
UNIVERSITY OF LONDON THESIS

Degree PVxb Year Name of Author P

COPYRIGHT

This is a thesis accepted for a Higher Degree of the University of London. It is an
unpublished typescript and the copyright is held by the author. All persons consulting the
thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION

I recognise that the copyright of the above-described thesis rests with the author and that no
quotation from it or information derived from it may be published without the prior written
consent of the author.

LOAN

Theses may not be lent to individuals, but the University Library may lend a copy to
approved libraries within the United Kingdom, for consultation solely on the premises of
those libraries. Application should be made to: The Theses Section, University of London
Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION

University of London theses may not be reproduced without explicit written permission
from the University of London Library. Enquiries and orders should be addressed to the
Theses Section of the Library. Regulations concerning reproduction vary according to the
date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the author.
(The University Library will provide addresses where possible).

B. 1962 - 1974. In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975 - 1988. Most theses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

This copy has been deposited in the Library of uyAw ____________

AN OBJECT ORIENTED/DEVS FRAMEWORK
FOR

STRATEGIC MODELLING
AND INDUSTRY SIMULATION

PANAGIOTIS NINIOS

LONDON BUSINESS SCHOOL

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

in the Faculty of Economics

JULY 1994

Abstract i

ABSTRACT

The use of simulation modelling for the development of business strategy models, at an

industry level, focusing on the exploration of different scenarios and future policy, has

been gaining increased acceptance and popularity over the last decade.

This thesis develops a modelling and simulation framework for industry simulation,

extending the approach of System Dynamics, by integrating recent concepts from

software engineering and mathematical formalisms for discrete event system modelling.

The current modelling view of industry simulation, based on System Dynamics, is

reviewed. A critique of the capabilities of System Dynamics is presented, regarding the

ability of the System Dynamics core technology to address the broad requirements of

industry modelling. We focus the critique and develop a research agenda around the

issues of natural model building, model structure and focus, model reusability and time

representation.

An overview of manufacturing simulation and the research directions in that area, is

presented with the objective of identifying possible areas of cross-fertilization which can

be used in modelling at the industry level in a more effective way.

A review of Object Orientation is presented, along with a general review of

mathematical formalisms for the description of discrete event systems, with particular

focus on the Discrete Event System Specification formalism (DEVS) [Zeigler (1976,

1984)]. An innovative synthesis of Object Orientation and DEVS is proposed in order

to address the research questions which resulted from our critique of System Dynamics.

A Smalltalk implementation of the concepts supported by the synthesis, called

OO/DEVS, has been developed. Using as a point of reference the requirements of

industry simulation, we build upon a critique of previous DEVS implementations (placed

within the manufacturing simulation problem domain), by presenting an innovative

implementation view of DEVS, which exploits fully the concepts supported by Object

Abstract ii

Orientation.

The issues related to graphical model specification within OO/DEVS, and its comparison

to the modem System Dynamics graphical user interfaces, are explored. A OO/DEVS

Graphical User Interface and its implementation are explored and presented.

Two case studies have been employed, in order to test the capabilities of OO/DEVS as

an alternative to System Dynamics, as well as to demonstrate the modelling

characteristics of the framework and its implementation.

A comparative study is presented, where a capacity investment model of the post­

privatised UK Electricity Industry is developed in both frameworks. The model is used

as a vehicle for assessing the modelling characteristics of OO/DEVS versus System

Dynamics. Our initial conclusion is that the modelling properties of OO/DEVS can

address at a sufficient level the research issues related to the System Dynamics core

technology.

Finally, a large scale modelling case study is carried out, within one of the UK

Electricity Distribution companies, where a OO/DEVS model of the Electricity Markets

is developed jointly with a management team. This real application establishes the value

of OO/DEVS, and its modelling characteristics, as a powerful platform for building

decision support industry models.

Preface/Acknowledgements iii

PREFACE/ACKNOWLEDGMENTS

The research work presented in this thesis, was developed within the Electricity Planning

Project, at the Decision Sciences area of the London Business School, and began in early

1991. My research agenda has been influenced on one hand by the general research

directions in the area of System Dynamics strategic industry modelling, and on the other

hand by the real modelling problems faced by the Electricity Industry after its

privatisation.

The research questions presented and explored in this thesis, were initially triggered by

the research work of Professor Derek Bunn and Dr Erik Larsen on the investment

behaviour in post-privatised UK electricity industry [see Bunn & Larsen

(1992a)(1992b)]. The outcome of their research efforts was a family of System

Dynamics models, which provided, in a true System Dynamics fashion, a number of

interesting insights into the problem. Most importantly, these models inspired a number

of questions regarding the ‘modelling’ power and structure provided by System

Dynamics, in relation to the requirements of modelling industries at a strategic level.

As a result, I am grateful to both Professor Derek Bunn and Dr Erik Larsen for their

stimulating research work, as well at for the comments and help they provided

throughout my work.

I am deeply indebted to my supervisor Professor Derek Bunn for his comments, ideas

and support throughout my PhD work, without which it could not have been realised.

Working with him was a valuable experience that I will never forget.

I also owe great thanks to Dr Kiriakos Vlahos for his suggestions as well as all the time

and effort that he devoted to my project. His ideas, and the debates that we had on

simulation modelling, provided some of the most crucial elements in formulating my

research thought and paths.

I would also like to thank Dr John Morecroft for his constructive comments in the

earlier stages of this work. His suggestions have provided me with a valuable

Preface/Acknowledgements iv

conceptual perspective of System Dynamics modelling.

I would like to thank in particular Dr Brian Smith and Peter Dasey at Southern Electric,

for sharing with me their knowledge and expertise of the UK electricity industry.

I owe thanks to the Economic and Social Research Council and the London Business

School for their financial support throughout the three years of my PhD thesis.

I am thankful to all the lecturers at the London Business School Decision Science

subject area, as well as to the PhD programme, for providing a stimulating research

environment, as well as the required resources.

I owe special thanks to Akin Adamson for the effort that has put in testing the

simulation software and developing further my research ideas.

I would also like to thank my PhD student colleagues, for the inspiring and exciting time

that I had with them at the London Business School.

Least but not last I am thankful to my friends that supported me at the difficult times

through these three years, especially to Giannis Giannikos and Catherine Gallagher.

Finally, I am most grateful to my parents for all their support throughout my studies.

This PhD thesis is devoted to them.

Table of Contents v

TABLE OF CONTENTS

Chapter 1:

INTRODUCTION

1.1 Modelling Industry Structures and Policies...2

1.2 Motivation and Thesis Objective... 4

1.3 Thesis Organization.. 5

Chapter 2:

SYSTEM DYNAMICS IN PERSPECTIVE

2.1 The emergence of System Dynamics.. 9

2.2 The System Dynamics view of the world.. 10

2.3 System Dynamics Simulation...14

2.4 Applications of System Dynamics... 15

2.5 Developments in System Dynamics................................ 17

2.6 System Dynamics Summary...21

2.7 A Classification of Simulation Models...22

2.8 Manufacturing Simulation vs Industry Simulation... 25

2.10 System Dynamics from a Critical Perspective -

Issues for research into its core technology ...33

2.9S ummary...39

Chapter 3:

OBJECT ORIENTED PROGRAMMING AND THE DISCRETE EVENT SYSTEM

SPECIFICATION FORMALISM

3.1 Introduction - The Research Issues ...41

3.2 . Object Oriented Programming & Analysis... 42

3.3 Object Orientation: A Paradigm Shift..43

3.4 Object Orientation in Manufacturing Simulation.. 48

3.5 The Naturalness of the Approach...51

3.6 From Manufacturing to Industry Simulation.. 54

3.7 Addressing the Modelling of Time ... 57

Table of Contents vi

3.8 Discrete Event Formalisms... 59

3.9 The DEVS formalism.. 60

3.10 Comparison Between Differential Equations and DEVS in the Simulation

Context..63

3.11 The DEVS Simulation Environment..64

3.12 An Object Oriented/DEVS framework in Smalltalk......................................66

3.13 Summary... 66

CHAPTER 4:

OO/DEVS: A SMALLTALK IMPLEMENTATION OF THE DEVS FORMALISM

4.1 DEVS Implementation Views... 69

4.2 The Use of Smalltalk.. 71

4.3 A Faithful DEVS-Scheme Implementation in Smalltalk 72

4.3.1 Class Atomic Model... 72

4.3.2 Implementation of Coupled Model.. 75

4.3.3 The Class Model... 79

4.3.4 The Processor Classes.. 80

4.3.5 The Class SimulationPlatform.. 85

4.3.6 The Class DevsModel... 85

4.4 Modelling Object Oriented Message Passing within DEVS 86

4.4.1 The DEVS-Scheme Implementation from a Critical Perspective ..86

4.4.2 Towards an Object Oriented DEVS Implementation89

4.4.3 The Class Model...91

4.4.4 The Object Processor...95

4.4.5 The Class Simulator... 96

4.4.6 Realisation of the DEVS fundamentals within OO/DEVS 99

4.5 A Simple Processor Example.. 100

4.6 Discussion..104

4.7 Summary... 107

Table of Contents vii

CHAPTER 5:

THE OO/DEVS GUI

5.1 Introduction... 110

5.2 Graphical Support for Model Building...Ill

5.3 The GUI Smalltalk Implementation... 115

5.4 Decision Rule Modelling.. 120

5.5 Using the OO/DEVS GUI: The Beer Game Example121

5.5.1 Case Background...121

5.5.2 Assumptions...121

5.5.3 Entity Modelling.. 122

5.5.4 Decision Rule Modelling... 123

5.5.5 Model Organization...125

5.5.6 Influence Relationship Modelling...128

5.5.7 Running a Simulation and Obtaining Results 131

5,6 Conclusions.. 132

CHAPTER 6:

MODELLING CAPACITY INVESTMENTS IN THE U.K. ELECTRICITY

INDUSTRY:

A Comparative Modelling Study Between System Dynamics and OO/DEVS

6.1 Introduction...135

6.2 Industry Background...135

6.3 Recent Trends and Current Issues .. 137

6.4 The Need for Industry Simulation.. 139

6.5 Model Background.. 141

6.6 A System Dynamics Model..143

6.7 Modelling under the Object Oriented/DEVS framework.............................. 148

6.8 Model Reuse & Expansion under OO/DEVS ...151

6.8.1 Case Background.................................... 151

6.8.2 Modelling Background...153

6.9 Reusing the OO/DEVS Capacity Investments Model154

6.10 Discussion...157

Table of Contents viii

6.11 Concluding Remarks 160

CHAPTER 7:

THE ELECTRICITY MARKETS MODEL:

The Development of a OO/DEVS Model in a Business Environment

7.1 Introduction .. 163

7.2 The Background of the Modelling Team ... 163

7.3 The Phases of the Project ...164

7.4 The Approach to Modelling ...166

7.5 Background of the Model and Issues to be Explored 168

7.5.1 Model Structure ...170

7.5.2 Encapsulated Decision Rules - Entity Behaviour173

7.6 Running the Electricity Markets Model ..187

7.7 Discussion ...193

7.8 Summary ...196

CHAPTER 8:

CONCLUSIONS & FURTHER RESEARCH DIRECTIONS

8.1 Thesis Summary .. 200

8.2 Thesis Research Contribution ...203

8.3 Further Research Directions ...205

Table of Diagrams xi

Figure 14: Argument Specification Dialog Box ... 130

Chapter 6

Figure 1: The main influences in the System .. 143

Figure 2: Capacity related rates and levels ...145

Figure 3: The mina entities in the model ... 148

Figure 4: System Decomposition Diagram ...149

Figure 5: Level Diagram (LEVEL I) ..149

Figure 6: Level Diagram (LEVEL II) .. 150

Figure 7: Class Hierarchy Diagram ...154

Figure 8: Level Diagram for the extended Investments Model (LEVEL I) 155

Figure 9: Level / Rate Diagrams for National Power ...158

Chapter 7

Figure 1: The finalised System Decomposition Diagram ...169

Figure 2: The Class Hierarchy Diagram ...171

Figure 3: Level Diagram: top level ...172

Figure 4: Dissection of the Load Duration Curve 176

Figure 5: The interface of the OO/DEVS Electricity Markets Model to ECAP ...183

Figure 6: Generators’Costs vs Pool Prices .. 185

Figure 7: Supplier Type A; Spreadsheet output ...187

Figure 8: Pool Market; Spreadsheet output ..188

Figure 9: Demand vs Supply Curves (for Peak Load Contracts) 190

Figure 10: Purchase Mix for the four types of Supplier .. 191

Figure 11: Relative Market Shares for the four types of Supplier 192

Table of Diagrams x

TABLE OF DIAGRAMS
Chapter 1

F igure 1: The aims of industry simulation...3

Chapter 2

Figure 1: The hierarchy of Systems Dynamics..11

Figure 2: The Parts of the System Dynamics Model Building Process32

Chapter 4

Figure 1: Object Hierarchy in the DE VS-Scheme like implementation....................69

Figure 2: Aggregation in 00 ...89

Figure 3: OO/DE VS Implementation Obj ect Hierarchy Diagram..............................90

Figure 4: Message Passing between EF & P ...100

Figure 5: The topology obj ect for the simple processor example - Method dolt ..101

Figure 6: Processor Model - System Decomposition Diagram................................ 102

F igure 7: Methods initialize, process Job and receive Job - obj ect JobProcessor ... 103

Figure 8: Methods initialize and generateJob of JobGenerator.................................103

Chapter 5

Figure 1: The OO/DEVS GUI Classes..112

Figure 2: ClassHierarchyDiagram.. 116

Figure 3: Spreadsheet decision Rule Specification Dialogue.................................... 119

Figure 4: BMCustomer and BMSupplier initializeVariables methods..................... 122

Figure 5: BMCustomerdemand.. 123

Figure 6: ClassMethodBrowser.. 125

Figure 7: ModelDecompositionDiagram.. 126

Figure 8: ModelPrioritiesBrowser..126

Figure 9: InitializeVariables..127

Figure 10: LevelDiagram...128

Figure 11: Message Protocol Specification Dialog Box...130

Figure 12: MessagePrioritiesBrowser... 130

F igure 13: Message Priorities Browser... 130

Table of Diagrams xi

Figure 14: Argument SpecificationDialog Box...130

Chapter 6

Figure 1: The main influences in the System... 143

Figure 2: Capacity related rates and levels..145

Figure 3: The mina entities in the model... 148

Figure 4: SystemDecompositionDiagram.. 149

Figure 5: Level Diagram (LEVEL I).. 149

Figured: Level Diagram (LEVEL II)...150

Figure 7: ClassHierarchyDiagram... 149

Figure 8: Level Diagram for the extended Investments Model (LEVEL I) 155

Figure 9: Level / Rate Diagrams for National Power ... 158

Chapter 7

Figure 1: The finalised System Decomposition Diagram.. 169

Figure 2: The Class Hierarchy Diagram...171

Figure 3: Level Diagram: top level..172

Figure 4: Dissection of the Load Duration Curve...176

Figure 5: The interface of the OO/DEVS Electricity Markets Model to ECAP ... 183

Figure 6: Generators’ Costs vs Pool Prices.. 185

Figure 7: Supplier Type A; Spreadsheet output.. 187

Figure 8: Pool Market; Spreadsheet output.. 188

Figure 9: Demand vs Supply Curves (for Peak Load Contracts)190

Figure 10: Purchase Mix for the four types of Supplier... 191

Figure 11: Relative Market Shares for the four types of Supplier 192

Chapter 1: Introduction 1

Chapter 1

Introduction

Contents:

1.1 Modelling Industry Structures and Policies

1.2 Motivation & Thesis Objective

1.3 Thesis Organization

Chapter 1: Introduction 2

1.1 Modelling Industry Structures and Policies

Modem industrial organizations have become a complex interlocking network of

information channels. Information channels emerge at various points to control physical

processes, such as building of capacity and production of goods, and strategic decisions

such as investment strategy and market development. As a result, in today’s world the

location of production, R&D and marketing are increasingly becoming, among others,

conscious managerial decisions, rather than historical precedents. In that organizational

and industry environment "If management is the process of converting information into

action, then management success depends primarily on what information is chosen and

how the conversion is executed... Every person has available a number of information

sources. But each selects and uses only a small fraction of all the available information...

A manager’s success depends on both selecting the most relevant information and on using

that information effectively" [Forrester (1992)]. This is particularly true, if the focal point

is not the organization as an entity, but the organization within its industrial environment.

The issues of effective information utilization, bring into light the questions related to the

ability of today’s organization’s senior managers to absorb the developments in business

environments, and act on that information with appropriate business moves, in other words

the dependence of management on learning. The rapid change that underlines our

business world emphasises the importance of institutional learning, which is "the process

whereby management teams change their shared mental models of their company, their

markets and their competitors" [De Geus (1988)], while as it has been pointed out, "The

ability to learn faster than our competitors may be the only sustainable competitive

advantage" [De Geus (1988)]. In that respect, the need for institutional learning

underlines the importance of modelling tools, that can be used to play back and forth

management’s view of its market, the environment, or the competition.

In addition to the need of effective information utilization and learning, the current

movement towards competition, economic liberalization and privatization has introduced

issues of competitive strategy, which are ‘soft’ in nature, and turn our attention to the

multiplicity of players and objectives within an industry structure. From a business

Chapter 1: Introduction 3

modelling perspective, organizations participating in today’s competitive industries, need

the tools to discover new concepts that enable the organization to become more vigilant

in recognizing significant industry trends, emerging business problems and preparing the

managers to deal with them. Issues of broader financial objectives, flexibility and

increased risk have to be addressed. Modelling methodologies are needed, that have the

qualities of flexible decision support tools which can serve as a vehicle for scenario

development, communication and debate.

Over the last decade, simulation modelling has attempted to address the modelling

problems related to the evolving industrial structures, by extending its influence beyond

the manufacturing and operational problems, into the boardroom and as a platform to

support strategic thinking, group discussion and learning in management teams.

The use of simulation for the development of business strategy models, at an industry

level, and the facilitation of executive debate, focusing on the exploration of different

scenarios and the formulation of future policy has been gaining acceptance and popularity

[for example see Morecroft & van der Heijden (1992), Bunn & Larsen (1992), Merten

et al (1987)]. Industry simulation is the term that we will be utilising in this thesis to

describe this type of simulation.

The participants of an industry

Figure 1 : The aims of industry simulation.

simulation exercise are invited to think

about the structure of the industry

analyzed and the behaviour of the main

players. A model of the industry is

developed, which represents the shared

understanding of the functioning of the

industry. This is usually followed by the

elaboration of credible industry scenarios

which are simulated in order to explore

the main uncertainties. Interest focuses

on the dynamic behaviour resulting from

Chapter 1: Introduction 4

the industry structure and its relation to different adopted strategies. The whole process

aims at enhancing the group’s understanding of the main issues in the industry and will

hopefully lead to the development of robust strategies. Finally, the models developed

document the shared understanding of the industry and facilitate communication with other

people in the organisation. Figure 1 summarises the main objectives of industry

simulation.

1.2 Motivation & Thesis Objective

The requirements for robust modelling of the structure and decision rules that govern an

industry, scenario development, strategy exploration and learning, point towards the need

for modelling methodologies that facilitate natural model building, versatility in decision

rule specification, model modularity, fast model reformulation, and the ability to look at

the same model from multiple perspectives.

The System Dynamics modelling philosophy [see chapters 2 & 6], has proven to be an

adequate starting point for industry modelling and simulation, as we have just described

it. Researchers within the System Dynamics area have addressed a number of research

questions regarding this approach to model building, management participation and

knowledge elicitation, model representation and communication, as well as the problem

of model utilization as a management learning tool. Nevertheless, the issues that industry

analysts want to address at a modelling context, are multifaceted and broader than the

System Dynamics core technology can address.

Our research goal is to address the problem of industry modelling by revisiting the core

technology of System Dynamics, focusing on one hand on the modelling requirements that

we have just described, and on the other hand on research developments in adjacent areas

of simulation modelling. Specifically, our aim is to explore recent developments in

software engineering, as they stem from the evolution of Object Oriented Analysis Design

and Programming, as well as overview the area of simulation modelling and exploit the

advances in discrete event mathematical formalisms.

Chapter 1: Introduction 5

The research agenda of this work, is to develop a modelling and simulation framework,

that can meet the challenges of industry modelling in the ’90s and beyond. Such a

framework should recognise, and be based on, the main assumptions of System Dynamics.

In that respect, the framework should capitalize on the System Dynamics experience in

knowledge elicitation, model building and model use. Additionally, the framework should

address the limitations of the System Dynamics’ core technology, in such a way that its

own core technology could be technically viewed as a super-set of that of System

Dynamics. Similarly, the framework should be broad enough to accommodate modelling

of industries with a variety of structural characteristics. In particular, the framework

should address (i) a more realistic modelling of the industry’s players, (ii) the multiplicity

of players and policies, (iii) a structured and manageable way to incorporate detail where

it is needed, (iv) the issue of model evolution.

1.3 Thesis Organization

A brief description of the remaining chapters of this thesis follows:

Chapter 2:

System Dynamics in Perspective

The chapter discusses the main characteristics of the System Dynamics model

building methodology, and core technology. A brief review of its application areas

follows, with emphasis on industry simulation. Through a conceptual classification

framework, we compare industry simulation and System Dynamics with

manufacturing simulation. Finally, we elaborate on our research agenda by

pinpointing a set of System Dynamics characteristics and limitations, that should

be addressed in respect to industry modelling.

Chapter 3:

Object Orientation & the Discrete Event System Specification formalism

In this chapter we present the characteristics and the value of object oriented

programming and design, and discuss how these characteristics can be used to

address some of the research questions that we set in chapter 1. We also discuss

Chapter 1: Introduction 6

the evolution of discrete event mathematical formalisms in general, and the

Discrete Event System Specification (DEVS) in particular. We finally, sketch an

overall Object Oriented/DEVS approach and its relative advantages.

Chapter 4:

The Smalltalk implementation of OO/DEVS

In this chapter we discuss the computer implementation of the OO/DEVS

framework based on the theoretical concepts, presented in Chapter 3. We discuss

the characteristics of our implementation and we support a number of design

choices in relation to our research objectives. We also demonstrate the use of the

framework through a small OO/DEVS model. We close the chapter, by referring

back to our research agenda and evaluating OO/DEVS in respect to the critique

that we present in chapters 2 and 3.

Chapter 5:

The OO/DEVS GUI

The research issues related to graphical model specification within OO/DEVS, as

well as the implementation of the OO/DEVS Graphical User Interface (GUI), are

presented in this chapter. The ‘Beer Game’, a classic System Dynamics model,

is used at the end of the chapter to demonstrate the use of the GUI, as well as the

modelling paradigm provided by OO/DEVS.

Chapter 6:

Modelling the Investments in the UK Electricity Industry: A comparative study

A System Dynamics model of the investing behaviour in the industry, as presented

by Bunn & Larsen (1992a), is re-implemented for the purposes of a comparative

study. The problem area and the associated issues are presented. The problem is

approached again, this time within the Object Oriented/DEVS framework and the

model is recreated. Finally, a comparison of the two models is presented, and the

Object Oriented/DEVS is evaluated in relation to the System Dynamics core

technology.

Chapter 7:

The Electricity Markets Model: The development of a OO/DEVS model in a business

environment

In the last chapter of this thesis, we present the development of a large-scale, real

Chapter 1: Introduction 7

world, OO/DEVS model in a business environment. The model maps the

electricity industry as a whole, concentrating on the electricity purchasing and

selling behaviour in the industry. We present our experience from modelling the

industry with a management modelling team, the nature and elements of the model

as well as sample results. Finally, we discuss the evaluation of the framework,

based on the assessment of the management modelling team.

Chapter 8: Conclusions & Future Research Directions

In the last chapter of this thesis we summarize the research questions set in

chapters 1 and 2, as well as the way in which we attempted to address them

through the development of the OO/DEVS framework. We conclude, by

discussing the questions that remain open in relation to (i) the modelling

relationship between OO/DEVS and the System Dynamics core technology, (ii) the

modelling characteristics provided by OO/DEVS, (ii) the development of a number

of tools that can be used within the framework to facilitate model development,

utilization, and evolution.

Chapter 2: System Dynamics in Perspective 8

Chapter 2

System Dynamics in Perspective

Contents:

2.1. The emergence of System Dynamics

2.2. The System Dynamics view of the world

2.3. System Dynamics Simulation

2.4. Applications of System Dynamics

2.5. Developments in System Dynamics

2.6 System Dynamics Summary

2.7 A Classification of Simulation Models

2.8 Manufacturing Simulation vs Industry Simulation

2.9 System Dynamics from a Critical Perspective -

Issues for Research into its core technology.

2.10 Summary

Chapter 2: System Dynamics in Perspective 9

2.1. The emergence of System Dynamics

In this chapter we concentrate on System Dynamics (SD) as a modelling and simulation

framework. The reason for doing so is that System Dynamics is the main framework

widely used for Industry Simulations. It should be stressed that our aim is to provide an

overview of the field and the way that it has developed, and we will not therefore attempt

to concentrate on the details.

Coyle (1977), defines System Dynamics as "that branch of control theory which deals with

socioeconomic systems, and that branch of management science which deals with

problems of controllability". The origin of System Dynamics can be traced to engineering

control systems and the theory of information feedback systems. Initially the subject was

heavily mathematically flavoured, and the applications were tied up to the engineering

field. However, during the 60’s the concept of control theory was reshaped in order to

be applied to modelling and analysis within the business/social arena. ’Industrial

Dynamics’, by J. Forrester, was the first, and a very influential, text on the subject. The

underlying motive behind this work, and the subsequent SD research and modelling, was

the search for a better comprehension of social and economic systems. As Forrester

(1987) manifests "The great challenge for the next several decades will be to advance

understanding of social systems in the same way that the past century has advanced the

understanding of the physical world, ... which can provide a foundation for effectively

dealing with economic and social stresses". Over the years, SD has contributed

substantially to managerial insights. In addition, work like the ‘World Dynamics’

[Forrester (1971)] and ‘The Limits to Growth’ [Meadows et al. (1972)], among others,

have addressed issues of worldwide concern, and their contentions have provoked much

political and environmental debate. Overall, SD has evolved to something more than a

modelling framework. It became a paradigm for perceiving and analysing the world,

which is quite distinct from the other fields dealing with the behaviour of systems.

In this chapter we aim to review the main concepts behind System Dynamics by

examining its core technology, looking closer at the application domains that have been

employed, and finally reviewing the main research areas within the field.

Chapter 2: System Dynamics in Perspective 10

2.2. The System Dynamics view of the world:

As we have discussed, the notion of the control system lies in the core of System

Dynamics. Therefore, we ought to embark with the definition of a control system:

The Control System: Control is a way of influencing a system to behave in a desired way.

The system may be a technological one, an economic one or even an ecological one. A

typical control system contains the controlled system (also called process, plant, object,

environment) and the control unit (also controller, decision unit). The controlled system

has some manipulated inputs which may cause a change in the outputs. The controlled

system is also subject to another group of inputs, which are called disturbance inputs and

are beyond our influence. Disturbances should essentially be considered random variables.

The task of the control unit is to achieve a certain goal; and we refer to the values

determined by the control unit as control decisions.

Forrester (1968), building up on the notion of the control system gives a very vivid

description of the a system through the lenses of system dynamics. A System is defined

as a structure of interactive functions where both the separate functions and the

interrelationships, as defined by the structure, contribute to the system behaviour.

Therefore, in order to describe a system one should not only describe the separate

functions but their method of interconnection, as well. If such a system is viewed trough

time, then we arrive at the concept of the Dynamic System, which is one which changes

with the progress of time. In such a system the parts interact to create progression of

system conditions.

Forrester (1961, 1968) describes the theory of system structure in terms of four steps in

the hierarchy depicted in Figure 1. The fourth step in this hierarchy resembles the

definition of a control system, that we have formerly given. The control system is

formally expressed as rates and flows (which constitute a set of difference equations),

these levels and rates represent the feedback loops within a system. Finally, the system

Chapter 2: System Dynamics in Perspective 11

itself is defined by a closed boundary which marks the problem under consideration.

Figure 1:
The hierarchy of Systems Dynamics

The closed boundary, in the hierarchy defines the system of interest. It states that the

modes of behaviour under study are created by the interaction of the system components

within the boundary. The boundary implies that no influences from outside of it are

necessary for generating the particular behaviour being investigated. The concept of the

closed boundary implies that one starts not with the construction of a model of a system

but by identifying a problem , a set of symptoms, and a behaviour mode which is the

subject of study. The implication is that without a purpose, it is impossible to define a

system boundary.1

1 It should be noted that the concept of the closed boundary, is intrinsic to every modelling process.
Therefore, the above definition applies to every type of simulation.

Inside the closed boundary one tries to map cause and effect. The system dynamics way

to do this is through a structure of interacting feedback loops. The feedback loop is a

structural setting within which all decisions are made. A decision is based on the

Chapter 2: System Dynamics in Perspective 12

observed state of a system and produces action which alters the state of a system and the

new state gives rise to new information as the input to further decision. One has not

properly identified the structure surrounding a decision point until the loops are closed

between the consequences of the decision and the influence of those consequences on

future decisions.

The next level in the hierarchy contains the level and rate variables. These variables

represent the activity within a feedback system. The levels (or state variables) represent

accumulations within a system. Mathematically they are integrations. The rate variables

represent the system’s activity. The consequence of the latter definitions is that the level

variables are the integrations of those rates of flow which cause the particular level to

change. Therefore, a level variable depends only on the associated rates and never on any

other level variable. Similarly, no rate can depend on the simultaneous value of any other

rate (this is something that is checked in a syntactical way by any System Dynamics

language compiler). Rates depend only on the values of the level variables. The

implication of the latterly described structure is that any path through the structure of a

system will encounter alternating level and rate variables.

The most classic example of a feedback loop (a negative one) is the one that maps a

central heating system. If the room temperature (represented as a level of heat in the

room) is below a desired temperature, the central heating system will switch on to supply

heating and to correct the discrepancy over a period of time. The heat input will be

represented by a rate which influences the room temperature; and is influenced by the

room temperature in such a way that the heat input would be progressively reduced as the

room temperature reaches the desired level.

Ultimately, a substructure exists within the equation that defines a rate variable. A rate

equation defining a rate variable is a statement of system policy. The term policy

coincides in many ways to what has been referred in the literature as ‘decision rule’.

Policy is defined as a formal statement giving the relationship between information

sources and resulting decision flows. A policy statement [Forrester (1968)] incorporates

four components (i) the goal of the decision point, (ii) the observed condition as a basis

Chapter 2: System Dynamics in Perspective 13

for decision, (iii) the discrepancy between goal and observed conditions, and (iv) the

desired action based on the discrepancy. For example, applying this definition to the

thermostat case: (i) the goal would be the desired temperature; (ii) the observed condition

would be the room temperature at time t; (iii) the discrepancy between goal and observed

condition would be the temperature difference; (iv) the desired action would be an

equation that shows how we would like to reach the desired goal. It is suggested, by

Forrester (1961), that the decision functions should be perceived as divided into two

categories, depending on whether they are ordinarily conscious human decisions or

whether they arise from the physical condition of the system. The former are defined as

overt decisions while the latter as implicit decisions.

A quite distinctive characteristic of the SD modelling approach is the specific attention

paid to the concept of the aggregation of variables. The idea is that similar items should

be combined into a single aggregate. The issue of aggregation has been discussed at

length within the SD literature. For example, Rahn (1985) examines the effects of both

internal fluctuations in the variables and external fluctuations affecting system parameters.

Allen (1988), considering the origin and nature of evolutionary processes, assesses the

concept of the aggregation of variables and comments on the effects of microscopic

diversity emphasising how microscopic variability confers on a system the ability to learn

and hence to adapt. Forrester (1961) provides a set of conditions under which aggregation

of items (variables) is permitted:

(1) The items can be assumed to be controlled by the same identical function;

(2) The controlled outputs are assumed to be used for identical purposes elsewhere in the

model.

Overall, System Dynamics [eg. see Forrester (1987), Vennix et al. (1990), Graham &

Senge (1992)] can be viewed as a way of clarifying, structuring and finally unifying

knowledge. The elementary model components originate from information about structure

and policies. Such information is reliable and is usually shared by the mental models of

several people. Nevertheless, people’s mental models are often logically incorrect.

Furthermore, assumed resulting dynamic behaviour is likely to be contrary to that implied

by the assumptions being made about system structure and policies. This is a self-evident

Chapter 2: System Dynamics in Perspective 14

drawback as, for example, even a first order differential equation is unsolvable by intuitive

inspection. It is therefore expected, that attempts to deal with nonlinear dynamic systems,

using ordinary intuitive description and debate would lead to internal inconsistencies. In

that respect, SD modelling can be effective because it builds on the reliable part of our

understanding of the system (i.e. structure, policies) while separates consideration on these

underlying assumptions form the implied and expected system behaviour.

2.3. System Dynamics Simulation

Having defined a system structure hierarchy of a particular system, we have in hand a

sufficiently rigorous and concise representation that can be directly translated into a set

of mathematical equations capable of being handled by a computer. The medium for

doing so is to use difference equations to approximate the process of integrating rates into

levels. The simulation method is essentially a time slicing simulation applied to

continuous variables and incorporating continuously adaptive information feedback

facilities.

Although a number of SD languages have been developed since the 1960’s, the most

influential packages have been the DYNAMO [eg. see Professional Dynamo Plus (1986)],

and the Stella (1987) with its upgraded version iThink (1990). These packages use

common numerical analysis integration methods as Euler’s and Runge-Kutt. Specifically

Professional Dynamo Plus uses a fixed-step size (constant At) first order Euler integration

method; or a variable step-size third order Runge-Kutta method. It is usually the case that

the integration error is monitored in order to achieve a specified accuracy.

Optimization of parameters is a quite distinct feature offered by some SD languages [eg

DYNAMOC, Jiuqiang (1991)]. The main principle behind the optimization is that the

user sets an objective function, which contains the parameters to be optimised. An

optimization routine is usually implementing some optimization method like the steepest

descent.

Chapter 2: System Dynamics in Perspective 15

2.4. Applications of System Dynamics

As has been already pointed out, control theory found its initial applications in

engineering. However, through the conception and development of systems dynamics, as

a broader view of control theory, application work was carried out in areas like inventory

control, labour and advertising policy. Forrester (1961), demonstrates in his ’Industrial

Dynamics’ quite a few case studies. A typical one is the Customer-Producer-Employment

case study. The "purpose" that defined the closed boundary of the fore-mentioned case

study was the search for causes of a fluctuating employment level, of a company, that

varied significantly with peak to peak intervals. The model shows that the observed

employment instability can result from interactions between the purchasing practices of

the customers and the inventory, production and employment practice of the company.

Models like the latter capture industry characteristics in a microeconomic sense. SD

modelling has also concentrated on macro issues, like market behaviour in relation to the

growth and stagnation of a new product [eg see Forrester (1968)]. In a similar strand,

Sterman (1985), has looked at the economic long wave through a system dynamics model

and has argued that the principle of capital self-ordering is shown to be sufficient to

generate long waves. Forrester, Graham, Senge and Sterman (1983) have provided an

increasingly rich theory of the long wave, their system dynamics model relates capital

investment, employment and workforce participation, monetary and fiscal policy, inflation,

productivity and innovation, and even political values. Probably, one of the largest SD

models is the System Dynamics National Model [eg see Forrester et al. (1976)]. The

model contains over 200 integrations and more that 1500 equations, which in mathematical

terms means that one is dealing with a 200th order, non-linear, differential equation. The

objective of the National Model is to generate behaviour as observed in the actual

economy from the interactions of local structures and decision-making policies. As a

result, "the model builds a bridge joining microstructure and macro-behaviour" [Forrester

(1989)]. Even though the latest macro-economic policy models are much smaller, they are

still quite popular among System Dynamists. Such models are frequently reported in the

literature [for example see Wang et al (1989) for the functions of the economic leverages

Chapter 2: System Dynamics in Perspective 16

in China’s economy; Arif & Saeed (1989) for a model that attempts to identify how

specific policies can procure sustainable growth in an economy dependent on non­

renewable natural resources].

It should be noted that, although SD models have provided useful insights in many

economic problems, economists have strongly criticized them as unscientific, and system

dynamists as "boy economists" [eg see Greenberger et al. (1976)]. Radzicki (1990), has

investigated the spirit of these criticisms, by positioning the dispute within an

epistemological framework, and contrasting the logical empiricism followed by most

economists, to the pragmatic instrumentalism that characterizes System Dynamics models.

Overall, System Dynamics applications have stretched from defence analysis [for example

see Coyle (1981), Wolsenholme and Al-Alusi (1987)], looking at problems as broad as

the dynamics of a third word war, to problems as specific as Research & Development

project modelling. For instance, Roberts (1974) has used an SD model to examine the key

factors affecting R&D performance, and assessed how these factors are affected by

different policies. Shtub (1992), uses an SD model as an evaluation platform, to explore

the ability of two types of R&D schedule control systems to cope with unscheduled

events.

Nowadays, it is becoming increasingly common to see SD simulation models being used

to support business strategy and executive debate concerned with future policies and

scenarios. These "strategy support models" [szc.Morecroft (1984)] seek to organise

managerial judgement on the structure and behaviour of organisations within a market so

as to facilitate insight and group learning about the effects of various strategies. Merten,

Lbffler & Wiedmann (1987), present a quantitative portfolio simulation model which

incorporates features of the Boston Consultancy Group growth-share matrix approach to

the allocation of investment funds in multi-business firms. The systems dynamics model

helped to explain the evolution of multi-business firms in duopoly markets and

demonstrated the fact that the BCG strategy does not take into account a dynamic

competitive environment. Foschiani (1989), discusses the use of an SD model as a tool

for strategic planning of flexible assembly systems. The modelling originates from the

Chapter 2: System Dynamics in Perspective 17

hypothesis that the firm’s need for flexibility arises from the difference between its supply

and demand within the market. The model accesses various investment policies based on

profit-cost related decision rules.

Our interest is focused in these strategy related models. However, we are particularly

interested in the modelling of a problem domain that exhibits a particular structural

characteristic. That is the existence of a set of companies in a given market place. In

such an industry level structural setting, companies may compete for market share and

resources, or may cooperate against an external agent (eg a regulatory body) that seeks

to influence their market-place. Applications like these, are usually centred around

concepts like capacity investment, demand growth, price strategies, regulation and

production. The Merten at al (1987) model is a good, though simplified by assuming a

duopoly, example of such a situation. A more elaborated example is provided by

Morecroft and van der Heijden (1992), through a model of the oil producing industry.

Their model incorporates the world oil producers by classifying them in different "camps"

with different objectives and decision rules. The aim behind the model is to explore

questions like the instability of oil price, and the prospects for introduction of new

capacity. Bunn and Larsen (1992) present a model that addresses the investment policies

in the U.K. privatized electricity industry. The model maps the main players in the

industry and their decision rules in investing for new capacity, as well as the ways they

interact with each other in their market place. In a similar fashion, Ford & Yabroff (1979)

explore strategy issues in the model of an investor-owned electric utility in the U.S.

2.5. Developments in System Dynamics

T .poking at the field of System Dynamics, we can identify that since the 60’s three major

streams of developments have emerged:

1st in the model building area, as a method of system enquiry;

2nd in the software and methodology area;

3rd in the behavioural area.

Chapter 2: System Dynamics in Perspective 18

It can be argued that the first of these streams has many common links with the third;

however, we would like to perceive it as a separate one because it is associated with

Wolstenholmes’ (1990) ideas about quantitative and qualitative systems dynamics. It is

also related to the modelling process, rather than the completed model’s behaviour.

Wostenholme, (1982, 1990) makes a very clear split between the system

description/qualitative mode of System Dynamics, and the quantitative analysis mode

using simulation. He argues that the process of analysis of influence diagrams has much

to offer in its own right to the methodological dilemma in the field of the system enquiry.

This process can be considered, particularly in soft systems modelling, as an end by itself.

It should be mentioned that the split under discussion was not inherent in the original

approach. Forrester himself does not present a single influence diagram in his ’Industrial

Dynamics’. Nevertheless, Wolstenholme points out that influence diagram analysis

provides guidance in moving from "what is" to "what should be", by assisting both in the

generation of alternatives for improvement and their assessment.

However, it should be noted that Morecroft (1982) takes a slightly different point of view.

He argues that influence diagrams (or causal loop diagrams) are weak tools for

conceptualization, and do not correspond closely to common mental models of social and

industrial systems. Consequently he suggests two different diagramming tools, namely the

subsystem diagram and the policy structure diagram [for details see Morecroft (1982)].

Nonetheless, the point is that recently a whole view of the conceptualization has emerged,

which is not directly linked to the formalization (through equations) nor the actual

simulation of the system.

In that strand, modellers have been recently attempting to involve management teams in

the System Dynamics modelling exercise as an end in itself [Morecroft (1991, 1987)].

These attempts have provided the building blocks for a research agenda that is attempting

to understand the essence of organizational learning and improve decision-making [Vennix

et al (1990), Senge et al (1990), Senge (1990)].

The second major strand of development is in the software area. No need to say, that in

Chapter 2: System Dynamics in Perspective 19

the first place, the application of systems dynamics as a methodology was made feasible

with the introduction of computers that could solve sets of equations in a numerical

analysis sense. Nowadays, however, the evolution of computer graphics and graphical

interfaces have made it feasible to model systems directly through rates and flows

diagramming (Stella, iThink). This development opened up the use of system dynamics

to people with very limited computing experience.

Concerning the software area, a brief research agenda, based on a stream of critique, that

has emerged from within the SD community, has also been set. That stream of critique

is related to the methodology itself, and argues that the SD core technology, is sufficient

as far as the situation in hand can be quantified and expressed in numerical equations,

while there is no way to incorporate qualitative variables into an SD model. Subsequently

researchers have focused on incorporating multidimensional variables into SD. For

instance, Tu (1992) has discussed how linguistic representation like "low", "medium" and

"high" can be incorporated into SD models. Camara et al (1990,1987) have developed an

integrated simulation approach based on logical rules, which incorporates causal diagrams

and feedback loop concepts, and can handle linguistic and pictorial variables as well as

numerical. Within that agenda, another drawback that has been recognised, is the inability

to model uncertainty in terms of relationships among elements. In that direction Tu

(1992) has used certainty factors to model situations where, for example, we could only

be about 80% certain about the relationship A=2B+C and 60% about A=0.5B+C. By

addressing these issues, he has tried to broaden the modelling capacity of SD through a

rule based reasoning mechanism.

Probably the most significant methodological development in SD came in the eighties.

When chaotic behaviour was detected even in very basic SD models [eg see Rausmussen

& Mosekilde (1988)], the SD research community turned its attention to chaos. As a

result, research has been focusing on the technical analysis of chaotic models of social,

economic and biological systems [eg see Mosekilde & Larsen (1988)], the notions of self

organizing structures and structural evolutions in non-linear systems [eg see Allen (1988)],

and the techniques and use the qualitative theory of non-linear dynamic systems [eg see

Toro & Aracil (1988, 1989)].

Chapter 2: System Dynamics in Perspective 20

The third major stream of development relates system dynamics to the behavioural

decision theory. Morecroft (1988), argues that two main inputs from theory go into a

systems dynamics model. The first input, from information feedback theory, provides

symbols for diagramming a business or social systems and rules for mapping (as has

already been mentioned). The second input, from behavioural decision theory, improves

the integrity of the models. Morecroft suggests that system dynamics models can be

described as "behavioural simulation models" that portray bounded rationality2 in

organisations. It is argued that the feedback structure of the models emerges from the

assumptions one makes about decision-makers’ access to information, while dynamic

behaviour is a consequence of the feedback structure. Overall, the models represent

organisations as decision-making/information processing systems involving many players,

with multiple and often conflicting goals and limited information processing capability.

It should be noted that system dynamics has been influenced in the behavioural side by

Simon (1969), and the Carnegie School [for more about behavioural simulation models

see Sterman (1987)].

2 The concept of bounded rationality in human behaviour identifies cognitive limitations in the
perception and processing of information and the organisational strategies people devise to deal with them.
The idea is that people use heuristics that lead them to sub-optimal or biased decisions.

Progress has also been made, in the behavioral side of system dynamics, by the

introduction and use of workshops and role-playing simulation games [see Morecroft

(1988) and Sterman (1987)]. The purpose of these game models is to create a "learning

environment" where policy-makers can debate and relate their own experience more

closely to the model. In that sense, in Morecroft (1988), we find a discussion about

‘microworlds’ for policy debates. It is argued that the debate leads to clarification of the

problem or issue and essentially recommendations for action. The important point in this

discussion is that all these views can be legitimately facilitated by the existence of the

relevant software (see MicroWorld Creator).

Finally, a very interesting advancement, is the introduction of generic policy models.

These are models which display important dynamic processes that occur frequently in

business and social systems. Example of generic policy models can be found in the

Chapter 2: System Dynamics in Perspective 21

Cookbook Appendix of Stella software. Distinctive types are the "External Recourse

Process", "The compounding process", "The stock adjustment process", the "Implicit Goal

seeking process", etc. In the ’Fifth Discipline’, Senge (1990), has stressed the importance

of many archetype feedback loops like the "limits to growth", the "eroding goals", the

"growth and under-investment" and many more, by demonstrating how theses archetypes

apply to every day situations.

2.6 System Dynamics Summary

In the first five sections of this chapter we concentrated on System Dynamics with the aim

to provide an overview of the area in terms of its modelling view, simulation capabilities,

application areas and reserach developments. The following table provides a summary of

the System Dynamics modelling and simulation view:

Table 1: Summary of System Dynamics [Wolsenholme (1982)]

SYSTEM DESCRIPTION
QUALITATIVE ANALYSIS

QUANTIFIED ANALYSIS USING
CONTINUOUS SIMULATION TECHNIQUES

LOf existing/proposed systems
2.In terms of system flows
3.Using physical, cash and
information flows.
4.To examine feedback loop
structure

STAGE 1
l.To examine the
behaviour of the
system variables
over time
2.To examine the
sensitivity of the
model to changes in:
(i)structure;
(ii)policies;
(iii)delays/
uncertainties

STAGE 2
To examine
alternative
structures and
control policies
based on:
(i)intuitive ideas
(ii)control theory
analogies
(iii)control theory
algorithms

STAGE 3
To optimise
system
parameters

TO PROVIDE:
(i)a perspective on the
observed problem or
symptom;
(ii)a qualitative analysis on
which to base
recommendations for change

TO PROVIDE:
A quantified assessment of alternative ways of improving system
performance.

Chapter 2: System Dynamics in Perspective 22

In what follows we extend our discussion of System Dynamics, by placing it within the

broader area of simulation modelling. Our objective, is to overview the developments in

other simulation areas, and identify possible areas of cross-fertilization for industry

simulation.

As we have pointed out in the introduction (Chapter 1) and the ‘application of System

Dynamics’ section, we are particularly interested in what we have called industry models

and the way that these models have been implemented within the System Dynamics

framework. Having in mind the nature of industry simulation models and System

Dynamics as the framework for building such simulation models, we intend to perceive

industry simulation through the development of a simulation model’s classification

scheme. We will use that scheme, as a vehicle to provide a more general view of the SD

field, and underline the differences between manufacturing and industry simulation from

a "core technology" point of view. We are doing this by reviewing the main classification

schemes within the literature, and by suggesting a scheme based on different levels of

model conceptualisation.

2.7 A Classification of Simulation Models

Although computer simulation is a well studied research area, with origins as old as

computing itself, there seems to be little agreement on the classification of simulation

models. Many different simulation modelling classification schemes, appear in the

literature, attempting to classify simulation models from a number of different

perspectives. Nonetheless, classification schemes have been mainly concentrating on

discrete event simulation where the multiplicity of strategy-related characteristics of

simulation languages or models, constitutes a rich basis for classification.

For instance, Hooper (1982) presents an algorithmic analysis of the three discrete event

simulation strategies: event scheduling, activity scanning and process interaction [for a

discussion about the discrete simulation strategies see also Paul (1991)]. Highland (1977)

proposes additional, more general, classification criteria based on characteristics of

Chapter 2: System Dynamics in Perspective 23

simulation models as :

• purpose of simulation (eg. prediction, understanding, optimisation)

• model characteristics (eg. time frame, system size, environmental interaction)

• relationships among entities (eg. symbiotic, antithetic)

• attribute characteristics (eg. time relationships)

• variable characteristics (eg. statistical nature of variables, etc.)

Another common way of classification is by application area. Highland (1977) suggests

six main classes:

• Computer systems (eg. VLSI design)

• Governmental and social systems (eg. national economy)

• World modelling (eg. Forrester’s world model)

• Industry, businesses (eg. USA car manufacturing industry)

• Ecological and environmental systems

• Biosciences

Ozdemirel et al (1988) classify four different schools of thought, with regard to model

construction:

• Hierarchical modular model development [eg. Zeigler’s DEVS Scheme (1984)]

• Object oriented simulation [eg. ISIS Fox (1984)]

• Rule based modelling [eg. T-Prolog, a goal oriented simulation language,

Adelsberger (1984)]

• Intelligent user interfaces.

Ozdemirel’s classification objective, is to put emphasis on research regarding the

development of a generic simulation model base, which could be able to assist the user

in developing the appropriate specific model for his/her purposes. Probably, the most

basic classification is discrete vs continuous, static vs dynamic, and deterministic vs

stochastic. Oren & Zeigler (1979), suggest a functional decomposition, and argue that a

taxonomy based on such a decomposition generalises significantly the taxonomy according

to which simulations are classified by characteristics like time set, etc.

Chapter 2: System Dynamics in Perspective 24

The classification that we present, categorizes simulation models in accordance to different

levels of abstraction in model conceptualisation. By using this perspective we aim to

provide a "vertical" classification scheme (or classification of classifications), in contrast

to the fore-mentioned schemes that provide "horizontal" taxonomies. Our classification

looks at applications at the bottom level, as computerized models of specific parts of the

world, and simulation formalisms at the top level, as generic vehicles for expressing any

part of the world. By doing so, we aim to contrast and compare industry to

manufacturing simulation models. The following table depicts such a classification

scheme:

Table 2: A classification scheme of conceptual simulation models.

Level 5 Mathematical Simulation Formalisms

Level 4 Functional Decomposition

Level 3 Time Set

Level 2 World view (executive type)

Level 1 Simulation Languages

Level 0 Specific Applications

Within the scheme different levels represent:

Level 0 : Models of specific parts of the real world; eg. a production process, a

chemical process, a labour market, an inventory system.

Level 1 : Specific simulation languages: syntactic consistent forms of expressing and

applying certain world and time views (eg. GPSS, DYNAMO).

Level 2 : World view (executive3 type), as: differential and difference equations(with

3 Executive: a control program which is responsible for sequencing the operations which occur as
the simulation proceeds.

an associated integration method), event scheduling, process interaction,

activity scanning (see Pidd (1988) for a detailed account). An interesting

approach to different world views can be found in Henriksen (1987), where

Chapter 2: System Dynamics in Perspective 25

a model of a battle between two armies is presented from several

perspectives.

Level 3 : Time set: continuous vs discrete views of time (again Herinksen’s (1977)

example is a good demonstration).

Level 4 : Functional decomposition: at that level we view a simulation model as

functional parts, using the Oren & Zeigler (1979) classification. The

primary functional elements of simulation programs are considered as:

model structure, model outputs, input scheduling, initialisation, termination,

interpretation and display.

Level 5 : Formalisms: generic forms that can accommodate in a consistent way the

specification of any real world system.

The scheme is essentially a pyramid. A simulation model of a specific part of the world

(application) may satisfy only one world view and time set and may not be expressed in

a certain simulation language or be clearly functionally decomposable. It should be

pointed out that such classification can be viewed from a historical perspective due to the

fact that the simulation enterprise started from ad hoc applications and developed into

specific world and time views, simulation languages, well defined functional

decompositions and formalisms.

2.8 Manufacturing Simulation vs Industry Simulation

In this part our aim is to view the simulation/modelling enterprise as it is utilised both in

the world of manufacturing and industry simulation. We attempt this comparison due to

the fact that the world of manufacturing simulation represents one of the most

representative parts of simulation modelling both at a research and an application level.

The fore-mentioned classification scheme will facilitate us in doing so.

Level 0:

Given that simulation modelling started its life as ad-hoc applications, we would like to

start our discussion at classification level 0. Looking at different applications at both

Chapter 2: System Dynamics in Perspective 26

types of simulation, the following characteristics can be identified:

Broad Objectives: at that level there seems to be a point of agreement among all the

different types of simulation modelling. Paul (1991) points out that manufacturing

simulation modelling is mainly used as a means for understanding a problem, and that the

tendency is to use simulation modelling as a vehicle for debate about the problem. In a

similar strand, Forrester (1988) argues that while the information in people’s heads is rich

with regard to structure of a system and the policies within it that govern decisions; the

mental processes are not reliable in deducing the future dynamic implications of the

known structure and policies. Simulation, therefore, can serve as a tool for understanding

dynamic behaviour. Nonetheless, in manufacturing simulation modelling, as soon as an

understanding of the system has been established, the modeller tries to choose, out of a

set of alternatives, a near optimal system configuration, given a set of specific objectives.

Model Construction: In manufacturing simulation the structure of the system to be

modelled is usually well defined and well understood. In a typical manufacturing model,

where a network oriented language is used, the real system can be expressed in queuing

situations (queues or buffers) and processing situations (workstations: a common way of

classifying activities on a shop floor) [eg Law (1987)]. The participants can be represented

as jobs [eg see Pidd (1988)].

On the other hand in industry simulations (which are essentially System Dynamics

applications) what is usually understood is the current behaviour of the system, while its

internal structure is in most cases semi-understood. Forrester (1961), points out that an

SD model contains policies that are constant for the duration of the model simulation.

These policies4 are laws of human behaviour, for the circumstances within the model. The

part of the structure that is usually understood is: sets of formal decision rules that could

represent strategies and policies, decisions that are made in accordance to the output of

an algorithmic process, physical structure of the sector of the industry (eg. plants, their

4 The term policy in the SD context is a rule that states how the day-to-day operating decisions are
made.

Chapter 2: System Dynamics in Perspective 27

characteristics, etc), resources, communication between the industry participants that is

expressed through influences and decision rules [for example the Merten et al (1987)

model].

In both cases diagramming techniques are used during the model construction. For

example, Activity Cycle Diagrams, flow-charts or special symbols (as in GPSS) [eg see

Pidd (1988), Balmer & Paul (1986)] are very popular in manufacturing simulation and

Influence Diagrams in System Dynamics. The former concentrate on queuing and

manufacturing activities while the latter on behavioural influences.

Specific Objectives: In manufacturing simulation applications the concentration is usually

on reduced in-process inventories, increased utilisation of machines and workers, increased

on-time deliveries, reduced capital requirements, etc. The issues that are addressed here

are the needs for quantity and quality of equipment, performance evaluation (eg.

bottleneck analysis), evaluation of operational procedures, etc. [for a detailed approach to

manufacturing simulation see Law (1987)].

In industry simulation applications, the concentration is on what the model tells us about

the future implications of certain policies, and the factors that will cause changes in the

behaviour of the model. Such factors include financing, "product" demand, lack of perfect

foresight, market growth and market shares, changes and delays of price regulation, delays

in new capacity approval and placement, use of different plant or production technologies

and strategies [see references in the chapter about System Dynamics industry modelling].

What the modellers and users are interested in is the impact of a specific policy in the

dynamic behaviour of the whole model, with aim to study "how a system can be defended

against, or made to benefit from the shocks which fall upon it from the outside world"

[Coyle (1977)].

Experimentation: This is the process of experimenting with the simulation model for a

specific purpose. Some purposes of experimentation are (i) comparison of different

operating policies, (ii) evaluation of system behaviour, (iii) sensitivity analysis, (iv)

forecasting, (v) optimization, and (vi) determination of functional relations [Balci (1990)].

Chapter 2: System Dynamics in Perspective 28

Both types of simulation aim to study the dynamic behaviour of the system trough time.

However, in manufacturing simulation the behaviour is propagated through system

structure, in an operational sense. During the experimentation phase, the concentration

is on how different configurations of the basic components of the system, or different

values of their attributes, change the system’s behaviour. The aim is to find a near

optimum configuration (given a finite set of testable system configurations) under which

the system could operate.

On the other hand in SD configuration is set (in terms of participating entities), and what

we are looking for is a near optimal operating strategy (given the current behaviour and

the constraints built into the model in terms of policies, and participating organisations).

Therefore, regarding the latter experimentation purposes, industry simulations are basic

related to (i)-(iii).

Users: An important factor that distinguishes the two simulation methods, at the

application level, is the one that is related to the actual users of the simulation system.

Manufacturing simulations are addressed to engineer managers, therefore, people who have

a good view of the system from within. Industry simulation applications are usually

addressed to top level managers, who in most cases have a more general and aggregated

view of the system that is represented in the model.

Level 1 :

We would not like to go into details at this level due to the fact (i) that there is a vast

amount of implementation languages [see Paul (1991) and Mathewson (1989) for a review

of the discrete simulation languages], and (ii) their features are not particularly relevant

to our comparison. In discussing about manufacturing and industry simulation languages,

we can identify two types of language environment (which exist in both types of

simulation). The first is the programming environment and the second is the graphical

user interface (GUI) environment.

The former is well developed. Simulation languages that belong in this type of

environment provide the user with a set of primitives (commands or instructions) from

Chapter 2: System Dynamics in Perspective 29

which a simulation program can be constructed [for example in DYNAMO]. The main

difference, between the two types of simulation that we have been looking at, is that

manufacturing simulation languages resemble conventional programming languages in

terms of variety and type of instructions, while industry simulations are written as sets of

equations.

Graphical user interface environments have been quite well developed for the SD

modelling framework [as in Stella and iThink for example], probably due to the concise

nature of the approach. On the other hand, in manufacturing simulation graphical

interfaces, under the name Visual Interactive Simulation, still partially constitute a research

area [see Paul (1989), Vujosevic (1990)]. Nevertheless, in both cases the aim is to

provide the user with a user friendly and "easy to use" tool, where he/she can build

simulations without the need for programming skills.

Levels 2 & 3 :

Our aim is to discuss those two levels concurrently. This is due to the fact that while they

are quite distinct in terms of model conceptualisation, they are connected in terms of

model building. What we mean by that, is that when a modeller builds a model, he/she

links a specific executive type to a specific time set, i.e. discrete or continuous time.

In manufacturing simulations we have three executive types (that have already been

mentioned). In industry simulation, the continuous time executive is basically

implemented through an integration method. An important point to make, is that in

industry simulation the executive is directly related to the actual expressions (equations)

within the language; while the same does not hold for manufacturing simulation

languages, where different executives may be supported by the same language [for

example see Balmer (1987)].

The world view supported in manufacturing simulations by a process interaction executive

[Kiviat (1969), Fishman (1973), Derrick (1989)] concentrates on the sequence of

operations through which an entity passes during its life within the system. As an entity

moves through its process, it may experience certain delays and be blocked in its

Chapter 2: System Dynamics in Perspective 30

movement. Entities experience periods of activity during process execution and periods

of inactivity or delay. Such delays are incurred and execution is shifted (to another entity)

at interaction points. If we consider a single server queuing system, the customer process

is as follows: (i) customer arrives, (ii) waits until head of queue, (iii) moves into the

service channel, (iv) remains there until end of service and leaves the system. On the

other hand an activity scanning executive [for a good description see Pidd (1988) and

Kreutzer (1986)] requires that the modeller identifies the various types of entities in the

system to be modelled, the activities which the entities perform, and the conditions under

which the activities take place. The single server queue can be represented by three

activities: (i) arrival of a new customer, (ii) begin a new service, (iii) end of service.

Finally, in the event scheduling world view [see Nance (1981)], a simulation program is

made up of a set of event routines, each of which describes the operations in which

entities engage when the system changes state. The approach specifies that some event

is to take place at a determined time in the future and can be scheduled. In our example,

we would have two event routines: (i) customer arrival, and (ii) end of service.

The reason why we dwelt on the three discrete-event executives, is that we would like to

point out the most commonly used perspectives in which they view the system. In the

queue example the process interaction approach views the system through the eyes of the

active-customer. In the activity based approach the view is from someone that is

participating into the system. Finally, in the event based world view, the view is from

above, from someone that is an observer of the system, but still has an interest in the

"discrete" events within it.

In a quite similar way, in System Dynamics (and its industry simulation applications) the

view is from above, but now the observer views the system through an important

simplification: for him time and events become irrelevant. In our example the queue

would be a level which accumulates customers through a specific rate. The time that a

customer arrives or service starts are of no interest.

Level 4 :

As has been already stressed, at this level we look at simulation models as functional parts

Chapter 2: System Dynamics in Perspective 31

[Oren & Zeigler (1979)]. Such a taxonomy can accommodate both manufacturing and

industry simulations. Nonetheless, while in manufacturing simulation much research effort

focuses on functional decomposition, in industry simulation and SD such decomposition

is more a result of program design than of software support. The functional parts of a

simulation model, as presented in Oren & Zeigler, are:

(i) Model structure: the modeller specifies in some form (machine independent or

dependent) the static and dynamic structure of the model. Static characteristics refer to the

component models which make up the overall model and the variables which describe the

states, inputs and outputs of the component models. For example in a manufacturing

simulation a component model could be a queuing process with specific Poisson arrivals

and Exponential services. In an industry simulation a component model could be a

demand accumulation (level) and its associated rates. The input could be growth in

demand, and the output satisfaction of demand through a specific rate.

The dynamic characteristics are fixed by the rules of interactions among component

models; such rules in a manufacturing simulation are dictated by the structure of the actual

system; whereas in an industry simulation by the policies that govern the system.

(ii) Output variables and output functions: the output variables are those that are of

interest to the modeller; eg. market growth, average time, in a queue.

(iii) Input scheduling: the modeller specifies the external inputs to the model; i.e.

variables that are not controlled by the model; eg. set regulatory conditions, workstation

capacity.

(iv) Initialisation: the desired initial states; eg. initial demand, initial number of jobs

in a queue.

(v) Termination: the conditions under which a simulation run is to be stopped; eg. run

length.

(vi) Collection of simulation data: the modeller specifies the output trajectories to be

plotted or statistical summaries of them; eg. profit per time unit, utilisation of a

workstation.

Level 5 :

Ultimately the top level in our classification accommodates mathematical formalisms that

Chapter 2: System Dynamics in Perspective 32

Figure 2: The Parts of the System Dynamics Model Building Process

aim to represent in a concise, consistent and generic way a series of decompositions, time

sets and world views. By specific instantiations of a formalism one can move downwards

within the classification scheme. Examples of such formalisms are Petri networks,

Zeigler’s System Modelling Formalism (1984) and Discrete Event System Specification

(1976). Such formalisms will be reviewed in a more detailed manner in the following

chapter.

By looking at the summary of the comparison of industry and manufacturing simulation

(Table 3), we can identify a number of interesting points. The most noticeable difference

is that the core technology (System Dynamics) used for industry simulation model

building is very well established whereas in manufacturing simulation we can identify a

multiplicity of views (mathematical formalisms, time-views). In addition, in contrast to

industry simulations, in manufacturing simulations an enormous amount of attention is

paid to the quality of the models from a software engineering point of view (eg. in

functional decompositions, language constructs). Overall, it apears that the SD core

technology for industry simulations has developed to a mature level. The question is

whether or not this is true. If the answer is not, then two issues arise: why the core

technology for industry simulations is not fully developed up to the requirements of the

problem domain, and then what type of technology should be provided to address these

Chapter 2: System Dynamics in Perspective 33

requirements. We will attempt to explore further these issues in the next section.

Manufacturing Simulation Industry Simulation

Level 0 Broad Objectives System Understanding System Understanding

Model Construction Physical Structure Policies/some Structure

Specific Objectives Optimal configurations Scenario building

Level 1 Languages Multiplicity Standard approach

GUI’s Research theme Implemented

Level 2&3 Time view/Executives Attention to events View from above

Level 4 Functional Decomposition Supported at software level Supported at design
level

Level 5 Mathematical Formalisms Research theme, many views Control theory

Table 3: Summary of Manufacturing vs Industry Simulation within the classification

scheme.

2.9 System Dynamics from a Critical Perspective -
Issues for Research into its core technology.

As has been pointed out in the introduction, System Dynamics is viewed throughout this

work through industry simulation applications. System Dynamics is the main modelling

methodology that has provided us with concepts and tools for modelling and simulating

social-economic systems in general and industries in particular. Taking over from the

issues that we have opened up in the previous section, in this section we focus on its core

technology and underline related research issues. While our comments are fairly general,

we mainly base our critique in respect to industry simulations.

From our discussion, earlier in this chapter, we can describe System Dynamics as

composed of three distinct parts (Figure 2):

(1) the model building part (Influence Diagrams and other diagramming techniques)

(2) the core technology (equations, integration methods)

Chapter 2: System Dynamics in Perspective 34

(3) the experimentation part (gaming, microworlds)

We can view each of the above parts as involving a certain conceptualization of the

system to be modelled, and some conceptual leap that bridges the parts.

It is apparent, from what we have been discussing in the previous section, that a

significant amount of research has been devoted in parts (1) and (3), while a substantial

amount of work has been focusing on applying SD methodology in many application

areas. As a result, as Toyoda & Mawatari (1991) emphasize "evaluation of system

dynamics has been obscured by inconclusive debate about particular models... .But its

methodology needs further development and codification for revealing general

characteristics of complex systems". From a similar viewpoint Tu (1992) observes "the

methodology itself (core technology) seems to have progressed less than its applications".

Looking at System Dynamics from a historical perspective, we can identify that the initial

input was control theory. Forrester used concepts from control theory in generating the

notion of policy, in order to identify and perceive models of social systems. However,

the bulk of research in System Dynamics has moved from the actual core technology to

softer, behavioural aspects. We would like to argue that the notion of the control system

itself (which is good in demonstrating behaviour) helped in moving towards that direction,

and helped in the development of the notion of influence diagrams for model

conceptualisation. As we have pointed out, a number of System Dynamics researchers

have identified the need to re-focus research efforts on the SD core technology. In what

follows, we aim at stressing this need, by presenting a number of modelling issues that

the current technology cannot readily address. The aim of our critique is to point towards

a new core technology, which takes advantage of the current System Dynamics tradition,

while provides enhanced modelling capabilities, as well as uniformity in model

conceptualisation throughout the three fore-mentioned stages.

Natural Representation:

As Peterson (1992), one of the developers of iThink, observes "The stock/flow framework

for model conceptualisation is rigorous and precise. It is also abstract, and in many cases

Chapter 2: System Dynamics in Perspective 35

not a ’natural’ way for the less-proficient modeller to think about system structure".In

agreement with the latter, we would argue that System Dynamics, as a modelling

framework, does not correspond directly to people’s mental models about the world; this

drawback exists both at the influence diagram level, and the levels and rates (equation)

level.

It is the case, as we will discuss in Chapter 3, that people perceive the real world in terms

of entities which have certain attributes. Establishing influences between entities is a

secondary process, which actually changes over time. In other words, entity perception

is more permanent while the perception of its influences is more transient. Given the

latter, it would be extremely useful to have a core technology that maps directly people’s

mental models. That would help significantly not only the modelling part of the simulation

process, but the validation/verification parts as well. As a result, an entity based approach

will provide us with a uniform view of the system throughout model development,

simulation and experimentation.

Structure:

System Dynamics is a purely structurally based approach. SD models are causal (theory­

like) models, i.e. they base their mathematical expressions on postulated causal relations

within the modelled system. As Ansoff & Slevin (1968) state, in Industrial Dynamics (i.e.

Forrester’s initial book) emphasis is placed on "making models ’true to life’ the first time,

by observing carefully, on testing boundaries, on testing the internal logic of the model,

on obtaining parameters from real-life applications". Forrester (1979) indicates that

"System Dynamics focuses on policy and how policy determines behaviour. ... One must

describe the setting of interrelated policies and therefore the structure of the system".

As we have already discussed research on the SD core technology has concentrated on

improving the modelling capability of influences, as components of structure (i.e.

multidimensional influences, uncertainty in connections). Nevertheless, even in this

advanced form, the core technology is essentially concerned with association relationships

within a system, through its emphasis on influence modelling. These association

Chapter 2: System Dynamics in Perspective 36

relationships constitute the basis for the system equations that represent the decision rules

within the system. It should be pointed out that the equations are somewhat a limited way

of expressing decision rules. In addition, we should take into consideration that system

relationships can be grouped into three categories [see Blaha et al (1988) p.416] viz.,

generalisations, aggregations, and associations. As Pracht (1990) points out, generalisation

relationships (A is a kind of B) and aggregation relationships (A is part of B), serve the

purpose of forming hierarchies and separating entities into their structural components.

The current core technology lacks the ability to provide aggregated and disagregated views

of model components within a model5. As a result a considerable amount of SD models

have been too complex to understand and manipulate, because the modellers have

attempted to incorporate over-abundant levels of detail. This is one of the reasons for the

current trend of emphasis on small transparent models [eg. Morecroft et al (1989), Larsen

et al (1992)] which contain a highly aggregated view of the problem space. Of course it

should be stressed that, as Larsen et al. (1992) argue, small models can still produce an

interesting behaviour and be useful to the management, while they can be easily

communicated to the decision-makers and allow a variety of issues to be explored due to

the advantage of yielding fast ‘results’. In that respect, contemporary applications of

industry simulation through system dynamics have favoured simple, discardable models

produced to facilitate strategy meetings, making in that way a virtue out of necessity. On

the other hand, as Ford & Bull (1989) observe "managers are excited about the prospect

of conducting a wide variety of studies with quick turnaround, but at the same time are

suspicious of models that do not possess the level of detail present in the existing

corporate models". The question of ’small models versus large models’ has troubled the

SD community [see Forrester (1987)], and while it is a valid consideration for any

modelling exercise, we believe that is should also be addressed at a ’technology’ level.

In that respect, the provision of aggregation/dissagregation relationship modelling, can

provide a more structured way to deal with detail.

5 The only SD software platform that provides some kind of aggregation is iThink, through the use
of ‘sector frames’. Nevertheless, this is an ad-hoc addition which has a number of drawbacks which will
discuss later on in this thesis, and demonstrates the practical requirement for such type of relationships.

1

Chapter 2: System Dynamics in Perspective 37

Another factor that adds to the weakness of SD in supporting big and complex models,

is the lack of support for generalisation relationships. This form of knowledge

organization corresponds to the ability of the human mind to perceive similarities and

differences in objects and organisms. Generalisation relationships enable the humans to

reduce the entities in a given problem scenario to a manageable proportion [Pracht

(1990)]. Therefore, such relationships ought to be supported by a modelling framework

that attempts to model socio-economic systems in general, and industries in particular.

Following the tradition of modelling the structure of a system, we would like to identify

the need for a core technology that can facilitate the development of hierarchical models,

where decisions can be represented at multiple levels. An important point is that

disagregation should be supported by preserving at the same time the ability to have

aggregated views of the system. A model built in such an environment could facilitate

managers in looking at the implications of their decisions at different levels of the

modelled system. Overall, in thinking about a natural and comprehensive structure for

industry modelling, it would seem necessary to first focus upon entities, their level of

aggregation and the way they are organized into hierarchies, before going on to consider

the various sorts of influences.

Reusability:

As we have indicated above, contemporary applications of industry simulation through

system dynamics have favoured simple, discardable models. Nonetheless, the structure

of the system dynamics core technology does not favour major reformulations of the

model once produced. However, as Walter & Lopilato (1992) stress, "Socioeconomic-

models are likely to be characterised by rapid change and great complexity. Conversational

inquiry and update capabilities are necessary for anybody to be able to know what is in

the model and make changes as required". In industry simulations in particular, we

encounter many situations where we wish to speculate on a different market behaviour or

set of competitive strategies, we need to change the pattern of influences (and hence in

system dynamics the structure of the model), which, if our modelling structure had been

based upon entities, would not be a major editing change. Generalisation relationships,

Chapter 2: System Dynamics in Perspective 38

apart from their modelling power, can add to the reusability of a model, through the

development of generic modules. In that respect, modularity in the structure of the model,

would add to the reusability of valuable models and extend their use from the strategy

laboratory into decision (or executive) support.

The concept of reusability brings also into focus model-base and knowledge-base issues,

as well as the ways that a model can be treated as a form of expressed knowledge about

a problem domain. From that perspective, SD models accumulate essential model­

knowledge in the model equations. This is a result of the fact that simulation engine and

model are bound together. On the other hand, if the knowledge built into the model could

be separated and stored in a knowledge-base, it could be used in different types of models

and even accessed in a data-base fashion. Given the time consumed to elicit the knowledge

required to build an SD model, as well as the importance of this knowledge, the separation

of model knowledge from the model itself becomes an important goal. The problem of

separating the model-knowledge from the equations has been identified in the SD literature

[eg see Kleinhans (1986, 1989)]. For example, the use of a "knowledge extractor" that

is able to make a description of the model, i.e. is able to treat the model as data, that can

then be stored, has also been suggested.

T im e-Representation:

Finally, we should question the continuous time view of System Dynamics. As we have

demonstrated in the first part of this paper such a time (and executive) view, provides a

view from above in a way that time and events become obscured. Two points can be

stressed. First, people do not think in continuous time, on the contrary they view the

world through a discrete time frame (see Chapter 3.5). It is, therefore, apparent that such

a continuous time view undermines conceptual uniformity between people’s mental models

and the simulation model. In addition, in reference to industry modelling it should be

pointed out that while the time representation provided by SD, makes sense for

macroeconomic or environmental dynamic systems where the "view from above" holds,

most corporations and industries are man-made dynamic systems where the evolution of

the system in time depends on the complex interactions of the timing of various discrete

events. Second, the fact that recent software (eg ithink) has introduced discrete delays in

Chapter 2: System Dynamics in Perspective 39

an ad hoc way shows this to be a practical requirement.

2.10 Summary

In this chapter we have attempted to provide an overview of System Dynamics as the

framework for building industry simulations. We started out by looking at the main

elements and concepts of the approach, as well as its main application areas and research

themes. We then attempted to place industry simulations and System Dynamics in the

more general context of simulation modelling, by providing a classification scheme for

simulation models, and comparing industry to manufacturing simulations. By doing that

we set a platform which triggered a number of research questions, regarding the core

technology of System Dynamics and its ability to support the modelling requirements of

industry simulations.

In conclusion, it should be stressed that the critique that we initiated in the very last part

of the chapter points towards a core technology that should preserve the top ‘horizontal’

behavioural aspects of System Dynamics that are supported by association relationships.

At the same time, such a core technology, should provide a ‘vertical’ representation of

structure through the incorporation of aggregation and generalization relationships.

Overall, the methodological needs that we have identified can be classified as related to:

• Natural Model Representation

• Structure

• Reusability

• Time-Representation

The task that we should set at this point is to explore the feasibility of such core

technology, and investigate whether or not any of the concepts that can support it, have

been explored within the adjacent areas of manufacturing simulation, software engineering

and data modelling.

Chapter 3: Object Orientation & DEVS 40

Chapter 3

Object Oriented Programming &
The Discrete Event System Specification Formalism

Contents:

3.1 Introduction - The Research Issues

3.2 . Object Oriented Programming & Analysis

3.3 Object Orientation: A Paradigm Shift

3.4 Object Orientation in Manufacturing Simulation

3.5 The Naturalness of the Approach

3.6 From Manufacturing to Industry Simulation

3.7 Addressing the Modelling of Time

3.8 Discrete Event Formalisms

3.9 The DEVS formalism

3.10 Comparison Between Differential Equations and DEVS in the

Simulation Context

3.11 The DEVS Simulation Environment

3.12 An Object Oriented/DEVS framework in Smalltalk

3.13 Summary

Chapter 3: Object Orientation & DEVS 41

3.1 Introduction - The Research Issues

In the two previous chapters we have defined industry simulation and its modelling

requirements. We have also compared manufacturing simulation models to industry ones,

and discussed in detail System Dynamics: the methodological framework on which

traditionally industry models have been built. Finally, we produced a critique of System

Dynamics as a vehicle for building industry models, which opens up a series of research

questions. These are the questions that we attempt to address in this chapter.

In our previous discussion, we have identified two basic principles on which System

Dynamics has been based. The first one is that a system is being viewed as a structure

of interactive functions, where both the separate functions and the interrelationships

contribute to system behaviour [Forrester (1968)]. The second one is based on the fact

that people (managers) have a good perception of how different policies work, but cannot

project consistently the dynamic implications of their policies, into the future. What

follows attempts to build upon, as well as extend these two fundamental principles of SD

in particular and dynamic systems modelling in general.

Given the fore-mentioned critique we are in a position to formulate the questions that we

would like to address as follows:

Entity Based Modelling:

(1) Can we provide a technology that addresses the question of what the entities are in

the real system and not what the entities in the simulation language represent in the real

system? The objective is to minimize the cognitive leap between the way people perceive

the world and the way the simulation technology models it.

Modularity, Reusability, Extendability:

(2) Can we provide a technology where we do not have to make a presumption of what

is relevant (by choosing the system’s boundary) in the early stage of modelling, so that

we can provide for extendability of the model?

(3) Can we provide a technology that can model explicitly the physical structure of a

system as well as the policies that govern the structure? The objective will be to

maximize stability and reusability of the model, and enhance the decision support

Chapter 3: Object Orientation & DEVS 42

capabilities of models.

Association, Aggregation, Generalization Modelling

(4) Can we provide a technology which supports aggregation, generalization, and

association relationships, in a way that a model of a complex system can be built, and at

the same time to provide a unitary, concise and intuitively understandable description of

the system?

(5) Can we provide a technology in which aggregation/disaggregation can be used in

accordance to the model’s purpose and modules can be aggregated/disaggregated in

different stages of the model’s life?

Time Representation:

(6) And finally, can we model time in terms of events, providing at the same time the

view from above of System Dynamics as well as the possibility to investigate the

implications of a specific event?

In what follows we try to address these questions bearing in mind three important

modelling aspects of industry simulation: structure (physical - eg. plants in a production

system, or abstract - eg. legislation that governs the system), policies (that players within

an industry may adopt) and time (through which structure and policies evolve). We aim

to discuss the structure-policy modelling through a software engineering perspective, and

compare System Dynamics to the way software engineering and data modelling has

evolved, by focusing on Object Oriented Programming. We describe the main

characteristics of Object Orientation and we discuss the naturalness of the approach. We

also describe how object orientation has been used within the manufacturing simulation

world, as well as organizational modelling. Finally we discuss the modelling of time

through discrete event system formalisms and concentrate on one of them, the discrete

event system specification.

3.2 Object Oriented Programming & Analysis

Object orientation started as an extension of structured programming techniques which

aimed through the naturalness of its concepts to improve productivity and software reuse.

Chapter 3: Object Orientation & DEVS 43

Nevertheless, its concepts proved so powerful that object oriented analysis and design

[Coad & Yourdon (1989)] were bom and even object oriented organizational behaviour

modelling has been suggested [Blanning (1987)]. Many proposals for object oriented

designs have their origins in the concept of the abstract data type, implemented with

Simula, a simulation language developed in the mid-1960’s, as well as the ideas about

system modularity [first presented by Pamas (1972)]. Many of the concepts supported in

Simula exist in ADA (1980), a language developed as a response to the 1970’s software

crisis from the U.S. department of defence. ADA is what is called object-based [Wegner

(1989)]. Nonetheless, true object orientation came with Smalltalk (1980) which is what

is considered to be a pure object oriented language. In addition, a series of hybrid

languages, like C++ (1986), have emerged. A list of languages in the continuum from

object-based to object-oriented, as well as a good discussion of the evolution of object

orientation, is presented by Wegner (1989).

In what follows we will review the main concepts of object oriented programming (OOP),

and Object Orientation (00) in general, and suggest how these concepts can be used in

addressing some of the questions that we have set, for industry modelling and simulation.

We will briefly compare OOP with previous programming views and contrast its world

view with that of System Dynamics. Finally, we will provide evidence, from the area of

cognitive psycology, in support of the naturalness of the technique in modelling.

3.3 Object Orientation: A Paradigm Shift

As Meyer (1988) points out, when laying out the architecture of a system, the software

designer is confronted with a fundamental choice: should the structure be based on the

actions or on the data? In answering this question we effectively make a choice between

traditional design methods and the object-oriented approach.

Traditional design methods have been based on the notion of "function", "action" or

"process"; most of the structured design methodologies [see Birrell & Quid (1985)] tend

to place an enormous emphasis on the modelling of functions with less emphasis on the

Chapter 3; Object Orientation & DEVS 45

as are procedures or functions (this is the case in System Dynamics where we model with

functions). For this reason, we distinguish objects from mere processes, which are input

output mappings.

The key concepts that make software modules more understandable, modifiable and

reusable are: encapsulation, inheritance, late binding, message passing and polymorphism.

• Encapsulation is a technique for minimizing interdependence among separately

written modules by defining strict external interfaces , and therefore achieving

information hiding [see Meyer (1988)]. It is the result of the very notion of

packaging data and procedures (methods) together. The external interface of an

object serves as a contract between the module and its client modules. The

implication is that data abstraction is achieved. This means that the user of an

object does not need to understand how these operations are implemented or how

the object is represented, so a module can be re-implemented without affecting its

clients.

2

• Message Passing is the way through which objects communicate. The idea is that

an object can affect the internal condition of another object. This can be achieved

by an object requesting (by sending a message) from another object to execute one

of its methods. This is what is called a client-server relationship between objects.

Message passing is the way to implement what we have already called association

relationships, as a means to associate two or more independent objects.

• Inheritance is probably the most powerful concept in OOP. It provides for

software reuse at a low level, through the provision of OOP classes that are

defined in a hierarchical tree-like structure. Each class in the tree inherits the

methods and data structures of all its superclasses in the branch of the tree.

Inheritance allows the construction of new objects from existing ones by

extending, reducing or modifying (by overloading) their functionality. Reusability

i.e. the set of operations defined upon and can be applied to the data of the object

Chapter 3: Object Orientation & DEVS 46

m relation to the concept of inheritance in object orientation is discussed in depth

by Cox (1990). An example of inheritance in the database context is presented in

Altair (1988). In that example, an object ‘Person’, which has attributes name and

age, is defined, with methods ‘die’ and ‘marry’. Consequently, objects ‘Employee’

and ‘Student’ can be both defined as Persons (having something in common). In

addition, they also have specific characteristics. Thus an Employee is a special

type of Person who inherits attributes and methods, but also has the special

attribute salary and method pay. In a similar fashion a Student can be defined by

extension from Person. In contrast, in a relational data base system, the designer

defines a relation for Employee, a relation for Student and then writes the code for

their operations. As a result, the code related to Person is written twice, whereas

the use of inheritance helps code reusability because every operation is at the level

at which the largest number of objects can share it. In addition, OOP proves itself

a powerful modelling tool, because it gives a concise and precise description of the

world. Through inheritance "concepts can be rigorously organised because natural

mechanisms such as specialization, abstraction, approximation and evolution can

be captured" [Wegner (1989)].

• Polymorphism means the ability to take several forms [Meyer (1988, p.224)].

This refers to the ability of an entity to refer at run-time to instances of various

classes. The notion of polymorphism is related to inheritance, and can also be

labelled as feature redefinition. A polygon, for example, can show itself but a line

can also show itself. Polymorphism allows both line and polygon objects to contain

a method ‘show’ which is, however, implemented in a different way for each case.

In a similar fashion, in a model of factory floor, where both a robot and a crane

can fetch material, polymorphism can be used to model the similar behaviour of

both objects under the method ‘fetch’.

Late Binding, finally, is a rather technical characteristic, which nevertheless has

important implications, due to the fact that it provides the advantages of high

Chapter 3: Object Orientation & DEVS 47

modularity, operator and method overloading3, as well as the ability to change

variable data types during execution. Late binding refers to the time when a

procedure and the data on which it is to operate are related. In contrast to early

binding (i.e. at the time of software construction) in traditional procedural

languages, late binding in OOP delays the binding process until the software is

actually running. In the above example, a program can send the message ‘show’

to any graphical object, and at run time the appropriate code is executed depending

on wheter the object is a polygon or a line.

3 Overloading may be defined as the ability to attach more than one meaning to a name appearing in
a program. This is a facility for client modules: they may use the same name requesting different
implementations of the same operation [Meyer (1988, p.37)].

The advantages of OOP over procedural programming have been documented in Cox

(1986) and Meyer (1988). As Meyer (1988) argues, data structures if viewed over time,

at a sufficient level of abstraction, are the really stable aspects of the system; while

functions tend to change through the system’s life cycle. Therefore, by focusing on the

data structures we can greatly enhance compatibility and reusability. Compatibility is the

ease with which software products may be combined with others, and it is obvious that

it is difficult to combine actions if the data structures are not taken into consideration.

Reusability is the case where software modules can be used in similar systems without

changes. It is therefore evident, that it is difficult to built reusable components if they

embody actions alone and ignore the data part.

Another complaint about traditional structured methods has been pointed out by Yourdon

(1990). That is related to the fact that structured methods provide little or no guidance

in developing the user interface of the system. This is a quite important disadvantage

given that as much as 75% of today’s window-based, mouse driven, icon oriented systems

is associated with the user interface [Byte (October 1990), p.258]. However, object

oriented analysis addresses the problem of the user interface in the early stages of analysis.

"Thinking about objects is fundamentally different from thinking about functions"

[Jourdon (1990)]. Many have stressed the fact that object orientation represents a

Chapter 3: Object Orientation & DEVS 48

paradigm shift in computer programming and modelling. Given the fact that whole

generations of software engineers have to be retrained, that very fact can be regarded as

a drawback of the approach, while the sobering reality is that 75% of the business data

applications are still written in COBOL, a 50’s language [Byte (October 1990), p.260].

Of course there are many advantages in object oriented technologies, but there are costs

as well. OOP provides semantics that are easily understandable, and closer to the way

people create mental models about the world (we will support this argument later).

However, the world view of an OOP system increases the semantic gap between the

language and the current actual hardware4, which means that more computing power is

needed, while porting systems between different machines can be more difficult. In

addition, extensive class libraries should be understood by analysts and programmers,

which results in a steep learning curve. From a hardware point of view Object Oriented

systems usually need a substantial amount of RAM to run, while late binding has some

run time cost. Persistence5 problems also need to be resolved. The issue of object

persistence is particularly important in object oriented database design where no clear

consensus has emerged [see Altair (1988) and Stone & Hentchel (1990)]. In general

object orientation should be considered as a new technology and the object oriented

languages that have emerged, or are emerging, provide different shades of the main object

oriented programming concepts.

4 Object Oriented architectures and operating systems are very few. The Next machines represent a
fundamental step forward Object Oriented operating systems [see Thomson (1989)]. Apple machines provide
object orientation at the user interface level. Finally, the new OS/2 by IBM provide some object oriented
features.

5 Persistence is a property of data that determines how long it should be kept. In traditional procedural
languages, the lifetime of data usually does not transcend the life time of a particular program. In order to
support persistence in OOP you need a strong notion of object identity that persists across programs and
projects. In Smalltalk this problem has been attacked by saving the whole "image" [Goldberg (1984)] which
contains every object in the environment.

3.4 Object Orientation in Manufacturing Simulation

The fact that the first concepts of object orientation appeared in Simula, a simulation

language, is probably the best argument on how well the object oriented paradigm is

Chapter 3: Object Orientation & DEVS 49

suited to simulation modelling and in manufacturing simulation in particular.

In such a manufacturing type setting, when we describe a situation, we define ‘things’

that should be modelled. In a machine shop we define the machines of interest and the

pieces to be produced. We also declare what each of these ‘things’ can do, and what their

condition is before, during and after each of these operations. So in that machine shop

the operations of each machine are defined and the states of the machines are described

before, during and after the part process. However, in most simulation environments

(until at least the mid 1980’s) the modeller had to translate the fore-mentioned view into

a different world view that defined the simulation environment. So, if a network oriented

language is used, the problem must be transformed into simulation entities like

transactions, queues, resources, sinks, etc. Naturally, it would be better to describe our

simulation model using the same terminology that we used in describing the actual system.

This would minimize the cognitive leap that should be made between the physical system

and its computer model, and would reflect more faithfully the way the system is being

viewed. If we slightly change our terminology and use objects in the place of "things",

methods instead of "operations" and message passing for the way that these "things"

interact, we can easily adopt the object orientated perspective.

Simulation is about representing real systems. In modelling with objects the question is

not what the objects in a simulation language represent in the real system, but what the

objects in the real system are. If you see your system as composed of general entities,

you make them classes (eg. class workstation, transporter, robot, storage facility, etc.), and

you specify the specific operations that they can perform (encapsulation). If you need

specific instances you refer to the corresponding objects with certain attributes. If some

objects appear to group together they can be a subclass of a more general class. For

example, a printing machine and a binding machine can be subclasses of machine in the

same fashion that student and employee can be subclasses of person. In general, by

creating subclasses you may refine general methods for more specific operations.

A system can be modelled in terms of the principal components of which it is made, while

their interaction can be identified in a second stage and modelled through message

Chapter 3: Object Orientation & DEVS 50

passing. By encapsulating the characteristics (data structure) and methods (operations)

within the objects, the objects can be viewed as the fundamental components of the

system, yielding a very natural and furthermore stable decomposition. Stability is a result

of the fact that the principal components in a manufacturing environment (eg.

workstations) remain stable while the interactions between them may change. In this

respect OOP provides a clear advantage as compared to process based methods. The result

is that old models become reusable because they are conceptually more stable and do not

change.

Reusing software components also means reduced code size which in turn means that a

single analyst can handle more complexity. Managers, on the other hand, can gain a

better understanding of a model and its dynamic behaviour, through the naturalness of the

approach; which can also provide the basis for pictorial (iconic) representation [for

example see Vujosevic (1990), Thomasma & Ulgen (1988), Guasch (1991)], which can

be animated, improving substantially the understanding of the real system. Finally,

intelligence in the form of facts and rules can be built directly into the object’s

functionality.

A good discussion of the OOP advantages in the simulation modelling context can be

found in Roberts (1988). A substantial amount of research in simulation based on OOP

concepts has been carried out the last few years. For instance, Basnet et al. (1990) have

suggested a simulation environment in Smalltalk based on a formalism for manufacturing

systems. Knapp (1987) presents Simtalk, an extension of Smalltalk that supports queuing,

statistics gathering and simulation oriented graphics for discrete event simulation. Ulgen

& Mao (1988) describe SmarterSim, an object oriented program generator for hierarchical,

modular modelling. Bryan (1989) discusses the use of object oriented programming in

proving a language (Modsim II) capable of exploiting parallel and sequential processing.

In a similar fashion Lomow & Baezer (1990) present Sim++, an object oriented language,

based on C++, capable of parallel processing. Goldberg (1984) in his Smalltalk-80 book

discusses the implementation of a discrete event simulation environment and a series of

applications. Zeigler (1987) has implemented his Discrete Event Specification (DEVS)

formalism, and built a simulation environment in an object oriented version of Lisp. Kim

Chapter 3: Object Orientation & DEVS 51

(1990), has further described how polymorphism can be exploited in developing new

model classes in the DEVS environment. Bums & Morgeson (1988) have produced a

simulation world view that can simulate systems involving intelligent decision-making

entities, following the object oriented and actor paradigms.

3.5 The Naturalness of the Approach

Up to this point we have discussed the advantages and disadvantages of object orientation

strictly from a software engineering point of view. Nevertheless, it appears that the most

important characteristic of the approach is its naturalness, and its importance becomes

apparent as we descend from general software systems to simulation ones. One of the

aims of this research work is to test the hypothesis that this characteristic makes the

approach attractive from a modelling perspective. However, before we make any

assessment about the usefulness of the technique in industry simulations, we should

address two questions: (a) Do people create mental models of the world in terms of

entities and the attributes they possess?, and if (a) is true then (b) how do people model

mentally the way that entities interact with each other?

It seems that for the software engineering community the comparison between traditional

techniques and OOP leans so much towards the latter that cognitive evidence in support

of the approach is rarely provided. Instead, enthusiastic statements like the following are

often given: "... object-oriented designers usually do not spend their time in academic

discussions of methods to find the objects: in the physical or abstract reality being

modelled, the objects are just there for picking. The software objects will simply reflect

these external objects." [Meyer (1988), p.51].

However, theoretical evidence can be found in the area of cognitive psychology, and has

been used in a number of papers on the teaching of the approach [for example see Beck

& Cunningham (1989), Gibson (1990)]. The fundamental view of cognitive psychology

is that people organize the world through concepts, as Smith & Medin (1981 p.l) point

out "Without concepts mental life would be chaotic. If we perceive each entity as unique,

Chapter 3: Object Orientation & DEVS 52

we would be overwhelmed by the sheer diversity of what we experience and be unable

to remember more than a minute fraction of what we encounter... Fortunately, we do not

perceive, remember and talk about each object and event as unique, but rather as an

instance of a class or concept that we already know something about. When entering a

new room, we experience one particular object as a member of the class of chair, another

as an instance of desks, and so on... In sort, concepts are critical for perceiving,

remembering, talking and thinking about objects and events in the world.". It should be

noticeable how close these ideas are to the concepts provided by OOP.

A significant part of psychology deals with the way people acquire and use concepts (or

classes of objects!). The classical view dates back to Aristoteles and advocates that all

instances of a concept share common properties, and that these common properties are

necessary and sufficient to define the concept. A list of contemporary sources on the

classical view can be found in Smith & Medin (1981 p.22). The Aristotelian view,

however, has its critiques, the most prominent of which assumes that instances of a

concept vary in the degree to which they share certain properties, and consequently vary

in the degree to which they represent the concept. According to Labov (1973) one needs

a view that posits a unitary description of objects, but where the properties in this

description are true for most though not all members. Therefore, the representation of a

concept can not be restricted to a set of necessary and sufficient conditions. Finally, the

most extreme departure from the classical view advocates that there is no single

representation of an entire class or concept, but only specific representations of the class’

exemplars. Thus, we view and understand the world through examples of the concepts

that we develop. A complete definition of these views, as well as experimental evidence

in support or comparison of the fore-mentioned views, can be found in Categories and

Concepts’ by Smith & Medin (1988). They also provide a distinction between

component and holistic properties of an object concept. A component property helps to

describe the object but it does not constitute a complete definition, while in contrast a

holistic property provides a holistic one. A characterization of components is also

provided as dimensions (quantitative components) or features (qualitative components).

Nevertheless, the fact is that people organize the world around concepts (objects) that

possess certain attributes. In addition, as Woods (1981) argues, people use concepts both

Chapter 3: Object Orientation & DEVS 53

to provide a taxonomy of things in the world and to express relations between classes in

that taxonomy. Object Orientation is in a position to model the world even if we accept

the exemplar view given that our exemplar objects can evolve through inheritance and

polymorphism. In addition, both dimensional and featural properties can be modelled in

an OOP environment.

As a result of the current discussion a positive answer to the first question can be

supported and therefore we should try to investigate the second question. While there is

some consensus on the way people perceive entities, the exact way that people build

taxonomies of concepts and define their relationships has not yet been defined. One

possible way discussed by Smith & Medin (1981) is the categorical one. It is suggested

that the categorization function involves determining that a specific instance is a member

of a concept or that one particular concept is a subset of another (eg. the stock market is

a part of the financial markets). Certainly such categorization can be modelled in OOP

through inheritance.

However, as Mandler (1984) points out "categorical organization lacks principal

relationships among the members of a given class. Each member is only guaranteed to

have one relation to the other members, and that there is only the vertical relationship in

the hierarchy of class inclusion. ...More relations may exist in idiosyncratic ways". Of

course, "idiosyncratic" relations may be modelled through what we have called a "client­

server" relationship and message passing. However, the fact that OOP is heavily based on

categorical (hierarchical) relationships is probably a drawback given the fact that up to a

point it obliges the modeller to think in such a way. Madler (1984), discusses what is

called a schematic structure. Such a structure has a part-whole nature which results in

"connections among the items in a given unit". In the case of an event schema6 such

connections are temporal. Madler also discusses the concept of the "script" which is a

kind of event schema and serves as a way of organizing event sequences (for example

going to a restaurant is a script, as is the event sequence in the beer game [see Senge

(1991)]). In the case of scene-schemas physical objects are connected and the

6 An event schema is a hierarchically organised set of units describing generalized knowledge about and event
sequence [Madler (1984, p.14)].

Chapter 3: Object Orientation & DEVS 54

connections become spatial (eg. when we have an overall schema for a bedroom, a

supermarket or a dealing room). Again the organization is hierarchical in respect to the

fact that individual parts are governed by schemas of their own (eg. we know what check­

out counters or terminal look like in addition to the scenes in which they are found). It

has been experimentally proven [see Madler (1984, p.87)] that when people are asked to

list the parts in an ordinary scene, such as an office, most of the things that they list are

basic level objects; in addition, people remember the fairly accurate spacial relationship

of objects as they remember the temporal relation in scripts. However, people have

difficulties in remembering objects in a categorical fashion unless a special attention is

drawn to it.

As we have already discussed, the object oriented paradigm is particularly suited for

mapping categorical relations such as: Robin and Sparrow are special intances of Bird.

However, spatial or temporal relations can be modelled through attributes and methods of

an object. For example in a windowing environment [see Goldberg (1984)] graphical

objects can identify their relative position on the screen (through coordinates) and

communicate it to other objects through message passing. Nevertheless, mapping such

relations under the object oriented paradigm can be done as a result of relevant design

more than as a result of following the paradigm.

Overall, the answer to the first question set at the beggining of this section, is that people

perceive the world through entities and their attributes, while in regard to the second

question experimental evidence points towards the direction of ‘scematic structures which

can be, for example, an ‘event schema’ or a ‘scene-scema’.

3.6 From Manufacturing to Industry Simulation

The modelling of socioeconomic systems has been traditionally carried out in continuous

simulation frameworks using differential (or difference) equations. This makes sense for

macroeconomic or environmental models where what we have called the view from

above" holds. In industry simulations, however, we may want to model organizations and

Chapter 3: Object Orientation & DEVS 55

their policies in a sufficient level of detail. This is an area that the SD core technology

can not address sufficiently, as there are no explicit and robust modelling facilities for

incorporating different levels of detail, in different sections of the same model. More

importantly, SD fails to minimize the cognitive leap between the way people view the

system, and the model. This is one area where concepts of object orientation can be most

helpful. As we have already discussed people organize the world in terms of objects and

therefore a modelling technique that recognises this fact in the area of industry modelling

and simulation will enormously improve the understanding of the models by managers,

as well as their use.

As we have discussed in previous chapters System Dynamics models the world as a set

of interactive functions; the goal-action pair is at the heart of its core technology. A

parallel can be drawn to the traditional software engineering modelling where the modeller

models the functions of the system. As we have already discussed such a view does not

produce a stable, reusable and maintainable system. Therefore, it should not be surprising

that System Dynamics has evolved as a one-off modelling tool where models have a

limited life span and are used as a learning environment7.

7 It should be noted that this is true for most but not all SD models. Learning microworlds, like ‘People
Express’ represent models that demonstrate interesting behaviour, that can be seen in a number of similar
business situations. Therefore models like these can be used as case studies .

Naturally, one can model complex systems in System Dynamics. However, this results

in huge and uncomprehensible models. In general, from a software engineering point of

view all the arguments that we have previously presented hold for the core technology of

System Dynamics, even when a graphical interface is provided (in iThink for example).

By suggesting the use of object orientation in modelling industry structures we practically

take the use of OOP in organisational modelling one level further. Blanning (1987), has

suggested the use of the object oriented paradigm as an extension of the information

processing paradigm for organizational behaviour. It is suggested that object orientation

can be used to model and simulate in detail the types of messages between organizational

subunits and the conditions under which they send or receive messages. The feature of

Chapter 3: Object Orientation & DEVS 56

OOP that is regarded as especially useful is the ability to create and delete objects during

execution and simulation. Thus organizations can restructure themselves, patterns of

information flow can change, liaison roles, task forces, etc. can be created and abolished

dynamically. In addition, it is argued that inheritance can support the modelling of

organizational structures which can change dynamically following the environmental

uncertainty on internal information processing requirements. Finally, Blanning (1987)

views the simulation of an OOP model as a way to generate and refine a series of

hypotheses about the management of decision processes or the way in which individuals

form communication groups within an organization.

In a similar strand McIntyre & Higgins (1988, 1989) discuss the architecture of an object

oriented environment for organizational modelling. In particular in [McIntyre & Higgins

(1989)] knowledge based representations of a stakeholders’ positions are used, and

simulated decision scenarios are formulated in order to access their impact. It is argued

that OOP can enhance the construction not only of descriptive, data-oriented models, but

also of active models which can be used to simulate target organizational activities. In

[McIntyre & Higgins (1989)] the organization is represented as a hierarchy of personnel

entities, business functions, information systems and projects. These are class objects, the

instances of which model data, relationships and activities, associated to a specific

organization. In the same work, the ‘definition-simulation cycle’ is defined. The idea is

that during model definition, target systems entities are modelled as objects, while during

simulation the model is instantiated and the specific decision environment is evaluated.

When inadequacies of the model are found, redefinition and refinement of the objects take

place, followed by more simulation.

In our view many of these ideas can be used in the area of industry simulation. Physical

entities like competing manufacturing organizations, service organizations or government

interventions can be modeled directly. Capacity in terms of production plants, vehicle or

airplane fleets or even salesmen can be naturally represented. Chains of command and

internal policies within an organization can be modelled to many levels of refinement,

while sufficient level of detail can be naturally modelled, aggregated or disaggregated

where necessary. General classes which represent types of organizations can be built, and

i

Chapter 3: Object Orientation & DEVS 57

specific views (eg. an investing organization, or a customer services organization) can be

developed through inheritance and polymorphism. Aggregation can also be used, to model

market structure, in a natural way. It can provide taxonomies that help the managers to

use the model in terms of different levels of abstraction starting from the market as a

whole at the top level and ending to specific plant subunits as a subassembly system or

a specific managerial information chain.

Dynamic binding can be used to create dynamically new entrants in the market or allocate

new capacity to existing organizations. Withdrawal of organisations from the market can

be naturally modelled when specific market conditions hold (eg. a recession) and existing

capacity can be taken away (for example under a specific decision rule or obsolete

technology). External organizational policies can be modelled through message passing

and the impact of specific inter-organizational policies can be investigated.

3.7 Addressing the Modelling of Time

Having discussed a framework for modelling structure and policies, we now need a

concise way to represent time.

System Dynamics and its mathematical framework, control theory, are founded on

differential equations, which is the formalism for describing continuous systems. In

contrast discrete event simulations were based until now on the prime requirement of

being able to program the computer appropriately and very often in an ad-hoc manner.

Computer independent model description formalisms for discrete event systems paralleling

the differential equations for continuous systems were late in coming.

However, our understanding of complex systems can be greatly enhanced if a

mathematical formalism is used as a basis to model the system in hand. A formalism can

provide a concise and structured basis upon which systems can be modeled and validated,

while it can serve as a context in which initially vague solutions to a problem can be

precisely specified.

Chapter 3: Object Orientation & DEVS 58

Discrete event systems have many characteristics that differentiate them and make them

more complex in nature than continuous ones. They evolve through a sequence of events,

each occurring at a specific time. The intervals between events are not likely to be

identical. At each event, changes take place in only part of the variables describing the

state of the system, leaving the others unchanged. Although several events can occur at

the same point in simulated time, they will actually occur one after the other in

simulation. Therefore concepts like system states, events and the temporal aspects must

be dealt properly requiring a sound mathematical formulation. The following table is an

initial attempt to compare discrete and continuous systems (as System Dynamics views

them).

Table 1: Continuous vs Discrete System Characteristics

CONTINUOUS SYSTEMS DISCRETE SYSTEMS

levels state variables

flows (rate of change) transition functions

continuous change events

global change local change

input:
piecewise continuous functions of time

input: arbitrary spaced events

In the following paragraphs we attempt to address the last question that we set in the

introduction: i.e. the modelling of time under our specific objectives. The system

dynamics continuous time representation makes sense for macroeconomic or environmental

dynamic systems where the "view from above" holds. Nevertheless, most corporations

and industries are man-made dynamic systems where the evolution of the system in time

depends on the complex interactions of the timing of various discrete events. As a matter

of fact, decisions within an industry are being taken in a discrete fashion and a number

of decision support systems in the literature [for example see Moore & Whinston (1986),

Widmeyer (1988), Sebastian (1990)], take this view in modelling in a fundamental way.

In an industry simulation model, we see all the characteristics of a discrete event system,

i.e. events happen in a discrete fashion when a participant in the industry makes a

Chapter 3: Object Orientation & DEVS 59

decision, and decision could only have localized effects in the system. We would like to

argue that industry simulations (as have been defined previously) can be modelled more

realistically in a discrete event framework, exploiting the advantages of a discrete event

formalism, instead of the traditional System Dynamics one (we will support this argument

further in the next chapter). In what follows we will review in general discrete event

formalisms and discuss in detail DEVS [Zeigler (1976, 1984)]. We then suggest the

reasons why DEVS can be advantageous to use in the place of a purely continuous time

representation, within an Object Oriented industry simulation framework.

3.8 Discrete Event Formalisms

The quest for the development and use of discrete event formalisms in simulations has

been intensified during the ’80’s. One approach has been inspired by the systems theory

concepts [for example see Mesarovic and Takahara (1975)] and was elaborated in the

work published by Zeigler [Discrete Event System Specification (DEVS) formalism (1976,

1984)]. Closely related formalisms have emerged, under the framework of Generalised

Semi-Markov Processes (GMSP), which as formulated by Glyn (1989) as well as

Cassandras & Stickland (1989), provide a formalism of Discrete event systems, as Markov

processes with countable state sets. Zeigler (1990), however, has shown that DEVS is

more powerful in terms of expressive power, than GMSP.

Another group of approaches has been based on Petri Networks. Van Hee et al (1991),

present a modelling environment for decision support systems, based on a framework for

formal description of discrete event systems called DES. DES is characterized by a finite

state space and a behaviour that can be described by a succession of states. The formalism

distinguishes three aspects of a discrete event system, the state space of the components,

the state transformations of components and the interaction structure. These aspects are

embodied in the system through a coloured Petri net [see Jensen (1987)]. It is suggested

that the advantage of using Petri net theory, is that the structural properties of the systems

modeled in such a framework, can be verified. It is claimed [Van Hee et al (1991)],

without any proof however, that DES has at least as expressive power as DEVS. It should

Chapter 3: Object Orientation & DEVS 60

be noted that their approach provides a similar system static structure with DEVS based

on the notion of the automaton8. However, the two approaches differ in the way the basic

automata are coupled together to describe a dynamic system.

8Automata are characterized by a state space, an input output set and a transition function.

The graphical properties of Petri nets have also been used to provide an underlying

framework for model building [see Kyratzoglou (1991) on how a Petri Net can be used

to model decision-making and the structural attributes of an organizational], as well as

their stochastic generalisations [Sanders & Meyer (1988)].

Another approach for modelling discrete event systems [Cohen (1990)], has been used for

evaluating the performance of flexible manufacturing systems. This technique is based

on minimax algebra in which the sum of two numbers is defined as the larger of the two,

and their product as their sum. Since discrete event systems can be characterized by the

starting and ending times of various activities, the minimax algebra can be used to

calculate the times required for various manufacturing operations.

From the fore-mentioned approaches DEVS and DES have been implemented in a

complete fashion, i.e. have been coupled with a language for model specification, and a

software environment for editing and validating system descriptions.

3.9 The DEVS formalism

Discrete Event System Specification is one of the basic formalisms for discrete event

modelling. It provides a formal representation of discrete event systems capable of

mathematical manipulation just as differential equations serve this role for continuous

systems. The formalism has been used to support the design of computer architectures,

communication networks and multi-robotic systems [Rosenblit et al (1990)]. The

compatibility between object orientation and discrete event world view formalisms has

been discussed elsewhere [O’Keefe (1986)]. Up to date applications of the formalism

Chapter 3: Object Orientation & DEVS 61

have been concentrated on engineering type applications where simulation is used as a tool

for assessing design choices. In addition, DEVS models can be used as a basis for event­

based system control [Zeigler (1989)].

In the DEVS formalism one must specify: (a) the basic models (atomic models) from

which larger one could be build, and (b) how these models are connected together in a

hierarchical fashion (coupling procedure). Atomic models are defined as mathematical

structures:

M = < X, S, Y, 8,nt,8ext, X, ta >

where:

X :the set of external input values,

Y :the set of output events,

S :the sequential state set,

8int :the internal transition function, dictating state changes due to internal events,

8ext external transition function, dictating state changes due to external events,

X :the output function, generating external events at the output,

ta :the time advance function.

Under the constraints:

(i) ta is a mapping from S to the non-negative real numbers with infinity:

ta: S -» R o

(ii) the total state set of the system specified by M is

Q = { (s,e) ! seS, 0 < e < ta(s) }

where s the sequential state, and e the elapsed time spend in this state,

(iii) 8int: S S

(iv) 8ext: Q x X S

Atomic models can be coupled to form a multicomponent DEVS which is defined

as a structure:
DS = < D, {MJ, {IJ, {ZJ, SELECT >

where:

D : is a set, the component names,

for each i in D:

Chapter 3: Object Orientation & DEVS 62

Mj : an component DEVS model,

I, : a set of influencées of i,

and for each influencée i in Ii5 and j in {M,} :

Zy is the transition function (output function) from i to j,

SELECT finally is the tie breaking selector (i.e. selects which of the next events will be

executed first in the case that more than one have the same scheduled time).

Intuitively, we can perceive an atomic model as a box with input and output ports through

which all the interaction with the environment is mediated. A coupled model specifies

how these ports of a number of atomic models are connected to each other in order to

form a new model which can be employed itself as a component to a bigger model, and

so on. If changes of a state of a component A can cause changes of state of component

B, then A is an influencer of B and B is an influencée of A; an event is now associated

with the state change of a component A. It should be pointed out that we are allowed to

construct such hierarchical models because DEVS is closed under coupling9 [for proof see

Zeigler (1984) chapter 3]. Further insights into the DEVS formalism in relation to system

theory ideas can be obtained by consulting Zeigler (1976, 1984).

9 i.e. any composite system obtained by coupling components specified by the formalism, is itself specified
by the formalism. This is the property that allows hierarchical model construction by recursive application of the
coupling procedure.

It should be pointed out that (as we have mentioned elsewhere) the typical world views

can be easily expressed as subsets of DEVS. The event scheduling word view can be

most naturally mapped under DEVS. The DEVS state set S is represented into component

states that consist of sets (Sj, oj where s, a state and o, the time left component. Each O;

is non-negative and represents an event scheduled corresponding to component i. If

then component i is passive. In terms of implementation we can view this as having a

single next events list ordered by time, where the time advance function is ta(s)=min{Oi}.

Each time an internal event occurs ôjnt(Si), actions corresponding to processing the

corresponding component occur. Actions may cause changes to the influencées of the

active component. Each time an external event xeX occurs when the model has been in

state (si5 oj for elapsed time e, and cause a transition to (s', o') where (s',

Chapter 3: Object Orientation & DEVS 63

ct") Sext((s,cr),e,x), the event is said to be ignored if s"=s and cr=cy-e (the only result is to

update the time left component to account for the passing of elapsed time e), i.e. the

model remains scheduled to undergo a transition from the same state as it was before. On

the contrary an event which is not ignored is said to cause an interrupt and causes a state

change and/or a rescheduling of the model’s next internal transition.

3.10 Comparison Between Differential Equations and DEVS in the
Simulation Context

Briefly, a differential equation system specification is a structure:

D = < X, Q, Y, f, X >

where X: the input value set, Q: the state set, Y: the output value set, f: the rate of change

function and X the output function; subject to the constraints: X,Y, Q real finite

dimensional spaces, f: Q x Y —> Y, X: Q —> Y. Composite models can be specified due

to the fact that differential equations are closed under coupling.

In the computer simulation context, an obvious advantage of DEVS, is that the input,

output and state sets do not have to be real numbers (numerical in general). This is an

advantage in terms of naturalness because we can model directly qualitative types of

states, input and output (especially under a symbolic manipulation language like Lisp).

When a differential equation system is simulated, it is in practice discretized for numerical

integration. The time step must be carefully chosen to conform to the rates of propagation

expressed in the original model. In particular, when a naturally discrete system is

modelled in differential equations (or difference equations for discretization), too small

a discretization will result in unnecessary recomputation of states that essentially do not

change; too large a value risks missing events that could have occurred in the original

system. In the System Dynamics context, Forrester (1968), has suggested the heuristic

that dt must be less that one half, but greater than one fifth, of the system’s shortest first

order delay. Such a problem does not exist when the system is modelled as a DEVS.

Chapter 3: Object Orientation & DEVS 64

Zeigler (1984) [see chapter 6] has compared the cellular automata10, which provide the

formal basis for the usual representation of partial differential equations models for

computer simulation, with DEVCS11. The conclusion is that DEVCS has more expressive

power than a cellular automaton, i.e. every cellular automaton can be simulated12 by some

DEVCS, but the converse does not hold. For the full proof and mathematical

documentation of the fore-mentioned concepts see Zeigler [1984, Chapter 6.4],

10 A cellular automaton is represented by a triple <S, N, T>. Intuitively it can be seen as infinite check­
board such that at each square is located a cell with state S. The neighbours of a cell located in square (ij) are
determined in the neighbourhood N, N is a finite ordered set of the neighbours. If we let a global state of the
system, at time t, by assigning to each cell a state from S. T is a transition function which if applied
simultaneously to each cell at time t, the system will move to a new global state at time t+1.

11 Discrete Event Cell Space model (DEVCS) can be associated with a DEVS in a one-to-one
correspondence.

12 The definition of simulation that we use in this context, is that simulation related systems must be "close"
in terms of behaviour and structure. Thus, in this case we require that there is a one-to-one correspondence
between the cells of the simulator and the simulatee, and a mapping from the local state set of the one into the
other.

3.11 The DEVS Simulation Environment

The DEVS formalism underlies a general purpose simulation environment based on the

principles of the abstract simulation developed by Conception & Zeigler (1988), as part

of the DEVS theory. The environment is based on the formalism for model description,

a user language for model specification and a software environment for model editing and

validating system descriptions. A detailed discussion this environment implemented in an

Object Oriented version of Lisp (DEVS-Scheme) is reported in [Zeigler (1990)]. Three

more implementations have been reported in the literature, one in Modula-2 by Linvy

(1987), one in Smalltalk [Thomasma & Ulgen (1987)], and another in C++ by Kim &

Park (1992). The similarities (dis-similarities) of the above with DEVS-Scheme, as well

as the application areas and characteristics of these implementations, will be discussed in

the next chapter.

It should be mentioned that one of the main advantages of the DEVS environment,

Chapter 3: Object Orientation & DEVS 65

especially in the context of building industry models, is that it provides a convenient basis

for development of evolutionary models which adapt or change their internal structure.

The reasons for that will be apparent as we sketch the DEVS simulation environment.

The DEVS environment is a hierarchical structure, the root of the structure is a DEVS

entity, every entity has two types of children: models and processors. Models are further

specialized to atomic models (atomic DEVS) and coupled models. Processors are

specialized to Simulators, Co-ordinators and Root-co-ordinators. Simulations are carried

out as follow: Simulators and coordinators are assigned to handle atomic models and

coupled models in a one-to-one fashion, respectively. A root-co-ordinator manages the

overall simulation and is linked to the root co-ordinator at the outermost coupled model.

Simulation is carried out by message passing among the processors which carry

information concerning internal and external events, as well as data need for

synchronization.

As Zeigler (1987) points out the model/simulator separation is very advantageous because:

• (a) any model can be simulated by the simulator, since the interaction takes place

only at interface level, achieving separation of the time handling mechanism and

the actual model,

• (b) due to the separation of the simulator and the models, we can create a model

base; the implication is that coupled models can be created easily in many different

configurations, while models can be treated as knowledge (facts) in the A.I. sense,

and

• (c) atomic models can be tested in a stand alone fashion, so that validation and

verification are enhanced, and greater understanding of the model’s behaviour can

be gained.
It should be mentioned that there is now a clear trend towards simulation languages that

separate model and simulator [eg. Kettenis (1992)].

Chapter 3: Object Orientation & DEVS 66

Simulation is initiated by initializing the states of the atomic models and specifying the

influencées of each atomic model (the result is a series of coupled models). Then the

processor-model pair are defined. Processors are simulators in the case of atomic models

and co-ordinators in the case of coupled models. The root-co-ordinator is assigned to the

outermost co-ordinator in the hierarchy. As has been mentioned the model and the

simulation can be defined through a user oriented language.

3.12 An Object Oriented/DEVS framework in Smalltalk

We have implemented the concepts of the DEVS theory in Smalltalk/V for Windows.

Smalltalk and its pure object oriented features have allowed us to produce a natural

synthesis of OO and DEVS. Two distinct Smalltalk implementations are presented in

detail in the next chapter. The first implementation, consists of the hierarchy of models

and processors discussed in the last paragraph, and follows the concepts discussed by

Zeigler (1987). A new novel implementation has also been carried out, in such a way so

that the object oriented paradigm is exploited in its full potential (the motivation for

embarking into a new implementation view is discussed in the next chapter).

The environment under discussion can be viewed through two dimensions, the object

oriented one and the DEVS one. We should point out that while we have used the

DEVS-Scheme concepts, in our framework we place more emphasis on the use of object

orientation for modelling the system domain, than Zeigler (1987, 1990) does. The main

difference is that Zeigler has used the object oriented paradigm as an implementation

platform for the DEVS-Scheme, while we use this paradigm in order to model inter-

organisational decision-making.

3.13 Summary

We started off this chapter focusing on the research theme that we presented in the

previous chapter, by identifying six key requirements related to a simulation environment

Chapter 3: Object Orientation & DEVS 67

for industry modelling. Using these requirements, we motivated the discussion about

Object Orientation and discrete event formalisms (with a particular focus on DEVS), based

on a number of open research questions regarding industry modelling. These questions

evolved around (i) the ability to provide entity based modelling, (ii) the need for modular,

reusable and extendible models, (iii) the requirement of modelling aggregation and

generalization relationships along with the association relationships supported by System

Dynamics, and finally (iv) the ability to represent time as discrete events.

We addressed some of these questions by exploring the latest advancement in software

engineering and data modelling, and by discussing and assessing object orientation, as a

natural and robust way to model the world. In the last part, we have attempted to address

the fifth question that we set in the introduction, i.e. the modelling of time. We have

argued that in simulating industry structures and policies, a discrete event formalism

provides a more natural framework, both for the model builder and the user. Therefore,

we have reviewed the main discrete event formalisms and we have sketched DEVS, one

of the main discrete event simulation formalisms. We have also contrasted DEVS with

the continuous systems formalism and discussed its advantages in terms of expressive

power. It should be mentioned that the fact that a continuous system can be simulated by

a DEVS means that even continuous situations can be modeled in DEVS, if that is

necessary by the nature of the problem domain.

Our analysis has suggested that a synthesis between Object Orientation and DEVS can

address the research questions set at the beggining of this chapter, from a theoretical point

of view. Furthermore, our analysis suggests that such a synthesis can be most natural, in

bringing together the complementary modelling powers of 00 and DEVS. In the

following chapters of this thesis, we put into practice these theoretical concepts, with the

aim of evaluating their practical value in answering the questions of our research agenda.

Chapter 4\ The Smalltalk Implementation of OO/DEVS 68

Chapter 4

OO/DEVS:
A Smalltalk Implementation of the DEVS Formalism

Contents:
4.1 DEVS Implementation Views

4.2 The Use of Smalltalk

4.3 A Faithful DEVS-Scheme Implementation in Smalltalk

4.3.1 Class Atomic Model

4.3.2 Implementation of Coupled Model

4.3.3 The Class Model

4.3.4 The Processor Classes

4.3.5 The Class SimulationPlatform

4.3.6 The Class DevsModel

4.4 Modelling Object Oriented Message Passing within DEVS

4.4.1 The DEVS-Scheme Implementation from a Critical Perspective

4.4.2 Towards an Object Oriented DEVS Implementation
4.4.3 The Class Model

4.4.4 The Object Processor

4.4.5 The Class Simulator

4.4.6 Realisation of the DEVS fundamentals within OO/DEVS
4.5 A Simple Processor Example

4.6 Discussion

4.7 Summary

Chapter 4\ The Smalltalk Implementation of OO/DEVS

4.1 DEVS Implementation Views

69

Zeigler (1987, 1990) [see also (Rosenblit et al 1990)] has used the DEVS formalism as

the foundation for a general purpose simulation environment, based on the principles of

the abstract simulator developed by Concepcion & Zeigler (1988), as part of the DEVS

theory. This DEVS-Scheme simulation environment, developed in a Lisp dialect,

separates models (entities of the system modelled) from the mechanics of carrying out the

simulation. It introduces two generic classes of objects, models and processors. Figure

4.1. depicts the object hierarchy diagram of the DEVS-Scheme implementation (a more

elaborate version of this diagram can be found in Zeigler (1990) p. 60). Atomic and

coupled-model are specialisations of model, whilst simulator and co-ordinator are

specialisations of processor. Further specializations of atomic and coupled-model (that

cover special modelling requirements) have also been developed under the DEVS-Scheme

implementation (see Zeigler (1990) Chapters 8 & 9). Simulations are carried out as

follows: Simulators and

coordinators are assigned to handle

atomic models and coupled models

respectively, in a one-to-one

fashion. A root-co-ordinator, a

special type of processor, manages

the overall simulation and is linked

to the co-ordinator of the outermost

coupled model. Thomasma &

Ulgen (1987) take a similar view in

their Smalltalk-80 implementation,

while in the Linvy (1987)

implementation no distinction is

made between atomic and coupled

models.

DevsEntity

---------- Processor

 RootCoOrdinator

 Coordinator

 Simulator

---------- Model

AtomicModel

 Coupled Model

Figure 1: Object Hierarchy in DEVS-Scheme like
implementation

Chapter 4: The Smalltalk Implementation of OO/DEVS 70

As we have discussed in the previous chapter, simulation is carried out by message

passing among the processors which carry information concerning internal and external

events. Time is represented through the event scheduling world view. The DEVS state

set is represented into component states that consist of sets (Sj, Oj) where s; a state and

the time-left component in that state. Each Oj is non-negative and represents a scheduled

event corresponding to component i. If o^co then the component i is passive. Each time

an internal event occurs ôjnt(Sj), the corresponding model component is processed. Actions

may cause changes to the influencées of the active component. Each time an external

event xeX occurs, the event is said to be ignored if the model remains scheduled to

undergo a transition from the same state as it was before, otherwise it is said to cause an

interrupt and causes a state change and/or a rescheduling of the model’s next internal

transition.

In Zeigler’s implementation (1990), every DEVS-model communicates with its world

through a set of input and output ports. The addition of the concept of a port, represents

an extension of the original Discrete Event System Specification as formally defined by

Zeigler (1976), and was introduced by Linvy (1987), who has produced a DEVS

implementation using this concept. The advantage of the port structure, is that it enables

the modeller to represent the coupling specification within two DEVS as a mapping from

the output port of one DEVS to the input port of the other. Such a mapping preserves the

autonomy and structural independence of the two systems and thus leads to modular and

extensible multi-component models. However, the drawback of the port structure is that

while it is a natural representation for computer (networks, etc) modelling, it is not ideal

for other systems.

In Zeigler’s (1990) implementation models communicate through messages that are triples

of the form: Message=< source, time, <port, value> >. The fields of these triples

correspond respectively to the source of the message (a DEVS model), the time that it was

send, the port that it was send from and a value that the message is carrying. Four types

of message facilitate the message passing between Processors. , x, y and done message.

When a Coordinator of a Coupled Model receives a message the coupling scheme is

consulted, and the message is translated and dispatched accordingly. When a Simulator

Chapter 4-, The Smalltalk Implementation of OO/DEVS 71

of an Atomic Model receives a message two things can happen. If the message is a *-

message it means that the model is scheduled to undergo its next internal transition. This

causes the triggering of the output function that produces output into the output ports, and

the triggering of the internal transition function that changes the state of the model. If

the message is an x-message then the model is about to receive input in one of its input

ports. Then the external transition function is triggered and in accordance to the port that

the input is placed, some specific operation is performed. Overall, the external transition,

internal transition and output functions are handled by the simulator of an atomic model.

They provide a mapping between the ports of the model and the operations that the model

can carry out. It should be noted that all the characteristics of the DEVS-Scheme have

been faithfully transferred in a C++ implementation by Kim & Park (1992).

In what follows we will discuss our Smalltalk implementation of the DEVS formalism to

which we will refer from now on as OO/DEVS. In section 4.2 we discuss the reason that

we have chosen Smalltalk as our implementation platform. In section 4.3 we demonstrate

an initial DEVS-Scheme like implementation that has been used in the U.K electricity

investments model and presented in Ninios et al (1993). In section 4.4 we discuss the

drawbacks of the DEVS-Scheme like view, and we introduce our final OO/DEVS

implementation, which attempts to address them, by exploiting fully the concepts of object

orientation, and the characteristics of Smalltalk in particular. We conclude this chapter

by demonstrating in a small example how the constructs provided by OO/DEVS can be

used in model building.

4.2 The Use of Smalltalk

Given the acceptance of the compatibility between OO and discrete event world view

formalisms [O’Keefe (1986)], as well as our research objective of testing the usefulness

of OO concepts in industry modelling and simulation, the choice of an object oriented

language as the implementation platform for OO/DEVS becomes evident. However, it

is important to explain the selection of Smalltalk, as the implementation platform. As we

have discussed at the beginning of Chapter 3, there are several Object Oriented Languages

■ I

Chapter 4\ The Smalltalk Implementation of OO/DEVS 72

that we could have used. However, Smalltalk is the purest object oriented language. The

designers of Smalltalk have pushed the paradigm to the limits, in a way that everything

within Smalltalk (and Smalltalk itself) can be seen as an object. In that way, the basic

concepts of encapsulation, message passing, inheritance and polymorphism are enforced

by the language itself. As a result Smalltalk provides an ideal validation platform

regarding the proper use of these concepts in modelling within DEVS.

In addition, we can be satisfied that we use in full the modelling of generalization

(taxonomic) relationships. It should be mentioned that, as we will see latter in this

chapter, the entity modelling and message passing can prove ideally compatible with the

DEVS modelling view. In that respect we aim to use the Smalltalk message passing

protocol to model communication between DEVS models.

One of the great advantages of Smalltalk is that it provides a complete windowing

environment, which can be tailored in order to build a user-friendly user interface. The

current version of OO/DEVS has been developed in Smalltalk/V for Windows. Full

Windows compatibility provides the additional advantage, of being able to link code,

written in Smalltalk, to other windows applications. Finally, Smalltalk is a powerful

prototyping environment, an important fact for research projects, as application prototypes

can be easily built and altered.

4.3 A Faithful DEVS-Scheme Implementation in Smalltalk

4.3.1 Class AtomicModel

As we have discussed in the previous chapter, in the DEVS formalism one must specify,

(a) the basic models (atomic models) from which larger ones could be build, and (b) how

these models are connected together in a hierarchical fashion (coupling procedure).

In what follows we discuss how DEVS atomic models are realized in a Smalltalk

implementation, that takes a similar view to Zeigler’s (1990) DEVS-Scheme. Following

Chapter 4\ The Smalltalk Implementation of OO/DEVS 73

the concept of encapsulation (see Chapter 3.2), we view each atomic model as a black box

that receives input and produces output, both through a specified interface which mediates

the interaction of that black box with its environment. A good example is that of a radio

receiver. As users we do not know its inner workings, nevertheless, we can send input

to the receiver by turning its station and volume buttons, and we can receive output from

its speakers. Therefore, the buttons and the speakers constitute the interface of the radio

receiver.

Regarding an atomic-model, when external events, arising outside the model, are received

on its input ports, the internal model description must determine how the model responds

to them. In addition, internal events arising within the atomic-model, change its state, as

well as manifest themselves as events in the output ports to be transmitted to other model

components. In the Smalltalk implementation, a basic atomic-model contains the

following:

• A set of input ports, that constitute its interface regarding external events. This

set is associated to a number of its methods in a one-to-one fashion.

• A set of output ports, that constitute its interface regarding the way that the atomic

model can communicate with the rest of its model world. This set is associated

to a number of its methods in a one-to-one fashion.

• The set of state variables and parameters. This set contains at least two state

variables: phase and sigma, and a third variable e. The ordered pair (phase, sigma)

represents the state of the atomic-model at any point in time. Phase represents the

current phase of the atomic-model. For example, in a simple atomic-model, the

variable phase may take the two values: active and passive. The variable sigma

represents the time left in the current phase. For example, in the absence of

external events the system stays in the current phase for the time given by the time

left component, sigma. Finally, e represents the elapsed time that the atomic-

model has been in a certain state (phase, sigma).

Chapter 4\ The Smalltalk Implementation of OO/DEVS 74

The time advance function, which controls time regarding internal transitions.

When the atomic-model is in a specific active state then the time advance function

returns sigma, otherwise returns infinity1.

1 When the state variable sigma is set to infinity, that means that the atomic-model is in a passive state, and is
not scheduled to carry out an internal transition. If this is the case, its state can only change with an external
transition.

The external transition function, which specifies state changes after an external

event has occurred. This is where the relationships input port-to-method are

specified.

• The internal transition function, which specifies how the atomic-model will change

state, after the time specified by the time advance function, has elapsed.

• The output function, that generates an external output, through the output ports,

just before the internal transition function is activated. This is where the

relationships method-to-output port are specified.

We have implemented an atomic-model through the class AtomicModel. This is an

abstract class, that contains the fore-mentioned functionality. In that respect, we never use

direct instances of the class, but we apply inheritance to create problem specific atomic-

model subclasses, we then instantiate. In what follows we describe the main variables and

methods of the class AtomicModel'.

Variables: phase, sigma, e (as above)

Methods:

new

Creates a new instance of an atomic-model.

initialize

ll

75Chapter 4: The Smalltalk Implementation of OO/DEVS

Initializes the atomic model to the state (passive, infinity).

continue

Continues the current phase that the model is in. The only state change is on the

sigma state component, that changes to: sigma - elapsed time.

passivate

Change the state variables of the model to: (passive, infinity).

holdin: aPhase for: aTime

Sets the atomic-model to the state (aPhase, aTime).

timeAdvance

Returns the current sigma (i.e. a Real value or infinity).

sete: aValue

Resets the elapsed time of the current state to aValue.

internalTransition

Implemented by a subclass

externalTransition

Implemented by a subclass

4.3.2 Implementation of Coupled Model

As we have seen in chapter 3, atomic-models may be coupled to form coupled-models.

A coupled model, contains the instructions on how to connect several component models

(atomic or coupled) in order to form a new multicomponent model. A multicomponent

DEVS is defined as a structure:
DS = <D, {MJ, {IJ, {ZJ, SELECT >

Chapter 4-, The Smalltalk Implementation of OO/DEVS 76

where:

D : is a set, the component names,

for each i in D:

Mj : a component DEVS model,

li : a set of influencées of i,

and for each influencée j in Ip

Zjj is the transition function (output function) from i to j,

SELECT finally is the tie breaking selector (i.e. selects which of the next events will be

executed first in the case that more than one have the same scheduled time).

As we can see by the above definition, a coupled model contains the following

information:

• A set of DEVS models (atomic or/and coupled) and their names

• For each of these models its influencées

• A set of input ports through which external events are received, and a set of output

ports where the model places its output after a transition.

The coupling specification, which consists of:

• The external input coupling, which specifies the connections (a set of influences)

between the external input interface and the input interfaces of the coupled model

components.

• The external output coupling, which specifies the connections (a set of influences)

between the external interfaces of the component models, and the external interface

of the coupled model. This allows output generated by a component model to be

transmitted externally.

• The internal coupling, which specifies the connections (influences) between the

coupled model components. This allows internal communication between the

model components of a coupled model.

Chapter 4: The Smalltalk Implementation of OO/DEVS 77

Within a coupled model time management is based on the principle that the component

that has minimum time of next event should carry out its transition first. Nevertheless,

there are cases that two or more component models may have the same time of next event.

To resolve this conflict Zeigler (1990) has introduced a SELECT function. If a conflict

exists, this function embodies the rules that direct which component should go first. In

our Smalltalk implementation we follow the same route and we also use such a select

function.

We have implemented a coupled model through the class CoupledModel. We should point

out that Zeigler and his colleagues have created a number of problem specific coupled

models (see Zeigler 1990, for eg. p 60). In our work we have used the DiagraphModel

which is the most general and flexible type of coupled model. As a result class

CoupledModel represents an abstract class, that we have only added for generality. The

main functions of a coupled model, as we have described above, are implemented in the

class DiagraphModel. This class provides the constructs to build coupled models, and in

contrast to the class AtomicModel, it is actually instantiated so that every coupled model,

in a specific model, is an instance of this class. The class DiagraphModel contains the

following variables and methods:

Object DiagraphModel

Variables: compositionTree, influenceDiagram, priorityList

Variable compositionTree contains a set of pointers that refer to all the model

sub-component models. Variable influenceDiagram contains quadruples of the form:

(Influencer, Output Interface Specification, Influencée, Input Interface Specification). The

variable priorityList is an array that contains the priorities between models, and is used

by the select function when it is activated.

Methods:

new
Creates a new instance of a diagraph-model (i.e. a type of coupled-model).

Chapter 4\ The Smalltalk Implementation of OO/DEVS 78

initialize

Initialises the above variables and data structures

buildCompositionTree: anArray

Builds the compositionTree data structure from the model names contained in the

array anArray.

setlnfluenceFrom: aModell to: aModel2 from: portl to:port2

Specifies the influences (internal coupling) from aModell to aModel2.

inputCoupling: aModel from: portl to: port2

Specifies the input coupling, regarding a subordinate model aModel, from the

portl of the coupled model, to the port2 of aModel.

outputCoupling: aModel from: portl to: port2

Specifies the output coupling, regarding aModel from the portl of the model

aModel, to the port2 of the coupled model.

getChildren

Returns a list of the subordinate model names

getlnfluenceesOf: aModel atlterface: aPort

Returns the names of the influencées (internal coupling) of the subordinate model

aModel, regarding aPort.

getReceivers: aPort
Returns the set of subordinate models that are linked to the port aPort of the

coupled model, and should get its input.

translate
Provides translation from the coupled-model to the atomic-model interface

Chapter 4\ The Smalltalk Implementation of OO/DEVS

priorityList: anArray

Specify the priority list

select

The SELECT function as specified above

4.3.3 The Class Model

All classes in the Smalltalk DEVS implementation are subclasses of the class DevsEntity

(see Figure 4.1), which is a direct subclass of the outermost (in the class hierarchy) class

Object. This is a class that contains the variables name (representing the name of the

model) and infinity (corresponding to a number that represents infinity within the DEVS

classes). Class DevsEntity has two direct subclasses, the classes Model and Processor.

The classes AtomicModel and CoupledModel are subclasses of the class Model. In what

follows we sketch the class Model.

Object Model

Variables: clock, inports, outports, parent, position, processor, monitoredVariables

Variable clock provides time monitoring facilities. Variables inports and outports provide

the definition of the ports (interface) of models. Variable parent contains a pointer to the

parent model (atomic-models have coupled-models as parents, coupled-models have other

coupled-models as parents, and the outermost coupled-model has no parent). Variable

processor contains a pointer to a the simulator of the model (see Chapter j . 11 as well

as the next paragraph). Finally, variable monitoredVariables contain a list of variables to

be monitored during a simulation run.

Methods: This object contains a set of methods to access and assign the fore-mentioned

Chapter 4\ The Smalltalk Implementation of OO/DEVS 80

variables. The most interesting ones are: the monitorVariables, which is used to specify

which instance variables of a Model should be monitored, during a simulation run, and

the method viewMonitoredVariables which creates a graphical representation of the

monitored values of a specific variable.

4.3.4 The Processor Classes

The class Processor is a subclass of the class DevsEntity. As we have pointed out in

Chapter 3.11 one of the advantages of the DEVS simulation environment, is that it

separates models and simulation engine. The simulation engine is composed of three

Smalltalk classes: Simulator, Coordinator, and RootCoordinator. All three classes are

subclasses of the class processor. When a simulation model is initialized, instances of the

classes Simulator and Coordinator are assigned to handle each atomic-model and each

coupled-model respectively. An instance of the class RootCoordinator manages the

overall simulation, and is assigned to the outermost coordinator. The only parts of an

atomic model that a processor requires to know the existence of, are the internal, external

and output functions. In what follows we present the basic characteristics of these objects:

Object Processor

Variables devsComponent, parent, timeOfLastEvent, timeOfNextEvent

The variable devsComponent contains a pointer to the DEVS model that the processor is

assigned. Variable parent contains a pointer to the parent processor. Variables

timeOfLastEvent and timeOfNextEvent contain the times of the last and next events within

the scope of the processor, respectively.

Methods

new
Creates a new instance of an object processor

Chapter 4. The Smalltalk Implementation of OO/DEVS 81

assign: aModel

Assigns a specific model aModel, to an instance of the processor

parent: aProcessor

Sets the parent of the processor

Object Simulator

Variables none (all inherited by Processor)

Methods

initialize

Initializes the timeOfLastEvent and timeOfNextEvent, and triggers the initialization

of the states of the assigned atomic model. Simulation is initiated by determining

the timeOfNextEvent for each atomic-model.

star: aMessage2

2 aMessage is an object that is an instance of the class MessageContent. This is a ‘auxiliary’ class that we have
created in order to handle the message passing between different DEVS models. This class has variables portName,
value, source and time, as well as methods to assign and return the values of these variables.

3 method time returns the time value of the object aMessage

A star method can be evoked by the parent processor (coordinator). When the star

method is evoked, that means that the next internal event should be carried out

within the scope of the atomic-model that is handled by the Simulator instance.

The code within the star method: (i) Checks if the time carried by the aMessage,

agrees with the timeOfNextEvent. If this is not true an Error Window is placed

within Smalltalk, and the simulation stops, (ii) Calls the output function of the

atomic-model that handles, (iii) Updates the times of last and next events as:

timeOfLastEvent := aMessage time3

Chapter 4: The Smalltalk Implementation of OO/DEVS 82

timeOfNextEvent timeOfLastEvent + (devsComponent timeAdvance)4

4 ,• • .Lnn.pf timpAHvnncs is one of the methods of atomic-model4 As we have discussed earlier in this chapter, timeAavance

(vi) Embeds the result of the output function to a yMessage that sends to the next

higher level, (v) Finally, a doneMessage instance of the class MessageContent is

created and is returned to the processor that has evoked the star message. This

doneMessage carries the time the next event will be carried out within the scope

of the atomic-model handles by the Simulator instance.

x: aMessage

The parent coordinator can evoke the x method. The x method represents the

arrival of an external event within the scope of the simulator. When it is evoked

the code in the x method: (i) Checks if the time carried by the aMessage lies

between the timeOfLastEvent and timeOfNextEvent. This should be so because an

external event should arrive before the next internal event and after the last

external (or internal) event, (ii) Computes the elapsed time

e = aMessage time - timeOfLastEvent

(iii) Triggers the external transition function of its atomic-model, (iv) updates the

times timeOfLastEvent and timeOfNextEvent, as above, (v) a doneMessage instance

of the class MessageContent, which indicates that the state transition has been

carried out, is created. This object reports the new timeOfNextEvent and is

transmitted to the next level.

Object Coordinator

Variables imminentChild, waitList

Methods

initialize

assign: aModel

Chapter 4. The Smalltalk Implementation of OO/DEVS

x: aMessage

y: aMessage

star: aMessage

done: aMessage

Object RootCoordinator

Variables clock (this is the global simulation clock)

coordinator (a pointer to the outermost coordinator)

Methods

initialize

done: aMessage

In what follows we demonstrate how simulation is carried out, and the roles of the above

Coordinator and RootCoordinator methods. Simulation is initiated through the

initialization of the atomic-models. Their simulators calculate their timeOfNextEvent, and

this time is propagated to the next level coordinator. This is where the role of the variable

waitList comes in. Every coordinator keeps track of the times of next event propagated

by its components by storing these times in its waitList. The variable waitList is a

Smalltalk OrderedCollection of pairs «model, time>. When every subordinate model has

reported its timeOfNextEvent then the done: method is evoked and the model with the

minimum time, in the waitList, becomes the imminentChild. This is a variable that

contains a pointer to the model with the minimum time of next event. Then the

coordinator itself sends its timeOfNextEvent (i.e. the time of its imminent child) to its next

level. The processes is repeated until the outermost level is reached. At that level, we

have information regarding the timeOfNextEvent (this will be the minimum time within

the whole model), and information concerning the identity of the imminent child at each

level.

This is the point where the simulation cycle starts, as the star method of each imminent

Chapter 4. The Smalltalk Implementation of OO/DEVS 84

child at every level is evoked. Every coordinator responds to its star method by

transmitting it to its imminent child. The coordinator places the imminent child in its

(initialized) wait list. When an atomic-model is reached it responds to the star message

(see the implementation of the object AtomicModel) mainly by transmitting a yMessage

and a doneMessage. The doneMessage represents the time of next event to be entered to

the waitList. The yMessage represents the ‘result’ of applying the internal transition

function of the atomic-model.

This result is transmitted to other atomic or coupled models within the system by

consulting the coupling specifications within the atomic-model’s coupled model. So, when

a coupled model receives a y-message, it employs the methods translate and

getlnfluenceesOf: aModel atlterface: aPort to obtain its children and its respective

interfaces where the message should be sent. As a result, the x: aMessage method is

evoked for each influencée. The argument aMessage, of the x: method, is a

MessageContent instance, identical with the yMessage in all but the source variable which

now contains a reference to the coordinator (i.e. the translated message is coming form

the coordinator). The coordinator adds to its wait list all the influencées that sends x

messages to. The atomic models that receive these x messages, are also placed in the

waitList. These atomic-models also schedule themselves (see the definition of the class

AtomicModel) to undergo a state transition due to the external event corresponding to the

xMessage. As a result a series of doneMessages return to the waitList of the coordinator.

When every model contained within the coordinator has responded with a doneMessage

the minimum time of next event is calculated and a new imminentChild is set. This new

timeOfNextEvent is propagated to the next level by each coordinator in the model, and a

new simulation cycle starts. Simulation can be stopped when all subordinate models have

been passivated (this is done by assigning infinity to the sigma state variable of each

model). As a result, the timeOfNextEvent of the outermost coordinator is infinity and the

RootCoordinator ends the simulation.

Chapter 4. The Smalltalk. Implementation of OO/DEVS 85

4.3.5 The Class SimulationPlatform

This is the class that manages the overall simulation environment. It contains methods to

support the following facilities:

• Model Building

• Model Browsing

• Model Saving & Retrieving

• Graphical Model Representation

• Graphical display of the results

Its method open, opens up the main window which can display the graphical

representation of a model. With its browse methods one can browse through the

subordinate models of a model, by double-clicking their iconic representations, and

evoking windows that contain their instances or their class representation. This class

supports also, the graphical representation of results, because it is linked to the subordinate

models that can evoke their monitorVariables and displayMonitoredVariables methods.

It should be mentioned that the graphical representation of results is supported by the

auxiliary class Diagram that takes care of window display and graph re-scaling and

drawing.

4.3.6 The Class DevsModel

As we have already shown, an overall DEVS model is a set of Smalltalk objects, that are

either atomic or coupled models. As soon as we have specified the basic atomic-models

we can start connecting them, creating aggregations, by placing them in a coupled model.

In addition, we can also specify influences (association relationships) between them. As

a result a DEVS model should be viewed in two dimensions, the first one is this set of

basic-atomic models and/or their aggregated versions as coupled models. The second one

is the specification of the set of influences between these models. An instance of the class

DevsModel contains within its methods the necessary code that specifies the instances of

these atomic models (with their initial instance variable values) and the influences between

Chapter 4. The Smalltalk Implementation of OO/DEVS 86

these models. For that reason we will alternatively refer to the subclasses of DevsModel

as the topology object, in order to denote the fact that it contains the instance and

influence specifications that define a DEVS model, as a whole. The class DevsModel

contains two methods:

dolt

is the method that contains (i) the code that specifies the instantiation of the

atomic-model subclasses (eg. instantiation of the class company), (ii) the

specification of the coupled models (aggregation relationships), and (iii) the

specification of the influences between subordinate models. In the current

implementation all these influences are specified in a procedural fashion. Our

research aim is to provide the tools that can facilitate graphical specification and

representation of these influences. As we will show in Chapter 5, we have

developed a set of diagramming tools, which can facilitate graphical modelling of

aggregation, generalization and association relationships.

runModel

This is the method that is responsible for initializing the simulators within the

model. As we have discussed above, this the way to start running a simulation.

This method is evoked by the object SimulationPlatform when we choose to

simulate a model.

4.4 Modelling Object Oriented Message Passing within DEVS

4.4.1 The DEVS-Scheme Implementation from a Critical Perspective

In Chapter 3 we discussed extensively the nature of OO design, setting as one of our

research tasks to explore how OO can contribute to industry modelling and simulation.

Taking a critical view in the design of a DEVS-Scheme like simulation environment, we

can identify a certain incompatibility with the classic OO view.

Chapter 4\ The Smalltalk Implementation of OO/DEVS 87

This incompatibility, is driven by the design of the interface of a DEVS model. This

interface can be viewed in two dimensions: (a) as an interface between the model and its

simulator, and (b) as an interface between the model and its external model world. In

dimension (a) the elements that constitute the interface are the internal transition, external

transition and output functions. The simulator of an object has only knowledge of these

three functions and manipulates them in accordance to the type of event is handling, at

each point in time. In dimension (b) the components of the interface are the input and

output ports, that are specified for each model (atomic or coupled). Within the external

transition and output functions, the modeller has to specify port-to-method mappings.

These mappings should be explicitly constrained by the state set.

From an OO design viewpoint, this modelling approach: (i) perplexes the issue of the

‘software’ interface of an object (which should only be its publicly accessed methods),

as it introduces two more semantically different types of interface; (ii) confuses the

visibility of the ’user’ interface of the object, as the definition of what the object does is

specified procedurally within the three DEVS functions, and not by its methods; finally,

(iii) the concept of the port is redundant, as it coincides with the concept of the method

selector in OO environments. As a result a number of fundamental drawbacks can be

identified in the DEVS-Scheme like simulation environment:

(a) The reusability of a model is limited, since is sacrificed in order to follow

faithfully the semantics of the formalism. As far as the object’s functionality is

practically defined in the external transition, internal transition and output

functions, it is Quite difficult to use inheritance (one of the most powerful

concepts of OO) as the means of producing subclasses of the model. The

modeller has to practically rewrite the above functions each time a subclass of a

model is defined. It should be noted that this is a drawback that has been

identified by Zeigler (1990) who has addressed the problem by producing a

subclass of AtomicModel called ForwardModel. A Forward Model is a rule based

model that exploits the forward chaining paradigm to evaluate its rules. As it is

pointed out: "The ability to write models using rules provides an additional level

of decomposition or granularity to model specification. Until now the smallest

Chapter 4-, The Smalltalk Implementation of OO/DEVS 88

meaningful chunks of a model were the basic functions: internal transition,

external transition and output function. Atomic Models could share these

functions but they could not share smaller parts of them. Rules as more granular

knowledge units, make it possible to “mix and match” specifications among

models. [Zeigler (1990), p. 210, the emphasis is ours]. Our proposition is that

a redesign of a DEVS model, that exploits the characteristics of 00 will alleviate

this problem, as the smallest meaningful chunks of a model (object) will be its

methods. Rule based models could then be build, but with the objective to exploit

the intrinsic characteristics of the rule based paradigm.

(b) The property of polymorhism is violated due to the distinctions between coupled

and atomic models, as the modeller ends up using two ‘model’ object, which

however have a completely different interface, and different factionality through

out the model building process. Within the DEVS theory every coupled model

is a DEVS model (closure under coupling property). If this concept is interpreted

in a true OO fashion, it can be implemented in such a way that the modeller can

use a coupled model in exactly the same way that uses an atomic model, and vise

versa.

(c) The naturalness of OO is compromised, as the interface of the object is not any

more its method, but the internal transition, external transition, and output

functions. This makes modelling less transparent, as the user has to examine the

code written in these functions to understand the behaviour of the model (object).

Nevertheless, a pure object oriented design would identify the main actions

(responsibilities) of each object and model them through methods and message

passing [see Wirfs-Brock & Wilkerson (1989); Gibson (1990)]. Moreover, the

main attraction of such an approach is that a DEVS-model would be more

transparent, as its main functions would be identifiable by looking at the interface

and not the specifications of the three fore-mentioned functions.

It is the objectives set by these drawbacks that have mainly driven our second (and final)

Smalltalk implementation, where in contrast to earlier implementations, a fundamental

Chapter 4. The Smalltalk Implementation of 00/DEVS

objective was to exploit fully the naturalness and

modularity provided by 00. The main view that we

have taken, in satisfying our objectives, was to exploit

fully the message passing concept of OO.

As we mentioned above, the way that objects

communicate in object oriented environments is

message passing. Each object has a set of methods

that are made up of selectors and arguments. A

message expression describes a receiver, a selector Figure 2.: Aggregation in 00

and possibly some arguments. Every object can

request from another object to execute one of its methods through a message expression

[Goldberg (1983)]. However, using the message passing paradigm within a DEVS

implementation is not that straight-forward. While we would like objects to communicate

with each other, the communication should be performed through the coupling

mechanism. This restriction effectively means, that some objects should be able to invoke

only some methods of some other objects in a model.

The modelling question here is whether or not we can exploit directly the object oriented

view and remove the DEVS functions without loosing the DEVS functionality. In

addition, the fore-mentioned restriction posses the additional design issue of how to model

object oriented like message passing, at the coupled-model level (aggregation level).

4.4.2 Towards an Object Oriented DEVS Implementation

From now on by referring to ‘the implementation’ we imply our second OO/DEVS

implementation. References to our first DEVS-Scheme like implementation, will be

distinguished as the ‘first implementation .

In our OO/DEVS implementation we first tried to address the issue of using 00 type

message passing, skipping the three types of functions implicit in DEVS, as well as

Chapter 4\ The Smalltalk

RootCoOrdinator

Simulator

Figure 3: OO/DEVS Implementation Object Hierarchy Diagram

bypassing completely the concept of the port. This objective resulted into a design that

literally transfers the responsibilities of the internal transition, external transition and

output functions to the simulator of an atomic-model. It should be pointed out, that a

fundamental design consideration, in order to achieve this, is related to the way we

represent messages within the OO/DEVS environment. Our design decision was to model

messages as instances of the class SimulationMessage which is a subclass of class

Message of Smalltalk. As a result, a SimulationMessage can be represented by a

structure:

<receiver, selector, arguments, source, method, time>.

Variables selector, receiver and arguments are inherited from class Message. The variable

source contains a reference to the DEVS-model that is the sender of the message. The

variable method contains the name of the method that send the message. And finally,

time is a variable that contains the simulated time that a message was sent.

Chapter 4. The Smalltalk Implementation of 00/DEVS 91

4.4.3 The class Model

Figure 4.3. depicts the main objects of the OO/DEVS implementation. As can be seen

in figure 4.3. the top level object, in the hierarchy, is the object DevsEntity, this object

is identical to the DevsEntity object of the previous implementation (see section 4.3.3 for

details). Two subclasses stem from this object, subclass Model and subclass Processor.

Object Processor has two more subclasses Simulator and RootCoordinator.

Under this implementation, objects Model and Simulator represent the most important

object classes in the system. The advantage of providing a unified view of Model (by

retaining the functionality of atomic and coupled model at the same level) is that the

framework benefits by the property of being able to operate at any level using the same

set of constructs, and thus utilizing the concept of polymorphism. This view is also

consistent with the concept of aggregation, due to the fact that a coupled model is also

a model. The modeller should have the ability, to use the same operations at the model

and coupled model levels.

Class Model provides the constructs to specify new methods, influences between two

models (by specifying method-to-method relationships), and message structures for model

output. This is a class that can be either instantiated, in order to produce problem

specific models (objects), or used directly to represents model aggregates. Each instance

of Model also contains a messageList that accommodates a set of messages to be triggered

by the simulator, when a specific method of the Model has been triggered. As we will

discuss and demonstrate further on, the contents of the messageList are specified by the

modeller upon model specification in the initialization method.

Every instance of Model (or of a subclass of Model) is an object with some specific

functionality (for example a company that invests and retires production capacity), that

has a (possibly empty) list of children. The modeller is given the ability to specify which

methods of the subordinate models are methods of the aggregate model, and therefore

provide selected functionality (methods) of the sub-models at the aggregate model level.

This view of aggregation of DEVS models is compatible with the emerging view of

Chapter 4: The Smalltalk Implementation of OO/DEVS 92

aggregation in object orientation [see Graham (1993) for the layers concept in object

oriented design]. For example in figure 4.2. objects A and B represent DEVS-models,

where B has two methods that process input, and A has one method that process output.

Model C is an aggregate version of A and B that can respond to messages which have

the same receivers as the methods of A and B.

It should be pointed out that such a view does not violate the DEVS definition of either

the atomic or the coupled model. In the case of an atomic model (which will be an

instance of a subclass of Model) two disjoint sets of methods will correspond to the

external and internal transition functions, while their selectors will accommodate the X and

Y sets correspondingly. At the coupled model level, M, is an object corresponding to a

component DEVS-model, I; is a set of messages that the coupled model can respond to

(that would belong to the influencees of i, and finally will be the i-to-j output

translation and would be specified as method-to-method relationships in the form of

quadruples: <from_Model, from_Method, to_Model, to_method>. In what follows we

describe the main variables and methods of the class.

Object Model

Variables'. sigma, e, compositionTree, influenceDiagram, priorityList, parent,

processor, clock, position, monitoredVariables, selectors, messageList

Variables sigma and e are exactly the same as in the first implementation (see section

4.3.1). It should be noticed variable phase becomes redundant, as the phase that the

model is in, is represented by the imminent method (i.e. the next method of the object to

be triggered). Variable compositionTree contains pointers to the subordinate models of

the instance of Model. An instance of Model that has a nil compositionTree corresponds

to an AtomicModel of the first implementation, while an instance that contains entities,

corresponds to a CoupledModel of the first implementation. Variables influenceDiagram

and prioriryList are the same as the corresponding variables in object CoupledModel (see

section 4.3.3), the only difference is that in this implementation the influenceDiagram

contains object-to-object, method-to-method relationships, as specified in the previous

paragraph. Variables parent, processor, position, clock and monitoredVariables contain

ft

Chapter 4: The Smalltalk Implementation of OO/DEVS 93

references to the parent of the model, the processor attached to the model, the position of

the model on the screen, the current clock time, and a list of model variables to be

monitored through a simulation run, respectively. Variable selectors contains all the

selectors that the model can respond to. Finally, variable messageList contains a list of

messages, as have been specified above. This list of messages is visited as soon as a

method is performed, and specifies which methods, within the scope as well as outside the

scope of the model, should be triggered next.

Methods

Note: Methods that are followed by (interface) constitute the modelling interface of the

object and should be used in building OO/DEVS models. Methods that are followed by

(overload) can be redefined (overloaded) in the subclasses of Model. The rest of the

methods are private.

addAUSelectors

This method should be used in a composite model in order to add all the selectors

of its sub-models to its selector list. The result is that the model can understand

and respond to incoming messages that carry one of its selectors, (interface)

addSelectors: aModel

Adds all the selectors of a subordinate model aModel to the Model.(interface)

addSelector: aSymbol

Adds the selector aSymbol to the Model.(interface)

addMessage: aMessage
Adds a simulation message, aMessage, to the messageList. (interface)

buildCompositionTree: anArray
Builds the compositionTree data structure which contains references to the

subordinate models, as specified in the array anArray. (interface)

Chapter 4: The Smalltalk Implementation of OO/DEVS 94

canTranslate: aMessage

Checks whether of not the parent model can understand the method that triggered

the message aMessage, and if aMessage can be translated in the super-ordinate

model.

getlnfluencees: aMessage

Returns a list of the influences that can understand aMessage, if translated.

getReceivers: aMessage

Returns a list of models that understand the selector specified in aMessage.

initialize

This is one of the most important interface methods of Model. At the level of

Model it initialises the fore-mentioned instance variables (sets the clock to zero,

etc). It should always be overloaded in subclasses of Model. In the overloaded

method the statement: super initialize should be executed first. Then local

variables should be initialised and the message protocol should be specified. An

example of this process, will be given in the last section of this chapter, (interface)

(overload)

priorityList: anArray

This method should be used to specify the execution priority of the subordinate

models (when they exist). The array provides references to the models and the

indexation of the array provides the priority [priority of 1 (index 1) is greater that

priority of 2 (index 2)].

processor: aProcessor at: aPoint
Assigns a processor to the model (so that it can be simulated), and places the

model at the point aPoint on the screen, (interface)

respondsTo: aSymbol
Returns true if the model has as one of its selectors aSymbol, else returns false.

b

Chapter 4. The Smalltalk Implementation of OO/DEVS 95

select: aMessagel comparingTo: aMessage2

This is the DEVS select function. Selects the imminent message between two

messages, (overload)

setlnfluenceFrom: aSelectorl to: aModel withSelector: aSelector2

Sets an influence (variable influenceDiagram) from the instance of the class Model

to another instance: aModel, and from the method with selector aSelectorl to the

method with selector aSelector2 of aModel. (interface)

timeAdvance

This the DEVS time advance function, its functionality remain the same as in the

first implementation.

A number of additional private methods are also declared within the scope of the object.

However, their presentation does not provide any further understanding of the nature of

the object Model, and we do not therefore present them herein.

4.4.4 The Object Processor

Figure 4.3. depicts the object hierarchy of the OO/DEVS implementation. The simulation

capabilities of the framework are built in the object Processor and its subclasses: Simulator

and RootCoordinator. Object RootCoordinator has exactly the same specification as in the

first implementation and we do not therefore present it in this section. It should be noted

that no object coordinator exists, as in the first implementation. This steams from the

design decision to encapsulate the functionality of atomic and coupled models in the object

Model. Consequently, there is no need for two different types of processor to handle the

two types of models.

Variables parent, devsComponent, timeOfLastEvent, timeOfNextEvent

Variable Parent contains a reference to the parent processor, while variable

I

Chapter 4. The Smalltalk Implementation of OO/DEVS

devsComponent contains a reference to the DEVS model (an instance of class Model), that

is associated to the processor. Finally, variables timeOfLastEvent and timeOfNextEvent

contain the time that the simulator performed its last event and is scheduled to perform

its next event, respectively.

The methods of the processor are all private and are designed to manipulate the above

variables, as well as deal with the notion of infinity in time, that represents the notional

time that a passive object is scheduled to perform its next event.

4.4.5 The class Simulator

This class, along with class Model, represent the most important classes of the OO/DEVS

implementation. In the first implementation the interface between an atomic model and

its simulator was its external transition and output functions. The simulator was

dispatching information to the model (object) by triggering these functions. In the

OO/DEVS implementation, the simulation capabilities encapsulated in these functions,

have been transferred to the simulator of a Model (an instance of class Simulator). As in

the first implementation, and in the spirit of the concepts of the abstract simulator within

the DEVS theory, Simulator is a generic object, instances of which can be coupled to any

instances of class Model or its subclasses. In what follows we examine the functionality

of these methods, as well as the main variables of the object Simulator.

variables waitList, imminentMessage

Variable waitList is used in a similar manner to the waitList variable of the object

Coordinator of the first implementation. However, in contrast to the Coordinator one, it

does not include pairs of the type <model, time>, but instances of SimulationMessage.

As we have already discussed the fundamental difference between the two

implementations is that the final OO/DEVS implementation is based on the notion of the

SimulationMessage. Objects communicate by sending simulation messages to each other.

In that respect the simulators have to deal with these messages, distinguish their senders

I

Chapter 4. The Smalltalk Implementation of OO/DEVS 97

and receivers, calculate which message should be send at every point in time, and dispatch

the messages accordingly. As a result the concept of the imminentChild (see section

4.3.4), which was a reference to the imminent subordinate model of each model, has been

substituted by the imminentMessage. This is a reference to the message that should be

triggered first (naturally by the specification of the SimulationMessage this reference

includes a reference to the model that will perform the message).

methods

Note, all methods are private. The most important methods of object Simulator are:

initialize: aMessage

Triggers the initialize method of object Processor and initializes the

devsComponent of the Simulator instance, so that it will start its simulation life­

cycle by sending the message aMessage.

perform: aMessage

This is triggered when its DEVS-model is imminent, i.e. the message aMessage

should be triggered next in the scope of the devsModel linked to the simulator.

Perform carries out the following sequence: (i) Checks if the time reference in the

message aMessage is the same as the timeOfNextEvent. (ii) If that devsModel has

sub-models, perform removes the aMessage from the waitList and triggers the

perform message of the sub-models that can understand the aMessage. (iii) If the

devsModel has no children, perform triggers the imminent method, then (vi)

traverses the messageList to output all the messages linked to the triggered method,

and (v) changes the timeOfLastEvent to the time carried by the message aMessage,

and the timeOfNextEvent using the timeAdvance function of the devsComponent,

finally (vi) done is triggered. Notice that the expressive power provided by such

a view is equivalent to the atomic-model internal transition function, as discussed

in the DEVS-Scheme. This can be shown by scheduling a message to self at time

zero, this can produce the same effect as the sequence output function - internal

transition function, ie. change the state of the model after output.

Chapter 4\ The Smalltalk Implementation of OO/DEVS 98

input: aMessage

Is triggered to dispatch an incoming message to the associated DEVS-model. The

code within the input method: (i) checks that the time carried by aMessage is

between the timeOfLastEvent and the timeOfNextEvent. (ii) checks whether or not

the devsComponent of the Simulator has sub-components, if it has (iii) sends the

aMessage to the valid receiver sub-components, or (iv) if it has no

sub-components, lets its devsComponent perform the message aMessage, (v)

traverses the messageList of its devsComponent so that any relevant messages (as

a consequence of triggering a method of the devsComponent) will be send, and

(vi) changes the timeOfLastEvent and timeOfNextEvent (using the timeAdvance

function of its devsComponent). Finally, (vii) method done is triggered.

output: aMessage

Is triggered when its DEVS-Model sends an output message. An output message

can be either a message to other objects in the overall model, or a message to self.

In that way objects can schedule themselves to trigger one (or more) of their

methods in the future. The code within the output method carries out the

following: (i) checks whether or not the receiver of the message aMessage is the

devsComponent of the Simulator, if it is the aMessage it is placed in its waitList,

if it is not (ii) checks if its compositionTree is empty, if this is the case the output:

aMessage method of the parent Simulator is triggered, (iii) if the devsComponent

has sub-models, then output checks if any of these sub-models can receive

aMessage, if this is the case the aMessage is dispatched accordingly. Finally, (iv)

the aMessage is dispatched to the parent Simulator (if it can understand it and

translate it).

done
This method is triggered every time that one of the three latter methods is

triggered. Its main function is to traverse the waitList of the Simulator instance,

with aim of finding the imminent message and passing it to the parent Simulator.

All three methods handle and dispatch instances of class SimulationMessage. It should

Chapter 4: The Smalltalk Implementation of OO/DEVS 99

be pointed out that while in the first (DEVS-Scheme like) implementation, only coupled

models have wait lists that store messages of their subordinate models, in our

implementation every model has a wait list. As a result, an ‘atomic model’ object can

schedule itself to trigger more than one of its methods in the future, and can also remove

messages from its waitList as it has direct access to it. In addition, a, and as a

consequence the ta function (time-advance), are specified by the time of the imminent

message.

Finally, it should be noted that classes SimulationPlatform and DevsModel remain (in

terms of interface) as they are in our first implementation (see sections 4.3.5, 4.3.6

respectively).

4.4.6 Realisation of the DEVS fundamentals within OO/DEVS

Even-though we have criticised the DEVS-Scheme like implementation, particularly from

an 00 design perspective, it should be noted that OO/DEVS follows closely the

fundamental concepts of the DEVS formalism. Indeed there is a one-to-one

correspondence between the OO/DEVS constructs and the mathematical representation of

the formalism, as follows:

Ports', these are the publicly assessed methods of a Model subclass that take

arguments, specifically:

X. the set of symbols that represent arguments

Y: the set of symbols that represent variables that are passed as arguments

in the messageList (to be passed through instances of simulationMessage

to the rest of the object world).

States', the method selectors of the object that have been placed in its method list.

Total State Set: the Q set - these are the method selectors of the object that exist

in instances of SimulationMessage in its waitList.

6. : the state-to-state transition, which is specified in the messageList

1

Chapter 4. The Smalltalk Implementation of OO/DEVS 100

this a mapping from the (total state set Q) x (input set X) to (the state set S),

and is also specified in the messageList.

X: a disjoint set of object’s methods

4.5 A Simple Processor Example

At this point we will borrow a case-example from Zeigler (1990, Chapter 4) to

Figure 5:Message Passing between EF & P

demonstrate the functionality of the

framework. Lets assume a rather

simplistic model of a computer

architecture, which consists of a

processor (P) coupled together with an

experimental frame. The experimental

frame (EF) consists of a job generator

object, and an object that gathers

statistics. In modelling under OO/DEVS

we should create three subclasses of

class Model i.e. classes

ComputerProcessor, JobGenerator and

Transducer. (EF) could be modelled as

an instance of Model, describing an aggregate model similar to the one in figure 4.2 with

model (A) representing the statistics gathering object with methods recordGeneratedJob:

aJobName and recordProcessedJob: aJobName, and model (B) representing the job

generator with a method generateJob. The aggregation diagram one level up is depicted

in figure 4.5., where object P represents the job processor with methods receiveJob:

aJobName and processjob: aJobName. Figure 4.7. depicts the system decomposition

diagram for the overall model.

Chapter 4\ The Smalltalk Implementation of OO/DEVS 1

dolt
¡cl c2 c3 c4 c5 gen trans proc ef efg anArray 1]
"--------------Generator-------------- "
gen := JobGenerator new initialize; name:’Generator’.

"--------------Processor------------- ”
proc := ComputerProcessor new initialize; name:’Job Processor’;

setlnfluenceFrom: #receiveJob: to: (proc) withSelector:
#processJob:.

"--------------Transducer------------- "
trans := Transducer new initialize; name: ’Transducer’.

"--------------Experimental Frame------------- "
gen setlnfluenceFrom: #generateJob to: (trans) withSelector: #receiveJob:.

anArray 1 := Array new:2.
anArray 1 at: 1 put: gen;

at: 2 put: trans.
ef := TModel new initialize; name: ’ef;

setlnfluenceFrom: #generateJob to: (proc) withSelector: #receiveJob:;
buildCompositionTree: anArray 1;
addSelectors: gen ;
addSelectors: trans ;
priorityList: anArray 1.

network at: ef put: anArray 1.

proc setlnfluenceFrom: #processJob: to: (ef) withSelector: #recordJob:.

"------------------------Processor Model as a whole -----------------------"
anArrayl := Array new:2.
anArray I at: 2 put: ef;

at: 1 put: proc.

efg := TModel new initialize; name;’Test Model ;
buildCompositionTree: anArrayl;
priorityList: anArrayl.

network at: efg put: anArrayl.

"Assign simulators to the above models"
si := TSimulator new assign: gen at: (300@250); parent: c2.
s2 := TSimulator new assign: trans at: (400@250); parent: c2.
s3 := TSimulator new assign: proc at: (100@150); parent: cl.
c2 := TSimulator new assign: ef at: (35O@15O); parent: cl.
cl := TSimulator new assign: efg at: (200@20).
root := TRootCoOrdinator new attach: cl.
cl parent: root.

Figure 6: The topology object for the simple processor example - Method dolt

Chapter 4. The Smalltalk Implementation of OO/DEVS
102

Figure 7:
Processor Model - System Decomposition Diagram

As we have discussed earlier on

(section 4.3.6), as soon as the

model objects have been defined,

one needs to define a subclass of

the DevsModel class, in order to

specify the instances of the model

objects, as well as their

topological relationships

(influences). This subclass of

DevsModel has two methods: dolt

and runModel. The former

method, regarding the example in

hand, is depicted in Figure 6,

while the latter specifies the initial

messages to be send to the model objects, and is discussed further on, as we describe the

simulation cycle. As can be observed in Figure 6, the modeller has first to specify the

instances of the model objects. In this case we have four instances of the class Model

and its subclasses, which are refered by the variables proc (the instance of the

ComputerProcessor class), gen (the instance of the JobGenerator class), trans (the instance

of the Transducer class - the statistics gatherin object), anf finally ef (a direct instance of

class Model that represent the aggegrate model of (A) and (B)). As soon as instances

are specified, influences between them are established with statements like:

gen setlnfluenceFrom: #generateJob to: (trans) withSelector: tireceiveJob:.

which sets an influnce from the JobGenerator to the Transducer. Finally, the last sets of

statements assign simulators to the instances of models that have been allready created.

As soon as we couple models to instances of Simulator, the simulation starts with each

one of the Models initializing their wait list of messages and selecting their imminent

message. This will result to the jobGenerator sending the message: <self, generateJob,

nil, self, generateJob, 0.0 > at time 0.0, while the rest of the objects send messages to

self at time infinity (this indicates that they will start at a passive state).

Chapter 4. The Smalltalk Implementation of OO/DEVS 103

Model variableSubclass:
#ComputerProcessor

instance VariableNames:
’currentJob ’

initialize
| aMessage |

super initialize.

processTime := 20. "time units"
currentjob := Array new: 1.
currentjob at: 1 put: 0.

aMessage := SimulationMessage new
source: [self];

method: [#processJob:] ;
receiver: [nil];
time: [clock];

selector: [#recordJob:];
arguments: [currentjob] .

self addMessage: (aMessage).

aMessage := SimulationMessage new
source: [self];

method: [#receiveJob:];
receiver: [self];

time: [clock];
selector: [#processJob:];
arguments: [currentjob].

self addMessage: (aMessage).

processjob: aJobName
"has no code

- only outputs a message from the
message list to the transducer”

receiveJob: aJobName
clock := clock + processTime.
currentJob at: 1 put: (aJobName) .

Model variableSubclass: #JobGenerator
instanceVariableNames:

interArrivalTime jobName ’

initialize
"initialize the special state variables"
; aMessage J

interArrivalTime := 10.
jobName := (Array new: 1).
jobName at: 1 put: 0.
super initialize.
aMessage := SimulationMessage new

arguments: [nil];
source: [self yourself];

method: [#generateJob];
receiver: [self yourself];

time: [clock + interArrivalTime];
selector: [#generateJob].

self addMessage: (aMessage).

aMessage ~ SimulationMessage new
source: [self];

method: [wgenerateJob];
receiver: [nil];

time: [clock];
selector: [#receiveJob:];

arguments: [jobName] .
self addMessage: (aMessage).

generateJob

jobName at: 1 put: ((jobName at: 1)+ 1).
clock := clock + interArrivalTime.

Figure 9: Methods initialize and generateJobFigure 8: 6
Methods initialize, processjob and of JobGenerator
receiveJob
- object JobProcessor

Chapter 4. The Smalltalk Implementation of OO/DEVS 104

As the initialization proceeds the aggregate models initialize themselves and a series of

perform methods are triggered at the simulators of the imminent models. Finally the

perform method, of the simulator of the job generator (B), is triggered which in turn calls

the generateJob method. At completion the messageList is scanned by the simulator of

(B), and the messages associated to generateJob are sent through the Simulators’ output

method. In this case two messages are send: (i) the message <nil, receiveJob, aJobName,

self, generateJob, 0.0>, and (b) a message to self so that the generateJob method in (B)

will be triggered after some elapsed time.

The first message goes to the EF aggregate model and dispatched to all subordinate and

super-ordinate models that can translate its selector. This results to the triggering of the

input: aMessage method of the Simulator of (EF) which sends the method accordingly to

the overall model and the statistics gathering object (A). The overall model consults the

list of selectors that can respond to and sends the message to the processor object (P). As

soon as (P) receives the message, it logs the job name. Finally, its simulator visits its

messageList and outputs a message to self triggering its processjob: aJobName method

and putting the message in its wait list.

As soon as all the messages have been dispatched, done methods are triggered at each

simulator and a new imminent message is calculated, for all of them. As a result an

overall imminent message is produced, and the simulation cycle starts again. Figures 8

& 9, contain the Smalltalk code corresponding to the objects ComputerProcessor (P) and

JobGenerator (A), respectively .

4.6 Discussion

Overall modelling under the Object Oriented/DEVS framework, and the associated

Smalltalk implementation, appears to be able to address at a sufficient level the questions

that we have set at the beginning of Chapter 3, by providing.

Entity based Modelling: encapsulation and message passing allow the modeller to

Chapter 4. The Smalltalk Implementation of OO/DEVS 10 5

think and model the industry in terms of the main players, their strategies and the

way they interact. Each player can be viewed as an object with specific attributes

and methods that represent decision rules. The OO/DEVS paradigm allows this

natural type of thinking to be directly mapped into a representation that can then

be simulated, in a way that the cognitive leap between model and real system can

be sufficiently minimised, especially in comparison to the System Dynamics core

technology. This is due to the fact that it is a technology that addresses what the

entities are in the real system and not the opposite.

Specialisation/Generalisation: through inheritance, objects that share common

attributes and behaviour can be modelled in generic classes and organised in a

tree-like structure. For example, all companies have balance sheets and a share

price. So they can be members of the same class ‘company’.

• Time representation: as we have already discussed DEVS represents an attractive

and concise way to represents time as events within the system and furthermore

to bound decision rules (that are object methods) to time.

• Aggregation/Disaggregation: the ability of the DEVS formalism, to construct

coupled models from a set of atomic models, allows the modeller to develop

detailed decision support systems by modelling the required level of detail in

atomic models. At the same time a strategic ‘view from above’ can be maintained

by monitoring behaviour at the coupled model level, at different aggregation

levels. The advantages of aggregation will become evident in Chapters 6 and 7,

where elaborate OO/DEVS models are discussed.

• Separation of models and simulation engine: this is achieved through the ability

to have generic simulator and co-ordinator modules that are attached to models.

This is particularly attractive because it provides the basis for treating models as

knowledge and creating model-bases. The advantage of this can be even

demonstrated in the above small example, where our knowledge of the processors

functionality (modelled in the object processor), can be stored separately in a data­

base.
Modularity, reusability, extensibility: due to the separation of models and

simulation engine, objects can be stored in a model base. In addition, inheritance

and encapsulation provide the means of extending, modifying and reusing old

Chapter 4. The Smalltalk Implementation of 00/DEVS 106

model components. This ability has the additional attraction, that we do not have

to presume what is relevant in the initial stages of modelling. In addition, we do

not have to model, at the initial stages of model building, the way that

organizations interact, while such influences can be easily remodelled through the

model s life cycle. Overall we can achieve high modularity and reusability of the

model. For example, in a model of the Electricity Industry, if a model of a

customer is created, further special types of customers can be created by extending

the functionality of the existing one. The new customer can be combined with

models of generators, distribution companies and other customers and a

completely new simulation model can be created.

In addition, the OO/DEVS framework, at its current implementation stage posses more

open research questions. These questions can be summarised as:

• Graphical Model Specification: The approach lends itself to extensive use of

graphical model specification, manipulation and synthesis. As a result, we have

devised three types of diagram, the class hierarchy diagram, the system

decomposition diagram and the level diagram (the semantics of which and their

use will be discussed extensively in the next three chapters). The issues of

implementing these tools within the OO/DEVS framework, as well as the

naturalness of these diagramming tools will be discussed in the next chapter.

• The DEVS Model Specification within the Smalltalk Implementation: OOiDENS

has been implemented in Smalltalk/V for Windows [Digitalk (1991)]. Apart from

the excellent facilities for user interface development that Smalltalk provides, the

Windows version would give the modeller access to code developed to other,

procedural, languages. As a result, the issue of modelling the decision rules of

the players within a model, through previously developed algorithms or even an

alternative modelling environment like a spreadsheet or an expert system shell,

should be investigated. The foundations for the exploration of these issues are set

in the next chapters.

Chapter 4. The Smalltalk Implementation of OO/DEVS
107

4.7 Summary

In this chapter we have presented a Smalltalk implementation of the DEVS formalism,

called OO/DEVS. We started off by discussing previous DEVS implementation views,

and by presenting a DEVS-Scheme like implementation in Smalltalk, that we produced

and used as a vehicle to assess the practical compatibility between the DEVS and 00

modelling views. We then presented a critique of the previous DEVS implementation

views, from an Object Oriented perspective. This critique has been based on three points

reagarding DEVS-Scheme like model building, within an OO environmnent. These points

have been summarised as:

• The reusability of a model is limited

• The concept of polymorphism is violated

• The naturalness of OO is compromised

We then embarked on the task of addressing the reserach questions associated to these

drawbacks, through an implementation view that exploits fully the modelling

characteristics of object orientation. The result was to produce an overall OO/DEVS

simulation framework.

The advantages of the final OO/DEVS implementation, mainly in terms of the above

drawbacks as they have been discussed in our critique in section 4.4.1, have been partially

demonstrated through the example in section 4.5. Finally, in the previous section we

discussed how OO/DEVS and its implementation address the research issues discussed at

the end of Chapter 2 and the beginning of Chapter 3. Overall, what we have achieved

in this chapter is to show that the OO/DEVS ideas can be implemented and used at a

practical level.

However, in order to perform a comparable evaluation of OO/DEVS versus System

Dynamics platforms like iThink, one has to address a number of research questions related

to graphical model building. It should be pointed out that as a significant part of the

value of SD is seen at the front end, OO/DEVS needs a user interface of similar

friendliness, in order to make any comparative studies of practical use between the two

frameworks. As a result in the next chapter, we embark on the task of addressing

Chapter 4: The Smalltalk Implementation of OO/DEVS 108

graphical model bulding issues within OO/DEVS, and discuss how a Graphical User

Interface has been implemented within the framework.

Chapter 5: The OO/DEVS GUI 109

Chapter 5

The OO/DEVS GUI

Contents:

5.1 Introduction

5.2 Graphical Support for Model Building
5.3 The GUI Smalltalk Implementation

5.4 Decision Rule Modelling

5.5 Using the OO/DEVS GUI: The Beer Game Example
5.6 Conclusions

Chapter 5: The OO/DEVS GUI no

5.1 Introduction

In chapter 4, we discussed the structure of OO/DEVS models and how models can be built

by writing Smalltalk code (a) within the scope of the objects that represent the model

components, in order to specify object behaviour, as well as (b) by developing a topology

object, in order to specify the aggregation and association relationships between model

components, using the constructs provided by the OO/DEVS shell. Nevertheless, as one

of our research objectives is to address the issue of natural model building, the question

of visual interactive modelling has to be addressed within the OO/DEVS framework

In this chapter we discuss how the fundamental OO/DEVS concepts have been used in the

development of a graphical user interface (GUI), which aims to take much of the

programming effort away from the modeller. Overall, the GUI caters for the graphical

specification of model components, the assembly of such components into aggregate

models and the creation of influences between them, by providing an interface which

permits models to be built graphically, with little or no knowledge of programming

syntax. A number of ‘dialogue boxes’ facilitate behaviour specification within the objects,

influence specification, variable monitoring and simulation runs. Finally, in addition to

the fundamental ability to specify object behaviour by writing Smalltalk code, decision

rules can be also specified within the GUI, by exploiting the Windows DDE interface,

within a spreadsheet environment.

We initiate the discussion by presenting the current views on graphical model building

within the SD community as well as the broader software engineering perspective. We

then address the question of supporting visually the fundamental OO/DEVS concepts, and

we examine the basic functionality of the GUI and its supporting Smalltalk classes.

Finally, we use the ‘Beer Game’ [for a description of the game see Sterman (1989)] as

an example, for demonstrating the use of the OO/DEVS GUI.

Chapter 5: The OO/DEVS GUI
------------------------------------ ------—____________ _ __________________ ______________ 111

5.2 Graphical Support for Model Building

The need for model visualization, and the advantages that represents over textual

modelling languages has been stressed by a number of researchers and computer

practitioners [for example see Pracht (1990), Frangini (1991)]. One of the biggest

advantages of GUI s is that: ‘GUI’s help people stretch their computer expertise and

extend their reach to draw in resources more quickly and easily than would otherwise be

possible’ [Seymour (1991)].

Visual software has proved these advantages in a number of simulation areas, with

discrete event simulation the primary field for the applications of model visualization [for

example see Ulgen et al (1989), Zhang & Mourant (1990), Mourant (1992)]. Within the

SD modelling community, iThink [Richmond et al (1990)] (and its predecessor Stella) is

the most distinct example of ’visual’ software. It should be stressed that even before the

arrival of Stella and iThink, with their revolutionary GUI’s, the use of graphical tools

within the SD community has been considered almost synonymous with model building,

given that each model is usually represented through an influence diagram, a rate and flow

diagram, or both.

Nevertheless, in SD the transition from influence diagrams to stock-flow ones is often

problematic, since the two representations are quite different, and even when intermediate

graphical tools are used there is no one-to-one relationship between them and the software

constructs. In addition, stock-flow diagrams become difficult for managers to understand

as problems get large (see for example figure 9 in Chapter 6, which shows a section of

a systems dynamics investment model in the Electricity Industry in the UK, as has been

described in [Bunn & Larsen (1992)]). As a result, a number of graphical tools have

emerged within the SD community, with the objective of dealing with the fore-mentioned

issue. For instance [Morecroft (1982)] has suggested the use of the Subsystem Diagram

for showing the major organizational divisions in the social or industrial system under

modelling. In a similar fashion, many SD modellers use the concept of the ‘sector’, to

model in an aggregate fashion distinct parts a system, and the way they influence each

other. For example, see [Mashayekhi (1992) fig.l] for a ‘subsector diagram’ of a solid

Chapter 5: The OO/DEVS GUI
112

Object
TreeDrawer

ViewManager
---- .Tree Diagram

Level Diagram L-------
Class Hierarchy Browser

HierarchyDiagram

DecompositionDiagram

DEVSHierarchyBrowser
DDEDecisionRuleWinow
MethodBrowser

OoDevsGui

WindowDialog

(I Cl ass Metho ds

InitilizationBrowser

MessagesDialog

ModelBrowseDialog

InitiaMessagesDialog

InstanceMessagesDialog

PrioritiesBrowser

SelectorDialog

[I NewMessagelnstanceDialog

j I MessagesPrioritiesBrowser

I ModelPrioritiesBrowser

Figure 1: The OO/DEVS GUI Classes

waste management sector. Semantically richer versions of sector diagrams, that depict

influences between sectors and the main variables in the system, are also widely used [see

Homer (1992) fig. 6].

The existence and use of all these graphical tools, demonstrate the recognition by the SD

community that aggregation relationship modelling is an important part of model

conceptualization. Nevertheless, this part of modelling has only recently been supported

on the software front by ¿Think, through the provision of sector frames . These however,

can not be used in a recursive fashion to model sectors within sectors, and do not

therefore correspond directly to the DEVS coupled models, that provide the constructs for

hierarchical model building within the OO/DEVS technology.

Within the broader modelling community, it is the case that most modelling methodologies

usually provide a set of diagramming tools that facilitate model building and

understanding. Structured Design Approaches, for example, use Structure Diagrams and

Data Flow graphs [eg see Birrel & Quid (1985) for a discuss,on of the major techniques

Chapter 5: The OO/DEVS GUI 1

and notations in the area]. Within the Object Oriented Analysis & Design world, a typical

set of tools is the one developed by [Booch (1981, 1986)]. The Booch method has started

as an ADA language targeting design technique, and therefore it provided initially an

object based view which has evolved to object oriented. The method incorporates

notations such as the Class Diagram and Class Specification, icons that can represent a

number of relationships between classes, state transition diagrams, and object diagrams.

In general, the research area of graphical notation for object oriented analysis and design

is particularly active and good examples of methods under development can be found in

the SOMA method [Graham (1993)] as well as in [Edwards & Henderson-Sellers

(1993)].

Within the DEVS research area, Zeigler (1980, 1990), has developed, as part of the DEVS

theory toolbox, a graphical system structuring tool called System Entity Structure. This

tool consists of a set of axioms and rules that can be used to construct, for any given

system, a diagram that incorporates decomposition, taxonomic and coupling relationships1.

The System Entity Structure, is used within DEVS-Scheme for hierarchical model

specification and model reuse.

, ; , U «11«! aoareeation generalization and association relationships respectively.These correspond to what we have called, aggrega , g

The research question of developing graphical model building facilities within OO/DEVS,

was one that we also had to address as soon as we started to use the framework for model

building. Trying to model under OO/DEVS, we discovered that a set of diagramming

tools, could help us in understanding the structure of the problem, and more importantly

share this understanding with decision-makers and modellers within the industry under

modelling. The research goal of OO/DEVS GUI is to allow the modeller to form clear

mental images of the model’s structure and function. Nevertheless, the success of a GUI

is very much based on the model structuring tools that it provides. In this respect the

intrinsic characteristics OO/DEVS provide the basis for a semantically rich model

visualization platform which can fulfil the above goal.

The modeller, and indeed the user, can build and view a OO/DEVS model through three

Chapter 5: The OO/DEVS GUI

types of diagram, wh,ch depict the specialization, aggregation and assentation relationshtps

within the model. These diagrams, are represented within corresponding windows in the

GUI:

(i) the Class Hierarchy Diagram (see figure 2), which is the equivalent to the class

hierarchy diagram of an OO language, but for the model hierarchy within

OO/DEVS. This diagram depicts generalization/specialization relationships among

the model components (objects), which can be used to build an OO/DEVS model.

These objects are subclasses of TModel which is the object that carries the

essential functionality for a model to be simulated. The subclasses of TModel

contain methods that represent decision rules that will be utilised during a

simulation run. The Class Hierarchy Diagram is particularly useful when

inheritance is used heavily, and the modeller wishes to track the ancestors of a

specific model-object, their attributes and methods.

(ii) the Model Decomposition Diagram (see figure 7 for the Beer Game in 5.5.5)

which provides a platform for model conceptualization, as it allows the user to

view and (re)structure the model at different levels of detail. Model building takes

place within the Model Decomposition Diagram window, as the user picks with

the mouse model components from the Class Hierarchy Diagram and pastes them

on existing model components within the Model Decomposition Diagram. The

user has the ability not only to paste the newly selected models but to cut models

previously added to the decomposition, and consequently paste them to other

models. This quality of the interface is a direct consequence of the underlying

modelling paradigm, and can be used as a powerful tool for experimentation with

different model structures.

(iii) the Level Diagram (see figure 10 for the Beer Game) represents graphically

association relationships within a model. It provides a view of the decomposition

diagram, from the top, allowing the user, to zoom in and out of model aggregates,

as well as to create and view influences between different sub-models as he/she

dissects the Model Decomposition Diagram.

Chapter 5: The OO/DEVS GUI 1

It should be pointed out that we view the OO/DEVS GUI in terms of visual layers. The

top layer is eomposed of the Model Hierarchy Diagram and the Decomposttton Diagram.

The second layer is composed by the set of Level Diagrams that correspond to any given

Decomposition Diagram, while there is a third layer that is comprised by a set of dialogue

boxes that facilitate influence modelling and message sequencing.

5.3 The GUI Smalltalk Implementation

In Chapter 4.2 we have argued for the use of Smalltalk as the implementation platform

for OO/DEVS, claiming that one of its advantages is its graphical user interface. Given

that the OO/DEVS GUI has been developed on top of the OO/DEVS modelling and

simulation engine in Smalltalk/V for Windows. In designing the GUI, and in order to

address the research issues discussed earlier in this chapter, a number of design objectives

was set, these objectives primarily are:

• The use of distinct windows for the representation of the three fore-mentioned

diagram types.

• Ease of transition among the different diagramming representations of a model.

• The development of menu driven tools, and the use of context specific menus in

particular.

• Increased level of ‘visual’ programming regarding model behaviour.

• The ability to hide completely the simulation mechanism from the user.

The OO/DEVS GUI is based on a number of classes, and their subclasses, as they are

depicted in figure 1. The most important GUI class is the TreeDiagram, an abstract class

that provides the functionality for drawing hierarchical tree structures. This is a class that

provides the generic functionality for two subclasses: DecompositionDiagram and

HierarchyDiagram. These two classes cater respectively, for the aggregation and

generalization relationship modelling of the model components.

The HierarchyDiagram class provides the functionality specific to the Model Hierarchy

Chapter 5: The OO/DEVS GUI

Window. Within this Window, the user may:

Open a new decomposition diagram

Add or remove model components (objects), i.e. create or delete subclasses of

TModel

Browse the methods of a model (object), add or change its decision rules

(methods) and instance or class variables

Create and name uniquely, new instances of a model class that can be used as

components for the construction of a larger OO/DEVS model.

Specify class message protocols (i.e. as we have described in Chapter 4, the

methods that a model component may evoke within a

simulation run).

LjTModel

----- QSMCustomer

-----^BMSupplier

----- [^Brewery

----- HJ Company

---------------Customer

Model Components (instances) may be passed into the

Decomposition Diagram Window as they are created.

The Decomposition Diagram class, provides a number of

graphical tools that remove completely from the user the

need to create the topology object that we presented in

Chapter 4. Overall the Decomposition Diagram class

provides access to the second and the third layers of the

user interface:

• Allows the model components to be aggregated

by cutting and pasting the tree nodes
Figure 2. Class Hierarchy Diagram.

-?
p~j Consumer

------- [- I Supplier

Generator
____ QjNPPG

Generator/1

DDEModel ____

ECt Add Subclasses...
Remove Class
File Out...
File Out All...

Instances... ¡rotor

Methods...

Message Protocol...
*1 Market

Facilitates access to the third layer of the GUI in the form of a dialogue for model

sequencing. This dialogue has been implemented through the class

PrioritiesBrowser and its subclasses, and corresponds to the graphical

implementation of the DEVS SELECT function for tie-breaking within a

simulation run (see Chapters 3&4 for details about the DEVS SELECT function).

Provides access to the second layer of the GUI i.e. the level diagrams that

Chapter 5: The OO/DEVS GUI
117

correspond to aggregate models.

Supports facilities for storage and retrieval of the current OO/DEVS model, by

utilizing the Smalltalk Object Filer.

Provides tools for model simulation and simulation time settings.

As we have already pointed out, one of the goals of the GUI is to hide completely the

simulation mechanism from the user. As we have indicted in Chapter 4, the objects

responsible for the simulation process (i.e. Processor and its subclasses) as well as their

public functionality, have to be known to the user. This is necessary, due to the fact that

models have to be coupled to simulators, within the scope of the topology object, so that

a simulation run can be initiated. Class DecompositionDiagram removes the need for such

an explicit coupling, due to the fact that models are now coupled to simulators

automatically prior to a simulation run. In that respect, the OO/DEVS GUI promotes

further the fundamental DEVS property of distinction between model and simulator, by

hiding completely the simulators and their functionality from the user, who is now only

aware of the model and its structure.

The second layer of the OO/DEVS GUI is supported through the class LevelDiagram,

which provides the graphical tools for dissecting the Decomposition Diagram at any given

level. The class provides the following facilities:

• Permits links to be created and removed between the components of aggregate

models by giving access to the third layer of the GUI, in order to specify the

message protocol between two models (objects). These links are displayed

graphically as lines between the object entities on the screen, and represent

relationships of the type <modelFrom, methodFrom, modelTo, methodTo> between

the models within a level diagram. The presence of a link denotes the existence

of a message protocol between two model objects.

• Gives access to the message sequencing facility (see next paragraph).

Allows for initialization of models (objects), i.e. the modeller can set a model so

that it performs a number of its methods at the beginning of the simulation.

• Provides for instance and class browsing.

Chapter 5: The OO/DEVS GUI
-- -- -----------------------------------118
• Supports variable monitoring.

It should be stressed that a common characteristic of the window panes, of each of the

fore-mentioned three objects, is the provision of context specific menus. As a result,

when the user clicks the right mouse button on the iconic representation of the model

components receives a specific pop-up menu. Similarly the menu differs when the mouse

is placed within the general window pane area. This feature serves the objective of a

purely menu driven interface, facilitating easy and natural access to every model

component.

The third layer of the GUI can be accessed in the form of a set of Message protocol

dialogues that facilitate:

(i) message specification, addition, deletion and editing, and

(ii) message sequencing, which provides a graphical way of specifying the sequence that

the messages in the messageList will be triggered. This sequence was expressed explicitly

in the non-GUI implementation by the order of messages in the method initialize (for

example see figures 4.6 & 4.7 in Chapter 4).

These dialogues and their functionality have been implemented through the classes

MessagesDialog and its subclasses and MessagePrioritiesBrowser, respectively.

The definition of the message passing protocol between OO/DEVS models, is facilitated

at two levels within the GUI environment. The first one is within the Model Hierarchy

Diagram. At this level, the modeller can define, for a specific model class, that any of

its methods will evoke any other of its methods, at a specific clock time. In addition, any

method of the class may in turn evoke methods of any other object which is a subclass

of TModel. Nevertheless, even though the modeller can specify the name of the method

to be evoked, he/she can not specify the actual object that owns this method. This

approach enhances model reusability as models (and their subclasses, as the message

protocol is inherited in an OO fashion) know how they may behave in a simulation run,

but they do not know yet which are the other models within an overall model space.

The Level Diagram represents the second entry point into the third layer of the GUI. At

Chapter 5: The OO/DEVS GUI
-- ----------------- 119
this point the modeller can specify assorti™------------------- ,

j lation relationships between objects by defining
the message protocol between two instances The mnaoii .Eunices. ine modeller can use the class message
protocol, while maintains the ability to sneeifv >y peciry new messages in the message protocol of
the instance. The use of the class message protocol can speed up model development

significantly, especially in models that contain many instances of the same class. This

ability is provided through the Message Specification dialoque (see figure 11 for the

outlay of the corresponding dialogue box) where the modeller can automatically select the

messages that contain the methods of the influencée object to be entered into the instance

messageList.

Figure 3: Spreadsheet Decision Rule Specification Dialogue

Chapter 5: The OO/DEVS GUI 20

5.4 Decision Rule Modelling

In terms of decision rule modelling, our objective is to provide the modeller with a

number of tools that can be used in accordance to the specific problem in hand. Within

the current OO/DEVS implementation, two ways of decision rule modelling are supported.

The first one is to write Smalltalk code, while the second is to link an object method to

a spreadsheet, through the Windows DDE interface. This requires the modeller to specify

a number of input and a number of output cells within the client spreadsheet, which

provide the interface to the OO/DEVS object. Given the definition of the interface, which

is facilitated by a specific dialogue box (see figure 3), the modeller can use

straightforward spreadsheet modelling in specifying the required decision rules. In that

way a decision rule is viewed as an input/output relationship and the transformation

process can take place in a spreadsheet environment. Classes MethodBrowser and

DDEDecisionRule, provide the facilities for Smalltalk code specification and spreadsheet

decision rule specification, correspondingly. In addition, class DDESpreadsheetLink (a

subclass of class DDEClient) provide the specific functionality for a spreadsheet as a DDE

client.

The advantage of this approach lies on the fact that it utilises the experience of most

modellers in using spreadsheets, while at the same time provides a consistent interface to

a broad base of models (for example financial analyses) that can exist independently

outside the scope of the simulation model. It should be noted, that the same principle can

be used to provide access to databases or other Windows applications that support DDE,

in a way that an OO/DEVS model can be viewed as an integrator of information.

Chapter 5: The OO/DEVS GUI
--—______ _________ _________________________________121

5.5 . Using the OO/DEVS GUI: The Beer Game Example

5.5.1 Case Background

The Beer Game is a classic System Dynamics model that explores the behaviour of a

dynamic feedback system. The "game" involves a distribution chain, the constituents of

which are customers, a retailer, a distributer and a brewery.

Decisions have to be made at each level of the chain about the demand for beer from a

lower level and hence the size of an order that should be placed from a higher level.

The model explores the effects of time lags within the hierarchical beer ordering and

distribution system. Supplies of beer are transmitted through the system and the effects

of fluctuations in demand are modelled. The aim of the game is to demonstrate the

dynamics of a distribution system, i.e. how after a shock in the system (sudden demand

increase), the initial quantities of beer ordered, retained as inventory and backlogged are

amplified at each link within the distribution chain, given ordering and distribution delays.

A number of decision rules on ordering, formulating demand expectations and maintaining

effective inventories control how the system behaves (for a detailed description of the

Beer Game see [Sterman, 1989]).

5.5.2 Assumptions

The following assumptions have been applied to the model and are described below.

All un-met demands are backlogged and accumulated. This backlog will be cleared

as soon as sufficient stock becomes available.

• Previous orders and/or deliveries may not be cancelled or returned.

No level in the chain may bypass another level when ordering or supplying goods.

"Traders" have sound local knowledge of their level but have no global knowledge

of the system.
• There is only one brand of beer and one "trader" at each level.

Chapter 5: The OO/DEVS GUI
122

BMCustomer initializeVariables method

initialize Variables

demand := 4.

BMSupplier initializeVariables method

initializeVariables

backLog := 0.0.
inventory := 12.0.
supplyLine := 12.0.
placeOrder := 4.
receiveGoods := 4.
receiveOrder := 4.
dispatchGoods := 4.
expectedDemand := 4.
desiredlnventory := 12.
desiredSupplyLine := 12.

Figure 4: BMCustomer and BMSupplier
InitializeVariables methods.

The manufactures have unlimited

capacity with only the set up time

being influential.

There is no natural loss or wastage.

• The backlogging costs are

significantly higher than the

inventory holding costs.

• Demand follows a simple step

function increasing from four to

eight units after period two.

• Communication is restricted solely

to the processes of placing and

receiving orders and deliveries.

The system is arranged in a cascade

production-distribution structure to insulate

the brewery from any short term, random

fluctuations in demand. Thus only long

term trends should affect the production of the brewery.

5.5.3 Entity Modelling

Model building begins by identifying the main objects in the problem domain. In the case

of the beer game this is quite straight forward as there are four model components to be

simulated, the customer, the retailer, the wholesaler and the brewery. However, we note

that the last three have similar, if not identical, functionality in that they receive a demand

for beer and place an order at a higher level (even though the brewery effectively sends

an order to itself). They can therefore be grouped as one class, BMSupplier. This takes

full advantage of the inheritance properties of Smalltalk and the object oriented paradigm.

This means that we only need to write methods for BMSupplier as all the model

components that we create will be instances of this class and will therefore share the same

functionality.

Chapter 5: The OO/DEVS GUI
-------------------- --- 123

demand Object modelling takes place in

the Class Hierarchy window (see
clock >= 1
iffrue: [demand := 8.j
ifFalse: [demand := 4.]
self monitor:’demand’ value: demand.

figure 2). New OO/DEVS model

components are created as

subclasses of TModel (or one of its

subclasses) by activating the node

menu over the node representing
Figure 5: BMCustomer demand.

the object which is to be the
superclass.

5.5.4 Decision Rule Modelling

As previously stated, objects have a number of variables and methods which define their

behaviour. Therefore, in order for the modeller to fully specify the model components to

be simulated these variables and methods must be created first.

For example the only instance variable required for the BMCustomer class is demand

where as the BMSupplier class has many instance variables including backlog, inventory,

etc. Instance variables may be initialized in the #initializeVariables method. For the

BMCustomer class the #initializeVariables method simply consists of two lines of code

(see figure 4).

Where as the same method for the BMSupplier class is much larger as there are far more

instance variables to be set up. Notice, also, that the method is only declared once as all

the Retailer, Wholesaler and Brewery have the same initial values for all the variables.

By altering the values of these initial values it easy to see how the simulation model

would be affected. For example, if the desiredlnventory value was to be raised, to say 20,

each of the suppliers would place larger initial orders to compensate, thus affecting the

inventory and the behaviour of the suppliers higher up the chain.

Chapter 5: The OO/DEVS GUI 124

Once these methods have been set up, the other methods which provide the model

components with their behaviour and functionality can be built and tested.

For Customer there is only one such method, #demand which calculates the demand that

will be sent to the Retailer every period. Note that for period one the demand is set at four

but is eight there after. Note, also, the self monitor: statement which keeps a record of the

value of the specified variable at this point in the simulation. These values can be used

to trace (plot) the value of the variable at the end of the simulation run (see figure 5).

The BMSupplier class has a more detailed behaviour which is modelled by the following

methods:

#dispatchGoods - Dispatches goods to a lower level in the ordering structure. The amount

dispatched is either the amount ordered, or if this is not available then the value of the

inventory. If the full order cannot be sent then the backlog is updated to include the

difference.

#placeOrder - Makes adjustments to the desired inventory and supplyline to calculate the

value to be ordered next period. The alpha and beta parameters can be adjusted to alter

the desired inventory and supplyline.#receiveGoods - Adds the amount of goods received

to the inventory and updates the supplyline value.

#receiveOrder - Adds the order received to the backlog and calculates the expected

demand for the next period.

There are two other BMSupplier methods. The first, called #formulateDesiredLevels, sets

up and alters the values for the desired inventory and the desired supplyline throughout

the simulation. The second, #monitorSelectedVariables, simply saves the values of all the

variables listed every time period so they can be plotted at the end of the simulatton run.

All these methods can be entered by using the appropriate menus and menu selections

within the Model Hierarchy diagram in order to bring up the Class Methods Browser (see

figure 6).

Chapter 5: The OO/DEVS GUI
----------------------------------- -- ----- ----------------------------------- 125
5.5.5 Model Organization

The next stage in modelling is to select instances of the objects that have been created and

place them in the Decomposition Window. This is achieved by selecting the object in the

Model Hierarchy Diagram, and using its menu items. The first instance to be created

should be an instance of TModel which will automatically appear in the Decomposition

Window. Subsequent instances which are created, will sit in a paste buffer until they are

pasted onto a node in the Decomposition Window or are overwritten.

To paste a node on the current Decomposition Diagram, is simply a matter of selecting

the node to be pasted on and use the appropriate menu item of that node (see figure 7).

Nodes can be cut and pasted, once they have been entered onto the Decomposition

Diagram, so that the user has the ability to experiment with alternative model structures.

A number of consintency checks have been incorporated, so that, for example, the user

is warned if he/she tries to cut a node which is linked by messages to another node.

Smalltalk/!/
File Edit Smalltalk Variables Methods Settings Window

IB Class Methods - BMSupplier ________DD

receiveOrder: anOrder

® instance
0 class

BMSupplier
TModel
DevsEntity
Object

dispatchGoods:
formulateDesiredLevels:
initializeVariables
monitorSelectedVariables
placeOrder:
receiveGoods:

backLog
desiredlnventory
desiredSupplyLine
effectiveinventory
expectedOemand

♦

♦ receiveOrder: _ q
_____ - — - --------------—------------------------------

♦

orderReceived := anOrder.
backLog := backLog + anOrder.
expededDemand := [(l-phipexpededDemand) + (phi anOrderJ.

Figure 6. Class Methods Browser.

Chapter 5: The OO/DEVS GUI
126

Decomposition Diagram

|Beer Game

Print graph
Re-Draw
Root
Fonts

Set Run Time
Simulate Model

Load Model
Save Model
Remove Model

Figure 7 . Model
Decomposition Diagram.

Model Priorities Browser

Customer
Retailer
Wholesaler
Brewery

Cut

Paste Above
Paste Below

OK

Cancel

Figure 8. Model Priorities Browser.

Chapter 5: The OO/DEVS GUI
w

Variables
inventory
supplyLine
backlog
orderPlaced
orderReceived
goodsReceived
goodsDispatched
desiredlnventory
desiredSupplyLine
jxhi______________

OK.

Initialization
Initial Value

O Accept

Cancel

Figure 9. Initialize Variables.

Once all the required instances

have been created and

arranged in the Decomposition

Diagram the following steps

need to be taken using the

appropriate node menu

options.

• The level priorities should

be set up within each

aggregate model. This ensures that in the event that two instances within an aggregate

model are scheduled to send message at the same time the one which is higher in the list

will send first. This can be achieved by cutting and pasting the instance names within the

table. The user selects a model by clicking over it and pulls up the pane menu using the

right hand mouse button (see figure 8). A second model is then selected and the menu

activated again. The first model selected may then be pasted above or below the current

model. The instances at the top of the table will send their message first.

The level selectors should be set up. This is a way of declaring which of an

instances methods are visible to other instances. For example, the #placeOrder

method of one instance will need to be able to send a message to the

#receiveOrder method of another so these methods should be declared as public

messages. This can be achieved readily through the node menus of the

decomposition diagram.

As well as the #initializeVariables method which initializes the variables for every

instance of a class there is also the ability to initialize the variables of individual

instances (see figure 9 for the corresponding dialogue box). This is achieved by,

once again, selecting the relevant option from the Decomposition Diagram node

menu, selecting and assigning the required values. Caution should be taken,

however, as the #initializeVariables will overwrite any values set in this box.

Chapter 5: The OO/DEVS GUI
~ _ 128
For the Beer Game one instance of BMCustomer (named Customer) and three instances

of BMSupplier (named Retailer, Wholesaler and Brewery) need to be created and arranged

as sub nodes of an instance of TModel say BeerModel in the structure si,own in figure 8,

The Customer should have priority over the Retailer and the Retailer over the Wholesaler

etc. All methods should be declared public except the iinitializeVariables,

#formulateDesiredLevels and #monitorSelectedVariables methods.

5.5.6 Influence Relationship Modelling

Influences are created in the Level Diagram Window (see figure 10) which is obtainable

for all aggregate models by selecting the appropriate node menu option from the

Decomposition Diagram. Note that level diagrams may not be created at terminal nodes.

Once in the Level Diagram Window, the iconised representations (rectangles) of the

instances may be moved around the window using a "drag and drop" technique. By

pressing down the left hand mouse button over a rectangle, the cross hair cursor appears,

drag the cursor across the screen and release the button at the desired position for the

rectangle. The rectangle redraws itself at the new location.

A popup menu can be activated by clicking the right hand mouse button over a rectangle.

The menu displays three options as follows:

The Message Priorities option allows all

the messages of an instance to be viewed

(see figure 12). They can be cut and pasted

to place them in order of priority (in the

same way that models are cut and pasted in

the model priorities browser from the

Decomposition Diagram). Once again in

the event that two messages are to be sent

at the same time the one which is placed

higher in the list will be sent first. If you

are having difficulty running a simulation Figure 10. Level Diagram.

Chapter 5: The OO/DEVS GUI

model check that your messages are ordered correctly.

In order to run a simulation, one or more instances need to have an initial message

set up. By default, all instances are initialised to do nothing unless one of the

methods is triggered at some point in time. As a consequence it is vital that at least

one of the instances of the model is initialised to perform one of its methods. This

facility is provided by the Initial Message option on the popup menu.

• It should be noted, that this initial message is particularly important as in order for

any method in the simulation to send a message it must first be called by another

simulation message.

• Finally the Messages option allows new messages to be created, altered and

removed. Messages rnay be set up between different instances or within the same

instance. On selecting this option the cursor changes to the cross hair and can be

moved to the receiver of the message (which may be the same as the sender). On

clicking the left hand mouse button over the receiver a message dialog box

appears.

Some of the fields in the Message Protocol Specification Window (see figure 11) may be

pre-filled. Those that are not need to be completed by selecting one of the options m the

pull down boxes. Arguments are specified by pressing the Alter Argument button which

opens an Argument Window (see figure 14). The required argument can be selected,

accepted and the window closed. The selected argument should now appear in the top

right hand box of the

Chapter 5: The OO/DEVS GUI
130

‘ Message:
Message Protocol Specification

r Arguments
loodsDispatched

Alter Arguments

Number of Messages: 1 Message 1

Add Class Messages Message Priorities... | Cancel

Figure 11. Message Protocol Specification Dialog Box.
Message Priorities Browser

Sender Method Receiver Model Receiver Method Time
receiveOrder: self dispatchGoods: clock+2
dispatchGoods: Wholesaler receiveGoods: clock
receiveOrder: self placeOrder: clock+2
JaceOrder:_______ seif _____________ receiveGoods: clock

Cut

Paste Above
Paste Below

Cancel |

Figure 12. Message Priorities Browser.

Message Priorities Browser ■

Sender Model
Customer
Customer
Retailer
Retailer
Retailer
Wholesaler
Wholesaler
Wholesaler
Wholesaler
Brewery
Brewery
Brewery
Brewery

Sender Method
demand
demand
receiveOrder:
receiveOrder:
placeOrder:
receiveOrder.
dispatchGoods:
receiveOrder
placeOrder:
receiveOrder
dispatchGoods:
receiveOrder
placeOrder:

Receiver Model
Retailer
self
self
self
Wholesaler
self
Retailer
self
Brewery
seif
Wholesaler
self
self

Receiver Method Time
receiveOrder: clock
demand clocks clock +
dispatchGoods: clock
placeOrder: clock+2
receiveOrder: clock
dispatchGoods: clock+2
receiveGoods: clock
placeOrder: clock+2
receiveOrder: clock
dispatchGoods: clock+2
receiveGoods: clock
placeOrder: clock+2
receiveGoods: clock

Figure 13. Message Priorities Browser.

Chapter 5: The OO/DEVS GUI
131

Message Specification Wmdow. The message can now be added by pressing the Add

button. The number of message set up should now increase by one. Messages may be

subsequently altered or removed. It is important when creating new messages that the top

right hand arguments box is initially empty.

Once all the message in the system have been, specified, an easy and effective way to

check them is by returning to the Decomposition Diagram and to select the aggregate

node. Pull up the node menu and chose the Level Message Priorities option. This brings

up the diagram seen in figure 13. Each of the instances at that aggregate level are

displayed, in order, along with a description of their messages. This clearly shows the

receiver object, the sender and receiver methods and the time at which the message is to

sent.

5.5.7 Running a Simulation and Obtaining Results

Before simulating a model it is necessary to select those variables that will need to be

tracked throughout the simulation run. A variable can be tracked only if it is monitored

within one of the methods of an instance and it has been selected in the Level Diagram

Window. Variables are selected by holding down the shift key and pressing the left hand

mouse button simultaneously. This opens a box with three buttons. A Select button brings

up the a list of variables to choose. Clicking on a variable in the list denotes that it has

been chosen to be monitored. They will appear in the adjacent window and can be

removed by double clicking

the left hand mouse button

over them.

After the simulation has been

run this same box can be

used to Plot the variables that

were selected.

Simulating an OO/DEVS

model is achieved by setting

Message Argument Specification

Method List____________
dispatchGoods:
formulateDesiredLevels:
initializeVariabies
monitorSelectedVariables

Variable List..........
goodsDispatched
goodsReceivcd
inventory
orderHaced .

Current Argument
jorderPlaced

Accept Be move

Figure 14. Argument

Current Arguments List

OK J
I Cancel

Chapter 5: The OO/DEVS GUI
--_______________ ___________________________________ 132
the Run Time option from the nane mp™,P in the Decomposition Window and then the
Simulate Model option.

5.6. Conclusions

In this chapter we have presented a Smalltalk implementation of the GUI for use within

the OO/DEVS simulation framework. Our research task was to create an efficient

graphical modelling environment, that can be used effectively with little knowledge of the

Smalltalk programming language and the OO/DEVS model building constructs, under the

hypothesis that such an environment will facilitate fast and natural model building.

We have supplied a small example of how the GUI may be applied using the Beer Game

example. Our initial experience by testing the GUI on small models, such as the Beer

Game, has shown us that the approach has the following benefits:

• increased speed and ease of modelling owing to the naturalness of the graphical

representation of the model components and the speed at which influences can be

attributed to these components via the use of dialogue boxes.

• high interactiveness, as the modeller can easily move back and forth during the

various stages of the model bulding process.

• ease of model modification without reworking large sections of code.

• versatility in decision rule specification, as Smalltalk coding or as spreadsheet

formulas representing decision rules within the same model.

• increased model accuracy as the user not only has a more complete picture of the

entire model but is also guided through those processes which have previously

proved difficult to code.

Earlier on in this thesis we made the point that any comparison of OO/DEVS with SD

would require a ‘state-of-the-art’ GUI, in order to achive an even assesment. Having

addressed the questions related to graphical model specification within OO/DEVS, in

chapter 7 we will demonstrate further the use of the GUI, and discuss its role in using

OO/DEVS with a management team. Before doing this, we first present (in the next

Chapter 5: The OO/DEVS GUI 133

chapter) a practical comparison between OO/DEVS and SD, in terms of their modelling

concepts.

Chapter 6: Modelling Capacity Vestments in the U.K. Electricity Industry

Chapter 6

Modelling Capacity Investments
in the U.K Electricity Industry

A comparative modelling study between System Dynamics &

OO/DEVS

Contents:

6.1 Introduction

6.2 Industry Background

6.3 Recent Trends and Current Issues

6.4 The Need for Industry Simulation

6.5 Model Background

6.6 A System Dynamics Model

6.7 Modelling under the Object Oriented/DEVS framework
6.8 Model Reuse & Expansion under OO/DEVS

6.8.1 Case Background

6.8.2 Modelling Background

6.9 Reusing the OO/DEVS Capacity Investments Model
6.10 Discussion

6.11 Concluding Remarks

6.1 Introduction

In this thesis we present a view on industry simulation, which is applicable to a broad

spectrum of industries, with the aim to develop and demonstrate a number of modelling

concepts related to the modelling of industry structures and policies. In the last two

chapters, we have presented two small models, a simple processor model and the Beer

Game, in order to test the functionality of the OO/DEVS framework and its Graphical

User Interface.

In order to provide a more realistic test of the concepts and methodology that we have

previously developed, we now focus on the UK electricity industry and discuss how the

framework was used to model capacity investment behaviour in the industry. In what

follows, we describe a System Dynamics model of capacity investment and its equivalent

OO/DEVS model. The two models are used as a platform for comparison between the

two frameworks, addressing the questions of model conceptualization and structuring, use

of diagramming tools for model building, model modularity and reusability.

6.2 Industry Background

The UK electricity industry is a clear example of the need to model a radically new

industrial structure, as a result of the privatization of the Central Electricity Generating

Board (CEGB), which has been operated as a monopoly owned by the government from

1957 to 1990. Electricity was generated by CEGB and transported through a nationwide

transmission system called the ‘National Grid’. In addition, twelve Area Electricity

Boards received power at ‘bulk supply points' and delivered it to their customers through

their local distribution networks. [James Capel & Co (1990)]

However, during the 1990/91 period, the electricity industry in England and Wales was

fundamentally restructured, with great emphasis on competition with vertical dis-

integration [see Holmes (1990,1992)]. As a result the generation business was separated

from the transmission, distribution and supply. Generation was split into two privatized

OapterJ: Modelling CapacWmeslments in ,he UK

companies. National Power and PowerGen, while a third public sector company (Nuclear

Electric) retamed all the nuclear plants. The supply and distribution business was also

privatised and twelve Regional Electricity Supply Companies (REC's) were formed for

that reason. These twelve REC companies are able to compete independently to buy

power from National Power, PowerGen, Nuclear Power, the Scottish generation companies

(that were privatized separately) or any of the independent generators that might emerge

into the new market structure. The transmission business was taken over by a ‘National

Grid Company’ (NGC), which is owned collectively through a holding company, by the

fore-mentioned twelve distribution companies. NGC is responsible for ensuring a secure

dispatch of electricity and the operation of a daily ‘power pool’. The power pool

represents the market place for buying and selling electricity. In addition to the power

pool, a contract market for electricity has emerged. Finally, an independent regulatory

body (Office of Electricity Regulation - OFFER), ensures that monopolistic or anti­

competitive behaviour is not exercised by any of the market players, and in general

safeguards the rights of the industry’s customers. [For more details about the structure of

the industry James Capel & Co (1990), Holmes (1992)]. The following table shows the

current structure of the industry.

inicia! «„er..« (I9W C.p.cBy » MW [see !»«> C.pd & Co (>990) (or details I« W« efpl-sJ

Generation Transmission Supply Regulation

Players

National Power

PowerGen

Nuclear Power

Independents

29,664’

18,712’

8,812’

National Grid Company 12 Regional Electricity

Companies (REC’s)

Regulatory Body

(OFFER)

Function - Electricity Generation

- Supply to ‘big’ customers &

REC’s

- Maintain & develop

the transmission

system

- Facilitate competition

through the pool

- Supply domestic &

industrial customers

- Transmit through its

local network

- Ensure competition

- Safeguard customer

rights

Table 1: The new structure of the electricity industry in England and Wales

6.3 Recent Trends & Current Issues

The monopolistic character and the governmental control of CEGB, directed the focus of

the company on two main groups of issues. The first group, is related to long term

strategic electricity planning, and was primarily perceived as an optimisation problem,

where the best plan had to be chosen under the minimum economic cost criterion. In that

respect demand was usually estimated at an aggregate level using statistical techniques.

Regarding this group of issues, national and social objectives were also considered.

Objectives like the security and reliability of supply, the flexible and economic supply of

fuel, the compliance with public health and safety regulations, the compliance with

environmental standards. The second group of issues is related to operational decisions

that are related to optimal daily plant scheduling, start-up costs, minimum up/down time,

nuclear plant maintenance, etc.

Traditionally, these issues have been approached analytically as single, or more recently,

as multiple objective optimization problems. For instance, Kavrakoglu (1985) uses the

multiple objective linear programming framework for the long range capacity expansion

problem. Vlahos (1991) has proposed an algorithmic framework, based on mathematical

decomposition techniques, for the electricity capacity planning problem, formulated as a

large scale mathematical program.

Nevertheless, the new structure of the U.K. electricity industry has presented new issues

and priorities that redefine the long, as well as the short term, issues within the industry.

As a result a whole new set of issues has arisen.

Many players and objectives:
The introduction of many companies, with multiple shareholders, introduces multiple

centres of gravity and instability. As a result, a plethora of conflicting objectives is

introduced, in a way that cost minimization is not any more the main issue. In that

respect the priorities of the industry have changed dramatically, as companies now have

to focus on profitability, and on how to gain and sustain a competitive edge.

Customers’ role:

Demand and supply play an important factor in the new economics of the industry, as

companies cannot rely any more on the captive market of the monopoly years. Therefore,

the competitive strategies of the various players need to be investigated. In addition, it

is important to take into consideration the fact that the responsibilities of the new

companies are mainly defined through contractual relationships, and therefore a

commercial attitude must be expected from their behalf. In that respect, consumers have

to be taken extensively into consideration in planning. Demand will not represent a point

estimate, due to the fact that customers can (and will) demand specific and probably

idiosyncratic contractual arrangements.

Long term investment decisions:

Investment decisions take a new meaning within the new structure of the industry, as cost

minimization is not any more the main objective. Adequate capacity margins have to be

maintained and therefore regulation will be required, between the generators, regarding

the long term capacity investments. In an industry with long investment lead times,

questions like the choice of plant technology or the type of fuel, and its impact to short

and long term profit, are bound to arise, as investors will be interested in maximizing

shareholder value. The problem of overcapacity has to be addressed, as over contracting

for new gas plants has occurred. The result of that is that the values of projected plant

margin are well in excess of those used by CEGB, for generation planning purposes, and

also of the 20% typical worldwide margins [see National Grid Company, Seven Year

Statement (March 1992)].

Industry dis-integration:
The vertical dis-integration of the privatized industry is being tested as generators are

allowed to contract directly with industrial customers. Also, the problem of vertical

coordination among generation, transition, distribution and supply, has to be addressed,

fa. • and distribution business constitute a natural monopoly.especially as the transmission ana aisuiDuuo

Pool versus contract market:
r f 1 ntorW as a soot market for electricity, has to be The long term viability of the pool market, as a spot m

Chapter 6: Modelling Capacity Investments in the U.K. Electricity Industry 139

investigated, given that currently only 5% of electricity is actually traded through the pool,

while the rest 95% is covered through contractual arrangements [see Bunn & Larsen

(1992a)]. In that respect the influences between the pool (as a spot market) and the

contract market (as an insurance market) has to be investigated, especially as the

participants of the industry could become less risk-averse, as the industry matures.

Regulation:

The position of the regulator, as well as the emerging European Community legislation

also needs attention. As the industry players embrace more and more a profit oriented

attitude (in an industry that in some respects is naturally monopolistic), is more likely that

the regulator will intervene in order to protect the rights of the customers [see OFFER

(Dec 1991) for the reactions of the regulator to the tactical manipulation of the pool prices

by the generators]. On the other hand the impact of the implementation of environmental

legislation needs to be investigated, as the generators are bound to adjust their strategies

in accordance.

In addition, the industry is now sensitive to political developments, such as the change of

government policies, as well as market developments, like the withdrawal of the pound

from the European Exchange Rate Mechanism (utility shares were particularly hit).

While, on the other hand, free of direct governmental intervention, it can act

independently on issues like the protective contracts for British Coal [see Financial Times

(8th of June 1992)]. Finally, new technical problems, like the maintenance of electrical

stability in the network, may also arise. Overall, the industry is at the beginning of a new

historical cycle, as well as in a highly evolutionary process.

6.4 The Need for Industry Simulation

The movement towards competition, economic liberalization and privatization have

introduced issues of competitive strategy, which are ‘soft' in nature, and turn our attention

to the multiplicity of players and objectives within an industry structure. Therefore, issues

of broader financial objectives, flexibility and increased risk have to be addressed.

Chapter 6: Modelling Capacity Investments in the TTic n - t
---------------------------------- ----- "‘^¿irnenis in me U.K. Electricity Industry’ 140

Furthermore, models should not be perceived anv 1 u , ., ,P ea any more, as black boxes that provide the
best answer, but as flexible decision sunnort tonic npport tools that serve as a vehicle for scenario
development, communication and debate.

Such a modelling view, has been applied in the U.S. electricity industry for several years.

The U.S. electricity market has the structural setting that requires such a view, due to the

fact, that the industry is privatized, the generation side is highly competitive and several

pool systems are under operation [source: Paribas (1990)]. For example, Nail (1992)

demonstrates a model of the U.S. energy demand and supply (FOSSIL2). The structural

setting of the industry is viewed through three dimensions: the energy consumers with

their objectives and demand policies, the energy producers with their investment,

production and pricing policies, and finally the energy market. Ford & Yabroff (1979)

discuss the behaviour of a hypothetical U.S. investor-owned electric utility industry. The

basic operations of their model focus on capacity, expansion planning, financing,

production, price regulation and demand growth. Ford & Bull (1989) present a model that

has been used for conservation policy analyses. The model assumes a single utility and

it mainly incorporates price regulation, capacity planning, demand and conservation

investment policies. Similar models have also been built for adjacent energy areas like

fuel supply [for example see Davidsen et al (1990) for a U.S. oil industry model].

All these U.S. models have been produced under the System Dynamics modelling

methodology. They are models that contain policies and assumptions, as viewed by the

policy-makers and aim at the investigation of the ftiture implications of these policies,

through simulation. In that respect these models are purely structural, as System

Dynamics is a structurally based approach, and SD models are causal (theory-like) models

[Radzicki (1990)].

After the privatization of the U.K electricity industry, the same modelling view has

emerged, in this country. Bunn & Larsen (1992a, 1992b) have modelled the investment

, , • , ■ j + ohntrfttrp Their work [Bunn & Larsen (1992a)] models thebehaviour in the new industry structure. 1 neir woik l

• , • • I« oc well as the wav the operating rules of the poolgenerators and their decision rules, as well as me way p
. , • a cet of scenarios, that looks at the change of the reserve

influences investment decisions. A set o

Chapter 6: Modelling Capacity Invest™^ ,
■--- - TS ln me U-K. Electricity Industry 141
margin, under different assumptions is ,.’ P ided (we discuss this model in detail further
on in this chapter). In (Bunn & I rioooRM .t_ ,n (1992b)] the model is extended further by
incorporating the regulator and its possible policies.

6.5 Model Background

As we have discussed earlier on, in the new electricity industry a National Grid Company

(NGC) has taken over the transmission business, the responsibility for ensuring a secure

dispatching of generation and the operation of a daily ‘power pool’. The daily power­

pool, operated by NGC, is the market place for buying and selling electricity. In the long

term, the pool price is intended to give the incentive to invest in new capacity. This is

meant to be achieved by the so-called ‘capacity payment’ in the price that generators will

receive from the pool. The initial objective of our industry simulation study was to

understand how well these capacity payments would work in signalling the required

investment in capacity.

Every day, generators submit offer prices for power available from each generating unit

in their company on a half-hourly basis for the following day. The NGC, using their 24-

hour-ahead demand forecasts, together with these offer prices, and a large-scale

optimisation model, produces a schedule for generating power in the cheapest way over

the next day. The optimal schedule is produced by ranking the plants in order of bid

prices, and selecting the cheapest schedule that meets the estimated demand.

For every half-hour, a SMP (System Marginal Price), expressed in £/MWh, is computed.

This corresponds to the offer price of the most expensive plant needed and available for

generation at that time. All stations selected to run in each half-hour period receive the

same SMP. NGC also computes, for each half-hour, the LOLP (Loss of Load Probability)

which takes into account demand uncertainty and the stochastic nature of generating unit

failures. Together with VOLL (Value of Loss of Load), which is a measure of the price

. „riiiina to oav to avoid loss of supply (initially set by the that pool customers may be willing to pay
, a + twat T 9MP)*LOLP is the capacity payment which regulator at £2/kWh), the product (VOLL-^Mr; lult y

W”- Modelling in lhe U K

generators receive in addition to SMP. It is expected cost of unserved energy, [see

Energy Committee (1992), James Capel & Co (1990)]

SMP is the cost of the most expensive plant in the system, nevertheless, what all sellers

of electricity receive, is the Pool Input Price (PIP) per unit of electricity. Likewise, all

buyers of electricity purchase at the same Pool Output Price (POP). The difference

between PIP and POP consists of a charge called the ‘uplift’ covers the costs of: capacity

reserve, plant availability, forecasting errors, transmission constraints, ancillary services

and marginal plant adjustment. As a result, POP = SMP + capacity element + uplift and

PIP — SMP + capacity element. PIP and POP are computed by the National Grid

Company.

The basic idea of the capacity payments is that, in periods of excess capacity. LOLP

should be relatively low, on average, and there will be little incentive to invest in new

capacity. Alternatively, when there is heavy demand relative to available capacity, LOLP

will rise steeply and should provide the required investment incentive. The assumption

behind this is that when the discounted cost of providing new capacity is less than the

expected revenue from capacity payments, i.e.:

E(cost of unserved energy) > Cost of new' Capacity

then it is worth adding new capacity. Given the lead-time of at least j years to

commission new generating plants, the uncertainty in plant retirements and the non­

linearity of using a probability to signal new capacity needs, the motivation in undertaking

a simulation study is easy to understand. One would expect such a system, in its simplest

form at least, to produce cycles of under and over capacity in the industry. The extent

to which this will indeed happen may depend upon the lead-time for construction, the

uncertainty in demand, the foresight of planners (how far ahead LOLP is forecast), the

, ri 1 j u t tkp pnmnetition the value of VOLL and the competitive nature degree of knowledge about the competition, me

of the industry.

6.6 A System Dynamics Model

A system dynamics model to investigate these issues has been documented by Bunn &

Larsen (1992a); Figure 1 summarises the main influences that the model sought to capture.

The model looks at National Power, PowerGen and a third generator which represents the

aggregation of future independent power producers. The equations of the model can be

grouped into demand related, capacity related, and investment decision related. The

expected prices provide the link between the LOLP, the expected capacity and expected

demand. The LOLP is calculated as a function of the expected reserve margin in capacity.

The model also covers plant retirement, in the form of retirement schedules for National

Power and PowerGen. Simulations extended over 30 years with the focus of attention

being the reserve margin, its potential to exhibit cycles and the way that different degrees

of foresight, information exchange, uncertainty in demand, competitive and regulatory

policies could affect it. The purpose was to gain some insight into how a new industrial

system could be reflated, and from this initial objective the system dynamics model was

successful.

Using iThink, the model was created quickly, with the graphical interface facilitating many

re-simulations and the acquired insights concerning the potential for capacity cycles were

dramatic and convincing. In that the initial perspective of that work, was one of seeking

to understand the effect of various influences, such as LOLP, VOLL, Uncertainty, etc.,

on the market, going into the causal loop way of thinking about the model seemed initially

quite natural. Furthermore, the model did permit some limited re-use about six months

later with an updating of information on costs and retirement schedules, and some minor

re-specification involving the explicit introduction of the government appointed Regulator

into the system [Bunn and Larsen (1992b)].

For the purposes of this research work and thesis, the above model was duplicated, using

Professional DYNAMO+. Although, the previous results were replicated, they are not

reported as at this point, as we are mainly interested in the modelling exercise as such.

As we have already mentioned, the equations of the model can be grouped into capacity

related, demand related, and investment decision related. In what follows, we will

describe briefly the structure of the model in respect to these three groups of equations.

Capacity
Capacity related equations refer to National Power, PowerGen and a third company that

represents the aggregate of the independent companies that might emerge. The model

recognises two different types of capacity, namely the existent capacity and the capacity

under construction. An ‘investment decision’ is represented as a rate that is influenced

by the ‘capacity under construction level, through the equation.

New Capacity = Capacity_Under_Construction / Construction_Time

Finally, a rate that represents the 'Retirement Capactty’ leads the flow into a smk (see

Figure 2 for the ¡Think graphical representations). It should be mentioned that the model

does not assume any plant retirement for the new independent companies.

Chapter 6: Modelling Capacity Investments in the U.K. Electricity Industry 145

Figure 2: Capacity related rates and levels

Directly related to the capacity under construction, are the types of plant represented in

the model. The underlying assumption is that all players use common plant technology

and that only four types of plants are available in terms of production capacity (at 500,

1000, 1500, 2000 MW). Therefore, when new capacity is introduced into the system, one

of the fore-mentioned types of plant is chosen.

Demand

As we have mentioned in the introduction of this chapter, customer demand is bound to

gain a central role in the new electricity industry. Nonetheless, a rather aggregated view

of the demand is taken in this model. As a result, demand modelling is based on the

assumption that there is a 1% demand growth per annum [which is in line with estimates,

see for example UBS Phillips & Drew (1990)]. Therefore, given the initial demand the

i . • introduced in the model, by random simulation ofUncertainty in the forecasted demand is al
errors in expected demand [see Bunn & Larsen (199 a

computes the demand „ periods ahead. However, demand is central in the mode.,

as it influences directly the available ,y ic available capacity margin, which is defined as the rate:
Margin = (Total Capacity / Demand) - 1

It should be noted that the maruin is c *1. m _C margin is computed net of the Nuclear Electric and other
electricity sources.

The Investment Decision

As we have already discussed, the ‘Capacity Under Construction’ level, is influenced by

an ‘Investment Decision’ rate. The investment decision2 is represented as a series of

nested IF...THEN...ELSE, as:

2 Bunn & Larsen (1992a) have incorporated in their model the degree of foresight which each
company applies to the investment decision. This degree is varied between 0 (myope) and full 4 years.
These different degrees of foresight were tested in different simu ate scenarios.

3 „ t . „cino an I OLP curve derived from calculations reportedBunn & Larsen (1992a) have experimented using an ^-OLP^c^^^ wj,h mMheI more conveXi

y the Electricity Council (1985). However, rcnccts the current trend of introducing smaller and
version of LOLP. Note that a more convex LOLP reriects
highly available plant into the system.

Invest - IF Expected_Price_4 > Return Per Half Hour

THEN Invest in a 2000 MW Plant

ELSE IF Expected_Price_3 > Return Per Half Hour

THEN Invest in a 1500 MW Plant

ELSE IF Expected_Price_2 > Return Per Half Hour

THEN Invest in a 1000 MW Plant

ELSE IF Expected Price l > Return_Per_Half Hour

THEN Invest in a 500 MW Plant

ELSE Do Not Invest

Where ‘Expected_Price_i’, ie[l,2,3,4], is the expected price when the

investment is related to a 500, 1000, 1500, 2000 plant correspondingly.

This expected price, is the expected price of unserved energy (see chapter

4.1), and is expressed by the equation:

Expected-PriceJ = LOLP, x VOLL

Where VOLL is set at £2/KWh, and the LOLP is provided by a ‘table’ function3. The

‘Retum_Per_Half_Hour’ is computed through the yearly return, which is a function of the

Capacity !r^^, the Uf_

acceptable return by each company, its investment cost, and the economic life of a piant

The yearly return is modelled through the equation:

Yearly Return =
Investment_COS: x Acceptable Return /(!-(,+ Acceptable Return

which represents the fixed sum paid by the asset (plant) each year, for the specified

economic life of the plant (annuity). The acceptable return is a function of the

‘Investment Financial Cost' (computed through a ‘table’ function) and a decision vanable

that represents the desired return on investment. The economic life of a plant is assumed

the same for all four types of plants.

Finally, plant retirement was modelled in a simple form by assuming a constant capacity

retirement per generator [due to the fact that the duration of the simulation does not

exceed the life of a new plant, as we have already mentioned, independents generators do

not retire any plants]. The following table summarizes the main assumptions of the

model:

Table 2: The main assumptions of the model

Demand Total 1990 demand: 48,000 MW
Demand growth: 1% per annum

Capacity (1990) National Power: 29,664 MW
PowerGen: 18,712 MW
Independents: 0 MW
Nuclear Electric: 8,000 MW
Other Sources: 2,000 MW________________

Retirement National Power: 740 MW per annum
PowerGen: 460 MW per annum
Independents: 0 MW per annum _______________________

Plants Plant sizes (capacity): 500, 1000, 1500, 2000 MW
Common Technology
Average life: 40 years
Economic Life: 25 years
Investment Cost: £250 per MW ______________________

Duration Time span 40 years, starting at 1990

Oiapter 6: Modelling Capacity Investments in the UK. Electricity Industry 148

i Atomic Model Subclass
i EGeneration

EGenerator
Methods:

InvestmentDecision
! RetirementDecision
i

TModel Subclass

Customers

Customers
Methods:

Demand

Figure 3: The main entities in the model

6.7 Modelling under the Object Oriented/DEVS framework

As we have underlined the System Dynamics model was created quickly and delivered

useful insights concerning the structure of the electricity market. However, it became

difficult to extend the model to deal with some major scenario changes such as an increase

in the number of generators, or to introduce more realistic decision rules. As more issues

were added, the model became quite large, with many replications of decision rules which

one would have preferred to see represented in a more generic way (i.e. a lack of

‘generalisation’)4. Finally, when the LBS energy project research team was approached

by one of the utility companies to develop an industry model to facilitate a variety of

possible, but initially unspecified, simulations, with varying levels of detail, than it became

appropriate to think in a new object oriented fashion, with an entity focus to the structure.

4 achieved within the current System DynamicsIt should be noted that some generalization can provided in order to handle indexed
software. In the case of DYNAMO for example, an so that the modeller can
v®ables. In a similar fashion, iThink provides the P ver in both cases it is the case that the
replicate parts of the model that perform similar ftmc:i _ which is ieft to the modeller as a
modelling paradigm does not provide the constructs g
strict model design choice.

When we initially attempted to ‘transfer’ the above system dynamics model to the

Chapter 6: Modelling Capacity Investments in th» tt v • r
----- -------------------------------- ——— ---- ~F ln the UK. Electricity Industry 149

Figure 4: System Decomposition
Diagram

OO/DEVS modelling environment, we

experienced the fundamental difference

between object orientation and an influence-

based approach. Having failed to reconstruct a

model by looking directly at the influences in

the above system, we moved back a step and

started to reconsider the main entities in it.

Therefore, the modelling process started by

identifying the three main generators and the

entity customers. The next step was to

consider the attributes of the main entities and the operations that they perform upon them.

That step led to the design of two main objects: a class EGenerator and a class

ECustomers.

Figure 3 depicts the interface of the class EGenerator. Every instance of the class

EGenerator can makeCapacityDecisions, which are split up in two types of decision, i.e.

investmentDecision and retirementDecision. This is in contrast to the initial system

dynamics model where the investment decision rule is triplicated for each generator. In

addition, class EGenerator has aproduceReturnOnlnvestment: capacityUnderConstruction

method which is used within the investment decision. The object can communicate with

its outside object world, through a number of methods. Method receiveDemand.

aDemand can be triggered from any object in the outside world that has a demand for

electricity and wants to let an

EGenerator know about it.

Methods receiveFutureCapacity:

aCapacity and receiveCapacity:

aCapacity are used by other

generators in the system to inform

an EGenerator about their capacity

placement intentions within the

next three year period, and about

the capacity they actually bring

Chapter 6: Modelling Capacity Investment. in the U K ri t ,
■—lin the UK- Electricity Industry’150

into the system, respectively.

The next modelling step in our environment was to lay the main entities out in a

hierarchical fashion using what we call a system decomposition diagram. In the current

example, this results in a very simple hierarchy depicted in figure 4. By dissecting the

hierarchy at different levels, we can now see the influences between the fore-mentioned

objects in a new type of diagram, the level diagram. Figure 4 represents a dissection at

level I, called "Electricity Market"; at this level we can identify two main entities the

atomic-model (object) Customers and the coupled-model Generators. Similarly, figure 5

represents a dissection at level II - Generators.

As has been already discussed, the DEVS formalism provides us with a concise way of

describing the influences within the model. For example in level I (figure 5) we can only

see two main influences, the demand influencing the generation, and the capacity

influencing the customers. In level II (figure 6) the demand input influences all three

generators which produce capacity which becomes an output of the coupled-model

generation. In addition, information channels regarding future changes m capacity have

Chapter 6: Modelling Capacity Investments in thelJKvi t-- r
----- --------- --------------us in me U.K. Electricity Industry_______ 151
been established between all three sen ermine tk ,

iee generators. The final step was to implement the
decision rules of each object that determinej mar determine their response to influences from their
environment.

It should be pointed out that the two models (i.e. the one under SD and the one under

OO/DEVS) are behaviourally equivalent in the sense that their observation frames’ are

compatible and they both realize the same set of I/O functions, in addrtion both systems

incorporate the same decision rules. Overall, the implementation of OO/DEVS to this

case study, via Smalltalk, was successful in that it achieved similar user insights as the

earlier system dynamics model, but seems to offer greater scope for reusability.

6.8 Model reuse & expansion under OO/DEVS

The fore-mentioned investments model in its System Dynamics version [Bunn & Larsen

(1992a)], was actually reused [see Bunn & Larsen (1992b)] in order to incorporate the

regulatory policies within the industry, and the way these may affect investment decisions.

In this section we discuss the main characteristics of the extended investments model in

the form produced by Bunn & Larsen (1992b), and we present an equivalent OO/DEVS

model. Our objective is to assess the level of model reusability under the OO/DEVS

framework, and comment on the way that the two models were expanded.

6.8.1 Case Background

Although several empirical studies have tracked the changes in electricity prices in

England and Wales since the industry was privatised in 1990/91 [eg Helm and Powell

(1992)1, the behaviour of the market with respect to capacity investment and the role of

the regulator, remains highly speculative. As it is pointed out by Bunn & Larsen (1992b):

‘Whilst the immediate focus of the Government’s review [House of Commons (1993)] was

, _ _ . t X Y > where T the time set (R in our case), X the
An observation frame is a structure CJ ’ ’

input value set and Y the output value set.

Chapter 6: Modelling Capacity Investment. trr. ... ,
-------------------------------- ---------------~~~—C n the U-K- Electricity Industry 152
to find a way of subsidising British coal tn %K coal t° make lt competitiVe with imports, in the longer
term it is essential to understand th a x-

incentives and dynamics of new capacity
construction .

As we have discussed in the first n^rt of u xme nrst part of this chapter, the basic driving force for
investments in the industry is, at least in the way that the system was designed to work,

the capacity payments. The idea of the capacity payments is that, when there are periods

of excess capacity, the LOLP should be relatively low, on average, and there will be little

incentive to invest in new capacity. Alternatively, when there is heavy demand relative

to available capacity. LOLP will rise steeply and should provide the required investment

incentive.

In their first study [Bunn and Larsen (1992a)] have looked at a model where the capacity

decisions are based on the capacity element, and shown that the extent to which serious

capacity cycles will indeed occur depends upon the uncertainty in demand, the foresight

of planners (how far ahead LOLP is forecast), the degree of knowledge about the

competition and the competitive behaviour in the industry. In the simplest, "market

signal", case of generating companies responding to the recent annual average value of

LOLP, then, indeed severe cycles of the reserve margin were shown to result.

However, as the role of the regulator was not investigated fully in that first study, the

objective of adding the regulatory policies within an investments model can be easily

understood. The results of that first study point towards the direction, that if the

Regulator were able to encourage more foresight and information exchange with respect

to planned construction and retirement over a three year lead time, and better demand

forecasts, then the "capacity payment” method of pricing appears to be capable of

maintaining the reserve margin at a desired level (24% currently, but 21% is the industry

target). Such ‘indirect’ influence by the Regulator is clearly essential for improving the

efficiency of the market, but another issue of importance is whether the Regulator can

control the market more directly. Can the Regulator reduce variability in the LOLP

through controlling the retirement plans for old plant? What is the effect of excessive

"signalling" of new capacity plans by the duopolistic generators, and how can this affect

Ĉ ^oaeUin, Capa^^^ in U K

VOLL? How much uncertamty does this produce in the market prices, These are the

issues explored in Bunn & Larsen (1992b)

6.8.2 Modelling Background

In the Bunn & Larsen (1992b) study, the initial ¡Think model, as we described it earlier

in this chapter, was used as a basis for a revised investments model. The revised model

incorporates:

capacity retirement policies, based on a predefmed CEGB schedule,

• the policies of one more generator (a representation of Nuclear Electric), i.e.

retirement only as Nuclear Electric is assumed not to invest in new reactors,

• the VOLL policy of the regulator, i.e. equations that adjust the VOLL value, in

accordance to an expected margin for three years ahead.

• the perceived VOLL value change, that the generators believe it will occur if they

add x new MW of capacity into the system.

It should be mentioned, that for the revised investments model, a more advanced version

of ¡Think was used. This version, provides the advantage of being able to modularize the

system into ‘sector frames’, and therefore gives the modeller the ability, to distinguish

easily between equations that belong say to National Power versus equations that belong

to PowerGen. Even though, this provides an equivalent tool to our level diagram type

model specification, it fails to provide the capability to view the system at different levels

of detail. As we have pointed out in chapter 5, this stems from the fact that you can only

model sectors in one level, and not sectors within sectors. In addition, in contrast to

OO/DEVS objects, one cannot use inheritance relationships upon sectors, and therefore

sectors can be considered more as a tool for model structuring rather than a tool for model

reuse.

In that respect, the first Bunn & Larsen model was used as an ad-hoc basts for model

redefinition. For instance, the capacity decisron equations were rewritten in order to

incorporate the perceived VOLL change, that a new capacity addition will result to. The

perceived VOLL change was expressed as a table of values. The behaviour of the

Chapter 6: Modelling Capacity Investments in the U it n t r .
--- -------- ^"wus in me U.K. Electricity Industry_______ 154

Regulator was also added in the model equations, and was linked to the investment and

retirement dectston outputs of the Generators. However, the reusability of the SD model

ground practcally to a halt, when it was desided to eonsider the implications of a possible

referal to the Monopolies and Mergers Commition the result of which could have been the

spitting the genarators, or when the investment decision rule had to be changed from

LOLP based to SMP based. Such changes demanded practically the rebuilding of the

entire model. In contrast, as we will demonstrate in this chapter, the equivalent OO/DEVS

model, by exploiting the high modularity of the framework, as well as the inheritance

concept of 00, has provided a more structured basis for model reuse.

6.9 Reusing the OO/DEVS Capacity Investments Model

Figure 7, depicts the object hierarchy diagram associated with the model in hand. As we

have explained in Chapter 4, class TModel carries all the functionality of an object that

can be simulated, and therefore each OO/DEVS model-class is a subclass of TModel.

Class ECustomer provides the representation of the customers as an aggregate, while

classes EGenerator and IndependentGenerator provide the behaviour of the Generation

Companies in terms of investment. It should be noted that the latter classes constitute the

classes used in the first version of the investments model, in that respect they only map

investment behaviour and a constant yearly retirement.

Figure 7: Class hierarchy diagram

As we discussed earlier on, in the

first ‘Investments Model’ the

class EGenerator can

makeCapacityDecisions, which

are split up in two types of

decision, i.e. investmentDecision

and retirementDecision. A

number of other methods, namely

produceReturnOnlnvestment:

capacity UnderConstruction

Chapter 6: Modelling Capacity Investment. in the tt K . T j
------------------------------- ------------- ------------- — n ™e U K- Electricity Industry 155

Figure 8: Level Diagram for the extended Investments Model (LEVEL I)

method, receiv eDemand: aDemand, receiveFutureCapacity: aCapacity and

receiveCapacity: aCapacity belong to the specification of the class.

All the above methods are inherited by the object EGeneratorV2, which nevertheless

overloads the methods investmentDecision and retirementDecision. In the case of the

former method, the investment decision is now taken by a Generator taking into account

the perceived VOLL change that the decision will cause. The latter method is overloaded

in order to take into account the different way of modelling the plant retirements (i.e.

through a the predefined CEGB schedule, rather than a constant capacity retirement each

year as it was the case in the first ‘capacity investments model). This class contains also

one more method named receiveVOLL: dVOLLvalue to reflect the fact that the VOLL will

be changed by the regulator.

Class IndependentGeneratorV2 is overloading the retirementDecision method is order to

account for the fact that the Independent Power producers will not be retiring any capacity

for the time span of the model. As a result, the fore-mentioned method does nothing in

this case. In a similar fashion, class Nuclear overloads the method investmentDecision so

Chapter 6: Modelling Capacity Investments in the Urn T .
---------------------- ——---------- n tne U K- Electricity Industry’ 156

that no new investments in Nuclear canaeim , m ucaPacitY will be made for the model’s time span.

A new class ERegulator has been also created to model the industry regulator and its

policies regarding the adjustment of the Value of Loss of Load (VOLL). This object has

methods receiveinvestment: aCapacity and receiveRetirement: aCapacity so that can

receive the investment and disinvestment decisions of the generators, as well as the

method reviewlOLL in order to apply its VOLL reviewing decision rule. The ERegulator

object can also receive the annual customer demand, through the method receiveDemand:

aCapacity. Figure 8, depicts the level diagram of the model at the top level. The level

diagram corresponding to the Generators (aggregate model) is the same as the one

depicted for the first version of the investments model, with the additional influence of

the VOLL value which feeds in from the Regulator.

Overall, reusability was achieved at two levels:

(a) The reuse of the model components, i.e. at the level of the model objects, where

inheritance was exploited in order to overload the decision rules of the object EGenerator

regarding its capacity decisions, while at the same time the rest of its methods were used

in their original form. This presents a disciplined way of expanding the model

components, without changing the original model (as it was the case with the SD model).

This facility allowed us to test the behaviour of the generators when SMP based (instead

of LOLP based) capacity investment decision rules were used. In addition to the use of

inheritence, the fact that a generator is represented as an object that can be instantiated

several times, provides the capability to ‘split’ generators, only by changing the initial

values of some of their instance variables, with practically no modelling effort or redesign

of the model.
(b) The original model was used as the basis for the expanded one, (i) by substituting the

j i aenerators with their new subclasses, (ii) by addingmodel components representing the generators «nn uiv
, . . • o Rpnnlator and (iii) by adding some new associationa new model component, i.e. the Regulator, a y j j

, • , • z- , r r It should be mentioned that the latter featurerelationships (in the form of new messages;, n
e , . . A. + mneeouence of the encapsulation property of the modelof the expansion, is a direct consequence v

, the same message specification as far as theobjects, which allows the modeller to use tne same 5 f

, i rpmains the same. For example, in this caseinterface of the objects (model components) remains

Chapter 6: Modelling Capacity Investments in the UK pi •
---------------------- - ---------- -----------------_ m the U.K. Electricity Industry 157
each generator can get informed about the + ■ •

PacitY decisions of the rest of the generators
methods receives,me„t; aCapacUy

¡„especttvely of how a generator treats the capacity infonnation or makes its capacit^

decisions.

6.10 Discussion

Having modelled the system in both frameworks, it became clear that although the initial

focus of the study was the core technology of System Dynamics, it was not a matter of

simply replacing a differential equations engine with a discrete event simulation one.

Working with the OO/DEVS framework meant that we had to substantially change:

► the way we perceive problems

► the diagramming tools for encapsulating our thinking and describing the system

modelled

► the translation process from the mental model to one that can be simulated

► the way we use the model to investigate different scenarios and develop insights

► our expectations for future use of the model.

More specifically, the fundamental difference is that in system dynamics we have to

translate the real world in terms of stocks and flows, whereas under OO/DEVS, we start

off by modelling directly the main entities of the system and their functionality . This

however has created the need to devise appropriate diagramming tools, that are better

suited to the entity based approach. These tools, and their semantics, have been allready

presented in the previous chapter. These are rhe object hierarchy, the system

decomposition, and the level diagram. We felt they were useful documentation and

communication tools. Compared to the traditional system dynamics diagramming tools

‘ It should be noted, that as we have already discussed in section 5A. yXs^XZoTde^
«« wkhin the SD community. These tools “X^sm^
Mermediate model representation between mentd m d a stock flow equation form

11 is the case that the final computer representation ot the moae

Chapter 6: Modelling Capacity Investments in the UK. Electricity Industry 158

NP

CJ np.i

N«u_C*&*crry I

\ / NP.&W.Ocmcr

\ NMi-C»««'» \.

/ MP_*UXP /""X

I / Np.expvoi

MP>€ipPne«

N P _ I w ••»••«Ga«

NP_

Figure

NP_N»wCap NP.Rcttramcnt

*xp_Growtft

_ y< Net 1 .Capacity

NP.I&tpMBfvn

- \ ^^*-***^_ HP.2CTpMf»H

J ^****t^ / NPJUXP

w36xpMargin / I Q J*
\ \ NP.1 ExpPrtec

z—F*^ \ Znp.&wcu

* McQ.Capcctty NP 3LOLP 1
NP.3LOLP X I

L I J
NP.2£*pPf«»

■----- NP_3Ex»Pt*» X

Xy x NP_16j®Prtec

/ NP.trwacoBPPl

I () NP_Uflö«iCon

X^z^a — NP.2ExpPrtec |]

X-*' X NP.Cipaccy A
NP_R•1u^’«p•r-'^n4, \ |——। I

NP_Y•ar♦y_R••ur,• J \ /

/ \ N* Pf*üfloCca

/ \ /

/**>> NPACP_A«*M«

GfionomcUI«

9: Level / Rate Diagrams for National Power

Chapter 6: Modelling Capacity Investments in the U K pi , ■ t .
--- Electricity Industry 159
they exhibit certain advantages, which u-& , wmch stem from the hierarchical representation and the
information hiding. By comparing figures iOi anH n qa r • •

& gures (y) and (3-8) the limitations of stock-flow
diagrams in describing large complex becomes evident u J

f comes evident, whereas the decomposition
achieved by the new types of diagrams alleviates the problems7.

, .i. , iko cn modeller would try to communicate a
To make the comparison fair, we should stress athese maps not an inherent part of

model through the use of sector and policy maps. ’ . . hierarchy and level diagrams.>1« modelling paradigm, as it is the case with the decomposition, object merar

It should be pointed out, that the initial response of our sponsors, was that these

diagramming tools were very natural and useful in communicating the structure of the

problem and its mapping onto a OO/DEVS model. The one-to-one correspondence

between the level diagrams and the entities in the real system, proved to be particularly

useful, as it prompted a good basis of discussion about the way these entities influence

each other. However, there was some initial confusion between the class hierarchy and the

system decomposition diagrams. This was however resolved, at a conceptual level, by

explaining the two different relationships that the two diagrams depict, and the practical

level, by presenting the class hierarchy diagram as the model base, containing model

components. Once, the class hierarchy and the system decomposition were established,

it was straight-forward to move to a computer representation of the model, thanks to the

close similarity between diagramming tools and program structure . On the other hand

in systems dynamics the transition from influence diagrams to stock-flow ones is often

problematic, since the two representations are quite different.

The System Dynamics modelling and simulation, was carried out using ithink and

Professional DYNAMO+, both mature commercial packages, with a user-fnendly

graphical interface in the case of ¡Think. On the other hand, at the time of the initial

OO/DEVS study of the investments model, the OO/DEVS GUI was not operational and

as a result the model was developed in the fashion described in Chapter 4 (see section 4.5

for an example). In that respect this initial lack of graphical model specification,

graphical output and scenario exploration tools that ¡Think and Professional DYNAMO+

t flop dpvelnnment of the OO/DEVS GUI, as it hassupply, provided an extra leverage for the development or

already been presented in the previous chapter.

Chapter 6: Modelling Capacity Investment. in the v K
‘— — ------ in me U-K. Electricity Industry 160
Finally, our expectations for future devd™™^ * ? ,

P nt of the two models are very different.
The system dynamics model has successfully o ix-n j • . .successfully fulfilled its initial role but further expansion
or substantial modification would be awkward cawkward and time consuming. On the other hand
the new modelling requirements in the electricity industry, can involve the use the

OO/DEVS model in examining other issues such as the implications of competition in the

newly privatised mdustry, the impact of environmental legislation and the possible split

of National Power and PowerGen into more companies. It was also intended to use the

electricity investments model, as module within a broader UK energy model, so that

interactions between competing fuels can be studied.

6.11 Concluding Remarks

In the second chapter of this thesis, we motivated the development of OO/DEVS through

a discussion of the issues: structure, focus, time-representation, and reusability. Having

implemented OO/DEVS and tested it in this case study, we can now be more specific

about these aspects. A comparative summary is provided in table (3).

Referring back to the research issues pointed out in the Chapters 2 & 3 of this thesis, we
can summarise the proposed OO/DEVS simulation environment as follows:

(a) influences (association relationships) can be expressed through the use of the
DEVS formalism, within a multicomponent DEVS;

(b) generalization relationships (i.e. taxonomies of model components) can be
expressed through the class hierarchy of the object oriented paradigm,

(c) aggregation (and dissagregation) relationships can be expressed, within a given
model, through the notion of DEVS coupled models in such a way that the
modeller can organize the structure of the system at different levels and the user
can view the model at the appropriate level having all details at lower levels

hidden;

(d) object orientation provides a structural separation of entities, influences and,
through DEVS, the simulation "engine".

T, - thk chanter aimed to evaluate in practice how well the latterThe case study presented in this ch^ well structured models with well defined
four points can be used in order to proau

Chapter 6: Modelling Capacity Investments in the IT r ev
---------------------------------- ----- ——----- -C ln me UK. Electricity Industry 161

Table 3: A comparison of the two approaches

OO/DEVS System Dynamics
Initial Concepts Entities Influences
Levels of
Focus

Hierarchy of Layers Single Initial Layer

Diagramming
Tools

Object Hierarchy
System Decomposition
Level Diagram

Causal Loop Diagram
Stocks-Flows Diagram
Subsystem Diagram
Policy Structure Diagram

Core
Technology

Object Orientation - DEVS Difference Equations

Time View Discrete Events Continuous change

Simulation
Engine

DEVS-Scheme simulator,
co-ordinators, root-co-ordinator,
Separated from model

Integration routine
Not separated from model

Model
Components

Objects (Atomic-Models) Stocks, Flows
Set of Difference Equations

Aggregation /
Disaggregation

Supported through Coupled Models Not Supported

Modularity Supported Not Supported

Reusability Extensive Limited

Decision Rules Equations, Logical rules,
Algorithms, Time Related Events

Equations

representational distinction between model structure and policies, and different types of

model components. The practical issue is whether the attainment of a more functionally

explicit structure adds value to the application of industry simulation. The case study

presented here suggests that it does. Nevertheless, further exploration of this issue needs

to be attempted on a more complex problem, ideally with an actual business user

experiencing the need to develop and re-use a flexible, hierarchical industry simulation

model.

Chapter 7: The Electricity Markets Model 162

Chapter 7

The Electricity Markets Model:
The Development of a OO/DEVS Model

in a Business Environment

Contents:

7.1 Introduction

7.2 The Background of the Modelling Team

7.3 The Phases of the Project

7.4 The Approach to Modelling

7.5 Background of the Model and Issues to be Explored
7.5.1 Model Structure

7.5.2 Encapsulated Decision Rules - Entity Behaviour

7.6 Running the Electricity Markets Model
7.7 Discussion

7.6 Summary

Chapter 7: The Electricity Markets Model
163

7.1 Introduction

In the previous chapter, we presented a comparison between System Dynamics and

OO/DEVS, based on the development of the ‘Investments Model’. That model was

developed from an ‘academic’ perspective and within an academic environment. In this

chapter, we discuss how OO/DEVS was transferred to a business environment, and how

a management team used OO/DEVS, over a period of a year, to build a quite elaborate

model of the electricity industry. We will refer to this model as the ‘Electricity Markets

Model’.

We start the chapter, by presenting the background of the business modelling team, as

well as the phases of the project. In what follows our first objective, is to address the

research question of how structured modelling, and knowledge elicitation, can be

approached within OO/DEVS, by providing a structured set of eight steps to OO/DEVS

model development. This set of steps, is the result of the combination of similar

techniques in System Dynamics and Object Oriented Analysis, as well as our experience

with the fore-mentioned management team. Our second objective in this chapter is to

present the Electricity Markets Model, as it has been built in OO/DEVS. Our aim, is to

demonstrate how the framework facilitated the development of a realistic model of the

Electricity Industry, which contains detailed representations of the main industry players.

We finally discuss, how the management modelling team viewed the framework regarding

our research agenda, which we summarised (see Chapter 2) through the issues of structure,

focus, time-representation and reusability.

7.2 The Background of the Modelling team

The project took place within a division of the commercial department of one of the U.K.

electricity distribution companies (we will refer to it as DC from now on). One of the

main issues that the division deals with, is the development of medium (six to twelve

months) to long term (10 years) scenarios of the evolution of the electricity industry. The

issues under consideration include the evolution of the pool market, competition,

Chapter 7: The Electricity Markets Model
164

investments and regulation. Given the fact that the +• +- n ,tn me ract mat me privatization of the industry is fairly
recent, and that the market will open completely to competition over the next decade, it

is clear that the plethora of issues and scenarios to be explored is formidable.

The modelling team was composed of a number of managers and analysts with prior

experience within CEGB (pre-privatisation industry). Their background was engineering,

in terms of education, while their modelling expertise consisted mainly of ‘hard’

Operational Research techniques (mainly optimization and forecasting) and spreadsheet

modelling. Even though the team has been using programmers to implement mathematical

models, little or no knowledge of software engineering existed within the modellers.

7.3 The Phases of the Project

The OO/DEVS project has gone through three distinct phases within the company:

The first phase, which initiated the project, started with the introduction to the company

of the SD ‘investments model’ of the industry [see Chapter 6 as well as Bunn & Larsen

(1992)]. At this phase the concepts of Systems’ thinking were introduced and it became

clear that this type of modelling has to complement the ‘hard’ modelling tradition that

exists in the industry. It should be pointed out, however, that there was initial scepticism,

on behalf of the SD management team, regarding the judgemental elements of SD

modelling. Moreover, the advantages/disadvantages of System Dynamics were identified

at that time, setting the primary design objectives which resulted in OO/DEVS.

The second phase was the introduction of the OO/DEVS modelling platform and

simulation engine, as they have been presented in Chapter 4. It is interesting to observe,

that as the first ideas associated to OO/DEVS were introduced to the company, we

experienced considerable intial scepticism and misunderstanding. In order to aleviate these

problems we developed two tutorials, which were used in a number of tutorial sessions

which aimed at familiarizing the modelling team with object orientation and DEVS as well

as the overall mechanics of model building within OO/DEVS. Both tutorials were based

Chapter 7: The Electricity Markets Model 165

on case studies. The first utilized the OO/DEVS version of the Bunn & Larsen (1992)

investments model, while the second was based on a completely new model that

explored the market interactions between the Generation Companies and their Customers.

The latter model was later reused, forming the basis for a more elaborate model that we

will present further on in this chapter.

The third and final phase of the project, took place over a period of four months, and

consisted of the development of a model of the purchasing and selling policies within the

industry (based on the fore-mentioned model, used in the second tutorial), as well as the

final delivery of the software (including the GUI) to the company. This model (the

Electricity Markets Model) was developed jointly with the modelling team of the

company, through regular model building meetings (once or twice a week for a period of

four months) at the DC offices, while a significant amount of background work, was

performed in-between meetings, both at LBS and DC. It is our experience as facilitators

within the model building process, that we convey further on. It should be stressed that

at this stage of the project, the intially sceptical management team, became advocates of

the approach, which they presented themselves (throught the Electricity Markets Model)

to the their higher management and directors. Finally, it should be pointed out that this

phase also triggered further development (and refinement) of the GUI, following the

feedback from the users of the framework.

Chapter 7: The Electricity Markets Model
166

7.4 The Approach to Modelling

As we have pointed out in the introduction of this chapter, we aim at focusing on the last

phase of the project, i.e. the transfer of the framework (and its software implementation)

to the company. Our principal aim, was to assure that the modelling team felt ownership

of the framework and its underlying concepts. The key in doing so, was to build a model

jointly, undertaking the role of facilitators, rather than model builders. The list that

follows describes the main steps that we have followed in the model building process.

STEP 1: Identify the issues under consideration and the general industry background

in relation to these issues. In our case, this step was carried out through

fairly unstructured brainstorming sessions.

STEP 2: Identify the main objects in the system to be modelled. These objects may

be physical entities (eg. a Generation Company), aggregates of physical

entities (eg. the Customer Side of the electricity industry), or notional

entities which nevertheless have a specific function in the system (eg. a

Contract Market). The System Decomposition Diagram may be used as a

tool during this process.

STEP 3: Select the functional areas of interest within the objects in the previous

step. This is the process of specifying the model boundary, by discarding

any areas of the system, that are not interesting in relation to the issues in

hand. The process leads to the identification of the variables of interest

within each object, as well as the broad behaviour of the object. This in

many respects is a labelling exercise, which in our case was, for example,

the identification of the fact that a Generation Company owns a set of

plants and ‘supplies contracts .

STEP 4: Specify the way that the objects, within the system in hand, influence each

other. This process, effectively corresponds to the identification of

information and material passing, which is also used in System Dynamics.

The Level Diagram may be used as a tool during this step. The

facilitator/modeller can start with a Level Diagram containing only model

entities and a discussion can be carried out on how these entities interact

Chapter 7: The Electricity Markets Model
----- -—____ 167

with each other.

STEP 5: Identify alternative model structures in terms of aggregation and

disaggregation relationships among the model components. This step

should lead to a set of alternative System Decomposition Diagrams.

STEP 6: Specify the decision rules of the objects within the model space. This step

requires the detailed description of ‘the way that our objects get things

done and may bring us back to step 2 as more ‘secondary’ objects might

be identified.

STEP 7: Having identified the objects in our problem space, and their detailed

behaviour, it is important to identify the hierarchical relationships among

them. Our objective is to arrive at objects at a sufficient level of

abstraction, in order to either identify (in our model base) objects

previously build, or to build new reusable model components.

STEP 8: As soon as the OO/DEVS have been built and tested, a model can be put

together and steps 4 to 7 can be repeated within the OO/DEVS

environment, so that alternative model structures can be tested.

As can be observed the process of model building can be highly iterative, as the modeller

(or sometimes the user) can move back and forth on the steps of model building. It

should be noted, that the first iteration of steps 1 to 7 correspond to the initial model

conceptualization, while step 8 represents a design choice. Model design and building

takes place in consequent iterations of steps 4 to 8, as the modeller makes design choices

by alternating the structure of the model in the decomposition diagram, the decision rules

and variables of the model objects (in the method browser provided in the Class Hierarchy

Diagram), as well as the set and sequence of interactions between model entities (within

the level diagrams, through the use of the message specification dialogues).

While the above eight steps, reflect our model building experience within OO/DEVS, it

should be pointed out that they are by no means a unique way of approaching knowledge

elicitation and model building within the framework. Areas like cognitive psychology,

small group processes and System Dynamics have approached the problem of knowledge

elicitation from many perspectives [for example see Richardson et al (1989), Vennix et

Chapter 7: The Electricity Markets Model i

al (1990), Larsen et al (1991)], and can possibly offer a number of useful techniques that

can be blended with the above process. Indeed, the proposed eight steps contain ideas

already found in the fore-mentioned areas. For instance cognitive psychologists [for

example see Hackman & Morris (1975)] have distinguished three main types of cognitive

tasks: eliciting information, exploring courses of action, and evaluating situations. Step 1,

corresponds to the first of these cognitive tasks, which within the SD community is

referred as brainstorming. Step 2, is very similar to Duke’s (1981) structured workshop

technique where the participants write down on small pieces of paper all concepts that

come to mind when thinking about the policy problem under study. This step, also draws

from the example of the Object Behaviour Analysis approach [see Gibson (1990)] for

object oriented design. Step 3, is similar to what SD modellers refer to as deciding what

variables may be included or excluded from the model’s boundary. Step 4 corresponds

to the definition of the responsibilities of each object in the responsibility driven approach.

Finally, steps 5 and 6 can be classified in the area of ‘evaluating situations’.

In what follows, we describe through a model how the latter eight steps were carried out

in modelling within DC.

7.5 Background of the Model & Issues to be Explored

The first step (STEP 1 in the above list), was to discuss during unstructured workshops

the background of the model, and the broad issues to be investigated, as follows.

Given the March 1990 restructuring of the UK electricity industry from a single integrated

public utility to several competing companies, two distinct markets for buying and selling

electricity have emerged. The first is the pool market, that produces electricity prices on

a half-hourly basis (see chapter 6 for a detailed presentation of the function of the Pool

Market). The second is a contract market, which has emerged due to the fact that the

buyers from the pool, or indeed the generators, do not wish to be wholly dependent on

fluctuating pool prices. Therefore, they enter into contracts that reduce the pool price-

induced variability of electricity purchase costs. These contracts can be conceived as

financial instruments with a cash-flow determined by reference to the pool. The main

Chapter 7. The Electricity Markets Model

Figure 1: The finalised System Decomposition Diagram

suppliers of contracts are electricity generators, and the main buyers are the twelve

distribution companies. Distribution companies are simultaneously buyers and sellers of

electricity contracts. They sell contracts to large customers but they buy contracts from

existing or the new independent generators. As a result, a second ‘contract market’ has

been created, given that all non franchise customers can negotiate a contract for the

purchase of electricity with any willing supplier.

Given the structure of the industry, as well as the coexistence of the tree markets the

issues that were chosen to be investigated are:

• The study and modelling of the interactions between the electricity pool and the

contract market.
• The development of scenarios about the competitive position of the distribution

companies, given the imminent opening of the market to competition.

• The exploration of generators’ policies in biding their plants to the Pool and their

potential to manipulate the Pool Market.

• The study of the impact of a large number of gas and coal take-or-pay fuel

Chapter 7: The Electricity Markets Model 170

contracts on pool and contract prices.

The exploration of the generator’s policies in offering and pricing electricity

contracts.

How the total benefits in the system are allocated between parties.

What is the effect of an abrupt change in circumstances (eg end of fossil fuel

levy).

7.5.1 Model Structure

The second step (STEP 2) in the OO/DEVS approach, is to study the system that is being

modelled and identify the main entities (objects) in the system. Given the issues under

consideration the modelling team of DC suggested the following model objects:

• The Electricity Generation side

• The Distribution Companies side

• The Electricity Consumers

• The Pool Market

• The Contract Market between the generation and distribution sides

• The Contract Market between the distribution and the customers

This initial model cut provided the first level of the system decomposition diagram. In

decomposing the latter model components, the modelling team of DC made the following

model design choices:

• The Electricity Generation Side was decomposed into four Generation companies

National Power, PowerGen, Nuclear Electric and a fourth company representing

the independent generators (IPPs) within the industry.

• The Distribution Side was decomposed further into four ‘types’ of distribution

company. It was decided that each type will represent (i) a different electricity

purchasing approach, and (ii) a different customer targeting approach. Therefore,

each company represents a ‘generic distribution company.

• The Customer Side was broken down to three types of customers: (i) the below

100 kW market, which corresponds to the domestic market, (ii) the market that

corresponds to the range of 100 kW to 1 MW, and covers retailing and small

Chapter 7: The Electricity Markets Model 171

Figure 2: The Class Hierarchy Diagram

industry, (iii) the market over 1 MW

which corresponds to the big industrial

customers. A further subdivision, captive

vs competitive market customer (or

franchise vs non-franchise), was

introduced in each of the above

categories. The objective of the

subdivision was to capture the fact that

the market is gradually opening up to

competition.

The next step (STEP 3), was to identify

the required functionality of the different

entities, and therefore set the system boundary. The functionality that was identified by

the modelling team is based on the facts that the generators own plant, bid their plants to

the pool, and offer electricity contracts to the buyers of electricity (distribution

companies). The electricity pool receives the bids, produces plant schedule, and

determines electricity prices. The distribution companies, buy contracts from the

generators, buy electricity from the pool and offer contracts and tariff prices to the

customers. Whereas, the customers (consumers of electricity) buy electricity, either

through contracts from any of distribution companies, or by paying the tariff price to their

local distribution company. The latter discussion constitutes effectively STEP 5.

Figure 1, depicts the decomposition diagram, that the DC modelling team arrived at, for

the model as a whole at STEP 6. As we have pointed out earlier on in this thesis, a link

from an upper level (for example Generators) to a lower level (for example National

Power) can be interpreted as ‘National Power is part of the Generators . This structure

allows a change of focus of the level of detail, in browsing the model, by‘zooming’ in or

out.

STEP 6 was probably the most important process, regarding the model in hand, as the

behaviour of the model objects was modelled in very elaborate decision rules, including

Chapter 7: The Electricity Markets Model
172

Demand for

Figure 3: Level Diagram: top level

a significant amount of data, as well as information based on the mental models of the

team. This step is discussed in detail in the next section.

Finally, making a number of design choices in STEP 8, a number of object classes was

generated, encapsulating the required functionality. In creating these classes, common

functionality and characteristics can be captured by general classes, from which more

specific classes can be derived. A possible way of doing this is depicted in the object

hierarchy of figure 2. All classes are subclasses of the basic entity class TModel, that

contains essential simulation capability. A class Company, was suggested to capture the

common characteristics of all companies, within the model. It was decided that these

characteristics should include the maintenance of profit-and-loss and balance sheet data.

Generation and distribution companies are specialisations of the class Company derived

by adding functionality to this class. It was suggested that generators would be defined

as instances of a class Generator, or its subclasses (IPPs and Nuclear were modelled as

separate classes to reflect certain differences in their biding and contracting strategy). The

distribution companies were defined as instances of the class Supplier. Finally, the pool

and the contract market were designed to be subclasses of a class Market, which models

the function of balancing demand and supply and thus producing the price for a product.

Chapter 7: The Electricity Markets Model 173

Two instances of the class contract market were used in the model, in order to reflect the

existence of the contract market between Generators and Distribution Companies, as well

as the existence of a contract market between the Distribution Companies and the

Customers.

Following the specification of the system decomposition and the object hierarchy

diagrams, the modelling team went back to STEP 4 to refine the influences between the

different entities. This can be done by dissecting the system decomposition hierarchy at

different levels and showing the influences using the level diagram.

Figure 3, for example, shows the interactions at the highest level. At this level

Generators is the aggregation of all generators and Suppliers is the aggregation of all

major electricity buyers (distribution companies). Customers represents the aggregate of

the three types of customers, as they have been defined previously. The Pool Market

balances demand and supply for electricity and determines electricity prices, while the

Contract Market balances demand and supply for different types of contracts and

determines contract prices. In addition, the Customer Contract Market balances supply

and demand for contracts between the Customers and the Suppliers.

As can be observed, the Generators influence the Pool Market by bidding their plants at

specific prices, and the Contract Market by supplying contracts. The Pool Market

schedules the plants and produces schedules and SMP prices, which feed back to the

Generators as well as to the Suppliers and Customers. The Suppliers, influence the

Contract M^arket through their demand for contracts, and the Customer Contract Market

through a supply of contracts. They also influence the Customers with their tariff prices.

The Customers, finally, influence the Customer Contract Market through their demand for

contracts, and the suppliers through their demand for actual electricity.

7.5.2 Encapsulated Decision Rules - Entity Behaviour

As we have pointed out earlier, STEP 6 proved of particular importance, as a lot of

discussions and effort was devoted in modelling the decision rules of the model entities

Chapter 7: The Electricity Markets Model 174

in great degree of detail. The step, is also important in producing the computerized

OO/DEVS model, that can be meaningfully simulated.

OO/DEVS is very flexible when it comes to specifying behaviour (decision rules), which

is modelled through the methods of the subclasses of TModel. As we have pointed out

in Chapters 4 to 6, the user may contruct equations, logical rules, time-related events or

even external algorithms for carrying out complex calculations.

It should be mentioned, that at this stage an ‘Object Specification Form’ was used, for the

specification of each object’s public and private behaviour, instances, variables,

collaboration with other objects in the system and message specification. Such type of

form is quite common to many object oriented design methods, and was felt that the

modified version of it, adapted for OO/DEVS, helped considerably in developing the

model objects. Examples of the Object Specification form, will be given further on in this

chapter.

In what follows, we present a discussion of the decision rules and variables, that the

modelling team of DC has suggested, regarding the main entities, of the model in hand:

(iii) The Electricity Contract & the Contract Markets

As we have pointed out at the beginning of this chapter, one of the steps in the OO/DEVS

model conceptualization phase, is the identification of the main objects in the system.

Apart from the model entities that we have already discussed the next most interesting

object, from a modelling point of view, was the object electricity contract, which is

traded in the contract market.

In reality the contract market is very complex, with a large number of distinct products.

The basic type of contract is a two-way contract that requires (i) the generator to pay the

customer the difference between the pool price and a reference price, the strike price,

whenever the pool price exceeds the strike price, or (ii) the customer to pay the generator

the difference between the strike price and the pool price whenever the latter is lower.

The overall effect is that both parties are provided with a fixed price equal to the strike

Chapter 7: The Electricity Markets Model 175

price, for electricity purchased under the contract. A variation of a two-way contract is

the one way type, which requires the generator to pay the customer the difference between

the pool price and an agreed strike price for an agreed number of units whenever the pool

price exceeds the strike price. This type of contract effectively caps the customer’s

electricity cost [see also James Capel &Co (1990)].

An electricity supply contract is usually based on a given amount of capacity (MW) for

which the buyer often pays a fixed fee, the option fee. There are also minimum and

maximum take constraints on the number of hours the contract can be exercised. In this

respect we can identify base load and peak load contracts. The former have a low strike

price and a high minimum take, whereas the latter have high strike price and low

minimum take. Contracts can also be profiled in such a way that the contracted capacity

varies throughout the contract duration. These contracts can offer customised type of

cover.

Most contracts offer cover against variations of the System Marginal Price (SMP), but

demand for uplift or capacity component cover exists and contracts may be offered that

provide cover for the Pool Output Price (POP) or any of its components.

The duration of contracts may vary. On the one side of the spectrum, we have the

contracts signed by the distribution companies with independent power producers (IPPs),

which are in general long term (10-15 years), as well as the Coal Deal where until

1997/98 the distribution companies have to buy 30mt p.a. of the output of British Coal

fired plants [Smith New Court (Dec 1992)]. On the other hand, we have the existence of

short-term traded contracts (electricity futures arrangements or EFAs) with a duration of

a few weeks. The vast majority of the contracts signed so far have durations longer than

1 year and EFAs have played so far only a marginal role, [see also Barclays de Zoete

Wedd (1992), Smith New Court (Aug 1993)].

Finally, most contracts link the strike price to various escalators, mainly fuel prices and

RPI. The following table summarises the important dimensions that characterise contracts:

Chapter 7: The Electricity Markets Model 176

Table 1: The main dimensions of electricity supply contracts

CAPACITY No of MW, min/max take, base/medium/peak load,
profiling

PAYMENTS Option fee, strike price, one-way, two way
LOAD Base-medium-peak, take-or-pay, profiling
DURATION Long term (eg IPP contracts),coal deal, short term
REFERENCE PRICE SMP, Capacity Component, Uplift, combination of them
INDEXATION Fuel prices, RPI

Due to the complexity of the contract market, simplifications were considered to be

necessary while care was required to maintain the main features of the market. Different

contracts were grouped in a small number of contact types. It was decided, initially, in

addition to the long-term contracts with independents and the coal deal, base, medium and

peak load annual contracts to be considered according to the take constraints. Generators

would decide how many contracts (no of MW) they would be prepared to sell, at different

prices, for each type of contract. This in effect, is the supply curve for this financial

product. Similarly, distribution companies and non-franchise customers would decide how

much they are prepared to buy at different prices (demand curve).

From a modelling perspective, class Curve was created as the superclass of two subclasses:

SypplyCurve and DemandCurve.

Class curve models the commonalities

between the two types of curve (eg.

aggregation of a curve), while the two

subclasses model the specific

characteristics of demand and supply.

As a result a Contract Market was

modelled as the object where supply

and demand curves can aggregated as

they are submitted, demand and

supply are balanced, and the

equilibrium price, is eventually

Chapter 7: The Electricity Markets Model yri

calculated. It should be stressed, that the real contracts market operates as an auction, and

the o e the above process is consistent with the way that market operates and clears.

As we have already discussed we have modelled contracts as annual distinguished in terms

of base, medium and peak load. The distinction in terms of load, is based on the number

of hours assigned to each load, as a percentage of the total hours in a year. It was

decided to assign 40% of the total hours to Base load, 40% to Middle, and 20% to peak.

This split yields 3514 hours in the Base slot, 3396 hours in the Middle slot, and 1825

hours in the Peak. By superimposing this split on the Load Duration Curve, we can also

find the plant load factor needed to produce the energy corresponding to each type of load

(see figure 4 and table 2).

Table 2: The split of the Load Duration Curve

Peak Load Middle Load Base Load

Hours 1 - 1825 1825 - 5222 5222 - 8736
% of Total 20% 40% 40%
Load Factor 82% 65% 47%

The above view of contract modelling, even though was initially considered quite abstract,

was overall regarded attractive, because it proved a very versatile tool in modelling a wide

range of supply curves (corresponding to actual plant stacking), as well as a wide range

of demand curves (expressing demand preferences). Such curve representations allowed

the modelling team to debate the different levels of risk aversion on the part of

distribution companies by shifting the demand curve to the left or their right. Similarly,

a squeeze of the contract market by the generators was modelled by moving the supply

curve for contracts upwards. Other types of oligopolistic behaviour were also discussed.

Regarding the ‘Customer Contract Market’, the distribution companies supply contracts

(which reflect the mix of their own contract market and pool purchases), while the

Customers (the Consumers of electricity) submit demand curves which reflect their

willingness to contract for electricity. In addition to the above, the modelling view of a

curve which can be represented generically as an object, that can be aggregated or find

L

Chapter 7: The Electricity Markets Model 178

its equilibrium with another curve, proved very concise during the actual OO/DEVS model

building.

Overall, contracts were modelled as:

(i) Short term contracts (annual) which are represented as supply curves for base, medium

and peak loads. The price axis of the supply curve reflects the bid prices of the plants

plus a contract premium. Each curve is composed by stacking up the plants in terms of

price while the capacity axis contains the cumulative plant capacity. Plants are

distinguished into the three fore-mentioned types of load in terms of their utilization. For

instance, plants that have availability of 60% or more compose the ‘base load’ curve,

plants that have 20% or more availability compose the ‘medium load’ curve, while the

remaining plants compose the ‘peak load’ curve.

(ii) Coal Deal contracts that have a duration of 4 years and are represented as a one point

supply curve, where the quantity (MW) represents the percentage of the National Power

and PowerGen output allocated to the Coal Deal, whereas the price is predefined for each

of the four years. The Suppliers split the Coal Deal in accordance to their share of the

domestic market [see Smith New Court (Dec 1992), pp. 49-51 for details regarding the

coal deal].
(iii) The IPP contracts, which have been modelled as a one point supply curve which

feeds directly to the suppliers. The quantity included in the IPP contracts corresponds to

the output of the Independent generators, and the price is linked to the bid price of the IPP

plants plus a fixed cost.

Chapter 7: The Electricity Markets Model 179

Table 3: Object Specification Form (partial) for object Contract Market

Object Name: Contract Market
Inherits from: Market

------- - - . ___ -

Public Behaviour:
Receive Demand Curves
Receive Supply Curves
Find the equilibrium between demand and

Supply

Variables:
supply,
demand,
equilibrium price

Private Behaviour:
Aggregate Demand Curves
Aggregate Supply Curves

Instances:
(2 instances) Contract Market (between
Generators and Suppliers),
Customer Contract Market (between Suppliers
and Customers)
Collaborates with the Object:
Consumer, Supplier, Generator, Supply Curve,
Demand Curve

(ii) The Customers

As we have mentioned earlier on, the modelling team of DC has suggested the split of the

customers into three groups, i.e. ‘Domestic’, ‘Commercial’ and ‘Industrial’, with a further

sub-division for each of the groups into a ‘competitive’ and a ‘captive’ part. An initial

allocation between captive and competitive is defined at the beginning of the simulation

run, with subsequent changes year on year to reflect the development of the market. It

was felt, that this feature, would provide an interesting dynamic element in the model.

Customer demand is initialized to 50,000 MW (peak demand) for the first year of the

simulation, and increases thereafter with a rate of 1.1% per annum. In addition, customers

have a base, medium and peak demand based on the split presented in Table 2.

Each customer has a decision rule that formulates next year’s price expectation, based on

current year’s price plus some expected change. Based on this price expectation a

Customer formulates a demand curve, for each of the fore-mentioned type of load,

expressing its price preferences using the tariff price as a bench mark. The shape of the

Chapter 7: The Electricity Markets Model 180

customer demand curve, denotes an inelastic demand, given that the customers will always

buy electricity at any price below the tariff price.

The most important variable for each customer category, was considered to be the function

of the outturn price vs expected price. This function was set a measure of customer value

in the system, and initially was set as a the fraction of outturn price over expected.

Table 4: Object Specification Form (partial) for object Consumer

Object Name: Consumer
Inherits from: Company\Customer
Public Behaviour:
Produce Captive Demand
Produce Competitive Demand
Bid for contracts
Receive contracts
Receive PIP

Variables:
demand, contract cover,
demand Growth Rate,
captive Demand, competitive
Demand,
expected Captive Price,
actual Captive Price,
degree Of Satisfaction,
captive Percentage, duos, pip

Private Behaviour:
Produce Demand preferences for contracts
Aggregate Supply Curves

Instances:
(3 instances) Domestic, Commercial, Industrial
Collaborates with the Object:
Generator, Contract Market, Demand Curve

(iii) The Suppliers
In the beginning of each financial year the Suppliers (distribution companies) have to set

tariffs and offer contracts to customers, having an estimate of what the pool price will be.

Given the experienced pool price volatility, the risks of over or under-charging are very

high. The main role of electricity supply contracts has been to reduce and if possible

eliminate this risk. Distribution companies would prefer to be fully covered for their

forecast demand, if the risk premium involved is not very high. The risk premium is

measured as the difference between the cost of buying electricity through a contract and

the cost of buying from the pool (net contract cost).

I

Chapter 7; The Electricity Markets Model 181

Cost stability is a key factor in achieving a number of other objectives such as increasing

customer satisfaction, broadening the customer base, avoiding conflicts with the regulator

and pleasing the City. But cost stabilisation is not the only objective in determining the

level of cover and the composition of the contract portfolio. The cost of the cover is also

an important consideration, despite the fact that regulation allows distribution companies

to pass this cost on to franchise customers. Electricity companies are competing with

other energy companies and with each other, thus cheap energy supply will in the long

run be a definite competitive advantage. In addition gross inefficiencies will attract the

attention of the regulator, since‘economic purchasing’ is part of the licence requirements.

Distribution companies have also used supply contracts to influence developments in the

generation market. By signing long term contracts with independent power producers they

tried to reduce the oligopolistic power of National Power and PowerGen and they

managed to establish a sizeable new competitive force in this market. As we discussed

earlier on, the IPP contracts have been represented explicitly in the model.

A Supplier participates both in the pool and the contract market. In the pool the Supplier

buys the electricity it needs for its committed demand. In the contract market the Supplier

purchases contracts to reduce the variability of its electricity purchase costs. We model

the Suppliers’ preference for contracts through a demand curve for contracts. The initial

decision rule is that if the net contract cost is zero for a particular contract, a Supplier is

prepared to buy enough to satisfy its expected demand. For higher risk premiums, they

are prepared to reduce the level of cover and take some pool risk. Required electricity

purchases change each year as a result of success or otherwise in the Competitive

Market’. Suppliers will formulate a view of their expected success in the Competitive

Market and use this, plus their captive market commitments to determine their purchasing

targets from the Generators. This will in turn depend on their expectations of prices and

available volumes in the Pool and Contract Markets.

As we have mentioned earlier on in this chapter, the modellers made the design choice to

define different types of suppliers in terms (a) of their purchasing behaviour (i.e. pool risk

aversion in buying contracts, IPP contract purchasing) and (b) of their selling behaviour

(i.e. by offering different ‘product ranges’, eg some only offering to the captive market,

L

Chapter 7: The Electricity Markets Model 182

others also offering to the ‘Competitive Market’, on different bases such as ‘Pool +

Margin , Fixed Price , Contract + Margin’ etc). It should be pointed out that one of the

instances of the class Supplier, represents the ‘Direct Sales’ companies set up by the

Generators willing to compete in the Customers Contract Market [see Smith New Court

(Dec 1992) p.29]. As a result ’Direct Sales’ do not receive any coal deal or IPP contracts,

and do not target the domestic customers. The objective of introducing these types of

supplier was to allow different commercial strategies to be compared. It should be

pointed out this was considered by DC, as one of the key aspects of model development

as the final model would show how different approaches fare over the years in terms of

market share and profitability.

Object Name: Supplier
Inherits from: Customer
Public Behaviour:
Demand for Contracts
Supply of Contracts
Receive Captive Demand
Receive Contracts

Variables:
Existing Contracts, Yearly
Contracts, Captive Demand,
Competitive Demand, Expected
Competitive Demand, Revenues,
Costs, Profit Margins for tariffs
and contracts, Duos, Tuos, VAT,
Levy

Private Behaviour:
Formulate Competitive Customer size

expectations
Formulate demand preferences for contracts
Formulate contract supply curves

Instances:
(4 instances) Types A, B and C, and Direct
Sales
Collaborates with the Object:
Supply Curve, Demand Curve, Contract
Market, Pool Market. Consumer

Table 5: Object Specification Form (partial) tor object Supplier

(iv) The Electricity Pool Market
The electricity pool balances demand and supply for electricity and calculates electricity

prices. Generators bid for their plant capacity on a daily basis and based on forecast

Chapter 7: The Electricity Markets Model 183

Generators

• Plant Bids
• Availabilities
• Take-or-pay

• Demand

• Plant Utilisation
• SMP

• Period file
• Plant file

---------- »Take or Pay file
Pool

Market
• SMP file
• Production

costing file

ECAP

SMP

EUjers

Figure 5: The interface of the
OO/DEVS Electricity Markets Model to
ECAP

demand a day-ahead schedule is calculated. In

this model, since we are interested in medium

to longer term interactions, an aggregate view

of the pool is taken. The pool price

calculation is annual, but accurate enough

since it uses the ECAP (Vlahos 1989)

production costing algorithm.

It should be noted that, given a set of plants,

their bid prices, availabilities and take-or-pay

constraints, as well as a demand profile (load

duration curve), the ECAP algorithm will

generate the optimal production schedule

putting the plants in a merit order and produce

the System Marginal Prices corresponding to the a number of seasons for any year. Such

a representation of the Pool Market is necessary, as it provides an accurate model of the

plant economics in the system, which is the basis to explore realistically the strategic

behaviour of the system entities (figure 5 provides an overview of the interface with

ECAP and the OO/DEVS model).

Chapter 7: The Electricity Markets Model 184

Table 6: Object Specification Form (partial) for object Pool Market

Object Name: Pool Market
Inherits from: Market
Public Behaviour:
Receive Plant Bids
Receive peak demand
Produce SMP
Produce Schedules

Variables:
smp, lolp, uplifts, schedules
plants,
availability patterns,
take or pay patterns,
peak demand

Private Behaviour:
none
Instances:
(1 instance) Pool Market
Collaborates with the Object:
Consumer, Supplier, Generator, Plant

(iv) The Generators

It has been said and it is true that without the income from contracts both PowerGen and

National Power would now be bankrupt. The levels of pool prices that have prevailed in

the first two years of pool operation, are hardly adequate to cover costs (see figure 6).

Hence, it would seem perfectly rational for them to be very keen to offer new contracts

to distribution companies and to extend existing ones.

Instead they pursued a dual track strategy. Firstly, they entered the supply business very

aggressively, taking market share from distribution companies (we have modelled this fact

through a supplier called ‘Direct Sales which targets only the competitive market, and has

no IPP or Coal Deal contracts). Secondly, they used the threat of pool price manipulation

to force contract prices at levels much higher than pool prices. Towards the end of 1991,

the coefficient of variation (ratio of standard deviation to the average) of pool prices went

up to about 60% (!), double the level of the previous 12 months [OFFER (1991)].

This strategy of the generators appears to be double edged given that distribution

companies are their largest customer, buying the electricity from the generators in the first

place. In the supply business distribution companies have a competitive advantage in that

Chapter 7: The Electricity Markets Model 185

Figure 6: Generators Costs vs Pool Prices

they already have the sales

infrastructure that the generation

companies lack and a long

established relationship with their

customers. However, the

generators in trying to gain market

share have to offer low prices. The

overall effect will probably be that

prices decrease and margins erode

as generators and distributors fight

for the same customers.

The generators have two distinct ways to apply their strategy. The first one is through

bidding their plants to the pool. In addition, generators supply the contract market with

contracts of the types that we described earlier on. They have many ways to influence

both markets. They can affect the pool market by employing bidding tactics, such as

making plant unavailable to the pool or varying the bid prices. They can also decide to

offer more or less contracts to more or less attractive prices. All these possibilities need

to be investigated. But as a starting point, our decision rule assumes cost reflecting

bidding (cost + margin), and a contract supply curve that presumes willingness to contract

most of their capacity. This reflects their publicly declared intentions.

In terms of modelling, each plant in the system, is represented as an instance of the class

Plant. This class encapsulates specific plant characteristics, like its name, owner company,

capacity, availability, last utilization, type of fuel, economic life, as well as starting and

ending production date. As a result, each Generator owns a set of such objects. It should

be noted, that prior to bidding its plants to the pool, each generator groups them in base

medium and peak plants, using as a bench mark last years plant utilization (the split of

40% for base load plant, 40% for middle load plant, and 20% for peak load plant is used,

as has already been presented earlier in this chapter). Based on this grouping, the

generators bid their plant to the pool adding a different mark up for each type of load.

Chapter 7: The Electricity Markets Model 186

Finally, investment and disinvestment have been included, as the generators in our model

bring new plant into production while they retire old plant capacity. This is achieved

externally (i.e. there are no actual investment or retirement rules in the model) through the

fact that each plant has a starting and ending production date. Plant investments and

retirements reflect the declared intentions of the generators [for example see Smith New

Court (Dec. 1992) & OFFER (1993)].

Table 7: Object Specification Form (partial) for object Generator

Object Name: Generator
Inherits from: Company
Public Behaviour:
Plant Bids
Supply Contracts

Variables:
plants File, supply, plants, sales
Contracts, bids,
capacity, utilizations, smps,
mark ups, coal Deal,
non Market Contracts

Private Behaviour:
Formulate Plant Bids
Formulate supply contract preferences

Instances:
(4 instances) National Power and PowerGen,
2 more instances of two subclasses: IPP and
Nuclear ____________
Collaborates with the Object:
Supplier, Supply Curve, Plant, Contract Market,
Pool Market____________________=—=——=^==^==^^=!

Chapter 7: The Electricity Markets Model
187

r^eA 1"? 1999 1997
4

F
1998

;®Oi.

1999
6

4239
6630
7210
24.3
27.6
29.6
3938
5809
7601

2000: 2001 2002 2003
7; 8 9 10

5189; 5735 5673 5185
7206 ; 8204 8064 7926
6622: 6807 6909 7363
24.4; 24.6 24.8 24.7
20 1 29.3 297 29.3
30.8; 33 8 35.8 36.2
3955; 3956 4052 4250
5969; 5834 6005 6169
744R ■ 7AfW7711 FfiTin

i SÄ. » " il

’ 6210: Sg

5 Price Base 24.2 23 8: 24 1
' Price Middle 27 £ 28 4 287
8 Price Peak 30 9 29 7 16
9 : Customer Cover Base 199g 2231 2365
12 Customer Cover Middle 2949 3211 7 3494
11 Customer Cover Peak 3704 4186' 4425

3122
4334

0
23.8
27.9
32.8
2507
3520
5217

..... 4444
9042
8123
24.4
27.1
30.7
3329
4577
667112 ; Price CüVwi Dab« 4y.b 49 0 49 4 49.1 49.2 48.8 49.1; 49 5 497 49 3

54.1 53.2 53.0 53.6; 55.4 557 55 2
58.8 57.0 55.1 ¿6.3; 60.1 62.6 63 1

16 Pool Purchases Middle 0 4105 ; 4105
17 : Pool Purchases Peak 832 3132 3922

620
2032
8864

2486
1589
6010

3759
5430
8689

3246 ; 2928 3149 3774
5442: 4755 5113 5440

10007; 10209 10381 10165
Tfi.fi;.......................................
19 Coal Deal Base 3235 3084 3018
20,::: Coal Deal Middle 4343 4111 ; 4189
21 Coal Deal Peak 5168 5027 5216

3253
4260
5232

0
0
0

0
0
0

0; 0 0 0
0; 0 0 0
0; 0 0 0

23 : IPP Contracts Base 933--------- 1596 : 159b
24 IPP Contracts Middle 933 1596: 1596

1698
1698

1698
1698

1698.255
1698.255

1698.255; 1698.255 1698.255 1698.255
1698.255:1698.255 1698.255 1698.255

25 IPP Conti acts Peak 933 1596: 159E 1698 1698 1698.255 1698.255; 1698.255 1698.255 1698.255

27 Total Demand Base 7290 8358 ; 8572
22 Total Demand Middle 10082 11722; 12165
29 Total Demand Peak 12719 14973; 15600

8593
12324
15794

8628
12329
15831

9895.862
13758.23
17597.18

10133.2:10361.12 10520.14 10657.1
14347.15: 14657.06 14875.21 15064.04
18327.75; 18714.58 18988.41 19226.17

31 Captive Demand Base 5401 6293 6326
32 Captive Demand Middle 7470 8866 ; 9058
33 Captive Demand Peak 9423 11369; 11681

6262
8963

11553

5947
8621

11154

6759.831
969776

12474.74

7164.873 : 7360.141 7486.148 7589737
10242.02; 1050677 10679.26 10821.94
13148.97 ; 13478.83 13695.07 13874.6

34
35 Costs 2.4E+O9 2.7E-tO9 ; 2.8E+O9
35 Revenues 3.9E+O9 3.8E-tO9 3.9E+O9

2.8E+09
3.9E+09

2.6E+09
4.3E+09

2.9E+O9
4.5E+O9

3.1E-+09; 3.3E+09 3 4E+O9 3.5E-IO9
4.6E+O9; 4.8E+09 5E+O9 5.1E-KB

3?" i

Figure 7: Supplier Type A; Spreadsheet output

7.6 Running the Electricity Markets Model

As soon as the Electricity Markets Model was built and tested, the modelling team

identified the main variables of interest, within each of the model entities. These variables

were monitored within a spreadsheet environment (Quarto Pro for Windows) through the

spreadsheet output facilities, build within OO/DEVS. Naturally, variable monitoring

provided a second line of model testing and debugging.

It should be pointed out, that within the spreadsheet each model entity was represented in

a different sheet. In that respect, fourteen different sheets were used to output variables

from the fourteen basic model entities (i.e. four generators, four suppliers, three

consumers, the contract market, the customers contract market and the pool market). Each

sheet includes a column with the variable names (as model output), and subsequent rows

with the corresponding values produced during the simulation run. The sheer amount of

Chapter 7: The Electricity Markets Model

1
2
3
4
5
S

Pool Market 1994' ~ E 1 F 1—G "i—“ - । ■ 1 I—-1 ■ ft
Clock 0 , 19S^ 1?96 1997__ 1998___1999___ 2000 2001 2002 2003
SMP Base 21 17 7070o-q on;■ ------ - -______ _____ ___ 7 8 9 10
SNIP Middle 22 51 27 R1 5k SU 23 32 23 31 22 98 23 31 23.53 23.75 23.46SMP Peak 2 72 30^ S® 26 83 26 61 261 6 26 64 2888 28.30 27.89

~ 22 /2 3048 28 37 29.00____ 28.51 29.19 27.72 28.61 31 47 33.34 33.74

7 --------------_2Z01____ 26.73 25.47 25 81 25.77-------25 82 25 7-^7! pc kk „

Figure 8: Pool Market; Spreadsheet output

information outputted to the spreadsheet work-sheets (which in no way represents the

whole information included in the model), presents a good measure of how well

information can be structured and represented within OO/DEVS.

Figure 7, depicts the model output for one of the suppliers (Type A), represented in the

model. As can be observed, the variables of interest regarding the instances of class

Supplier, include the amount of capacity bought from the contract market (for the fore­

mentioned three types of load), the amount of capacity bought from the Pool Market, and

their corresponding prices, as well as the amount of capacity bought in Pool Deal and IPP

contracts. The demand that the supplier has to meet, as well as cost and revenue figures

are also included.

The information presented in Figure 7, can be seen as a way of verifying the actual model

behaviour through its decision rules. For example, it can be observed that the Coal Deal

ceases to exist after 1997, as well as the fact that the annual values corresponding to

capacity bought from the Coal Deal and IPP contracts vary from year to year. The latter

variation, reflects the plant investment and disinvestment built into the model. It is also

interesting to observe the movements of the amounts of capacity bought between the

Contract Market and the Pool Market. Indeed, if the contract market prices are compared

to the POP (Pool Output Price) values depicted in Figure 8, then it can be seen how the

Supplier makes capacity purchasing decisions, given the level of the pool prices (note that

every supplier has a degree of pool risk aversion, and therefore always contracts capacity).

Having identified the variables of interest in the model, the modelling team suggested a

number of control variables, within each model entity, which would be interesting to

experiment with. Based on this set of variables, a number of scenarios was set up, and

the behaviour of the model was explored. In what follows, we present one of these

Chapter 7: The Electricity Markets Model 18 9

scenarios with the objective to demonstrate further the functionality/behaviour of the

model, as well as to give a flavour of how the model is used to produce useful insights.

One of the objects of particular interest was the class Supplier and its instances. As we

have discussed earlier on, the different types of supplier model different electricity

purchasing and selling strategies. In the scenario discussed herein, we concentrate on the

purchasing policies of the Suppliers. These policies are based on the capacity purchased

from the Pool Market, the Contract Market and the IPP and Coal Deal contracts. As a

result, each instance of Supplier can control the capacity bought from the four above

sources. The scenario presented here is based on the following assumptions:

• All suppliers (except ‘Direct Sales’) have the same Captive market share, and all

suppliers target the same percentage of the Competitive market (i.e. expected size

of their market of 30%).

• ‘Direct Sales’ has no Captive market share.

• All suppliers buy a percentage of the Coal Deal contracts based on their share of

the Captive market (i.e. ’Direct Sales’ have no Coal Deal contracts).

• All suppliers (except the ‘Direct Sales’) share equally the IPP contracts (i.e. 1/3

of the total capacity in IPP contracts, each).

• ‘Direct Sales’ have no Coal Deal or IPP contracts

• All suppliers have a contracts demand curve, which is represented as a line the

slope of which represents the pool risk aversion of the specific supplier. Each

supplier will buy all its demand for electricity in contracts if the price will be the

same as POP. Otherwise, the supplier will buy less, given the degree of its risk

aversion. The aggregate demand curve for contracts, as it is submitted in the

contract market is depicted in Figure 9.
Supplier A has a slope of 1.1 (that means that they will not pay more than 10%

over the POP for capacity, as a risk premium).

• Supplier B has a slope of 1.3
Supplier C and the ‘Direct Sales’ have a slope of 1.5 (they are prepared to pay as

much as 50% over POP as risk premium).

Figure 10 depicts the purchasing mix of the four types of supplier, as it can be clearly

Chapter 7: The Electricity Markets Model

Figure 9: Demand vs Supply Curves (for Peak Load Contracts)

seen the less risk averse (Type A) buys more capacity from the pool, while the least risk

averse (Type C and the ‘Direct Sales’) make almost no pool purchases. The most

interesting result is however depicted in figure 11, which shows the relative market shares

of the four Suppliers. As can be observed, Types A B and C fare in a similar way up to

the end of the coal deal. The differences in their market shares is a result of their

differences in pool risk aversion. As a matter of fact, before the termination of the coal

deal, the pool risk averse supplier (Type C) is increasing its market share, in contrast to

the risk taking one. Nevertheless, after the end of the coal deal the positions of the

suppliers are reversed, and the least pool risk averse supplier gains a considerable amount

of market share. In addition, the ‘Direct Sales’, being in a market share gaining position

before the end of the coal deal, find itself loosing market share rapidly .

In observing the above behaviour two comments can be made.

(a) The existence of the coal deal, taking a quite large portion of the demand of the

suppliers, works as a straightjacket regarding market behaviour. As a consequence, the

coal deal results into less contracts offered to the Contract Market, at less attractive prices.

Nevertheless, after the end of the coal deal the Contract Market gains in significance as

L

Chapter 7. The Electricity Markets Model 191

Overall Purchase Mix
Supplier A

Overall Purchase Mix
Supplier B

1994 1996 1998 2000 2002

■ Coal Deal HIPPs
■ Contract Mkt E2 Pool

■ Coal Deal ■IPPs
■ Contract MktO Pool

Overall Purchase Mix
Supplier C

■ Coal Deal ^IPPs
■ Contract Market E3 Pool

Overall Purchase Mix
Direct Sales

1.2 --

[■Contract MktE^Pool

Figure 10: Purchase Mix for the four types of Supplier

Chapter 7: The Electricity Markets Model

Type A Type B
-«-Type C : Direct Sales

Figure 11: Relative Market Shares for the four types of Supplier

a large proportion of electricity is treated in that market (see Figure 10). Additionally,

as an overall bigger market is in operation, the less risk averse players improve their

competitive position as they can offer cheaper prices and thus gain market share.

(b) The result depicted in Figure 11, regarding the fact that the ’Direct Sales’ loose market

share rapidly after the end of the coal deal, strengthens the argument that a systemic view

should be taken in analysing the privatised electricity industry. The ‘Direct Sales’ do not

behave any differently, in terms of their purchasing policies, before or after the end of the

coal deal. However, the key to the interpretation of this finding is that the coal deal is

priced at prices higher than the average POP, as a result after the end of the deal,

Suppliers A B and C find themselves buying cheaper electricity and gaining comparatively

more market share.

Finally, we should stress that in the above scenario no explicit market manipulation

strategies have been modelled, for any of the model entities. The above behaviour is the

result of the structure of the market and the very basic behaviour of the market

Chapter 7: The Electricity Markets Model
193

participants. In that respect, we find particularly attractive the fact that even under a very

simple scenario useful insights can be gained, regarding the long term evolution of the

industry.

7.7 Discussion

As we have pointed out in Chapters 2 & 3, the development of OO/DEVS has been

motivated on the basis on what we summarised as: structure, focus, time-representation

and reusability. Having developed a model within a business environment we can now

discuss how the modelling team of DC has viewed the above four issues, from a

practitioner’s perspective. The views presented herein, correspond to a written evaluation

of the OO/DEVS framework and environment, that the DC modelling team provided at

the end of the modelling exercise.

Structure & Focus

In terms of structure the concept of the object was considered particularly attractive as:

"...building up a model from ‘Objects’ mirrors the natural -world and allows actual

characteristics to be modelled". In addition, as it has been stated: "The concept of an

‘Object’ is very wide ranging, covering both physical entities (eg. Generators) and more

abstract constructs (eg. Curve), yet all can be handled within the same framework". The

idea of an object as a data container and manipulator, was viewed as a powerful modelling

device due to the fact that "objects can be created to simplify the handling and

combination of large amounts of data, essentially in matrix form, extending the scope of

the models". As we discussed in the previous section, the modelling team appreciated

particularly the structured way of modelling and handling information within OO/DEVS,

as soon as the model output was presented in a spreadsheet form.

Inheritance (i.e. generalization relationships) was regarded as a useful tool as: "New

objects can be rapidly created using others as templates, while still retaining all the

characteristics of the original". It has to be stressed, that inheritance proved valuable, at

the point that it was felt that the model should be extended, in order to capture some

Chapter 7. The Electricity Markets Model 194

particular characteristics of the model entities. This was the case, with the ‘plant biding

decision rule’ of Nuclear and the Independent Generators. While the two entities had all

the characteristics of the class EGenerator, it was felt that their actual (in the real system)

behaviour required a slightly different way of modelling. This was achieved by creating

two subclasses of the class EGenerator and overloading one of its methods (method bid).

The provision of aggregation relationships was also judged as a useful modelling feature

regarding model focus as: "Objects of the same type can be aggregated together (eg to

simulate mergers)" and "Models can be built and viewed at different levels of

detail/dissagregation in particular areas, while still retaining full compatibility [with the

OO/DEVS model as a whole]".

In addition, the representation of association relationships within OO/DEVS was

considered as a feature providing considerable flexibility in designing and building models

as: "Links can be set up between any components in the model, allowing particular

interactions to be explored".

Overall, the use of the decomposition diagram, the level diagram, as well as the object

specification forms, were judged as practical tools for conveying information about the

system structure. The level diagrams in particular, proved a useful aid in discussing the

ways that the model entities influence each other.

Finally, the potential to link OO/DEVS with other models and spreadsheets was viewed

as a particularly powerful feature, as in this instance allowed ECAP to be integrated

within the model. The integration of ECAP allowed a very important aspect of the system

to be modelled precisely, using a very elaborate model, whose development preceded

OO/DEVS itself. In a similar fashion, the ability to link OO/DEVS to spreadsheets,

facilitated model development, debugging and presentation by giving access to a wide

range of tools provided within spreadsheet environments. Overall, OO/DEVS was viewed

not only as a modelling and simulation platform, but as a possible integrator of existing

corporate models and information.

Chapter 7: The Electricity Markets Model 195

Time-Representation

It was overall felt, that as the modellers took a year by year view in modelling the

Electricity markets, that the discrete event view provided by OO/DEVS was useful in

modelling the interactions within the industry, as well as features like the Coal Deal and

the introduction and retirement of new plants into the system. It should be pointed out,

that the latter examples are the very instances which are difficult to model naturally within

SD, and it is the exact case where one would use discrete delays in ithink. Overall, it was

commented that: The use of messages to trigger methods in receiving objects, allows

control over the timing of particular events. It should also make it easier to incorporate

processes occurring part-way through a simulation cycle".

Reusability

It should be said that the model components (objects) of the ‘Electricity Markets Model’

were designed with the primary objective that will be reused. In that respect objects like

Curve, Plant, Contract Market and Pool Market were designed and built so that they

capture the characteristics of the industry in a generic fashion. The expectation of the

modelling team is that the objects of this model will constitute the onset of a OO/DEVS

electricity industry model base.

Overall, OO/DEVS has proved in practice effective, in a number of areas that could not

be supported by SD modelling (and software like iThinkj these areas include.

• The natural representation of the model components, which proved invaluable in

designing the model and communicating its characteristics to the management

team.
• The decomposition and level diagrams (with their GUI version) proved particularly

useful tools in viewing the model from different perspectives.

• The ability to reformulate the model fast, changing either decision rules, message

passing between model entities or even the overall structure of the model during

the model conceptualization phase.
• The integration of ‘hard’ and ‘soft’ decision rules in the same object, or within

different objects in the same model.
The concepts of inheritance and aggregation proved particularly useful in moving

Chapter 7: The Electricity Markets Model 196

from the prototype of the model in more elaborate versions, where previously

developed model components could be readily used, while different model views

(aggregates) could be easily explored.

The ability to link the model to a spreadsheet was considered particularly useful

for model debugging purposes, as the results of the model could be readily used

for verification through the use of existent financial models.

Finally, a number of drawbacks of the framework was pointed out by the DC modelling

team. It was commented that OO/DEVS "Still requires familiarity with Smalltalk, which

is most readily achieved by users with a programming background. This is particularly

apparent in specifying methods and decision rules". It was also suggested that the use of

some Smalltalk jargon (eg. terms like class, instance, etc) could be problematic for the

unfamiliar user. In addition to the above, the need for greater auditability and the ability

to track through processes and establish why particular results occur, was identified.

Overall, the considerable size of the model and the bulk of information contained in it,

suggested the need for a set of tools for enhanced model browsing and debugging.

It should be pointed out that the above drawbacks are mainly related to the current state

of the development of the framework. In relation to the first point in particular (the need

for Smalltalk programming in specifying the decision rules) it should be mentioned that

the ability of specifying decision rules within a spreadsheet, (see section 5.4) partially

alleviates the problem. Nevertheless, our experience showed that when large amounts of

information are to be handled within the decision rules, Smalltalk represents a better

environment in doing so. The above drawbacks and comments, point out to a number of

future research and development directions, that we will discuss in the last chapter of this

thesis.

7.8 Summary

In this chapter, we presented the development of the Electricity Markets Model, using the

OO/DEVS framework within a business environment. We have initially focused on a set

of eight steps, that during the model building with the DC modelling team, proved a

Chapter 7: The Electricity Markets Model
197

concise way for model development. We have then presented the
background, scope and structure of the Electricity markets model, by summarising the

characteristics of the pool and contract markets for buying and selling electricity in the

newly privatized UK electricity market, as well as by presenting how these characteristics

were modelled using the OO/DEVS framework as a modelling platform.

The model presented here has been based on the main entities of the system and the way

they interact. In this model we have incorporated fairly elaborate decision rules, with the

aim to encapsulate the main objectives of the players within the industry. In addition, to

these decision rules, we have incorporated the ECAP [Vlahos (1989)] decision costing

algorithm within the pool market entity in order to produce a realistic System Marginal

Price on which contract costing is reflected both by the buyers and the generators of

electricity. Even though, the model itself contains a significant amount of quantitative

data, and information contained within the mental models of the DC modelling team, our

experience showed that the OO/DEVS modelling paradigm coupled by a user friendly GUI

(and linked to a spreadsheet environment), have provided a platform to model this

information in a very structured and natural way, integrating at the same time the hard and

soft modelling perspectives.

In section 7.6 of this chapter, we have presented one of the scenarios developed for model

experimentation and focused on the nature of model output, as well as some interesting

results regarding the nature of the electricity industry. The DC modelling team has

developed a number of additional scenarios, the presentation of which is beyond the scope

of this chapter. Our future expectation is that the generality and scope of the model will

facilitate the development of a number of future scenarios, with minor modifications of

the entities’ instance variables and decision rules.

Finally, in the last section of this chapter we presented the views of the modelling team

based on their modelling experience with OO/DEVS. It should be pointed out, that the

experience gained by using OO/DEVS within a business environment confirmed our views

presented in the final discussion in Chapter 6, regarding the research issues of structure,

focus, time-representation and reusability. Overall, modelling within OO/DEVS showed

Chapter 7: The Electricity Markets Model 198

that the concepts supported by the framework address the research questions set in

Chapters 2 and 3.

Moreover, the development of a model with DC for over a period of four months has

proved that OO/DEVS can be used as a decision support tool that can support effectively

the development of natural, modular and reusable models, while it can accommodate

‘hard’ and ’soft’ decision rules in a unified way. The fact that the DC management team

started from a position of scepticism, and turned into advocates of the approach underlines

this point. Nevertheless, a number of research and development issues remain open. These

are the issues that we will address in the next chapter.

Chapter 8: Conclusions & Further Research Directions 199

Chapter 8

Conclusions &
Further Research Directions

Contents:

8.1 Thesis Summary

8.2 Thesis Research Contribution

8.3 Further Research Directions

Chapter 8: Conclusions & Further Research Directions________________ 200

8.1 Thesis Summary

At the introduction of this thesis, we discussed the increased need for industry simulation,

and the increased popularity of the approach for scenario development, management

debate and learning, as well as strategy formulation. Having highlighted the modelling

requirements for effective industry simulation, we set as the task of this research work the

development of a modelling and simulation methodology, that can meet the challenges of

industry modelling in the 90’s and beyond.

Having identified System Dynamics as the principal methodology, used to date, for

industry modelling and simulation, we presented (see Chapter 2) the main concepts on

which System Dynamics is based by decomposing it into three distinct parts: (i) model

building , (ii) core technology, and (iii) experimentation/leaming. Using these three areas,

as well as a classification scheme as a vehicle of comparison between industry and

manufacturing simulation, we identified a number of weaknesses in relation to the second

of the above parts, i.e. the System Dynamics core technology. More specifically, at the

end of Chapter 2, we classified the issues related to our critique as:

► Natural Model Representation

► Structure/F ocus

► Reusability

► Time-Representation.

These four groups of issues provided the basis for our research agenda set at the end of

Chapter 2 and the introduction of Chapter 3. More specifically the research questions that

we attempted to address in this thesis, evolved around.

► The ability and value of entity based modelling regarding industry

simulation.
► The need for model modularity, reusability and extensibility.

► The ability to map a complex system through a number of

relationships over and above the association one which is provided

by System Dynamics (i.e. aggregation and generalization

relationships).

Chapter^ 8: Conclusions & Further Research Directions_________________________ 201

q estion of whether or not the naturalness of discrete event time representation

an be merged with the ability to ‘view the system from above’ provided by

System Dynamics and its continuous time representation.

Having set our research agenda, in Chapter 3 we investigated the research question of

entity modelling by exploring the views of software engineering, manufacturing simulation

and cognitive psychology. The result of our survey was the discussion of the concepts

related to Object Oriented Analysis, Design and Programming, as well as the expressive

power that object representation adds to modelling. In attempting to partially address the

question of relationship modelling, we discussed the concept of generalization relationship

modelling, provided by Object Orientation and its possible value within the industry

simulation problem domain.

In the second part of chapter 3, we investigated the question of discrete event modelling,

and focused on DEVS as a discrete event formalism which can address in a concise way

discrete event modelling while at the same time provide the ability to model

aggregation/disaggregation relationships. In should be pointed out that the choice of

DEVS is consistent with the research objective, set at the very beginning of this thesis,

of providing a technology which is a super-set of System Dynamics.

At the end of Chapter 3, it became evident that the combined concepts supported by

Object Orientation and DEVS would render the theoretical basis to address sufficiently the

questions of our research agenda. Nevertheless, having felt that the theoretical ideas did

not provide on their own a substantial answer to our research questions, we embarked on

the development of a combined OO/DEVS framework and its software implementation.

As a result, in Chapter 4 we presented the current DEVS implementations, found in the

literature, as well as a new Smalltalk DEVS implementation. The Smalltalk

implementation of DEVS, brought into light a number of research issues, regarding a pure

object oriented DEVS implementation. In order to address these issues, we embarked on

the development of the OO/DEVS framework, with the research objective to merge 00

and DEVS. At the end of Chapter 4, we presented a small model building example

within OO/DEVS, and developed a practical implementation of the modelling properties

Chapter 8: Conclusions & Further Research Directions_________________________ 202

provided by OO/DEVS, thus demonstrating in practice a solution to the four groups of

issues set out m our critique of System Dynamics in relation to industry simulation.

The actual software implementation underlined a new group of research issues related to

graphical model specification. We attempted to address these issues in Chapter 5, where

we discuss the development of a number of diagrams for model specification, as well as

their implementation in a OO/DEVS GUI. The nature of the GUI, as well as a full

demonstration of model building within OO/DEVS is attempted at the end Chapter 5,

through the use of the ‘Beer Game’.

Modelling the Beer Game’ in OO/DEVS gave us a good indication on how well the

OO/DEV S technology addresses the research questions evolved around the issues of entity

representation, structure/focus, reusability and time-representation. Following this

experience we embarked on a more realistic practical investigation by modelling the

investment behaviour in the newly privatized UK Electricity Industry, and comparing the

OO/DEVS model with a previously built System Dynamics one. Even though the two

models were built purely from an academic point of view and in an academic

environment, the comparison suggested that the attainment of a more functionally explicit

structure adds value to the application of industry simulation.

Nevertheless, the practical issue of whether or not the functionality provided by OO/DEVS

adds value to a model built for business purposes remained an open question. This

question was addressed in Chapter 7, where we presented the development of a OO/DEVS

model within a business environment, over a period of a year. A model of the purchasing

and selling policies within UK Electricity Industry, was developed jointly with one of the

UK Electricity Distribution Companies. The structure of the model as well as sample

results are presented in some detail. Chapter 7 closes by presenting the evaluation of

OO/DEVS by the company’s management/modelling team. Their comments provided an

interesting yardstick in evaluating the functionality of OO/DEVS from a user’s point of

view, as well as a practicioner’s perspective on how well the framework and its

implementation address the research questions set at the beginning of this thesis. From

an initial stand point of scepticism, the team of this company, became advocates of the

Chapter 8: Conclusions & Further Research Directions 203

approach, developing their ‘own’ model and presenting it themselves to senior

management.

8.2 Thesis Research Contribution

An account of the main contributions of this thesis to the establishment of the importance

of state-of-the-art modelling concepts in industry simulation, is given below:

Methodological Contributions

► A review of System Dynamics in terms of its modelling view, simulation software,

application areas and methodological developments, were carried out.

► A critique of the System Dynamics core technology, through a new classification

scheme of simulation models, and a comparative study between industry and

manufacturing simulation methodology, developments and research directions.

► A state-of-the-art review of Object Oriented modelling and the Discrete Event

System Specification, which aimed at placing the System Dynamics modelling

view under the perspective of the broader computer modelling issues.

► An innovative OO/DEVS modelling framework and Graphical User Interface, as

well as their fully-functional Smalltalk software implementation. OO/DEVS

supports the modelling capabilities identified as a result of the SD critique, by

combining the expressive powers of Object Orientation and DEVS in a uniform

modelling paradigm.

► Extensive model building and experimentation were carried out aimed at:

(i) Investigating and testing the modelling properties of OO/DEVS.

(ii) Establishing and validating the answers to the questions set in our

research agenda, through a number of practical examples.

Chapter 8. Conclusions & Further Research Directions 204

Overall, our research hypothesis was that the framework suggested and developed in this

research work, based on a synthesis of Object Orientation and the Discrete Event System

Specification, can address at a sufficient level the questions resulted from our System

Dynamics critique (in Chapter 2), and facilitate the natural representation of organisations

and their behaviour in a given market place. Our modelling experiments, ranging from

simple industry models (i.e. the ‘Beer Game’) to a large-scale model of the Electricity

Industry developed in a business environment, have verified the above hypothesis.

Modelling Contribution to the Electricity Industry

► The case studies presented in this thesis demonstrated how the developed approach

to industry simulation, can be used to address the multi-dimensional policy issues

that the UK Electricity Industry faces under the recent privatization.

► We have demonstrated how the integration of ‘hard’ and ‘soft’ decision rules with

a range of detail and strategic views, can be used to model the industry in an

effective way.

► In the Electricity Markets Model, in particular, we have modelled at a significant

level of detail, the influences between the UK electricity pool and contract

markets, as well as the resulting purchasing and selling behaviour of the industry

players, with quite insightful results. In that respect, we have demonstrated that

OO/DEVS has proved a effective platform for building decision support models,

and that this research work can question the intuition of decision makers within the

electricity industry.

8.3 Further Research Directions

As we have pointed out, this research work has focused primarily on the methodological

area of industry modelling and simulation. The UK Electricity Industry has provided us

with a number of case studies, which have been used as a vehicle to investigate and

Chapter 8. Conclusions & Further Research Directions 205

demonstrate the modelling characteristics of OO/DEVS. In what follows, we attempt to

identify a number of further research issues opened up by this thesis, in relation to the

OO/DEVS framework, as well as the electricity industry as a principal application area

of the methodology.

Further Enhancements of the Methodological Framework

(a) The exploration of the compatibility between the System Dynamics way of

thinking and modelling and the OO/DEVS world view, represents a very

interesting research issue. This issue could be explored by adding to OO/DEVS

the ability to model using standard System Dynamics - like equations. This

underlines the view of OO/DEVS as a super set of the System Dynamics core

technology. In that way, one could aim at a technology that can initially model

a system in a System Dynamics level, but can also provide the ability to structure

the model components further, in a more natural way. This is technically feasible,

as DEVS is a super set of continuous type representations (see Chapter 3 section

10).

(b) The practical issue of providing alternative ways for decision rule specification,

points to a number of research directions. Such a modelling ability, could enrich

the standard modelling capabilities of the OO/DEVS implementation (i.e. Smalltalk

code and spreadsheet decision rule modelling). The questions evolving around the

development of natural-language like modelling constructs, present a very rich

research agenda. Possible areas of research, regarding the above research

direction, include the development of rule based specifications of the models using

PROLOG logic rules, the incorporation of expert system shells for decision rule

specification, or even the use of neural networks for decision rule modelling.

(c) The exploration of the methodological issues related to model-base building

capabilities within OO/DEVS, with the practical aim of creating a model base of

reusable model components. The current implementation of OO/DEVS allows

storage and retrieval of models through a Smalltalk object filer. Even though, this

Chapter 8. Conclusions & Further Research Directions 206

is sufficient for the current use of the framework, the possibility of providing

relational or even object oriented database facilities should be investigated. The

capability of storing objects, during a simulation run, into a temporal database is

one more interesting research issue.

(d) The development of a set of software tools for OO/DEVS model browsing and

debugging. This is a challenging task that has to draw from research work into

the design of high level debuggers for computer languages. The existence of such

tools will speed up significantly model building, and facilitate the development of

robust models.

Further Research in the Electricity Industry Application Area

(a) This research work aims at opening up new modelling possibilities, within the

scope of the electricity industry, that were impossible under the ‘old’ optimisation

view, or limited under the system Dynamics framework. The electricity markets

model, constitutes an initial contribution towards this direction. The target of

further work in this direction should be the construction of a set of reusable model

components along with a set of models, that can assist the investigation of a series

of issues that resulted by the recent privatization. We view this set of models as

building blocks that can be reused within the industry for future analysis.

(b) Concerning policy issues in the industry, an interesting research area is the

exploration of the structural characteristics of the post-privatization industry and

the assessment of how this structure can influences competition, as well as the

investigation of the results of various gaming tactics by the industry players. We

believe, that the results of such modelling exercises could prove very useful

yardsticks not only to the industry players, but to the industry regulator as well.

For example, the possible Monopolies and Mergers Commission split of the

generators, the new Pool trading rules, the ‘optional’ pool membership are some

of the issues being considered, and could be easily modelled.

Chapter 8: Conclusions & Further Research Directions 2Q1

Microworld Design & Training Simulators

As we have pointed out in our review of System Dynamics, one of the most exciting areas

of research within the discipline, has been the use of models as the basis for the

development and use of ‘microworlds’, for management training and learning. This is an

evolving research area where OO/DEVS can contribute, by providing ‘microworlds’ where

the user can modify the structure of the model (i.e. by exploiting the ability to readily

add/remove industry players and aggregate/disaggregate model entities) in addition to the

various control variables. The technical and cognitive questions related to ‘packaging’

OO/DEVS models and tailoring their user interface for learning purposes, represent a

stimulating research area which can benefit from similar research in System Dynamics.

Applications with Different Level of Modelling Detail

OO/DEVS has been devised and implemented having focused on the industry simulation

problem domain. Even though the main case studies in this thesis are drawn from the

electricity industry, the framework could be easily used to model a multiplicity of

industries. In addition, the generality of the concepts supported by the framework and its

implementation, should support the modelling of problems with focus at different levels

of detail. The most readily available area seems to be organizational modelling, where

the different organizational entities and their interactions are modelled and simulated.

Another interesting area that OO/DEVS should be tested, is manufacturing simulation.

Again the interactions and modelling of machines-agents in a factory floor, seem to be an

area, the modelling of which OO/DEVS could facilitate.

References 208

List of References

References 209

References

ADA Reference Manual, U.S. Department of Defence, July 1980

Adelsberger, H H (1987); "Prolog as a simulation language", Proceedings of the 1987
Winter Simulation Conference.

Allen P M (1988); "Dynamics Models of Evolving Systems", System Dynamics Review,
Vol 4, No 1-2

Altair, F B (1988); "Object-Oriented Database Systems", Proceedings of the 7th ACM
SIGACT-SIGMOD-SIGART

Ansoff H I & D Slevin (1968); "An Appreciation of Industrial Dynamics", Management
Science, Vol 14, No 7

Aracil Jaxier & Miguel Toro (1989); "Generic Qualitative Behaviour of Elementary
System Dynamic Structures", the Proceedings of the 1989 System Dynamics International
Conference, pp 239-345

Balmer D W (1987); "Modelling Styles and their Support in the CASM Environment",
Proceedings of the 1987 Winter Simulation Conference

Balmer D W & R J Paul (1986); "CASM the Right Environment for Simulation", Journal
of the Operational Research Society, Vol 37, pp 443-452

Baisi Osman (1990); "Guidelines for Successful Simulation Studies", Proceedings of the
1990 Winter Simulation Conference

Barclays de Zoette Wedd (1992); Electricity Research: National Power/ PowerGen

Basnet, C., S Karacal & T Beaumariage (1990); "Experiences in Developing an Object
Oriented Modelling Environment for Manufacturing Systems", Proceedings of the 1990
Winter Simulation Conference

Beck, K & W Cunningham (1989); "A laboratory for teaching Object-Oriented Thinking",
OOOPSLA 1989 Conference Proceedings, Vol 24, No 10

Birrel, N D & M A Ould (1985); A Practical Handbook for Software Development,
Cambridge University Press

Blaha, M.R., W.J Premerlani & J.E. Rumbaugh (1988); "Relational Database Design
Using an Object-Oriented Methodology", Communications of the ACM, Vol 31, No 4

Blanning, R.W. (1987); "An Object-Orientated Paradigm for Organizational Behaviour",
Proceedings of Decision Support Systems

References 210

Booch, F G (1981); "Describing Software Design in ADA", SIGPLAN Notices,
September 1981

Booch, F G (1986); Object Orientated Development", IEEE Transactions in Software
Engineering, February 1986 V.SE-12, No. 2 pp 211-221

Bunn, D.W., & Larsen, E.R. (May 1992a); "Sensitivity of Reserve Margin to Factors
Influencing Investment Behaviour in the Electricity Market of England & Wales", Energy
Policy, pp 490-502

Bunn, D.W., & Larsen, E.R (1992b); "Modelling the Effects of Regulatory Scenarios on
Investment Behaviour in the British Electricity Market", in the Proc. 23rd Pittsburgh
Symposium on Modelling and Simulation, pp 1965-1972

Burns, J.R., & J. Darrell Morgeson (1988); "An Object-Oriented World View for
Intelligent, Discrete, Next-Event Simulation", Management Science Vol. 34, No. 12

Camara A, P Antunes, M D Pinheiro & M J Fonseca de Seixas (1987); "Linguistic
Dynamic Simulation - A New Approach", Simulation Vol 49, No 5

Camara A, P Antunes, F Ferreire & M J Fonseca de Seixas (1990); "Exploring "ideas":
a Multidimensional Dynamic Simulation Approach", The proceedings of the 1990 System
Dynamics International Conference, pp 181-190

Cassandras, C G & S G Stickland (1989); "Sample Path Properties of Timed Discrete
Event Systems", Proceedings of the IEEE, Vol 77, No 1, January 1989

Coad, Peter & Edward Yourdon (1989); Object Oriented Analysis, Englewood Cliffs, NJ:
Yourdon Press/Prentice-Hall

Concepcion, A.I., & Zeigler, B.P.(1988); "DEVS Formalism: A Framework for
Hierarchical Model Development", IEEE Transactions on Software Engineering, Vol 14,
No 2, February 1988

Cox, B (1986); Object Oriented Programming: An Evolutionary Approach, Addison-
Wesley

Cox, B (1990); "There Is a Silver Bullet", BYTE October 1990

Coyle, R G (1977); Management System Dynamics, J Willey & Sons

Coyle, R G (1981); "The Dynamics of the Third World War", Journal of Operational
Research Society, Vol 32, pp 755-765

Dahl O, B Myrhaug & K Nygaard (1984); Simula67 Common Base Language,
Norwegian Computing Centre

References 211

Davidsen Pal, John D. Sterman & George P. Richardson (1990); "A Petroleum Life Cycle
Model for the United States with Endogenous Technology", System Dynamics Review,
Vol 6, No 1, pp 66-93

De Geus Arie (1988); "Planning as Learning", Harvard Business Review, Vol 66, No 2

Derrick, E J (1988); "Conceptual Frameworks for Discrete Event Simulation Modelling",
M.S. Thesis, Department of Computer Science, Virginia Tech, Birginia

Digitalk Inc., Smalltalk/V for Windows (1991); Tutorial and Programming Handbook,
Los Angeles, Digitalk Inc.

Duke R D (1981); "A Paradigm for Game Design", In C.S. Greenblat & R D Duke,
Principles and Practices of Gaming Simulation, Sage

Edwards J M & Henderson-Sellers B (1993); "A Graphical Notation for Object-Oriented
Analysis and Design", Journal of Object Oriented Programming, Vol 5, No 9, pp 53-73

Electricity Council (September 1985); Report on the Generation Security Standards

Financial Times (8th of June 1992); Eggar urges deal for coal Power.

Fishman, G S (1973); Concepts and Methods in Discrete Event Digital Simulation, John
Willey & Sons, New York

Ford, Andrew & Bull, Michael (1989); "Using System Dynamics for Conservation Policy
Analysis in the Pacific Northwest", Vol 5, No 1, pp 1-16

Ford, A & Yabroff, I W (1979); Technical documentation of the electric utility policy and
planning analysis model, LA-7773-MS, Internal Report US Department of Energy.

Forrester, J W (1961); Industrial Dynamics, MIT Press.

Forrester, J W (1968); "Market Growth as Influenced by Capital Investment", MIR,
Winter 1968.

Forrester, J W (1971); World Dynamics, Cambridge, MA, MIT Press

Forrester, J W (1968); Principles of Systems, Cambridge, MA, Productivity Press

Forrester, J W (1978); "Lessons from System Dynamics Modelling", System Dynamics
Review, Vol 3, No 2

Forrester, J W (1988); "The next frontier: Understanding social systems", Working Paper
System Dynamics Group, MIT, D-3963 SUNY.

Forrester J W (1992); "Policies, Decisions and Information Sources for Modelling", in

References 212

Modelling for Learning, A Special Issue of The European Journal of Operational
Research, Vol 59, No 1, pp 42-63

Forrester, J W, Graham, A , Senge, P , & Sterman J (1983); "An Integrated Approach
to the Economic Long Wave", Working Paper, System Dynamics Group, MIT, D-3447-1

Forrester, J W, N J Mass, C J Ryan (1976); "The System Dynamics National Model:
Understanding Socio-Economic Behaviour & Policy Alternatives", Technological
Forecasting and Social Change, Vol 9, July 1976

Foschiam, S (1989); "Development and Use of System Dynamics Models as Tools for
Strategic Planning of Flexible Assembly Systems", Proceedings of the 1989 System
Dynamics Conference, pp 89-96

Fox M S & Smith S F (1984); "ISIS - A Knowledge Based System for Factory
Scheduling, Expert Systems", Vol 1, No 1, July 1984

Frangini M (1991); "Visual-Based Applications gain wide acceptance", Computing
Canada, Vol 17, No 3

Gibson, Elizabeth (1990); "Objects - Bom and Bred", BYTE October 1990

Glynn, P W (1989); "A GSMP Formalism for Discrete Event Systems", Proceedings of
the IEEE, Vol 77, No 1, January 1989

Goldberg, A & D Robson (1983); Smalltalk-80: The Language and its Implementation,
Reading, MA: Addison-Wesley

Graham I (1993); "Migration Using SOMA: A Semantically Rich Method of Object
Oriented Analysis", Journal of Object Oriented Programming, Vol 5, No 9, pp 31-43

Graham & P Senge (1990); "Computer-based Case Studies and Learning Laboratory
Projects", System Dynamics Review, Vol 6, No 1, pp 100-105

Greenberger, M., M A Crenson & B L Crissey (1976); Models in the policy process, New
York: Russel Sage Foundation

Hackman J R & Morris C G (1975); "Group Tasks, Group Interaction Process, and
Group Performance Effectiveness, A Review and Proposed Integration". In L. Berkowitz,
ed., Advances in Experimental Social Psychology, Vol 8, Academic Press

Henriksen, J O (1988); "One System, Several Perspectives, Many Models", Proceedings
of the 1988 Winter Simulation Conference

Highland, H J (1977); "A Taxonomy Approach to Simulation Model Documentation",
Proceedings of the 1977 Winter Simulation Conference

References 213

Holmes, Andrew (June 1990); Electricity in Europe: Power and Profit, Financial Times
Business Information

Holmes, Andrew (1992); Privatizing British Electricity, Financial Times Management
Reports

Homer J B (1992); "A System Dynamics model of the National Cocaine Prevalence",
System Dynamics Review, Vol 9, No 1, pp 45-78

Hooper, J W & Reilly, K D (Feb 1982); "An Algorithmic Analysis of Simulation
Strategies", International Journal of Computer and Information Sciences, Vol 112

James Capel & Co (February 1990); Reshaping the Electricity Supply industry in England
& Wales

Jensen K (1987); "Coloured Petri Nets", in Petri Nets: Central Models and their
Properties, ed G Rosenberg, Springier, pp 248-199

Jiuqiang Han, Sun Guoji & Wu Biao (1991); "System Dynamics Simulation Language -
DYNAMOC", Proceedings of the 1991 System Dynamics Conference, pp 264-271

Kavrakoglou, I (1985); "Multicriteria Decisions in Power System Planning", in M Zeleny
(ed) Multi criteria Decision Making, JAI Press, Connecticut, pp. 198-209

Kettenis, D.L. (1992); "COSMOS: A Simulation Language for Continuous, Discrete and
Combined Models", Simulation Vol 58, No 1, pp.32-41

Kim, T G (1990); "The Role of Polymorphism in Class Evolution in the DEVS-Scheme
Environment", Proceedings of the 1990 Winter Simulation Conference

Kim T.G. & Park S. B. (1992); "The DEVS Formalism: Hierarchical Modular Systems
Specification in C++"; Proceedings of the 1992 European Simulation Multiconference

Kiviat, P J (1969); "Digital Computer Simulation: Computer Programming Languages",
RM-5883-PR, The Rand Corporation, Santa Monica, California

Klainhaus, A M (1986); "BAMBOO - A Behavioural Analysis Expert System for System
Dynamics Models", Proceedings of the 1986 System Dynamics International Conference

Klainhaus, A M (1989); "Knowledge-Based Modelling", in the Proceedings of the 1989
System Dynamics International Conference

Knapp, Verna (1987); "The Smalltalk Simulation Environment, Part II", Proceedings of
the 1987 Winter Simulation Conference

Kreutzer, W (1986); System Simulation: Programming Styles and Languages, Addison-

References 214

Wesley, Reading, Massachusetts

Kyratzoglou I M (1988); "Computer Aided Petri Net Design for Decision-Making
Organizations", Proceedings of the 1988 Winter Simulation Conference

Labov, W (1973); "The Boundaries of Words and their Meanings", in New Ways of
Analysing Variation in English, ed C J N Bailey & R W Shuy, Vol 1, Washington DC:
Georgetown University Press

Larsen, E R, Morecroft, J D W , Murphy J (1991); "Helping Management Teams to
Model", 1991 International System Dynamics Conference, pp 223-240

Law A M (1987); "Simulation of Manufacturing Systems", Proceedings of the 1987
Winder Simulation Conference

Linvy, M (1987); "DELab - A Simulation Laboratory", Proceedings of the 1987 Winter
Simulation Conference

Lomow, G & D Beazner (1990); "A Tutorial Introduction to Object Oriented Simulation
& Sim++", Proceedings of the 1990 Winder Simulation Conference

Mandler J M (1984); Stories, Scripts, and Scenes: Aspects of Schema Theory, Lawrence
Erlbaum Associates Publishers

Mashayeski, J B (1992); "Transition in the New York State Solid Waste System: A
Dynamic Analysis", System Dynamics Review Vol 9, No 1, pp 223-240

Mathewson S C (1989); "Simulation Support Environments", in Computer Modelling for
Discrete Simulation (Edited by M Pidd), John Willey & Sons Ltd

McIntyre, S C & Higgins, L F (1988); "Object Oriented Systems Analysis and Design:
Methodology and Applications", Journal of Management Information Systems, Vol 5, PT
1, Summer 1988

McIntyre, S C & Higgins, L F (1989); "Embedding Stakeholder Analysis in Object
Oriented Organizational Modelling", Proceedings of the 21st Hawaii International
Conference in Systems Science, Jan 1989

Meadows D H (1972); The Limits to Growth, New York: Universe Books

Merten, P., Loffler, R., and Wiedmann, K.P. (1987); "Portfolio Simulation: a Tool to
Support Strategic Management", System Dynamics Review Vol 3, No 2, pp 81-101

Meyer, B. (1988); Object Oriented Software Construction, Prentice Hall

Micro World Creator™; Microworlds Inc., 347 Broadway Street, Cambridge MA 02139.

References 215

Moore, J C & A B Whinston (1986); "A Model of Decision-Making with Sequential
Information-Acquisition (Part 1)", Decision Support Systems, Vol 2, No 4

Morecroft, J D W (1982); "A Critical Review of Diagramming Tools for Conceptualising
Feedback System Models", Dynamica, Vol 8, Summer 1982

Morecroft, D W (1984); "Strategy Support Models", Strategic Management Journal, Vol
5, pp 215-229

Morecroft, J D W (1988); "System Dynamics and Microworlds for Policy-Makers",
European Journal of Operational Research, Vol 35

Morecroft J D W, D C Lane, P S Viita (1991); "Modelling Growth Strategy in a
Biotechnology Startup Firm", System Dynamics Review, Vol 7, No 2, pp 93-116

Morecroft, J D W & van der Heijden K. (1992); "Modelling the Oil Producers:
Capturing Oil Industry Knowledge in a Behavioural Simulation Model", in Modelling for
Learning, A Special Issue of The European Journal of Operational Research, Vol 59, No
1, pp 102-122

Mosekilde E and E R Larsen (1988); "Deterministic Chaos in the Beer Production-
Distribution Model", System Dynamics Review, Vol 4, Nos 1-2, pp 131-147

Mourant R R (1992); "An Interface for Hierarchical Modelling in Object Oriented
Simulation", Computers and Industrial Engineering, Vol 23, Nos 1-4, pp. 233-235

Nail, Roger (1992); "A System Dynamics Model for Rational Energy Policy Planning",
System Dynamics Review, Vol 8, No 1, pp 1-21

Nance R E (1981); "The Time and State Relationships in Simulation Modelling",
Communications of the Association for Computer Machinery 24, pp 173-179

The National Grid Company (March 1992); Seven Year Statement For the Years 1992/3
to 1998/9.

Ninios, P, Vlahos, K & Bunn D.W. (1993); "Industry Simulation: Systems Thinking with
an Object Oriented/DEVS Technology", forthcoming: European Journal of Operational
Research

O’Keefe, R. (1986); "Simulation and Expert Systems - A Taxonomy and Some
Examples", Simulation Vol 46, No 1, pp 10-16

OFFER (December 1991); Report on Pool Price Inquiry, Office of Electricity Regulation

Oren, T I & Zeigler, B P (1979); "Concepts for Advanced Simulation Methodologies",
Simulation, Volume 32

References 216

Ozdemirel, N E et al. (1988); "A Preliminary Group Technology Classification Scheme
for Manufacturing Simulation Models", Proceedings of the 1988 Winter Simulation
Conference

Pamas, D L (1972); "On the Criteria To Be Used in Decomposing Systems into
Modules", Communications of the ACM, December 1972, Vol 15, No 12

Paul, R (1989); "Visual Simulation: Seeing is Believing?", in the Impacts of Resent
Computer Advances on Operational Research, Elsevier Science Publishing Co, Inc.

Paul, R (1991); "Recent Developments in Simulation Modelling", Journal of Operational
Research Society; Vol 42, No 3

Paul, R (1991); "The Three-Phase Discrete Event Modelling Approach", CASM Report,
Working Paper, London School of Economics

Paribas Capital Markets Group (1990); The U.K. Electricity Privatization

Peterson, S (1992); "Software for Model-Building and Simulation: An Ilustration of
Design Philosophy", in Modelling for Learning, A Special Issue of the European Journal
of Operational Research, Vol 59, No 1, pp 197-203

Pidd, M (1988); Computer Simulation in Management Science, J Willey & Sons

Pracht, W.E. (1990); "Model Visualization: Graphical Support for DSS Problem
Structuring and Knowledge Organisation", Decision Support Systems, 6, pp. 13-27

Professional Dynamo Plus (1986); Reference Manual, Pugh-Roberts Associates, Inc.

Radzicki, M J (1990); "Methodologia oeconomiae et systematis dynamics", System
Dynamics Review , Vol 6, No 2, pp 123-147

Rahn, R J (1985); "Aggregation in System Dynamics", System Dynamics Review, Vol
1, No 1, pp 111-122

Resmussen D R & E Mosekilde (1988); "Bifurcation and Chaos in a Generic Management
Model", European Journal of Operational Research, Vol 35, No 1, April 1988

Richardson G P, Vennix JAM, Andersen D F, Rohrbaugh J, Wallace W A (1989);
"Eliciting Group Knowledge for Model-Building", Computer-Based Management of
Complex Systems, editors P Milling & E Zahn, Springer-Verlag, Berlin

Richmond, B., Peterson, S. & Charyk, C. (1990), ithink™ Documentation, High
Performance Systems, Hanover, NH

Roberts, E B (October 1974); "A Simple Model of R&D Project Dynamics", R&D
Management, No 1

References 217

Roberts, S, & Heim, J (1988); "A Perspective on Object Oriented Simulation",
Proceedings of the 1988 Winter Simulation Conference

Rosenblit, J., Hu J., Kim, T.G., Zeigler, B. (1990); "Knowledge Based Design and
Simulation Environment (KBDSE): Foundation Concepts and Implementation", Journal
of Operational Research Society, Vol 41, No. 6, pp.475-489

Sanders W H & J F Meyer (1989); "Reduced Base Model Construction Methods for
Stochastic Activity Networks", Proceedings of the 3rd International Workshop on Perti
Nets and Performance Models

Sebastian H J (1990); "Knowledge Based Discrete Control Problems: A Decision Support
Approach", Decision Support Systems, Vol 6, No 4

Senge, P (1990); The Fifth Discipline: The art and Practice of the Learning Organization,
Doubleday/Currency

Senge, P & J D Sterman (1992); "Systems Thinking and Organizational Learning: Acting
Locally and Thinking Globally in the Organization of the future", in Modelling for
Learning, A Special Issue of The European Journal of Operational Research, Vol 59, No
1, pp 137-150

Seymour J (1991); "Graphical User Interfaces give PC Users a Winning Hand", Today’s
Office, Vol. 26, No. 1

Shtub, A (January 1992); "Evaluation of Two Schedule Control Techniques for the
Development and Implementation of New Technologies: a Simulation Study", R&D
Management, Vol 22, No 1

Simon, H (1969); The Sciences of the Artificial, MIT Press

Smith E E & D Medin (1981); Categories and Concepts, Harvard University Press,
Cambridge, Massachusetts 1981

Smith New Court (August 1992); The 12 RECs (Alistair Buchanan), Electricity Research
Report

Smith New Court (December 1992); National Power and PowerGen (Alistair Buchanan),
Electricity Research Report

Sterman, J D (December 1987); "Testing Behavioural Models by Direct Experiment",
Management Science, Vol 33, No 12

Sterman, J D (1985); "A Behavioural Model of the Economic Long Wave", Journal of
Economic Behaviour and Organization, Vol 6

Sterman, J D (1989); "Modelling Managerial Behaviour: Misconceptions of feedback in

References 218

a Dynamic Decision Making Environment", Management Science, Vol 35, No 3

Stone, C M & D Hentchel (1990); Database Wars Revisited, BYTE October 1990

Stroustrup, B (1986); The C++ Programming Language, Reading, MA: Addison-Wesley

Thomasma, T & Ulgen O.M.(1988); "Hierarchical, Modular Simulation Modelling in
Icon-based Simulation Program Generators for Manufacturing", Proceedings of the 1988
Winter Simulation Conference

Toro M & J Aracil (1988); "Qualitative Analysis of System Dynamics Ecological
Models", System Dynamics Review, Vol 4, No 1-2, pp 56-80

Toyoda, Y & S Mawatari (1991); "Mathematical Formulation of System Principles in
System Dynamics", in the Proceedings of the 1991 System Dynamics International
Conference, pp 608-617

Tu, Yi-Ming & N Shiao (1992); "Integration of System Dynamics and Rule Based
Reasoning Mechanism", the Proceedings of the 1992 System Dynamics International
Conference, pp 715-724

Ulgen, O., T Thomasma & Y Mao (1989); "Object Oriented Toolkits for Simulation
Program Generators", Proceedings of the 1989 Winter Simulation Conference

Van Hee, K. M., L J Somers & M Voorhoeve (1991); "A Modelling Environment for
Decision Support Systems", Decision Support Systems Vol 7, pp 241-251

Vennix, J A M, J W Gubbels, D Post, H J Poppen (1990); "A Structured Approach to
Knowledge Elicitation in Conceptual Model Building", System Dynamics Review, Vol
6, No 2, pp 194-208

Vlahos, K (1991); Capacity Planning in the Electricity Supply Industry, PhD Thesis,
London Business School.

Vujosevic, R (1990); "Object Oriented Visual Interactive Simulation", Proceedings of the
1990 Winter Simulation Conference

Walter, John & Carol Lopitato (1992); "An Artificial Intelligence Approach to Socio-
Economic Simulation: Application to the Economic Integration of Europe", Proceedings
of the 1992 System Dynamics International Conference

Wegner, Peter (1989); Learning the Language, BYTE, March 1989

Wirfs-Brock, R & Wilkerson, B (1989); "Object Oriented Design: A Responsibility
Driven Approach", OOPSLA ’89 Proceedings

References 219

Widmeyer, E R (1988); "Logic Modelling with Partially Ordered Preferences", Decision
Support Systems, Vol 4, No 1

Wolstenholme, E F (1990); System Enquiry, Wiley & Sons

Wolstenholme, E F (1982); "System Dynamics in Perspective", Journal of Operational
Research Society, Vol 33

Wolstenholme, E F & Al-Alusi A (1987); "System Dynamics and Heuristic Optimisation
in Defence Analysis", System Dynamics Review, Vol 3

Yourdon, Edward (1990); "Auld Lang Syne: Is it time for you to ring out the old and
ring in the new?", BYTE, October 1990

Zeigler, B.P. (1976); Theory of Modelling and Simulation, Willey, New York

Zeigler, B.P. (1980); "Concepts and Software for Advanced Simulation Methodologies",
in Simulation with Discrete Models: A state-of-the-Art View, editors: T I Oren, C M
Shub, P F Roth, IEEE

Zeigler, B.P. (1984); Multifaceted Modelling and Discrete Event Simulation, Academic
Press

Zeigler, B.P. (1987); "Hierarchical, Modular Discrete-Event Modelling in an Object-
Oriented Environment", Simulation Vol 49, No 5, pp 219-230

Zeigler, B.P. (1989); "DEVS Representation of Dynamical Systems: Event-Based
Intelligent Control", Proceedings of the IEEE, Vol. 77, No. 1

Zeigler, B.P. (1990); Object Oriented Simulation with Hierarchical Modular Models,
Academic Press Inc

Zhang W & Mourant R (1990); "Simulation and Knowledge Based Objects", Proceedings
of the 12th Annual Conference on Computers & Industrial Engineering, Vol 19, Nos 1-4,
pp 97-101

	COPYRIGHT

	COPYRIGHT DECLARATION

	LOAN

	REPRODUCTION

	ABSTRACT

	PREFACE/ACKNOWLEDGMENTS

	TABLE OF CONTENTS

	CHAPTER 5:

	THE OO/DEVS GUI

	TABLE OF DIAGRAMS

	Chapter 1

	Introduction

	Contents:

	1.1	Modelling Industry Structures and Policies

	1.2	Motivation & Thesis Objective

	1.3	Thesis Organization

	Chapter 2:

	System Dynamics in Perspective

	Chapter 3:

	Object Orientation & the Discrete Event System Specification formalism

	Chapter 4:

	The Smalltalk implementation of OO/DEVS

	Chapter 5:

	The OO/DEVS GUI

	Chapter 6:

	Modelling the Investments in the UK Electricity Industry: A comparative study

	Chapter 7:

	The Electricity Markets Model: The development of a OO/DEVS model in a business environment

	Chapter 2

	System Dynamics in Perspective

	Contents:

	2.1.	The emergence of System Dynamics

	2.2.	The System Dynamics view of the world:

	2.3.	System Dynamics Simulation

	2.4.	Applications of System Dynamics

	2.5.	Developments in System Dynamics

	2.6	System Dynamics Summary

	2.7	A Classification of Simulation Models

	2.8	Manufacturing Simulation vs Industry Simulation

	Level 0:

	Level 1 :

	Levels 2 & 3 :

	Level 4 :

	Level 5 :

	2.9 System Dynamics from a Critical Perspective -

	Issues for Research into its core technology.

	Natural Representation:

	Structure:

	Reusability:

	T im e-Representation:

	2.10 Summary

	Chapter 3

	Object Oriented Programming & The Discrete Event System Specification Formalism

	Contents:

	3.1	Introduction - The Research Issues

	3.2	Object Oriented Programming & Analysis

	3.3	Object Orientation: A Paradigm Shift

	3.4	Object Orientation in Manufacturing Simulation

	3.5	The Naturalness of the Approach

	3.6	From Manufacturing to Industry Simulation

	3.7	Addressing the Modelling of Time

	3.8	Discrete Event Formalisms

	3.9	The DEVS formalism

	3.10	Comparison Between Differential Equations and DEVS in the Simulation Context

	3.11	The DEVS Simulation Environment

	3.12	An Object Oriented/DEVS framework in Smalltalk

	3.13	Summary

	Chapter 4

	OO/DEVS:

	A Smalltalk Implementation of the DEVS Formalism

	Contents:

	4.1	DEVS Implementation Views

	4.2	The Use of Smalltalk

	4.3	A Faithful DEVS-Scheme Implementation in Smalltalk

	4.3.1	Class AtomicModel

	4.3.2	Implementation of Coupled Model

	4.3.3	The Class Model

	4.3.4	The Processor Classes

	4.3.5	The Class SimulationPlatform

	4.3.6	The Class DevsModel

	4.4 Modelling Object Oriented Message Passing within DEVS

	4.4.1	The DEVS-Scheme Implementation from a Critical Perspective

	4.4.2	Towards an Object Oriented DEVS Implementation

	4.4.3	The class Model

	4.4.4	The Object Processor

	4.4.5	The class Simulator

	4.4.6	Realisation of the DEVS fundamentals within OO/DEVS

	4.5 A Simple Processor Example

	4.6	Discussion

	4.7	Summary

	Chapter 5

	The OO/DEVS GUI

	Contents:

	5.1	Introduction

	Chapter 5: The OO/DEVS GUI 			—				111 5.2 Graphical Support for Model Building

	5.3 The GUI Smalltalk Implementation

	5.4	Decision Rule Modelling

	5.5	. Using the OO/DEVS GUI: The Beer Game Example

	5.5.1	Case Background

	5.5.2	Assumptions

	5.5.3	Entity Modelling

	5.5.4	Decision Rule Modelling

	5.5.5	Model Organization

	5.5.6	Influence Relationship Modelling

	5.5.7 Running a Simulation and Obtaining Results

	5.6. Conclusions

	Chapter 6

	Modelling Capacity Investments in the U.K Electricity Industry

	A comparative modelling study between System Dynamics & OO/DEVS

	Contents:

	6.1	Introduction

	6.2	Industry Background

	6.3	Recent Trends & Current Issues

	6.4	The Need for Industry Simulation

	6.5	Model Background

	6.6	A System Dynamics Model

	6.7	Modelling under the Object Oriented/DEVS framework

	6.8	Model reuse & expansion under OO/DEVS

	6.8.1	Case Background

	6.8.2	Modelling Background

	6.9	Reusing the OO/DEVS Capacity Investments Model

	6.10 Discussion

	6.11 Concluding Remarks

	Chapter 7

	The Electricity Markets Model: The Development of a OO/DEVS Model in a Business Environment

	Contents:

	7.1	Introduction

	7.2	The Background of the Modelling team

	7.3	The Phases of the Project

	7.4	The Approach to Modelling

	7.5	Background of the Model & Issues to be Explored

	7.5.1	Model Structure

	7.5.2	Encapsulated Decision Rules - Entity Behaviour

	(iii)	The Electricity Contract & the Contract Markets

	(ii)	The Customers

	(iii)	The Suppliers

	(iv)	The Electricity Pool Market

	(iv) The Generators

	7.6 Running the Electricity Markets Model

	7.7	Discussion

	Structure & Focus

	Time-Representation

	Reusability

	7.8	Summary

	Chapter 8

	Conclusions &

	Further Research Directions

	Contents:

	8.1	Thesis Summary

	8.2	Thesis Research Contribution

	8.3 Further Research Directions

	References

