158 research outputs found

    Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry

    Get PDF
    Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.This work was supported by the National Natural Science Foundation of China under Grant 41201419 and a China Scholarship Council (CSC) scholarship to Mi Chen. Roberto Tomás was supported by the Ministry of Education, Culture and Sport through the project PRX14/00100. Part of this work is also supported by the Spanish Ministry of Economy and Competitiveness and EU FEDER funds under projects TIN2014-55413-C2-2-P, by the UK Natural Environmental Research Council (NERC) through the LICS and IRNHiC projects (ref. NE/K010794/1 and NE/N012151/1, respectively), the ESA-MOST DRAGON-3 projects (ref. 10607 and 10665) and the Open Fund from the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources (Geological Survey of Jiangsu Province)

    Evaluation of InSAR and TomoSAR for monitoring deformations caused by mining in a mountainous area with high resolution satellite-based SAR

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) and Differential Interferometric Synthetic Aperture Radar (DInSAR) have shown numerous applications for subsidence monitoring. In the past 10 years, the Persistent Scatterer InSAR (PSI) and Small BAseline Subset (SBAS) approaches were developed to overcome the problem of decorrelation and atmospheric effects, which are common in interferograms. However, DInSAR or PSI applications in rural areas, especially in mountainous regions, can be extremely challenging. In this study we have employed a combined technique, i.e., SBAS-DInSAR, to a mountainous area that is severely affected by mining activities. In addition, L-band (ALOS) and C-band (ENVISAT) data sets, 21 TerraSAR-X images provided by German Aerospace Center (DLR) with a high resolution have been used. In order to evaluate the ability of TerraSAR-X for mining monitoring, we present a case study of TerraSAR-X SAR images for Subsidence Hazard Boundary (SHB) extraction. The resulting data analysis gives an initial evaluation of InSAR applications within a mountainous region where fast movements and big phase gradients are common. Moreover, the experiment of four-dimension (4-D) Tomography SAR (TomoSAR) for structure monitoring inside the mining area indicates a potential near all-wave monitoring, which is an extension of conventional InSAR

    Spatiotemporal Evolution of Land Subsidence in the Beijing Plain 2003–2015 Using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR Data

    Get PDF
    Land subsidence is one of the most important geological hazards in Beijing, China, and its scope and magnitude have been growing rapidly over the past few decades, mainly due to long-term groundwater withdrawal. Interferometric Synthetic Aperture Radar (InSAR) has been used to monitor the deformation in Beijing, but there is a lack of analysis of the long-term spatiotemporal evolution of land subsidence. This study focused on detecting and characterizing spatiotemporal changes in subsidence in the Beijing Plain by using Persistent Scatterer Interferometry (PSI) and geographic spatial analysis. Land subsidence during 2003–2015 was monitored by using ENVISAT ASAR (2003–2010), RADARSAT-2 (2011–2015) and TerraSAR-X (2010–2015) images, with results that are consistent with independent leveling measurements. The radar-based deformation velocity ranged from −136.9 to +15.2 mm/year during 2003–2010, and −149.4 to +8.9 mm/year during 2011–2015 relative to the reference point. The main subsidence areas include Chaoyang, Tongzhou, Shunyi and Changping districts, where seven subsidence bowls were observed between 2003 and 2015. Equal Fan Analysis Method (EFAM) shows that the maximum extensive direction was eastward, with a growing speed of 11.30 km2/year. Areas of differential subsidence were mostly located at the boundaries of the seven subsidence bowls, as indicated by the subsidence rate slope. Notably, the area of greatest subsidence was generally consistent with the patterns of groundwater decline in the Beijing Plain

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain

    Get PDF
    Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.The different research areas included in this paper has been supported by the projects: CGL2005-05500-C02, CGL2008-06426-C01-01/BTE, AYA2 010-17448, IPT-2011-1234-310000, TEC-2008-06764, ACOMP/2010/082, AGL2009-08931/AGR, 2012GA-LC-036, 2003-03-4.3-I-014, CGL2006-05415, BEST-2011/225, CGL2010-16775, TEC2011-28201, 2012GA-LC-021 and the Banting Postdoctoral Fellowship to PJG

    Monitoring the impact of groundwater pumping on infrastructure using Geographic Information System (GIS) and Persistent Scatterer Interferometry (PSI)

    Get PDF
    Transportation infrastructure is critical for the advancement of society. Bridges are vital for an efficient transportation network. Bridges across the world undergo variable deformation/displacement due to the Earth’s dynamic processes. This displacement is caused by ground motion, which occurs from many natural and anthropogenic events. Events causing deformation include temperature fluctuation, subsidence, landslides, earthquakes, water/sea level variation, subsurface resource extraction, etc. Continual deformation may cause bridge failure, putting civilians at risk, if not managed properly. Monitoring bridge displacement, large and small, provides evidence of the state and health of the bridge. Traditionally, bridge monitoring has been executed through on-site surveys. Although this method of bridge monitoring is systematic and successful, it is not the most efficient and cost-effective. Through technological advances, satellite-based Persistent Scatterer Interferometry (PSI) and Geographic Information Systems (GIS) have provided a system for analyzing ground deformation over time. This method is applied to distinguish bridges that are more at risk than others by generating models that display the displacement at various locations along each bridge. A bridge’s health and its potential risk can be estimated upon analysis of measured displacement rates. In return, this process of monitoring bridges can be done at much faster rates; saving time, money and resources. PSI data covering Oxnard, California, revealed both bridge displacement and regional ground displacement. Although each bridge maintained different patterns of displacement, many of the bridges within the Oxnard area displayed an overall downward movement matching regional subsidence trends observed in the area. Patterns in displacement-time series plots provide evidence for two types of deformation mechanisms. Long-term downward movements correlate with the relatively large regional subsidence observed using PSI in Oxnard. Thermal dilation from seasonal temperature changes may cause short-term variabilities unique to each bridge. Overall, it may be said that linking geologic, weather, and groundwater patterns with bridge displacement has shown promise for monitoring transportation infrastructure and more importantly differentiating between regional subsidence and site-specific displacements

    InSAR as a tool for monitoring hydropower projects: A review

    Get PDF
    This paper provides a review of using Interferometric Synthetic Aperture Radar (InSAR), a microwave remote sensing technique, for deformation monitoring of hydroelectric power projects, a critical infrastructure that requires consistent and reliable monitoring. Almost all major dams around the world were built for the generation of hydropower. InSAR can enhance dam safety by providing timely settlement measurements at high spatial-resolution. This paper provides a holistic view of different InSAR deformation monitoring techniques such as Differential Synthetic Aperture Radar Interferometry (DInSAR), Ground-Based Synthetic Aperture Radar (GBInSAR), Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR), Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPSInSAR) and Small BAseline Subset (SBAS). PSInSAR, GBInSAR, MTInSAR, and DInSAR techniques were quite commonly used for deformation studies. These studies demonstrate the advantage of InSAR-based techniques over other conventional methods, which are laborious, costly, and sometimes unachievable. InSAR technology is also favoured for its capability to provide monitoring data at all times of day or night, in all-weather conditions, and particularly for wide areas with mm-scale precision. However, the method also has some disadvantages, such as the maximum deformation rate that can be monitored, and the location for monitoring cannot be dictated. Through this review, we aim to popularize InSAR technology to monitor the deformation of dams, which can also be used as an early warning method to prevent any unprecedented catastrophe. This study also discusses some case studies from southern India to demonstrate the capabilities of InSAR to indirectly monitor dam health

    Monitoring the impact of groundwater pumping on infrastructure using Geographic Information System (GIS) and Persistent Scatterer Interferometry (PSI)

    Get PDF
    Transportation infrastructure is critical for the advancement of society. Bridges are vital for an efficient transportation network. Bridges across the world undergo variable deformation/displacement due to the Earth’s dynamic processes. This displacement is caused by ground motion, which occurs from many natural and anthropogenic events. Events causing deformation include temperature fluctuation, subsidence, landslides, earthquakes, water/sea level variation, subsurface resource extraction, etc. Continual deformation may cause bridge failure, putting civilians at risk, if not managed properly. Monitoring bridge displacement, large and small, provides evidence of the state and health of the bridge. Traditionally, bridge monitoring has been executed through on-site surveys. Although this method of bridge monitoring is systematic and successful, it is not the most efficient and cost-effective. Through technological advances, satellite-based Persistent Scatterer Interferometry (PSI) and Geographic Information Systems (GIS) have provided a system for analyzing ground deformation over time. This method is applied to distinguish bridges that are more at risk than others by generating models that display the displacement at various locations along each bridge. A bridge’s health and its potential risk can be estimated upon analysis of measured displacement rates. In return, this process of monitoring bridges can be done at much faster rates; saving time, money and resources. PSI data covering Oxnard, California, revealed both bridge displacement and regional ground displacement. Although each bridge maintained different patterns of displacement, many of the bridges within the Oxnard area displayed an overall downward movement matching regional subsidence trends observed in the area. Patterns in displacement-time series plots provide evidence for two types of deformation mechanisms. Long-term downward movements correlate with the relatively large regional subsidence observed using PSI in Oxnard. Thermal dilation from seasonal temperature changes may cause short-term variabilities unique to each bridge. Overall, it may be said that linking geologic, weather, and groundwater patterns with bridge displacement has shown promise for monitoring transportation infrastructure and more importantly differentiating between regional subsidence and site-specific displacements
    corecore