8,640 research outputs found

    Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer

    Full text link
    Quantitative extraction of high-dimensional mineable data from medical images is a process known as radiomics. Radiomics is foreseen as an essential prognostic tool for cancer risk assessment and the quantification of intratumoural heterogeneity. In this work, 1615 radiomic features (quantifying tumour image intensity, shape, texture) extracted from pre-treatment FDG-PET and CT images of 300 patients from four different cohorts were analyzed for the risk assessment of locoregional recurrences (LR) and distant metastases (DM) in head-and-neck cancer. Prediction models combining radiomic and clinical variables were constructed via random forests and imbalance-adjustment strategies using two of the four cohorts. Independent validation of the prediction and prognostic performance of the models was carried out on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88). Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the potential of radiomics for assessing the risk of specific tumour outcomes using multiple stratification groups. This could have important clinical impact, notably by allowing for a better personalization of chemo-radiation treatments for head-and-neck cancer patients from different risk groups.Comment: (1) Paper: 33 pages, 4 figures, 1 table; (2) SUPP info: 41 pages, 7 figures, 8 table

    Radiomics in Lung Cancer from Basic to Advanced: Current Status and Future Directions

    Get PDF
    Copyright © 2020 The Korean Society of Radiology.Ideally, radiomics features and radiomics signatures can be used as imaging biomarkers for diagnosis, staging, prognosis, and prediction of tumor response. Thus, the number of published radiomics studies is increasing exponentially, leading to a myriad of new radiomics-based evidence for lung cancer. Consequently, it is challenging for radiologists to keep up with the development of radiomics features and their clinical applications. In this article, we review the basics to advanced radiomics in lung cancer to guide young researchers who are eager to start exploring radiomics investigations. In addition, we also include technical issues of radiomics, because knowledge of the technical aspects of radiomics supports a well-informed interpretation of the use of radiomics in lung cancer11Nsciescopuskc

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    Radiological evaluation of biomarkers for renal cell carcinoma

    Get PDF
    Role of MRI DWI sequences in the evaluation of early response to neo- angiogenesis inhibitors in metastatic renal cell carcinoma Purpose: Angiogenesis inhibitors have a potential role in treating metastatic renal cell carcinoma, but it is still not clear why some patients don't respond. Our objective was to look for DWI parameters able to identify patients with metastatic renal cell carcinoma who would not benefit from target therapy. RECIST1.1 was considered as Reference Standard. Methods & Materials: We prospectively enrolled 43 patients candidate to start angiogenesis inhibitors with at least one target lesion and who underwent 1,5T MRI examination with multiple bvalues DWI sequences (0,40,200,300,600): one week before (t0), 2 weeks after (t2) and 8 weeks (t8) after treatment beginning. ADC value was calculated drawing ROIs on 3 different planes. 33 patients with 38 lesions had suitable data for comparative evaluation. Results: At T8 follow-up 9 patients had partial response (PR), 20 table disease (SD), 4 progression disease (PD); average progression free survival was 272 days. PD group, as compared to DC or to PR showed significantly lower ADC values at b40 at t0 (p<0.05): we can assess that more vascularised lesions are more responsive to treatment. PD group have significantly lower ADC values then both other groups, at t0, t2 and t8, for all b-values (p<0.05). PFS and OS correlates well with ADC, in particular OS with ADC b40 at t0 (r=0,69). Coclusions: Results show that PD group has significantly lower ADC values than PR or DC everytime (t0, t2, t8) At t0 there is a better correlation between PFS or OS & ADC than PFS & dimensional criteria. ADC at t0 may help selecting patients with promising good response to angiogenesis inhibitors. Moreover at t0 and at t2 ADC has the potential to select patients who wouldn't benefit from angiogenesis inhibitors Nowadays, in the era of target therapy, it is crucial to select patients potentially responders. We have to look at cost/benefit ratio and at increasing costs of treatment options. DWI has the potential role to identify patients whose's tumor wouldn't benefit from target therapy, adding a value (ADC) to other imaging (e.g. DCE-MRI, texture imaging) and clinical parameters (e.g. miRNA) in a hypothetic multiparametric analysis.CT Texture Analysis in Clear Cell Renal Cell Carcinoma: a Radiogenomics Prospective Purpose: The aim of this study was to investigate whether quantitative parameters obtained from CT Texture Analysis (CTTA) correlate with expression of miRNA in clear cell Renal Cell Carcinoma (ccRCC). Methods and Materials: In a retrospective single centre study, multiphasic CT examination (with arterial, portal, equilibrium and urographic phases) was performed on 20 patients with clear cell renal carcinomas (14 men and 6 women; mean age 65 years ± 13). Measures of heterogeneity were obtained in post-processing by placing a ROI on the entire tumour and CTTA parameters such as entropy, kurtosis, skewness, mean, mean of positive pixels, and SD of pixel distribution histogram were measured using multiple filter settings. Quantitative data were correlated with the expression of miRNAs obtained from the same cohort of patients: 8 fresh frozen samples and 12 formalin-fixed paraffin-embedded samples (miR-21-5p, miR-210-3p, miR-185-5p, miR-221-3p, miR-145-5p). Both evaluations (miRNAs and CTTA) were performed on tumour tissues as well as on normal cortico-medullar tissues. Analysis of Variance with linear multiple regression model methods were obtained with SPSS statistic software. For all comparisons, statistical significance was assumed p<0.05 Results: We evidenced that CTTA has robust parameters (e.g. entropy, mean, sd) to distinguish normal from pathological tissues. Moreover, a higher coefficient of determination between entropy and miR-21-5p expression (R2 =0,25) was evidenced in tumour tissues as compared to normal tissues (R2 =0,15). Interestingly, excluding four patients with extreme over-expression of miR-21-5p, excellent relation between entropy and miR21-5p levels was found specifically in tumour samples (R2= 0,64; p<0.05). Conclusion: Entropy and miRNA-21-5p show promising correlation in ccRCC; in addiction CTTA features, in particular mean and entropy show a statistically significant increase in ccRCC as compared with normal renal parenchyma

    Quantitative imaging analysis:challenges and potentials

    Get PDF
    • …
    corecore