4,079 research outputs found

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Semantic modelling of user interests based on cross-folksonomy analysis

    Get PDF
    The continued increase in Web usage, in particular participation in folksonomies, reveals a trend towards a more dynamic and interactive Web where individuals can organise and share resources. Tagging has emerged as the de-facto standard for the organisation of such resources, providing a versatile and reactive knowledge management mechanism that users find easy to use and understand. It is common nowadays for users to have multiple profiles in various folksonomies, thus distributing their tagging activities. In this paper, we present a method for the automatic consolidation of user profiles across two popular social networking sites, and subsequent semantic modelling of their interests utilising Wikipedia as a multi-domain model. We evaluate how much can be learned from such sites, and in which domains the knowledge acquired is focussed. Results show that far richer interest profiles can be generated for users when multiple tag-clouds are combine

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Parallel Processing of Large Graphs

    Full text link
    More and more large data collections are gathered worldwide in various IT systems. Many of them possess the networked nature and need to be processed and analysed as graph structures. Due to their size they require very often usage of parallel paradigm for efficient computation. Three parallel techniques have been compared in the paper: MapReduce, its map-side join extension and Bulk Synchronous Parallel (BSP). They are implemented for two different graph problems: calculation of single source shortest paths (SSSP) and collective classification of graph nodes by means of relational influence propagation (RIP). The methods and algorithms are applied to several network datasets differing in size and structural profile, originating from three domains: telecommunication, multimedia and microblog. The results revealed that iterative graph processing with the BSP implementation always and significantly, even up to 10 times outperforms MapReduce, especially for algorithms with many iterations and sparse communication. Also MapReduce extension based on map-side join usually noticeably presents better efficiency, although not as much as BSP. Nevertheless, MapReduce still remains the good alternative for enormous networks, whose data structures do not fit in local memories.Comment: Preprint submitted to Future Generation Computer System

    Big Data Meets Telcos: A Proactive Caching Perspective

    Full text link
    Mobile cellular networks are becoming increasingly complex to manage while classical deployment/optimization techniques and current solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps. This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data. However, the big data by itself is yet another complex phenomena to handle and comes with its notorious 4V: velocity, voracity, volume and variety. In this work, we address these issues in optimization of 5G wireless networks via the notion of proactive caching at the base stations. In particular, we investigate the gains of proactive caching in terms of backhaul offloadings and request satisfactions, while tackling the large-amount of available data for content popularity estimation. In order to estimate the content popularity, we first collect users' mobile traffic data from a Turkish telecom operator from several base stations in hours of time interval. Then, an analysis is carried out locally on a big data platform and the gains of proactive caching at the base stations are investigated via numerical simulations. It turns out that several gains are possible depending on the level of available information and storage size. For instance, with 10% of content ratings and 15.4 Gbyte of storage size (87% of total catalog size), proactive caching achieves 100% of request satisfaction and offloads 98% of the backhaul when considering 16 base stations.Comment: 8 pages, 5 figure

    Finding co-solvers on Twitter, with a little help from Linked Data

    Get PDF
    In this paper we propose a method for suggesting potential collaborators for solving innovation challenges online, based on their competence, similarity of interests and social proximity with the user. We rely on Linked Data to derive a measure of semantic relatedness that we use to enrich both user profiles and innovation problems with additional relevant topics, thereby improving the performance of co-solver recommendation. We evaluate this approach against state of the art methods for query enrichment based on the distribution of topics in user profiles, and demonstrate its usefulness in recommending collaborators that are both complementary in competence and compatible with the user. Our experiments are grounded using data from the social networking service Twitter.com

    Understanding the Cognitive Impact of Emerging Web Technologies: A Research Focus Area for Embodied, Extended and Distributed Approaches to Cognition

    No full text
    Alongside existing research into the social, political and economic impacts of the Web, there is also a need to explore the effects of the Web on our cognitive profile. This is particularly so as the range of interactive opportunities we have with the Web expands under the influence of a range of emerging technologies. Embodied, extended and distributed approaches to cognition are relevant to understanding the potential cognitive impact of these new technologies because of the emphasis they place on extra-neural and extra-corporeal factors in the shaping of our cognitive capabilities at both an individual and collective level. The current paper outlines a number of areas where embodied, extended and distributed approaches to cognition are useful in understanding the impact of emerging Web technologies on future forms of both human and machine intelligence

    Living the Library of the Future: A Reminiscence

    Get PDF
    How do we create the library of the future? Throughout my library career I\u27ve attempted to make the library of the future a reality. Starting with Holorith cards to Dialog and BRS AfterDark, to COMCats and Online catalogs, to CD-ROM database networks, to Gopher, InfoTrac 2000, and the Web; from paper to media to bits; from preservation to digital curation; from owning and storing to licensing and accessing to creating and collaborating, I learned that we\u27re always creating the library of the future, that it\u27s always just beyond our reach. While everything is new, much remains and some returns
    corecore