327,847 research outputs found

    Influence diagram modeling of nuclear spare parts process

    Get PDF
    Spare parts inventory levels at nuclear generation plants have neared all-time highs at some facilities. As part of an ongoing research project, the authors are developing a decision making framework for nuclear spare parts management. This paper describes the use of an influence diagram model to represent the existing spare parts process at a United States nuclear facility. We then discuss how this model can be extended to develop an interview protocol for subsequent data collection using the Analytic Hierarchy Process. The influence diagram drives the overall analysis of determining best practices for the spare parts process for continuous improvement

    Practical Application Of Uml Activity Diagrams For The Generation Of Test Cases

    Get PDF
    Software testing and debugging represents around one third of total effort in development projects. Different factors which have influence on poor practices of testing have been identified through specific surveys. Amongst several, one of the most important is the lack of efficient methods to exploit development models for generating test cases. This paper presents a new method for automatically generating a complete set of functional test cases from UML activity diagrams complementing specification of use cases. Test cases are prioritized according to software risk information. Results from experiences with more than 70 software professionals/experts validate benefits of the method. Participants also confirm its interest and effectiveness for testing needs of industry

    Derivation of diagnostic models based on formalized process knowledge

    Get PDF
    © IFAC.Industrial systems are vulnerable to faults. Early and accurate detection and diagnosis in production systems can minimize down-time, increase the safety of the plant operation, and reduce manufacturing costs. Knowledge- and model-based approaches to automated fault detection and diagnosis have been demonstrated to be suitable for fault cause analysis within a broad range of industrial processes and research case studies. However, the implementation of these methods demands a complex and error-prone development phase, especially due to the extensive efforts required during the derivation of models and their respective validation. In an effort to reduce such modeling complexity, this paper presents a structured causal modeling approach to supporting the derivation of diagnostic models based on formalized process knowledge. The method described herein exploits the Formalized Process Description Guideline VDI/VDE 3682 to establish causal relations among key-process variables, develops an extension of the Signed Digraph model combined with the use of fuzzy set theory to allow more accurate causality descriptions, and proposes a representation of the resulting diagnostic model in CAEX/AutomationML targeting dynamic data access, portability, and seamless information exchange

    Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    Full text link
    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number

    Multi-method-modeling of interacting galaxies. I. A unique scenario for NGC 4449?

    Get PDF
    (abridged) We combined several N-body methods in order to investigate the interaction scenario between NGC 4449 and DDO 125, a close companion in projected space. In a first step fast restricted N-body models are used to confine a region in parameter space reproducing the main observational features. In a second step a genetic algorithm is applied for a uniqueness test of our preferred parameter set. We show that our genetic algorithm reliably recovers orbital parameters, provided that the data are sufficiently accurate, i.e. all the key features are included. In the third step the results of the restricted N-body models are compared with self-consistent N-body simulations. In the case of NGC 4449, the applicability of the simple restricted N-body calculations is demonstrated. Additionally, it is shown that the HI gas can be modeled here by a purely stellar dynamical approach. In a series of simulations, we demonstrate that the observed features of the extended HI disc can be explained by a gravitational interaction between NGC 4449 and DDO 125. According to these calculations the closest approach between both galaxies happened 46108\sim 4-6 \cdot 10^8 yr ago at a minimum distance of 25\sim 25 kpc on a parabolic or slightly elliptic orbit. In the case of an encounter scenario, the dynamical mass of DDO 125 should not be smaller than 10% of NGC 4449's mass. Before the encounter, the observed HI gas was arranged in a disc with a radius of 35-40 kpc around the center of NGC 4449. It had the same orientation as the central ellipsoidal HI structure. The origin of this disc is still unclear, but it might have been caused by a previous interaction.Comment: 19 pages with 19 figures, accepted for publication in Astron. & Astrophys., a full PostScript version is available at http://www.astrophysik.uni-kiel.de/pershome/theis/pub.htm

    Comments on Extended t-J Models, Nodal Liquids and Supersymmetry

    Full text link
    In the context of extended t-J models, with intersite Coulomb interactions, nodal liquids are discussed. We use the spin-charge separation ansatz as applied to the nodes of a d-wave superconducting gap. Such a situation may be of relevance to the physics of high-temperature superconductivity. We point out the possibility that at certain points of the parameter space supersymmetric points may occur, characterized by dynamical supersymmetries between the spinon and holon degrees of freedom, which are quite different from the symmetries in conventional supersymmetric t-J models. Such symmetries pertain to the continuum effective field theory of the nodal liquid, and one's hope is that the ancestor lattice model may differ from the continuum theory only by renormalization-group irrelevant operators in the infrared. We give plausible arguments that nodal liquids at such supersymmetric points are characterized by superconductivity of Kosterlitz-Thouless type.Comment: 18 pages latex, one eps figure incorporated (minor typos corrected). Presented by N.E.M. at the Workshop ``Common Trends in Particle and Condensed Matter Physics'', September 24-28 1999, Corfu (Greece

    The Kinetic Basis of Morphogenesis

    Full text link
    It has been shown recently (Shalygo, 2014) that stationary and dynamic patterns can arise in the proposed one-component model of the analog (continuous state) kinetic automaton, or kinon for short, defined as a reflexive dynamical system with active transport. This paper presents extensions of the model, which increase further its complexity and tunability, and shows that the extended kinon model can produce spatio-temporal patterns pertaining not only to pattern formation but also to morphogenesis in real physical and biological systems. The possible applicability of the model to morphogenetic engineering and swarm robotics is also discussed.Comment: 8 pages. Submitted to the 13th European Conference on Artificial Life (ECAL-2015) on March 10, 2015. Accepted on April 28, 201

    The Faint Cepheids of the Small Magellanic Cloud: an evolutionary selection effect?

    Full text link
    Two problems about the faintest Small Magellanic Cloud (SMC) Cepheids are addressed. On one hand evolutionary tracks fail to cross the Cepheid Instability Strip for the highest magnitudes (i.e. I-mag~17) where Cepheids are observed; Mass-Luminosity relations (ML) obtained from evolutionary tracks disagree with Mass-Luminosity relations derived from observations. We find that the above failures concern models built with standard input physics as well as with non-standard ones. The present work suggests that towards highest magnitudes, Cepheids stars undergo a selection effect caused by evolution: only the most metal poor stars cross the Instability Strip during the ``blue loop'' phase and are therefore the only ones which can be observed at low luminosity. This solution enables us to reproduce the shape of the lower part of the Instability Strip and improves the agreement between observed and theoretical ML-relations. Some issues are discussed, among them Beat Cepheids results argue strongly in favor of our hypothesis.Comment: 13 pages, 8 figure

    The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin

    Get PDF
    We present a model improving the two-angle model for interphase chromatin (E2A model). This model takes into account the cylindrical shape of the histone octamers, the H1 histones in front of the nucleosomes and the vertical distance dd between the in and outgoing DNA strands. Factoring these chromatin features in, one gets essential changes in the chromatin phase diagram: Not only the shape of the excluded-volume borderline changes but also the vertical distance dd has a dramatic influence on the forbidden area. Furthermore, we examined the influence of H1 defects on the properties of the chromatin fiber. Thus we present two possible strategies for chromatin compaction: The use of very dense states in the phase diagram in the gaps in the excluded volume borderline or missing H1 histones which can lead to very compact fibers. The chromatin fiber might use both of these mechanisms to compact itself at least locally. Line densities computed within the model coincident with the experimental values
    corecore