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1 - Introduction 
 

The aim of this report is to describe and explore the potential of Radiomics in the framework of the 
activities developed at  the “Nello Carrara” Institute of Applied Physics (IFAC), which is part of the National 
Research Council (CNR), in collaboration with USL Toscana Centro.  
The possibility of a more quantitative study of imaging data emerged during the work of specialization thesis in 
medical physics of one of the authors [1, 2]. The thesis subsequently led to the IRINA project (“Imaging 
molecolare di risonanza magnetica della biodistribuzione di nanoparticelle e vettori cellulari per applicazioni 
teranostiche” – Biodistribution of nanoparticles and cellular vehickles using biomolecular magnetic resonance 
imaging for theranostics applications) [2, Appendix 5] on the use of nanoparticles as a new theranostics agents in 
the context of multiparametric magnetic resonance imaging (MRI).  
During the thesis work, we developed novel quantitative imaging methodologies [131], with a focus on clinical 
applications of MRI spectroscopy [1]. In the IRINA project we have extended the MRI techniques involved, 
studying different diffusion models, new algorithms for spectroscopy data analysis, techniques for data and 
image analysis, applications of these techniques to database of patients beginning to face the problem of Big Data 
in medicine, coming at the end to the concept of Radiomics. 
Radiomics can be described as a process designed to extract a large number of quantitative features from digital 
images, place these data in shared databases, and subsequently mine the data for hypothesis generation, testing, 
or both. Radiomics is designed to develop decision support tools, therefore requiring the combination of 
radiomic data with other patient characteristics in order to increase the power of the decision support models 
[80]. 

All the activities have been divided between basic, clinical research, and clinical practice, and focused on 
quantitative MRI data using a translational approach.  

This report provides a general introduction to Radiomics, introduces an example application on 
multiparametric Magnetic Resonance Imaging (mpMRI) for Prostate Cancer (PCa), and presents the workflow 
that we implemented in our projects. 

In this report we describe Radiomics, reviewing its applications in general, but focusing on the case of 
Prostate Cancer (PCa) studied with the multiparametric Magnetic Resonance Imaging (mpMRI). Then we will 
describe the implementation of the radiomic workflow in the framework of our projects. 

Prostate cancer was selected as a target of our study, following our first work on quantitative imaging [1, 
2], but especially thanks to the collaboration with the Diagnostic Department of Santa Maria Nuova Hospital, 
which is a regional reference center for this disease [128, 129, 130]. 

In our study we have two objectives related to precision medicine: first the implementation of the 
radiomic workflow in clinical practice as a reproducible and robust clinical tool, and second, a study of the 
correlation of Radiomics with clinical and genomics data.   

The discipline connecting tumor morphology described by Radiomics and its genome described by 
genomic data is called “Radiogenomics”, and it has the potential to derive the “radio phenotypes” that both 
correlate to and complement existing validated genomic risk stratification biomarkers [17, 18, 66, 80]. 

A robust clinical implementation of Radiogenomics could allow an effective personalization of the 
therapy (precision medicine) thanks to a better patient’s stratification.  
 

2 - An introduction to Radiomics 
 

Molecular characterization using genomics, proteomics, and metabolomics information has been the 
main focus of personalized therapy. However, spatial and temporal intra-tumoral heterogeneity that arises from 
regional variations in metabolism, vasculature, oxygenation, and gene expression is a common feature of 
malignant tumors [47].  

Currently it is know that solid tumors are not homogeneous entity, but rather are composed of multiple 
clonal sub-populations of cancer cells, exhibiting considerable spatial and temporal variability that could 
potentially yield valuable information about tumor aggressiveness.  

Needle biopsy is the preferred approach for molecular characterization of tumor tissue. However, the 
procedure is invasive and fails to accurately represent the range of potential biological variations within a tumor. 
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MRI data acquisitions enable non-invasive sample of the whole tumor, and tumor characteristics at the cellular 
and genetic levels could be reflected in the phenotypic patterns obtained with medical images. 

However, despite the promise of medical imaging to assess tumor heterogeneity, imaging features are 
often assessed visually and described qualitatively by radiologists or nuclear medicine physicians, giving rise to a 
subjective descriptions of tumor imaging phenotypes. These visual assessments show a large intra and inter-
observer variability [47]. Therefore, there is a need for an objective and reproducible quantifications of various 
imaging features. 

Radiomics tries to solve this issue, using advanced quantitative features to objectively and quantitatively 
describe tumor phenotypes. These features can be extracted from medical images using advanced mathematical 
algorithms to discover tumor characteristics that may not be appreciated by the naked eye. 

Radiomics features can provide richer information about intensity, shape, size or volume, and texture of 
tumor phenotype that is distinct or complementary to that provided by clinical reports, laboratory test results, 
and genomic or proteomic assays. 

 Radiomics may thus provide great potential to capture important phenotypic information, such as intra-
tumor heterogeneity, subsequently providing valuable information for personalized therapy. More details can be 
found in References [18, 20, 31, 47, 67]. 

While the concept of extracting quantitative features from medical imaging data is not new, this task is 
not trivial, and the radiomic workflow is currently under investigation and development by many research 
groups. This renewed interest is mainly driven by the increased digitalization in the hospital, with an easier 
access to large amounts of informations through the hospital picture archiving and communication systems 
(PACs) combined with the increased computational and communicational power.  

From an historical point of view, Radiomics, combining quantitative analysis of radiological images and 
machine learning methods has its root in CAD, and can be considered as a new application of established 
techniques (in particular from the field of computer vision) [20]. However some aspects of Radiomics are new, 
for example the number of image features involved, which in CAD are usually 8–20, whereas in Radiomics it is 
increased to a few hundred or thousands. Furthermore the domain of investigation of Radiomics consists of 
association of features extracted form large–scale radiological image analysis with biological or clinical 
endpoints, resulting in both prognostic and predictive models. 

Different imaging modalities (e.g., MRI, CT, PET, ultrasound) can be used as the basis for extracting 
radiomic features. The complete set of imaging features obtained for a patient using the available images is called 
the ‘‘radiome”. A collection of features which holds prognostic and/or predictive value is often called ‘‘radiomic 
signature”. The fundamental hypothesis of Radiomics is that quantitative analysis of tumor through a large 
amount of radiomic features can provide valuable diagnostic, prognostic or predictive information. For tumors, 
heterogeneity assessed through imaging could be the expression of genomic heterogeneity, which would indicate 
worse prognosis, as tumors with more genomic heterogeneity are more likely to develop a resistance to 
treatment and to metastasize.  

The aim of Radiomics is to explore and exploit these sources of information to develop diagnostic, 
predictive, or prognostic radiomic model to support personalized clinical decisions and improve individualized 
treatment selection.  

Radiomics models have been built with power to predict tumor characteristics as histology, genetic 
footprint, as well as response to therapy in terms of pathological response from primary tumor and lymph nodes, 
response to chemotherapy or chemo-radiotherapy, recurrence, occurrence of lymph nodes or distant metastases 
and survival, for a variety of pathologies. A good review of all these results can be found in [20, 80].  

Radiomic tools can help in daily clinical work, and radiologists can play a pivotal role in continuously 
building the databases that are to be used for future decision support.  

The term “Radiomics” derives from the combination of word “radiology” and the suffix “omics”. It is a 
new extension of omics methods applied to quantitative radiology.  

The suffix -omics is a term that originated in molecular biology disciplines to describe the detailed 
characterization of biologic molecules such as DNA (genomics), RNA (transcriptomics), proteins (proteomics), 
and metabolites (metabolomics). One desirable characteristic of -omics data is that these data are mineable and, 
as such, can be used for exploration and hypothesis generation. The -omics concept readily applies to 
quantitative tomographic imaging. 

 
2.1  Radiomics pipeline  

 
The process of building a radiomic signature of prognostic value can be divided in four stages [18, 80]: 

the first step involves images acquisition, followed by automated or manual segmentation of ROI. Then image  
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Fig. 1 - Scheme of radiomics process for prostate mpMRI. First step - mpMRI acquisition: a typical mpMRI exam of the 
prostate consists of: T2weighted (T2w); diffusion weighted imaging (DWI) and the calculated apparent diffusion coefficient 
(ADC) maps; dynamic contrast enhanced (DCE). Second step: Features extraction: identification of volumes of interest and 
segmentation. Third step: quantitative imaging radiomic features are extracted related to volume/shape, intensity volume 
histogram (first order features); texture features (second order features) and transform analysis features; Last step: radiomic 
data is integrated with clinical, genomic, proteomic and metabolomic data. The integrated dataset is mined to develop 
diagnostic, predictive, or prognostic models.  
 

features are extracted, and radiomic data is integrated with clinical, genomic, proteomic and metabolomic data. 
Finally, the integrated dataset is mined to develop diagnostic, predictive, or prognostic models. 
These steps, in the case of the radiomic process for analysis of prostate mpMRI, are shown in Fig. 1 as reported in 
Ref. [18]. 
 
2.1.1  First step: multiparametric imaging 

The first step in the radiomic workflow is the acquisition of a dataset of images from the target organ. In 
the field of oncology, the most widely used modalities include ultrasound, CT, positron emission tomography 
(PET) and MRI. These medical images are regularly acquired for standard clinical diagnostics, (radiotherapy) 
treatment planning and follow-up purposes, and represents a source of informations for radiomic analyses.  
Many radiomics studies are relying on retrospective data sets, in which individual image acquisition parameters 
can be different. These different settings can have an influence on the quality and reliability of the extracted 
radiomic features, as will be discussed below in detail [22].  

 
2.1.2  Second step: Volume segmentation and ROIs selection 
 

This step involves the segmentation of the organ volume, eventually defining some regions of interest 
(ROIs). Segmentation is among the most critical and challenging components of the radiomic workflow [80]. It is 
critical because the subsequent feature data are generated from the segmented volumes. It is challenging 
because many tumors lack clear margins. In addition, there is a lack of consensus on the definition of ground 
truth and the reliability of manual and automatic segmentation. However, a current trend is that computer-aided 
edge detection followed by manual supervision provide optimal outcomes. Still, it is well recognized that inter-
operator variability of manually contoured tumors is high.  

As a matter of fact tumor delineation remain challenging both for automatic or manual methods because 
tumors may have indistinct borders [66, 80].  

The dimension of ROIs must be careful evaluated because many features could not have sense when 
tumors are too small [53, 92]. There are no consistent guidelines on the smallest ROI that can be assessed, 



Barucci et al., vol. 9 (2017) 1-51                                                                                                                                                                                  6 
 

 

although some authors have suggested 5 cc as a suitable cutoff. Obviously the cutoff value depends on the 
imaging modality and may also vary depending on the site or tumor under investigation. Smaller ROIs can either 
give meaningless Radiomics features values because there are not enough pixels for a true evaluation or the 
smaller the ROI, the more related the results may be to tumor volume [53].  

The segmentation can be of the entire tumor volume or only of some sub-regions of interest. Some 
researchers for example have segmented the axial slice where the tumor is largest [53]. Segmenting a single slice 
or fixed-size ROI significantly improves efficiency when manual segmentation is used. However, the extracted 
ROI may not represent the entire tumor. The effect of segmenting a single slice or fixed-size ROI on the extracted 
Radiomics image features varies widely, depending on the image feature, but can be significant [53, 92].  
 
2.1.3  Third step: extraction of Radiomic features  

A “feature” is a descriptor of an image such as image intensity, texture, shape, etc. [20, 66, 67, 80, 92]. 
These features can be extracted from the entire segmented volume and/or from some ROIs (e.g. of tumor or 
normal tissue regions). There are different categories of Radiomics features, generally divided in 4 subcategories 
as reported in Table 1 [18]. The first category (C1) summarizes features descriptive of the volume size, shape, etc.; 
the second (C2), third (C3) and fourth (C4) category can be described as first-, second- and higher order 
statistical outputs. First-order statistic features are related to the intensity histogram of a given volume: mean, 
median, standard deviation, minimum, maximum, quartiles, kurtosis, skewness, etc. The second-order statistics 
are related to texture analysis features, also known as Haralick texture descriptors. On the grey level co-
occurrence matrix (GLCM), various statistics can be computed: energy, entropy, correlation, homogeneity, 
contrast, etc. GLCM captures the frequency of co-occurrence of similar intensity levels over the region, which 
describes the texture of the region of interest. Another technique in this category is fractal-based texture 
analysis, which examines the difference between pixels at different length scales (offset differences). And lastly, 
the higher-order methods extract repetitive or non-repetitive patterns using kernel functional transformation. 
Some popularly used texture descriptors are Wavelets, Laplace, Fourier transforms, Gabor filters, Minkowski 
functionals, etc. More details about the different kind of Radiomics features can be found in [20, 22, 31 – 44, 66, 
67, 73, 79, 80, 85 – 89, 92]. 

There are many software commercially available to evaluate Radiomics Features from medical imaging 
and in particular from mpMRI images and maps. A good review can be found in Ref. [53]. 

As numerous radiomic features can be extracted from medical images, it is very important to identify 
only a subset of independent features (Fig. 2) and can be relevant to the underlying tumor biology and genetics.  

Considering the very large dimensionality of the feature space, especially when dealing with multimodal 
imaging, advanced algorithms that rank features by their importance for a given disease outcome are often 
essential to reduce over fitting, increase reliability, and address the curse of dimensionality [66, 71, 80, 90]. The 
latter, which refers to a crucial aspect in radiogenomic data analysis, can be roughly summarized as the 
requirement of higher sample sizes as the number of the features increase [66].  

 

Tab. 1 - Broad radiomics feature categories for mpMRI of the prostate [18]. 
Category Name Description Image Modality Volumes 

C1 Region 
size/shape/location 
   

Volume 
descriptors/roundness/circularity 
descriptors  

T2w Prostate, PZ, TZ, 
ROIs 

C2 
 

Histogram of volume 
intensity    

Mean, median, standard deviation, 
kurtosis, skewness, quartiles, min, 
max  

T2w, DWI, DCE ROIs, NAT-PZ, NAT-
TZ 

C3 Texture analysis: 
gray level co- 
occurrence matrix 
and fractal analysis    

Contrast, energy, entropy, 
correlation, inertia, cluster 
prominence, cluster shade, etc.  

 

T2w, DWI ROIs, NAT-PZ, NAT-
TZ 

C4 Transform analysis    Wavelets, Gabor, Kirsch, Fourier  T2w, DWI ROIs, NAT-PZ, NAT-
TZ 
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Fig. 2 - Covariance matrix of radiomic features. A total of 219 features were extracted from each non–small cell lung cancer 
tumor in 235 patients. Across all tumors, each feature was individually compared with all other features by using regression 
analysis, thereby generating correlation coefficients (R-square). Individual features were then clustered and plotted along 
both axes, and R-square is shown as a heat map, with areas of high correlation (R-square 0.95) shown in red. Thus, each of 
the red squares along the diagonal contains a group of features that are highly correlated with one another and are thus 
redundant. For data analysis, one feature was chosen to be representative of each of these groups. The representative feature 
chosen was the one that had the highest natural biologic range (interpatient variability) across the entire patient data set, 
with the explicit assumption that features that show the highest interpatient variability will be the most informative. (Image 
courtesy of Y. Balagurunathan, Ref. [71])  

However, how the tumor patho-physiological processes give rise to imaging phenotypes that can be 
quantified by radiomic features remain unclear. Future studies would need to investigate these associations to 
further elucidate the biological meaning of the radiomic features [47, 66 – 75, 80].  
 
2.1.4  Fourth step: statistical analysis and data mining 

Radiomics analyses epitomize the pursuit of precision medicine, in which molecular and other 
biomarkers are used to predict the right treatment for the right patient at the right time. The availability of 
robust and validated biomarkers is essential to move precision medicine forward. This is exactly the meaning of 
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the last step in the radiomic workflow, mining the data looking for statistical correlation. 
Radiomic features can then be used for different analyses [51 - 53, 67, 76 – 78, 80, 92, 155], the most 

common being to incorporate them into models to improve patient risk stratification (overall survival, freedom 
from metastasis, etc.). Descriptive and predictive models can be built relating image features to outcome, as well 
as gene-protein signatures. Resultant models may include imaging, molecular, and clinical data, and provide 
valuable diagnostic, prognostic or predictive information. 

However there is need of a deeper understanding if radiomic features add value to clinical data, that is if 
image features are linked to tumor histology, tumor grade, and/or gene signatures.  

An interesting correlation to be investigated would be with the texture descriptors incorporated in the 
modern complex diagnostic imaging reporting and data systems [80, 106], such as the Breast Imaging Reporting 
and Data System (BI-RADS) [83], the Prostate Imaging Reporting and Data System (PI-RADS) (Fig. 3) [81, 82], 
and the Lung Imaging Reporting and Data System (Lung-RADS) [84].  

 
 

 

 

 
 

Fig. 3 - Example of prostate examination report with mpMRI using PI-RADS (left) and biopsy report (right), both in italian 
language. Images on the bottom panel shows DCE images series from the same patient and results from 2 ROIs in the tumor 
region and in the symmetrical in healthy tissue. 
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Model development is then a very important component of the radiomic workflow and has many 
potential pitfalls [54, 80]. A partial list of software packages available for modeling/statistical analysis can be 
found in [53]. 
 
Some details about using Machine learning for building Radiomics classifiers  

The goal of Radiomics is to develop a function or mathematical model to classify patients according to 
their predicted outcome by means of radiomic features. In the language of pattern recognition machine-learning, 
this task is equivalent to building a ‘‘classifier”, which is an algorithm analyzing training data and inferring a 
hypothesis (the function), to predict the labels of unseen observations, e.g. patient outcome or tumor phenotype 
[147].  

Despite a large number of features can be extracted from each patient images, typically in the range of a 
few hundred to thousands, not all of the features would be useful for a classifier to distinguish between patients 
of different classification, because some of them might be highly correlated with each other or redundant and 
some of them may not be strongly associated with the given classification task. By feature selection we intend an 
algorithm used to select ‘‘effective” features for a given task, i.e. those features who are relevant to explain a 
given output as a function of a group of features [52, 67, 76 – 78, 80]. 
 
2.2  Radiogenomics: the convergence of Radiomics and Genomics  

The integration of Radiomics with genomic signatures is commonly known as Radiogenomics. The 
underlying hypothesis is that radiomic features can be used to derive “radiophenotypes” that both correlate to 
and complement existing validated clinical and genomic risk stratification biomarkers.  

Many studies have shown that this correlation can be found [31, 47, 66, 79, 80], for example in CT 
imaging has been found that radiomic features related to shape and wavelet features describing the 
heterogeneous phenotype of lung tumors [148] can be associated with cell cycle pathway, suggesting that highly 
proliferative tumors demonstrate complex imaging patterns [79]. Moreover, various biological mechanisms may 
be described by different radiomic features as the features were found to be related with different biological 
gene sets, including DNA recombination and regulation of DNA metabolic processes [31, 66].  

The general workflow for a radiogenomic study is shown in Fig. 4. 
 
 

 
Fig. 4 - The figure shows a general workflow for radiogenomic study. The first step includes data acquisition (clinical 
information, imaging and genomic data). Subsequently, data are normalized and underwent an integrative analysis to 
characterize each radiomic feature and identify specific underlying molecular functions. The overall flow, here schematically 
depicted, could represent a novel integrated approach for cancer diagnosis and prognosis. Reprinted from [66]. 
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Radiogenomics studies must combine a large number of quantitative imaging features with a massive 
genomic signature using computer algorithms. In addition, both Radiomics and genomics are needful for the 
clinical decision making and neither one can replace the other, but their potential can be increased through the 
interpretation of the two methods to improve the management of cancer patients. Furthermore, the study of 
mutual relationships between imaging and genomics can provide novel insights for the understanding of 
neoplastic transformation [31, 46, 66, 72, 80, 87].  

Indeed a subset of the radiomic data can be used to suggest gene expression or mutation status that 
potentially warrants further testing. This is important because the radiomic data are derived from the entire 
tumor rather than from just a sample. Thus, Radiomics can provide important information regarding the sample 
genomics and can be used for cross-validation. Moreover, a subset of radiomic features is not significantly 
related to gene expression or mutational data and, hence, has the potential to provide additional, independent 
information. The combination of this subset of radiomic features with genomic data may increase diagnostic, 
prognostic, and predictive power.  
 
3 - Prostate Cancer: mpMRI and Radiomics 

 
3.1. An introduction to the Prostate Cancer 
 

Prostate cancer exhibits intra-tumoral heterogeneity, which usually is a confounding factor contributing 
to the underperformance of the current diagnostics and therapeutics approaches. These limitations show the 
importance to develop better computational tools to stratify patients, e.g. identifying men with low risk of 
prostate cancer versus others that may be at risk for developing metastatic cancer. A better patients 
stratification will directly translate to improvements in the patients therapies.  

Treatment recommendations for prostate cancer patients are currently based on risk stratification using 
PSA, Gleason score (GS) and T-category [17], however the overtreatment of men with prostate cancer is a well-
recognized problem and active surveillance has rapidly become a standard recommendation for many men with 
low risk disease [17].  

Stratification risk and management based on genomics analysis and gene expression signatures [17, 66], 
such as Decipher (GenomeDx, San Diego, California), Prolaris Cell Cycle Progression (CCP) (Myriad Genetics, Salt 
Lake City, Utah), Genomic Prostate Score (GPS) (Genomic Health, Redwood City, CA) have great potential. 
Prostate cancer, however, exhibits spatial heterogeneity that can confound current pretreatment clinical-
pathological and genomic assessment [137].  

A promising solution for patients stratification is then mining Radiomics, Genomics and all the clinical 
data available thanks to statistical prognostic model based on database continuously updated. 

 
3.2. The role of Multiparametric MRI in the theranostic of Prostate cancer  
 

In this context multiparametric MRI provides the ideal platform to investigate tumor heterogeneity by 
mapping the individual tumor habitats [1, 2, 17].  

By combining anatomical and metabolic information, mpMRI is becoming the preferred imaging 
modality in terms of sensitivity and specificity for the diagnostic and treatment of prostate cancer [1, 2, 17, 48, 
49, 50, 66].  

mpMRI enables the acquisition of clinically relevant information that include perfusion with dynamic 
contrast enhanced MRI (DCE-MRI), diffusion with diffusion weighted imaging (DWI), anatomy with T2-weighted 
[T2w] MRI and molecular fingerprint of metabolic processes with magnetic resonance spectroscopy (MRS). 

DCE characterizes the concentration of an injected contrast agent over time, enabling the visual 
differentiation of lesions from normal tissue owing to the increased vascularity and capillary permeability. By 
exploiting enhancement kinetics, the time course of the signal intensity within the lesion can be used in the 
interpretation of lesions to determine the likelihood of malignancy.  

DCE then allows the evaluation of the enhancement pattern of tumor, which is considered to be related 
to tumor angiogenesis.  

Prostate cancer shows early and more pronounced enhancement than surrounding normal prostate 
tissue on DCE. Furthermore, DCE can also help to monitor treatment effects as well as cancer detection, because 
tumors are evidently associated with neo-angiogenesis that induces an increase in the blood volume and 
transvascular permeability. Tracing the dynamic flow of the contrast agent with DCE, PCa shows strong and 
rapid contrast enhancement. However, DCE is non-specific, because angiogenesis can also be seen in prostatitis 
in the peripheral zone and in highly vascularized BPH nodules in the transition zone. 

T2w is used for PCa detection, localization and staging, providing the best depiction of the prostatic 
zonal anatomy and capsule [48]. However there are various conditions (e.g. prostatitis, hemorrhage, atrophy and 
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poste-treatment changes) that can mimic cancer on this kind of images. So T2w is sensitive, but not specific for 
PCa detection, and must be correlated with the other functional techniques as said previously. 

DWI is a powerful functional technique, enabling qualitative and quantitative assessment of PCa 
aggressiveness thanks to the possibility to calculate maps of Apparent Diffusion Coefficient (ADC) of water 
molecules and other parameters (e.g. Kurtosis) strictly connected to the cellular and subcellular structure and 
packaging.  

Diffusion maps, characterizing changes in the cellular architecture of the tissue based on local 
differences in movement of water protons, has been hypothesized to indicate cell death after therapy. PCa shows 
higher signal intensity on DWI, and a lower ADC values when compared with normal prostatic tissue. 
Furthermore a considerable number of studies reported the correlation between ADC and Gleason scores, 
allowing a quantitative assessment of the disease. 

Magnetic Resonance Spectroscopy provides informations about some specific metabolites within the 
prostatic tissue. The levels of citrate, choline and creatine can be evaluated and compared with benign tissue, 
however spatial resolution is usually poor in respect to the other functional techniques. 

However the automated analysis and interpretation of mpMRI is quite challenging, as each exam results 
in thousands of images and in general there is lack of consensus of how to optimally extract the relevant 
information.  
 
3.3.   Application of Radiomics to Prostate Cancer: a short review 

 
The evaluation of Radiomics features from mpMRI is a field rapidly growing, although it has not been 

investigated as extensively as on CT and PET scans.  
In the case of mpMRI of PCa DWI and DCE can provides quantitative maps, which along with the T2w 

images can be used for radiomic features extraction.  
The potential of this application is shown for instance in [17, 28, 29, 49 67], both showing that textural 

features of prostate MRI may differentiate non-cancerous and cancerous prostate tissues and may correlate with 
biochemical recurrence and Gleason score. In the case of application of Radiomics analysis to PCa there is a great 
effort in the community for addressing the clinical issues about detection and segmentation of the suspicious 
lesion, and about the assessment of the aggressiveness of prostate cancer. The goal of the latter is in particular to 
identify patients who can be spared biopsies and/or patients at high risk for metastatic disease, while the aim of 
the former is to diagnose cancerous versus non-cancerous tissue, providing targets for biopsies or radiation 
boost [49]. 

For example in study [28] has been shown that using a sample of 147 men with biopsy-proven prostate 
cancer, Haralick texture analysis has the potential to enable differentiation of cancerous from noncancerous 
prostate tissue on both T2-weighted MR images and apparent diffusion coefficient maps derived from diffusion-
weighted MR images. In the peripheral zone of the prostate, all five features assessed (entropy, inertia, energy, 
correlation, and homogeneity) differed significantly between benign and cancerous tissue on both types of 
images; however, in the transition zone, significant differences were found for all five features on ADC maps and 
for two features (inertia and correlation) on T2-weighted images. In a follow-up study, these features were used 
to automatically compute Gleason grade and were found to enable discrimination between cancers with a 
Gleason score of 6 (3+3) and those with a Gleason score of 7 of more with 93% accuracy. Furthermore, these 
analyses could be used to distinguish between two different forms of Gleason score 7 disease (4+3 vs 3+4) with 
92% accuracy [67, 80, 91].  

Recently, in Ref. [80, 92] a thorough prospective radiomic analysis of diffusion- and T2-weighted MR 
imaging examinations in 49 patients with prostate cancer was performed. Agnostic features extracted from T2-
weighted images and ADC maps were compared with more traditional ADC cutoff metrics to test the hypothesis 
that textures could help differentiate between men with a pathologic Gleason score of 6 and those with a 
pathologic Gleason score of 7 or higher. This is an important cut-off, as men with a pathologic Gleason score of 6 
may be candidates for active surveillance. Although this study may have been underpowered, it shows the 
potential value of quantitative analysis of tumor heterogeneity in assessing tumor aggressiveness and informing 
major clinical decisions, such as whether to treat the cancer at all. Of note, other investigators have also found 
entropy determined from ADC maps (Fig. 5) to be significantly associated with the pathologic Gleason score, 
even after controlling for the median ADC [28, 80, 91].  

From studies shown above we can conclude that mpMRI can provides images and/or maps 
characterizing qualitatively and quantitatively trough Radiomics the tumor habitat. 

Radiomics is then perfectly suited to extract and provide an engine for effective sifting through the 
multiple series of prostate mpMRI images and/or maps, extracting features from the regions of interest.  

However understanding the relationship between quantitative mpMRI and gene expression in prostate 
cancer is a key point. E.g. in [17] has been shown that both tumor and surrounding prostate tissue contribute 
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significantly to radiogenomic features associated with tumor molecular characteristics related to aggressive 
behavior.  

 

 

Fig. 5 - Application of texture analysis to T2-weighted MR images and ADC maps of prostate cancer. A lesion in the transition 
zone is barely discernible on the T2-weighted image (top left) and has higher conspicuity on the ADC map (top right). Texture 
features were computed on a per-voxel basis (using a 5 × 5 × 1 pixel window) from manually segmented regions of interest 
identifying the normal peripheral zone (outlined in blue) and cancer (outlined in red). From the computed texture features, a 
machine learning method was applied to distinguish between normal and cancerous structures and to stratify the Gleason 
patterns. Heat map images show clear differences between healthy tissue and cancer and depict intra-tumoral heterogeneity 
that may be useful in assessing tumor aggressiveness and informing fused MR imaging–ultrasonography biopsy. Reprinted 
with permission from Ref. [80]  
 
4  Our study on the application of Radiomics to Prostate Cancer 

The purpose of our study was to show the potential of the radiomic workflow as a diagnostic tool in the 
context of mpMRI of Prostate Cancer. The workflow described herein has been implemented for research 
purposes. 
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4.1 Database 

We used an anonimized retrospective database of mpMRI data from clinical patients with or suspected 
prostate cancer to test the radiomic workflow. Different patients were selected on the basis of tumor 
characteristics (e.g. single nodule or multifocal nodules) and on the availability of mpMRI and clinical data. For 
each patient, series of images from the PACs relative to the following kind of examinations were exported to a 
secondary console for data analysis: T2 weighted imaging (T2w), Diffusion Weighted imaging (DWI), Dynamic 
contrast Enhancement, Magnetic Resonance Spectroscopy (MRS).  

Different kind of patients can then be found in our database: patients with mpMRI visible PCa, patients 
with suspected PCa due to clinical evaluations (e.g. serum prostate-specific antigen - PSA) but invisible to mpMRI 
clinical standard examinations, patients coming from screening programs without PCa, patients with data before, 
during and after different therapies (surgery, radio, chemotherapy, etc.). 

All these data have been used with the aim to improve our knowledge about Radiomics algorithms and 
workflow, testing reproducibility and robustness.  

Thanks to the know-how in the developing phantoms for quantitative imaging development protocols in 
mpMRI, we have had the possibility to use these data to test the Radiomics features in simpler cases [See 
Appendix 3]. 

 

4.2   Multiparametric MRI image acquisition  

Most imaging data were acquired on 1.5T MRI scanners (Philips Achieva, Philips Medical Systems, Best. 
Netherlands). However because the images database were built using data from different hospitals in Tuscany, 
images may be acquired with different scanners (GE Healthcare, Siemens, etc.) and then different sequences, 
resolutions, etc. This kind of heterogeneity in acquisition can be a source of problems in the interpretation of the 
results. It will be analyzed in detail in a specific part of this report. DWI images were usually acquired with 4 or 5 
b-values, allowing to evaluate more complex diffusion maps in respect to the mono-exponential model. In Fig. 6a-
c examples of images acquired on a patient using mpMRI are shown. Fig. 7 shows the data as displayed and 
explored using the 3D slicer software.  

 

  

Fig. 6a - Examples of mpMRI acquisitions on patient: T2w images in two planes 
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Fig. 6b - Examples of mpMRI acquisitions on patient: DWI images, b0 (left), b 500 (right). 

  

Fig. 6c - Examples of mpMRI acquisitions on patient: DCE (left) and single voxel Spectroscopy (right). In this case data 
elaboration for DCE and spectroscopy were performed using the Philips software. 
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Fig. 7 -  mpMRI data visualization using the software 3D Slicer. Top panels: examples of diffusion data in two different points 
in DWI images. The plots in the right part of images show the behavior of signal intensity versus b-values. Bottom panels: 
examples of DCE data in two different points in the same image, showing the uptake of the contrast medium in the tissues. 

 
4.3  mpMRI data elaboration 

As discussed in detail above mpMRI exam of the prostate usually includes acquisition of T2w, DWI, DCE 
[17, 20, 92] and Spectroscopy data. ADC maps, DCE parameters and spectroscopy can be calculated on the MRI 
scanner’s console, however in our case the acquired images have been transferred to an image processing 
station. There is a variety of medical image computing platforms, both commercial and open source. In our work 
we used 3D Slicer software [3 - 16] to analyze T2w, DWI and DCE data, extracting Diffusion and DCE maps and 
parameters, and radiomic features.  

In particular DWModeling and PkModeling modules allow respectively to analyze DWI and DCE data, 
generating maps of diffusion and DCE parameters (e.g Ktrans, the volume transfer coefficient that measures 
capillary permeability) which can be used to segment tumor or identify ROIs, and then elaborated in order to 
extract radiomic features. 

Maps from DWI and DCE data generated in 3D slicer were confronted using in-house software 
developed in MATLAB [1, 2] (Fig. 8 and Fig. 10), always with the aim to have an independent and flexible 
platform.   

Spectroscopy data have been elaborated using the scanner vendor software and the independent jMRUI 
software [1, 3, 19] developed for research. jMRUI has been chosen thanks to a more flexibility in data elaboration 
[1, 2] (Fig. 9). 
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Fig. 8 -  Examples of DWI images analysis using an home-made MATLAB software. In this example a diffusion model using the 
Kurtosis term has been used. Top panels: ADC and Kurtosis maps using a moving average over 2 pixels, and visualized in a 
gray scale. Bottom panel. Bottom panels: ADC and Kurtosis maps without moving average, and visualized in a color scale. 
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Fig. 9 - Examples of MRS patient data elaboration using jMRUI software. Top panel: data fitting. Bottom panel: spectrum after 
pre-processing. Citrate peaks and Choline and Creatine peaks are clearly visible. 
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Fig. 10 - Examples of data elaboration using 3D Slicer DWmodeling module. Results coming from two diffusion models are 
shown. Left: Diffusion map using a mono-exponential model. Center: Diffusion map using the Kurtosis model. Right: map of 
the Kurtosis term in the Kurtosis-model. 

 
4.4  Segmentation 

In our implementation we utilize the habitats concept to identify suspicious lesions. The approach is 
based on combination of all informations coming from mpMRI and clinical data. ROIs were then manually 
outlined on both T2w images, diffusion and DCE maps following all the criteria discussed above. In Fig. 11 and 
Fig. 12 we want to show the ability of 3D Slicer to define different ROIs, exploring images characteristics and 
allowing to perform radiomic studies. Instead in Fig. 13 and Fig. 14 we show some ROIs, manually drawn on 
tumor habitat by clinical radiologist. These ROIs have been drawn in T2w, DWI and ADC images. 

On these ROIs we will extract some radiomic features underlying the difference between healthy and 
tumor tissue. 

As well describer in this report in different parts, manual segmentation is a critical step in the radiomic 
workflow, At the same time some efforts are underway for automation of this process, which impacts the entire 
downstream process. Great care must be used keeping in mind that prostate is a unique organ with distinct zonal 
morphology. At the moment of writing this report we are working on automatic segmentation in collaboration 
with other research groups (see Appendix 1).  

In the case of patient undertaking a radiotherapy-therapeutic path, one of the possibility is to import the 
RT-structures coming from the segmented-CT for radiotherapy treatment planning and follow-up. This step 
requires the co-registration on CT and MRI images, a difficult but possible task today. 
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Fig. 11 -  Example of ROIs definition using 3D Slicer Editor Module. In this case we selected a DWI image. 

 
 

Fig. 12 - 3D Slicer example of data visualization using some ROIs defined on DCE data. In this case the ROIs  
were drawn only in one acquisition plane. 

 

 
Fig. 13 - DCE data visualization using 3D Slicer. Two ROIs were segmented by radiologist inside the tumor and in the 

symmetrical part (blue line). 
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Fig. 14 - Example of Prostate Cancer images manually segmented by radiologist. Top panel: T2w; Middle panel: T2w (left), 
DWI (right); Bottom panel: ADC (left), DWI (right). ROIs on T2w images were drawn in different acquisition planes. 
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4.5  Radiomic features extraction 
 

Radiomic features can then extracted on the outlined ROIs on T2w, diffusion and DCE maps. In our work 
we decided to use the software 3D slicer, which allows the extraction of these features using the module 
Radiomics. In Tab. 2 (Appendix 2) we report radiomic results from two ROIs segmented on ADC map by clinical 
radiologist (Fig. 15). 

 

 

Fig. 15 - Patient ROIs definition on ADC map using 3D Slicer for radiomic analysis. Tumor (blue) vs. healthy tissue (green). 
ROIs were defined by radiologist using all the mpMRI informations. 

 
An example of histograms generation in two ROIs using a home-made software developed in MATLAB is 

shown in Fig. 16. The difference in intensity distribution is clearly visible. 
In Fig. 17 another example of image elaboration using MATLAB software. In this case we have 

elaborated a T2w image extracting histogram from the tumor region and evaluating entropy in the image. 
Some examples of other results are reported in Appendix 2. 
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Fig. 16 - Histograms of two ROIs defined by radiologist. Top panel: healthy tissue. Bottom Panel: tumor. This data elaboration 
has been performed using a home-made software developed in MATLAB. 
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Fig. 17 - Example of T2w image elaboration using MATLAB software. Top panel left: original T2w image with the tumor 
segmented by radiologist; Top panel right: entropyfilt of the T2w. Bottom: histogram of the tumor ROI. 

 
5. A critical review on the promise and challenges of Radiomics  

Radiomics is a new emerging research field with great potential and promises so far envisioned. In this 
part of the report we will analyze Radiomics limitations, some possible paths for improvement on each step in 
the workflow, discussing some possibilities for evolution in research and clinics. This part of the report follows 
very strictly the fundamental review in Ref. [20]. 
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5.1 Repeatibility, Reproducibility and Robustness  
 

Repeatability is a measure of precision under identical or near- identical conditions and acquisition 
parameters, and is evaluated by ‘‘test-retest” analysis, a comparison of the results from images acquired within a 
short time on the same patient. In a study on a dataset consisting of 31 sets of test-retest CT scans that were 
acquired approximately 15 min apart has been shown that the majority of the radiomic features are repeatable 
when acquired under the same imaging settings and semiautomatic segmentation [20].  

Reproducibility or robustness, in contrast, is measured when measuring system or parameters differ. 
The major sources for variability of radiomic features are the imaging scanners, the parameters of acquisition 
and reconstruction of the image, and delineation of ROIs. A good review can be found in Ref. [20, 80]. 

In the case of radiomic features extracted from MRI images, results depend on the field of view, field 
strength and slice thickness. Results of the DCE depend on the contrast agent dose, method of administration, 
and the pulse sequence used. The radiomic features extracted from DWI depend on acquisition parameters and 
conditions as k-space trajectory, gradient strengths and b-values. The repeatability of MR-based radiomic 
features still need a deep investigation. 

Segmentation represents one of the most critical steps in the radiomic workflow, because many 
extracted features may depend on the segmented region, and tumors may have indistinct or complex margins: 
this may potentially lead to inconsistency and lack of reproducibility of results. Manual delineation by an expert 
radiologist is considered the ‘‘gold standard”, though it is prone to high inter-observer variability and represents 
a time-consuming task. It was shown that the semiautomatic segmentation algorithm implemented in the 3D-
Slicer open source platform, produce contours of lung tumor on CT which were more reproducible than 
manually drawn regions and yield radiomic features with significantly higher reproducibility compared to those 
extracted from the manual segmentations. Recently available fully automatic segmentation tools for brain cancer 
from MRI are as accurate as manual segmentation by medical experts. Some references can be found in [20].  
 
5.2 Sample size and statistical power: Big Data and Radiomics  
 

In this era of Big Data it should be possible to have a good patients database, however this crucial step 
for the radiomic workflow is very hard to build [53, 133, 149]. Some strategies for building good dataset are 
reported in [53, 71, 80, 92]. 

Given the large number of imaging features extracted in Radiomics studies, a small dataset reduces its 
power and increases the risk of overfitting the data [20, 67]. Then radiomic studies involving small numbers of 
subjects with respect to the number of radiomic features should be avoided. 

Moreover most radiomics studies do not report sufficient validations in independent cohorts, thereby 
limiting generalizability to additional patient populations, imaging by different scanner types, etc.  

Image data sharing across sites can be a solution to build large data sets for Radiomics and could serve 
as high-quality datasets to be used for external validation [80, 104, 105, 107 - 109]. Various online repositories 
of imaging datasets are already available as the “The Cancer Imaging Archive” (TCIA) hosted by the National 
Cancer Institute, and the “Lung Image Database Consortium”, the Reference Image Database to Evaluate 
Response to therapy in lung cancer [20].  

In Fig. 18 we reported a general scheme of precision medicine applied to PCa. Sources of data are shown 
along with new emerging technologies for their elaboration and interpretation.  

The problem of Big Data in medicine and their expected impact is a more general problem. In Ref. [134, 
135, 136] the potential impact of big data analysis to improve health, prevent and detect disease at an earlier 
stage, and personalize interventions is shown.  

 
5.3 Standardization and benchmarking  
 

Usually images used in radiomic studies have been acquired from different institutions, which probably 
follows different acquisition protocols or simply use scanners from different vendors. These differences might be 
the source of some problems. Acquisition and reconstruction protocols should be standardized in order to limit 
data variability, especially in view of multicenter studies that are expected to create the most robust models [62, 
63, 80]. The radiomic workflow should be follow precise recommendations in order to increase quality of 
radiomic studies [20, 80, 93 - 102].  
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Fig. 18 - General scheme of Big Data analysis aimed to PCa Precision Medicine. All the sources of data are included along with 
the new technologies for their elaboration. 

 
5.4  Standardization and benchmarking  
 

These should cover for example the discretization method and the bin, the segmentation method 
(manual, semiautomatic or automatic), the definitions of various radiomic features, and indications on which 
features are most stable. The more reliable and efficient machine learning algorithms should also be indicated in 
order to identify stable and reproducible features in the high dimensional feature space created by Radiomics 
[20, 132].  

Furthermore there is need for benchmarks with using test objects with known physical properties 
values of radiomic features, e.g. phantoms have been proposed with known features. The mathematical steps, as 
feature extraction and calculation should be tested using open-source verified formulae and codes. Publicly 
available database with cohorts of patients, images and clinical data should be used by research groups for 
benchmarking of the radiomic workflow. Finally, standards for publishing methods, results, and their 
uncertainty should be recommended, as well as ways to improve the peer review e.g. insist on at least one 
‘‘statistical reviewer” with knowledge of machine-learning methodologies [20, 132, 149 - 154].  

For future prospective studies, it should be strongly recommended to adopt acquisition and 
reconstruction standards, as proposed by, for instance, the Quantitative Imaging Biomarker Alliance, 
Quantitative Imaging Network, American Association of Physicists in Medicine and European Association of 
Nuclear Medicine. Nonetheless, standardization can be challenging with the introduction of new, state-of-the-art 
imaging equipment (e.g. photoacustic imaging) in different institutes. At the same time the use of the enormous 
amount of retrospective data available can be very hard due a lack of standardization in the acquisition protocols 
[20].  

 
5.5 Limitations and pitfalls  
 

The principal criticism to Radiomics is that the link between the imaged properties of tumors and tumor 
biology is not straightforward. Most radiomic studies have shown statistical correlation between radiomic 
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features and genetic footprint or prognosis, but correlation does not imply causation [21]. Establishing this link 
is necessary for tailoring the treatment to the individual patient based on the properties of tumors coming from 
imaging [22].  

For example some MRI studies have shown that intensity histogram-based radiomic features can be 
potentially useful for predicting cancer response to treatment [47, 55 – 59, 62, 63, 64, 79]. In pre-clinical model 
has been observed that mice with sarcomas treated with combinations of MK1775, a cell cycle checkpoint 
inhibitor, and gemcitabine showed a substantial change in the apparent diffusion coefficient (ADC) histogram, 
skewness, kurtosis, entropy, and average ADC shortly after treatment compared to the untreated control group 
[60]. In human patients with head-and-neck cancer, tumors that responded poorly to chemo-radiotherapy 
demonstrated a significantly greater increase in average ADC and higher values in kurtosis and skewness on 
mid-treatment DWI than tumors with a better therapeutic response [58]. The skewness of K-trans was found to 
be a promising predictor of progression free survival and overall survival of patients with stage IV head-and-
neck cancer [57]. The findings of these aforementioned studies may support the notion that therapy induced 
changes in tumor microenvironment and composition can be potentially described by changes in the intensity- 
histogram shape [47].  

For CT imaging, [31, 47, 79] assessed the prognostic values of 440 shape- and intensity-based and 
textural features. They identified features that were predictive of patients’ survival on a dataset consisting of 
more than 420 lung cancer patients. The prognostic value of these features was then validated on three 
independent datasets, including one lung cancer (225 patients) and two head-and-neck cancer (231 patients) 
cohorts. Their results confirmed the potential use of radiomic features in outcome prediction and describing 
intra-tumoral heterogeneity, furthermore showing that prognostic ability may be transferred from one disease 
type to another (i.e. from lung to head-and-neck cancer). In study [61] has been noted that not all radiomic 
features that significantly predicted lung cancer patients’ survival also predicted survival in head-and-neck 
cancer patients and vice-versa. Their results thus suggested that some radiomic features could be cancer-specific 
[61].  

 
5.6 Future directions in the Radiomics research field 
 

Radiomics research field has grown in the last years thanks to some intrinsic characteristics for example 
the possibility of extending the number of features potentially holding prognostic and/or predictive values 
without a significant burden. Indeed the Radiomics platform will be able to automatically select the features and 
analyze the possible correlation [20, 80]. 

Another important aspect is the possibility to combine hybrid imaging modalities in order to have a 
more deeper understanding of tumor habitat. 3D informations, as for example dose distribution delivered in 
radiotherapy calculated on pre-treatment CT, can be integrated in the radiomic analysis. Informations can be 
added from other –omics data, generating pan-omics type models for detecting tumors boundaries, modeling 
response, and deciphering the underlying molecular biology [20, 80].  

At the same time machine learning and the produced prediction models in Radiomics must improve 
their performances, exploring new approaches coming from other research fields. 

In the research area, Radiomics is expected to spread where new signatures could be identified by 
means of data mining and correlation with endpoints. Thanks to Radiomics, we expect that all theranostic 
approaches can be revised, exploring its potential not only in oncology and cardiovascular diseases but e.g. in the 
case of neurodegenerative [156 - 162], orphan pathologies and as a research tool in the drug development. This 
last possibility should be investigated with great care, because the possibility of quickly assessing if the drug has 
reached the target and if it has produced the expected effect by means of non-invasive imaging will speed up the 
development of many, innovative personalized drugs, decreasing their development costs and then the burden 
for healthcare systems. An interesting work about the prediction of longevity using feature engineering and deep 
learning methods in a radiomics framework has been presented [132]. In this work authors showed proof-of-
concept experiments to demonstrate how routinely acquired cross-sectional CT imaging may be used to predict 
patient longevity as a proxy for overall individual health and disease status using computer image analysis 
techniques. This work demonstrates  that radiomics techniques can be used to extract biomarkers relevant to 
one of the most widely used outcomes in epidemiological and clinical research – mortality, and that deep 
learning with convolutional neural networks can be usefully applied to radiomics research [132].  

Thanks to the possibility in optimizing the end-to-end diagnosis-treatment-follow-up chain, Radiomics 
will increasingly affect the clinical practice [20, 80]. In particular, the possibility of decreasing toxic treatments in 
case of minimal improvements as well as boosting the treatment in case of high likelihood of failure/recurrence 
is a way to pave the road of personalized medicine. Imaging is at present used in oncology for guiding and in 
some instances for adapting therapies. However we must remember that clinical trials are still needed to further 
validate the importance and additive role of Radiomics in clinical practice.  

Costs in the health care system can be reduced by the use of Radiomics approach. As a matter of fact, 



27                                                                                                                                                                                  Barucci et al., vol. 9 (2017) 1-51 
 

 

Radiomics is relatively cost-effective given that images are already available for most patients. Furthermore, 
Radiomics can reduce the need for biopsy and providing early identification of patients who do not respond to 
chemotherapy, it has also the advantage of avoiding unnecessary treatment with its risk of toxicity [20].  

Approaches that look into longitudinal variations in radiomic features would be useful, as for example in 
delta-radiomics, the analysis of the percentage change of radiomic features assessed in repeated scans during the 
course of chemo and radio-treatment [20, 26, 27]. Indeed we know that radiotherapy induces changes in textural 
features in the tumor during the treatment, which are related to prognosis [20, 25]. Mid treatment information 
from PET/MRI or even daily Cone Beam CT images, currently acquired for alignment setup, could be applied [27] 
for adapting radiotherapy in order to boost radioresistant tumors or tumor subvolumes (e.g. hypoxic). Also 
organs at risk could benefit by Radiomics-adapted radiotherapy, as early changes of textural features in some 
organs during the treatment were found to be related to the appearance of side effects [20, 65].  
 
Radiomics in the study of other diseases 
 

Radiomics is showing its potential in cancer disease, however as stated above, its applications are 
spreading in different field of clinical research [138, 139]. In study [138] texture analysis has been applied to 
Dopamine transporter (DAT) SPECT imaging for diagnostic purposes in suspected Parkinsonian syndromes. In 
particular image analysis included registration of SPECT images onto corresponding MRI images, automatic ROIs 
extraction on the MRI images, followed by computation of Haralick texture features. 141 subjects were analyzed 
from the Parkinson's Progressive Marker Initiative (PPMI) database, including 85 PD and 56 healthy controls 
(HC) (baseline scans with accompanying 3 T MRI images). These results demonstrated the ability to capture 
valuable information using advanced texture metrics from striatal DAT SPECT, enabling significant correlations 
of striatal DAT binding with clinical, motor and cognitive outcomes, and suggesting that textural features hold 
potential as biomarkers of PD severity and progression.  

In Ref. [140] a work using multi-scale image textures to investigate links between neuroanatomical 
regions and clinical variables (age, gender, autism) in MRI was proposed, while in [141] an exploratory study 
was set to investigate whether a quantitative image analysis of the labyrinth in conventional MRI scans using a 
radiomics approach showed differences between patients with Ménière’s disease and the control group. 

Radiomic features based on texture have also been used to identify subtle differences between brain 
tissues in control subjects and those of Alzheimer’s patients, related to cognitive impairment severity [142, 143, 
144, 145, 157, 161, 162]. In [160] an example of radiomic analysis on Parkinson disease is shown, while 
examples of application to multiple sclerosis texture analysis are reported in [156, 158]. In [161] an important 
study that correlates genetic data with imaging analysis is reported. 

 
6. Conclusions 

 
Concluding we can say that in this era of Big Data, in medical research fields too, a new field of clinical 

data science called “Radiomics” is emerging, allowing the integration of multiple data sources with the aim of 
personalized medicine [71, 80].  

The aim of this report was to give to the reader a review about Radiomics, focusing on the application 
to Prostate Cancer using multiparametric Magnetic Resonance Imaging, and illustrating some preliminary results 
obtained in our study.  

Our results come from the radiomic analysis of a suitable retrospective database, built using mpMRI 
images acquired in the framework of the project IRINA between IFAC-CNR and the Department of Radiology of 
USL Toscana Centro, Santa Maria Nuova Hospital. 

While Radiomics will allow better characterization of patients and their diseases through new 
applications of genomics and improved methods of phenotyping, it will also add to the challenges of data 
management and interpretation [71]. 
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Appendix 1. First steps in automatic prostate segmentation 
 

Thanks to the collaboration with Maria Francesca Spadea and Paolo Zaffino from ImagEngLab 
(http://www.imagenglab.com/newsite/), University of Magna Grecia (Italy), we are moving toward automatic 
segmentation of prostate in MRI images. In the first steps we are using CT images from patient undergoing a 
radiotherapy treatment, extracting the structures defined by radiotherapists (RT-structures), projecting in the 
MRI images dataset of the patient (T2, DWI, ecc.), then verifying how the algorithms are able to perform this 
alignment (Fig. 19). This is just the first step in the workflow to automatic segment the entire prostate without a 
priori knowledge (RT-structures). 

  

Fig. 19 - Examples of CT structures projected on MRI T2 image. In this example prostate, bladder, rectum and the head of the 
femur have been segmented. The two images show different T2-MRI slices. [Results obtained in collaboration with Maria 
Francesca Spadea and Paolo Zaffino from ImagEngLab, University of Magna Grecia (Italy)] 

 

 

 
 
 
 
 
 
 

http://www.imagenglab.com/newsite/
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Appendix 2.  Two examples of ADC and DCE data radiomic analysis. 
 
 

Tab. 2: Radiomic results of the two ROIs defined by radiologist on ADC map. See Fig. 15. 

    Tumor Healthy tissue 
Label Input 

image 
type 

Featur
e Class 

Feature Name Value  

503: dReg - 
DWI 4-
label_1_label_3
06 

general info BoundingBox 

(59, 57, 4, 5, 4, 1) (65, 57, 4, 3, 5, 1) 

503: dReg - 
DWI 4-
label_1_label_3
06 

general info GeneralSettings {'distances': [1], 
'additionalInfo': True, 

'enableCExtensions': True, 
'force2D': False, 'interpolator': 

'sitkBSpline', 
'resampledPixelSpacing': None, 

'label': 1, 'normalizeScale': 1, 
'normalize': False, 

'force2Ddimension': 0, 
'removeOutliers': None, 

'minimumROISize': None, 
'binWidth': 25, 

'minimumROIDimensions': 1, 
'symmetricalGLCM': True, 

'padDistance': 5} 

{'distances': [1], 'additionalInfo': True, 
'enableCExtensions': True, 'force2D': 

False, 'interpolator': 'sitkBSpline', 
'resampledPixelSpacing': None, 'label': 

1, 'normalizeScale': 1, 'normalize': 
False, 'force2Ddimension': 0, 

'removeOutliers': None, 
'minimumROISize': None, 'binWidth': 

25, 'minimumROIDimensions': 1, 
'symmetricalGLCM': True, 

'padDistance': 5} 

503: dReg - 
DWI 4-
label_1_label_3
06 

general info ImageHash 00969d79fad99623de54fae995
6aa004dd93ee5b 

00969d79fad99623de54fae9956aa00
4dd93ee5b 

503: dReg - 
DWI 4-
label_1_label_3
06 

general info ImageSpacing (2,23684215545654, 
2,236842155456541, 
3,849999911263533) 

(2,23684215545654, 
2,236842155456541, 
3,849999911263533) 

503: dReg - 
DWI 4-
label_1_label_3
06 

general info InputImages {'Original': {}} {'Original': {}} 

503: dReg - 
DWI 4-
label_1_label_3
06 

general info MaskHash 467cbf633815f75506fbbb319a
5c725a49be6333 

0c4707a86617da7bacb767a2c099e01
26e3012a2 

503: dReg - 
DWI 4-
label_1_label_3
06 

general info Version 1,2,0,post13+gcb9c73b 1,2,0,post13+gcb9c73b 

503: dReg - 
DWI 4-
label_1_label_3
06 

general info VolumeNum 1 1 

503: dReg - 
DWI 4-
label_1_label_3
06 

general info VoxelNum 16 14 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

InterquartileRange 86,5811234689 162,6876547 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Skewness 0,57620660364 0,125877817 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Uniformity 0,1484375 0,112244898 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

MeanAbsoluteDevia
tion 

60,5230891324 134,3702669 
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503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Energy 5112336,35641 16013903,38 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

RobustMeanAbsolut
eDeviation 

34,3407518812 76,53081848 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Median 554,490441573 1033,139532 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

TotalEnergy 98480629,6942 308481128,6 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Maximum 734,01699774 1370,447921 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

RootMeanSquared 565,261905912 1069,509346 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

90Percentile 662,418518914 1286,279931 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Minimum 435,424823081 770,6117758 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Entropy 2,95281953111 3,324862958 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

StandardDeviation 78,6687595439 167,6612689 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Range 298,592174659 599,8361448 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Variance 6188,77372817 28110,30109 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

10Percentile 470,42852384 839,7706028 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Kurtosis 2,9167693155 2,4450027 

503: dReg - 
DWI 4-
label_1_label_3
06 

original first 
order 

Mean 559,760885153 1056,285918 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm SumVariance 19,3743979568 93,76417447 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Homogeneity1 0,318818091631 0,232219347 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Homogeneity2 0,219789180164 0,154447428 



31                                                                                                                                                                                  Barucci et al., vol. 9 (2017) 1-51 
 

 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm ClusterShade 25,9380597591 76,27606873 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm MaximumProbabilit
y 

0,106755050505 0,085723304 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Idmn 0,911751705086 0,905370448 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Contrast 18,7837121212 75,01194986 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm DifferenceEntropy 2,57923574753 2,756183658 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm InverseVariance 0,236623762505 0,178071753 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Dissimilarity 3,53320707071 7,038194444 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm SumAverage 10,8382575758 27,0436057 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm DifferenceVariance 5,86713798337 24,9297257 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Idn 0,803410888766 0,79907102 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Idm 0,219789180164 0,154447428 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Correlation 0,00644540612082 0,09072918 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Autocorrelation 29,5578282828 187,9004329 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm SumEntropy 2,9342592549 2,864138203 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm AverageIntensity 5,41912878788 13,52180285 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Energy 0,0616049063871 0,065627101 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm SumSquares 9,53952751951 42,19403108 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm ClusterProminence 891,849772108 25534,26337 
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503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Entropy 4,11593599106 3,992700613 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Imc2 0,982344167465 0,996646149 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Imc1 -0,580811790128 -0,780314991 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm DifferenceAverage 3,53320707071 7,038194444 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm Id 0,318818091631 0,232219347 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glcm ClusterTendency 19,3743979568 93,76417447 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm ShortRunLowGrayL
evelEmphasis 

0,133197362055 0,098089102 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm GrayLevelVariance 10,3920659722 46,69713803 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm LowGrayLevelRunE
mphasis 

0,146825834277 0,098331268 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm GrayLevelNonUnifor
mityNormalized 

0,147109375 0,109376887 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm RunVariance 0,0466666666667 0,035502959 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm GrayLevelNonUnifor
mity 

2,24375 1,478021978 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm LongRunEmphasis 1,15 1,115384615 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm ShortRunHighGrayL
evelEmphasis 

45,5729166667 204,6634615 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm RunLengthNonUnifo
rmity 

13,85 12,57692308 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm ShortRunEmphasis 0,9625 0,971153846 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm LongRunHighGrayL
evelEmphasis 

48,8854166667 226,7307692 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm RunPercentage 0,953125 0,964285714 
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503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm LongRunLowGrayLe
velEmphasis 

0,201339723166 0,099299929 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm RunEntropy 3,04320991275 3,382749655 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm HighGrayLevelRunE
mphasis 

46,2354166667 209,0769231 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glrlm RunLengthNonUnifo
rmityNormalized 

0,906666666667 0,928994083 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm GrayLevelVariance 10,3905325444 51,30555556 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm SmallAreaHighGray
LevelEmphasis 

48,0961538462 196,875 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm GrayLevelNonUnifor
mityNormalized 

0,136094674556 0,097222222 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm SizeZoneNonUnifor
mityNormalized 

0,644970414201 0,722222222 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm SizeZoneNonUnifor
mity 

8,38461538462 8,666666667 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm GrayLevelNonUnifor
mity 

1,76923076923 1,166666667 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm LargeAreaEmphasis 1,69230769231 1,5 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm ZoneVariance 0,177514792899 0,138888889 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm ZonePercentage 0,8125 0,857142857 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm LargeAreaLowGrayL
evelEmphasis 

0,361138272712 0,113632034 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm LargeAreaHighGray
LevelEmphasis 

63,3846153846 292,5 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm HighGrayLevelZone
Emphasis 

51,1538461538 216 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm SmallAreaEmphasis 0,826923076923 0,875 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm LowGrayLevelZoneE
mphasis 

0,109535708609 0,109434503 
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503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm ZoneEntropy 3,39274741045 3,584962501 

503: dReg - 
DWI 4-
label_1_label_3
06 

original glszm SmallAreaLowGrayL
evelEmphasis 

0,0466350675834 0,10838512 

 
 

 
Fig. 20 - Example of 3D Slicer radiomic results for a DCE image. Images show the selected ROIs and the table (exported 
enterly below) with the results. 

 
In Tab. 3 are reported some features (87) extracted from the DCE image shown above (Fig. 20).  
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Tab. 3: examples of 87 radiomic features extracted from the DCE image shown above (Fig. 20). 4 ROIs have been selected. 

    Region 1 Region 2 Region 3 Region 4 
Label In

pu
t 
im
ag
e 
ty
pe 

Feat
ure 
Clas
s 

Featur
e 
Name 

Value    

1101: 
Dina
mica 
THRI
VE_6-
label_l
abel_3
03 

ge
ne
ral 

info Bound
ingBo
x 

(49, 51, 20, 4, 5, 1) (56, 74, 20, 5, 5, 1) (41, 51, 20, 5, 5, 1) (30, 46, 20, 5, 5, 1) 

1101: 
Dina
mica 
THRI
VE_6-
label_l
abel_3
03 

ge
ne
ral 

info Gener
alSetti
ngs 

{'distances': [1], 
'additionalInfo': True, 
'enableCExtensions': 
True, 'force2D': False, 
'interpolator': 
'sitkBSpline', 
'resampledPixelSpacing': 
None, 'label': 1, 
'normalizeScale': 1, 
'normalize': False, 
'force2Ddimension': 0, 
'removeOutliers': None, 
'minimumROISize': 
None, 'binWidth': 25, 
'minimumROIDimension
s': 1, 'symmetricalGLCM': 
True, 'padDistance': 5} 

{'distances': [1], 
'additionalInfo': True, 
'enableCExtensions': 
True, 'force2D': False, 
'interpolator': 
'sitkBSpline', 
'resampledPixelSpacing
': None, 'label': 1, 
'normalizeScale': 1, 
'normalize': False, 
'force2Ddimension': 0, 
'removeOutliers': None, 
'minimumROISize': 
None, 'binWidth': 25, 
'minimumROIDimensio
ns': 1, 
'symmetricalGLCM': 
True, 'padDistance': 5} 

{'distances': [1], 
'additionalInfo': True, 
'enableCExtensions': 
True, 'force2D': False, 
'interpolator': 
'sitkBSpline', 
'resampledPixelSpacing'
: None, 'label': 1, 
'normalizeScale': 1, 
'normalize': False, 
'force2Ddimension': 0, 
'removeOutliers': None, 
'minimumROISize': 
None, 'binWidth': 25, 
'minimumROIDimension
s': 1, 
'symmetricalGLCM': 
True, 'padDistance': 5} 

{'distances': [1], 
'additionalInfo': True, 
'enableCExtensions': 
True, 'force2D': False, 
'interpolator': 
'sitkBSpline', 
'resampledPixelSpacin
g': None, 'label': 1, 
'normalizeScale': 1, 
'normalize': False, 
'force2Ddimension': 0, 
'removeOutliers': 
None, 
'minimumROISize': 
None, 'binWidth': 25, 
'minimumROIDimensi
ons': 1, 
'symmetricalGLCM': 
True, 'padDistance': 5} 

1101: 
Dina
mica 
THRI
VE_6-
label_l
abel_3
03 

ge
ne
ral 

info Image
Hash 

346484657c1f15944b6d
105a56e70bfd025313a8 

346484657c1f15944b6
d105a56e70bfd025313
a8 

346484657c1f15944b6
d105a56e70bfd025313
a8 

346484657c1f15944b
6d105a56e70bfd0253
13a8 

1101: 
Dina
mica 
THRI
VE_6-
label_l
abel_3
03 

ge
ne
ral 

info Image
Spacin
g 

(1,8750000000000002, 
1,8749999999999998, 
1,9999972581863399) 

(1,8750000000000002, 
1,8749999999999998, 
1,9999972581863399) 

(1,8750000000000002, 
1,8749999999999998, 
1,9999972581863399) 

(1,875000000000000
2, 
1,8749999999999998, 
1,9999972581863399
) 

1101: 
Dina
mica 
THRI
VE_6-
label_l
abel_3
03 

ge
ne
ral 

info InputI
mages 

{'Original': {}} {'Original': {}} {'Original': {}} {'Original': {}} 

1101: 
Dina
mica 
THRI
VE_6-
label_l
abel_3
03 

ge
ne
ral 

info Mask
Hash 

a880afa280c501e7765b
73f5481e784c5b3d6407 

528188333dcf8401844
8a7266db9070f14df9b
e1 

8c02ee635d4de9a1d54
a0901ddf455fd76db776
4 

19e8f43dc51b3769d1
82e7d7b2b51ff0b7e0
d42b 
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1101: 
Dina
mica 
THRI
VE_6-
label_l
abel_3
03 

ge
ne
ral 

info Versio
n 

1,2,0,post13+gcb9c73b 1,2,0,post13+gcb9c73b 1,2,0,post13+gcb9c73b 1,2,0,post13+gcb9c73
b 

1101: Dinamica 
THRIVE_6-
label_label_303 

general info VolumeNum 1 1 1 1 

1101: Dinamica 
THRIVE_6-
label_label_303 

general info VoxelNum 18 19 19 19 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder InterquartileRan
ge 

27,971059 75,080211 44,1648
3 

42,692669 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder Skewness 0,477929325 0,117941287 -
0,26690
1321 

-1,09023363 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder Uniformity 0,265432099 0,191135734 0,27423
8227 

0,185595568 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder MeanAbsoluteDe
viation 

25,48110768 54,71055949 24,4354
258 

35,65810466 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder Energy 2097463,633 8529894,075 243919
6,876 

2095877,2 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder RobustMeanAbso
luteDeviation 

16,64523371 36,03850128 20,6611
9383 

21,0944314 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder Median 334,180547 680,138382 365,095
928 

332,708386 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder TotalEnergy 14747770,95 59975735,5 171505
79,52 

14736616,36 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder Maximum 421,038046 830,298804 397,483
47 

409,260758 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder RootMeanSquare
d 

341,3586931 670,0311884 358,299
8506 

332,1284786 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder 90Percentile 377,1676482 732,5473136 397,483
47 

372,7511652 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder Minimum 276,766268 529,97796 297,376
522 

191,38093 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder Entropy 2,169035422 2,792586226 2,00428
5909 

2,6703397 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firstorder StandardDeviatio
n 

33,1828397 70,17163406 28,1446
9395 

48,79629212 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firsto 
rder 

Range 144,271778 300,320844 100,106
948 

217,879828 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firsto 
rder 

Variance 1101,10085 4924,058226 792,123
7974 

2381,078124 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firsto 
rder 

10Percentile 300,320844 569,4318748 325,642
0132 

273,821946 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firsto 
rder 

Kurtosis 3,373453962 3,066541125 2,15873
1525 

4,255558918 

1101: Dinamica 
THRIVE_6-
label_label_303 

original firsto 
rder 

Mean 339,7420441 666,3465579 357,192
7479 

328,5243495 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm SumVariance 3,202170956 14,91425737 2,79418
2256 

6,733808107 
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1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Homogeneity1 0,645591908 0,478443878 0,58407
7381 

0,463612528 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Homogeneity2 0,609453782 0,407655547 0,55327
381 

0,390300429 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm ClusterShade 2,025876676 5,607932459 -
2,85084
0386 

-19,91736432 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm MaximumProbab
ility 

0,247627373 0,175595238 0,17113
0952 

0,136904762 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Idmn 0,95704667 0,962109509 0,94374
9814 

0,948715538 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Contrast 1,796953047 7,220238095 1,62202
381 

5,955357143 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm DifferenceEntrop
y 

1,511652283 2,361802854 1,43946
0167 

2,151272621 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm InverseVariance 0,402453449 0,337476025 0,57498
3466 

0,374370866 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Dissimilarity 0,945054945 2,011904762 1,01488
0952 

1,907738095 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm SumAverage 6,656093906 12,55357143 7,41369
0476 

13,9672619 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm DifferenceVarian
ce 

0,8837329 3,020975057 0,57777
0692 

2,229981576 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Idn 0,878960028 0,877331463 0,84461
8056 

0,852672501 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Idm 0,609453782 0,407655547 0,55327
381 

0,390300429 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Correlation 0,277063767 0,355570357 0,26285
0596 

0,073098981 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Autocorrelation 11,43494006 41,37202381 14,0386
9048 

48,97619048 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm SumEntropy 2,332883181 2,91380101 2,36418
8611 

2,681658153 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm AverageIntensity 3,328046953 6,276785714 3,70684
5238 

6,983630952 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Energy 0,125152414 0,079294218 0,10664
6825 

0,066663124 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm SumSquares 1,249781001 5,533623866 1,10405
1516 

3,172291312 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm ClusterProminen
ce 

25,47518381 685,8977251 20,5656
0886 

227,0939774 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Entropy 3,384031629 3,951090668 3,44828
6932 

4,097944426 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Imc2 0,901184521 0,956435924 0,76163
4898 

0,928180242 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Imc1 -
0,410359772 

-0,479122947 -
0,24054
6181 

-0,427250569 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm DifferenceAverag
e 

0,945054945 2,011904762 1,01488
0952 

1,907738095 
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1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm Id 0,645591908 0,478443878 0,58407
7381 

0,463612528 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glcm ClusterTendency 3,202170956 14,91425737 2,79418
2256 

6,733808107 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm ShortRunLowGra
yLevelEmphasis 

0,158175879 0,111156477 0,13054
0216 

0,081322008 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm GrayLevelVarianc
e 

1,675974277 8,839533938 1,27828
8567 

4,154195502 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm LowGrayLevelRu
nEmphasis 

0,182757123 0,114141614 0,14258
5841 

0,082936244 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm GrayLevelNonUni
formityNormaliz
ed 

0,2239119 0,155536963 0,26432
3202 

0,171638462 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm RunVariance 0,339432939 0,201623039 0,18988
0875 

0,145352373 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm GrayLevelNonUni
formity 

2,973076923 2,529779412 4,17414
5299 

2,876838235 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm LongRunEmphasi
s 

2,220512821 1,579840686 1,70753
2051 

1,434742647 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm ShortRunHighGra
yLevelEmphasis 

9,805288462 41,25833674 12,3492
2543 

41,89922896 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm RunLengthNonU
niformity 

7,425 12,41164216 11,1479
7009 

13,29595588 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm ShortRunEmphas
is 

0,760754986 0,889898216 0,84448
4509 

0,907654208 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm LongRunHighGra
yLevelEmphasis 

25,55608974 71,63192402 24,9754
2735 

71,96599265 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm RunPercentage 0,736111111 0,855263158 0,82894
7368 

0,881578947 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm LongRunLowGra
yLevelEmphasis 

0,310363515 0,128927744 0,20026
5017 

0,090727055 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm RunEntropy 2,974652159 3,235547862 2,66286
8065 

3,016363978 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm HighGrayLevelRu
nEmphasis 

12,48108974 45,96660539 14,7206
1966 

47,27205882 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glrlm RunLengthNonU
niformityNormali
zed 

0,553814103 0,759798905 0,69124
4167 

0,792340236 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm GrayLevelVarianc
e 

2,484375 12,36363636 1,73437
5 

5,354166667 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm SmallAreaHighGr
ayLevelEmphasis 

10,52295918 41,20454545 6,37687
5 

35,49666667 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm GrayLevelNonUni
formityNormaliz
ed 

0,1875 0,123966942 0,21875 0,152777778 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm SizeZoneNonUnif
ormityNormalize
d 

0,4375 0,570247934 0,34375 0,708333333 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm SizeZoneNonUnif
ormity 

3,5 6,272727273 2,75 8,5 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm GrayLevelNonUni
formity 

1,5 1,363636364 1,75 1,833333333 
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1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm LargeAreaEmpha
sis 

9,25 5,909090909 8,125 4,25 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm ZoneVariance 4,1875 2,925619835 2,48437
5 

1,743055556 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm ZonePercentage 0,444444444 0,578947368 0,42105
2632 

0,631578947 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm LargeAreaLowGr
ayLevelEmphasis 

1,103090278 0,271358631 0,72215
2778 

0,168667341 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm LargeAreaHighGr
ayLevelEmphasis 

99,375 273,3636364 128,25 222,4166667 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm HighGrayLevelZo
neEmphasis 

13,875 48,36363636 13,125 44,41666667 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm SmallAreaEmpha
sis 

0,66661352 0,77458256 0,55187
5 

0,841875 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm LowGrayLevelZo
neEmphasis 

0,225486111 0,154350282 0,20965
2778 

0,108319765 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm ZoneEntropy 3 3,095795255 3 3,022055209 

1101: Dinamica 
THRIVE_6-
label_label_303 

original glszm SmallAreaLowGr
ayLevelEmphasis 

0,18111895 0,145544221 0,17402
7778 

0,105466408 
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Appendix 3.  MpMRI phantoms for repeteability, reproducibility and robustness 
 

Some examples of mpMRI phantoms developed at IFAC-CNR are shown Fig. 21. 
These phantoms are used for quality assurance, repeatability, reproducibility and robustness test and 

retest. The same phantoms can be used for test of characteristics of nanoparticles as theranostics agents and for 
characterization of solutions, gels (Fig. 22, Fig. 23), etc. 

 
 
 

  
 

  

 

Fig. 21 - Examples of phantoms for multiparametric MRI studies. Top panel: phantom developed at IFAC-CNR for the study of 
nanoparticles in mpMRI. This kind of phantom is suitable for repeatability, reproducibility and robustness test. In the bottom 

panel the same phantom is shown during a mpMRI images acquisition using a head-coil at the 3T GE scanner of IFC-CNR. 
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Fig. 22 - Examples of mpMRI acquisitions using the phantoms developed at IFAC-CNR. Top left: T1 map; Top right: T2w map; 
Bottom-left: DWI; Bottom-right: Spectroscopy. The first 3 images have been displayed using the software Horos (Horos 
Project, DICOM image viewing and measuring. http://www.horosproject.org/). The last image, corresponding to an example 
of magnetic resonance spectroscopy has been created using the software jMRUI. 
 

  
Fig. 23 - Examples of phantom data acquisition using mpMRI, scanner 3T GE at IFC-CNR. This phantom holds 9 test tubes 
with a gel inside at different concentrations. Left panel: ADC. Right panel: T2w. Visualization and elaboration of these images 
were performed using the GE software. The left ADC image shows some distortions typical of diffusion acquisition with 
scanner at 3T. 9 ROIs were selected on this image to evaluate the ADC inside the test tubes. 

http://www.horosproject.org/
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Appendix 4.  Radiomics applications in ultrasound and photoacoustic imaging 
 

Ultrasound imaging modality is largely spread as a diagnostic tool, then arise the question if Radiomics 
approach can be used in this context too. 

To date no integrated analysis testing the repeatability and stability of ultrasound radiomic features for 
applications in oncology has been published [22]. 

However quantitative features retrieved from ultrasound images have been shown to be useful to 
discriminate among normal, malignant and benign tissues [110]. In Ref. [111] has been evaluated whether 
acoustical, textural and shape features were able to differentiate malignant melanoma from benign melanocytic 
tumors. Similar accuracies were observed when using quantitative (textural) features to identify malignant 
thyroid nodules [112, 113] or breast tumors [114, 115, 146].  

In Ref. [123] texture analysis (first order statistics, GLCM and fractal dimension) was performed on 
breast ultrasound in a cohort of 80 patients [67, 123]. The authors were able to identify malignant lesions with a 
sensitivity of 100% and specificity of 80% (78% for fibroadenoma, 73% for cysts and 91% for fibrocystic 
nodules). Numerous studies have since used texture analysis to differentiate between benign and malignant 
breast lesions using ultrasound [123 - 127].  

However in Ref. [116] a high inter-observer variability was revealed in quantitative ultrasound features 
of the Achilles tendons.  

Our interest is mainly in the study of melanoma and sentinel lymph node [117 - 122], and we are 
developing and testing an integrated clinical platform of ultrasound and photoacoustic imaging. Images obtained 
will be analyzed using Radiomics approach, with in addition the possibility to study patterns coming from the 
injection of ultrasound and/or photoacoustical contrast agents.  
 
Appendix 5.  MpMRI phantoms for the IRINA project  
 
The IRINA project (“Imaging molecolare di risonanza magnetica della biodistribuzione di nanoparticelle e vettori 
cellulari per applicazioni teranostiche” – Biodistribution of nanoparticles and cellular vehickles using 
biomolecular magnetic resonance imaging for theranostics applications) is aimed to the use of nanoparticles as a 
new theranostics agents.  
In this context we use the potentiality of multiparametric magnetic resonance imaging to visualize the 
nanoparticles biodistribution inside the body. 
As a preliminary test we have developed a phantom aimed to characterizes the behavior of different kinds of 
nanoparticles in mpMRI (parameters as T1, T2, ADC, etc. can be evaluated) (Fig. 24). 
 

 

  
Fig. 24 - Examples of phantom developed at IFAC-CNR in the framework of IRINA project. This phantom holds 18 test tubes 
with a different types of nanoparticles all made and developed at IFAC-CNR. In this example we have 3 types: made of PMMA 
with a fluorescein tag, just PMMA, and made of gold (darker in the pictures above).  Some water tubes have been inserted in 
order to check the measurements errors. 
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