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Abstract—Autonomous vehicles (AVs) must share space with
pedestrians, both in carriageway cases such as cars at pedestrian
crossings and off-carriageway cases such as delivery vehicles
navigating through crowds on pedestrianized high-streets. Unlike
static and kinematic obstacles, pedestrians are active agents
with complex, interactive motions. Planning AV actions in the
presence of pedestrians thus requires modelling of their probable
future behaviour as well as detecting and tracking them. This
narrative review article is Part II of a pair, together surveying
the current technology stack involved in this process, organising
recent research into a hierarchical taxonomy ranging from low-
level image detection to high-level psychological models. This self-
contained Part II covers the higher levels of this stack, consisting
of models of pedestrian behaviour, from prediction of individual
pedestrians’ likely destinations and paths, to game-theoretic
models of interactions between pedestrians and autonomous
vehicles. This survey clearly shows that, although there are good
models for optimal walking behaviour, high-level psychological
and social modelling of pedestrian behaviour still remains an
open research question that requires many conceptual issues to be
clarified. Early work has been done on descriptive and qualitative
models of behaviour, but much work is still needed to translate
them into quantitative algorithms for practical AV control.

Index Terms—Review, survey, pedestrians, autonomous vehi-
cles, sensing, detection, tracking, trajectory prediction, pedestrian
interaction, microscopic and macroscopic behaviour models,
game-theoretic models, signalling models, eHMI, datasets.

I. INTRODUCTION

To operate successfully in the presence of pedestrians,
autonomous vehicles require input from a huge variety of
models that have to work seamlessly together. These models
range from simple visual models for detection of pedestrians,
to predicting their future movements using psychological and
sociological methods. Part I of this two-part survey [33] cov-
ered models for sensing, detection, recognition, and tracking
of pedestrians. Part II here reviews models for pedestrian
trajectory prediction, interaction of pedestrians, and behavioral
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Fig. 1. Main structure of the review

modeling of pedestrians, and also experimental resources to
validate all the types of models. Interacting with pedestrians
is a particular type of social intelligence. Autonomous vehi-
cles will need to utilize many different levels of models of
pedestrians, each addressing different aspects of perception
and action. Each of these models can be based on empirical
science results or obtained via machine learning. In contrast to
the models of Part I, Part II requires models from higher levels
of the technology stack, as researched by psychologists and
taught in advanced driver training programmes. For instance,
drivers often try to infer the personality of other humans,
predict their likely behaviours, and interact with them to
communicate mutual intentions [100]. Between the high level
surveyed in this Part II and the low levels of Part I, researchers
infer psychological information from perceptual information.
As an example, researchers build systems to recognize the
body language, gestures, and demographics information of
pedestrians to better predict their likely goals and behaviours.
Despite the importance of bridging the research between the
higher and lower levels, their connection is still thin, both
conceptually and in terms of actual implementations.

While prediction of likely future pedestrian trajectories is
becoming increasingly well understood, models for actively
controlling pedestrian interactions – including game-theoretic
models – are still in their infancy. Active control here means
that the vehicle’s own future actions are taken into account
in predicting how the pedestrian will respond, and vice versa.
One reason is that sufficient data to rigorously study interac-
tion between pedestrians has only recently become available
as presented in Sec. V on experimental resources. Another
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TABLE I
PROPOSED MAPPING FROM SAE LEVELS TO PEDESTRIAN MODEL REQUIREMENTS

SAE LEVEL DESCRIPTION PEDESTRIAN MODEL REQUIREMENTS LOCATION
Level 0
No Automation

Automated system issues warnings and may momentarily
intervene, but has no sustained vehicle control.

Sensing Part I [33] Sec. II

Level 1
Hands on

The driver and the automated system share control of
the vehicle. For example, adaptive cruise control (ACC),
where the driver controls steering and the automated
system controls speed. The driver must be ready to
resume full control when needed.

+Detection Part I [33] Sec. III

Level 2
Hands off

The automated system takes full control of the vehicle
(steering and speed). The driver must monitor and be
prepared to intervene immediately. Occasional contact
between hand and wheel is often mandatory to confirm
that the driver is ready to intervene.

+Recognition
+Tracking

Part I [33] Sec. IV
Part I [33] Sec. V

Level 3
Eyes off

Driver can safely turn attention away from the driving
tasks, e.g. use a phone or watch a movie. Vehicle will
handle situations that call for an immediate response, like
emergency braking. The driver must still be prepared to
intervene within some limited time.

+Unobstructed walking models with known goals
+Behaviour prediction with known goals
+Behaviour prediction with unknown goals

Sec. II-A
Sec. II-B
Sec. II-C

Level 4
Mind off

No driver attention is required for safety, except in limited
spatial areas (geofenced) or under special circumstances,
like traffic jams.Outside of these areas or circumstances,
the vehicle must be able to safely abort or transfer control
to the human.

+Event/Activity Models
+Effects of Pedestrian Class on Trajectory
+Pedestrian Interaction Models
+Game Theoretic and Signalling models

Sec. II-D
Sec. II-E
Sec. III
Sec. IV

Level 5
Full automation

No human intervention is required at all, fully automated
driving.

+Extreme robustness and reliability of the models

Note: ‘+X’ means that model ‘X’ is required in addition to the models required for the previous SAE level, e.g., SAE level 1 requires ‘sensing + detection’,
SAE level 2 requires ‘sensing + detection + tracking’‘, etc.

reason is that one first has to be able to reliably sense, detect,
recognize, and track pedestrians in order to gather enough data
for modeling interaction and game-theoretic models. A third
reason is that interaction and game-theoretic models are only
relevant in crowded environments, while many situations do
not require much interaction. However, crowded environments
are those that are typically most relevant for autonomous
driving. Fig. 1 shows the review structure.

To assess the maturity of the methods presented, the level
of autonomy is used, as defined by the Society of Automotive
Engineers (SAE) – the same measure has already been used in
Part I [33]. For the convenience of the reader, the five SAE lev-
els are briefly presented, ranging from simple driver assistance
tools to full self-driving [101]. Requirements for pedestrian
modelling increase with each level, with lower levels typically
requiring lower and more mature levels of pedestrian models,
such as detection and tracking, while higher levels require
models for psychological and social understanding to fully
interact with pedestrians in a human-like way [30]. Table I
gives an overview of SAE levels and requirements mappings.

While many papers propose pedestrian models at various
levels, no unifying theory has yet been produced which would
make it possible to easily transfer results across all levels
from detection to prediction. This review uncovers bottlenecks
in transferring results to facilitate closing existing research
gaps. Also, many existing studies only consider results from
empirical science or those obtained via machine learning. This
survey provides an overview considering both possibilities.
While machine learning results work particularly well for

detection and recognition, they are not yet performing so
well for prediction. Some reasons are that prediction is a
more high-dimensional problem, with dimensions including
goals, obstacles, various state variables of pedestrians, and
road geometry. A further reason is that less labelled data is
available for training prediction models. A promising future
direction is to combine empirical science results with machine
learning to better safeguard techniques using machine learning
and to avoid over-fitting.

While similar concepts apply to modelling human drivers
and their vehicles for interactions with AVs, this article
presents a review of the state of the art specifically in
modelling human pedestrians for social decision-making. In
some cases it goes beyond modelling aspects to also cover
more conceptual aspects or empirical psychological findings,
when the studies in question are judged to have very direct
applicability to mathematical models. Results from human
driving cannot be directly translated to pedestrians due to the
variability in locomotion, the differences in shape, the changes
in postures and the less-structured environment.

Pedestrians are defined as humans moving on and near
public highways including roads and pedestrianised areas, who
walk using their own locomotive power. This excludes, for
example, humans moving on cycles, wheelchairs and other
mobility devices, skates and skateboards, or those transported
by other humans. This review does not cover interactions of
traffic participants without pedestrians: a survey on trajectory
prediction of on-road vehicles is provided in [122] and a
survey on vision-based trajectory learning is provided in [145].
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Fig. 2. Structure of the paper

This Part II is organized as shown in Fig. 2. In Sec. II,
methods for predicting the movements of pedestrians are
reviewed. In particular, we consider models and methods for
unstructured environments, for prediction around obstacles, to
estimate destinations, and for the prediction of events such as
crossing the road. These methods are enhanced in Sec. III
for groups of pedestrians interacting with each other. This
section considers the complete variety of researched models
from macroscopic models only considering flow of people
to microscopic models that consider individual pedestrians.
In many situations, interaction models do not require game
theory, because pedestrians often have different goals. How-
ever, there are also many situations, where pedestrians have
competing goals, e.g., when several pedestrians have to pass a
narrow passage. In such situations, the game theoretic models
presented in Sec. IV can be very useful. Finally, Sec. V
surveys available resources: datasets and simulators, both for
pedestrians and vehicles.

II. BEHAVIOUR MODELS WITHOUT INTERACTION

The tracking models reviewed in Part I are kinematic in
that they assume that pedestrians move in physical and/or pose
space in motion described by kinematic models. This is a very
basic assumption – human drivers typically have much more
complex understandings and hence predictions of pedestrian
behavior which they use to drive safely in their presence
[100]. These range from slightly more advanced kinematic
understandings such as ‘pedestrians tend to walk in straight
lines to models of how they are likely to interact with static
objects in their environment, and predictions of pedestrians’
likely destinations from reading the street scene.

This section reviews such models starting from simple
unobstructed path models to uncertain destination models and
more advanced event/activity models. These models do not yet
consider interaction with other agents. Figure 3 summarizes
the classes of models presented in this section. A previous
review was proposed by Ridel et al. [171], which mainly con-
sidered pedestrian crossing intent and offered a restricted view
of the different models developed for trajectory prediction.

A. Unobstructed walking models with known goals

Given a start location and orientation, and a goal location,
humans do not typically turn towards the goal on the spot
(which would waste time) and then walk in a straight line, but
rather set off walking in their initial heading and adjust their
orientation gradually as they walk, resulting in smooth, curved
trajectories from origin to destination [95], [69]. Models
from optimal control theory – such as the one proposed in
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Fig. 3. Pedestrian behaviour prediction and interaction models

[95] as also used in robotics [48] – define cost functions
for travel time, speed, and accelerations, to reproduce these
characteristic curved trajectories. The model in [69] instead
achieves curved trajectories by modelling the rate of turning
of the pedestrian as a function of the visual angle and distance
to the goal. A simple kinematic model consists in considering
human locomotion as a nonholonomic motion [160], using the
unicycle model (1) where the pedestrian walking trajectory is
represented by the trajectory of their center of gravity, 2D
coordinates (x, y) and by the angle θ,

ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u2

(1)

where u1 is the forward velocity and u2 is the angular velocity.
Assuming known origin and destination with inverse optimal
control, one can reliably predict human walking paths using
this model [9] [154].

B. Behaviour prediction with known goals
Here, the likely behaviour of a pedestrian in a static en-

vironment is considered, given a map. Pedestrians are likely
to route around obstacles, and to stop at the edges of roads
before crossing. This section does not consider social effects
of other agents – this is presented later in Sec. III.

1) Dynamic graphical models: Dynamic Graphical Models
(DGM) are Graphical Models of a particular topology, contain-
ing some Markovian sequence of variables over time. DGMs
include simple Markov and Hidden Markov Models and also
more complex models. The method in [144] used tracking
in a DGM based on particle filter approximation to infer
beliefs over future pedestrian trajectories and combined this
with a GNSS (Global Navigation Satellite System) module that
provides information about the hazardous areas and people.
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2) Gaussian Process methods: Habibi et al. [85] proposed a
context-based approach to pedestrian trajectory prediction us-
ing Gaussian Processes [165]. This model incorporates context
features such as the pedestrian’s distance to the traffic light,
the distance to the curbside, and the curbside orientation in the
transition learning phase to improve the prediction. A context
based augmented semi non-negative sparse coding (CASNSC)
algorithm is used to predict pedestrian trajectories.

3) Deep learning methods: Bock et al. [24] developed a
Recurrent Neural Network (LSTM) model to learn pedestrian
behaviour patterns at intelligent intersections using camera
data from the onboard vehicle and the infrastructure. The
model can predict trajectories for a horizon of 5s.

4) Other methods: Kruse et al. [120] was one of the first
attempts to statistically infer human motion patterns from data
and incorporate them in a robot motion planner for obstacle
avoidance. Garzón et al. [74] presented a pedestrian trajectory
prediction model based on two path planning algorithms that
require a set of possible goals, a map and the initial position. It
then computes similarities between the obtained and observed
trajectories into probabilities. This model is run along with a
pedestrian detector and tracker. Tamura et al. [196] proposed
a pedestrian behaviour model that is based on social forces
and takes into account the intention of the pedestrian in the
trajectory prediction by defining a set of subgoals. In [169]
the uncertain goals are used as latent variables to guide the
motion prediction of pedestrians. Their positions are predicted
by combining forward propagation of a physical model with
local a priori information (e.g., obstacles and different road
types) from the start position, and by planning the trajectory
from a goal position. The distribution over the destinations is
modeled with a particle filter.

In [207], Vasishta et al. presented a model based on the
principle of natural vision that incorporates contextual in-
formation extracted from the environment to the pedestrian
behavior and it especially tries to predict hazardous behavior
such as crossing in non authorized areas. The aforementioned
model in [69] considers goals and obstacles as distance-
dependent attractors and repellers in heading angle space. The
contributions from the goal and obstacles are linearly com-
bined, yielding a momentary rate of acceleration of heading,
which results in human-like trajectories for simultaneous goal-
seeking and obstacle avoidance. In [55], Dias et al. developed
a model simulating pedestrian behaviour around corners, using
minimum jerk theory and one-thirds power law concept. Their
model uses Monte Carlo simulation to generate pedestrian
trajectories with turning maneuvers, which were comparable
to empirical trajectories.

C. Behaviour prediction with unknown goals

Many of the above models assume known probable des-
tinations for pedestrians, which enable routing to act not
just around local obstacles, but to predict entire long-term
trajectories, such as for pedestrians intending to cross the road.
However, in reality a pedestrian’s destination is rarely given.

1) Dynamic graphical models: Ziebart et al. [231] pre-
sented a pedestrian trajectory prediction model that takes into

account hindrance due to robot motion, as is required in off-
carriageway interactions such as last mile AVs in pedestri-
anized areas. A maximum entropy inverse optimal control
technique, introduced in [230], is used and is equivalent to
a soft-maximum version of Markov decision process (MDP)
that accounts for decision uncertainty into the trajectories
distribution. The cost function is a linear combination of the
features (e.g obstacles) in the environment. People’s motion
can be modeled by an MDP and by choosing a certain path,
there is an immediate reward. The model is conditioned on
a known destination location but the model reasons about all
possible destinations and the real destination is not known at
the prediction time. The destination is inferred in a Bayesian
way, by computing the prior distributions over destinations
using previous observed trajectories. When there is no previous
data, features (door, chair etc.) in the environment are used
to model the destination. In [112], Kitani et al. extended
[230], [231] by incorporating visual features to forecast future
activities and destinations. The observations provided by the
vision system (e.g. tracking algorithm) are assumed to be noisy
and uncertain therefore they used a hidden variable Markov de-
cision process (hMDP) where the agent knows its own states,
action and reward but observes only noisy measurements.
Negative Log-Loss (NLL) is used as a probabilistic metric and
Modified Hausdorff Distance (MHD) as a physical measure of
the distance between two trajectories. Vasquez [208] extends
the work of Ziebart [231] and Kitani [112] while reducing
computational costs.

Bennewitz et al. [18], [17] proposed a learning method for
human motion recognition using the expectation maximization
(EM) and a hidden Markov model (HMM) for clustering and
predicting human trajectories and incorporating them into a
robot path planner. In [219], Wu et al. presented a model that
uses Markov chains for pedestrian motion prediction (able to
deal with non-Gaussian distribution and several constraints).
A heuristic method is proposed to automatically infer the
positions of several potential goals on a generic semantic map.
It also incorporates policies to predict the pedestrian motion
direction and takes into account other traffic participants by
incorporating a collision checking approach. Borgers et al.
[29] presented a model that predicts pedestrians’ route choice
based on Markov chains. Similarly, Bai et al. [11] presented a
real-time approximate POMDP (Partially Observable Markov
Decision Process) controller, DESPOT, for use in high-street
type environments. The method is intention-aware in the sense
of inferring pedestrian destinations and route plans from their
observed motion over time, and accounting for the value of
this information against the value of making progress while
planning a robot’s own route around them. Karasev et al.
[109] presented a long-term prediction model that incorporates
environmental constraints with the intent modeled by a policy
in a MDP framework. The pedestrian state is estimated using
a Rao-Blackwellized filter and pedestrian intent by planning
according to a stochastic policy. This model assumes that
pedestrians behave rationally.

2) Deep learning methods: Hug et al. [96] proposed a
LSTM-MDL model combined with a particle filter method
for multi-modal trajectory prediction, and tested on Stanford
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Drone Dataset (SDD) [175]. Rehder et al. [170] proposed
a method to infer pedestrian destinations. The trajectory
prediction is computed as a goal-oriented motion planning.
The whole system is based on deep-learning and trained
via inverse reinforcement learning. A general introduction on
reinforcement learning in robotics can be found in [114]. Deo
et al. [54] presented a framework for multi-modal pedestrian
trajectory forecasting in structured environments. They used
a convolutional neural network to compute both the reward
maps of the path states and the possible goal states for MDPs.
The derived policy information is then fed into a recurrent
neural network, combined with track history, to generate pos-
sible future trajectories. Goldhammer et al. [78] developed a
Multilayer Perceptron (MLP) neural network with polynomial
least square approximation to predict pedestrian trajectories
based on camera data. A long-term prediction model using
RNNs is proposed in [22].

3) Other methods: Cosgun et al. [50] presented a person-
following service robot with a task dependent motion planner.
The robot can track and predict the future trajectory of the
person by maximizing its reward at future steps while avoiding
entering into the human’s personal space. Koschi et al. [116]
proposed a set-based method to predict all possible behaviours
of pedestrians using reachability analysis [5] for pedestrian
occupancy. Pedestrians are described as point mass with a
certain maximum velocity and maximum acceleration. A rule-
based occupancy is applied that does not allow a pedestrian to
obstruct traffic, e.g. pedestrians are given priority at crosswalks
and their trajectory is assumed to be evasive.

D. Event/activity models

Pedestrian event models consider stereotypical sequences
of behaviours of individual pedestrians. These may give addi-
tional information about route choice, beyond that available
from static classification of the pedestrian. For example, a
commuter, or class of commuters, who engage in similar
actions every day, such as road crossing in a certain way
then checking their phone, may reveal information about their
identity to enable re-identification1 which is in turn predictive
of their future destinations. These models look for features
predictive of route choice in static environments and do not
consider social factors.

1) Dynamic graphical methods: Duckworth et al. [63]
[62] developed on a mobile robot an unsupervised qualita-
tive spatio-temporal relations (QSR) model to learn motion
patterns using a graph representation and is able to predict
people’s future behaviour. Dondrup et al. [61] presented a
ROS-based real-time human perception framework for mobile
robots using laser and RGB-D data and tracking people with
a Kalman filter approach. Human trajectories are converted
into QSR (Qualitative Spatial Relations) and used for a Hid-
den Markov Model (HMM) to classify the behaviour of the
different people encountered [60]. In [185], Schneider and
Gavrila presented a comparative study on Bayesian filters
(EKF and IMM) for short-term (<2s) pedestrian trajectory

1Identity here is distinct from personal information as defined by privacy
laws such as the EU General Data Protection Regulation (GDPR).

prediction, in particular they used stereo camera images to
apply these methods to four different types of behaviour:
crossing, stopping, bending in and starting.

Body heading is used above in basic path planning models,
but head-turning events are distinct from body heading, and
are discrete events which occur when a pedestrian turns
their head to look around rather than to orient their body.
Such an activity model is used in [115] to enhance path
prediction of pedestrians while intending to cross a street. For
low-level occupancy prediction, a dynamic Bayesian network
(DFBN) is used on top of a switching linear dynamic system
(SLDS) anticipating the changes of pedestrian dynamics. As
in [115], studies [187], [188] also model head orientation by
an event/activity model to enhance the underlying prediction
approach.

2) Gaussian Process methods: Quintero et al. [161] [162]
proposed a pedestrian path prediction method up to 1s ahead
based on balanced Gaussian Process dynamical models (B-
GPDMs) and naı̈ve Bayes classifiers. GPDM is used to
transform a sequence of timed feature vectors into a low
dimensional latent space and it can predict the next position
based on the current one. The naı̈ve Bayes classifiers are used
to classify pedestrian actions based on 3D joint positions.

3) Feature selection methods: Bonnin et al. [27] proposed
a generic context-based model to predict pedestrians behavior
according to features describing their local urban environment.
To learn about interactions between autonomous vehicles and
pedestrian interactions, in [37], Camara et al. collected data
from real-world pedestrian-vehicle interactions at an unsignal-
ized intersection. The actions of pedestrians and vehicles
were ordered into sequences of events comprising descriptive
features and the study revealed the most predictive features in
a crossing scenario such as the head direction, the position on
the pavement, hand gestures etc. In [36], these features were
filtered over time to predict whether the pedestrian would first
cross the intersection or not. Völz et al. [211] [212] proposed
a model that can predict whether or not a pedestrian will cross
the street with a set of features learnt from a database of
LIDAR pedestrian trajectories that are used as inputs for a
support vector machine (SVM).

E. Effects of pedestrian class on trajectory

The models reviewed so far consider all pedestrians to
be alike, but human drivers interacting with pedestrians may
consider their attributes as members of stereotypical classes.
Membership of various demographic and psychological state
classes may be predictive of their behaviour. This section first
reviews findings from the psychological literature suggesting
what such classes could be usefully predictive of behaviour,
if it was possible to classify them automatically from au-
tonomous vehicles. Rasouli and Tsotsos reviewed pedestrian
demographics for interactions with autonomous vehicles and
argued that knowing such information could help AVs, cf. Sec.
III. 1. in [168]. Figure 4 presents a set of pedestrian attributes
used for behaviour modelling.

a) Effects of age and gender: Wilson et al. [217]
performed a large-scale study on adult pedestrian crossing
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behavior and concluded that elderly people take more time
and have more head movements during the crossing. Evans
et al. [68] used the Theory of Planned Behavior (TPB) [1]
via a questionnaire to predict adolescents’ intentions during a
hazardous road-crossing scenario. Their results show that older
and male adolescents had stronger intentions to cross and that
moral norms do not have any influence on crossing decisions.
Pedestrians who considered themselves as safe pedestrians
were less likely to cross and the anticipated affective reactions
were important. Bernhoft and Carstensen [21] compared the
crossing preferences and behaviour of elderly pedestrians and
cyclists (age 70+) to younger people aged 40-49. It was
found that elderly people have a preference for road facilities
that they consider to be safer such as pavements, pedestrian
crossings, signalized intersections, cycle paths. The differences
between the two groups are said to be related to health and
physical abilities of the people rather than their differences in
age and gender.

Several studies have shown that older pedestrians have a
larger accident rate than younger people [217]. Gorrini et
al. [80] also found differences in adults and elderly people
crossing behaviour. The study of Oxley et al [152] showed
that older pedestrians have more risky crossing behavior in
complex traffic environments than younger people. Not sur-
prisingly, many authors have found decreasing crossing speeds
with age [10] [129], [200], compensated for by requiring larger
time gaps in traffic before commencing crossing [129]. In
addition, Avineri et al. [10] found lower crossing speeds for
female than male pedestrians, and that the fear of falling in
elderly pedestrians has an effect on the number of downward
head pitches during crossing. Holland and Hill [92] used the
TPB for pedestrians’ intention analysis while crossing the
road. The results showed that women perceived more risk and
were less likely to cross than men. In [93], they also studied the
effect of gender on pedestrian crossing behaviour and showed
that men with a driving experience make safer crossings than
non-drivers and that older women were found to make more
unsafe crossing decisions than younger women.

b) Distraction: Distraction of pedestrians from traffic
environments would ideally be defined via their mental state
i.e., thinking about a problem unrelated to their environment;
or approximated in practice via observable proxies. While it
is possible that mental distraction might be measurable via
hard-to-observe proxies such as gaze direction or high-level
body language, it may be more practical to look instead for
known causes of distraction. Schwebel et al. [189] performed
a study in a semi-immersive virtual pedestrian street with
college students, finding an impact of talking on mobile phones
on crossing behaviour. Walker et al. [213] showed that male

pedestrians using a personal music device were more cautious
in crossing than those who were not distracted. In [198],
the effects of personal electronic device usage on crossing
behavior is studied. The results show a third of the observed
pedestrians were distracted by their mobile phone and that
distracted pedestrians are more likely to have unsafe crossing
behaviour and walk much faster than undistracted pedestrians.

c) Social group membership: Group membership can
affect road crossing. Three strangers in a group are less likely
to assert in a crossing than three friends. In particular, group
size influences a lot crossing behavior [168]. Zeedyk et al.
[224] performed a study with adult-child pairs while crossing
the road at a pedestrian crossing. They found that adults were
more likely to hold girls’ hands than boys.

d) Cultural membership: In contrast to the above mem-
bership of short-term, physically present groups, it is also
possible to consider ‘cultural membership’ of a pedestrian
to any long-term, non-physically present group that may be
usefully predictive of behaviour. For example, it might be
possible for a human driver or autonomous vehicle to classify
pedestrians as members of religious, sporting, or musical
(sub)cultures as a probabilistic function of features of their
clothing such as shape and colour of garments or symbols
displayed on them; and that members of such groups show
statistically significant differences in assertiveness, politeness,
and other road interaction behaviours (cf. [168]). In Sociol-
ogy, classifications of individuals into cultures is notoriously
problematic and politicised. But for the purpose of predicting
road interactions, any classification derived from observable
features may be usefully considered if it improves predictions.

e) Road safety adaptation: Related to the possible pre-
dictiveness of cultural clothing is the effect of road safety
clothing on behaviour. Human drivers are more likely to yield
to pedestrians wearing high-visibility clothing [89], so it is also
possible that knowing this fact will make a pedestrian wearing
such clothing more likely to behave assertively. This is an
example of risk compensation adaptation, a well-known effect
in road safety in which the owners of safety improvements
make economic decisions whether to use them to reduce
accidents or alternatively to gain some other advantage at the
cost of retaining the original accident rates [179].

F. Discussion
Single pedestrian unobstructed walking path and behaviour

prediction around obstacles for known origins and destinations
has well-established solutions. Their main strength lies in their
simplicity and ease of implementation but their applicability
to solve real AV problems is very limited due to the strong
assumptions (e.g static obstacles, known origin-destination of
pedestrians) which are not easily verified in the real world.
But when – as is usual in real-time systems – the destinations
of pedestrians are not known in advance, trajectory prediction
is harder and remains an open research area.

Uncertain destination models may use known destination
models as a subcomponent and average over them weighted
by predictions about what the destination is. To predict what
a pedestrian’s destination will be, many medium and high-
level sources of information may be relevant and useful, if
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suitable models can be found. These models split roughly
into short-term models for prediction horizons around 1-2s
and long-term models predicting for a horizon of around 5-
6s. Event-based models of activity assume that behaviour often
contains repeated stereotypical chunks of behavior, which once
recognised in early stages can predict their later stages. The
major emerging long-term prediction methods rely on neural
network (‘deep learning) methods. There is a need to verify
how the data-driven methods such as [6] can be actually
applied online for real-time systems. These models can help
AVs to more accurately predict single pedestrian behaviour for
shorter or longer time horizons, e.g. to know precisely whether
a pedestrians trajectory would interfere with the AV’s own
path. But their main challenges lie in their computational cost,
which increases significantly with the number of destination
guesses, with longer time horizons and the amount of data
needed for learning pedestrian motion patterns. Moreover,
deep learning models are sometimes referred to as ‘black-
box models, in the sense that AI developers cannot fully
explain some decisions (e.g. feature selection) made by the
neural networks, rendering them potentially problematic for
investigating the causes of incidents involving AVs and for
determining their liabilities [41][81].

Single pedestrians destinations and behaviours may be in-
formed by their class memberships, including their demo-
graphics and other visible features, such as clothing types.
There are many recent sociological studies giving evidence
of these effects, but they have not yet been translated into
algorithms suitable for autonomous vehicle use, which would
be a promising new research area. It is conjectured that
additional information about pedestrians’ emotion states would
be similarly informative (e.g. angry pedestrians more likely
to assert themselves in competitions for road space), but no
studies were found in this area. Traditionally, emotional state
has been difficult to capture and record, so that manually
annotation of data sets are too small for machine learning
to use. But as machine vision for face and body language
recognition continues to improve (cf. Part I [33] Sect. IV),
they are expected to produce big data sets which will enable
machine learning to operate and inform destination and be-
haviour predictions.

III. PEDESTRIAN INTERACTION MODELS

So far, only path prediction models for single pedestrians in
static environments ignoring interactions with other pedestri-
ans have been reviewed. This section will consider models of
interaction between pedestrians. In Social Science, pedestrian
behavior models have been studied for a long time: a survey
is provided in [40] [199]. These models can be classified in
two categories, namely microscopic models and macroscopic
models, as reviewed in [209]. Microscopic models model
only each pedestrian individually. Macroscopic models do not
model individual pedestrians and instead model the behaviour
of a single aggregate entity such as a crowd or a flow.
Papadimitriou et al. [153] presented a review on pedestrian
behavior models and a study on pedestrian and crowd dynam-
ics was proposed by Vizzari and Bandini in [210]. Bellomo
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Physical Models
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Fig. 5. Pedestrian microscopic and macroscopic models

et al. [15] reviewed mathematical models of vehicular traffic
and crowds while Duives et al. [64] surveyed pedestrian crowd
simulation models. Figure 5 presents a summary of pedestrian
microscopic and macroscopic models.

A. Microscopic models

This section first describes pedestrian behaviour models at
the microscopic level. It then presents pedestrian interaction
models using these behaviour models for two agents interac-
tions and group behaviour modelling.

1) Behaviour models: Microscopic models are divided into
three main groups: physical models, cellular-based models and
queuing network models. Each model is generally structured
by two terms: one term that represents the attractive effects
of pedestrians toward their goal and the other repulsive ef-
fects among and between pedestrians and the obstacles [40].
Proxemics is first described in this section.

a) Proxemics: The Psychology theory of Proxemics [88]
studies human preferences (utilities) for having other humans
in their proximity. Proxemics typically identifies four radial
comfort zones, whose radii differ between cultures, for inti-
mate, personal, social, and public space. These zones can be
described by eight dimensions [88]:

1) postural-sex identifiers
2) sociofugal-sociopetal orientation (SFP axis)
3) kinesthetic factors
4) touch code
5) retinal combinations
6) thermal code
7) olfaction code
8) voice loudness scale
This model has been empirically tested with participants

[215]. The theory is of great interest to pedestrian interaction
models because it provides a possibly hard-wired negative
utility not just for actual collisions with pedestrians but also
for simply feeling too close to them. In particular, this provides
a method for an AV to inflict a real negative utility on a
pedestrian without touching them or risking their physical
harm. Binary proxemics is the simplest case used in simple
models, in which a negative utility is assigned to actually
hitting someone, and zero utility is assigned to not hitting
anyone. Zonal proxemics is more subtle, it relies on the eight
proxemic dimensions defined above. It assigns different utili-
ties to the presence of a person in four different zones around
an individual which are defined as the intimate distance, the
personal distance, social distance and the public distance [87].
Gorrini et al. [79] studied the proxemics behaviour of groups
of pedestrians in interaction and showed that it has negative



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

effects in walking speed for evacuation scenarios. Manenti et
al. [138] presented an agent-based pedestrian behaviour model
that takes into account proxemics and group behaviour. Their
model was tested with groups of people and in a simulated
environment. A detailed review on proxemics models for robot
navigation among humans is proposed in [172].

b) Physical models: These are splitted into three sub-
categories. The utility maximization model, as used in [113],
assumes that pedestrian behaves such as to maximize their
utility, for example their speed of motion and approach or
avoidance of some objects or persons. In the magnetic force
model proposed by [150], the pedestrian behavior is deter-
mined by the equation of motion of the magnetic field. Pedes-
trians are positive poles and their destinations are negative
poles. In the social force model, introduced by Helbing [90],
each pedestrian has a desired velocity, a target time and a
target destination which are affected by social forces such as
the interaction with other pedestrians and the effects of the
environment. In [132] social forces are described as individual
forces (fidelity, constancy) and group forces (attraction, repul-
sion, coherence). Most of the time, social forces are modeled
such that to minimize an energy objective which include terms
for individual and group forces.

c) Cellular-based models: These represent a cost model
such as Blue and Adler’s cellular automata model [23] and
used for motion prediction. Cellular Automata (CA) is a
discrete, time based modeling formalism on a regular cell grid.
It describes the walk of a pedestrian according to rules of a
cell occupancy, e.g. a cell can be occupied only if it is free
and a pedestrian can have three possible movements: lateral,
longitudinal or mitigation of the conflicts. The benefit cost
model, developed by Gipps and Marksjo [76], is a discrete
and deterministic model where the space is divided into a
grid of cells and each agent is described as a particle in a
cell. A benefit value, equivalent to the pedestrian utility, is
arbitrarily assigned to each cell. In [58] a cellular automata
model simulates multi-agent interactions.

d) Queuing network models: They have been developed
for studies of evacuation dynamics [133]. These are evaluated
by Monte Carlo simulation methods for discrete events. Each
pedestrian is represented as an individual flow entity inter-
acting with other objects, facilities are modeled as a network
of arches for openings and of nodes for rooms. In [13], a
queuing network model is compared to a social force model
for pedestrian crossing movement prediction.

2) Two agents’ interaction: These models are those involv-
ing only two agents with mutually influencing behaviours,
rather than larger groups of agents. They may be simpler
than larger group models but sometimes provide a foundation
for extension to larger group models, hence they are here
presented first.

a) Dynamic graphical models: The method in [31] uses
POMDPs (Partially Observable Markov Decision Processes)
with a time-indexed state space to model interactions and they
used the example of an elevator-riding task to test the model.
In [178], Rudenko et al. proposed a method that uses MDPs
with a joint random walk stochastic policy sampling algorithm
to predict motion and social forces to model interactions. The

model in [119] learns features from observed pedestrian be-
haviors using a Markov Chain Monte Carlo (MCMC) sampling
and performs a Turing test with human participants to validate
the human-like behavior of the model. Chen et al. [46] used an
extended Kalman filter to predict future motions of pedestrians
and estimate the time-to-collision range (TTCR) for collision
risk level identification.

b) Gaussian Process methods: Kawamoto et al. [111]
proposed a method to learn pedestrian dynamics with krig-
ing, the most traditional form of Gaussian Processes. Their
work can predict pedestrian movement using spatial kriging
and spatio-temporal kriging. Social interaction is modeled
by spatio-temporal correlation of pedestrian dynamics and
correlation is estimated by kriging.

c) Deep learning methods: Alahi et al. [2] predicted
pedestrian trajectories in crowded spaces using a ‘social
LSTM, a variant of recurrent neural network model that
can learn human movement (velocity, acceleration, gait...)
taking into account social human motion conventions and
predict their future trajectories. This technique is opposed to
traditional social forces methods and outperforms most the
state-of-art methods on public datasets (ETH and UCY). Long
Short-Term Memory (LSTM) can learn and reproduce long
sequences, it is a data-driven technique. One LSTM is used
for each person and the interaction among people is modeled
by a social pooling layer which allows the share of states
between neighboring LSTMs. Although group behavior is not
modeled, the social LSTM can predict it very well. Similarly
to the previous method, Chen et al. [47] developed a long-
term pedestrian prediction model using RNNs for pedestrian
trajectory prediction.

d) Road crossing models: This section extends the event-
activity models from section II-D by adding interaction be-
tween pedestrians and vehicles. When microscopic models
of pedestrian movement are included in larger-scale traffic
simulations together with vehicles, they are typically extended
with specific provisions to account for pedestrian’s decisions
on where and when to initiate road crossing, when this is
needed for the pedestrians to reach their goals. Other, so called
gap acceptance models, have instead described probabilities of
pedestrians crossing in a certain gap between vehicles, using
generalised linear models, with predictors including both the
available gap itself, as well as other factors such as age and
gender of the pedestrians, number of pedestrians waiting to
cross, and time spent waiting [193], [186].

Markkula et al. [139] proposed another type of model for
pedestrians road crossing decision, modelled as the result of a
number of perceptual decisions concerning the available gap,
but also car yielding, explicit communicative signals from the
car, and eye contact with the driver. These decisions were
described as several interconnected evidence accumulation
processes, and it was shown that empirically observed bimodal
distributions of pedestrian waiting time were qualitatively
reproduced by the model. In [38], Camara et al. proposed
a heuristic model for pedestrian crossing intention estimation.
Their method is based on a distance ratio model that computes
the pedestrian crossing probability over time until the curbside.
Their results showed that this heuristic model is sufficient for
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most of the crossing scenarios present in the dataset used and
that the remaining scenarios would require higher level models
such as game theory.

e) Other methods: Discrete choice models in [8] [28]
offer a framework to model pedestrian walking along link
levels, where pedestrian paths are composed of a sequence
of straight lines in absence of any obstacles. For example, the
model in [28] has been applied to predict pedestrian behaviour
in the presence of other people in shopping street areas.
Hoogendoorn and Bovy [94] extended a standard optimal
control theory model of a free walking pedestrian, X , to
include their first and second order predictions of another
pedestrian Y , from the point of view of an external observer,
O. It is important to understand the points of view involved
here, because this consideration motivates higher order and
game theoretic models of behaviour. In the ‘single pedestrian
models above, the model is made from O’s point of view and
assumes the pedestrian X does not respond to anyone else’s
actions in any way. In O’s first-order model of X encountering
Y , the model includes X’s own single-pedestrian model of
Y ’s motion, and X’s likely responses to it. For example, X
estimates that X’s path will collide with Y ’s kinematic path so
alters X’s path to avoid Y . In O’s second-order model of X’s
behaviour: X is modelled not only as doing this but also as
modelling Y ’s model of X’s kinematic behaviour, predicting
Y ’s likely action based on that, and planning X’s own action
accordingly. These first and second order terms are added as
costs to the standard free walking model. They are however
incomplete, because one could easily imagine third and fourth
order models and so on, forming an infinite sequence of
additional cost terms. However, Hoogendoorn and Bovy found
in simulation that the second order model produces flows of
pedestrians in crowded environments similar to those observed
in some Japanese crossings.

3) Group interaction: A group is here considered to be a
collection of more than two pedestrians, but smaller and more
cohesive than a crowd. These models are developed primarily
for use by non-carriageway autonomous vehicles, such as
delivery robots, navigating through crowded pedestrianized
areas, needing to cut their way between groups.

a) Dynamic graphical models: In [19] a real-time pedes-
trian path prediction is performed in cluttered environments
without making any assumption on pedestrian motion or
pedestrian density. Pedestrian motion and movements patterns
are learnt from 2D trajectories. Bera et al. used sparse and
noisy trajectories data from indoor and outdoor crowd videos.
By combining local movements (microscopic and macroscopic
motion models) and global movements (movement flow), the
patterns help improve the accuracy of the long-term prediction.
An ensemble Kalman filter (EnKF) was used to predict the
next state based on current observation and EM algorithm to
maximize the likelihood of the state. Pedestrian clusters are
computed based on their positions, velocities, inter-pedestrian-
distances, orientations etc. Global movement patterns are the
past movement and intended velocity of pedestrians. Local
movement patterns are obtained by fitting the best motion
model to pedestrian clusters and individual motions. In [20],
the same authors implemented a tracking algorithm built on

top of [19]. Deo et al. in [53] uses VGMMs to model
pedestrian trajectory using pedestrian origins and destinations.
Their model is tested on a dataset of a crowded unsignalized
intersection in a university campus. Pellegrini et al. [155]
introduced a linear trajectory avoidance (LTA) model which
has similarities with the social force model. In [156], the
same authors extended the LTA model with a stochastic
version taking into account group behavior and allows mul-
tiple hypotheses about the pedestrian position. Zhou et al.
[229] proposed a mixture model of dynamic pedestrian-agents
(MDA) for pedestrian trajectory prediction in crowds.

b) Gaussian Process methods: Henry et al. [91] used
inverse reinforcement learning (IRL) to learn human-like navi-
gation behavior in crowds. The model estimates environmental
features using Gaussian Processes and extends Maximum
Entropy Inverse Reinforcement Learning (MaxEnt IRL) of
[230] by assuming that features in the environment are par-
tially observable and dynamic. The proposed approach was
developed for mobile robot motion planning, but it could be
used for human motion prediction. In [201], Trautman and
Krause proposed to solve the freezing robot problem, where
a robot motion planner gets stuck and cannot find any proper
move to perform, by a model based on Gaussian Processes, a
statistical model that is able to estimate crowd interaction.

c) Deep learning methods: The subsequent models may
not explicitly consider interaction, but they learn interaction
implicitly through machine learning techniques. The model
in [194] implemented a real-time Temporal 3DOF-Pose Long-
Short-Term Memory using 3D lidar data from a mobile robot.
Shi et al. [191] developed a long-term pedestrian trajectory
prediction model for crowded environments using LSTM.
In [222], Yi et al. proposed a deep neural network model called
behavior-CNN that is trained with crowded scenes video data.
A pedestrian behavior model is encoded from the previous
frames and used as an input for the CNN model to predict their
future walking path and destination as well as a predictor for a
tracking system. Radwan et al. [163] presented an interaction-
aware TCNN, a convolutional neural network model that can
predict interactive motion of multiple pedestrians in urban
areas.

Amirian et al. [6] predicted the motion of pedestrians over
a few seconds, given a set of observations of their own past
motion and of those of the pedestrians sharing the same
space, using a Generative Adversarial Network (GAN)-based
trajectory sampler. The reason for this choice is that such a
method naturally encompasses the uncertainty and the poten-
tial multi-modality of the pedestrian steering decision, which
is of great importance when using this predictive distribution
as a belief in higher level decision-making processes. Lee et
al. [121] developed DESIRE a trajectory prediction framework
for multiple interacting agents based on deep neural networks.
A conditional variational auto-encoder is used to generate
hypothetical future trajectories. An RNN is then used to
score and rank those features in an inverse optimal control
manner and taking into account the scene context. Gupta et
al. [82] proposed a socially-aware GAN with RNNs for pedes-
trian motion sequence prediction in dynamic environments.
However, their model assumes that people influence each
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other uniformly. A detailed analysis and improvement of this
GAN method is proposed in [117]. With a similar method,
called SoPhie, Sadeghian et al. [180] developed a GAN-based
trajectory prediction model that focuses on the most important
agents for each interacting agent.

d) Other methods: Moussaid et al. [147] presented
a heuristics-based model to predict pedestrian behavior in
crowded environments. Based on the idea that visual informa-
tion is very important for pedestrians [12], [202], they found
that two simple heuristics can model the interaction among
people: the desired walking direction and speed of pedestrians
are sufficient. Bonneaud and Warren [26] proposed a related
type of model, extending the behavioral dynamics model by
[69] to goal-seeking and obstacle avoidance in crowds, and
found that the model was able to reproduce qualitative crowd
phenomena like lane formation. The model in [99] learns
behavioral patterns from pedestrian trajectories in a mall. It
assumes that a robot can model interactions using social forces
and segment pedestrian trajectories into sub-goals to estimate
their future positions.

B. Macroscopic models

In macroscopic models, the crowd is modeled as a single
ontological object, replacing and simplifying the representa-
tion of multiple microscopic pedestrians. The crowd behaves
as a continuous fluid with a flow average speed [197].

The first macroscopic models of pedestrians are due to
Hughes and Henderson [97]. The fluid dynamic model classi-
fies pedestrians into groups which are characterized by average
features, their position, speed and intended velocity. In [14],
pedestrian flows are modeled in simulations for crowded en-
vironments. Crowd modelling has also an established commu-
nity focused on models for evacuation, as reviewed in [182].
In [4] Ali et al. used Lagrangian Particle Dynamics to segment
high density crowd flows. This method, based on Lagrangian
Coherent Structures (LCS) from fluid dynamics and particle
advection, is capable of detecting instabilities in the crowd.

Smooth Particle Hydrodynamics (SPH) is a hybrid of mi-
croscopic and macroscopic models. Pedestrians are considered
individually, but at each time they are aggregated into a density
where each particle is moved according to the macroscopic
velocity. Etikyala et al. [67] reviewed smooth particle hydrody-
namics pedestrian flow models while [223] proposed a generic
SPH framework for modeling pedestrian flow.

C. Discussion

The theory of proxemics has been well studied in psychol-
ogy and now being more and more used for VR experiments
[151] [56] and computer scientists are just beginning to apply
it to make more detailed models of the utility of pedestrian’s
personal space than simply collisions and non-collisions. In
general, microscopic models are preferred to macroscopic
models, in particular the social force model is very popular for
pedestrian interaction modelling, while macroscopic models
are more suited for crowd behaviour modeling, especially in
the specialised domain of emergency evacuation modeling.
Physical models bring interesting results when there are a

lot of interactions, e.g. modelling pedestrian movement in
cities [176]. Cellular-based models are useful for modelling
pedestrians with minimal movement choices and when rep-
resenting their collisions is not required. Two agents’ and
group interaction models offer more precise pedestrian models
but they require more computational resources, in particu-
lar dynamic graphical, Gaussian Process and deep learning
models. More computational research is needed in interaction
modelling: psychology/human factors studies and theories are
more mature, but their results have not yet been quantified to
the extent of enabling translation into algorithms for AVs.

IV. GAME THEORETIC AND SIGNALLING MODELS

A. Game theory interaction models

The interaction models above are all incomplete in the sense
that they are of finite order. In the first-order, X’s beliefs
about Y ’s future motion are modelled. A second-order model
extends to model X’s beliefs about Y ’s beliefs about X’s
future motion, and so on. But this approach leads to an infinite
regress, where there is a need for an infinite order of models
to consider X’s belief about Y ’s belief about X’s belief about
Y ’s belief and so on. Game theory provides an alternative and
stronger framework which does not suffer from infinite regress
and allows all considerations by and about all players to be
taken into account together.

Isaacs [105] introduced vehicle-pedestrian interactions as
the famous ‘homicidal taxi driver problem which considered
the inverse of the modern AV interaction problem: how an
AV controller should act in order to hit a pedestrian (the
taxi scenario was used initially as a declassification technique
to publish missile-defence algorithms, which require control
of one missile to hit another). Game theory is in common
use in descriptive road user modelling as reviewed in [65],
where applications include modelling of lane changes and
merging onto motorways, route selection and departure time
in congested networks, and socio-economic choices such as
purchasing large vehicles or using conventions such as head-
light dipping. It has been applied to AV-vehicle interactions
in [164] though here only pedestrian models are considered.

The use of game theory for active control of AVs is less
common. Descriptive models may be incomplete as active con-
trollers, in particular by allowing for multiple Nash Equilibria
to exist without selecting between them. A Nash equilibrium
is a set of probabilistic strategies to be played by each of the
players, such that no player would change their strategy if
they knew the strategies of the other players. It is generally
agreed in Game Theory that it is not optimal for players to
employ strategies which are not Nash equilibria, though there
is still philosophical debate over what strategy is optimal when
multiple equilibria exist.

1) Two agents’ game theory interactions: The methods
in [140] and [204] model selection of pedestrian trajectories
from a finite set as a single-shot game. For a small set of
known origins and destinations, optimal freespace trajectories
are computed from control theory, and actual trajectories from
a video set are compared to them and assigned costs according
to their deviations from them. These models assume that the
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choice of the entire continuous trajectory is drawn from a
finite set of previously observed and costed trajectories as a
single decision at the start of the interaction and does not
model responses to the other agent during the interaction.
They are used only as descriptive models rather than as real-
time control because they require each pedestrian’s final goal
location to be known in advance to form the cost matrix –
which is only obtainable by looking ahead in the data to see
what happened post hoc. The authors state that (in the context
of AV control), ‘few researchers have considered interaction
between (pedestrian) objects, thus neglecting that humans give
way to each other. Turnwald et al. [203] adds an alternative
model where one player chooses their trajectory first then the
second chooses theirs in response to seeing their initial motion.

Ma et al. [134] proposed a long-term game-theoretic pre-
diction of interacting pedestrian trajectories from a single
starting image. For each future time in the prediction sequence,
fictitious play is used to converge the probabilities of each
pedestrian’s actions to one (of possibly many) Nash equi-
librium. The fictitious play assumes that each pedestrian has
a known destination goal, some known visual features (age,
gender, initial body heading etc) and a known utility function.
The utility function scores vectors of word-state features which
contain all of (1) the pedestrian’s own future trajectory (which
may include control theory style costs); (2) probabilistic
beliefs about the other agents’ trajectories; (3) the pedestrian’s
own visual features (age, heading etc); (4) proximity to static
obstacles; (5) the pedestrian’s distance to their goal. Unusually,
the utility functions are learned entirely automatically from
video data of actualized trajectories, rather than set by theories.
Where theory-like behaviours such as proxemics and social
forces are observed in simulations, they arise entirely from this
learning process. The functions are assumed to be a weighted
linear function of the features and a reinforcement-learning-
style model is used to obtain per-state values from the full
trajectories during learning. A (deep learning) classifier is used
to obtain the visual demographic and heading features from
annotated training examples. Performance is degraded when
the pedestrian’s goal locations are not known and are set to
be completely uncertain in the feature vectors.

In [72], Fox et al. presented a version of the game-theoretic
‘game of chicken for autonomous vehicle-pedestrian inter-
actions at unsignalized intersections. The obtained discrete
model called the Sequential Chicken model allows two players
to choose a set of two speeds: decelerate or continue. A new
method to compute Nash equilibria is presented, called ‘meta-
strategy convergence, used for equilibrium selection. Camara
et al. [39] evaluated the model [72] by fitting one parameter θ
to controlled laboratory experiments where pedestrians were
asked to play Sequential Chicken. This behavioural parameter
θ is found to be a ratio between the utility of avoiding a
collision and the utility of saving time.

2) Small group game theory models: Vascon et al. [206]
proposed a game theory model for detecting conversational
groups of pedestrians from video data, based on the socio-
psychological concept of an F -formation and the empirical
geometries of these formations. Johora and Müller [108]
proposed a three-layer trajectory prediction model composed

of a trajectory planner, a force-based (social force) model and
a game theoretic decision model. The game theory model
is based on Stackelberg games, a sequential leader-follower
game where pedestrians have three different possible actions:
continue, decelerate and deviate and the car has two possible
actions: continue and decelerate. This model is able to handle
several interactions at the same time.

3) Crowd game theory models: Mesmer et al. [142] mod-
elled pedestrians’ decision-making and interactions during
evacuations with game theory. In [190] a model of pedestrian
behavior in an evacuation used game theory and showed that
pedestrians get greater benefits by cooperating.

B. Signalling interaction models

Signalling models extend interaction models by allowing
both the pedestrian and the AV to model and predict each
other’s actions of giving and receiving pure information, rather
than communicating only through their physical poses.

Nathanael et al. [148] has proposed a stratified model of
mutual awareness between pedestrians and vehicles including
AVs. The actor’s awareness is divided into three levels, i.e.,
(1) unaware of the others, (2) factually aware of the other,
or (3) aware and actively attending to the other. When one
of the two agents is unaware of the other, the interaction
may be as simple as collision avoidance by the one aware,
relying only on bodily and kinematic cues. When both agents
are aware of each other, the interaction takes the form of
mutual coordination through implicit cues, whereas when both
agents are attentive to each other (as evidenced through eye
contact between human actors), the interaction may involve
direct communication through explicit signals, such as ges-
tures, nodding etc. In addition attentiveness, as opposed to
mere awareness, designates that any physical action from an
attentive agent is a response explicitly addressed to the agent
at the focus of attention (i.e. it also has a signalling function).

This line of research raises an epistemological question
about signalling-based interaction. Some of the models above
involve the concepts not just of an agent (1) knowing that the
other agent is there, and (2) acting to show the other agent that
they are present; but also higher-order knowing and showing
these facts. This includes (3) knowing that the other knows
they are there and (4) showing the other that they know that
the other knows they are there. But also includes arbitrarily
higher orders, such as ‘knowing that the other has showed that
they know that they know that the other knows and so on.
There appears to be a potentially infinite regress here, though
intuitively most humans find it difficult to comprehend many
more levels than the four mentioned here. But it is difficult
to argue for why any cut-off should occur at this or other
specific level. Intuitively: when two agents make eye contact,
they assume that they both then come to know the infinite
stack of such statements about each other.

1) Signals from pedestrian to vehicle: The need for precise
eye contact as opposed to simple head direction or gaze
towards the vehicle is controversial. Considering gaze or head
orientation towards vehicles, there is evidence that pedestrians
who initiate crossings without looking at the oncoming vehicle
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tend to make drivers more attentive to them by keeping larger
safety margins [110]. On the other hand, eye contact between
pedestrian and driver tends to increase the probability of the
vehicle yielding for pedestrians [84]. The apparent controversy
between these findings may be attributed to profound differ-
ences in the function of these two behavioural traits. While
head orientation towards vehicles typically signifies pedestrian
situational awareness to drivers, eye contact most probably
signifies driver awareness of the pedestrian to the latter [167].
In addition, eye contact is reported to play a non-trivial role
in the social dynamics between the two. Nathanael et al.
[148] in a naturalistic study of driver pedestrian interaction
reported that pedestrian head turning towards a vehicle was
sufficient for drivers to confidently infer pedestrians intent
in 52% of interaction cases observed. In retrospective think-
aloud sessions of their interaction with pedestrians, drivers
mentioned pedestrian active head movement and orientation
as an important indication of pedestrian awareness of their
vehicle. Mutual eye contact between driver and pedestrian
was observed only in 13% of interaction cases, accompanied
by explicit signalling in 2% of total cases. This is consistent
with recent research [166] that reported head orientation/gaze
towards vehicles as the most prominent cues for predicting
pedestrian intent. In addition, computational models have
shown that head direction is a useful trait for pedestrian path
prediction and state of situation awareness such as in [37]
which argued that if a pedestrian looks at the vehicle, they are
less likely to cross the road.

Matthews et al. [141] studied pedestrians’ behavior with an
autonomous goal car equipped with an Intent Communication
System (ICS) based on Decentralized MDP to model the
uncertainty associated with pedestrian’s behavior. Another
important factor to take into account is the poor pedestrian
signal settings. It has been proven that signal indication and
timing affect significantly pedestrian behavior and their cross-
ing decisions [3] [102] [103]. Pedestrians can have sudden
speed change while crossing, and such sudden behavioral
changes may not be expected by conflicting vehicles, which
may lead to hazardous situations. In [103], Iryo-Asano and
Alhajyaseen proposed a discrete choice model and Monte
Carlo simulation for generating pedestrian speed profiles at
crosswalks. In [104], the same authors modelled pedestrian
behaviour after the onset of pedestrian flashing green (PFG)
via a Monte Carlo simulation. Their results showed a higher
probability of pedestrian stopping at longer crosswalks and a
significant difference in pedestrian speeds.

Some early steps have however been taken towards mod-
elling at least some levels of explicit knowing and showing of
beliefs about each other via signalling behaviour.

2) Signals from vehicle to pedestrian: Beyond understand-
ing pedestrians signalling behavior, game theoretic models
may also enable the AV to give signals to the pedestrians,
creating a higher level information game with both players
communicating through both their physical actions and also
their signals. The full game theory of such interactions has not
yet been worked out, and will form part of a complex socio-
technical system [174], but there has been notable activity –
especially via company patents – in researching displays and

other mechanisms for the signalling itself.
Lundgren et al. [131] showed that the lack of two-way

communication between driver and pedestrian may reduce
pedestrians’ confidence to cross the street and their perceived
feeling of safety, when crossing. Lichtenthäler et al. [128] re-
viewed robot trajectories among humans, including identifying
needs for additional gestures or motion information such as
gaze to communicate intention, which is relevant for last mile
delivery. Researchers are currently conducting studies to better
understand exactly which information needs to be transferred
when interacting with an AV. Schieben et al. [183] propose the
following information to be considered by the design team.

• Information about the vehicle automation status
• Information about next manoeuvres
• Information about perception of environment
• Information about cooperation capabilities
To transfer the relevant information, two means of com-

munications can be used for shaping the communication
language of an AV. First, pedestrians might benefit from direct
communication through the means of external human machine
interfaces (eHMIs) [131], [177]. Secondly, also careful design
of vehicle movement can be used to explicitly communicate.
Risto et al. introduced the term ‘movement gestures and found
‘advancing’, ‘slowing early and ‘stopping short as commonly
used gestures [174]. Consistent with this, Portouli et al. [159]
in the context of driver-driver interaction have shown that
‘edging was explicitly used by drivers trying to enter a two-
way street as a sign of their intent to inform oncoming
cars. Studies of human robot interaction have shown that
allowing humans to anticipate robot movements by explicit
communication through movements of the robots head raises
perceived intelligence of the robot even if it did not succeed
completing its intended tasks [195], thus overcoming potential
machine error through the means of explicit communication.
These studies might suggest similar devices such as head-like
and eye-like displays for AVs.

While Clamann et al. [49] found mixed influences of explicit
communication through novel eHMI on crossing behavior in
dynamic traffic situations and argued that pedestrians will
largely rely on legacy behavior and not on eHMIs, Habibovic
et al. [86] found that traffic participants feel calmer, more
in control and safer when an eHMI was present on an AV.
Petzoldt, Schleinitz, and Banse [157] found that an eHMI can
help to convey the intention of a vehicle to give priority to a
pedestrian. They also observed that pedestrians needed more
time to understand the intention of a vehicle without eHMI
in mixed traffic situations [157]. Communicating the intent
and awareness of automated vehicles has been considered in a
positive way [136] [137]. Habibovic et al [86], [7] argued that,
for safety reasons, communication should never be command-
based. The vehicle should communicate solely its intentions.

Communication can be directed or undirected. Pedestrians
usually assume that any AVs communication is referring to
themselves, hence using eHMIs with multiple pedestrians
present has to be carried out in a way that minimizes mis-
communication (i.e. either letting all pedestrians pass or not
displaying a signal at all). Directed signalling minimizes this
risk as other road users do not visually perceive the signal
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of the eHMI. Dietrich et al. [57] found that pedestrians were
not able to distinguish whether an undirected light signal was
addressed to themselves or other traffic participants.Therefore,
AVs should either use directed communication in ambiguous
situations involving multiple pedestrians or no communication
at all, as pedestrians will base their crossing decision on the
approaching vehicles kinematics if no eHMI is present. The
color of the visual eHMI stimulus may be of importance [216].

The most common eHMI display types are projection, high
resolution displays and direct light. Semantics used include
animations, concrete iconography, or text. For instance, Habi-
bovic et al. developed a communication concept based on
external light signals on the top of the windshield [86]. Using
various light animations, the intention of the AV as well as
the current driving mode such as ‘I’m about to yield’, ‘I’m
resting, and ‘I’m about to start are displayed on the LED
light bar. Clamann et al. [49] empirically examines similar
models efficacy for giving signals to pedestrians. Further
eHMI concepts include mimicking eye contacts by adding
visible ‘eyes to AVs – based on the well-known tendency
for humans to perceive and design faces in cars– which can
communicate detection and awareness of pedestrians through
eye contact [42], as well as a virtual driver’s mimicking
furthermore facial expressions or hand signals. In addition to
the pure visual-based communication between AVs and other
TPs, some concepts also consider a combination of light and
audio signals, as in the Google, Uber concepts and Mercedes-
Benz concept car F015.

Most of the concepts presented here do not yet include de-
tailed user studies and thus there remains a need for thorough
evaluation including the behavioral and emotional responses
of pedestrians in realistic environments. Different findings
might be due to different eHMI concepts, diverse traffic
scenarios, as well as different communication strategies. While
research is still lacking in full understanding of the effects
of eHMI on traffic, a large number of conceptual solutions
have been proposed. Their influence on pedestrians, regarding
their safety, experience and acceptance remains unclear. Most
of these conceptual solutions are proposed by industry and
involve some form of visual communication as the visual
channel is the currently most used channel of communication
in traffic as well as the best suited for communication at larger
distances in busy environments.

C. Discussions

Game Theory has a long history of use in V2V (vehicle
to vehicle) interactions in classical transport studies, as mi-
croscopic models underlying simulations of traffic flows and
infrastructure design. Also multi-robot game theory systems
are quite mature in robotics. These two streams have not
generally been unified or applied to AV-pedestrian modelling,
though this is beginning to emerge as an early research area.
Like other sophisticated methods, game theoretic models can
be computationally expensive.

Signalling models remain a distant research frontier. Phys-
ical actuators for eHMI signalling are currently being in-
vestigated by car manufacturers and recent years have seen

much patent activity in the area. But how to best use them
to transmit information is not understood. There are currently
no game-theoretic models using knowing and showing with
explicit signalling but this would appear to be a fruitful area for
future research. Eye contact is a particular form of signalling,
but even in high level psychology research there remains an
ongoing and lively debate about whether it is relevant or
useful. The signalling methods reviewed here are mainly from
qualitative studies, some work is still needed to implement
their findings in algorithms for AVs.

V. EXPERIMENTAL RESOURCES

A. Pedestrian datasets

Large data sets are important resources for training and
testing models at all levels, especially when they are annotated
with ‘ground truth information by humans. Their use has been
common for low-level models such as detection and tracking,
though there is currently a shortage of high quality annotated
data for the higher-level models such as social interactions.

Major visual pedestrian datasets include the Caltech Pedes-
trian Benchmark [59], ETH [66], TUD-Brussels [218], Daim-
ler [?], Stanford Drone Dataset [175], UCY Zara pedestrian
dataset [124] and INRIA [51]. CityPersons [226] is a large
dataset for pedestrian detection. Town Center Dataset [16] is
a video dataset composed of 71.5k annotations.

Datasets used for pedestrian re-identification, i.e. having
many images of the same people with identifiers include
for example CUHK01 [126], CUHK02 [125] and CUHK03
[127], collected at a university campus and composed of
thousands of bounding boxes of unique people. DUKEMTMC
[173] and DUKEMTMC-reID [228] datasets have been de-
veloped in the Duke university campus and are used for
tracking and re-identifying multiple people with multi-camera
systems. MARKET-1501 [227] dataset provides 35k images
of 1500 individuals but also comes with a 500k dataset of
non-pedestrian street window distractors for training classi-
fiers. Multi-Object Tracking Benchmark [143] collects diverse
datasets and publishes new data. Several releases have already
appeared: MOT15, MOT16 and MOT17.

PETA benchmark [52] is a mixture of several public
datasets (e.g VIPER, SARC3D, PRID, MIT, I-LID, GRID,
CAVIAR4REID, 3DPES), which has been used to recognize
pedestrian attributes at far distance. The benchmark has been
tested with an SVM method. Social ground truth annotations
are much rarer. [36] and [37] collected high quality human
annotations of physical and social events during pedestrian-
vehicle interactions, including the presence and timings of
the agents communicating with each other via eye contact,
hand gestures, positions and speeds, and the final ‘winners’ of
interactions which compete for road space during crossings.

Yang et al. [221] pointed out that in mixed urban scenarios,
intelligent vehicles (IVs) have to cope with a certain number
of surrounding pedestrians. Therefore, it is necessary to under-
stand how vehicles and pedestrians interact with each other.
They proposed a novel pedestrian trajectory dataset composed
of CITR dataset and DUT dataset, so that the pedestrian mo-
tion models can be further calibrated and verified, especially
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when the vehicle’s influence on pedestrians plays an important
role. In particular, the final trajectories of pedestrians and
vehicles were refined by Kalman filters with linear point-mass
model and nonlinear bicycle model, respectively, in which xy-
velocity of pedestrians and longitudinal speed and orientation
of vehicles were estimated.

Zhan et al. proposed INTERACTION dataset [225] which
contains naturalistic motions of various traffic participants in a
variety of highly interactive driving scenarios. Trajectory data
was collected using drones and traffic cameras, containing data
from multiple countries (USA, China, Germany and Bulgaria).
There are four different driving scenarios, with their seman-
tic maps provided: roundabouts, un-signalized intersection,
signalized intersection, merging and lane changing. Chang
et al. proposed Argoverse [43] containing two datasets and
HD maps recorded from a self-driving car. Argoverse 3D
Tracking is for 3D object annotations, it contains a collection
of 11,052 tracks, and Argoverse Motion Forecasting is a
curated collection of 324,557 scenarios, each 5 seconds long,
for trajectory prediction. Each scenario contains the 2D, birds-
eye-view centroid of each tracked object. ApolloScape dataset
[214] was recorded in urban areas in China using various
sensors. The dataset contains different road road users (ve-
hicles, pedestrians, bicycles). The ApolloScape LeaderBoard
shows the ranking and performance of the models tested
on the dataset for different tasks, such as scene parsing,
detection/tracking, trajectory prediction, self-localisation. The
Intersection Drone (InD) dataset [25] contains naturalistic
vehicle trajectories recorded using a drone at four German
intersections. It provides the trajectories for thousands of road
users and their types (e.g car, pedestrian, bicycle, truck), and
can be used for example for road user prediction.

Person detection in off-road agricultural vehicle environ-
ments has become popular in recent years. Results from these
studies are not well known in transport research but may
transfer to on-carriageway and on-pavement AVs as they deal
with similar types of pedestrian interactions. The National
Robotics Engineering Center (NREC) Agricultural Person
Detection Dataset [158] consists of labeled stereo video of
people in orange and apple orchards taken from a tractor
and a pickup truck, along with vehicle position data. The
dataset combines a total of 76k labeled person images and
19k sampled person-free images. Gabriel et al. [73] present a
dataset that focuses on action/intention recognition problems
for human interactions with small robots in agriculture, in-
cluding ten actors performing nine gestures and four activities.
Stereo camera images, thermal camera images and Lidar point
cloud data are recorded on grassland, under varying lighting
conditions and distances. Kragh et al. [118] presents a multi-
modal dataset for obstacle detection in agriculture containing
2h of raw sensor data from a tractor-mounted sensor system in
a grass mowing scenario, including moving humans scattered
in the field.

A summary of pedestrian datasets is given in the supple-
mentary material Sect. ?? Table ??.

B. Vehicle datasets

To train and test models of pedestrians interacting with
vehicles, it is most likely useful to provide similar big data
about vehicles as well as about pedestrians. This may include
ground truth information on vehicle location and motion,
but also high level social annotations to use in studies of
interaction with pedestrians. Visual data available includes the
Berkeley DeepDrive Video (BDDV) dataset [220], currently
the largest vehicle dataset publicly available with 10k hours of
driving videos around the world. KITTI dataset [75] provides
a one hour video of a vehicle driving in an urban environ-
ment. Caesar et al. [32] presented nuScenes a dataset for
autonomous driving composed of multiple sensor data (RGB,
LIDAR, RADAR) from two cities and containing 1k scenes.
A summary of vehicle datasets is given in the supplementary
material Sec. ?? Table ??.

C. Pedestrian and Driving Simulators

Three types of vehicle and pedestrian simulation research
work exist, these categories are listed below, some concrete
examples will follow in the next paragraphs. The design and
source code for simulators like the ones introduced below
are often not made publicly available, thus making it difficult
for others researchers to investigate and replicate experiments,
hence there is a clear need for more open-source simulators. A
summary of the simulators is proposed in the supplementary
material Sec. ?? Table ??.

a) Vehicle-Pedestrian Simulators: Micro or macro sim-
ulations model both vehicle and pedestrian behavior. Most
of these simulations rely on sets of behavioral rules for
both agents. These simulators are primarily used for road
design purposes and for policy decisions such as the cellular
automata-based simulators proposed in [71] and [130] where
vehicle-pedestrian crossing behaviour is studied at crosswalks.
Feliciani et al. [71] further evaluated the necessity of intro-
ducing a new crosswalk and/or switching to a traffic light.
Chao et al. [44] developed a microscopic-based traffic simu-
lator based on a force model to represent the behaviour and
interactions between the road users, and aimed for autonomous
vehicle development and testing. Chen et al. [45] proposed a
simulation platform composed of several behaviour models at
crosswalks for vehicle-pedestrian conflicts assessment. Gupta
et al. [83] developed a simulation model, using Matlab and
the open-source SUMO (Simulation of Urban Mobility), for
autonomous vehicle-pedestrian negotiations at unmarked inter-
sections, considering different pedestrian behaviours. VirtuoC-
ity is an example of physical vehicle-pedestrian simulators. It
is composed of a pedestrian simulator, HIKER [181], which
is a virtual reality ‘CAVE-based environment for pedestrian
behavior analysis, a driving simulator [106] and a truck
simulator for driver behaviour understanding. IFSTTAR [98]
also possesses a pedestrian simulator and developed a driving
simulator for driver behavior analysis and human-machine
interactions, an immersive simulator for cars, motorcycles
and pedestrians behavior simulation, a driving simulator with
human assistive devices and a bicycle simulator. Commercial
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products include STEPS [146] software for and Legion [123]
simulating pedestrian dynamics.

b) Vehicle Simulators: Vehicle simulators are physical
platforms where drivers encounter virtual pedestrians (dum-
mies) in order to study driver yielding behaviors in specific
interaction scenarios. Simulators such as [149] studied driver-
pedestrian interactions in mixed traffic environments using a
driving simulator (DriveSafetys DS-600c Research Simulator).
JARI-ARV (Augmented Reality Vehicles) [107] is a road
running driving simulator and JARI-OVDS (Omnidirectional
View Driving Simulator is a driving simulator with 360-degree
spherical screen and a rocking device. The University of Iowa
[205] has developed a driving simulator. A previous review on
driving simulators is presented in [192]..

c) Pedestrian Simulators: Pedestrian simulators are VR
(Virtual Reality) based environments where pedestrian partic-
ipants encounter virtual vehicles in order to study pedestrian
perception and decision making subject to various oncoming
vehicle behaviors [184]. For example, Camara et al. [34],
[35] developed their experiments with the free version of
Unity game engine2, 3D models were imported from the
Asset Store, and used a HTC Vive VR headset for pedestrians
interacting with a game theoretic autonomous vehicle. Their
results showed that VR is a reliable setup for measuring
human behaviour for the development and testing of AV
technology. Mahadevan et al. [135] presented OnFoot, a VR
pedestrian simulator that studies pedestrian interactions with
autonomous vehicles in a mixed traffic environment. The
Technical University of Munich also developed a pedestrian
simulator [70] composed of a head-mounted display, a motion
capture system and a driving simulator software. This setup
could be connected to a driving simulator enabling multi-
agent studies while extracting the participants gait during the
crossing process. The current setup utilizes the Unity 3D game
engine (with a VIVE HMD) and is sometimes coupled with
VIVE Trackers for a virtual self-representation to create an
immersive virtual environment enabling fast implementations
and evaluation of eHMI concepts [57]. PedSim [77] is a free
crowd simulation software.

VI. CONCLUSIONS

Pedestrian sensing, detection and kinematic tracking are
now well understood and have mature models as reviewed
in Part I [33]. Moving from simple kinematic tracking and
prediction of pedestrian motions can however depend on
extremely high-level models of the state transition required
by tracking and prediction. Going far beyond simple random
velocity walk models, the present review has shown that there
is much scope here to integrate models of pedestrians as
intelligent, goal-based, psychological, active, and interactive
agents at several levels.

Unlike the more mature methods reviewed in Part I, this
review does not recommend particular software implementa-
tions for algorithms at these levels, because they remain active
research areas rather than completed and standardizable tools.
This review finds that many conceptual issues first need to be

2https://unity.com/

cleared, before mathematical interfaces – such as probabilities
– can be created to link models at these layers, and only
then standardized software development can become a reality.
(The only exception to this would be for entirely end-to-end
machine learning systems, which are not generally considered
to be safe or practical due to their lack of transparency.)

At the level of single pedestrian modelling, there now exist
good control theoretic models of optimal walking behaviour
from known origin to known destination. Here, pedestrians do
not usually walk in straight lines, but optimise gradual turning
during walking to move in smooth curves. There has been
some recent research success in inferring likely destinations
from historical data and partial trajectories.

When interaction with other agents is included, models of
pedestrians rapidly become more complex and much less well
understood. Suboptimal models include only finite orders of
epistemological models of pedestrians beliefs, raising the open
question of how to handle higher order beliefs about beliefs.
Recent game theory approaches have just begun to find optimal
behaviours in these higher-order belief cases but only under
various simplifying assumptions.

There has been a general shift away from psychology-
informed models, using empirical findings such as demograph-
ics predicting behaviours, to purely big-data-driven models
which learn aspects of such theories internally as black boxes,
usually aiming only to predict the behaviour rather than give
theoretical explanations of it.

The role of signalling between pedestrians and vehicles
during interactions has been studied qualitatively, but is not
yet understood at the algorithmic level. Psychologists and
road safety designers have evaluated and commercialised many
signalling mechanisms, such as flashing of headlights, use of
horns, and custom communication light signals. Finding algo-
rithmic strategies to make optimal use of them, and to process
information from receiving signals from others, suitable for
real-time AV control, remains an open and important question.
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A pedestrian dataset of vehicle-crowd interaction from controlled
experiments and crowded campus. In Proc. of IEEE IV, 2019.

[222] S. Yi, H. Li, and X. Wang. Pedestrian behavior understanding and
prediction with deep neural networks. In Proc. of ECCV, pages 263–
279, 2016.

[223] Y. Yuan, B. Goi-Ros, H. H. Bui, W. Daamen, H. L. Vu, and S. P.
Hoogendoorn. Macroscopic pedestrian flow simulation using smoothed
particle hydrodynamics (sph). Transportation Research Part C: Emerg-
ing Technologies, 111:334 – 351, 2020.

[224] M. Zeedyk and L. Kelly. Behavioural observations of adult-child pairs
at pedestrian crossings. Accident Analysis & Prevention, 35(5):771 –
776, 2003.

[225] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
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