80 research outputs found

    Extended Range Telepresence for Evacuation Training in Pedestrian Simulations

    Get PDF
    In this contribution, we propose a new framework to evaluate pedestrian simula-tions by using Extended Range Telepresence. Telepresence is used as a virtual reality walking simulator, which provides the user with a realistic impression of being present and walking in a virtual environment that is much larger than the real physical environment, in which the user actually walks. The validation of the simulation is performed by comparing motion data of the telepresent user with simulated data at some points of the simulation. The use of haptic feedback from the simulation makes the framework suitable for training in emergency situations.Comment: Contribution to Pedestrian and Evacuation Dynamics 2010 (PED2010) conferenc

    Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior

    Get PDF
    Abstract—Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, inter- active motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behaviour as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behaviour, from prediction of individual pedestrians’ likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behaviour, high-level psychological and social modelling of pedestrian behaviour still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behaviour, but much work is still needed to translate them into quantitative algorithms for practical AV control

    Development of crowd simulation models using unity for immerssive VR applications

    Get PDF
    We develop a virtual reality application that simulates a lecture-type talk in a crowded room and an emergency evacuation taking place in it. We perform an experiment where we immerse five participants in our application, and we analyze their behavior

    Haptic Guidance for Extended Range Telepresence

    Get PDF
    A novel navigation assistance for extended range telepresence is presented. The haptic information from the target environment is augmented with guidance commands to assist the user in reaching desired goals in the arbitrarily large target environment from the spatially restricted user environment. Furthermore, a semi-mobile haptic interface was developed, one whose lightweight design and setup configuration atop the user provide for an absolutely safe operation and high force display quality

    Human responses to multiple sources of directional information in virtual crowd evacuations

    Get PDF
    The evacuation of crowds from buildings or vehicles is one example thathighlights the importance of understanding how individual-level interactionsand decision-making combine and lead to the overall behaviour ofcrowds. In particular, to make evacuations safer, we need to understandhow individuals make movement decisions in crowds. Here, we present anevacuation experiment with over 500 participants testing individual behaviourin an interactive virtual environment. Participants had to choose between differentexit routes under the influence of three different types of directionalinformation: static information (signs), dynamic information (movement ofsimulated crowd) and memorized information, as well as the combined effectof these different sources of directional information. In contrast to signs,crowd movement and memorized information did not have a significanteffect on human exit route choice in isolation. However, when we combinedthe latter two treatments with additional directly conflicting sources of directionalinformation, for example signs, they showed a clear effect by reducingthe number of participants that followed the opposing directional information.This suggests that the signals participants observe more closely in isolation donot simply overrule alternative sources of directional information. Age andgender did not consistently explain differences in behaviour in our experiments

    Evacuation dynamics in the maritime field: modelling, simulation and real-time human participation

    Get PDF
    The topic of evacuation analysis is becoming increasingly important in the maritime field, especially after the recent approval of relevant amendments to SOLAS. These amendments make evacuation analysis in early design stage mandatory not only for ro-ro passenger ships, as in the past, but also for other passenger ships, constructed on or after 1st January 2020, carrying more than 36 passengers. Tools used to perform evacuation simulations are generally run in a non-interactive batch mode. However, the introduction of the possibility for humans to interactively participate in a simulated evacuation process together with computer controlled agents in an immersive virtual environment, can open a series of interesting possibilities for design, research and development. Therefore, with particular reference to the maritime field, the research described in this dissertation is focused on the development and implementation of a mathematical model for simulating the dynamics of evacuation processes, which also allows real time human interaction through the use of virtual reality. The developed mathematical model, which is capable of naturally embedding human interaction, was verified and validated through a series of tests and through comparisons with other models and experimental data, as well as by referring to the relevant guidelines proposed by the International Maritime Organization (IMO). Particular attention was given to the calibration and validation of the counterflow model, developed during the research activity, and to the analysis of flow-density relation. The possibility of real time user participation, consisting in the user taking control over an agent inside the simulation, was introduced along with a vibrotactile haptic interface which was created to enhance the user perception of the surrounding virtual environment. The developed tool and user interfaces were adopted in an experiment where the subject was immersed in a virtual environment and interacted with simulated agents. The analysis of experiments provided results on the effects of the developed haptic interface on the subjects\u2019 behaviour. Moreover, the obtained data allowed comparing the behaviour of subjects with that of simulated agents. The mathematical model was subsequently extended with the introduction of ship motion effects on agents behaviour, considering that, in the maritime field, the platform is usually moving. Fictitious forces, in the developed model, are directly applied to the agents and might therefore modify their trajectories. This represents an added value of the proposed model, because, usually, the effects of ship motions are embedded in simulation models only through a speed reduction. The model was used to assess ship motion effects in some IMO test cases. Finally, the tool was tested on a specifically developed case targeting the maritime field whose geometry was ideated as a simplification of the general plan of a real cruise vessel. The evacuation simulations were run firstly without ship motions, then with some representative situations combining heel, trim and periodic motions and, finally, with motions due to irregular waves. Ship motions, in this latter case, have been generated considering a notational cruise vessel whose dimensions were in line with the cruise vessel the test geometry was inspired to. A model introducing ship motion effects on the control of the avatar was finally developed, together with an approach to provide perception of ship motions through the developed vibrotactile interface. Models and results presented in this dissertation provide new insight to the field of ship evacuation analysis and to the application of virtual reality in this field

    Augmented Reality and Its Application

    Get PDF
    Augmented Reality (AR) is a discipline that includes the interactive experience of a real-world environment, in which real-world objects and elements are enhanced using computer perceptual information. It has many potential applications in education, medicine, and engineering, among other fields. This book explores these potential uses, presenting case studies and investigations of AR for vocational training, emergency response, interior design, architecture, and much more

    Intelligent VR-AR for Natural Disasters Management

    Get PDF
    Considering the significance of improving natural disasters emergency management and recognizing that catastrophe scenes are almost impossible to reconstruct in real life, forcing persons to experience real hazards violates both law and morality, in this research is presented an engine for Virtual Reality/Augmented Reality (VR/AR) that works enhancing human capacities for prevention, response and recovery of natural phenomena effects. The selected novel techniques have very advantageous qualities to overcome the inconveniences detected in the most recent seismic devastating experience in Mexico City, the Sept 19th, 2017, earthquake M7.2: total collapse of more than 230 buildings, partial fall of 7 000 houses, 370 people were killed, and over 6,000 were injured. VR and AR provide researchers, government authorities and rescue teams with tools for recreating the emergencies entirely through computer-generated signals of sight, sound, and touch, when using VR, and overlays of sensory signals for experiences a rich juxtaposition of virtual and real worlds simultaneously, when AR is applied. The gap between knowledge and action is filled with visual, aural, and kinesthetic immersive experiences that poses a possibility to attend to the population in danger in a deeply efficient way, never experimented before
    • …
    corecore