13 research outputs found

    Teadusarvutuse algoritmide taandamine hajusarvutuse raamistikele

    Get PDF
    Teadusarvutuses kasutatakse arvuteid ja algoritme selleks, et lahendada probleeme erinevates reaalteadustes nagu geneetika, bioloogia ja keemia. Tihti on eesmärgiks selliste loodusnähtuste modelleerimine ja simuleerimine, mida päris keskkonnas oleks väga raske uurida. Näiteks on võimalik luua päikesetormi või meteoriiditabamuse mudel ning arvutisimulatsioonide abil hinnata katastroofi mõju keskkonnale. Mida keerulisemad ja täpsemad on sellised simulatsioonid, seda rohkem arvutusvõimsust on vaja. Tihti kasutatakse selleks suurt hulka arvuteid, mis kõik samaaegselt töötavad ühe probleemi kallal. Selliseid arvutusi nimetatakse paralleel- või hajusarvutusteks. Hajusarvutuse programmide loomine on aga keeruline ning nõuab palju rohkem aega ja ressursse, kuna vaja on sünkroniseerida erinevates arvutites samaaegselt tehtavat tööd. On loodud mitmeid tarkvararaamistikke, mis lihtsustavad seda tööd automatiseerides osa hajusprogrammeerimisest. Selle teadustöö eesmärk oli uurida selliste hajusarvutusraamistike sobivust keerulisemate teadusarvutuse algoritmide jaoks. Tulemused näitasid, et olemasolevad raamistikud on üksteisest väga erinevad ning neist ükski ei ole sobiv kõigi erinevat tüüpi algoritmide jaoks. Mõni raamistik on sobiv ainult lihtsamate algoritmide jaoks; mõni ei sobi olukorras, kus andmed ei mahu arvutite mällu. Algoritmi jaoks kõige sobivama hajusarvutisraamistiku valimine võib olla väga keeruline ülesanne, kuna see nõuab olemasolevate raamistike uurimist ja rakendamist. Sellele probleemile lahendust otsides otsustati luua dünaamiline algoritmide modelleerimise rakendus (DAMR), mis oskab simuleerida algoritmi implementatsioone erinevates hajusarvutusraamistikes. DAMR aitab hinnata milline hajusraamistik on kõige sobivam ette antud algoritmi jaoks, ilma algoritmi reaalselt ühegi hajusraamistiku peale implementeerimata. Selle uurimustöö peamine panus on hajusarvutusraamistike kasutuselevõtu lihtsamaks tegemine teadlastele, kes ei ole varem nende kasutamisega kokku puutunud. See peaks märkimisväärselt aega ja ressursse kokku hoidma, kuna ei pea ükshaaval kõiki olemasolevaid hajusraamistikke tundma õppima ja rakendama.Scientific computing uses computers and algorithms to solve problems in various sciences such as genetics, biology and chemistry. Often the goal is to model and simulate different natural phenomena which would otherwise be very difficult to study in real environments. For example, it is possible to create a model of a solar storm or a meteor hit and run computer simulations to assess the impact of the disaster on the environment. The more sophisticated and accurate the simulations are the more computing power is required. It is often necessary to use a large number of computers, all working simultaneously on a single problem. These kind of computations are called parallel or distributed computing. However, creating distributed computing programs is complicated and requires a lot more time and resources, because it is necessary to synchronize different computers working at the same time. A number of software frameworks have been created to simplify this process by automating part of a distributed programming. The goal of this research was to assess the suitability of such distributed computing frameworks for complex scientific computing algorithms. The results showed that existing frameworks are very different from each other and none of them are suitable for all different types of algorithms. Some frameworks are only suitable for simple algorithms; others are not suitable when data does not fit into the computer memory. Choosing the most appropriate distributed computing framework for an algorithm can be a very complex task, because it requires studying and applying the existing frameworks. While searching for a solution to this problem, it was decided to create a Dynamic Algorithms Modelling Application (DAMA), which is able to simulate the implementation of the algorithm in different distributed computing frameworks. DAMA helps to estimate which distributed framework is the most appropriate for a given algorithm, without actually implementing it in any of the available frameworks. This main contribution of this study is simplifying the adoption of distributed computing frameworks for researchers who are not yet familiar with using them. It should save significant time and resources as it is not necessary to study each of the available distributed computing frameworks in detail

    Governance of Cloud-hosted Web Applications

    Get PDF
    Cloud computing has revolutionized the way developers implement and deploy applications. By running applications on large-scale compute infrastructures and programming platforms that are remotely accessible as utility services, cloud computing provides scalability, high availability, and increased user productivity.Despite the advantages inherent to the cloud computing model, it has also given rise to several software management and maintenance issues. Specifically, cloud platforms do not enforce developer best practices, and other administrative requirements when deploying applications. Cloud platforms also do not facilitate establishing service level objectives (SLOs) on application performance, which are necessary to ensure reliable and consistent operation of applications. Moreover, cloud platforms do not provide adequate support to monitor the performance of deployed applications, and conduct root cause analysis when an application exhibits a performance anomaly.We employ governance as a methodology to address the above mentioned issues prevalent in cloud platforms. We devise novel governance solutions that achieve administrative conformance, developer best practices, and performance SLOs in the cloud via policy enforcement, SLO prediction, performance anomaly detection and root cause analysis. The proposed solutions are fully automated, and built into the cloud platforms as cloud-native features thereby precluding the application developers from having to implement similar features by themselves. We evaluate our methodology using real world cloud platforms, and show that our solutions are highly effective and efficient

    Bridging a Gap Between Research and Production: Contributions to Scheduling and Simulation

    Get PDF
    Large scale distributed computing infrastructures (e.g., data centers, grids, or clouds) are used by scientists from various domains to produce outstanding research results, such as the discovery of the Higgs Boson in High Energy Physics. These infrastructures are also studied by Computer Scientists to produce their own set of scientific results. Ideally, a virtuous circle should exist between Domain and Computer Scientists: the former raising challenges that could be addressed by the latter. Unfortunately, in many occasions, a gap exists that prevents such an ideal and fostering collaboration. This habilitation covers research works conducted in the fields of scheduling and simulation that contribute to the filling of this gap. It discusses the necessary conditions to achieve this goal and details concrete initiatives in this endeavor

    CHOReOS Middleware Specification (D3.1)

    Get PDF
    This deliverable specifies the main concepts of the CHOReOS middleware architecture. Starting from the Future Internet (FI) challenges for scalability, heterogeneity, mobility, awareness, and adaptation that have been investigated in prior work done in WP1, we introduce the aforementioned concepts to deal with the requirements derived from the FI challenges. In particular, we propose an extensible and scalable service discovery approach for the organization and discovery of services that relies on multiple service discovery protocols. Moreover, we introduce an extensible and scalable approach, based on the service bus paradigm, for service access that features the integration and adaptation of multiple interaction protocols. Furthermore, we propose solutions that enable the execution of FI service compositions that range from compositions of choreographed services, developed according to the CHOReOS development process, to massive compositions of things. Finally, we detail the Cloud & Grid middleware facilities that support the overall middleware and the choreographies that are built on it, via a unified API that provides access to multiple cloud infrastructures (e.g., Amazon EC2, HP Open Cirrus, private clouds)

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    QoE on media deliveriy in 5G environments

    Get PDF
    231 p.5G expandirá las redes móviles con un mayor ancho de banda, menor latencia y la capacidad de proveer conectividad de forma masiva y sin fallos. Los usuarios de servicios multimedia esperan una experiencia de reproducción multimedia fluida que se adapte de forma dinámica a los intereses del usuario y a su contexto de movilidad. Sin embargo, la red, adoptando una posición neutral, no ayuda a fortalecer los parámetros que inciden en la calidad de experiencia. En consecuencia, las soluciones diseñadas para realizar un envío de tráfico multimedia de forma dinámica y eficiente cobran un especial interés. Para mejorar la calidad de la experiencia de servicios multimedia en entornos 5G la investigación llevada a cabo en esta tesis ha diseñado un sistema múltiple, basado en cuatro contribuciones.El primer mecanismo, SaW, crea una granja elástica de recursos de computación que ejecutan tareas de análisis multimedia. Los resultados confirman la competitividad de este enfoque respecto a granjas de servidores. El segundo mecanismo, LAMB-DASH, elige la calidad en el reproductor multimedia con un diseño que requiere una baja complejidad de procesamiento. Las pruebas concluyen su habilidad para mejorar la estabilidad, consistencia y uniformidad de la calidad de experiencia entre los clientes que comparten una celda de red. El tercer mecanismo, MEC4FAIR, explota las capacidades 5G de analizar métricas del envío de los diferentes flujos. Los resultados muestran cómo habilita al servicio a coordinar a los diferentes clientes en la celda para mejorar la calidad del servicio. El cuarto mecanismo, CogNet, sirve para provisionar recursos de red y configurar una topología capaz de conmutar una demanda estimada y garantizar unas cotas de calidad del servicio. En este caso, los resultados arrojan una mayor precisión cuando la demanda de un servicio es mayor

    QoE on media deliveriy in 5G environments

    Get PDF
    231 p.5G expandirá las redes móviles con un mayor ancho de banda, menor latencia y la capacidad de proveer conectividad de forma masiva y sin fallos. Los usuarios de servicios multimedia esperan una experiencia de reproducción multimedia fluida que se adapte de forma dinámica a los intereses del usuario y a su contexto de movilidad. Sin embargo, la red, adoptando una posición neutral, no ayuda a fortalecer los parámetros que inciden en la calidad de experiencia. En consecuencia, las soluciones diseñadas para realizar un envío de tráfico multimedia de forma dinámica y eficiente cobran un especial interés. Para mejorar la calidad de la experiencia de servicios multimedia en entornos 5G la investigación llevada a cabo en esta tesis ha diseñado un sistema múltiple, basado en cuatro contribuciones.El primer mecanismo, SaW, crea una granja elástica de recursos de computación que ejecutan tareas de análisis multimedia. Los resultados confirman la competitividad de este enfoque respecto a granjas de servidores. El segundo mecanismo, LAMB-DASH, elige la calidad en el reproductor multimedia con un diseño que requiere una baja complejidad de procesamiento. Las pruebas concluyen su habilidad para mejorar la estabilidad, consistencia y uniformidad de la calidad de experiencia entre los clientes que comparten una celda de red. El tercer mecanismo, MEC4FAIR, explota las capacidades 5G de analizar métricas del envío de los diferentes flujos. Los resultados muestran cómo habilita al servicio a coordinar a los diferentes clientes en la celda para mejorar la calidad del servicio. El cuarto mecanismo, CogNet, sirve para provisionar recursos de red y configurar una topología capaz de conmutar una demanda estimada y garantizar unas cotas de calidad del servicio. En este caso, los resultados arrojan una mayor precisión cuando la demanda de un servicio es mayor
    corecore