Ontology (Evermann & Wand, 2005) 33

Table 5: ESysML and Corresponding Python Constructs .. 54

Table 6: User Types and Inter-Arrival Times for Service Requests ... 66

Table 7: Processing times for MVS-System Sub-Components .. 67

Table 8: Comparison of CPN with ESysML Concepts .. 78

Table 9: Comparison of DEVS with ESysML Concepts .. 80

Table 10: OPM Primary Constructs and Graphical Notation ... 82

Table 11: Comparison of ESysML vs OPM Concepts ... 83

xii

LIST OF FIGURES

Figure .. Page

Figure 1: Terminology .. 5

Figure 2: Thesis Outline.. 9

Figure 3: QVT Operational Context (Jouault et al., 2008) .. 19

Figure 4: Sequence of Execution Event Scheduling Worldview .. 25

Figure 5: Sequence of Execution in Activity Scanning Worldview .. 26

Figure 6: Sequence of Execution in Three-phase Worldview .. 27

Figure 7: Primary Components of Simulation Software... 28

Figure 8: Graphical Notation for Primary Constructs... 34

Figure 9: Hierarchy of Model Element Classes .. 35

Figure 10: Hierarchy of Property Classes ... 37

Figure 11: Sample Model.. 38

Figure 12: Data & Value Type Definition and Instantiation .. 41

Figure 13: Example Block Definition ... 42

Figure 14: Example Action Definition ... 43

Figure 15: Example Action Definition with Opaque Expression ... 43

Figure 16: Example Action Invocation with Event .. 44

Figure 17: Example Graphical and Textual Model Structure Specification 46

Figure 18: Example Graphical and Behavioral Model Specification ... 47

Figure 19: Sample Textual Action Definition and Corresponding Instance Model Diagram 48

Figure 20: ESysML Modeling Tool Architecture ... 51

Figure 21: Prototype Tool (ESysML Modeler) .. 52

xiii

Figure 23: Model Execution Architecture .. 55

Figure 24: Model Execution Sequence ... 57

Figure 26: Structure of Client and Server Blocks ... 59

Figure 27: MS-SDF (Tolk et al. 2013).. 62

Figure 28: Architecture Views .. 64

Figure 29: Development Process .. 65

Figure 30: Block Diagram of Batch Computer with Textual Specification 68

Figure 31: Instance Model of MVS To-be Architecture ... 69

Figure 33: Instance Model of Executable Model Test Case Initialization Actions 71

Figure 34: Plot of Utilization for JES, CPU1, CPU2 and Prt1 ... 72

Figure 35: CPN Model of an M/M/1 Queue ... 77

Figure 36: Executable Architecture Generation via Model Transformation 89

Figure 37: ESysML Approach for Executable Architecture Development 90

1

1. INTRODUCTION

1.1. Motivation

Systems engineering (SE) is primarily concerned with the design, development, and management

of complex man-made systems. Typically, the engineering of such systems requires

collaboration among stakeholders from multiple disciplines over extended time periods. The

initial role of SE in such contexts is essentially one of architecting focused on the specification of

a high level design of the expected system. This sets the baseline for allocating resources and

validating design artifacts from collaborating engineers and the eventual integrated system

design.

Formerly the dominant approach for systems architecting entailed the creation of artifacts in the

form of a disjointed set of text documents, spreadsheets, and diagrams, etc., all of which had to

be managed and evolved to keep abreast with changes in the system. Model Based Systems

Engineering (MBSE) proposes a replacement of this approach with the creation of a single

system model that integrates all the information formerly captured in separate artifacts

(Friendenthal, Steiner, & Moore, 2009). This is enabled by the use of graphical modeling

languages with a meta-schema that supports model specification using diagrams as well as a

structured repository of model data.

Currently, Systems Modeling Language (SysML)(OMG, 2015a), is the de-facto standard for

MBSE. SysML is an adaptation of the Unified Modeling Language, (UML)(OMG, 2015c) aimed

at offering a UML profile for modeling engineered systems in general. A SysML model is a

purposeful abstraction of some system. It offers an overview of components, their

2

interconnections, interfaces, constraints, and how they interact to serve some expected

functionality. The requirement for computational models that enable the verification and

validation of the architecture prescribed in SysML models has been explored and advocated for

in the research literature (Levis & Wagenhals, 2000; Peak et al., 2007; Wang & Dagli, 2008).

However, there are significant challenges to the direct use of SysML for specifying such

executable models, due to the language’s mostly informal semantics.

SysML like its parent language i.e., UML, consists of a number of independently derived

modeling formalism languages (i.e., use cases, state charts, activity models, etc.) which have

been co-opted into a single modeling framework. This, together with the lack of an overarching

meta-model that specifies the relationship and rules of use governing the various modeling

constructs, precludes a uniform application of language constructs across diagram types. This has

resulted in a large, unwieldy and at best semi-formal language specification, with adverse

implications for uniformity of language implementation and execution across modeling tools.

Additionally, SysML does not offer a native concept of time or an approach for managing time

advance and the scheduling of time ordered events/activities, which is necessary for simulating

time-based dynamic systems.

With regards to the aforementioned challenges, a number of auxiliary standards have been

offered by the OMG, most pertinent here are a formal UML subset (i.e. Foundational UML

(fUML) and its Action language (Alf) (OMG, 2013a, 2016) and the UML profile for Modeling

and Analysis of Real Time and Embedded Systems (MARTE) (OMG, 2007). These standards,

however do not address the underlying inconsistencies of the broader language schema, as such

it remains unclear how they can be applied uniformly to legacy models and profile languages

such as SysML.

3

In response to these challenges, this work proposes essentially an overhaul of the SysML

language, aimed at offering a core of language constructs with refined and executable semantics

that support specification of time based computational models. This is akin to the fUML and Alf

approach of refining UML to offer an interchangeable graphical and textual modeling standard.

Given the recent proliferation of internet of things and data driven intelligent systems, there is a

need for model driven engineering languages and methods that support formal architecture

description and analysis for such highly interconnected real time systems. This works leverages

the relatively popular and accessible graphical syntax of SysML to support a formal model

driven engineering process. The aim here is to support a consistent systematic approach for

realizing conceptual models and corresponding executable models useful for architecture

analysis and decision making.

Subsequent sections of this chapter are organized as follows; Section 1.2 discusses concepts from

the disciplines of Systems Architecture (SA) and Modeling & Simulation (M&S) used

pervasively within this work. Section 1.3 summarizes the goal and objectives of this research.

Section 1.4 discusses the underlying research philosophy. Finally, Section 1.5 offers an outline

of this dissertation and the corresponding research methodology employed.

1.2.Terminology

A system is a set of interrelated components working together toward some common purpose

(Blanchard & Fabrycky, 2006). A model is an abstraction or simplification of some real or

imaginary referent to enable understanding and reasoning about the referent. A conceptual model

is a non-software specific description of a computer simulation model, that describes objectives,

inputs, outputs, content, assumptions, and simplifications of the model (Robinson, 2008).

4

A simulation model is a computer implementation of an executable conceptual model, aimed at

exploring the behavior of the system in real time. Within the context of this work, the term

executable model and simulation are used interchangeably in reference to a computer

implementation of discrete and/or continuous time models. Architecture is defined as

fundamental concepts or properties of a system in its environment embodied in its elements,

relationships, and in the principles of its design and evolution. Architecture descriptions in this

context are essentially a compendium of models useful for documentation, communication, and

analysis of a system’s architecture.

Systems analysis mostly takes place within some domain(s) of inquiry, wherein there is some

degree of commonality with regards to concepts and applicable theories. A model library is a set

of reusable model components offered to enhance productivity and to avoid repetitions and

reinvention of the wheel with regards to common problems and solution patterns. A framework

prescribes a shared approach for model development within a community or domain. They

typically embody some abstract design pattern informed by an underlying philosophy or core

principles. Additionally they entail some amount of pre-built facilities (i.e., a library) to support

the design patterns prescribed. As a framework matures, there’s an accrual of concrete reusable

components in addition to its core abstract extensible and modular facilities i.e. increasing depth

and width.

Figure 1 below illustrates the main concepts introduced in this section and describes

relationships between them. Additionally, the IS0/IEC/IEE 42010 standard for systems and

software architecture descriptions can be applied as an additional reference with regards to

terminology used in this work.

5

Domain KnowledgeBase Framework

System Model ModelLibrary

ExecutableModel

applies

documents

situated in

based on

abstracts

from
re-uses

computer implementation

consists

Figure 1: Terminology

1.3. Research Goal

The goal of this work is to provide a framework that enables the specification of executable

models of real time systems based on SysML. To achieve this goal the following objectives have

been adopted:

1. Refine SysML to support an executable specification of time based dynamic systems

2. Implement software tools and development guidelines to facilitate an implementation of

Objective 1

3. Offer a sample application of the framework

4. Demonstrate theoretical grounding of the framework with regards to existing systems

modeling formalisms.

1.4. Research Strategy

According to March and Smith (1995), Design Research addresses problems faced by

practitioners by offering conceptualizations of problems, corresponding techniques for their

6

solution and a criteria for evaluating solutions based on these techniques. This is the underlying

premise of the Design Science Research (DSR) paradigm. DSR offers an approach to knowledge

creation through the building of innovative artifacts. Juhani and Venable (2009) define DSR as a

research activity that invents or builds new, innovative artifacts for solving problems or

achieving improvements.

Hevner (2007) identifies two research paradigms in Information Systems (IS) research, namely

behavioral science and design science. Behavior science research consists essentially of

theorizing and justification of theories. Design science, on the other hand, entails building and

evaluating artifacts. These two strains of research, however, are complementary as design is

predicated on existing theories acquired through behavioral science, the exercise of which leads

to implications for validating, refining existing theories and/or formation of new ones.

In contrast with classical research in the natural sciences, which is descriptive and explanatory in

intent, DSR is mostly prescriptive and creates artifacts that embody those prescriptions (March &

Smith, 1995). As such DSR artifacts are primarily assessed against criteria of value or utility and

not necessarily the truth value of research propositions. Based on this emphasis on utility and

relevance to the domain of practice, DSR has been characterized as embodying a pragmatic

philosophy (Hevner, 2007; March & Smith, 1995). Pragmatism is a philosophical tradition that

emphasizes the practical consequences of accepting or rejecting a proposition as essential in

determining its truth value (Rorty, 1982).

As previously mentioned, the goal of this work is to provide a framework that enables the

specification of executable models of real time systems in SysML. This is aligned with the DSR

goal extending the boundaries of knowledge through the creation of novel artifacts. In this

7

regard, the DSR paradigm is adopted as the overarching strategy for meeting the objectives of

this work.

Hevner (2007) proposes a synergy of relevance and rigor as the primary characteristic of good

DSR work. Relevance refers to the impact of the work in its application domain (Systems

Architecting in this context) whiles rigor refers to soundness and grounding in established

theory. In line with these primary criteria, Hevner proposes seven guidelines for DSR. Table 1

outlines these guidelines and how they are addressed within this work.

Table 1: An Application of Hevner’s Guiding Criteria for DSR

Guideline Implementation

1. Design as an

artifact

This work shall develop a framework, consisting of a modeling language,

tools for its implementation and process to support the executable

modeling of time based systems in SysML

2. Problem

relevance

The potential for a unified semantic framework for specifying conceptual

models and executable models has been a subject of research from the

early days of UML. This affords the capacity for early verification and

validation of designs. While ongoing refinements in UML (i.e. MARTE,

fUML, ALF, PSCS and PSSM standards) have improved the depth of the

language for specifying formal and executable models, there is a lack with

regards to such a treatment of SysML that provide the underlying

infrastructure and libraries to enable a standard implementation of SysML

for executable modeling within the MBSE and Systems Architecting

community.

3. Design

evaluation

Proof of concept implementation of the framework shall be offered within

the scope of this work.

4. Research

contributions

This work offers a modeling language that refines SysML in support of

executable modeling/architectures within the MBSE domain.

5. Research rigor Comparison of existing modeling formalisms (i.e. CPN, DEVS and OPM)

and the proposed framework shall be offered to demonstrate its grounding

in these preceding formalisms

6. Design as a

search process

This work shall search and report on relevant alternatives in the research

literature to ensure novelty and rigor of the proposed framework.

8

7. Communication

of research

The contributions of this work shall be communicated through peer

reviewed publications and conferences in the SE community.

1.5. Methodology and Thesis Outline

Based on Hevner’s (2007) framework for DSR, an iterative and incremental approach has been

adopted to build and evaluate solutions that address the goal and objectives of this work.

Subsequent sections of this document are organized as follows: Chapter 2 reports on the current

state of the art with regards to executable modeling using UML/SysML. An overview of

simulation concepts and tools are offered. This is to inform on model concepts required to refine

SysML, to enable a native specification of executable discrete time models. Additionally it

informs on the supporting software infrastructure/libraries that can be provided to enable model

execution.

Chapter 3 addresses the first research objective of refining SysML to support executable

modeling of real time systems. Chapter 4 addresses the objective of providing software tools that

enable implementation and evaluation of an executable systems modeling language. Chapter 5

discusses a high level model development process for executable systems, as well as a sample

model aimed at offering a proof of concept implementation of the proposed executable modeling

framework (i.e. modeling language, model development tool and process).

Chapter 6 discusses the proposed framework in regards to two executable modeling formalisms

i.e. the Discrete Event System Specification (DEVS) formalism (Concepcion & Zeigler, 1988)

and High Level Place Transition nets (Jensen, 2013). Finally, Chapter 7 outlines how this work

9

fulfills the stated research goal. Additionally it offers an outline of strengths, limitations, and

implications of the proposed framework to the body of knowledge and practice of systems

modeling and architecture. Figure 2 shows the tasks of the research methodology aligned with

corresponding chapters of this document.

Figure 2: Thesis Outline

10

2. BACKGROUND & LITERATURE REVIEW

This chapter offers a discussion of the state of the art with regards to UML/SysML based

simulation models. The chapter has three sections: Section 1 offers an overview of Model Based

Systems Engineering (MBSE), the Unified Modeling Language (UML), and related modeling

standards relevant to MBSE practice. Section 2 discusses the challenges of UML/SysML

executable modeling and approaches in the research literature offered to address them. Finally,

Section 3 contrasts the former with a discussion on simulation languages and the software

infrastructure required for their execution. This is aimed at exploring commonalities in SysML

and simulation languages in order to inform on features that can be introduced in SysML and

supporting modeling tools in order to facilitate specification of executable dynamic models.

2.1. Model Based Systems Engineering (MBSE):

Models are a consistent feature of most engineering projects. Such projects typically entail

multiple collaborating teams, relatively long development life cycles, etc. To facilitate

communication, analysis, and documentation of design intent in such contexts, the traditional

engineering disciplines (i.e. civil, chemical, mechanical and electrical engineering) have

developed various standard modeling frameworks that offer an abstraction of their respective

problem domains.

The emergence of systems engineering post World War II represented a shift in paradigm from

individual technical disciplines towards a more holistic engineering approach, commensurate

with the increasing complexity of technology (Ferris, 2007). The system engineer’s models were

aimed at bringing into focus system level performance issues such as reliability, safety, resilience

etc. that may be inaccessible from a component/subsystem level design perspective.

11

The International Council of Systems Engineering (INCOSE) MBSE initiative (Estefan, 2007) is

essentially a renaissance of earlier systems modeling frameworks such as the US Air Force’s

Integrated Computer Aided Manufacturing (ICAM) program in the 1970’s (Shumaker, 1979).

MBSE however emphasizes a data management approach for systems engineering models based

on a meta-schema of modeling concepts (i.e. modeling language) which enforces consistency of

model elements across different diagrams types and viewpoints.

Currently, the Systems Modeling Language (SysML) is the de-facto standard for MBSE,

sanctioned by the Object Management Group (OMG) and INCOSE. SysML is a derivative

language of Unified Modeling Language (UML), which is a unification of modeling

methodologies for software engineering. An overview of UML, SysML and other pertinent UML

based modeling standards is offered in the following subsections.

2.1.1. UML

Following the success and mainstream adoption of Object Oriented (OO) programming in the

1980s, a host of methodologies emerged in the late 1980s and 1990s, to support design and

analysis of OO software. According to Cook and Jacobson (2010) by the early 90s there were 26

published methods on object-orientation, most with their own graphical modeling notation. UML

was born out of an effort to meld these approaches into a unified standard. Version 1.1 of the

language was published in 1997 as an OMG standard, subsequent to an initial submission (i.e.

Version 1.0). This was a merger of Grady Booch, James Rumbaugh, and Ivar Jacobson’s initial

design with submissions from major modeling tool vendors and users.

Over the years, UML has evolved from its original purpose as a graphical notation for software

design into a widely adopted standard for conceptual modeling across many domains. It currently

offers facilities for defining Domain Specific Languages (DSL), model transformation, and

12

executable modeling. The language specification consists of a meta-model and 14 standard

diagram types that specify the syntax and semantics of model elements as well as rules for

diagram construction respectively.

Additionally, UML offers the capability for custom profiles; this enables language extension in-

order to support domain specific modeling. A number of standard modeling languages have been

defined this way, perhaps the most pertinent to SE being SysML and the Unified Profile for

DoDAF and MODAF (UPDM) (OMG, 2013b). In addition to language extension to create

domain specific languages, profiling can be used to attach additional information to models

which may be needed for ancillary purposes such as model analyses or code generation. An

example of such an application is the profile for Modeling and Analysis of Real Time and

Embedded systems (MARTE) (Selic & Gérard, 2013).

Notwithstanding its relative maturity and adoption, UML has its flaws and has accordingly

received criticism in the research literature. Much of the challenge with UML has to do with the

complexity of its language architecture. The circumstances surrounding its initial formulation

resulted in a rather inclusive language due to political expediency, not necessarily design intent

(Cook, 2012). Despite attempts over a number of revisions aimed at streamlining and

simplification, it remains a large specification with a number of imprecisely defined and

overlapping concepts (Kobryn, 2004). This underlies the related implementation challenges of

precise semantics, enforcing tool compliance, and interoperability.

With regards to the particular challenge of precise semantics for supporting UML executable

models, a number of language editions since Version 1.5 (this included action semantics for

UML) has culminated into a derivative specification called the Semantics of a Foundational

13

Subset for Executable UML Models (fUML) first published in 2011. fUML streamlines UML by

offering precise semantics for a useful core of language constructs.

2.1.2. fUML & Alf

The fUML specification (OMG, 2016) identifies an essential core of UML constructs and offers

a precise and formal specification of their behavioral semantics. It refines the UML concept of

class as the primary construct for structural modeling. The behavior of a class is specified based

on a refinement of UML activity modeling concepts. Additionally, fUML specifies a

foundational Model Library, which entails primitive data types and behaviors for operations on

them.

fUML defines run time behavior mostly for primitive UML actions; this excludes for the most

part behavioral constructs that can be derived from the composing primitive actions. Thus

constructs such as time events, change event, triggers, etc. are not included. The primary purpose

of the standard is to serve as an intermediary between UML and computational platform

languages i.e. translation from the UML to fUML and subsequently to target language. This

therefore justifies the absence of such high level behavioral constructs which are typically

provided by platform languages and their supporting libraries.

The fUML specification defines a basic virtual machine capable of executing conformant

models, this serves to check compliance of tool vendor implementations of the standard. A

reference implementation of the fUML virtual machine is implemented by Model Driven

Solutions ("http://www.modeldriven.com/," 2016) and is publicly available to provide a

reference that can assist in evaluating the conformance of implementations with the fUML

standard. Currently the eclipse based open source modeling tool, Papyrus ("Papyrus Modeling

Environment," 2016) and Magic Draw’s Cameo Simulation toolkit ("Cameo Simulation

14

Toolkit," 2016) offer implementations of fUML. A more extensive listing of supporting tools is

offered by the Modeling languages blog (Cabot, 2011).

With regards to a concrete syntax for expressing fUML models, the default approach is to use

existing UML notations for model elements contained in the fUML subset, essentially the same

notations for class and activity diagrams. This tends to be tedious and error prone for large

detailed models. In such scenarios, the Alf standard offers a more compact alternative. Alf is the

standard textual language that serves as a surface representation for UML models. Semantically,

Alf maps to the fUML subset (Seidewitz, 2014). This presents modelers with the option of three

possible representations or views for fUML models, i.e. a graphical view, a textual view solely in

Alf, and a hybrid approach that embeds Alf in graphical models.

Alf prescribes three possible approaches for model execution namely interpretive, compilative,

and translational execution. In interpretive execution, Alf code is directly interpreted and

executed in using programs in suitable executable language. In compilative execution, Alf code

is translated into a UML model conforming to the fUML and executed as such, thus fUML

serves as a compiler for Alf. Finally, in translational execution Alf code and its context (i.e. for

applications where Alf is embedded in a graphical model) is translated into some target

executable language where it is executed.

In addition to fUML and Alf, the relatively new OMG standard for the Precise Semantics of

UML Composite Structures (PSCS) (OMG, 2015b) and ongoing work on a precise semantics for

UML state machines (PSSM) (Seidewitz, 2014) offer the opportunity to create formal and

executable models while retaining the benefit of UML’s relatively wide acceptance and ready

availability of tools. However, while UML is yet to be overhauled to only feature these finer

15

additions, the language as a whole has become even more complicated. It remains unclear how

these formal editions are compatible with the rest of the language.

2.1.3. SysML

SysML is a strict profile of UML, designed to support the specification, analysis, design,

verification, and validation of systems that include hardware and software components. It was

developed as a joint effort between INCOSE and the OMG. SysML specifies eight diagram types

derived from UML diagrams with the exception of the Requirement and Parametric diagrams.

These novel diagram types were introduced to support visualization of requirements as well as

mathematical constraint relationships between model elements.

SysML introduces the notion of requirement, which is not explicitly present in UML, although

use cases may be applied to model functional requirements. Requirement blocks, together with

extensions of the UML dependence relationship i.e. trace, refine, and verify stereotypes, etc., are

combined in requirement diagrams to present a model of requirements and their taxonomic

relations.

Additionally, the capacity for defining mathematical constraints between model elements is

introduced with the parametric diagram. The language’s binding relation construct enforces an

identity property between value properties; this allows related elements to be derived from the

other. This supports the definition of mathematical relations between physical elements of a

system. In addition to these new constructs, SysML retains UML notions of behavior, i.e. states,

and activities as well as interactions in their respective diagrams.

UML activity diagrams however, have been extended in SysML to support the concept of

continuous flow. This is applied with annotations that specify flows as discrete, streaming, or

16

control. Again, these features are not present in UML, as they are not relevant for modeling

software which lends itself more to a discrete conception. SysML retains the token flow and

node activation semantics of UML activities, also used in Petri-nets (Murata, 1989).

SysML offers a relatively more agile alternative to UML. It has far less language constructs and

relatively cleaner semantics with regards to overlaps and ambiguities in language elements. Also

SysML is more directly applicable to a broader range of domains and applications scenarios

compared to UML, which has many software centric features.

2.1.4. MARTE

MARTE is a UML profile designed for model-based design and analysis of real-time and

embedded software of cyber-physical systems (Selic & Gérard, 2013). Compared to SysML,

MARTE is an annotation profile; this allows the overlaying of additional information onto a

UML model. MARTE introduces concepts that support specification of non-functional

properties, timing requirements, etc. in UML, thus bridging the gap between UML models and

simulation tools applied for scheduling and performance analysis.

MARTE and SysML both leverage foundational UML constructs to support a broader purview,

beyond software engineering concerns. Therefore they share a number of overlapping concepts,

i.e. class composition, non-functional properties, etc. The prospect of using SysML and MARTE

as complementary profiles have been explored in (Espinoza, Cancila, Selic, & Gérard, 2009;

Mura, Murillo, & Prevostini, 2008). However such an application of multiple UML profiles

poses significant challenges with regards to the consistency of language constructs across

profiles. More importantly the resulting language specification becomes large and unwieldy

with implications for accidental complexity.

17

2.2. SysML Model Execution

Next to a relatively accessible syntax, the main strengths of UML/SysML are its capacity for

extension (i.e., language profiles) and use as a hybrid language (i.e., opaque expressions). The

former enables the extension of the language to suit a wider range of domain specific modeling

contexts while the latter allows the use of a variety of programming languages to append the

necessary detail required for such an appropriation.

Executable simulation models have been typically derived from SysML models through a hybrid

approach. This entails appending SysML models with details specified in a programming

language, since most models rely on libraries implemented in other programming languages for

statistical sampling, model observation, parametric equation solvers, etc. Execution strategies for

such models may be categorized into co-simulation or transformational approaches.

Co-simulation facilitates an operational execution by coupling the execution engine of an

embedded scripting language with the SysML modeling tool. A hybrid model of graphical

SysML constructs and textual code can be executed by a model execution tool, which invokes

functions on the virtual machine of the embedded scripting language and advances the state of

the simulation based on corresponding returned outputs.

Alternatively, the transformational approach entails a transformation of SysML models into a

program in the language of the target execution platform. This is implemented by specifying

correspondence rules between SysML and the target language based on which model

transformations are enforced. The OMG’s Model Driven Architecture (MDA) initiative which

advocates this approach entails facilities to enable transformation of models specified in UML

based languages.

18

2.2.1. Model Driven Architecture

MDA advocates a software development strategy based on model transformation of higher level

conceptual models to executable programs, so called platform independent and platform specific

models respectively (Soley, 2000). MDA entails a number of standards for:

1. Meta-modeling i.e. the Meta Objects Facility (MOF)

2. Conceptual Modeling i.e. UML, SysML etc.

3. Model data exchange i.e. XML Meta-data Interchange (XMI)

4. Model Transformation i.e. Query/View/Transformation (QVT).

At the heart of MDA is the QVT standard, which supports query, organization of model data into

views, and transformation rule specification. Queries are expressions evaluated over a model;

they take a model as input and return a selection of model elements. A view is a model which is

completely derived from another model. Within the context of the QVT, views are generated

from queries on a baseline model. Transformations are implemented with a view as input to

generate an equivalent model in a target language based on a specified mapping between the

source and target languages.

Besides QVT, the ATLAS Transformation Language (ATL) (Jouault, Allilaire, Bézivin, &

Kurtev, 2008) and Extensible Stylesheet Language Transformation (XSLT) (Peltier, Bézivin, &

Guillaume, 2001) have been applied as model transformation frameworks in the literature. In

situations where there is a lack of correspondence between the two languages, transformation

profiles offer a way to bolster SysML with the required constructs in the target language.

Figure 3, below, illustrates QVT’s operational context: A language which essentially facilitates

specification and execution of transformations (i.e. tabs) between any two models, Ma and Mb

expressed in MOF conformant modeling languages i.e. MMa and MMb.

19

Figure 3: QVT Operational Context (Jouault et al., 2008)

2.2.2. Overview of Approaches for Executable SysML

Building on these features, a number of approaches for SysML executable modeling have been

offered by modeling tool vendors and the research communities. As mentioned in the previous

section, these approaches typically employ the techniques of co-simulation and model

transformation to enable model execution.

Some commercial modeling tools such as Magic Draw, Enterprise Architect, and IBM Rhapsody

etc. provide out of the box support for co-simulation using scripting languages such as Matlab

(MathWorks, 1996) and Python (van Rossum, 2007). These have been leveraged in the research

literature to offer an implementation test bed for model based embedded systems design. Such

approaches support the specification and evaluation of a system’s dynamic constraints using

20

mostly SysML block and parametric modeling (Bank, Blumrich, Kress, & Stöferle, 2016;

Bombino, Hause, & Scandurra, 2010; Krammer, Fritz, & Karner, 2015).

With regards to model transformation, SysML based profiles and transformations have been

proposed for automatically generating corresponding executable models for Arena (McGinnis &

Ustun, 2009), Colored Petri nets (Wang & Dagli, 2008), and DEVS simulators (Nikolaidou,

Dalakas, Mitsi, Kapos, & Anagnostopoulos, 2008). Table 2 offers an overview of approaches in

the literature for SysML model transformations.

Table 2: Approaches for SysML Model Execution via Model Transformation

Title Authors Target language

An executable system architecture approach

to discrete events

system modeling using SysML in

conjunction with colored Petri Net

(Wang & Dagli, 2008) CPN

An Overview of the SysML-Modelica

Transformation Specification

(Paredis et al., 2010) Modelica

Integrating models and simulations of

continuous dynamic system behavior into

SysML

 (Johnson, 2008) Modelica

Model-based system engineering

using SysML:

Deriving executable simulation models with

QVT

(Kapos, Dalakas,

Tsadimas, Nikolaidou, &

Anagnostopoulos, 2014)

DEVS

System-level model integration of design and

simulation for mechatronic systems based on

SysML

(Cao, Liu, & Paredis,

2011),

Matlab

Multi-view Modeling to Support Embedded

Systems Engineering in SysML

(Shah, Kerzhner, Schaefer,

& Paredis, 2010),

EPLAN Fluid &

Modelica

Integrating SysML with Simulink using

Open-source Model Transformations.

 (Sindico, Di Natale, &

Panci, 2011) ,

Matlab

System-Level Modeling and Design Using

SysML and SystemC

(Raslan & Sameh, 2007), SystemC

Toward Executable Architectures to Support

Evaluation

(Wagenhals, Liles, &

Levis, 2009)

Colored Petri Nets

(CPN)

21

2.2.3. Challenges with UML/SysML Model Execution

The primary challenge with UML models in general is one of language formality and

standardization. While there are myriad approaches and tools offered both by the research

community and commercial tool vendors, there remains the challenge of a uniform implementation

of the language. This is in part due to the complexity of the language infrastructure and its arcane

specification.

UML entails essentially several independently derived modeling methodologies (i.e. state charts,

activity diagrams etc.) which have been co-opted into a single modeling framework. The

circumstances surrounding its initial formulation resulted in a rather inclusive language due to

political expediency, not necessarily design intent (Cook, 2012). Thus, despite attempts over a

number of revisions aimed at streamlining and simplification, it remains a large specification with a

number of imprecisely defined and overlapping concepts (Kobryn, 2004).

Furthermore, language profiles aimed at supporting domain specific modeling risk further

complicating the language schema with adverse implications for tool interoperability and model

execution. Additionally, most profile specifications do not specify the formal semantics or reference

implementations of the novel concepts they introduce. While techniques have been proposed in the

literature aimed at addressing this challenge using fUML (Mayerhofer, Langer, Wimmer, &

Kappel, 2013; Tatibouët, Cuccuru, Gérard, & Terrier, 2014), there remain inconsistencies between

fUML and legacy UML that essentially preclude a uniform implementation of this.

2.3. Simulation Languages

The Modeling and Simulation (M&S) domain encompasses concepts, tools, and techniques

aimed at simulating the behavior of real or notional systems on digital computers (Zeigler, 1984).

22

Systems engineering relies heavily on M&S theory to support architecture modeling and

analysis. SysML thus has significantly similar constructs with the typical simulation language,

the latter however mostly has a textual syntax and more refined executable semantics.

Simulation languages are juxtaposed here with SysML in order to offer insights on language

constructs and supporting software infrastructure needed to support specification of executable

dynamic models in SysML.

Kiviat (1969) characterizes simulation languages as problem oriented languages (POL) distinct

from general purpose programming languages. POLs, more recently referred to as domains

specific languages (DSL’s), are aimed at offering constructs appropriate for formulating

executable solutions to typical problems in the domain of inquiry. A DSL is able to express

executable solutions to domain specific problems while abstracting away the details of platform

specific execution instructions.

Simulation programming languages are DSLs designed to offer execution logic usually required

in computer simulations at a higher level of specification amenable to domain experts. Several

of these, including GPSS, SIMSCRIPT, SIMULA, etc. emerged in the 1960s and 70s following

the development of the first general purpose programming languages (i.e. FORTRAN, ALGOL,

LISP, COBOL) in the 1950s.

2.3.1. Primary Concepts

Tocher (1965) categorizes simulation software into two parts: the simulation language and the

simulation programming system. The simulation language enables user specification of rules

guiding the evolution of a dynamic process involving interacting entities, such that a program

can be constructed by a computer which will give a realization of that process. The programming

system offers a substrate for user specification and execution of models in the simulation

23

language. It entails facilities for managing program run as well as collection and visualization of

results.

In this vein, a simulation model is characterized here as entailing two categories of model

elements, namely infrastructure and superstructure constructs. Superstructure constructs are

mostly applied in user models and pertain to parallel concepts in a model’s referent domain.

Examples of these are objects/entities, events, activities, states, resources, queues, delays, etc.

Infrastructural constructs typically do not have parallel concepts in the referent domain, but are

necessary to enable model execution. Examples of these include simulation clock, model

observation, and algorithms for advancing time in simulation model.

Superstructure constructs are usually language constructs available for user extension, while the

infrastructure is for the most part hidden from the user. This convention of separation of

language superstructure and infrastructure is typically applied in M&S literature and tools. In

these contexts, and subsequently throughout this document, the term simulation language is used

in reference to a language’s superstructure, whereas the infrastructure component of the language

is referred to as the simulation executive or simulator (Pidd, 2004).

Simulation languages offer structural and behavioral constructs for modeling entities in the

reference domain and how the properties of entities evolve over time due to their interaction.

Typical examples of structural constructs include; entities, resources, queue, delays, etc.

Behavioral constructs include; state, activities/processes, events, etc. The state of an object in

most simulation languages is an enumeration of the values of its attributes at a particular instant

of time. An activity/process consists of a sequence of executions that transforms the state of an

object in an instance of time. Activities are initiated/terminated by the occurrence of events

(Kiviat, 1969).

24

A simulation executive/simulator primarily manages the progression of time and synchronization

of time among a simulation’s entities. This is typically modeled by the concept of a global

simulation clock, which is updated by a given Time Flow Mechanisms (TFM), i.e. fixed or

variable increment TFM. In fixed increment TFM, the simulation clock is advanced by fixed

time increments in every cycle of the simulation loop. In a variable increment TFM, also called

next-event simulation, the simulation clock is advanced to the time of the next imminent event in

the model for each cycle of the simulation loop (Kiviat, 1969).

2.3.2. Simulation Worldviews

A simulation worldview or conceptual framework is a structure of concepts and perspectives that

underlie the general structure of a simulation program. Balci (1988) identifies four main

worldviews underlying discrete event simulation programs namely: process interaction, event

scheduling, activity scanning, and three-phase worldviews.

In the process interaction worldview, the model specification follows the lifecycle of objects in a

system. A model can follow either an Active Server approach or a Transaction Flow approach.

The former focuses on the behavior of the resources in the system while the latter emphasizes the

behavior of entities, referred to as transactions, as they travel through the system (Miller, Silver,

& Lacy, 2006). Entities typically arrive, undergo some processes, where they seize and release

scarce resources, and then exit. A process is a time sequence of events, activities and delays

which model demand for resources and queuing to wait for resources etc.

The simulation strategy here is to advance the simulation clock to the earliest time at which some

active process is scheduled to reactivate. Processes due at this time are advanced to the next

suspension after which model conditions are evaluated to determine if any idle processes should

25

be reactivated. Once there are no more active processes, the simulation clock is advanced to the

next time, and the cycle repeats until some terminating condition is met.

In the event scheduling world view, events are the primary drivers of the simulation. For each

event, the model specifies associated state changes and future events that must be scheduled. The

simulation proceeds by updating the simulation clock to the time due for the next event and

implementing the activities and future events associated with it.

Initialize model entities

Update simulation time

Execute events due

Output results

Figure 4: Sequence of Execution Event Scheduling Worldview

In the activity scanning world view, also known as the two-phase approach, activities are the

primary drivers of the simulation. Activities are specified in two parts; condition and action. The

simulation proceeds by a fixed increment TFM, where all activities are scanned for each time

advance, actions with satisfied conditions are executed. Activity executions result in state

changes.

26

Initialize model entities

Update simulation time

Action 1 Action 2 Action n

Output results

Figure 5: Sequence of Execution in Activity Scanning Worldview

The three-phase worldview combines the activity scanning and event scheduling worldviews.

Activities are triggered by timed events as in event scheduling, additionally, activities with

conditions scanned implemented as in the Activity Scanning world view. To achieve this,

activities are characterized as either Conditional (Cs) or Bound (B’). Bs are scheduled as in an

event scheduling approach. They model the effect of unconditional state changes on the current

state and the future by scheduling new B activities into the future. Cs are triggered at event times

if their condition evaluates to true.

Figure 6 illustrates the operation of a typical three phase simulation executive. Pidd (2004)

categorizes the main steps of 3-phase execution sequence under A, B, and C phases, respectively.

In the A phase, the simulation clock is moved to the next event time by checking all the Bs that

are currently scheduled. Those Bs that are now due are executed in some defined sequence so as

27

to release resources, this is the B phase. Within a simulation run these steps are repeated until

some termination criteria is met.

Initialize model entities

Update simulation time

Action 1 Action 2 Action n

Output results

Execute Events due

A-phase

B-phase

C-phase

Figure 6: Sequence of Execution in Three-phase Worldview

2.3.3. Simulation Tool Architecture

In practice simulations may be built using either one or a combination of Visual Interactive

Modeling Systems (VIMS), simulation languages and/or general purpose programming

languages. VIMS offer a drag and drop graphical interface, where users can assemble simulation

models by selecting from a palette of predefined model components and relations to create

diagrams. Model details, such as sampling distributions, constraint relations, etc. can be added

through dialog boxes and property sheets that are linked to model elements in the diagram.

28

Examples include Arena (Kelton, 2002) and IMPRINT (Mitchell, 2003) for human performance

modeling .

Another option is developing simulations from scratch using a high level programming language.

As common operations underlie most simulations, re-usable software libraries have been

developed in a number of high level programming languages to facilitate simulation

development. Examples of such libraries include; SimPy (Matloff, 2008) and SimJava (Howell

& McNab, 1998) based on Python and Java programming languages respectively.

The simulation executive fundamentally serves as a scheduler for time-event triggered activity

executions in the model. After each execution cycle it advances the simulation time based on a

TFM and selects the next activity routines in the application for execution. Figure 7 illustrates

the bare-bones abstraction of a simulation program; consisting of method calls between a

simulation executive and application.

Model

Executive

schedule(event, time) execute(event, time)

User interface

specify/run reports

Figure 7: Primary Components of Simulation Software

29

Most VIMS incorporate additional features besides this core functionality that support user

interaction with simulation results as well as interfacing with other platforms such as database

systems. Table 3 outlines some essential capabilities and features of simulation software.

Table 3: Capabilities & Features of Simulation Tools (Adapted from (Pidd, 2006))

Capability Features

1. Conceptual

Modeling

Graphical modeling environment

Built in simulation meta-model and objects

Various input formats for setting model

properties, run parameters etc.

Statistical distributions and functions

2. Simulation Simulation executive to run model

Visualizations and/or virtual reality

representations to allow a user to view the

model state as the simulation proceeds

Simulation run control (i.e. run, pause, speed

etc.)to enable the user to interact with the

simulation as it runs

3. Experimentation Model observation/experimental frames that

define run parameters and outputs

 Tools for visualization of model results

Optimization tools

4. Interoperability Links to other tools such as spreadsheets,

databases, servers, API’s for custom

extensions etc.

2.4. Summary

This chapter offered a juxtaposition of SysML and simulation languages and supporting

technologies. This was aimed at highlighting deficiencies in SysML and modeling tools in their

use for specifying executable models of dynamic systems. The primary challenges with SysML

in this regard are its imprecise syntax and semantics as well as a lack of a native strategy for

modeling and execution of time based events. This is especially critical as state changes and

30

associated changes in property values are time ordered in most dynamic models. The following

points summarize the identified limitations and challenges of SysML modeling:

1. Ontological foundation: There’s a lack of a clearly defined schema of language

constructs independent of their use in diagrams, leading to overlaps and inconsistencies

in their use across diagram types

2. Execute-ability: Extending from 1, there’s a lack of execution semantics i.e. a reference

implementation or formal model of language core constructs

3. Support for Time: A lack of clearly defined approach for specifying and managing time

advance in a model

4. Governance: Extending from 1 and 2, there’s a lack of mechanisms for checking the

correctness of model syntax and semantics

5. Extensibility: A lack of clearly defined approaches for checking the consistency of

language extensions (i.e. profiles).

The challenge with language semantics adversely impacts language extension through profiles

(i.e. breadth) as well as embedding of opaque expressions in models (i.e. to provide depth). The

latter of which is critical to supporting a pragmatic use of SysML as a simulation language.

Essentially, an overhaul of the language with emphasis on simplification and formalization will

enable consistent language extension and interfacing with other languages and execution

platforms via opaque expressions. This is necessary in order to leverage SysML as a language for

uniform and consistent specification of executable models within the systems modeling and

architecture community.

31

3. AN EXECUTABLE SYSTEMS MODELING LANGUAGE

In response to challenges regarding SysML modeling discussed in the preceding chapter, this

chapter proposes an Executable Systems Modeling Language (ESysML). Similar to the fUML

and ALF standards, ESysML retains and refines existing SysML block and activity modeling

semantics and their graphical syntax. Additionally, an equivalent textual syntax is proposed that

enables a more compact alternative to graphical models. This would facilitate well-structured

and easily verifiable user models, which is necessary to support the development of executable

architectures.

ESysML essentially re-imagines SysML as a simulation language. It prescribes an approach for

time advance and action invocation based on time. The objective here is to repurpose SysML as

an executable language specification with a reference implementation that can be uniformly

implemented in tandem with any executable/platform specific language such as Matlab, Java,

and Python etc. as a base language captured as Opaque expressions.

Subsequent sections of the chapter are organized as follows: Section 3.1 discusses the

ontological foundations of the ESysML. Section 3.2 discusses language constructs and the

corresponding textual syntax. Section 3.3 discusses structural modeling with ESysML in relation

to SysML. Section 3.4 similarly discusses behavioral modeling as well as constructs for

specifying time based action executions. The final section offers a summary of the chapter and

reflects on implications with regards to the overall objectives of this research.

3.1. Ontological Foundations

Mealy (1967) identifies three realms of interest in data processing and information systems in

general: the real world itself, ideas about it existing in the minds of men, and symbols on paper

32

or some other storage medium. An ontology is a fundamental philosophical position akin to a set

of beliefs about the existence of certain entities in external reality (Evermann & Wand, 2005).

In the context of information systems management, domain ontologies offer a baseline

description of the nature of things that exist in a problem domain. This enables a commonality of

concepts and shared understanding among stakeholders. Modeling languages that are applicable

to a domain must in turn offer symbols and concepts based on the domain’s ontology in order to

support an adequate expression of problems situated in the domain.

This work applies constructs from the Bunge-Wand-Weber (BWW) ontological model as a

semantic foundation for the proposed ESysML. Wand and Weber (1990) proposed an application

of Mario Bunge’s ontology (Bunge, 1977) for modeling information systems. This has

subsequently been applied severally in the literature for conceptual modeling (Dussart, Aubert, &

Patry, 2004; Soffer, Golany, Dori, & Wand, 2001) and evaluating the expressiveness of

modeling languages (Becker, Bergener, Breuker, & Rackers, 2010; Fettke & Loos, 2003; Opdahl

& Henderson-Sellers, 2002).

Based on the BWW the real world is primarily composed of things; a thing is a substantial

individual which exists in space and time. Additionally, they may be composed to form things

with mutual properties. Properties serve as the descriptors of a thing; they are assumed to be

scrutable with observer-independent characteristics. Properties are represented by attribute

functions (attributes) that map sets of things to values. Attributes, in this vein, are conceptual and

do not exist in reality, they only serve as a means for representing the properties of a thing.

 The state of a thing represents the values of its properties at a point in time. An event is the

change in state of a thing. Laws specify the possible state space for a thing. A class is a set of

33

things that possess one common property. A kind is a set of things that possess two or more

common properties (Bunge, 1977). Table 4 outlines the primary concepts of the BWW ontology.

Table 4: Concepts of the BWW Ontology (Evermann & Wand, 2005)

Concept Explanation

Thing Fundamental concept, the world consists of things and only

things

Property Things have properties

Intrinsic Property Property of one thing

Mutual Property Property of two or more things

Composition Things can be composed to form composite things

Emergent Property Property of a composite thing not possessed by its parts

State function Function describing a property of a thing

Functional Schema

(Model) Set of state functions describing things

State Value vector assigned to state functions of a schema

Natural kind set of things adhering to a set of laws

Law A restriction on a thing’s properties, or relation between

properties

3.2. Language Concepts

An ESysML model essentially comprises model elements. A model element, here, is a parallel to

the concept of thing in the BWW. A model element may own zero or more properties, which

specify its relation to other model elements. Properties are implemented here as unidirectional

with a single source and zero or more target model elements. Figure 8 illustrates the concept of

model element and property using UML notation.

34

«ModelElement»

A

 <<Property>> C

 target: B[*]

<<ModelElement>>

A
<<Property>>

C
<<ModelElement>>

B
1

source

*

target

Figure 8: Graphical Notation for Primary Constructs

Model elements are further categorized under the five main types of; instance, action, type,

action definition, and package. Instances reference real or notional things present in the world.

Actions specify the rules by which Instances are created, destroyed, or transformed. Constraints

and events are considered special kinds of action in ESysML. Constraints specify restrictions on

the values the properties of model elements may assume. Events refer to time based changes in

value properties based on a truth condition. They are useful for invocation of actions based on

time or other conditions in a model.

Type and action definition are definitional elements, used to specify a template for creating

instances and performing action executions. A distinction is made between real instances with

spatio-temporal extent, which are typed by block and notional/conceptual ones typed by data

type. Data instances primarily serve as attributes of block instances. Attributes, based on the

BWW, are observer imputed properties useful for exposing the nature of real things. Block (i.e.

physical) and data (i.e. conceptual) instances are differentiated from each other solely by the time

attribute. This is a default attribute of all blocks in a model, which is useful for specifying how

the properties of a physical thing evolve over time. Additionally blocks may be physically

composed of other blocks in keeping with the BWW law of composition.

The construct of package is useful for organization of model elements. An ESysML model is a

package or container of user defined types, action definitions and nested packages, as well as a

35

specification of an Activity. Activities entail one or more actions with a specified order of

execution. Essentially an ESysML entails a progression of actions termed Activity, and the

definitional elements they are based on i.e. types and action definitions. Figure 9 illustrates the

hierarchy of model elements in ESysML.

block

model

element

value

type

primitive

type

data

type
constraintevent

interface

block
link

stringinteger realboolean

time

event

package type
action

definition

primitive

action

enum

type

action

opaque

expression

null

instance

collection

type

change

event

Figure 9: Hierarchy of Model Element Classes

Properties specify relations between model elements. These are broadly categorized into

dependency and characterization relationships. Characterization is a property relating an

instance and one or more instances or actions, termed as features. Characterization properties are

further specialized into attribution, operationalization, and participation.

Attribution is a relation solely between instances where the element at the target end of the

relation serves as a descriptor to the source element. Operationalization is a relation between an

instance and one or more actions, which prescribe how the properties of the instance may change

36

in a model. Participation is a relation between block instances. It specifies a whole-part

relationship between block instances. This serves to implement the BWW law of composition.

The Dependency property is used broadly to specify logical dependence relations between model

elements. This is specialized into inheritance, instantiation, containment, importation,

parameterization, invocation, and progression properties. Instantiation is a relation between an

instance and its type. Inheritance is a relation between types that implies the element at the target

end may exhibit all of the properties of the element at the source.

Containment properties specify a relation between a package and other model elements

contained within it. The Importation property specifies a relation between packages which

implies that named elements in the target package can be referenced directly in the source

package.

Invocation, progression, and parameterization properties specify relations between actions.

Invocation properties have an event as the source element and an action as the target. This

signifies a dependence on the event for the initiation of the action at the target. A progression

property denotes an ordering constraint between actions; which specifies precedence or parity of

action execution sequence.

The parameterization property specify relations between an action and model elements required

for its execution (i.e. inputs) or model elements produced as a result of its execution (i.e. output).

As earlier mentioned, actions are composed of a progression actions, termed Activity. Figure 10

outlines the hierarchy of property types in ESysML.

37

property

containmentinheritance

characterizationdependency

instantiation importationinvocation participationattribution operationalizationprogressionparameterization

Figure 10: Hierarchy of Property Classes

3.3. Overview of Textual Syntax

A textual syntax that retains the C style syntax of Alf is proposed. Following this convention,

language statements and statement blocks are delimited with semi-colons and curly braces

respectively. Additionally, C style “if” (conditional) and “while” (loop) formats are retained for

specifying conditional and loop statements. An ESysML textual model entails four main

components, a model property declaration blocks, an activity block, type definition blocks, and

nested packages.

The model property definition blocks specify imported packages and model defaults such as

executable language for opaque expressions and a default home directory for imports. The

activity block specifies a progression of one or more actions that must be performed once the

model is activated. Type definition blocks define named elements that may be invoked together

with imported names in the Activity block. Figure 11 illustrates a sample model an activity

specification and a nested package.

38

Figure 11: Sample Model

A notable peculiarity in ESysML syntax is the explicit specification of action output names. In

keeping with SysML, this helps to expose name, value pairs available in an activity’s namespace

in the course of an execution. Additionally, for opaque expressions this allows output variable

from an execution to be cast into predefined ESysML types with assigned names. This feature is

further discussed under the behavioral modeling in section 3.4. The Parsing Expression

Grammar (PEG) (Ford, 2004) is used to offer a formal definition of the language syntax. A more

detailed description of the textual syntax, along with the PEG specification is offered in

Appendices B and A respectively.

39

3.4. Model Specification

ESysML supports model specification based on structural and behavioral perspectives. As in

UML/SysML the structural modeling generally entails the definition object/instance types,

packages and the dependencies between them. Behavioral modeling focuses on solely action

execution. Subsequent sections describe the various modeling concepts under structural and

behavioral modeling perspectives with illustrative examples.

3.4.1. Structural Modeling

ESysML supports a structural modeling perspective which entails definition of types and

properties as well as their organization using packages. Model element definitions entail

specification of a type keyword, name, and zero or more property definitions. Property

definitions must specify a type, name, default values as well as multiplicity values of the

property.

Multiplicities are denoted by an ordered pair of comma separated whole numbers that specify the

minimum and minimum number of entities allowed in the relation. The labels ‘O’, ‘U’, and ‘L’

may be appended to multiplicity to specify whether a collection of entities specified in the

relation are ordered, unique, or labeled respectively. Additionally, in place of using digits to

specify the limits of a multiplicity the symbols, ‘+’ and ‘*’ may be used to signify one-or-more

and zero-or-more limits respectively.

Property names may additionally be prefaced by a “qualifier” keyword. Currently there are two

qualifier keywords; static and constant. An example of this is the static keyword which indicates

that a property is applicable only to the Type and not instances based on it. That constant

40

keyword indicates that a name may be assigned once to an instance and remain unchangeable in

the course of an execution.

ESysML packages are essentially containers for organization of model elements. A Model

which is an extension of the Package construct is the top level element of an ESysML model. A

model additionally serves as a global namespace for its contents. A model’s namespace entails

names of user defined model elements as well as predefined model elements that can be accessed

globally within the model. Examples of such globally accessible components include a global

Time variable and the Observe function, which enables logging of model results. Models support

a specification of default properties; such as a default import directory and language for opaque

expressions in the model.

Regarding data types, SysML primitive types (i.e. integer, real, string, Boolean) are retained.

Enumerated type, Value type, and Collection types are extensions of the data type construct. An

enumerated type specifies a user defined set of strings, one of which may be applied as a data

instance. There are three main collection types in line with the options for multiplicity definition

namely; Ordered collection, Unique collection, Labeled collection. This may considered

analogous to python collection types lists, sets, and dictionaries respectively.

Value types are specialized data types aimed at supporting physical quantity specification in the

model. They may be defined by specifying a required data type for values. An instantiated value

type specifies an ordered pair, a string value and data instance based on the type specified at

definition. As an example a value type named ‘Weight’, which specifies the data type ‘real’ at

definition, may be instantiated as [65.0, ‘kilogram’]. Additional to this, users may define custom

data types that may be instantiated with a constructor operation. Appendix B offers a library of

41

sample models for further reference on data type definitions and data instances. Figure 12

illustrates an example data type and value type definition along with their instantiation.

Figure 12: Data & Value Type Definition and Instantiation

The SysML construct of block is retained as the primary structural feature for defining classes of

things in a model’s referent domain. The whole-part relation between blocks and physical

connection of blocks is implemented through the participation property and link and interface

blocks respectively.

The interface block and link model elements are block specializations aimed at supporting the

modeling of physical couplings and item exchange between blocks. Interface blocks serve as

definition elements for specifying properties of ports. Ports are in essence parts that serve as

boundary objects, useful for exposing the whole to specified interactions in its environment.

Similarly links serve as definition elements for connectors between ports. Port couplings via

connectors serve as the primary mechanism for modeling matter, energy and/or information flow

42

across a system’s boundary to/from its environment. Figure 13 illustrates an example block

definition.

Figure 13: Example Block Definition

3.4.2. Behavioral Modeling

The primary behavioral modeling construct in ESysML is the action. This enables the

specification of behavior for types and instances via operationalization properties. Actions

definitions specify the rules by which a model’s properties may evolve i.e. through creating,

destroying, or transforming model elements. Specializations of action include primitive actions,

opaque expressions, events, and constraints. Similar to primitive types, primitive actions are

43

predefined model elements with user specified slots. Currently ESysML entails the following

primitive actions; final, instance creation, value assignment, element reference, condition, loop.

Action methods are composed of action calls or invocations. The order of action execution is

determined by either precedence or parity relations between action calls, which may be specified

using the control and object flow notation of SysML activity diagrams. Action methods do not

have the typical return statement of a programming language. Action outputs specify zero or

more names that are assigned in the action method (i.e. activity) and available to the caller of the

action once the action completes.

As an example the gen_request action definition in figure 14, specifies a name request that must

be assigned a value of type FlowItem. The first statement in the action’s body assigns the request

name to the returned instance generated by the constructor action for FlowItem. Opaque

expressions may be similarly defined as actions, this is shown in figure 15.

Figure 14: Example Action Definition

Figure 15: Example Action Definition with Opaque Expression

44

Time-events and change-events enable the invocation of actions after a time delay or a specified

change in a model’s properties respectively. Time-events specifies a trigger which is a number or

an expression that evaluates to a number while change-events must specify a Boolean valued

trigger. Figure 15 illustrates the syntax for action invocation with events.

Figure 16: Example Action Invocation with Event

For the purposes of model execution, the semantics of time and change events here are in

alignment with the concepts of bound and conditional events (Tocher & Laski, 1966) used in the

three-phase simulation world view. Events are invoked by an executive which additionally

manages the model’s time variable. A block’s owned actions are in turn invoked by associated

time events to ensure their occurrence in correct simulation time.

SysML’s constraint block element has been redefined in ESysML as an action, as this better

aligns with the definition of action in ESysML. Constraints specify rules for the values instances

properties may assume. From a structural perspective, constraints may be considered as derived

or dependent properties of an instance. A change in value of one or more dependent/input

properties of a constraint triggers an execution of its method which recalculates the value of the

constraint.

45

Constraint definition follows a similar format as actions, with the exception of the keyword

constraint preceding the statement. Also constraints do specify an output parameter as the output

value is automatically assigned to the constraint name. The input parameters of a constraint must

be attributes of its owner element. A constraint’s assigned name may be considered its output

parameter as this presents the results of its method execution. Appendix A offers a more detailed

description of the language syntax with descriptions and examples.

3.5. Model Diagrams

SysML notations for block, package, and activity diagrams can be applied as a graphical

alternative for the specification of models. Following SysML diagramming conventions a

diagram may be used to show the model elements in the namespace of its context or owner

element. Diagram headers indicate the diagram type, model element type, model element name,

and diagram name respectively. Block and package diagram notations may be used in a block

definition diagram for specifying the content of a structural feature.

The option of specifying models textually in addition to the graphical syntax offers a

complementary approach to model definition that support precision and detail without sacrificing

a model’s accessibility. Figure 17 shows corresponding graphical and textual specifications of a

model.

46

«block»

Human

attributes

name: string = ‘TBA’

children: Human[*,U]

weight: Weight= [65, ‘kilogram’]

static headCount: integer = 0

TestPackage

bdd model TestModel Test ExStrucDiag

Units

names

Weight: value_type

import

Figure 17: Example Graphical and Textual Model Structure Specification

Activity diagrams may be used for specifying activities associated with a model or action

definition. Activities diagrams for activities associated with action definitions may show input

and output parameters as attachments to the diagram frame. Additionally, primitive composite

actions such as conditional and loop expressions may be visualized using fragments.

SysML diagrams, however, do not support the visualization of dynamic information which is

especially relevant in the context of executable models. To address this activity diagrams may be

appended with a list of names and value pairs present in the context namespace. This allows

simulation tools to not only highlight action activation during execution but also changes in

named values in the course of an execution. Additionally, this will offer a visualization of the

47

model’s state during activity execution. Figure 18 shows alternative textual and graphical

specifications for an action definition.

act action_def multiSum behavioralModeling

assign

0 ‘i’

i: integer

assign

‘x’ 0

x: integer

in: integer[+,O]

plusx

increment

out

i

in[i]

out: integer

i

while {i < len(in)}

Figure 18: Example Graphical and Behavioral Model Specification

Finally SysML does not explicitly offer an instance model, such as the Object diagram in UML.

An instance model will be useful in visualizing an executable model’s initial state. Since instance

48

construction is typically handled using activities instance diagrams must be owned by an action

definition or model as with activity diagrams.

input: SimpleInterface

x: MVS

jes: Server

cpu1: Server cpu2: Server

prt: Server

la: SimpleLink

lb: SimpleLink
lc: SimpleLink

ld: SimpleLink lf: SimpleLink

lg: SimpleLinkle: SimpleLink

output: SimpleInterface

Figure 19: Sample Textual Action Definition and Corresponding Instance Model Diagram

49

3.6. Summary

This chapter introduced the ESysML, an executable language with equivalent textual and

graphical syntax based on SysML. The proposed language offers a relatively simple and

extensible language schema that supports modeling of time based dynamic systems. This offers a

necessary semantic foundation for the development of formal and executable architecture models

in systems engineering. Regarding the overarching goals of this work, this chapter addresses the

first objective of refining SysML to support the specification of executable models for system

architecting.

While this approach may initially trade off language expressivity for execute-ability, it lays a

necessary foundation of constructs that may be extended to cater to a more expressive

application. Modeling concepts such as use cases, state machines, requirements, etc., have been

omitted as a design choice so as to achieve a more compact and precise language specification.

Further language extension from the provided constructs is proposed for future research in order

to afford an increasingly expressive modeling framework.

Executable models for simulation analysis, such as those generated during the system

architecting process, entail details not typically required in a conceptual model but are necessary

to enable execution. Thus in order to support a pragmatic and scalable approach to executable

modeling, software tools that implement the language as well as libraries of pre-developed model

elements must be offered. This is further discussed in the subsequent chapter.

50

4. TOOLS & IMPLEMENTATION

This chapter discusses the architecture and a prototype modeling tool that implements the

ESysML, proposed in the previous chapter. This is aimed at offering an implementation test bed

of a proposed modeling framework based on the ESysML. Additionally, the modeling tool offers

built in model elements and libraries that implement recurrent patterns and constructs in discrete

time models.

Subsequent sections of the chapter are organized as follows: Section 4.1 discusses the

architecture of the modeling development environment. This section further details the adopted

model exchange format and execution strategies. Finally the section offers a discussion on

proposed model library elements. Section 4.2 discusses the proposed model development

process. In Section 4.3 a sample implementation of that illustrates an implementation of the

language and development process is offered. The final section offers a summary of the chapter

and reflects on implications with regards to the overall objectives of this research.

4.1. Prototype Tool: ESysML Modeler

MBSE tools facilitate a specification of a model database using a modeling language (i.e.

UML/SysML) as a meta-schema for model data. They offer diagramming tools and input dialogs

for user input, as well as tools for visualizing relations between model elements and generating

system/architecture description documents.

MBSE tools that support the MDA initiative additionally offer features that enable

transformation of models into computer programs or vice versa (i.e. reverse engineering). As

discussed in Chapter 2, some tools may interface with execution platforms to support executable

model specifications (i.e. co-simulation). Based on these features, a modeling tool architecture is

51

required that will enable the creation, referencing, computation, and visualization of model data

based on ESysML.

Figure 20 illustrates a candidate of the architecture of an ESysML modeling tool. This entails a

text editor that supports specification of models in textual code i.e. Code Editor. The Model

Builder module supports parsing and creation of a user model conformant to the language

schema. The Model Explorer supports both an input and output interface by offering context

menu commands for model specification and a tree diagram to display the model structure. The

drawing tool must support the specification of models diagrams as well as automatic generation

of code from model diagrams. The Console is a text browser interface that displays error

messages as well as the results of a model run. Finally the VizCanvas (i.e. visualization canvas)

offers an interface for creating and visualizing charts of output data from model runs.

CodeEditorDrgTool

ModelBuilder

parsermd_cmds

ConsoleVizCanvas

ModelExplorer

Model_Output

User_Input

Figure 20: ESysML Modeling Tool Architecture

52

As part of this research, a prototype modeling environment based on the architecture shown in

Figure 21, named ESysML Modeler, was developed. Its purpose is to demonstrate a proof of

concept as well as a reference implementation for the ESysML language. The tool currently

implements all of the modules of the proposed architecture except the drawing tool and a fully

integrated visualization canvas (i.e. features highlighted in yellow in figure 20). A screen shot of

the tool’s user interface is shown in figure 21.

CODE EDITOR

MODEL

EXPLORER

CONSOLE

Figure 21: Prototype Tool (ESysML Modeler)

53

4.2. Model Parsing and Implementation

The model builder module supports creation of a user model from ESysML code specified in the

Code editor. The code editor offers syntax checking and a highlighting of language keywords.

Model parsing is implemented using Arpeggio (Dejanović, Milosavljević, & Vaderna, 2016)

which is a Parsing Expression Grammar (PEG) (Ford, 2004) parsing library in Python. The

parser generates an Abstract Syntax Tree (AST), which is interpreted into a user model by the

model builder module. Appendix C entails Python code for model parsing and implementation in

the ESysML Builder software.

As discussed in the previous chapter, the type and package constructs serve as namespaces for

user defined model elements. Thus, the dot notation may be used for referencing an elements full

name based on its location within a model. Additionally, the keyword ‘this’ may be used to

reference an element’s context namespace. This is applicable in activity definition scenarios

where specified parameter names may shadow existing names in the context namespace.

Names of elements defined at the model level may be globally accessed throughout a model. In

addition to user specified imports, a model’s namespace contains references to built in elements

which offer constructs such as arithmetic and logical operations, random number generating

functions and global variables, such as time and the default import directory name. A detailed list

of built in global variables are offered in Appendix D.

The Model Builder module additionally supports storage of models classes as .esl file types. Also

model elements may be exported in JavaScript Object Notation (JSON) file format and stored to

a document database (ex. MongoDB, CouchDB). JSON is adopted here due to its relative

54

intuitiveness for storing objects. Objects are structured similar to python dictionaries, consisting

of key value pairs representing attribute names and values.

4.3. Model Execution and Observation

Model execution entails the two phases of compilation and execution. Model compilation entails

the creation of the user model schema as python classes. The resulting model schema after

compilation may be visualized in the Model Explorer window. The Compile function available

on the modeling tool’s run menu enables users to initially compile and visualize the resulting

model structure prior to execution, which is useful for debugging models. Table 5 offers a list of

ESysML constructs and their python correspondent applied in the compilation phase.

Table 5: ESysML and Corresponding Python Constructs

SysML Python

type (block, data_type) class object

property attribute

instance instance object

integer int

real float

string str

boolean bool

null none

action definition callable class object

action function invocation

package class object

model package

55

Model Execution entails execution of activities previously compiled into python. This is handled

by a simulation executive class, which is offered as part of the model builder module. The

implementation of simulation executive is based on the three-phase worldview. The executive

maintains a global model variable, time and updates it to the timestamp of the model element

with the next imminent event in order to advance time in a simulation event loop. Change events

of model elements are scanned after executing time events due at the current simulation time.

Block instances in the model by default maintain record of the current model time and a list of

change_events and constraints for execution. Additionally, the built in observe action enables

modelers to specify model element properties to be stored for analysis. This enables the

executive and observer of the simulation builder classes to implement action invocations as well

as record changes in observed properties over time. The model execution architecture is

illustrated in figure 23.

Model

Executive

Observer

clock

FEL [*]: Entity

c-list [*]: Entity

schedule(entity, event)

commit(event, time)

do_cevents()

report()

Observer()

events_due []: TimeEvent

change_events []: Event

do_tevents()

User interface
run()

Figure 22: Model Execution Architecture

56

The Model block is able to schedule time_event executions invoked by the Executive. It

maintains a due_now list that is populated by the return call (i.e. commit(); see Fig 24) from

scheduling a time event on the executive. A Model’s due_now list maintains a record of the next

events to be called on the Entity by the Executive. Similarly the change_events list maintains a

record of an entities change events, all of which are scanned and executed based on the truth

value of their conditions. The commit() operation, which is invoked from the executive, assigns a

time and next time events due on an entity.

The executive block records the simulation time, and advances it to the time of the next imminent

event with each iteration of the simulation loop. Time and change events to be executed are

managed by maintaining two separate lists of events i.e. the conditionals list (c_list) and Future

events list (FEL). The c-list is initialized at the start of a simulation based on change events and

constraints of blocks in the model. The FEL is populated by scheduling of actions through time

events.

The Observer class accessed through the built in observe action, offers facilities for recording

model parameters relevant to a modeler. It has interfaces with the model and executive to report

on the value of specified model elements during the course of a simulation run. Additionally, it

offers methods for writing simulation results to persistent storage after model execution.

A simulation run is initialized by factory functions that instantiate model entities, with given

initial attributes events and actions. Additionally, an initial event schedule, which triggers the

commit method, is required as part of initialization to populate the FEL with an event prior to the

simulation loop. After each iteration of the loop, an update method offered by model entities as

an interface to the observer, reports a snapshot of an entities state at the current simulation time

57

to the observer. An overloaded version of this method updates a plot of an entities state at each

time lapse. Figure 24 illustrates the model execution sequence.

:Model :Executive :Observer

initializeEntities()

schedule(entity, event)

commit(event, time)

 For priming the FEL and

C-List for simulation loop add_c(*entity)

updateClock()

do_tevents()

schedule(entity, event)

commit(event, time)

do_cevents()

observe()

report()

simulate()
while (clock <= runDuration)

toDb()

Figure 23: Model Execution Sequence

58

4.4. Model Library

As indicated in the introductory chapter, a significant advantage of adopting an executable

modeling standard is the potential for the reuse of prebuilt model components. Model libraries in

this vein offer a foundation of pre-built models that facilitate collaboration and application of

established patterns pertaining to a domain of inquiry.

In line with the goal of this work, which is the development of a SysML based framework for

executable architecture descriptions of real time systems, an additional library of model elements

is provided. This is aimed at offering re-usable elements in the simulation model of real time

systems such as resource pools, service queues, servers, clients etc. This work applies concepts

from Queuing theory to validate the long-term behavior of service queues.

Queuing theory offers a mathematical analysis of systems characterized by waiting lines and

resource sharing problems. It is useful for estimating system performance measures such as

delays, congestion, and resource utilization, etc. Queuing systems are typically described by the

probabilistic properties of the incoming flow of requests, service times, and service disciplines.

The service discipline determines the rules based on which arriving requests are prioritized for

service; examples include First in First out (FIFO) and Last in First out (LIFO) service

disciplines. The service times and inter-arrival times are typically assumed to be independent

random variables (Sztrik, 2012).

Figure 26 illustrates the Client and Server block which are offered as part of the queueing theory

library named QLibrary. The Client block implements a creation pattern for generating resource

consuming entities, which is typically implemented in simulation applications. It prescribes a

model entity that periodically generates service request entities based on a random statistical

59

distribution or a user defined time function. Similarly, the Server block models a typical service

providing entity with a limited resource pool and randomly generated service times. Appendix D

offers a more detailed textual specification of components offered as part of this model library.

«block»

Client

output: SimpleInterface

attributes

meanGenRate: integer

numRequests: integer

operations

action Client(lambda: integer)->(x: Client)

constraint genRateExpo(meanGenRate)

action gen_request()->(request: FlowItem)

action send_request()->()

«block»

Server

output: SimpleInterface

attributes

meanServRate: integer

numServed: integer

numResources: integer

operations

action Server(lambda: integer)->(x: Server)

constraint srvRateExpo(meanServRate)

action get_request()->()

action fin_request()->()

input: SimpleInterface

Figure 24: Structure of Client and Server Blocks

4.5. Summary

This chapter introduced a prototype model development environment i.e. ESysML Modeler. A

discussion of the tool’s software architecture as well as strategies for model parsing,

implementation, execution, and simulation observation was discussed. The provided software is

by no means complete, as it only offers a prototype environment for demonstrating proof of

concept use cases of the ESysML, but is sufficient for the purposes of this research.

Among the features proposed for a typical MBSE CASE tool, the ESysML modeler supports

model specification via textual code, error reporting, and visualization of model structure and

simulation results. The software does not yet support generation of model diagrams and animated

60

simulation. These features while necessary for eventual dissemination and adoption of the

proposed framework are beyond the scope of this work, and proposed for future research.

In regards to the goals of this research, this chapter addresses the objective of providing software

tools to facilitate an implementation of the ESysML.

Based on the ESysML and its prototype implementation tool, the research objective of

demonstrating a sample application of the framework can be achieved. The following chapter

discusses a model development approach and a sample model implementation of in ESysML.

This offer addresses research objective 3, while additionally offering guidance model

development using the ESysML framework.

61

5. DEVELOPMENT PROCESS & SAMPLE MODEL

This chapter introduces a model development process aimed at supporting the specification of

progressively detailed models in ESysML ranging from high level domain models to executable

models. Additionally, a discussion of a sample model implementation is provided as a proof of

concept implementation of the ESysML language and model development process.

The proposed model development process is an extension of the Modeling & Simulation

Systems Development Framework (MS-SDF) (Tolk, Diallo, Padilla, & Herencia-Zapana, 2013).

This essentially adapts the classical systems engineering development approach to Modeling and

Simulation. Some revisions are introduced to the MS-SDF so as to accommodate the use of

model artifacts beyond analysis and problem solving in the systems engineering context to the

documentation and communication of design required in the system architecting stage.

Subsequent sections of the chapter are organized as follows: Section 5.1 offers an overview of

the MS-SDF. Additionally, it discusses the proposed model development process and expected

artifacts based on it. In Section 5.2 a sample implementation of that illustrates an implementation

of the language and development process is offered. The final section offers a summary of the

chapter and reflects on implications with regards to the overall objectives of this research.

5.1. Modeling & Simulation – Systems Development Framework (MS-SDF)

Tolk et al. (2013) proposed the MS-SDF; a framework for building simulation models that

applies the systems engineering processes of requirements engineering, conceptual modeling,

and verification and validation (V&V). The MS-SDF entails three primary modeling

components: reference model, conceptual model, and simulation model. Figure 27 illustrates the

MS-SDF development process.

62

Figure 25: MS-SDF (Tolk et al. 2013)

Analogous to requirements for engineering, the reference model serves to capture the knowledge

about the problem domain and stakeholders’ expectations for a candidate solution. It entails

constructs such as requirements, design rationale, domain knowledge, assumptions, etc.

Conceptual models in this context offer a subset of constructs from the reference model useful

for addressing specified stakeholder questions, i.e. the basis for the architecting process. They

serve as inputs for simulation models which are essentially computer executable versions of a

conceptual model. The MS-SDF thus offers a systematic approach that ties documentation of

domain information to simulation models which are useful for evaluating questions/problems

from the domain.

63

5.1.1. Using the MS-SDF for Executable Systems Modeling

The MS-SDF is in consonance with the typical MBSE methodology (Estefan, 2007), which

follows a similar pattern of requirements elicitation, model specification, and simulation based

testing. In this research, the MS-SDF is aligned with concepts in systems modeling and

architecture that were earlier introduced.

A viewpoint and corresponding views, in architecture modeling, are useful for scoping and

defining a subset of model elements (i.e. views) tailored to a given stakeholder audience or

purpose. Thus the concept of architecture view is used here in reference to the MS-SDF model

components of reference model, conceptual model, and simulation model, as these are essentially

complementary views of a single reference. An architecture model in this framework thus

consists of reference, concept, and executable views.

The reference view is aimed at offering a model of constructs and entity categories in the

problem domain. This view specifies the universe of possible objects, their behavior, and rules of

interaction and represents the extent of stakeholders’ knowledge of the problem domain. The

concept view is an implementation of the reference view. It serves to represent a system existing

or intended to exist in time and space. The role of this view is to offer a specification of

alternative configurations of a to-be system, based on definitions laid out in the reference view.

Finally, the executable view is aimed at simulating the concept view under a specified

observation window in time and space. It therefore includes additional concepts regarding

execution start point and terminating conditions, as well as objects and attribute data to be

captured for analysis. This can be run given an appropriate execution infrastructure that manages

time and event driven action routines.

64

The data retrieved from running executable models are useful for refining the reference and

conceptual views in subsequent iterations of this modeling process. Figure 28 illustrates the

proposed architecture views.

FFP Views

Reference View (AKB)

Legacy Views

Concept View

Executable View

Simulation results
Legacy views + Observation frame

Figure 26: Architecture Views

5.1.2. Development Process

In alignment with the architecture views, a model development strategy entailing four phases of

modeling activities is proposed namely: reference modeling, conceptual modeling, executable

modeling, and model execution. These can be further extended to suit the particular development

context.

The model execution phase entails model run and data analysis activities. Resulting data from

this phase offers information feedback to refine model artifacts from subsequent iterations of the

development cycle. Additionally, Fit-For-Purpose (FPP) visualizations can be developed from

65

integrating analysis results and legacy views to offer additional artifacts in response to

stakeholders’ information needs. Figure 29, below, illustrates the model development process

and with corresponding artifacts.

Reference Modeling

Concept Modeling

Executable Modeling

Model Run & Analysis

Reference model

Executable models

Legacy +
FFP models

Simulation results

Figure 27: Development Process

5.2. Sample Implementation

To further illustrate the proposed development process and meta-model, this section describes an

implementation of a sample use case based on a discrete event simulation model presented in

(Balci, 1988). This problem was chosen as it offers a non trivial simulation case with known

results which is useful in verifying the software implementation provided here. Subsequent

sections offer the problem statement and outline the various activities of the model development

strategy proposed in the previous chapter applied specifically to this case.

66

5.2.1. Problem Statement – The MVS System

The problem consists of modeling and simulating a Multiple Virtual Storage (MVS) batch

computer system with two Central Processing Units denoted by CPU1 and CPU2. Users submit

programs to the system for processing on different network types. Inter-arrival times of programs

to the MVS system are assumed to follow an exponential distribution. Table 6 specifies the

various types of system users and the mean inter-arrival times for service requests to the MVS-

System.

Table 6: User Types and Inter-Arrival Times for Service Requests

The MVS system is composed of a Job Entry Subsystem (JES). The JES scheduler assigns

programs to CPU1 with a probability of 0.6 or to CPU2 with a probability of 0.4. At the

completion of program execution on a CPU, the program's output is returned back to the user

with a probability of 0.2 or to the printer (PRT) with a probability of 0.8.

Additionally, all queues in the MVS computer system follow a first in first out discipline and

each facility (i.e., JESS, CPU1, CPU2, or PRT) processes programs one at a time. The

probability distribution and the average processing times for each facility are given in Table 7.

67

Table 7: Processing times for MVS-System Sub-Components

The results of the following system performance measures are provided for a simulation of the

MVS system processing at least 15,000 programs (Balci, 1988).

a. Utilization of the JESS (ρJESS) = 0.70

b. Utilization of CPU 1 (ρCPU1) = 0.85

c. Utilization of CPU 2 (ρCPU2) = 0.75

d. Utilization of the Printer (ρ PRT) = 0.80

e. Average time spent by a batch program in the MVS computer system (W) = 2400

seconds

f. Average number of batch programs in the MVS computer system (L) = 15

5.2.2. Reference Modeling

Reference modeling is aimed at capturing general knowledge from the problem domain. This

phase additionally enhances collaboration between subject matter experts and modeler’s and

ultimately stakeholder buy in and validation. With regards to ESysML, the constructs of type and

action definitions are primarily utilized here to specify the main types of entities and processes in

the reference domain.

68

Figure 30 is a block diagram that illustrates the structure of a notional batch computer derived

from the problem statement. A batch computer is defined here as being composed of a scheduler,

one or more CPUs and printers, as well as input and output ports. Additionally, connectors

between the batch computers components are modeled as a fourth component type i.e. links. It is

noteworthy that the Server, SimpleLink, and SimpleInterface blocks are imported from the

QLibrary model discussed in the previous chapter.

«block»

BatchComputer

«block»

Server
«block»

Server

«block»

Server

+cpusjes

input: SimpleInterface

+prts

output: SimpleInterface

«link»

SimpleLink

+links

bdd balci_reference

Figure 28: Block Diagram of Batch Computer with Textual Specification

69

5.2.3. Conceptual Modeling

Conceptual modeling activities specify an architecture concept which is an instantiation of

concepts/model elements predefined in a reference model. It further refines the reference model

by specifying physical and timing constraints on action execution. Essentially, this is aimed at

specifying a model of a To-be architecture concept. Figure 31 illustrates an instance model that

specifies the given configuration of the MVS system. This is implemented as an extension of the

batch computer model specified in the reference model.

input: SimpleInterface

x: MVS

jes: Server

cpu1: Server cpu2: Server

prt: Server

la: SimpleLink

lb: SimpleLink
lc: SimpleLink

ld: SimpleLink lf: SimpleLink

lg: SimpleLinkle: SimpleLink

output: SimpleInterface

ins balci_concept

Figure 29: Instance Model of MVS To-be Architecture

70

5.2.4. Executable Modeling

Executable modeling introduces the concepts of execution termination points and model

observation to a conceptual model. Additionally, this specifies a test case or scenario useful for

evaluating the requirements and validating architecture decisions regarding the system. Model

observation is implemented using an observer action. This supports specifying relevant model

properties to be logged during the course of a simulation. The resulting simulation data log can

serve as an input for model based analysis.

Specifically for the MVS case, the executable view must instantiate users modeled with the

Client block, as well as the specific availabilities of the MVS internal connections as given in the

problem statement. From the problem statement, the simulation reaches steady state after

approximately 15,000 programs are generated, therefore the executable model must specify a

termination point that ensures that the number of generated requests exceeds the steady state

point of 15,000. In this case, the termination point is specified with a change event that sets the

termination point at 15,000 requests on the output port of MVS system. Appendix E entails the

complete reference, conceptual, and executable views of the sample model.

Figure 33 illustrates the initialization section of an executable view that models scenario given in

problem statement using an instance diagram. The complete executable model may specify

initializing actions as well as a simulation termination point.

71

md300: Client md1200: Client md2400: Client l9600: Client

l2: SimpleLink
L3: SimpleLink

l1: SimpleLink l4: SimpleLink

input: SimpleInterface

mvs: MVS(BatchComputer)

jes: Server

cpu1: Server cpu2: Server

prt: Server

la: SimpleLink

0.6
0.4

0.8 0.8

0.20.2

output: SimpleInterface

Figure 30: Instance Model of Executable Model Test Case Initialization Actions

5.2.5. Model Run and Data Analysis

The final phase entails model data analysis and visualization efforts. Currently, ESysML modeler

prototype offered as part of this work enables storage of simulation logs as .csv files. The

ultimate goal with regards to architecture modeling as presented in this work is the integration of

simulation results into legacy model diagram types such as block and activity diagrams, as Fit-

For-Purpose presentations useful for decision support.

72

While the prototype tool is yet to provide this feature, existing data analysis and visualization

software may be used to support the data analysis phase of the model development methodology.

With regards to the MVS case study figure 34 below offers a plot of utilization over time for the

jes scheduler, cpu1, cpu2, and printer. As shown, the simulated results are validated by the

analytical results given in the problem statement.

Figure 31: Plot of Utilization for JES, CPU1, CPU2 and Prt1

73

5.3. Summary

This chapter concludes the discussion on the ESysML started in Chapter 3. A model

development process based on the MS-SDF was offered. Additionally, a sample model was

offered as a proof of concept implementation of the language and proposed modeling process.

The full textual specification for the sample implementation is provided in Appendix E.

As mentioned in Chapter 4, the model development environment does not yet implement support

for model specification via the graphical syntax or model diagrams. Thus the sample model

provided may only serve as a proof of concept for the execute-ability of the textual syntax. An

implementation of both graphical and textual syntaxes is necessary to verify equivalence. Again,

this is beyond the scope of this work and as such proposed for future work.

74

6. SYSTEMS MODELING FORMALISMS

This chapter discusses the ESysML in relation to existing modeling formalisms, highlighting the

underlying commonalities as well as unique contributions of this work to the current state of the

art in systems modeling. The term “modeling formalism” is used here in reference to a

combination of set theoretic formulations, executable languages, and/or graphical notations

proposed in the literature for systems modeling and architecture description.

The modeling formalisms reviewed here are; High Level Petri-nets, Discrete Event System

Specification (DEVS) formalism, and the Object Process Methodology (OPM). While this is not

an exhaustive list, it sufficiently represents the primary alternatives to UML or UML derived

languages available for developing executable conceptual models. There’s a significant body of

work regarding High Level Petri-nets and the DEVS formalisms which offer graphical notations

as well as software for model specification and execution based on them. Similarly OPM offers a

graphical notation with ontologically grounded semantics as well as supporting software for

model specification and execution. This chapter essentially juxtaposes the ESysML against the

aforementioned formalisms and argues for its place as a refined and executable variant of the

SysML.

Subsequent sections of the chapter are organized as follows: Section 6.1 offers an overview on

the underlying theory and tools for Petri-net modeling. Additionally, there is a discussion on the

common underlying language concepts of the formalism as well as the comparative strengths of

the ESysML. Section 6.2 and 6.3 offer a similar discussion of DEVS and OPM respectively, in

comparison to ESysML. Finally Section 6.5 offers a chapter summary and concluding remarks.

75

6.1. High Level Petri-Nets

A Petri net is a directed, weighted, and bipartite graph. It consists of two kinds of nodes, places,

and transitions, which are connected by arcs from a place to a transition or from a transition to a

place. In graphical representation, places are drawn as circles, transitions as rectangles. Arcs are

labeled with their weights (positive integers), where a k-weighted arc can be interpreted as the

set of k parallel arcs. A marking assigns to each place, a non-negative integer. The marking of a

place is also referred to as the number of tokens on the place (Murata, 1989). Formally a Petri net

is a 5-tuple denoted by;

PN = <P, T, F, W, Mo> (Eq. 1)

where:

 P is a finite set of places

 T is a finite set of transitions

 is a set of arcs (flow relation),

 W: F [1, 2, 3, . . .] is a weight function,

 M0: P [0, 1, 2, 3, . . .] is the initial marking

A Petri net structure N = <P, T, F, W>, without any specific initial marking, is denoted by N. A

Petri net, with the given initial marking, is denoted by <N, MO> (Murata, 1989).

To simulate state changes in a dynamic system, a Petri net’s marking can be changed based on

the following rules.

76

 A transition t is said to be enabled if each input place p of t is marked with at least w(p, t)

tokens; where w(p, t) is the weight of the arc from p to t.

 An enabled transition may or may not fire, i.e. it only implies conditions required for a

transition firing (i.e. an event) are met.

 A firing of an enabled transition t removes w(p, t) tokens from each input place p of t,

and adds w(t, p) tokens to each output place p of t, where w(t, p) is the weight of the arc

from t to p (Murata, 1989).

There are limitations to the scale and expressivity of Petri nets, since they do not support

modularity and complex data types. To address this, a number of derivative works have offered

extensions, collectively known as High level Petri-nets, to address these limitations. Examples of

these are Predicate Transition nets and Colored Petri nets (Genrich & Lautenbach, 1981; Jensen,

2013).

Coloured Petri nets (CPN) are particularly interesting in relation to the current research as they

enhance classical Petri nets with features to support complex data types (i.e. color sets) and

hierarchical nets (nested transitions). Additionally, nets can be inscribed with a functional

programming language (i.e. Standard ML) to support model initialization, data manipulation, etc.

(Jensen, 2013).

With regards to supporting software, the CPN Tools, (Ratzer et al., 2003) offers an open source

development environment for CPN models. This enables model specification as well as animated

simulation of models, which is useful for exploring dynamic behavior and model debugging.

Figure 35 is a simple queue model implementation in CPN tools. This illustrates CPN’s

functional model, i.e. transitions (functions) consuming or creating tokens on places (i.e. data

structures), denoted rectangles and ovals respectively.

77

Figure 32: CPN Model of an M/M/1 Queue

6.1.1. Comparing CPN with ESysML

CPN is primarily aimed at supporting dynamic simulation. As such, it lays emphasis on the

behavioral aspects of a system and may not be ideally suited for visualizing the structure of a

system. Additionally, CPN offers an inherently functional approach, in contrast to ESysML

which is based on an object oriented worldview. The object oriented offered in ESysML enables

a separation of concerns between a system structure and behavioral properties and is preferable

in a typical systems engineering context where documentation and communication of system

structure is a primary objective.

CPN’s primary modeling constructs of places, transitions, and arcs are analogous to ESysML

activity modeling constructs of blocks/data, actions, and dependency relations between actions.

The action execution semantics of ESysML is the same as in CPN, i.e. transitions are fired when

78

there are inputs on all incoming arcs. Additionally, both languages employ the use of a scripting

language, i.e. opaque expressions in ESysML to support detailed execution specifications. Table

8 offers a summary of CPN constructs and corresponding concepts in ESysML.

Table 8: Comparison of CPN with ESysML Concepts

CPN ESysML

Transition Action

Place Instance

Arc Dependency (i.e. invocation and progression)

Marking Opaque expression/Instance

6.2. Overview of DEVS

The DEVS (Zeigler, 1984) formalism prescribes a set theoretic approach for formally specifying

time based computer simulations. The basic modeling unit in DEVS is the Atomic model, which

is formally defined as follows:

M = <X, Y, S, δint, δext, δout, λ, ta> (Eq. 2)

where:

 X is the set of input event values, i.e. the set of all the values that an input event can take;

 Y is the set of output event values;

79

 S is the set of state values;

 δint, δext, λ are input, external, and output transition functions respectively;

 ta is the time advance, a non-negative real number.

DEVS atomic models can be coupled and/or composed into hierarchical modular models through

input and output ports. A DEVS coupled model is formally defined as:

CM = <X, Y, D, [Mi], [Ii] , [Zi,j]> (Eq. 3)

where:

 X is the set of input events

 Y is the set of output events

 D is indexes of the components of the coupled model.

 Mi is a basic DEVS model (i.e. atomic/coupled) for all i in D

 Ii is the set of influences of a model

 Zi,j is the i to j translation function for j in Ii

Coupled models define a set of interconnected basic components. The influences set of a model

specifies the target of model outputs. It essentially defines a mapping between output and input

ports. The translation function supports conversion of a model’s outputs to inputs for target

models.

6.2.1. Comparing ESysML with DEVS

DEVS essentially supports the specification of a systems structure and state based behavior.

Behavior is captured at the atomic level with the specification of the execution logic for internal

80

external and output transition functions. The coupled model enables a specification of system

structure, i.e. how components are connected through item exchanges on their ports.

SysML on the other hand supports specification of multiple modeling formalisms, including

DEVS. The table below illustrates DEVS modeling constructs and corresponding constructs in

SysML.

Table 9: Comparison of DEVS with ESysML Concepts

DEVS ESysML

Atomic Model Block

Input port Interface

Output port Interface

State Variables Value/Part properties

Functions (i.e. transitions and time advance) Actions

Events Events (Time/Change)

In DEVS, ports are primarily useful for transmitting across coupled atomic models. While the

concept of coupled model is analogous to ESysML port-connector scheme for modeling

physically coupled blocks, the ESysML model explicitly models item flow across blocks based

on the behavior definition (i.e. actions and events) of their port and connectors.

However, event exchanges across ports can be implemented in ESysML by specifying events as

input and output values of port actions. Additionally, the DEVS concepts of sigma and phase

variables, which determine an atomic model’s next transition time and target state, can be

81

implemented in ESysML using time events and action invocation respectively. Based on this

approach, the ESysML framework can potentially be leveraged as graphical language

implementation of DEVS models. This will enable executable views in ESysML to be uniformly

executed via model transformation on DEVS conformant simulators.

6.3. Object Process Methodology

Unlike DEVS and High Level Petri nets that proceed from an underlying set theoretic

formulation, OPM offers an ontological foundation of constructs based on which an executable

modeling methodology is built. In this regard, OPM proposes an underlying universal ontology,

which is a domain independent set of concepts for describing the universe, both natural and

artificial (Dori, 2011).

Similar to the Bunge-Wand-Weber Ontology discussed in Chapter 3, OPM proposes the concept

of thing and relations between things as the sole descriptor or model of the universe. The primary

building blocks of the OPM ontology are object, with state and process. An object is a thing that

exists. Processes are things that represent a pattern of object transformation. Transformation here

represents object creation, consumption and/or a change in its state. State in OPM represents a

situation where an object can exist at certain points during its lifetime or a value it can assume

(Dori, 2011).

An OPM model may be specified either with a textual or graphical syntax i.e. Object Process

Language (OPL) and Object Process Diagrams respectively. The Object-Process Case Tool

(OPCAT) shown in Table 10 illustrates OPM primary constructs, corresponding graphical

notation and description.

82

Table 10: OPM Primary Constructs and Graphical Notation

 Note. Reprinted from Modeling Complex Systems with Object-Process Methodology, by Dov Dori,

retrieved from: https://www.iltam.org/check_download_nopass.php?forcedownload=1&file=files/84-

dov%20dori.pdf&no_encrypt=true&dlpassword=84967

6.3.1. Comparing OPM with ESysML

Similar to OPM, ESysML offers a systems modeling approach based on the notion of a

fundamental ontology that clearly defines the semantics of primary modeling constructs and

rules for their use in models. The main difference, however, is that ESysML explicitly sought to

retain SysML/UML terminology and graphical syntax as much as possible without violating an

overarching schema based on the BWW ontology.

Based on this insistence on an ontological basis for modeling languages, ESysML and OPM

share a number of similar features; an example of this is OPM’s concept of essence which

specifies whether an object may be considered physical or informatical. This is essentially

83

analogous to the concepts of block and data-type in ESysML which serve as categories for

distinguishing between physical and informational types that are useful for exposing the nature

of physical objects. ESysML blocks are further differentiated from data instances by the time

attribute. In time based simulations the time attribute primarily serves as an index for tracking

property changes of a block.

Additionally OPM and ESysML both proffer similar high level modeling constructs, i.e. objects

processes versus instances actions respectively. ESysML, however, entails the additional high

level constructs, i.e. types, action-definitions, and packages. These constructs, although not

necessarily represented in a model’s referent, are useful artifacts for specifying templates for

instance creation, the mechanics of action execution, and model organization respectively. Table

11 offers a summary of primary OPM concepts and corresponding constructs in ESysML.

Table 11: Comparison of ESysML vs OPM Concepts

OPM ESysML

Thing/Attribute Model element/Property

Object Instance

Process Action

Essence Block/data type

Value Value type

Aggregation-Participation Participation

Exhibition-Characterization Characterization

Generalization-Specialization Inheritance

Classification-Instantiation Instantiation

Procedural Links Dependency (i.e. invocation and progression)

State/Stateful Objects No explicit construct of state

84

6.4. Summary

This chapter offered a review of the DEVS and high level Petri-nets in relation to ESysML. Petri

net and DEVS are formalisms that are primarily suited for simulation modeling and may not be

ideal in the systems engineering context where modeling artifacts are additionally used for

documentation and communication of design concepts. The OPM standard is more suited to this

context due to its support for both a graphical and textual syntax. OPM however does not offer

an explicit model of time or support for time based simulation models as in DEVS and high level

Petri-nets such as CPN.

ESysML leverages SysML’s widely adopted graphical syntax by offering overarching language

ontology or schema as well as a corresponding textual syntax. Similar to OPM, this enables a

formal specification of executable conceptual models. Additional to this, ESysML’s native

support for specifying time dependent events supports the use of conceptual models to verify the

behavior of real time systems.

Finally, there is the potential for further work to exploit the similar underlying concepts in the

formalisms, in order to enable transformation of models between formalisms. Particularly for

DEVS, this approach offers an opportunity for a graphical implementation based on SysML. As

discussed in Section 6.2.1, DEVS transition and time advance functions can be implemented

within in ESysML as Actions invoked by time events respectively. Similarly, DEVS coupled

models may be implemented via ESysML ports and connectors.

85

7. CONCLUSION

This work offered a framework for developing executable models of time based dynamic

systems to support the development of executable system architectures. This entails a modeling

language, a prototype software tool for language implementation, and a model development

process. These achieve the following overarching research objectives specified in the

introductory chapter:

1. Refine SysML to support an executable specification of time based dynamic systems

2. Implement software tools and development guidelines to facilitate an implementation of

Objective 1

3. Offer a sample application of the framework

4. Demonstrate theoretical grounding of the framework with regards to existing systems

modeling formalisms.

Regarding the broader picture of Model Based Systems Engineering and Systems Architecting,

this chapter offers a discussion on the contributions of this work, what challenges remain open,

and proposed directions for future research.

Subsequent sections of this chapter are organized as follows: Section 7.1 discusses the challenges

and limitations of the proposed modeling framework. Section 7.2 discusses the contributions of

this work to the existing body of knowledge pertaining to systems modeling. Section 7.3

describes, in detail, the application to system architecting and executable architectures. Section

7.4 concludes this document with a discussion of proposals for future research based on this

work.

86

7.1. Challenges & Limitations

The relative merits of conceptual modeling languages, such as SysML over formal languages,

largely remain in their utility as communication artifacts due to their graphical nature and “semi-

formality”. In the systems engineering domain, this affords engineers a design specification

language accessible to a broader stakeholder audience. However, the value of such informal

model specifications decline with time, particularly in the later stages of the system development

life cycle, where detailed analytical and computational models are required. Informal modeling

artifacts developed earlier on essentially end up as shelf material with little to no value for

engineering analysis and decision support. Since the benefits of adopting a formal conceptual

modeling approach may not be apparent in the earlier stages of development, this serves as a

disincentive for wide application of such approaches.

To foster wider adoption, it is especially necessary for formal approaches such as ESsyML, to

offer software libraries and user interfaces that make them more accessible. An example in this

regard will be incorporating support for model specification/visualization using the familiar

graphical syntax of UML/SysML. While this work has demonstrated the compatibility of

ESysML with SysML activity, block and package diagrams; the prototype tool provided is yet to

implement such a graphical interface for model specification using these diagrams. This is

proposed as future work.

Finally, the maturity of formal modeling standards such as fUML, Alf etc., particularly with

regards to modeling tool vendor adoption (i.e. development environments, compilers/interpreters

etc) will promote a surge in standard model libraries that enable reuse of components for

building executable models in support of architecture analysis and validation. Custom

87

approaches provided by the research community, such as offered in this work, is however

required to influence and hopefully accelerate this maturity.

7.2. Research Contributions

This work offered a framework for executable modeling based on SysML. It identified

limitations in the language due to its informal semantics for specifying executable models, which

are particularly necessary for analysis and verification of models of timed systems. Based on

this, an executable modeling language was offered that simplifies SysML to an essential core of

formal language constructs as well as introduces constructs for specifying time change in

dynamic models.

Additionally, a model development strategy was proposed to guide model specification based on

three complementary viewpoints of an executable model i.e. reference, conceptual, and

executable views. A modeling tool that supports model specification, execution, storage and

exchange was offered.

The goal was to leverage a widely accepted standard in SyML to support formal model

specification in MBSE practice. The graphical syntax of SysML can be leveraged for ESysML

model specification; this potentially allows for both high level but precise models which can be

readily refined into computer simulations. This provides a uniform semantic framework that

bridges the gap between models for architecture description and the finer grain executable

models used for their verification.

While a number of MBSE tools offer support for executing opaque expressions in programming

languages such as Python and Matlab, they do not yet offer semantics and out of the box

implement event driven action executions and a synchronized time advance as offered in

88

ESysML. This potentially improves the quality of architecture description by enabling

transparency and continuity between high level architecture models and the executable models

used for their verification and validation.

The proliferation of internet of things and data driven intelligent systems, places an increasing

demand for model driven engineering approaches and languages that support formal architecture

description and analytical methods for such highly interconnected real time systems. This work

lays an essential foundation for further work in this direction, by offering a relatively compact

and extensible modeling schema that can be leveraged in support of various analytical

techniques.

7.2.1. Contribution to Systems Architecting and MBSE Practice

As previously discussed in Chapter 2, the state of the art with regards to derivation of executable

models from static architecture views is the two approaches of Model Transformation and Co-

simulation. A significant challenge with these approaches has been the fundamental mismatch

between the precise language schema of an executable language and the mostly informal schema

of modeling languages such as SysML.

ESysML offers essentially a programming language with interchangeable graphical and textual

syntaxes akin to the fUML/Alf standards approach for executable UML. This enables a seamless

transition from high level structural models to more detailed executable models without the

intermediary step of retrofitting models with extra constructs using mechanisms such as

Transformation Profiles.

ESysML reduces the potential for accidental complexity by removing the extra steps required to

develop transformation programs (i.e. tabs) used for generating executable models from static

89

architecture views. Additionally, capabilities such as syntax-checking and model debugging

integrated into modeling tools due to execute-ability enable a more rigorous specification of

architecture descriptions.

Figures 36 and 37 illustrate the status-quo for executable model generation and the proposed

approach using ESysML respectively. The highlighted area in Figure 34 outlines artifacts for

executable model generation that are not required with the adoption of an executable language

for modeling as advocated in this work. A system architecting approach using ESysML allows

the parallel development of both static and executable models from the same underlying

architectural data, resulting in better communication with stakeholders and improved analyses to

support decision making.

EXECUTABLE ARCHITECTURE

 COMPONENTS

Modeling language

(SysML)

Transformation

Language

MODEL

REPOSITORY

ARCHITECTURE

VIEWS

Executable

Language

Tab
Executable

Model

Figure 33: Executable Architecture Generation via Model Transformation

90

Executable Modeling

language (ESysML)

MODEL

REPOSITORY

STATIC

VIEWS

EXECUTABLE

VIEWS

ARCHITECTURE VIEWS

Figure 34: ESysML Approach for Executable Architecture Development

7.3. Future Research

Future research on the proposed framework can be considered under the two categories of

breadth and depth research efforts. Breadth characterizes research efforts aimed at extending

ESysML constructs and the ESysML builder to support implementation of novel and domain

specific concepts. In this vein, an extension of the framework to support formal specification of

system requirements and traceability relations to other modeling constructs such as constraints

is proposed. Such an extension of the language will provide a more rigorous model based

approach to requirements engineering and architecture definition. This will add to existing

systems engineering methods for design space and tradeoff analysis.

The time advance and model execution strategy offered is primarily applicable to modeling

resource allocation in discrete time systems, an extension of this to support simulation of

continuous time and hybrid systems is proposed for future work. This will enable the

91

development of a broader range of models, particularly with respect to computational methods

applied in most engineering physics models. Additionally, this will facilitate an integration of

conceptual models which are mostly functional in perspective and physical Computer Aided

Design (CAD) models.

Finally, on the notion of framework breadth, further research efforts to enhance software

libraries and tools that will support transformation and automated generation of other executable

languages is proposed. This additionally entails transformations for standard graph

visualization formats etc., such as the Graph Description Language (Gansner & North, 2000)

that support displaying system’s structural hierarchies network topologies.

Research efforts aimed at depth shall be focused on offering software tools and model libraries

that enhance user application of the framework. In this vein, extension of the existing modeling

tool to support model specification via diagrams is proposed. Additionally, a web-based

repository of sample models of various architecture patterns is proposed, this is aimed at

contributing to model reuse and collaboration in the systems modeling community.

A formalization of requirements specification as well as increasingly available repositories of

well-structured architecture model data will facilitate the development intelligent computer

aided systems engineering tools. Tools can be bolstered with learning algorithms in order to

recognize architecture patterns and offer functionalities such as identifying design flaws and

proposing candidate designs to user requirements.

92

REFERENCES

Balci, O. (1988). The implementation of four conceptual frameworks for simulation modeling in

high-level languages. Paper presented at the Proceedings of the 20th conference on Winter

simulation.

Bank, D., Blumrich, F., Kress, P., & Stöferle, C. (2016, 18-21 April 2016). A systems

engineering approach for a dynamic co-simulation of a SysML tool and Matlab. Paper presented

at the 2016 Annual IEEE Systems Conference (SysCon).

Becker, J., Bergener, P., Breuker, D., & Rackers, M. (2010). Evaluating the expressiveness of

domain specific modeling languages using the bunge-wand-weber ontology. Paper presented at

the System Sciences (HICSS), 2010 43rd Hawaii International Conference on.

Blanchard, B. S., & Fabrycky, W. J. (2006). Systems Engineering and Analysis, International

Series in Industrial and Systems Engineering: Prentice-Hall, Upper Saddle River, NJ.

Bombino, M., Hause, M., & Scandurra, P. (2010). Heterogeneous systems co-simulation: a

model-driven approach based on SysML State Machines and Simulink. Paper presented at the

First Workshop on Hands-on Platforms and tools for model-based engineering of Embedded

Systems, HOPES.

Bunge, M. (1977). Treatise on basic philosophy, Vol. 3: Ontology I: The furniture of the world.

Dortrecht: D: Reidel Publishing Company.

Cabot, J. (2011). List of Executable UML Tools. Retrieved March 21, 2017, from

https://modeling-languages.com/list-of-executable-uml-tools/

Cao, Y., Liu, Y., & Paredis, C. J. (2011). System-level model integration of design and

simulation for mechatronic systems based on SysML. Mechatronics, 21(6), 1063-1075.

Concepcion, A. I., & Zeigler, B. (1988). DEVS formalism: A framework for hierarchical model

development. IEEE Transactions on Software Engineering, 14(2), 228.

Cook, S. (2012). Looking back at UML. Software & Systems Modeling, 11(4), 471-480.

Dejanović, I., Milosavljević, G., & Vaderna, R. (2016). Arpeggio: A flexible PEG parser for

python. Knowledge-Based Systems, 95, 71-74.

Dori, D. (2011). Object-process methodology: A holistic systems paradigm: Springer Science &

Business Media.

Dussart, A., Aubert, B. A., & Patry, M. (2004). An evaluation of inter-organizational workflow

modelling formalisms. Journal of Database Management (JDM), 15(2), 74-104.

Espinoza, H., Cancila, D., Selic, B., & Gérard, S. (2009). Challenges in combining SysML and

MARTE for model-based design of embedded systems. Paper presented at the European

Conference on Model Driven Architecture-Foundations and Applications.

Estefan, J. A. (2007). Survey of model-based systems engineering (MBSE) methodologies.

Incose MBSE Focus Group, 25(8).

93

Evermann, J., & Wand, Y. (2005). Ontology based object-oriented domain modelling:

fundamental concepts. Requirements engineering, 10(2), 146-160.

Ferris, T. L. (2007). 7.4. 3 Some Early History of Systems Engineering–1950's in IRE

Publications (Part 1): The Problem. Paper presented at the INCOSE International Symposium.

Fettke, P., & Loos, P. (2003). Ontological evaluation of reference models using the Bunge-

Wand-Weber model. AMCIS 2003 Proceedings, 384.

Ford, B. (2004). Parsing expression grammars: a recognition-based syntactic foundation. Paper

presented at the ACM SIGPLAN Notices.

Friendenthal, S., Steiner, R., & Moore, A. (2009). A practical guide to SysML.

Gamma, E. (1995). Design patterns: elements of reusable object-oriented software: Pearson

Education India.

Gansner, E. R., & North, S. C. (2000). An open graph visualization system and its applications to

software engineering. Software Practice and Experience, 30(11), 1203-1233.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian journal of

information systems, 19(2), 4.

Howell, F., & McNab, R. (1998). SimJava: A discrete event simulation library for java.

Simulation Series, 30, 51-56.

Iivari, J., & Venable, J. (2009). Action research and design science research–seemingly similar

but decisively dissimilar. Paper presented at the 17th European Conference on Information

Systems.

ISO, I. (2011). IEEE: ISO/IEC/IEEE 42010: 2011-Systems and software engineering–

Architecture description. Proceedings of Technical Report.

Ivar Jacobson, & Cook, S. (2010). The Road Ahead for UML. Retrieved from Dr Dobbs website:

Jensen, K. (2013). Coloured Petri nets: basic concepts, analysis methods and practical use (Vol.

1): Springer Science & Business Media.

Johnson, T. A. (2008). Integrating models and simulations of continuous dynamic system

behavior into SysML.

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A model transformation tool.

Science of computer programming, 72(1), 31-39.

Kapos, G.-D., Dalakas, V., Tsadimas, A., Nikolaidou, M., & Anagnostopoulos, D. (2014).

Model-based system engineering using SysML: Deriving executable simulation models with

QVT. Paper presented at the Systems Conference (SysCon), 2014 8th Annual IEEE.

Kelton, W. D. (2002). Simulation with ARENA.

Kiviat, P. J. (1969). Digital computer simulation: computer programming languages: DTIC

Document.

Kobryn, C. (2004). UML 3.0 and the future of modeling. Software & Systems Modeling, 3(1), 4-

8.

94

Krammer, M., Fritz, J., & Karner, M. (2015). Model-based configuration of automotive co-

simulation scenarios. Paper presented at the Proceedings of the 48th Annual Simulation

Symposium, Alexandria, Virginia.

Levis, A. H., & Wagenhals, L. W. (2000). C4ISR architectures: I. Developing a process for

C4ISR architecture design. Systems Engineering, 3(4), 225-247.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information

technology. Decision support systems, 15(4), 251-266.

MathWorks, I. (1996). MATLAB : the language of technical computing : computation,

visualization, programming : installation guide for UNIX version 5: Natwick : Math Works Inc.,

1996.

Matloff, N. (2008). Introduction to discrete-event simulation and the simpy language. Davis, CA.

Dept of Computer Science. University of California at Davis. Retrieved on August, 2, 2009.

Mayerhofer, T., Langer, P., Wimmer, M., & Kappel, G. (2013). xMOF: Executable DSMLs

based on fUML. Paper presented at the International Conference on Software Language

Engineering.

McGinnis, L., & Ustun, V. (2009). A simple example of SysML-driven simulation. Paper

presented at the Winter Simulation Conference.

Mealy, G. H. (1967). Another look at data. Paper presented at the Proceedings of the November

14-16, 1967, fall joint computer conference.

Miller, J., Silver, G., & Lacy, L. (2006). Ontology based representations of simulation models

following the process interaction world view. Paper presented at the Proceedings of the 2006

Winter Simulation Conference.

Mura, M., Murillo, L. G., & Prevostini, M. (2008). Model-based design space exploration for

RTES with SysML and MARTE. Paper presented at the Specification, Verification and Design

Languages, 2008. FDL 2008. Forum on.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4), 541-580.

Nikolaidou, M., Dalakas, V., Mitsi, L., Kapos, G.-D., & Anagnostopoulos, D. (2008). A sysml

profile for classical devs simulators. Paper presented at the Software Engineering Advances,

2008. ICSEA'08. The Third International Conference on.

OMG. (2007). Profile for modeling and analysis of real-time and embedded systems (MARTE).

Object Management Group.

OMG. (2013a). Concrete Syntax For A UML Action Language: Action Language For

Foundational UML: Object Management Group.

OMG. (2013b). Unified Profile For The Department Of Defense Architecture Framework

(DoDAF) And The Ministry Of Defence Architecture Framework (MODAF): Object

Management Group.

OMG. (2015a). OMG Systems Modeling Language version 1.4: Object Management Group.

95

OMG. (2015b). Precise Semantics Of UML Composite Structures (Vol. 1): Object Management

Group.

OMG. (2015c).UnifiedModeling Language version 2.5: Object Management Group.

OMG. (2016). Semantics Of A Foundational Subset For Executable UML Models, version 1.2.1:

Object Management Group.

Opdahl, A. L., & Henderson-Sellers, B. (2002). Ontological Evaluation of the UML Using the

Bunge–Wand–Weber Model. Software and Systems Modeling, 1(1), 43-67. doi: 10.1007/s10270-

002-0003-9

Paredis, C. J., Bernard, Y., Burkhart, R. M., Koning, H. P., Friedenthal, S., Fritzson, P., Schamai,

W. (2010). 5.5. 1 An Overview of the SysML‐Modelica Transformation Specification. Paper

presented at the INCOSE International Symposium.

Peak, R. S., Burkhart, R. M., Friedenthal, S. A., Wilson, M. W., Bajaj, M., & Kim, I. (2007). 9.3.

3 Simulation‐Based Design Using SysML Part 2: Celebrating Diversity by Example. Paper

presented at the INCOSE International Symposium.

Peltier, M., Bézivin, J., & Guillaume, G. (2001). MTRANS: A general framework, based on

XSLT, for model transformations. Paper presented at the Workshop on Transformations in UML

(WTUML), Genova, Italy.

Pidd, M. (2004). Simulation worldviews: so what? Paper presented at the Proceedings of the 36th

conference on Winter simulation.

Raslan, W., & Sameh, A. (2007). System-level modeling and design using SysML and SystemC.

Paper presented at the 2007 International Symposium on Integrated Circuits.

Ratzer, A. V., Wells, L., Lassen, H. M., Laursen, M., Qvortrup, J. F., Stissing, M. S., Jensen, K.

(2003). CPN tools for editing, simulating, and analysing coloured Petri nets. Paper presented at

the International Conference on Application and Theory of Petri Nets.

Robinson, S. (2008). Conceptual modelling for simulation Part I: definition and requirements.

Journal of the operational research society, 59(3), 278-290.

Rorty, R. (1982). Consequences of pragmatism: Essays, 1972-1980: University of Minnesota

Press.

Seidewitz, E. (2014). UML with meaning: executable modeling in foundational UML and the Alf

action language. Paper presented at the ACM SIGAda Ada Letters.

Selic, B., & Gérard, S. (2013). Modeling and Analysis of Real-Time and Embedded Systems with

UML and MARTE: Developing Cyber-Physical Systems: Elsevier.

Shah, A. A., Kerzhner, A. A., Schaefer, D., & Paredis, C. J. (2010). Multi-view modeling to

support embedded systems engineering in SysML Graph transformations and model-driven

engineering (pp. 580-601): Springer

Shumaker, G. C. (1979). Overview of the U.S.A.F. Integrated Computer Aided Manufacturing

(ICAM Program). IFAC Proceedings Volumes, 12(10), 1-6. doi: https://doi.org/10.1016/S1474-

6670(17)65340-0

96

Sindico, A., Di Natale, M., & Panci, G. (2011). Integrating SysML with Simulink using Open-

source Model Transformations. Paper presented at the SIMULTECH.

Soffer, P., Golany, B., Dori, D., & Wand, Y. (2001). Modelling off-the-shelf information

systems requirements: an ontological approach. Requirements Engineering, 6(3), 183-199.

Soley, R. (2000). Model driven architecture. OMG white paper, 308(308), 5.

Tatibouët, J., Cuccuru, A., Gérard, S., & Terrier, F. (2014). Formalizing Execution Semantics of

UML Profiles with fUML Models. In J. Dingel, W. Schulte, I. Ramos, S.

Abrahão & E. Insfran (Eds.), Model-Driven Engineering Languages and Systems: 17th

International Conference, MODELS 2014, Valencia, Spain, September 28 – October 3, 2014.

Proceedings (pp. 133-148). Cham: Springer International Publishing

Tocher, K. (1965). Review of simulation languages. OR, 189-217.

Tolk, A., Diallo, S. Y., Padilla, J. J., & Herencia-Zapana, H. (2013). Reference modelling in

support of M&S—foundations and applications. Journal of Simulation, 7(2), 69-82.

van Rossum, G. (2007). Python language website.

Wagenhals, L. W., Liles, S. W., & Levis, A. H. (2009). Toward executable architectures to

support evaluation. Paper presented at the CTS.

Wand, Y., & Weber, R. (1990). Mario Bunge's Ontology as a formal foundation for information

systems concepts. Studies on Mario Bunge's Treatise, Rodopi, Atlanta, 123-149.

Wang, R., & Dagli, C. H. (2008). An executable system architecture approach to discrete events

system modeling using SysML in conjunction with colored Petri Net. Paper presented at the

Systems Conference, 2008 2nd Annual IEEE.

Zeigler, B. P. (1984). Multifacetted modelling and discrete event simulation. New York:

Academic Press.

97

APPENDICES

A: ESYSML PARSING EXPRESSION GRAMMAR (PEG) SPECIFICATION

comment -> "//.*"

integer -> "[-+]?\d+(?:[eE][-+]?\d+)?"

real -> '[-+]?\d*\.\d*(?:[eE][-+]?\d+)?'

null -> 'Null'

boolean -> 'True' / 'False'

name -> '[a-zA-Z_]\w*'

str1 -> "\'[^'\\]*(\\.[^'\\]*)*\'"

str2 -> '\"[^"\\]*(\\.[^"\\]*)*\"'

string -> str1 / str2

element_ref -> name '\.' name*

coll_ref -> element_ref '[' integer ']'

ref -> element_ref / coll_ref

act_call -> ref '(' termine? (',' termine)* ')' ('->' '(' name (',' name)* ')')?

ord_coll -> '[' (termine (',' termine)*)? ']'

unq_coll -> ('(' termine (',' termine)* '}') / ('(''[' ']'')')

lab_coll -> '{' (termine ':' termine (',' termine ':' termine)*)? '}'

coll -> ord_coll / unq_coll / lab_coll

inline_opq -> '<!-- .* -->'

termine -> integer / real / string / boolean / null / coll / ref / inline_opq

multiplicity -> '[' ('*,' / '\+,' / '\d+,\d+,'/) ('O' / 'L' / 'U') ']'

bin_types -> 'integer' / 'boolean' / 'real' / 'string'

simprop_kwd -> 'attributes' / 'parts' / 'ports' / 'connectors'

simprop_decl -> 'static'? name ':' element_ref multiplicity? ('='(act_call/termine))?

prop_blk -> simprop_kwd '{' (simprop_decl (';' simprop_decl)*)? '}'

assn_stmt -> ref '=' (act_call / termine) ';'

invok_stmt -> act_call ';'

fin_stmt -> 'final' ';'

simple_st -> fin_stmt / assn_stmt / invok_stmt

par_st -> 'par' '{' simple_st (simple_st / par_st)+ '}'

st_blk -> '{', (simple_st / par_st / if_stmt / while_stmt / event_st)* '}'

if_stmt -> 'if' '(' act_call / termine ')' (simple_st / par_st / st_blk)('else' ':'

(simple_st / par_st / st_blk)?

while_stmt -> 'while' '(' (act_call / termine) ')' (simple_st / par_st / st_blk)

param -> name ':' element_ref multiplicity? ('=' (act_call / termine)?

act_par -> '(' (param (',', param)*)? ')'

act_def -> 'action' name act_par '->' act_par st_blk

const_def -> 'constraint' name '(' ref (',' ref)* ')' st_blk

event_st -> ('time_event' / 'change_event') ('every' / name) '(' (act_call / termine)

')' '->' ref ';'

opq_exp -> 'opaque' name act_par '->' act_par '{' string* '}'

oper -> act_def/ const_def / opq_exp

oper_def -> 'operations' '{' oper* '}'

type_kwd -> 'block' / 'interface' / 'link' / 'data_type' / 'value_type' / 'enum_type'

super -> '(' element_ref (',' element_ref)* ')'

type_def -> type_kwd name super? '{' (prop_blk / oper_def)* '}'

name_imp -> element_ref (':' element_ref (',' element_ref)*)?

imp_blk -> 'imports' '{' name_imp (';', name_imp)* '}'

pack_def -> 'package' name '{' (imp_blk / st_blk / oper / type_def / pack_def)* '}'

dflt_prop -> ('opq_lang' / 'import_dir') '=' string

dflt_blk -> 'defaults' '{' dflt_prop (';' dflt_prop)* '}'

esysml -> (dflt_blk / imp_blk / st_blk / oper / type_def / pack_def)* EOF

98

B: DESCRIPTION OF TEXTUAL LANGUAGE CONSTRUCTS

Construct Description

Primitive types

Literal values may be a number (real/integer), boolean(True or False),

Null, or single and double quoted string expressions

Names and

reference

A valid must start with a letter or underscore followed by one or more

alphanumeric characters. Names and dot separated names may be used to

reference elements in a local namespace, global namespace (i.e. model'

namespace). The 'this' keyword may be used in action_definitions to

prevent parameter variables from shadowing variables in the context

namespace.

Built in

references

Model elements, available by default in a model’s global namespace.

This includes arithmetic and logical operations on primitive types, the

time variable and variables for model import and simulation logging.

(plus, minus, multiply, divide, sum, increment, decrement, gt, lt, eq,

not_eq, gt_or_eq, lt_or_eq, and, or, time, observe, opq_lang, import_dir)

Inline opaque

expression

Expressions in a platform specific language. Useful for operations on

primitives such as arithmetic and logical operations. Specifically for

Python evaluated with the exec function. Before passing to exec, opaque

expressions are scanned for names which are replaced with their values.

Example in <!-- 2 + 5 - x --> x will be replaced with its value, say 0 and

evaluated in python as exec('2+5-0')

Multiplicity

Specifies the limits to elements allowed in a relationship. This is a

language quirk inheritied from SysML for specifying collection types.

Example x: Human[*,L] defines a variable x which is a labeled

collection (i.e. analogous to python dictionaries) members of x must be

typed by Human. * implies a lower limit of 0 and upper limit of infinity

on the collection

Simple statement

This specifies a single unit of execution. Analogous to the concept of

action. Primitive actions include assignment, final, conditional and loop

statements. Simple statements are delimited with a semi colon. Ex x = 5;

Action

invocation

statement

A simple statement that invokes the execution of a user defined action.

Specifies the name, inputs and outputs. Outputs are names to be assigned

values by the action execution. Example decrement(3)->(x) ; This

reduces the value of 3 by 1 and assigns the resulting value to the variable

x.

99

Action

invocation via

event

Events are a specialized form of action invocation. These are specified

with either change_event or time_event keyword followed by a trigger

expression and name of actions to be invoked. Time event’s tigger

expression must evaluate to a number whereas change event triggers

must evaluate to a Boolean. Upon activation the event trigger is

evaluated if true all invocations are activated: Ex: time_event generate

(5) -> generate_request. This executes the generate request function after

5 units of time has elapsed

Parallel

statements

 'par' followed by two or more statements. Parallel statements may be

nested. Ex. par{x = 0; y = 2;}

Statement block

Analogous to the concept of 'Activity' i.e. one or more actions with a

specified progression or execution order. Delimited by curly braces Ex

{x=0; y=0;}

While statement

 'while' followed by a check and a statement block or a simple statement.

Example: while(<!-- x < 2 -->) increment(x)->(x); while(<!-- x < 2 -->){

decrement(y)->(y); increment(x)->(x); }

If statement

 'if' followed by a check, statement block or statement and optional else

statement. Ex if (<!--x == Null -->) x = 5; else {if (true) {x = 5; y=0; }}

Property block

 Specifies a property definition keyword followed by zero or more

property declaration statements in curly braces: Ex attributes{age:

integer = 20}, parts{drive_train: Engine = Engine()}

Inheritance

property

This entails an element's name, followed by one or references elements

references to a parent type. Ex: block Car (Vehicle), Man(Human,

Mammal)

Type definition

This entails an element definition keyword followed by name, parents

and properties, OR one of the forms of action definition Ex: block Car

(Vehicle){attributes{ make: 'Ford';}}

Action definition

Action definition format entails name of action followed by parenthesis

with list of input and outputs separated by -> sign Ex: addNum(Num1,

Num2) -> (Num) {[1] Num = 4+5;} Action name with name addNum,

input names Num1, Num2 with no restrictions on type of input and

output. Preceding number in method specifies execution order, repeated

numbers specify parallel executions. Output values are returned upon

assignment

Constraint

definition

Constraints are a specialized form of action definition, the format follows

action definition, however preceding with the 'constraint' keyword as

well as input definitions replaced with element references

Package

definition

Assigns a name to a value. May be single, or a chain of assignments with

equal number of comma delimited name and value pairs

100

Import

statements

Specifies the import keyboard followed by zero or more name or package

imports. Ex: imports { Units; QLibrary} specifies imports the packages

Units and Qlibrary. Imports {Units: Weight, Distance} is a name import,

this imports the names Weight and Distance from the package Units

Model definition

Model definition entails name specification, followed by a list of optional

model properties (Ex imports and defaults), and element definitions

101

C: ESYSML MODELER PARSING & MODEL IMPLEMENTATION CODE

ESysML textual model parser

from arpeggio import Optional, ZeroOrMore, OneOrMore, EOF, ParserPython,

PTNodeVisitor, visit_parse_tree, Terminal, NonTerminal

from arpeggio import RegExMatch as _

def comment(): return _("//.*")

def integer(): return _(r'[-+]?\d+(?:[eE][-+]?\d+)?')

def real(): return _(r'[-+]?\d*\.\d*(?:[eE][-+]?\d+)?')

def null(): return 'Null'

def boolean(): return ['True', 'False']

def name(): return _(r'[a-zA-Z_]\w*')

def str1(): return _(r"'[^'\\]*(\\.[^'\\]*)*'")

def str2(): return _(r'"[^"\\]*(\\.[^"\\]*)*"')

def string(): return [str1, str2]

def element_ref(): return name, ZeroOrMore(_(r'\.'), name)

def coll_ref(): return element_ref, '[', termine, ']'

def ref(): return [element_ref, coll_ref]

def act_call(): return ref, '(', Optional(termine, ZeroOrMore(',', termine)), ')',

Optional('->', '(', name, ZeroOrMore(',', name), ')')

def ord_coll(): return '[', Optional(termine, ZeroOrMore(',', termine)), ']'

def unq_coll(): return [('(', termine, ZeroOrMore(',', termine), '}'), ('{','[',

']',')')]

def lab_coll(): return '{',Optional(termine, ':', termine, ZeroOrMore(',', termine,

':', termine)), '}'

def coll(): return [ord_coll, unq_coll, lab_coll]

def inline_opq(): return _('<!-- .* -->')

def termine(): return [integer, real, string, boolean, null, coll, ref, inline_opq]

def multiplicity(): return '[', [_(r'*,'), _(r'\+,'), _(r'\d+,\d+,')], ['O', 'L',

'U'], ']'

def bin_types(): return ['integer','boolean', 'real', 'string']

def simprop_kwd(): return ['attributes', 'parts', 'ports', 'connectors'] # todo

'units', 'value', 'enums'

def simprop_decl(): return Optional('static'), name, ':', element_ref,

Optional(multiplicity), Optional('=', [act_call, termine])

def prop_blk(): return simprop_kwd, '{', Optional(simprop_decl, ZeroOrMore(';',

simprop_decl)), '}'

102

def assn_stmt(): return ref, '=', [act_call,termine], ';'

def invok_stmt(): return act_call, ';'

def fin_stmt(): return 'final', ';'

def simple_st(): return [fin_stmt, assn_stmt, invok_stmt]

def par_st(): return 'par', '{', simple_st, OneOrMore([simple_st, par_st]), '}'

def st_blk(): return '{', ZeroOrMore([simple_st, par_st, if_stmt, while_stmt,

event_st]), '}'

def if_stmt(): return 'if', '(', [act_call, termine], ')', [simple_st, par_st,

st_blk], Optional('else',':', [simple_st, par_st, st_blk])

def while_stmt(): return 'while', '(', [act_call, termine], ')', [simple_st, par_st,

st_blk]

def param(): return name, ':', element_ref, Optional(multiplicity), Optional('=',

[act_call, termine])

def act_par(): return '(', Optional(param, ZeroOrMore(',', param)), ')'

def act_def(): return 'action', name, act_par, '->', act_par, st_blk

def const_def(): return 'constraint', name, '(', ref, ZeroOrMore(',',ref), ')', st_blk

def event_st(): return ['time_event', 'change_event'], ['after', 'every', name], '(',

[act_call, termine], ')', '->', ref, ';'

def opq_exp(): return 'opaque', name, act_par, '->', act_par, '{', ZeroOrMore(string),

'}'

def oper(): return [act_def, const_def, opq_exp]

def oper_def(): return 'operations', '{', ZeroOrMore(oper),'}'

def type_kwd(): return ['block', 'interface', 'link', 'data_type', 'value_type',

'enum_type']

def super(): return '(', element_ref, ZeroOrMore(',',element_ref),')'

def type_def(): return type_kwd, name, Optional(super), '{', ZeroOrMore([prop_blk,

oper_def]), '}'

def name_imp(): return element_ref, Optional(':', element_ref, ZeroOrMore(',',

element_ref))

def imp_blk(): return 'imports', '{', name_imp, ZeroOrMore(';', name_imp), '}'

def pack_def(): return 'package', name, '{', ZeroOrMore([imp_blk, st_blk, oper,

type_def, pack_def]), '}'

def dflt_prop(): return ['opq_lang', 'import_dir'],'=', string

def dflt_blk(): return 'defaults', '{', dflt_prop, ZeroOrMore(';', dflt_prop), '}'

def esysml(): return ZeroOrMore([dflt_blk, imp_blk, st_blk, oper, type_def,

pack_def]), EOF

103

Model Builder module. Handles model compilation and execution

Sim and Model libraries dependency changed library.py todo revert back to sim_lib

after debug

from arpeggio import ParserPython, PTNodeVisitor, NoMatch, visit_parse_tree

from src.psr import esysml, comment, multiplicity

from src.library import (ModelElement, Characterization, Band, Reference, Instance,

Action, NullType, Boolean,

 Integer, Real, String, Model, Collection, Assign, While, If,

Final, ActionDef, OpaqueExp,

 Constraint, TimeEvent, ChangeEvent, Multiplicity, Dependency,

Block, Interface, Link, DataType,

 ValueType, EnumType, Package, OpaqueInline)

class Interpreter(PTNodeVisitor):

 def visit_integer(self, node, children):

 return Instance(value=node.value, etype=Integer())

 def visit_real(self, node, children):

 return Instance(value=node.value, etype=Real())

 def visit_null(self, node, children):

 return Instance(value=node.value, etype=NullType())

 def visit_boolean(self, node, children):

 return Instance(value=node.value, etype=Boolean())

 def visit_name(self, node, children):

 return node.value

 def visit_str1(self, node, children):

 return node.value

 def visit_str2(self, node, children):

 return node.value

 def visit_string(self, node, children):

 return Instance(value=children[0], etype=String())

 def visit_element_ref(self, node, children):

 return ''.join(children)

 def visit_coll_ref(self, node, children):

 return ''.join(children)

 def visit_ref(self, node, children):

 return Reference(children[0])

 def visit_act_call(self, node, children):

 x = Action(children[0])

 inp = []

 out = []

 i = 1

 while i < len(children):

 if isinstance(children[i], str):

 out.append(Reference(children[i]))

 else: inp.append(children[i])

 i += 1

 x.output = out

 x.input = inp

 return x

104

 def visit_ord_coll(self, node, children):

 x = Instance(etype=Collection(ctype='Ordered'))

 y = []

 if len(children):

 for c in children:

 y.append(c)

 x.value = y

 return x

 def visit_unq_coll(self, node, children):

 x = Instance(etype=Collection(ctype='Unique'))

 y = set([])

 if len(children):

 for c in children:

 y.append(c)

 x.value = y

 return x

 def visit_lab_coll(self, node, children):

 x = Instance(etype=Collection(ctype='Labeled'))

 y = {}

 i = 0

 while i < len(children):

 label = children[i]

 data = children[i+1]

 y[label] = data

 i += 2

 x.value = y

 return x

 def visit_coll(self, node, children):

 return children[0]

 def visit_inline_opq(self, node, children):

 return OpaqueInline(code=node.value)

 def visit_termine(self, node, children):

 return children[0]

 def visit_multiplicity(self, node, children):

 x = ''.join(children)

 x = x.split(',')

 if len(x) == 3:

 return Multiplicity(min=x[0], max=x[1], type=x[2])

 if len(x) == 2:

 if x[0] == '*':

 return Multiplicity(min=0, max='inf', type=x[1])

 return Multiplicity(min=1, max='inf', type=x[1])

 return Multiplicity()

 def visit_bin_types(self, node, children):

 return children[0]

 def visit_simprop_kwd(self, node, children):

 return children[0]

 def visit_simprop_decl(self, node, children):

 if len(children) == 5:

 y = Reference(name=children[1], etype=children[2], mult=children[3])

 return Characterization(static=True, ref=y, dflt=children[4])

 if len(children) == 4:

105

 if children[0] != 'static':

 y = Reference(name=children[0], etype=children[1], mult=children[2])

 return Characterization(ref=y, dflt=children[3])

 else:

 y = Reference(name=children[1], etype= children[2])

 if '=' in node: y.default = children[3]

 else: y.multiplicity = children[3]

 return Characterization(static=True, ref=y)

 if len(children) == 3:

 if children[0] == 'static':

 y = Reference(name=children[1], etype=children[2])

 return Characterization(static=True, ref=y)

 else:

 y = Reference(name=children[0], etype=children[1])

 if '=' in node: y.default = children[2]

 else: y.multiplicity = children[2]

 return Characterization(ref=y)

 if len(children) == 2:

 y = Reference(name=children[0], etype=children[1])

 return Characterization(ref=y)

 def visit_prop_blk(self, node, children):

 x = Band(name=children[0])

 if x.name == 'attributes':

 type = 'Attribution'

 else:

 type = 'Participation'

 i = 1

 while i < len(children) :

 children[i]._type = type

 children[i].parent = x

 i += 1

 return x

 def visit_assn_stmt(self, node, children):

 x = Assign(rh=children[0], lh=children[1])

 y = Dependency(ref=x)

 y._type = 'Progression'

 return y

 def visit_invok_stmt(self, node, children):

 y = Dependency(ref=children[0])

 y._type = 'Progression'

 return y

 def visit_fin_stmt(self, node, children):

 y = Dependency(ref=Final())

 y._type = 'Progression'

 return y

 def visit_simple_st(self, node, children):

 return children[0]

 def visit_par_st(self, node, children):

 x = Band('Par')

 i = 0

 while i < len(children):

 children[i].parent = x

 i += 1

 return x

106

 def visit_st_blk(self, node, children):

 x = Band('activity')

 i = 0

 if len(children):

 while i < len(children):

 if type(children[i]) == Band:

 for c in children[i].children:

 c.order = i

 children[i].parent = x

 else:

 children[i].parent = x

 children[i].order = i

 i += 1

 return x

 def visit_if_stmt(self, node, children):

 x = If()

 x.check = children[0]

 x.stmt = children[1]

 if len(children) == 3:

 x.elstmt = children[2]

 y = Dependency(ref=x)

 y._type = 'Progression'

 return y

 def visit_while_stmt(self, node, children):

 x = While()

 x.check = children[0]

 x.stmt = children[1]

 y = Dependency(ref=x)

 y._type = 'Progression'

 return y

 def visit_param(self, node, children): # Todo doing

 x = Reference(name=children[0], etype=children[1])

 x._type = 'Parameterization'

 if len(children) == 3:

 if isinstance(children[2], Multiplicity):

 x.multiplicity = children[2]

 else:

 x.dflt = children[2]

 if len(children) == 4:

 x.multiplicity = children[2]

 x.dflt = children[3]

 return x

 def visit_act_par(self, node, children):

 if not children:

 return []

 if len(children) > 1:

 x = Band('tba')

 for c in children:

 c.parent = x

 return x

 if len(children) == 1:

 return children[0]

 def visit_act_def(self, node, children):

 return ActionDef(name=children[0], inp=children[1], out=children[2],

meth=children[3])

 def visit_const_def(self, node, children):

 return Constraint(name=children[0], inp=children[1], meth=children[2])

107

 def visit_event_st(self, node, children):

 if children[0] == 'time_event':

 return TimeEvent(name=children[1], trig=children[2], inv=children[3])

 return ChangeEvent(name=children[1], trig=children[2], inv=children[3])

 def visit_opq_exp(self, node, children):

 return OpaqueExp(name=children[0],inp=children[1], out=children[2],

meth=children[3])

 def visit_oper(self, node, children):

 return children[0]

 def visit_oper_def(self, node, children):

 x = Band('operations')

 if len(children) > 0:

 for c in children:

 c.parent = x

 return x

 def visit_type_kwd(self, node, children):

 return children[0]

 def visit_super(self, node, children):

 x = Band('base_types')

 for c in children:

 Dependency(ref=Reference(c), _type='Inheritance').parent = x

 return x

 def visit_type_def(self, node, children):

 d = {'block': Block, 'interface': Interface, 'link': Link, 'data_type':

DataType, 'value_type':ValueType,

 'enum_type': EnumType}

 x = d[children[0]](name=children[1])

 i = 2

 while (i < len(children)):

 x.add_prop(children[i])

 i += 1

 return x

 def visit_name_imp(self, node, children):

 if len(children) == 1:

 return Dependency(ref=Reference(children[0]))

 y = Dependency(ref = Reference(children[0]))

 i = 1

 while (i < len(children)):

 Reference(children[i]).parent = y

 i += 1

 return y

 def visit_imp_blk(self, node, children):

 x = Band('imports')

 for c in children:

 c.parent = x

 return x

 def visit_pack_def(self, node, children):

 x = Package(children[0])

 i = 1

 y = Band('content')

 y.parent = x

 while (i < len(children)):

 if children[i].name not in ['activity', 'imports', 'defaults']:

108

 children[i].parent = y

 else:

 x.add_prop(children[i])

 i += 1

 return x

 def visit_dflt_prop(self, node, children):

 return Dependency(ref=Reference(name=children[1], etype=children[0]))

 def visit_dflt_blk(self, node, children):

 x = Band('defaults')

 if len(children) > 0:

 for c in children:

 c.parent = x

 return x

 def visit_esysml(self, node, children):

 x = Model('TBA')

 y = Band('content')

 y.parent = x

 for p in children:

 if p.name not in ['activity', 'imports', 'defaults']:

 p.parent = y

 else:

 x.add_prop(p)

 return x

def parse_run(stringus):

 try:

 parser = ParserPython(esysml, comment, debug=False)

 pt = parser.parse(stringus)

 result = visit_parse_tree(pt, Interpreter(debug=False))

 return(result)

 except NoMatch as e:

 return "Syntax error at line: {} \n {} \n".format(e.line, str(e))

109

D: MODEL LIBRARY

//Qlibrary model saved as Qlibrary.esl

block Server{

 attributes {

 meanServRate: integer;

 numServed: integer= 0;

 numResources: integer=1

 upTime: real = 0.0

 }

 parts {

 current_req: instance = Null

 }

 ports {

 input: Interface = SimpleInterface();

 output: Interface = SimpleInterface()

 }

 operations {

 action Server(lambda: integer)->(x: Server){

 x.meanServRate = lambda;

 change_event startSrv(gt(x.input.items, 0))-> get_request; }

 constraint srvRateExpo(meanServRate){

 exponential(meanServRate)->(srv_time);}

 constraint qlength()

 return input.length

 constraint utilization(upTime){

 if(eq(time,0)

 utilization = 0;

 else: utilization = upTime/Time

 action get_request()->(){

 input.items.deQ()->(current_req);

 decrement(numResources)->(numResources);

 time_event after(srvRateExpo)-> fin_request; }

 action fin_request()->(){

 plus(upTime,srvRateExpo);

 increment(numServed)->(numServed);

 increment(numResources)->(numResources);

 output.enQ(current_req);

 current_req = Null;}

 }

}

block Client{

 attributes {

 meanGenRate: integer = 0;

 numRequests: integer = 0

 }

 ports{

 output: SimpleInterface= SimpleInterface()

 }

 operations{

 action Client(lambda: integer)->(x: Client){

 x.meanGenRate = lambda;

 change_event startSrv(gt(x.output.items, 0))-> send_request;}

 constraint genRateExpo(meanGenRate){

 exponential(meanGenRate)->(genRateExpo); }

 action gen_request()->(request: FlowItem){

 FlowItem()->(request);

 output.receive(request);

 increment(numRequests)->(numRequests); }

 action send_request()->(){

 output.send();

110

 time_event regenerate(genRateExpo)-> gen_request;}

 }

}

data_type FlowItem{

 attributes{

 static count: integer = 0;

 id: integer = 0

 }

 operations{

 action FlowItem()->(x: FlowItem){

 increment(count)->(count);

 x.id = count;}

 }

}

block FiFoQ{

 attributes{

 capacity: integer = infinity;

 length: integer = 0

 }

 parts{

 items: instance[*,O] // items is an ordered list of zero or more blocks

 }

 operations{

 constraint capLimit(capacity,length){

 gt(length, capacity)->(capLimit);}

 action FiFoQ(cap: integer=infinity)->(x: FiFoQ){

 x.capacity = cap;}

 action enQ(sth: instance)->(){

 plus([sth], items);

 increment(length)->(length); }

 action deQ()->(x: instance){

 last_out(item)->(x);

 decrement(length)->(length); }

 }

}

data_type Resource{

 attributes {

 name: string ='TBA';

 total: integer = 1;

 numAvail: integer = 1

 }

 operations {

 action Resource(name: string, num:integer)->(x: Resource){

 if(num) x.total = num;

 if(name) x.name = name; }

 action seize(num: integer)->(){

 numAvail = minus(numAvail, num); }

 constraint avLimit(numAvail,total){

 lt_or_eq(numAvail,total)->(avLimit);}

 action release(num: integer)->(){

 plus(numAvail, num); }

 }

 }

link SimpleLink{

 attributes {

 name: string = "TBA";

 avail: real = 1.0

 }

 ports {

 sourcePort: interface = Null;

 targetPort: interface = Null

 }

111

 operations {

 action SimpleLink(sourceP:interface, targetP:interface)->(x: SimpleLink){

 x.sourcePort = sourceP;

 x.sourcePort.outputCs.append(sourceP);

 x.targetPort = targetP;

 x.targetPort.inputCs.append(targetP); }

 constraint availability(avail){

 x = <!-- random.random()-->;

 if(gt(x,avail))

 availability = False;

 else: availability = True; }

 action transmit(item: block)->(){

 if (availability)targetPort.items.enqueue(item); }

 }

}

interface SimpleInterface {

 parts {

 name: string ='TBA';

 items: FiFOQ = FiFOQ()

 }

 connectors {

 inputCs: link[*,O] = Null;

 outputCs: link[*,O] = Null

 }

 operations {

 action send()->(){

 i = 0;

 while(lt(i,length(outputCs)){

 outputCs[i].transmit(items.dequeue())

 increment(i)->(i);}

 }

 constraint length(items){

 length = items.length}

 }

}

112

E: SAMPLE MODEL

//Reference Model saved as Balci_Reference.esl

imports { Qlibrary: Server, Client,

 FiFoQ, SimpleLink, SimpleInterface }

block BatchComputer{

 parts {

 jes: Server;

 cpus: Server[+,L];

 prts: Server[+,L];

 links: SimpleLink[+,L]

 }

 ports{

 input: SimpleInterface;

 output: SimpleInterface

 }

}

//Conceptual Model saved as Balci_Concept.esl

imports { Balci_Reference: MVS_System, User, Connection }

block MVS(BatchComputer){

 parts{

 jes: Server= Server(<!—-random.exponential(112)-->);

 cpus: Server[+,L]= {'cpu1':Server(<!--random.exponential(226.67)-->),

 'cpu2':Server(<!--random.exponential(300)-->) };

 prts: Server[+,L]= {'prt1': Server(<!--random.exponential(160)-->)};

 links: SimpleLink[+,L]= {}

 }

 ports{

 input: SimpleInterface= SimpleInterface();

 output: SimpleInterface= SimpleInterface()

 }

 operations{

 action MVS()->(x: MVS){

 //assign created links names to labeled collection property of x

 SimpleLink(input.out, jes.input.inp)->(x.links.la);

 SimpleLink(jes.output.out, cpus.cpu1.input.inp)->(x.links.lb);

 SimpleLink(jes.output.out, cpus.cpu2.input.inp)->(x.links.lc);

 SimpleLink(cpu1.output.out, prts.prt1.input.inp)->(x.links.ld);

 SimpleLink(cpu1.output.out, out.inp)->(x.links.le);

 SimpleLink(cpu2.output.out, prts.prt1.input.inp)->(x.links.lf);

 SimpleLink(cpu2.output.out, out.inp)->(x.links.lg);

 }

 action init_links()->(){ //create and connect links to ports of components

 SimpleLink(input.out, jes.input.inp)->(links.la);

 SimpleLink(jes.output.out, cpus.cpu1.input.inp)->(links.lb);

 SimpleLink(jes.output.out, cpus.cpu2.input.inp)->(links.lc);

 SimpleLink(cpu1.output.out, prts.prt1.input.inp)->(links.ld);

 SimpleLink(cpu1.output.out, out.inp)->(links.le);

 SimpleLink(cpu2.output.out, prts.prt1.input.inp)->(links.lf);

 SimpleLink(cpu2.output.out, out.inp)->(links.lg);

 //assign created links names to labeled collection

 }

 }

}

113

//Executable Model saved as Balci_Executable.esl

imports {

 Balci_Concept: MVS;

 QLibrary: Client, SimpleLink

}

{

 // create MVS and setup link availabilities

 MVS()->(mvs)

 mvs.links.lb.avail = 0.6;

 mvs.links.lc.avail = 0.4;

 mvs.links.ld.avail = 0.8;

 mvs.links.le.avail = 0.2;

 mvs.links.lf.avail = 0.8;

 mvs.links.lg.avail = 0.2;

 //Create MVS Users

 Client(<!-- random.exponential(3200) -->)->(md300);

 Client(<!-- random.exponential(640) -->)->(md1200);

 Client(<!-- random.exponential(640) -->)->(md2400);

 Client(<!-- random.exponential(640) -->)->(l9600);

 //Create User and MVS_System connecting links

 SimpleLink(md300.output.out, mvs.input.inp)->(l1);

 SimpleLink(md1200.output.out, mvs.input.inp)->(l2);

 SimpleLink(md2400.output.out, mvs.input.inp)->(l3);

 SimpleLink(l9600.output.out, mvs.input.inp)->(l4);

 // activate initial actions

 md300.gen_request()

 md1200.gen_request()

 md2400.gen_request()

 l9600.gen_request()

 // specify observer parameters

 observe.(mvs.jes.utilization, mvs.cpus.cpu1.utilization,

 mvs.cpus.cpu2.utilization, mvs.prts.prt1.utilization);

 //specify termination point

 change_event termination(qt(mvs.output.length,15000)) -> final;

}

114

VITA

Matthew Amissah

Engineering Management and Systems Engineering Department, Old Dominion University,

5115 Hampton Blvd, Norfolk VA, 23151

EDUCATION

Aug 2018 Ph.D. Engineering Management, Old Dominion University, Norfolk, VA

Dissertation Title: A Framework for Executable Systems Modeling

Advisor: Holly A.H Handley

Aug 2013 M.E. Systems Engineering, Old Dominion University, Norfolk, VA

Sep 2004 B.Sc. Mechanical Engineering

Kwame Nkrumah University of Science & Technology, Ghana

RESEARCH INTERESTS

 Model Based Systems Engineering

Model Driven Development

Complexity Science

Data Science & Analytics

TEACHING INTERESTS

 Modeling & Simulation

Engineering Economics

Statistics

Statistical Process Control

EMPLOYMENT SUMMARY

Sep 2017 -

Present

Adjunct Professor

Department of Engineering Management & Systems Engineering

Old Dominion University, Norfolk, VA.

Sep 2013 –

Aug 2017

Graduate Research & Teaching Assistant

Department of Engineering Management & Systems Engineering

Old Dominion University, Norfolk, VA.

 SELECTED PUBLICATIONS

 M. Amissah A. L. Toba, H. A. Handley, and M. Seck, "Towards a framework for

executable systems modeling: An Executable Systems Modeling Language

(ESysML)" 2018 Spring Simulation Conference (SSC), Baltimore, MD, 2018

A. L. Toba, M. Seck, M. Amissah and S. Bouazzaoui, "An approach for DEVS

based modeling of electrical power systems," 2017 Winter Simulation Conference

(WSC), Las Vegas, NV, 2017, pp. 977-988.

Amissah, M & Handley, H.H., A Process for DoDAF Based Systems

Architecting., In Proceedings of IEEE Systems Conference (SysCon), April 2016

Handley, H. A., Amissah, M., Heimerdinger, D., & Vance, E. Non Legacy

viewpoint for Department of Defense Architecture Framework architectures. The

Journal of Defense Modeling and Simulation, 13(4), 415-429. (2016)

	Old Dominion University
	ODU Digital Commons
	Summer 2018

	A Framework for Executable Systems Modeling
	Matthew Amissah
	Recommended Citation

	tmp.1538677286.pdf.bbYmM

